_earning Perl

http://kickme.to/tiger/

http://kickme.to/tiger/

O’REILLY"

W Learning Perl

By Randal Schwartz, Tom Christiansen & Larry Wall; ISBN 1-56592-284-0, 302 pages.
Second Edition, July 1997.
(See the catalog page for this book.)

Search the text of Learning Perl.

Index

Table of Contents

Foreword

Preface

Chapter 1: Introduction

Chapter 2: Scalar Data

Chapter 3: Arraysand List Data

Chapter 4: Control Structures

Chapter 5: Hashes

Chapter 6: Basic 1/0

Chapter 7: Regular Expressions

Chapter 8: Functions

Chapter 9: Miscellaneous Control Structures
Chapter 10: Filehandles and File Tests
Chapter 11: Formats

Chapter 12: Directory Access

Chapter 13: File and Directory Manipulation
Chapter 14: Process Management

Chapter 15: Other Data Transformation
Chapter 16: System Database Access
Chapter 17: User Database Manipulation
Chapter 18: Converting Other Languages to Perl
Chapter 19: CGI Programming

Appendix A: Exercise Answers
Appendix B: Libraries and Modules

http://www.oreilly.com/catalog/lperl2/
file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Appendix C: Networking Clients
Appendix D: Topics We Didn't Mention

Examples

The Perl CD Bookshelf
Navigation

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

file:///D|/Cool Stuff/old/ftp/preview/perl/learn/examples/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/copyrght.htm
http://www.oreilly.com/

W Learning Perl —

Foreword Next:
Preface

Foreword

Contents:
Second Edition Update

Attention, class! Attention! Thank you.

Greetings, aspiring magicians. | hope your summer vacations were enjoyable, if too short. Allow meto
be the first to welcome you to the College of Wizardry and, more particularly, to this introductory class
in the Magic of Perl. | am not your regular instructor, but Professor Schwartz was unavoidably delayed,
and has asked me, as the creator of Perl, to step in today and give afew introductory remarks.

L et's see now. Where to begin? How many of you are taking this course as freshmen? | see. Hmmm, |'ve
seen worse in my days. Occasionally. Very occasionally.

Eh? That was ajoke. Really! Ah well. No sense of humor, these freshmen.

Well now, what shall | talk about? There are, of course, any number of things | could talk about. | could
take the egotistical approach and talk about myself, elucidating all those quirks of genetics and
upbringing that brought me to the place of creating Perl, as well as making afool of myself in general.
That might be entertaining, at least to me.

Or | could talk instead about Professor Schwartz, without whose ongoing efforts the world of Perl would
be much impoverished, up to and including the fact that this course of instruction wouldn't exist.

That might be enlightening, though | have the feeling you'll know more of Professor Schwartz by the end
of this course than | do.

Or, putting aside all this personal puffery, | could simply talk about Perl itself, which is, after all, the
subject of this course.

Orisit?Hmmm... .

When the curriculum committee discussed this course, it reached the conclusion that this classisn't so
much about Perl asit is about you! This shouldn't be too surprising, because Perl isitself also about you -
at least in the abstract. Perl was created for someone like you, by someone like you, with the
collaboration of many other someones like you. The Magic of Perl was sewn together, stitch by stitch
and swatch by swatch, around the rather peculiar shape of your psyche. If you think Perl isabit odd,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

perhaps that's why.

Some computer scientists (the reductionists, in particular) would like to deny it, but people have
funny-shaped minds. Mental geography is not linear, and cannot be mapped onto a flat surface without
severe distortion. But for the last score years or so, computer reductionists have been first bowing down
at the Temple of Orthogonality, then rising up to preach their ideas of ascetic rectitude to any who would
listen.

Their fervent but misguided desire was simply to squash your mind to fit their mindset, to smush your
patterns of thought into some sort of hyperdimensional flatland. It's ajoyless existence, being smushed.

Nevertheless, your native common sense has shown through in spots. Y ou and your conceptual ancestors
have transcended the dreary landscape to compose many lovely computer incantations. (Some of which,
at times, actually did what you wanted them to.) The most blessed of these incantations were canonized
as Standards, because they managed to tap into something mystical and magical, performing the miracle
of Doing What Y ou Expect.

What nobody noticed in all the excitement was that the computer reductionists were still busily trying to
smush your minds flat, albeit on adlightly higher plane of existence. The decree, therefore, went out (I'm
sure you've heard of it) that computer incantations were only allowed to perform one miracle apiece. "Do
one thing and do it well" was the rallying cry, and with one stroke, shell programmers were condemned
to alife of muttering and counting beads on strings (which in these latter days have come to be known as
pipelines).

Thiswas when | made my small contribution to saving the world. | was rolling some of those very beads
around in my fingers one day and pondering the hopel essness (and haplessness) of my existence, when it
occurred to me that it might be interesting to melt down some of those mystical beads and see what
would happen to their Magic if | made asingle, slightly larger bead out of them. So | fired up the old
Bunsen burner, picked out some of my favorite beads, and let them melt together however they would.
And lo! the new Magic was more powerful than the sum of its parts and parcels.

That's odd, thought I. Why should it be that the Sedulous Bead of Regular Expressions, when bonded
together with the Shellacious Bead of Gnostic Interpolation, and the Awkward Bead of Simple Data
Typology, should produce more Magic, pound for pound, than they do when strung out on strings? | said
to myself, could it be that the beads can exchange power with each other because they no longer have to
commune with each other through that skinny little string? Could the pipeline be holding back the flow
of information, much as wine doth resist flowing through the neck of Doctor von Neumann's famous
bottle?

This demanded (of me) more scrutiny (of it).

So | melted that larger bead together with afew more of my favorite beads, and the same thing happened,
only more so. It was practically a combinatorial explosion of potential incantations: the Basic Bead of
Output Formats and the Lispery Bead of Dynamic Scoping bonded themselves with the C-rationalized
Bead of Operators Galore, and together they put forth a brilliant pulse of power that spread to thousands
of machines throughout the entire civilized world. That message cost the Net hundreds if not thousands
of dollarsto send everywhere. Obviously | was either onto something, or on something.

| then gathered my courage about me and showed my new magical bead to some of you, and you then

began to give me your favorite beads to add in as well. The Magic grew yet more powerful, as yet more
synergy was imbued in the silly thing. It was as if the Computational Elementals summoned by each
bead were cooperating on your behalf to solve your problems for you. Why the sudden peace on earth
and good will toward mentality? Perhaps it was because the beads were your favorite beads? Perhaps it
was because I'm just a good bead picker?

Perhaps | just got lucky.

Whatever, the magical bead eventually grew into this rather odd-looking Amulet you see before you
today. Seeit glitter, amost like a pearl.

That was another joke. Really! | assure you! Ah well. | was afreshman once too... The Amulet isn't
exactly beautiful though; in fact, up closeit still looks like a bunch of beads melted together. Well, al
right, | admit it. It's downright ugly. But never mind that. It's the Magic that counts. Speaking of Magic,
look who just walked in the door! My good buddy Merlyn, er, | should say, Professor Schwartz, is here
just in the nick of time to begin telling you how to perform miracles with thislittle Amulet, if you're
willing to learn the proper mysterious incantations. And you're in good hands; | must admit that there's
no one better at muttering mysterious incantations than Professor Schwartz. Eh, Merlyn?

Anyway, to sum up. What you'll need most is courage. It is not an easy path that you've set your foot
upon. You're learning a new language: alanguage full of strange runes and ancient chants, some easy and
some difficult, many of which sound familiar, and some of which don't. Y ou may be tempted to become
discouraged and quit. But think you upon this: consider how long it took you to learn your own native
tongue. Was it worth it? | think so. And have you finished learning it? | think not. Then do not expect to
learn all the mysteries of Perl in amoment, as though you were consuming a mere peanut, or an olive.
Rather, think of it as though you were consuming, say, a banana. Consider how this works. Y ou do not
wait to enjoy the banana until after you have eaten the whole thing. No, of course not. Y ou enjoy each
bite as you take it. And each bite motivates you to take the next bite, and the next.

So then, speaking now of the fruit of Merlyn'slabors, | would urge you to enjoy this, um, course. The
fruit course, of course. Ahem, that was ajoke too. Ah well.

Here then, Professor, | present to you your new class. They seem to have no sense of humor whatsoever,
but | expect you'll manage somehow.

Class, | present to you Professor Randal L. Schwartz, Doctor of Syntax, Wizard at Large, and of course,
Just Another Perl Hacker. He has my blessings, just as you have my blessings. May you Learn Perl. May
you do Good Magic with Perl. And above all, may you have Lots of Fun with Perl. So beit!

So doit!

Larry Wall
September, 1993

Second Edition Update

Y ou too, Tom.

Larry Wall

May, 1997

Learning Next:
Perl Preface
Book Preface
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: Second Edition Preface | Next: Retrieving Exercises
Update

Preface

Contents:
What This Book Is About

Retrieving Exercises

Additional Resources

How to Get Perl

Conventions Used in This Book

Support

Acknowledgments for the First Edition
Acknowledgments for the Second Edition
We'd Liketo Hear from You

What This Book Is About

Among other things, this book is about 260 pages long. It is also a gentle introduction to Perl. By the
time you've gone through this book, you'll have touched on the majority of the ssmpler operations and
common language idioms found in most Perl programs.

Thisbook is not intended as a comprehensive guide to Perl; on the contrary, in order to keep the book
from growing unmanageably large, we've been selective about covering only those constructs and issues
that you're most likely to use early in your Perl programming career.

As aprelude to your more advanced study, however, we've included a heavier chapter at the end of the
book. It's about CGI programming, but along the way, it touches upon library modules, references, and
object-oriented programming in Perl. We hope it whets your appetite for these more advanced topics.

Each chapter ends with a series of exercises designed to help you practice what you have just read. If you
read at atypical pace and do all the exercises, you should be able to get through each chapter in about
two to three hours, or about 30 to 40 hours for the entire book.

This book is meant to be a companion volume to the classic Programming Perl, Second Edition, by Larry

Wall, Randal L. Schwartz, and Tom Christiansen, published by O'Reilly & Associates, the complete
reference book on the language.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Initially designed as a glue language under the UNIX operating system, Perl now runs virtually
everywhere, including MS-DOS, VMS, 0S/2, Plan 9, Macintosh, and any variety of Windows you care
to mention. It is one of the most portable programming languages available today. With the exception of
those few sections related to UNIX systems administration, the vast majority of this book is applicable to
any platform Perl runs on.

Previous: Second Edition Learning | Next: Retrieving Exercises|
Update Perl

Second Edition Update Book Retrieving Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Per! —

Previous: What This Book Is Preface | Next: Additional Resources
About

Retrieving Exercises

The exercisesin this book are available electronically in anumber of ways: by FTP, FTPMAIL, BITFTP, and UUCP.
The cheapest, fastest, and easiest ways are listed first. If you read from the top down, the first one that works is probably
the best. Use FTP if you are directly on the Internet. Use FTPMAIL if you are not on the Internet but can send and
receive electronic mail to Internet sites. Use BITFTP if you send electronic mail viaBITNET. Use UUCP if none of the
above works.

Note: The exercises were prepared using a UNIX system. If you are running UNIX, you can use them without
modification. If you are running on another platform, you may need to modify these exercises dightly. For example,
whereas under UNIX every line ends with aline-feed character (the carriage return isimplicit), under DOS every line
must end with explicit line-feed and carriage-return characters. Depending upon your own configuration and transfer
method, you may need to append carriage returns. See the README file accompanying the exercises for additional
information.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown below.

%ftp ftp.oreilly.com

Connected to ftp. uu. net.

220 ftp.oreilly.com FTP server (Version 6.34 Thu Cct 22 14:32:01 EDT 1992) ready.
Nane (ftp.oreilly.com usernane): anonynous

331 Guest login ok, send e-mail address as password.

Passwor d: user nane@ost name Use your usernane and host here
230 CGuest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/learning_perl2

250 COWD comand successful .

ftp> get READVE

200 PORT command successful .

150 Opening ASCII nobde data connection for READVE (Xxxxx bytes).

226 Transfer conpl ete.

| ocal : README renote: README

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> binary

200 Type set to |

ftp> get exanples.tar.gz

200 PORT conmand successful .

150 Openi ng BI NARY npde data connection for exanples.tar.gz (xxxx bytes).
226 Transfer conplete. |local: exercises renote: exercises

XXXX bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.

%

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

FTPMAIL

FTPMAIL isamail server available to anyone who can send electronic mail to and receive it from Internet sites. This
includes any company or service provider that allows email connections to the Internet. Here's how you do it.

Y ou send mail to ftpmail @online.oreilly.com. In the message body, give the FTP commands you want to run. The server

will run anonymous FTP for you and mail the files back to you. To get a complete help file, send a message with no
subject and the single word "help" in the body. The following is an example of a UNIX mail session that gets the
examples. This command sends you alisting of the filesin the selected directory and the requested example files. The
listing is useful if there's alater version of the examples you're interested in.

% mail ftpmail @nline.oreilly.com

Subj ect :

reply-to usernanme@ost nane Where you want files nail ed
open

cd /published/oreilly/nutshell/l|earning perl?2
dir

get READVMVE

node bi nary

uuencode

get exanples.tar.gz

qui t

A signature at the end of the message is acceptable aslong as it appears after "quit.”

BITFTP

BITFTPisamail server for BITNET users. You send it electronic mail messages requesting files, and it sends you back
thefiles by electronic mail. BITFTP currently serves only users who send it mail from nodes that are directly on
BITNET, EARN, or NetNorth. BITFTPisapublic service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your FTP commands to BITEFTP@PUCC. For acomplete help file, send HELP as
the message body.

The following is the message body you should send to BITFTP:

FTP ftp.oreilly.com NETDATA

USER anonynous

PASS your Internet e-nmail address (not your BI TNET address)
CD /published/oreilly/nutshell/perl/|earning_perl2

DI R

GET READMVE

CET exanples.tar.gz

QT
Questions about BITFTP can be directed to MAINT@PUCC on BITNET.

UUCP

If you or your company has an account with UUNET, you will have a system with a direct UUCP connection to
UUNET. Find that system, and type (as one line):

uucp uunet\!~/ published/oreilly/nutshell/|earning_perl 2/ exanples.tar.gz
your host\! ~/ your name/

mailto:ftpmail@online.oreilly.com
mailto:BITFTP@PUCC
mailto:MAINT@PUCC

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The example file should appear some
time later (up to aday or more) in the directory /usr/spool /uucppublic / yourname.

Previous: What This Book Is Learning [Next: Additional Resources|
About Perl

What This Book |s About Book Additional Resources
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: Retrieving Preface Next: How to
Exercises Get Perl

Additional Resources

Perl Manpages

The online documentation for Perl, called manpages due to their UNIX origin, has been divided into
Separate sections so you can easily find what you are |ooking for without wading through hundreds of
pages of text. Since the top-level manpage is ssimply called perl, the UNIX command man per| should
take you toit.[1] That page in turn directs you to more specific pages. For example, man perlre displays
the manpage for Perl's regular expressions. The perldoc command may work when the man (1) command
won't, especially on module documentation that your system administrator may not have felt comfortable
installing with the ordinary manpages. On the other hand, your system administrator may have installed
the Perl documentation in hypertext markup language (HTML) format, especially on systems other than
UNIX. If all elsefails, you can always retrieve the Perl documentation from CPAN; look for this
information in Section 0.5, "How to Get Per|"."

[1] If you still get a humongous page when you do that, you're probably picking up the
ancient Release 4 manpage. Y ou may need to change your MANPATH environment
variable.

Here are the principal manpages included with the 5.004 distribution of Perl:

Manpage |Topic

perl Overview of documentation

perldelta | Changes since previous version

perlfaq Frequently asked questions

perldata |Data structures

perlsyn Syntax

perlop Operators and precedence
perire Regular expressions

perlrun Execution and options

perlfunc |Built-in functions

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

perlvar Predefined variables

perlsub Subroutines

perlmod |Modules: how they work

perlmodlib | Lib modules: how to write and use
perlfform |Formats

perllocale |Locale support

per|ref References

perldsc Data structures intro

perllol Data structures: lists of lists

perltoot | Tutorial of object-oriented programming
perlobj Objects

perltie Objects hidden behind ssimple variables
perlbot Object tricks and examples

perlipc I nterprocess communication

perldebug | Debugging

perldiag |Diagnostic messages

perlsec Security

perltrap | Trapsfor the unwary

peristyle |Styleguide

perlpod Plain old documentation

perlbook |Book information

perlembed |Waysto embed Perl in your C or C++ application
perlapio |Internal IO abstraction interface

perixs XS application programming interface
perixstut | XStutorial

perlguts |Internal functions for those doing extensions

perlcall

Calling conventions from C

Usenet Newsgroups

The Perl newsgroups are a great, if sometimes cluttered, source of information about Perl.
comp.lang.perl.announce is a moderated, low-traffic newsgroup for Perl-related announcements. These
often deal with new version releases, bug fixes, new extensions and modules, and Frequently Asked
Questions (FAQS).

The high-traffic comp.lang.perl.misc group discusses everything from technical issues to Perl philosophy
to Perl games and Perl poetry. Like Perl itself, comp.lang.perl.misc is meant to be useful, and no question
istoo silly to ask.[2]

[2] Of course, some questions are too silly to answer, especially those aready answered in
the FAQ.

The comp.lang.perl.tk group discusses how to use the popular Tk toolkit from Perl. The
comp.lang.perl.modules group is about the development and use of Perl modules, which are the best way

to get reusable code. There may be other comp.lang.perl.whatever newsgroups by the time you read this;
look around.

One other newsgroup you might want to check out, at least if you're doing CGI programming on the
Web, is comp.infosystems.www.authoring.cgi. Whileit isn't strictly speaking a Perl group, most of the

programs discussed there are written in Perl. It's the right place to go for web-related Perl issues.

The Perl Home Page

If you have access to the World Wide Web, visit the Perl home page at http://www.perl.com/perl/. It tells
what's new in the Perl world, and contains source code and ports, documentation, third-party modules,
the Perl bugs database, mailing list information, and more. This site also provides the CPAN multiplexer,
described later.

Frequently Asked Questions List

The Perl Frequently Asked Questions (FAQ) is acollection of questions and answers that often show up
on comp.lang.perl.misc. In many respects it's a companion to the available books, explaining concepts
that people may not have understood and maintaining up-to-date information about such things as the
latest release level and the best place to get the Perl source.

The FAQ is periodically posted to comp.lang.perl.announce, and can also be found on the Web at
http://www.perl.com/perl/fag.

Since the 5.004 release of Perl, the FAQ has been included with the standard distribution’s
documentation. Here are the main sections, each available as its own manpage:

perlfaq
Structural overview of the FAQ.
perlfagl

news:comp.lang.perl.announce
news:comp.lang.perl.misc
news:comp.lang.perl.misc
news:comp.lang.perl.tk
news:comp.lang.perl.modules
news:comp.infosystems.www.authoring.cgi
http://www.perl.com/perl/
news:comp.lang.perl.misc
news:comp.lang.perl.announce
http://www.perl.com/perl/faq

Very general, high-level information about Perl.
perlfag2

Where to find source and documentation to Perl, support and training, and related matters.
perlfag3

Programmer tools and programming support.
perlfag4

Manipulating numbers, dates, strings, arrays, hashes, and miscellaneous data i ssues.
perlfags

I/0O and the "f " issues: filehandles, flushing, formats, and footers.

perlfag6
Pattern matching and regular expressions.
perlfaq7

General Perl language issues that don't clearly fit into any of the other sections.
perlfag8

I nterprocess communication (1PC), control over the user-interface: keyboard, screen, and pointing
devices.

perlfag9
Networking, the Internet, and afew on the Web.

Bug Reports

In the unlikely event that you should encounter a bug that's in Perl proper and not just in your own
program, you should try to reduce it to a minimal test case and then report it with the perlbug program
that comes with Perl.

The Perl Distribution

Perl is distributed under either of two licenses (your choice). Thefirst isthe standard GNU Copyleft,
which means, briefly, that if you can execute Perl on your system, you should have access to the full
source of Perl for no additional charge. Alternately, Perl may also be distributed under the Artistic
License, which some people find less threatening than the Copyleft (especially lawyers).

Within the Perl distribution, you will find some example programs in the eg / directory. Y ou may also
find other tidbits. Poke around in there on some rainy afternoon. Study the Perl source (if you'reaC
hacker with a masochistic streak). Look at the test suite. See how Configure determines whether you
have the mkdir (2) system call. Figure out how Perl does dynamic loading of C modules. Or whatever
else suits your fancy.

Other Books

Programming Perl is the definitive reference book on Perl, whereas this book is more of atutorial. If you

want to learn more about Perl's regular expressions, we suggest Mastering Regular Expressions, by
Jeffrey E.F. Friedl (also published by O'Reilly & Associates).

Also check out O'Reilly and Associates CGI Programming on the World Wide Web by Shishir
Gundavaram; Web Client Programming with Perl by Clinton Wong; and HTML: The Definitive Guide,
Second Edition, by Chuck Musciano and Bill Kennedy.

The AWK Programming Language, by Aho, Kernighan, and Weinberger (published by
Addison-Wesley), and sed & awk, by Dale Dougherty (published by O'Reilly & Associates), provide an
essential background in such things as associative arrays, regular expressions, and the general world view
that gave rise to Perl. They also contain many examples that can be trandlated into Perl by the
awk-to-per| trandlator, a2p, or by the sed-to-per| trandlator, s2p. These translators won't produce
idiomatic Perl, of course, but if you can't figure out how to imitate one of those examplesin Perl, the
translator output will give you a good place to start.

For webmasters, we recommend the second edition of How to Setup and Maintain a Web Ste, by
Lincoln Stein, M.D., Ph.D. (published by Addison-Wesley). Dr. Stein, renowned author of Perl's CGl.pm
module (described in Chapter 19, CGI Programming), delivers a professional and comprehensive

treatment of all issues related to administering aweb site on UNIX, Mac, and Windows platforms.

We also recommend Johan Vromans's convenient and thorough quick reference booklet, called Perl 5
Desktop Reference, published by O'Rellly & Associates.

Previous: Retrieving Learning Next: How to
Exercises Perl Get Perl
Retrieving Exercises Book How to Get Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Per! —

Previous: Additional Preface Next: Conventions Used in
Resources This Book

How to Get Perl

The main distribution point for Perl is the Comprehensive Perl Archive Network, or CPAN. This archive contains not only
the source code, but also just about everything you could ever want that's Perl-related. CPAN is mirrored by dozens of sites
al over theworld, as well as afew down under. The main siteis ftp.funet.fi (128.214.248.6). Y ou can find amore local

CPAN site by getting the file /pub/languages/perl/CPAN/MIRRORS from ftp.funet.fi. Or you can use your web browser to
access the CPAN multiplex service at www.perl.com. Whenever you ask this web server for afile starting with /CPAN/, it

connects you to a CPAN site, which it chooses by looking at your domain name. Here are some popular universal resource
locators (URLSs) out of CPAN:

http://www.perl.com/CPAN/
http://www.perl.com/CPAN/README.html
http://www.perl.com/CPAN/modules/
http://www.perl.com/CPAN/ports/
http://www.perl.com/CPAN/doc/
http://www.perl.com/CPAN/src/latest.tar.gz

The CPAN multiplex service tries to connect you to alocal, fast machine on alarge bandwidth hub. This doesn't always
work, however, because domain names may not reflect network connections. For example, you might have a hostname
ending in .se, but you may actually be better connected to North Americathan to Sweden. If so, you can use the following
URL to choose your own site:

http://www.perl.com/CPAN

Note the absence of a dlash at the end of the URL. When you omit the trailing slash, the CPAN multiplexer presents a menu
of CPAN mirrors from which you can select a site. So long as your web browser supports cookies, the CPAN multiplexer
will automatically remember your choice next time.

The following machines should have the Perl source code plus a copy of the CPAN mirror list - both available via
anonymous FTP. (Try to use the machine names rather than the numbers, since the numbers may change.)

ftp.perl.com 199.45.129.30
ftp.cs.colorado.edu | 128.138.243.20

ftp.funet.fi 128.214.248.6
ftp.cs.ruu.nl 131.211.80.17

The location of the top directory of the CPAN mirror differs on these machines, so look around once you get there. It's often
something like /pub/per|/CPAN.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
ftp://ftp.funet.fi/
ftp://ftp.funet.fi/pub/languages/perl/CPAN/MIRRORS
ftp://ftp.funet.fi/
http://www.perl.com/
http://www.perl.com/CPAN/
http://www.perl.com/CPAN/README.html
http://www.perl.com/CPAN/modules/
http://www.perl.com/CPAN/ports/
http://www.perl.com/CPAN/doc/
http://www.perl.com/CPAN/src/latest.tar.gz
http://www.perl.com/CPAN
ftp://ftp.perl.com/
ftp://ftp.cs.colorado.edu/
ftp://ftp.funet.fi/
ftp://ftp.cs.ruu.nl/

Where the Files Are

Under the main CPAN directory, you'll see at least the following subdirectories:
authors

This directory contains numerous subdirectories, one for each contributor of software. For example, if you wanted to
find Lincoln Stein's great CGI.pm module, and you knew for afact that he wrote it, you could look in
authors/Lincoln_Sein. If you didn't know he wrote it, you could look in the modules directory explained below.

doc

A directory containing all manner of Perl documentation. Thisincludes all official documentation (manpages) in
severa formats (such as ASCII text, HTML, PostScript, and Perl's native POD format), plus the FAQs and interesting
supplementary documents.

modules

This directory contains unbundled modules written in C, Perl, or both. Extensions allow you to emulate or access the
functionality of other software, such as Tk graphical facilities, the UNIX curses library, and math libraries. They also
give you away to interact with databases (Oracle, Sybase, etc.), and to manage HTML files and CGI scripts.

ports

This directory contains the source code and/or binaries for Perl ports to operating systems not directly supported in
the standard distribution. These ports are the individual efforts of their respective authors, and may not all function
precisely as described in this book.

scripts

A collection of diverse scripts from all over the world. If you need to find out how to do something, or if you just
want to see how other people write programs, check this out. The subdirectory nutshell contains the examples from
this book. (Y ou can aso find these sources at the O'Reilly & Associates ftp.ora.com site, in

/published/oreilly/nutshell/learning perl2/.

Src

Within this directory you will find the source for the standard Perl distribution. The current production release is
alwaysinthefilethat is called src/latest.tar.gz[3] Thislarge file contains full source and documentation for Perl.
Configuration and installation should be relatively straightforward on UNIX and UNIX-like systems, aswell asVMS
and OS/2. Starting with Version 5.004, Perl also builds on 32-bit Windows systems.

[3] Thetrailing .tar.gz meansthat it's in the standard Internet format of a GNU-zipped, tar archive.

Using Anonymous FTP

In the event you've never used anonymous FTP, hereisaquick primer in the form of a sample session with comments. Text
in bold typewriter font is what you should type; comments are in italics. The % represents your prompt, and should not be
typed.

%ftp ftp.CPAN.org (ftp.CPAN.org is not a real site)

Connected to ftp. CPAN. org.

220 CPAN FTP server (Version wu-2.4(1) Fri Dec 1 00:00:00 EST 1995) ready.
Nanme (ftp. CPAN. org: CPAN): anonynous

331 CGuest login ok, send your conplete e-nmail address as password.
Password: canel @ut shell.com (Use your usernane and host here)

230 Cuest login ok, access restrictions apply.

ftp> cd pub/perl/CPAN src 250 CWD command successful .

ftp> binary (You nust specify binary transfer for conpressed files) 200 Type set to
l.

ftp> get latest.tar.gz

ftp://ftp.ora.com/
ftp://ftp.ora.com/published/oreilly/nutshell/learning_perl2/

200 PORT conmmand successful .
150 Openi ng BI NARY node data connection for FILE.
226 Transfer conplete.

(repeat this step for each file you want)

1.‘tp> quit 221 Goodbye.
%

Once you have thefiles, first unzip and untar them, and then configure, build, and install Perl:

% gunzip < latest.tar.gz | tar xvf -

% cd perl5.003 (Use actual directory nane)

Now ei ther one of these next two |ines:

% sh configure (Lowercase "c" for automatic configuration)
% sh Configure (Capital "C' for nmanual configuration)

% make (Build all of Perl)

% make test (Make sure it works)

% make install (You should be the superuser for this)

Fetching modules

For retrieving and building unbundled Perl modules, the processis slightly different. Let's say you want to build and install
amodule named CoolMod. You'd first fetch it viaftp (1), or you could use your web browser to access the module service
from http://www.perl.com/, which always retrieves the most up-to-date version of a particular registered module. The

addressto feed your browser would be similar to:

http: //www.per|.convcgi-bin/cpan_mod?modul e= CoolMod

Once you've gotten thefile, do this:

% gunzip < Cool Mod-2.34.tar.gz | tar xvf -

% cd Cool Mod- 2. 34

% per|l Makefile.PL (Creates the real Makefile)

% make (Build the whol e nodul e)

% make test (Make sure it works)

% make install (Probably should be the superuser)

When the CoolMod module has been successfully installed (it is automatically placed in your system's Perl library path),
your programs can say:
use Cool Mod;

and you should be able to run man CoolMod (or maybe perldoc CoolMod) to read the modul€e's documentation.

Previous: Additional Learning Next: Conventions Used in
Resources Perl This Book
Additional Resources Book Conventions Used in This
Index Book

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl Cookbook
]

http://www.perl.com/
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: How Preface Next:
to Get Perl Support

Conventions Used in This Book

The following typographic conventions appear in this book:

Italic
Is used for file and command names. It is also used to highlight comments in command examples,
and to define terms the first time they appear.

Constant Wdth
isused in examples and in regular text to show operators, variables, and the output from

commands or programs.
Const ant Bol d

Is used in examples to show the user's actual input at the terminal.
Constant Italic

Is used in examples to show variables for which a context-specific substitution should be made.
Thevariablef i | enane, for example, would be replaced by some actual filename.

Footnotes

are used to attach parenthetical notes which you should not read on your first reading of this book.
Sometimes, lies are spoken to ssimplify the discussion, and the footnotes restore the lie to truth.
Often, the materia in the footnote will be advanced information that may not even be discussed
anywhere else in the book.

Previous: How Learning Next:
to Get Perl Perl Support
How to Get Perl Book Support
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: Conventions Used Preface Next: Acknowledgments for
in This Book the First Edition

Support

Perl isthe child of Larry Wall, and is still being coddled by him. Bug reports and requests for
enhancements generally get fixed in later releases, but he is under no obligation to do anything with
them. Nevertheless, Larry really does enjoy hearing from al of us, and doestruly like to see Perl be
useful to theworld at large. Direct email generally gets aresponse (even if it is merely his email
answering machine), and sometimes a personal response. These days, Larry is actually acting as an
architect to the "Perl 5 Porters" group, a bunch of very clever people that have had alot to do with the
last few Perl releases. If Larry got hit by a bus, everyone would be very sad for along time, but Perl
would still continue to mature under the direction of this group.

If you have abug, Perl is shipped with a perlbug command that gathers pertinent information (including
the problem as you see it) and emailsit off to perlbug@perl.com. At the moment, the Perl 5 Porters read
this mail (along with the 20 to 100 messages they send each other every day) and sometimes answer if it
really isabug. If you try to use this address just for support, you'll get flamed, so please keep your table
talk to an absolute minimum and refrain from calling out to the performers.

More useful than writing Larry directly, or sending it off as a bug, is the worldwide online Perl support
group, communicating through the Usenet newsgroup comp.lang.perl.misc. If you are emailable to the

Internet, but not amenable to Usenet, you can also wire yourself into this group by sending a request to
perl-users-request@cs.orst.edu, which will reach a human who can connect you to atwo-way email

gateway into the group and give you guidelines on how it works.

When you subscribe to the newsgroup, you'll find roughly 50 to 200 "postings* a day (at the time of this
writing) on all manner of subjects from beginner questions to complicated porting issues and interface
problems, and even afairly large program or two.

The newsgroup is almost constantly monitored by many Perl experts. Most of the time, your question
gets answered within minutes of your news article reaching a major Usenet hub. Just try getting that level
of support from your favorite software vendor for free! If you'd like to purchase acommercia support
contract for Perl, see the Perl FAQ (described earlier in "Additional Resources") for directions and
availability.

Previous: Conventions Used Learning Next: Acknowledgments for
in This Book Perl the First Edition

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
mailto:perlbug@perl.com
news:comp.lang.perl.misc
mailto:perl-users-request@cs.orst.edu

ConventionsUsed in This Book Acknowledgments for the
Book Index First Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: Preface Next: Acknowledgments for
Support the Second Edition

Acknowledgments for the First Edition

First, | wholeheartedly thank Chick Webb and Taos Mountain Software (in Silicon Valley). The folks at
TMS offered me an opportunity to write an introductory Perl course for them (with substantial assistance
from Chick), and a chance to present their course afew times. From that experience, | gained the
motivation and resources to write and repeatedly present a new course of my own, from which this book
Is derived. Without them, | don't think I'd be doing this, and | wish them continued success at marketing
their course. (And if they're looking for a good text for arevision of their course, | just may have a
suggestion...)

Thanks aso to the reviewers: Perl Godfather Larry Wall (of course), Larry Kistler (Director of
Education, Pyramid), fellow Perl trainer Tom Christiansen, and the students of the Learning Perl classes |
taught at Intel and Pyramid, and - from O'Rellly & Associates. Tanya Herlick, Lar Kaufman, Lenny
Muellner, Linda Mui, and Andy Oram.

This book was created and edited entirely on my persona Apple Macintosh Powerbook (first the 140,
and now the 160 model). More often than not, | was away from my office while writing - sometimesin a
park, sometimesin a hotel, sometimes waiting for the weather to clear so | could continue to snow-ski,
but most often in restaurants. In fact, | wrote a substantial portion of this book at the Beaverton
McMenamin's just down the road from my house. The McM's chain of brewpubs make and serve the
finest microbrew and best cheesecake and greasiest sandwiches in my hometown area. | consumed many
pints of ale and pieces of cheesecake in thisideal work environment, while my Powerbook swallowed
many kilowatt hours of electricity at their four tables with power outlets. For the electricity, and the
generous hospitality and courtesy (and rent-free booth-office space), | thank the exceptional staff at the
Beaverton McM's. | also hacked some early work on the book at the Beaverton Chili's Restaurant, to
which | am also grateful. (But they didn't have any outlets near the bar, so | switched when | found
McM's, to save the wear and tear on my batteries.)

Thanksto "the Net" (especially the subscribers to comp.lang.perl) for their continued support of Larry
and me, and their unending curiosity about getting Perl to work for them.

Thanks aso to Tim O'Rellly, for Taoistically being.

And especially, a huge personal thanks to my friend Steve Talbott, who guided me through every step of
the way (especially suggesting the stroll at the end of the first chapter). His editorial criticisms were
always right on, and his incessant talent for beating me over the head ever so gently allowed me to make
this book a piece of art with which I'm extremely pleased.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
news:comp.lang.perl

Asaways, a special thank you to both Lyle and Jack, for teaching me nearly everything | know about
writing.

And finaly, an immeasurabl e thank you to my friend and partner, Larry Wall, for giving Perl to us all in
the first place.

A one L Randal wrote a book,
A two L llamafor the look,
But to whom we owe it all
Isthethree L Larry Wall!

Randal
Previous: Learning Next: Acknowledgments for
Support Perl the Second Edition
Support Book Acknowledgments for the

Index Second Edition

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: Acknowledgments Preface Next: We'd Like to Hear from
for the First Edition You

Acknowledgments for the Second Edition

I'd like to thank Larry Wall for writing Perl, the Perl Porters for their continued maintenance efforts, and
the entire Perl community for their hel pfulnesss toward one another.

Thanks aso to Jon Orwant, Nate Torkington, and Larry Wall for reviewing the CGI chapter.

Tom
Previous: Acknowledgments Learning Next: We'd Like to Hear from
for the First Edition Perl You
Acknowledgments for the Book We'd Like to Hear from Y ou
First Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: Acknowledgments Preface
for the Second Edition

Next: 1.
Introduction

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in United States or Canada)

1-707-829-0515 (international or local)

1-707-829-0104 (Fax)

Y ou can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to nuts@oreilly.com.

To ask technical questions or comment on the book, send email to: bookqguestions@oreilly.com.

Previous: Acknowledgments Learning Next: 1.
for the Second Edition Perl Introduction
Acknowledgments for the Book 1. Introduction

Second Edition Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: We'd Like to Hear Chapter 1 | Next: 1.2 Purpose of Perl|
from You

1. Introduction

Contents:
History of Perl

Purpose of Perl
Availability

Basic Concepts

A Stroll Through Perl
Exercise

1.1 History of Perl

Perl is short for "Practical Extraction and Report Language,” athough it has also been called a
"Pathologically Eclectic Rubbish Lister." There's no point in arguing which one is more correct, because
both are endorsed by Larry Wall, Perl's creator and chief architect, implementor, and maintainer. He
created Perl when he was trying to produce some reports from a Usenet-news-like hierarchy of filesfor a
bug-reporting system, and awk ran out of steam. Larry, being the lazy programmer that he is, decided to
over-kill the problem with a general-purpose tool that he could usein at least one other place. The result
was the first version of Perl.

After playing with this version of Perl abit, adding stuff here and there, Larry released it to the
community of Usenet readers, commonly known as "“the Net." The users on this ragtag fugitive fleet of
systems around the world (tens of thousands of them) gave him feedback, asking for ways to do this,
that, or the other, many of which Larry had never envisioned hislittle Perl handling.

But as aresult, Perl grew, and grew, and grew, at about the same rate as the UNIX operating system. (For
you newcomers, the entire UNIX kernel used to fit in 32K! And now we're lucky if we can get it in under
afew meg.) It grew in features. It grew in portability. What was once alittle language now had over a
thousand pages of documentation split across dozens of different manpages, a 600-page Nutshell
reference book, a handful of Usenet newsgroups with 200,000 subscribers, and now this gentle
introduction.

Larry isno longer the sole maintainer of Perl, but retains his executive title of chief architect. And Perl is
still growing.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

This book was tested with Perl version 5.0 patchlevel 4 (the most recent release as | write this).
Everything here should work with 5.0 and future releases of Perl. In fact, Perl 1.0 programs work rather
well with recent releases, except for afew odd changes made necessary in the name of progress.

Previous: We'd Like to Hear
from You

We'd Liketo Hear from Y ou

Learning
Perl

Book
Index

| Next: 1.2 Purpose of Perl|

1.2 Purpose of Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 1.1 Ch ter‘l Next: 1.3
History of Perl I ntroduction Availability

1.2 Purpose of Perl

Perl is designed to assist the programmer with common tasks that are probably too heavy or too
portability-sensitive for the shell, and yet too weird or short-lived or complicated to code in C or some
other UNIX glue language.

Once you become familiar with Perl, you may find yourself spending less time trying to get shell quoting
(or C declarations) right, and more time reading Usenet news and downhill snowboarding, because Per|
isagreat tool for leverage. Perl's powerful constructs allow you to create (with minimal fuss) some very
cool one-up solutions or general tools. Also, you can drag those tools along to your next job, because
Perl is highly portable and readily available, so you'll have even more time there to read Usenet news and
annoy your friends at karaoke bars.

Like any language, Perl can be "write-only"; it's possible to write programs that are impossible to read.
But with proper care, you can avoid this common accusation. Y es, sometimes Perl looks like line noise to
the uninitiated, but to the seasoned Perl programmer, it looks like checksummed line noise with a
mission in life. If you follow the guidelines of this book, your programs should be easy to read and easy
to maintain, but they probably won't win any obfuscated Perl contests.

Previous: 1.1 Learning Next: 1.3
History of Perl Perl Availability
1.1 History of Perl Book 1.3 Availability
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: 1.2 Purpose of Perl] Chapter 1 | Next: 1.4 Basic Concepts]
Introduction

1.3 Availability

If you get
perl: not found

when you try to invoke Perl from the shell, your system administrator hasn't caught the fever yet. But
even if it's not on your system, you can get it for free (or nearly so).

Perl is distributed under the GNU Public License,[1] which says something like, "you can distribute
binaries of Perl only if you make the source code available at no cost, and if you modify Perl, you have
to distribute the source to your modifications aswell." And that's essentially free. Y ou can get the source
to Perl for the cost of a blank tape or afew megabytes over awire. And no one can lock Perl up and sell
you just binaries for their particular idea of "supported hardware configurations.”

[1] Or the dlightly more liberal Artistic License, found in the distribution sources.

In fact, it's not only free, but it runs rather nicely on nearly everything that callsitself UNIX or
UNIX-like and has a C compiler. Thisis because the package comes with an arcane configuration script
called Configure that pokes and prods the system directories looking for things it requires, and adjusts
the include files and defined symbols accordingly, turning to you for verification of its findings.

Besides UNIX or UNIX-like systems, people have also been addicted enough to Perl to port it to the
Amiga, the Atari ST, the Macintosh family, VMS, OS2, even MSDOS and Windows NT and Windows
95 - and probably even more by the time you read this. The sources for Perl (and many precompiled
binaries for non-UNIX architectures) are available from the Comprehensive Perl Archive Network (the
CPAN). If you are web-savvy, visit http://www.perl.com/CPAN for one of the many mirrors. If you're

absolutely stumped, write bookquestions@oreilly.com and say "Where can | get Per|21 2"

| Previous: 1.2 Purpose of Perl| Learning | Next: 1.4 Basic Concepts]|
Perl

1.2 Purpose of Perl Book 1.4 Basic Concepts
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
http://www.perl.com/CPAN
mailto:bookquestions@oreilly.com
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 1.3 C_haw Next: 1.5 A Stroll Through
Availability I ntroduction Perl

1.4 Basic Concepts

A shell script is nothing more than a sequence of shell commands stuffed into atext file. Thefileisthen
"made executable" by turning on the execute bit (viachmod +x filename) and then the name of thefileis
typed at a shell prompt. Bingo, one shell program. For example, a script to run the date command
followed by the who command can be created and executed like this;

% echo date >sonescri pt

% echo who >>sonescri pt

% cat sonescri pt

dat e

who

% chnod +x sonescri pt

% somescri pt

[out put of date followed by who]
%

Similarly, a Perl program is a bunch of Perl statements and definitions thrown into afile. Y ou then turn
on the execute bit[2] and type the name of the file at a shell prompt. However, the file has to indicate that

thisis aPerl program and not a shell program, so you need an additional step.

[2] On UNIX systems, that is. For directions on how to render your scripts executable on
non-UNIX systems, see the Perl FAQ or your port's release notes.

Most of the time, this step involves placing the line
#! [usr/ bi n/ perl

asthefirst line of thefile. But if your Perl is stuck in some nonstandard place, or your system doesn't
understand the #! line, you'll have alittle more work to do. Check with your Perl installer about this.
The examplesin this book assume that you use this common mechanism.

Perl is mostly afree-format language like C - whitespace between tokens (elements of the program, like
pri nt or+)isoptiona, unlesstwo tokens put together can be mistaken for another token, in which case
whitespace of some kind is mandatory. (Whitespace consists of spaces, tabs, newlines, returns, or
formfeeds.) There are afew constructs that require a certain kind of whitespace in a certain place, but
they'll be pointed out when we get to them. Y ou can assume that the kind and amount of whitespace
between tokens is otherwise arbitrary.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Although nearly any Perl program can be written all on one line, typically a Perl program is indented
much like a C program, with nested parts of statements indented more than the surrounding parts. You'll
see plenty of examples showing atypical indentation style throughout this book.

Just like a shell script, a Perl program consists of all of the Perl statements of the file taken collectively as
one big routine to execute. There's no concept of a"main" routineasin C.

Perl comments are like (modern) shell comments. Anything from an unquoted pound sign (#) to the end
of the lineisacomment. There are no C-like multiline comments.

Unlike most shells (but like awk and sed), the Perl interpreter completely parses and compiles the
program into an internal format before executing any of it. This means that you can never get a syntax
error from the program once the program has started, and that the whitespace and comments simply
disappear and won't slow the program down. This compilation phase ensures the rapid execution of Perl
operations once it is started, and it provides additional motivation for dropping C as a systems utility
language merely on the grounds that C is compiled.

This compilation does take time; it's inefficient to have a voluminous Perl program that does one small
guick task (out of many potential tasks) and then exits, because the run-time for the program will be
dwarfed by the compile-time.

So Perl islike acompiler and an interpreter. It's a compiler because the program is completely read and
parsed before the first statement is executed. It's an interpreter because there is no object code sitting
around filling up disk space. In some ways, it's the best of both worlds. Admittedly, a caching of the
compiled object code between invocations, or even translation into native machine code, would be nice.
Actually, aworking version of such acompiler already exists and is currently scheduled to be bundlied
into the 5.005 release. See the Perl FAQ for current status.

Previous: 1.3 Learning Next: 1.5 A Stroll Through
Availability Perl Perl
1.3 Availahility Book 1.5 A Stroll Through Perl
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: 1.4 Basic Concepts| Chapter 1 Next: 1.6
Introduction Exercise

1.5 A Stroll Through Perl

We begin our journey through Perl by taking alittle stroll. This stroll presents a number of different
features by hacking on a small application. The explanations here are extremely brief; each subject areais
discussed in much greater detail later in this book. But thislittle stroll should give you a quick taste for the
language, and you can decide if you really want to finish this book rather than read some more Usenet
news or run off to the ski slopes.

1.5.1 The "Hello, World" Program

Let'slook at alittle program that actually does something. Here is your basic "Hello, world" program:

#! [usr/bin/perl -w
print ("Hello, world!\n");

Thefirst lineis the incantation that saysthisis a Perl program. It's also a comment for Perl; remember that
acomment is anything from a pound sign to the end of that line, asin many interpreter programming
languages. Unlike all other comments in the program, the one on the first line is special: Perl looks at that
line for any optional arguments. In this case, the -w switch was used. This very important switch tells Perl
to produce extra warning messages about potentially dangerous constructs. Y ou should always develop
your programs under -w.

The second line is the entire executable part of this program. Herewe seeapr i nt function. The built-in
function pri nt startsit off, and in this case has just one argument, a C-like text string. Within this string,
the character combination \ n stands for a newline character. The pr i nt statement isterminated by a
semicolon (;). Asin C, all smple statementsin Perl are terminated by a semicolon.[3]

[3] The semicolon can be omitted when the statement is the last statement of a block or file
oreval .

When you invoke this program, the kernel fires up a Perl interpreter, which parses the entire program (all
two lines of it, counting the first, comment line) and then executes the compiled form. The first and only
operation is the execution of the pr i nt function, which sends its arguments to the output. After the
program has completed, the Perl process exits, returning back a successful exit code to the parent shell.

Soon you'll see Perl programs where pr i nt and other functions are sometimes called with parentheses,
other times without them. The rule is simple: in Perl, parentheses for built-in functions are never required
nor forbidden. Their use can help or hinder clarity, so use your own judgment.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

1.5.2 Asking Questions and Remembering the Result

Let's add abit more sophistication. The Hel | o, wor | d greeting isatouch cold and inflexible. Let's
have the program call you by your name. To do this, we need a place to hold the name, away to ask for
the name, and away to get a response.

One kind of place to hold values (like aname) isascalar variable. For this program, we'll use the scalar
variable $nane to hold your name. Well go into more detail in Chapter 2, Scalar Data, about what these
variables can hold, and what you can do with them. For now, assume that you can hold a single number or
string (sequence of characters) in ascalar variable.

The program needs to ask for the name. To do that, we need away to prompt and away to accept input.
The previous program showed us how to prompt: usethe pri nt function. And the way to get aline from
the terminal iswith the <STDI N> construct, which (as we're using it here) grabs one line of input. We
assign thisinput to the $nane variable. This gives us the program:

print "What is your nane? ";

$nanme = <STDI N>;

The value of $nane at this point has aterminating newline (Randal comesinasRandal \ n). To get
rid of that, we use the chonp function, which takes a scalar variable as its sole argument and removes the
trailing newline (record separator), if present, from the string value of the variable:

chonmp ($nane);

Now all we needtodoissay Hel | o, followed by the value of the $nane variable, whichwe candoina
shell-like fashion by embedding the variable inside the quoted string:

print "Hello, $name!\n";

Aswith the shell, if we want adollar sign rather than a scalar variable reference, we can precede the
dollar sign with a backslash.

Putting it all together, we get:

#!/usr/bin/perl -w

print "What is your nane? “;
$nanme = <STDI N>;

chonp ($nane);

print "Hello, $nanme!\n";

1.5.3 Adding Choices

Now, let's say we have a specia greeting for Randal, but want an ordinary greeting for anyone else. To do
this, we need to compare the name that was entered with the string Randal , and if it's the same, do
something special. Let's add a C-like if-then-€l se branch and a comparison to the program:

#! [/ usr/ bin/ perl

print "What is your nane? ";
$nanme = <STDI N>;

chonp ($nane);

if ($nanme eq "Randal ") {

print "Hello, Randal! How good of you to be here!\n";
} else {

print "Hello, $nane!\n"; # ordinary greeting
}

The eq operator compares two strings. If they are equal (character-for-character, and have the same
length), the result is true. (There's no comparable operator[4] in C or C++.)

[4] Well, OK, theresastandard | i bc subroutine. But that's not an operator.

Thei f statement selects which block of statements (between matching curly braces) is executed; if the
expression istrue, it'sthe first block, otherwise it's the second block.

1.5.4 Guessing the Secret Word

WEell, now that we have the name, let's have the person running the program guess a secret word. For
everyone except Randal, we'll have the program repeatedly ask for guesses until the person guesses
properly. First the program, and then an explanation:

#!/usr/bin/perl -w
$secretword = "Ilam"; # the secret word
print "What is your nanme? “;
$nanme = <STDI N>;
chonp $nane;
if ($nanme eq "Randal ") {
print "Hello, Randal! How good of you to be here!l\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
whil e ($guess ne $secretword) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);
}
}

First, we define the secret word by putting it into another scalar variable, $secr et wor d. After the
greeting the (non-Randal) person is asked (with another pr i nt) for the guess. The guess is compared
with the secret word using the ne operator, which returns true if the strings are not equal (thisisthe
logical opposite of the eq operator). The result of the comparison controls awhi | e loop, which executes
the block as long as the comparison istrue.

Of course, thisis not a very secure program, because anyone who istired of guessing can merely interrupt
the program and get back to the prompt, or even look at the source to determine the word. But, we weren't
trying to write a security system, just an example for this section.

1.5.5 More than One Secret Word

L et's see how we can modify this to allow more than one valid secret word. Using what we've already
seen, we could compare the guess repeatedly against a series of good answers stored in separate scalar
variables. However, such alist would be hard to modify or read in from afile or compute based on the
day of the week.

A better solution isto store all possible answersin a data structure called alist, or (preferably) an array.
Each element of the array is a separate scalar variable that can be independently set or accessed. The
entire array can also be given avalue in one fell swoop. We can assign a value to the entire array named
@wr ds so that it contains three possible good passwords:

@wrds = ("canel","llam", "al paca");

Array variable names begin with @ so they are distinct from scalar variable names. Another way to write
this so that we don't have to put al those quote marks there iswith the gw() operator, like so:

@wrds = gwm canel |l ama al paca);
These mean exactly the same thing; the gwmakes it asif we had quoted each of three strings.

Oncethe array is assigned, we can access each element using a subscript reference. So $wor ds[0] is
camel , $wor ds[1] isl | ang, and $wor ds|[2] isal paca. The subscript can be an expression as
well, so if weset $i to 2, then $wor ds[$i | isal paca. (Subscript references start with $ rather than @
because they refer to a single element of the array rather than the whole array.) Going back to our
previous example:

#!/usr/bin/perl -w
@wrds = gwm canel |l ama al paca);
print "What is your nane? ";
$name = <STDI N>;
chonp ($nane);
if ($nane eq "Randal ") {
print "Hello, Randal! How good of you to be here!l\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? “;
$guess = <STDI N>;
chonp ($guess);
$i = 0; # try this word first

$correct = "maybe"; # is the guess correct or not?
while ($correct eq "maybe") { # keep checking til we know
if ($words[$i] eq $guess) { # right?
$correct = "yes"; # yes!
} elsif ($i < 2) { # nore words to |l ook at?
$i = $i + 1; # | ook at the next word next tine
} else { # no nore words, nust be bad

print "Wong, try again. What is the secret word?";
$guess = <STDI N>;

chonp ($guess);
$i = 0; # start checking at the first word again
}
} # end of while not correct
} # end of "not Randal”

You'll notice we're using the scalar variable $cor r ect to indicate that we are either still looking for a
good password or that we've found one.

This program aso showstheel si f block of thei f -t hen- el se statement. This exact construct is not
present in all programming languages, it's an abbreviation of the el se block together withanew i f
condition, but without nesting inside yet another pair of curly braces. It's avery Perl-like thing to compare
aset of conditionsinacascadedi f - el sif-el sif-elsif-else chan. Perl doesn't realy have the
equivalent of C's"switch" or Pascal's "case" statement, although you can build one yourself without too
much trouble. See Chapter 2 of Programming Perl or the perlsyn (1) manpage for details.

1.5.6 Giving Each Person a Different Secret Word

In the previous program, any person who comes along could guess any of the three words and be
successful. If we want the secret word to be different for each person, we'll need atable that matches up
people with words:

Person | Secret Word
Fred camel

Barney |llama

Betty |alpaca

Wilma |apaca

Notice that both Betty and Wilma have the same secret word. Thisisfine.

The easiest way to store such atable in Perl iswith a hash. Each element of the hash holds a separate
scalar value (just like the other type of array), but the hashes are referenced by a key, which can be any
scalar value (any string or number, including noninteger and negative values). To create a hash called
%wor ds (notice the %rather than @ with the keys and values given in the table above, we assign avalue
to %or ds (much aswe did earlier with the array):

%words = gw
fred canel
bar ney Il ama
betty al paca
wi | ma al paca
);

Each pair of valuesin the list represents one key and its corresponding value in the hash. Note that we
broke this assignment over many lines without any sort of line-continuation character, because whitespace
iIsgenerally insignificant in a Perl program.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

To find the secret word for Betty, we need to use Betty as the key in areference to the hash %wor ds, via
some expression such as$wor ds{" bet t y" } . The vaue of thisreferenceisal paca, similar to what
we had before with the other array. Also as before, the key can be any expression, so setting $per son to
bet t y and evaluating $wor ds{ $per son} givesal paca aswell.

Putting all thistogether, we get a program like this:
#! [usr/ bi n/ perl

%words = gw
fred canel
bar ney 1 ama
betty al paca
w | ma al paca
);

print "What is your nane? ";
$nane = <STDI N>;
chonp ($nane);
if ($nane eq "Randal ") {
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $nanme!\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
print "What is the secret word? "
$guess = <STDI N>;
chonp ($guess);
whil e ($guess ne $secretword) {
print "Wong, try again. Wiat is the secret word? ";
$guess = <STDI N>;
chonp ($guess);

}

Note the lookup of the secret word. If the name is not found, the value of $secr et wor d will bean
empty string,[5] which we can then check for if we want to define a default secret word for everyone else.
Here's how that looks:

[... rest of programdeleted ...]
$secretword = $words{$nane}; # get the secret word
if ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}
print "What is the secret word? “;
[... rest of programdeleted ...]

[5] Well, OK, it'stheundef value, but it looks like an empty string to the eq operator.
Y ou'd get awarning about this if you used -w on the command line, which is why we
omitted it here.

1.5.7 Handling Varying Input Formats

If | enter Randal L. Schwart z orr andal rather than Randal , I'm lumped in with the rest of the
users, because the eq comparison is an exact equality. Let's look at one way to handle that.

Suppose | wanted to ook for any string that began with Randal , rather than just a string that was equal
to Randal . | could do thisin sed, awk, or grep with aregular expression: atemplate that defines a
collection of strings that match. Asin sed, awk, or grep, the regular expression in Perl that matches any
string that begins with Randal is”Randal . To match this against the string in $nane, we use the
match operator as follows:

if ($nane =~ /~Randal /) {
yes, it matches

} else {
no, it doesn't

}

Note that the regular expression is delimited by slashes. Within the slashes, spaces and other whitespace
are significant, just as they are within strings.

Thisamost doesiit, but it doesn't handle selecting r andal or rejecting Randal | . To accept r andal
we add the ignore-case option, asmall i appended after the closing slash. To reject Randal | , we add a
word boundary special marker (ssimilar to vi and some versions of grep) in the form of \ b in the regular
expression. This ensures that the character following thefirst | in the regular expression is not another
letter. This changes the regular expressionto be/ ~r andal \ b/ i , which means"r andal at the
beginning of the string, no letter or digit following, and OK to bein either case."

When put together with the rest of the program, it lookslike this:
#! [/ usr/ bin/ perl

%wrds = gw
fred canel
bar ney |1 ama
betty al paca
wi | ma al paca
);

print "What is your nane? ";
$name = <STDI N>;
chomp ($nane);
if ($name =~ /~randal\b/i) {
print "Hello, Randal! How good of you to be herel\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
if ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}

print "What is the secret word? ";
$guess = <STDI N>;

chonp ($guess);

whil e ($guess ne $secretword) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);

}

Asyou can see, the program isafar cry from thesmpleHel | o, wor | d, but it's still very small and
workable, and does quite a bit for being so short. Thisis The Perl Way.

Perl provides every regular expression feature found in every standard UNIX utility (and even some
nonstandard ones). Not only that, but the way Perl handles string matching is about the fastest on the
planet, so you don't lose performance. (A grep-like program written in Perl often beats the
vendor-supplied[6] C-coded grep for most inputs. This means that grep doesn't even do its one thing very

well.)
[6] GNU egrep tends to be much faster than Perl at this.

1.5.8 Making It Fair for the Rest

So, now | can enter Randal orrandal or Randal L. Schwart z, but what about everyone else?
Barney still hasto say exactly bar ney (not even bar ney followed by a space).

To befair to Barney, we need to grab the first word of whatever's entered, and then convert it to
lowercase before we look up the name in the table. We do this with two operators. the substitute operator,
which finds aregular expression and replaces it with a string, and the translate operator, to put the string
in lowercase.

First, the substitute operator: we want to take the contents of $nane, find the first nonword character, and
zap everything from there to the end of the string. / \ W */ isthe regular expression we are looking for:
the\ Wstands for a nonword character (something besides a letter, digit, or underscore), and . * means
any characters from there to the end of the line. Now, to zap these characters away, we need to take
whatever part of the string matches this regular expression and replace it with nothing:

$nanme =~ s/\W*//;

WEe're using the same =~ operator that we did before, but now on the right we have a substitute operator:
the letter s followed by a dash-delimited regular expression and string. (The string in this example is the
empty string between the second and third slashes.) This operator looks and acts very much like the
substitutions of the various editors.

Now, to get whatever's left into lowercase, we trandate the string using thet r operator.[7] It looks alot
likea UNIX tr command, taking alist of charactersto find and alist of characters to replace them with.
For our example, to put the contents of $nane in lowercase, we use:

$name =~ tr/ A-Z/ a-z/;

[7] Thisdoesn't work for characters with accent marks, although the uc function would. See
the perllocale (1) manpage first distributed with the 5.004 release of Perl for details.

The dlashes delimit the searched-for and replacement character lists. The dash between A and Z stands for
all the charactersin between, so we have two lists that are each 26 characterslong. When thet r operator
finds a character from the string in the first list, the character is replaced with the corresponding character
in the second list. So al uppercase A's become lowercase a's, and so on.[8]

[8] Expertswill note that we could have also constructed something like
s/ (\S*).*/\L$1/ todothisal in onefell swoop, but experts probably won't be reading
this section.

Putting that together with everything else resultsin:

#! [usr/ bi n/ perl

%words = gw
fred canel
bar ney |1 ama
betty al paca
w | ma al paca
);

print "What is your nane? ";
$nane = <STDI N>;
chonp ($nane);
$ori gi nal _nane = $nane; #save for greeting
$nanme =~ s/\W*//; # get rid of everything after first word
$nane =~ tr/A-Zla-z/; # | owercase everything
if ($name eq "randal") { # ok to conpare this way now
print "Hello, Randal! How good of you to be here!\n";
} else {
print "Hello, $original_nanme!\n"; # ordinary greeting
$secretword = $words{$nane}; # get the secret word
if ($secretword eq "") { # oops, not found
$secretword = "groucho"; # sure, why a duck?
}

print "What is the secret word? ";

$guess = <STDI N>;

chonp ($guess);

whil e ($guess ne $secretword) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);

}

Notice how the regular expression match for Randal became a simple comparison again. After all, both
Randal L. Schwart z and Randal becomer andal after the substitution and translation. And
everyone else getsafair ride, because Fr ed and Fr ed Fl i nt st one both becomef r ed; Bar ney
Rubbl e and Bar ney, thelittl e guy becomebar ney, and so on.

With just afew statements, we've made the program much more user-friendly. You'll find that expressing

complicated string manipulation with afew keystrokesis one of Perl's many strong points.

However, hacking away at the name so that we could compare it and look it up in the table destroyed the
name that was entered. So, before the program hacks on the name, it savesit in $or i gi nal _nane.
(Like C symbols, Perl variable names consist of letters, digits, and underscores and can be of nearly
unlimited length.) We can then make referencesto $or i gi nal _nane later.

Perl has many ways to monitor and mangle strings. You'll find out about most of them in Chapter 7,
Regular Expressions, and Chapter 15, Other Data Transformation.

1.5.9 Making It a Bit More Modular

Now that we've added so much to the code, we have to scan through many detailed lines before we can
get the overall flow of the program. What we need isto separate the high-level logic (asking for a name,
looping based on entered secret words) from the details (comparing a secret word to a known good word).
We might do thisfor clarity, or maybe because one person is writing the high-level part and another is
writing (or has already written) the detailed parts.

Perl provides subroutines that have parameters and return values. A subroutine is defined oncein a
program, and can be used repeatedly by being invoked from within any expression.

For our small-but-rapidly-growing program, let's create a subroutine called good wor d that takes a
name and a guessed word, and returns true if the word is correct and false if not. The definition of such a
subroutine looks like this:

sub good word {
ny($sonenane, $soneguess) = @; # nane the paraneters
$sonmenane =~ s/\W?*//; # get rid of everything after first word
$sonenane =~ tr/A-Zl a-z/; # |owercase everything
i f ($sonmenane eq "randal") { # should not need to guess
return 1; # return value is true

} elsif (($words{$sonenane} || "groucho") eq $soneguess) {
return 1; # return value is true
} else {

return O; # return value is fal se

}
}

First, the definition of a subroutine consists of the reserved word sub followed by the subroutine name
followed by a block of code (delimited by curly braces). This definition can go anywhere in the program
file, though most people put it at the end.

Thefirst line within this particular definition is an assignment that copies the values of the two parameters
of this subroutine into two local variables named $sonenane and $sonmeguess. (Theny() defines
the two variables as private to the enclosing block - in this case, the entire subroutine - and the parameters
areinitially in aspecial local array called @ .)

The next two lines clean up the name, just like the previous version of the program.

Thei f - el si f - el se statement decides whether the guessed word ($soneguess) is correct for the
name ($sonmenane). Randal should not make it into this subroutine, but even if it does, whatever word
was guessed is OK.

A return statement can be used to make the subroutine immediately return to its caller with the supplied
value. In the absence of an explicit return statement, the last expression evaluated in a subroutine is the
return value. We'll see how the return value is used after we finish describing the subroutine definition.

Thetest for theel si f part looks alittle complicated; let's break it apart:
($wor ds{ $sonenane} || "groucho") eq $sonmeguess

Thefirst thing inside the parentheses is our familiar hash lookup, yielding some value from %wor ds
based on akey of $sonmenane. The operator between that value and the string gr oucho isthe| |
(logical-or) operator similar to that used in C and awk and the various shells. If the lookup from the hash
has a value (meaning that the key $sonenane wasin the hash), the value of the expression is that value.
If the key could not be found, the string of gr oucho isused instead. Thisis avery Perl-like thing to do:
specify some expression, and then provide adefault valueusing | | in case the expression turns out to be
false.

In any case, whether it's avalue from the hash, or the default value gr oucho, we compare it to whatever
was guessed. If the comparison istrue, we return 1, otherwise we return O.

So, expressed as arule, if the nameisr andal , or the guess matches the lookup in %wor ds based on the
name (with adefault of gr oucho if not found), then the subroutine returns 1, otherwise it returns 0.

Now let'sintegrate al this with the rest of the program:
#! [usr/ bin/ perl

%words = gw
fred canel
bar ney 1 ama
betty al paca
w | ma al paca
)

print "What is your nane? ";
$nane = <STDI N>;
chomp ($nane);
if ($name =~ /~randal\b/i) { # back to the other way :-)
print "Hello, Randal! How good of you to be herel\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? “;
$guess = <STDI N>;
chonp ($guess);
while (! good_word($nane, $guess)) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;
chonp ($guess);

}

[... insert definition of good word() here ...]

Notice that we've gone back to the regular expression to check for Randal , because now there's no need
to pull apart the first name and convert it to lowercase, as far as the main program is concerned.

The big differenceisthe whi | e loop containing the subroutine good _wor d. Here, we see an invocation
of the subroutine, passing it two parameters, $nane and $guess. Within the subroutine, the value of
$sonenane is set from the first parameter, in this case $nane. Likewise, $soneguess is set from the
second parameter, $guess.

The value returned by the subroutine (either 1 or O, recalling the definition given earlier) islogically
inverted with the prefix ! (logical not) operator. This operator returns true if the expression following is
false, and returns false if the expression following istrue. The result of this negation controlsthewhi | e
loop. Y ou can read this as "whileit's not a good word...". Many well-written Perl programs read very
much like English, provided you take afew liberties with either Perl or English. (But you certainly won't
win a Pulitzer that way.)

Note that the subroutine assumes that the value of the %mor ds hash is set by the main program.

Such a cavalier approach to global variables doesn't scale very well, of course. Generally speaking,
variables not created with ny are global to the whole program, while those nmy creates last only until the
block in which they were declared exits. Don't worry: Perl does in fact support arich variety of other
kinds of variables, including those private to afile (or package), as well as variables private to afunction
that retain their values between invocations, which is what we could really use here. However, at this
stage in your Perl education, explaining these would only complicate your life. When you're ready for it,
check out what Programming Perl has to say about scoping, subroutines, modules, and objects, or see the

online documentation in the perlsub (1), perlmod (1), perlobj (1), and perltoot (1) manpages.

1.5.10 Moving the Secret Word List into a Separate File

Suppose we wanted to share the secret word list among three programs. If we store the word list aswe
have done already, we will need to change all three programs when Betty decides that her secret word
should be swi ne rather than al paca. This can get to be a hassle, especially if Betty changes her mind
often.

So, let's put the word list into afile and then read the file to get the word list into the program. To do this,
we need to create an 1/O channel called afilehandle. Y our Perl program automatically gets three
filehandles called STDI N, STDOUT, and STDERR, corresponding to the three standard 1/0 channelsin
most programming environments. We've already been using the STDI N handle to read data from the
person running the program. Now, it's just a matter of getting another handle attached to afile of our own
choice.

Here's asmall chunk of code to do that:

sub init _words {
open (WORDSLI ST, "wordslist");
while ($name = <WORDSLI ST>) {
chomp ($nane);

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

$word = <WORDSLI ST>;
chonp ($word);
$wor ds{ $nane} = $word;
}
cl ose (WORDSLI ST) ;

}

We're putting it into a subroutine so that we can keep the main part of the program uncluttered. This aso
means that at alater time (hint: afew revisions down in this stroll), we can change where the word list is
stored, or even the format of thelist.

The arbitrarily chosen format of the word list is one item per line, with names and words, alternating. So,
for our current database, we'd have something like this:

fred

canel

bar ney

1 ama

betty

al paca

wi | ma

al paca

Theopen function initializes afilehandle named WORDSL | ST by associating it with afile named

wor dsl i st inthe current directory. Note that the filehandle doesn't have afunny character in front of it
as the three variable types do. Also, filehandles are generally uppercase - although they aren't required to
be - for reasons detailed later.

Thewhi | e loop reads lines from thewor dsl i st file (viathe WORDSLI ST filehandle) oneline at a
time. Each lineis stored into the $nane variable. At the end of thefile, the value returned by the
<WORDSLI| ST> operation is the empty string,[9] which looks false to thewhi | e loop, and terminatesiit.
That's how we get out at the end.

[9] Well, technically it'sundef , but close enough for this discussion.

If you were running with -w, you would have to check that the return value read in was actually defined.
The empty string returned by the <WORDL | ST> operation isn't merely empty: it'sundef again. The
def i ned function is how you test for undef when this matters. When reading lines from afile, you'd
do the test this way:

while (defined ($nane = <WORDLI ST>)) {

But if you were being that careful, you'd probably also have checked to make sure that open returned a
true value. Y ou know, that's probably not a bad idea either. The built-in di e function is frequently used
to exit the program with an error message in case something goes wrong. We'll see an example of it in the
next revision of the program.

On the other hand, the normal case is that we've read a line (including the newline) into $nane. First, off
comes the newline using the chonp function. Then, we have to read the next line to get the secret word,
holding that in the $wor d variable. It, too, gets the newline hacked off.

Thefina line of the whi | e loop puts $wor d into %wor ds with akey of $namne, so that the rest of the
program can access it later.

Once the file has been read, the filehandle can be recycled with the cl ose function. (Filehandles are
automatically closed anyway when the program exits, but we're trying to be tidy. If we werereally tidy,
we'd even check for atrue return value from cl ose in case the disk partition the file was on went south,
its network filesystem became unreachable, or some other catastrophe occurred. Y es, these things really
do happen. Murphy will always be with us.)

This subroutine definition can go after or before the other one. And we invoke the subroutine instead of
setting %wor ds in the beginning of the program, so one way to wrap up all of this might look like:

#! [/ usr/ bin/ perl
init_words();

print "Wat is your
$nane <STDI N>;
chomp $nane;

if ($name =~ /~randal\b/i) { # back to the other way

name? ";

:-)

print "Hello, Randal! How good of you to be here!l\n";
} else {

print "Hello, $nane!\n"; # ordinary greeting

print "What is the secret word? ";

$guess = <STDI N>;

chonp ($guess);

while (! good_word($nane, $guess)) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;

chonp ($guess);
}
}
subroutines from here down
sub init_words {

open (WORDSLI ST, "wordslist")

die "can't open wordlist: $!'";

while (defined ($nane = <WORDSLI ST>)) {

chonp ($nane);

$word = <WORDSLI ST>;

chomp $wor d;

$wor ds{ $nane} = $word;
}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";

}

sub good word {

ny($sonenane, $someguess)
$sonename =~ s/\W*//;

$sonenane =~ tr/ A-Z/ a-z/;

= @; # nane the paraneters
delete everything after
first word
| ower case everything

i f ($sonenane eq "randal ") { # shoul d not need to guess

return 1; # return value is true

} elsif (($words{$sonenane} || "groucho") eq $soneguess) {
return 1; # return value is true

} else {
return O; # return value is fal se

}
}

Now it's starting to look like afull grown program. Notice the first executable line is an invocation of

I ni t_words() . Thereturnvalueisnot used in afurther calculation, which is good because we didn't
return anything remarkable. In this case, it's guaranteed to be atrue value (the value 1, in particular),
because if the cl ose had failed, thedi e would have printed a message to STDERR and exited the
program. Thedi e functionisfully explained in Chapter 10, Filehandles and File Tests, but because it's
essential to check the return values of anything that might fail, we'll get into the habit of using it right
from the start. The $! variable (also explained in Chapter 10), contains the system error message

explaining why the system call failed.

Theopen function isaso used to open files for output, or open programs as files (demonstrated
shortly). The full scoop on open comes much later in this book, however, in Chapter 10.

1.5.11 Ensuring a Modest Amount of Security

"That secret word list has got to change at |east once aweek!" cries the Chief Director of Secret Word
Lists. Well, we can't force the list to be different, but we can at least issue awarning if the secret word list
has not been modified in more than a week.

The best placeto do thisisinthei ni t _wor ds() subroutine; we're already looking at the file there. The
Perl operator - Mreturns the age in days since afile or filehandle has last been modified, so we just need
to see whether thisis greater than seven for the WORDSL| ST filehandle:

sub init _words {
open (WORDSLI ST, "wordslist") ||
die "can't open wordlist: $!'";
I f (-MWORDSLI ST >= 7.0) { # conply with bureaucratic policy
die "Sorry, the wordslist is older than seven days.";
}

whil e ($name = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;

}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";

}
The value of - MWORDSLI ST is compared to seven, and if greater, bingo, we've violated policy.

Therest of the program remains unchanged, so in the interest of saving afew trees, | won't repest it here.

Besides getting the age of afile, we can also find out its owner, size, access time, and everything else that
the system maintains about afile. More on that in Chapter 10.

1.5.12 Warning Someone When Things Go Astray

L et's see how much we can bog down the system by sending a piece of email each time someone guesses
their secret word incorrectly. We need to modify only thegood_wor d() subroutine (thanksto
modularity) because we have al the information right there.

The mail will be sent to you if you type your own mail address where the code says
"YOUR_ADDRESS HERE." Here's what we have to do: just before we return O from the subroutine, we
create afilehandle that is actually a process (mail), like so:

sub good word {
ny($sonenane, $soneguess) = @; # nane the paraneters

$sonmenane =~ s/\W?*//; # get rid of stuff after
first word

$sonenane =~ tr/ A-Z/ a-z/; # | ower case everything

i f ($sonenane eq "randal ") { # shoul d not need to guess
return 1; # return value is true

} elsif (($words{$sonenane}||"groucho") eq $soneguess) {
return 1; # return value is true

} else {

open MAIL,"|mil YOUR ADDRESS HERE";

print MAIL "bad news: $sonenane guessed $sonmeguess\n”;
cl ose MAIL;

return O; # return value is fal se

}

Thefirst new statement hereis open, which has a pipe symbol (|) at the beginning of its second
argument. Thisis a special indication that we are opening a command rather than a file. Because the pipe
Is at the beginning of the command, we are opening a command so that we can write to it. (If you put the
pipe at the end rather than the beginning, you can read the output of a command instead.)

The next statement, apr i nt , showsthat afilehandle between the pr i nt keyword and the valuesto be
printed selects that filehandle for output, rather than STDOUT.[10] This means that the message will end

up as the input to the mail command.
[10] Well, technically, the currently selected filehandle. That's covered much later, though.
Finaly, we close the filehandle, which starts mail sending its data merrily on its way.

To be proper, we could have sent the correct response as well as the error response, but then someone
reading over my shoulder (or lurking in the mail system) while I'm reading my mail might get too much
useful information.

Perl can also open filehandles, invoke commands with precise control over argument lists, or even fork
off a copy of the current program, and execute two (or more) copiesin parallel. Backquotes (like the
shell's backquotes) give an easy way to grab the output of acommand as data. All of this gets described in
Chapter 14, Process Management, so keep reading.

1.5.13 Many Secret Word Files in the Current Directory

L et's change the definition of the secret word filename dlightly. Instead of just the file named
wor dsl i st , let'slook for anything in the current directory that endsin. secr et . To the shell, we say

echo *.secret

to get abrief listing of all of these names. Asyou'll seein amoment, Perl uses a similar wildcard-name
syntax.

Pulling out thei ni t _wor ds() definition again:
sub init _words {
while (defined($filenanme = glob("*.secret"))) {
open (WORDSLI ST, $filenane) ||
die "can't open wordlist: $!'";
if (-MWORDSLIST < 7.0) {
while ($nane = <WORDSLI ST>) {
chonp $nane;
$word = <WORDSLI ST>;
chomp $wor d;
$wor ds{ $nane} = $word;
}
}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";

}

First, we've wrapped anew whi | e loop around the bulk of the routine from the previous version. The
new thing hereisthe gl ob function. Thisis called afilename glob, for historical reasons. It works much
like <STDI N>, in that each time it is accessed, it returns the next value: successive filenames that match
the shell pattern, inthiscase* . secr et . When there are no additional filenamesto be returned, the
filename glob returns an empty string.[11]

[11] Yeah, yeah, undef again.

So if the current directory containsf r ed. secr et and bar ney. secret ,then$fil enane is
bar ney. secr et onthefirst passthrough the whi | e loop (the names come out in al phabetically
sorted order). On the second pass, $f i | enane isfred. secr et . And thereis no third pass because
the glob returns an empty string the third timeit is called, perceived by thewhi | e loop to be false,
causing an exit from the subroutine.

Within thewhi | e loop, we open the file and verify that it is recent enough (less than seven days since the
last modification). For the recent-enough files, we scan through as before.

Note that if there are no filesthat match * . secr et and are less than seven days old, the subroutine will
exit without having set any secret words into the %wor ds array. That means that everyone will have to
use the word gr oucho. Oh well. (For real code, | would have added some check on the number of
entriesin %wor ds before returning, and di e'd if it weren't good. See the keys function when we get to
hashes in Chapter 5, Hashes.)

1.5.14 Listing the Secret Words

WEell, the Chief Director of Secret Word Lists wants areport of all the secret words currently in use and
how old they are. If we set aside the secret word program for a moment, we'll have time to write a
reporting program for the Director.

First, let's get al of the secret words, by stealing some code fromthei ni t _wor ds() subroutine:

while (defined($filenane = glob("*.secret"))) {
open (WORDSLI ST, $filenane) || die "can't open wordlist: $'";
if (-MWORDSLIST < 7.0) {
whil e ($name = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);

new stuff wll go here
}
}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";
}

At the point marked "new stuff will go here," we know three things: the name of thefile (in

$f i | enane), someone's name (in $nane), and that person's secret word (in $wor d). Here's a place to
use Perl's report generating tools. We define aformat somewhere in the program (usually near the end,
like a subroutine):

format STDOUT =

OR<<<<KKLKLKLKLKLKLKLKLKLS (RS (O

$fil enane, $nane, $word

The format definition beginswith f or mat STDOUT =, and ends with a single period. The two lines
between are the format itself. Thefirst line of thisformat is afield definition line that specifies the
number, length, and type of the fields. For this format, we have three fields. The line following afield
definition line is always afield value line. The value line gives alist of expressions that will be evaluated
when this format is used, and the results of those expressions will be plugged into the fields defined in the
previous line.

We invoke this format with thewr i t e function, like so:

#! [usr/ bin/ perl
while (defined($filename = glob("*.secret"))) {
open (WORDSLI ST, $filenane) || die "can't open wordlist: $!'";

if (-MWORDSLIST < 7.0) {
whil e ($nane = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
wite; # invoke fornat STDOUT to STDOUT
}
}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";

}
format STDOUT =

OR<<<KLLKLLKLLLLLKLKLS [@XLLKLLLLKLL (@<L
$fi |l ename, $name, $word

When the format is invoked, Perl evaluates the field expressions and generates a line that it sends to the
STDOUT filehandle. Because wr i t e isinvoked once each time through the loop, we'll get a series of
lines with text in columns, one line for each secret word entry.

Hmm. We haven't labeled the columns. That's easy enough. We just need to add a top-of-page format,
like so:

format STDOUT _TOP =

Page @<

$%

Fi | enane Name Wor d

Thisformat is named STDOUT _TOP, and will be used initially at the first invocation of the STDOUT
format, and again every time 60 lines of output to STDOUT have been generated. The column headings
here line up with the columns from the STDOUT format, so everything comes out tidy.

Thefirst line of thisformat shows some constant text (Page) along with athree-character field definition.
Thefollowing lineis afield value line, here with one expression. This expression is the $%variable,[12]

which holds the number of pages printed - avery useful value in top-of-page formats.

[12] More mnemonic aliases for these predefined scalar variables are available viathe
English module.

The third line of the format is blank. Because this line does not contain any fields, the line following itis
not afield value line. This blank lineis copied directly to the output, creating a blank line between the
page number and the column headers below.

The last two lines of the format also contain no fields, so they are copied asis directly to the output. So
this format generates four lines, one of which has a part that changes from page to page.

Just tack this definition onto the previous program to get it to work. Perl notices the top-of -page format

automatically.

Perl also hasfields that are centered or right-justified, and supports afilled paragraph area as well. More
on this when we get to formats in Chapter 11, Formats.

1.5.15 Making Those OIld Word Lists More Noticeable

Aswe are scanning through the* . secr et filesin the current directory, we may find files that are too
old. So far, we are simply skipping over those files. Let's go one step more: we'll rename them to
* . secret. ol dsothat adirectory listing will quickly show us which files are too old, simply by name.

Here'show thei ni t _wor ds() subroutine looks with this modification:

sub init_words {
while (defined($filename = glob("*.secret"))) {
open (WORDSLI ST, $fil enane) ||
die "can't open wordlist: $!'";
if (-MWORDSLIST < 7.0) {
whil e ($name = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;
}
} else { # renane the file so it gets noticed
renane ($filenane,"$filenane.old") ||
die "can't renane $filenane to $filenane.old: $'";

}
cl ose (WORDSLIST) || die "couldn't close wordlist: $!'";

}

Notice the new el se part of the file age check. If thefileis older than seven days, it gets renamed with
ther enane function. This function takes two parameters, renaming the file named by the first parameter
to the name given in the second parameter.

Perl has a complete range of file manipulation operators; anything you can do to afile from a C program,
you can also do from Perl.

1.5.16 Maintaining a Last-Good-Guess Database

Let's keep track of when the most recent correct guess has been made for each user. One data structure
that might seem to work at first glance is a hash. For example, the statement

$l ast _good{ $nane} = ti ne;
assigns the current time in internal format (some large integer above 800 million, incrementing one

number per second) to an element of % ast _good that has the name for akey. Over time, this would
seem to give us a database indicating the most recent time the secret word was guessed properly for each

of the users who had invoked the program.

But, the hash doesn't have an existence between invocations of the program. Each time the program is
invoked, a new hash isformed. So at most, we create a one-element hash and then immediately forget it
when the program exits.

The dbnopen function[13] maps a hash out into adisk file (actually a pair of disk files) known as a
DBM. It'sused like this:

dbnmopen (% ast _good, "l ast db", 0666) ||

die "can't dbnopen | astdb: $!'";
$l ast _good{ $nane} = ti ne;
dbntl ose (% ast _good) || die "can't dbntlose | astdb: $!'";

[13] Or using the more low-level t i e function on a specific database, as detailed in Chapters
5 and 7 of Programming Perl, or in the perltie (1) and AnyDBM_File (3) manpages.

The first statement performs the mapping, using the disk filenamesof | ast db. di r and| ast db. pag
(these names are the normal names for aDBM called | ast db). The file permissions used for these two
filesif the files must be created (as they will the first time through) is 0666.[14] This mode means that
anyone can read or write the files. If you're on aUNIX system, file permission bits are described in the
chmod (2) manpage. On non-UNIX systems, chmod () may or may not work the same way. For example,
under MS-DOS, files have no permissions, whereas under WindowsNT, they do. See your port's release
notes about thisif you're unsure.

[14] The actual permissions of the fileswill be the logical AND of 0666 and your process's
current umask.

The second statement shows that we use this mapped hash just like anormal hash. However, creating or
updating an element of the hash automatically updates the disk files that form the DBM. And, when the
hash is later accessed, the values within the hash come directly from the disk image. This gives the hash a
life beyond the current invocation of the program - a persistence of its own.

The third statement disconnects the hash from the DBM, much like afilecl ose operation.

Although the inserted statements maintain the database just fine (and even create it the first time), we
don't have any way of examining the information yet. To do that, we can create a separate little program
that looks something like this:

#!/usr/bin/perl -w
dbrmopen (% ast _good, "l ast db", 0666) ||
die "can't dbnopen | astdb: $!";
foreach $nanme (sort keys (% ast _good)) {
$when = $l ast _good{ $nane};
$hours = (tine() - $when) / 3600; # conpute hours ago
wite;

}

format STDOUT =
User @x<<<<<<<<<<: |ast correct guess was @<< hours ago.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

$nanme, S$hours

We've got afew new operations here: af or each loop, sorting alist, and getting the keys of an array.

First, the keys function takes a hash name as an argument and returns alist of all the keys of that hash in
some unspecified order. For the %wor ds hash defined earlier, the result is something likef r ed,

bar ney, betty,w | ma, in some unspecified order. For the % ast _good hash, the result will be alist
of all users who have guessed their own secret word successfully.

Thesort function sortsthe list alphabetically (just asif you passed atext file through the sort
command). This makes sure that the list processed by the f or each statement is always in alphabetical
order.

Finally, the Perl f or each statement isalot like the C-shell f or each statement. It takes alist of values
and assigns each onein turn to ascalar variable (here, $nane) executing the body of the loop (a block)
once for each value. So, for five namesinthe % ast _good list, we get five passes through the loop,
with $narne being a different value each time.

The body of thef or each loop loads up a couple of variables used within the STDOUT format and
invokes the format. Note that we figure out the age of the entry by subtracting the stored system time (in
the array) from the current time (asreturned by t i me) and then divide that by 3600 (to convert seconds to
hours).

Perl also provides easy ways to create and maintain text-oriented databases (like the Password file) and
fixed-length-record databases (like the "last login" database maintained by the login program). These are
described in Chapter 17, User Database M anipulation.

1.5.17 The Final Programs

Here are the programs from this stroll in their final form so you can play with them.

First, the "say hello" program:

#! [usr/ bi n/ perl
init_words();
print "what is your nane? ";
$nanme = <STDI N>;
chonp($nane) ;
if ($name =~ /~randal\b/i) { # back to the other way :-)
print "Hello, Randal! How good of you to be herel\n";
} else {
print "Hello, $nane!\n"; # ordinary greeting
print "What is the secret word? ";
$guess = <STDI N>;
chomp $guess;
while (! good word($nane, $guess)) {
print "Wong, try again. What is the secret word? ";
$guess = <STDI N>;

}

chomp $guess;
}

dbnopen (% ast _good, "Il ast db", 0666) ;
$l ast _good{ $nane} = ti ne;

dbntl ose (% ast good);

sub init_words {

}

while ($filenane = <*.secret>) {
open (WORDSLI ST, $filenane)| |
die "can't open $filenane: $!";
if (-M WORDSLI ST < 7.0) {
while ($nane = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
$wor ds{ $nane} = $word;
}
} else { # renane the file so it gets noticed
renane ($filenane,"$filenane.old") ||
die "can't renane $fil enane: $!'";

}
cl ose WORDSLI ST;

}

sub good word {

}

ny($sonenane, $soneguess) = @; # nane the paraneters

$sonmenane =~ s/\W?*//; # delete everything after first word

$sonenane =~ tr/A-Zl a-z/; # | owercase everything

i f ($sonenane eq "randal ") { # should not need to guess
return 1; # return value is true

} elsif (($words{$sonenane} || "groucho") eq $sonmeguess) {
return 1; # return value is true
} else {

open (MAIL, "|mai| YOUR ADDRESS HERE");

print MAIL "bad news: $sonenane guessed $sonmeguess\n”;
cl ose MAIL;

return O; # return value is false

Next, we have the secret word lister:

#! [usr/ bi n/ perl
while ($filename = <*.secret>) {

open (WORDSLI ST, $filenane) ||
die "can't open $filenane: $!";

if (-MWORDSLIST < 7.0) {
whil e ($nane = <WORDSLI ST>) {
chonp ($nane);
$word = <WORDSLI ST>;
chomp ($word);
wite; # invoke format STDOUT to STDOUT
}
}
cl ose (WORDSLI ST) ;
}

format STDOUT =
OR<<<KLLKLLKLLLLLKLKLS [@XLLKLLLLKLL (@<L

$fil enanme, $nane, $word

format STDOUT TOP =
Page @<
$%

Fi | enane Nane Wor d

And finally, the |ast-time-a-word-was-used display program:

#! [usr/ bi n/ perl

dbnopen (% ast _good, "Il ast db", 0666) ;

foreach $name (sort keys % ast_good) {
$when = $l ast _good{ $nane};
$hours = (tine - $when) / 3600; # conpute hours ago
wite;

}

format STDOUT =
User @kx<<<<<<<<<<: |ast correct guess was @<< hours ago.
$nane, $hours

Together with the secret word lists (files named sonet hi ng.secret in the current directory) and the
database| ast db. di r and | ast db. pag, you'll have al you need.

| Previous: 1.4 Basic Concepts| Learning Next: 1.6
Perl Exercise

1.4 Basic Concepts Book 1.6 Exercise
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 1.5 A Stroll Ch ter.1 Next: 2. Scalar
Through Perl Introduction Data

1.6 Exercise

Most chapters end with some exercises, for which answers are found in Appendix A, Exercise Answers.
For this stroll, the answers have already been given above.

1. Typein the example programs, and get them to work. (Y ou'll need to create the secret-word lists as
well.) Consult your local Perl guru if you need assistance.

Previous: 1.5 A Stroll Learning Next: 2. Scalar
Through Perl Perl Data
1.5 A Stroll Through Perl Book 2. Scalar Data
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl

Previous: 1.6 Chapter 2
Exercise

Next: 2.2
Numbers

2. Scalar Data

Contents:
What Is Scalar Data?

Numbers

Strings

Scalar Operators

Scalar Variables

Scalar Operators and Functions
<STDIN> asa Scalar Value
Output with print

The Undefined Value
Exercises

2.1 What Is Scalar Data?

A scalar isthe simplest kind of data that Perl manipulates. A scalar is either a number (like 4 or 3.25e€20)
or astring of characters (like hel | o or the Gettysburg Address). Although you may think of numbers
and strings as very different things, Perl uses them nearly interchangeably, so we'll describe them

together.

A scalar value can be acted upon with operators (like plus or concatenate), generally yielding a scalar
result. A scalar value can be stored into a scalar variable. Scalars can be read from files and devices and

written out as well.

Previous: 1.6 Learning
Exercise Perl
1.6 Exercise Book
Index

Next: 2.2
Numbers

2.2 Numbers

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.1 What Is Scalar Chapter 2 Next: 2.3
Data? Scalar Data Strings

2.2 Numbers

Although a scalar is either anumber or a string,[1] it's useful to look at numbers and strings separately
for the moment. Numbers first, stringsin aminute... .

[1] Or areference, but that's an advanced topic.

2.2.1 All Numbers Use the Same Format Internally

Asyou'll seein the next few paragraphs, you can specify both integers (whole numbers, like 17 or 342)
and floating-point numbers (real numbers with decimal points, like 3.14, or 1.35 times 102°). But
internally, Perl computes only with double-precision floating-point values.[2] This means that there are
no integer values internal to Perl; an integer constant in the program is treated as the equivalent
floating-point value.[3] Y ou probably won't notice the conversion (or care much), but you should stop
looking for integer operations (as opposed to floating-point operations), because there aren't any.

[2] A "double-precision floating-point value" is whatever the C compiler that compiled Perl
used for adoubl e declaration.

[3] Unless you use "integer mode," but that's not on by default.

2.2.2 Float Literals

A literal isthe way avalueis represented in the text of the Perl program. Y ou could also call thisa
constant in your program, but we'll use the term literal. Literals are the way data is represented in the
source code of your program as input to the Perl compiler. (Datathat isread from or writtento filesis
treated similarly, but not identically.)

Perl accepts the complete set of floating-point literals available to C programmers. Numbers with and
without decimal points are allowed (including an optional plus or minus prefix), as well as tacking on a
power-of-10 indicator (exponential notation) with E notation. For example:

1.25 # about 1 and a quarter
7.25e45 # 7.25 tinmes 10 to the 45th power (a big nunber)
-6.5e24 # negative 6.5 tinmes 10 to the 24th
(a "big" negative nunber)
-12e-24 # negative 12 tinmes 10 to the -24th

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

(a very small negative nunber)
-1. 2E-23 # another way to say that

2.2.3 Integer Literals

Integer literals are also straightforward, asin:

12

15

- 2004
3485

Don't start the number with a 0, because Perl supports octal and hexadecimal (hex) literals. Octal
numbers start with aleading O, and hex numbers start with aleading Ox or 0X.[4] The hex digits A

through F (in either case) represent the conventional digit values of 10 through 15. For example:

0377 # 377 octal, same as 255 deci nal
-Oxff # negative FF hex, sane as -255 deci nal

[4] The "leading zero" indicator works only for literals, not for automatic string-to-number
conversion. Y ou can convert a data string that looks like an octal or hex value into a number
withoct or hex.

Previous: 2.1 What Is Scalar Learning Next: 2.3
Data? Perl Strings
2.1 What |s Scalar Data? Book 2.3 Strings
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.2 Chapter 2 | Next: 2.4 Scalar Operators|
Numbers Scalar Data

2.3 Strings

Strings are sequences of characters (like hel | 0). Each character is an 8-bit value from the entire 256
character set (there's nothing special about the NUL character as in some languages).

The shortest possible string has no characters. The longest string fills all of your available memory
(although you wouldn't be able to do much with that). Thisisin accordance with the principle of "no
built-in limits" that Perl follows at every opportunity. Typical strings are printable sequences of letters
and digits and punctuation in the ASCII 32 to ASCII 126 range. However, the ability to have any
character from 0 to 255 in a string means you can create, scan, and manipulate raw binary data as
strings - something with which most other utilities would have great difficulty. (For example, you can
patch your operating system by reading it into a Perl string, making the change, and writing the result
back out.)

Like numbers, strings have aliteral representation (the way you represent the string in a Perl program).
Literal strings come in two different flavors. single-quoted strings and double-quoted strings.[5] Another

form that looks rather like these two is the back-quoted string (‘like this’). Thisisn't so much aliteral
string as away to run external commands and get back their output. Thisis covered in Chapter 14,

Process M anagement.

[5] There are also the here strings, similar to the shell's here documents. They are explained
in Chapter 19, CGI Programming. See also Chapter 2 of Programming Perl, and perldata (1)

2.3.1 Single-Quoted Strings

A single-quoted string is a sequence of characters enclosed in single quotes. The single quotes are not
part of the string itself; they're just there to let Perl identify the beginning and the ending of the string.
Any character between the quote marks (including newline characters, if the string continues onto
successive lines) islegal inside a string. Two exceptions: to get a single quote into a single-quoted string,
precede it by a backslash. And to get a backslash into a double-quoted string, precede the backslash by a
backslash. In other pictures:

‘hel | o' # five characters: h, e, I, I, o

‘don\'t’ # five characters: d, o, n, single-quote, t

v # the null string (no characters)

"silly\\nme' # silly, followed by backslash, followed by ne
"hel | o\ n' # hello foll owed by backslash followed by n

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

"hello
t here' # hello, newine, there (11 characters total)

Note that the\ n within a single-quoted string is not interpreted as a newline, but as the two characters
backslash and n. (Only when the backslash is followed by another backslash or a single quote does it
have special meaning.)

2.3.2 Double-Quoted Strings

A double-quoted string acts alot like a C string. Once again, it's a sequence of characters, although this
time enclosed in double quotes. But now the backslash takes on its full power to specify certain control
characters, or even any character at all through octal and hex representations. Here are some
double-quoted strings:

“hello world\n" # hello world, and a new i ne
"new \ 177" # new, space, and the delete character (octal 177)
"coke\tsprite" # a coke, a tab, and a sprite

The backslash can precede many different characters to mean different things (typically caled a
backslash escape). The complete list of double-quoted string escapesis givenin Table 2.1.

Table 2.1: Double-Quoted String Representations

Construct |Meaning

\n Newline

\r Return

\t Tab

\ f Formfeed

\b Backspace

\a Bell

\e Escape

\ 007 Any octal ASCII value (here, 007 = bell)
\ x7f Any hex ASCII value (here, 7f = delete)

\cC Any "control" character (here, CTRL-C)
\\ Backslash

\ " Double quote

\ Lowercase next letter

\L Lowercase al following letters until \ E

\u Uppercase next |etter

\U Uppercase al following letters until \ E

\Q Backslash-quote all nonal phanumericsuntil \ E
\E Terminate\ L ,\ U, or\ Q

Another feature of double-quoted stringsis that they are variable inter polated, meaning that scalar and
array variables within the strings are replaced with their current values when the strings are used. We
haven't formally been introduced to what a variable looks like yet (except in the stroll), so I'll get back to
thislater.

Previous: 2.2 Learning | Next: 2.4 Scalar Operators|
Numbers Perl

2.2 Numbers Book 2.4 Scalar Operators
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.3 Chapter 2 [Next: 2.5 Scalar Variables]
Strings Scalar Data

2.4 Scalar Operators

An operator produces a new value (the result) from one or more other values (the operands). For
example, + is an operator because it takes two numbers (the operands, like 5 and 6), and produces a new
value (11, the result).

Perl's operators and expressions are generally a superset of those provided in most other

AL GOL/Pascal-like programming languages, such as C or Java. An operator expects either numeric or
string operands (or possibly a combination of both). If you provide a string operand where a number is
expected, or vice versa, Perl automatically converts the operand using fairly intuitive rules, which will be
detailed in Section 2.4.4, "Conversion Between Numbers and Strings," below.

2.4.1 Operators for Numbers

Perl provides the typical ordinary addition, subtraction, multiplication, and division operators, and so on.
For example:

2 + 3 # 2 plus 3, or 5

5.1 - 2.4 # 5.1 mnus 2.4, or approximately 2.7
3 * 12 # 3 times 12 = 36

14 | 2 # 14 divided by 2, or 7

10.2 / 0.3 # 10.2 divided by 0.3, or approximately 34
10 / 3 # always floating point divide, so approximately 3.3333333...

Additionally, Perl provides the FORTRAN-like exponentiation operator, which many have yearned for in
Pascal and C. The operator is represented by the double asterisk, such as 2* * 3, which is two to the third
power, or eight. (If the result can't fit into a double-precision floating-point number, such as anegative
number to a noninteger exponent, or alarge number to alarge exponent, you'll get afatal error.)

Perl also supports a modulus operator. The value of the expression 10 %3 isthe remainder when 10 is
divided by 3, which is 1. Both values are first reduced to their integer values, so 10. 5 %3. 2 is
computed as 10 %3.

The logical comparison operatorsare< <= == >= > | = these compare two values numerically,
returning atrue or false value. For example, 3 > 2 returns true because three is greater than two, while
51 =5 returns false because it's not true that 5 is not equal to 5. The definitions of true and false are
covered later, but for now, think of the return values as one for true, and zero for false. (These operators
arerevisited in Table 2.2.)

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Y ou may be wondering about the word "approximately" in the code comments at the start of this section.
Don't you get exactly 2.7 when subtracting 2.4 from 5.1? In math class you do, but on computers you
usually don't. Instead, you get an approximation that's only accurate to a certain number of decimal
places. Computers don't store numbers the same way a mathematician thinks of them. But unless you are
doing something extreme, you'll usually see the results you expect to see.

Comparing the following statements, you'll see what the computer really got as the result of the
subtraction (thepr i nt f function is described in Chapter 6, Basic 1/0):

printf("%51f\n", 5.1 - 2.4)
2.699999999999999733546474089962430298328399658203125

print(5.1- 2.4, "\n");
2.7

Don't worry too much about this: the pr i nt function's default format for printing floating-point numbers
usually hides such minor representational inaccuracies. If this ends up being a problem, the Math::Bigint
and Math::BigFloat object modules provide infinite-precision arithmetic for integers and floating-point
numbers at the cost of somewhat slower execution. For details, see Chapter 7 of Programming Perl or the

online documentation on these modules.

2.4.2 Operators for Strings

String values can be concatenated with the ™. " operator. (Y es, that's a single period.) This does not alter
either string, any more than 2+3 alters either 2 or 3. The resulting (longer) string is then available for
further computation or to be stored into a variable.

"hell 0" . "worl d" # sane as "hell oworl d"
"hello world" . "\n" # sane as "hello world\n"
“fred" . " " . "barney" # sane as "fred barney"

Note that the concatenation must be explicitly called for with the". " operator. Y ou can't just stick the two
values close to each other.

Another set of operators for strings are the string comparison operators. These operators are
FORTRAN-like, asin| t for less-than, and so on. The operators compare the ASCII values of the
characters of the stringsin the usual fashion. The complete set of comparison operators (for both numbers
and strings) isgiven in Table 2.2.

Table 2.2: Numeric and String Comparison

Operators
Comparison Numeric |String
Equa == eq
Not equal I = ne
Less than < | t

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Greater than > gt

Lessthanorequal to |<= | e

Greater than or equal to | >= ge

Y ou may wonder why there are separate operators for numbers and strings, if numbers and strings are
automatically converted back and forth. Consider the two values 7 and 30. If compared as numbers, 7 is
obviously less than 30, but if compared as strings, the string " 30" comes before the string " 7" (because
the ASCII value for 3 islessthan the value for 7), and hence isless. Perl always requires you to specify
the proper type of comparison, whether it be numeric or string.

Note that if you come from a UNIX shell programming background, the numeric and string comparisons
are roughly opposite of what they are for the UNIX test command, which uses - eq for numeric
comparison and = for string comparison.

Still another string operator is the string repetition operator, consisting of the single lowercase letter x.
This operator takes its left operand (a string), and makes as many concatenated copies of that string as
indicated by its right operand (a number). For example:

“fred" x 3 #is "fredfredfred"
“barney" x (4+1) # is "barney" x 5, or
"bar neybar neybar neybar neybar ney"
(3+2) x 4 #is 5 x 4, or really "5" x 4, which is "5555"

That last example is worth spelling out slowly. The parentheseson (3+2) force this part of the
expression to be evaluated first, yielding five. (The parentheses here are working as in standard math.)
But the string repetition operator wants a string for aleft operand, so the number 5 is converted to the
string " 5" (using rules described in detail later), a one-character string. This new string is then copied
four times, yielding the four-character string 5555. If we had reversed the order of the operands, we
would have made five copies of the string 4, yielding 44444. This shows that string repetition is not
commutative.

If necessary, the copy count (the right operand) is first truncated to an integer value (4.8 becomes 4)
before being used. A copy count of less than one results in an empty (zero-length) string.

2.4.3 Operator Precedence and Associativity

Operator precedence defines how to resolve the ambiguous case where two operators are trying to operate
on three operands. For example, in the expression 2+3* 4, do we perform the addition first or the
multiplication first? If we did the addition first, we'd get 5* 4, or 20. But if we did the multiplication first
(as we were taught in math class) we'd get 2+12, or 14. Fortunately, Perl chooses the common
mathematical definition, performing the multiplication first. Because of this, we say multiplication has a
higher precedence than addition.

Y ou can override the order defined by precedence using parentheses. Anything in parenthesesis
completely computed before the operator outside of the parenthesesis applied (just as you learned in math
class). Soif you really want the addition before the multiplication, you can say (2+3) * 4, yielding 20.
Also, if you want to demonstrate that multiplication is performed before addition, you could add a

decorative but functionless set of parenthesesin 2+(3*4) .

While precedence is intuitive for addition and multiplication,[6] we start running into problems when

faced with, say, string concatenation compared with exponentiation. The proper way to resolve thisisto
consult the official, accept-no-substitutes Perl operator precedence chart, shown in Table 2.3. (Note that

some of the operators have not yet been described, and in fact, may not even appear anywhere in this
book, but don't let that scare you from reading about them.) Operators that are also found in C have the
same precedence asin C.

[6] You recall your high-school algebra class? If not, there's nothing wrong with using
parentheses to improve clarity.

Table 2.3: Associativity and Precedence of Operators. Highest to Lowest
Associativity |Operator

L eft The"list" operators (leftward)

L eft - > (method call, dereference)

Nonassociative | ++ - - (autoincrement, autodecrement)

Right ** (exponentiation)

Right I ~\ +- (logical not, bit-not, reference operator, unary plus, unary minus)
L eft =~ | ~ (matches, doesn't match)

L eft * [%x (multiply, divide, modulus, string replicate)

L eft + - . (add, subtract, string concatenate)

L eft << >>

Nonassociative | Named unary operators (like chonp)

Nonassociative |< ><=>=ltgtlege

Nonassociative | == = <=> eq he cmp

L eft & (bit-and)

L eft | ~ (bit-or, bit-xor)

L eft && (logical and)

L eft | | (logical or)

Nonassociative |. (noninclusive and inclusive range)

Right ?: (if-then-else)

Right = += - = * = etc. (assignment and binary-assignment)

L eft , => (comma and comma-arrow)

| Nonassociative | List operators (rightward)
Right not (logical not)
L eft and (logical and)
L eft or xor (logical or, logical xor)

In the chart, any given operator has higher precedence than those listed below it, and lower precedence
than all of the operators listed aboveit.

Operators at the same precedence level resolve according to rules of associativity instead. Just like
precedence, associativity resolves the order of operations when two operators of the same precedence
compete for three operands:

2 ** 3 ** 4 # 2 ** (3 ** 4), or 2 ** 81, or approx 2.41le24
721 12/ 3 # (72 12) |/ 3, or 6/3, or 2
30/ 6 * 3 # (30/6)*3, or 15

In the first case, the * * operator has right associativity, so the parentheses are implied on the right.
Comparatively, the* and/ operators have left associativity, yielding a set of implied parentheses on the
left.

2.4.4 Conversion Between Numbers and Strings

If astring value is used as an operand for a numeric operator (say, +), Perl automatically converts the
string to its equivalent numeric value, asif it had been entered as a decimal floating-point value.[7]
Trailing nonnumerics and leading whitespace are politely and quietly ignored, so" 123. 45f r ed" (with
aleading space) convertsto 123. 45 with nary awarning.[8] At the extreme end of this, something that
isn't anumber at all converts to zero without warning (such as the string f r ed used as a number).

[7] Hex and octal values are not supported in this automatic conversion. Use hex and oct to
interpret hex and octal values.

[8] Unless you turn on the - woption from the command line, which you should always do
for safety's sake.

Likewise, if anumeric value is given when a string value is needed (for the string concatenate operator,
for example), the numeric value is expanded into whatever string would have been printed for that
number. For example, if you want to concatenate an X followed by the results of 4 multiplied by 5, you
can say thissimply as:

"X . (4 * 5 # sanme as "X' . 20, or "X20"

(Remember that the parentheses force 4* 5 to be computed first, before considering the string
concatenation operator.)

In other words, you don't have to worry about whether you have a number or a string (most of the time).
Perl performs al the conversions for you.

Previous: 2.3 Learning [Next: 2.5 Scalar Variables|
Strings Perl

2.3 Strings Book 2.5 Scalar Variables
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.4 Scalar Chapter 2 Next: 2.6 Scalar Operators
Operators Scalar Data and Functions

2.5 Scalar Variables

A variable is aname for a container that holds one or more values. The name of the variable is constant
throughout the program, but the value or values contained in that variable typically change over and over
again throughout the execution of the program.

A scalar variable holds a single scalar value (representing a number, a string, or areference). Scalar
variable names begin with adollar sign followed by aletter, and then possibly more letters, or digits, or
underscores.[9] Upper- and lowercase letters are distinct: the variable $A is a different variable from $a.

And al of the letters, digits, and underscores are significant, so:
$a very long variable that _ends in_1

is different from:

$a very long variable that _ends in_ 2

[9] Limited to 255 characters, however. We hope that suffices.

Y ou should generally select variable names that mean something regarding the value of the variable. For
example, $xyz 123 is probably not very descriptive but $l i ne_| engt h is.

Previous: 2.4 Scalar Learning Next: 2.6 Scalar Operators
Operators Perl and Functions
2.4 Scalar Operators Book 2.6 Scalar Operators and
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.5 Scalar Chapter 2 Next: 2.7 <STDIN> as a
Variables Scalar Data Scalar Value

2.6 Scalar Operators and Functions

The most common operation on a scalar variable is assignment, which isthe way to giveavaueto a
variable. The Perl assignment operator isthe equal sign (much like C or FORTRAN), which takes a
variable name on the left side and givesit the value of the expression on theright, like so:

$a = 17; # give $a the value of 17
$b = $a + 3; # give $b the current value of $a plus 3 (20)
$b = $b * 2; # give $b the value of $b multiplied by 2 (40)

Notice that last line uses the $b variable twice: once to get its value (on the right side of the =), and once
to define where to put the computed expression (on the left side of the =). Thisislegal, safe, and in fact,
rather common. In fact, it's so common that we'll see in a minute that we can write this using a convenient
shorthand.

Y ou may have noticed that scalar variables are always specified with the leading $. In shell programming,
you use $ to get the value, but leave the $ off to assign anew value. In Java or C, you leave the $ off

entirely. If you bounce back and forth alot, you'll find yourself typing the wrong things occasionally. This
Is expected. (Our solution was to stop writing shell, awk, and C programs, but that may not work for you.)

A scalar assignment may be used as avalue as well as an operation, asin C. In other words, $a=3 hasa
value, just as $a+3 hasavaue. The valueisthe value assigned, so the value of $a=3 is 3. Although this
may seem odd at first glance, using an assignment as avalue is useful if you wish to assign an
intermediate value in an expression to a variable, or if you simply wish to copy the same value to more
than one variable. For example:

$b = 4 + ($%a = 3); # assign 3 to $a, then add 4 to that

resulting in $b getting 7
$d = ($c = 5); # copy 5 into $c, and then also into $d
$d = $c = 5; # the sanme thing w thout parentheses

That last example works because assignment is right-associative.

2.6.1 Binary Assignment Operators

Expressionslike$a = $a + 5 (wherethe same variable appears on both sides of an assignment) occur
frequently enough that Perl has a shorthand for the operation of altering a variable: the binary assignment
operator. Nearly all binary operators that compute a value have a corresponding binary assignment form
with an appended equal sign. For example, the following two lines are equivalent:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

$a = $a + 5; # without the binary assignnment operator
$a += 5; # wth the binary assignnent operator

And so are these:
$b = $b * 3;
$b *= 3;

In each case, the operator causes the existing value of the variable to be altered in some way, rather than
simply overwriting the value with the result of some new expression.

Another common assignment operator is the string concatenate operator:
$str = $str . " "; # append a space to $str

$str .= ; # sanme thing with assignnment operator

Nearly all binary operators are valid this way. For example, araise to the power of operator iswritten as
**= S0, $a **= 3 means "raisethe number in $a to the third power, placing the result back in $a".

Like the ssmple assignment operator, these operators have avaue as well: the new value of the variable.
For example:

$a = 3;

$b = ($a += 4); # $a and $b are both now 7

2.6.2 Autoincrement and Autodecrement

Asif it weren't already easy enough to add oneto $a by saying $a += 1, Perl goes one further and
shortens even this up. The ++ operator (called the autoincrement operator) adds one to its operand, and
returns the incremented value, like so:

$a += 1; # with assi gnnent operator
++33a; # with prefix autoincrenent
$d = 17;

$e = ++%d; # $e and $d are both 18 now

Here, the ++ operator is being used as a prefix operator; that is, the operator appearsto the left of its
operand. The autoincrement may also be used in a suffix form (to the right of its operand). In this case, the
result of the expression is the old value of the variable before the variable is incremented. For example:

$c 17;
$d $c++; # $d is 17, but $c is now 18

Because the value of the operand changes, the operand must be a scalar variable, not just an expression.
Y ou cannot say ++16 to get 17, nor can you say ++($a+$b) to somehow get one more than the sum of
$a and $b.

The autodecrement operator (- -) issSimilar to the autoincrement operator, but subtracts one rather than
adding one. Like the autoincrement operator, the autodecrement operator has a prefix and suffix form. For
example:

$x = 12;

- - $x; # $x is now 11

$y = $x--; # By is 11, and $x is now 10

The autoincrement and autodecrement operators al so work on floating-point values. So autoi ncrementing
avariable with thevalue 4. 2 yields 5. 2 as expected.[10]

[10] Autoincrement even works on strings. See Programming Per| or perlop (1) for that.

2.6.3 The chop and chomp Functions

A useful built-in function ischop. This function takes a single argument within its parentheses - the
name of a scalar variable - and removes the last character from the string value of that variable. For
example:

$x = "hello worl d";
chop($x); # $x is now "hello worl™

Note that the value of the argument is atered here, hence the requirement for a scalar variable, rather than
simply ascalar value. It would not make sense, for example, to writechop(' suey') tochangeitto

' sue' , because thereis no place in which to save the value. Besides, you could have just written' sue'
instead.

The value returned is the discarded character (the letter d inwor | d above). This means that the following
code is probably wrong:

$x = chop($x); # WRONG replaces $x with its last character
chop($x) ; # RI GHT: as above, renoves the |ast character

If chop isgiven an empty string, it does nothing, and returns nothing, and doesn't raise an error or even
whimper a bit.[11] Most operationsin Perl have sensible boundary conditions; in other words, you can
use them right up to the edges (and beyond), frequently without complaint. Some have argued that thisis
one of Perl's fundamental flaws, while others write screaming programs without having to worry about
the fringes. Y ou decide which camp you wish to join.

[11] Unless you are using the sanity-saving -w switch
When you chop a string that has already been chopped, another character disappears off into "bit heaven."

For example:

$a = "hello world\n";
chop $a; # $a is now "hello worl d"
chop $a; # oops! $a is now "hello worl™

If you're not sure whether the variable has a newline on the end, you can use the dlightly safer chonp
operator, which removes only a newline character,[12] like so:

$a = "hello world\n";
chonp (%a); # $a is now "hello worl d"
chonmp ($a); # aha! no change in $a

[12] Or whatever the input record separator $/is set to.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

2.6.4 Interpolation of Scalars into Strings

When a string literal is double-quoted, it is subject to variable interpolation (besides being checked for
backslash escapes). This means that the string is scanned for possible scalar variable[13] names - namely,
adollar sign followed by letters, digits, and underscores. When a variable reference isfound, it is replaced
with its current value (or an empty string if the variable has not yet been assigned a value). For example:

$a = "fred";
$b = "sone text %$a"; # $b is now "sone text fred"
$c = "no such vari able $what"; # $c is "no such variable "

[13] And array variables, but we won't discuss those until Chapter 3, Arrays and List Data.

The text that replaces the variable is not rescanned; that is, even if there are dollar signsin the replaced
value, no further replacement occurs:

$x = '$fred'; # literally a dollar sign followed by "fred"
Sy "hey $x"; # value is 'hey $fred' : no double substitution

To prevent the substitution of avariable with its value, you must either alter that part of the string so that
it appearsin single quotes, or precede the dollar sign with a backslash, which turns off the dollar sign's
specia significance:

$fred = "hi';
$barney = "a test of " . '"$fred'; # literally: 'a test of $fred
$barney2= "a test of \$fred"; # same thing

The variable name will be the longest possible variable name that makes sense at that part of the string.
This can be aproblem if you want to follow the replaced value immediately with some constant text that
begins with aletter, digit, or underscore. As Perl scans for variable names, it would consider those
characters to be additional name characters, which is not what you want. Perl provides a delimiter for the
variable name. Simply enclose the name of the variable in apair of curly braces. Or, you can end that part
of the string and start another part of the string with a concatenation operator:

$fred = "pay"; $fredday = "wong!";

$barney = "It's $fredday”; # not payday, but "It's wong!"
$barney = "It's ${fred}day"”; # now, $barney gets "It's payday"”
$barney2 = "It's $fred"."day"; # another way to do it

$barney3 = "It's " . $fred . "day"; # and anot her way

The case-shifting string escapes can be used to alter the case of letters brought in with variable
interpolation.[14] For example:

$bi gfred = "\U red"; # $bigfred is "FRED

$fred = "fred"; S$bigfred = "\U$fred"; # sane thing

$capfred = "\u$fred”; # $capfred is "Fred"

$bar ney = "\ LBARNEY"; # $barney i s now "barney"
$capbarney = "\ u\ LBARNEY"; # $capbarney is now "Barney"
$bi gbarney = "BARNEY"; $capbarney = "\u\L$bi gbarney"; # sane

[14] You may find theuc,ucfirst,l c,andl cfirst functionseaser to use.

Asyou can see, the case-shifting string escapes are remembered within a string until they are used, so
even though the first letter of BARNEY doesn't follow the\ u, it remains uppercase because of the\ u.

The term variable interpolation is often used interchangeably with double-quote interpolation, because
strings that are double-quoted are subject to variable interpolation. So too, are backquoted strings,
described in Chapter 14.

Previous: 2.5 Scalar Learning Next: 2.7 <STDIN> as a
Variables Perl Scalar Value
2.5 Scalar Variables Book 2.7 <STDIN> as a Scalar
Index Vaue

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.6 Scalar Chapter 2 | Next: 2.8 Output with print|
Operators and Functions Scalar Data

2.7 <STDIN> as a Scalar Value

At thispoint, if you're atypical code hacker, you're probably wondering how to get a value into a Perl
program. Here's the simplest way. Each time you use <STDI N> in a place where ascalar value is
expected, Perl reads the next complete text line from standard input (up to the first newline), and uses
that string as the value of <STDI N>. Standard input can mean many things, but unless you do something
odd, it means the terminal of the user who invoked your program (probably you). If there's nothing
waiting to be read (typically the case, unless you type ahead a complete line), the Perl program will stop
and wait for you to enter some characters followed by a newline (return).

The string value of <STDI N> typically has a newline on the end of it. Most often, you'll want to get rid
of that newline right away (there's abig difference between hel | o and hel | o\ n). Thisiswhere our
friend, the chonp function, comes to the rescue. A typical input sequence goes something like this:

$a = <STDIN>; # get the text
chonp($a) ; # get rid of that pesky new i ne

A common abbreviation for thesetwo linesis:
chomp($a = <STDI N>) ;

The assignment inside the parentheses continues to refer to $a, even after it has been given avalue with
<STDI N>. Thus, the chonp function isworking on $a. (Thisistruein general about the assignment
operator; an assignment expression can be used wherever avariable is needed, and the actions refer to the
variable on the left side of the equal sign.)

Previous: 2.6 Scalar Learning | Next: 2.8 Output with print|
Operators and Functions Perl

2.6 Scalar Operators and Book 2.8 Output with print
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl

Previous: 2.7 <STDIN> as a Chapter 2 Next: 2.9 The Undefined
Scalar Value Scalar Data Value

2.8 Output with print

S0, we get things in with <STDI N>. How do we get things out? With the pr i nt function. This function
takes the values within its parentheses and puts them out without any embellishment onto standard
output. Once again, unless you've done something odd, thiswill be your terminal. For example:
print("hello world\n"); # say hello world, followed by newine

print "hello world\n"; # sane thing

Note that the second example shows the form of pri nt without parentheses. Whether or not to use the
parentheses is mostly a matter of style and typing agility, although there are afew cases where you'll
need the parentheses to remove ambiguity.

WE'll see that you can actually give pri nt alist of values, in Section 6.3.1, "Using print for Normal
Output”, but we haven't talked about lists yet, so well put that off for later.

Previous: 2.7 <STDIN> as a Learning Next: 2.9 The Undefined
Scalar Value Perl Value
2.7 <STDIN> as a Scalar Book 2.9 The Undefined Vaue
Vaue Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 2.8 Output with Chapter 2 Next: 2.10
print Scalar Data Exercises

2.9 The Undefined Value

What happens if you use a scalar variable before you give it avalue? Nothing serious, and definitely
nothing fatal. Variables have the undef value before they arefirst assigned. This value looks like a zero
when used as a number, or the zero-length empty string when used as a string. Y ou will get awarning
under Perl's -w switch, though, which is a good way to catch programming errors.

Many operators return undef when the arguments are out of range or don't make sense. If you don't do
anything special, you'll get azero or anull string without major consequences. In practice, thisis hardly a
problem.

One operation we've seen that returnsundef under certain circumstancesis <STDI N>. Normally, this
returns the next line that was read; however, if there are no more lines to read (such as when you type
CTRL-D at theterminal, or when afile has no more data), <STDI N> returnsundef asavalue. In
Chapter 6, we'll see how to test for this and take special action when there is no more data available to

read.

Previous: 2.8 Output with Learning Next: 2.10
print Perl Exercises
2.8 Output with print Book 2.10 Exercises
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 2.9 The Undefined Chapter 2 Next: 3. Arrays
Value Scalar Data and List Data

2.10 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that computes the circumference of acirclewith aradiusof 12. 5. The
circumferenceis olIpT] mes the radius, or about 2 times 3. 141592654 times the radius.

2. Modify the program from the previous exercise to prompt for and accept a radius from the person
running the program.

3. Write a program that prompts for and reads two numbers, and prints out the result of the two
numbers multiplied together.

4. Write a program that reads a string and a number, and prints the string the number of times
indicated by the number on separate lines. (Hint: use the "x" operator.)

Previous: 2.9 The Undefined Learning Next: 3. Arrays
Value Perl and List Data
2.9 The Undefined Value Book 3. Arraysand List Data
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 2.10 Chapter 3 Next: 3.2 Literal
Exercises Representation

3. Arrays and List Data

Contents:
What Isalist or Array?

Literal Representation
Variables

Array Operators and Functions
Scalar and List Context
<STDIN> asan Array

Variable Interpolation of Arrays
Exercises

3.1 What Is a List or Array?

A listisordered scalar data. An array isavariable that holds alist. Each element of the array is a separate
scalar variable with an independent scalar value. These values are ordered; that is, they have a particular
sequence from the lowest to the highest element.

Arrays can have any number of elements. The smallest array has no elements, while the largest array can
fill al of available memory. Once again, thisisin keeping with Perl's philosophy of "no unnecessary
limits."

Previous: 2.10 Learning Next: 3.2 Literal
Exercises Perl Representation
2.10 Exercises Book 3.2 Literal Representation
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 3.1 What Is a List Chapter 3 Next: 3.3
or Array? Arraysand List Data Variables

3.2 Literal Representation

A list literal (the way you represent the value of alist within your program) consists of comma-separated
values enclosed in parentheses. These values form the elements of the list. For example:

(1, 2,3) # array of three values 1, 2, and 3
("fred",4.5) # two values, "fred" and 4.5

The elements of alist are not necessarily constants; they can be expressions that will be reevaluated each
time the literal isused. For example:

(%a, 17); # two values: the current value of $a, and 17
($b+$c, $d+$e) # two val ues

The empty list (one of no elements) is represented by an empty pair of parentheses:

() # the enpty list (zero el enents)

Anitem of thelist literal can include the list constructor operator, indicated by two scalar values

separated by two consecutive periods. This operator creates alist of values starting at the left scalar value
up through the right scalar value, incrementing by one each time. For example:

(1 .. 5) # sane as (1, 2, 3, 4, 5)

(1.2 .. 5.2 # sanme as (1.2, 2.2, 3.2, 4.2, 5.2)

(2 .. 6,10,12) # sane as (2,3,4,5,6,10,12)

($a .. $b) # range determ ned by current values of $a and $b

Having the right scalar less than the left scalar resultsin an empty list; you can't count down by switching
the order of the values. If the final value is not awhole number of steps above theinitial value, the list
stops just before the next value would have been outside the range:

(1.3 .. 6.1) # sane as (1.3,2.3,3.3,4.3,5.3)

List literals with lots of short text strings start to look pretty noisy with all the quotes and commas:
@ = ("fred", "barney", "betty","wilm"); # ugh!

So there's a shortcut: the "quote word" function, which creates alist from the nonwhitespace parts
between the parentheses:[1]

@ = gw(fred barney betty wilm); # better!

@ = gw
fred

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

bar ney
betty
wi | ma
); # sane thing

[1] Actually, like the pattern-matching functions we'll learn about later, you could use any
nonwhitespace, nonal phanumeric character as the delimiter instead of parentheses.

Oneuseof alist literal isas argumentsto the pri nt function introduced earlier. Elements of thelist are
printed out without any intervening whitespace:

print("The answer is ", @,"\n");

This statement prints The answer i s followed by a space, the value of @, and a newline. Stay tuned
for other usesfor list literals.

Previous: 3.1 What Is a List Learning Next: 3.3
or Array? Perl Variables
3.1 What Isalistor Array? Book 3.3 Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 3.2 Literal Chapter 3 Next: 3.4 Array Operators
Representation Arraysand List Data and Functions

3.3 Variables

An array variable holds asingle list value (zero or more scalar values). Array variable names are similar
to scalar variable names, differing only in theinitial character, which isan at sign (@ rather than a dollar
sign ($). For example:

@red # the array variable @red

@A Very Long Array Vari abl e_Nane

@A Very Long Array Variable Nane that is different

Note that the array variable @ r ed is unrelated to the scalar variable $f r ed. Perl maintains separate
namespaces for different types of things.

The value of an array variable that has not yet been assigned is () , the empty list.

An expression can refer to array variables as awhole, or it can examine and modify individual elements
of the array.

Previous: 3.2 Literal Learning Next: 3.4 Array Operators
Representation Perl and Functions
3.2 Literal Representation Book 3.4 Array Operators and
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 3.3 C_m‘mi_?’ Next: 3.5 Scalar and List
Variables Arraysand List Data Context

3.4 Array Operators and Functions

Array functions and operators act on entire arrays. Some return alist, which can then either be used as a
value for another array function, or assigned into an array variable.

3.4.1 Assignment

Probably the most important array operator is the array assignment operator, which gives an array
variable avalue. It isan equal sign, just like the scalar assignment operator. Perl determines whether the
assignment is a scalar assignment or an array assignment by noticing whether the assignment isto a scalar
or an array variable. For example:

@red = (1,2,3); # The fred array gets a three-elenent literal
@arney = @red; # nowthat is copied to @arney

If ascalar value is assigned to an array variable, the scalar value becomes the single element of an array:
@uh = 1; # 1 is pronoted to the list (1) automatically

Array variable names may appear in alist literal list. When the value of thelist is computed, Perl replaces
the names with the current values of the array, like so:

@red = qwm one two);
@arney = (4,5, @red, 6,7); # @arney becones
(4,5,"one","two", 6,7)
@arney = (8, @arney); # puts 8 in front of @arney
@arney = (@arney,"last");# and a "last" at the end
@arney is now (8,4,5,"one","tw",6,7,"last")

Note that the inserted array elements are at the same level astherest of the literal: alist cannot contain
another list as an element.[2]

[2] Although alist referenceis permitted as alist element, it's not really alist asalist
element. Still, it works out to nearly the same thing, allowing for multidimensional arrays.
See Chapter 4 of Programming Perl or perllol (1) for details.

If alist literal contains only variable references (not expressions), the list literal can also be treated as a
variable. In other words, such alist literal can be used on the left side of an assignment. Each scalar
variable in the list literal takes on the corresponding value from the list on the right side of the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

assignment. For example:

($a, $b, $c) = (1, 2, 3); # give 1 to $a, 2 to $b, 3 to $c

($a, $b) = ($b, $a); # swap $a and $b

($d, @red) = ($a,3$b,$c); # give $a to $d, and ($b,$c) to @red
($e, @red) = @red; # renove first elenent of @red to $e

this makes @red = ($c) and $e = $b

If the number of elements being assigned does not match the number of variables to hold the values, any
excess values (on the right side of the equal sign) are silently discarded, and any excess variables (on the
left side of the equal sign) are given the value of undef .

An array variable appearing in the array literal list must be last, because the array variable is "greedy" and
consumes all remaining values. (Well, you could put other variables after it, but they would just get
undef values))

If an array variable is assigned to a scalar variable, the number assigned is the length of the array, asin:

@red = (4,5,6); # initialize @red
$a = @red; # $a gets 3, the current length of @red

The length is aso returned whenever an array variable nameis used where a scalar value is needed. (In
the upcoming section called "Scalar and List Context," we'll see that thisis called using the array namein
ascalar context.) For example, to get one less than the length of the array, you can use @ r ed- 1, since
the scalar subtraction operator wants scalars for both of its operands. Notice the following:

$a = @red; # $a gets the length of @red

($a) = @red; # %a gets the first elenent of @red

Thefirst assignment is a scalar assignment, and so @ r ed istreated as ascalar, yielding itslength. The
second assignment is an array assignment (even if only one value is wanted), and thus yields the first
element of @ r ed, silently discarding all the rest.

The value of an array assignment isitself alist value, and can be cascaded as you can with scalar
assignments. For example:

@red = (@arney = (2,3,4)); # @red and @arney get (2,3, 4)
@red = @arney = (2,3,4); # sane thing

3.4.2 Array Element Access

So far, we've been treating the array as awhole, adding and removing values by doing array assignments.
Many useful programs are constructed using arrays without ever accessing any specific array element.
However, Perl provides atraditional subscripting function to access an array element by numeric index.

For the subscripting function, array elements are numbered using sequential integers, beginning at zero[3]
and increasing by one for each element. The first element of the @ r ed array isaccessed as $f r ed[0] .
Note that the @on the array name becomes a $ on the element reference. Thisis because accessing an
element of the array identifies a scalar variable (part of the array), which can either be assigned to or have
its current value used in an expression, like so:

@red = (7,8,9);

$b = $fred[0]; # give 7 to $b (first elenent of @red)
$fred[0] = 5; # now @red = (5,8,9)

[3] It's possible to change the index value of the first element to something else (like "1").
However, doing so has drastic effects, will probably confuse people maintaining your code,
and might break the routines you take from other people. Thus, it's highly recommended that
you consider this an unusable feature.

Other elements can be accessed with equal ease, asin:

$c = $fred[1]; # give 8 to $c
$f red[2] ++; # increnment the third elenent of @red
$fred[1] += 4; # add 4 to the second el enent

($fred[0], $fred[1]) = ($fred[1],$fred[0]); # swap the first two

Accessing alist of elements from the same array (asin that last example) is called adlice, and occurs
often enough that there is a special representation for it:

@red[0, 1]; # sane as ($fred[0], $fred[1])

@red[0,1] = @red[1,0]; # swap the first two elenents
@red[0,1,2] = @red[1,1,1];# make all 3 elenents |like the 2nd
@red[1,2] = (9,10); # change the last two values to 9 and 10

Note that this slice uses an @prefix rather than a$. Thisis because you are creating an array variable by
selecting part of the array rather than a scalar variable accessing just one element.

Slices al'so work on literal lists, or any function that returns alist value:

@ho = (gmMfred barney betty wlm))|[2, 3];

like @ = gMfred barney betty wilm); @ho = @[2, 3];

The index values in these examples have been literal integers, but the index can also be any expression
that returns a number, which is then used to select the appropriate element:

@red = (7,8,9);

$a = 2,
$b = $fred| $a] ; # like $fred[2], or the value of 9
$c = $fred[$a-1]; # $c gets $fred[1], or 8

($c) = (7,8,9)[$a-1]; # sane thing using slice
Perl programs can thus have array accesses similar to many traditional programming languages.

Thisidea of using an expression for the subscript also works for slices. Remember, however, that the
subscript for adliceisalist of values, so the expression is an array expression, rather than a scalar
expression.

@red = (7,8,9); # as in previous exanple

@arney = (2,1,0);

@ackfred = @red[@ar ney];

same as @red[2,1,0], or ($fred[2],$fred[1],$fred[0]), or

(9,8,7)

If you access an array element beyond the end of the current array (that is, an index of greater than the last

element'sindex), theundef valueisreturned without warning. For example:

@red = (1, 2,3);
$barney = $fred[7]; # $barney is now undef

Assigning avalue beyond the end of the current array automatically extends the array (giving a value of
undef to al intermediate values, if any). For example:

@red = (1,2,3);

$f red[3] "hi"; # @red is now (1,2,3,"hi")

$f red[6] "ho"; # @red is now (1,2,3,"hi",undef, undef, "ho")

You can use $#f r ed to get the index value of the last element of @ r ed. Y ou can even assign this value
to change the length of @ r ed, making it grow or shrink, but that's generally unnecessary, because the
array grows and shrinks automatically.

A negative subscript on an array counts back from the end. So, another way to get at the last element is
with the subscript -1. The second to the last element would be -2, and so on. For example:

@red = ("fred", "wlm", "pebbles", "dino");

print $fred[-1]; # prints "dino"
print $#fred,; # prints 3
print $fred[$#fred]; # prints "dino"

3.4.3 The push and pop Functions

One common use of an array is as a stack of information, where new values are added to and removed
from the right-hand side of the list. These operations occur often enough to have their own special
functions:

push(@yl i st, $newal ue) ; # like @ylist = (@wylist, $newal ue)
$ol dval ue = pop(@rylist); # renoves the last elenent of @uyli st

The pop function returns undef if given an empty list, rather than doing something un-Perl-like such as
complaining or generating a warning message.

The push function also accepts alist of valuesto be pushed. The values are pushed together onto the end
of thelist. For example:

@ylist = (1,2, 3);
push(@ylist,4,5,6): # @ylist = (1,2,3,4,5,6)

Note that the first argument must be an array variable name; pushing and popping wouldn't make sense on
aliteral list.

3.4.4 The shift and unshift Functions

The push and pop functions do thingsto the "right" side of alist (the portion with the highest
subscripts). Similarly, theunshi ft and shi ft functions perform the corresponding actions on the
"left" side of alist (the portion with the lowest subscripts). Here are afew examples.

unshift(@red, $a) ; # like @red = ($a, @red);
unshift(@red, $a, $b, $c); # like @red = ($a, $b, $c, @red);

$x = shift(@red); # like ($x, @red) = @red;
with sone real values
@red = (5,6,7);
unshift(@red, 2, 3, 4); # @red is now (2,3,4,5,6,7)
$x = shift(@red); # $x gets 2, @red is now (3,4,5,6,7)

Aswith pop, shi ft returnsundef if given an empty array variable.
3.4.5 The reverse Function

Ther ever se function reverses the order of the elements of its argument, returning the resulting list. For
example:

@ = (7,8,9);
@ = reverse(@); # gives @ the value of (9,8,7)
@ = reverse(7,8,9); # same thing

Note that the argument list is unaltered; ther ever se function works on a copy. If you want to reverse
an array "in place," you'll need to assign it back into the same variable:

@ = reverse(@); # give @ the reverse of itself

3.4.6 The sort Function

Thesort function takesits arguments, and sorts them asif they were single strings in ascending ASCI|
order. It returns the sorted list without altering the original list. For example:

@ = sort("small","nmedium, "l arge");

@& gets "large", "nmediunt', "smal | "
@ = (1, 2,4,8,16,32,64);
@ =sort(@); # @ gets 1,16,2,32,4,64,8

Note that sorting numbers does not happen numerically, but by the string values of each number (1, 16,
2,32, and so on). In Section 15.4, "Advanced Sorting", you'll learn how to sort numerically, or in

descending order, or by the third character of each string, or by any other method that you choose.

3.4.7 The chomp Function

The chonp function works on an array variable aswell as a scalar variable. Each element of the array has
its last record separator removed. This can be handy when you've read alist of lines as separate array
elements, and you want to remove the newline from each of the lines at once. For example:

@tuff = ("hello\n","worl d\n", "happy days");
chomp(@tuff); # @tuff is now ("hello","world", "happy days")

Previous: 3.3 Learning Next: 3.5 Scalar and List
Variables Perl Context
3.3 Variables Book 3.5 Scalar and List Context

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 3.4 Array Operators Chapter 3 ter. 3 Next: 3.6 <STDIN> as an
and Functions Arraysand List Data Array

3.5 Scalar and List Context

Asyou can see, each operator and function is designed to operate on some specified combination of
scalarsor lists, and returns either ascalar or alist. If an operator or function expects an operand to be a
scalar, we say that the operand or argument is being evaluated in a scalar context. Similarly, if an
operand or argument is expected to be alist value, we say that it is being evaluated in alist context.

Normally, thisisfairly insignificant. But sometimes you get completely different behavior depending on
whether you are within a scalar or alist context. For example, @ r ed returns the contents of the @ r ed
array in alist context, but the length of the same array in a scalar context. These subtleties are mentioned
when each operator and function is described.

A scalar value used within alist context is promoted to a single-element array.

Previous: 3.4 Array Operators Learning Next: 3.6 <STDIN> as an
and Functions Perl Array
3.4 Array Operators and Book 3.6 <STDIN> asan Array
Functions Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 3.5 Scalar and List Ch ter. 3 Next: 3.7 Variable
Context Arraysand List Data Interpolation of Arrays

3.6 <STDIN> as an Array

One previously seen operation that returns a different value in alist context is<STDI N>. As described
earlier, <STDI N> returns the next line of input in a scalar context. However, in alist context, it returns
al remaining lines up to end of file. Each line is returned as a separate element of the list. For example:

@ = <STDIN>; # read standard input in a |list context

If the person running the program types three lines, then presses CTRL-D[4] (to indicate "end of file"),

the array ends up with three elements. Each element will be a string that ends in a newline, corresponding
to the three newline-terminated lines entered.

[4] Some systems use CTRL-Z to indicate end of file, while others useit to suspend a
running process.

Previous: 3.5 Scalar and List Learning Next: 3.7 Variable
Context Perl Interpolation of Arrays
3.5 Scalar and List Context Book 3.7 Variable Interpolation of
Index Arrays

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 3.6 <STDIN> as an Chapter 3 Next: 3.8
Array Arraysand List Data Exercises

3.7 Variable Interpolation of Arrays

Like scalars, array values may be interpolated into a double-quoted string. A single element of an array
will be replaced by its value, like so:

@red = ("hello","dolly");

Sy = 2;
$x = "This is $fred[1]'s place"; # "This is dolly's place”
$x = "This is $fred[$y-1]'s place"; # sanme thing

Note that the index expression is evaluated as an ordinary expression, asif it were outside a string. It is
not variable interpolated first.

If you want to follow a simple scalar variable reference with a literal |eft square bracket, you need to
delimit the square bracket so it isn't considered part of the array, asfollows:

@red = ("hello","dolly"); # give value to @red for testing
$fred = "right";
we are trying to say "this is right[1]"
$x = "this is $fred[1]"; # wong, gives "this is dolly"
$x = "this is ${fred}[1]"; # right (protected by braces)
$x = "this is $fred"."[1]"; # right (different string)
$x = "this is $fred\[1]"; # right (backslash hides it)

Similarly, alist of values from an array variable can be interpolated. The simplest interpolation is an
entire array, indicated by giving the array name (including its leading @character). In this case, the
elements are interpolated in sequence with a space character between them, asin:
@red = ("a","bb","ccc", 1, 2, 3);
$all = "Now for @red here!";

$all gets "Now for a bb ccc 1 2 3 here!”

Y ou can aso select a portion of an array with adlice:
@red = ("a","bb","ccc", 1, 2, 3);
$all = "Now for @red[2,3] here!";
$%all gets "Now for ccc 1 here!"
$all = "Now for @red[@red[4,5]] here!"; # sane thing

Once again, you can use any of the quoting mechanisms described earlier if you want to follow an array

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

name reference with aliteral left bracket rather than an indexing expression.

Previous: 3.6 <STDIN> as an Learning Next: 3.8
Array Perl Exercises
3.6 <STDIN> asan Array Book 3.8 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl

Previous: 3.7 Variable
Interpolation of Arrays

Chapter 3
Arraysand List Data

| Next: 4. Control Structures|

3.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that reads alist of strings on separate lines and prints out the list in reverse order.
If you're reading the list from the terminal, you'll probably need to delimit the end of thelist by
pressing your end-of-file character, probably CTRL-D under UNIX or Plan 9; often CTRL-Z

elsewhere.

2. Write aprogram that reads a number and then alist of strings (all on separate lines), and then
prints one of the lines from the list as selected by the number.

3. Write aprogram that reads alist of strings and then selects and prints a random string from the list.

To select arandom element of @ onear r ay, put

srand;

at the beginning of your program (this initializes the random-number generator), and then use
rand(@onearr ay)

where you need arandom value between zero and one less than the length of @ onearr ay.

Previous: 3.7 Variable
Interpolation of Arrays

3.7 Variable Interpolation of
Arrays

Learning
Perl

Book
Index

| Next: 4. Control Structures|

4. Control Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 3.8 Chapter 4 Next: 4.2 The if/unless
Exercises Statement

4. Control Structures

Contents:
Statement Blocks

The if/unless Statement
The while/until Statement
Thefor Statement

The foreach Statement
Exercises

4.1 Statement Blocks

A statement block is a sequence of statements, enclosed in matching curly braces. It looks like this:

{

first_statenent;
second_st at enent ;
third_statenent;

| ast _st at enent ;

}

Perl executes each statement in sequence, from the first to the last. (Later, I'll show you how to alter this
execution sequence within ablock, but thisis good enough for now.)

Syntactically, ablock of statementsis accepted in place of any single statement, but the reverse is not
true.

The final semicolon on the last statement is optional. Thus, you can speak Perl with a C-accent
(semicolon present) or Pascal-accent (semicolon absent). To make it easier to add more statements later,
we usually suggest omitting the semicolon only when the block is al on one line. Contrast thesetwo i f
blocks for examples of the two styles:

i f ($ready) { $hungry++ }
if ($tired) {
$sl eepy = ($Shungry + 1) * 2;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: 3.8 Learning Next: 4.2 The if/unless
Exercises Perl Statement
3.8 Exercises Book 4.2 The if/unless Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.1 Statement Chapter 4 Next: 4.3 The while/until
Blocks Control Structures Statement

4.2 The if/funless Statement

Next up in order of complexity isthei f statement. This construct takes a control expression (evaluated
for its truth) and a block. It may optionally have an else followed by a block aswell. In other words, it
looks like this:
i f (sone_expression) {

true_statenent 1,

true_statenent 2;

true_statenent 3,
} else {

fal se_statenent 1;

fal se_statenment 2;

fal se_statenent 3;

}

(If you're a C or Java hacker, you should note that the curly braces are required. This eliminates the need
for a"confusing dangling else” rule.)

During execution, Perl evaluates the control expression. If the expression is true, the first block (the
t rue_st at enent statements above) is executed. If the expression is false, the second block (the
fal se_st at enent statements above) is executed instead.

But what constitutes true and false? In Perl, the rules are slightly weird, but they give you the expected
results. The control expression is evaluated for a string value in scalar context (if it's already a string, no
change, but if it'sanumber, it is converted to astring[1]). If this string is either the empty string (with a
length of zero), or astring consisting of the single character " 0" (the digit zero), then the value of the
expression isfalse. Anything else is true automatically. Why such funny rules? Because it makes it easy
to branch on an emptyish versus nonempty string, as well as a zero versus nonzero number, without
having to create two versions of interpreting true and false values. Here are some examples of true and
false interpretations:

0 # converts to "0", so false

1-1 # conputes to 0, then converts to "0", so false

1 # converts to "1", so true

. # enpty string, so false

"1 # not "" or "0", so true

" 00" # not "" or "0", so true (this is weird, watch out)

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

"0.000" # also true for the sane reason and war ni ng
undef # evaluates to "", so fal se

[1] Internally, thisisn't quite true. But it acts like thisiswhat it does.
Practically speaking, interpretation of values as true or falseisfairly intuitive. Don't et us scare you.

Here's an example of acompletei f statement:

print "how old are you? ";
$a = <STDI N>;

chomp($a) ;
if ($a < 18) {

print "So, you're not old enough to vote, eh?\n";
} else {

print "Ad enough! Cool! So go vote!\n";
$voter++; # count the voters for |ater

}

Y ou can omit the el se block, leaving just a“then" part, asin:

print "how old are you? ";
$a = <STDI N>;
chonp($a);
if ($a < 18) {
print "So, you're not old enough to vote, eh?\n";
}

Sometimes, you want to leave off the "then" part and have just an el se part, because it is more natural
to say "do that if thisisfalse," rather than "do that if not thisistrue." Perl handlesthiswith theunl ess
variation:
print "how old are you? ";
$a = <STDI N>;
chonp($a) ;
unl ess ($a < 18) {
print "Ad enough! Cool! So go vote!\n";
$vot er ++;

}

Replacing i f withunl ess isin effect saying "If the control expressionisfase, do...." (Anunl ess
can also haveanel se, just likeani f)

If you have more than two possible choices, add anel si f branchtothei f statement, like so:
I f (sonme_expression_one) {

one_true_statenent 1;

one true_statenent 2;

one _true_statenent 3;
} elsif (sone_expression_two) {

two _true_ statenent 1,

two_true_statenent 2;
two_true_statenent _3;

} elsif (sone_expression_three) {
three true_statenent 1;
three_true_statenent 2;
three_true_statenent 3;

} else {
all false statenent 1;
all fal se_statenent 2;
all fal se_statenent 3;

}

Each expression (here, sone_expr essi on_one, sone_expr essi on_t wo, and
sone_expressi on_t hr ee) iscomputed in turn. If an expression is true, the corresponding branch is
executed, and all remaining control expressions and corresponding statement blocks are skipped. If all
expressions are false, the el se branch is executed (if thereisone). You don't haveto havean el se
block, but it isalways a good idea. Y ou may have as many el si f branches as you wish.

Previous: 4.1 Statement Learning Next: 4.3 The while/until
Blocks Perl Statement
4.1 Statement Blocks Book 4.3 The while/until Statement
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.2 The if/unless Chapter 4 Next: 4.4 The
Statement Control Structures for Statement

4.3 The while/until Statement

No programming language would be complete without some form of iteration[2] (repeated execution of a
block of statements). Perl can iterate using the whi | e statement:

whi l e (sone_expression) {
statenent _1;
st atenent _2;
st atenent _3;

[2] That'swhy HTML is not a programming language.

To execute thiswhi | e statement, Perl evaluates the control expression (sone_expr essi on inthe
example). If its value is true (using Perl's notion of truth), the body of thewhi | e statement is evaluated
once. Thisis repeated until the control expression becomes false, at which point Perl goes on to the next
statement after thewhi | e | oop. For example:

print "how old are you? ";

$a = <STDI N>;

chonp($a) ;

while ($a > 0) {
print "At one tine, you were $a years old.\n";
$a- -;

}

Sometimes it is easier to say "until something istrue" rather than "while not thisistrue." Once again,
Perl has the answer. Replacing thewhi | e withunt i | yieldsthe desired effect:

until (sone_expression) {
st at ement _1;
st at enent _2;
st at enent _3;

}

Note that in both thewhi | e andtheunt i | form, the body statements will be skipped entirely if the
control expression is the termination value to begin with. For example, if a user enters an age less than
zero for the program fragment above, Perl skips over the body of the loop.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

It's possible that the control expression never lets the loop exit. Thisis perfectly legal, and sometimes
desired, and thus not considered an error. For example, you might want aloop to repeat aslong as you
have no error, and then have some error-handling code following the loop. Y ou might use thisfor a
daemon that is meant to run until the system crashes.

4.3.1 The do {} while/until Statement

Thewhi | e/ unti | statement you saw in the previous section tests its condition at the top of every
loop, before the loop is entered. If the condition was aready false to begin with, the loop won't be
executed at all.

But sometimes you don't want to test the condition at the top of the loop. Instead, you want to test it at
the bottom. To fill this need, Perl providesthedo {} whi | e statement, which isjust like[3] the regular
whi | e statement except that it doesn't test the expression until after executing the loop once.
do {

statenment _1,

st atenent _2;

st atenent _3;
} whil e sone_expression,;

[3] Well, not quite just like; the loop control directives explained in Chapter 9,
Miscellaneous Control Structures, don't work for the bottom-testing form.

Perl executes the statements in the do block.When it reaches the end, it evaluates the expression for
truth. If the expression isfalse, the loop is done. If it'strue, then the whole block is executed one more
time before the expression is once again checked.

Aswith anormal whi | e loop, you can invert the sense of the test by changingdo {} whi | e todo {}
unti | . Theexpressionis still tested at the bottom, but its sense is reversed. For some cases, especially
compound ones, thisis the more natural way to write the test.
$stops = O;
do {

$st ops++;

print "Next stop? ";

chonp($l ocati on = <STDI N>) ;

} until $stops > 5 || $location eq 'hone';
Previous: 4.2 The if/unless Learning Next: 4.4 The
Statement Perl for Statement
4.2 Theif/unless Statement Book 4.4 The for Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.3 The while/until Chapter 4 Next: 4.5 The foreach
Statement Control Structures Statement

4.4 The for Statement

Another Perl iteration construct isthe f or statement, which looks suspicioudly like C or Javasf or
statement and works roughly the same way. Hereit is:
for (initial _exp; test_exp; re-init_exp) {

st at enent _1;

statenent 2,

st at enent _3;

}

Unraveled into forms we've seen before, this turns out as:
i nitial _exp;
while (test _exp) {

statenent _1;

statenent 2,

st at enent _3;

re-init_exp;

}

In either case, thei ni ti al _exp expression isevaluated first. This expression typically assigns an
initial value to an iterator variable, but there are no restrictions on what it can contain; in fact, it may
even be empty (doing nothing). Thenthet est _exp expression is evaluated for truth or falsehood. If
the value istrue, the body is executed, followed by ther e-i ni t _exp (typicaly, but not solely, used to
increment the iterator). Perl then reevaluatesthet est _exp, repeating as necessary.

This example prints the numbers 1 through 10, each followed by a space:
for ($i =1; $i <= 10; $i++) {

print "$i ";
}

Initialy, the variable $i isset to 1. Then, thisvariable is compared with 10, which it isindeed less than
or equal to. The body of the loop (the single pri nt statement) is executed, and then the re-init
expression (the autoincrement expression $i ++) is executed, changing the valuein $i to 2. Because this
is still lessthan or equal to 10, we repeat the process until the last iteration where the value of 10 in $i
gets changed to 11. Thisisthen no longer less than or equal to 10, so the loop exits (with $i having a
value of 11).

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: 4.3 The while/until Learning Next: 4.5 The foreach

Statement Perl Statement
4.3 The while/until Statement Book 4.5 The foreach Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.4 The for Chapter 4 Next: 4.6
Statement Control Structures Exercises

4.5 The foreach Statement

Y et another iteration construct isthe f or each statement. This statement takes alist of values and
assigns them one at atime to a scalar variable, executing a block of code with each successive
assignment. It looks like this:

foreach $i (@one_list) {
statenent 1,
statenent 2,
st at enent _3;

}

Unlike in the C-shell, the original value of the scalar variable is automatically restored when the loop
exits; another way to say thisisthat the scalar variable islocal to the loop.

Here'san example of af or each:

@ = (1,2, 3,4,5);

foreach $b (reverse @) {
print $b;

}

This program snippet prints 54321. Note that the list used by the f or each can be an arbitrary list
expression, not just an array variable. (Thisistypical of al Perl constructs that require alist.)

Y ou can omit the name of the scalar variable, in which case Perl pretends you have specifiedthe $
variable nameinstead. You'll find that the $_ variable is used as a default for many of Perl's operations,
so you can think of it as a scratch area. (All operationsthat use $_ by default can also use a normal scalar
variable aswell.) For example, the pri nt function printsthe value of $_ if no other value is specified,
so the following example works like the previous one:

@ =(1,2,3,4,5);

foreach (reverse @) {
print;

}

See how using the implied $_ variable makesit easier? Once you've learned more functions and
operatorsthat default to $_ , this construct will become even more useful. Thisis one case where the
shorter construct is more legible than the longer one.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

If the list you are iterating over is made of real variables rather than some function returning alist value,
then the variable being used for iteration isin fact an alias for each variable in the list instead of being
merely a copy of the values. It meansthat if you change the scalar variable, you are also changing that
particular element in the list that the variable is standing in for. For example:

@ = (3,5,7,9);
foreach $one (@) {
$one *= 3;

}

@ is now (9, 15, 21, 27)

Notice how altering $one in fact altered each element of @. Thisis afeature, not a bug.

Previous: 4.4 The for Learning Next: 4.6
Statement Perl Exercises
4.4 Thefor Statement Book 4.6 Exercises
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.5 The foreach Chapter 4 Next: 5.
Statement Control Structures Hashes

4.6 Exercises

See Appendix A, Exercise Answers for answers.

1.

Write a program that asks for the temperature outside, and prints "too hot" if the temperatureis
above 72, and "too cold" otherwise.

Modify the program from the previous exercise so that it prints "too hot" if the temperatureis
above 75, "too cold" if the temperature is below 68, and "just right!" if it is between 68 and 75.

Write a program that reads alist of numbers (on separate lines) until the number 999 isread, and
then prints the total of all the numbers added together. (Be sure not to add in the 999!) For
example, if you enter 1, 2, 3, and 999, the program should reply with the answer of 6 (1+2+3).

Write aprogram that reads in alist of strings on separate lines and then prints out the list of strings
in reverse order - without using r ever se onthelist. (Recall that <STDI N> will read alist of
strings on separate lines when used in an array context.)

Write a program that prints a table of numbers and their squares from zero to 32. Try to come up
with away where you don't need to have all the numbers from 0 to 32 in alist, and then try one
where you do. (For nice looking output,

printf "%g %8g\n", $a, $b

prints $a as a five-column number and $b as an eight-column number.)

Previous: 4.5 The foreach Learning Next: 5.
Statement Perl Hashes
4.5 The foreach Statement Book 5. Hashes
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 4.6 Chapter 5 Next: 5.2 Hash
Exercises Variables

5. Hashes

Contents:
What |s aHash?

Hash Variables

Literal Representation of aHash
Hash Functions

Hash Slices

Exercises

5.1 What Is a Hash?

A hash[1] islike the array that we discussed earlier, in that it is a collection of scalar data, with individual
elements selected by some index value. Unlike alist array, the index values of a hash are not small
nonnegative integers, but instead are arbitrary scalars. These scalars (called keys) are used later to
retrieve the values from the array.

[1] In older documentation, hashes were called "associative arrays," but we got tired of a
seven-syllable word for such a common item, so we replaced it with a much nicer
one-syllable word.

The elements of a hash have no particular order. Consider them instead like a deck of filing cards. The
top half of each card isthe key, and the bottom half is the value. Each time you put a value into the hash,
anew card is created. Later, when you want to modify the value, you give the key, and Perl finds the
right card. So, really, the order of the cardsisimmaterial. In fact, Perl stores the cards (the key-value
pairs) in aspecial internal order that makes it easy to find a specific card, so Perl doesn't have to ook
through all the pairs to find the right one. Y ou cannot control this order, so don't try.[2]

[2] Actually, modules like IxHash and DB _file do provide some ordering, but at the cost of
anon-trivial performance penalty.

Previous: 4.6 Learning Next: 5.2 Hash
Exercises Perl Variables

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

4.6 Exercises Book 5.2 Hash Variables
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 5.1 What Is a Chapter 5 Next: 5.3 Literal
Hash? Hashes Representation of a Hash

5.2 Hash Variables

A hash variable name is a percent sign (%9 followed by aletter, followed by zero or more letters, digits,
and underscores. In other words, the part after the percent isjust like what we've had for scalar and array
variable names. And, just as thereis no relationship between $f r ed and @ r ed, the % r ed hash
variable is aso unrelated to the other two.

Rather than referencing the entire hash, the hash more commonly is created and accessed by referring to
its elements. Each element of the hash is a separate scalar variable, accessed by a string index, called the
key. Elements of the hash % r ed are thus referenced with $f r ed{ $key} where $key isany scalar
expression. Notice once again that accessing an element of a hash requires different punctuation than
when you access the entire hash.

Aswith arrays, you create new elements merely by assigning to a hash element:

$fred{"aaa"} “bbb"; # creates key "aaa", val ue "bbb"
$fred{234. 5} 456. 7; # creates key "234.5", value 456.7

These two statements create two elements in the hash. Subsequent accesses to the same element (using
the same key) return the previously stored value:

print $fred{"aaa"}; # prints "bbb"

$fred{234.5} += 3; # nakes it 459.7

Referencing an element that does not exist returnsthe undef value, just as with amissing array element
or an undefined scalar variable.

Previous: 5.1 What Is a Learning Next: 5.3 Literal
Hash? Perl Representation of a Hash
5.1 What IsaHash? Book 5.3 Literal Representation of a
Index Hash

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: 5.2 Hash Variables| Chapter 5 Next: 5.4 Hash
Hashes Functions

5.3 Literal Representation of a Hash

Y ou may wish to access the hash as awhole, either to initialize it or to copy it to another hash. Perl
doesn't really have aliteral representation for a hash, so instead it unwinds the hash as alist. Each pair of
elementsin thelist (which should always have an even number of elements) defines akey and its
corresponding value. This unwound representation can be assigned into another hash, which will then
recreate the same hash. In other words:

@red list = %red;

@red |ist gets ("aaa", "bbb","234.5", 456. 7)
Ybarney = @red list; # create %arney like %red
Ybar ney % red; # a faster way to do the sane
%snoot h ("aaa", "bbb","234.5",456.7);

create %snooth like %red, fromliteral val ues

The order of the key-value pairsis arbitrary in this unwound representation and cannot be controlled.
Even if you swap some of the values around and create the hash as awhole, the returned unwound list is
still in whatever order Perl has created for efficient access to the individual elements. Y ou should never
rely on any particular ordering.

One quick use of thiswinding-unwinding isto copy a hash value to another hash variable:
Y%copy = %original; # copy from%original to %opy

And you can construct a hash with keys and values swapped using ther ever se operator, which works
well here:

Oackwards = reverse %or nal ;

Of course, if 9%mor mal hastwo identical values, those will end up asonly asingle element in
Y%ackwar ds, so thisis best performed only on hashes with unique keys and values.

| Previous: 5.2 Hash Variables| Learning Next: 5.4 Hash
Perl Functions

5.2 Hash Variables Book 5.4 Hash Functions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 5.3 Literal Chapter 5 Next: 5.5 Hash
Representation of a Hash Hashes Slices

5.4 Hash Functions
This section lists some functions for hashes.

5.4.1 The keys Function

Thekeys(%ashnane) functionyieldsalist of all the current keysin the hash %hashnane. In other
words, it's like the odd-numbered (first, third, fifth, and so on) elements of the list returned by unwinding
%hashnane in an array context, and in fact, returns them in that order. If there are no elementsto the
hash, then keys returns an empty list.

For example, using the hash from the previous examples:

$fred{"aaa"} = "bbb";

$fred{234.5} = 456.7;

@ist = keys(%red); # @ist gets ("aaa", 234.5) or
(234.5,"aaa")

Aswith all other built-in functions, the parentheses are optional: keys % r ed islikekeys(% r ed) .

foreach $key (keys (%red)) { # once for each key of %red
print "at $key we have $fred{$key}\n"; # show key and val ue
}

This example also shows that individual hash elements can be interpolated into double-quoted strings.
Y ou cannot interpolate the entire hash, however.[3]

[3] WEell, you can, using a slice, but we don't talk about slices here.

In ascalar context, the keys function gives the number of elements (key-value pairs) in the hash. For
example, you can find out whether a hash is empty:

I f (keys(%onehash)) { # if keys() not zero:
., # array is non enpty
}

... or ...
whi l e (keys(%onehash) < 10) {

.; # keep |l ooping while we have fewer than 10 el enents
}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

In fact, merely using s onehash in ascalar context will reveal whether the hash is empty or not:

I f (%sonehash) { # if true, then sonething's in it
do sonething with it
}

5.4.2 The values Function

Theval ues(% hashnane) functionreturnsalist of all the current values of the %hashnane, inthe
same order asthe keys returned by the keys(%ashnane) function. As aways, the parentheses are
optional. For example:

% astnane = (); # force % astnane enpty

$l astname{"fred"} = "flintstone";

$l ast nanme{ " barney"} = "rubble";

@ ast nanes = val ues(% astnane); # grab the val ues

At thispoint @ ast nanes containseither ("fl i nt stone","rubbl e") or ("rubbl e",
"flintstone").

5.4.3 The each Function

To iterate over (that is, examine every element of) an entire hash, use keys, looking up each returned
key to get the corresponding value. Although this method is frequently used, a more efficient way isto
use each(%mashnane) , which returns a key-value pair as atwo-element list. On each evaluation of
this function for the same hash, the next successive key-value pair is returned until all the elements have
been accessed. When there are no more pairs, each returns an empty list.

So, for example, to step through the % ast nane hash from the previous example, do something like
this:
while (($first, $last) = each(% astnane)) {
print "The last name of $first is $last\n";
}

Assigning anew value to the entire hash resets the each function to the beginning. Adding or deleting
elements of the hash is quite likely to confuse each (and possibly you as well).

5.4.4 The delete Function

So far, with what you know, you can add elements to a hash, but you cannot remove them (other than by
assigning a new value to the entire hash). Perl providesthe del et e function to remove hash elements.
The operand of del et e isahash reference, just asif you were merely looking at a particular value. Perl
removes the key-value pair from the hash. For example:

%red = ("aaa", "bbb",234.5,34.56); # give %Yred two el enents

del ete $fred{"aaa"};
%red is now just one key-val ue pair

Previous: 5.3 Literal Learning Next: 5.5 Hash

Representation of a Hash Perl Slices
5.3 Literal Representation of a Book 5.5 Hash Slices
Hash Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: 5.4 Hash Functions| Chapter 5 Next: 5.6
Hashes Exercises

5.5 Hash Slices

Like an array variable (or list literal), a hash can be sliced to access a collection of elementsinstead of
just one element at atime. For example, consider the bowling scores set individually:

$score{"fred"} = 205;

$score{"barney"} = 195;

$score{"di no"} = 30;

This seems rather redundant, and in fact can be shortened to:

($score{"fred"}, $score{"barney"}, $score{"dino"}) =
(205, 195, 30);

But even these seems redundant. Let's use ahash slice:

@core{"fred", "barney","dino"} = (205, 195, 30);

There. Much shorter. We can use a hash slice with variable interpolation as well:
@l ayers = gwfred barney dino);
print "scores are: @core{ @l ayers}\n";

Hash dlices can also be used to merge a smaller hash into alarger one. In this example, the smaller hash
takes precedence in the sense that if there are duplicate keys, the value from the smaller hash is used:

% eague{ keys %score} = values %score,

Here, the values of s cor e are merged into the % eague hash. Thisis equivalent to the much slower
operation:

% eague = (% eague, %score); # nerge %score into % eague

| Previous: 5.4 Hash Functions| Learning Next: 5.6
Perl Exercises

5.4 Hash Functions Book 5.6 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 5.5 Chapter 5 Next: 6. Basic
Hash Slices Hashes I/O

5.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that reads in a string, then prints that string and its mapped value according to the
mapping presented in the following table:

Input | Output

red |apple

green |leaves

blue |ocean

2. Write a program that reads a series of words with one word per line until end-of-file, then prints a
summary of how many times each word was seen. (For extra challenge, sort the wordsin
ascending ASCI|I order in the output.)

Previous: 5.5 Learning Next: 6. Basic
Hash Slices Perl 1/O
5.5 Hash Slices Book 6. Basic1/O
Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 5.6 Chapter 6 Next: 6.2 Input from the
Exercises Diamond Operator

6. Basic I/O

Contents:
Input from STDIN

Input from the Diamond Operator
Output to STDOUT
Exercises

6.1 Input from STDIN

Reading from standard input (viathe Perl filehandle called STDI N) is easy. We've been doing it already
with the <STDI N> operation. Evaluating thisin a scalar context gives the next line of input,[1] or

undef if there are no morelines, like so:
$a = <STDIN>; # read the next |ine

[1] Up to anewline, or whatever you've set $/ to.

Evaluating in alist context produces all remaining lines as alist: each element isone line, including its
terminating newline. We've seen this before, but as a refresher, it might look something like this:

@ = <STDI N>;

Typically, one thing you want to do isread all lines one at atime and do something with each line. One
common way to do thisis:

while (defined($line = <STDIN>)) {
process $line here
}

Aslong asaline has been read in, <STDI N> evaluates to a defined value, so the loop continuesto
execute. When <STDI N> has no more linesto read, it returns undef , terminating the loop.

Reading a scalar value from <STDI N> into $_ and using that value as the controlling expression of a
loop (as in the previous example) occurs frequently enough that Perl has an abbreviation for it. Whenever
aloop test consists solely of the input operator (something like <. . . >), Perl automatically copiesthe
linethat isread into the $_ variable.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

while (<STDIN>) { # like "while(defined($_
chonp; # like "chonmp($)"
other operations with $ here

<STDI N>)) {"

}

Sincethe $_ variable isthe default for many operations, you can save a noticeable amount of typing this
way.

Previous: 5.6 Learning Next: 6.2 Input from the
Exercises Perl Diamond Operator
5.6 Exercises Book 6.2 Input from the Diamond

Index Operator

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 6.1 Input from Chapter 6 [Next: 6.3 Output to STDOUT]
STDIN Basic1/O

6.2 Input from the Diamond Operator

Another way to read input is with the diamond operator: <>. Thisworks like <STDI N> in that it returns
asinglelinein ascalar context (undef if al the lines have been read) or all remaining linesif used in a
list context. However, unlike <STDI N>, the diamond operator gets its datafrom the file or files specified
on the command line that invoked the Perl program. For example, you have a program named kitty,
consisting of
#! [usr/ bi n/ per|
while (<>) {

print $_;
}

and you invoke kitty with
kitty filel file2 file3

then the diamond operator reads each lineof f i | el followed by eachlineof fil e2 andfil e3in
turn, returning undef only when al of the lines have been read. Asyou can see, kitty works alittle like
the UNIX command cat, sending all the lines of the named files to standard output in sequence. If, like
cat, you don't specify any filenames on the command line, the diamond operator reads from standard
input automatically.

Technically, the diamond operator isn't looking literally at the command-line arguments; it works from
the GARGV array. Thisarray isaspecial array initialized by the Perl interpreter to the command-line
arguments. Each command-line argument goes into a separate element of the GARGV array. Y ou can
interpret this list any way you want.[2] Y ou can even set this array within your program and have the
diamond operator work on that new list rather than the command-line arguments, like so:
@\RGV = ("aaa", "bbb","ccc");
while (<>) { # process files aaa, bbb, and ccc

print "this line is: $";
}

[2] The standard Perl distribution contains modules for get opt -like parsing of the
command-line arguments of a Perl program. See Programming Perl or perlmodlib (1) for
more information on the library.

In Chapter 10, Filehandles and File Tests, we'll see how to open and close specific filenames at specific

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

times, but this technique has been used for some of our quick-and-dirty programs.

Previous: 6.1 Input from Learning [Next: 6.3 Output to STDOUT|
STDIN Perl

6.1 Input from STDIN Book 6.3 Output to STDOUT
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 6.2 Input from the C_haw Next: 6.4
Diamond Operator Basic1/0 Exercises

6.3 Output to STDOUT

Perl usesthepri nt andpri ntf functionsto write to standard output. Let's look at how they are used.

6.3.1 Using print for Normal Output

We've already used pr i nt to display text on standard output. Let's expand on that a bit.

Thepri nt function takes alist of strings and sends each string to standard output in turn, without any
intervening or trailing characters added. What might not be obviousisthat pri nt isrealy just a
function that takes alist of arguments, and returns avalue like any other function. In other words,

$a = print("hello ", "world", "\n");
would be another way to say hel | o wor | d. Thereturnvalue of pri nt isatrueor false value,

indicating the success of the pr i nt . It nearly always succeeds, unless you get some 1/O error, so $a in
this case would usually be 1.

Sometimes you'll need to add parenthesesto pr i nt asshown in the example, especially when the first
thing you want to print itself starts with aleft parenthesis, asin:

print (2+3),"hello"; # wong! prints 5, ignores "hello"
print ((2+3),"hello"); # right, prints 5hello
print 2+3,"hello"; # also right, prints 5hello

6.3.2 Using printf for Formatted Output

Y ou may wish alittle more control over your output than pri nt provides. In fact, you may be
accustomed to the formatted output of C'spr i nt f function. Fear not: Perl provides a comparable
operation with the same name.

Thepri ntf functiontakes alist of arguments (enclosed in optional parentheses, likethe pri nt
function). Thefirst argument is aformat control string, defining how to print the remaining arguments. If
you're not familiar with the standard pr i nt f function, you should probably check out the manpage for
printf (3) or perlfunc (1), if you have one, or look at the description in Chapter 3 of Programming Perl.

As an example, however
printf "9%d5s 9%d 9%0.2f\n", $s, $n, 9$r;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

prints $s in a 15-character field, then space, then $n as a decimal integer in a 5-character field, then
another space, then $r as afloating-point value with 2 decimal placesin a 10-character field, and finally
anewline.

Previous: 6.2 Input from the Learning Next: 6.4
Diamond Operator Perl Exercises
6.2 Input from the Diamond Book 6.4 Exercises
Operator Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 6.3 Output to Chapter 6 | Next: 7. Regular Expressions
STDOUT Basic 1/0

6.4 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that acts like cat, but reverses the order of the lines of al the lines from all the
files specified on the command line or all the lines from standard input if no files are specified.
(Some systems have a utility like this named tac.)

2. Modify the program from the previous exercise so that each file specified on the command line has
itslinesindividually reversed. (Y es, you can do this with only what's been shown to you so far,
even excluding the stroll in Chapter 1, Introduction.)

3. Write aprogram that reads alist of strings on separate lines, and printsthe stringsin a
right-justified 20-character column. For example, inputting hel | o0, good- bye printshel | o and
good- bye right-justified in a 20-character column. (Be sure your program is actually using a
20-character column, not a 21-character column. That's a common mistake.)

4. Modify the program from the previous exercise to allow the user to select the column width. For
example, entering 20, hel | 0, and good- bye should do the same thing as the previous program
did, but entering 30, hel | 0, and good- bye should justify hel | o and good- bye ina
30-character column.

Previous: 6.3 Output to Learning | Next: 7. Regular Expressions|
STDOUT Perl

6.3 Output to STDOUT Book 7. Regular Expressions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 6.4 Chapter 7 Next: 7.2 Simple Uses of
Exercises Regular Expressions

/. Regular Expressions

Contents:
Concepts About Regular Expressions

Simple Uses of Regular Expressions
Patterns

More on the Matching Operator
Substitutions

The split and join Functions
Exercises

7.1 Concepts About Regular Expressions

A regular expression is a pattern - atemplate - to be matched against a string. Matching a regular
expression against a string either succeeds or fails. Sometimes, the success or failure may be al you are
concerned about. At other times, you will want to take a matched pattern and replace it with another
string, parts of which may depend on exactly how and where the regular expression matched.

Regular expressions are used by many programs, such as the UNIX commands, grep, sed, awk, ed, vi,
emacs, and even the various shells. Each program has adifferent set of (mostly overlapping) template
characters. Perl isasemantic superset of al of these tools. any regular expression that can be described
in one of these tools can also be written in Perl, but not necessarily using exactly the same characters.

Previous: 6.4 Learning Next: 7.2 Simple Uses of
Exercises Perl Regular Expressions
6.4 Exercises Book 7.2 Simple Uses of Regular

Index Expressions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.1 Concepts About Chapter 7 . Next: 7.3
Regular Expressions Regular Expressions Patterns

7.2 Simple Uses of Regular Expressions

If we were looking for all lines of afilethat contain the string abc, we might use the grep command:
grep abc sonefile >results

In this case, abc isthe regular expression that the grep command tests against each input line. Lines that
match are sent to standard output, here ending up in the file results because of the command-line
redirection.

In Perl, we can speak of the string abc as aregular expression by enclosing the string in slashes:

if (/abc/) {
print $;
}

But what is being tested against the regular expression abc in this case? Why, it'sour old friend, the $_
variable! When aregular expression is enclosed in slashes (as above), the $ variable is tested against
the regular expression. If the regular expression matches, the match operator returns true. Otherwise, it
returns false.

For this example, the $_ variable is presumed to contain some text line and is printed if the line contains
the characters abc in sequence anywhere within the line - similar to the grep command above. Unlike
the grep command, which is operating on all of the lines of afile, this Perl fragment islooking at just one
line. To work on all lines, add aloop, asin:

while (<>) {
if (/abc/) {
print $;
}
}

What if we didn't know the number of b's between thea and the c? That is, what if we want to print the
lineif it contains an a followed by zero or more b's, followed by ac. With grep, we'd say:

grep "ab*c" somefile >results
(The argument containing the asterisk is in quotes because we don't want the shell expanding that

argument asif it were afilename wildcard. It has to be passed as-isto grep to be effective.) In Perl, we
can say exactly the same thing:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

while (<>) {
if (/ab*cl) {
print $_;

}

}

Just like grep, this means an a followed by zero or more b'sfollowed by ac.

WEe'I visit more uses of pattern matching in Section 7.4, "More on the Matching Operator,” later in the
chapter, after we talk about all kinds of regular expressions.

Another simple regular expression operator is the substitute operator, which replaces the part of a string
that matches the regular expression with another string. The substitute operator looks like the s
command in the UNIX command sed utility, consisting of the letter s, aslash, aregular expression, a
slash, areplacement string, and a final slash, looking something like:

s/ ab*c/ def/:

The variable (inthiscase, $) is matched against the regular expression (ab* c). If the matchis
successful, the part of the string that matched is discarded and replaced by the replacement string (def).
If the match is unsuccessful, nothing happens.

As with the match operator, we'll revisit the myriad options on the substitute operator later, in Section
7.5, "Substitutions."

Previous: 7.1 Concepts About Learning Next: 7.3
Regular Expressions Perl Patterns
7.1 Concepts About Regular Book 7.3 Patterns
Expressions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.2 Simple Uses of Chapter 7 . Next: 7.4 More on the
Regular Expressions Regular Expressions Matching Operator

/.3 Patterns

A regular expression is a pattern. Some parts of the pattern match single charactersin the string of a
particular type. Other parts of the pattern match multiple characters. First, we'll visit the single-character
patterns and then the multiple-character patterns.

7.3.1 Single-Character Patterns

The simplest and most common pattern-matching character in regular expressionsis a single character
that matches itself. In other words, putting aletter a in aregular expression requires a corresponding
letter a in the string.

The next most common pattern matching character isthe dot ". . This matches any single character
except newline (\ n). For example, the pattern / a. / matches any two-letter sequence that starts with a
andisnot"a\ n".

A pattern-matching character classis represented by a pair of open and close square brackets and a list
of characters between the brackets. One and only one of these characters must be present at the
corresponding part of the string for the pattern to match. For example,

/ [abcde] /

matches a string containing any one of the first five letters of the lowercase al phabet, while
/ [aei ouAElI QU] /

matches any of the five vowelsin either lower- or uppercase. If you want to put aright bracket (]) in the
list, put abackslash in front of it, or put it asthe first character within the list. Ranges of characters (like
a through z) can be abbreviated by showing the end points of the range separated by adash (-); toget a
literal dash inthelist, precede the dash with a backslash or placeit at the end. Here are some other
examples.

[0123456789] # match any single digit

[0- 9] # sane thing

[0-9\ -] # match 0-9, or m nus

[a- z0- 9] # match any single | owercase letter or digit

[a- zA- Z0- 9] # match any single letter, digit, or underscore

There's also a negated character class, which is the same as a character class, but has aleading up-arrow

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

(or caret:) immediately after the left bracket. This character class matches any single character that is
not in the list. For example:

[70-9] # match any single non-digit
[~aei oUAEI QU] # match any singl e non-vowel
[M A] # match single character except an up-arrow

For your convenience, some common character classes are predefined, as described in Table 7.1.

Table 7.1: Predefined Character Class Abbreviations
Construct Equivalent Class | Negated Construct | Equivalent Negated Class

\ d (adigit) [0- 9] \ D (digits, not!) [~0- 9]
\ w(word char) |[a- zA- Z0-9] [\ W(words, not!) [ra-zA-Z0-9]
\'s (spacechar) [[\r\t\n\f] |\'S (space, not!) [A \r\t\n\f]

The\ d pattern matches one "digit." The\ w pattern matches one "word character," although what it is
really matching is any character that islegal in aPerl variable name. The\ s pattern matches one "space"
(whitespace), here defined as spaces, carriage returns (not often used in UNIX), tabs, line feeds, and form
feeds. The uppercase versions match the complements of these classes. Thus, \W matches one character
that can't be in an identifier, \S matches one character that is not whitespace (including letter,
punctuation, control characters, and so on), and \D matches any single nondigit character.

These abbreviated classes can be used as part of other character classes as well:
[\da-fA-F] # match one hex digit

7.3.2 Grouping Patterns

The true power of regular expressions comes into play when you can say "one or more of these" or "up to
five of those." Let'stalk about how thisis done.

7.3.2.1 Sequence

Thefirst (and probably least obvious) grouping pattern is sequence. This meansthat abc matchesan a
followed by ab followed by ac. Seems simple, but we're giving it aname so we can talk about it later.

7.3.2.2 Multipliers

We've adready seen the asterisk (*) as a grouping pattern. The asterisk indicates zero or more of the
immediately previous character (or character class).

Two other grouping patterns that work like this are the plus sign (+), meaning one or more of the
immediately previous character, and the question mark (?), meaning zero or one of the immediately
previous character. For example, the regular expression/ f o+ba?r/ matchesanf followed by one or
more o's followed by a b, followed by an optional a, followed by anr .

In all three of these grouping patterns, the patterns are greedy. If such a multiplier has a chance to match
between five and ten characters, it'll pick the 10-character string every time. For example,

$_ = "fred xxxxxxxxxx barney";
s/ x+/ boont ;

always replaces all consecutive x'swith boom(resultinginfred boom bar ney), rather than just one
or two X's, even though a shorter set of x's would al'so match the same regular expression.

If you need to say "fiveto ten" x's, you could get away with putting five x's followed by five x's each
immediately followed by a question mark. But thislooks ugly. Instead, there's an easier way: the general
multiplier. The general multiplier consists of a pair of matching curly braces with one or two numbers
inside, asin/ x{ 5, 10}/ . Theimmediately preceding character (in this case, the letter "x") must be
found within the indicated number of repetitions (five through ten here).[1]

[1] Of course, \d{ 3}/ doesn't only match three-digit numbers. It would also match any
number with more than three digitsin it. To match exactly three, you need to use anchors,
described later in Section 7.3.3, "Anchoring Patterns."”

If you leave off the second number, asin/ x{ 5, }/, it means "that many or more" (five or more in this
case), and if you leave off the comma, asin/ x{ 5} / , it means "exactly this many" (five x's). To get five
or lessx's, you must put the zeroin, asin/ x{ 0, 5} / .

So, theregular expression/ a. { 5} b/ matches the letter a separated from the letter b by any five
non-newline characters at any point in the string. (Recall that a period matches any single non-newline
character, and we're matching five here.) The five characters do not need to be the same. (Well learn
how to force them to be the same in the next section.)

We could dispense with * , +, and ? entirely, since they are completely equivalentto{ 0, },{ 1, },and
{0, 1} . But it's easier to type the equivalent single punctuation character, and more familiar as well.

If two multipliers occur in asingle expression, the greedy rule is augmented with "leftmost is greediest.”
For example:

$ = "a XXX C XXXXXXXX € Xxx d";
[a.*c.*d/;

In this case, thefirst . *" in the regular expression matches all characters up to the second ¢, even
though matching only the characters up to the first ¢ would still allow the entire regular expression to
match. Right now, this doesn't make any difference (the pattern would match either way), but later when
we can look at parts of the regular expression that matched, it'll matter quite a bit.

We can force any multiplier to be nongreedy (or lazy) by following it with a question mark:
$ = "a XXX € XXXXXXXX € xxx d";
/a.*?c.*d/;

Here, the a. * ?c now matches the fewest characters between the a and ¢, not the most characters. This
means the leftmost ¢ is matched, not the rightmost. Y ou can put such a question-mark modifier after any
of the multipliers (?,+,*,and { m n}).

What if the string and regular expression were dlightly altered, say, to:

$ = "a XXX Ce XXXXXXXX cCi xxx d";
/a.*ce.*d/;

In this case, if the . * matches the most characters possible before the next ¢, the next regular expression
character (e) doesn't match the next character of the string (i). In this case, we get automatic
backtracking: the multiplier is unwound and retried, stopping at someplace earlier (in this case, at the
earlier c, next tothe e).[2] A complex regular expression may involve many such levels of backtracking,
leading to long execution times. In this case, making that match lazy (with atrailing "?") will actualy
simplify the work that Perl has to perform, so you may want to consider that.

[2] WEell, technically there was alot of backtracking of the * operator to find the c'sin the
first place. But that's alittle trickier to describe, and it works on the same principle.

7.3.2.3 Parentheses as memory

Another grouping operator isapair of open and close parentheses around any part pattern. This doesn't
change whether the pattern matches, but instead causes the part of the string matched by the pattern to be
remembered, so that it may be referenced later. So for example, (a) still matchesana, and ([a- z])
still matches any single lowercase letter.

To recall amemorized part of astring, you must include a backslash followed by an integer. This pattern
construct represents the same sequence of characters matched earlier in the same-numbered pair of
parentheses (counting from one). For example,

/fred(.)barney\1/;

matches a string consisting of f r ed, followed by any single non-newline character, followed by
bar ney, followed by that same single character. So, it matchesf r edxbar neyx, but not
f r edxbar neyy. Compare that with

/| fred. barney./;
in which the two unspecified characters can be the same, or different; it doesn't matter.

Where did the 1 come from? It means the first parenthesized part of the regular expression. If there's
more than one, the second part (counting the left parentheses from left to right) isreferenced as\ 2, the
third as\ 3, and so on. For example,

Ja(.)b(.)c\2d\ 1/ ;

matches an a, a character (call it #1), ab, another character (call it #2), ac, the character #2, ad, and the
character #1. So it matches axbycydx, for example.

The referenced part can be more than a single character. For example,
[a(.*)b\1lc/;

matches an a, followed by any number of characters (even zero) followed by b, followed by that same
sequence of characters followed by ¢. So, it would match aFREDbFREDc, or even abc, but not
axXXbXXXc.

7.3.2.4 Alternation

Another grouping construct is alternation, asin a| b| c. This means to match exactly one of the
aternatives (a or b or ¢ inthis case). Thisworks even if the alternatives have multiple characters, asin
/ song| bl ue/ , which matches either song or bl ue. (For single character alternatives, you're
definitely better off with acharacter classlike/ [abc] / .)

What if we wanted to match songbi r d or bl uebi r d?We could write/ songbi r d| bl uebi rd/,
but that bi r d part shouldn't have to be in there twice. In fact, there's away out, but we have to talk about
the precedence of grouping patterns, which is covered in Section 7.3.4, "Precedence,”" below.

7.3.3 Anchoring Patterns

Severa special notations anchor a pattern. Normally, when a pattern is matched against the string, the
beginning of the pattern is dragged through the string from left to right, matching at the first possible
opportunity. Anchors allow you to ensure that parts of the pattern line up with particular parts of the
string.

Thefirst pair of anchors require that a particular part of the match be located either at a word boundary or
not at aword boundary. The\ b anchor requires aword boundary at the indicated point for the pattern to
match. A word boundary is the place between characters that match \ wand \ W or between characters
matching \ wand the beginning or ending of the string. Note that this has little to do with English words
and alot more to do with C symbols, but that's as close as we get. For example:

[fred\b/; # mat ches fred, but not frederick

/\ bno/; # mat ches npe and nol e, but not El npD

[\ bFred\b/; # mat ches Fred but not Frederick or al Fred

/\b\ +\ b/ ; # mat ches "x+y" but not "++" or " + "

/ abc\ bdef /; # never matches (inpossible for a boundary there)

Likewise, \ B requires that there not be a word boundary at the indicated point. For example:
/\bFred\B/; # matches "Frederick" but not "Fred Flintstone"

Two more anchors require that a particular part of the pattern be next to an end of the string. The caret
(™) matches the beginning of the string if it isin a place that makes sense to match the beginning of the
string. For example, *a matches an a if, and only if, the a isthe first character of the string. However,
a” matches the two charactersa and * anywhere in the string. In other words, the caret has lost its
special meaning. If you need the caret to be aliteral caret even at the beginning, put a backslash in front
of it.

The $, likethe”, anchors the pattern, but to the end of the string, not the beginning. In other words, c$
matches ac only if it occurs at the end of the string.[3] A dollar sign anywhere elsein the patternis

probably going to be interpreted as a scalar value interpretation, so you'll most likely need to backslash it
to match aliteral dollar sign in the string.

[3] Or just before the newline at the end of the string, for historical ssimplicity.

Other anchors are supported, including \A, \Z, and lookahead anchors created via (?=...) and (?...). These
are described fully in Chapter 2 of Programming Perl and the perlre (1) manpage.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch02_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

7.3.4 Precedence

So what happens when we get a| b* together? Isthisa or b any number of times, or isit either asingle
a or any number of b's?

WEell, just as operators have precedence, the grouping and anchoring patterns also have precedence. The
precedence of patterns from highest to lowest isgivenin Table 7.2.

Table 7.2: regex Grouping Precedence [4]

Name Representation

Parentheses () (?2:)

Multipliers ?2+* {mn} ?? +? *? {mn}?
Sequence and anchoring [abc » $ \A\Z (?=) (?!)
Alternation |

[4] Some of these symbols are not described in this book. See Programming Perl or perlre
() for details.

According to the table, * has ahigher precedencethan | . So/ a| b*/ isinterpreted asasingle a, or any
number of b's.

What if we want the other meaning, asin "any number of a'sor b's'? We ssimply throw in apair of
parentheses. In this case, enclose the part of the expression that the * operator should apply to inside
parentheses, and we've got it, as (a| b) *. If you want to clarify the first expression, you can redundantly
parenthesize it with a| (b*) .

When you use parentheses to affect precedence they also trigger the memory, as shown earlier in this
chapter. That is, this set of parentheses counts when you are figuring out whether somethingis\ 2,\ 3, or

This still allows for multipliers, but doesn't throw off your counting by using up \ 4 or whatever. For
example,/ (?: Fred| W1 ma) Fl i nt st one/ does not store anything into\ 1; it'sjust there for

grouping.
Here are some other examples of regular expressions and the effect of parentheses:

abc* # mat ches ab, abc, abcc, abccc, abcccc, and so on
(abc)* # matches "", abc, abcabc, abcabcabc, and so on
X|y # matches x at the beginning of line, or y anywhere
ANx|y) # matches either x or y at the beginning of a line
al bc| d # a, or bc, or d

(al b)(c|d) # ac, ad, bc, or bd

(song| blue)bird # songbird or bl uebird

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: 7.2 Simple Uses of Learning Next: 7.4 More on the

Regular Expressions Perl Matching Operator
7.2 Simple Uses of Regular Book 7.4 More on the Matching
Expressions Index Operator

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.3 Chapter 7 . Next: 7.5
Patterns Regular Expressions Substitutions

7.4 More on the Matching Operator

We have already looked at the simplest uses of the matching operator (aregular expression enclosed in
slashes). Now let'slook at a zillion ways to make this operator do something slightly different.

7.4.1 Selecting a Different Target (the =~ Operator)

Usually the string you'll want to match your pattern against is not withinthe $_ variable, and it would be
anuisance to put it there. (Perhaps you aready have avaluein $_ you're quite fond of.) No problem.
The =~ operator helps us here. This operator takes aregular expression operator on the right side, and
changes the target of the operator to something besidesthe $_ variable - namely, some value named on
the left side of the operator. It looks like this:

$a = "hello world";
$a =~ /"hel; # true
$a =~ /(.)\I/; # also true (matches the double I|)

if ($a =~ /(.)\I/) { # true, so yes...
sonme stuff
}

The target of the =~ operator can be any expression that yields some scalar string value. For example,
<STDI N> yields a scalar string value when used in a scalar context, so we can combine this with the =~
operator and aregular expression match operator to get a compact check for particular input, asin:

print "any |ast request? ";

I f (<STDIN> =~ /7[yY]/) { # does the input begin with a y?
print "And just what m ght that request be? ";
<STDI N>; # discard a |ine of standard i nput
print "Sorry, I'munable to do that.\n";

}

In this case, <STDI N> yields the next line from standard input, which is then immediately used as the
string to match against the pattern *[yY] . Note that you never stored the input into avariable, so if you
wanted to match the input against another pattern, or possibly echo the data out in an error message,
you'd be out of luck. But this form frequently comes in handy.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

7.4.2 Ignoring Case

In the previous example, we used [yY] to match either alower- or uppercasey. For very short strings,
suchasy orf r ed, thisiseasy enough, asin[f F] [oQ [0oJ . But what if the string you want to match
istheword "pr ocedur e" in either lower- or uppercase?

In some versions of grep, a- i flagindicates "ignore case." Perl aso has such an option. Y ou indicate
the ignore-case option by appending alowercasei totheclosing slash, asin/ sonepattern/i . This
saysthat the letters of the pattern will match lettersin the string in either case. For example, to match the
word pr ocedur e in either case at the beginning of theline, use/ ~pr ocedure/i .

Now our previous example lookslike this:

print "any |ast request? ";

I f (<STDIN> =~ /~y/i) { # does the input begin with a y?
yes! deal with it

}
7.4.3 Using a Different Delimiter

If you are looking for a string with aregular expression that contains slash characters (/), you must
precede each slash with abackslash (\). For example, you can look for a string that begins with
/ usr/ et c likethis:

$path = <STDIN>; # read a pathnanme (from"find" perhaps?)
if ($path =~ /™"\/Jusr\/etc/) {

begins with /usr/etc...
}

Asyou can see, the backslash-slash combination makesit ook like there are little valleys between the
text pieces. Doing thisfor alot of slash characters can get cumbersome, so Perl allows you to specify a
different delimiter character. Simply precede any nonal phanumeric, nonwhitespace character[5] (your
selected delimiter) with an m then list your pattern followed by another identical delimiter character, as
in:

["\ /usr\/etc/ # using standard slash delimter
ma/ usr/etc@ # using @for a delimter
m#N/ usr/ et c# # using # for a delimter (ny favorite)

[5] If the delimiter happens to be the left character of aleft-right pair (parentheses, braces,
angle bracket, or square bracket), the closing delimiter is the corresponding right of the
same pair. But otherwise, the characters are the same for begin and end.

Y ou can even use dashes again if you want, asinmi f r ed/ . So the common regular-expression
matching operator is really the moperator; however, the mis optional if you choose slash for adelimiter.

7.4.4 Using Variable Interpolation

A regular expression is variable interpolated before it is considered for other specia characters.
Therefore, you can construct aregular expression from computed strings rather than just literals. For
example:
$what = "bird";
$sentence = "Every good bird does fly.";
i f ($sentence =~ /\b$what\b/) {
print "The sentence contains the word $what!\n";
}

Here we have used a variable reference to effectively construct the regular expression operator
/\ bbi rd\ b/.

Here's a dlightly more complicated example:

$sentence = "Every good bird does fly.";
print "Wat should |I |ook for? ";
$what = <STDI N>;

chonmp($what) ;

if ($sentence =~ /$what/) { # found it!
print "I saw $what in $sentence.\n";

} else {

print "nope... didn't find it.\n";
}

If you enter bi r d, itisfound. If you enter scr eam itisn't. If you enter [bw] i r d, that's also found,
showing that the regular expression pattern-matching characters are indeed still significant.

How would you make them insignificant? Y ou'd have to arrange for the non-al phanumeric characters to
be preceded by a backslash, which would then turn them into literal matches. That sounds hard, unless
you have the\ Qquoting escape at your disposal:
$what = "[box]";
foreach (gw(in[box] out[box] white[sox])) {

if (/\Q@what\E/) {

print "$ matched!\n";
}

}

Here, the\ @bwhat \ E construct turnsinto\ [box\] , making the match look for aliteral pair of
enclosing brackets, instead of treating the whole thing as a character class.

7.4.5 Special Read-Only Variables

After asuccessful pattern match, the variables $1, $2, $3, and so on are set to the same valuesas\ 1,
\ 2,\ 3, and so on. You can use thisto look at a piece of the match in later code. For example:

$ ="thisis atest";

[(\ws)\W-(\w+)/; # match first two words
$1 is now "this" and $2 is now "is"

Y ou can also gain access to the same values ($1, $2, $3, and so on) by placing amatch in alist context.
Theresultisalist of valuesfrom $1 up to the number of memorized things, but only if the regular
expression matches. (Otherwise the variables are undefined.) Taking that last example in another way:

$ ="this is a test";
($first, $second) = /(\w)\W(\w+)/; # match first two words
$first is now "this" and $second is now "is"

Other predefined read-only variables include $&, which isthe part of the string that matched the regular
expression; $, which isthe part of the string before the part that matched; and $' , which is the part of
the string after the part that matched. For example:
$ ="this is a sanple string";
/sa.*lel; # matches "sanple" within the string

$ is now"thisis a"

$& i s now "sanpl e"

$ is now" string"

Because these variables are set on each successful match, you should save the values elsewhere if you
need them later in the program.[6]

[6] See O'Rellly's Mastering Regular Expressions for performance ramifications of using
these variables.

Previous: 7.3 Learning Next: 7.5
Patterns Perl Substitutions
7.3 Patterns Book 7.5 Substitutions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.4 More on the Chapter 7 . Next: 7.6 The split and join
Matching Operator Regular Expressions Functions

7.5 Substitutions

We've already talked about the simplest form of the substitution operator:
s/ ol d-regex/ new stri ng/.It'stimefor afew variations of this operator.

If you want the replacement to operate on all possible matches instead of just the first match, append ag
to the substitution, asin:

$ = "foot fool buffoon";
s/foo/bar/g; # $_ is now "bart barl bufbarn”

The replacement string is variable interpolated, allowing you to specify the replacement string at
run-time;

$ = "hello, world";
$new = "goodbye";
s/ hell o/ $new ; # replaces hello wth goodbye

Pattern charactersin the regular expression allow patterns to be matched, rather than just fixed
characters:

$ ="thisis atest";

s/ (\w+)/<$1>/g; # $_ is now "<this> <is> <a> <test>"

Recall that $1 is set to the data within the first parenthesized pattern match.

Ani suffix (either before or after the g if present) causes the regular expression in the substitute operator
to ignore case, just like the same option on the match operator described earlier.

As with the match operator, an alternate delimiter can be selected if the slash is inconvenient. Just use the
same character three times:[7]

s#f red#bar ney#;, # replace fred with barney, like s/fred/barney/
[7] Or two matching pairsif aleft-right pair character is used.

Also as with the match operator, you can specify an alternate target with the =~ operator. In this case, the
selected target must be something you can assign a scalar value to, such as a scalar variable or an element
of an array. Here's an example:

$which = "this is a test";
$whi ch =~ s/test/quiz/; # $which is now "this is a quiz"

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

$sonepl ace[$here] =~ s/left/right/; # change an array el enent

$d{"t"} =~ s/™x /; # prepend "x " to hash el enent
Previous: 7.4 More on the Learning Next: 7.6 The split and join
Matching Operator Perl Functions
7.4 More on the Matching Book 7.6 The split and join
Operator Index Functions

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.5 Chapter 7 . Next: 7.7
Substitutions Regular Expressions Exercises

7.6 The split and join Functions

Regular expressions can be used to break a string into fields. Thespl i t function doesthis, and the
j oi n function glues the pieces back together.

7.6.1 The split Function

Thespl i t function takes aregular expression and a string, and looks for all occurrences of the regular
expression within that string. The parts of the string that don't match the regular expression are returned
In sequence as alist of values. For example, here's something to parse colon-separated fields, such asin
UNIX /etc/passwd files:

$line = "nmerlyn::118: 10: Randal : / home/ mer | yn: /usr/ bi n/ perl™;
@ields = split(/:/,%line); # split $line, using : as delimter
now @ields is ("nmerlyn","", "118"," 10", "Randal ",

“/home/ merlyn","/usr/bin/perl")

Note how the empty second field became an empty string. If you don't want this, match all of the colons

in one fell swoop:
@ields = split(/:+/, $line);

This matches one or more adjacent colons together, so there is no empty second field.

One common string to splitisthe $_ variable, and that turns out to be the default:
$ = "sone string";
@wrds = split(/ /); # sane as @wrds = split(/ /, $);

For this split, consecutive spaces in the string to be split will cause null fields (empty strings) in the
result. A better pattern would be/ +/ , orideally / \ s+/ , which matches one or more whitespace
characters together. In fact, this pattern is the default pattern,[8] so if you're splitting the $_ variable on

whitespace, you can use all the defaults and merely say:

[8] Actually, the" " string is the default pattern, and this will cause leading whitespace to be
ignored, but that's still close enough for this discussion.

@wrds = split; # sane as @wrds = split(/\s+/, $);

Empty trailing fields do not normally become part of thelist. Thisis not generally a concern. A solution

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

like this,

$line = "nerlyn::118: 10: Randal : / hone/ merlyn:";
($nane, $passwor d, $ui d, $gi d, $gcos, $hone, $shel |) =
split(/:/,%line); # split $line, using : as delimter

simply gives$shel | anull (undef) valueif the lineisn't long enough or if it contains empty valuesin
the last field. (Extrafields are silently ignored, because list assignment works that way.)

7.6.2 The join Function

Thej oi n function takes alist of values and glues them together with a glue string between each list
element. It looks like this:

$bigstring = join($glue, @ist);

For example, to rebuild the password line, try something like:

$outline = join(":", @ields);

Note that the glue string is not aregular expression - just an ordinary string of zero or more characters.
If you need to get glue ahead of every item instead of just between items, a simple cheat suffices:
$result = join ("+", "", @ields);

Here, theextra" " istreated as an empty element, to be glued together with the first data el ement of
@i el ds. Thisresultsin glue ahead of every element. Similarly, you can get trailing glue with an
empty element at the end of thelist, like so:

$output = join ("\n", @ata, "");

Previous: 7.5 Learning Next: 7.7
Substitutions Perl Exercises
7.5 Substitutions Book 7.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.6 The split and Chapter 7 . Next: 8.
join Functions Regular Expressions Functions

7.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Construct aregular expression that matches:

. a least one a followed by any number of b's

. any number of backslashes followed by any number of asterisks (any number might be zero)
. three consecutive copies of whatever is contained in $what ever

. any five characters, including newline

. the same word written two or more timesin arow (with possibly varying intervening
whitespace), where "word" is defined as a nonempty sequence of nonwhitespace characters

. Write a program that accepts alist of wordson STDI N and looks for aline containing all
fivevowels(a, e, i, 0, and u). Runthisprogramon/ usr/ di ct / wor ds[9] and see what

shows up. In other words, enter:
$ nmyprogram </ usr/dict/words
(This presumes you name your program nmypr ogr am)

[9] Your system's dictionary may be somewhere other than /usr/dict/words;;
check the spell (1) manpage.

. Modify the program so that the five vowels have to be in order and intervening letters don't
matter.

. Modify the program so that all vowels must be in an increasing order, so all five vowels
have to be present, and no "€" can occur before an "a', no "i" can occur before an "€", and so
on.

3. Write aprogram that looks through /etc/passwd [10] (on STDI N), printing the login name and real

name of each user. (Hint: usespl i t to break theline up into fields, thens/ / / to get rid of the
parts of thecomment field that are after the first comma.)

[10] If using NIS, your system may have little datain /etc/passwd. Seeif ypcat
passwd gives more information.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

4. Write a program that looks through /etc/passwd (on STDI N) for two users with the same first
name, and prints those names. (Hint: after extracting the first name, create a hash with the name
for a key and the number of times it was seen as the value. When the last line of STDI N has been
read, look through the associative array for counts of greater than one.)

5. Repeat the last exercise, but report the login names of all users with the same first name. (Hint:

instead of storing a count, store alist of login names separated by spaces. When finished, look
through the values for ones that contain a space.)

Previous: 7.6 The split and Learning Next: 8.
join Functions Perl Functions
7.6 The split and join Book 8. Functions
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 7.7 Chapter 8 Next: 8.2 Invoking a User
Exercises Function

8. Functions

Contents:
Defining a User Function

Invoking a User Function

Return Values

Arguments

Private Variables in Functions
Semiprivate Variables Using local
File-Level my() Variables
Exercises

We've already seen and used built-in functions, such aschonp, pri nt, and so on. Now, let'stake a
look at functions that you define for yourself.

8.1 Defining a User Function

A user function, more commonly called a subroutine or just a sub, is defined in your Perl program using
aconstruct like this:

sub subnane {
statenent _1;
statenent 2,
st at enent _3;

}

The subname is the name of the subroutine, which is any name like the names we've had for scalar
variables, arrays, and hashes. Once again, these come from a different namespace, so you can have a
scalar variable $f r ed, anarray @ r ed, ahash % r ed, and now a subroutinef r ed.[1]

[1] Technically, the subroutine's nameis &f r ed, but you seldom need to call it that.

The block of statements following the subroutine name becomes the definition of the subroutine. When
the subroutine isinvoked (described shortly), the block of statements that makes up the subroutine is
executed, and any return value (described later) is returned to the caller.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Here, for example, is a subroutine that displays that famous phrase:

sub say_hello {
print "hello, world!\n";
}

Subroutine definitions can be anywhere in your program text (they are skipped on execution), but we like
to put them at the end of the file, so that the main part of the program appears at the beginning of thefile.
(If you like to think in Pascal terms, you can put your subroutines at the beginning and your executable
statements at the end, instead. It's up to you.)

Subroutine definitions are global;[2] there are no local subroutines. If you have two subroutine
definitions with the same name, the later one overwrites the earlier one without warning.[3]

[2] Global to the current package, actually, but since this book doesn't really deal with
separate packages, you may think of subroutine definitions as global to the whole program.

[3] Unless you are running with the - w switch.

Within the subroutine body, you may access or give values to variables that are shared with the rest of
the program (aglobal variable). In fact, by default, any variable reference within a subroutine body refers
to aglobal variable. We'll tell you about the exceptions in the upcoming section "Private Variablesin

Functions." In the following example,

sub say what {
print "hello, $what\n";

}
$what refersto the globa $what , shared with the rest of the program.
Previous: 7.7 Learning Next: 8.2 Invoking a User
Exercises Perl Function
7.7 Exercises Book 8.2 Invoking a User Function
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 8.1 Defining a User Ch t.er 8 Next: 8.3
Function Functions Return Values

8.2 Invoking a User Function

Y ou invoke a subroutine from within any expression by following the subroutine name with parentheses,
asin:

say_hello(); # a sinple expression

$a = 3 + say hello(); # part of a |arger expression

for ($x = start _value(); $x < end value(); $x += increnent()) {

} # invoke three subroutines to define val ues

A subroutine can invoke another subroutine, and that subroutine can in turn invoke another subroutine,
and so on, until all available memory isfilled with return addresses and partially computed expressions.
(No mere 8 or 32 levels could satisfy areal programmer.)

Previous: 8.1 Defining a User Learning Next: 8.3
Function Perl Return Values
8.1 Defining a User Function Book 8.3 Return Vaues
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.2 Invoking a User Ch t‘er 8 Next: 8.4
Function Functions Arguments

8.3 Return Values

A subroutine is always part of some expression. The value of the subroutine invocation is called the
return value. The return value of a subroutine is the value of the return statement or of the last expression
evaluated in the subroutine.

For example, let's define this subroutine:

sub sumof _a and_b {
return $a + $b;
}

The last expression evaluated in the body of this subroutine (in fact, the only expression evaluated) is the
sum of $a and $b, so the sum of $a and $b will be the return value. Here's that in action:

$a = 3; $b = 4;
$c = sumof _a and b(); # $c gets 7
$d = 3 * sumof_a _and b(); # $d gets 21

A subroutine can also return alist of values when evaluated in alist context. Consider this subroutine and
Invocation:
sub list _of _a and b {

return($a, $b);

}
$a = 5; $b = 6;
@ = list_of_a_and_b(); # @ gets (5, 6)

The last expression evaluated really means the last expression evaluated, rather than the last expression
defined in the body of the subroutine. For example, this subroutine returns $a if $a > 0; otherwise it
returns $b:

sub gimme_a or_b {
if ($a > 0) {
print "choosing a ($a)\n";
returns $a;
} else {
print "choosing b ($b)\n";
returns $b;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

}

These are dl rather trivial examples. It gets better when we can pass values that are different for each
invocation into a subroutine instead of relying on global variables. In fact, that's coming right up.

Previous: 8.2 Invoking a User Learning Next: 8.4
Function Perl Arguments
8.2 Invoking a User Function Book 8.4 Arguments
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.3 Ch t‘er 8 Next: 8.5 Private Variables in
Return Values Functions Functions

8.4 Arguments

Although subroutines that have one specific action are useful, awhole new level of usefulness becomes
available when you can pass arguments to a subroutine. In Perl, the subroutine invocation is followed by
alist within parentheses, causing the list to be automatically assigned to a special variable named @ for
the duration of the subroutine. The subroutine can access this variable to determine the number of
arguments and the value of those arguments. For example:

sub say hello to {
print "hello, $ [0]!'\n"; # first paraneter is target
}

Here, we see areferenceto $_[O] , whichisthefirst element of the @ array. Special note: as similar as
they look, the$ [0] value (thefirst element of the @ array) has nothing whatsoever to do withthe $_
variable (ascalar variable of its own). Don't confuse them! From the code, it appearsto say hello to
whomever we pass as the first parameter. That means we can invoke it like this:

say hello _to("world"); # gives hello, world!
$x = "sonebody";
say hell o to($x); # gives hello, sonebody!

say hello to("me")+ say hello to("you"); # and ne and you

Note that in the last line, the return values weren't really used. But in evaluating the sum, Perl hasto
evaluate all of its parts, so the subroutine was invoked twice.

Here's an example using more than one parameter:

sub say {
print "$[0], $ [1]!\n";
}

say("hello","worl d"); # hello world, once again
say("goodbye","cruel world"); # silent novie |anent

Excess parameters are ignored: if you never look at $ [3] , Perl doesn't care. And insufficient
parameters are also ignored; you simply get undef if you look beyond the end of the @ array, aswith
any other array.

The @ variableis private to the subrouting; if there'sagloba valuefor @ , it is saved away before the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

subroutine isinvoked and restored to its previous value upon return from the subroutine. This a'so means
that a subroutine can pass arguments to another subroutine without fear of losing itsown @ _variable; the
nested subroutine invocation getsitsown @_ in the same way.

Let'srevigit that "add aand b" routine from the previous section. Here's a subroutine that adds any two
values, specifically, the two values passed to the subroutine as parameters:

sub add_two {
return $ [0] + $ [1];
}

print add two(3,4); # prints 7
$c = add_two(5,6); # $c gets 11

Now let's generalize this subroutine. What if we had 3, 4, or 100 values to add together? We could do it
with aloop, like so:

sub add {

$sum = 0; # initialize the sum

foreach $_ (@) {

$sum += $_; # add each el enent

}
return $sum # | ast expression evaluated: sumof all elenents
}
$a = add(4,5,6); # adds 4+5+6 = 15, and assigns to $a
print add(1,2,3,4,5); # prints 15
print add(l..5); # also prints 15, because 1..5 is expanded

What if we had a variable named $sumwhen we called add? We just clobbered it. In the next section,
we see how to avoid this.

Previous: 8.3 Learning Next: 8.5 Private Variables in
Return Values Perl Functions
8.3 Return Values Book 8.5 Private Variablesin
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.4 Chapter 8 Next: 8.6 Semiprivate
Arguments Functions Variables Using local

8.5 Private Variables in Functions

We've already talked about the @ variable and how alocal copy gets created for each subroutine invoked with
parameters. Y ou can create your own scalar, array, and hash variables that work the same way. Y ou do this with
the ny operator, which takes alist of variable names and creates local versions of them (or instantiations, if you
like bigger words). Here's that add function again, thistime using ny:

sub add {

ny ($sum; # make $sum a | ocal variable

$sum = O; # initialize the sum

foreach $_ (@) {

$sum += $_; # add each el enent

}

return $sum # | ast expression evaluated: sumof all elenents
}

When the first body statement is executed, any current value of the global variable $sumis saved away, and a
brand new variable named $sumis created (with the value undef). When the subroutine exits, Perl discards the
local variable and restores the previous (global) value. Thisworks even if the $sumvariableis currently alocal
variable from another subroutine (a subroutine that invokes this one, or one that invokes one that invokes this
one, and so on). Variables can have many nested local versions, although you can access only one at atime.

Here'saway to create alist of all the elements of an array greater than 100:
sub bi gger than 100 {

m (@esult); # tenporary for holding the return val ue
foreach $_ (@) { # step through the arg |i st
if ($_ > 100) { #is it eligible?
push(@esult,$); # add it
}
}
return @esult; # return the final |ist

}

What if we wanted all elements greater than 50 rather than greater than 100? We'd have to edit the program,
changing the 100'sto 50's. But what if we needed both? Well, we can replace the 50 or 100 with avariable
reference instead. This makesit look like:

sub bi gger _than {
my($n, @al ues) ; # create sone |local variables
($n, @al ues) = @; # split args into limt and val ues
ny(@esult); # tenmporary for holding the return val ue

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

foreach $_ (@al ues) { # step through the arg |i st
if ($_ > $n) { #is it eligible?
push(@esult,$_); # add it
}
}

return @esul t; # return the final |ist

}

some invocations:
@ew = bi gger _than(100, @i st); # @ew gets all @ist > 100
@his = bigger_than(5,1,5,15,30); # @his gets (15, 30)

Notice that this time we used two additional local variables to give namesto arguments. Thisisfairly commonin
practice; it's much easier to talk about $n and @ al ues thantotalk about $ [0] and @[1. . $#] , and safer,
too.

Theresult of my isan assignable list, meaning that it can be used on the |eft side of an array assignment operator.
Thislist can be given initial values for each of the newly created variables. (If you don't give valuesto thelist,
the new variables start with avalue of undef , just like any other new variable.) This means we can combine the
first two statements of this subroutine, replacing:

ny($n, @al ues);

($n, @alues) = @; # split args into limt and val ues

with:

my($n, @al ues)= @;

Thisis, in fact, avery common Perl-ish thing to do. Local nonargument variables can be given literal valuesin
the same way, such as.

my($sum) = 0; # initialize local variable

Be warned that despite its appearances as a declaration, ny is really an executable operator. Good Perl hacking

strategy suggests that you bunch all your nmy operators at the beginning of the subroutine definition, before you
get into the meat of the routine.

Previous: 8.4 Learning Next: 8.6 Semiprivate
Arguments Perl Variables Using local
8.4 Arguments Book 8.6 Semiprivate Variables

Index Using local

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.5 Private Ch t‘er 8 Next: 8.7 File-Level my()
Variables in Functions Functions Variables

8.6 Semiprivate Variables Using local

Perl gives you a second way to create "private" variables, using thel ocal function. It isimportant to
understand the differences between ny and | ocal . For example:

$value = "original";

tell me();
spoof () ;
tell me();

sub spoof {
| ocal ($value) = "tenporary”;
tell me();

}

sub tellnme {
print "Current value is $val ue\n";
}

This prints out:

Current value is original
Current value is tenporary
Current value is original

If my had been used instead of | ocal , the private reading of $val ue would be available only within
the spoof () subroutine. But with | ocal , asthe output shows, the private value is not quite so private;
it is also available within any subroutines called from spoof () . The general ruleisthat | ocal
variables are visible to functions called from within the block in which those variables are declared.

Whereas nmy can be used only to declare ssmple scalar, array, or hash variables with al phanumeric names,
| ocal suffersno such restrictions. Also, Perl's built-in variables, suchas$_, $1, and @GARGV, cannot be
declared with my, but work finewith | ocal . Because $_is so often used throughout most Perl
programs, it's probably prudent to place a

| ocal $_;

at the top of any function that uses$__ for its own purposes. This assures that the previous value will be

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

preserved and automatically restored when the function exits.

In your more advanced programming you may eventually need to know that | ocal variablesareredly
global variablesin disguise. That is, the value of the global variable is saved and temporarily replaced
with the locally declared value.

By and large, you should prefer to use nmy over | ocal becauseit's faster and safer.

Previous: 8.5 Private Learning Next: 8.7 File-Level my()
Variables in Functions Perl Variables
8.5 Private Variablesin Book 8.7 File-Level my() Variables
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.6 Semiprivate C_haw Next: 8.8
Variables Using local Functions Exercises

8.7 File-Level my() Variables

Theny () operator can aso be used at the outermost level of your program, outside of any subroutines
or blocks. While thisisn't really a*"local" variable in the sense defined above, it's actually rather useful,
especially when used in conjunction with a Perl pragma:[4]

use strict;

[4] A pragmaisacompiler directive. Other directives include those to set up integer
arithmetic, overload numeric operators, or request more verbose warnings and error
messages. These are documented in Chapter 7 of Programming Perl and the perlmodlib (1)

manpage.

If you place this pragma at the beginning of your file, you will no longer be able to use variables (scalars,
arrays, and hashes) until you have first "declared" them. And you declare them with ny () , like so:

use strict;
ny $a; # starts as undef
ny @ = gwWmfred barney betty); # give initial value

push @, gww | ma); # cannot | eave her out
@ = sort @; # WLL NOT COWPI LE

That last statement will be flagged at compile time as an error, because it referred to a variable that had
not previously been declared with my (that is, @). In other words, your program won't even start running
unless every single variable being used has been declared.

The advantages of forcing variable declarations are twofold:

1. Your programswill run dslightly faster (variables created with ny are accessed dlightly faster than
ordinary variableg[5]).

[5] Inthis case, "ordinary variable" isreally a package variable (so $x isreadly
$mai n: : x). Variables created with my () are not found in any package.

2. You'll catch mistakesin typing much faster, because you'll no longer be able to accidentally
reference a nonexisting variable named $f r eed when you wanted $f r ed.

Because of this, many Perl programmers automatically begin every new Perl program with use

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

strict.

Previous: 8.6 Semiprivate Learning Next: 8.8
Variables Using local Perl Exercises
8.6 Semiprivate Variables Book 8.8 Exercises
Using local Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 8.7 File-Level my() Chapter 8 Next: 9. Miscellaneous
Variables Functions Control Structures

8.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write asubroutine to take a numeric value from 1 to 9 as an argument and return the English name
(suchasone, t wo, or ni ne). If the value is out of range, return the original number as the name
instead. Test it with some input data; you'll probably have to write some sort of codeto call the
subroutine. (Hint: the subroutine should not perform any 1/0.)

2. Taking the subroutine from the previous exercise, write a program to take two numbers and add

them together, displaying the result as Two pl us t wo equal s f our . (Don't forget to capitalize
theinitial word!)

3. Extend the subroutine to return negat i ve ni ne throughnegati ve one andzer o. Tryitina

program.
Previous: 8.7 File-Level my() Learning Next: 9. Miscellaneous
Variables Perl Control Structures
8.7 File-Level my() Variables Book 9. Miscellaneous Control

Index Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 8.8 Chapter 9 [Next: 9.2 The next Statement]
Exercises

9. Miscellaneous Control Structures

Contents:
The last Statement

The next Statement

Theredo Statement

L abeled Blocks

Expression Modifiers

& & and || as Control Structures
Exercises

9.1 The last Statement

In some of the previous exercises you may have thought, "If | just had a C br eak statement here, 1'd be
done." Even if you didn't think that, let me tell you about Perl's equivalent for getting out of aloop early:
thel ast statement.

Thel ast statement breaks out of the innermost enclosing loop block,[1] causing execution to continue
with the statement immediately following the block. For example:

whi l e (sonet hing) {
sonet hi ng;

sonet hi ng;

sonet hi ng;

I f (sonecondition) {
sonet hi ngor ot her;
sonet hi ngor ot her;
| ast; # break out of the while |oop

}

nor et hi ngs;

nor et hi ngs;

}

| ast conmes here

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

[1] Notethat thedo {} whi | e/ unti | construct does not count as aloop for purposes of
next,| ast,andr edo.

If somecondi ti on istrue the sonet hi ngor ot her 'sare executed, and then | ast forcesthe
whi | e loop to terminate.

Thel ast statement counts only looping blocks, not other blocks that are needed to make up some
syntactic construct. This means that the blocks for thei f and el se statements, as well as the ones for
do{} whil e/ until,donotcount; only the blocksthat make up thef or , f or each,whi | e,

unti |, and "naked" blocks count. (A naked block isablock that is not part of alarger construct such as
aloop, subroutine, or ani f /t hen/el se statement.)

Suppose we wanted to see whether a mail message that had been saved in afile was from merlyn. Such a
message might look like this:

From nerlyn@tonehenge.com (Randal L. Schwart z)

To: stevet @ra.com

Dat e: 01-DEC-94 08:16: 24 PM PDT -0700

Subj ect: A sanple mail nessage

Here's the body of the mail nessage. And
here is sone nore.

We'd have to look through the message for aline that begins with Fr om and then notice whether the
line also contains the login name, ner | yn.

We could do it like this:
while (<STDIN>) { # read the input |ines
if (/"From /) { # does it begin with From? If yes...
I f (/merlyn/) { #it's fromnerlyn!
print "Email from Randal! It's about tine!\n";
}

| ast; # no need to keep looking for From, so exit
} #end "if from"
if (/~"$/) { # blank |ine?

|ast; # if so, don't check any nore |ines
}

} # end while

Once the line starting with Fr om isfound, we exit the main loop because we want to see only the first
From line. Also because amail message header ends at the first blank line, we can exit the main loop
there aswell.

Previous: 8.8 Learning | Next: 9.2 The next Statement]|
Exercises Perl
8.8 Exercises Book 9.2 The next Statement

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 9.1 The last Chapter 9 [Next: 9.3 The redo Statement]
Statement Miscellaneous Contr ol
Structures

9.2 The next Statement

Likel ast , next altersthe ordinary sequential flow of execution. However, next causes execution to
skip past the rest of the innermost enclosing looping block without terminating the block.[2] It isused

like this:

[2] If there'sacont i nue block for the loop, which we haven't discussed, next goesto the
beginning of the cont i nue block rather than the end of the block. Pretty close.

whil e (sonething) {
firstpart;
firstpart;
firstpart;

i f (sonecondition) {
sonmepart;
sonmepart;
next ;

}

ot herpart;

ot her part;

next cones here

}

If somecondi ti onistrue thensonmepart isexecuted, and ot her part is skipped around.

Once again, the block of ani f statement doesn't count as alooping block.

Previous: 9.1 The last Learning | Next: 9.3 The redo Statement|
Statement Perl
9.1 The last Statement Book 9.3 The redo Statement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 9.2 The next Chapter 9 [Next: 9.4 Labeled Blocks]
Statement M iscellaneous Control
Structures

9.3 The redo Statement

The third way you can jump around in alooping block iswith r edo. This construct causes a jump to the

beginning of the current block (without reevaluating the control expression), like so:

whil e (sonecondition) {

redo cones here

sonet hi ng;

sonet hi ng;
sonet hi ng;

I f (sonmecondition) {
sonest uf f;
sonest uf f;
redo;

}

nor et hi ng;

nor et hi ng;

nor et hi ng;

}

Onceagain, thei f block doesn't count: just the looping blocks.

Withr edo and | ast and a naked block, you can make an infinite loop that exits out of the middle, like

S0:

{
startstuff;
startstuff;
startstuff;
I f (sonmecondition) {

| ast ;

}

| at erstuff;
| at erstuff;
| at er st uff;
redo;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Thiswould be appropriate for awhi | e-like loop that needed to have some part of the loop executed as
initialization before the first test. (In the upcoming section "Expression Modifiers," we'll show you how

towritethat i f statement with fewer punctuation characters.)

Previous: 9.2 The next Learning | Next: 9.4 Labeled Blocks]
Statement Perl

9.2 The next Statement Book 9.4 Labeled Blocks
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 9.3 The redo . Chapter 9 Next: 9.5 Expression
Statement Miscellaneous Contr ol Modifiers
Structures

9.4 Labeled Blocks

What if you want to jump out of the block that contains the innermost block, or to put it another way, exit
from two nested blocks at once? In C, you'd resort to that much maligned got o to get you out. No such
kludgeisrequired in Perl; you can usel ast , next , and r edo on any enclosing block by giving the
block a name with alabel.

A label isyet another type of name from yet another namespace following the same rules as scalars,
arrays, hashes, and subroutines. Aswe'll see, however, alabel doesn't have a special prefix punctuation
character (like $ for scalars, & for subroutines, and so on), so alabel named pr i nt conflicts with the
reserved word pr i nt and would not be allowed. For this reason, you should choose labels that consist
entirely of uppercase letters and digits, which will never be chosen for areserved word in the future.
Besides, using all uppercase stands out better within the text of a mostly lowercase program.

Once you've chosen your label, place it immediately in front of the statement containing the block
followed by acolon, like this;

SOVELABEL: while (condition) {
st at enent ;
st at enent;
st at enment ;
I f (nuthercondition) {
| ast SOVELABEL;
}

}

We added SOVELABEL as aparameter to | ast . Thistells Perl to exit the block named SOVELABEL,
rather than just the innermost block. In this case, we don't have anything but the innermost block. But
suppose we had nested loops:
QUTER:. for ($i = 1; $i <= 10; $i++) {
INNER: for ($ = 1; $ <= 10; $j++) {
if ($i * $ == 63) {
print "$i tinmes $ is 63'\n";
| ast QUTER

}
if (3 >=8i) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

next OUTER

}

This set of statementstries all successive values of two small numbers multiplied together until it finds a
pair whose product is 63 (7 and 9). Once the pair isfound, there's no point in testing other numbers, so
thefirsti f statement exitsboth f or loopsusing | ast with alabel. Thesecondi f ensuresthat the
bigger of the two numbers will always be the first one by skipping to the next iteration of the outer loop
as soon as the condition would no longer hold. This means that the numbers will be tested with ($i , $j)
being (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), and so on.

Even if the innermost block islabeled, thel ast , next , and r edo statements without the optional
parameter (the label) still operate with respect to that innermost block. Also, you can't use labelsto jump
into ablock - just out of ablock. Thel ast , next , or r edo hasto be within the block.

Previous: 9.3 The redo Learning Next: 9.5 Expression
Statement Perl Modifiers
9.3 The redo Statement Book 9.5 Expression Modifiers
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: 9.4 Labeled Blocks]| Chapter 9 Next: 9.6 && and || as Control
M iscellaneous Control Structures
Structures

9.5 Expression Modifiers

AsYet Another Way to indicate "if this, then that," Perl allows you to tag an if modifier onto an
expression that is a standal one statement, like this:

sonme_expression if control _expression;

Inthiscase, cont r ol _expr essi on isevaluated first for itstruth value (using the same rules as
aways), and if true, sone_expr essi on isevauated next. Thisisroughly equivalent to

I f (control _expression) {
some_expressi on;
}

except that you don't need the extra punctuation, the statement reads backwards, and the expression must
be a simple expression (not a block of statements). Many times, however, this inverted description turns
out to be the most natural way to state the problem. For example, here's how you can exit from aloop
when a certain condition arises:
LINE: while (<STDIN>) {

last LINE if /~From /;
}

See how much easier that isto write? And you can even read it in anormal English way: "last lineif it
begins with From."

Other parallel formsinclude the following:

exp2 unl ess expl; # like: unless (expl) { exp2; }
exp2 while expl;, # like: while (expl) { exp2; }
exp2 until expl; # like: until (expl) { exp2; }

All of these forms evaluate exp1l first, and based on that, do or don't do something with exp2.

For example, here's how to find the first power of two greater than a given number:

chomp($n = <STDI N>) ;
$i = 1; # initial guess
$i *= 2 until $i > $n; # iterate until we find it

Once again, we gain some clarity and reduce the clutter.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

These forms don't nest: you can't say exp3 whi | e exp2 i f expl. Thisisbecausetheformexp2 i f
expl isno longer an expression, but a full-blown statement, and you can't tack one of these modifiers on
after a statement.

| Previous: 9.4 Labeled Blocks| Learning Next: 9.6 && and || as Control
Perl Structures

9.4 Labeled Blocks Book 9.6 && and || as Control
Index Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 9.5 Expression . Chapter 9 Next: 9.7
Modifiers Miscellaneous Control Exercises
Structures

9.6 && and || as Control Structures

These look like punctuation characters or parts of expressions. Can they really be considered control
structures? Well, in Perl-think, almost anything is possible, so let's see what we're talking about here.

Often, you run across "if this, then that." We've previously seen these two forms:
if (this) { that; } # one way

that if this; # anot her way

Here'sathird (and believe it or not, there are still others):

this &k that;

Why does this work? Isn't that the logical-and operator? Check out what happenswhent hi s takes on
each value of true or false:

« Ift hi s istrue, then the value of the entire expression is still not known, because it depends on the
valueof t hat . Sot hat hasto be evaluated.

o Ifthi s isfalse there'sno pointinlooking at t hat , because the value of the whole expression
has to be false. Since there's no point to evaluating t hat , we might as well skip it.

And in fact, thisiswhat Perl does. Perl evaluatest hat only whent hi s istrue, making it equivalent to
the previous two forms.

Likewise, the logical-or works like the unl ess statement (or unl ess modifier). So you can replace:
unless (this) { that; }

with:
this || that;

If you're familiar with using these operatorsin shell programming to control conditional execution
commands, you'll see that they work similarly in Perl.

Which one should you use? It depends on your mood, sometimes, or how big each of the expression parts
are, or whether you need to parenthesize the expressions because of precedence conflicts. Look at other
peopl€e's programs, and see what they do. You'll probably see alittle of each. Larry suggests that you put
the most important part of the expression first, so that it stands out.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: 9.5 Expression Learning Next: 9.7

Modifiers Perl Exercises
9.5 Expression Modifiers Book 9.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 9.6 && and || as ~ Chapter 9 Next: 10. Filehandles and File
Control Structures Miscellaneous Control Tests
Structures

9.7 Exercises

See Appendix A, Exercise Answers for the answers.

1. Extend the problem from the last chapter to repeat the operation until the word end is entered for
one of the values. (Hint: use an infinite loop, and then do al ast if either vaueisend.)

2. Rewrite the exercise from Chapter 4, Control Structures, summing numbers up to 999, using a

loop that exits from the middle. (Hint: use a naked block with ar edo at the end to get an infinite
loop and al ast inthe middle based on a condition.)

Previous: 9.6 && and || as Learning Next: 10. Filehandles and File
Control Structures Perl Tests
9.6 && and || as Control Book 10. Filehandles and File Tests
Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 9.7 Chapter 10 Next: 10.2 Opening and
Exercises Closing a Filehandle

10. Filehandles and File Tests

Contents:
What Is aFilehandle?

Opening and Closing a Filehandle
A Slight Diversion: die

Using Filehandles

The-x File Tests

The stat and Istat Functions
Exercises

10.1 What Is a Filehandle?

A filehandle in a Perl program is the name for an 1/O connection between your Perl process and the
outside world. We've already seen and used filehandles implicitly: STDI Nis afilehandle, naming the
connection between the Perl process and the UNIX standard input. Likewise, Perl provides STDOUT (for
standard output) and STDERR (for standard error output). These names are the same as those used by the
C and C++ "standard 1/QO" library package, which Perl uses for most of its |/O.

Filehandle names are like the names for |abeled blocks, but they come from yet another namespace (so
you can have ascalar $f r ed, anarray @ r ed, ahash % r ed, asubroutine &f r ed, alabel f r ed, and
now afilehandlef r ed). Like block labels, filehandles are used without a specia prefix character, and
thus might be confused with present or future reserved words. Once again, the recommendation is that
you use ALL UPPERCASE lettersin your filehandle; not only will it stand out better, but it will also
guarantee that your program won't fail when afuture reserved word is introduced.

Previous: 9.7 Learning Next: 10.2 Opening and
Exercises Perl Closing a Filehandle
9.7 Exercises Book 10.2 Opening and Closing a

Index Filehandle

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.1 What Is a Chapter 10 Next: 10.3 A Slight Diversion:
Filehandle? Filehandles and File Tests die

10.2 Opening and Closing a Filehandle

Perl provides three filehandles, STDI N, STDOUT, and STDERR, which are automatically open to files or
devices established by the program's parent process (probably the shell). Y ou use the open function to
open additional filehandles. The syntax looks like this:

open(FI LEHANDLE, " sonenane") ;

where FI LEHANDLE isthe new filehandle and sonenane isthe external filename (such asafileor a

device) that will be associated with the new filehandle. This invocation opens the filehandle for reading.
To open afilefor writing, use the same open function, but prefix the filename with a greater-than sign

(asinthe shell):

open(QUT, ">outfile");

WEe'll see how to use this filehandle in the upcoming section "Using Filehandles." Also, asin the shell,
you can open afile for appending by using two greater-than signs for a prefix, asin:

open(LOGFI LE, ">>nyl ogfile");

All forms of open return true for success and false for failure. (Opening afile for input fails, for
example, if thefileis not there or cannot be accessed because of permissions; opening afile for output
failsif thefile iswrite-protected, or if the directory is not writable or accessible.)

When you are finished with afilehandle, you may close it with the cl ose operator, like so:
cl ose(LOGFI LE) ;

Reopening afilehandle also closes the previously open file automatically, as does exiting the program.
Because of this, many Perl programs don't bother with cl ose. But it'sthereif you want to betidy or
make sure that all of the datais flushed out sometime earlier than program termination. A cl ose call
could also fail if the disk filled up, the remote server that held the file became inaccessible, or any of
various other esoteric problems occurred. It's agood ideato check the return values of all system calls.

Previous: 10.1 What Is a Learning Next: 10.3 A Slight Diversion:
Filehandle? Perl die
10.1 What Is aFilehandle? Book 10.3 A Slight Diversion: die

Index

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.2 Opening and Chapter 10 | Next: 10.4 Using Filehandles|
Closing a Filehandle Filehandles and File Tests

10.3 A Slight Diversion: die

Consider this alarge footnote, in the middle of the page.

A filehandle that has not been successfully opened can still be used without even so much asa
warning[1] throughout the program. If you read from the filehandle, you'll get end-of-file right away. If

you write to the filehandle, the datais silently discarded (like last year's campaign promises).
[1] Unless you are running with the - w switch enabled.

Typically you'll want to check the result of the open and report an error if the result is not what you
expect. Sure, you can pepper your program with stuff like:

unl ess (open (DATAPLACE, ">/t np/ dat apl ace")) {

print "Sorry, | couldn't create /tnp/dataplace\n";
} else {

the rest of your program
}

But that's alot of work. And it happens often enough for Perl to offer abit of a shortcut. Thedi e
function takes a list within optional parentheses, spits out that list (like pr i nt) on the standard error
output, and then ends the Perl process (the one running the Perl program) with a nonzero exit status
(generally indicating that something unusual happened|[2]). So, rewriting the chunk of code above turns

out to look like this;

unl ess (open DATAPLACE, ">/t np/ dat apl ace") {
die "Sorry, | couldn't create /tnp/dataplace\n";
}

rest of program

[2] Actudly, di e merely raises an exception, but since you aren't being shown how to trap
exceptions, it behaves as described. See eval in Chapter 3 of Programming Perl or perlfunc

(1) for details.

But we can go even one step further. Remember that we can usethe | | (logical-or) operator to shorten
thisup, asin:

open(DATAPLACE, ">/t np/ dat apl ace") ||
die "Sorry, | couldn't create /tnp/dataplace\n";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_032.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

So the di e gets executed only when the result of the open isfalse. The common way to read thisis
"open that file or die!" And that's an easy way to remember whether to use the logical-and or logical-or.

The message at death (built from the argument to di e) has the Perl program name and line number
automatically attached, so you can easily identify which di e was responsible for the untimely exit. If
you don't like the line number or file revealed, make sure that the death text has a newline on the end. For
example,

di e "you gravy-sucking pigs";

prints the file and line number, while
die "you gravy-sucking pigs\n";

does not.

Another handy thing inside di e stringsisthe $! variable, which contains the error string describing the
most recent operating system error. It's used like this:

open(LOG ">>logfile") || die "cannot append: $!'";
Thismight end up saying "cannot append: Per m ssi on deni ed" aspart of the message.

There's also the "close call" function, which most people know aswar n. It does everything di e does,
just short of actually dying. Use it to give error messages on standard error without a ot of extra hassle:

open(LCG ">>l0g") || warn "discarding |logfile output\n”;
Previous: 10.2 Opening and Learning | Next: 10.4 Using Filehandles|
Closing a Filehandle Perl
10.2 Opening and Closing a Book 10.4 Using Filehandles
Filehandle Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.3 A Slight ‘ Chapter 10 Next: 10.5 The
Diversion: die Filehandlesand File Tests -X File Tests

10.4 Using Filehandles

Once afilehandle is open for reading, you can read lines from it just as you can read from standard input
with STDI N. So, for example, to read lines from the password file:
open (EP,"/etc/passwd");
whil e (<EP>) {
chonp;
print "I saw $_ in the password filel\n";

}

Note that the newly opened filehandle is used inside the angle brackets, just as we have used STDI N
previously.

If you have afilehandle open for writing or appending, and if you want to pri nt toit, you must place
the filehandle immediately after the pri nt keyword and before the other arguments. No comma should
occur between the filehandle and the rest of the arguments:

print LOGFILE "Finished item $n of $max\n";
print STDOUT "hi, world!\n"; # like print "hi, world!'\n"

In this case, the message beginning with Fi ni shed goesto the LOGFI LE filehandle, which
presumably was opened earlier in the program. And hi , wor | d still goesto standard output, just as
when you didn't specify the filehandle. We say that STDOUT is the default filehandle for the pri nt
statement.

Here's away to copy datafrom afile specified in $a into afile specified in $b. It illustrates nearly
everything we've learned in the last few pages:[3]

open(IN,$a) || die "cannot open $a for reading: $!";

open(QUT, ">$b") || die "cannot create $b: $!";

while (<IN>) { # read a line fromfile $a into $_
print QUT $_; # print that line to file $b

}

close(IN) || die "can't close %$a: $!'";

close(QUT) || die "can't close $b: $!'";
[3] Although it's entirely redundant withthe Fi | e: : Copy module.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: 10.3 A Slight Learning Next: 10.5 The

Diversion: die Perl -X File Tests
10.3 A Slight Diversion: die Book 10.5 The-x File Tests
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.4 Using ' Chapter 10 Next: 10.6 The stat and Istat
Filehandles Filehandles and File Tests Functions

10.5 The -x File Tests

Now you know how to open afilehandle for output, overwriting any existing file with the same name.
Suppose you wanted to make sure that there wasn't afile by that name (to keep you from accidentally
blowing away your spreadsheet data or that important birthday calendar). If you were writing a shell
script, you'd use something like - e f i | enane to test if the file exists. Similarly, Perl uses- e

$fi | evar totest for the existence of the file named by the scalar valuein $f i | evar . If thisfile
exists, the result istrue; otherwise it isfalse.[4] For example:

$nanme = "index.htm";
if (-e $nane) ({
print "I see you already have a file naned $nane\n";
} else {
print "Perhaps you'd like to make a file called $nane\n";
}

[4] Thisisn't good enough if you are managing lock files, or if files are appearing and
disappearing quickly. In that case, you need to look into thesysopen and f | ock
functions described in Programming Perl or see the examplesin Chapter 19, CGI

Programming.

The operand of the - e operator isreally just any scalar expression that evaluates to some string,
including a string literal. Here's an example that checks to see whether both index.html and index.cgi
exist in the current directory:
if (-e "index.htm" &% -e "index.cgi") {

print "You have both styles of index files here.\n";
}

Other operators are defined aswell. For example, - r $f i | evar returnstrueif thefile namedin
$fi |l evar existsand isreadable. Smilarly, - w$f i | evar testswhether it iswritable. Here's an
example that tests a user-specified filename for both readability and writability:

print "where? ";
$fil enane = <STDI N>;
chonp $fil ename; # toss pesky new ine
if (-r $filenane && -w $fil enane) {
file exists, and | can read and wite it

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

}

Many more file tests are available. Table 10.1 gives the complete list.

Table 10.1: File Tests and Their Meanings

File Test [Meaning

-r File or directory is readable

-w File or directory iswritable

- X File or directory is executable

-0 File or directory is owned by user

-R File or directory is readable by real user, not effective user (differsfrom - r for setuid
programs)

-W File or directory iswritable by real user, not effective user (differsfrom - wfor setuid
programs)

- X File or directory is executable by real user, not effective user (differsfrom - x for setuid
programs)

-0 File or directory is owned by real user, not effective user (differs from - o for setuid
programs)

-e File or directory exists

-z File exists and has zero size (directories are never empty)

-S File or directory exists and has nonzero size (the value isthe size in bytes)

- f Entry isaplainfile

-d Entry isadirectory

- | Entry isasymlink

-S Entry is a socket

-p Entry isanamed pipe (a"fifo")

-b Entry isablock-specia file (like a mountable disk)

-C Entry is a character-specia file (like an 1/0 device)

-u File or directory is setuid

-g File or directory is setgid

-k File or directory has the sticky bit set

-t i satty() onthefilehandleistrue
-T Fileis"text"

-B Fileis"binary"

-M Modification age in days

-A Access age in days

-C Inode-modification age in days

Most of these tests return a simple true-false condition. A few don't, so let's talk about them.

The - s operator does return true if the file is nonempty, but it's a particular kind of true. It's the length in
bytes of the file, which evaluates as true for a nonzero number.

The age operators- M - A, and - C (yes, they're uppercase) return the number of days since the file was
last modified, accessed, or had itsinode changed.[5] (The inode contains all of the information about the
file except for its contents. seethe st at system call manpage for details.) This age value is fractional
with aresolution of one second: 36 hoursisreturned as 1.5 days. If you compare the age with awhole
number (say three), you'll get only the files that were changed exactly that many days ago, not one
second more or less. This means you'll probably want a range comparison[6] rather than an exact

comparison to get files that are between three and four days old.

[5] The age is measured relative to the time the program started, as captured in system time
format in the $ T variable. It's possible to get negative numbers for these ages if the queried
value refers to an event that happened after the program began.

[6] Or thei nt operator.

These operators can operate on filehandles as well as filenames. Giving afilehandle for the operand is all
it takes. So to test whether the file opened as SOVEFI LE is executable, you can use:

i f (-x SOVEFILE) {
file open on SOVEFI LE is executable
}

If you leave the filename or filehandle parameter off (that is, you havejust - r or - s), the default
operand isthe file named inthe $_ variable (thereit isagain!). So, to test alist of filenamesto see which
ones are readable, it'sas simple as this:

foreach (@one_list_of filenanes) {
print "$ is readable\n" if -r; # same as -r $_

}
Previous: 10.4 Using Learning Next: 10.6 The stat and Istat
Filehandles Perl Functions
10.4 Using Filehandles Book 10.6 The stat and Istat

Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.5 The -x File Chapter 10 Next: 10.7
Tests Filehandles and File Tests Exercises

10.6 The stat and Istat Functions

While these file tests are fine for testing various attributes regarding a particular file or filehandle, they
don't tell the whole story. For example, there's no file test that returns the number of linksto afile. To get
at the remaining information about afile, merely call thest at function, which returns pretty much
everything that the st at POSIX system call returns (hopefully more than you want to know).

The operand to st at isafilehandle or an expression that evaluates to a filename. The return valueis
either undef , indicating that the stat failed, or a 13-element list,[7] most easily described using the

following list of scalar variables:

($dev, $i no, $node, $nl i nk, $ui d, $gi d, $rdev,
$si ze, $ati ne, $nti ne, $cti ne, $bl ksi ze, $bl ocks) = stat(...)

[7] If you have a hard time remembering the order of st at 'sreturn values, you might look
at the File::stat module, first introduced in release 5.004 of Perl. It provides access such as:
$file_owner = stat($fil enane)->uid;

The names here refer to the parts of the stat structure, described in detail in your stat (2) manpage. You
should probably look there for the detailed descriptions.

For example, to get the user ID and the group ID of the password file, let's try:
($uid, $gid) = (stat("/etc/passwd"))[4,5];

And that's the way it goes.

Invoking the st at function on the name of a symbolic link returns information on what a symbolic link
points at, not information about the symbolic link itself (unless the link just happens to be pointing at
nothing currently accessible). If you need the (mostly useless) information about the symbolic link itself,
usel st at rather than st at (which returns the same information in the same order). Thel st at
function workslike st at on things that aren't symbolic links.

Likethefiletests, the operand of st at or | st at defaultsto $_, meaning that the stat will be
performed on the file named by the scalar variable $_.

Previous: 10.5 The -x File Learning Next: 10.7
Tests Perl Exercises

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

10.5 The -x File Tests Book 10.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.6 The stat and ' Chapter 10 Next: 11,
Istat Functions Filehandles and File Tests Formats

10.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Writeaprogram to read in afilename from STDI N, then open that file and display its contents
with each line preceded by the filename and a colon. For example, if f r ed wasread in, and the
file fred consisted of the threelinesaaa, bbb, and ccc, youwould seef r ed: aaa, fred:
bbb,andfred: ccc.

2. Write aprogram that prompts for an input filename, an output filename, a search pattern, and a
replacement string, and replaces all occurrences of the search pattern with the replacement string
while copying the input file to the output file. Try it on some files. Can you overwrite an existing
file (don't try it with anything important!)? Can you use regular expression characters in the search
string? Can you use $1 in the replacement string?

3. Writeaprogram to read in alist of filenames and then display which of the files are readable,
writable, and/or executable, and which ones don't exist. (Y ou can perform each test for each
filename as you read them, or on the entire set of names when you've read them all. Don't forget to
remove the newline at the end of each filename you haveread in.)

4. Write aprogram to read in alist of filenames and find the oldest file among them. Print out the
name of the file and the age of that file in days.

Previous: 10.6 The stat and Learning Next: 11.
Istat Functions Perl Formats
10.6 The stat and Istat Book 11. Formats
Functions Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 10.7 Chapter 11 [Next: 11.2 Defining a Format]
Exercises

11. Formats

Contents:
What |s a Format?

Defining a Format

Invoking a Format

More About the Fieldholders
The Top-of-Page Format
Changing Defaults for Formats
Exercises

11.1 What Is a Format?

Per| stands, among other things, for "practical extraction and report language.” It's time to learn about
that "...report language" business.

Perl provides the notion of a simple report writing template, called aformat. A format defines a constant
part (the column headers, labels, fixed text, or whatever) and a variable part (the current datayou're
reporting). The shape of the format is very close to the shape of the output, similar to formatted output in
COBOL or thepri nt usi ng clauses of some BASICs.

Using aformat consists of doing three things:
1. Defining aformat
2. Loading up the datato be printed into the variable portions of the format (fields)
3. Invoking the format

Most often, the first step is done once (in the program text so that it gets defined at compile-time),[1] and
the other two steps are performed repeatedly.

[1] You can also create formats at run-time using the eval function, as described in
Programming Perl and in the perlform (1) manpage.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: 10.7 Learning [Next: 11.2 Defining a Format|
Exercises Perl

10.7 Exercises Book 11.2 Defining a Format
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.1 What Is a Chapter 11 | Next: 11.3 Invoking a Format|
Format? Formats

11.2 Defining a Format

A format is defined using aformat definition. This format definition can appear anywhere in your
program text, like a subroutine. A format definition looks like this:

format sonef or mat nane =

fieldline

val ue_one, value two, value three
fieldline

val ue_one, val ue_two

fieldline

val ue_one, value_two, value_ three

Thefirst line contains the reserved word f or mat , followed by the format name and then an equal sign
(=). The format name is chosen from yet another namespace, and follows the same rule as everything
else. Because format names are never used within the body of the program (except within string values),
you can safely use names that are identical to reserved words. Asyou'll seein the next section, "Invoking

a Format," most of your format names will probably be the same as filehandle names (which then makes
them not the same as reserved words... oh well).

Following the first line comes the template itself, spanning zero or more text lines. The end of the
template isindicated by aline consisting of asingle dot by itself.[2] Templates are sensitive to

whitespace; thisis one of the few places where the kind and amount of whitespace (space, newline, or
tab) mattersin the text of a Perl program.

[2] In text files, the last line needs to end with a newline to work properly.

The template definition contains a series of fieldlines. Each fieldline may contain fixed text - text that
will be printed out literally when the format is invoked. Here's an example of afieldline with fixed text:

Hell o, nmy nane is Fred Flintstone.

Fieldlines may also contain fieldholders for variable text. If aline contains fieldholders, the following
line of the template (called the value line) dictates a series of scalar values - one per fieldholder - that
provide the values that will be plugged into the fields. Here's an example of afieldline with one
fieldholder and the value line that follows:

Hel l o, ny nane is @kx<<<<<<<<<

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

$nane

The fieldholder isthe @<<<<<<<<<, which specifies aleft-justified text field with 11 characters. More
complete details about fieldholders will be given in the upcoming section, "More About the
Fieldholders."

If the fieldline has multiple fieldholders, it needs multiple values, so the values are separated on the value
line by commas:

Hel l o, ny nane is @k<<<<<<<<< and |'m @< years ol d.
$nanme, $age

Putting all this together, we can create a simple format for an address |abel:
format ADDRESSLABEL =

| @X<<<<K<KKKLKLKLKLKLLILKLKLILLKLILLLLKL |
$name

| @x<<<<<L<KLLLLLLLILLLLLLLLLL < |
$addr ess

| @r<<<<<<<<<, @& @<<< |

$city, $state, $zip

Note that the lines of equal signs at the top and bottom of the format have no fields and thus have no
value lines following. (If you put avalue line following such afieldline, it will be interpreted as another
fieldline, probably not doing what you want.)

Whitespace within the value line isignored. Some people choose to use additional whitespace in the
value lineto line up the variable with the fieldholder on the preceding line (such as putting $zi p
underneath the third field of the previous line in this example), but that's just for looks. Perl doesn't care,
and it doesn't affect your output.

Text after the first newline in avalue is discarded (except in the special case of multiline fieldholders,
described later).

A format definition is like a subroutine definition. It doesn't contain immediately executed code, and can
therefore be placed anywhere in the file with the rest of the program. We tend to put ours toward the end
of the file, ahead of our subroutine definitions.

Previous: 11.1 What Is a Learning | Next: 11.3 Invoking a Format|
Format? Perl
11.1 What |s a Format? Book 11.3 Invoking a Format
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.2 Defining a Chapter 11 Next: 11.4 More About the
Format Formats Fieldholders

11.3 Invoking a Format

You invoke aformat with thewr i t e function. This function takes the name of a filehandle and
generates text for that filehandle using the current format for that filehandle. By default, the current
format for afilehandle is aformat with the same name (so for the STDOUT filehandle, the STDOUT
format is used), but we'll soon see that you can changeit.

Let's take another ook at that address label format, and create afile full of address labels. Here'sa
program segment:
f ornrat ADDRESSLABEL =

| @x<<<<<LLLLLLLLLILLLLLLLLL LKL |

$nane

| @x<<<<<KKLKLKLKLKLKLKLILLKLKLLKLLLLL <L |

$addr ess

| @<<<<<<<K<KKKL, @& @<<< |

$city, $state, $zip

open(ADDRESSLABEL, ">| abel s-to-print") || die "can't create";
open(ADDRESSES, "addr esses"”) || die "cannot open addresses”;

whi | e (<ADDRESSES>) {
chonp; # renove new i ne
($nane, $address, $city, $state, $zip) = split(/:/);
| oad up the global variables
wite (ADDRESSLABEL); # send the out put

}

Here we see our previous format definition, but now we also have some executable code. First, we open
afilehandle onto an output file, whichiscalled | abel s-t o- pri nt . Note that the filehandle name
(ADDRESSLABEL) is the same as the name of the format. Thisisimportant. Next, we open afilehandle
on an address list. The format of the address list is presumed to be something like this:

St onehenge: 4470 SWHall Suite 107: Beaverton: OR 97005
Fred Flintstone: 3737 Hard Rock Lane: Bedr ock: OZ: 999bc

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

In other words, five colon-separated fields, which our code parses as described below.

Thewhi | e loop in the program reads each line of the addressfile, gets rid of the newline, and then splits
the remainder into five variables. Note that the variable names are the same names as the ones we used
when we defined the format. This, too, is important.

Once we have all of the variables loaded up (so that the values used by the format are correct), the
wr i t e function invokes the format. Note that the parameter towr i t e isthe filehandle to be written to,
and by default, the format of the same nameis also used.

Each field in the format is replaced with the corresponding value from the next line of the format. After
the two sample records given above are processed, thefilel abel s-t o- pri nt contains:

| Stonehenge |
| 4470 SWHall Suite 107 |
| Beaverton , OR 97005 |

| Fred Flintstone |
| 3737 Hard Rock Lane |
I

| Bedrock , QZ 999bc
Previous: 11.2 Defining a Learning Next: 11.4 More About the
Format Perl Fieldholders
11.2 Defining a Format Book 11.4 More About the
Index Fieldholders

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.3 Invoking a Chapter 11 Next: 11.5 The Top-of-Page
Format Formats Format

11.4 More About the Fieldholders

So far, by example, you know that the fieldholder @ <<< means a five-character left-justified field and
that @<<<<<<<<< meansan 11-character |eft-justified field. Here's the whole scoop, as promised
earlier.

11.4.1 Text Fields

Most fieldholders start with @ The characters following the @indicate the type of field, while the number
of characters (including the @ indicates the field width.

If the characters following the @are left-angle brackets (<<<<), you get aleft-justified field; that is, the
value will be padded on the right with spacesiif the value is shorter than the field width. (If avalueistoo
long, it's truncated automatically; the layout of the format is always preserved.)

If the characters following the @are right-angle brackets (>>>>), you get aright-justified field - that is, if
the value istoo short, it gets padded on the | eft with spaces.

Finally, if the characters following the @are vertical bars(| | | |), you get a centered field: if the valueis
too short, it gets padded on both sides with spaces, enough on each side to make the value mostly
centered within the field.

11.4.2 Numeric Fields

Another kind of fieldholder is a fixed-precision numeric field, useful for those big financial reports. This
field also begins with @ and is followed by one or more #'s with an optional dot (indicating a decimal
point). Once again, the @counts as one of the characters of the field. For example:

format MONEY =
Assets: @###. ## Li abil i ti es: @t###H#. ## Net: @#H###H. ##
$assets, $liabilities, $assets-$liabilities

The three numeric fields allow for six places to the | eft of the decimal place, and two to the right (useful
for dollars and cents). Note the use of an expression in the format - perfectly legal and frequently used.

Perl provides nothing fancier than this; you can't get floating currency symbols or brackets around
negative values or anything interesting. To do that, you have to write your own spiffy subroutine, like so:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

format MONEY =
Assets: @k<<<<<<<< Liabilities @k<<<<<<< Net: @<<<<<<<
&pretty($assets, 10), &pretty(S$liab,9), &pretty($assets-3$liab, 10)

sub pretty {
ny($n,$width) = @;
$width -= 2; # back off for negative stuff
$n = sprintf("%2f",$n); # sprintf is in later chapter
if ($n < 0) {
return sprintf("[%w dth.2f]", -$n);
negative nunbers get brackets
} else {
return sprintf(" %w dth.2f ", $n);
positive nunbers get spaces instead

}

body of program
$assets = 32125.12;
$liab = 45212. 15;
wite (MONEY);

11.4.3 Multiline Fields

As mentioned earlier, Perl normally stops at the first newline of a value when placing the result into the
output. One kind of fieldholder, the multiline fieldholder, alows you to include a value that may have
many lines of information. Thisfieldholder is denoted by @ on aline by itself: as always, the following
line defines the value to be substituted into the field, which in this case may be an expression that results
In avalue containing many newlines.

The substituted value will ook just like the original text: four lines of value become four lines of output.
For example:

format STDOUT =
Text Before.

@
$l ong_string
Text After.

$l ong_string = "Fred\ nBarney\ nBetty\nWI nma\n";
wite;
generates the outpuit:

Text Before.
Fr ed

Bar ney
Betty
W I na
Text After.

11.4.4 Filled Fields

Another kind of fieldholder isafilled field. Thisfieldholder allows you to create afilled paragraph,
breaking the text into conveniently sized lines at word boundaries, wrapping the lines as needed. There
are afew partsthat work together here, but let'slook at them separately.

First, afilled field is denoted by replacing the @marker in atext fieldholder with a caret (so you get
N<<<, for example). The corresponding value for afilled field (on the following line of the format) must
be a scalar variable] 3] containing text, rather than an expression that returns a scalar value. The reason
for thisisthat Perl will alter the variable whilefilling the filled field, and it's pretty hard to alter an
expression.

[3] Including asingle scalar element of an array or hash, like $a[3] or $h{"fred"}.

When Perl isfilling the filled field, it takes the value of the variable and grabs as many words (using a
reasonable definition of "word")[4] aswill fit into the field. These words are actually ripped out of the
variable; the value of the variable after filling thisfield iswhatever is left over after removing the words.
You'll see why in aminute.

[4] The word separator characters are defined by the $: variable.

So far, thisisn't much different from how anormal text field works; we're printing only as much as will
fit (except that we're respecting aword boundary rather than just cutting it off at the field width). The
beauty of thisfilled field appears when you have multiple references to the same variable in the same
format. Take alook at this:

f ormat PECPLE =
Name: @kx<<<<<<<<<<<< Comment: <<<<<<L<<<LL<<L<LLLLLLLLLLLLLLL<L
$nane, $coment
N LLLLLLLLLLLLLLLLLLL
$comrent
N L LLLLLLLLLLL
$coment
N LLLLLLLL L L L L LL L L LKL

$coment

Note that the variable $comrent appears four times. The first line (the one with the name field) prints
the person’'s name and the first few words of the valuein $conmrent . But in the process of computing
thisline, scoment isaltered so that the words disappear. The second line once again refers to the same
variable ($conment), and so will take the next few words from the same variable. Thisis also true for
the third and fourth lines. Effectively, what we've created is arectangle in the output that will be filled as
best it can with the words from $conmrent spread over four lines.

What happens if the complete text occupies less than four lines? Well, you'll get ablank line or two. This
is probably OK if you are printing out labels and need exactly the same number of lines for each entry to
match them up with the labels. But if you are printing out a report, many blank lines merely use up your
printer paper budget.

To fix this, use the suppression indicator. Any line that contains atilde (~) character is suppressed (not
output) if the line would have otherwise printed blank (just whitespace). Thetilde itself always prints as a
blank and can be placed anywhere a space could have been placed in the line. Rewriting that |ast
example:

f ormat PECPLE =
Name: @x<<<<<<<<<<<< Comment: <<<<<<L<<L<<LL<LLLLLLLLL<LLLL<L<L
$nane, $coment
~ N LLLLLLLLLLLLLLLLLLL
$coment
~ N LLLLLLLLLLLL
$coment
~ N LLLLLLLLLLLLLLLLLLL

$coment

Now, if the comment covers only two lines, the third and fourth lines are automatically suppressed.

What if the comment is more than four lines? Well, we could make about 20 copies of the last two lines
of that format, hoping that 20 lines will cover it. But that goes against the idea that Perl helps you to be
lazy, so there's alazy way to do it. Any line that contains two consecutive tildes will be repeated
automatically until the result is a completely blank line. (The blank lineis suppressed.) This changes our
format to look like this:

format PEOPLE =
Name: @x<<<<<<<<<<<< Comment: A<<<<<<K<LKLLL<LLLLLLLLLLLLLLLLKL

$nane, $coment
~~ Nl LLLLLLLLLLL

$coment

Thisway, if the comment takes one line, two lines, or 20 lines, we are still OK.

Note that the criterion for stopping the repeated line requires the line to be blank at some point. That
means you probably don't want any constant text (other than blanks or tildes) on the line, or elseit will
never become blank.

Previous: 11.3 Invoking a Learning Next: 11.5 The Top-of-Page
Format Perl Format
11.3 Invoking a Format Book 11.5 The Top-of-Page Format
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.4 More About Chapter 11 Next: 11.6 Changing Defaults
the Fieldholders Formats for Formats

11.5 The Top-of-Page Format

Many reports end up on some hardcopy device, like a printer. Printer paper is generally clipped into
page-size chunks, because most of us stopped reading paper in scrolls along time ago. So the text being
fed to a printer typically has to take page boundaries into consideration by putting in blank lines or
formfeed characters to skip across the perforations. Now, you could take the output of a Perl program
and feed it through some utility (maybe even one written in Perl) that does this pagination, but there's an
easier way.

Perl allows you to define a top-of-page format that triggers a page-processing mode. Perl counts each
line of output generated by any format invocation to a particular filehandle. When the next format output
cannot fit on the remainder of the current page, Perl spits out a formfeed followed by an automatic
invocation of the top-of-page format, and finally the text from the invoked format. That way, the result of
onewr i t e invocation will never be split across page boundaries (unlessit is so large that it won't even
fit on a page by itself).

The top-of-page format is defined just like any other format. The default name of a top-of-page format
for a particular filehandle is the name of the filehandle followed by _ TOP (in uppercase only).

Perl defines the variable $%to be the number of times the top-of-page format has been called for a
particular filehandle, so you can use this variable in your top-of-page format to number the pages
properly. For example, adding the following format definition to the previous program fragment prevents
|abels from being broken across page boundaries and also numbers consecutive pages:

format ADDRESSLABEL TOP =
My Addresses -- Page @
$%

The default page length is 60 lines. Y ou can change this by setting a special variable, described shortly.

Perl doesn't notice whether you also pr i nt to the same filehandle, so that might throw the number of
lines on the current page off abit. Y ou can either rewrite your code to use formats to send everything or
fudge the "number of lines on the current page" variable after you do your pri nt . Inamoment, welll
see how to change this value.

Previous: 11.4 More About Learning Next: 11.6 Changing Defaults
the Fieldholders Perl for Formats

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

11.4 More About the Book 11.6 Changing Defaults for
Fieldholders Index Formats

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.5 The Chapter 11 Next: 11.7
Top-of-Page Format Formats Exercises

11.6 Changing Defaults for Formats

We have often referred to the "default” for this or that. Well, Perl provides away to override the defaults
for just about every step. Let's talk about these.

11.6.1 Using select() to Change the Filehandle

Back when we talked about pr i nt , in Chapter 6, Basic I/O, | mentioned that pri nt and pri nt
STDOUT were identical, because STDOUT was the default for pri nt . Not quite. The real default for
print (andwr it e, and afew other operations that we'll get to in amoment) is an odd notion called the
currently selected filehandle.

The currently selected filehandle starts out as STDOUT, which makes it easy to print things on the
standard output. However, you can change the currently selected filehandle with the sel ect function.
This function takes a single filehandle (or a scalar variable containing the name of afilehandle) asan
argument. Once the currently selected filehandle is changed, it affects all future operations that depend
on the currently selected filehandle. For example:

print "hello world\n"; # li ke print STDOUT "hell o worl d\n";
sel ect (LOGFILE); sel ect a new filehandl e

print "howdy, world\n"; | i ke print LOGFILE "howdy, world\n";
print "nore for the |og\n"; nore for LOGFILE

sel ect (STDOUT); re-sel ect STDOUT

print "back to stdout\n"; # this goes to standard out put

#
#
#
#

Note that the sel ect operation is sticky; once you've selected a new handle, it stays in effect until the
next sel ect .

S0, a better definition for STDOUT with respect topri nt andwr i t e isthat STDOUT isthe default
currently selected handle, or the default handle.

Subroutines may find a need to change the currently selected filehandle. However, it would be shocking
to call a subroutine and then find out that al of your carefully crafted text lines were going into some bit
bucket because the subroutine changed the currently selected filehandle without restoring it. So what's a
well-behaved subroutine to do? If the subroutine knows that the current handle is STDOUT, the
subroutine can restore the selected handle with code similar to that above. However, what if the caller of
the subroutine had already changed the selected filehandle?

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Wl it turns out that the return value from sel ect isastring containing the name of the previously
selected handle. Y ou can capture this value to restore the previously selected filehandle later, using code
like this:

$ol dhandl e = sel ect LOGFI LE;
print "this goes to LOGFI LE\n";
sel ect (%ol dhandle); # restore the previous handl e

Y es, for these examples, it's much easier ssimply to put LOGFI LE explicitly as the filehandle for the
pri nt, but there are some operations that require the currently selected filehandle to change, as we will
SooN see.

11.6.2 Changing the Format Name

The default format name for a particular filehandle is the same as the filehandle. However, you can
change this for the currently selected filehandle by setting the new format name to a special variable
caled $~. Y ou can also examine the value of the variable to see what the current format is for the
currently selected filehandle.

For example, to use the ADDRESSLABEL format on STDOUT, it's as easy as.
$~ = " ADDRESSLABEL";

But what if you want to set the format for the REPORT filehandle to SUMMARY? Just afew stepsto do it
here:

$ol dhandl e = sel ect REPORT,;
$~ = " SUMVARY";
sel ect (%ol dhandl e);

The next time we say
wite (REPORT);
we get text out on the REPORT filehandle but using the SUMVARY format.[5]

[5] The object-oriented FileHandle module, part of the Perl standard distribution, provides a
simpler way to accomplish the same thing.

Note that we saved the previous handle into a scalar variable and then restored it later. Thisis good
programming practice. In fact, in production code we probably would have handled the previous one-line
example similarly and not assumed that STDOUT was the default handle.

By setting the current format for a particular filehandle, you can interleave many different formatsin a
single report.

11.6.3 Changing the Top-of-Page Format Name

Just as we can change the name of the format for a particular filehandle by setting the $~ variable, we
can change the top-of-page format by setting the $” variable. This variable holds the name of the
top-of-page format for the currently selected filehandle and is read/write, meaning that you can examine

its value to see the current format name, and you can change it by assigning to it.

11.6.4 Changing the Page Length

If atop-of-page format is defined, the page length becomes important. By default, the page length is 60
lines; that is, when awr i t e won't fit by the end of line 60, the top-of-page format is invoked
automatically before printing the text.

Sometimes 60 linesisn't right. Y ou can change this by setting the $= variable. This variable holds the
current page length for the currently selected filehandle. Once again, to change it for afilehandle other
than STDOUT (the default currently selected filehandle), you'll need to usethe sel ect () operator.
Here's how to change the LOGFI LE filehandle to have 30-line pages:

$ol d = sel ect LOGFILE;, # select LOGFILE and save ol d handl e
$= = 30;
sel ect $ol d;

Changing the page length won't have any effect until the next time the top-of-page format isinvoked. If
you set it before any text is output to a filehandle through aformat, it'll work just fine because the
top-of-page format isinvoked immediately at thefirstwri t e.

11.6.5 Changing the Position on the Page

If you pri nt your own text to afilehandle, it messes up the page-position line count because Perl isn't
counting lines for anything but awr i t e. If you want to let Perl know that you've output afew extra
lines, you can adjust Perl'sinternal line count by altering the $- variable. This variable contains the
number of linesleft on the current page on the currently selected filehandle. Eachwr i t e decrements the
lines remaining by the lines actually output. When this count reaches zero, the top-of-page format is
invoked, and the value of $- isthen copied from $= (the page length).

For example, to tell Perl that you've sent an extraline to STDOUT, do something like this:
wite; # invoke STDOUT fornmat on STDOUT

print "An extra line... oops!\n"; # this goes to STDOUT
$- --; # decrenent $- to indicate non-wite [ine went to STDOUT

wite; # this wll still work, taking extra |ine into account

At the beginning of the program, $- is set to zero for each filehandle. This ensures that the top-of-page
format will be the first thing invoked for each filehandle upon thefirstwri t e.

Previous: 11.5 The Learning Next: 11.7
Top-of-Page Format Perl Exercises
11.5 The Top-of-Page Format Book 11.7 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl

Previous: 11.6 Changing
Defaults for Formats

Chapter 11
Formats

| Next: 12. Directory Access)|

11.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram to open the /etc/passwd file by name and print out the username, user ID
(number), and real name in formatted columns. Usef or mat andwite.

2. Add atop-of-page format to the previous program. (If your password fileisrelatively short, you
might need to set the pagelength to something like 10 lines so that you can get multiple instances

of the top of the page.)

3. Add asequentialy increasing page number to the top of the page, so that you get page 1, page

2, and so on, in the output.

Previous: 11.6 Changing
Defaults for Formats

11.6 Changing Defaults for
Formats

Learning
Perl

Book
Index

| Next: 12. Directory Access)|

12. Directory Access

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 11.7 Chapter 12 Next: 12.2
Exercises Globbing

12. Directory Access

Contents:
Moving Around the Directory Tree

Globbing

Directory Handles

Opening and Closing a Directory Handle
Reading a Directory Handle

Exercises

12.1 Moving Around the Directory Tree

By now, you're probably familiar with the notion of the current directory and using the shell's cd
command. In systems programming, you'd be invoking the chdir system call to change the current
directory of aprocess, and this is the name used by Perl aswell.

Thechdi r function in Perl takes a single argument - an expression evaluating to a directory name to
which the current directory will be set. Aswith most other system calls, chdi r returns true when you've
successfully changed to the requested directory and false if you couldn't. Here's an example:

chdir("/etc") || die "cannot cd to /etc ($!)";

The parentheses are optional, so you can also get away with stuff like this;

print "where do you want to go? ";
chonmp($where = <STDI N>);
I f (chdir $where) {
we got there
} else {

}

Y ou can't find out where you are without launching a pwd command.[1] WEe'll |earn about launching
commands in Chapter 14, Process Management.

we didn't get there

[1] Or using theget cwd() function out of the Cwd module.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Every procesg[2] hasits own current directory. When a new process is launched, it inheritsits parent's

current directory, but that's the end of the connection. If your Perl program changesits directory, it won't
affect the parent shell (or whatever) that launched the Perl process. Likewise, the processes that the Perl
program creates cannot affect that Perl program's current directory. The current directories for these new
processes are inherited from the Perl program's current directory.

[2] Well, in UNIX and most other modern operating systems.

Thechdi r function without a parameter defaults to taking you to your home directory, much like the
shell's cd command.

Previous: 11.7 Learning Next: 12.2
Exercises Perl Globbing
11.7 Exercises Book 12.2 Globbing
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 12.1 Moving ‘_p_Cha ter 12 | Next: 12.3 Directory Handles|
Around the Directory Tree Directory Access

12.2 Globbing

The shell (or whatever your command-line interpreter is) takes a solitary asterisk (*) command-line
argument and turnsit into alist of al of the filenames in the current directory. So, when you say r m*,
you'll remove all of the files from the current directory. (Don't try this unless you like irritating your
system administrator when you request the filesto be restored.) Similarly, [a- n] *. c asa
command-line argument turnsinto alist of all filenamesin the current directory that begin with aletter in
the first half of the aphabet and endin.c, and/ et ¢/ host * isalist of all filenames that begin with
host in the directory /etc. (If thisis new to you, you probably want to read some more about shell
scripting somewhere el se before proceeding.)

The expansion of argumentslike* or/ et ¢/ host * into thelist of matching filenamesis called
globbing. Perl supports globbing through a very simple mechanism: just put the globbing pattern
between angle brackets or use the more mnemonically named gl ob function.

@ </ et c/ host *>:
@ gl ob("/etc/host*");

In alist context, as demonstrated here, the glob returns alist of all names that match the pattern (asif the
shell had expanded the glob arguments) or an empty list if none match. In ascalar context, the next name
that matchesisreturned, or undef isreturned if there are no more matches; thisisvery similar to
reading from afilehandle. For example, to look at one name at atime:

whi | e (defined($nextnane = </etc/host*>)) {
print "one of the files is $nextnane\n";
}

Here the returned filenames begin with /etc/host, so if you want just the last part of the name, you'll have
to whittle it down yoursdlf, like so:

whi |l e ($nextname = </etc/host*>) {
$next nane =~ s#.*/##; # renove part before last slash
print "one of the files is $nextnane\n";

}

Multiple patterns are permitted inside the file glob argument; the lists are constructed separately and then
concatenated as if they were one big list:

@red barney files = <fred* barney*>;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

In other words, the glob returns the same values that an equivalent echo command with the same
parameters would return.[3]

[3] Thisisactually no surprise when you understand that to perform the glob, Perl merely
fires off a C-shell to glob the specified arglist and parses what it gets back.

Although file globbing and regular-expression matching function similarly, the meaning of the various
special charactersis quite different. Don't confuse the two, or you'll be wondering why <\ . ¢$> doesn't
find al of thefilesthat endin.c!

The argument to gl ob isvariable interpolated before expansion. Y ou can use Perl variables to select
files based on a string computed at run-time:

if (-d "/usr/etc") {
$where = "/usr/etc”;
} else {
$where = "/etc";
}

@il es = <$where/ *>;

Here we set $wher e to be one of two different directory names, based on whether or not the directory
lusr/etc exists. We then get alist of filesin the selected directory. Note that the $wher e variableis
expanded, which means the wildcard to be globbed iseither / et ¢/ * or/ usr/etc/ *.

There's one exception to this rule: the pattern <$var > (meaning to use the variable $var asthe entire
glob expression) must be written as <${ var } > for reasons we'd rather not get into at this point.[4]

[4] The construct <$f r ed> reads a line from the filehandle named by the contents of the
scalar variable $f r ed. Together with some other features not covered in this book, this
construct enables you to use "indirect filehandles' where the name of ahandleis passed
around and manipulated asif it were data.

Previous: 12.1 Moving Learning | Next: 12.3 Directory Handles|
Around the Directory Tree Perl
12.1 Moving Around the Book 12.3 Directory Handles
Directory Tree Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 12.2 ‘Cha ter 12 Next: 12.4 Opening and
Globbing Directory Access Closing a Directory Handle

12.3 Directory Handles

If your particular flavor of operating system provides the readdir library function or its moral equivalent,
Perl provides access to that routine (and its companions) using directory handles. A directory handleisa
name from yet another namespace, and the cautions and recommendations that apply to filehandles also
apply to directory handles (you can't use a reserved word, and uppercase is recommended). The
filehandle FRED and the directory handle FRED are unrel ated.

The directory handle represents a connection to a particular directory. Rather than reading data (as from a
filehandle), you use the directory handle to read alist of filenames within the directory. Directory
handles are aways opened read-only; you cannot use a directory handle to change the name of afile or to
delete afile.

If your library doesn't provide readdir() and friends (and you didn't provide a substitute implementation
while building Perl), using any of these routinesis afatal error, and your program won't make it past the
compilation: it will abort before the first line of code is executed. Perl tries very hard to isolate you from
your environment, but it's not a miracle worker.

Previous: 12.2 Learning Next: 12.4 Opening and
Globbing Perl Closing a Directory Handle
12.2 Globbing Book 12.4 Opening and Closing a
Index Directory Handle

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 12.3 Directory ‘Cha ter 12 Next: 12.5 Reading a
Handles Directory Access Directory Handle

12.4 Opening and Closing a Directory Handle

Theopendi r function works like the C and C++ library call of the same name. Y ou give it the name of
anew directory handle and a string value denoting the name of the directory to be opened. The return
value from opendi r istrueif the directory can be opened, false otherwise. Here's an example:

opendi r (ETC,"/etc") || die "Cannot opendir /etc: $'";

Normally, at this point, we'd go playing with the directory handle ETC, but it's probably nice to know
how to close the directory handle first. Thisis done with cl osedi r, in asimilar manner to using
cl ose, like so:

cl osedi r (ETO);

Likecl ose, cl osedi r isoften unnecessary, since all directory handles are automatically closed
before they're reopened or at the end of the program.

Previous: 12.3 Directory Learning Next: 12.5 Reading a
Handles Perl Directory Handle
12.3 Directory Handles Book 12.5 Reading a Directory
Index Handle

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 12.4 Opening and ‘Cha ter 12 Next: 12.6
Closing a Directory Handle Directory Access Exercises

12.5 Reading a Directory Handle

Once we have a directory handle open, we can read the list of nameswith r eaddi r , which takes a
single parameter: the directory handle. Each invocation of r eaddi r inascaar context returns the next
filename (just the basename: you'll never get any slashesin the return value) in a seemingly random
order.[5] If there are no more names, r eaddi r returnsundef .[6] Invoking r eaddi r in alist context
returns al of the remaining names as a list with one name per element. Here's an example of listing all of
the names from the /etc directory:

opendi r (ETC,"/etc") || die "no etc?: $!";

while ($nanme = readdir(ETC)) { # scalar context, one per |oop
print "$name\n"; # prints ., .., passwd, group, and so on

}

cl osedir (ETC);

[5] Specifically, thisisthe order in which the filenames are kept in the directory - the same
unordered order you get back from the find command or Is-f under UNIX.

[6] Which meansyou'll havetousewhi | e (defined ($nanme = readdir
(...)) whenworking under Perl's - w option.

And here'saway of getting them all in alphabetical order with the assistance of sort :

opendir (ETC,"/etc") || die "no etc?: $!'";

foreach $nane (sort readdir(ETC)) { # |list context, sorted
print "$nanme\n"; # prints ., .., passwd, group, and so on

}

cl osedir (ETC);

The names include files that begin with adot. Thisis unlike globbing with <* >, which does not return
names that begin with a dot. On the other hand, it islike the shell'secho* .

Previous: 12.4 Opening and Learning Next: 12.6
Closing a Directory Handle Perl Exercises
12.4 Opening and Closing a Book 12.6 Exercises

Directory Handle Index

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 12.5 Reading a .Cha ter 12 Next: 13. File and Directory
Directory Handle Directory Access Manipulation

12.6 Exercises

Answers arein Appendix A, Exercise Answers.

1. Write aprogram to change directory to alocation specified as input, then list the names of the files
in alphabetical order after changing there. (Don't show alist if the directory change did not
succeed: merely warn the user.)

2. Modify the program to include al files, not just the ones that don't begin with dot. Try to do this
with both a glob and a directory handle.

Previous: 12.5 Reading a Learning Next: 13. File and Directory
Directory Handle Perl Manipulation

12.5 Reading a Directory Book 13. File and Directory

Handle Index Manipulation

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 12.6 Chapter 13 | Next: 13.2 Renaming a File|
Exercises

13. File and Directory Manipulation

Contents:
Removing aFile

Renaming aFile

Creating Alternate Names for aFile: Linking
Making and Removing Directories
Modifying Permissions

Modifying Ownership

Modifying Timestamps

Exercises

This chapter shows you how to manipulate the files themselves, not merely the data contained in them.
Well use the UNIX (and POSIX and Linux) semantics for demonstrating access to files and directories.
Not all filesystems access mechanisms, but these are the standard ones for reasonably support-rich
filesystem models.

13.1 Removing a File

Earlier, you learned how to create a file from within Perl by opening it for output with afilehandle. Now,
we'll get dangerous and learn how to remove afile (very appropriate for Chapter 13, File and Directory

Manipulation, don't you think?).

The Perl unl i nk function (named for the POSIX system call) deletes one name for afile (which could
possibly have other names). When the last name for afile is deleted, and no processes have it open, the
fileitself isremoved. Thisis exactly what the UNIX rm command does. Because afile typically has just
one name (unless you've created hard links), for the most part, you can think of removing a name as
removing the file. Given that, here's how to remove afile called fred and then remove afile specified
during program execution:

unlink ("fred"); # say goodbye to fred
print "what file do you want to delete? ";
chomp($nanme = <STDI N>) ;

unl i nk ($nane);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Theunl i nk function can take alist of names to be unlinked as well:

unlink ("cowbird","starling"); # kill two birds
unl i nk <*.o0>; # just like "rm*.0" in the shell

The glob isevaluated in alist context, creating alist of filenames that match the pattern. Thisis exactly
what we need to feed unl i nk.

The return value of unl i nk isthe number of files successfully deleted. If there's one argument, and it is
deleted, the result is one, otherwise it is zero. If there are three filenames but only two could be deleted,
the result istwo. Y ou can't tell which two, so if you need to figure out which deletion failed, you must do
them one at atime. Here's how to delete all of the object files (ending in. 0) while reporting an error for
any file that cannot be deleted:

foreach $file (<*.0>) { # step through a list of .o files
unlink($file) || warn "having trouble deleting $file: $!'";
}

If theunl i nk returns 1 (meaning the one file specified was indeed deleted), the true result skips the
war n function. If the filename cannot be deleted, the O result isfalse, so thewar n is executed. Once
again, this can be read abstractly as "unlink thisfile or tell me about it."

If theunl i nk function is given no arguments, the $_ variable is once again used as a default. Thus, we
could have written the loop above as:

foreach (<*.0>) { # step through a list of .o files

unlink || warn "having trouble deleting $: $'";
}
Previous: 12.6 Learning | Next: 13.2 Renaming a File|
Exercises Perl
12.6 Exercises Book 13.2 Renaming aFile
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.1 Removing a . Chapter 13 _ Next: 13.3 Creating Alternate
File File and Directory Manipulation Names for a File: Linking

13.2 Renaming a File

In the UNIX shell, you change the name of afile with the mv command. With Perl, the same operation is
denoted withr enane($ol d, $new) . Here's how to change the file named f r ed into bar ney:

renane("fred","barney") || die "Can't renane fred to barney: $!";

Like most other functions, r enane returns atrue value if successful, so test this result to see whether the
r enane hasindeed worked.

The mv command performs a little behind-the-scenes magic to create a full pathname when you say mv
file some-directory. However, ther enanme function cannot. The equivalent Perl operation is:

renane("file","sone-directory/file");

Note that in Perl we had to say the name of the file within the new directory explicitly. Also, the mv
command copies the file when the file is renamed from one mounted device to another (if you have one
of the better operating systems). Ther enane function isn't as smart, so you'll get an error, indicating
you have to move it around some other way (perhaps by invoking a mv command on the same names).
The File::Copy module supports a nove function.

Previous: 13.1 Removing a Learning Next: 13.3 Creating Alternate
File Perl Names for a File: Linking
13.1 Removing aFile Book 13.3 Creating Alternate
Index Names for a File: Linking

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.2 Renaming a . ‘Cha ter 13 . _ Next: 13.4 Making and
File Fileand Directory Manipulation Removing Directories

13.3 Creating Alternate Names for a File: Linking

Asif one name for afile weren't enough, sometimes you want to have two, three, or a dozen names for
the same file. This operation of creating alternate names for afileiscalled linking. The two major forms
of linking are hard links and symbolic links (also called symlinks or soft links). Not all kinds of
filesystems support both of these or even either of them. This section describes filesystems under POSIX.

13.3.1 About Hard and Soft Links

A hard link to afileisindistinguishable from the original name for the file; there's no particular link that
iIsmore the "real name" for the file than any other.

The operating system keeps track of how many hard links reference the file at any particular time. When
afileisfirst created, it starts with one link. Each new hard link increases the count. Each removed link
reduces the count. When the last link to afile disappears, and the fileis closed, the file goes away.

Every hard link to afile must reside on the same mounted filesystem (usually a disk or a part of a disk).
Because of this, you cannot make anew hard link to afile that is on adifferent mounted filesystem.

Under most systems, hard links are also restricted for directories. To keep the directory structure as atree
rather than an arbitrary mish-mash, a directory is allowed only one name from the root, alink from the
dot file within itself, and a bunch of dot-dot hard links from each of its subdirectories. If you try to create
another hard link to adirectory, you will get an error (unless you're the superuser, and then you get to
spend all night restoring your mangled filesystem).

A symbolic link isa specia kind of afile that contains a pathname as data. When thisfile is opened, the
operating system regards its contents as replacement characters for the pathname, causing the kernel to
hunt through the directory tree some more, starting with the new name.

For example, if asymlink named fred contains the name barney, opening fred isreally an indication to
open barney. If barney is adirectory, then fred/wilma refers to barney/wilma instead.

The contents of a symlink (where a symlink points) do not have to refer to an existing file or directory.
When fred is made, barney doesn't even have to exist: in fact, it may never exist! The contents of a
symlink can refer to a path that leads you off the current filesystem, so you can create a symlink to afile
on another mounted filesystem.

While following the new name, the kernel may run across another symlink. This new symlink gives even

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

more new partsto the path to be followed. In fact, symlinks can point to other symlinks, with usually at
least eight levels of symlinks allowed, although thisisrarely used in practice.

A hard link protects the contents of afile from being lost (because it counts as one of the names of the
file). A symlink cannot keep the contents from disappearing. A symlink can cross mounted filesystems; a
hard link cannot. Only a symlink can be made to a directory.

13.3.2 Creating Hard and Soft Links with Perl

The UNIX In command creates hard links. The command
| n fred bi gdunbguy

creates a hard link from the file fred (which must exist) to bigdumbguy. In Perl, thisis expressed as:

i nk("fred", "bi gdunbguy") ||
die "cannot link fred to bi gdunbguy";

Thel i nk function takes two parameters, the old filename and anew aiasfor that file. The function
returnstrue if the link was successful. As with the mv command, the UNIX In command performs some
behind-the-scenes magic, alowing you to specify the target directory for the new alias without naming
the file within the directory. Thel i nk function (like the r enane function) is not so smart, and you
must specify the full filename explicitly.

For ahard link, the old filename cannot be a directory,[1] and the new alias must be on the same
filesystem. (These restrictions are part of the reason that symbolic links were created.)

[1] Unless you are root and enjoy running fsck.

On systems that support symbolic links, the In command may be given the -s option to create a symbolic
link. So, to create a symbolic link from barney to neighbor (so that a reference to neighbor is actually a
reference to barney), you'd use something like this:

| n -s barney nei ghbor

and in Perl, you'd use thesynl i nk function, like so:

sym i nk(" barney", "nei ghbor") ||
di e "cannot symink to nei ghbor";

Note that barney need not exist (poor Betty!), either now or in the future. In this case, areferenceto
neighbor will return something vaguely likeNo such fil e or directory.

When you invoke Is -I on the directory containing a symbolic link, you get an indication of both the name
of the symbolic link and where the link points. Perl gives you this same information through the
r eadl i nk function, which works surprisingly like the system call of the same name, returning the
name pointed at by the specified symbolic link. So, this operation
I f (defined($x = readlink("neighbor"))) {

print "neighbor points at '$x'\n";
}

should talk about barney if all iswell. If the selected symbolic link does not exist or can't be read or isn't

even asymlink, r eadl i nk returnsundef (definitely false), which iswhy we're testing it here.

On systems without symbolic links, both thesym i nk and r eadl i nk functionswill fail, producing a
run-time error. Thisis because there is no comparable equivalent for symbolic links on systems that don't
support them. Perl can hide some system-dependent features from you, but some just leak right through.
Thisis one of them.

Previous: 13.2 Renaming a Learning Next: 13.4 Making and
File Perl Removing Directories
13.2 Renaming aFile Book 13.4 Making and Removing
Index Directories

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.3 Creating . ‘Cha ter 13 _ _ Next: 13.5 Modifying
Alternate Names for a File: Fileand Directory Manipulation Permissions
Linking

13.4 Making and Removing Directories

Y ou probably couldn't have made it this far (on a UNIX system, anyway) without knowing about the
mkdir (1) command, which makes directories that hold other filenames and other directories. Perl's
equivalent isthe nkdi r function, which takes a name for a new directory and a mode that will affect the
permissions of the created directory. The mode is specified as a number interpreted in internal
permissions format. If you're not familiar with internal permissions, see chmod (2). If you'rein ahurry,
just say 0777 for the mode and everything will work.[2] Here's an example of how to create a directory

named gr avel pi t:

[2] You aren't making a directory with wide-open permissions. Y our process's current
umask will a'so help determine the permissions. On UNIX systems, see the shell's umask
command or umask (2).

nkdir("gravel pit",0777) || die "cannot nkdir gravelpit: $'";

The UNIX rmdir (1) command removes empty directories; you'll find a Perl equivalent with the same
name. Here's how to make Fred unemployed:

rodir("gravelpit”) || die "cannot rndir gravelpit: $'";

Although these Perl operators take advantage of the same-named system calls, they'll work even on
systems without those system calls (albeit a bit slower). Perl calls the mkdir and rmndir utilities

automatically for you (or whatever they're called on your system). Strike one blow in the name of
portability!

Previous: 13.3 Creating Learning Next: 13.5 Modifying
Alternate Names for a File: Perl Permissions
Linking
13.3 Creating Alternate Book 13.5 Modifying Permissions
Names for aFile: Linking Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.4 Making and . ‘Cha ter 13 _ _ Next: 13.6 Modifying
Removing Directories File and Directory Manipulation Ownership

13.5 Modifying Permissions

The permissions on afile or directory define who (in broad categories) can do what (more or less) to that
file or directory. Under UNIX, the typical way to change permissions on afileis with the chmod (1)
command. (See its manpage if you are unfamiliar with its operation.) Similarly, Perl changes permissions
with the chnod function. This operator takes an octal numeric mode and alist of filenames, and
attempts to alter the permissions of al the filenamesto the indicated mode. To make the files fred and
barney both read/write for everyone, for example, do something like this:

chnod(0666, "fred", "barney");

Here, the value of 0666 happens to be read/write for user, group, and other, giving us the desired
permission.

The return value of chnod isthe number of files successfully adjusted (even if the adjustment does
nothing); so it works like unl i nk, and you should treat it as such with regard to error checking. Here's
how to change the permissions of fred and barney while checking the errors for each:

foreach $file ("fred", "barney") {
unl ess chnod (0666, $file) {
warn "hmm .. couldn't chnod $file: $'";

}
}
Previous: 13.4 Making and Learning Next: 13.6 Modifying
Removing Directories Perl Ownership
13.4 Making and Removing Book 13.6 Modifying Ownership
Directories Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.5 Modifying Chapter 13 Next: 13.7 Modifying
Permissions Fileand Directory Manipulation Timestamps

13.6 Modifying Ownership

Every file (or directory, or device entry, or whatever) in the filesystem has an owner and group. The
owner and group of afile determine to whom the owner and group permissions apply (read, write, and/or
execute). The owner and group of afile are determined at the time thefile is created, but under certain
circumstances, you can change them. (The exact circumstances depend on the particular flavor of UNIX
you are running: see the chown manpage for details.)

The chown function takes a user ID number (UID), agroup ID number (GID), and alist of filenames,
and attempts to change the ownership of each of the listed files as specified. A successisindicated by a
nonzero return value equal to the number of files successfully changed - just like chnod or unl i nk.
Note that you are changing both the owner and the group at once. Use -1 instead of an actual user or
group ID if you do not want to change the ID. Also note that you must use the numeric UID and GID, not
the corresponding symbolic names (even though the chmod command accepts the names). For example,
if fredisUID 1234 and f r ed'sdefault group st oner s isGID 35, then the following command
makes the files slate and granite belong to f r ed and his default group:

chown(1234, 35, "slate", "granite"); # sane as:
chown fred slate granite
chgrp stoners slate granite

In Chapter 16, System Database Access, you'll learn how to convert f r ed to 1234 and st oner s to
35.

Previous: 13.5 Modifying Learning Next: 13.7 Modifying
Permissions Perl Timestamps
13.5 Modifying Permissions Book 13.7 Modifying Timestamps
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.6 Modifying Chapter 13 Next: 13.8
Ownership Fileand Directory Manipulation Exercises

13.7 Modifying Timestamps

Associated with each fileis a set of three timestamps. These timestamps were discussed briefly when we
talked about getting information about afile: the last access time, the last modification time, and the last
inode-change time. The first two timestamps can be set to arbitrary values by the ut i ne function (which
corresponds directly to the same-named UNIX system call). Setting these two values automatically sets
the third value to the current time, so there's no point in having away to set the third value.

The values are measured in internal time, namely an integer number of seconds past midnight GMT,
January 1, 1970 - afigure that had reached 800-million-something when this book was being written.
(Internally, it's represented as a 32-bit unsigned number, and if we haven't al upgraded to 64-bit
machines (or beyond), will overflow sometime well into the next century. We have much more to worry
about in the year 2000.[3])

[3] Perl'sl ocal ti me and gnt i me functionswork just like C's: they return the year with
1,900 subtracted. In 2003, | ocal t i nme will give the year as 103.

Theut i me function workslike chnod and unl i nk. It takes alist of filenames and returns the number
of files affected. Here's how to make the fred and barney files look as though they were modified
sometime in the recent past:

$atinme = $minme = 700 000 _000; # a while ago

utime($atine, $ntinme, "fred", "barney");

There's no "reasonableness’ value for the timestamps: you can make afile look arbitrarily old or as
though it were modified at some time in the distant future (useful if you are writing science fiction
stories). For example, using thet i me function (which returns the current time as a UNIX timestamp),
here's how to make the file max_headroom look like it was updated 20 minutes into the future:

$when = time() + 20*60; # 20 minutes from now
ut i me($when, $when, "max_headr oont') ;

Previous: 13.6 Modifying Learning Next: 13.8
Ownership Perl Exercises
13.6 Modifying Ownership Book 13.8 Exercises

Index

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.7 Modifying Chapter 13 Next: 14. Process
Timestamps Fileand Directory Manipulation Management

13.8 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram that works like rm, deleting the files given as command-line arguments when the
program isinvoked. (Y ou don't need to handle any options of rm.)

Be careful to test this program in a mostly empty directory so you don't accidentally delete useful
stuff! Remember that the command-line arguments are available in the @GARGV array when the
program starts.

2. Write aprogram that works like mv, renaming the first command-line argument to the second
command-line argument. (Y ou don't need to handle any options of mv, or more than two
arguments.) Y ou may wish to consider how to handle the rename when the destination is a
directory.

3. Write aprogram that works like In, creating a hard link from the first command-line argument to
the second. (Y ou don't need to handle any options of In, or more than two arguments.)

4. 1f you have symlinks, modify the program from the previous exercise to handle an optional - s
switch.

5. If you have symlinks, write a program that looks for all symlinked filesin the current directory and
prints out their name and symlinked value similar to the way Is -l doesit (nane - > val ue).
Create some symlinksin the current directory and test it out.

Previous: 13.7 Modifying Learning Next: 14. Process
Timestamps Perl Management
13.7 Modifying Timestamps Book 14. Process M anagement
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 13.8 Chapter 14 [Next: 14.2 Using Backquotes]
Exercises

14. Process Management

Contents:
Using system and exec

Using Backquotes

Using Processes as Filehandles
Using fork

Summary of Process Operations
Sending and Receiving Signals
Exercises

14.1 Using system and exec

When you give the shell acommand line to execute, the shell usually creates a new process to execute
the command. This new process becomes a child of the shell, executing independently, yet coordinating
with the shell.

Similarly, aPerl program can launch new processes, and like most other operations, has more than one
way to do so.

The simplest way to launch a new processisto use the syst emfunction. In its ssmplest form, this
function hands a single string to a brand new /bin/sh shell to be executed as a command. When the
command is finished, the sy st emfunction returns the exit value of the command (typically O if
everything went OK). Here's an example of a Perl program executing a date command using a shell:[1]

systenm("date");

[1] This doesn't actually use the shell: Perl performs the operations of the shell if the
command line is simple enough, and thisoneis.

WEe're ignoring the return value here, but it's not likely that the date command is going to fail anyway.

Where does the command's output go? In fact, where does the input come from, if it's acommand that
wants input? These are good questions, and the answers to these questions are most of what distinguishes
the various forms of process-creation.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

For the sy st emfunction, the three standard files (standard input, standard output, and standard error)
are inherited from the Perl process. So for the date command in the previous example, the output goes
wherever the pri nt STDOUT output goes - probably the invoker's display screen. Because you are
firing off ashell, you can change the location of the standard output using the normal /bin/sh 1/0
redirections. For example, to put the output of the date command into afile named right_now, something
like this will work just fine:

systen("date >right_now') && die "cannot create right_now';

Thistime, we not only send the output of the date command into afile with aredirection to the shell, but
also check the return status. If the return status is true (nonzero), something went wrong with the shell
command, and the di e function will do its deed. This is backwards from normal Perl operator
convention: a nonzero return value from the sy st emoperator generally indicates that something went
wrong.

The argument to sy st emcan be anything you would feed /bin/sh, so multiple commands can be
included, separated by semicolons or newlines. Processes that end in & are launched and not waited for,
just asif you had typed aline that ends in an & to the shell.

Here's an example of generating a date and who command to the shell, sending the output to a filename
specified by a Perl variable. This all takes place in the background so that we don't have to wait for it
before continuing with the Perl script:

$where = "who_out.". ++$i; # get a new fil enane
system " (date; who) >$where &";

The return value from sy st emin this case is the exit value of the shell, and would thus indicate whether
the background process had launched successfully, but not whether the date and who commands
executed successfully. The double-quoted string is variable interpolated, so $wher e is replaced with its
value (by Perl, not by the shell). If you wanted to reference a shell variable named $wher e, you'd have
to backslash the dollar sign or use a single-quoted string.

A child process inherits many things from its parent besides the standard filehandles. These include the
current umask, current directory, and of course, the user ID.

Additionally, all environment variables are inherited by the child. These variables are typically altered by
the csh setenv command or the corresponding assignment and export by the /bin/sh shell. Environment
variables are used by many utilities, including the shells, to alter or control the way that utility operates.

Perl gives you away to examine and alter current environment variables through a special hash called
%ENV (uppercase). Each key of this hash corresponds to the name of an environment variable, with the
corresponding value being, well, the corresponding value. Examining this hash shows you the
environment handed to Perl by the parent shell; atering the hash affects the environment used by Perl
and by its child processes, but not parents.

For example, here's asimple program that acts like printenv :

foreach $key (sort keys %ENV) {
print "$key=$ENV{ $key}\n";
}

Note the equal sign here is not an assignment, but simply atext character that the pr i nt isusing to say
stuff like TERM=xt er mor USER=ner | yn.

Here's a program snippet that alters the value of PATH to make sure that the grep command run by
syst emislooked for only in the normal places:

$ol dPATH = $ENV{" PATH'}; # save previous path
$ENV{ " PATH'} = "/bin:/usr/bin:/usr/ucb"; # force known path
system("grep fred bedrock >output"); # run conmand

$ENV{ " PATH'} = $ol dPATH; # restore previous path

That'salot of typing. It'd be faster just to set alocal value for this hash element.

Despite its other shortcomings, thel ocal operator can do one thing that my cannot: it can give just one
element of an array or a hash atemporary value.

{
| ocal $ENV{"PATH'} = "/bin:/usr/bin:/usr/uch";

system "grep fred bedrock >output”;

}

The syst emfunction can also take alist of arguments rather than a single argument. In that case, rather
than handing the list of arguments off to a shell, Perl treats the first argument as the command to run
(located according to the PATH if necessary) and the remaining arguments as arguments to the command
without normal shell interpretation. In other words, you don't need to quote whitespace or worry about
arguments that contain angle brackets because those are all merely characters to hand to the program. So,
the following two commands are equivalent:

system"grep 'fred flintstone' buffal oes"; # using shell
system"grep”,"fred flintstone", "buffal oes"; # avoiding shell

Giving syst emalist rather than giving it a simple string saves one shell process as well, so do this
when you can. (Actually, when the one-argument form of syst emis simple enough, Perl itself
optimizes away the shell invocation entirely, calling the resulting program directly asif you had used the
multiple-argument invocation.)

Here's another example of equivalent forms:

@files = ("fred.c","barney.c"); # what to conpile

@ptions = ("-DHARD', "- DGRANI TE") ; # options

system"cc -0 slate @ptions @files"; # using shell

system "cc","-0","slate", @ptions, @files; # avoiding shell

Previous: 13.8 Learning | Next: 14.2 Using Backquotes|
Exercises Perl

13.8 Exercises Book 14.2 Using Backqguotes

Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.1 Using system Chapter 14 Next: 14.3 Using Processes
and exec Process M anagement as Filehandles

14.2 Using Backquotes

Another way to launch aprocessisto put a/bin/sh shell command line between backquotes. Like the
shell, thisfires off acommand and waits for its completion, capturing the standard output as it goes
along:

$now = "the time is now ". date ; # gets text and date out put

The value of $Snowwindsup withthetextt he ti nme i s nowaong with the result of the date (1)
command (including the trailing newline), so it looks something like this:

the time is now Fri Aug 13 23:59:59 PDT 1993

If the backquoted command is used in alist context rather than a scalar context, you get alist of strings,
each one being aline (terminated in anewling[2]) from the command's output. For the date example,

we'd have just one element because it generated only one line of text. The output of who looks like this:

merlyn tty42 Dec 7 19:41
fred ttylA Aug 31 07:02
bar ney ttylF Sep 1 09:22

[2] Or whatever you've set $/ to.

Here's how to grab this output in alist context:

foreach $ (" "who') { # once per text line fromwho
($who, $where, $when) = / (\S+)\s+(\SH)\s+(.*)/;
print "$who on $where at $when\n";

}

Each pass through the loop works on a separate line of the output of who, because the backquoted
command is evaluated within alist context.

The standard input and standard error of the command within backquotes are inherited from the Perl
process.[3] This means that you normally get just the standard output of the commands within the
backquotes as the value of the backquoted-string. One common thing to do is to merge the standard error

into the standard output so that the backgquoted command picks up both, using the 2>&1 construct of the
shell:

[3] Actually, it's abit more complicated that this. See the question in Section 8 of the Perl
FAQ on "How can | capture STDERR from an external command?' If you're running Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

version 5.004, the FAQ is distributed as a normal manpage - perlfag8 (1) in this case.
die "rmspoke!" if "rmfred 2>&1 ;

Here, the Perl processisterminated if rm says anything, either to standard output or standard error,
because the result will no longer be an empty string (an empty string would be false).

Previous: 14.1 Using system Learning Next: 14.3 Using Processes
and exec Perl as Filehandles
14.1 Using system and exec Book 14.3 Using Processes as
Index Filehandles

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.2 Using Chapter 14 Next: 14.4
Backquotes Process M anagement Using fork

14.3 Using Processes as Filehandles

Y et another way to launch a processisto create a process that looks like a filehandle (similar to the
popen (3) C library routine if you're familiar with that). We can create a process-filehandle that either
captures the output from or provides input to the process.[4] Here's an example of creating afilehandle
out of awho(1) process. Because the process is generating output that we want to read, we make a
filehandle that is open for reading, like so:

open(WHOPROC, "who|"); # open who for reading

[4] But not both at once. See Chapter 6 of Programming Perl or perlipc (1) for examples of
bidirectional communication.

Note the vertical bar on the right side of who. That bar tells Perl that thisopen is not about a filename,
but rather a command to be started. Because the bar is on the right of the command, the filehandle is
opened for reading, meaning that the standard output of who is going to be captured. (The standard input
and standard error remain shared with the Perl process.) To the rest of the program, the WHOPROC handle
ismerely afilehandle that is open for reading, meaning that all normal file 1/O operators apply. Here'sa
way to read data from the who command into an array:

@hosai d = <WHOPROC>;

Similarly, to open a command that expects input, we can open a process-filehandle for writing by putting
the vertical bar on the left of the command, like so:

open(LPR, "“|lpr -Pslatewiter");
print LPR @ ockreport;
cl ose(LPR);

In this case, after opening LPR, we write some datato it and then close it. Opening a process with a
process-filehandl e allows the command to execute in parallel with the Perl program. Saying cl ose on
the filehandle forces the Perl program to wait until the process exits. If you don't close the filehandle, the
process can continue to run even beyond the execution of the Perl program.

Opening a process for writing causes the command's standard input to come from the filehandle. The
process shares the standard output and standard error with Perl. As before, you may use /bin/sh-style I/O
redirection, so here's one way to ssmply discard the error messages from the Ipr command in that last
example:

open(LPR "|lpr -Pslatewiter >/dev/null 2>&1");

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

The>/ dev/ nul | causes standard output to be discarded by being redirected to the null device. The
2>&1 causes standard error to be sent to where the standard output is sent, resulting in errors being
discarded as well.

Y ou could even combine all this, generating a report of everyone except Fred in the list of logged-on
entries, like so:
open (VHO, "who|");
open (LPR "|Ipr -Pslatewiter");
while (<WHO>) {

unless (/fred/) { # don't show fred

print LPR $_;

}

}

cl ose VWHO
cl ose LPR

As this code fragment reads from the WHO handle one line at atime, it prints all of the lines that don't
contain the string f r ed to the LPR handle. So the only output on the printer is the lines that don't contain
fred.

Y ou don't have to open just one command at atime. Y ou can open an entire pipeline. For example, the
following line starts up an Is (1) process, which pipesits output into atail (1) process, which finally
sends its output along to the WHOPR filehandle:

open(WHOPR, "Is | tail -r |");

Previous: 14.2 Using Learning Next: 14.4

Backquotes Perl Using fork

14.2 Using Backquotes Book 14.4 Using fork
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.3 Using Chapter 14 Next: 14.5 Summary of
Processes as Filehandles Process M anagement Process Operations

14.4 Using fork

Still another way of creating an additional processisto clone the current Perl process using a UNIX
primitive called f or k. Thef or k function ssmply does what the fork (2) system call does: it creates a
clone of the current process. This clone (called the child, with the original called the parent) shares the
same executable code, variables, and even open files. To distinguish the two processes, the return value
from f or k iszero for the child, and nonzero for the parent (or undef if the system call fails). The
nonzero value received by the parent happens to be the child's process ID. Y ou can check for the return
value and act accordingly:
if (!defined($child_pid = fork())) {

die "cannot fork: $!'";
} elsif ($child_pid) {

|'mthe parent
} else {

1'mthe child
}

To best use this clone, we need to learn about a few more things that parallel their UNIX namesakes
closdly: thewai t , exi t , and exec functions.

The smplest of theseisthe exec function. It'sjust like the sy st emfunction, except that instead of
firing off a new process to execute the shell command, Perl replaces the current process with the shell. (In
UNIX parlance, Perl exec'sthe shell.) After a successful exec, the Perl program is gone, having been
replaced by the requested program. For example,

exec "date";
replaces the current Perl program with the date command, causing the output of the date to go to the

standard output of the Perl program. When the date command finishes, there's nothing more to do because
the Perl program islong gone.

Another way of looking at thisisthat thesyst emfunctionislikeaf or k followed by an exec, as
follows:

METHOD 1... using system
systen("date");

METHOD 2... using fork/exec:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

unl ess (fork) {
fork returned zero, so I'mthe child, and | exec:
exec("date"); # child process becones the date conmmand

}

Using f or k and exec thisway isn't quite right though, because the date command and the parent
process are both chugging along at the same time, possibly intermingling their output and generally
mucking things up. What we need is away to tell the parent to wait until the child process completes.
That's exactly what thewai t function does; it waits until the child (any child, to be precise) has
completed. Thewai t pi d function is more discriminating: it waits for a specific child processto
complete rather just any kid:
if (!defined($kidpid = fork())) {
fork returned undef, so failed
die "cannot fork: $!'";
} elsif ($kidpid == 0) {
fork returned O, so this branch is the child
exec("date");
if the exec fails, fall through to the next statenent
die "can't exec date: $!";
} else {
fork returned neither 0 nor undef,
so this branch is the parent
wai t pi d($ki dpi d, 0);
}

If this all seems rather fuzzy to you, you should probably study up on the fork (2) and exec (2) system
callsinatraditional UNIX text, because Perl is pretty much just passing the function calls right down to
the UNIX system calls.

The exi t function causes an immediate exit from the current Perl process. Y ou'd use thisto abort a Perl
program from somewhere in the middle, or with f or k to execute some Perl code in a process and then
quit. Here's a case of removing some filesin /tmp in the background using a forked Perl process.

unl ess (defined ($pid = fork)) {
die "cannot fork: $!'";

}
unl ess ($pid) {
unl i nk </tnp/ badrock. *>; # bl ast those files
exit; # the child stops here
}
Parent continues here
wai t pi d($pi d, 0); # must clean up after dead kid

Without the exi t , the child process would continue executing Perl code (at the line marked Par ent
cont i nues her e), and that's definitely not what we want.

Theexi t function takes an optional parameter, which serves as the numeric exit value that can be
noticed by the parent process. The default is to exit with a zero value, indicating that everything went OK.

Previous: 14.3 Using Learning Next: 14.5 Summary of

Processes as Filehandles Perl Process Operations
14.3 Using Processes as Book 14.5 Summary of Process
Filehandles Index Operations

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.4 Chapter 14 Next: 14.6 Sending and
Using fork Process M anagement Receiving Signals

14.5 Summary of Process Operations

Table 14.1 summarizes the operations that you have for launching a process.

Table 14.1: Summary of Subprocess Operations

Operation Standard Input | Standard Output |Standard Error |Waited for?
systenm() Inherited from Inherited from Inherited from Yes

program program program
Backquoted string Inherited from Captured as string | Inherited from Yes

program value program
open() command |Connected to Inherited from Inherited from Only at time of
asfilenandlefor filehandle program program cl ose()
output
open() command |Inherited from Connected to Inherited from Only at time of
asfilehandle for program filehandle program cl ose()
Input
fork,exec,wait, |User selected User selected User selected User selected
wai t pi d

The simplest way to create a process is with the sy st emfunction. Standard input, output, and error are
unaffected (they're inherited from the Perl process). A backquoted string creates a process, capturing the
standard output of the process as a string value for the Perl program. Standard input and standard error
are unaffected. Both these methods require that the process finish before any more code is executed.

A simple way to get an asynchronous process (one that allows the Perl program to continue before the
process is complete) isto open acommand as afilehandle, creating a pipe for the command's standard
input or standard output. A command opened as a filehandle for reading inherits the standard input and
standard error from the Perl program; a command opened as afilehandle for writing inherits the standard
output and standard error from the Perl program.

The most flexible way of starting a processisto have your program invoke thef or k, exec, and wai t
or wai t pi d functions, which map directly to their UNIX system call namesakes. Using these functions,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

you can select whether you are waiting or not, and configure the standard input, output, and error any
way you choose.[5]

[5] Although it might also help to know about open(STDERR, " >&STDOUT") formsfor
fine tuning the filehandles. See the open entry in Chapter 3 of Programming Perl, or in

perlfunc (1).
Previous: 14.4 Learning Next: 14.6 Sending and
Using fork Perl Receiving Signals
14.4 Using fork Book 14.6 Sending and Receiving

Index Signals

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_102.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.5 Summary of Chapter 14 Next: 14.7
Process Operations Process M anagement Exercises

14.6 Sending and Receiving Signals

One method of interprocess communication isto send and receive signals. A signal is a one-bit message
(meaning "this signal happened") sent to a process from another process or from the kernel. Signals are
numbered, usually from one to some small number like 15 or 31. Some signals have predefined meanings
and are sent automatically to a process under certain conditions (such as memory faults or floating-point
exceptions); others are strictly user-generated from other processes. Those processes must have
permission to send such asignal. Only if you are the superuser or if the sending process has the same
user ID asthereceiving processisthe signal permitted.

Theresponseto asignal is caled the signal's action. Predefined signals have certain useful default
actions, such as aborting the process or suspending it. Other signals are completely ignored by default.
Nearly al signals can have their default action overridden, to either be ignored or else caught (invoking a
user-specified section of code automatically).

So far, thisis all standard stuff; here's where it gets Perl-specific. When a Perl process catches asignal, a
subroutine of your choosing gets invoked asynchronously and automatically, momentarily interrupting
whatever was executing. When the subroutine exits, whatever was executing resumes as if nothing had
happened (except for the actions performed by the subroutine, if any).

Typically, the signal-catching subroutine will do one of two things: abort the program after executing
some cleanup code, or set some flag (such as a global variable) that the program routinely checks.[6]

[6] In fact, doing anything more complicated than thisislikely to mess things up; most of
Perl's inner workings do not like to be executed in the main program and from the
subroutine at the same time. Neither do your system libraries.

Y ou need to know the signal names to register asignal handler with Perl. By registering asignal handler,
Perl will call the selected subroutine when the signal is received.

Signal names are defined in the signal (2) manpage, and usually also in the C includefile
/usr/include/sys/signal.h. Names generally start with SI G, suchas SI G NT, SI GQUI T, and SI GKI LL.
To declare the subroutinenny _si gi nt _cat cher () asthesigna handler to deal with the SI G NT, we
set avalue into the magic %8I G hash. In this hash, we set the value of the key | NT (that's SI G NT
without the SI G) to the name of the subroutine that will catch the SI G NT signal, like so:

$SIG'INT'} = 'ny_sigint_catcher';

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

But we also need a definition for that subroutine. Here's asimple one:

sub ny_sigint_catcher {
$saw sigint = 1; # set a flag
}

Thissignal catcher sets a global variable and then returns immediately. Returning from this subroutine
causes execution to resume wherever it was interrupted. Typically, you'd first zero the $saw_si gi nt
flag, set this subroutine up asa SI G NT catcher, and then do your long-running routine, like so:

$saw sigint = 0; # clear the flag
$SIG'INT'} = "ny_sigint_catcher'; # register the catcher
foreach (@wge_array) {
do sonet hi ng
do nore things
do still nore things
i f ($saw sigint) { # interrupt wanted?
sone sort of cleanup here
| ast ;
}
}
$SIG'INT'} = 'DEFAULT ; # restore the default action

Thetrick here isthat the value of the flag is checked at useful points during the evaluation and is used to
exit the loop prematurely, here also handling some cleanup actions. Note the last statement in the
preceding code: setting the action to DEFAULT restores the default action on a particular signal (another
SI A NT will abort the program immediately). Another useful special value like thisis| GNORE,
meaning to ignore the signal (if the default action is not to ignore the signal, like SI G NT). You can
make a signal action | GNORE if no cleanup actions are required, and you don't want to terminate
operations early.

One of the ways that the SI G NT signal is generated is by having the user press the selected interrupt
character (like CTRL-C) on the terminal. But a process can also generate the SI G NT signal directly
using theki | I function. This function takes a signal number or name, and sends that signal to the list of
processes (identified by process ID) following the signal. So sending a signal from a program requires
determining the process IDs of the recipient processes. (Process IDs are returned from some of the
functions, such asf or k and - when opening a program as afilehandle - open). Suppose you want to
send asignal 2 (also known as SI G NT) to the processes 234 and 237. It'sas simple as this:

Kill(2,234,237); # send SIGNT to 234 and 237
Kill ('INT', 234, 237); #sane

For more about signal handling, see Chapter 6 of Programming Perl or the perlipc (1) manpage.

Previous: 14.5 Summary of Learning Next: 14.7
Process Operations Perl Exercises
14.5 Summary of Process Book 14.7 Exercises

Operations Index

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.6 Sending and Chapter 14 Next: 15. Other Data
Receiving Signals Process M anagement Transformation

14.7 Exercises

See Appendix A, Exercise Answers for answers.

1. Write aprogram to parse the output of the date command to get the current day of the week. If the
day of the week isaweekday, print get t o wor k, otherwise print go pl ay.

2. Write aprogram that gets all of the real names of the users from the /etc/passwd file, then
transforms the output of the who command, replacing the login name (the first column) with the
real name. (Hint: create a hash where the key is the login name and the value is the real name.) Try
this both with the who command in backquotes and opened as a pipe. Which was easier?

3. Modify the previous program so that the output automatically goesto the printer. (If you can't
access a printer, perhaps you can send yourself mail.)

4. Suppose thenkdi r function were broken. Write a subroutine that doesn't use nkdi r , but invokes
/ bi n/ nkdi r withsyst eminstead. (Be sure that it works with directories that have a spacein
the name.)

5. Extend the routine from the previous exercise to employ chnod to set the permissions.

Previous: 14.6 Sending and Learning Next: 15. Other Data
Receiving Signals Perl Transformation
14.6 Sending and Receiving Book 15. Other Data
Signals Index Transformation

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 14.7 Chapter 15 Next: 15.2 Extracting and
Exercises Replacing a Substring

15. Other Data Transformation

Contents:

Finding a Substring

Extracting and Replacing a Substring
Formatting Data with sprintf()
Advanced Sorting

Trandliteration

Exercises

15.1 Finding a Substring

Finding a substring depends on where you have lost it. If you happen to have lost it within a bigger string,
you'rein luck, becausei ndex can help you out. Here's how it looks:

$x = index($string, $substring);

Per| locates the first occurrence of subst ri ng withinst r i ng, returning an integer location of the first
character. The index value returned is zero-based; if the subst ri ng isfound at the beginning of thest r i ng,
you get a 0. If it's one character later, you get a1, and so on. If thesubst ri ng can't befoundinstri ng,
you get - 1.

Take alook at these:

$wher e = index("hello","e"); # $where gets 1
$person = "barney";

$where = index("fred barney", $person); # $where gets 5
@ ockers = ("fred", "barney");

$wher e = index(join(" ", @ockers), $person); # sane thing

Notice that both the string being searched and the string being searched for can be aliteral string, ascalar
variable containing a string, or even an expression that has a string value. Here are some more examples:

$whi ch i ndex("a very long string","long"); # $which gets 7
$whi ch i ndex("a very long string","lane"); # $which gets -1

If the string contains the substring at more than one location, thei ndex function returns the leftmost location.
Tofind later locations, you can givei ndex athird parameter. This parameter is the minimum value that will
be returned by i ndex, allowing you to look for the next occurrence of the substring that follows a selected
position. It looks like this:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

$x = i ndex($bi gstring,

$littlestring, $skip);

Here are some examples of how this third parameter works:

$where = index("hello
$where = index("hello
$where = index("hello
$where = index("hello
$where = index("hello
$where = index("hello

wor | d","I"); # returns 2 (first |)
worl d","1",0); # sane thing
world","I",1); # still sane

wor | d", ,3); # now returns 3

| n
| n
| n
S
0",5); # returns 7 (second o)
Oll

(3 the first place greater than or equal to 3)
wor | d","
world","o",8); # returns -1 (none after 8)

Going the other way, you can scan from the right to get the rightmost occurrence using r i ndex. The return
valueis still the number of characters between the left end of the string and the start of the substring, as before,
but you'll get the rightmost occurrence instead of the leftmost occurrence if there are more than one. The

r i ndex function also takes athird parameter likei ndex does, so that you can get an occurrence that is less
than or equal to a selected position. Here are some examples of what you get:

$w = rindex("hello world","he"); # $w gets O

$w = rindex("hello world","I"); # $w gets 9 (rightnost 1)

$w = rindex("hello world","o"); # $w gets 7

$w = rindex("hello world","o "); # now $w gets 4

$w = rindex("hello world","xx"); # $w gets -1 (not found)

$w = rindex("hello world","0",6); # $w gets 4 (first before 6)

$w = rindex("hello world","0",3); # $w gets -1 (not found before 3)

Previous: 14.7 Learning Next: 15.2 Extracting and

Exercises Perl Replacing a Substring

14.7 Exercises Book 15.2 Extracting and Replacing

Index a Substring

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |

Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 15.1 Finding a Chapter 15 Next: 15.3 Formatting Data
Substring Other Data Transformation with sprintf()

15.2 Extracting and Replacing a Substring

Pulling out a piece of a string can be done with careful application of regular expressions, but if the piece
is always at a known character position, thisisinefficient. Instead, you should use subst r . This
function takes three arguments: a string value, a start position (measured like it was measured for

I ndex), and alength, like so:

$s = substr($string, $start, $l engt h);

The start position works likei ndex: the first character is zero, the second character is one, and so on.
The length isthe number of charactersto grab at that point: alength of zero means no characters, one
means get the first character, two means two characters, and so on. (It stops at the end of the string, so if
you ask for too many, it's no problem.) It looks like this:

$hello = "hello, world!";
$grab = substr($hello, 3, 2); # $grab gets "l 0"
$grab = substr($hello, 7, 100); # 7 to end, or "world!"

Y ou could even create a"ten to the power of " operator for small integer powers, asin:
$bi g = substr("10000000000", 0, $power +1); # 10 ** SPpower

If the count of charactersis zero, an empty string is returned. If either the starting position or ending
position is less than zero, the position is counted that many characters from the end of the string. So- 1
for astart position and 1 (or more) for the length gives you the last character. Similarly, - 2 for astart
position starts with the second-to-last character like this:

$stuff = substr("a very long string",-3,3); # last three chars
$stuff = substr("a very long string",-3,1); # the letter "i"

If the starting position is before the beginning of the string (like a huge negative number bigger than the
length of the string), the beginning of the string is the start position (asif you had used O for a starting
position). If the start position is a huge positive number, the empty string is always returned. In other
words, it probably does what you expect it to do, aslong as you expect it to always return something
other than an error.

Omitting the length argument is the same as if you had included a huge number for that argument -
grabbing everything from the selected position to the end of the string.[1]

[1] Very old Perl versions did not allow the third argument to be omitted, leading to the use

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

of ahuge number for that argument by pioneer Perl programmers. Y ou may come across
thisin your Perl archeological expeditions.

If the first argument to subst r isascaar variable (in other words, it could appear on the left side of an
assignment operator), then the subst r itself can appear on the left side of an assignment operator. This
may look strange if you come from a C background, but if you've ever played with some dial ects of
BASIC, it'squite normal.

What gets changed as the result of such an assignment is the part of the string that would have been
returned had the subst r been used on the right-hand side of the expression instead. In other words,
subst r ($var, 3, 2) returnsthe fourth and fifth characters (starting at 3, for a count of 2), so
assigning to that changes those two characters for $var like so:

$hw = "hello worl d!";

substr($hw, 0, 5) = "howdy"; # $hw is now "howdy world!"

The length of the replacement text (what gets assigned into the subst r) doesn't have to be the same as
thetext it isreplacing, asit was in this example. The string will automatically grow or shrink as
necessary to accommodate the text. Here's an example where the string gets shorter:

substr($hw, 0, 5 = "hi"; # $hwis now "hi world!"

and here's one that makes it longer:
substr($hw, -6, 5) = "nationw de news"; # replaces "world"

The shrinking and growing are fairly efficient, so don't worry about using them arbitrarily, although it is
faster to replace a string with a string of equal length.

Previous: 15.1 Finding a Learning Next: 15.3 Formatting Data
Substring Perl with sprintf()

15.1 Finding a Substring Book 15.3 Formatting Data with

Index sprintf()

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 15.2 Extracting and Chapter 15 | Next: 15.4 Advanced Sorting|
Replacing a Substring Other Data Transformation

15.3 Formatting Data with sprintf()

Thepri ntf function is sometimes handy when used to take alist of values and produce an output line
that displays the valuesin controllable ways. Thespri nt f functionisidentical topri nt f forits
arguments, but returns whatever would have been output by pri nt f asasingle string. (Think of it as
"string pri nt f.") For example, to create a string consisting of the letter X followed by afive-digit
zero-padded value of 3y, it's as easy asthis:

$result = sprintf("X¥®5d", $y);

See the sprintf entry in Chapter 3 of Programming Perl, and the printf (3) manpage (if you haveit) for a
description of the arguments required by spri nt f .

Previous: 15.2 Extracting and Learning | Next: 15.4 Advanced Sorting|
Replacing a Substring Perl
15.2 Extracting and Replacing Book 15.4 Advanced Sorting
a Substring Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_156.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch03_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 15.3 Formatting Chapter 15 . Next: 15.5
Data with sprintf() Other Data Transformation Transliteration

15.4 Advanced Sorting

Earlier, you learned that you could take a list and sort it in ascending ASCI| order (like you do strings)
using the built-in sor t function. What if you don't want an ascending ASCI I sort, but something else
instead, like a numeric sort? Well, Perl gives you the tools you need to do the job. In fact, you'll see that
the Perl sort iscompletely general and able to perform any well-defined sort order.

To define asort of adifferent color, you need to define a comparison routine that describes how two
elements compare. Why is this necessary? Well, if you think about it, sorting is putting a bunch of things
in order by comparing them all. Since you can't compare them all at once, you need to compare two at a
time, eventually using what you find out about each pair's order to put the whole kit'n'caboodlein line.

The comparison routine is defined as an ordinary subroutine. This routine will be called repeatedly, each
time passing two elements of the list to be sorted. The routine must determine whether the first valueis
less-than, equal-to, or greater-than the second value, and return a coded value (described in a moment).
This process is repeated until the list is sorted.

To save alittle execution speed, the two values are not passed in an array, but rather are handed to the
subroutine as the values of the global variables $a and $b. (Don't worry: the original values of $a and
$b are safely protected.) The routine should return any negative number if $a islessthan $b, zero if $a
isequal to $b, and any positive number if $a is greater than $b. Now remember, the lessthan is
according to your meaning of less than; it could be a numeric comparison, according to the third
character of the string, or even according to the values of a hash using the passed-in values as keys. It's
really pretty flexible.

Here's an example of a comparison routine that sortsin numeric order:

sub by nunber {

if ($a < $b) {
return -1;

} elsif ($a == $b) {
return O;

} elsif ($a > $b) {
return 1;

}

}

Notice the name by nunber . There's nothing special about the name of this subroutine, but you'll see

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

why we like names that start with by _ in aminute.

Let'slook through thisroutine. If the value of $a islessthan (numerically in this case) the value of $b,
wereturn a- 1 value. If the values are numerically equal, we get back a zero, and otherwisea 1. So,
according to our specification for a sort comparison routine, this should work.

How do we useit? Let'stry sorting the following list:
@onelist = (1, 2,4,8,16, 32,64, 128, 256);

If we usethe ordinary sor t without any adornment on the list, we get the numbers sorted as if they were
strings, and in their ASCII order, like so:

@wonglist = sort @onelist;
@wonglist is now (1,128, 16, 2, 256, 32, 4, 64, 8)

Certainly not very numeric. Well, let'sgivesor t our newly defined comparison routine. The name of
the comparison routine goes immediately following thesor t keyword, like so:

@ightlist = sort by nunmber @wongli st;
@ightlist is now (1, 2, 4,8, 16, 32, 64, 128, 256)

This doesthe trick. Note that you can read the sor t with its companion sort routine in a human-like
fashion: "sort by number." That's why | named the subroutine with aby__ prefix.

Thiskind of three-way value of - 1, 0, and +1 on the basis of a numeric comparison occurs often enough
in sort routines that Perl has a special operator to do thisin one fell swoop. It's often called the spaceship
operator, and looks like <=>. Using the spaceship operator, the preceding sort subroutine can be replaced
with this:

sub by nunber {
$a <=> $b;
}

Note the spaceship between the two variables. Y es, it isindeed a three-character-long operator. The
spaceship returns the same values asthei f /el si f chain from the previous definition of this routine.
Now thisis pretty short, but you can shortcut the sort invocation even further, by replacing the name of
the sort routine with the entire sort routine in line, like so:

@ightlist = sort { $a <=> $b } @wonglist;

There are some who argue that this decreases readability. They are wrong. Others argue that it removes
the need to go somewhere else for the definition. Perl doesn't care. Our personal ruleisthat if it doesn't
fit on one line or we have to use it more than once, it goes into a subroutine.

The spaceship operator for numeric comparison has a comparable string operator called cnp. The cnp
operator returns one of three values, depending on the relative string comparisons of the two arguments.
S0, here's another way to write the default sort order:[2]

@esult = sort { $a cnp $b } @onelist;
[2] Not exactly. The built-in sort discards undef elements, but this one doesn't.

Y ou probably won't ever write this exact subroutine (mimicking the built-in default sort), unless you're

writing a book about Perl. However, the cnp operator does have its uses in the construction of cascaded
ordering schemes. For example, you might need to put the elements in numeric order unless they're
numerically equal, in which case they should go in ASCII string order. (By default, theby nunber
routine above just sticks nonnumeric strings in some random order because there's no numeric ordering
when comparing two values of zero.) Here's away to say "numeric, unless they're numerically equal,
then string":

sub by nostly nuneric {
($a <=> $b) || (%a cnmp $b);
}

How does thiswork? Well, if the result of the spaceship is-1 or 1, the rest of the expression is skipped,
and the -1 or 1 isreturned. If the spaceship evaluatesto zero, however, the cnp operator getsitsturn at
bat, returning an appropriate ordering value considering the values as strings.

The values being compared are not necessarily the values being passed in. For example, say you have a
hash where the keys are the login names and the values are the real names of each user. Suppose you
want to print a chart where the login names and real names are sorted in the order of the real names. How
would you do that?

Actualy, it'sfairly easy. Let's assume the values are in the array %manes. The login names are thus the
list of keys(%manes) . What we want to end up with isalist of the login names sorted by the
corresponding value, so for any particular key $a, we need to look at $nanmes{ $a} and sort based on
that. If you think of it that way, it almost writes itself, asin:

@ortedkeys = sort by _nanes keys(%manes);

sub by nanes {
return $nanes{$a} cnp $nanes{3$b};
}

foreach (@ortedkeys) {
print "$ has a real name of $names{$ }\n";
}

To thiswe should also add afallback comparison. Suppose the real names of two users are identical.
Because of the whimsical nature of thesor t routine, we might get one value ahead of another the first
time through and the values in the reversed order the next time. Thisis bad if the report might be fed into
a comparison program for reporting, so try very hard to avoid such things. With the cnp operator, it's
easy:
sub by nanmes {

($nanes{$a} cnp $nanes{$b}) || ($a cnp $b);
}

Here, if the real names are the same, we sort based on the login name instead. Since the login nameis
guaranteed to be unique (after all, they are the keys of this hash, and no two keys are the same), then we
can ensure a unique and repeatable order. Good defensive programming during the day is better than a
late-night call from a system administrator wondering why the security alarms are going off.

Previous: 15.3 Formatting Learning Next: 15.5

Data with sprintf() Perl Transliteration
15.3 Formatting Data with Book 15.5 Trandliteration
sprintf() Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 15.4 Advanced Chapter 15 Next: 15.6
Sorting Other Data Transfor mation Exercises

15.5 Transliteration

When you want to take a string and replace every instance of some character with some new character, or
delete every instance of some character, you can already do that with carefully selected s/ / /

commands. But suppose you had to change all of thea'sinto b's, and al of the b'sinto a's? Y ou can't do

that withtwo s/ // commands because the second one would undo all of the changes the first one made.

From the UNIX shell, however, such a data transformation is simple: just use the standard tr (1)
command:

tr ab ba <indata >outdata

(If you don't know anything about the tr command, please ook at the tr (1) manpage; it's a useful tool for
your bag of tricks.) Similarly, Perl providesat r operator that works in much the same way:

tr/ ab/ bal;

Thet r operator takes two arguments: an old string and a new string. These arguments work like the two
argumentsto s/ / / ; in other words, there's some delimiter that appears immediately after thet r
keyword that separates and terminates the two arguments (in this case, a slash, but nearly any character
will do).

The argumentsto thet r operator are similar to the arguments to the tr (1) command. Thet r operator
modifies the contents of the$_ variable (just likes/ / /'), looking for characters of the old string within
the$_ variable. All such characters found are replaced with the corresponding charactersin the new
string. Here are some examples:

$ = "fred and barney";

tr/fb/bf/; # $ is now "bred and farney"
tr/abcde/ ABCDE/; # $_ is now "BrED AnD f ArnEy"
tr/a-z/ A-Z/; # $ is now "BRED AND FARNEY"

Notice how arange of characters can be indicated by two characters separated by adash. If you need a
literal dash in either string, precede it with a backslash.

If the new string is shorter than the old string, the last character of the new string is repeated enough
times to make the strings equal length, like so:

$ = "fred and barney";
tr/ia-z/x/; # $_ 1S nOW "XXXX XXX XXXXXX"

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

To prevent this behavior, append ad to theend of thet r / / / operator, meaning delete. In this case, the
last character is not replicated. Any character that matches in the old string without a corresponding
character in the new string is simply removed from the string.

$ = "fred and barney";
tr/a-z/ ABCDE/d; # $ is now "ED AD BAE"

Notice how any letter after e disappears because there's no corresponding letter in the new list, and that
spaces are unaffected because they don't appear in the old list. Thisis similar in operation to the- d
option of the tr command.

If the new list is empty and there'sno d option, the new list is the same asthe old list. This may seem
silly, asinwhy replacean | for an| and a2 for a 2, but it actually does something useful. The return
valueof thet r/ /| operator isthe number of characters matched by the old string, and by changing
characters into themselves, you can get the count of that kind of character within the string.[3] For

example:

$ = "fred and barney";
$count = tr/a-z//; # $ unchanged, but $count is 13
$count2 = tr/a-z/A-Zl; # $_ is uppercased, and $count2 is 13

[3] Thisworks only for single characters. To count strings, use the/ g flag to a pattern

match:

while (/pattern/g) {
$count ++;

}

If you append ac (like appending the d), it means to complement the old string with respect to all 256
characters. Any character you list in the old string is removed from the set of all possible characters; the
remaining characters, taken in sequence from lowest to highest, form the resulting old string. So, away
to count or change the nonlettersin our string could be:

$ = "fred and barney";

$count = tr/a-z//c; # $_ unchanged, but $count is 2

tr/a-z/ _/c; # $ is now "fred_and barney” (non-letters =>)
tr/a-z//cd; # $ is now "fredandbarney" (delete non-letters)

Notice that the options can be combined, as shown in that |ast example, where we first complement the
set (the list of letters become the list of all nonletters) and then use the d option to delete any character in
that set.

Thefina optionfortr/// iss, which sgqueezes multiple consecutive copies of the same resulting
trandlated letter into one copy. As an example, look at this:

$ = "aaabbbcccdef ghi";
tr/ defghi/abcddd/s; # $ is now "aaabbbcccabcd"

Note that the def becameabc, and ghi (which would have become ddd without the s option)
becomes asingle d. Also note that the consecutive letters at the first part of the string are not squeezed
because they didn't result from atranglation. Here are some more examples:

$ = "fred and barney, wilna and betty";
tr/la-z/XI's; #$ is now"X X X, X X X"
$ = "fred and barney, wilma and betty";
tr/a-z/ /cs; #$% is now "fred and barney w I na_and betty"

In the first example, each word (consecutive letters) was squeezed down to asingle letter X. In the
second example, all chunks of consecutive nonletters became a single underscore.

Likes/ // ,thetr operator can be targeted at another string besides $ using the =~ operator:

$nanmes = "fred and barney"”;
$nanes =~ tr/aeiou/ X/ ; # $names now "frXd Xnd bXrnXy"

Previous: 15.4 Advanced Learning Next: 15.6
Sorting Perl Exercises
15.4 Advanced Sorting Book 15.6 Exercises
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 15.5 Chapter 15 Next: 16. System Database
Transliteration Other Data Transformation Access

15.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Writeaprogram to read alist of filenames, breaking each name into its head and tail components.
(Everything up to the last slash is the head, and everything after the last slash isthetail. If there's
no slash, it'sall in thetail.) Try thiswith things like /fred, barney, and fred/barney. Do the results
make sense?

2. Writeaprogramto read in alist of numbers on separate lines, and sort them numerically, printing
out the resulting list in aright-justified column. (Hint: the format to print aright-justified column
issomething like %20g.)

3. Write aprogram to print the real names and login names of the usersin the /etc/passwd file, sorted
by the last name of each user. Does your solution work if two people have the same last name?

4. Create afilethat consists of sentences, one per line. Write a program that makes the first character
of each sentence uppercase and the rest of the sentence lowercase. (Does it work even when the
first character is not aletter? How would you do thisif the sentences were not already one per

line?)
Previous: 15.5 Learning Next: 16. System Database
Transliteration Perl Access
15.5 Trandliteration Book 16. System Database Access

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 15.6 Chapter 16 Next: 16.2 Packing and
Exercises Unpacking Binary Data

16. System Database Access

Contents:
Getting Password and Group | nformation

Packing and Unpacking Binary Data
Getting Network Information
Exercise

16.1 Getting Password and Group Information

The information that the UNIX system keeps about your username and user ID isfairly public. In fact,
nearly everything but your unencrypted password is available for perusal by any program that cares to
scan the /etc/passwd file. Thisfile has a particular format, defined in passwd (5), which looks something
like this:

name: passwd: ui d: gi d: gcos: dir: shel |

Thefields are defined as follows:
name

The login name of the user

passwd
The encrypted password, or something simple if a shadow password file is being used
ui d
The user ID number (0 for r oot , nonzero for normal users)
gi d
The default login group (group 0 may be privileged, but not necessarily)
gcos

The GCOS field, which typically contains the user's full name followed by a comma and some
other information

dir

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

The home directory (where you go when you type cd without any arguments and where most of
your "dot-files" are kept)

shel |
Your login shell, typically /bin/sh or /bin/csh (or maybe even /usr/bin/perl, if you're crazy)

A typical portion of the password file looks like this:

fred: *: 123: 15: Fred Flintstone,,,:/hone/fred:/bin/csh
bar ney: *: 125: 15: Bar ney Rubbl e, ,, :/hone/ bar ney:/bi n/csh

Now, Perl has enough toolsto parse thiskind of line easily (using spl i t , for example), without drawing
on special purpose routines. But the UNIX programing library does have a set of special routines:
getpwent (3), getpwuid (3), getpwnam (3), and so on. These routines are available in Perl using the same
names and similar arguments and return values.

For example, the getpwnam routine becomes the Perl get pwnam function. The single argument isa
username (likef r ed or bar ney), and the return value is the /etc/passwd line split apart into alist with
the following values:

($nanme, $passwd, $uid, $gid, $quota, $coment,
$gcos, $dir, $shell)

Note that there are few more values here than in the password file. For every UNIX system we've seen,
the $quot a field is always empty, and the $conmrent and the $gcos field often both contain the entire
GCOSfield. So, for good old f r ed, you get

("fred*, "*", 123, 15, "", "Fred Flintstone,,,K",
"Fred Flintstone,,,", "/honme/fred","” /bin/csh")

by invoking either of the following two calls:

get pwui d(123)

get pwnan("fred")

Note that get pwui d takesaUID number, while get pwnamtakes the login name as its argument.

The get pwnamand get pwui d functions also have areturn value when called in ascalar sense. They
each return the thing you've asked them to get. For example:

$i dnum = get pwui d(" daenon") ;

$l ogi n = get pwnam(25) ;

You'll probably want to pick this apart, using some of the list operations that we've seen before. One way
Isto grab apart of thelist using alist slice, such as getting just the home directory for Fred using:
($fred _honme) = (getpwnam ("fred"))[7]; # put Fred' s hone

How would you scan through the entire password file? Well, you could do something like this:
for($id = 0; $id <= 10_000; $id++) {

@tuff = getpwiid $id;
} ### not recommended!

But thisis probably the wrong way to go. Just because there's more than one way to do it doesn't mean

that all ways are equally cool.

Y ou can think of the get pwui d and get pwnamfunctions as random access, they grab a specific entry
by key, so you have to have a key to start with. Another way of accessing the password file is sequential
access - grabbing each entry one at atime.

The sequential access routines for the password file arethe set pwent , get pwent , and endpwent
functions. Together, these three functions perform a sequential pass over al valuesin the password file.
Theset pwent function initializes the scan at the beginning. After initialization, each call to get pwent
returns the next entry from the password file. When there is no more data to process, get pwent returns
an empty list. Finally, calling endpwent frees the resources used by the scanner; thisis performed
automatically upon exiting the program as well.

This description begs for an example, so here's one now:

set pwent () ; # initialize the scan
while (@ist = getpwent()) { # fetch the next entry
(%l ogi n, $hone) = @ist[0, 7]; # grab | ogin nane and hone
print "Home directory for $login is $hone\n"; # say so
}
endpwent () ; # all done

This example shows the home directory of everyone in the password file. Suppose you wanted them
alphabetically by home directory? We learned about sor t in the previous chapter, so let's useiit:

set pwent () ; # initialize the scan

while (@ist = getpwent()) { # fetch the next entry
(%l ogi n, $hone) = @ist[0,7]; # grab | ogin name and hone
$hone{ $! ogi n} = $hone; # save it away

}

endpwent () ; # all done

@eys = sort { $home{$a} cnp $hone{$b} } keys %hone;

foreach $l ogin (@keys) { # step through the sorted nanes

print "home of $login is $home{$l ogi n}\ n";
}

This fragment, while alittle longer, illustrates an important thing about scanning sequentially through the
password file; you can save away the pertinent portions of the data in data structures of your choice. The
first part of the example scans through the entire password file, creating a hash where the key isthe login
name and the value is the corresponding home directory for that login name. Thesor t line takesthe
keys of the hash and sorts them according to string value. The final loop steps through the sorted keys,
printing each value in turn.

Generally, you should use the random access routines (get pwui d and get pwnam when you are
looking up just afew values. For more than afew values, or even an exhaustive search, it's generally
easier to do a sequential access pass (using set pwent , get pwent , and endpwent) and extract the
particular values you'll be looking for into a hash.[1]

[1] If you're on asite with alarge NIS map, you probably do not want to preprocess the
password file this way for performance reasons.

The /etc/group fileis accessed in asimilar way. Sequential accessis provided withthe set gr ent
get gr ent , and endgr ent calls. Theget gr ent call returns values of the form:

($nanme, S$passwd, $gid, $nenbers)

These four values correspond roughly to the four fields of the /etc/group file, so see the descriptionsin the
manpages about this file format for details. The corresponding random access functions are get gr gi d
(by group ID) and get gr nam(by group name).

Previous: 15.6 Learning Next: 16.2 Packing and

Exercises Perl Unpacking Binary Data
15.6 Exercises Book 16.2 Packing and Unpacking
Index Binary Data

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 16.1 Getting Chapter 16 Next: 16.3 Getting Network
Password and Group System Database Access Information
Information

16.2 Packing and Unpacking Binary Data

The password and group information is nicely represented in textual form. Other system databases are
more naturally represented in other forms. For example, the IP address of an interface isinternaly
managed as a four-byte number. While it is frequently decoded into atextual representation consisting of
four small integers separated by periods, this encoding and decoding is wasted effort if ahuman is not
interpreting the data in the meantime.

Because of this, the network routines in Perl that expect or return an |P address use a four-byte string that
contains one character for each sequential byte in memory. While constructing and interpreting such a
byte string is fairly straightforward using chr and or d (not presented here), Perl provides a short cut
that is equally applicable to more difficult structures.

The pack function worksabit likespri nt f , taking aformat control string and alist of values, and
creating a single string from those values. The pack format string is geared towards creating a binary
data structure, however. For example, here's how to take four small integers and pack them as successive
unsigned bytes in a composite string:

$buf = pack("CCCC', 140, 186, 65, 25);

Here, the pack format string isfour Cs. Each C represents a separate value taken from the following list
(similar to what a %field doesinspri nt f). The Cformat (according to the Perl manpages, the
reference card, Programming Perl, the HTML files, or even Perl: The Motion Picture) refersto asingle

byte computed from an unsigned character value (a small integer). The resulting string in $buf isa
four-character string - each character being one byte from the four values 140, 186, 65, and 25.

Similarly, theformat | generates a signed long value. On many machines, thisis a four-byte number,
although this format is machine-dependent. On a four-byte "long" machine, the statement

$buf = pack("l", 0x41424344);

generates afour-character string that looks like either ABCD or DCBA, depending on whether the machine
is little-endian or big-endian (or something entirely different if the machine doesn't speak ASCII). This
happens because we are packing one value into four characters (the length of along integer), and the one
value just happens to be composed of the bytes representing the ASCI I values for the first four letters of
the alphabet. Similarly,

$buf = pack("I1l", 0x41424344, 0x45464748);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

creates an eight-byte string consisting of ABCDEFGH or DCBAHGFE, once again depending on whether
the machineislittle- or big-endian.

The exact list of the various pack formatsis given in the reference documentation (perlfunc (1), or
Programming Perl). You'll see afew here as examples, but we're not going to list them all.

What if you were given the eight-byte string ABCDEFGH and were told that it was really the memory
image (one character is one byte) of two long (four-byte) signed values? How would you interpret it?
WEell, you'd need to do the inverse of pack, called unpack. This function takes aformat control string
(usually identical to the one you'd give pack) and adata string, and returns a list of values that make up
the memory image defined in the data string. For example, let's take that string apart:

($val 1, $val 2) = unpack("IIl"," ABCDEFCH") ;

This gives us back something like 0x41424344 for $val 1, or possibly 0x44434241 instead
(depending on big-endian-ness). In fact, by the values that come back, we can determine if we are on a
little- or big-endian machine.

Whitespace in the format control string isignored, and can be used for readability. A number in the
format control string generally repeats the previous specification that many times. For example, CCCC
can also be written C4 or C2C2 with no change in meaning. (A few of the specifications use atrailing
number as a part of the specification, and thus cannot be multiplied like that.)

A format character can also be followed by a* , which repeats the format character enough timesto
swallow up therest of the list or the rest of the binary image string (depending on whether you are
packing or unpacking). So, here's another way to pack four unsigned characters into a string:

$buf = pack("C*", 140, 186, 65, 25);

The four values here are swallowed up by the one format specification. If you had wanted two short
integers followed by "as many unsigned chars as possible,” you can say something like this:

$buf = pack("s2 C*", 3141, 5926, 5, 3, 5 8, 9, 7, 9, 3, 2);

Here, we take the first two values as shorts (generating four or eight characters, probably) and the
remaining nine values as unsigned characters (generating nine characters, aimost certainly).

Going in the other direction, unpack with an asterisk specification can generate alist of elements of
unpredetermined length. For example, unpacking with C* creates one list element (a number) for each
string character. So, the statement

@al ues = unpack("C", "hello, world!'\n");

yieldsalist of 14 elements, one for each of the characters of the string.

Previous: 16.1 Getting Learning Next: 16.3 Getting Network
Password and Group Perl Information
Information
16.1 Getting Password and Book 16.3 Getting Network

Group Information Index Information

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 16.2 Packing and Chapter 16 Next: 16.4
Unpacking Binary Data System Database Access Exercise

16.3 Getting Network Information

Perl supports network programming in away that is very familiar to those who have written network
codein C programs. In fact, most of the Perl functions that provide network access have the same names
and similar parameters as their C counterparts. We can't teach a complete course on network
programming in this chapter, but let's look at one of the task fragments to see how it's done in Perl.

One of the things you need to find out is the address that goes with aname, or vice versa. In C, you use
the gethostbyname (3) routine to convert a network name to a network address. Y ou then use this address
to create a connection from your program to another program somewhere el se.

The Perl function to trandate a hostname to an address has the same name and similar parameters as the
C routine, and looks like this:

($nane, $aliases, $addrtype, $length, @ddrs) =
get host byname($nane); # generic form of gethostbynane

The parameter to this function isahostname, e.g., sl at e. bedr ock. com Thereturn valueisalist of
four or more parameters, depending on how many addresses are associated with the name. If the
hostname is not valid, the function returns an empty list.

If get host bynane iscalled in ascalar context, only the (first) addressis returned.

When get host byname completes successfully, $nane isthe canonical name, which differs from the
input name if the input nameisan alias. $al i ases are alist of space-separated names by which the
host is also known. $addr t ype gives acoded value to indicate the form of the addresses. In this case,
for sl at e. bedr ock. com we can presume that the value indicates an | P address, usually represented
as four numbers under 256, separated by dots. $I engt h gives the number of addresses, which is
actually redundant information since you can look at the length of @ddr s anyway.

But the useful part of the return value is @ddr s. Each element of thelist is a separate | P address, stored
in an internal format, handled in Perl as afour-character string.[2] While this four-character string is
exactly what other Perl networking functions are looking for, suppose we wanted to print out the result
for the user to see. In this case, we need to convert the return value into a human-readable format with
the assistance of the unpack function and alittle additional massaging. Here's code that prints one of

sl at e. bedr ock. conis|P addresses:

($addr) = (gethostbynane("sl ate. bedrock.com'))[4];

print "Slate's address is ",

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

join(".",unpack("C4", $addr)), "\n";
[2] Well, at least until |Pv6.

unpack takes the four-byte string and returns four numbers. These just happen to be in the right order
for j oi n to gluein adot between each pair of numbers to make the human-readable form. See Appendix

C, Networking Clients, for information about building simple networking clients.

Previous: 16.2 Packing and Learning Next: 16.4
Unpacking Binary Data Perl Exercise
16.2 Packing and Unpacking Book 16.4 Exercise
Binary Data Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl

Previous: 16.3 Getting Chapter 16 Next: 17. User Database
Network Information System Database Access Manipulation

16.4 Exercise

See Appendix A, Exercise Answers for the answer.

1. Write aprogram to create a mapping of userlDs and real names from the password entries, then
uses that map to show alist of real names that belong to each group in the group file. (Does your
list include users who have a default group in the password entry but no explicit mention of that
same group in the group entry? If not, how would you accomplish that?)

Previous: 16.3 Getting Learning Next: 17. User Database
Network Information Perl Manipulation
16.3 Getting Network Book 17. User Database
Information Index Manipulation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 16.4 Chapter 17 Next: 17.2 Opening and
Exercise Closing DBM Hashes

17. User Database Manipulation

Contents:
DBM Databases and DBM Hashes

Opening and Closing DBM Hashes
Using aDBM Hash

Fixed-Length Random Access Databases
Variable-Length (Text) Databases
Exercises

17.1 DBM Databases and DBM Hashes

Most UNIX systems have a standard library called DBM. This library provides a simple database
management facility that allows programs to store a collection of key-value pairsinto apair of disk files.
These files retain the values in the database between invocations of the programs using the database, and
these programs can add new values, update existing values, or delete old values.

The DBM library isfairly ssimple, but being readily available, some system programs have used it for
their fairly modest needs. For example, sendmail (and its variants and derivatives) storesthe aliases
database (the mapping of mail addresses to recipients) asa DBM database. The most popular Usenet
news software uses a DBM database to track current and recently seen articles. The Sun NIS (née Y P)
database masters are also kept in DBM format.

Perl provides access to this same DBM mechanism through arather clever means. a hash may be
associated with a DBM database through a process similar to opening afile. This hash (called a DBM
array) isthen used to access and modify the DBM database. Creating a new element in the array
modifies the DBM database immediately. Deleting an element deletes the value from the DBM database.
And so on.[1]

[1] Thisisactualy just a special use of the general t i e mechanism. If you want something
more flexible, check out the AnyDBM _File (3), DB _File (3), and perltie (1) manpages.

The size, number, and kind of keys and valuesin a DBM database are restricted, and depending on which
version of DBM library you're using, a DBM array may share these same restrictions. See the
AnyDBM _File manpage for details. In general, if you keep both the keys and the values down to 1000

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

arbitrary binary characters or less, you'll probably be OK.

Previous: 16.4 Learning Next: 17.2 Opening and
Exercise Perl Closing DBM Hashes
16.4 Exercise Book 17.2 Opening and Closing
Index DBM Hashes

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 17.1 DBM Chapter 17 Next: 17.3 Using a DBM
Databases and DBM Hashes User Database Manipulation Hash

17.2 Opening and Closing DBM Hashes

To associate a DBM database with aDBM array, use the dbnopen function, which looks like this:
dbrmopen(YARRAYNAME, "dbnfil enane”, $node);

The Y%ARRAYNANE parameter is a Perl hash. (If this hash already has values, the values are discarded.)
This hash becomes connected to the DBM database called dbnf i | enane, usually stored on disk asa
pair of files called domfilename.dir and dbmifilename.pag.

The $node parameter isanumber that controls the permission bits of the pair of filesif the filesneed to
be created. The number istypically specified in octal: the frequently used value of 0644 gives read-only
permission to everyone but the owner, who gets read-write permission. If the files aready exist, this
parameter has no effect. For example:

dbnopen(-RED, "nydat abase", 0644); # open %RED onto nydat abase

This invocation associates the hash %-RED with the disk files mydatabase.dir and mydatabase.pag in the
current directory. If the files don't already exist, they are created with amode of 0644 modified by the
current umask.

The return value from the dbnopen istrueif the database could be opened or created, and false
otherwise, just like an open invocation. If you don't want the files created, use a$node value of
undef . For example:

dbnopen(%A, "/ et c/ xx",undef) || die "cannot open DBM /etc/xx";

In this case, if the files/etc/xx.dir and /etc/xx.pag cannot be opened, the dbnopen call returns false,
rather than attempting to create the files.

The DBM array stays open throughout the program. When the program terminates, the association is
terminated. Y ou can also break the association in a manner similar to closing afilehandle, by using the
dbntl ose function:

dbntl ose(%A) ;

Likecl ose, dbntl ose returnsfalse if something goes wrong.

Previous: 17.1 DBM Learning Next: 17.3 Using a DBM
Databases and DBM Hashes Perl Hash

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

17.1 DBM Databases and Book 17.3 Using aDBM Hash
DBM Hashes Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 17.2 Opening and Chapter 17_ _ Next: 17.4 Fixed-Length
Closing DBM Hashes User Database Manipulation Random Access Databases

17.3 Using a DBM Hash

Once the database is opened, accesses to the DBM hash are mapped into references to the database.
Changing or adding a value in the hash causes the corresponding entries to be immediately written into
the disk files. For example, once %4-RED is opened from the earlier example, we can add, delete, or
access elements of the database, like this:

$FRED{"fred"} = "bedrock"; # create (or update) an el ement
del et e $FRED{" bar ney"}; # renove an el enent of the database
foreach $key (keys %RED) { # step through all val ues
print "$key has val ue of $FRED{$key}\n";
}

That last loop has to scan through the entire disk file twice: once to access the keys, and a second time to
look up the values from the keys. If you are scanning through a DBM hash, it's generally more
disk-efficient to use the each operator, which makes only one pass:

whil e (($key, $value) = each(%RED)) {
print "$key has val ue of $val ue\n";
}

If you are accessing system DBM databases, such as the ones created by sendmail or NIS, you must be
aware that dubiously written C programs sometimes tack on atrailing NUL (\ 0) character to the end of
their strings. The DBM library routines do not need this NUL (they handle binary data using a byte
count, not a NUL-delimited string), and so the NUL is stored as part of the data. Y ou must therefore
append a NUL character to the end of your keys and discard the NUL from the end of the returned values
to have the data make sense. For example, to look up ner | yn in the aliases database, try something like
this:

dbnopen(%ALI, "/etc/aliases", undef) || die "no aliases?",;

$value = SALI{"merlyn\0"}; # note appended NUL
chop($val ue) ; # renove appended NUL
print "Randal's mail is headed for: $value\n"; # show result

Y our version of UNIX may stick the aliases database over in /usr/lib rather than /etc. Y ou'll have to poke
around to find out. Newer versions of sendmail are free of the NUL bug.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: 17.2 Opening and Learning Next: 17.4 Fixed-Length

Closing DBM Hashes Perl Random Access Databases
17.2 Opening and Closing Book 17.4 Fixed-Length Random
DBM Hashes Index Access Databases

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 17.3 Using a DBM Chapter 17_ ‘ Next: 17.5 Variable-Length (
Hash User Database M anipulation Text) Databases

17.4 Fixed-Length Random Access Databases

Another form of persistent datais the fixed-length, record-oriented disk file. In this scheme, the data
consists of a number of records of identical length. The numbering of the records s either not important
or determined by some indexing scheme.

For example, we might have a series of records in which the data has 40 characters of first name, a
one-character middleinitial, 40 characters of last name, and then atwo-byte integer for the age. Each
record isthen 83 byteslong. If we were reading al of the data in the database, we'd read chunks of 83
bytes until we got to the end. If we wanted to go to the fifth record, we'd skip ahead four times 83 bytes
(332 bytes) and read the fifth record directly.

Perl supports programs that use such adisk file. A few things are necessary in addition to what you
aready know:

1. Opening adisk file for both reading and writing

2. Moving around in thisfile to an arbitrary position

3. Fetching data by alength rather than up to the next newline
4. Writing data down in fixed-length blocks

The open function takes an additional plus sign before its I/O direction specification to indicate that the
fileisreally being opened for both reading and writing. For example:

open(A "+<b"); # open file b read/wite (error if file absent)
open(C,"+>d"); # create file d, with read/wite access
open(E,"+>>f"); # open or create file f with read/wite access

Notice that all we've done wasto prepend a plus sign to the 1/0O direction.

Once we've got the file open, we need to move around in it. We do this with the seek function, which
takes the same three parameters as the fseek (3) library routine. The first parameter is afilehandle; the
second parameter gives an offset, which is interpreted in conjunction with the third parameter. Usually,
you'll want the third parameter to be zero so that the second parameter selects a new absolute position for
next read from or write to the file. For example, to go to the fifth record on the filehandle NAMVES (as
described above), you can do this:;

seek(NAMES, 4* 83, 0) ;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Once the file pointer has been repositioned, the next input or output will start there. For output, use the
pri nt function, but be sure that the data you are writing is the right length. To obtain the right length,
we can call upon the pack function:

print NAMES pack("A40 A A40 s", $first, $m ddle, $last, S$age);

That pack specifier gives 40 charactersfor $f i r st , asingle character for $m ddl e, 40 more
charactersfor $I ast , and a short (two bytes) for the $age. This should be 83 bytes long, and will be
written at the current file position.

Last, we need to fetch a particular record. Although the <NAMES> construct returns al of the datafrom
the current position to the next newline, that's not correct; the data is supposed to go for 83 bytes, and
there probably isn't a newline right there. Instead, we use the r ead function, which looks and works alot
like its UNIX system call counterpart:

$count = read(NAMES, $buf, 83);

The first parameter for r ead isthe filehandle. The second parameter isa scalar variable that holds the
datathat will be read. The third parameter gives the number of bytesto read. The return value from

r ead isthe number of bytes actually read; typically the same number as the number of bytes asked for
unless the filehandle is not opened or you are too close to the end of thefile.

Once you have the 83-character data, just break it into its component parts with the unpack function:
($first, $mddle, $last, $age) = unpack("A40 A A40 s", $buf);

Note that the pack and unpack format strings are the same. Most programs store this string in a
variable early in the program, and even compute the length of the records using pack instead of
sprinkling the constant 83 everywhere:

$nanmes = "A40 A A40 s";

$nanes_| ength = | engt h(pack($nanes)); # probably 83

Previous: 17.3 Using a DBM Learning Next: 17.5 Variable-Length (
Hash Perl Text) Databases
17.3 Using aDBM Hash Book 17.5 Variable-Length (Text)
Index Databases

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 17.4 Fixed-Length Chapter 17_ _ Next: 17.6
Random Access Databases User Database M anipulation Exercises

17.5 Variable-Length (Text) Databases

Many UNIX system databases (and quite a few user-created databases) are a series of human-readable
text lines, with one record per line. For example, the password file consists of one line per user on the
system, and the hosts file contains one line per hostname.

Most often, these databases are updated with simple text editors. Updating such a database consists of
reading it all into atemporary area (either memory or another disk file), making the necessary changes,
and then either writing the result back to the original file or creating a new file with the same name after
deleting or renaming the old version. Y ou can think of this as a copy pass: the datais copied from the
original database to a new version of the database, making changes during the copy.

Perl supports a copy-pass-style edit on line-oriented databases using inplace editing. Inplace editing isa
modification of the way the diamond operator (<>) reads data from the list of files specified on the
command line. Most often, this editing mode is accessed by setting the -i command-line argument, but we
can also trigger the inplace editing mode from within a program, as shown in the examples that follow.

To trigger the inplace editing mode, set avaueinto the $"|1 scalar variable. The value of thisvariableis
important and will be discussed in a moment.

When the <> construct isused and $”| has avalue other than undef , the steps marked ##1 NPLACE##
in the following code are added to the list of implicit actions the diamond operator takes:

$ARGV = shift @ARGY,

open(ARGV, " <$ARGV") ;

rename($ARGV, " $SARGVSM ") ; ## | NPLACE ##

unl i nk($ARGV) ; ## | NPLACE ##
open(ARGVQUT, " >$ARGV") ; ## | NPLACE ##
sel ect (ARGVQUT) ; ## | NPLACE ##

The effect is that reads from the diamond operator come from the old file, and writes to the default
filehandle go to a new copy of thefile. The old file remainsin a backup file, which is the filename with a
suffix equal to the value of the $”I variable. (There's also a bit of magic to copy the permission bits from
the old file to the new file.) These steps are repeated each time anew file istaken from the GARGV array.

Typical valuesfor $71 arethingslike. bak or ~, to create backup files much like the editor creates. A
strange and useful value for $” I isthe empty string, " ", which causes the old file to be neatly eliminated
after the edit is complete. Unfortunately, if the system or program crashes during the execution of your
program, you lose all of your old data, so thisis recommended only for brave, foolish, or trusting souls.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Here's away to change everyone's login shell to /bin/sh by editing the password file:
@ARGVY = ("/etc/passwd"); # prinme the dianond operator

$M = ", bak"; # wite /etc/passwd. bak for safety
while (<>) { # main | oop, once for each line of /etc/passwd
s#: [~]*$#:/ bin/sh#, # change the shell to /bin/sh
print; # send output to ARGVOQUT: the new /etc/passwd
}

Asyou can see, this program is pretty ssmple. In fact, the same program can be generated entirely with a
few command-line arguments, asin:

perl -p -i.bak -e "s#: [":]*$#:/bin/sh# /etc/passwd

The - p switch brackets your program with awhi | e loop that includesapri nt statement. The - i
switch setsavalue into the $” | variable. The - e switch defines the following argument as a piece of Perl
code for the loop body, and the final argument gives an initial value to GARGV.

Command-line arguments are discussed in greater detail in Programming Perl and the perlrun manpage.

Previous: 17.4 Fixed-Length Learning Next: 17.6
Random Access Databases Perl Exercises
17.4 Fixed-Length Random Book 17.6 Exercises

Access Databases Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 17.5 Chapter 17_ _ Next: 18. Converting Other
Variable-Length (Text) User Database M anipulation Languages to Perl
Databases

17.6 Exercises

See Appendix A, Exercise Answers for answers.

1. Create a program to open the sendmail alias database and print out all the entries.

2. Create two programs. one that reads the data from <>, splitsit into words, and updates aDBM file
noting the number of occurrences of each word; and another program to open the DBM file and
display the results sorted by descending count. Run the first program on afew files and seeif the
second program picks up the proper counts.

Previous: 17.5 Learning Next: 18. Converting Other
Variable-Length (Text) Perl Languages to Perl
Databases
17.5 Variable-Length (Text) Book 18. Converting Other
Databases Index L anguages to Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 17.6 Chapter 18 Next: 18.2 Converting sed
Exercises Programs to Perl

18. Converting Other Languages to Perl

Contents:
Converting awk Programs to Perl

Converting sed Programs to Perl
Converting Shell Programs to Perl
Exercise

18.1 Converting awk Programs to Perl

One of the many cool things about Perl isthat it is (at |east) a semantic superset of awk. In practical
terms, thismeans if you can do something in awk, you can also do it somehow in Perl. However, Perl
Isn't syntactically compatible with awk. For example, awk's NR (input record number) variableis
represented as$. in Perl.

If you have an existing awk program, and wish it to run with Perl, you can perform a mechanical
translation using the a2p utility provided with the Perl distribution. This utility converts the awk syntax
into the Perl syntax, and for the vast mgjority of awk programs, provides adirectly runnable Perl script.

To use the a2p utility, put your awk program into a separate file and invoke a2p with the name of thefile
asits argument, or redirect the standard input of a2p to the file. The resulting standard output will be a
valid Perl program. For example:

$ cat nyawkprog

BEGN{ sum= 0 }

/[llama/ { sum += $2 }

END { print "The [lama count is " sum}
$ a2p <nyawkprog >nyperl prog

$ perl nyperlprog somefile

The |Ilama count is 15

$

Y ou can also feed the standard output of a2p directly into Perl, because the Perl interpreter accepts a
program on standard input if so instructed:

$ a2p <nyawkprog | perl - sonefile

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

The |l ama count is 15
$

An awk script converted to Perl will generally perform the identical function, often with an increasein
speed, and certainly without any of awk's built-in limits on line lengths or parameter counts or whatever.
A few converted Perl programs may actually run slower; the equivalent action in Perl for a given awk
operation may not necessarily be the most efficient Perl code if one was programming from scratch.

Y ou may choose to hand-optimize the converted Perl code, or add new functionality to the Perl version
of the program. Thisisfairly easy, because the Perl code is rather readable (considering that the
trandation is automatic, thisis quite an accomplishment).

A few trandations are not mechanical. For example, the less-than comparison for both numbers and
stringsin awk is expressed with the < operator. In Perl, you havel t for strings and < for numbers. awk
generally makes a reasonabl e guess about the number-ness or string-ness of two values being compared,
and the a2p utility makes a similar guess. However, it's possible that there isn't enough known about two
values to determine whether a number or a string comparison is warranted, so a2p outputs the most likely
operator and marks the possibly erroneous line with #?7? (a Perl comment) and an explanation. Be sure
to scan the output for such comments after conversion to verify the proper guesses. For more details
about the operation of a2p, consult its manpage. If a2p is not found in the same directory that you get
Perl from, complain loudly to your Perl installer.

Previous: 17.6 Learning Next: 18.2 Converting sed
Exercises Perl Programs to Perl
17.6 Exercises Book 18.2 Converting sed Programs
Index to Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 18.1 Converting ‘ Chapter 18 Next: 18.3 Converting Shell
awk Programs to Perl Converting Other Languagesto Programs to Perl
Perl

18.2 Converting sed Programs to Perl

WEell, this may begin to sound like a repeat, but guess what? Perl is a semantic superset of sed as well as
awk.

And with the distribution comes a sed-to-Perl trandlator called s2p. As with a2p, s2p takes a sed script on
standard input and writes a Perl program on standard output. Unlike a2p, the converted program rarely
misbehaves, so you can pretty much count on it working, barring any bugsin s2p or Perl.

Converted sed programs may work faster or slower than the original, but are generally much faster
(thanks to the highly optimized regular expression routines of Perl).

The converted sed script can operate either with or without a - n option, having the same meaning as the
corresponding switch for sed. To do this, the converted script must feed itself into the C preprocessor,
and this slows down the startup alittle bit. If you know that you will always invoke the converted sed
script with or without a- n option (such as when you are converting a sed script used in alarger shell
program with known arguments), you can inform s2p (viathe - n and - p switches), and it will optimize
the script for that switch setting.

As an example of how versatile and powerful Perl is, the s2p translator is written in Perl. If you want to
see how Larry codes in Perl (even though it's very ancient code relatively unchanged since Perl Version
2), take alook at the translator. Be sure you are sitting down.

Previous: 18.1 Converting Learning Next: 18.3 Converting Shell
awk Programs to Perl Perl Programs to Perl

18.1 Converting awk Book 18.3 Converting Shell

Programs to Perl Index Programs to Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 18.2 Converting ‘ Chapter 18 Next: 18.4
sed Programs to Perl Converting Other Languagesto Exercise
Per|

18.3 Converting Shell Programs to Perl

Heh. Thought there'd be a shell-to-Perl trandator, en?

Nope. Many have asked for such a beast, but the real problem is that most of what a shell script doesis
not done by the shell. Most shell scripts spend practically all of their time calling separate programs to
extract pieces of strings, compare numbers, concatenate files, remove directories, and so forth and so on.
Converting such a script to Perl would either require understanding the operation of each of the called
utilities, or leave Perl calling each of the utilities, which gains nothing.

S0, the best you can do is stare at a shell script, figure out what it does, and start from scratch with Perl.
Of course, you can do a quick-and-dirty trandliteration, by putting major portions of the original script
insidesyst en() callsor backquotes. Y ou might be able to replace some of the operations with native
Perl: for example, replacesyst en{rm fred) withunl i nk(fred), orashel f or loop with aPerl
f or loop. But generally you'll find it's a bit like converting a COBOL program into C (with about the
same reduction in the number of characters and increasein illegibility).

Previous: 18.2 Converting Learning Next: 18.4
sed Programs to Perl Perl Exercise
18.2 Converting sed Programs Book 18.4 Exercise
to Perl Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 18.3 Converting ‘ Chapter 18 Next: 19. CGl
Shell Programs to Perl Converting Other L anguagesto Programming
Per|

18.4 Exercise

See Appendix A, Exercise Answers for the answer.

1. Convert the following shell script into a Perl program:

cat /etc/passwd |
awk -F: "{print $1, $6}'
whi |l e read user hone
do
newsr c="$hone/ . newsrc"
if [-r $newsrc]
t hen
if grep -s "~conp\.lang\.perl\.announce:' $newsrc
t hen
echo -n "$user is a good person, ";
echo "and reads conp. | ang. perl.announce!"

fi
fi
done
Previous: 18.3 Converting Learning Next: 19. CGlI
Shell Programs to Perl Perl Programming
18.3 Converting Shell Book 19. CGI Programming
Programsto Perl Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 18.4 Chapter 19 Next: 19.2 Your CGI Program
Exercise in Context

19. CGI Programming

Contents:
The CGIl.pm Module

Your CGI Program in Context
Simplest CGI Program

Passing Parameters via CGl
Less Typing

Form Generation

Other Form Elements

Creating a Guestbook Program
Troubleshooting CGI Programs
Perl and the Web: Beyond CGI Programming
Further Reading

Exercises

Unless you've been holed up in alog cabin without electricity for the last few years, you've heard of the
World Wide Web. Web addresses (better known as URLS) pop up everywhere from billboards to movie
credits, from magazines and newspapers to government reports.

Many of the more interesting web pages include some sort of entry form. Y ou supply input to thisform
and click on a button or picture. This fires up a program at the web server that examines your input and
generates new output. Sometimes this program (commonly known as a CGI program) isjust an interface
to an existing database, massaging your input into something the database understands and massaging the
database's output into something aweb browser can understand (usually HTML).

CGl programs do more than process form input. They are also invoked when you click on a graphic
Image, and may in fact be used to provide whatever output that your browser sees. Instead of being dull
and boring, CGl-enabled web pages can be marvelously alive with dynamic content. Dynamic
information is what makes the Web an interesting and interactive place, and not just away to read a book
from your terminal.

Despite what all those bouncing balls and jumping adverts might lead you to believe, the Web contains a
lot of text. Since we're dealing with text, files, network communications, and alittle bit of binary data
now and then, Perl is perfect for web programming.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

In this chapter we'll not only explore the basics of CGI programming, but we'll also steal alittle
introductory knowledge about references, library modules, and object-oriented programming with Perl as
we go along. Then, at the end, we'll make a quick survey of Perl's usefulness for other sorts of web
programming.

As a standalone tutorial, this chapter (and most any other document shorter than a couple of hundred
pages) will not be adequate to teach the more complex topics touched on here, such as object
programming and the use of references. But as a meansto gain a preliminary taste of what's ahead of
you, the examples presented here, together with their explanations, may whet your appetite and give you
some practical orientation as you slog through the appropriate textbooks. And if you're the
learn-by-doing type, you'll actually start writing useful programs based on the models you find here.

We assume you already possess a basic familiarity with HTML.

19.1 The CGl.pm Module

Starting with the 5.004 release, the standard Perl distribution includes the all-singing, al-dancing
CGIl.pm module.[1]

[1] If you have an earlier release of Perl (but at least Version 5.001) and haven't gotten
around to upgrading yet, just grab CGIl.pm from CPAN.

Written by Lincoln Stein, author of the acclaimed book How to Setup and Maintain Your Web Site, this
module makes writing CGI programsin Perl abreeze. Like Perl itself, CGIl.pm is platform independent,
SO you can use it on systems running everything from UNIX and Linux to VMS; it even runs on systems
like Windows and the MacOS.

Assuming CGIl.pmis already installed on your system, you can read its complete documentation in
whatever fashion you're used to reading the Perl manpages, such as with the man (1) or perldoc (1)
commands or asHTML. If all elsefails, just read the CGl.pmfile: the documentation for the module is
embedded in the module itself, written in ssimple pod format.[2]

[2] Pod stands for "plain old documentation,” the simplistic mark-up used for all Perl
documentation. See the perlpod (1) manpage for how it works, plus pod2man (1), pod2html
(1), or pod2text (1) for some of the pod translators.

While developing CGI programs, keep a copy of the CGIl.pm manpage handy. Not only does it describe
the modul€'s functions, it's also loaded with examples and tips.

Previous: 18.4 Learning Next: 19.2 Your CGI Program

Exercise Perl in Context
18.4 Exercise Book 19.2 Your CGI Program in
Index Context

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

ﬁ Learning Perl

Module

Previous: 19.1 The CGl.pm

Chapter 19
CGI Programming

Next: 19.3 Simplest CGI
Program

19.2 Your CGI Program in Context

Figure 19.1 shows the relationships between a web browser, web server, and CGI program. When you click
on alink while using your browser, thereis a URL associated with the link. This URL specifies aweb server
and a resource accessible through that server. So the browser communicates with the server, requesting the
given resource. If, say, the resource isan HTML fill-out form, the web server responds by downloading the

form to the browser, which then displays the form for you to fill out.

Figure 19.1: Form interaction with CGI

Browsor Server Application
{on chent)
E ey,] —
User =
L » . @
*w___iu———"__—& Ratrigves Form
Lisex fills Sand fqn‘n
out fom 1 diest
User submits fam o—
Forword o D
6 apelication mﬂssus
—]
‘,_7—-—1_'_1_0_ iy St
et Dutput o
mearvad G

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Each text-input field on the form has a name (given in the form's HTML code) and an associated value,
which iswhatever you type into the field. The form itself is associated (viathe HTML <FORM> tag) with a
CGI program that processes the form input. When you fill out the form and click on " Submit", the browser
accesses the URL of the CGI program. But first it tacks onto the end of the URL what is called aquery string
consisting of one or more nane=val ue pairs; each name is the name of atext input field, and each value is
the corresponding input you provided. So the URL to which the browser submits your form input looks
something like this (where the query string is everything after the question mark):

http://ww. SOVEVWHERE. or g/ cgi - bi n/ sonme_cgi _prog?fl avor=vani | | a&si ze=doubl e

In this case there are two nanme=val ue pairs. Such pairs are separated by an ampersand (&), a detail you
won't have to worry about when you use the CGIl.pm module. The part of the URL that reads
/cgi-bin/some_cgi_prog / receives further explanation later; at the moment, it only matters that this provides
a path to the CGI program that will processthe HTML form input.

When the web server (www.SOMEWHERE.org in this case) receives the URL from your browser, it invokes
the CGI program, passing the nane=val ue pairsto the program as arguments. The program then does
whatever it does, and (usually) returns HTML code to the server, which in turn downloads it to the browser
for display to you.

The conversation between the browser and the server, and aso between the server and the CGI program,
follows the protocol known as HTTP. Y ou needn't worry much about this when writing your CGI program,
because CGI.pm takes care of the protocol requirements for you.

The way in which the CGI program expects to receive its arguments (and other information) from the
browser viathe server is governed by the Common Gateway Interface specification. Again, you don't need to
worry too much about this; as you will see, CGI.pm automatically unpacks the arguments for you.

Finaly, you should know that CGI programs can work with any HTML document, not just forms. For
example, you could write the HTML code

Cick here to
recei ve your fortune.

and fortune.cgi could be a program that simply invokes the fortune program (on UNIX systems). In this case,
there wouldn't be any argument supplied to the CGI program with the URL. Or the HTML document could
give two links for the user to click on - one to receive afortune, and one to receive the current date. Both
links could point to the same program, in one case with the argument f or t une following the question mark
inthe URL, and in the other case with the argument dat e. The HTML links would look like this:

The CGlI program (fortune_or_date in this case) would then see which of the two possible arguments it
received and execute either the fortune or date program accordingly.

S0 you see that arguments do not have to be of the nanme=dat e variety characteristic of fill-out forms. Y ou
can write a CGI program to do most anything you please, and you can pass it most any arguments you
please.

In this chapter we will primarily illustrate HTML fill-out forms. And we will assume that you understand
basic HTML code aready.[3]

[3] For the full story about HTML, see the O'Reilly book, HTML: The Definitive Guide, Second

Edition.
Previous: 19.1 The CGl.pm Learning Next: 19.3 Simplest CGI
Module Perl Program
19.1 The CGl.pm Module Book 19.3 Simplest CGI Program

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming
| Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.2 Your CGI Chapter 19 . Next: 19.4 Passing
Program in Context CGl Programming Parameters via CGl

19.3 Simplest CGI Program

Here's the source code for your first CGI program; it's so simple, it doesn't even need to use the CGl.pm
module;

#! /usr/bin/perl -w

howdy--the easiest of CA prograns
print <<END of Muiltiline_Text;
Content-type: text/htm

<HTM_>
<HEAD>
<TI TLE>Hel | o Wor | d</TI TLE>
</ HEAD>
<BODY>
<H1>Greetings, Terrans!</Hl>
</ BODY>

</ HTML>

END of _Multiline_Text

Every time this program is called, it displays exactly the same thing. That's not particularly interesting, of
course, but we'll spiceit up later.

This little program contains just one statement: a call to the pr i nt function. That somewhat funny
looking argument is a here document. It starts with two less-than signs and aword that we'll call the end
token. Although this may look like 1/O redirection to a shell programmer, it's really just a convenient way
to quote a multiline string. The string begins on the next line and continues up to aline containing the
end token, which must stand by itself at the start of the line. Here documents are especially handy for
generating HTML.

Thefirst part in that long string is arguably the most important: the Cont ent - Type lineidentifiesthe
type of output you're generating. It's immediately followed by a blank line, which must not contain any
spaces or tabs. Most beginners first CGI programs fail because they forget that blank line, which
separates the header (somewhat like amail header) from an optional body following it.[4] After the blank

line comes the HTML, which is sent on to be formatted and displayed on the user's browser.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

[4] This header isrequired by the HT TP protocol we mentioned above.

First make sure your program runs correctly from the command line. Thisis a necessary but not a
sufficient step to making sure your program will run as a server script. A lot of other things can go
wrong; see the section on "Troubleshooting CGI Programs' later in this chapter.

Once it runs properly from the command line, you need to get the program installed on the server
machine. Acceptable locations are server-dependent, although /usr/etc/httpd/cgi-bin/ and its
subdirectories are often used for CGI scripts. Talk to your friendly system administrator or webmaster to
make sure.

Onceyour program isinstalled in a CGlI directory, you can execute it by giving its pathname to your
browser as part of a URL. For example, if your program is called howdy, the URL might be
http://mwww.SOMEWHERE.org /cgi-bin/howdy.

Serverstypically define aliases for long pathnames. The server at www.SOMEWHERE.org might well
translate cgi-bin/howdy in this URL to something like usr/etc/httpd/cgi-bin/howdy. Y our system
administrator or webmaster can tell you what alias to use when accessing your program.

Previous: 19.2 Your CGlI Learning Next: 19.4 Passing

Program in Context Perl Parameters via CGI
19.2 Your CGI Programin Book 19.4 Passing Parametersvia
Context Index CGl

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.3 Simplest CGlI Chapter 19 Next: 19.5
Program CGl Programming Less Typing

19.4 Passing Parameters via CGl

Y ou don't need aform to pass a parameter to (most) CGI programs. To test this, change the URL to
http: //mww.SOMEWHERE.org /cgi-bin/ice_cream?flavor=mint

When you point your browser at this URL, the browser not only requests the web server to invoke the
ice_cream program, but it also passesthe string f | avor =m nt to the program. Now it's up to the
program to read the argument string and pick it apart. Doing this properly is not as easy as you might
think. Many programs try to wing it and parse the request on their own, but most hand-rolled algorithms
only work some of the time. Given how hard it isto get it right in all cases, you probably shouldn't try to
write your own code, especially when perfectly fine modules already handle the tricky parsing business
for you.

Enter the CGIl.pm module, which always parses the incoming CGI request correctly. To pull this module
Into your program, merely say

use C4:

somewhere near the top of your program.[5]

[5] All Perl modules end in the suffix ".pm"; in fact, the use statement assumes this suffix.
Y ou can learn how to build your own modules in Chapter 5 of Programming Perl or the

perlmod (1) manpage.

The use statement islike an #i ncl ude statement in C programming in that it pullsin code from
another file at compile-time. But it also allows optional arguments specifying which functions and
variables you'd like to access from that module. Put thosein alist following the module namein theuse
statement. Y ou can then access the named functions and variables asif they were your own.

In this case, all we need to use from CGIl.pmisthepar an() function.[6]

[6] Some modules automatically export all their functions, but because CGl.pm isreally an
object module masquerading as a traditional module, we have to ask for its functions
explicitly.

If given no arguments, par an() returnsalist of al the fields that were in the HTML form this CGlI
script isresponding to. (In the current examplethat'sthef | avor field. In general, it'sthelist of al the
namesin nane=val ue strings received from the submitted form.) If given an argument naming afield,
par an() returnsthe value (or values) associated with that field. Therefore, par an(" f 1 avor ")

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

returns” m nt ", because we passed in ?f | avor =m nt at the end of the URL.

Even though we have only one item in our import list for use, we'll employ thegw() notation. This
way it will be easier to expand the list later.

#!/usr/bin/perl -w

cgi-bin/ice_cream programto answer ice cream
favorite flavor form (version 1)

use CA gw paranj;

print <<END of Start,;
Content-type: text/htn

<HTM_>
<HEAD>
<TlI TLE>Hel | o Wor | d</ Tl TLE>
</ HEAD>
<BODY>
<H1>Greetings, Terrans!</Hl>
END of Start

ny $favorite = param("flavor");
print "<P>Your favorite flavor is $favorite.";
print <<Al| _Done;

</ BODY>
</ HTML>
Al | _Done
Previous: 19.3 Simplest CGI Learning Next: 19.5
Program Perl Less Typing
19.3 Simplest CGI Program Book 19.5 Less Typing

Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.4 Passing Chapter 19 | Next: 19.6 Form Generation|
Parameters via CGI CGI Programming

19.5 Less Typing

That's still alot of typing. It turns out that CGI.pm includes a whole slew of convenience functions for
simplifying this. Each of these routines returns a string for you to output. For example, header ()
returns a string containing the Cont ent - t ype line with afollowing blank line,

start_htm (string)returnsstri ng asan HTML title, h1(stri ng) returnsstri ng asa
first-level HTML heading, and p(stri ng) returnsstri ng asanew HTML paragraph.

We could list all these functionsin the import list given with use, but that will eventually grow too
unwieldy. However, CGl.pm, like many modules, provides you with import tags - |abels that stand for
groups of functions to import. Y ou simply place the desired tags (each of which begins with a colon) at
the beginning of your import list. The tags available with CGI.pm include these:

. cqi
Import all argument-handling methods, such aspar an{) .
cform

Import al fill-out form generating methods, suchast extfi el d() .
chtm 2

Import all methods that generate HTML 2.0 standard elements.
chtm 3

Import all methods that generate HTML 3.0 elements (such as<t abl e>, <super >, and
<sub>).

. net scape

Import all methods that generate Netscape-specific HTML extensions.
:shortcuts

Import all HTML-generating shortcuts (that is, "html2" + "html3" + "netscape”).
: standard

Import "standard" features: "html2", "form", and "cgi".
call

Import all the available methods. For the full list, see the CGIl.pm module, where the variable

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

o AGS is defined.

WEeIl just use: st andar d. (For more about importing functions and variables from modules, see the
Exporter module in Chapter 7 of Programming Perl, or the Exporter (3) manpage.)

Here's our program using all the shortcuts CGIl.pm provides.

#!/usr/bin/perl -w

cgi-bin/ice_cream programto answer ice cream

favorite flavor form (version 2)

use CA gw :standard);

print header(), start _htm ("Hello Wrld"), hl("Geetings, Terrans!");
ny $favorite = paran("flavor");

print p("Your favorite flavor is $favorite.");

print end htm ();

See how much easier that is? Y ou don't have to worry about form decoding, headers, or HTML if you
don't want to.

Previous: 19.4 Passing Learning | Next: 19.6 Form Generation|
Parameters via CGl Perl

19.4 Passing Parametersvia Book 19.6 Form Generation
CGl Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_015.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_015.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch07_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.5 Chapter 19 . Next: 19.7 Other Form
Less Typing CGl Programming Elements

19.6 Form Generation

Perhaps you're tired of typing your program's parameter to your browser. Just make afill-out form
instead, which is what most folks are used to. The parts of the form that accept user input are typically
called widgets, a much handier term than "graphical input devices." Form widgets include single- and
multiline textfields, pop-up menus, scrolling lists, and various kinds of buttons and checkboxes.

Create the following HTML page, which includes a form with one text-field widget and a submit button.
When the user clicks on the submit button,[7] theice cream script specified inthe ACTION tag is

called.

[7] Some browsers allow you to leave out the submit button when the form has only asingle
input text field. When the user types areturnin thisfield, it istreated as a submit request.
But it's best to use portable HTML here.

<l-- ice_creamhtm -->
<HTM.>
<HEAD>
<TITLE>Hel | o I ce Creanx/ Tl TLE>
</ HEAD>
<BODY>

<Hl>Hell o Ice Creanx/Hl>
<FORM ACTI ON="ht t p: / / wwww. SOVEWHERE. or g/ cgi - bi n/ice_creani >
What's your flavor? <INPUT NAME="favorite" VALUE="m nt">
<pP>
<I NPUT TYPE="submit">
</ FORM>
</ BODY>
</ HTML>

Remember that a CGI program can generate any HTML output you want, which will then be passed to
any browser that fetches the program's URL. A CGlI program can, therefore, produce the HTML page
with the form on it, just asa CGI program can respond to the user's form input. Moreover, the same
program can perform both tasks, one after the other. All you need to do is divide the program into two
parts, which do different things depending on whether or not the program was invoked with arguments. If
no arguments were received, then the program sends the empty form to the browser; otherwise, the
arguments contain a user's input to the previously sent form, and the program returns a response to the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

browser based on that inpuit.

Keeping everything in asingle CGI file thisway eases maintenance. The cost is alittle more processing
time when loading the original page. Here's how it works:

#!/usr/bin/perl -w
cgi-bin/ice cream programto answer *and generate* ice cream
favorite flavor form (version 3)
use CA gw :standard);
ny $favorite = param("flavor");
print header, start_htm ("Hello Ice Creanf), hl("Hello Ice Creant);
if ($favorite) {
print g("Your favorite flavor is $favorite.");

} else {
print hr, start form # hr() emts html horizontal rule: <HR>
print q("Please select a flavor: ", textfield("flavor","mnt"));

print end_form hr;
}

If, while using your browser, you click on alink that pointsto this program (and if the link does not
specify ?what ever at theend of the URL), you'll see ascreen likethat in Figure 19.2. Thetext field is

initialy filled out with the default value, but the user's typed input, if any, will replace the default

Figure 19.2: A basic fill-out form

¢ Netscape - [Hello lce Cieam] M=] E3

Eil= Edit “iew Go Bookmaks Options Directony Window Help

o= ¢
Back

=

Prind

i1
Hamg

o
Forward

Tl ‘ ‘

-l

aile,

..E-I Locatior: |y

Hello Ice Cream

Please select a flavor: |mint

L4 |

g

crfsga|l Document: Done

Now fill inthef | avor field, hit Return, and Figure 19.3 shows what you'll see.

Figure 19.3: Result of submitting the form shown in Figure 19-2

; Metscape - [Hello lce Cream] _|Of x|
Eil= Edit “iew Go Bookmaks Options Directony Window Help

o Sl 2| & 2 | & | 6

Back Hiai Edit Fieload Dpen Frint Find

_@ Lacation: |hlt|:n.h"wnry.ma.cma’cgibim’icc_clcam ﬂ m

Hello Ice Cream

Y our favorte Havor 15 mint

_rfagl| Metscape ¥)
Previous: 19.5 Learning Next: 19.7 Other Form
Less Typing Perl Elements
19.5 Less Typing Book 19.7 Other Form Elements
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.6 Form Chapter 19 Next: 19.8 Creating a
Generation CGl Programming Guestbook Program

19.7 Other Form Elements

Now that you know how to create simple text fields in your form and respond to them, you're probably
wondering how to make the other kinds of widgets you've seen, like buttons, checkboxes, and menus.

Here's amore elaborate version of our program. We've thrown in some new widgets: popup menus, a submit
button (named "order"), and a button to reset the entire form, erasing al user input. Popup menus are pretty
much just what they say they are, but the arguments given to popup_nenu may perplex you until you've
read the following section on "References.” Thet ext fi el d() function creates a text-input field with the
indicated name. We'll give more details about this function when describing the guestbook program later in
this chapter.

#!/usr/bin/perl -w

cgi-bin/ice_cream programto answer and generate ice cream
order form (version 4)

use strict; # enforce variable declarations and quoti ng

use CA gw :standard);

print header, start_htm ("lce Cream Stand"), hl("lce Cream Stand");
if (param()) { # the form has already been filled out

ny $who = paran("nanme");

ny $flavor = paran("flavor");
ny $scoops = paran("scoops");
ny $taxrate = 1.0743;
ny $cost = sprintf("%2f", $taxrate * (1.00 + $scoops * 0.25));
print p("Ck, $who, have $scoops scoops of $flavor for \$$cost.");
} else { # first tinme through, so present clean form

print hr(); # draw a horizontal rule before the form

print start_form();

print p("Wat's your nanme? ", textfield("nane"));
FOR EXPLANATI ON OF FOLLOW NG TWO LI NES, SEE NEXT SECTI ON
print p("Wat flavor: ", popup_nenu("flavor",
['mnt'," cherry', ' nocha']));
print p("How many scoops? ", popup_nenu("scoops", [1..31]));

print p(submt("order"), reset("clear"));
print end form(), hr();

}
print end _htmn;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Figure 19.4 shows theinitial screen it generates.

Figure 19.4: A slightly more elaborate fill-out form

iy Metzcape - [Ilce Cream Stand]
File Edit Yiew Go Bookmedk: Opbon: Drectory Window Help

-
“.l\.'.\

Back

| F

il
Relonad

7

Edit

.E-l Location: |hth:-:.l'r"r'.-'-:|r_|,' ora.comy'cgirbinAce_cream? ﬂ E

o)
Forward

-
il
Horne

Ice Cream Stand

What's your name? I

What flasror |mmt "|
How many scoops? | "’l

arcler | clear |

3| Document Dore =k

Asyou'll recall, the par an{) function, when called without arguments, returns the names of all form-input
fields that were filled out. That way you can tell whether or not the URL was called from afilled-out form. If
you have parameters, then the user filled in some of the fields of an existing form, so respond to them.
Otherwise generate a new form, expecting to have this very same program called a second time.

19.7.1 References

Y ou may have noticed that the popup_menu() functions in the previous example both have a strange kind of
argument. Just what are['m nt ', 'cherry’, 'nocha’l and[1..3] doing there? The brackets create
something you haven't seen before: a reference to an anonymous array. That's because the popup_nenu()
function expects an array reference for an argument. Another way to create an array referenceisto use a
backslash in front of anamed array, asin\ @hoi ces. So this

@hoices = ("mnt',"cherry', ' nocha');

print p("Wat flavor: ", popup_nenu("flavor", \@hoices));

works just aswell asthis:
print p("Wat flavor: ", popup_nenu("flavor", ['"mnt', ' cherry','nocha'l]));

References behave somewhat as pointers do in other languages, but with less danger of error. They're values
that refer to other values (or variables). Perl references are very strongly typed (and uncastable), and they can
never cause core dumps. Even better, the memory storage pointed to by references is automatically reclaimed
when it's no longer used. References play a central role in object-oriented programming. They're also used in
traditional programming, forming the basis for data structures more complex than simple one-dimensional
arrays and hashes. Perl supports references to both named and anonymous scalars, arrays, hashes, and
functions,

Just as you can create references to named arrays with \ @r r ay and to anonymous arrayswith[i st],
you can also create references to named hashes using \ %ash and to anonymous ones like this:[§]

{ keyl, valuel, key2, value2, ... }

[8] Y es, braces now have quite afew meaningsin Perl. The context in which you use them
determines what they're doing.

Y ou can learn more about references in Chapter 4 of Programming Perl, or the perlref (1) manpage.

19.7.2 Fancier Calling Sequences

WEe'l round out the discussion of form widgets by creating areally fancy widget - one that allows the user to
select any number of itsitems. Thescrol Ii ng_| i st () function of CGI.pm can take an arbitrary number
of argument pairs, each of which consists of a named parameter (beginning with -) and avalue for the
parameter.

To add ascrolling list to aform, here's all you need to do:

print scrolling_list(
-NAME => "flavors",
-VALUES => [gm m nt chocol ate cherry vanilla peach)],
- LABELS => {
mnt => "Mghty Mnt",
chocol ate => "Cheri shed Chocol ate",
cherry => "Cheery Cherry",
vanilla => "Very Vanilla",
peach => "Perfectly Peachy",

b
-SI ZE => 3,

-MULTIPLE => 1, # 1 for true, O for false
);
The parameter values have meanings as follows:
- NAMVE

The name of the widget. Y ou can use the value of this later to retrieve user data from the form with
param).
- LABELS

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch04_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

A reference to an anonymous hash. The values of the hash provide the labels (list items) seen by the
form user. When a particular label is selected by the user, the corresponding hash key is what gets
returned to the CGI program. That is, if the user selectstheitem givenasPer f ect | y Peachy, the
CGlI program will receive the argument, peach.

- VALUES

A reference to an anonymous array. The array consists of the keys of the hash referenced by - LABELS.
- Sl ZE

A number determining how many list items will be visible to the user at one time.
- MULTI PLE

A true or false value (in Perl's sense of true and false) indicating whether the form user will be allowed
to choose more than one list item.

When you've set - MULTI PLE to true, you'll want to assign par an() 'sreturn list to an array:
@hoi ces = param("fl avors");

Here's another way to create the same scrolling list, passing areference to an existing hash instead of creating
one on the fly:

% 1 avors = (
mnt => "Mghty Mnt",
chocol ate => " Cheri shed Chocol ate",
cherry => "Cheery Cherry",
vanilla => "Very Vanilla",
peach => "Perfectly Peachy",
);
print scrolling_|ist(
-NAME => "fl avors",
-LABELS => \ 9% | avors,
-VALUES => [keys % avors],
-SI ZE => 3,
-MULTIPLE => 1, # 1 for true, O for false
);

Thistime we send in values computed from the keys of the % | avor s hash, which isitself passed in by
reference using the backslash operator. Notice how the - VALUES parameter is still wrapped in square
brackets? It wouldn't work to just passin the result of keys asalist, because the calling convention for the
scrolling_Iist() functionrequiresan array reference there, which the brackets happily provide. Think
of the brackets as a convenient way to treat multiple values as a single value.

Previous: 19.6 Form Learning Next: 19.8 Creating a
Generation Perl Guestbook Program

19.6 Form Generation Book 19.8 Creating a Guestbook

Index Program

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.7 Other Form Chapter 19 Next: 19.9 Troubleshooting
Elements CGl Programming CGlI Programs

19.8 Creating a Guestbook Program

If you have followed the examples above, you can now get some simple CGI programs going. But what about
harder ones? A common request is to create a CGI program to manage a guestbook, so that visitors to your
web site can record their own messages.[9]

[9] Aswe will note later on, this application might also be called awebchat program.

Actually, the form for this kind of thing is quite easy, easier in fact than some of our ice cream forms. Other
matters get trickier. But don't worry, we'll explain it al aswe go.

Y ou probably want guestbook messages to survive auser's visit to your site, so you need afile to store them
in. The CGI program (probably) runs under a different user, not as you; therefore, it won't normally have
permission to update afile of yours. So, first, create a file with wide-open permissions. If you're on a UNIX
system, then you can do this (from your shell) to initialize afile for the guestbook program to use:

touch /usr/tnp/chatfile
chnod 0666 /usr/tnp/chatfile

Okay, but how will you accommodate several folks using the guestbook program simultaneously? The
operating system doesn't block simultaneous access to files, so if you're not careful, you could get a jumbled
file as everyone writesto it at the same time. To avoid this, we'll use Perl'sf | ock function to request
exclusive access to the file we're going to update. It will look something like this:

use Fcntl gw(:flock); # inports LOCK EX, LOCK SH, LOCK NB
fl ock(CHANDLE, LOCK EX) || bail ("cannot flock $CHATNAME: $!");
The LOCK_EX argument to f | ock iswhat buys us exclusive file access.[10]

[10] With Perl versions prior to the 5.004 release, you must comment out theuse Fcnt!| and
just use 2 asthe argument to flock.

f 1 ock presents asimple but uniform locking mechanism even though its underlying implementation varies
wildly between systems. It reliably "blocks," not returning until it gets the lock. Note that file locks are purely
advisory: they only work when all processes accessing afile honor the locks in the same way. If three
processes honor them, but another doesn't, al bets are off.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

19.8.1 Object-Oriented Programming in Perl

Finally, and most important, it's time to teach you how to use objects and classes. Although building your own
object module is beyond the scope of this book, you don't have to know about that in order to use existing,
object-oriented library modules. For in-depth information about using and creating object modules, see
Chapter 5 of Programming Perl and the perltoot (1) manpage.

We won't go into the theory behind objects here, but you can just treat them as packages (which they are!) of
wonderful and marvelous things that you invoke indirectly. Objects provide subroutines that do anything you
need to do with the object.

For instance, suppose the CGI.pm module returns an object called $quer y that represents the user'sinput. If
you want to get a parameter from the query, invoke the par am() subroutine like this:

$quer y->par anm(" answer") ;

This says, "Run the par an{) subroutine on the $quer y object, with" answer " asan argument.” It's just
like invoking any other subroutine, except that you employ the name of the object followed by the - > syntax.
Subroutines associated with objects, by the way, are called methods.

If you want to retrieve the return value of the par anm() subroutine, just use the usual assignment statement
and store the value in aregular old variable named $he_sai d:

$he_said = $query->paranm("answer");

Objects ook like scalars; you store them in scalar variables (like $quer y in our example), and you can make
arrays or hashes of objects. But you don't treat them as you would strings or numbers. They're actually a
particular kind of reference,[11] but you don't even treat them as you would ordinary references. Instead, you

treat them like a special, user-defined type of data.
[11] A blessed reference, to be precise.

The type of aparticular object is known asits class. The class name is normally just the module name -
without the .pm suffix - and often the words "class" and "modul€" are used interchangeably. So we can speak
of the CGI module and also the CGlI class. Objects of a particular class are created and managed by the
module implementing that class.

Y ou access classes by loading in a module, which looks just like any other module except that object-oriented
ones don't usually export anything. Y ou can think of the class as a factory that cranks out brand-new objects.
To get the class to produce one of these new objects, you invoke special methods called constructors. Here's
an example:

$query = CA->new(); # call method new() in class "Cd"

What you have there is the invocation of a class method. A class method looks just like an object method
(which iswhat we were talking about a moment ago), except instead of using an object to call the method, you
use the name of the class as though it were itself an object. An object method is saying "call the function by

this name that is related to this object”; a class method is saying "call the function by this name that isrelated
to this class."

Sometimes you'll see that same thing written this way:
$query = new CA; # sane thing

The second form isidentical in behavior to the first. It's got less punctuation, so is sometimes preferred. But

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

it'sless convenient to use as part of alarger expression, so we'll use the first form exclusively in this book.

From the standpoint of the designer of object modules, an object is areference to a user-defined data structure,
often an anonymous hash. Inside this structure is stored all manner of interesting information. But the
well-behaved user of an object is expected to get at this information (to inspect or change it), not by treating
the object as areference and going straight for the data it pointsto, but by employing only the available object
and class methods. Changing the object's data by other means amounts to hanky-panky that is bound to get
you talked about. To learn what those methods are and how they work, just read the object module's
documentation, usually included as embedded pods.

19.8.2 Objects in CGl.pm

The CGI module is unusual in that it can be treated either as atraditional module with exported functions or as
an object module. Some kinds of programs are more easily written using the object interface to CGIl.pm rather
than the procedural one. A guestbook program is one of these. We access the input that the user supplied to the
form viaa CGlI object, and we can, if we want, use this same object to generate new HTML code for sending
back to the user.

First, however, we need to create the object explicitly. For CGIl.pm, as for so many other classes, the method
that generates objectsis the class method named new() .[12]

[12] Unlike C++, Perl doesn't consider new a keyword; you're perfectly free to have constructor
methods called gi nme_anot her () orfred() . But most classes end up naming their
constructors new() anyway.

This method constructs and returns anew CGI object corresponding to afilled-out form. The object contains
al the user's form input. Without arguments, new() builds the object by reading the data passed by the
remote browser. With afilehandle as an argument, it reads the handle instead, expecting to find form input
saved from previous communication with a browser.

WEe'll show you the program and explain its details in a moment. L et's assume that the program is named
guestbook and is in the cgi-bin directory. While this program does not look like one of the two-part scripts
shown earlier (where one part outputs an HTML form, and the other part reads and responds to form input
from auser), you will see that it neverthel ess does handle both functions. So there is no need for a separate
HTML document containing a guestbook form. The user might first trigger our program simply by clicking on
alink like this:

Pl ease sign our
guest book</ A>.

The program then downloads an HTML form to the browser and, for good measure, also downloads any
previous guest messages (up to a stated limit) for the user to review. The user then fills out the form, submits
it, and the program reads what is submitted. Thisis added to the list of previous messages (saved in afile),
which is then output to the browser again, along with afresh form. The user can continue reading the current
set of messages and submitting new messages via the supplied forms as long as he wishes.

Here's the program. Y ou might want to scan it quickly before we step you through it.
#!/usr/ bin/perl -w

use 5. 004,
use strict; # enforce declarations and quoting

use CA gw :standard); # inport shortcuts
use Fcntl gw(:flock); # inports LOCK EX, LOCK SH, LOCK NB

sub bail { # function to handle errors gracefully
my $error = "@",;
print hl("Unexpected Error"), p($error), end_htm;
di e $error;

}

my(
$CHATNAME, # nane of guestbook file
SMAXSAVE, # how many to keep
$TI TLE, # page title and header
$cur, # new entry in the guestbook
@ntries, # all cur entries
$entry, # one particular entry

);

$TI TLE = "Si npl e Guest book";
$CHATNAME = "/usr/tnp/chatfile"; # wherever nakes sense on your system
$MAXSAVE = 10;

print header, start_htm ($TI TLE), h1($TI TLE);

$cur = CA ->newW); # current request
i f ($cur->paranm("nessage")) { # good, we got a nessage
$cur->paran("date”, scalar localtinme); # set to the current tine
@ntries = ($cur); # save nessage to array
}

open the file for read-wite (preserving old contents)
open(CHANDLE, "+< $CHATNAME") || bail ("cannot open $CHATNAME: $!");

get exclusive |lock on the guestbook (LOCK EX == exclusive | ock)
fl ock(CHANDLE, LOCK EX) || bail ("cannot flock $CHATNAME: $!");

grab up to SMAXSAVE ol d entries, newest first

while (!eof (CHANDLE) && @ntries < $MAXSAVE) ({
$entry = CA->new(\ *CHANDLE); # pass the fil ehandle by reference
push @ntries, $entry;

}

seek(CHANDLE, 0, 0) || bail("cannot rewi nd $CHATNAMVE: $!");

foreach $entry (@ntries) {
$entry->save(*CHANDLE); # pass the filehandl e by reference

}

truncat e(CHANDLE, tell (CHANDLE)) ||
bai | ("cannot truncate $CHATNAME: $!");
cl ose(CHANDLE) || bail ("cannot cl ose $CHATNAME: $!");

print hr, start form # hr() emts htm horizontal
print p("Nane:", $cur->textfiel d(
-NAME => "nane"));
print p("Message:", $cur->textfield(
- NAME => "nessage",
- OVERRI DE => 1, # clears previous nessage
-SI ZE => 50));
print p(submt("send"), reset("clear"));
print end_form hr;

print h2("Prior Messages");

foreach $entry (@ntries) {
printf("% [%]: %",
$entry->param("date"),
$ent ry->par am(" nanme"),
$entry->par an(" nmessage"));
print br();

}
print end_htm ;

Figure 19.5 shows an example screen dump after running the guestbook program.

Figure 19.5: A simple guestbook form

rul e:

<HR>

Fle Edt Yiew Go Bookmark: Opbore Directory Window Help

i

Erack

i
=
pt Lnl

Reload

*}]‘ 7

Heorime Edit

ﬂ Locatior: |[£0

Simple Guestbook

Marne: |

Message: I

sand | clear |

Prior Messages

Mon Jun 2 14-17:45 1997 [Princess Leia Organa] Help me Obi Wan, vou're my
only hope.

_rf=3 Document Done =7

Note that the program begins with:
use 5. 004,

If you want to run it with an earlier version of Perl 5, you'll need to comment out the line reading:

use Fcntl gw (:fl ock);

and change LOCK_EXinthefirst f | ock invocation to be 2.

Since every execution of the program resultsin the return of an HTML form to the particular browser that

sought us out, the program begins by getting a start on the HTML code:
print header, start_htm ($TITLE), hl1l($TITLE);

It then creates anew CGI object:
$cur = CA ->new); # current request

i f (S$cur->paran("nessage")) { # good, we got a nessage

$cur - >param("date", scalar localtine); # set to the current tine
@ntries = ($cur); # save nessage to array

}

If we are being called via submission of aform, then the $cur object now contains information about the
input text given to the form. The form we supply (see below) has two input fields: a name field for the name of
the user, and a message field for the message. In addition, the code shown above puts a date stamp on the form
data after it isreceived. Feeding the par an{) method two argumentsis away to set the parameter named in
the first argument to the value given in the second argument.

If we are not being called via submission of aform, but rather because the user has clicked on "Please sign our
guestbook," then the query object we create here will be empty. Thei f test will yield afalse value, and no
entry will be added to the @nt ri es array.

In either case, we proceed to check for any entries previously saved in our savefile. We will read those into the
@ntri es array. (Recall that we have just now made the current form input, if any, the first member of this
array.) But, first, we have to open the savefile:

open(CHANDLE, "+< $CHATNAME') || bail ("cannot open $CHATNAMVE: $!");

This opens the file in nondestructive read-write mode. Alternatively, we could use sysopen() . Thisway a
single call opens an old file (if it exists) without clobbering it, or else creates a new one:

need to inport two "constants” from Fcntl nodule for sysopen
use Fcntl g O RDWR O _CREAT);
sysopen(CHANDLE, $CHATNAME, O RDWR| O CREAT, 0666)

|| bail "can't open $CHATNAME: $!";

Then we lock the file, as described earlier, and proceed to read up to atotal of SMAXSAVE entriesinto
@ntries:

fl ock(CHANDLE, LOCK EX) || bail ("cannot flock $CHATNAME: $!");

while (!eof (CHANDLE) && @ntries < $MAXSAVE) {
$entry = CA ->new(\ *CHANDLE) ; # pass the filehandl e by reference
push @ntries, $entry;

}

eof isaPerl built-in function that tells whether we have hit the end of the file. By repeatedly passing to the
new() method areference to the savefile's filehandle[13] we retrieve the old entries - one entry per call. Then

we update the file so that it now includes the new entry we (may) have just received:
seek(CHANDLE, 0, 0) || bail("cannot rewi nd $CHATNAME: $!");

foreach $entry (@ntries) {
$entry->save(*CHANDLE); # pass the filehandl e by reference
}

truncat e(CHANDLE, tell (CHANDLE)) || bail ("cannot truncate $CHATNAME: $!");
cl ose(CHANDLE) || bail ("cannot close $CHATNAME: $!");

[13] Actualy, it'saglob reference, not afilehandle reference, but that's close enough.

seek,truncate,andt el | areall built-in Perl functions whose descriptions you will find in any Perl
reference work. Here seek repositions the file pointer to the beginning of thefile, t r uncat e truncates the
indicated file to the specified length, and t el | returnsthe current offset of the file pointer from the beginning
of the file. The effect of these linesisto save only the most recent SMAXSAVE entries, beginning with the one

just now received, in the savefile.

Thesave() method handles the actual writing of the entries. The method can be invoked here as
$ent ry- >save because $ent ry isa CGl object, created with CA - >new() as previously discussed.

The format of a savefile entry looks like this, where the entry isterminated by "=" standing alone on aline:

NAVE1=VALUE1
NAVEZ2 =VALUE2
NAVE3=VALUE3

Now it's timeto return a fresh form to the browser and its user. (Thiswill, of course, be the first form heis
seeing if he hasjust clicked on "Please sign our guestbook.") First, some preliminaries.

print hr, start form # hr() emts htm horizontal rule: <HR>

As aready mentioned, CGIl.pm alows usto use either straight function calls or method calls viaa CGI object.
Here, for basic HTML code, we've reverted to the smple function calls. But for generation of form input
fields, we continue to employ object methods:

print p("Nanme:", S$cur->textfield(
- NAME => "nane"));
print p("Message:", S$cur->textfield(
- NAME => "nessage",
-OVERRIDE => 1, # clears previous nessage
-SI ZE => 50));
print p(submt("send"), reset("clear"));
print end form hr;

Thet ext fi el d() method returns atext-input field for aform. The first of the two invocations here
generates HTML code for atext-input field with the HTML attribute, NAME=" nane" , while the second one
creates afield with the attribute, NAVE=" nessage" .

Widgets created by CGIl.pm are by default sticky: they retain their values between calls. (But only during a
single "session" with a form, beginning when the user clicks on "Please sign our guestbook.") This means that
the NAME=" nane" field generated by thefirstt ext fi el d() abovewill have the value of the user's name
if he has already filled out and submitted the form at least once during this session. So the input field we are
now creating will actually have these HTML attributes:

NAME=" nanme" VALUE="Sam Smith"

The second invocation of t ext fi el d() isadifferent matter. We don't want the message field to contain the
value of the old message. So the - OVERRI DE => 1 argument pair says, in effect, "throw out the previous
value of thistext field and restore the default value." The - SI ZE => 50 argument pair of t ext fi el d()
gives the size of the displayed input field in characters. Other optional argument pairs beside those shown:
-DEFAULT=>"initial val ue' and- MAXLENGTH => n, wheren isthe maximum number of input
characters the field will accept.

Finally, we output for the user's delectation the current set of saved messages, including, of course, any he has
just submitted:

print h2("Prior Messages");

foreach $entry (@ntries) {
printf("% [%]: %",

$entry->paran("date"),
$ent ry- >par am(" nane"),
$ent ry- >par an(" nessage"));
print br();

}
print end _htmn;

Asyou will doubtless realize, the h2 function outputs a second-level HTML heading. For the rest, we simply
iterate through the current list of saved entries (the same list we earlier wrote to the savefile), printing out date,
name, and message from each one.

Users can sit there with the guestbook form, continually typing messages and hitting the submit button. This
simulates an electronic bulletin-board system, letting them see each others' new messages each time they send
off their own. When they do this, they call the same CGI program repeatedly, which means that the previous
widget values are automatically retained between invocations. Thisis particularly convenient when creating
multistage forms, such as those used in so-called "shopping cart" applications.

Previous: 19.7 Other Form Learning Next: 19.9 Troubleshooting
Elements Perl CGI Programs
19.7 Other Form Elements Book 19.9 Troubleshooting CGI
Index Programs

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.8 Creating a Chapter 19 Next: 19.10 Perl and the
Guestbook Program CGI Programming Web: Beyond CGI
Programming

19.9 Troubleshooting CGI Programs

CGlI programs launched from aweb server run under afundamentally different environment than they do
when invoked from the command line. While you should always verify that your CGI program runs
properly from the command line,[14] thisisn't enough to guarantee that your program will work when

called from the web server.
[14] See the CGI.pm documentation for tips on command-line debugging.

Y ou should get the CGI programming FAQ and a good book on CGI programming to help you in this.
Some of these are listed at the end of this chapter. Here's a brief list of the frequent problemsthat arisein
CGlI programming. Almost al of them trigger those annoyingly unhelpful 500 Ser ver Err or
messages that you will soon come to know and hate.

o If, when sending HTML to abrowser, you forget the blank line between the HTTP header (that is,
the Cont ent - t ype line) and the body, it won't work. Remember to output a proper
Cont ent - Type line (and possibly other HTTP headers) plus atotally blank line before you do
anything else.

« The server needs read and execute access to the script, so its permissions should usually be mode
0555 or, better, 0755. (Thisis UNIX-specific.)

« Thedirectory where the script resides must itself be executable, so give it permissions of 0111 or,
better, 0755. (Thisis UNIX-specific.)

« The script must be installed in the proper directory for your server configuration. For example, on
some systems, it may be /usr/etc/httpd/cgi-bin/.

« You may need to have your script's filename end in a particular suffix, like .cgi or .pl. We advise
against this setup, preferring to enable CGI execution on a per-directory basis instead, but some
configurations may require it. Automatically assuming that anything ending in .cgi is executableis
perilousif any directories are writable by FTP clients, or when mirroring someone else's directory
structure. In both cases, executable programs may suddenly appear on your server without the
webmaster's knowledge or consent. It also means that any files whose names end in .cgi or .pl can
never again be fetched viaanormal URL, an effect that ranges between undesirable and
disastrous.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Remember that the .pl suffix meansit's a Perl library, not a Perl executable. Confusing these two
will only make you unhappy in the long run. If you absolutely must have a unique suffix on a
script to enable Perl execution (because your operating system just isn't clever enough to use
something likethe #! / usr/ bi n/ per | notation), we suggest a suffix of .plx instead. But you
still incur the other problems we just mentioned.

« Your server configuration requires CGl execution specially enabled for the directory you put your
CGl script in. Make sure both GET and POST are alowed. (Y our webmaster will know what that
means.)

« Theweb server doesn't execute your script under your user ID. Make sure the files and directories
accessed by the script are open to whatever user the web server runs scripts as, for example,
nobody, wwwser , or ht t pd. You may need to precreate such files and directories and give
them wide-open write permissions. Under UNIX, thisis done with chnod a+w. Always be dert
to the risks when you grant such accessto files.

« Alwaysrun your script under Perl's - wflag to get warnings. These go to the web-server error log,
which contains any errors and warnings generated by your script. Learn the path to that logfile
from your webmaster and check it for problems. See aso the standard CGl::Carp module for how
to handle errors better.

« Make sure that the versions and pathsto Perl and any libraries you use (like CGIl.pm) are what
you're expecting them to be on the machine the web server is running on.

« Enable autoflush on the STDOUT filehandle at the top of your script by setting the $| variableto
atruevalue, like 1. If you've the used the FileHandle module or any of the |O modules (like
|O::File, 10::Socket, and so on), then you can use the more mnemonically named aut of | ush()
method on the filehandl e instead:

use Fil eHandl e;
STDQUT- >aut of | ush(1);

« Check the return value of every system call your program makes, and take appropriate action if the

cal fails.
Previous: 19.8 Creating a Learning Next: 19.10 Perl and the
Guestbook Program Perl Web: Beyond CGlI
Programming
19.8 Creating a Guestbook Book 19.10 Perl and the Web:
Program Index Beyond CGI Programming

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.9 Chapter 19 | Next: 19.11 Further Reading]
Troubleshooting CGI CGl Programming
Programs

19.10 Perl and the Web: Beyond CGI Programming

Perl is used for much more than CGI programming. Other uses include logfile analysis, cookie and
password management, clickable images, and image manipulation.[15] And that's still just the tip of the

iceberg.

[15] See the GD.pm module on CPAN for a Perl interface to Thomas Boutell's gd graphics
library.

19.10.1 Custom Publishing Systems

Commercia web publishing systems may make easy things easy, especially for nonprogrammers, but
they just aren't infinitely flexible the way areal programming language is. Without source code, you're
locked into someone else's design decisions: if something doesn't work quite the way you want it to, you
can't fix it. No matter how many whiz-bang programs become available for the consumer to purchase, a
programmer will always be needed for those specia jobs that don't quite fit the mold. And of course
someone has to write the publishing software in the first place.

Perl is great for creating custom publishing systems tailored to your unique needs. It's easy to convert
raw datainto zillions of HTML pages en masse. Sites al over the Web use Perl to generate and maintain
their entire web site. The Perl Journal (www.tpj.com) uses Perl to generate all its pages. The Perl

L anguage Home Page (www.perl.com) has nearly 10,000 web pages all automatically maintained and
updated by various Perl programs.

19.10.2 Embedded Perl

The fastest, cheapest (it's hard to get any cheaper than free), and most popular web server on the Net,
Apache, can run with Perl embedded inside it using the mod_perl module from CPAN. With mod_perl,
Perl becomes the extension language for your web server. Y ou can write little Perl snippetsto handle
authorization requests, error handling, logging, and anything else you can think of. These don't require a
new process because Perl is now built-in to the web server. Even more appealing for many is that under
Apache you don't have to fire off awhole new process each time a CGI request comes in. Instead, a new
thread executes a precompiled Perl program. This speeds up your CGI programs significantly; typically
it'sthef or k/ exec overhead that slows you down, not the size of the program itself.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
http://www.tpj.com/
http://www.perl.com/

Another strategy for speeding up CGI execution is through the standard CGI::Fast module. Unlike the
embedded Perl interpreter described above, this approach doesn't require the Apache web server. Seethe
CGl::Fast modul€'s manpage for more details about this.

If you're running aweb server under WindowsNT, you should definitely check out the ActiveWare site,
www.activeware.com. Not only do they have prebuilt binaries of Perl for Windows platforms,[16] they
also provide PerlScript and PerllS. PerlScript is an ActiveX scripting engine that lets you embed Perl
code in your web pages as you would with JavaScript or VBScript. PerlISisan ISAPI DLL that runs Perl
scripts directly from 11S and other ISAPI compliant web servers, providing significant performance
benefits.

[16] As of release 5.004, the standard distribution of Perl builds under Windows, assuming
you have a C compiler, that is.

19.10.3 Web Automation with LWP

Have you ever wanted to check a web document for dead links, find its title, or figure out which of its
links have been updated since last Thursday? Or wanted to download the images contained within a
document or mirror an entire directory full of documents? What happensif you have to go through a
proxy server or server redirects?

Now, you could do these things by hand using your browser. But because graphical interfaces are
woefully inadequate for programmatic automation, this would be a slow and tedious process requiring
more patience and less lazinesg 17] than most of us tend to possess.

[17] Remember that according to Larry Wall, the three principal virtues of a programmer are
L aziness, Impatience, and Hubris.

The LWP ("Library for WWW accessin Perl") modules from CPAN do all thisfor you and more. For
example, fetching a document from the Web in a script is so easy using these modules that you can write
it asaone-liner. For example, to get the /perl/index.html document from www.perl.com, just type this

into your shell or command interpreter:
perl -MWP::Sinple -e "getprint "http://ww.perl.confperl/index.htm""

Apart from the LWP::Simple module, most of the modules included in the LWP suite are strongly
object-oriented. For example, here's atiny program that takes URL s as arguments and produces their
titles:

#! [usr/ bi n/ perl
use LWP;
$browser = LWP:: User Agent->new(); # create virtual browser
$br owser - >agent (" Mot hra/ 126- Pal adi uni'); # give it a name
foreach $url (@\RGY) { # expect URLs as args
make a CET request on the URL via fake browser
$webdoc = $browser->request (HTTP: : Request - >new(GET => $url));
I f ($webdoc->is success) { # found it
print STDOUT "$url: ", $webdoc->title, "\n";
} else { # sonething went wong

http://www.activeware.com/
http://www.perl.com/perl/index.html
http://www.perl.com/

print STDERR "$0: Couldn't fetch $url\n";

}
}

Asyou see, familiarity with Perl's objects is important. But just as with the CGIl.pm module, the LWP
modules hide most of the complexity.

This script works as follows: first create a user agent object, something like an automated, virtual
browser. This object is used to make requests to remote servers. Give our virtual browser asilly name
just to make people's logfiles more interesting. Then pull in the remote document by making an HTTP
GET request to the remote server. If the result is successful, print out the URL and itstitle; otherwise,
complain abit.

Here's aprogram that prints out a sorted list of unique links and images contained in URL s passed as
command-line arguments:

#! /usr/bin/perl -w
use strict;

use LWP 5. 000;

use URI:: URL;

use HTM.:: Li nkExt or;

ny($url, $browser, %saw);
$browser = LWP:: User Agent ->new(); # nmake fake browser
foreach $url (@GARGV) {
fetch the docunent via fake browser
ny $webdoc = $browser->request (HTTP: : Request - >new(GET => $url));
next unl ess $webdoc->i s_success;
next unl ess $webdoc->content type eq 'text/htm';
can't parse gifs

ny $base = $webdoc- >base;

now extract all links of type <A ...> and <IMG...>
foreach (HTM.::Li nkExt or - >new >par se($webdoc- >cont ent) - >eof - >
| i nks) {

ny($tag, %inks) = @ ;
next unless $tag eq "a" or $tag eq "ing";
ny $link;
foreach $link (values %inks) {
$saw{ url (3l i nk, $base) - >abs->as_string }++;
}

}
}
print join("\n", sort keys %aw), "\n";

This looks pretty complicated, but most of the complexity lies in understanding how the various objects
and their methods work. We aren't going to explain all these here, because this book islong enough

aready. Fortunately, LWP comes with extensive documentation and examples.

Previous: 19.9 Learning [Next: 19.11 Further Reading|
Troubleshooting CGI Perl
Programs
19.9 Troubleshooting CGlI Book 19.11 Further Reading
Programs Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: 19.10 Perl and the Chapter 19 . Next: 19.12
Web: Beyond CGI CGl Programming Exercises
Programming

19.11 Further Reading

There's quite a bit more to modules, references, objects, and web programming than we can possibly
hope to cover in this one small chapter. A whole book could be written on CGI programming. In fact,
dozens have been. For your continued research into these matters, check out the following reference list:

o CGIl.pm docs

o TheLWPIlibrary from CPAN

o O'Rellly & Associates CGI Programming on the World Wide Web by Shishir Gundavaram
« O'Relly & Associates Web Client Programming with Perl by Clinton Wong

o OReilly & Associates HTML: The Definitive Guide, Second Edition by Chuck Musciano and Bill
Kennedy

« Addison-Wesley's How to Setup and Maintain a Web Ste by Lincoln Stein, M.D., Ph.D.
« Addison-Wedley's CGI Programming in C and Perl, by Thomas Boutell

« Nick Kew's CGI FAQ

« Manpages: perltoot, perlref, perlmod, perlobj

Previous: 19.10 Perl and the Learning Next: 19.12
Web: Beyond CGI Perl Exercises
Programming
19.10 Perl and the Web: Book 19.12 Exercises
Beyond CGI Programming Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: 19.11 Further Chapter 19 [Next: A. Exercise Answers
Reading CGI Programming

19.12 Exercises

1. Write aform that provides two input fields that are added together when the user submitsiit.

2. Write a CGl script that detects the browser type making the request and says something in
response. (Hint: look at the HTTP_USER _AGENT environment variable.)

Previous: 19.11 Further Learning [Next: A. Exercise Answers)|
Reading Perl

19.11 Further Reading Book A. Exercise Answers
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

[Previous: 19.12 Exercises] Appendix A Next: A.2 Chapter 3, Arrays
and List Data

A. Exercise Answers

Contents:
Chapter 2, Scdlar Data

Chapter 3, Arraysand List Data

Chapter 4, Control Structures

Chapter 5, Hashes

Chapter 6, Basic 1/O

Chapter 7, Regular Expressions

Chapter 8, Functions

Chapter 9, Miscellaneous Control Structures
Chapter 10, Filehandles and File Tests
Chapter 11, Formats

Chapter 12, Directory Access

Chapter 13, File and Directory Manipulation
Chapter 14, Process Management

Chapter 15, Other Data Transformation
Chapter 16, System Database Access
Chapter 17, User Database Manipulation
Chapter 18, Converting Other Languages to Perl
Chapter 19, CGI Programming

This appendix gives the answers for the exercises found at the end of each chapter.

A.1l Chapter 2, Scalar Data

1. Here'soneway to doit:

$pi = 3.141592654;
$result = 2 * $pi * 12.5;
print "radius 12.5 is circunference $result\n";

First, we give a constant value () to the scalar variable $pi . Next, we compute the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

circumference using this value of $pi in an expression. Finally, we print the result using a string
containing a reference to the result.

. Here'sone way to do it:

print "What is the radius: ";

chonp($radi us = <STDI N>) ;

$pi = 3.141592654;

$result =2 * $pi * $radi us;

print "radius $radius is circunference $result\n";

Thisis similar to the previous exercise, but here we've asked the person running the program for a
value, using apr i nt statement for a prompt, and then the <STDI N> operator to read aline from
the terminal.

If we had left off the chonp, we'd get anewline in the middle of the displayed string at the end.
It's important to get that newline off the string as soon as we can.

. Hereé'soneway to doit:

print "First nunber: "; chonp($a = <STDI N>);
print "Second nunber: "; chonp($b = <STDI N>);
$c = $a * $b; print "Answer is $c.\n";

Thefirst line does three things: prompts you with a message, reads a line from standard input, and
then getsrid of the inevitable newline at the end of the string. Note that since we are using the
value of $a strictly as a number, we can omit the chonp here, because 45\ n is 45 when used
numerically. However, such careless programming would likely come back to haunt us later on
(for example, if we were to include $a in amessage).

The second line does the same thing for the second number and placesit into the scalar variable
$b.

The third line multiplies the two numbers together and prints the result. Note the newline at the
end of the string here, contrasted with its absence in the first two lines. The first two messages are
prompts, for which user input was desired on the same line. This last message is a complete
statement; if we had left the newline out of the string, the shell prompt would appear immediately
after the message. Not very cool.

. Hereé'soneway to doit:

print "String: "; $a = <STDI N>;

print "Nunber of tinmes: "; chonp($b = <STDI N>);
$c = $a x $b; print "The result is:\n$c";

Like the previous exercise, the first two lines ask for, and accept, values for the two variables.
Unlike the previous exercise, we don't chomp the newline from the end of the string, because we
need it! Thethird line takes the two entered values and performs a string repetition on them, then
displays the answer. Note that the interpolation of $c is not followed by a newline, because we
believe that $¢ will aways end in a newline anyway.

[Previous: 19.12 Exercises Learning Next: A.2 Chapter 3, Arrays

Perl and List Data
19.12 Exercises Book A.2 Chapter 3, Arrays and
Index List Data

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.1 Chapter 2, ﬁw Next: A.3 Chapter 4, Control
Scalar Data Exercise Answers Structures

A.2 Chapter 3, Arrays and List Data

1. Oneway to dothisis:

print "Enter the list of strings:\n";
@i st = <STDI N>;

@everselist = reverse @i st;

print @everselist;

Thefirst line prompts for the strings. The second reads the strings into an array variable. The third
line computes the list in the reverse order, storing it into another variable, and the final line
displays the result.

We can actually combine the last three lines, resulting in:

print "Enter the list of strings:\n";
print reverse <STDI N>,

Thisworks because the pr i nt operator isexpecting alist, andr ever se returnsalist - so they're
happy. And r ever se wantsalist of valuesto reverse, and <STDI N> in alist context returns a
list of the lines, so they're happy too!

2. Oneway to dothisis:

print "Enter the line nunber: "; chonp($a = <STDI N>);
print "Enter the lines, end with *"D:\n"; @ = <STDI N>;
print "Answer: $b[%$a-1]";

Thefirst line prompts for a number, reads it from standard input, and removes that pesky newline.
The second line asks for alist of strings, then uses the <STDI N> operator in alist context to read
al of the lines until end-of-file into an array variable. The final statement prints the answer, using
an array reference to select the proper line. Note that we don't have to add a newline to the end of

this string, because the line selected from the @ array still hasits newline ending.

If you are trying this from atermina configured in the most common way, you'll need to type
CTRL-D at the terminal to indicate an end-of-file.

3. Oneway to do thisis:

srand;
print "List of strings: "; @ = <STDI N>,

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

print "Answer: $b[rand(@®)]";

Thefirst line initializes the random number generator. The second line reads a bunch of strings.
The third line selects arandom element from that bunch of strings and printsiit.

Previous: A.1 Chapter 2, Learning Next: A.3 Chapter 4, Control
Scalar Data Perl Structures
A.1 Chapter 2, Scalar Data Book A.3 Chapter 4, Control
Index Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.2 Chapter 3, Appendix A [Next: A.4 Chapter 5, Hashes]
Arrays and List Data Exercise Answers

A.3 Chapter 4, Control Structures

1. Here'soneway to doit:

print "What tenperature is it? ";
chonp($t enperature = <STDI N>) ;
if ($tenperature > 72) {
print "Too hot!\n";
} else {
print "Too cold!'\n";
}

Thefirst line prompts you for the temperature. The second line accepts the temperature for input.
Thei f statement on the final 5 lines selects one of two messages to print, depending on the value
of $t enper at ur e.

2. Heré'soneway to doit:

print "What tenperature is it? ";
chomp($t enperature = <STDI N>) ;
if ($tenperature > 75) {
print "Too hot!\n";
} elsif ($tenperature < 68) {
print "Too cold!'\n";
} else {
print "Just right!\n";
}

Here, we've modified the program to include a three-way choice. First, the temperature is
compared to 75, then to 68. Note that only one of the three choices will be executed each time
through the program.

3. Here'soneway to doit:

print "Enter a nunmber (999 to quit): ";
chonmp($n = <STDI N>) ;
while ($n !'= 999) {
$sum += $n;
print "Enter another nunber (999 to quit): ";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

chomp($n = <STDI N>) ;
}

print "the sumis $sumn";

Thefirst line prompts for the first number. The second line reads the number from the terminal.
Thewhi | e loop continues to execute as long as the number is not 999.

The += operator accumulates the numbers into the $sumvariable. Note that the initial value of
$sumisundef , which makes a nice value for an accumulator, because the first value added in
will be effectively added to O (remember that undef used as anumber is zero).

Within the loop, we must prompt for and receive another number, so that the test at the top of the
loop is against a newly entered number.

When the loop is exited, the program prints the accumul ated results.

Note that if you enter 999 right away, the value of $sumis not zero, but an empty string - the
value of undef when used as a string. If you want to ensure that the program prints zero in this
case, you should initialize the value of $sumin the beginning of the program with $sum = 0.

. Here'sone way to do it:

print "Enter sone strings, end with *"D:\n";
@trings = <STDI N>;
while (@trings) {
print pop @trings;
}

First, this program asks for the strings. These strings are saved in the array variable @t r i ngs,
one per element.

The control expression of thewhi | e loopis @t ri ngs. The control expression islooking for a
single value (true or false), and is therefore computing the expression in a scalar context. The
name of an array (such as @t r i ngs) when used in ascalar context is the number of elements
currently in the array. Aslong asthe array is not empty, this number is nonzero and therefore true.
Thisisavery common Perl idiom for "do this while the array is nonempty."

The body of the loop prints a value, obtained by pop'ing off the rightmost element of the array.
Thus, because that element has been popped, each time through the loop the array is one element
shorter.

Y ou may have considered using subscripts for this problem. Aswe say, there's more than one way
to do it. However, you'll rarely see subscripts in true Perl Hackers programs because there's almost
always a better way.

. Here'saway to do it without alist:

for ($nunber = 0; $nunber <= 32; $nunber++) {
$square = $nunber * $nunber;
printf "%g %Bg\n", $nunber, $square;

And here's how to do it with alist:

foreach $nunber (0..32) {

$square = $nunber * $nunber;

printf "%g %8g\n", $nunber, $square;
}

These solutions both involve loops, using thef or and f or each statements. The body of the
loops are identical, because for both solutions, the value of $nunber proceeds from 0 to 32 on
each iteration.

Thefirst solution uses atraditional C-likef or statement. The three expressions respectively: set
$nunber to 0, test to seeif $nunber islessthan or equal to 32, and increment $nunber on
each iteration.

The second solution uses a C-shell-like f or each statement. A list of 33 elements (0to 32) is
created, using the list contructor. The variable $nunber isthen set to each element in turn.

Previous: A.2 Chapter 3, Learning | Next: A.4 Chapter 5, Hashes|
Arrays and List Data Perl

A.2 Chapter 3, Arrays and Book A.4 Chapter 5, Hashes
List Data Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.3 Chapter 4, Appendix A Next: A.5 Chapter 6, Basic
Control Structures Exercise Answers 110

A.4 Chapter 5, Hashes

1. Hereisoneway to doit:

%ap = gwm(red appl e green | eaves bl ue ocean);
print "A string please: "; chonp($sone_string = <STDI N>);
print "The value for $sone_string is $map{$sone_string}\n";

Thefirst line creates the hash, giving it the desired key-value pairs. The second line fetches a string,
removing the pesky newline. The third line prints the entered value and its mapped value.

Y ou can also create the hash through a series of separate assignments, like so:
$map{'red'} = 'apple';

$map{' green'} = 'l eaves';

$map{' bl ue'} = 'ocean';

2. Here'soneway to do it:

chonmp(@wrds = <STDI N>); # read the words, m nus new ines
foreach $word (@wrds) {

$count { Sword} = $count{$word} + 1; # or $count{$word} ++
}

foreach $word (keys %ount) {
print "$word was seen $count {$word} tinmes\n";
}

Thefirst line reads the lines into the @vor ds array. Recall that thiswill cause each linetoend up asa
separate element of the array, with the newline character still intact.

The next four lines step through the array, setting $wor d equal to each line in turn. The newlineis
discarded with chonp, and then the magic comes. Each word is used as a key into a hash. The value of
the element selected by the key (the word) is a count of the number of times we've seen that word so far.
Initially, there are no elementsin the hash, so if theword wi | d is seen on thefirst line, we have

$count {"wi | d"},whichisundef . Theundef value plus one turns out to be zero plus one, or one.
(Recall that undef looks like a zero if used as a number.) The next time through, we'll have one plus one,
or two, and so on.

Another common way to write the increment is given in the comments. Fluent Perl programmers tend to
be lazy (we call it "concise") and would never go for writing the same hash reference on both sides of the
assignment when a simple autoincrement will do.

After the words have been counted, the last few lines step through the hash by looking at each of its keys

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

one at atime. The key and the corresponding value are printed after having been interpolated into the
string.

The extra challenge answer looks like this answer, with the sor t operator inserted just before the word
keys on thethird-to-last line. Without the sorting, the resulting output is seemingly random and
unpredictable. However, once sorted, the output is predictable and consistent. (Personally, | rarely use the
keys operator without also adding a sort immediately in front of it; this ensures that reruns over the same
or similar data generate comparabl e results.)

Previous: A.3 Chapter 4, Learning Next: A.5 Chapter 6, Basic
Control Structures Perl 1/O
A.3 Chapter 4, Control Book A.5 Chapter 6, Basic 1/0
Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming |
Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.4 Chapter 5, ﬁw Next: A.6 Chapter 7, Regular
Hashes Exercise Answers Expressions

A.5 Chapter 6, Basic 1/O

1. Here'soneway to doit:
print reverse <>;

Y ou may be surprised at the brevity of this answer, but it will get the job done. Here'swhat is
happening, from the inside out:

. First, ther ever se function islooking for alist for its arguments. This means that the
diamond operator (<>) isbeing evaluated in alist context. Thus, al of the lines of the files
named by command-line arguments (or standard input, if none are named) are read in and
massaged into alist with one line per element.

b. Next, ther ever se function reversesthelist end for end.
c. Findly, thepri nt function takes the resulting list, and displaysit.

2. Heré'soneway to doit:

@ARGV = reverse @\RGVY;

print reverse <>;

Thefirst line just takes any filename arguments and reverses them. That way if the user called this
script with command line arguments "camel [lama alpaca’, GARGV would then contain "a paca
llama camel” instead. The second linereadsin al thelinesin all the filesin @GARGYV, flips them end
on end, and prints them. If no arguments were passed to the program, then as before, <> works on
STDIN instead.

3. Here'soneway to doit:
print "List of strings:\n";
chomp(@trings = <STDI N>);
foreach (@trings) {
printf "920s\n", $_;
}

Thefirst line prompts for alist of strings.

The next linereads all of the stringsinto one array and getsrid of the newlines at the end of each
line.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Thef or each loop steps through this array, giving $_ the value of each line.

Thepri nt f function gets two arguments: the first argument defines the format: " %20s\ n"
means a 20-character right-justified column, followed by a newline.

4. Here'soneway to do it:
print "Field width: ";
chonp($wi dt h = <STDI N>) ;
print "List of strings:\n";
chonp(@trings = <STDI N>);
foreach (@trings) {

printf "o&{width}s\n", $_;

}

To the previous exercise answer, we've added a prompt and response for the field width.

The other changeisthat thepri nt f format string now contains a variable reference. The value of
$wi dt h isincluded into the string before pr i nt f considers the format. Note that we cannot
write this string as

printf "9w dths\n", $; # WRONG

because then Perl would be looking for avariable named $w dt hs, not a variable named
$wi dt h to which we attach an s. Another way to writethisis

printf "%w dth"."s\n", $; # R GHT

because the termination of the string aso terminates the variable name, protecting the following
character from being sucked up into the name.

Previous: A.4 Chapter 5, Learning Next: A.6 Chapter 7, Regular
Hashes Perl Expressions
A.4 Chapter 5, Hashes Book A.6 Chapter 7, Regular
Index Expressions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.5 Chapter 6, Appendix A Next: A.7 Chapter 8,
Basic I/O EXxercise Answers Functions

A.6 Chapter 7, Regular Expressions

1. Here are some possible answers:
. [a+b*/
b. /***/ (Remember that the backslash cancels the meaning of the specia character following.)

c. / ($what ever) {3}/ (You must have the parentheses, or else the multiplier applies only to the last
character of $what ever ; thisalso failsif $what ever has special characters.)

d. /[\000-\377] {5}/ or/ (.|\n){5}/ (Youcan't usedot alone here, because dot doesn't match
newline.)

e/ (M\s)(\SH) (\s+H\2)+(\s| $)/ (\ Sisnonwhitespace, and\ 2 is areference to whatever the
"word" is; the caret or whitespace alternative ensures that the\ S+ begins at a whitespace boundary.)

2. . Oneway to do thisis:

while (<STDI N>) {
if (/ali && leli && /ili && /oli && [uli) {
print;
}

}

Here, we have an expression consisting of five match operators. These operators are all looking at the
contents of the $_ variable, which is where the control expression of thewhi | e loop is putting each
line. The match operator expression will be true only when all five vowels are found.

Note that as soon as any of the five vowels are not found, the remainder of the expression is skipped,
because the && operator doesn't evaluate its right argument if the left argument isfalse.

b. Another way to do thisis:
while (<STDIN>) {
if (/a.*e.*i.*o.*uli) {
print;
}

}

This answer turns out to be easier than the other part of this exercise. Here we have a simple regular
expression that looks for the five vowels in sequence, separated by any number of characters.

c. Oneway to do thisis:
while (<>) {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

print if
(/™[~aei ou] *a[“ei ou] *e[“ai ou] *i [*aeou] *o[“aei u] *u["aei 0] *$);
}

Ugly, but it works. To construct this, just think "What can go between the beginning of the line, and
thefirst a?," and then "What can go between the first aand the first €?' Eventually, it all works itself
out, with alittle assistance from you.

3. Oneway to dothisis:
whil e (<STDIN>) {
chonp;
($user, $gcos) = (split /:/)[0,4];
($real) = split(/,/, $gcos);
print "$user is $real\n";

}

The outer whi | e loop reads one line at atime from the password-format file into the $_ variable,
terminating when there are no more lines to be read.

The second line of thewhi | e loop body breaks the line apart by colons, saving two of the seven valuesinto
individual scalar variables with hopefully meaningful names.

The GCOSfield (the fifth field) is then split apart by commas, with the resulting list assigned to asingle
scalar variable enclosed in parentheses. The parentheses are important: they make this assignment an array
assignment rather than a scalar assignment. The scalar variable $r eal getsthefirst element of thelist, and
the remaining elements are discarded.

Thepri nt statement then displays the results.

4. Oneway to do thisis:
whil e (<STDIN>) {

chonp;
($gcos) = (split /:/1)[4];
($real) = split(/,/, $gcos);

($first) = split(/\s+/, $real);
$seen{ $f i rst} ++;
Y
foreach (keys %seen) {
if ($seen{$_} > 1) {
print "$ was seen $seen{$ } tines\n";
}

}

Thewhi | e loop works alot likethewhi | e loop from the previous exercise. In addition to splitting the line
apart into fields and the GCOS field apart into the real name (and other parts), thisloop also splits apart the
real name into afirst name (and the rest). Once the first name is known, a hash element in %seen is
incremented, noting that we've seen a particular first name. Note that this loop doesn't do any pri nt 'ing.

Thef or each loop steps through all of the keys of ¥seen (the first names from the password file),
assigning each oneto $_ in turn. If the value stored in %seen at agiven key is greater than 1, we've seen the
first name more than once. Thei f statement tests for this, and prints a message if so.

5. Oneway to do thisis:

while (<STDIN>) {
chonp;
($user, $gcos) = (split /:/)[0,4];
($real) = split /,/, $gcos;
($first) = split /\s+/, $real
$nanmes{$first} .=" S$user";

}

foreach (keys %anes) {
$this = $nanmes{$_};
if ($this =~1/. /) {

print "$_ is used by:$this\n";

}

}

This program is like the previous exercise answer, but instead of merely keeping a count, we append the
login name of the user to the %manes element that has akey of the first name. Thus, for Fred Rogers (login
nT roger s), $nanes{" Fred"} becomes" nrrogers", and when Fred Flintstone (login f r ed) comes
aong, weget $nanes{" Fred"} as" nrrogers fred". After theloop is complete, we have a mapping
of all of the first namesto all of the users that have them.

Thef or each loop, like the previous exercise answer, then steps through the resulting hash. However, rather
than testing a hash element value for a number greater than one, we must see now if there is more than one
login name in the value. We do this by saving the value into a scalar variable $t hi s and then seeing if the
value has a space after any character. If so, the first name is shared, and the resulting message tells which
logins share that first name.

Previous: A.5 Chapter 6, Learning Next: A.7 Chapter 8,
Basic 1/0 Perl Functions
A.5 Chapter 6, Basic I/0 Book A.7 Chapter 8, Functions
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl Programming | Perl
Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.6 Chapter 7, Appendix A Next: A.8 Chapter 9,
Regular Expressions Exercise Answers Miscellaneous Control
Structures

A.7 Chapter 8, Functions

1. Here'soneway to doit:
sub card {
ny %ard_nmap;
@ard _map{1..9} = gw
one two three four five six seven eight nine
);

ny($num = @;
if ($card_map{$num) {
return $card_nmap{$nuni;

} else {
return $num

}
}
driver routine:
while (<>) {

chonp;

print "card of $ is ", &ard($), "\n";
}

The &car d subroutine (so named because it returns a cardinal name for a given value) begins by
initializing a constant hash called %€ ar d_nap. Thisarray has values such that $car d_nap{ 6}
Issi x, making it fairly easy to do the mapping.

Thei f statement determinesif the value is in range by looking the number up in the hash: if
there's a corresponding hash element, the test istrue, so that array element is returned. If there's no
corresponding element (such aswhen $numis 11 or - 4), the value returned from the hash lookup
iIsundef , sotheel se-branch of thei f statement is executed, returning the origina number.

Y ou can also replace that entirei f statement with the single expression:

$card_map{$nun} || $Snum

If the value on the left of the | | istrue, it's the value for the entire expression, which then gets
returned. If it's false (such as when $numis out of range), theright side of the | | operator is

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

evaluated, returning $numas the return value.

The driver routine takes successive lines, chomping off their newlines, and hands them one at a
time to the &car d routine, printing the result.

. Here'soneway to doit:
sub card { ...; } # from previous problem

print "Enter first number: ";
chonp($first = <STDI N>);
print "Enter second nunber: ";

chonp($second = <STDI N>) ;

$message = card($first) . " plus "
car d($second) " equals "
card($first+$second) . ".\n";

print "\u$message";

Thefirst two pri nt statements prompt for two numbers, with the immediately following
statements reading the valuesinto $f i r st and $second.

A string called $nessage isthen built up by calling &car d three times, once for each value and
once for the sum.

Once the message is constructed, itsfirst character is uppercased by the case-shifting backslash
operator \ u. The message is then printed.

. Hereé'soneway to doit:

sub card {
ny %ard_nap;
@ard _map{0..9} = gw
zero one two three four five six seven eight nine
);

ny($num = @;

ny($negati ve);

if ($num< 0) {
$negative = "negative ";
$num = - $num

}

i f ($card_map{$nunt) {
return $negative . $card_map{$nuni};

} else {
return $negative . $num

}

}

Here, we've giventhe %car d_nmap array aname for zero.

Thefirsti f statement inverts the sign of $numand sets $negat i ve to the word negative, if the

number is found to be less than zero. After thisi f statement, the value of $numis always
nonnegative, but we will have an appropriate prefix string in $negat i ve.

Thesecondi f statement determinesif the (now positive) $numis within the hash. If so, the
resulting hash value is appended to the prefix within $negat i ve and returned. If not, the value
within $negat i ve isattached to the original number.

That lasti f statement can be replaced with the expression:
$negative . ($card_map{$nunt || $num;

Previous: A.6 Chapter 7, Learning Next: A.8 Chapter 9,
Regular Expressions Perl Miscellaneous Control
Structures
A.6 Chapter 7, Regular Book A.8 Chapter 9, Miscellaneous
Expressions Index Control Structures

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.7 Chapter 8, ﬁw Next: A.9 Chapter 10,
Functions Exercise Answers Filehandles and File Tests

A.8 Chapter 9, Miscellaneous Control Structures

1. Here'soneway to doit:
sub card {} # from previous exercise

while () { ## NEW ##
print "Enter first nunber: ";
chomp($first = <STDI N>);
last if $first eq "end"; ## NEW ##

print "Enter second nunber: ";
chonmp($second = <STDI N>);
| ast if $second eq "end"; ## NEW ##

$message = &card($first) . " plus "
card($second) . " equals "
card($first+$second) . ".\n";
print "\u$nessage”;
} ## NEW ##

Note the addition of thewhi | e loop and thetwo | ast operators. That'sit!

2. Here'soneway to do it:

{
print "Enter a nunmber (999 to quit): ";

chomp($n = <STDI N>) ;
last if $n == 999;
$sum += $n;
redo;

}

print "the sumis $sumn";

We're using anaked block withar edo and al ast to get things done thistime. Start by printing
the prompt and grabbing the number. If it's 999, exit the block with | ast and print out the sum on
exit. Otherwise, we add to our running total and use r edo to execute the block again.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Previous: A.7 Chapter 8, Learning Next: A.9 Chapter 10,

Functions Perl Filehandles and File Tests
A.7 Chapter 8, Functions Book A.9 Chapter 10, Filehandles
Index and File Tests

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.8 Chapter 9, ﬁw Next: A.10 Chapter 11,
Miscellaneous Control Exercise Answers Formats
Structures

A.9 Chapter 10, Filehandles and File Tests

1. Heresoneway to doit:
print "Wat file? ";
chomp($fil enane = <STDI N>);
open(THATFI LE, "$fil ename") ||
di e "cannot open $filenane: $!'";
whi |l e (<THATFI LE>) {
print "$filenanme: $ "; # presune $_ ends in \n
}

Thefirst two lines prompt for afilename, which is then opened with the filehandle THATFI LE.
The contents of the file are read using the filehandle and printed to STDOUT.

2. Heré'soneway to doit:

print "Input file nanme: ";
chonp($i nfil enane = <STDI N>) ;
print "Qutput file name: ",
chonp($outfil enane = <STDI N>) ;
print "Search string: ";
chonp($search = <STDI N>) ;
print "Replacenent string: ";
chonmp($repl ace = <STDI N>) ;
open(I N, $i nfil enane) ||

di e "cannot open $infilenane for reading: $!";
optional test for overwite...
die "will not overwite $outfilenanme"” if -e $outfil enane;
open(QUT, ">$out fi |l enane") ||

die "cannot create $outfil enanme: $!";
while (<IN>) { # read a line fromfile INinto $_

s/ $search/ $repl ace/ g; # change the |ines

print QUT $; # print that line to file QUT
}
cl ose(IN);
cl ose(QUT) ;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

This program is based on the file-copying program presented earlier in the chapter. New features
here include prompting for the strings and the substitute command in the middle of thewhi | e
loop, as well asthe test for overwriting afile.

Note that backreferences in the regular expression do work, but referencing memory in the
replacement string does not.

3. Here'soneway to doit:
while (<>) {
chonp; # elimnate the newine
print "$ 1is readable\n" if -r;
print "$ is witable\n" if -w
print "$ is executable\n" if -x;
print "$ does not exist\n" unless -e;

}

Thiswhi | e loop reads afilename each time through. After discarding the newline, the series of
statements tests the file for the various permissions.

4. Here'soneway to doit:
while (<>) {
chonp;
$age = -M
i f (%ol dest _age < $age) {
$ol dest _nane = $_;
$ol dest _age = $age;
}
}
print "The oldest file is $ol dest _nane ",
"and i s $ol dest _age days old.\n";

First, we loop on each filename being read in. The newline is discarded, and then the age in days
gets computed with the - Moperator. If the age for thisfile exceeds the oldest file we've seen so
far, we remember the filename and its corresponding age. Initially, $ol dest _age will be 0, so
we're counting on there being at least one file that is more than O days old.

Thefina pri nt statement generates the report when we're done.

Previous: A.8 Chapter 9, Learning Next: A.10 Chapter 11,
Miscellaneous Control Perl Formats
Structures
A.8 Chapter 9, Miscellaneous Book A.10 Chapter 11, Formats
Control Structures Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.9 Chapter 10, ﬁw Next: A.11 Chapter 12,
Filehandles and File Tests Exercise Answers Directory Access

A.10 Chapter 11, Formats

1. Here'soneway to doit:
open(PW"/etc/passwd") || die "How did you get |ogged in?";
whil e (<PW) {
($user, $ui d, $gcos) = (split /:/)][0,2,4];
($real) = split /,/, $gcos;
wite;
}
format STDOUT =
@:<<<<<< @>>>>> @:<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

$user, S$uid, $%real

Thefirst line opens the password file. The whi | e loop processes the password file line by line.
Each lineis torn apart (with colon delimiters), loading up the scalar variables. The rea name of the
user is pulled out of the GCOS field. The final statement of thewhi | e loop invokeswri t e to
display all of the data.

The format for the STDOUT filehandle defines asimple line with three fields. The values come
from the three scalar variables that are given valuesin thewhi | e loop.

2. Heré'soneway to doit:

append to programfromthe first problem..
format STDOUT _TOP =
User nane User | D Real Nane

All it takes to get page headers for the previous program is to add a top-of-page format. Here, we
put column headers on the columns.

To get the columnsto line up, we copied the text of format STDOUT and used overstrike modein
our text editor to replace @ << fields with ==== bars. That's the nice thing about the
one-character-to-one-character correspondence between aformat and the resulting display.

3. Here'soneway to doit:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

append to programfromthe first problem..
format STDOUT _TOP =

Page @x<<

$%

User nane User | D Real Nane

WEell, here again, to get stuff at the top of the page, I've added a top-of-page format. This format
also contains a reference to $% which gives me a page number automatically.

Previous: A.9 Chapter 10, Learning Next: A.11 Chapter 12,

Filehandles and File Tests Perl Directory Access
A.9 Chapter 10, Filehandles Book A.11 Chapter 12, Directory
and File Tests Index Access

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.10 Chapter 11, Appendix A Next: A.12 Chapter 13, File
Formats Exercise Answers and Directory Manipulation

A.11 Chapter 12, Directory Access

1. Here'soneway to doit:
print "Were to? ";
chomp($newdi r = <STDI N>) ;
chdir($newdir) || die "Cannot chdir to $newdir: $!"
foreach (<*>) {
print "$ \n";
}

Thefirst two lines prompt for and read the name of the directory.
The third line attempts to change directory to the given name, aborting if thisisn't possible.

Thef or each loop steps through alist. But what'sthe list? It's the glob in alist context, which
expandsto alist of al of the filenames that match the pattern (here, *).

2. Heresoneway to doit, with adirectory handle:

print "Were to? ";
chonp($newdi r = <STDI N>) ;
chdir($newdir) ||

die "Cannot chdir to $newdir: $!'";
opendi r (DOT, ".") ||

di e "Cannot opendir . (serious dai nbramage): $!";
foreach (sort readdir(DOT)) {

print "$ \n";
}

cl osedi r (DOT) ;

Just like the previous program, we prompt and read a new directory. Once we've chdi r 'ed there,
we open the directory, creating a directory handle named DOT. In thef or each loop, thelist
returned by r eaddi r (inalist context) is sorted, and then stepped through, assigning each
elementto$_inturn.

And here's how to do it with a glob instead:

print "Were to? ";
chonp($newdi r = <STDI N>) ;

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

chdir($newdir) || die "Cannot chdir to $newdir: $!'";
foreach (sort <* .*>) {

print "$_\n";
}

Yes, it's basically the other program from the previous exercise, but I've added asor t operator in
front of the glob and also added . * to the glob to pick up the files that begin with dot. We need the
sort becauseafilenamed! f r ed belongs before the dot files, but bar ney belongs after them,
and there isn't an easy shell glob that can get them all in the proper sequence.

Previous: A.10 Chapter 11, Learning Next: A.12 Chapter 13, File
Formats Perl and Directory Manipulation
A.10 Chapter 11, Formats Book A.12 Chapter 13, Fileand
Index Directory Manipulation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.11 Chapter 12, ﬁw Next: A.13 Chapter 14,
Directory Access Exercise Answers Process Management

A.12 Chapter 13, File and Directory Manipulation

1. Here'soneway to doit:
unl i nk @ARGV;

Y up, that'sit. The GARGV array isalist of namesto be removed. Theunl i nk operator takes alist
of names, so we just marry the two, and we're done.

Of course, this doesn't handle error reporting, or the- f or - i options, or anything like that, but
that'd just be gravy. If you did that, good!

2. Heré'soneway to doit:

(%ol d, $new) = @\RGV; # nane them
if (-d $new) { # newnane is a directory, need to patch it up

($basenane = $ol d) =~ s#. */##s; # get basenane of $old
$new .= "/ $basenane”; # and append it to new name

}

renane(%ol d, $new) || die "Cannot renane $old to $new $!";

The workhorse in this program is the last line, but the remainder of the program is necessary for
the case where the name we are renaming to is a directory.

First, we give understandable names to the two elements of GARGV. Then, if the $newnameisa
directory, we need to patch it by adding the basename of the $ol d name to the end of the new
name. This means that renaming /usr/src/fred to /etc resultsin really renaming /usr/src/fred to
letc/fred.

Finally, once the basename is patched up, we're home free, with ar enamne invocation.

3. Heresoneway to doit:

(%ol d, $new) = @RGV; # nanme them

if (-d $new) { # newnane is a directory, need to patch it up
($basenane = $ol d) =~ s#.*/##s; # get basenane of $old
$new . = "/ $basenane”; # and append it to new nane

}
i nk($ol d, $new) || die "Cannot link $old to $new $!";

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

This program is identical to the previous program except for the very last line, because we're
linking, not renaming.

. Here'sone way to do it:

if ($ARGV[0] eq "-s") { # wants a symink
$sym i nk++; # renenber that
shift(@GARGV); # and toss the -s flag

}

($ol d, $new) = @\RGV; # nane them

if (-d $new) { # newnane is a directory, need to patch it up
($basenane = $ol d) =~ s#.*/##s; # get basenane of $old
$new . = "/ $basenane”; # and append it to new nane

}

if ($symink) { # wants a synlink
sym i nk($ol d, $new) ;

} else { # wants a hard |ink
| i nk($ol d, $new) ;

}

The middle of this program is the same as the previous two exercises. What's new isthe first few
lines and the last few lines.

Thefirst few lineslook at the first argument to the program. If thisargument is - s, the scalar
variable $sym i nk isincremented, resulting in avalue of 1 for the variable. The GARGV array is
then shifted, removing the - s flag. If the - s flag isn't present, there's nothing to be done, and
$sym i nk will remain undef . Shifting the @G\RGV array occurs frequently enough that the
@ARGV array isthe default argument for shi f t ; that is, we could have said:

shift,;

in place of
shi ft (@GARGV) ;

The last few lineslook at the value of $sym i nk. It'sgoing to be either 1 or undef , and based
on that, we either syl i nk thefilesor | i nk them.

. Here'sone way to do it:

foreach $f (<*>) {
print "$f -> $where\n" if defined($where = readlink($f));
}

The scalar variable $f isset in turn to each of the filenamesin the current directory. For each
name, $wher e getsset tother eadl i nk() of that name. If the name is not a symlink, the

r eadl i nk operator returnsundef , yielding afalsevaluefor thei f test, andthepri nt is
skipped. But when ther eadl i nk operator returns avalue, the pr i nt displays the source and
destination symlink values.

Previous: A.11 Chapter 12, Learning Next: A.13 Chapter 14,
Directory Access Perl Process Management
A.11 Chapter 12, Directory Book A.13 Chapter 14, Process
Access Index Management

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.12 Chapter 13, ﬁw Next: A.14 Chapter 15, Other
File and Directory Exercise Answers Data Transformation
Manipulation

A.13 Chapter 14, Process Management

1. Heresoneway to doit:

if ("date =~ /"S/) {
print "Go play!\n";
} else {

print "Get to work!\n";
}

It just so happens that the first output character of the date command isan S only on the weekend
(Sat or Sun), which makes this program trivial. We invoke date, then use aregular expression to
seeif thefirst character isan S. Based on that, we print one message or the other.

2. Herésoneway to doit:

open(PW "/ etc/ passwd");

while (<PW) {
chonp;
($user, $gcos) = (split /:/)[0,4];
($real) = split(/,/, $gcos);
$real {$user} = S$real;

}
cl ose(PW;

open(WHO, "who|") || die "cannot open who pipe";
whil e (<WHO>)
($login, $rest) = /N\SH)\s+(.*)/;
$login = $real {$login} if $real {$l ogin};
printf "% 30s %\ n", $l ogi n, $rest;
}

Thefirst loop creates ahash % eal that haslogin names for keys and the corresponding real
names as values. This hash is used in the following loop to change the login name into areal name.

The second |oop scans through the output resulting from opening the who command as a
filehandle. Each line of who's output is broken apart using aregular expression match in alist

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

context. The first word of the line (the login name) is replaced with the real name from the hash,
but only if it exists. When that'sall done, anicepri nt f putsthe result onto STDOUT.

Y ou can replace the filehandle open and the beginning of the loop with just
foreach $_ (" who) {

to accomplish the same result. The only difference is that the version with the filehandle can begin
operating as soon as who starts spitting out characters, while the version with who in backquotes
must wait for who to finish.

. Heré'soneway to doit:

open(PW "/ etc/ passwd");

whil e (<PW) {
chonp;
($user, $gcos) = (split /:/)[0,4];
($real) = split(/,/, $gcos);
$real {Suser} = $real;

}

cl ose(PW;

open(LPR "|[lpr") || die "cannot open LPR pipe";
open(WHO, "who|") || die "cannot open who pipe";

while (<VWHO>) {

or replace previous two lines with: foreach $_ ("who') {
($login, $rest) = /IN\SH)\s+(.*)/;
$login = $real {$login} if $real {$l ogin};
printf LPR "% 30s %\n", $l ogi n, $rest;

}

The difference between this program and the program from the previous exercise is that we've
added an L PR filehandle opened onto an Ipr process, and modified thepri nt f statement to send
the data there instead of STDOUT.

. Hereé'soneway to doit:

sub nkdir {
lsystem "/bin/nkdir", @;
}

Here, the mkdir command is given the arguments directly from the arguments to the subroutine.
The return value must be logically negated, however, because a nonzero exit statusfrom syst em
must translate into a false value for the Perl caller.

. Hereé'soneway to doit:

sub nkdir {
my($dir, $node) = @;
(!'system"/bin/nkdir", $dir) && chnod($node, $dir);

First, the arguments to this routine are named as $di r and $node. Next, we invoke mkdir on the
directory named by $di r . If that succeeds, the chnod operator gives the proper mode to the

directory.
Previous: A.12 Chapter 13, Learning Next: A.14 Chapter 15, Other
File and Directory Perl Data Transformation
Manipulation
A.12 Chapter 13, Fileand Book A.14 Chapter 15, Other Data
Directory Manipulation Index Transformation

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.13 Chapter 14, Appendix A Next: A.15 Chapter 16,
Process Management Exercise Answers System Database Access

A.14 Chapter 15, Other Data Transformation

1. Here'soneway to doit:
while (<>) {
chonp;
$slash = rindex($,"/");
if ($slash > -1) {

$head = substr($_, 0, $sl ash);
$tail = substr($_, $sl ash+1);
} else {
($head, $tail) = ("", $);
}
print "head = '$head', tail = "S$tail'\n";

}

Each line read by the diamond operator is first chomped (tossing the newline). Next we look for
the rightmost slash in theline, using r i ndex () . The next two lines break the string apart using
subst r (). If there'sno dash, theresult of ther i ndex is- 1, so we hack around that. The final
line within the loop prints the results.

2. Heré'soneway to doit:

chomp(@uns = <STDIN>); # note special use of chonp
@uns = sort { $a <=> $b } @uns;
foreach (@wuns) ({
printf "980g\n", $_;
}

Thefirst line grabs al of the numbersinto the @uns array. The second line sorts the array
numerically, using an inline definition for a sorting order. Thef or each loop prints the results.

3. Here'soneway to doit:
open(PW"/etc/passwd") || die "How did you get |ogged in?";
whil e (<PW) {
chonp;
($user, $gcos) = (split /:/)[0,4];
($real) = split(/,/, $gcos);

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

$real {$user} = S$real;
($last) = (split /\s+/, $real)[-1];
$l ast {$user} = "\LS$last";

}
cl ose(PW;

for (sort by |ast keys %ast) {
printf "980s %8s\n", $real {$ }, $_;
}

sub by last { ($last{$a} cnp $last{$b}) || ($a cnp $b) }

Thefirst loop creates % ast hash, consisting of login names for keys and user's last names for the
corresponding values, and the % eal hash, containing the full real names instead. The last names
are all converted to lowercase, so that FLINTSTONE, Flintstone, and flintstone all sort near each
other.

The second loop prints % eal out, ordered by the values of % ast , using the sort definition
presented in by | ast subroutine.

4. Here'soneway to do it:
while (<>) {
substr($_,0,1) =~ tr/a-z/ A Z/;
substr($_,1) =~ tr/ A Z a-z/;
print;
}

For each line read by the diamond operator, we usetwo t r operators, each on a different portion
of the string. Thefirst t r operator uppercases the first character of the line, and the second t r
operator lowercases the remainder. The result is printed.

Here's another way to do this, using only double-quoted string operators:

while (<>) {
print "\u\LS$ ";
}
Give yourself an extrafive pointsif you thought of that instead.
Previous: A.13 Chapter 14, Learning Next: A.15 Chapter 16,
Process Management Perl System Database Access

A.13 Chapter 14, Process Book A.15 Chapter 16, System
Management Index Database Access

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.14 Chapter 15, ﬁw Next: A.16 Chapter 17, User
Other Data Transformation Exercise Answers Database Manipulation

A.15 Chapter 16, System Database Access

1. Here's one way to do that:

$ =" "

while (@w = getpwent) {
($user, $gid, $gcos) = @W O, 3, 6];
($real) = split /,/, $gcos;
$real {Suser} = $real;
$menbers{$gi d} .= " S$user";
($last) = (split /\s+/, S$real)[-1];
$l ast { Suser} = "\L$l ast";

}

while (@r = getgrent) {
($gnane, $gi d, $nenbers) = @r[0, 2, 3];
$menbers{$gid} .= " $nenbers";
$gnane{ $gi d} = $gnane;

}
for $gid (sort by gnane keys %gnane) ({
%all = ();
for (split(/\s+/, $menbers{$gid})) {
$al 1 {$ }++ if length $_;
}
@renbers = ();
foreach (sort by |ast keys %all) {
push(@enbers, "$real {$ } ($)");
}
$nenberlist = join(", ", @renbers);
write;
}

sub by _gnane { $gname{$a} cnp $gnanme{$b}; }
sub by last { ($last{$a} cmp $last{$b}) || ($a cnmp $b); }

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

format STDOUT =

@:<<<<<<< @:<<<<<<< N L LLLLLLLLL L L L LKL L L L L L LKL L L L LKL L L
$gname{ $gi d}, "($gid)", $nenberli st

~— NLLLLLLLLLLLLLLLL L L L L LKL L L LKL L L L L L L L L LL <L
$nmenberl i st

Y es, this one needs some explaining.

Previous: A.14 Chapter 15, Learning Next: A.16 Chapter 17, User

Other Data Transformation Perl Database Manipulation
A.14 Chapter 15, Other Data Book A.16 Chapter 17, User
Transformation Index Database Manipulation

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.15 Chapter 16, Appendix A Next: A.17 Chapter 18,
System Database Access Exercise Answers Converting Other Languages
to Perl

A.16 Chapter 17, User Database Manipulation

1. Heresoneway to doit:

dbrmopen(%ALI AS, "/etc/aliases", undef) ||
die "No aliases!: $!'";

whi l e (($key, $val ue) = each(%ALI AS)) {
chop($key, $val ue) ;
print "$key S$val ue\n";

}

Thefirst line opens the aliases DBM. (Y our system may keep the aliases DBM in /usr/lib/aliases
instead - try that if this doesn't work.) Thewhi | e loop steps through the DBM array. Thefirst line
within the loop chops off the NUL character from the end of the key and the value. The final line
of the loop prints out the result.

2. Herésoneway to doit:

program 1:
dbrmopen(9WORDS, "“wor ds”, 0644) ;
while (<>) {
foreach $word (split(/\W/)) {
SWORDS{ $wor d} ++;
}
}

dbntl ose(YW\ORDS) ;

Thefirst program (the writer) opens a DBM in the current directory called wor ds, creating files
named words.dir and words.pag. The whi | e loop grabs each line using the diamond operator.
Thislineis split apart using thespl i t operator, with adelimiter of / \ W+/ , meaning nonword
characters. Each word is then counted into the DBM array, using thef or each statement to step
through the words:

program 2:

dbrmopen(9W\ORDS, "wor ds”, undef) ;

foreach $word (sort { $WORDS{$b} <=> $SWORDS{$a} } keys WNORDS) {
print "$word $WORDS{ $wor d}\ n";

}

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

dbntl ose(W\ORDS) ;

The second program opens a DBM in the current directory called wor ds. That complicated
looking f or each line does most of the dirty work. The value of $wor d each time through the
loop will be the next element of alist. Thelist is the sorted keys from YNORDS, sorted by their
values (the count) in descending order. For each word in the list, we print the word and the number
of times the word has occurred.

Previous: A.15 Chapter 16, Learning Next: A.17 Chapter 18,
System Database Access Perl Converting Other Languages
to Perl
A.15 Chapter 16, System Book A.17 Chapter 18, Converting
Database Access Index Other Languages to Perl

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl

Previous: A.16 Chapter 17, Appendix A
User Database Manipulation Exercise Answers

Next: A.18 Chapter 19, CGI
Programming

A.17 Chapter 18, Converting Other Languages to

Perl

1. Here'sone way to do it:

for (;;) {

($user, $hone) = (getpwent)[O0, 7];

| ast unl ess $user;

next unl ess open(N, "$hone/. newsrc");
next unless -M N < 30; ## added value :-)

while (<N>) {

if (/~comp\.lang\.perl\.announce:/) {
print "$user is a good person, ",
“and reads conp. | ang. perl.announce!\n";

| ast ;

}

The outermost loop isaf or loop that runs forever; thisloop gets exited by thel ast operator
inside, however. Each time through the loop, a new value for $user (ausername) and $home
(their home directory) is fetched using the get pwent operator.

If the value of $user isempty, thef or loop exits. The next two lines ook for arecent .newsrc
filein the user's home directory. If the file cannot be opened, or the modification time of thefileis

too distant, the next iteration of thef or loop istriggered.

Thewhi | e loop reads aline at atime from the .newsrc file. If the line begins with
comp.lang.perl.announce;, the pr i nt statement says so, and thewhi | e loop is exited early.

Previous: A.16 Chapter 17, Learning

User Database Manipulation Perl
A.16 Chapter 17, User Book
Database Manipulation Index

Next: A.18 Chapter 19, CGlI
Programming

A.18 Chapter 19, CGI
Programming

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.17 Chapter 18, ﬁw Next: B. Libraries and
Converting Other Languages Exercise Answers Modules
to Perl

A.18 Chapter 19, CGI Programming

1. Heresoneway to doit:

use strict;
use C@ gw :standard);

print header(), start_htm ("Add Me");
print hi("Add Me");

if(param()) {

ny $nl = paran('fieldl');

ny $n2 = paran('field2");

my $n3 = $n2 + $nil;

print p("$nl + $n2 = $n3\n");
} else {

print hr(), start _fornm();

print p("First Nunber:", textfield("fieldl"));
print p("Second Number:", textfield("field2"));
print p(submt("add"), reset("clear"));

print end_form(), hr();

}
print end _htm ();

If there's no input, ssimply generate a form with two textfields (using thet ext f i el d method). If
there isinput, we add the two fields together and print the result.

2. Here'sone way to do it:

use strict;
use CA gw :standard);

print header(), start_htnm ("Browser Detective");
print hl1("Browser Detective"), hr();

ny $browser = $ENV{' HTTP_USER AGENT };

$ = $browser;

BROWSER: {

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

i f (/msieli) {
nmsi e($);
} elsif (/mozillali) {
net scape($);
}oelsif (/lynx/i) {

lynx($_);
} else {
defaul t ($);
}
}
print end _htm ();
sub nsi ef
print p("Internet Explorer: @. Good Choice\n");
}

sub net scape {
print p("Netscape: @. Good Choice\n");

}
sub lynx {

print p("Lynx: @. Shudder...");
}

sub default {
print p("What the heck is a @?");
}

The key here is checking the environment for the HTTP_USER_AGENT variable. Although this
isn't implemented by every server, many of them do set it. Thisis agood way to generate content
geared to the features of a particular browser. Note that we're just doing some basic string
matching (case insensitive) to see what they're using (nothing too fancy).

Previous: A.17 Chapter 18, Learning Next: B. Libraries and
Converting Other Languages Perl Modules
to Perl
A.17 Chapter 18, Converting Book B. Libraries and Modules
Other Languages to Perl Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: A.18 Chapter 19, Appendix B [Next: B.2 Standard Modules]
CGI Programming

B. Libraries and Modules

Contents:
Library Terminology

Standard Modules
CPAN: Beyond the Standard Library

For simple programs you can easily write your own Perl routines and subroutines. As the tasks to which
you apply Perl become more difficult, however, sometimes you'll find yourself thinking, "someone must
have done this already." Y ou are probably more right than you imagine.

For most common tasks, other people have aready written the code. Moreover, they've placed it either in
the standard Perl distribution or in the freely downloadable CPAN archive. To use this existing code (and
save yourself sometime), you'll have to understand how to make use of a Perl library. Thiswas briefly
discussed in Chapter 19, CGI Programming.

One advantage in using modules from the standard distribution is that you can then share your program
with others without their having to take any special steps. This is because the same standard library is
available to Perl programs amost everywhere.

You'll save yourself time in the long run if you get to know the standard library. There's no point in
reinventing the wheel. Y ou should be aware, however, that the library contains a wide range of material.
While some modules may be extremely helpful, others may be completely irrelevant to your needs. For
example, some are useful only if you are creating extensions to Perl.

To read the documentation for a standard module, use the man or per | doc program (if you have them),
or perhaps your web browser on HTML versions of the documentation. If all elsefails, just look in the
module itself: the documentation is contained within each module in pod format. To locate the module
on your system, try executing this Perl program from the command line:

for (nost) Unix-like shells

perl -e "print "@NCQn"'

for (sone) other command interpreters

perl -e "print join(' ', @NC,\n"

Y ou should find the module in one of the directories listed by this command.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

B.1 Library Terminology

Before we list al the standard modules, let's untangle some terminol ogy:
Package

A package is a simple namespace management device, allowing two different parts of a Perl
program to have a (different) variable named $f r ed. These namespaces are managed with the
package declaration, described in Chapter 5 of Programming Perl.

Library

A library isaset of subroutines for a particular purpose. Often the library declares itself a separate
package so that related variables and subroutines can be kept together, and so that they won't
interfere with other variables in your program. Generally, an old-style library was placed in a
separate file, often with aname ending in ".pl". The library routines were then pulled into the main
program viathe require function. More recently this older approach has been replaced by the use
of modules (see next paragraph), and the term library often refers to the entire system of modules
that come with Perl.

Module

A moduleisalibrary that conforms to specific conventions, allowing the library routines to be
brought into your program with the use directive at compile-time. Module filenamesend in ".pm",
because the use directive insists on that. Chapter 5 of Programming Perl describes Perl modulesin
greater detail.

Pragma

A pragmais a module that affects the compilation phase of your program as well as the execution
phase. Think of it as containing hints to the compiler. Unlike other modules, pragmas often (but
not always) limit the scope of their effects to the innermost enclosing block of your program (that
IS, the block enclosing the pragmainvocation). The names of pragmas are by convention all

lowercase.
Previous: A.18 Chapter 19, Learning | Next: B.2 Standard Modules]
CGI Programming Perl
A.18 Chapter 19, CGI Book B.2 Standard Modules
Programming Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: B.1 Library . AEM Next: B.3 CPAN: Beyond the
Terminology Librariesand Modules Standard Library

B.2 Standard Modules

Thefollowing isalist of al Perl pragmas and modules included with the current Perl distribution
(Version 5.004). The classification of the modulesis admittedly arbitrary.

Table B.1: General Programming: Miscellaneous

Module Function
autouse Defersloading of a module until it's used
constant Creates compile-time constants

Benchmark | Checks and compares running times of code

Config Accesses Perl configuration information

Env Imports environment variables

English Uses English or awk names for punctuation variables
FindBin Finds path of currently executing program

Getopt::Long | Extended processing of command-line options

Getopt::Std | Processes single-character switches with switch clustering

lib Manipulates @INC at compile-time

Shell Runs shell commands transparently within Perl

strict Restricts unsafe constructs

Symbol Generates anonymous globs; qualifies variable names
subs Predeclares subroutine names

vars Predeclares global variable names

Table B.2: General Programming: Error Handling and

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Logging

Module

Function

Carp

Generates error messages

diagnostics

Forces verbose warning diagnostics

sigtrap

Enables stack backtrace on unexpected signals

Sys::Syslog

Perl interface to UNIX syslog (3) calls

Table B.3: General Programming: File Access and Handling

Module Function

Cwd Gets pathname of current working directory
DirHandle Supplies object methods for directory handles
Fentl Loads the C Fcntl.h defines

File::Basename

Parses file specifications

File::CheckTree

Runs many tests on a collection of files

File::Copy Copiesfiles or filehandles

File::Find Traverses afiletree

File::Path Creates or removes a series of directories
FileCache Keeps more files open than the system permits
FileHandle Supplies object methods for filehandles
SelectSaver Saves and restores selected filehandle

Table B.4: General Programming: Classesfor I/0O

Operations
Module Function
[0] Top-level interfaceto 10::* classes
1O::File Object methods for filehandles
|O::Handle | Object methods for I/O handles
1O::Pipe Object methods for pipes
| O::Seekable | Seek-based methods for 1/0 objects
|O::Select | Object interface to select

|O::Socket | Object interface to sockets

Table B.5: General Programming: Text Processing and Screen Interfaces

Module Function

locale Uses POSIX locales for built-in operations
Pod::HTML Converts pod datato HTML

Pod:: Text Converts pod data to formatted ASCI| text
Search::Dict Searches for key in dictionary file
Term::Cap Termcap interface

Term::Complete

Word completion module

Text::Abbrev

Creates an abbreviation table from alist

Text::ParseWords

Parses text into an array of tokens

Text::Soundex

Implements the Soundex Algorithm described by Knuth

Text::Tabs

Expands and unexpands tabs

Text::Wrap

Wraps text into a paragraph

Table B.6: Database Interfaces

Module Function
AnyDBM _File | Provides framework for multiple DBMs
DB_File Accessto Berkeley DB
GDBM _File |Tied accessto GDBM library
NDBM File |Tied accessto NDBM files
ODBM_File |Tied accessto ODBM files
SDBM_File |Tied accessto SDBM files
Table B.7: Mathematics
Module Function
Integer Does arithmetic in integer instead of double

Math::BigFloat

Arbitrary-length, floating-point math package

vMath::BigInt

| Arbitrary-length integer math package

Math::Complex

Complex numbers package

Table B.8: The World Wide Web

Module Function

CaGl Web server interface (Common Gateway |nterface)

CGl::Apache | Support for Apache's Perl module

CGl::Carp |Log server errors with helpful context

CGl::Fast Support for FastCGI (persistent server process)

CGl::Push | Support for server push

CGl::Switch | Simple interface for multiple server types

Table B.9: Networking and I nterprocess Communication

Module Function

I PC::Open2 Opens a process for both reading and writing
IPC::Open3 Opens a process for reading, writing, and error handling
Net::Ping Checks whether a host is online

Socket L oads the C socket.h defines and structure manipulators
Sys.:Hostname | Tries every conceivable way to get hostname

Table B.10: Automated Access to the Comprehensive Perl Archive

Network

Module

Function

CPAN

Simple interface to CPAN

CPAN::FirstTime | Utility for creating CPAN configuration file

CPAN::Nox

Runs CPAN while avoiding compiled extensions

TableB.11: Time and Locae

Module Function

Time::Local |Efficiently computestime from local and GMT time

I18N::Collate | Compares 8-bit scalar data according to the current locale

Table B.12: Object Interfaces to Built-in Functions

Module Function

Class::Struct Declares struct-like datatypes as Perl classes

File::stat Object interface to stat function

Net::hostent Object interface to get host * functions

Net::netent Object interface to get net * functions

Net::protoent |Object interfaceto get pr ot o* functions

Net::servent Object interface to get ser v* functions

Time::gmtime | Object interfaceto gnt i me function

Time::localtime | Object interfaceto | ocal ti me function

Time::tm Internal object for Time::{ gm,local} time

User::grent Object interface to get gr * functions

User::pwent Object interface to get pw* functions

Table B.13: For Developers: Autoloading and Dynamic Loading

Module Function

AutolL oader L oads functions only on demand

AutoSplit Splits a package for autoloading

Devel::Self Stubber | Generates stubs for a SelfLoading module
Dynaloader Automatic dynamic loading of Perl modules
SelfL oader L oads functions only on demand

Table B.14: For Developers. Language Extensions/Platform Devel opment Support

Module Function

blib Finds blib directory structure during module builds

ExtUtils::Embed Utilities for embedding Perl in C programs

ExtUtils::Install

Installs files from here to there

ExtUtils::Liblist

Determines libraries to use and how to use them

ExtUtils::MakeM aker

Creates a Makefile for a Perl extension

ExtUtils::Manifest

Utilities to write and check a MANIFEST file

ExtUtils::Miniperl

Writes the C code for perlmain.c

ExtUtils::Mkbootstrap

Makes a bootstrap file for use by Dynal oader

ExtUtils::Mksymlists

Writes linker option files for dynamic extension

ExtUtils::MM_0S2

Methods to override UNIX behavior in ExtUtils::MakeM aker

ExtUtils::MM_Unix

Methods used by ExtUtils::MakeM aker

ExtUtils:MM_VMS

Methods to override UNIX behavior in ExtUtils::MakeM aker

ExtUtils::testlib Fixes @INC to use just-built extension

Opcode Disables opcodes when compiling Perl code

ops Pragmafor use with Opcode module

POSIX Interface to |EEE Std 1003.1

Safe Creates safe namespaces for evaluating Perl code
Test::Harness Runs Perl standard test scripts with statistics
vmsish Enables VM S-specific features

Table B.15: For Developers: Object-Oriented Programming Support

Module Function

Exporter Default import method for modules

overload Overloads Perl's mathematical operations
Tie::RefHash | Base classfor tied hashes with references as keys
Tie::Hash Base class definitions for tied hashes

Tie::Scalar Base class definitions for tied scalars
Tie::StdHash Base class definitions for tied hashes
Tie:StdScalar | Base class definitions for tied scalars
Tie::SubstrHash | Fixed-table-size, fixed-key-length hashing
UNIVERSAL |Baseclassfor all classes

Previous: B.1 Library Learning Next: B.3 CPAN: Beyond the

Terminology Perl Standard Library
B.1 Library Terminology Book B.3 CPAN: Beyond the
Index Standard Library

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl

Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: B.2 Standard Appendix B | Next: C. Networking Clients]|
Modules Librariesand Modules

B.3 CPAN: Beyond the Standard Library

If you don't find an entry in the standard library that fits your needs, it's still quite possible that someone
has written code that will be useful to you. There are many superb library modules that are not included
in the standard distribution, for various practical, political, and pathetic reasons. To find out what is
available, you can look at the Comprehensive Perl Archive Network (CPAN). See the discussion of
CPAN in the Preface.

Here are the major categories of modules available from CPAN:
« Modulelisting format
« Perl core modules, Perl language extensions and documentation tools
« Development support
o Operating system interfaces
« Networking, device control (modems), and interprocess communication
« Datatypesand datatype utilities
« Database interfaces
o Userinterfaces
« Interfacesto or emulations of other programming languages
« Filenames, filesystems, and file locking (see also filehandles)
« String processing, language text processing, parsing, and searching
« Option, argument, parameter, and configuration file processing
« Internationalization and locale
« Authentication, security, and encryption
« World Wide Web, HTML, HTTP, CGI, MIME

e Server and daemon utilities

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

« Archiving, compression, and conversion

« Images, pixmap and bitmap manipulation, drawing, and graphing
« Mail and Usenet news

« Control flow utilities (callbacks and exceptions)

« Filehandle, directory handle, and input/output stream utilities

« Microsoft Windows modules

o Miscellaneous modules

Previous: B.2 Standard Learning | Next: C. Networking Clients|
Modules Perl

B.2 Standard Modules Book C. Networking Clients
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: B.3 CPAN: Beyond Appendix C Next: C.2 A
the Standard Library Webget Client

C. Networking Clients

Contents:

A Simple Client

A Webget Client

An Interactive Client

Further Reading on Networking

Few computers (or computer users, for that matter) are content to remain isolated from the rest of the
world. Networking, once mostly limited to government research labs and computer science departments
at major universities, is now available to virtually everyone, even home computer users with a modem
and dial-up SLIP or PPP service. More than ever, networking is now used daily by organizations and
individuals from every walk of life. They use networking to exchange email, schedule meetings, manage
distributed databases, access company information, grab weather reports, pull down today's news, chat
with someone in adifferent hemisphere, or advertise their company on the Web.

These diverse applications all share one thing in common: they use TCP networking, the fundamental
protocol that links the Net together.[1] And we don't just mean the Internet, either. Firewalls aside, the
underlying technology is the same whether you're connecting far across the Internet, between your
corporate offices, or from your kitchen down to your basement. This means you only have to learn one
technology for all sorts of application areas.

[1] Actuadlly it's IP (Internet Protocol) that ties the Internet together, but TCP/IPisjust a
layer on top of IP.

How can you use networking to let an application on one machine talk to a different application, possibly
on atotally different machine? With Perl, it's pretty easy, but first you should probably know alittle bit
about how the TCP networking model works.

Even if you've never touched a computer network before in your whole life, you already know another
connection-based system: the telephone system. Don't let fancy words like "client-server programming"
put you off. When you see the word "client,” think “caller"; when you see the word "server," think
"responder.” If you ring someone up on the telephone, you are the client. Whoever picks up the phone at
the other end isthe server.

Programmers with a background in C programming may be familiar with sockets. A socket is the

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

Interface to the network in the same sense that afilehandle is the interface to files in the filesystem. In
fact, for the ssmple stream-based clients we're going to demonstrate below, you can use a socket handle
just as you would afilehandle.[2]

[2] Well, almost; you can't seek on a socket.

Y ou can read from the socket, write to it, or both. That's because a socket is a special kind of
bidirectional filehandle representing a network connection. Unlike normal files created viaopen,
sockets are created using the low-level socket function.

Let's squeeze a little more mileage out of our telephone model. When you call into abig company's
telephone switchboard, you can ask for a particular department by one name or ancther (such as
"Personnel” or "Human Resources'), or by an exact number (like "extension 213"). Think of each service
running on a computer as a department in alarge corporation. Sometimes a particular service has several
different names, such as both "http" and "www," but only one number, such as 80. That number
associated with a particular service nameisits port. The Perl functionsget ser vbynane and

get ser vbyport can beused to look up aservice name given its port number, or vice versa. Here are
some standard TCP services and their port numbers:

Service |Port |Purpose

echo 7 Accepts al input and echoes it back

discard |9 Accepts anything but does nothing with it

daytime |13 | Return the current date and timein local format

ftp 21 |Server for file transfer requests

telnet 23 | Server for interactive telnet sessions

smtp 25 | Simple mail transfer protocol; the mailer daemon

time 37 | Return number of seconds since 1900 (in binary)
http 80 |[TheWorld Wide Web server

nntp 119 | The news server

Although sockets were originally developed for Berkeley UNIX, the overwhelming popularity of the
Internet has induced virtually all operating-systems vendors to include socket support for client-server
programming. For this book, directly using thesocket function isabit low-level. We recommend that
you use the more user-friendly 10::Socket module,[3] which we'll usein al our sample code. This means

we'll also be employing some of Perl's object-oriented constructs. For abrief introduction to these
constructs, see Chapter 19, CGI Programming. The perltoot (1) manpage and Chapter 5 of Programming

Perl offer a more complete introduction to object-oriented programming in Perl.

[3] 10::Socket isincluded as part of the standard Per| distribution as of the 5.004 release. If
you're running an earlier version of Perl, just fetch 10::Socket from CPAN, where you'll find
modules providing easy interfaces to the following services: DNS/ftp, Ident (RFC 931), NIS
and NISPlus, NNTP, ping, POP3, SMTP, SNMP, SSL eay, telnet, and time - just to name a

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch05_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

few.

We don't have the space in this book to provide afull TCP/IP tutorial, but we can at least present afew
simple clients. For servers, which are a bit more complicated, see Chapter 6 of Programming Perl, or the

perlipc (1) manpage.

C.1 A Simple Client

For our simplest client, we'll choose arather boring service, caled "daytime." The daytime server sends a
connecting client one line of data containing the time of day on that remote server, then closes the
connection.

Here's the client:

#!/usr/bin/perl -w
use | O : Socket;
$renote = 1O : Socket: : | NET- >new
Proto => "tcp",
Peer Addr => "l ocal host",
Peer Port => "daytine(13)",
)
or die "cannot connect to daytine port at | ocal host";
while (<$renote>) { print }

When you run this program, you should get something back that looks like this:
Thu May 8 11:57:15 1997

Here are what those parameters to the new constructor mean:
Proto

The protocol to use. In this case, the socket handle returned will be connected to a TCP socket,
because we want a stream-oriented connection, that is, one that acts pretty much like aplain old
file. Not all sockets are of thistype. For example, the UDP protocol can be used to make a
datagram socket, used for message-passing.

Peer Addr

The name or Internet address of the remote host the server is running on. We could have specified
alonger name like www.perl.com, or an address like 204.148.40.9. For demonstration purposes,
we've used the special hostname | ocal host , which should always mean the current machine

you're running on. The corresponding Internet address for localhost is 127.0.0.1, if you'd rather use
that.

Peer Por t

Thisisthe service name or port number we'd like to connect to. We could have gotten away with
using just dayt i me on systems with a well-configured system servicesfile,[4] but just in case,

we've specified the port number (13) in parentheses. Using just the number would also have
worked, but numbers as constants make careful programmers nervous.

file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
http://www.perl.com/
http://204.148.40.9/

[4] The system servicesfileisin /etc/services under UNIX.

Notice how the return value from the new constructor is used as afilehandle in the whi | e loop? That's
what's called an indirect filehandle, a scalar variable containing afilehandle. Y ou can use it the same way
you would anormal filehandle. For example, you can read one line from it this way:

$li ne = <$handl e>;

All remaining lines from it this way:
@i nes = <$handl e>;

And send aline of datato it thisway:
print $handl e "sone data\n";

Previous: B.3 CPAN: Beyond Learning Next: C.2 A
the Standard Library Perl Webget Client
B.3 CPAN: Beyond the Book C.2 A Webget Client
Standard Library Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

| Previous: C.1 A Simple Client| Appendix C Next: C.3 An Interactive
Networking Clients Client

C.2 A Webget Client

Here'sasimple client that contacts a remote server and fetches alist of documents from it. Thisisamore
interesting client than the previous one because it sends aline of data to the server before fetching that
server's response.

#!/usr/bin/perl -w
use | O : Socket;
unless (@RGY > 1) { die "usage: $0 host docunent ..." }
$host = shift(G\RGQV) ;
foreach $docunment (@GARGV) {
$renmote = 1 G : Socket:: I NET->new Proto => "tcp",
Peer Addr => $host,
PeerPort => "http(80)",
);
unl ess ($renote) { die "cannot connect to http daenon on $host" }
$r enot e- >aut of | ush(1);
print $renpote "CGET $docunent HTTP/ 1.0\ n\n";
while (<$remote>) { print }
-cl ose $renvte;

}

The web server handling the http service is assumed to be at its standard port, number 80. If the server
you're trying to connect to is at a different port (say, 8080), you should give Peer Port => 8080 as
the third argument to new(). The aut of | ush method is used on the socket because otherwise the
system would buffer up the output we sent it. (If you're on a Mac, you'll need to change every \ n in your
code that sends data over the network to be\ 015\ 012 instead.)

Connecting to the server is only the first part of the process. once you have the connection, you have to
use the server's language. Each server on the network has its own little command language that it expects
asinput. The string that we send to the server starting with "GET" isin HTTP syntax. In this case, we
simply request each specified document. Y es, we really are making a new connection for each document,
even though it's the same host. That's the way it works with HTTP. (Recent versions of web browsers
may request that the remote server leave the connection open alittle while, but the server doesn't haveto
honor such arequest.)

WeEe'l call our program webget. Here's how it might execute:

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

shell _pronmpt$ webget www. perl.com /guanaco. ht mi

HTTP/ 1.1 404 File Not Found

Date: Thu, 08 May 1997 18:02: 32 GV

Server: Apache/ 1. 2b6

Connection: close

Content-type: text/htn

<HEAD><TI TLE>404 Fil e Not Found</ Tl TLE></ HEAD>

<BODY><H1>Fi | e Not Found</H1>

The requested URL /guanaco. html was not found on this server.<P>
</ BODY>

OK, so that's not very interesting, because it didn't find that particular document. But along response
wouldn't have fit on this page.

For amore fully-featured version of this program, you should look for the lwp-request program included
with the LWP modules from CPAN. (LWP is discussed a bit at the end of Chapter 19.)

| Previous: C.1 A Simple Client| Learning Next: C.3 An Interactive
Perl Client

C.1 A Simple Client Book C.3 An Interactive Client
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: C.2 A Webget AEM Next: C.4 Further Reading on
Client Networking Clients Networking

C.3 An Interactive Client

It's pretty easy to make a client that just reads everything from a server, or that sends one command, gets
one answer, and quits. But what about setting up something fully interactive, like telnet ? That way you
can type aline, get the answer, type aline, get the answer, and so on. (OK, usually telnet operatesin
character mode, not line mode, but you get the idea.)

This client is more complicated than the two we've done so far, but if you're on a system that supports the
powerful f or k call, the solution isn't that rough. Once you've made the connection to whatever service
you'd like to chat with, call f or k to clone your process. Each of these two identical processes has avery
simple job to do: the parent copies everything from the socket to standard output, while the child
simultaneously copies everything from standard input to the socket. To accomplish the same thing using
just one process would be much harder, because it's easier to code two processes to do one thing than it is
to code one process to do two things.[5]

[5] This keep-it-simple principle is one of the cornerstones of the UNIX philosophy, and
good software engineering as well, which is probably why it's spread to other systems as
well.

Here's the code:

#! [usr/bin/perl -w
use strict;
use |1 QG : Socket;
my ($host, $port, $kidpid, $handle, $line);
unl ess (@RGY == 2) { die "usage: $0 host port" }
($host, $port) = @RGY,;
create a tcp connection to the specified host and port
$handle = 1 G : Socket:: I NET->new Proto => "tcp",

Peer Addr => $host,

Peer Port => $port)

or die "can't connect to port $port on $host: $!";
$handl e- >aut of l ush(1); # so output gets there right away
print STDERR "[Connected to $host: $port]\n";
split the programinto two processes, identical tw ns
die "can't fork: $!" unless defined($kidpid = fork());
the if{} block runs only in the parent process

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm

i f ($kidpid) {
copy the socket to standard out put
whil e (defined ($line = <$handl e>)) {
print STDOUT $li ne;

}
kill("TERM', $kidpid): # send SIGTERMto child

}
the else{} block runs only in the child process
el se {
copy standard input to the socket
while (defined ($line = <STDIN>)) {
print $handl e $line;
}
}

Theki | | functioninthe parent'si f block isthereto send asignal to our child process (current running
inthe el se block) as soon as the remote server has closed its end of the connection.

Previous: C.2 A Webget Learning Next: C.4 Further Reading on
Client Perl Networking
C.2 A Webget Client Book C.4 Further Reading on
Index Networking

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: C.3 An Interactive Appendix C Next: D. Topics We Didn't
Client Networking Clients Mention

C.4 Further Reading on Networking

There's alot more to networking than this, but this should get you started. Chapter 6 of Programming
Perl and the perlipc (1) manpage describe interprocess communication in general; the 10::Socket (3)
manpage describes the object library; and the Socket (3) manpage describes the low-level interface to
sockets. For the more intrepid programmers, the book Unix Network Programming by Richard Stevens
(published by Addison-Wesley) covers the entire topic quite well. Be warned, however, that most texts
on socket programming are written from the perspective of a C programmer.

Previous: C.3 An Interactive Learning Next: D. Topics We Didn't
Client Perl Mention
C.3 An Interactive Client Book D. Topics We Didn't Mention
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: C.4 Further Appendix D Next: D.2 The
Reading on Networking Debugger

D. Topics We Didn't Mention

Contents:
Full Interprocess Communications

The Debugger

The Command Line

Other Operators

Many, Many More Functions

Many, Many Predefined Variables
Symbol Table Manipulation with * FRED
Additional Regular-Expression Features
Packages

Embeddible, Extensible

And Other Stuff

Yes, it'samazing. A book thislong, and there are still some things that it didn't cover. The footnotes
contain additional helpful information.

The purpose of this section is not to teach you about the things listed here, but merely to provide alist.
Y ou'll need to go to Programming Perl, the perl (1) or perlfaq (1) manpages, the HTML documentsin

CPAN's doc directory, or the Usenet newsgroups to get further information.

D.1 Full Interprocess Communications

Y es, Perl can do networking. Beyond the TCP/IP stream sockets discussed in Appendix C, Networking
Clients, if your system is up to it, Perl also supports UNIX-domain sockets, UDP-based message passing,
shared memory, semaphores, named and anonymous pipes, and signal handling. See Chapter 6 of
Programming Per| or the perlipc (1) manpage for standard modules, and the networking section of the
CPAN modules directory for third-party modules.

Y es, Perl can do TCP/IP socket networking, UNIX-domain networking, and shared memory and
semaphores on systems that support it. See the perlipc (1) manpage for further information.

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/ch06_01.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm

Previous: C.4 Further Learning Next: D.2 The

Reading on Networking Perl Debugger
C.4 Further Reading on Book D.2 The Debugger
Networking Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook |

file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: D.1 Full _ A_EI3_ef‘diX D [Next: D.3 The Command Line|
Interprocess Communications TopicsWe Didn't Mention

D.2 The Debugger

Perl has awonderful source-level debugger, which perldebug (1) will tell you all about.

Previous: D.1 Full Learning [Next: D.3 The Command Line|
Interprocess Communications Perl
D.1 Full Interprocess Book D.3 The Command Line
Communications Index

[Library Home | Perl in aNutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: D.2 Appendix D [Next: D.4 Other Operators|
The Debugger TopicsWeDidn't Mention

D.3 The Command Line

The Perl interpreter has a plethora of command-line switches. Check out perlrun (1) for information.

Previous: D.2 Learning [Next: D.4 Other Operators|
The Debugger Perl

D.2 The Debugger Book D.4 Other Operators
Index

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

Learning Perl —

Previous: D.3 The Command Appendix D Next: D.5 Many, Many More
Line TopicsWe Didn't Mention Functions

D.4 Other Operators

The comma operator, for one. And there are the bit manipulation operators &, | , *, and ~, the ternary ? :
operator, andthe. . and. .. flip-flop operators, just to name afew.

And there are some variations on operators, like using the g modifier on match. For this and more, see
perlop (1).

Previous: D.3 The Command Learning Next: D.5 Many, Many More
Line Perl Functions
D.3 The Command Line Book D.5 Many, Many More
Index Functions

[Library Home | Perl in a Nutshell | Learning Perl | Learning Perl on Win32 | Programming Perl | Advanced Perl
Programming | Perl Cookbook]

file:///D|/Cool Stuff/old/ftp/preview/perl/search/lsrch.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/perlnut/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/learn32/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/prog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/advprog/index.htm
file:///D|/Cool Stuff/old/ftp/preview/perl/cookbook/index.htm

W Learning Perl —

Previous: D.4 Other . ﬁw ‘ Next: D.6 Many, Many
Operators TopicsWeDidn't Mention Predefined Variables

D.5 Many, Many More Functions

Yes, Perl hasalot of functions. I'm not going to list them here, because the fastest way to