Paul DuBois Fourth Edition

MySQL.

Fourth Edition

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN 978-0-672-32916-6 ISBN-13: 978-0-672-32862-6
MySQL Programming in Objective-C
Paul DuBois Stephen G. Kochan

ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-321-56615-7
Linux Kernel Development PostgreSQL

Robert Love Korry Douglas

ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com.

Developer’s
Library

informit.com/devlibrary

MySQL.

Fourth Edition

Paul DuBois

vvAddison-Wesley

Upper Saddle River, NJ e Boston e Indianapolis e San Francisco
New York ¢ Toronto e Montreal ¢ London ¢ Munich e Paris « Madrid
Cape Town e Sydney e Tokyo e Singapore ¢ Mexico City

MySQLe

Fourth Edition

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-672-32938-8
ISBN-10: 0-672-32938-7

Library of Congress Cataloging-in-Publication Data

DuBois, Paul, 1956-
MySQL / Paul DuBois. — 4th ed.
p. cm.
Includes index.
ISBN 978-0-672-32938-8 (pbk.)

1. SQL (Computer program language) 2. MySQL (Electronic resource) 3. Database man-
agement. |I. Title.

QA76.73.567D588 2009
005.13'3—dc22
2008030855

Printed in the United States of America
First Printing August 2008

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Acquisitions Editor
Mark Taber

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Jovana
San Nicolas-Shirley

Indexer
Cheryl Lenser

Proofreaders
Leslie Joseph
Water Crest
Publishing

Technical Editors
Stephen Frein
Tim Boronczyk
Publishing
Coordinator
Vanessa Evans

Cover Designer
Gary Adair

Compositor
Jake McFarland

Contents at a Glance

INtroduction o i e e e 1

I: General MySQL Use

1 Getting Started with MySQL 13
2 Using SQLto Manage Data.couiiiiinnnnnnn. 101
3 Data TYPES. « o v vttt e 201
4 Stored Programsottt 289
5 Query Optimization. i e 303
II: Using MySQL Programming Interfaces
6 Introduction to MySQL Programming, 341
7 Writing MySQL Programs Using C, 359
8 Writing MySQL Programs Using PerI DBI. 435
9 Writing MySQL Programs Using PHP 527
I1l: MySQL Administration
10 Introduction to MySQL Administration 579
11 The MySQL Data Directoryttt 585
12 General MySQL Administration 609
13 Access Control and Security 699
14 Database Maintenance, Backups, and Replication 737

IV: Appendixes

A Obtaining and Installing Software 77
B Data Type Reference, 797
C Operator and Function Reference 813
D System, Status, and User Variable Reference. 889
E SQL Syntax Reference @i, 937
F MySQL Program Reference 1037

Note: Appendixes G, H, and | are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

G C APl ReferenCe. . . . o i ittt e e e e e e e e 1121
H Perl DBI APl Reference i 1177
| PHP APl Reference.t e e e e e e e e e et e e e e 1207

www.kitebird.com/mysql-book

Table of Contents

Introduction 0ttt ittt 1
Why Choose MySQL? e e e e e 2
Already Running Another RDBMS?. e i 4
Tools Provided with MySQL e e et e e 5
What You Can Expect from This Book 5
Road Map to This BOOK i e e e et e et 6

Part I: General MySQL USe.ottt e e 6

Part II: Using MySQL Programming Interfaces 6

Part Ill: MySQL Administrationttt e 7

Part IV: AppendiXes oot i e i e e e 7
How to Read This BOOK et 8
Versions of Software Covered in This Book 9
Conventions Used in This BoOK. it 10
Additional RESOUICES i e e 11

I: General MySQL Use

1 Getting Started with MySQLt nnnn- 13
1.1 How MySQL Can Help YoU ittt ettt e e 13
1.2 ASample Database e 17

1.2.1 The U.S. Historical League, 17
1.2.2 The Grade-Keeping Project.t 20
1.2.3 How the Sample Database AppliestoYou 20
1.3 Basic Database Terminologyottt e 21
1.3.1 Structural Terminology. v o oot e 21
1.3.2 Query Language Terminology v o v oo it e e et e 22
1.3.3 MySQL Architectural Terminology it 24
1.4 AMySQL TUtorial oot e e e 25
1.4.1 Obtaining the Sample Database Distribution 26
1.4.2 Preliminary Requirements i 27
1.4.3 Establishing and Terminating Connections to the MySQL Server 28
1.4.4 Executing SQL Statements i 30
1.4.5 Creating a Database. 33

1.4.6 Creating Tables.o i ittt e e e 34

Contents

1.4.7 Adding New ROWSottt s 53
1.4.8 Resetting the sampdb Database to a Known State 57
1.4.9 Retrieving Information. 58
1.4.10 Deleting or Updating Existing Rows 91
1.5 Tips for Interacting with mysqgl 93
1.5.1 Simplifying the Connection Process, 93
1.5.2 Issuing Statements with Less Typing it 95
1.6 Where 1o NOW?ot e 100
UsingSQLtoManageData............ iiicnnnnn 101
2.1 The Server SQL Mode et et et 102
2.2 MySQL Identifier Syntax and Naming Rules 103
2.3 Case Sensitivity in SQL Statements, 106
2.4 Character Set Support oot 107
2.4.1 Specifying Character Sets i 108
2.4.2 Determining Character Set Availability and Current Settings. 109
2.4.3 Unicode Support. oot e 111
2.5 Selecting, Creating, Dropping, and Altering Databases 112
2.5.1 Selecting Databases.ottt e 112
2.5.2 Creating Databasesc. .. 113
2.5.3 Dropping Databasesottt e 114
2.5.4 Altering Databasesot e 114
2.6 Creating, Dropping, Indexing, and Altering Tables 114
2.6.1 Storage Engine Characteristics 114
2.6.2Creating Tables. 122
2.6.3 Dropping Tables e 135
2.6.4 Indexing Tables.ottt e 136
2.6.5 Altering Table Structure. e 141
2.7 Obtaining Database Metadata. 144
2.7.1 Obtaining Metadata with SHOW i, 145
2.7.2 Obtaining Metadata with INFORMATION SCHEMA 147
2.7.3 Obtaining Metadata from the Command Line 149
2.8 Performing Multiple-Table Retrievals with Joins. 150
2.8. 1 Thelnner Joint e 152
2.8.2 Qualifying References to Columns from Joined Tables. 153

2.8.3 Left and Right (Outer) Joins. it 154

vii

viii Contents

2.9 Performing Multiple-Table Retrievals with Subqueries 158
2.9.1 Subqueries with Relative Comparison Operators. 159
2.9.2 IN and NOT 1IN Subqueries. uiinuuinnenn.. 160
2.9.3 ALL, ANY, and SOME SUbQUENES u 't it 161
2.9.4 EXISTS and NOT EXISTS Subqueriesovuvun.. 162
2.9.5 Correlated Subqueries 163
2.9.6 Subqueries inthe FROM Clauseuiiuuiinnenn.. 163
2.9.7 Rewriting Subqueries as JOINS. e 164

2.10 Performing Multiple-Table Retrievals with UNION 165

2,11 USING VIBWS. . . ottt it e e e e e e e 169

2.12 Multiple-Table Deletes and Updates. 173

2.13 Performing Transactions i e 174
2.13.1 Using Transactions to Ensure Safe Statement Execution. 176
2.13.2 Using Transaction Savepoints uieiinnenn.. 180
2.13.3 Transaction Isolation. 180
2.13.4 Non-Transactional Approaches to Transactional Problems 182

2.14 Foreign Keys and Referential Integrity 185
2.14.1 Creating and Using Foreign Keys 187
2.14.2 Living Without Foreign Keys. 192

2.15 Using FULLTEXT Searchest ittt et e eeeae s 194
2.15.1 Natural Language FULLTEXT Searches. 196
2.15.2 Boolean Mode FULLTEXT Searches., 197
2.15.3 Query Expansion FULLTEXT Searchesoou... 199
2.15.4 Configuring the FULLTEXT Search Engine. 200

3 DataTypest iii it et s i e s a s naaa e 201

3.1 Data Value Categoriesottt ittt et et e 203
3.1.1 Numeric Valuest 203
3.1.2String Values e 204
3.1.3 Date and Time (Temporal) Values.oo.... 213
3.1.4 Spatial Values e 213
3.1.5Boolean Values e 213
3. 1.6 The NULL Valueot e e e e e e 214

3.2 MySQL Data TypesS . « v v v ot i e e e e e e e 214
3.2.1 Overview of Data TypesS o oo ittt e e e e e 215
3.2.2 Specifying Column Types in Table Definitions 217

3.2.3 Specifying Column Default Values 218

Contents

3.2.4 Numeric Data TypesS oo i it e e 219
3.2.5 String Data Types v ittt e 226
3.2.6 Date and Time Data Typest iuiiiiinnnnn.. 242
3.2.7 Spatial Data TypesS o o v it e 250
3.3 How MySQL Handles Invalid Data Values. 252
3.4 Working with Sequences.t e 254
3.4.1 General AUTO_INCREMENT Properties. 254
3.4.2 Storage Engine-Specific AUTO_INCREMENT Properties 256
3.4.3 Issues to Consider with AUTO_INCREMENT Columns 259
3.4.4 Tips for Working with AUTO_INCREMENT Columns 260
3.4.5 Generating Sequences Without AUTO INCREMENT............ 262
3.5 Expression Evaluation and Type Conversion 264
3.5.1 Writing EXpressionsottt 265
3.5.2Type CONVEISION . . . o v ittt e e e et e e e 272
3.6 Choosing Data TypesS o ittt ittt e e e e e e 280
3.6.1 What Kind of Values Will the Column Hold? 282
3.6.2 Do Your Values Lie Within Some Particular Range?............. 285
3.6.3 Inter-Relatedness of Data Type Choice Issues 286
Stored Programst iin it it n s 289
4.1 Compound Statements and Statement Delimiters 290
4.2 Stored Functions and Proceduresttt 292
4.2.1 Privileges for Stored Functions and Procedures. 294
4.2.2 Stored Procedure Parameter Types.o i i i i 295
G BN [==Y = 296
T 298
4.5 Security for Stored Programs and Viewsc. .. 300
Query Optimizationttt iintnannnnn 303
5.4 UsiNg INdeXing ottt e e e e 304
5.1.1 Benefits of Indexing 304
5.1.2 Costs of INdeXing i ittt e e 307
5.1.3 Choosing INdeXeS ottt it e e e et 308
5.2 The MySQL Query Optimizerot e s 311
5.2.1 How the Optimizer Works 312
5.2.2 Using EXPLAIN to Check Optimizer Operation. 316

5.3 Choosing Data Types for Efficient Queries 322

ix

Contents

5.4 Loading Data Efficiently 326
5.5 Scheduling and Locking Issuesot 329
5.5.1 Changing Statement Scheduling Priorities 331
5.5.2 Using Delayed Inserts. 331
5.5.3 Using Concurrent Inserts.ttt 332
5.5.4 Locking Levels and CONCUITENCY oo v ittt i e it e e en 333
5.6 Administrative-Level Optimizations. 334
5.6.1 Using MyISAM Key Caches iiiiiinnenn.. 336
5.6.2 Usingthe QueryCache 337
5.6.3 Hardware Optimizations. 339

II: Using MySQL Programming Interfaces

6 Introduction to MySQL Programmingot nurnnnn 341
6.1 Why Write Your Own MySQL Programs?o v i i it 341
6.2 APIs Available for MySQL 345

B.2.1The C APl. . . . i e e 347
6.2.2 The Perl DBI API e 347
6.2.3The PHP API. 349
6.3 Choosing an APl. e 350
6.3.1 Execution Environment 351
6.3.2 Performance. 352
6.3.3 Development Timeottt e e 354
6.3.4 Portability.o e 357

7 Writing MySQLPrograms Using Cccciucvncncnn- 359
7.1 Compiling and Linking Client Programsc.c....... 360
7.2 Connecting to the Server 363
7.3 Handling Errors and Processing Command Options 367

7.3.1 Checking for Errors.ottt e e e e e 367
7.3.2 Getting Connection Parameters at Runtime 371
7.3.3 Incorporating Option-Processing into a MySQL Client Program 384
7.4 Processing SQL Statements 389
7.4.1 Handling Statements That Modify Rows 390
7.4.2 Handling Statements That Return a Result Set. 391
7.4.3 A General-Purpose Statement Handler 394
7.4.4 Alternative Approaches to Statement Processing 396

7.4.5mysqgl store result() Versus mysqgl use result()....398

Contents

7.4.6 Using Result Set Metadata 400
7.4.7 Encoding Special Characters and BinaryData 405
7.5 An Interactive Statement-Execution Program 409
7.6 Writing Clients That Include SSL Support. 410
7.7 Using the Embedded Server Library. 416
7.7.1 Writing an Embedded Server Application 416
7.7.2 Producing the Application Executable Binary. 419
7.8 Using Multiple-Statement Execution. 420
7.9 Using Server-Side Prepared Statements 422
Writing MySQL Programs Using PerlDBI 435
8.1 Perl Script CharacteristiCs.ottt e e e e e 436
8.2 Perl DBI OVEIVIEW. . . . o ittt it e e e e e e e e e 437
8.2.1 DBl Data TYPeS. - « v ot ot e e e e e e 437
8.2.2 ASimple DBI Script ot e 437
8.2.3 Handling Errors. oot e 443
8.2.4 Handling Statements That Modify Rows 446
8.2.5 Handling Statements That Return a Result Set. 447
8.2.6 Quoting Special Characters in Statement Strings 457
8.2.7 Placeholders and Prepared Statements 460
8.2.8 Binding Query Results to Script Variables. 463
8.2.9 Specifying Connection Parameters. 464
8.2.10 DEDULEING . . . o v it et e e e e 468
8.2.11 Using Result Set Metadata, 471
8.2.12 Performing Transactions 475
8.3 Putting DBIto Work 477
8.3.1 Generating the Historical League Directory. 478
8.3.2 Sending Membership Renewal Notices. 484
8.3.3 Historical League Member Entry Editing. 490
8.3.4 Finding Historical League Members with Common Interests 496
8.3.5 Putting the Historical League Directory Online 497
8.4 Using DBI in Web Applications 500
8.4.1 Setting Up Apache for CGI Scripts 502
8.4.2 A Brief CGl.pm Primer. e 503
8.4.3 Connecting to the MySQL Server from Web Scripts. 510
8.4.4 A Web-Based Database Browser 513

8.4.5 A Grade-Keeping Project Score Browser 517

Xi

Xii Contents

9

8.4.6 Historical League Common-Interest Searching 521
Writing MySQL Programs Using PHP0... 527
Q.1 PHP OVEIVIEW . . .ottt et et e e e e e e e e e 529

9.1.1 ASimple PHP Script 531

9.1.2 Using PHP Library Files for Code Encapsulation 534

9.1.3 A Simple Data-Retrieval Page. 539

9.1.4 Processing Statement Results. 543

9.1.5 Testing for NULL Values in Query Results 547

9.1.6 Using Prepared Statements. 547

9.1.7 Using Placeholders to Handle Data Quoting Issues. 548

9.1.8 Handling Errors.o i i e e e 550
9.2 Putting PHP to Workot e 552

9.2.1 An Online Score-Entry Application 552

9.2.2 Creating an Interactive Online Quiz, 565

9.2.3 Historical League Online Member Entry Editing. 570

I1l: MySQL Administration

10

11

Introduction to MySQL Administration 579
10.1 MySQL COMPONENtS. . . . oottt e e e e e e e 580
10.2 General MySQL Administration 581
10.3 Access Control and Securityo e 582
10.4 Database Maintenance, Backups, and Replication 582
The MySQL Data Directoryot ririnnnnmnnrnnns 585
11.1 Location of the Data Directory 0. iiiinenen.. 586
11.2 Structure of the Data Directory it 587
11.2.1 How the MySQL Server Provides AccesstoData. 588
11.2.2 Representation of Databases in the Filesystem 590
11.2.3 Representation of Tables in the Filesystem 590
11.2.4 Representation of Views and Triggers in the Filesystem 592
11.2.5 How SQL Statements Map onto Table File Operations. 592
11.2.6 Operating System Constraints on Database Object Names 593
11.2.7 Factors That Affect Maximum Table Size. 596
11.2.8 Implications of Data Directory Structure for System Performance. . 597
11.2.9 MySQL Status and Log Filest 599

11.3 Relocating Data Directory Contents. 602

Contents Xiii

11.3.1 Relocation Methods it 602
11.3.2 Relocation Precautionsttt 603
11.3.3 Assessing the Effect of Relocation. 603
11.3.4 Relocating the Entire Data Directory. 604
11.3.5 Relocating Individual Databases 604
11.3.6 Relocating Individual Tables. 606
11.3.7 Relocating the InnoDB Shared Tablespace 606
11.3.8 Relocating Status and Log Files. 607
12 General MySQL Administration 609
12.1 Securing a New MySQL Installation. 610
12.1.1 Establishing Passwords for the Initial MySQL Accounts 610
12.1.2 Setting Up Passwords for a Second Server. 615
12.2 Arranging for MySQL Server Startup and Shutdown 616
12.2.1 Running the MySQL Server On Unixo oi i i, 616
12.2.2 Running the MySQL Server On Windows. 621
12.2.3 Specifying Server Startup Options 624
12.2.4 Stopping the Server e 626
12.2.5 Regaining Control of the Server When You Cannot Connect to It . . 626
12.3 Controlling How the Server Listens for Connections 629
12.4 Managing MySQL User AcCounts.ot v it i it e e e e e 630
12.4.1 High-Level MySQL Account Management 631
12.4.2 Granting Privilegeso e 634
12.4.3 Displaying Account Privileges.o i it e 643
12.4.4 Revoking Privileges and Removing Users 643
12.4.5 Changing Passwords or Resetting Lost Passwords 644
12.5 Maintaining LOgS . . . o v v ittt et e e 645
12.5. 1 The Error LOg . . . o o v it e e e e e e e e e e 648
12.5.2 The General Query Logot 649
12.5.3 The SIow-Query LOg oo ittt it et e e e 649
12.5.4 The Binary Log and the Binary Log Index File 650
12.5.5 The Relay Log and the Relay Log Index File 652
12.5.6 Using Log Tables v ittt e e e e 652
12.5.7 Log Management it e 653
12.6 Tuning the Server. e 660
12.6.1 Checking and Setting System Variable Values. 661
12.6.2 General-Purpose System Variables. 665

12.6.3 Checking Status Variable Values 667

Xiv

Contents

13

14

12.7 Storage Engine Configuration 669
12.7.1 Selecting Which Storage Engines a Server Supports. 669
12.7.2 Configuring the MylSAM Storage Engine. 671
12.7.3 Configuring the InnoDB Storage Engine 674
12.7.4 Configuring the Falcon Storage Engine 680

12.8 Enabling or Disabling LOCAL Capability for LOAD DATA 681

12.9 Internationalization and Localization Issues. 681
12.9.1 Configuring Time Zone Supportot et 682
12.9.2 Selecting the Language for Error Messages 684
12.9.3 Configuring Character Set Support. 684

12.10 Running Multiple Serverst e 685
12.10.1 General Multiple Server Issuescu ... 686
12.10.2 Configuring and Compiling Different Servers. 688
12.10.3 Strategies for Specifying Startup Options. 690
12.10.4 Using mysgld multi for Server Management. 691
12.10.5 Running Multiple Servers on Windows 693

12.11 Updating MySQLot e e 695

AccessControland Securityt iiinnrnnnn 699

13.1 Internal Security: Preventing Unauthorized Filesystem Access........ 700
13. 1.1 Howto StealData 701
13.1.2 Securing Your MySQL Installation. 702

13.2 External Security: Preventing Unauthorized Network Access 709
13.2.1 Structure and Contents of the MySQL Grant Tables. 709
13.2.2 How the Server Controls Client Access 719
13.2.3 A Privilege Puzzle 724
13.2.4 Grant Table Risks to Avoid. 728

13.3 Setting Up Secure Connections. i, 731

Database Maintenance, Backups, and Replication. 737

14.1 Principles of Preventive Maintenance. 737

14.2 Performing Database Maintenance with the Server Running 739
14.2.1 Locking Individual Tables for Read-Only or Read/Write Access. ... 740
14.2.2 Locking All Databases for Read-Only Access. 743

14.3 General Preventative Maintenance 743
14.3.1 Using the Server’s Auto-Recovery Capabilities. 744
14.3.2 Scheduling Preventive Maintenance 745

14.4 Making Database Backupsottt 746

Contents XV

14.4.1 Making Text Backups with mysgldump.................... 748
14.4.2 Making Binary Database Backups 751
14.4.3 Backing Up InnoDB or Falcon Tables 754
14.5 Copying Databases to Another Server 755
14.5.1 Copying Databases Using a Backup File. 755
14.5.2 Copying Databases from One Server to Another 756
14.6 Checking and Repairing Database Tables. 757
14.6.1 Using the Server to Check and Repair Tables 758
14.6.2 Using mysglcheck to Check and Repair Tables 759
14.6.3 Using myisamchk to Check and Repair Tables 760
14.7 Using Backups for Data Recovery 763
14.7.1 Recovering Entire Databases. 764
14.7.2 Recovering Individual Tables 764
14.7.3 Re-Executing Statements in Binary Log Files 765
14.7.4 Coping with InnoDB Auto-Recovery Problems 767
14.8 Setting Up Replication Servers i 768
14.8.1 How Replication Works i i 769
14.8.2 Establishing a Master-Slave Replication Relationship 770
14.8.3 Binary Logging Formats. 773
14.8.4 Using a Replication Slave for Making Backups 774

IV: Appendixes

A Obtaining and Installing Software 777
A.1 Obtaining the sampdb Sample Database Distribution 7
A.2 Obtaining MySQL and Related Software. 778
A.3 Choosing a Version of MySQLot it ittt e e 780
A.4 Installing MySQL on UniXttt et e 780

A.4.1 Creating a Login Account for the MySQL User. 782
A.4.2 Obtaining and Installing a MySQL Distribution on Unix. 782
A.4.3 Post-Installation Steps e 786
A.4.4 Installing Perl DBI Supporton Unix 789
A.4.5 Installing Apache and PHP on Unix. oo, 790
A.5 Installing MySQL on WIindowsttt 792
A.5.1 Installing Perl DBI Support on Windows 796

A.5.2 Installing Apache and PHP on Windows 796

Contents

B DataType Reference.ttt nerncanncnnnnns 797
B.L NUMEKIC TYPES . - o o ot et et e e e e e e e e e e e 799
B.l.d INteger TYPES .« v vttt e e e e 799
B.1.2 Fixed-PoiNt TypeS oot e e 801
B.1.3 Floating-Point Typesottt e 801
B.d.d BIT T PC . v v ot ittt e et e e e e e e e e e e 803
B.2 String TYPeS. . . v it e e 803
B.2.1 Binary String TypesS o ottt e e 805
B.2.2 Non-Binary String Types. . . . o v vt i ittt e e e e 807
B.2.3 ENUMANd SET TYPES . . .« v vt it ettt et e e e e e e e e e 809
B.3 Date and Time TYPES o vttt e et e e et e e e 809
B.4 Spatial TYpeS oottt e 811
C Operator and FunctionReference.t nnnns 813
C.A Operators oo e 814
C.1.1 Operator Precedence it uit ettt 814
C.1.2 Grouping Operators. v vttt e e et e e 815
C.1.3 Arithmetic Operators. i it e e e 816
C.1.4 Comparison Operatorscc it in it et 817
C.A D Bit Operatorso e 823
C.1.6 Logical Operatorsottt i e e 824
C.1.7 Cast Operators. . . .o v ittt e e e e 825
C.1.8 Pattern-Matching Operators.t 826
C.2 FUNCLIONS ot e e e e e e e e 830
C.2.1 Comparison FUNCtionsttt 831
C.2.2 Cast FuNClions 833
C.2.3 Numeric Functions 834
C.2.4 String FUNCLIONS ot e 840
C.2.5 Date and Time Functionst .. 852
C.2.6 Summary Functionsttt 868
C.2.7 Security and Compression Functions 871
C.2.8 Advisory Locking Functionsc. i, 875
C.2.9 Spatial Functions e 877
C.2.10 XML FUNCLIONS . . . oot e e e e e e 883

C.2.11 Miscellaneous Functions. 883

D

E

Contents

System, Status, and User Variable Reference. 889
D.1 System Variables e 889
D.2 Session-Only System Variables, 921
D.3 Status Variables 924
D.3.1 InnoDB Status Variables 930
D.3.2 Query Cache Status Variables 933
D.3.3 SSL Status Variables 934
D.4 User-Defined Variables 935
SQLSyntax Reference.cciiiierinernnnnnnernnnnns 937
E.1 SQL Statement Syntax (Non-Compound Statements) 938
E.2 Compound Statement Syntax i 1028
E.2.1 Control Structure Statements 1029
E.2.2 Declaration Statements. 1031
E.2.3 Cursor Statements 1033
E.3 Comment Syntaxt e 1033
MySQL Program Referencecciiriuernnennnnnnnnns 1037
F.1 Displaying a Program’s Help Message 1038
F.2 Specifying Program Options 1039
F.2.1 Standard MySQL Program Optionsc.cuuuu.. 1041
F2.2 Option Files e 1045
F.2.3 Environment Variables 1049
FE3myisamchk e e 1051
F.3.1 Standard Options Supported by myisamchk 1052
F.3.2 Options Specific to myisamchk 1053
F.3.3 Variables formyisamchk i, 1056
FAmyisampackt e e 1058
F.4.1 Standard Options Supported by myisampack 1058
F.4.2 Options Specific to myisampack 1058
FO mysgl. ..o 1059
F.5.1 Standard Options Supported by mysgl 1060
F.5.2 Options Specifictomysgl i, 1061
F5.3 Variables formysgl 1065
F5.4 mysgl Commandst 1066

F.5.5 mysqgl Prompt Definition Sequences 1068

Xvii

Xviii Contents

FBMYySgl.S@rVerttt e e 1070
F.6.1 Options Supported by mysgl.server 1070
F7mysgl config 1071
F.7.1 Options Specific to mysgql config...................... 1071
F8mysgl install db..............c0i i, 1071
F.8.1 Standard Options Supported by mysgl install db......... 1072
F.8.2 Options Specific to mysql_install db.................. 1072
FOmysgladminttt e e 1072
F.9.1 Standard Options Supported by mysgladmin............... 1073
F.9.2 Options Specific to mysgladmin 1073
F.9.3 Variables for mysgladmin.cuueuenn.. 1074
F.9.4 mysgladmin Commands.ouiinnnernnn.. 1074
F10 mysglbinlogo ittt et e e e 1076
F.10.1 Standard Options Supported by mysglbinlog............. 1076
F.10.2 Options Specific to mysglbinlog 1077
F.10.3 Variables for mysglbinlog.« . 1079
F1l mysglcheck e 1079
F.11.1 Standard Options Supported by mysglcheck 1079
F.11.2 Options Specific to mysglcheck 1080
F12 mysgld. . ..ottt e 1083
F.12.1 Standard Options Supported by mysgld 1083
F.12.2 Options Specifictomysgld 1084
F.12.3 Variables formysgldt 1100
FA13 mysgld multittt 1101
F.13.1 Standard Options Supported by mysgld multi............ 1101
F.13.2 Options Specific to mysqld multi 1101
F14 mysgld safe 1102
F.14.1 Standard Options Supported by mysqld safe............. 1102
F.14.2 Options Specific to mysqgld safe 1102
FI5 mysgldumpttt e 1104
F.15.1 Standard Options Supported by mysgldump 1105
F.15.2 Options Specific to mysgldumpc.covu.... 1105
F.15.3 Data Format Options for mysgldump 1112
F.15.4 Variables formysgldumpottt 1112
F16 mysglhotcopyo it 1113
F.16.1 Standard Options Supported by mysglhotcopy 1114

F.16.2 Options Specific to mysglhotcopy 1114

Contents

FA17 mysglimport e 1116
F.17.1 Standard Options Supported by mysglimport 1117
F.17.2 Options Specific to mysglimport 1117
F.17.3 Data Format Options for mysglimport 1118

F18 mysglshowttt e 1119
F.18.1 Standard Options Supported by mysglshow 1119
F.18.2 Options Specific to mysglshow 1119

FAO Perror. . . oo e 1120
F.19.1 Standard Options Supported by perror 1120

Note: Appendixes G, H, and | are located online and are accessible either by registering this
book at informit.com/register or by visiting www.kitebird.com/mysql-book.

G CAPIReferenceciciiitiinnnenanenenenansnnnns 1121
G.1 Compiling and LinKingt e 1122
G.2 C APIData TYPeS . -« o v ot et et e e e e 1123

G.2.1 Scalar Data TypesS.o i ittt e e e e 1123
G.2.2 Non-Scalar Data Types oot ittt e e e e e e 1124
G.2.3 ACCESSOr MaCIOS o v ittt e e e e e e 1135
G.3C APIFUNCLIONS ottt e e e e 1136
G.3.1 Client Library Initialization and Termination Routines. 1136
G.3.2 Connection Management Routines 1137
G.3.3 Error-Reporting Routines i it 1149
G.3.4 Statement Construction and Execution Routines 1150
G.3.5 Result Set Processing Routines. 1152
G.3.6 Information Routines 1161
G.3.7 Transaction Control Routines. 1164
G.3.8 Multiple Result Set Routines. 1164
G.3.9 Prepared Statement Routines 1165
G.3.10 Administrative Routines 1173
G.3.11 Threaded Client Routines 1175
G.3.12 Debugging ROULINESottt e 1175

H PerIDBIAPIReference............cciciiirnranerancnnnnns 1177
H.L Writing SCriptS . . . oo et e e 1178
H.2 DBI Methodso e e et e e e et e e 1178

H.2.1 DBI Class Methods.ttt e e s 1180

H.2.2 Database-Handle Methods 1185

Xix

www.kitebird.com/mysql-book

XX

Contents

H.2.3 Statement-Handle Methods. 1191
H.2.4 General Handle Methods 1195
H.2.5 MySQL-Specific Administrative Methods. 1196
H.3 DBI Utility Functions. 1197
H.4 DBI Attributes e 1198
H.4.1 Database-Handle Attributes. 1198
H.4.2 General Handle Attributes. 1199
H.4.3 MySQL-Specific Database-Handle Attributes 1200
H.4.4 Statement-Handle Attributes 1201
H.4.5 MySQL-Specific Statement-Handle Attributes 1203
H.4.6 Dynamic Attributes e 1205
H.5 DBI Environment Variables 1205
PHP APIReferenceo iiiii s ine s nmnnnnnnnmnnnns 1207
1.2 Writing PHP Scripts oo e e 1207
[.2 PDO ClasSSeS. . . o ottt it ittt e e e e 1208
I.3PDO Methods oottt e e 1208
1.3.1 PDO Class Methods. i 1209
I.3.2 PDOStatement Object Methods. 1215
|.3.3 PDOException Object Methods. 1222
I.3.4 PDO Constants oottt e 1223

About the Author

Paul DuBois is a writer, database administrator, and leader in the open source and
MySQL communities. He has contributed to the online documentation for MySQL and
is the author of MySQL and Perl for the Web (New Riders), MySQL Cookbook, Using csh
and tesh, and Software Portability with imake (O’Reilly). He is currently a technical writer
with the MySQL documentation team at Sun Microsystems.

Acknowledgments

Acknowledgments are presented here by edition.

Fourth Edition

My technical reviewers, Stephen Frein and Tim Boronczyk, identified many points that
needed correction or clarification. Ulf Wendel and Johannes Schliiter made comments
and corrections on the PHP material. My thanks to each of them.

The staff at Pearson responsible for this edition were Mark Taber, Acquisitions Editor;
Michael Thurston, Development Editor; Jovana San Nicolas-Shirley, Project Editor; Jake
McFarland, Compositor; Cheryl Lenser, Indexer; and Gary Adair, Cover Designer.

To my wife Karen, my continued thanks and gratitude for her encouragement and
support throughout this effort.

Third Edition

The third edition enjoyed careful technical review by Zak Greant and Chris Newman.
Their efforts improved the manuscript at many points. Monty and the developers at
MySQL AB also provided insight in response to my questions.

The people at Pearson responsible for this edition were Shelley Johnston, Acquisitions
Editor; Damon Jordan, Development Editor; and Andy Beaster, Project Editor.

I am happy to recognize that my wife Karen again deserves special credit for her sup-
port during yet more revision and rewriting.

Second Edition

For the second edition, the technical reviewers once again played a crucial role in find-
ing errors and making corrections and clarifications. Hang Lau and Shane Kirk served as
reviewers. I'd also like to thank Monty Widenius, Alexander Barkov, Jani Tolonen, and
the other MySQL developers for patiently enduring my many questions and supplying
answers that made their way into these pages.

The New Riders staft that brought this edition to life were Stephanie Wall, Associate
Publisher; Chris Zahn, Development Editor; Lori Lyons, Senior Project Editor; Pat
Kinyon, Copy Editor; Cheryl Lenser, Indexer; and Stacey Richwine-DeR ome,
Compositor.

And, as always, my wife Karen provided the behind-the-scenes support that readers
do not see, but without which this book would be much poorer.

First Edition

This book benefited greatly from the comments, corrections, and criticisms provided by
the technical reviewers: David Axmark,Vijay Chaugule, Chad Cunningham, Bill Gerrard,
Jijo George John, Fred Read, Egon Schmid, and Jani Tolonen. Special thanks goes to
Michael “Monty” Widenius, the principal MySQL developer, who not only reviewed the
manuscript, but also fielded hundreds of questions that I sent his way during the course
of writing the book. Naturally, any errors that remain are my own. I'd also like to thank
Tomas Karlsson, Colin McKinnon, Sasha Pachev, Eric Savage, Derick H. Siddoway, and
Bob Worthy, who reviewed the initial proposal and helped shape the book into its pres-
ent form.

The staff at New Riders are responsible first for conceiving this book and then for
turning my scribblings into the finished work you hold in your hands. Laurie Petrycki
acted as Executive Editor. Katie Purdum, Acquisitions Editor, helped me get under way
and took the heat when I missed deadlines. Leah Williams did double duty not only as
Development Editor but as Copy Editor; she put in many, many late hours, especially in
the final stages of the project. Cheryl Lenser and Tim Wright produced the index. John
Rahm served as Project Editor. Debra Neel proofread the manuscript. Gina Rexrode and
Wil Cruz, Compositors, laid out the book in the form you see now. My thanks to each
of them.

Most of all, I want to express my appreciation to my wife, Karen, for putting up with
another book, and for her understanding and patience as I disappeared, sometimes for
days on end, into “the writing zone.” Her support made the task easier on many
occasions, and I am pleased to acknowledge her contribution; she helped me write
every page.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you'’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

‘When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@developers-library.info
Mail: Mark Taber
Associate Publisher
Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

A relational database management system (RDBMS) is an essential tool in many envi-
ronments, from traditional uses in business, research, and educational contexts, to applica-
tions such as powering search engines on the Internet. However, despite the importance
of a good database system for managing and accessing information resources, many or-
ganizations have found them to be out of reach of their financial resources. Historically,
database systems have been an expensive proposition, with vendors charging healthy fees
both for software and for support. Also, because database engines often had substantial
hardware requirements to run with any reasonable performance, the cost was even
greater.

The situation is different now, on both the hardware and software sides of the picture.
Small desktop systems and servers are inexpensive but powerful, and there is a thriving
movement devoted to writing high-performance operating systems for them. These oper-
ating systems are available free over the Internet or at the cost of an inexpensive CD.They
include several BSD Unix derivatives (FreeBSD, NetBSD, OpenBSD) as well as various
distributions of Linux (Fedora, Debian, Gentoo, SuSE, to name a few).

Production of free operating systems has proceeded in concert with—and to a large
extent has been made possible by—the development of freely available tools like gec, the
GNU C compiler. These efforts to make software available to anyone who wants it are
part of the Open Source movement. Open Source projects have produced many impor-
tant pieces of software. For example, Apache is the most widely used Web server on the
Internet. Perl, Python, and Ruby are well-established general-purpose scripting languages,
and PHP is a language that is popular due largely to the ease with which it enables dy-
namic Web pages to be written. These all stand in contrast to proprietary solutions that
lock you into high-priced products from vendors that don’t even provide source code.

Database software has become more accessible, too, and Open Source database systems
are freely available. One of these is MySQL, a SQL client/server relational database man-
agement system originating from Scandinavia. MySQL includes an SQL server, client
programs for accessing the server, administrative tools, and a programming interface for
Writing your own programs.

MySQLs roots begin in 1979, with the UNIREG database tool created by Michael
“Monty” Widenius for the Swedish company TcX. In 1994, TcX began searching for an
RDBMS with an SQL interface for use in developing Web applications. They tested some
commercial servers, but found all too slow for TcX’s large tables. They also took a look
at mSQL, but it lacked certain features that TcX required. Consequently, Monty began

Introduction

developing a new server. The programming interface was explicitly designed to be similar
to the one used by mSQL because several free tools were available for mSQL, and by us-
ing a similar interface, those same tools could be used for MySQL with a minimum of
porting effort.

In 1995, David Axmark of Detron HB began to push for TcX to release MySQL on
the Internet. David also worked on the documentation and on getting MySQL to build
with the GNU configure utility. MySQL 3.11.1 was unleashed on the world in 1996 in
the form of binary distributions for Linux and Solaris. Today, MySQL works on many
more platforms and is available in both binary and source form. The company MySQL
AB was formed to provide distributions of MySQL under both Open Source and com-
mercial licenses, and to offer technical support, monitoring services, and training. In
2008, Sun Microsystems acquired MySQL AB and the commitment to Open Source
remains strong (Sun was already moving in the direction of making many of its products
available under Open Source licensing).

Initially, MySQL became widely popular because of its speed and simplicity. But there
was criticism, too, because it lacked features such as transactions and foreign key support.
MySQL continued to develop, adding not only those features but others such as replica-
tion, subqueries, stored procedures, views, and triggers. These capabilities take MySQL
into the realm of enterprise applications. As a result, people who once would have consid-
ered only “big iron” database systems for their applications now give serious consideration
to MySQL.

MySQL is portable and runs on commercial operating systems (such as Mac OS X,
HP-UX, and Windows) and on hardware all the way up to enterprise servers. Further-
more, its performance rivals any database system you care to put up against it, and it can
handle large databases with billions of rows. In the business world, MySQL’s presence
continues to increase as companies discover it to be capable of handling their database
needs at a fraction of what they are used to paying for commercial licensing and support.

MySQL lies squarely within the picture that unfolds before us: freely available operat-
ing systems running on powerful but inexpensive hardware, putting substantial processing
power and capabilities in the hands of more individuals and businesses than ever before,
on a wider variety of systems than ever before. This lowering of the economic barriers to
computing puts powerful database solutions within reach of more people and organiza-
tions than at any time in the past. Organizations that once could only dream of putting
the power of a high-performance RDBMS to work for them now can do so for very
little cost. This is true for individuals as well. For example, I use MySQL with Perl, PHP,
and Apache on my Apple laptop running Mac OS X.This enables me to carry my work
with me anywhere. Total cost: the cost of the laptop.

Why Choose MySQL?
If you’re looking for a free or low-cost database management system, several are available

from which to choose, such as MySQL, PostgreSQL, or SQLite. When you compare
MySQL with other database systems, think about what’s most important to you.

Why Choose MySQL?

Performance, support, features (such as SQL conformance or extensions), licensing condi-
tions and restrictions, and price all are factors to take into account. Given these considera-
tions, MySQL has many attractive features to offer:

= Speed. MySQL is fast. Its developers contend that MySQL is about the fastest
database system you can get.You can investigate this claim by visiting http://www.
mysql.com/why-mysql/benchmarks/, a performance-comparison page on the
MySQL Web site.

= Ease of use. MySQL is a high-performance but relatively simple database system
and is much less complex to set up and administer than larger systems.

= Query language support. MySQL understands SQL (Structured Query
Language), the standard language of choice for all modern database systems.

= Capability. The MySQL server is multi-threaded, so many clients can connect to
it at the same time. Each client can use multiple databases simultaneously.You can
access MySQL interactively using several interfaces that let you enter queries and
view the results: command-line clients, Web browsers, or GUI clients. In addition,
programming interfaces are available for many languages, such as C, Perl, Java, PHP,
Python, and Ruby.You can also access MySQL using applications that support
ODBC and .NET (protocols developed by Microsoft). This gives you the choice of
using prepackaged client software or writing your own for custom applications.

= Connectivity and security. MySQL is fully networked, and databases can be
accessed from anywhere on the Internet, so you can share your data with anyone,
anywhere. But MySQL has access control so that one person who shouldn’t see
another’s data cannot.To provide additional security, MySQL supports encrypted
connections using the Secure Sockets Layer (SSL) protocol.

= Portability. MySQL runs on many varieties of Unix and Linux, as well as on other
systems such as Windows and NetWare. MySQL runs on hardware from high-end
servers down to small personal computers (even palmtop devices).

= Small size. MySQL has a modest distribution size, especially compared to the
huge disk space footprint of certain other database systems.

= Availability and cost. MySQL is an Open Source project available under multi-
ple licensing terms. First, it is available under the terms of the GNU General Public
License (GPL).This means that MySQL is available without cost for most in-house
uses. Second, for organizations that prefer or require formal arrangements or that
do not want to be bound by the conditions of the GPL, commercial licenses are
available.

= Open distribution and source code. MySQL is easy to obtain; just use your
Web browser. If you don’t understand how something works, are curious about an
algorithm, or want to perform a security audit, you can get the source code and

http://www.mysql.com/why-mysql/benchmarks/
http://www.mysql.com/why-mysql/benchmarks/

Introduction

examine it. If you think you’ve found a bug, please report it; the developers want
to know.

What about support? Good question; a database system isn’t much use if you can’t get
help for it. This book is one form of assistance, and I like to think that it’s useful in that
regard. (The fact that the book has reached its fourth edition suggests that it accomplishes
that goal.) There are other resources open to you as well, and you’ll find that MySQL has
good support:

= The MySQL Reference Manual is included in MySQL distributions, and also is
available online and in printed form.The Reference Manual regularly receives good
marks in the MySQL user community. This is important, because the value of a
good product is diminished if no one can figure out how to use it.

= Technical support contracts, monitoring services, and training classes are available
from Sun.

= There are several active MySQL mailing lists to which anyone may subscribe. These
lists have many helpful participants, including several MySQL developers. As a sup-
port resource, many people find these lists invaluable.

The MySQL community, developers and nondevelopers alike, is very responsive.
Answers to questions on the mailing lists often arrive within minutes. When bugs are
reported, the developers generally fix them quickly, and fixes become available daily
over the Internet. Contrast this with the often-frustrating experience of navigating the
Byzantine support channels of big vendors.You’ve been there? Me, too.

If you are in the database-selection process, MySQL is an ideal candidate for evalua-
tion.You can try MySQL with no risk or financial commitment. If you get stuck, you can
use the mailing lists to get help. An evaluation costs some of your time, but that’s true no
matter what database system you're considering—and it’s a safe bet that your installation
and setup time for MySQL will be less than for many other systems.

Already Running Another RDBMS?

If you're currently running another database system but feel constrained by it, you defi-
nitely should consider MySQL. Perhaps performance of your current system is a concern,
or it’s proprietary and you don’t like being locked into it. Perhaps you’d like to run on
hardware that’s not supported by your current system, or your software is provided in
binary-only format but you want to have the source available. Or maybe it just costs too
much! All of these are reasons to look into MySQL. Use this book to familiarize yourself
with MySQL’s capabilities, contact the MySQL sales crew, ask questions on the mailing
lists, and you’ll find the answers you need to make a decision.

One thing to keep in mind is that although all major database engines support SQL,
each supports a somewhat different dialect. Check the chapters in this book that deal
with MySQL’s SQL dialect and data types.You may decide that the version of SQL

What You Can Expect from This Book

supported by your current RDBMS is too different and that porting your applications
would involve significant effort.

Part of your evaluation should be to try porting a few examples, of course. This will
give you valuable experience in making an assessment. There is an ongoing commitment
by the MySQL developers to an increasing conformance to standard SQL. That has the
practical consequence of eliminating porting roadblocks as time goes on, so your porting
effort may turn out to be easier than you expect.

Tools Provided with MySQL

MySQL distributions include the following tools:

= An SQL server. This is the engine that powers MySQL and provides access to
your databases.

= Client and utility programs. These include an interactive client program that
enables you to enter queries directly and view the results. Also available are several
administrative and utility programs that help you run your site: One allows you to
monitor and control the server; others let you import data, perform backups, check
tables for problems, and more.

= A client library for writing your own programes. You can write client pro-
grams in C because the library is in C, but the library also can be linked into other
language processors such as Perl, PHP, or Ruby to provide the basis for MySQL
interfaces in those languages.

In addition to the software provided with MySQL itself, MySQL is used by many
talented and capable people who like writing software to enhance their productivity and
who are willing to share that software. The result is that you have access to a variety of
third-party tools that make MySQL easier to use or that extend its reach into areas such
as Web site development.

What You Can Expect from This Book

By reading this book, you’ll learn how to use MySQL effectively so that you can get your
work done more productively.You’ll be able to figure out how to get your information
into a database, and you’ll learn how to get it back out by formulating queries that give
you the answers to the questions you want to ask of that data.

You don’t need to be a programmer to understand or use SQL.This book will show
you how it works. But there’s more to understanding how to use a database system prop-
erly than knowing SQL syntax. This book emphasizes MySQL’s unique capabilities and
shows how to use them.

You'll also see how MySQL integrates with other tools. The book shows how to use
MySQL with Perl and PHP to generate dynamic Web pages created from the result of

Introduction

database queries.You'll learn how to write your own programs that access MySQL data-
bases. All of these enhance MySQL’s capabilities to handle the requirements of your par-
ticular applications.

If you’ll be responsible for administering a MySQL installation, this book will tell you
what your duties are and how to carry them out.You’ll learn how to create user accounts,
perform database backups, set up replication, and make sure your site is secure.

Road Map to This Book

This book is organized into four parts. The first concentrates on general concepts of data-
base use. The second focuses on writing your own programs that use MySQL. The third is
aimed at those readers who have administrative duties. The fourth provides a set of refer-
ence appendixes.

Part I: General MySQL Use

= Chapter 1,“Getting Started with MySQL.” Discusses how MySQL can be useful to
you, provides a tutorial that introduces the interactive MySQL client program, cov-
ers the basics of SQL, and demonstrates MySQL’s general capabilities.

= Chapter 2,“Using SQL to Manage Data.” Every major RDBMS now available
understands SQL, but every database engine implements a slightly different SQL
dialect. This chapter discusses SQL with particular emphasis on those features that
make MySQL distinctive.

= Chapter 3,“Data Types.” Discusses the data types that MySQL provides for storing
your information, the properties and limitations of each type, when and how to
use them, how to choose between similar types, expression evaluation, and type
conversion.

= Chapter 4, “Stored Programs.” Discusses how to write and use SQL programs that
are stored on the server side. Types of programs available to you are stored functions
and procedures, triggers, and events.

= Chapter 5,“Query Optimization.” Discusses how to make your queries run more
efficiently.

Part Il: Using MySQL Programming Interfaces
= Chapter 6, “Introduction to MySQL Programming.” Discusses some of the applica-
tion programming interfaces (APIs) available for MySQL and provides a general
comparison of the APIs that the book covers in detail.

= Chapter 7,“Writing MySQL Programs Using C.” Discusses how to write C
programs using the API provided by the MySQL C client library.

Road Map to This Book

= Chapter 8,“Writing MySQL Programs Using Perl DBI.” Discusses how to write
Perl scripts using the DBI module. Covers standalone command-line scripts and
scripts for Web site programming.

= Chapter 9, “Writing MySQL Programs Using PHP” Discusses how to use the PHP
scripting language and the PHP Data Objects (PDO) database-access extension to
write dynamic Web pages that access MySQL databases.

Part 1ll: MySQL Administration

= Chapter 10, “Introduction to MySQL Administration.” An overview of the database
administrator’s duties and what you should know to run a MySQL site successfully.

= Chapter 11,“The MySQL Data Directory.” An in-depth look at the organization
and contents of the data directory, the area under which MySQL stores databases,
logs, and status files.

= Chapter 12, “General MySQL Administration.” Discusses how to make sure your
operating system starts and stops the MySQL server properly when your system
comes up and shuts down. Also includes instructions for setting up MySQL user
accounts, and discusses log maintenance, configuring storage engines, tuning the
server, and running multiple servers.

= Chapter 13,“Access Control and Security.” Discusses what you need to know to
make your MySQL installation safe from intrusion, both from other users on the
server host and from clients connecting over the network. Explains the structure of
the grant tables that control client access to the MySQL server. Describes how to
set up your server to support secure connections over SSL.

= Chapter 14, “Database Maintenance, Backups, and Replication.” Discusses how to
reduce the likelihood of disaster through preventive maintenance, how to back up
your databases, how to perform crash recovery if disaster strikes in spite of your
preventive measures, and how to set up replication servers.

Part IV: Appendixes

= Appendix A, “Obtaining and Installing Software.” Discusses where to get and how
to install the major tools and sample database files described in the book.

= Appendix B, “Data Type Reference.” Explores the characteristics of MySQL’s data
types.

= Appendix C,“Operator and Function Reference.” The operators and functions that
are used to write expressions in SQL statements are discussed.

= Appendix D, “System, Status, and User Variable Reference.” Describes each variable
maintained by the MySQL server, and how to use your own variables in SQL
statements.

Introduction

= Appendix E, “SQL Syntax Reference.” Describes each SQL statement supported
by MySQL.

= Appendix E “MySQL Program Reference.” Explores the programs provided in the
MySQL distribution.

Note
The following Appendices are located online. Go to www.informit.com/title/

9780672329388 to register your book and access these files. Or, please visit
www.kitebird.com/mysql-book to access these files.

= Appendix G, “C API Reference” (online). Explores the data types and functions in
the MySQL C client library.

= Appendix H,“Per]l DBI API Reference” (online). Discusses the methods and attrib-
utes provided by the Perl DBI module.

= Appendix I,“PHP API Reference” (online). Discusses the methods provided for
MySQL support in PHP by the PDO extension.

How to Read This Book

Whichever part of the book you happen to be reading at any given time, it’s best to try
the examples as you go along. That means you should do two things:

= If MySQL isn’t installed on your system, you should install it or ask someone to do
so for you.

= You should get the files needed to set up the sampdb sample database to which
we’ll be referring throughout the book.

Appendix A indicates where you can obtain all the necessary components and has in-
structions for installing them.

If you're a complete newcomer to MySQL or to SQL, begin with Chapter 1.This
provides you with a tutorial introduction that grounds you in basic MySQL and SQL
concepts and brings you up to speed for the rest of the book. Then proceed to Chapter 2,
Chapter 3, and Chapter 4 to find out how to describe and manipulate your own data so
that you can exploit MySQL’s capabilities for your own applications.

If you already know some SQL, you should still read Chapter 2 and Chapter 3. SQL
implementations vary, and you’ll want to find out what makes MySQL’s implementation
distinctive in comparison to others with which you may be familiar.

If you have experience with MySQL but need more background on the details of
performing particular tasks, use the book as a reference, looking up topics on a need-to-
know basis. You’ll find the appendixes especially useful for reference purposes.

www.informit.com/title/9780672329388
www.informit.com/title/9780672329388
www.kitebird.com/mysql-book

Versions of Software Covered in This Book

If you're interested in writing your own programs to access MySQL databases, read the
API chapters, beginning with Chapter 6. If you want to produce a Web-based front end
to your databases for easier access to them, or, conversely, to provide a database back end
for your Web site to enhance your site with dynamic content, check out Chapter 8 and
Chapter 9.

If you're evaluating MySQL to find out how it compares to your current RDBMS,
several parts of the book will be useful. Read the SQL syntax and data type chapters in
Part I to compare MySQL to the version of SQL that you're used to, the programming
chapters in Part II if you need to write custom applications, and the administrative chap-
ters in Part III to assess the level of administrative support a MySQL installation requires.
This information is also useful if you’re not currently using a database but are performing
a comparative analysis of MySQL along with other database systems for the purpose of
choosing one of them.

Versions of Software Covered in This Book

The first edition of this book covered MySQL 3.22 and the beginnings of MySQL 3.23.
The second edition expanded that range to include MySQL 4.0 and the first release

of MySQL 4.1.The third edition covered MySQL 4.1 and the initial releases of
MySQL 5.0.

For this fourth edition, the baseline for coverage is MySQL 5.0.That is, the book
covers MySQL 5.0 and 5.1, and the early releases of MySQL 6.0. Most of this book still
applies if you have a version older than 5.0, but differences specific to older versions
usually are not explicitly noted.

The MySQL 5.0 series has reached General Availability status, which means that it is
considered stable for use in production environments. There were a lot of changes in
earlier pre-production 5.0 releases, and I recommend that you use the most recent
version if possible. The current 5.0 version as I write is 5.0.64. The MySQL 5.1 series is
in Release Candidate development (currently at 5.1.25) and should reach General
Availability status soon.You’ll need MySQL 5.1 if you want to try features such as the
event scheduler or XML support.

If you’re using a version of MySQL older than 5.0, be aware that the following
features discussed in this book will not be available to you:

= MySQL 5.0 adds stored functions and procedures, views, triggers, strict input
handling, true VARCHAR, and INFORMATION_SCHEMA.

= MySQL 5.1 adds the event scheduler, partitioning, log tables, and XML support.

For information about older versions, check the MySQL Web site at http://dev.mysql.

com/doc/, where you can access the Reference Manual for each version.
I also draw your attention to some topics that are not covered in this book:

= The MySQL Connectors, which provide client access for Java, ODBC, and .NET
programs.

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

10

Introduction

= The NDB storage engine and MySQL Cluster, which provide in-memory storage,
high availability, and redundancy. See the MySQL Reference Manual for details.

= The graphical user interface (GUI) tools such as MySQL Administrator and
MySQL Query Browser. These tools help you use MySQL in a windowing
environment.

To download any of these products or see their documentation, visit http://www.
mysql.com/products/ or http://dev.mysql.com/doc/.

For the other major software packages discussed in the book, any recent versions
should be sufficient for the examples shown. (Note that the PDO database-access exten-
sion requires PHP 5; PHP 4 will not work.) The current versions are shown in the
following table.

Package Version

Perl DBI module 1.601

Perl DBD::mysql module 4.007

PHP 5.2.6
Apache 2.0.63/2.2.8
CGl.pm 3.29

All software discussed in this book is available on the Internet. Appendix A provides
instructions for getting support for MySQL, Perl DBI, PHP and PDO, Apache, and
CGI.pm onto your system. The appendix also contains instructions for obtaining the
sampdb sample database that is used in examples throughout the book and that contains
the programs that are developed in the programming chapters.

If you are using Windows, I assume that you have a relatively recent version such as
Windows 2000, XP, 2003, or Vista. Some features covered in this book such as named
pipes and Windows services are not available in older versions (Windows 95, 98, or Me).

Conventions Used in This Book

This book uses the following typographical conventions:
= Monospaced font indicates hostnames, filenames, directory names, commands,
options, and Web sites.
= Bold monospaced font is used in command examples to indicate input that
you type.

» Ttalic monospaced font is used in commands to indicate where you should
substitute a value of your own choosing.

http://www.mysql.com/products/
http://www.mysql.com/products/
http://dev.mysql.com/doc/

Additional Resources

For interactive examples, I assume that you enter commands by typing them into a
terminal window or console window. To provide context, the prompt in command exam-
ples indicate the program from which you run the command. For example, SQL state-
ments that are issued from within the mysql client program are shown preceded by
the mysqgl> prompt. For commands that you issue from your command interpreter, the
% prompt usually is used. In general, this prompt indicates commands that can be run
either on Unix or Windows, although the particular prompt you see will depend on your
command interpreter. (The command interpreter is your login shell on Unix, or cmd. exe
or command. com on Windows.) More specialized command-line prompts are #, which
indicates a command run on Unix as the root user via su or sudo, and C:\> to indicate a
command intended specifically for Windows.

The following example shows a command that should be entered from your command
interpreter. The % indicates the prompt, which you do not type.To issue the command,
you’d enter the boldface characters as shown, and substitute your own username for the
italic word:

% mysql --user=user_name sampdb

In SQL statements, SQL keywords and function names are written in uppercase. Data-
base, table, and column names appear in lowercase.

In syntax descriptions, square brackets ([1) indicate optional information. In lists of
alternatives, vertical bar (|) is used as a separator between items. A list enclosed within []
is optional and indicates that an item may be chosen from the list. A list enclosed within
{} is mandatory and indicates that an item must be chosen from the list.

Additional Resources

If you have a question that this book doesn’t answer, where should you turn? Useful docu-
mentation resources include the Web sites for the software you need help with, shown in
the following table.

Package Primary Web Site

MySQL http://dev.mysqgl.com/doc/
Perl DBI http://dbi.perl.org/

PHP http://www.php.net/
Apache http://httpd.apache.org/

CGl.pm http://search.cpan.org/dist/CGl.pm/

11

http://dev.mysql.com/doc/
http://dbi.perl.org/
http://www.php.net/
http://httpd.apache.org/
http://search.cpan.org/dist/CGI.pm/

12 Introduction

Those sites provide information such as reference manuals, frequently asked-question
(FAQ) lists, and mailing lists:

= Reference manuals. The primary documentation included with MySQL itself is
the Reference Manual. It’s available in several formats, including online and down-
loadable versions.

PHP’s manual comes in several forms, too.

= Manual pages. Documentation for the DBI module and its MySQL-specific
driver, DBD::mysql, can be read from the command line with the perldoc com-
mand. Try perldoc DBI and perldoc DBD: :mysgl.The DBI document provides
general concepts. The MySQL driver document discusses capabilities specific to
MySQL.

= FAQs. There are frequently asked-question lists for DBI, PHP, and Apache.

= Mailing lists. Several mailing lists centering around the software discussed in this
book are available. It’s a good idea to subscribe to the ones that deal with the tools
you want to use. It’s also a good idea to use the archives for those lists that have
them. When you'’re new to a tool, you will have many of the same questions that
have been asked (and answered) many times, and there is no reason to ask again
when you can find the answer with a quick search of the archives.

Instructions for subscribing to the mailing lists vary. The following table indicates
where you can find the necessary information.

Package Mailing List Instructions

MySQL http://lists.mysql.com/

Per| DBI http://dbi.perl.org/support/

PHP http://www.php.net/mailing-lists.php
Apache http://httpd.apache.org/lists.html

= Ancillary Web sites. Besides the official Web sites, some of the tools discussed
here have ancillary sites that provide more information, such as sample source code
or topical articles. Check for a “Links” area on the official site you're visiting.

http://lists.mysql.com/
http://dbi.perl.org/support/
http://www.php.net/mailing-lists.php
http://httpd.apache.org/lists.html

1

Getting Started with MySQL

This chapter provides an introduction to the MySQL relational database management
system (RDBMS), and to the Structured Query Language (SQL) that MySQL under-
stands. It lays out basic terms and concepts you should understand, describes the sampdb
sample database that we’ll use for examples, and serves as a tutorial that shows you how to
use MySQL to create a database and interact with it.

Begin here if you are new to database systems and perhaps uncertain whether you
need one or can use one.You should also read the chapter if you don’t know anything
about MySQL or SQL and need an introductory guide to get started. Readers who have
experience with MySQL or other database systems might want to skim through the
material. However, everybody should read Section 1.2,““A Sample Database,” to become
familiar with the purpose and contents of the sampdb database that is used throughout
the book.

1.1 How MySQL Can Help You

This section describes situations in which the MySQL database system is useful. This will
give you an idea of the kinds of things MySQL can do and the ways in which it can help
you. If you don’t need to be convinced about the usefulness of a database system—
perhaps because you’ve already got a problem in mind and just want to find out how to
put MySQL to work helping you solve it—you can proceed to Section 1.2,“A Sample
Database.”

A database system is essentially a high-powered way to manage lists of information.
The information can come from a variety of sources. It might be research data, business
records, customer requests, sports statistics, sales reports, personal information, personnel
records, bug reports, or student grades. However, although database systems can deal with
a wide range of information, you don't use such a system for its own sake. If a job is easy
to do already, there’s no reason to drag a database into it just to use one. A grocery list is a
good example:You write down the items to get, cross them off as you do your shopping,
and then throw the list away. It’s highly unlikely that you’d use a database for this. Even if

14

Chapter 1 Getting Started with MySQL

you have a palmtop computer, you'd probably keep track of a grocery list using its
notepad function rather than its database capabilities.

The power of a database system comes into play when the information you want to
organize and manage is so voluminous or complex that your records become more bur-
densome than you care to deal with by hand. Clearly this is the case for large corpora-
tions processing millions of transactions a day; a database is a necessity under such
circumstances. But even small-scale operations involving a single person maintaining in-
formation of personal interest might require a database. It’s not difficult to think of sce-
narios in which a database can be beneficial, because you needn’t have huge amounts of
information before that information becomes difficult to manage. Consider the following
situations:

= Your carpentry business has several employees.You need to maintain employee and
payroll records so that you know who you’ve paid and when, and you must sum-
marize those records so that you can report earnings statements to the government
for tax purposes.You also need to keep track of the jobs your company has been
hired to do and which employees you’ve scheduled to work on each job.

= You run a network of automobile parts warehouses and need to be able to tell which
ones have any given part in their inventory so that you can fill customer orders.

= That pile of research data you’ve been collecting over the course of many years
needs to be analyzed for publication.You want to boil down large amounts of raw
data to generate summary information, and to pull out selected subsets of observa-
tions for more detailed statistical analysis.

= You're a teacher who needs to keep track of grades and attendance. Each time you
give a quiz or a test, you record every student’s grade. It’s easy enough to write
down scores in a gradebook, but using the scores later is a tedious chore.You’d
rather avoid sorting the scores for each test to determine the grading curve, and
you'd really rather not add up each student’s scores when you determine final
grades at the end of the grading period. Counting each student’s absences is no fun,
either.

= The organization for which you serve as the secretary maintains a directory of
members. (The organization could be anything—a professional society, a club, a
symphony orchestra, or an athletic booster club.) You generate a printed directory
each year for the members, based on a word processor document that you edit as
membership information changes.You're tired of maintaining the directory that
way because it limits what you can do with it. It’s difficult to sort the entries in dif-
ferent ways, and you can’t easily select just certain parts of each entry (such as a list
consisting only of names and phone numbers). Nor can you easily find a subset of
members, such as those who need to renew their memberships soon—if you could,
it would eliminate the job of looking through the entries each month to find those
members who need to be sent renewal notices.You’ve heard about the “paperless
office” that’s supposed to result from electronic record-keeping, but you haven’t

1.1 How MySQL Can Help You

seen any benefit from it. The membership records are electronic, but, ironically,
aren’t in a form that can be used easily for anything except generating paper by
printing the directory!

These scenarios range from situations involving small amounts to large amounts of in-
formation. Their common characteristic is that they involve tasks that can be performed
manually but that could be performed more efficiently by a database system.

‘What specific benefits should you expect to see from using a database system such as
MySQL? It depends on your particular needs and requirements, and as illustrated by the
preceding examples, those can vary quite a bit. Let’s look at a type of situation that occurs
frequently and is fairly representative of database use. Database management systems are
often employed to handle tasks such as those for which people use filing cabinets. Indeed,
a database is like a big filing cabinet in some ways, but one with a sophisticated built-in
filing system. There are some important advantages of electronically maintained records
over records maintained by hand. For example, if you work in a dentist’s office setting in
which client records are maintained, here are some of the ways MySQL can help you in
its filing system capacity.

Reduced record filing time. You don’t have to look through drawers in cabinets to
figure out where to add a new record.You just hand it to the filing system and let it put
the record in the right place for you.

Reduced record retrieval time. When you'’re looking for records, you don’t search
through each one yourself to find the ones containing the information you want. If you
want to send out reminders to all patients who haven’t been in for their checkup in a
while, you ask the filing system to find the appropriate records for you. Of course, you do
this differently than if you were talking to another person, with whom you’d say, “Please
determine which patients haven’t visited within the last six months.” With a database, you
invoke a strange incantation:

SELECT last_name, first_name, last_visit FROM patient
WHERE last_visit < DATE_SUB(CURDATE(), INTERVAL 6 MONTH);

That can be pretty intimidating if you’ve never seen anything like it before, but the
prospect of getting results in a second or two rather than spending an hour shuffling
through your records should be attractive. (In any case, you needn’t worry. That odd-
looking bit of gobbledygook won't look strange for long. In fact, you’ll understand
exactly what it means by the time you’ve finished this chapter.)

Flexible retrieval order. You needn't retrieve records according to the fixed order in
which you store them (by patient’s last name, for example).You can tell the filing system
to pull out records sorted in any order you like: by last name, insurance company name,
date of last visit, and so forth.

Flexible output format. After you’ve found the records in which you’re interested,
there’s no need to copy the information manually. The filing system can generate a list
for you. Sometimes you might just print the information. Other times you might want to
use it in another program. For example, after you generate the list of patients who are

15

16

Chapter 1 Getting Started with MySQL

overdue on their dental visits, you might feed this information into a word processor that
prints out notices that you can send to those patients. Or you might be interested only in
summary information, such as a count of the selected records.You don’t have to count
them yourself; the filing system can generate the summary for you.

Simultaneous multiple-user access to records. With paper records, if two people
want to look up a record at the same time, the second person must wait for the first one
to put the record back. MySQL gives you multiple-user capability so that both can access
the record simultaneously.

Remote access to and electronic transmission of records. Paper records require
you to be where the records are located, or for someone to make copies and send them to
you. Electronic records open up the potential for remote access to the records or elec-
tronic transmission of them. If your dental group has associates in branch offices, those
associates can access your records from their own locations.You don’t need to send copies
by courier. If someone who needs records doesn’t have the same kind of database software
you do but does have electronic mail, you can select the desired records and send their
contents electronically.

If you've used database management systems before, you already know about the bene-
fits just described, and you may be thinking about how to go beyond the usual “replace
the filing cabinet” applications. The manner in which many organizations use a database
in conjunction with a Web site is a good example. Suppose that your company has an in-
ventory database that is used by the service desk staft when customers call to find out
whether you have an item in stock and how much it costs. That’s a relatively traditional
use for a database. However, if your company puts up a Web site for customers to visit,
you can provide an additional service: a search page that enables customers to determine
item pricing and availability. This gives customers the information they want, and the way
you provide it is by searching the inventory information stored in your database for the
items in question—automatically. The customer gets the information immediately, with-
out being put on hold listening to annoying canned music or being limited by the hours
your service desk is open. And for every customer who uses your Web site, that’s one less
phone call that needs to be handled by a person on the service desk payroll. (Perhaps the
Web site can pay for itself this way?)

But you can put the database to even better use than that. Web-based inventory search
requests can provide information not only to your customers, but to your company as
well. The queries tell you what customers are looking for, and the query results tell you
whether you're able to satisfy their requests. To the extent you don’t have what they
want, you're probably losing business. So it makes sense to record information about in-
ventory searches: what customers were looking for, and whether you had it in stock.
Then you can use this information to adjust your inventory and provide better service to
your customers.

So how does MySQL work? The best way to find out is to try it for yourself, and for
that we’ll need a database to work with.

1.2 A Sample Database

1.2 A Sample Database

This section describes the sample database that we’ll use throughout the rest of this book.
It provides a source of examples for you to try as you learn to put MySQL to work. We’ll
draw examples primarily from two of the situations described earlier:

= The organizational secretary scenario. Our organization has these characteristics: It’s
composed of people drawn together through an affinity for United States history
(called, for lack of a better name, the U.S. Historical League). The members renew
their membership periodically on a dues-paying basis. Dues go toward League ex-
penses such as publication of a newsletter, “Chronicles of U.S. Past”’ The League
also operates a small Web site; it hasn’t been developed very much, but you’d like to
change that.

= The grade-keeping scenario.You are a teacher who administers quizzes and tests
during the grading period, records scores, and assigns grades. Afterward, you deter-
mine final grades, which you turn in to the school office along with an attendance
summary.

Now let’s examine these situations more closely in terms of two requirements:

= You must decide what you want to get out of the database—that is, what goals you
want to accomplish.

= You must figure out what you're going to put into the database—that is, what data
you will keep track of.

Perhaps it seems backward to think about what comes out of the database before con-
sidering what goes in. After all, you must enter your data before you can retrieve it. But
the way you use a database is driven by your goals, and those are more closely associated
with what you want to get from your database than with what you put into it. Presum-
ably you're not going to waste time and effort putting information into a database unless
you plan to use it for something later.

1.2.1 The U.S. Historical League

The scenario here is that you as League secretary maintain the membership list using a
word processing document. That works reasonably well for generating a printed directory
but limits what else you can do with the information.You have these objectives in mind:

= You want to produce output from the directory in different formats, using informa-
tion appropriate to the application. One goal is to generate the printed directory
each year—a requirement the League has had in the past that you plan to continue
to carry out.You can think of other uses for the information in the directory, too—
for example, to provide the current-member list for the printed program distrib-
uted to attendees of the League’s annual meeting. These applications involve
different sets of information. The printed directory uses the entire contents of each

17

18

Chapter 1 Getting Started with MySQL

member’s entry. For the meeting program, you need to pull out only member
names (something that hasn’t been easy using a word processor).

= You want to search the directory for members who satisfy various criteria. For ex-
ample, you want to know which members must renew their memberships soon.
Another application that involves searching arises from the list of keywords you
maintain for each member. These keywords describe areas of U.S. history in which
each member is particularly interested (for example, the Civil War, the Depression,
civil rights, or the life of Thomas Jefferson). Members sometimes ask you for a list
of other members with interests similar to their own, and you'd like to be able to
satisfy these requests.

= You want to put the directory online at the League’s Web site. This would benefit
both the members and yourself. If you can convert the directory to Web pages by
some reasonably automated process, an online version of the directory would be al-
ways up to date, something not true of the printed version. And if the online direc-
tory can be made searchable, members could easily look for information
themselves. For example, a member who wants to know which other members are
interested in the Civil War could find that out without waiting for you to perform
the search, and you wouldn’t need to find the time to do it yourself.

I’'m well aware that databases are not the most exciting things in the world, so I'm not
about to make any wild claims that using one stimulates creative thinking. Nevertheless,
when you stop thinking of information as something you must wrestle with (as you do
when using your word processing document) and begin thinking of it as something you
can manipulate relatively easily (as you hope to do with MySQL), it has a certain liberat-
ing effect on your ability to come up with new ways to use that information:

= If the information in the database can be moved to the Web site in the form of an
online directory, you might also be able to make information flow the other way.
Suppose that members could edit their own entries online to provide updates for
the database. Then you wouldn’t have to do all the editing yourself, and it would
make the information in the directory more accurate.You'd really like to avoid do-
ing all the directory editing yourself, but the society doesn’t have much of a budget,
and hiring someone is out of the question.

= If you store email addresses in the database, you could use them to send email to
members that haven’t updated their entries in a while. The messages could show
members the current contents of their entry, ask them to review it, and indicate
how to make any needed modifications using the facilities provided on the Web site.

= A database might help make the Web site more useful in ways not even related to
the membership list. The League’s newsletter, “Chronicles of U.S. Past,” has a chil-
dren’s section containing a history-based quiz in each issue. Some of the recent is-
sues have focused on biographical facts about U.S. presidents. The Web site could
have a children’s section, too, where the quizzes are put online. Perhaps this section

1.2 A Sample Database

could even be made interactive, by putting the information from which quizzes are
drawn in the database and having the Web server query the database for questions
to present to visitors.

Well! At this point the number of uses for the database that youre coming up with
make you realize you might be getting a little carried away. After pausing to come back
down to earth, you start asking some practical questions:

= Isn’t this a little ambitious? Won't it be a lot of work to set this up?

Anything’s easier when you’re just thinking about it and not doing it, of course, and
I won'’t pretend that all of these ideas are trivial to implement. Nevertheless, by the
end of this book you’ll have done everything we’ve just outlined. Just keep one
thing in mind: It’s not necessary to do everything all at once. We’ll break the job
into pieces and tackle it a piece at a time.

= Can MySQL be used to accomplish all these goals?

No, it can't, at least not by itself. For example, MySQL has no built-in Web-
programming facilities. But you can combine MySQL with other tools that work
with it to complement and extend its capabilities.

We'll use the Perl scripting language and the Perl DBI (database interface) module
to write scripts that access MySQL databases. Perl has excellent text-processing
capabilities, which allow for manipulation of query results in a highly flexible man-
ner to produce output in a variety of formats. For example, we can use Perl to
generate the directory in Rich Text Format (RTF), which can be read by all kinds
of word processors, and in HTML format for Web browsers.

We'll also use PHP, another scripting language. PHP is particularly adapted to writ-
ing Web applications, and it interfaces easily with databases. This enables you to ini-
tiate MySQL queries from Web pages and to generate new pages that include the
results of database queries. PHP can be used with several Web servers (including
Apache, the most popular server in the world), making it easy to do things such as
presenting a search form and displaying the results of the search.

MySQL integrates well with these tools and gives you the flexibility to choose how
to combine them to achieve the ends you have in mind.You're not locked into
some all-in-one suite’s components that have highly touted “integration” capabili-
ties but that actually work well only with each other.

= And, finally, the big question: How much will all this cost? The League has a limited
budget, after all.

This might surprise you, but it probably won’t cost anything. If you’re familiar with
the usual ken of database systems, you know that they’re generally pretty pricey. By
contrast, MySQL often can be used for free. Even in enterprise settings where you
need guaranteed support and maintenance arrangements, MySQL is relatively inex-
pensive as database systems go. (Visit www.mysql.com for details.) The other tools

www.mysql.com

20

Chapter 1 Getting Started with MySQL

we’ll use (Perl, DBI, PHP, Apache) are free, so, all things considered, you can put to-
gether a useful system quite inexpensively.

The choice of operating system for developing the database is up to you.Virtually all
the software we’ll discuss runs under both Unix (which I use as an umbrella term that in-
cludes BSD Unix, Linux, Mac OS X, and so forth) and Windows. The few exceptions
tend to be shell or batch scripts that are specific to either Unix or Windows.

1.2.2 The Grade-Keeping Project

Now let’s consider the other situation for which we’ll be using the sample database. The
scenario here is that as a teacher, you have grade-keeping responsibilities. You want to
convert the grading process from a manual operation using a gradebook to an electronic
representation using MySQL. In this case, the information you want to get from a data-
base is implicit in the way you already use your gradebook now:

= For each quiz or test, you record the scores. For tests, you put the scores in order so
that you can look at them and determine the cutoffs for each letter grade (A, B, C,
D, and F).

= At the end of the grading period, you calculate each student’s total score, and then
sort the totals and determine grades based on them.The totals might involve
weighted calculations because you probably want to count tests more heavily than
quizzes.

= You provide attendance information to the school office at the end of the grading
period.

The objectives are to avoid manually sorting and summarizing scores and attendance
records. In other words, you want MySQL to sort the scores and perform the calculations
necessary to compute each student’s total score and number of absences when the grading
period ends. To accomplish these goals, you’ll need the list of students in the class, the
scores for each quiz and test, and the dates on which students are absent.

1.2.3 How the Sample Database Applies to You

If you're not particularly interested in the Historical League or in grade-keeping, you
might be wondering what either of these scenarios have to do with you.The answer is
that they aren’t an end in themselves. They simply provide a vehicle by which to illustrate
what you can do with MySQL and tools that are related to it.

With a little imagination, you’ll see how example database queries apply to the partic-
ular problems you want to solve. Suppose that you're working in that dentist’s office I
mentioned earlier. You won’t see many dentistry-related queries in this book, but you will
see that many of the queries you find here apply to patient record maintenance, office
bookkeeping, and so forth. For example, determining which Historical League members
need to renew their memberships soon is similar to determining which patients haven’t

1.3 Basic Database Terminology

visited the dentist for a while. Both are date-based queries, so once you learn to write the
membership-renewal query, you can apply that skill to writing the delinquent-patient
query in which you have a more immediate interest.

1.3 Basic Database Terminology

You may have noticed that you're already several pages into a database book and still
haven’t seen a whole bunch of jargon and technical terminology. In fact, I still haven’t said
anything at all about what “a database” actually looks like, even though we have a rough
specification of how our sample database will be used. However, we'’re about to design
that database, and then we’ll begin implementing it, so we can’t avoid terminology any
longer. That’s what this section is about. It describes some terms that come up throughout
the book so that you’ll be familiar with them. Fortunately, many relational database con-
cepts are really quite simple. Much of the appeal of relational databases stems precisely
from the simplicity of their foundational concepts.

1.3.1 Structural Terminology

Within the database world, MySQL is classified as a relational database management sys-
tem (RDBMS).That phrase breaks down as follows:

= The database (the “DB” in RDBMS) is the repository for the information you
want to store, structured in a simple, regular fashion:

= The collection of data in a database is organized into tables.
= Each table is organized into rows and columns.
= Each row in a table is a record.

= Records can contain several pieces of information; each column in a table
corresponds to one of those pieces.

= The management system (the “MS”) is the software that lets you use your data by
enabling you to insert, retrieve, modify, or delete records.

= The word “relational” (the “R”) indicates a particular kind of DBMS, one that is
very good at relating (that is, matching up) information stored in one table to infor-
mation stored in another by looking for elements common to each of them.The
power of a relational DBMS lies in its capability to pull data from those tables con-
veniently and to join information from related tables to produce answers to ques-
tions that can’t be answered from individual tables alone. (Actually, “relational” has a
formal definition that differs from the way I am using it. However, with apologies
to purists, I find that my definition is more helpful for conveying the usefulness of
an RDBMS))

Here’s an example that shows how a relational database organizes data into tables and
relates the information from one table to another. Suppose that you run a Web site that

21

22

Chapter 1 Getting Started with MySQL

includes a banner-advertisement service. You contract with companies that want their ads
displayed when people visit the pages on your site. Each time a visitor hits one of your
pages, you serve an ad embedded in the page that is sent to the visitor’s browser and assess
the company a small fee. This is an ad “hit.” To represent this information, you maintain
three tables (see Figure 1.1). One table, company, has columns for company name, num-
ber, address, and telephone number. Another table, ad, lists ad numbers, the number for
the company that “owns” the ad, and the amount you charge per hit. The third table, hit,
logs each ad hit by ad number and the date on which the ad was served.

Some questions can be answered using the information in a single table. To determine
the number of companies you have contracts with, you need count only the rows in the
company table. Similarly, to determine the number of hits during a given time period,
only the hit table need be examined. Other questions are more complex, and it’s neces-
sary to consult multiple tables to determine the answers. For example, to determine how
many times each of the ads for Pickles, Inc. was served on July 14, you’d use all three ta-
bles as follows:

1. Look up the company name (Pickles, Inc.) in the company table to find the com-
pany number (14).

2. Use the company number to find matching records in the ad table so that you can
determine the associated ad numbers. There are two such ads, 48 and 101.

3. For each of the matched records in the ad table, use the ad number in the record to
find matching records in the hit table that fall within the desired date range, and
then count the number of matches. There are three matches for ad 48 and two
matches for ad 101.

Sounds complicated! But that’s just the kind of thing at which relational database sys-
tems excel. The complexity actually is somewhat illusory because each of the steps just
described really amounts to little more than a simple matching operation:You relate one
table to another by matching values from one table’s rows to values in another table’s
rows. This same simple operation can be exploited in various ways to answer all kinds of
questions: How many difterent ads does each company have? Which company’s ads are
most popular? How much revenue does each ad generate? What is the total fee for each
company for the current billing period?

Now you know enough relational database theory to understand the rest of this book,
and we don’t have to go into Third Normal Form, Entity-Relationship Diagrams, and all
that kind of stuff. (If you want to read about such things, I suggest you begin with the
works of C.J. Date or E.E Codd.)

1.3.2 Query Language Terminology

Communication with MySQL takes place via SQL (Structured Query Language). SQL is
today’s standard database language, and all major database systems understand it (although
each implementation has vendor-specific aspects). SQL supports many different kinds of

1.3 Basic Database Terminology 23

company table

company_name | company_num address phone
Big deal, Ltd. 13 14 Grand Blvd. 875-2934
Pickles, Inc. 59 Cucumber Dr. | 884-2472
Real Roofing Co. 17 928 Shingles Rd. | 882-4173
GigaFred & Son 23 2572 Family Ave. | 847-4738
ad table
company_num ad_num |hit_fee
14 0.01
23 49 0.02
17 52 0.01
13 55 0.03
23 62 0.02
23 63 0.01
23 64 0.02
13 77 0.03
23 99 0.03
14 0.01
13 102 0.01
17 119 0.02
hit table
ad_num date
49 July 13
55 July 13
48 July 14
63 July 14
101 July 14
62 July 14
119 July 14
102 July 14
52 July 14
48 July 14
64 July 14
119 July 14
48 July 14
101 July 14
63 July 15
49 July 15
77 July 15
99 July 15

Figure 1.1 Banner advertisement tables.

statements, all designed to make it possible to interact with your database in interesting
and useful ways.

As with any language, SQL can seem strange while you’re first learning it. For exam-
ple, to create a table, you need to tell MySQL what the table’s structure should be.You

24

Chapter 1 Getting Started with MySQL

and I might think of the table in terms of a diagram or picture. MySQL doesn’t, so you
create the table by telling MySQL something like this:

CREATE TABLE company

(
company_name CHAR(30),
company_num INT,
address CHAR (30) ,
phone CHAR (12)

)

Statements like that can be somewhat imposing when you’re new to SQL, but you
need not be a programmer to learn how to use SQL eftectively. As you gain familiarity
with the language, you’ll look at CREATE TABLE in a different light—as a powerful ally
that helps you describe your information, not as a weird bit of gibberish.

1.3.3 MySQL Architectural Terminology

When you use MySQL, you’re actually using at least two programs, because MySQL op-
erates using a client/server architecture. The first program is the MySQL server, mysqgld.
The server runs on the machine where your databases are stored. It listens for client re-
quests coming in over the network and accesses database contents according to those
requests to provide clients with the information they ask for. The other programs are
client programs; they connect to the database server and issue queries to tell it what infor-
mation they want.

Most MySQL distributions include the database server and several client programs. (If
you use RPM packages on Linux, there are separate server and client RPM packages, so
you should install both.) You use the clients according to the purposes you want to
achieve. The one most commonly used is mysql, an interactive client that lets you issue
queries and see the results. Two administrative clients are mysgldump, a backup program
that dumps table contents into a file, and mysgladmin, which enables you to check on the
status of the server and performs other administrative tasks such as telling the server to
shut down. MySQL distributions include other clients as well. If you have application
requirements for which none of the standard clients is suited, MySQL also provides a
client-programming library so that you can write your own programs. The library is us-
able directly from C programs. If you prefer a language other than C, interfaces are avail-
able for several other languages—Perl, PHP, Python, Java, and Ruby, to name a few.

The client programs I discuss in this book all are used from the command line. If you'd
like to try tools that use a graphical user interface (GUI) and provide point-and-click
capabilities, visit http://www.mysql.com/products/tools/.

MySQLs client/server architecture has certain benefits:

= The server provides concurrency control so that two users cannot modify the same
record at the same time. All client requests go through the server, so the server sorts
out who gets to do what, and when. If multiple clients want to access the same
table at the same time, they don’t all have to find and negotiate with each other.

http://www.mysql.com/products/tools/

1.4 A MySQL Tutorial 25

They just send their requests to the server and let it take care of determining the
order in which the requests are performed.

= You don’t have to be logged in on the machine where your database is located.
MySQL understands how to work in a networked environment, so you can run a
client program from wherever you happen to be, and the client can connect to the
server over the network. Distance isn’t a factor; you can access the server from any-
where in the world. If the server is located on a computer in Australia, you can take
your laptop computer on a trip to Iceland and still access your database. Does that
mean anyone can get at your data, just by connecting to the Internet? No. MySQL
includes a flexible security system, so you can allow access only to people who
should have it. And you can make sure that those people are able to do only what
they should. Perhaps Sally in the billing office should be able to read and update
(modify) records, but Phil at the service desk should be able only to look at them.
You can set each person’s privileges accordingly. If you do want to run a self-
contained system, set the access privileges so that clients can connect only from the
host on which the server is running.

In addition to the usual mysqgld server that is used in a client/server setting, MySQL
makes the server available as a library, 1ibmysqgld, that you can link into programs to pro-
duce standalone MySQL-based applications. This is called the “embedded server library”
because it’s embedded into individual applications. Use of the embedded server contrasts
with the client/server approach in that no network is required. This makes it easier to
create and package applications that can be distributed on their own with fewer assump-
tions about their external operational environment. On the other hand, it should be used
only in situations where the embedded application is the only one that needs access to
the databases managed by the server.

The Difference Between “MySQL” and “mysql”

To avoid confusion, I should point out that “MySQL” refers to the entire MySQL RDBMS and
“mysqgl”is the name of a particular client program. They sound the same if you pronounce them, but
they’re distinguished here by capitalization and typeface differences.

Speaking of pronunciation, MySQL is pronounced “my-ess-queue-ell.” We know this because the
MySQL Reference Manual says so. On the other hand, depending on who you ask, SQL is pro-
nounced “ess-queue-ell” or “sequel.” This book assumes the pronunciation “ess-queue-ell,” which is
why it uses constructs such as “an SQL query” rather than “a SQL query.”

1.4 A MySQL Tutorial

You have all the background you need now. It’s time to put MySQL to work!

This section will help you familiarize yourself with MySQL by providing a tutorial for
you to try. As you work through it, you will create a sample database and some tables, and
then interact with the database by adding, retrieving, deleting, and modifying information

26 Chapter 1 Getting Started with MySQL

in the tables. During the process of working with the sample database, you will learn the
following things:

= The basics of the SQL language that MySQL understands. (If you already know
SQL from having used some other RDBMS, it is a good idea to skim through this
tutorial to see whether MySQL’s dialect of SQL differs from the version with
which you are familiar.)

= How to communicate with a MySQL server using a few of the standard MySQL
client programs. As noted in the previous section, MySQL operates using a
client/server architecture in which the server runs on the machine containing the
databases and clients connect to the server over a network. This tutorial is based
largely on the mysqgl client program, which reads SQL queries from you, sends
them to the server to be executed, and displays the results so that you can see what
happened. mysql runs on all platforms supported by MySQL and provides the most
direct means of interacting with the server, so it’s the logical client to begin with.
Some examples use mysglimport or mysglshow instead.

This book uses sampdb as the sample database name, but you might need to use a dif-
ferent name as you work through the material. For example, someone else on your system
already might be using the name sampdb for their own database, or your MySQL admin-
istrator might assign you a different database name. In either case, substitute the actual
name of your database for sampdb whenever you see the latter in examples.

Table names can be used exactly as shown in the examples, even if multiple users on
your system have their own sample databases. In MySQL, it doesn’t matter if other people
use the same table names, as long as each of you uses your own database. MySQL prevents
you from interfering with each other by keeping the tables in each database separate.

1.4.1 Obtaining the Sample Database Distribution

This tutorial refers at certain points to files from the “sample database distribution” (also
known as the sampdb distribution, after the name of the sampdb database). These files
contain queries and data that will help you set up the sample database. See Appendix A,
“Obtaining and Installing Software,” for instructions on getting the distribution. When
you unpack it, it creates a directory named sampdb containing the files you’ll need.

I recommend that you change location into that directory whenever you’re working
through examples pertaining to the sample database.

To make it easier to invoke MySQL programs no matter which directory is your cur-
rent location, you should add the MySQL bin directory that contains those programs to
your command interpreter’s search path.To do this, add the directory pathname to your
PATH environment variable setting using the instructions in Appendix A.

1.4 A MySQL Tutorial 27

1.4.2 Preliminary Requirements

To try the examples in this tutorial, a few preliminary requirements must be satisfied:

= You must have the MySQL software installed.
= You need a MySQL account so that you can connect to the server.

= You need a database to work with.

The required software includes the MySQL clients and a MySQL server. The client
programs must be located on the machine where you’ll be working. The server can be
located on your machine, although that is not required. As long as you have permission to
connect to it, the server can be located anywhere. If you need to get MySQL, see
Appendix A for instructions. If your network access comes through an Internet service
provider (ISP), find out whether the provider offers MySQL as a service. If not and your
ISP won't install it, choose a different provider that does offer MySQL.

In addition to the MySQL software, you’ll need a MySQL account so that the server
will allow you to connect and create your sample database and its tables. (If you already
have a MySQL account with the server, you can use that, but you might want to set up a
separate account for use with the material in this book.)

At this point, we run into something of a chicken-and-egg problem: In order to set up
a MySQL account to use for connecting to the server, it’s necessary to connect to the
server. Typically, you do this by connecting as the MySQL root user on the host where
the server is running and issuing CREATE USER and GRANT statements to create a new
MySQL account and give it database privileges. If you’ve installed MySQL on your own
machine and the server is running, you can connect to it as root and set up a new sample
database administrator account with a username of sampadm and a password of secret as
follows (change the name and password to those you want to use, here and throughout

the book):
% mysql -p -u root

Enter password: **x**x*

mysgl> CREATE USER 'sampadm'@'localhost' IDENTIFIED BY 'secret';
Query OK, 0 rows affected (0.04 sec)

mysgl> GRANT ALL ON sampdb.* TO 'sampadm'@'localhost';

Query OK, 0 rows affected (0.01 sec)

The mysqgl command includes a -p option to cause mysqgl to prompt for the root
user’s MySQL password. Enter the password where you see ****** in the example. I
assume that you have already set up a password for the MySQL root user and that you
know what it is. If you haven’t yet assigned a password, just press Enter at the Enter
password: prompt. However, having no root password is insecure and you should assign
one as soon as possible. More information on the CREATE USER and GRANT statements, set-
ting up MySQL user accounts, and changing passwords can be found in Chapter 12,
“General MySQL Administration.”

28

Chapter 1 Getting Started with MySQL

The statements just shown are appropriate if you’ll be connecting to MySQL from the
same machine where the server is running. They enable you to connect to the server
using the name sampadm and the password secret, and give you complete access to the
sampdb database. However, GRANT doesn’t create the database (you can grant privileges for
a database before it exists). We’ll get to database creation a bit later.

If you plan to connect to the MySQL server from a host different from the one where
the server is running, change localhost to the name of the machine where you’ll be
working. For example, if you will connect to the server from the host asp.snake.net,
the statements should look like this:

mysgl> CREATE USER 'sampadm'@'asp.snake.net' IDENTIFIED BY 'secret';
mysgl> GRANT ALL ON sampdb.* TO 'sampadm'@'asp.snake.net';

If you don’t have control over the server and cannot create an account, ask your
MySQL administrator to set up an account for you. Then substitute the MySQL user-
name, password, and database name that the administrator assigns you for sampadm,
secret, and sampdb throughout the examples in this book.

1.4.3 Establishing and Terminating Connections to the
MySQL Server

To connect to your server, invoke the mysgl program from your command prompt (that
is, from your Unix shell prompt, or from a console window prompt under Windows). The
command looks like this:

% mysql options

I use % throughout this book to indicate the command prompt. That’s one of the stan-
dard Unix prompts; another is $. Under Windows, you will see a prompt that looks some-
thing like c:\>. (When you enter commands shown in examples, do not type the prompt
itself.)

The options part of the mysgl command line might be empty, but more likely you’ll
have to issue a command that looks something like this:

% mysql -h host_name -p -u user_name
You might not need to supply all those options when you invoke mysql, but you’ll
probably have to specify at least a name and password. Here’s what the options mean:
= -h host_name (alternative form: --host=host_name)

The host where the MySQL server is running. If this is the same as the machine
where you are running mysql, this option typically can be omitted.

® -U user_name (alternative form: ——user=user_name)

Your MySQL username. If you’re using Unix and your MySQL username is the
same as your login name, you can omit this option; mysqgl will use your login name
as your MySQL username.

Under Windows, the default username is obBc, which is unlikely to be a useful
default for you. Either specify a -u option on the command line, or add a default to

1.4 A MySQL Tutorial

your environment by setting the USER variable. For example, you can use the fol-
lowing set command to specify a username of sampadm:

C:\> set USER=sampadm

If you set the USER environment variable by using the System item in the Control
Panel, it takes effect for each console window and you won’t have to issue it at the
promipt.

= -p (alternative form: --password)

This option tells mysql to ask you for your MySQL password by displaying an
Enter password: prompt. For example:

% mysql -h host_name -p -u user_name
Enter password:

When you see the Enter password: prompt, type in your password. (The pass-
word won'’t be echoed to the screen, in case someone’s looking over your shoulder.)
Note that your MySQL password is not necessarily the same as the password that
you use to log in to Unix or Windows.

If you omit the -p option, mysgl assumes that you don’t need one and doesn’t
prompt for it.

Another way to specify this option is to indicate the password value directly

on the command line by typing the option as -pyour_pass (alternative form:
--password=your_pass). However, for security reasons, it’s best not to do that. The
password becomes visible to others that way.

If you do decide to specify the password on the command line, note particularly
that there is no space between the -p option and the following password value. This
behavior of -p is a common point of confusion, because it differs from the -h and
-u options, which are associated with the word that follows them regardless of
whether there is a space between the option and the word.

Suppose that your MySQL username and password are sampadm and secret. If the
MySQL server is running on the same host where you are going to run mysqgl, you can
leave out the -h option and the mysqgl command to connect to the server. It looks like
this:

% mysql -p -u sampadm

Enter password: **xxx%

After you enter the command, mysql prints Enter password: to prompt for your
password, and you type it in (the ****** indicates where you type secret).

If all goes well, mysql prints a greeting and a mysqgl> prompt indicating that it is wait-
ing for you to issue queries. The full startup sequence looks something like this:
% mysql -p -u sampadm
Enter password: **x**%
Welcome to the MySQL monitor. Commands end with ; or \g.

29

30

Chapter 1 Getting Started with MySQL

Your MySQL connection id is 13762
Server version: 5.0.60-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysqgl>

To connect to a server running on some other machine, it’s necessary to specify the host-
name using an -h option. If that host is cobra . snake.net, the command looks like this:

% mysql -h cobra.snake.net -p -u sampadm

In most of the examples that follow that show a mysgl command line, I'm going to
leave out the -h, -u, and -p options for brevity and assume that you’ll supply whatever
options are necessary. You'll also need to use the same options when you run other
MySQL programs, such as mysglshow.

After you’ve established a connection to the server, you can terminate your session any
time by typing quit:
mysgl> quit
Bye

You can also quit by typing exit or \q. On Unix, Control-D also quits.

When you're just starting to learn MySQL, you’ll probably consider its security system
to be an annoyance because it makes it harder to do what you want. (You must have per-
mission to create and access a database, and you must specify your name and password
whenever you connect to the server.) However, after you’ve moved beyond the sample
database used in this book to entering and using your own records, your perspective will
change radically. Then you’ll appreciate the way that MySQL keeps other people from
snooping through (or worse, destroying!) your information.

There are ways to set up your working environment so that you don’t have to specify
connection parameters on the command line each time you run mysql. These are dis-
cussed in Section 1.5, “Tips for Interacting with mysqgl.” The most common method for
simplifying the connection process is to store your connection parameters in an option
file.You might want to check that section right now to see how to set up such a file.

1.4.4 Executing SQL Statements

After youre connected to the server, you're ready to issue SQL statements for the server
to execute. This section describes some general principles about interacting with mysql
that you should know.

To enter a statement in mysql, just type it in. At the end of the statement, type a semi-
colon character (‘;’) and press Enter. The semicolon tells mysqgl that the statement is
complete. After you enter a statement, mysgl sends it to the server to be executed. The
server processes it and sends the result back to mysql, which displays the result to you.

The following example shows a simple statement that asks for the current date and time:

mysqgl> SELECT NOW();

1.4 A MySQL Tutorial 31

o +
| wow()

o - +
| 2008-03-21 10:51:23 |
e +

1 row in set (0.00 sec)

Another way to terminate a statement is to use \g (“go”) rather than a semicolon:

mysgl> SELECT NOW()\g

oo +
| Now () |
Fmm e e +
| 2008-03-21 10:51:28 |
o +

1 row in set (0.00 sec)

Or you can use \G, which displays the results in “vertical” format, one value per line:
mysgl> SELECT NOW(), USER(), VERSION()\G
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkkkkxx l. row LR R R R EEEEEEEEEEEEEEEEET
NOw(): 2008-03-21 10:51:34
USER() : sampadm@localhost
VERSION(): 5.0.60-log
1 row in set (0.03 sec)

For a statement that generates short output lines, \G is not so useful, but if the lines
are so long that they wrap around on your screen, \G can make the output much easier
to read.

mysgl displays the statement result and a line that shows the number of rows the result
consists of and the time elapsed during statement processing. In subsequent examples, I
usually will not show the row-count line.

Because mysql waits for the statement terminator, you need not enter a statement all
on a single line.You can spread it over several lines if you want:
mysgl> SELECT NOW(),

-> USER(),
-> VERSION()

>
o o B T +
| Now () | USER() | VERSION() |
B TR oo P T +
| 2008-03-21 10:51:37 | sampadm@localhost | 5.0.60-log |
b e fmmm - Hmmmmmm e +

Observe how the prompt changes from mysql> to -> after you enter the first line of
the statement. That tells you that mysql thinks you're still entering the statement, which is
important feedback: If you forget the semicolon at the end of a statement, the changed
prompt helps you realize that mysql is still waiting for something. Otherwise, you’ll be

32

Chapter 1 Getting Started with MySQL

waiting impatiently, wondering why it’s taking MySQL so long to execute your state-
ment, and mysqgl will be waiting patiently for you to finish entering your statement!
(mysql has several other prompts as well; they're all discussed in Appendix E “MySQL
Program Reference”).
If you've begun entering a multiple-line statement and decide that you don’t want to

execute it, type \c to clear (cancel) it:
mysgl> SELECT NOW(),

-> VERSION(),

-> \e
mysqgl>

Notice how the prompt changes back to mysql> to indicate that mysql is ready for a
new statement.

The converse of entering a statement over several lines is to enter multiple statements
on a single line, separated by terminators:

mysqgl> SELECT NOW();SELECT USER();SELECT VERSION();

b +
| NOw() |
Fmm +
| 2008-03-21 10:52:31 |
Fm +
b +

| USER() |

Fmm +

| sampadm@localhost |
e +

Fomm - +

| VERSION() |

bmmmm e +

| 5.0.60-1log |

Fmmm - +

For the most part, it doesn’t matter whether you enter statements using uppercase,
lowercase, or mixed case. These statements all retrieve the same information (although the
column headings displayed for the result will differ in lettercase):

SELECT USER() ;
select user();
SeLeCt UsEr();

The examples in this book use uppercase for SQL keywords and function names, and
lowercase for database, table, and column names.

‘When you invoke a function in a statement, it is best to have no space between the
function name and the following parenthesis. In some cases, a space can cause a syntax
error to occur.

1.4 A MySQL Tutorial

You can store statements in a file to create an SQL script and tell mysql to read state-
ments from the file rather than from the keyboard. Use your shell’s input redirection facil-
ities for this. For example, if I have statements stored in a file named myscript.sql, I can
execute its contents with this command (remember to specify any required connection
parameter options):

% mysql < myscript.sql

You can call the file whatever you want. I use the .sql suffix as a convention to indi-
cate that the file contains SQL statements.

Invoking mysql this way to execute statements in a file is something that comes up
again in Section 1.47,“Adding New Rows,” when we enter data into the sampdb data-
base. It’s a lot more convenient to load a table by having mysql read INSERT statements
from a file than to type in each statement manually.

The remainder of this tutorial shows many SQL statements that you can try for your-
self. These are indicated by the mysgl> prompt before the statement, and such examples
are usually accompanied by the output of the statement.You should be able to type in
these statements as shown, and the resulting output should be the same. Statements that
are shown without a prompt are intended simply to illustrate a point, and you need not
execute them. (You can try them if you like. If you use mysql to do so, remember to in-
clude a terminator such as a semicolon at the end of each statement.)

1.4.5 Creating a Database

We’ll begin by creating the sampdb sample database and the tables within it, populating its
tables, and performing some simple queries on the data contained in those tables. Using a
database involves several steps:

1. Creating (initializing) the database
2. Creating the tables within the database

3. Manipulating the tables by inserting, retrieving, modifying, or deleting data

Retrieving existing data is easily the most common operation performed on a database.
The next most common operations are inserting new data and updating or deleting exist-
ing data. Less frequent are table creation operations, and least frequent of all is database cre-
ation. However, we're beginning from scratch, so we must begin with database creation,
the least common thing, and work our way through table creation and insertion of our
initial data before we get to where we can do the really common thing—retrieving data.

To create a new database, connect to the server using mysql.Then issue a CREATE
DATABASE statement that specifies the database name:

mysgl> CREATE DATABASE sampdb;

You'll need to create the sampdb database before you can create any of the tables that
will go in it or do anything with the contents of those tables.

33

34

Chapter 1 Getting Started with MySQL

You might expect that creating the database would also make it the default (or cur-
rent) database, but it doesn’t.You can see this by executing the following statement to
check what the default database is:

mysql> SELECT DATABASE();

dommmmmmmm +
| DATABASE() |
o +
| NULL |
Fomm +

NULL means “no database is selected.” To select sampdb as the default database, issue a
USE statement:

mysgl> USE sampdb;
mysql> SELECT DATABASE();

o +
| DATABASE() |
Rt it +
| sampdb |
o +

Another way to select a default database is to name it on the command line when you
invoke mysql:

% mysql sampdb

That is, in fact, the usual way to select the database you want to use. If you need any
connection parameters, specify them on the command line. For example, the following
command enables the sampadm user to connect to the sampdb database on the local host
(the default when no host is named):

)

% mysql -p -u sampadm sampdb

If you need to connect to a MySQL server running on a remote host, specify that host
on the command line:

[

% mysql -h cobra.snake.net -p -u sampadm sampdb

Unless otherwise indicated, all following examples assume that when you invoke
mysql, you name the sampdb database on the command line to make it the default data-
base. If you invoke mysqgl but forget to name the database on the command line, just issue
a USE sampdb statement at the mysqgl> prompt.

1.4.6 Creating Tables

In this section, we’ll build the tables that are needed for the sampdb sample database. First,
we’ll consider the tables needed for the Historical League, and then those for the grade-
keeping project. This is the part where some database books start talking about Analysis
and Design, Entity-Relationship Diagrams, Normalization Procedures, and other such

1.4 A MySQL Tutorial 35

stuff. There’s a place for all that, but I prefer just to say we need to think a bit about what
our database will look like: what tables it should contain, what the contents of each table
should be, and some of the issues involved in deciding how to represent the data.

The choices made here about data representation are not absolute. In other situations,
you might well elect to represent similar data in a different way, depending on the re-
quirements of your applications and the uses to which you intend to put your data.

1.4.6.1 Tables for the U.S. Historical League
Table layout for the Historical League is pretty straightforward:

= A president table. This contains a descriptive record for each U.S. president. We’ll
need this for the online quiz on the League Web site (the interactive analog to the
printed quiz that appears in the children’s section of the League’s newsletter).

= A member table. This is used to maintain current information about each member of
the League. It'll be used for creating printed and online versions of the member di-
rectory, sending automated membership renewal reminders, and so forth.

1.4.6.1.1 The president Table

The president table is simpler, so let’s discuss it first. This table will contain some basic
biographical information about each United States president:

= Name. Names can be represented in a table several ways. For example, we could
have a single column containing the entire name, or separate columns for the first
and last name. It’s certainly simpler to use a single column, but that limits you in
some ways:

= If you enter the names with the first name first, you can’t sort on last name.

= If you enter the names with the last name first, you can’t display them with
the first name first.

= It’s harder to search for names. For example, to search for a particular last
name, you must use a pattern and look for names that match the pattern. This
is less efficient and slower than looking for an exact last name.

To avoid these limitations, our president table will use separate columns for
the first and last names.

The first name column will also hold the middle name or initial. This
shouldn’t break any sorting we might do because it’s not likely we’ll want to
sort on middle name (or even first name). Name display should work prop-
erly, too, because the middle name immediately follows the first name regard-
less of whether a name is printed in “Bush, George W.” or in “George W.
Bush” format.

There is another slight complication. One president (Jimmy Carter) has a
“Jr.” at the end of his name. Where does that go? Depending on the format
in which names are printed, this president’s name is displayed as “James E.

36 Chapter 1 Getting Started with MySQL

Carter, Jr.,” or “Carter, James E., Jr.” The “Jr.” doesn’t associate with either
first or last name, so we'll create another column to hold a name suffix. This
illustrates how even a single value can cause problems when you’re trying to
determine how to represent your data. It also shows why it’s a good idea to
know as much as possible about the data values you’ll be working with be-
fore you put them in a database. If you have incomplete knowledge of what
your values look like, you might have to change your table structure after
you’ve already begun to use it. That’s not necessarily a disaster, but in general
it’s something you want to avoid.

= Birthplace (city and state). Like the name, this too can be represented using a single
column or multiple columns. It’s simpler to use a single column, but as with the
name, separate columns enable you to do some things you can’t do easily otherwise.
For example, it’s easier to find rows for presidents born in a particular state if city
and state are listed separately. We’ll use separate columns for the two values.

= Birth date and death date. The only special problem here is that we can’t require the
death date to be filled in because some presidents are still living. The special value
NULL means “no value,” so we can use that in the death date column to signify “still
alive”

1.4.6.1.2 The member Table

The member table for the Historical League membership list is similar to the president
table in the sense that each row contains basic descriptive information for a single person.
But each member row contains more columns:

= Name. We'll use the same three-column representation as for the president table:
last name, first name, and suffix.

= ID number. This is a unique value assigned to each member when membership first
begins. The League hasn’t ever used ID numbers before, but now that the records
are being made more systematic, it’s a good time to start. (I am anticipating that
you’ll find MySQL beneficial and that you’ll think of other ways to apply it to the
League’s records. When that happens, it’ll be easier to associate rows in the member
table with other member-related tables that you create if you use numbers rather
than names.)

= Expiration date. Members must renew their memberships periodically to avoid hav-
ing them lapse. For some applications, you might store the start date of the most re-
cent renewal, but this is not suitable for the League’s purposes. Memberships can be
renewed for a variable number of years (typically one, two, three, or five years), and
a date for the most recent renewal wouldn't tell you when the next renewal must
take place. Therefore, we will store the end date of the membership. In addition, the
League allows lifetime memberships. We could represent these with a date far in the
future, but NULL seems more appropriate because “no value” logically corresponds
to “never expires.”

1.4 A MySQL Tutorial

= Email address. Publishing email addresses will make it easier for those members that
have them to communicate with each other more easily. For your purposes as
League secretary, these addresses will enable you to send out membership renewal
notices electronically rather than by postal mail. This should be easier than going to
the post office, and less expensive as well. You’ll also be able to use email to send
members the current contents of their directory entries and ask them to update the
information as necessary.

= Postal address. This is needed for contacting members who don’t have email (or who
don’t respond to it). We’ll use columns for street address, city, state, and ZIP code.

I'm assuming that all League members live in the United States. For organizations
with a membership that is international in scope, that assumption is an oversimplifi-
cation. If you want to deal with addresses from multiple countries, you’ll run into
some sticky issues having to do with the different address formats used for different
countries. For example, ZIP code is not an international standard, and some coun-
tries have provinces rather than states.

= Phone number. Like the address columns, this is useful for contacting members.

= Special interest keywords. Every member is assumed to have a general interest in
U.S. history, but members probably also have some special areas of interest. This col-
umn records those interests. Members can use it to find other members with similar
interests. (Strictly speaking, it would be better to have a separate table for keywords
that has rows consisting of one keyword and the ID for the associated member. But
that is a complication I do not want to deal with here.)

1.4.6.1.3 Creating the Historical League Tables
Now we're ready to create the Historical League tables. For this we use the CREATE
TABLE statement, which has the following general form:

CREATE TABLE tbl_name (column_specs) ;

tb1_name indicates the name you want to give the table. column_specs provides the
specifications for the columns in the table. It also includes definitions for indexes, if there
are any. Indexes make lookups faster; we’ll discuss them further in Chapter 5,“Query
Optimization.”

For the president table, write the CREATE TABLE statement as follows:

CREATE TABLE president
(

last_name VARCHAR(15) NOT NULL,
first_name VARCHAR(15) NOT NULL,
suffix VARCHAR (5) NULL,

city VARCHAR (20) NOT NULL,
state VARCHAR (2) NOT NULL,
birth DATE NOT NULL,

death DATE NULL

38

Chapter 1 Getting Started with MySQL

You can execute this statement a couple of ways. Either enter it manually by typing it
in, or use the prewritten statement that is contained in the create_president.sql file of
the sampdb distribution.

If you want to type in the statement yourself, invoke mysql, making sampdb the
default database:

% mysql sampdb

Then enter the CREATE TABLE statement as just shown, including the trailing semi-
colon so that mysql can tell where the statement ends. Indentation doesn’t matter, and
you need not put the line breaks in the same places. For example, you can enter the state-
ment as one long line if you want.

To create the president table using a prewritten description, use the
create_president.sql file from the sampdb distribution. This file is located in the
sampdb directory that is created when you unpack the distribution. Change location into
that directory, and then run the following command:

% mysql sampdb < create_president.sql

Whichever way you invoke mysql, specify any connection parameters you might need
(hostname, username, or password) on the command line after the command name.

Now let’s look more closely at the CREATE TABLE statement. Each column specifica-
tion in the statement consists of the column name, the data type (the kind of values the
column will hold), and possibly some column attributes.

The two data types used in the president table are VARCHAR and DATE. VARCHAR (n)
means the column contains variable-length character values, with a maximum length of n
characters each.That is, they contain strings that might vary in size, but with an upper
bound on their length.You choose the value of n according to how long you expect your
values to be. state is defined as VARCHAR (2) ; that’s all we need for entering states by their
two-character abbreviations. The other string-valued columns need to be wider to ac-
commodate longer values.

The other data type we’ve used is DATE. This type indicates, not surprisingly, that the
column holds date values. However, what might surprise you is the format in which dates
are represented. MySQL expects dates to be written in ' ccyy-Mv-pD’ format, where cc,
vy, MM, and DD represent the century, year within the century, month, and day of the
month. This is the SQL standard for date representation (also known as “ISO 8601 for-
mat”). For example, to specify a date of “July 18,2005 in MySQL, you use '2005-07-
18',not '07-18-2005" or '18-07-2005".

The only attributes we’re using for the columns in the president table are NULL (val-
ues can be missing) and NOT NULL (values must be filled in). Most columns are NOT NULL,
because we’ll always require a value for them. The two columns that can have NULL values
are suffix (most names don’t have one), and death (for living presidents, there is no date

of death).

1.4 A MySQL Tutorial

For the member table, the CREATE TABLE statement looks like this:

CREATE TABLE member
(
member_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (member_id),
last_name VARCHAR(20) NOT NULL,
first_name VARCHAR(20) NOT NULL,

suffix VARCHAR (5) NULL,
expiration DATE NULL,

email VARCHAR (100) NULL,
street VARCHAR (50) NULL,
city VARCHAR (50) NULL,
state VARCHAR (2) NULL,
Z1ip VARCHAR (10) NULL,
phone VARCHAR (20) NULL,
interests VARCHAR(255) NULL

)i

As before, you can either type that statement manually into mysgl or you can use a
prewritten file. The file from the sampdb distribution that contains the CREATE TABLE
statement for the member table is create_member.sql.To use it, execute this command:

% mysql sampdb < create_member.sql

In terms of data types, most columns of the member table except two are not very in-
teresting because they are created as variable-length strings. The exceptions are member_id
and expiration, which exist to hold sequence numbers and dates, respectively.

The main consideration for the member_id membership number column is that each
of its values should be unique to avoid confusion between members. An AUTO_INCREMENT
column is useful here because then we can let MySQL generate unique numbers for us
automatically when we add new members. Even though it just contains numbers, the def-
inition for member_id has several parts:

= INT signifies that the column holds integers (numeric values with no fractional part).
= UNSIGNED disallows negative values.

= NOT NULL requires that the column value must be filled in. This prevents members
from being created without an ID number.

= AUTO_INCREMENT is a special attribute in MySQL. It indicates that the column holds
sequence numbers. The AUTO_INCREMENT mechanism works like this: If you provide
no value for the member_id column when you create a new member table row,
MySQL automatically generates the next sequence number and assigns it to the
column. This special behavior also occurs if you explicitly assign the value NULL to
the column. The AUTO_INCREMENT feature makes it easy to assign a unique ID to
each new member, because MySQL generates the values for us.

The pPrRIMARY KEY clause indicates that the member_id column is indexed to allow fast
lookups. It also sets up the constraint that each value in the column must be unique. The

39

40

Chapter 1 Getting Started with MySQL

latter property is desirable for member ID values, because it prevents us from using the
same ID twice by mistake. Besides, MySQL requires every AUTO_INCREMENT column to
have some kind of index, so the table definition would be illegal without one. (Any
PRIMARY KEY column must also be NOT NULL, so if we omitted NOT NULL from the
member_id definition, MySQL would add it automatically.)

If you don’t understand that stuff about AUTO_INCREMENT and PRIMARY KEY, just think
of them as giving us a magic way of generating indexed ID numbers. It doesn’t particu-
larly matter what the values are, as long as they’re unique for each member. (When you’re
ready to learn more about how to use AUTO_INCREMENT columns, Chapter 3, “Data
Types,” covers them in detail.)

The expiration column is a DATE. It allows NULL values, so it has a default value of
NULL as well. NULL which means no date has been entered. The reason for this is that, as
mentioned earlier, we’re using the convention that expiration can be NULL to indicate
which members have a lifetime membership.

Now that you've told MySQL to create a couple of tables, check to make sure that it
did so as you expect. In mysql, issue the following statement to see the structure of the
president table:

mysgl> DESCRIBE president;

Hmmm oo Hmmmm Hmmmm e Hmmm e Hmmmm o Hmmmm e +
| Field | Type | Null | Key | Default | Extra |
P T B T P - P - +
last_name	varchar(15)	NO			
first_name	varchar(15)	NO			
suffix	varchar(5)	YES		NULL	
city	varchar(20)	NO			
state	varchar(2)	NO			
birth	date	NOo			
death	date	YES		NULL	
P T e P P R T R +

If you issue a DESCRIBE member statement, mysgl will show you similar information
for the member table.

DESCRIBE is useful when you forget the name of a column in a table, or need to know
its data type or how wide it is, and so forth. It’s also useful for finding out the order in
which MySQL stores columns in table rows. That order is important when you issue
INSERT or LOAD DATA statements that expect column values to be listed in the default
column order.

The information produced by DESCRIBE can be obtained in different ways. It may be
abbreviated as DESC, or written as an EXPLAIN or SHOW statement. The following statements
all are synonymous:

DESCRIBE president;

DESC president;

EXPLAIN president;

SHOW COLUMNS FROM president;
SHOW FIELDS FROM president;

1.4 A MySQL Tutorial 41

These statements also enable you to restrict the output to particular columns. For ex-
ample, you can add a LIKE clause at the end of a sHOW statement to display information
only for column names that match a given pattern:

mysgl> SHOW COLUMNS FROM president LIKE '%name’;

e R tmmm e tmmm Hmmmm e St Hmmmm e +
| Field | Type | Null | Key | Default | Extra |
Hmmmmm e tmmmm e o Hmmm e Hmmmm e Hmmm e +
| last_name | varchar(l5) | NO | | | |
| first_name | varchar(1l5) | NO | | | |
tmmm e R EEEEEE o Hmmm e Hmmmm e Hmmm e +

DESCRIBE president '%name' is equivalent.The ‘%’ character used here is a special
wildcard character that is described later in Section 1.4.9.7,“Pattern Matching.”

SHOW FULL COLUMNS is like sHow corLuMns but displays additional column information.
Try it now and see.

The sHow statement has other forms that are useful for obtaining difterent types of in-
formation from MySQL. sHow TABLES lists the tables in the default database, so with the
two tables we’ve created so far in the sampdb database, the output looks like this:

mysgl> SHOW TABLES;

| member |

SHOW DATABASES lists the databases that are managed by the server to which you're
connected:

mysql> SHOW DATABASES;

| information_schema |
| menagerie |
| mysql |
| sampdb |
| test |

The list of databases varies from server to server, but you should see at least
information_ schema and sampdb. information_schema 1s a special database that always
exists, and you created sampdb yourself. You'll likely also see a database named test,
which is created during the MySQL installation procedure. Depending on your access
rights, you might see the database named mysql, which holds the grant tables that control
who can do what.

42

Chapter 1 Getting Started with MySQL

The mysqglshow client program provides a command-line interface to the same kinds
of information that the sHow statement displays. Remember that when you run
mysglshow, you might need to provide appropriate command-line options for username,
password, and hostname. These options are the same as when you run mysql.

With no arguments, mysqglshow displays a list of databases:

% mysqlshow

| information_schema |
| menagerie |
| mysql |
| sampdb |
| test |

‘With a database name, mysqglshow displays the tables in the given database:

% mysqlshow sampdb
Database: sampdb

Fmmm - +
| Tables |
et +
| member |
| president |
tmmm e +

With a database and table name, mysqglshow displays information about the columns in
the table, much like the SHOW FULL COLUMNS statement.

1.4.6.2 Tables for the Grade-Keeping Project

To determine what tables are required for the grade-keeping project, let’s consider how
you might write down scores when you use a paper-based gradebook. Figure 1.2 shows a
page from your gradebook.The main body of this page is a matrix for recording scores.
There is also other information needed for making sense of the scores. Student names and
ID numbers are listed down the side of the matrix. (For simplicity, only four students are
shown.) Along the top of the matrix, you put down the dates when you give quizzes and
tests. The figure shows that you’ve given quizzes on September 3, 6, 16, and 23, and tests
on September 9 and October 1.

To keep track of this kind of information using a database, we need a score table.
What should rows in this table contain? That’s easy. For each row, we need the student
name, the date of the quiz or test, and the score. Figure 1.3 shows how some of the scores
from the gradebook look when represented in a table like this. (Dates are written the way
MySQL represents them, in ' cCyy-mu-pD” format.)

1.4 A MySQL Tutorial 43

students scores
Q Q T Q@ Q T

ID name |[9/3 9/6 9/9 9/16 9/2310/1 ...
Billy 14 ({10 |73 |14 |15 | 67
Missy |17 |10 |68 |17 |14 |73
Johnny |15 |10 [78 [12 | 17 | 82
Jenny |14 (13 |85 |13 |19 |79

AN =

Figure 1.2 Example gradebook.

score table
name date score
Billy 2008-09-23 15
Missy 2008-09-23 14
Johnny [2008-09-23 17
Jenny 2008-09-23 19
Billy 2008-10-01 67
Missy 2008-10-01 73
Johnny [2008-10-01 82
Jenny 2008-10-01 79

Figure 1.3 Initial score table layout.

Unfortunately, there is a problem with setting up the table in this way, because it leaves
out some information. For example, looking at the rows in Figure 1.3, we can’t tell
whether scores are for a quiz or a test. It could be important to know score categories
when determining final grades if quizzes and tests are weighted differently. We might try
to infer the category from the range of scores on a given date (quizzes usually are worth
fewer points than a test), but that’s problematic because it relies on inference and not
something explicit in the data.

It’s possible to distinguish scores by recording the category in each row by adding a
column to the score table that contains ‘T’ or ‘0’ for each row to indicate “test” or “quiz,”
as in Figure 1.4.This has the advantage of making the score category explicit in the data.
The disadvantage is redundancy. Observe that for all rows with a given date, the score cat-
egory column always has the same value. The scores for September 23 all have a category
of ‘0’, and those for October 1 all have a category of “T’. This is unappealing. If we record
a set of scores for a quiz or test this way, not only will we be putting in the same date for
each new record in the set, we’ll be putting in the same score category over and over
again. Ugh. Who wants to enter all that redundant information?

Let’s try an alternative representation. Instead of recording score categories in the
score table, we’ll figure them out from the dates. We can keep a list of dates and use it to
keep track of what kind of “grade event” (quiz or test) occurred on each date. Then we
can determine whether any given score was from a quiz or a test by combining it with
the information in our event list: Match the date in the score table row with the date in
the grade_event table to get the event category. Figure 1.5 shows this table layout
and demonstrates how the association works for a score table row with a date of

44 Chapter 1 Getting Started with MySQL

score table
name date score category
Billy 2008-09-23 15 Q
Missy 2008-09-23 14 Q
Johnny |2008-09-23 17 Q
Jenny 2008-09-23 19 Q
Billy 2008-10-01 67 T
Missy 2008-10-01 73 T
Johnny |2008-10-01 82 T
Jenny 2008-10-01 79 T

Figure 1.4 score table layout, revised to include score type.

September 23. By matching the row with the corresponding row in the grade_event
table, we see that the score is from a quiz.

score table grade_event table
name date score date category
Billy 2008-09-23 15 2008-09-03 Q

[l Missy 2008-09-23 14 | 2008-09-06 Q
Johnny [2008-09-23 17 2008-09-09 T
Jenny 2008-09-23 19 \ 2008-09-16 Q
Billy 2008-10-01 67 [[2008-09-23 Q |
Missy 2008-10-01 73 2008-10-01 T
Johnny |2008-10-01 82
Jenny 2008-10-01 79

Figure 1.5 score and grade_event tables, linked on date.

This is much better than trying to infer the score category based on some guess. In-
stead, we're deriving the category directly from data recorded explicitly in the database.
It’s also preferable to recording score categories in the score table; now we need record
each category only one time, rather than once per score row.

However, now we’re combining information from multiple tables. If you’re like me,
when you first hear about this kind of thing, you think, “Yeah, that’s a cute idea, but isn’t
it a lot of work to do all that looking up all the time; doesn’t it just make things more
complicated?”

In a way, that’s correct; it is more work. Keeping two lists of records is more compli-
cated than keeping one list. But take another look at your gradebook (see Figure 1.2).
Aren’t you already keeping two sets of records? Consider these facts:

= You keep track of scores using the cells in the score matrix, where each cell is in-
dexed by student name and date (down the side and along the top of the matrix).
This represents one set of records; it’s analogous to the contents of the score table.

= How do you know what kind of event each date represents? You’ve written a little

[

T’ or ‘0’ above the date! Thus, you're also keeping track of the association between

1.4 A MySQL Tutorial 45

date and score category along the top of the matrix. This represents a second set of
records; it’s analogous to the grade_event table contents.

In other words, even though you may not think about it as such, you’re really not
doing anything with the gradebook different from what I'm proposing to do by keeping
information in two tables. The only real difference is that the two kinds of information
aren’t so explicitly separated in the paper-based gradebook.

The page in the gradebook illustrates something about the way we think of informa-
tion, and also something about the difficulty of figuring out how to put information in a
database: Our minds tend to integrate different kinds of information and interpret them
as a whole. Databases don’t work like that, which is one reason they sometimes seem arti-
ficial and unnatural. Our natural tendency to unify information makes it quite difficult
sometimes even to realize when we have multiple types of data instead of just one. Be-
cause of this, it can be a challenge to “think as a database system thinks” about how best
to represent your data.

One requirement imposed on the grade_event table by the layout shown in Figure
1.5 is that the dates must be unique because each date is used to link together rows from
the score and grade_event tables. In other words, you cannot give two quizzes on the
same day, or a quiz and a test. If you do, you’ll have two sets of records in the score table
and two records in the grade_event table, all with the same date, and you won'’t be able
to tell how to match score rows with grade_event rows.

That problem will never come up if there is never more than one grade event per day.
But is it valid to assume that will never happen? It might seem so; after all, you don’t con-
sider yourself sadistic enough to give a quiz and a test on the same day. But I hope you’ll
pardon me if I'm skeptical. I've often heard people claim about their data,“That odd case
will never occur.” Then it turns out the odd case does occur on occasion, and usually you
have to redesign your tables to fix problems that the odd case causes.

It’s better to think about the possible problems in advance and anticipate how to han-
dle them. So, let’s suppose that you might need to record two sets of scores for the same
day sometimes. How can we handle that? As it turns out, this problem isn’t so difficult to
solve. With a minor change to the way we lay out our data, multiple events on a given
date won'’t cause trouble:

1. Add a column to the grade_event table and use it to assign a unique number to
each row in the table. In effect, this gives each event its own ID number, so we’ll
call this the event_id column. (If this seems like an odd thing to do, consider that
your gradebook in Figure 1.2 already has this property implicitly: The event ID is
just like the column number in your gradebook score matrix. The number might
not be written down explicitly there and labeled “event ID,” but that’s what it is.)

2. When you put scores in the score table, record the event ID rather than the date.

The result of these changes is shown in Figure 1.6. Now you link together the score
and grade_event tables using the event ID rather than the date, and you use the

46

Chapter 1 Getting Started with MySQL

grade_event table to determine not just the category of each score, but also the date on
which it occurred. Also, it’s no longer the date that must be unique in the grade_event
table, it’s the event ID.This means you can have a dozen tests and quizzes on the same

day, and you’ll be able to keep them straight in your records. (No doubt your students will
be thrilled to hear this.)

score table grade_event table
name event_id score event_id date category

Billy 5 15 1 2008-09-03 Q

[Missy 5 14 | 2 2008-09-06 Q
Johnny 5 17 3 2008-09-09 T
Jenny 5 19 \ 4 2008-09-16 Q
Billy 6 67 [5 2008-09-23 Q |
Missy 6 73 6 2008-10-01 T
Johnny 6 82
Jenny 6 79

Figure 1.6 score and grade_event tables, linked on event ID.

Unfortunately, from a human standpoint, the table layout in Figure 1.6 seems less satis-
factory than the previous ones. The score table is more abstract because it contains fewer
columns that have a readily apparent meaning. The table layout shown earlier in Figure
1.4 was easy to look at and understand because the score table had columns for both
dates and score categories. The current score table shown in Figure 1.6 has columns for
neither. This seems highly removed from anything we can think about easily. Who wants
to look at a score table that has “event IDs” in it? That just doesn’t mean much to us.

At this point you reach a crossroads. You're intrigued by the possibility of being able to
perform grade-keeping electronically and not having to do all kinds of tedious manual
calculations when assigning grades. But after considering how you actually would repre-
sent score information in a database, you're put off by how abstract and disconnected the
representation seems to make that information.

This leads naturally to a question: “Would it be better not to use a database at all?
Maybe MySQL isn’t for me.” As you might guess, I will answer that question in the nega-
tive, because otherwise this book will come to a quick end. But when you're thinking
about how to do a job, it’s not a bad idea to consider various alternatives and to ask
whether you’re better off using a database system such as MySQL, or something else such
as a spreadsheet program:

s The gradebook has rows and columns, and so does a spreadsheet. This makes the
gradebook and a spreadsheet conceptually and visually very similar.

= A spreadsheet program can perform calculations, so you could total up each stu-
dent’s scores using a calculation field. It might be a little tricky to weight quizzes
and tests differently, but you could do it.

On the other hand, if you want to look at just part of your data (quizzes only or tests
only, for example), perform comparisons such as boys versus gitls, or display summary

1.4 A MySQL Tutorial 47

information in a flexible way, it’s a different story. A spreadsheet doesn’t work so well,
whereas relational database systems perform those operations easily.

Another point to consider is that the abstract and disconnected nature of your data as
represented in a relational database is not really a big deal, anyway. It’s necessary to think
about that representation when setting up the database so that you don’t lay out your data
in a way that doesn’t make sense for what you want to do with it. However, after you de-
termine the representation, you're going to rely on the database engine to pull together
and present your data in a way that is meaningful to you.You’re not going to look at it as
a bunch of disconnected pieces.

For example, when you retrieve scores from the score table, you don’t want to see
event IDs; you want to see dates. That’s not a problem. The database can look up dates
from the grade_event table based on the event ID and show them to you.You may also
want to see whether the scores are for tests or quizzes. That’s not a problem, either. The
database can look up score categories the same way—using event ID. Remember, that’s
what a database system like MySQL is good at: relating one thing to another to pull out
information from multiple sources to present you with what you really want to see. In the
case of our grade-keeping data, MySQL does the thinking about pulling information
together using event IDs so that you don'’t have to.

Now, just to provide a little advance preview of how you’d tell MySQL to do this re-
lating of one thing to another, suppose that you want to see the scores for September 23,
2008.The query to pull out scores for an event given on a particular date looks like this:

SELECT score.name, grade_event.date, score.score, grade_event.category
FROM score INNER JOIN grade_event

ON score.event_id = grade_event.event_id

WHERE grade_event.date = '2008-09-23"';

Pretty scary, huh? This query retrieves the student name, the date, score, and the score
category by joining (relating) score table rows to grade_event table rows. The result

looks like this:

$mmmm e $mmmmmmmm e tmmm e tmmmmm e +
| name | date | score | category |
fmmm— o o Fmmmm oo +
Billy	2008-09-23	15	Q
Missy	2008-09-23	14	Q
Johnny	2008-09-23	17	0
Jenny	2008-09-23	19	
R Hmmmm oo tmmm tmmmm e +

Notice anything familiar about the format of that information? You should; it’s the
same as the table layout shown in Figure 1.4! And you don’t need to know the event ID
to get this result. You specify the date you're interested in and let MySQL figure out
which score rows go with that date. So, if you’ve been wondering whether all the abstrac-
tion and disconnectedness loses us anything when it comes to getting information out of
the database in a form that’s meaningful to us, it doesn't.

48

Chapter 1 Getting Started with MySQL

Of course, after looking at that query, you might be wondering something else, too.
Namely, it looks long and complicated; isn’t writing something like that a lot of work to
go to just to find the scores for a given date? Yes, it is. However, there are ways to avoid
typing several lines of SQL each time you want to issue a query. Generally, you figure out
once how to perform a query such as that one and then you store it so that you can re-
peat it easily as necessary. We’ll see how to do this in Section 1.5, “Tips for Interacting
with mysql.”

I’ve actually jumped the gun a little bit in showing you that query. It is, believe it or
not, a little simpler than the one we'’re ultimately going to use to pull out scores. The rea-
son for this is that we need to make one more change to our table layout. Instead of
recording student name in the score table, we’ll use a unique student ID. (That is, we’ll
use the value from the “ID” column of your gradebook rather than from the “Name” col-
umn.) Then we create another table called student that contains name and student_id
columns (Figure 1.7).

student table score table grade_event table
name sex student_id student_id| event_id score event_id date category
Billy M 1 1 5 15 1 2008-09-03 Q
[[Missy F 2 [« 2 5 14 | 2 2008-09-06 Q
Johnny M 3 3 5 17 3 2008-09-09 T
Jenny F 4 4 5 19 \ 4 2008-09-16 Q
1 6 67 [5 2008-09-23 Q |
2 6 73 6 2008-10-01 T
3 6 82
4 6 79

Figure 1.7 score, student, and grade_event tables, linked on
student ID and event ID.

Why make this modification? For one thing, there might be two students with the
same name. Using a unique student ID number helps you tell their scores apart. (This is
exactly analogous to the way you can tell scores apart for a test and quiz given on the
same day by using a unique event ID rather than the date.) After making this change to
the table layout, the query we’ll use to retrieve scores for a given date becomes a little
more complex:

SELECT student.name, grade_event.date, score.score, grade_event.category
FROM grade_event INNER JOIN score INNER JOIN student

ON grade_event.event_id = score.event_id

AND score.student_id = student.student_id

WHERE grade_event.date = '2008-09-23';

If you’re concerned because you don’t find the meaning of that query immediately
obvious, don’t be. Most people wouldn’t. We’ll see the query again after we get further
along into this tutorial, but the difference between now and later is that later it will make
perfect sense to you. No, I'm not kidding.

1.4 A MySQL Tutorial

You’ll note from Figure 1.7 that I added something to the student table that wasn’t in
your gradebook: It contains a column for recording sex. This will allow for simple things
such as counting the number of boys and girls in the class or more complex things like
comparing scores for boys and girls.

We’re almost done designing the tables for the grade-keeping project. We need just
one more table to record absences for attendance purposes. Its contents are relatively
straightforward: a student ID number and a date (see Figure 1.8). Each row in the table
indicates that the given student was absent on the given date. At the end of the grading
period, we’ll call on MySQL’s counting abilities to summarize the table’s contents to tell
us how many days each student was absent.

absence table

student_id date
2 2008-09-02
4 2008-09-15
2 2008-09-20

Figure 1.8 absence table.

1.4.6.2.1 The student Table
Now that we know what our grade-keeping tables should look like, we’re ready to create
them.The CREATE TABLE statement for the student table looks like this:

CREATE TABLE student
(
name VARCHAR (20) NOT NULL,
sex ENUM('F','M') NOT NULL,
student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (student_id)
) ENGINE = InnoDB;

Observe that I've added something new to the CREATE TABLE statement (the ENGINE
clause at the end). I'll explain its purpose shortly.
Type the CREATE TABLE statement into mysqgl or execute the following command:

% mysql sampdb < create_student.sql

The CREATE TABLE statement creates a table named student with three columns:
name, sex, and student_id.

name is a variable-length string column that can hold up to 20 characters. This name
representation is simpler than the one used for the Historical League tables; it uses a single
column rather than separate first name and last name columns. That’s because I know in
advance that no grade-keeping query examples will need to do anything that would
work better with separate columns. (Yes, that’s cheating. I admit it. In practice, you would
use multiple columns.)

49

50

Chapter 1 Getting Started with MySQL

sex indicates whether a student is a boy or a girl. It’s an ENUM (enumeration) column,
which means it can take only one of the values listed in the column specification: 'F' for
female or 'M' for male. ENUM is useful when you have a restricted set of values that a col-
umn can hold. We could have used cHaAR (1) instead, but ENUM makes it more explicit
what the column values can be. If you forget what the possible values are, issue a
DESCRIBE statement. For an ENUM column, MySQL displays the list of legal enumeration
values:

mysgl> DESCRIBE student 'sex';

4o Hmmmm e Hmmmm e Hmmm e Hmmm o Hmmm e +
| Field | Type | Null | Key | Default | Extra |
Hmmmm e Hmmm e tmmm e tmmm e Hmmmm e Hmmm e +
| sex | enum('F','M') | NO | | | |
Hmmmm e Hmmm e Hmmmm e Hmmm e Hmmmm e Hmmm e +

Values in an ENUM column need not be just a single character. The sex column could
have been defined as something like ENUM (' female', 'male’) instead.

student_id is an integer column that will contain unique student ID numbers. Nor-
mally, you'd probably get ID numbers for your students from a central source, such as the
school office. We’ll just make them up, using an AUTO_INCREMENT column that is defined
in much the same way as the member_id column that is part of the member table created
earlier.

If you really were going to get student ID numbers from the office rather than gener-
ating them automatically, you would define the student_id column without the
AUTO_INCREMENT attribute, but leave in the PRIMARY KEY clause, to disallow duplicate or
NULL ID values.

Now, what about the ENGINE clause at the end of the CREATE TABLE statement? This
clause, if present, names the storage engine that MySQL should use for creating the table.
A “storage engine” is a handler that manages a certain kind of table. MySQL has several
storage engines, each with its own properties, as discussed in Section 2.6.1,“Storage
Engine Characteristics.”

If you omit the ENGINE clause, MySQL picks a default engine, which usually is
MyISAM. “ISAM” stands for “indexed sequential access method,” and the MyISAM en-
gine is based on that access method with some MySQL-specific stuft added. Earlier, we
provided no ENGINE clause when creating the Historical League tables (president and
member), so they’ll be MyISAM tables (unless you have reconfigured your server to use a
different default engine). For the grade-keeping project, we’re explicitly using the
InnoDB storage engine instead. InnoDB offers something called “referential integrity”
through the use of foreign keys. That means we can use MySQL to enforce certain con-
straints on the interrelationships befween tables, something that is important for the grade-
keeping project tables:

= Score rows are tied to grade events and to students: We don’t want to allow entry of
rows into the score table unless the student ID and grade event ID are known in
the student and grade_event tables.

1.4 A MySQL Tutorial

= Similarly, absence rows are tied to students: We don’t want to allow entry of rows
into the absence table unless the student ID is known in the student table.

To enforce these constraints, we’ll set up foreign key relationships. “Foreign” means “in
another table,” and “foreign key” indicates a key value that must match a key value in that
other table. These concepts will become clearer as we create the rest of the grade-keeping
project tables.

1.4.6.2.2 The grade_event Table
The grade_event table has this definition:

CREATE TABLE grade_event
(
date DATE NOT NULL,
category ENUM('T','Q') NOT NULL,
event_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (event_id)
) ENGINE = InnoDB;

To create the grade_event table, type that CREATE TABLE statement into mysgl or ex-
ecute the following command:

% mysql sampdb < create_grade_event.sql

The date column holds a standard MySQL DATE value, in ' cCyy-Mmu-DD” (year-first)
format.

category represents score category. Like sex in the student table, category is an
enumeration column. The allowable values are 'T' and 'Q', representing “test” and
“quiz.”

event_id is an AUTO_INCREMENT column that is defined as a PRIMARY KEY, similar to
student_id in the student table. Using AUTO_INCREMENT enables us to generate unique
event ID values easily. As with the student_id column in the student table, the particu-
lar values are less important than that they be unique.

All the columns are defined as NOT NULL because none of them can be missing.

1.4.6.2.3 The score Table
The score table looks like this:

CREATE TABLE score
(
student_id INT UNSIGNED NOT NULL,
event_id INT UNSIGNED NOT NULL,
score INT NOT NULL,
PRIMARY KEY (event_id, student_id),
INDEX (student_id),
FOREIGN KEY (event_id) REFERENCES grade_event (event_id),
FOREIGN KEY (student_id) REFERENCES student (student_id)
) ENGINE = InnoDB;

51

52

Chapter 1 Getting Started with MySQL

Here again the table definition contains something new: the FOREIGN KEY construct.
We’ll get to this in just a bit.

Create the table by typing the statement into mysql or by executing the following
command:

% mysql sampdb < create_score.sql

The score column is an INT to hold integer score values. If you wanted to allow
scores such as 58.5 that have a fractional part, you’d use one of the data types that can
represent them, such as DECIMAL or FLOAT.

The student_id and event_id columns are integer columns that indicate the student
and event to which each score applies. By using them to link to the corresponding ID
value columns in the student and grade_event tables, we’ll be able to look up the stu-
dent name and event date. There are a couple important points to note about the
student_id and event_id columns:

= We’ve made the combination of the two columns a PRIMARY KEY.This ensures that
we won't have duplicate scores for a student for a given quiz or test. Note that it’s
the combination of event_id and student_id that is unique. In the score table,
neither value is unique by itself. There will be multiple score rows for each
event_id value (one per student), and multiple rows for each student_id value
(one for each quiz and test) taken by the student.

= For each ID column, a FOREIGN KEY clause defines a constraint. The REFERENCES
part of the clause indicates which table and column the score column refers to.
The constraint on event_id is that each value in the column must match some
event_id value in the grade_event table. Similarly, each student_id value in the
score table must match some student_id value in the student table.

The prRIMARY KEY definition ensures that we won'’t create duplicate score rows. The
FOREIGN KEY definitions ensure that we won’t have rows with bogus ID values that don’t
exist in the grade_event or student tables.

Why is there an index on student_id? The reason is that, for any columns in a
FOREIGN KEY definition, there should be an index on them, or they should be the
columns that are listed first in a multiple-column index. For the FOREIGN KEY on
event_id, that column is listed first in the PRIMARY KEY. For the FOREIGN KEY on
student_id, the PRIMARY KEY cannot be used because student_id is not listed first. So,
instead, we create a separate index on student_id.

InnoDB actually will create an index on columns in a foreign key definition, but it
might not use the same index definition you would (as discussed further in Section 2.14.1,
“Creating and Using Foreign Keys”). Defining the index explicitly avoids this issue.

1.4.6.2.4 The absence Table
The absence table for recording lapses in attendance looks like this:

CREATE TABLE absence
(

1.4 A MySQL Tutorial 53

student_id INT UNSIGNED NOT NULL,

date DATE NOT NULL,

PRIMARY KEY (student_id, date),

FOREIGN KEY (student_id) REFERENCES student (student_id)
) ENGINE = InnoDB;

Type that statement into mysql or execute the following command:

% mysql sampdb < create_absence.sql

The student_id and date columns both are defined as NOoT NULL to disallow missing
values. We make the combination of the two columns a primary key so that we don’t ac-
cidentally create duplicate rows. It wouldn’t be fair to count a student absent twice on the
same day, would it?

The absence table also includes a foreign key relationship, defined to ensure that each
student_id value matches a student_id value in the student table.

The inclusion of foreign key relationships in the grade-keeping tables is meant to en-
act constraints at data entry time: We want to insert only those rows that contain legal
grade event and student ID values. However, the foreign key relationships have another
effect as well. They set up dependencies that constrain the order in which you create and
drop tables:

= The score table refers to the grade_event and student tables, so they must be
created first before you can create the score table. Similarly, absence refers to
student, so student must exist before you can create absence.

= If you drop (remove) tables, the reverse is true.You cannot drop the grade_event
table if you have not dropped the score table first, and student cannot be dropped
unless you have first dropped score and absence.

Note

If for some reason your MySQL server does not include InnoDB support, you can create the
grade-keeping project tables as MylSAM tables instead. Substitute MyIsaM for InnoDB in
each CREATE TABLE statement or just omit the ENGINE clause. However, if you use MyISAM
tables, the examples later in this book that use these tables to show the operation of for-
eign keys will not work.

1.4.7 Adding New Rows

At this point, our database and its tables have been created. Now we need to put some
rows into the tables. However, it’s useful to know how to check what’s in a table after you
put something into it, so although retrieval is not covered in any detail until later in Sec-
tion 1.4.9,“Retrieving Information,” you should know at least that the following state-
ment will show you the complete contents of any table tbI_name:

SELECT * FROM tbIl_name;

54

Chapter 1 Getting Started with MySQL

Example:

mysgl> SELECT * FROM student;
Empty set (0.00 sec)

Right now, mysql indicates that the table is empty, but you’ll see a different result after
trying the examples in this section.

There are several ways to add data to a database.You can insert rows into a table manu-
ally by issuing INSERT statements.You can also add rows by reading them from a file, either
in the form of prewritten INSERT statements that you feed to mysql, or as raw data values
that you load using the LOAD DATA statement or the mysglimport client program.

This section demonstrates each method of inserting rows into your tables. What you
should do is play with all of them to familiarize yourself with them and to see how they
work. After you've tried each of the methods, go to Section 1.4.8,“Resetting the sampdb
Database to a Known State,” and run the commands you find there. Those commands
drop the tables, re-create them, and load them with a known set of data. By executing
them, you’ll make sure that the tables contain the same rows that I worked with while
writing the sections that follow, and you’ll get the same results shown in those sections.
(If you already know how to insert rows and just want to populate the tables, you might
want to skip directly to that section.)

1.4.7.1 Adding Rows with INSERT
Let’s start adding rows by using INSERT, an SQL statement for which you specify the table
into which you want to insert a row of data and the values to put in the row. The INSERT
statement has several forms.

You can specify values for all the columns. The syntax looks like this:

INSERT INTO thl_name VALUES (valuel,value2,...);

Example:

mysql> INSERT INTO student VALUES('Kyle','M',NULL);
mysql> INSERT INTO grade_event VALUES('2008-09-03','Q',NULL);

With this syntax, the vALUES list must contain a value for each column in the table, in
the order that the columns are stored in the table. (Normally, this is the order in which the
columns are specified in the table’s CREATE TABLE statement.) If you’re not sure what the
column order is, issue a DESCRIBE tbhl_name statement to find out.

You can quote string and date values in MySQL using either single or double quotes,
but single quotes are more standard. The NULL values are for the AUTO_INCREMENT columns
in the student and grade_event tables. Inserting a “missing value” into an
AUTO_INCREMENT column causes MySQL to generate the next sequence number for the
column.

MySQL enables you to insert several rows into a table with a single INSERT statement
by specifying multiple value lists:

INSERT INTO tbl_name VALUES(...),(...),... ;

1.4 A MySQL Tutorial 55

Example:

mysqgl> INSERT INTO student VALUES('Avery','F',6NULL),('Nathan','M',NULL);

This involves less typing than multiple INSERT statements, and also is more efficient for
the server to execute. Note that parentheses enclose the set of column values for each row.
The following statement is illegal because it does not contain the correct number of
values within parentheses:

mysql> INSERT INTO student VALUES('Avery','F',NULL,'Nathan', 'M',6NULL);
ERROR 1136 (21S01): Column count doesn't match value count at row 1

You can name the columns to which you want to assign values, and then list the
values. This is useful when you want to create a record for which only a few columns
need to be set up initially.

INSERT INTO tbl_name (col_namel,col_name2,...) VALUES(valuel,value2,...);

Example:

mysgl> INSERT INTO member (last_name,first_name) VALUES('Stein', 'Waldo');

This form of INSERT allows multiple value lists, too:

mysgl> INSERT INTO student (name,sex) VALUES('Abby','F'),('Joseph','M');

For any column not named in the column list, MySQL assigns its default value. For ex-
ample, the preceding statements contain no values for the member_id or student_id
columns, so MySQL assigns the default value of NULL. member_id and student_id are
AUTO_INCREMENT columns, so the net effect in each case is to generate and assign the next
sequence number, just as if you had assigned NULL explicitly.

You can provide a list of column/value assignments. This syntax uses a SET clause
containing col_name=value assignments rather than a VALUES () list:

INSERT INTO tbl_name SET col_namel=valuel, col_name2=value2, ... ;

Example:

mysgl> INSERT INTO member SET last_name='Stein', first_name='Waldo';

For any column not named in the SET clause, MySQL assigns its default value. This
form of INSERT cannot be used to insert multiple rows with a single statement.

Now that you know how INSERT works, you can use it to see whether the foreign key
relationships we set up really prevent entry of bad rows in the score and absence tables.
Try inserting rows that contain ID values that are not present in the grade_event or
student tables:

mysql> INSERT INTO score (event_id,student_id,score) VALUES(9999,9999,0);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key
constraint fails (' sampdb’. score’, CONSTRAINT ‘score_ibfk 1% FOREIGN
KEY (‘event_id') REFERENCES ‘grade_event ' (‘event_id"))

mysgl> INSERT INTO absence SET student_id=9999, date='2008-09-16";

ERROR 1452 (23000): Cannot add or update a child row: a foreign key

56

Chapter 1 Getting Started with MySQL

constraint fails (' sampdb’ . absence’, CONSTRAINT ‘absence_ibfk_ 1°
FOREIGN KEY (student_id') REFERENCES ‘student’ (' student_id'))

The error messages show that the constraints are working.

1.4.7.2 Adding New Rows from a File

Another method for loading rows into a table is to read them directly from a file. The file
can contain INSERT statements or it can contain raw data. For example, the sampdb distri-
bution contains a file named insert_president.sqgl that contains INSERT statements for
adding new rows to the president table. Assuming that you are in the same directory
where that file is located, you can execute those statements like this:

% mysql sampdb < insert_president.sql

If you’re already running mysql, you can use a source command to read the file:

mysgl> source insert_president.sql;

If you have the rows stored in a file as raw data values rather than as INSERT statements,
you can load them with the LoaD DATA statement or with the mysqglimport client pro-
gram.

The L.OAD DATA statement acts as a bulk loader that reads data from a file. Use it from
within mysql:

mysgl> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

Assuming that the member . txt data file is located in your current directory on the
client host, this statement reads it and sends its contents to the server to be loaded into the
member table. (The member . txt file can be found in the sampdb distribution.)

By default, the LOAD DATA statement assumes that column values are separated by tabs
and that lines end with newlines (also known as “linefeeds”). It also assumes that the val-
ues are present in the order that columns are stored in the table. It’s possible to read files in
other formats or to specify a different column order. See the entry for LOAD DATA in
Appendix E,“SQL Syntax Reference,” for details.

The keyword LocaL in the LOAD DATA statement causes the data file to be read by the
client program (in this case mysgl) and sent to the server to be loaded. It is possible to
omit LOCAL, but then the file must be located on the server host and you need the FILE
server access privilege, which most MySQL users don’t have.You should also specity the
full pathname to the file so that the server can find it.

If you get the following error with LOAD DATA LOCAL, the LOCAL capability might be
disabled by default:

ERROR 1148 (42000): The used command is not allowed with this MySQL version

Try again after invoking mysqgl with the --local-infile option. For example:

% mysql --local-infile sampdb
mysgl> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

If that doesn’t work, either, the server also needs to be told to allow LoCAL. See
Chapter 12 for information on how to do this.

1.4 A MySQL Tutorial 57

Another way to load a data file is to use the mysglimport client program.You invoke
mysglimport from the command prompt, and it generates a LOAD DATA statement for you:

% mysqlimport --local sampdb member.txt

As with the mysql program, if you need to specify connection parameters, indicate
them on the command line preceding the database name.

For the command just shown, mysglimport generates a LOAD DATA statement to load
member . txt into the member table. That’s because mysglimport determines the table name
from the name of the data file, using everything up to the first period of the filename as
the table name. For example, mysglimport would load files named member. txt and
president.txt into the member and president tables. This means you should choose
your filenames carefully or mysglimport won't use the correct table name. If you wanted
to load files named member1 . txt and member2 . txt, mysqlimport would think it should
load them into tables named member1 and member2. If what you really want is to load
both files into the member table, you could use names like member.1.txt and
member.2.txt,ormember.txtlandnember.txtz

1.4.8 Resetting the sampdb Database to a Known State

After you have tried the row-adding methods just described in the preceding discussion,
you should re-create and load the sampdb database tables to reset the database so that its
contents are the same as what the next sections assume. Using the mysgl program in the
directory containing the sampdb distribution files, issue these statements:

% mysql sampdb

mysgl> source create_member.sql;
mysql> source create_president.sql;
mysgl> source insert_member.sql;
mysgl> source insert_president.sql;
mysgl> DROP TABLE IF EXISTS absence, score, grade_event, student;
mysgl> source create_student.sql;
mysgl> source create_grade_event.sql;
mysqgl> source create_score.sql;
mysgl> source create_absence.sql;
mysgl> source insert_student.sql;
mysql> source insert_grade_event.sql;
mysql> source insert_score.sql;
mysgl> source insert_absence.sql;

If you don’t want to type those statements individually (which is likely), try this com-
mand on Unix:

% sh init_all_tables.sh sampdb

On Windows, use this command instead:

C:\> init_all_tables.bat sampdb

58

Chapter 1 Getting Started with MySQL

Whichever command you use, if you need to specify connection parameters, list them
on the command line after the command name.

1.4.9 Retrieving Information

Our tables have been created and loaded with data now, so let’s see what we can do with
that data. To retrieve and display information from your tables, use the SELECT statement.
It enables you to retrieve information in as general or specific a manner as you like.You
can display the entire contents of a table:

SELECT * FROM president;

Or you can select as little as a single column of a single row:

SELECT birth FROM president WHERE last_name = 'Eisenhower';

The sELECT statement has several clauses that you combine as necessary to retrieve the
information in which you’re interested. Each of these clauses can be simple or complex, so
SELECT statements as a whole can be simple or complex. However, rest assured that you
won't find any page-long queries that take an hour to figure out in this book. (When I see
arm-length queries in something that I'm reading, I generally skip right over them, and
I’'m guessing that you do the same.)

A simplified syntax of the SELECT statement is:

SELECT what to retrieve
FROM table or tables
WHERE conditions that data must satisfy;

To write a SELECT statement, specify what you want to retrieve and then some
optional clauses. The clauses just shown (FROM and WHERE) are the most common ones,
although others can be specified as well, such as GROUP By, ORDER BY, and LIMIT.
Remember that SQL is a free-format language, so when you write your own SELECT
statements, you need not put line breaks in the same places I do.

The FroM clause is usually present, but it need not be if you don’t need to name any
tables. For example, the following query simply displays the values of some expressions.
These can be calculated without referring to the contents of any table, so no FroM clause
is necessary:

mysql> SELECT 2+2, 'Hello, world', VERSION();

+-———= Fom - o +
| 2+2 | Hello, world | VERSION() |
Fmm———— Fomm e Fomm +
| 4 | Hello, world | 5.0.60-log |
+--——- o - +

When you do use a FROM clause to specify a table from which to retrieve data, you’ll
also indicate which columns you want to see. The most “generic” form of SELECT uses *
as a column specifier, which is shorthand for “all columns.” The following query retrieves
all columns from the student table and displays them:

1.4 A MySQL Tutorial 59

mysgl> SELECT * FROM student;

et - P +
| name | sex | student_id |
Fmmmmm o R mmm e +
| Megan | 7 1
| Joseph [V 2|
| Ryle [V 3
| Katie | F | 4 |

The columns are displayed in the order that MySQL stores them in the table. This is
the same order in which the columns are listed when you issue a DESCRIBE student
statement. (The “..”” shown at the end of the example indicates that the query returns
more rows than are shown.)

You can explicitly name the column or columns you want to see. To select just student
names, do this:

mysgl> SELECT name FROM student;

O +
| name

tmmm o +
| Megan |
| Joseph |
| Kyle |
| Katie |

If you name more than one column, separate them by commas. The following state-
ment is equivalent to SELECT * FROM student, but names each column explicitly:

mysgl> SELECT name, sex, student_id FROM student;

Fmmm - e B T +
| name | sex | student_id |
et - P +
| Megan | F | 1
| Joseph | M 2
| Kyle | M 3
| Katie | 7 4 |

You can name columns in any order:

SELECT name, student_id FROM student;
SELECT student_id, name FROM student;

You can even name a column more than once if you like, although generally that’s kind
of pointless.

It’s also possible to select columns from more than one table at a time. This is called a
“Join” between tables. We’ll get to joins in Section 1.4.9.10,“Retrieving Information from
Multiple Tables.”

60

Chapter 1 Getting Started with MySQL

Column names are not case sensitive in MySQL, so the following queries all retrieve
the same information:

SELECT name, student_id FROM student;
SELECT NAME, STUDENT_ID FROM student;
SELECT nAmE, sTuDeNt_Id FROM student;

On the other hand, database and table names might be case sensitive. It depends on the
filesystem used on the server host and on how MySQL is configured. Windows filenames
are not case sensitive, so a server running on Windows does not treat database and table
names as case sensitive. On Unix systems, filenames generally are case sensitive, so a server
would treat database and table names as case sensitive. An exception to this occurs under
Mac OS X, which offers both HFS+ and UFS filesystems: HFS+ is the default, and it uses
case-insensitive filenames.

If you want to have MySQL treat database and table names as not case sensitive, you
can configure the server that way. See Section 11.2.5,“Operating System Constraints on
Database Object Names.”

1.4.9.1 Specifying Retrieval Criteria

To restrict the set of rows retrieved by the SELECT statement, use a WHERE clause that spec-
ifies criteria for selecting rows.You can select rows by looking for column values that sat-
isfy various criteria, and you can look for different types of values. For example, you can
search for certain numeric values:

mysgl> SELECT * FROM score WHERE score > 95;

Hmmmm e Hmmmm e Hmmmm e +
| student_id | event_id | score |
Hmmmm e Hmmmm o Hmmmm e +
5	30 97	
18	3	96
1 6	100	
5	6 97	
11	6] 98	
16	6] 98	
Hmmmm o Hmmm o Hmmmm e +

You can look for string values containing character data. For the default character set
and collation (sort order), string comparisons are not case sensitive:

mysqgl> SELECT last_name, first_name FROM president
-> WHERE last_name='ROOSEVELT';

| Roosevelt | Theodore |

| Roosevelt | Franklin D. |

1.4 A MySQL Tutorial

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='roosevelt';

tmmm o Hmmm +
| last_name | first_name |
Fmmm o - +
| Roosevelt | Theodore |
| Roosevelt | Franklin D. |
et e +

You can look for dates:

mysgl> SELECT last_name, first_name, birth FROM president
-> WHERE birth < '1750-1-1';

Fmmm e P P +
| last_name | first_name | birth |
tmmmm o Hmmm o Hmm o +
Washington	George	1732-02-22
Adams	John	1735-10-30
Jefferson	Thomas	1743-04-13
Fmmm e P P +

It’s also possible to search for combinations of values:

mysqgl> SELECT last_name, first_name, birth, state FROM president
-> WHERE birth < '1750-1-1' AND (state='VA' OR state='MA');

Fmmmm - Fmmm - B T P +
| last_name | first_name | birth | state |
Fmmmm e P T P R +
Washington	George	1732-02-22	VA
Adams	John	1735-10-30	MA
Jefferson	Thomas	1743-04-13	vA
Fmmmm - Fmmm - B T P +

Expressions in WHERE clauses can use arithmetic operators (Table 1.1), comparison op-
erators (Table 1.2), and logical operators (Table 1.3).You can also use parentheses to group
parts of an expression. Operations can be performed using constants, table columns, and
function calls. We will have occasion to use several of MySQL’s functions in statements
throughout this tutorial, but there are far too many to show here. See Appendix C,
“Operator and Function Reference,” for a complete list.

Table 1.1 Arithmetic Operators

Operator Meaning
+ Addition

- Subtraction

61

Chapter 1 Getting Started with MySQL

Table 1.1 Arithmetic Operators

Operator Meaning

* Multiplication

/ Division

DIV Integer division

£ Modulo (remainder after division)

Table 1.2 Comparison Operators

Operator Meaning

< Less than

<= Less than or equal to

= Equal to

<=> Equal to (works even for NULL values)
<> or != Not equal to

>= Greater than or equal to

>

Greater than

Table 1.3 Logical Operators

Operator Meaning

AND Logical AND

OR Logical OR

XOR Logical exclusive-OR
NOT Logical negation

When you're formulating a statement that requires logical operators, take care not to

confuse the meaning of the logical AND operator with the way we use “and” in everyday

speech. Suppose that you want to find “presidents born in Virginia and presidents born in
Massachusetts.” That condition is phrased using “and,” which seems to imply that you'd

write the statement as follows:

mysql> SELECT last_name, first name, state FROM president
-> WHERE state='VA' AND state='MA';
Empty set (0.36 sec)

1.4 A MySQL Tutorial

It’s clear from the empty result that the statement didn’t work. Why not? Because what
the statement really means is “Select presidents who were born both inVirginia and in
Massachusetts,” which makes no sense. In English, you might express the statement using
“and,” but in SQL, you connect the two conditions with OR:

mysgl> SELECT last_name, first_name, state FROM president
-> WHERE state='VA' OR state='MA';

Fmmm - - B +
| last_name | first_name | state |
Fmmmm e e e +
Washington	George	va
Adams	John	MA
Jefferson	Thomas	va
Madison	James	va
Monroe	James	va
Adams	John Quincy	MA
Harrison	William H.	VA
Tyler	John	va
Taylor	zachary	va
wilson	Woodrow	va
Kennedy	John F.	A
Bush	George H.W.	MA
tmmm o o Hmmm e +

This disjunction between natural language and SQL is something to be aware of, not
just when formulating your own queries, but also when you write queries for other peo-
ple. It’s best to listen carefully as they describe what they want to retrieve, but you don’t
necessarily want to transcribe their descriptions into SQL using the same logical opera-
tors. For the example just described, the proper English equivalent for the query is “Select
presidents who were born either in Virginia or in Massachusetts.”

You might find it easier to use the IN() operator when formulating queries like this,
where you’re looking for any of several values. The preceding query can be rewritten us-
ing IN() like this:

SELECT last_name, first_name, state FROM president
WHERE state IN('VA',6 'MA');

IN() is especially convenient when you’re comparing a column to a large number of
values.

1.4.9.2 The NULL Value

The NULL value is special. It means “no value” or “unknown value,” so you can’t compare
it to known values the way you can compare two known values to each other. If you at-
tempt to use NULL with the usual arithmetic comparison operators, the result is undefined:

mysqgl> SELECT NULL < 0, NULL = 0, NULL <> 0, NULL > 0;

64

Chapter 1 Getting Started with MySQL

t-—— - o o +
| NULL < 0 | NULL = 0 | NULL <> 0 | NULL > 0 |
E e et B et tommm e tom—m - +
| NULL | NULL | NULL | NULL |
- - e - +

In fact, you can’t even compare NULL to itself because the result of comparing two un-
known values cannot be determined:

mysql> SELECT NULL = NULL, NULL <> NULL;
fommm e B ittt +

To perform searches for NULL values, you must use a special syntax. Instead of using =,
<>, 0r != to test for equality or inequality, use IS NULL or IS NOT NULL. For example,
presidents who are still living have their death dates represented as NULL in the president
table. To find them, use the following query:

mysql> SELECT last_name, first name FROM president WHERE death IS NULL;

oo - +
| last_name | first_name |
P e +
Carter	James E.
Bush	George H.W.
clinton	wWilliam J.
Bush	George W.

oo - +

To find non-NULL values, use Is NOoT NULL.This query finds names that have a suffix part:

mysql> SELECT last_name, first name, suffix
-> FROM president WHERE suffix IS NOT NULL;

R R R +
| last_name | first_name | suffix |
S R — RS +
| Carter | James E | Jr |
o S — IS +

The MySQL-specific <=> comparison operator is true even for NULL-to-NULL compar-
isons. The preceding two queries can be rewritten to use this operator as follows:

SELECT last_name, first_name FROM president WHERE death <=> NULL;

SELECT last_name, first_name, suffix
FROM president WHERE NOT (suffix <=> NULL);

1.4 A MySQL Tutorial

1.4.9.3 Sorting Query Results

Every MySQL user notices sooner or later that if you create a table, load some rows into
it, and then issue a SELECT * FROM tbl_name statement, the rows tend to be retrieved in
the same order in which they were inserted. That makes a certain intuitive sense, so it’s
natural to assume that rows are retrieved in insertion order by default. But that is not the
case. If you delete and insert rows after loading the table initially, those actions likely will
change the order in which the server returns the table’s rows. (Deleting rows puts “holes”
in the table, which MySQL tries to fill later when you insert new rows.)

‘What you should remember about row retrieval order is this: There is no guarantee
about the order in which the server returns rows, unless you specify that order yourself. To
do so0,add an orRDER BY clause to the statement that defines the sort order you want. The
following query returns president names, sorted lexically (alphabetically) by last name:
mysqgl> SELECT last_name, first_name FROM president

-> ORDER BY last_name;

tmmm o Hmmm +
| last_name | first_name |
tmmm e Hmmmm e +
Adams	John
Adams	John Quincy
Arthur	Chester A.
Buchanan	James

Ascending order is the default sort order in an ORDER BY clause.You can specify explic-
itly whether to sort a column in ascending or descending order by using the Asc or DEsSC
keywords after column names in the oRDER BY clause. For example, to sort president
names in reverse (descending) name order, use DESC like this:

mysqgl> SELECT last_name, first_name FROM president
-> ORDER BY last_name DESC;

tmmm o Hmmm e +
| last_name | first_name |
tmmm e Hmmmm e +
wilson	Woodrow
washington	George
Van Buren	Martin
Tyler	John

You can sort using multiple columns, and each column can be sorted independently in
ascending or descending order. The following query retrieves rows from the president
table, sorts them by reverse state of birth, and by ascending last name within each state:

mysgl> SELECT last_name, first_name, state FROM president
-> ORDER BY state DESC, last_name ASC;

65

66 Chapter 1 Getting Started with MySQL

P B T e +
| last_name | first_name | state |
Hmmm o Hmmmm e Hmmm e +
Arthur	Chester A.	vT
Coolidge	Calvin	vr
Harrison	William H.	va
Jefferson	Thomas	va
Madison	James	va
Monroe	James	va
Taylor	Zachary	va
Tyler	John	va
Washington	George	va
Wwilson	Woodrow	va
Eisenhower	Dwight D.	T
Johnson	Lyndon B.	T

NULL values in a column sort at the beginning for ascending sorts and at the end for
descending sorts. If you want to ensure that NULL values will appear at a given end of the
sort order, add an extra sort column that distinguishes NULL from non-NULL values. For ex-
ample, if you sort presidents by reverse death date, living presidents (those with NULL death
dates) will appear at the end of the sort order. To put them at the beginning instead, use
this query:
mysql> SELECT last_name, first_name, death FROM president

-> ORDER BY IF(death IS NULL,0,1), death DESC;

Hmmm o Hmmmm e Hmmm o +
| last_name | first_name | death |
B T R T o +
Clinton	william J.	NULL
Bush	George H.W.	NULL
Carter	James E.	NULL
Bush	George W.	NULL
Ford	Gerald R.	2006-12-26
Reagan	Ronald w.	2004-06-05
Nixon	Richard M.	1994-04-22
Johnson	Lyndon B.	1973-01-22
Jefferson	Thomas	1826-07-04
Adams	John	1826-07-04
washington	George	1799-12-14
P T B T P +

The 1F () function evaluates the expression given by its first argument and returns the
value of its second or third argument, depending on whether the expression is true or
false. For the query shown, IF () evaluates to O for NULL values and 1 for non-NULL values.
This places all NULL values ahead of all non-NULL values.

1.4 A MySQL Tutorial

1.4.9.4 Limiting Query Results

When a query returns many rows, but you want to see only a few of them, add a LIMIT
clause. LIMIT is especially useful in conjunction with oRDER BY. MySQL enables you to
limit the output of a query to the first n rows of the result that otherwise would be re-
turned. The following query selects the five presidents who were born first:

mysgl> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth LIMIT 5;

tmmm o Hmmmm Hmmmm o +
| last_name | first name | birth

tmmm e Hmmm o Hmmm e +
Washington	George	1732-02-22
Adams	John	1735-10-30
Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
tmmm e Hmmm o Hmmm e +

If you sort in reverse order, using ORDER BY birth DESC, you get the five most re-
cently born presidents instead:

mysgl> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth DESC LIMIT 5;

+ +

| |

Hmmm oo +

Clinton | William J. | 1946-08-19

Bush | | 1946-07-06
| |
| |
| |
+ +

| |
| George W.

| Carter 1924-10-01 |
| |
| |

James E.
Bush 1924-06-12
1917-05-29

George H.W.

Kennedy John F.

LIMIT also enables you to pull a section of rows out of the middle of a result set. To do
this, you must specify two values. The first value is the number of rows to skip at the be-
ginning of the result set, and the second is the number of rows to return. The following
query is similar to the previous one but returns 5 rows after skipping the first 10:

mysql> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth DESC LIMIT 10, 5;

+ +
| |
+ +
Truman | Harry S | 1884-05-08
| |
| |
| |
| |
+ +

| |
| Roosevelt | Franklin D. | 1882-01-30 |
| Hoover Herbert C. 1874-08-10 |
| Coolidge Calvin 1872-07-04 |
| Harding Warren G. 1865-11-02 |

67

68

Chapter 1 Getting Started with MySQL

To pull a randomly selected row or set of rows from a table, use ORDER BY RAND () in
conjunction with LIMIT:

mysqgl> SELECT last_name, first_name FROM president
-> ORDER BY RAND() LIMIT 1;

mysqgl> SELECT last_name, first_name FROM president
-> ORDER BY RAND() LIMIT 3;

P B T +
| last_name | first_name |
P T e +
| Harding | Warren G |
| Bush | George H.W. |
| Jefferson | Thomas

P B T +

1.4.9.5 Calculating and Naming Output Column Values

Most of the queries shown so far produce output by retrieving values from tables. MySQL
also enables you to calculate output values from the results of expressions, without refer-
ence to tables. Expressions can be simple or complex. The following query evaluates a
simple expression (a constant) and a more complex expression involving several arithmetic
operations and a couple of function calls that produce the square root of an expression
and format the result to three decimal places:

mysql> SELECT 17, FORMAT (SQRT(25+13),3);
B it +

Expressions can also refer to table columns:

mysql> SELECT CONCAT(first_name,' ', last_name),CONCAT(city,', ', state)
-> FROM president;

George Washington
John Adams

| Wakefield, VA
|

| Thomas Jefferson

|

|
Braintree, MA |
Albemarle County, VA |

|

James Madison Port Conway, VA

1.4 A MySQL Tutorial

That query formats president names as a single string by concatenating first and last
names separated by a space. It also formats birthplaces as the birth cities and states sepa-
rated by a comma and a space.

When you use an expression to calculate a column value, the expression becomes the
column’s name and is used for its heading. That can lead to a very wide column if the ex-
pression is long, as the preceding query illustrates. To deal with this, you can assign the col-
umn a different name using the AS name construct. Such names are called “column
aliases.” The output from the previous query can be made more meaningful like this:

mysgl> SELECT CONCAT(first_name,' ',last_name) AS Name,
-> CONCAT(city,', ',state) AS Birthplace
-> FROM president;

Wakefield, VA
Braintree, MA
Albemarle County, VA
Port Conway, VA

| George Washington
| John Adams

| Thomas Jefferson
| James Madison

If the column alias contains spaces, put it in quotes:

mysgl> SELECT CONCAT(first_name,' ',last_name) AS 'President Name',
-> CONCAT(city,', ',state) AS 'Place of Birth'
-> FROM president;

George Washington Wakefield, VA
John Adams

|

| Braintree, MA
| Thomas Jefferson

|

|
|
Albemarle County, VA |
|

James Madison Port Conway, VA

The keyword as is optional when you provide a column alias:

mysgl> SELECT 1, 2 AS two, 3 three;

T — TR — +
| 1| two | three |
L SRR Hmmmmmmm +
L1l 2] 3]
T — P +

I prefer to include the as. Without it, it’s easier to inadvertently write a query that is
legal but does not produce the intended result. For example, you might write a query to

69

70

Chapter 1 Getting Started with MySQL

select president names like this, forgetting the comma between the first_name and
last_name columns:

mysql> SELECT first_name last_name FROM president;

e +
| last_name |
B T T +
| George |
| John |
| Thomas |
| James |

As a result, the query does not display two columns. Instead, it displays only the
first_name column and treats last_name as the column alias, which becomes its label. If
a query does not retrieve the number of columns you expect and uses column names
other than you expect, be on the lookout for a missing comma somewhere between
columns.

1.4.9.6 Working with Dates
The principal thing to keep in mind when using dates in MySQL is that it always expects
dates with the year first. To write July 27, 2008, use '2008-07-27"'. Do not use '07-27-
2008' or '27-07-2008", as you might be more accustomed to writing.

You can perform many kinds of operations on dates:

= Sort by date. (We’ve seen this several times already.)

= Look for particular dates or a range of dates.

= Extract parts of a date value, such as the year, month, or day.

= Calculate the difference between dates.

= Compute a date by adding an interval to or subtracting an interval from another date.

Some examples of these operations follow.

To look for particular dates, either by exact value or in relation to another value, com-
pare a DATE column to the value in which you're interested:

mysgl> SELECT * FROM grade_event WHERE date = '2008-10-01';

4o S — S —— +
| date | category | event_id |
Hmmmmmm e Hmmmmmm e Hmmmmmm e +
| 2008-10-01 | T | 6 |
4o m e T — T — +

mysqgl> SELECT last_name, first_name, death
-> FROM president
-> WHERE death >= '1970-01-01' AND death < '1980-01-01';
Fommm e Fommm - Fommm - +
| last_name | first_name | death |
B it B et o m e +

1.4 A MySQL Tutorial 71

| Truman | Harry S | 1972-12-26 |
| Johnson | Lyndon B. | 1973-01-22 |

ommmmmmm - fommmmm oo e ittt +

To test or retrieve parts of dates, use functions such as YEAR (), MONTH (), or
DAYOFMONTH () . For example, to find presidents who were born in March, look for dates
with a month value of 3:

mysqgl> SELECT last_name, first_name, birth
-> FROM president WHERE MONTH(birth) = 3;

et P P +
| last_name | first_name | birth |
Fmmmmm o mmm e mmmmm e +
Madison	James	1751-03-16
Jackson	Andrew	1767-03-15
Tyler	John	1790-03-29
Cleveland	Grover	1837-03-18
tmmm o Hmmmm o Hmmm o +

The query also can be written in terms of the month name:

mysqgl> SELECT last_name, first_name, birth
-> FROM president WHERE MONTHNAME (birth) = 'March';

et P P +
| last_name | first_name | birth |
Fmmmmm o mmm e mmmmm e +
Madison	James	1751-03-16
Jackson	Andrew	1767-03-15
Tyler	John	1790-03-29
Cleveland	Grover	1837-03-18
tmmm o Hmmmm o Hmmm o +

To be more specific, you can combine tests for MONTH () and DAYOFMONTH () to find
presidents born on a particular day in March:

mysqgl> SELECT last_name, first_name, birth
-> FROM president WHERE MONTH(birth) = 3 AND DAYOFMONTH(birth) = 29;

et P P +
| last_name | first_name | birth |
Fmmmmm o mmm e mmmmm e +
| Tyler | John | 1790-03-29 |
Fmmm - Fmmmm - P T +

This is the kind of query you'd use for generating one of those list of “celebrities who
have birthdays today,” such as you see in the Entertainment section of your newspaper.
However, if you want to select rows that match month and day for “the current date,”
you don'’t have to plug in literal values the way the previous query did.To check for pres-
idents born today, no matter what day of the year today is, compare their birthdays to the
month and day parts of CURDATE (), which always returns the current date:

72 Chapter 1 Getting Started with MySQL

SELECT last_name, first_name, birth
FROM president WHERE MONTH (birth) = MONTH (CURDATE ())
AND DAYOFMONTH (birth) = DAYOFMONTH (CURDATE()) ;

You can subtract one date from another, which enables you to find the interval be-
tween dates. For example, to determine which presidents lived the longest, compute age at
death by taking the difference from birth date. The TIMESTAMPDIFF () function is useful
here because it takes an argument for specifying the unit in which to express the result
(YE2R in this case):

mysgl> SELECT last_name, first_name, birth, death,
-> TIMESTAMPDIFF (YEAR, birth, death) AS age
-> FROM president WHERE death IS NOT NULL
-> ORDER BY age DESC LIMIT 5;

B e Hmmm o TR o tmmm - +
| last_name | first_name | birth | death | age

Hmmmmm e Hmmmmm o Hmmmmm o Hmmmm e tmmm +
Reagan	Ronald W.	1911-02-06	2004-06-05	93
Ford	Gerald R.	1913-07-14	2006-12-26	93
Adams	John	1735-10-30	1826-07-04	90
Hoover	Herbert C.	1874-08-10	1964-10-20	90
Truman	Harry S	1884-05-08	1972-12-26	88

Hmmmmm e Hmmmmm o Hmmmmm o Hmmmm e tmmm +

Another way to compute a difference between dates, when you want the difference in
days, is to use the To_Davs () function that converts a date to days. Determining how far
dates are from some reference date is one application for this function. For example, you
can tell which Historical League members need to renew their memberships soon: Com-
pute the difference between each member’s expiration date and the current date, and if it’s
less than some threshold value, a renewal will soon be needed. The following query finds
memberships that have already expired or that will be due for renewal within 60 days:
SELECT last_name, first_name, expiration FROM member
WHERE (TO_DAYS(expiration) - TO_DAYS(CURDATE())) < 60;

The equivalent statement using TIMESTAMPDIFF () looks like this:
SELECT last_name, first_name, expiration FROM member
WHERE TIMESTAMPDIFF (DAY, CURDATE(), expiration) < 60;

To calculate one date from another, you can use DATE_ADD() or DATE_SUB (). These
functions take a date and an interval and produce a new date. For example:

mysqgl> SELECT DATE_ADD('1970-1-1', INTERVAL 10 YEAR);

B it et T +
| DATE_ADD('1970-1-1', INTERVAL 10 YEAR) |
B ittt ettt +
| 1980-01-01 |
e +

1.4 A MySQL Tutorial

| DATE_SUB('1970-1-1', INTERVAL 10 YEAR) |

A query shown earlier in this section selected presidents who died during the 1970s, us-
ing literal dates for the endpoints of the selection range. That query can be rewritten to use
a literal starting date and an ending date calculated from the starting date and an interval:

mysql> SELECT last_name, first_name, death

-> FROM president

-> WHERE death >= '1970-1-1'

-> AND death < DATE_ADD('1970—1—1', INTERVAL 10 YEAR);
o tomm o +

| last_name first_name | death

| |

4o + +

| Truman | Harry S | 1972-12-26 |
| |
+ +

| Johnson 1973-01-22 |

mm

The membership-renewal query can be written in terms of DATE_ADD ()

SELECT last_name, first_name, expiration FROM member
WHERE expiration < DATE_ADD (CURDATE (), INTERVAL 60 DAY);

If the expiration column is indexed, this will be more efficient than the original
query, for reasons discussed in Chapter 5.

Near the beginning of this chapter, you saw the following query for determining
which of a dentist’s patients haven’t come in for their checkup in a while:

SELECT last_name, first_name, last_visit FROM patient
WHERE last_visit < DATE_SUB(CURDATE(), INTERVAL 6 MONTH) ;

That query may not have meant much to you then. Is it more meaningful now?

1.4.9.7 Pattern Matching
MySQL supports pattern matching operations that enable you to select rows without sup-
plying an exact comparison value. To perform a pattern match, you use special operators
(LIKE and NOT LIKE), and you specify a string containing wildcard characters. The charac-
ter °_’ matches any single character, and ‘¢’ matches any sequence of characters (including
an empty sequence).

This pattern matches last names that begin with a ‘W’ or ‘w’ character:
mysgl> SELECT last_name, first name FROM president

-> WHERE last_name LIKE 'W%';
fomm e B et +

| wilson

73

74

Chapter 1 Getting Started with MySQL

The following query demonstrates a common error. The pattern match is erroneous
because it does not use LIKE, it uses a pattern with an arithmetic comparison operator:
mysqgl> SELECT last_name, first_name FROM president

-> WHERE last_name = 'W%';
Empty set (0.00 sec)

The only way for such a comparison to succeed is for the column to contain exactly
the string 'w%' or 'w%'.

This pattern matches last names that contain ‘W’ or ‘w’ anywhere in the name, not just at
the beginning:
mysql> SELECT last_name, first_name FROM president

-> WHERE last_name LIKE '$W%';
Hommmmm e Fommmmm oo +

| wilson

|
+

| Washington | George |
|
| Eisenhower |
+

This pattern matches last names that contain exactly four characters:

mysql> SELECT last_name, first_name FROM president

-> WHERE last_name LIKE '__ ';
Hmmm e Hmmm o +
| last_name | first_name |
e - +
Polk	James K.
Taft	william H.
Ford	Gerald R.
Bush	George H.W.
Bush	George W.
e - +

MySQL also provides another form of pattern matching based on regular expressions
and the REXEXP operator. LIKE and REGEXP are discussed further in Section 3.5.1.1,
“Operator Types,” and Appendix C.

1.4.9.8 Letting and Using User-Defined Variables

MySQL enables you to define your own variables. These can be set using query results,
which provides a convenient way to save values for use in later queries. Suppose that you
want to find out which presidents were born before Andrew Jackson.To determine that,
you can retrieve his birth date into a variable and then select other presidents with a birth
date earlier than the value of the variable:

1.4 A MySQL Tutorial

mysgl> SELECT @birth := birth FROM president
-> WHERE last_name = 'Jackson’' AND first_name = 'Andrew’;

| @birth := birth |

mysql> SELECT last_name, first_name, birth FROM president
-> WHERE birth < @birth ORDER BY birth;

Fmmm e o B T +
| last_name | first_name | birth

Fmmmm - Fmmm - B T +
Washington	George	1732-02-22
Adams	John	1735-10-30
Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
Fmmmm - Fmmm - B T +

User variables are named using @var_name syntax and assigned a value in a SELECT
statement using an expression of the form @var_name: = value. The first query there-
fore looks up the birth date for Andrew Jackson and assigns it to the ebirth variable. (The
result of the SELECT still is displayed; assigning a query result to a variable doesn’t suppress
the query output.) The second query refers to the variable and uses its value to find other
president rows with a lesser birth value.

The preceding problem actually could be solved in a single query using a join or a sub-
query, but we’re not to the point of writing those yet. Besides, sometimes it’s just easier to
use a variable.

Variables also can be assigned using a SET statement. In this case, either = or : = are al-
lowable as the assignment operator:
mysqgl> SET @today = CURDATE();
mysql> SET @one_week_ago := DATE_SUB(@today, INTERVAL 7 DAY);
mysql> SELECT Q@today, @one_week_ago;

1.4.9.9 Generating Summaries

One of the most useful things MySQL can do for you is to boil down lots of raw data
and summarize it. MySQL becomes a powerful ally when you learn to use it to generate
summaries because that is an especially tedious, time-consuming, error-prone activity
when done manually.

75

76

Chapter 1 Getting Started with MySQL

One simple form of summarizing is to determine which unique values are present in a
set of values. Use the prsTINCT keyword to remove duplicate rows from a result. For ex-
ample, the different states in which presidents have been born can be found like this:

mysgl> SELECT DISTINCT state FROM president ORDER BY state;

Another form of summarizing involves counting, using the cOUNT () function. If you
use COUNT (*), it tells you the number of rows selected by your query. If a query has no
WHERE clause, it selects all rows, so COUNT (*) tells you the number of rows in your table.
The following query shows how many membership rows the Historical League member
table contains:

mysgl> SELECT COUNT(*) FROM member;

o +
| COUNT(*) |
Fmmm - +
| 102 |
o +

If'a query does have a WHERE clause, COUNT (*) tells you how many rows the clause
matches. This query shows how many quizzes you have given to your class so far:

mysqgl> SELECT COUNT(*) FROM grade_event WHERE category = 'Q';

1.4 A MySQL Tutorial

COUNT (*) counts every row selected. By contrast, COUNT (col_name) counts only non-
NULL values. The following query demonstrates these differences:
mysgl> SELECT COUNT(*), COUNT(email), COUNT(expiration) FROM member;
Fmm - o o +
COUNT (email) COUNT (expiration) |

This shows that although the member table has 102 rows, only 80 of them have a value
in the email column. It also shows that six members have a lifetime membership. (A NULL
value in the expiration column indicates a lifetime membership, and since 96 out of 102
rows are not NULL, that leaves six.)

COUNT () combined with DISTINCT counts the number of distinct non-NULL values in a
result. For example, to count the number of different states in which presidents have been
born, do this:

mysgl> SELECT COUNT(DISTINCT state) FROM president;

e +
| COUNT(DISTINCT state) |
D e +
| 20 |
o +

You can produce an overall count of values in a column, or break down the counts by
categories. For example, you may know the overall number of students in your class as a
result of running this query:

mysqgl> SELECT COUNT(*) FROM student;

Fmmmm—————— +
| COUNT(*) |
- +
| 31|
dommm - +

But how many students are boys and how many are girls? One way to find out is by
asking for a count for each sex separately:

mysqgl> SELECT COUNT(*) FROM student WHERE sex='f';

- +
| COUNT(*) |
fommmmm - +
| 15 |
Fmmmm—————— +

mysql> SELECT COUNT(*) FROM student WHERE sex='m';

77

78

Chapter 1 Getting Started with MySQL

o +
| COUNT(*) |
Fomm +
| 16 |
Fmmm——————— +

However, although that approach works, it’s tedious and not really very well suited for
columns that might have several different values. Consider how you’d determine the num-
ber of presidents born in each state this way.You’d have to find out which states are repre-
sented so as not to miss any (SELECT DISTINCT state FROM president), and then run a
SELECT COUNT (*) query for each state. That is clearly something you don’t want to do.

Fortunately, it’s possible to use a single query to count how many times each distinct
value occurs in a column. For the student list, count boys and girls separately using a
GROUP BY clause:

mysql> SELECT sex, COUNT(*) FROM student GROUP BY sex;

Fo———— Fommm +
| sex | COUNT(*) |
Fm———— o ————— +
7 15 |
[m 16 |
+-———= Fomm +

The same form of query tells us how many presidents were born in each state:

mysql> SELECT state, COUNT(*) FROM president GROUP BY state;

e I I e N N L S T~ e e S S S SRR Y

1.4 A MySQL Tutorial

When you count values in groups this way, the GROUP BY clause is necessary; it tells
MySQL how to cluster values before counting them.You’ll just get an error if you omit it.

The use of COUNT (*) with GROUP BY to count values has a number of advantages over
counting occurrences of each distinct column value individually:

= You don’t have to know in advance what values are present in the column you're
summarizing.

= You need only a single query, not several.

= You get all the results with a single query, so you can sort the output.

The first two advantages are important for expressing queries more easily. The third ad-
vantage is important because it affords more flexibility in displaying results. By default,
MySQL uses the columns named in the GRoOUP BY clause to sort the results, but you can
specify an ORDER BY clause to sort in a difterent order. For example, if you want number
of presidents grouped by state of birth, but sorted with the most well-represented states
first, you can use an ORDER BY clause as follows:

mysql> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state ORDER BY count DESC;

79

80

Chapter 1 Getting Started with MySQL

When the column you want to use for sorting is produced by a summary function,
you cannot refer to the function directly in the ORDER BY clause. Instead, give the column
an alias and refer to it that way. The preceding query demonstrates this, where the
COUNT (*) column is aliased as count. Another way to refer to such a column in an ORDER
BY clause is by its position in the output. The previous query could have been written as
follows instead:

SELECT state, COUNT(*) FROM president
GROUP BY state ORDER BY 2 DESC;

Referring to columns by position is allowable in MySQL, but problematic:

= Use of column positions leads to less understandable queries because numbers are
less meaningful than names.

» If you add, remove, or reorder output columns, you must remember to check the
ORDER BY clause and fix the column number if it has changed.

» The syntax of referring to column positions in ORDER BY clauses is no longer part of

standard SQL and should be considered deprecated.

Aliases have none of those problems.

If you want to group results using GROUP BY with a calculated column, you can refer to
it using an alias or column position, just as with oRDER BY.The following query deter-
mines how many presidents were born in each month of the year:
mysql> SELECT MONTH(birth) AS Month, MONTHNAME(birth) AS Name,

-> COUNT(*) AS count
-> FROM president GROUP BY Name ORDER BY Month;

Fmmm T fmmm +
| Month | Name | count |
B P - +
1	January	4
2	February	4
3	March	4
4	April	4
™ 2		
6	June	1
7	July	4
8	August	4
9	September	1
10	October	6
11	November	5
12	December	3
e P e +

COUNT () can be combined with orRDER BY and LIMIT. For example, to find the four
most well-represented states in the president table, use this statement:

1.4 A MySQL Tutorial

mysgl> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state ORDER BY count DESC LIMIT 4;

tmmmm Hmmm e +
| state | count |
fm———— fmm +
[va | 8 |
| on | 7
| wa 4
| oy 4]
tmmm [— +

If you don’t want to limit query output with a LIMIT clause, but rather by looking for
particular values of COUNT (), use a HAVING clause. HAVING is similar to WHERE in that it
specifies conditions that must be satisfied by output rows. It differs from WHERE in that it
can refer to the results of summary functions like counT (). The following query will tell
you which states are represented by two or more presidents:

mysgl> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state HAVING count > 1 ORDER BY count DESC;

More generally, this is the type of query to run when you want to find duplicated val-
ues in a column. Or, to find nonduplicated values, use HAVING count = 1.

There are several summary functions other than counT ().The MIN(),MAX (), SUM(),
and ava () functions are useful for determining the minimum, maximum, total, and aver-
age values in a column.You can even use them all at the same time.The following query
shows various numeric characteristics for each quiz and test you've given. It also shows
how many scores go into computing each of the values. (Some students may have been
absent and are not counted.)
mysgl> SELECT

-> event_id,

-> MIN(score) AS minimum,

-> MAX(score) AS maximum,

-> MAX(score)-MIN(score)+l AS span,
-> SUM(score) AS total,

-> AVG(score) AS average,

-> COUNT(score) AS count

-> FROM score

81

82

Chapter 1 Getting Started with MySQL

-> GROUP BY event id;

Fomm e Fommm Fommm to—m R B et R +
| event_id | minimum | maximum | span | total | average | count |
Hmmmm oo Hmmm e Hmmmmmmm e tmmmm Hmmmmm e e R +
1	9	20	12	439	15.1379	29
2	8	19	12	425	14.1667	30
3	60	97	38	2425	78.2258	31
4		20	14	379	14.0370	27
5		20	13	383	14.1852	27
6	62	100	39	2325	80.1724	29
fmm Fmm fmm o fmm Fmm fmm +

This information might be more meaningful if it was clear whether the event_id val-
ues represented quizzes or tests, of course. However, to produce that information, we need
to consult the grade_event table as well; we’ll revisit this query in Section 1.4.9.10,
“Retrieving Information from Multiple Tables.”

If you want to produce extra output lines that give you a “summary of summaries,” add
a WITH ROLLUP clause. This tells MySQL to calculate “super-aggregate” values for the
grouped rows. Here’s a simple example based on an earlier statement that counts the num-
ber of students of each sex. The wITH ROLLUP clause produces another line that summa-
rizes the counts for both sexes:

mysqgl> SELECT sex, COUNT(*) FROM student GROUP BY sex WITH ROLLUP;

tm——— tmmmm +
| sex | COUNT(*) |
+-———= - +
7| 15 |
[| 16 |
| NULL| 31 |
tm——— tmmmm +

The NULL in the grouped column indicates that corresponding count is the summary
value for the preceding groups.

WITH ROLLUP can be used with the other aggregate functions as well. The following
statement calculates grade summaries as just shown a few paragraphs earlier, but also pro-
duces an extra super-aggregate line:

mysql> SELECT
-> event_id,
-> MIN(score) AS minimum,
-> MAX(score) AS maximum,
-> MAX(score)-MIN(score)+l AS span,
-> SUM(score) AS total,
-> AVG(score) AS average,
-> COUNT(score) AS count
-> FROM score
-> GROUP BY event_id
-> WITH ROLLUP;

S B +
| event_id | minimum |
tmmmmmmm - o mmm e +
| 1 9 |
| 2 | 8 |
| 3 60 |
| 4 7
| 5 | 8 |
| 6 | 62 |
| NULL | 7
Fmmmm o o +

N
|

N
|
|
|
|
|
|
|

N

N
|

N
|
|
|
|
|
|
|

N

N
|

N
|
|
|
|
|
|
|

N

1.4 A MySQL Tutorial

In this output, the final line displays aggregate values calculated based on all the pre-

ceding group summary values.

WITH ROLLUP is useful because it provides extra information that you otherwise would

have to obtain by running another query. Using a single query is more efficient because

the server need not examine the data twice. If the GROUP BY clause names more than one

column, WITH ROLLUP produces additional super-aggregate lines that contain higher-level

summary values.

Summary functions are fun to play with because they’re so powerful, but it’s easy to get

carried away with them. Consider this query:

mysql> SELECT

-> state AS State,
-> AVG(TIMESTAMPDIFF (YEAR, birth, death)) AS Age
-> FROM president WHERE death IS NOT NULL
-> GROUP BY state ORDER BY Age;

+-————— o +
| State | Age |
to—m— - to—mm - +
KY	56.0000
vr	58.5000
NC	59.5000
OH	62.2857
NH	64.0000
ny	69.0000
Ng	71.0000
Tx	71.0000
MA	72.0000
va	72.3750
Pa	77.0000
sc	78.0000
ca	81.0000
MO	88.0000
1A	90.0000
NE	93.0000
1L	93.0000
to—m— - to—mm - +

83

84

Chapter 1 Getting Started with MySQL

The query selects presidents who have died, groups them by state of birth, determines
their approximate age at time of death, computes the average age (per state), and then sorts
the results by average age. In other words, the query determines, for nonliving presidents,
the average age of death by state of birth.

And what does that demonstrate? It shows only that you can write the query. It cer-
tainly doesn’t show that the query is worth writing. Not all things you can do with a data-
base are equally meaningful. Nevertheless, people sometimes go query-happy when they
find out what they can do with their database. This may account for the rise of increas-
ingly esoteric and bizarre statistics on televised sporting events over the last few years. The
sports statisticians can use their databases to figure out everything you’d ever want to
know about a team, and also everything you'd never want to know. Do you really care
which third-string quarterback holds the record for most interceptions on third down
when his team is leading by more than 14 points with the ball inside the 15-yard line in
the last two minutes of the second quarter?

1.4.9.10 Retrieving Information from Multiple Tables

The statements that we’ve written so far have pulled data from a single table. But MySQL
is capable of working much harder for you. I've mentioned before that the power of a re-
lational DBMS lies in its capability to combine information from multiple tables to answer
questions that can’t be answered from individual tables alone. This section describes how
to write statements that do that.

One type of operation that selects information from multiple tables is called a “join”
because you're producing a result by joining the information in one table to the informa-
tion in another table. This is done by matching up common values in the tables. Another
type of multiple-table operation uses one SELECT nested within another SELECT. The
nested SELECT is called a “subquery.” This section describes both types of operations.

Let’s work through a join example. Earlier, in Section 1.4.6.2, “Tables for the Grade-
Keeping Project,” a query to retrieve quiz or test scores for a given date was presented
without explanation. Now it’s time for the explanation. The query actually involves a
three-way join, so we’ll build up to it in two steps. In the first step, we construct a query
to select scores for a given date as follows:

mysqgl> SELECT student_id, date, score, category
-> FROM grade_event INNER JOIN score
-> ON grade_event.event_id = score.event_id
-> WHERE date = '2008-09-23';

Hmmm oo Hmmmmmmmm oo Hmmmm e Hmmmmmmmm o +
| student_id | date | score | category |
fmm B T fmm fmm +
1	2008-09-23	15	@
2	2008-09-23	12	0
3	2008-09-23	11	0
5	2008-09-23	13	Q
6	2008-09-23	18	Q

1.4 A MySQL Tutorial

The query works by finding the grade_event row with the given date ('12008-09-
23 '), and using the event ID in that row to locate scores that have the same event ID. For
each matching grade_event row and score row combination, it displays the student ID,
score, date, and event category.

The query differs from others we have written in two important respects:

» The FroM clause names more than one table because we'’re retrieving data from
more than one table:

FROM grade_event INNER JOIN score

» The on clause specifies that the grade_event and score tables are joined on the ba-
sis of matching up the event_id values in each table:

ON grade_event.event_id = score.event_id

Notice how we refer to the event_id columns as grade_event.event_id and
score.event_id using tbIl_name.col_name syntax so that MySQL knows which tables
we're referring to. This is because event_id occurs in both tables, so it’s ambiguous if used
without a table name to qualify it. The other columns in the query (date, score, and
category) can be used without a table qualifier because they appear in only one of the
tables and thus are unambiguous.

I generally prefer to qualify every column in a join to make it clearer (more explicit)
which table each column is part of, and that’s how I'll write joins from now on. In fully
qualified form, the query looks like this:

SELECT score.student_id, grade_event.date, score.score, grade_event.category
FROM grade_event INNER JOIN score

ON grade_event.event_id = score.event_id

WHERE grade_event.date = '2008-09-23"';

The first-stage query uses the grade_event table to map a date to an event ID, and
uses the ID to find the matching scores in the score table. Output from the query con-
tains student_id values, but names would be more meaningful. By using the student
table, we can map student IDs onto names, which is the second step. To accomplish name
display, use the fact that the score and student tables both have student_id columns
enabling the rows in them to be linked. The resulting query is as follows:

mysgl> SELECT
-> student.name, grade_event.date, score.score, grade_event.category
-> FROM grade_event INNER JOIN score INNER JOIN student
-> ON grade_event.event_id = score.event_id
-> AND score.student_id = student.student_id
-> WHERE grade_event.date = '2008-09-23"';

85

86

Chapter 1 Getting Started with MySQL

Joseph

Abby
Nathan

| 2008-09-23 | 12 | @ |
Kyle | 2008-09-23 | 11 | @ |
| 2008-09-23 | 13 | @ |
| 2008-09-23 | 18 | @ |

This query has several differences from the previous one:

The FroM clause now includes the student table because the statement uses it in
addition to the grade_event and score tables.

The student_id column was unambiguous before, so it was possible to refer to it in
either unqualified (student_id) or qualified (score.student_id) form. Now it is
ambiguous because it is present in both the score and student tables. Therefore, it
must be qualified as score.student_id or student.student_id to make it clear
which table to use.

The oN clause has an additional term specifying that score table rows are matched
against student table rows based on student ID:

ON ... score.student_id = student.student_id

The query displays the student name rather than the student ID. (You could display
both if you wanted. Just add student.student_id to the list of output columns.)

‘With this query, you can plug in any date and get back the scores for that date, com-

plete with student names and the score category.You don’t have to know anything about
student IDs or event IDs. MySQL takes care of figuring out the relevant ID values and
using them to match up table rows.

Another task the grade-keeping project involves is summarizing student absences.

Absences are recorded by student ID and date in the absence table. To get student names

(not just IDs), we need to join the absence table to the student table, based on the

student_id value. The following query lists student ID number and name along with a
count of absences:

mysql> SELECT student.student_id, student.name,

-> COUNT (absence.date) AS absences

-> FROM student INNER JOIN absence

-> ON student.student_id = absence.student_id
-> GROUP BY student.student_id;

P e o +
| student_id | name | absences |
Hmm o Hmmm e Hmmm e +
| 3 | Kyle | 1
| 5 | Abby | 1
| 10 | Peter | 2|
| 17 | will | 1
| 20 | Avery | 1|
Hmm o Hmmm e Hmmm e +

1.4 A MySQL Tutorial

Note
Although the GROUP BY column has a qualifier, it isn’t strictly necessary for this query.

GROUP BY refers to output columns, and there is only one such column named
student_id, so MySQL knows which one you mean.

The output produced by the query is fine if we want to know only which students had
absences. But if we turn in this list to the school office, they might say, ““What about the
other students? We want a value for every student.” That’s a slightly different question. It
means we want to know the number of absences, even for students who had none. Be-
cause the question is different, the query that answers it is different as well.

To answer the question, we will use a LEFT JOIN rather than an inner join. LEFT JOIN
tells MySQL to produce a row of output for each row selected from the table named first
in the join (that is, the table named to the left of the LEFT J0IN keywords). By naming
the student table first, we’ll get output for every student, even those who are not repre-
sented in the absence table. To write this query, use LEFT JOIN between the tables named
in the FRoM clause (rather than separating them by a comma), and an on clause that says
how to match up rows in the two tables. The query looks like this:

mysql> SELECT student.student_id, student.name,
-> COUNT (absence.date) AS absences
-> FROM student LEFT JOIN absence
-> ON student.student_id = absence.student_id
-> GROUP BY student.student_id;

ommmm oo fomm e B it +

| student_id | name

Abby
Nathan
Liesl

Earlier, in Section 1.4.9.9,“Generating Summaries,” we ran a query that produced a
numeric characterization of the data in the score table. Output from that query listed
event ID but did not include event dates or categories, because we didn’t know then how
to join the score table to the grade_event table to map the IDs onto dates and cate-
gories. Now we do.The following query is similar to one run earlier, but shows the dates
and categories rather than simply the numeric event IDs:
mysgl> SELECT

-> grade_event.date,grade_event.category,
-> MIN(score.score) AS minimum,

87

88 Chapter 1 Getting Started with MySQL

-> MAX(score.score) AS maximum,

-> MAX(score.score)-MIN(score.score)+l AS span,
-> SUM(score.score) AS total,

-> AVG(score.score) AS average,

-> COUNT (score.score) AS count

-> FROM score INNER JOIN grade_event

-> ON score.event_id = grade_event.event_id

-> GROUP BY grade_event.date;

Hmmm o Hmmm o Hmmm o Hmmm e Hmmm e Hmmm e e tmmm +
| date | category | minimum | maximum | span | total | average | count

Hmmmmm e Hmmmm e Hmmmmm e Hmmmmm e R Hmmmm e e N +
2008-09-03	Q	9	20	12	439	15.1379	29
2008-09-06	O	8	19	12	425	14.1667	30
2008-09-09	T	60	97	38	2425	78.2258	31
2008-09-16	0	7	20	14	379	14.0370	27
2008-09-23	Q	8	20	13	383	14.1852	27
2008-10-01	T	62	100	39	2325	80.1724	29
Hmmmm e Hmmmm o Hmmmm o Hmmmm e e Hmmmm e Hmmmm e tmmm +

You can use functions such as COUNT () and AVG () to produce a summary over multiple
columns, even if the columns come from different tables. The following query determines
the number of scores and the average score for each combination of event date and stu-
dent sex:

mysgl> SELECT grade_event.date, student.sex,
-> COUNT(score.score) AS count, AVG(score.score) AS average
-> FROM grade_event INNER JOIN score INNER JOIN student
-> ON grade_event.event_id = score.event_id
-> AND score.student_id = student.student_id
-> GROUP BY grade_event.date, student.sex;

R e fmm - fmmm o +
| date | sex | count | average |
B T o= fom fmm +
2008-09-03	F	14	14.6429
2008-09-03	M	15	15.6000
2008-09-06	F	14	14.7143
2008-09-06	M	16	13.6875
2008-09-09	F	15	77.4000
2008-09-09	M	16	79.0000
2008-09-16	F	13	15.3077
2008-09-16	M	14	12.8571
2008-09-23	F	12	14.0833
2008-09-23	M	15	14.2667
2008-10-01	F	14	77.7857
2008-10-01	M	15	82.4000
o m o= o o +

1.4 A MySQL Tutorial

We can use a similar query to perform one of the grade-keeping project tasks: comput-
ing the total score per student at the end of the semester. The query is as follows:

SELECT student.student_id, student.name,

SUM (score.score) AS total, COUNT(score.score) AS n
FROM grade_event INNER JOIN score INNER JOIN student
ON grade_event.event_id = score.event_id

AND score.student_id = student.student_id

GROUP BY score.student_id

ORDER BY total;

There is no requirement that a join be performed between different tables. It might
seem odd at first, but you can join a table to itself. For example, you can determine
whether any presidents were born in the same city by checking each president’s birthplace
against every other president’s birthplace:

mysql> SELECT pl.last_name, pl.first_name, pl.city, pl.state
-> FROM president AS pl INNER JOIN president AS p2
-> ON pl.city = p2.city AND pl.state = p2.state
-> WHERE (pl.last_name <> p2.last_name OR pl.first_name <> p2.first_name)
-> ORDER BY state, city, last_name;

Fmmm - - oo B +
| last_name | first_name | city | state |
e e e R +
| Adams | John Quincy | Braintree | MA |
| Adams | John | Braintree | MA |
Fmmm e - oo fmmm - +

There are two tricky things about this query:

= It’s necessary to refer to two instances of the same table, so we create table aliases
(p1,p2) and use them to disambiguate references to the table’s columns. As with col-
umn aliases, the As keyword is optional when naming table aliases.

= Each president’s row matches itself, but we don’t want to see that in the output. The
WHERE clause disallows matches of a row to itself by making sure that the rows being
compared are for different presidents.

A similar query finds presidents who were born on the same day. However, birth dates
cannot be compared directly because that would miss presidents who were born in differ-
ent years. Instead, use MONTH () and DAYOFMONTH () to compare month and day of the birth
date:

mysql> SELECT pl.last_name, pl.first name, pl.birth
-> FROM president AS pl INNER JOIN president AS p2
-> WHERE MONTH(pl.birth) = MONTH(p2.birth)
-> AND DAYOFMONTH(pl.birth) = DAYOFMONTH(p2.birth)
-> AND (pl.last_name <> p2.last_name OR pl.first_name <> p2.first_name)
-> ORDER BY pl.last_name;
- o - o - +

89

90

Chapter 1 Getting Started with MySQL

| last_name

| |
Hmmmmmm e + +
| Harding | Warren G. | 1865-11-02 |
| Polk | | 1795-11-02 |
e + +

Using DAYOFYEAR () rather than the combination of MONTH () and DAYOFMONTH ()
would result in a simpler query, but it would produce incorrect results when comparing
dates from leap years to dates from nonleap years.

Another kind of multiple-table retrieval uses a “subquery,” which is one SELECT nested
within another. There are several types of subqueries, which are discussed further in
Section 2.9, “Performing Multiple-Table Retrievals with Subqueries.” For now, a couple
of examples will do. Suppose that you want to identify those students who have perfect
attendance. This is equivalent to determining which students are not represented in the
absence table, which can be done like this:

mysql> SELECT * FROM student
-> WHERE student_id NOT IN (SELECT student_id FROM absence);

Nathan
Liesl

The nested SELECT determines the set of student_id values that are present in the
absence table, and the outer SELECT retrieves student rows that don’t match any of
those IDs.

A subquery also provides a single-statement solution to the question asked in Section
1.4.9.8,“Setting and Using User-Defined Variables,” about which presidents were born
before Andrew Jackson.The original solution used two statements and a user variable, but
it can be done with a subquery as follows:

mysql> SELECT last_name, first name, birth FROM president
-> WHERE birth < (SELECT birth FROM president

-> WHERE last_name = 'Jackson’' AND first name = 'Andrew');
P T P e +
| last_name | first_name | birth |
P e P +
Washington	George	1732-02-22
Adams	John	1735-10-30
Jgefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
P e P +

1.4 A MySQL Tutorial

The inner SELECT determines Andrew Jackson’s birth date, and the outer SELECT
retrieves presidents with a birth date earlier than his.

1.4.10 Deleting or Updating Existing Rows

Sometimes you want to get rid of rows or change their contents. The DELETE and UPDATE
statements let you do this. This section discusses how to use them.
The DELETE statement has this form:

DELETE FROM tbIl_name
WHERE which rows to delete;

The wHERE clause that specifies which rows should be deleted is optional, but if you
leave it out, all rows in the table are deleted. In other words, the simplest DELETE statement
is also the most dangerous:

DELETE FROM tbl_name;

That statement wipes out the table’s contents entirely, so be careful with it! To delete
specific rows, use the WHERE clause to identify the rows in which you’re interested. This is
similar to using a WHERE clause in a SELECT statement to avoid selecting the entire table.
For example, to specifically delete from the president table only those presidents born in
Ohio, use this statement:

mysgl> DELETE FROM president WHERE state='OH';
Query OK, 7 rows affected (0.00 sec)

If you're not really sure which rows a DELETE statement will remove, it’s often a good
idea to test the WHERE clause first by using it with a SELECT statement to find out which
rows it matches. This can help you ensure that you’ll actually delete the rows you intend,
and only those rows. Suppose that you want to delete the row for Teddy Roosevelt. Would
the following statement do the job?

DELETE FROM president WHERE last_name='Roosevelt';
Yes, in the sense that it would delete the row you have in mind. No, in the sense that it

also would delete the row for Franklin Roosevelt. It’s safer to check the WHERE clause with
a SELECT statement first, like this:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='Roosevelt';

| Roosevelt
| Roosevelt

91

92

Chapter 1 Getting Started with MySQL

From that you can see the need to be more specific by adding a condition for the
first name:

mysqgl> SELECT last_name, first_name FROM president
-> WHERE last_name='Roosevelt' AND first_name='Theodore';

Now you know the WHERE clause that properly identifies only the desired row, and the
DELETE statement can be constructed correctly:

mysgl> DELETE FROM president
-> WHERE last_name='Roosevelt' AND first_name='Theodore';

If that seems like a lot of work to delete a row, remember this: Better safe than sorry!
But remember this, too: In some situations, you can minimize typing through the use of
copy and paste or input line-editing techniques. See Section 1.5, “Tips for Interacting
with mysql,” for more information.

To modify existing rows, use UPDATE, which has this form:

UPDATE tbIl_name
SET which columns to change
WHERE which rows to update;

The WHERE clause is just as for DELETE. It’s optional, so if you don’t specify one, every
row in the table will be updated. For example, the following statement changes the name
of each student to “George”:

mysql> UPDATE student SET name='George';

Obviously, you must be careful with statements like that, so normally you add a wHERE
clause to be more specific about which rows to update. Suppose that you recently added a
new member to the Historical League but filled in only a few columns of his entry:

mysqgl> INSERT INTO member (last_name,first_name)
-> VALUES('York', 'Jerome');

Then you realize you forgot to set his membership expiration date.You can fix that
with an UPDATE statement that includes an appropriate WHERE clause to identify which row
to change:

mysqgl> UPDATE member
-> SET expiration='2009-7-20'
-> WHERE last_name='York' AND first_name='Jerome';

You can update multiple columns with a single statement. The following UPDATE modi-
fies Jerome’s email and postal addresses:

mysqgl> UPDATE member

1.5 Tips for Interacting with mysgl

-> SET email='jeromey@aol.com', street='123 Elm St',
-> city='Anytown', state='NY', zip='01003"'
-> WHERE last_name='York' AND first_name='Jerome';

You can also “unset” a column by setting its value to NULL (assuming that the column
allows NULL values). If at some point in the future Jerome later decides to pay the big
membership renewal fee that enables him to become a lifetime member, you can mark his
row as “never expires” by setting his expiration date to NULL:

mysgl> UPDATE member
-> SET expiration=NULL
-> WHERE last_name='York' AND first_name='Jerome';

‘With UPDATE, just as for DELETE, it’s not a bad idea to test a WHERE clause using a SELECT
statement to make sure that you're choosing the right rows to update. Otherwise, if your
selection criteria are too narrow or too broad, you’ll update too few or too many rows.

If you've tried the statements in this section, you’ll have deleted and modified rows in
the sampdb tables. Before proceeding to the next section, you should undo those changes.
Do that by reloading the tables using the instructions given earlier, in Section 1.4.8,
“Resetting the sampdb Database to a Known State.”

1.5 Tips for Interacting with mysql

This section discusses how to interact with the mysql client program more efficiently and
with less typing. It also describes how to connect to the server more easily and how to en-
ter statements without typing each one by hand.

1.5.1 Simplifying the Connection Process

When you invoke mysql, it’s likely that you need to specify connection parameters such as
hostname, username, or password. That’s a lot of typing just to run a program, and it gets
tiresome very quickly. There are several ways to minimize the amount of typing necessary
to establish a connection to the MySQL server:

= Store connection parameters in an option file.
= Repeat commands by taking advantage of your shell’s command history capabilities.

= Define a mysgl command line shortcut using a shell alias or script.

1.5.1.1 Using an Option File

MySQL enables you to store connection parameters in an option file. Then you don’t
have to type the parameters each time you run mysgl; they are used just as if you had en-
tered them on the command line. A big advantage of this technique is that the parameters
can also be used by other MySQL clients such as mysglimport or mysglshow. In other
words, an option file makes it easier to use not just mysgl but many other programs as
well. This section briefly describes how to set up an option file for use by client programs.
Additional details can be found in Section E2.2,“Option Files.”

93

94

Chapter 1 Getting Started with MySQL

Under Unix, you set up an option file by creating a file named ~/ .my.cnf (that is, a
file named .my.cnf in your home directory). Under Windows, create an option file
named my . ini in your MySQL installation directory, or in the root directory of the C
drive (that is, c: \my.ini). An option file is a plain text file; you can create it using any text
editor. The file’s contents should look something like this:

[client]
host=server_host
user=your._name
password=your_pass

The [client] line signals the beginning of the client option group. MySQL pro-
grams read the lines following it to obtain option values, until the end of the file or until a
different option group begins. Replace server_host, your_name, and your_pass with
the hostname, username, and password that you specify when you connect to the server.
For example, if the server is running on the host cobra.snake.net and your MySQL
username and password are sampadm and secret, put these lines in the .my.cnf file:
[client]
host=cobra.snake.net
user=sampadm
password=secret

The [client] line is required, to define where the option group begins, but the lines
that define parameter values are optional; you can specify just the ones you need. For ex-
ample, if you're using Unix and your MySQL username is the same as your Unix login
name, there is no need to include a user line. The default host is localhost, so if you
connect to a server running on the local host, no host line is necessary.

Under Unix, an additional precaution that you should take after creating the option
file is to set its access mode to a restrictive value to make sure that no one else can read or
modify it. Either of the following commands make the file accessible only to you:

% chmod 600 .my.cnf
% chmod u=rw,go-rwx .my.cnf

1.5.1.2 Using Your Shell’s Command History

Shells such as tcsh and bash remember your commands in a history list and enable you
to repeat commands from that list. If you use such a shell, your history list can help you
avoid typing entire commands. For example, if you’ve recently invoked mysql, you can
execute it again like this:

% !my
The ‘1’ character tells your shell to search through your command history to find the
most recent command that begins with “my”” and reissue it as though you’d typed it again

yourself. Some shells also enable you to move up and down through your history list using
the Up arrow and Down arrow keys (or perhaps Control-P and Control-N).You can

1.5 Tips for Interacting with mysgl

select the command you want this way and then press Enter to execute it. tcsh and bash
have this facility, and other shells may as well. Check the documentation for your shell to
find out more about using your history list.

1.5.1.3 Using Shell Aliases and Scripts

If your shell provides an alias facility, you can set up a short command name that maps to a
long command. For example, in csh or tcsh, you can use the alias command to set up
an alias named sampdb like this:

alias sampdb 'mysgl -h cobra.snake.net -p -u sampadm sampdb'

The syntax for bash is slightly different:

alias sampdb='mysgl -h cobra.snake.net -p -u sampadm sampdb'

Defining the alias makes the following two commands equivalent:

% sampdb
% mysql -h cobra.snake.net -p -u sampadm sampdb

Clearly, the first is easier to type than the second. To make the alias take effect each
time you log in, put the alias command in one of your shell’s startup files (for example,
.tcshre for tcsh, or .bashrc or .bash_profile for bash).

On Windows, a similar technique is to create a shortcut that points to the mysqgl
program, and then edit the shortcut’s properties to include the appropriate connection
parameters.

Another way to invoke commands with less typing is to create a script that executes
mysql for you with the proper options. On Unix, a shell script that is equivalent to the
sampdb alias just shown looks like this:

#!/bin/sh
exec mysgl -h cobra.snake.net -p -u sampadm sampdb

If you name the script sampdb and make it executable (with chmod +x sampdb), you can
type sampdb at the command prompt to run mysql and connect to the sampdb database.

On Windows, a batch file can be used to do the same thing. Name the file sampdb.bat
and put the following line in it:

mysgl -h cobra.snake.net -p -u sampadm sampdb

This batch file can be run either by typing sampdb at the prompt in a console window
or by double-clicking its Windows icon.

If you need to access several databases or connect to several hosts, you can define mul-
tiple aliases, shortcuts, or scripts, each of which invokes mysql with different options.

1.5.2 Issuing Statements with Less Typing

mysql is an extremely useful program for interacting with your database, but its interface
is most suitable for short, single-line queries. Although mysql itself doesn’t care whether a
query spreads across multiple lines, long queries aren’t much fun to type. And it’s annoying

95

96

Chapter 1 Getting Started with MySQL

to enter a query, only to discover that you must retype it because it has a syntax error.You
can use several techniques to avoid needless retyping:

= Use mysql’s input line-editing facility.
= Use copy and paste.
= Run mysql in batch mode.

1.5.2.1 Using the mysql Input Line Editor

mysgl has the GNU Readline library built in to enable input line editing.You can manip-
ulate the line you’re currently entering, or recall previous input lines and re-enter them,
either as is or after further modification. This is convenient when you're entering a line
and spot a typo; you can back up within the line to correct the problem before pressing
Enter. If you enter a query that has a mistake in it, you can recall the query, edit it to fix
the problem, and then resubmit it. (This is easiest if you type the entire query on one
line.)

Some of the key sequences you will find useful are shown in Table 1.4, but there are
many input editing commands available in addition to those shown in the table.You can
read about them in the command editing chapter of the bash manual, available online
from the GNU Project Web site at http://www.gnu.org/manual/.

Table 1.4 mysql Input Editing Commands

Key Sequence Meaning

Up arrow or Control-P Recall previous line

Down arrow or Control-N Recall next line

Left arrow or Control-B Move cursor left (backward)
Right arrow or Control-F Move cursor right (forward)
Escape b Move backward one word
Escape f Move forward one word
Control-A Move cursor to beginning of line
Control-E Move cursor to end of line
Control-D Delete character under cursor
Delete Delete character to left of cursor
Escape D Delete word

Escape Backspace Delete word to left of cursor

Control-K Erase everything from cursor to end of line

http://www.gnu.org/manual/

1.5 Tips for Interacting with mysqgl

Table 1.4 mysql Input Editing Commands

Key Sequence

Control-_

Meaning

Undo last change; can be repeated

On Windows, the Readline editing capabilities are not available. However, Windows it-

self supports the commands shown in Table 1.5, so they become available to mysql.

Table 1.5 Windows Input Editing Commands

Key Sequence
Up arrow

Down arrow

Left arrow

Right arrow
Control-Left Arrow
Control-Right Arrow
Home

End

Delete
Backspace

Esc

Page Up

Page Down

F3

F7

FO

F8, F5

Meaning

Recall previous line

Recall next line

Move cursor left (backward)

Move cursor right (forward)

Move backward one word

Move forward one word

Move cursor to beginning of line

Move cursor to end of line

Delete character under cursor

Delete character to left of cursor

Erase line

Recall first command entered

Recall last command entered

Recall last command entered

Display command pop-up; select with Up arrow/Down arrow
Display command pop-up; select with command number

Cycle through command list

The following example describes a simple use for input editing. Suppose that you've

entered this query while using mysql:

mysgl> SHOW COLUMNS FROM persident;

97

98 Chapter 1 Getting Started with MySQL

If you notice that you’ve misspelled “president” as “persident” before pressing Enter,
you can fix the query like this:

[T3EL

Press Left arrow a few times to move the cursor left until it’s on the “s”.

2. To erase the “er”, press Delete or Backspace twice (whichever one erases the char-
acter to the left of the cursor on your system).

Type “re” to fix the error.

Press Enter to issue the query.

If you press Enter before you notice the misspelling, that’s not a problem. After mysql
displays its error message, press Up arrow to recall the line, and then edit it as just

described.

1.5.2.2 Using Copy and Paste to Issue Statements
If you work in a windowing environment, the text of statements that you find useful can
be saved in a file and recalled by copy and paste operations:

1. Invoke mysqgl in a terminal window.

2. Open the file containing your statements in a document window. (For example, I
use vi on Unix and gvim on Windows.)

3. To execute a statement stored in your file, select it in the document and copy it.
Then switch to your terminal window and paste the statement into mysql.

The procedure sounds cumbersome when written out like that, but when you're actu-
ally carrying it out, it provides a way to enter statements quickly and with no typing. With
a little practice, it becomes second nature.

You can use copy and paste in the other direction, too (from your terminal window to
your statement file). On Unix, when you enter statements in mysql, they are saved in a file
named .mysqgl_history in your home directory. If you manually enter a statement that
you want to save for further reference, quit mysqgl, open .mysqgl_history in an editor, and
then copy and paste the statement from .mysqgl_history into your statement file.

1.5.2.3 Using mysql to Execute Script Files
It’s not necessary to run mysql interactively. mysql can read input from a file in noninter-
active (batch) mode. This is useful for statements that you run periodically because you
certainly don’t want to retype them every time you run them. It’s easier to put the state-
ments into a file once, and then have mysql execute the contents of the file as needed.
Suppose that you have a query to find Historical League members who have an inter-
est in a particular area of U.S. history by looking in the interests column of the member
table. For example, to find members with an interest in the Great Depression, you can
write the query like this:

1.5 Tips for Interacting with mysgl

SELECT last_name, first_name, email, interests FROM member
WHERE interests LIKE '%depression%'
ORDER BY last_name, first_name;

Put the query in a file interests.sql, and then execute it by feeding it to mysql
like this:

% mysql sampdb < interests.sql

By default, mysql produces output in tab-delimited format when run in batch mode. If
you want the same kind of table-format output you get when you run mysql interactively,
use the -t option:

% mysql -t sampdb < interests.sql

If you want to save the output, redirect it to a file:

% mysql -t sampdb < interests.sql > interests.out

If you are already running mysql, execute the contents of the file by using a source
command:

mysgl> source interests.sql

To use the query to find members with an interest in Thomas Jefferson, you could edit
the query file to change depression to Jefferson and then run mysql again. That works
okay as long as you don’t use the query very often. If you do, a better method is needed.
On Unix, one way to make the query more flexible is to put it in a shell script that takes
an argument from the script command line and uses it to change the text of the query.
That parameterizes the query so that you can specify the interests value when you run
the script. To see how this works, write a little shell script, interests. sh:

#!/bin/sh

interests.sh - find USHL members with particular interests

if [$# -ne 1]; then echo 'Please specify one keyword'; exit; fi
mysgl -t sampdb <<QUERY_INPUT

SELECT last_name, first_name, email, interests FROM member

WHERE interests LIKE '%$1%'

ORDER BY last_name, first_name;

QUERY_INPUT

The third line makes sure that there is one argument on the command line; it prints a
short message and exits otherwise. Everything between <<QUERY_INPUT and the final
QUERY_INPUT line becomes the input to mysgl. Within the text of the query, the shell re-
places the reference to $1 with the argument from the command line. (In shell scripts, $1,
$2, ... refer to the command arguments.) This causes the query to reflect whatever key-
word you specify on the command line when you run the script.

Before you can run the script, you must make it executable:

% chmod +x interests.sh

99

100

Chapter 1 Getting Started with MySQL

Now you don’t need to edit the script each time you run it. Just tell it what you're
looking for on the command line:

./interests.sh depression
./interests.sh Jefferson

o
%
%

The interests.sh script is located in the misc directory of the sampdb distribution.
An equivalent Windows batch file, interests.bat, is provided there as well.

Note

| suggest that you not install scripts like these publicly because they do not perform any
safety checks on the arguments and thus are subject to SQL injection attacks. Suppose
someone invokes the script like this:

% ./interests.sh "Jefferson';DROP DATABASE sampdb;"

The effect of this is to “inject” a DROP DATABASE statement into the statement to the mysqgl
input in such a way that it actually executes.

1.6 Where to Now?

You know quite a bit about using MySQL now.You can set up a database and create
tables.You can put rows into those tables, retrieve them in various ways, change them, or
delete them. But the tutorial in this chapter only scratches the surface, and there’s still a
lot to know about MySQL.You can see this by considering the current state of our
sampdb database. We’ve created it and its tables and populated them with some initial data.
During the process we’ve seen how to write some of the queries needed for answering
questions about the information in the database. But much remains to be done. For ex-
ample, we have no convenient interactive way to enter new score rows for the grade-
keeping project or new member entries for the Historical League directory. We have no
convenient way to edit existing rows. And we still can’t generate the printed or online
forms of the League directory. These tasks and others are revisited in the upcoming chap-
ters, particularly in Chapter 8, “Writing MySQL Programs Using Per] DBI,” and Chapter
9, “Writing MySQL Programs Using PHP”

Where you go next in this book depends on what you're interested in. If you want to
see how to finish the job we’ve started with our Historical League and grade-keeping
projects, Part II covers how to write MySQL-based programs. If youre going to serve as
the MySQL administrator for your site, Part IIT of this book deals with administrative
tasks. However, I recommend acquiring additional general background in using MySQL
first, by reading the remaining chapters in Part I. These chapters provide further informa-
tion on the syntax and use of SQL statements, discuss how MySQL handles data, and
show how to make your queries run faster. A good grounding in these topics will stand
you in good stead no matter the context in which you use MySQL—whether you’re
running mysqgl, writing your own programs, or acting as a database administrator.

2

Using SQL to Manage Data

Structured Query Language (SQL) is the language that the MySQL server understands
and is the means by which you tell the server how to perform data management opera-
tions. Therefore, fluency with SQL is necessary for effective communication with the
server. When you use a program such as the mysql client, it functions primarily as a way
for you to send SQL statements to the server to be executed. If you write programs in a
language that has a MySQL interface, such as the Perl DBI module or PHP PDO exten-
sion, these interfaces enable you to communicate with the server by issuing SQL
statements.

Chapter 1, “Getting Started with MySQL,” presents a tutorial introduction to many of
MySQLss capabilities, including some basic use of SQL. Now we’ll build on that material
to go into more detail about several areas of SQL implemented by MySQL:

= Changing the SQL mode to affect server behavior

= Naming rules for referring to elements of databases

= Using multiple character sets

= Creating and destroying databases, tables, and indexes

= Obtaining information about databases and their contents

= Retrieving data using joins, subqueries, and unions

= Creating views that provide alternative ways of looking at data in tables
= Using multiple-table deletes and updates

= Performing transactions that enable statements to be grouped or canceled
= Setting up foreign key relationships

= Using the FULLTEXT search engine

The items just listed cover a broad range of topics of what you can do with SQL.
Other chapters provide additional SQL-related information:

= Chapter 4, “Stored Programs,” discusses how to create and use stored functions and
procedures, triggers, and events.

102

Chapter 2 Using SQL to Manage Data

= Chapter 12,“General MySQL Administration,” describes how administrative state-
ments such as GRANT and REVOKE are used for managing user accounts. It also dis-
cusses the privilege system that controls what operations accounts are allowed to
perform.

= Appendix E,“SQL Syntax Reference,” shows the syntax for SQL statements imple-
mented by MySQL. It also covers the syntax for using comments in your SQL
statements.

You can also consult the MySQL Reference Manual, which is especially useful for
changes made in the most recent versions of MySQL.

2.1 The Server SQL Mode

The MySQL server has a system variable named sql_mode that enables you to configure
the SQL mode, which affects several aspects of SQL statement execution. This variable
can be set globally and individual clients can change the mode to affect their own con-
nection to the server. This means that any client can change how the server behaves in re-
lation to itself without impact on other clients.

The SQL mode affects behaviors such as handling of invalid values during data entry
and identifier quoting. The following list describes a few of the possible mode values:

= STRICT_ALL_TABLES and STRICT_TRANS_TABLES enable “strict” mode. In strict
mode, the server is more restrictive about accepting bad data values. (Specifically, it
rejects bad values rather than changing them to the closest legal value.)

= TRADITIONAL is another composite mode. It is like strict mode, but enables other
modes that impose additional constraints for even stricter data checking. Traditional
mode causes the server to behave like more traditional SQL servers with regard to
how it handles bad data values.

= ANSI_QUOTES tells the server to recognize double quote as an identifier quoting
character.

= PIPES_AS_CONCAT causes || to be treated as the standard SQL string concatenation
operator rather than as a synonym for the Or operator.

= ANST is a composite mode. It turns on ANSI_QUOTES, PIPES_AS_CONCAT, and several
other mode values that result in server behavior more like standard SQL than how
it operates by default.

Section 3.3,“How MySQL Handles Invalid Data Values,” discusses the SQL mode
values that aftect handling of erroneous or missing values during data entry. Appendix D,
“System, Status, and User Variable Reference,” describes the full set of allowable mode
values for the sgql_mode variable.

When you set the SQL mode, specify a value consisting of one or more mode values
separated by commas, or an empty string to clear the value. Mode values are not case
sensitive.

2.2 MySQL Identifier Syntax and Naming Rules

To set the SQL mode when you start the server, use the --sgl-mode option on the
mysgld command line or in an option file. On the command line, you might use a setting
like one of these:

--sgl-mode="TRADITIONAL"
--sql-mode="ANSI_QUOTES, PIPES_AS_CONCAT"

To change the SQL mode at runtime, set the sql_mode system variable with a SET
statement.
Any client can set its own session-specific SQL mode:

SET sgl_mode = 'TRADITIONAL';

To set the SQL mode globally, add the croBaL keyword:

SET GLOBAL sqgl_mode = 'TRADITIONAL';

Setting the global variable requires the SUPER administrative privilege. The value be-
comes the default SQL mode for clients that connect afterward.
To determine the current value of the session or global SQL mode, use these statements:

SELECT @@SESSION.sgl_mode;
SELECT @Q@GLOBAL.sqgl_mode;

The value returned consists of a comma-separated list of enabled modes, or an empty
value if no modes are enabled.

For additional information on user privileges and setting or checking system variables,
see Chapter 12.

2.2 MySQL Identifier Syntax and Naming Rules

Almost every SQL statement uses identifiers in some way to refer to a database or its con-
stituent elements such as tables or views, columns, indexes, stored routines, triggers, or
events. When you refer to elements of databases, identifiers must conform to the follow-
ing rules.
Legal characters in identifiers. Unquoted identifiers may consist of alphanumeric

b Ca? :

and ‘¢’. Identifiers can
start with any character that is legal in an identifier, including a digit. However, an un-

characters in the system character set (ut£8), plus the characters‘_
quoted identifier cannot consist entirely of digits because that would make it indistin-
guishable from a number. MySQL’s support for identifiers that begin with a number is
somewhat unusual among database systems. If you use such an identifier, be particularly
careful if it contains an ‘E’ or ‘e’ because those characters can lead to ambiguous expres-
sions. For example, the expression 23e + 14 (with spaces surrounding the ‘+’ sign) means
column 23e plus the number 14, but what about 23e+14? Does it mean the same thing,
or is it a number in scientific notation?

Identifiers can be quoted (delimited) within backtick characters (**’), which allows use
of any character except a byte with value 0 or 255:

CREATE TABLE ‘my table' (‘my-int-column’ INT);

103

104

Chapter 2 Using SQL to Manage Data

Quoting is useful when an identifier is an SQL reserved word or contains spaces or
other special characters. Quoting an identifier also enables it to be entirely numeric,
something that is not true of unquoted identifiers. To include an identifier quote charac-
ter within a quoted identifier, double it.

Prior to MySQL 5.1.6, there are two additional constraints for database and table
identifiers, even for those that are quoted. First, you cannot use the ‘.’ character, because it
is used as the separator character in qualified names such as db_name. tbl_name or
db_name. tbl_name.col_name. Second, you cannot use the Unix or Windows pathname
separator characters (*/” or ‘\’). The pathname separator is disallowed in database and table
identifiers because databases are represented on disk by directories, and tables are repre-
sented on disk by at least one file. Consequently, these types of identifiers must contain
only characters that are legal in directory names and filenames. The Unix pathname sepa-
rator is disallowed on Windows (and vice versa) to make it easier to transfer databases and
tables between servers running on different platforms. (Suppose that you were allowed to
use a slash in a table name on Windows. That would make it impossible to move the table
to Unix, because filenames on that platform cannot contain slashes.)

As of MySQL 5.1.6, the mapping of identifiers as used in SQL statements onto direc-
tory names and filenames has been modified to enable use of characters that are illegal in
earlier versions. In particular, the pathname characters (‘/” or ‘\’), as well as “.” are legal, as
long as the identifier is quoted.

Your operating system might impose additional constraints on database and table iden-
tifiers. See Section 11.2.6,“Operating System Constraints on Database Object Names.”

Aliases for column and table names can be fairly arbitrary. You should quote an alias
within identifier quoting characters if it is an SQL reserved word, is entirely numeric, or
contains spaces or other special characters. Column aliases also can be quoted with single
quotes or double quotes.

Server SQL mode. If the aNsI_QuoTES SQL mode is enabled, you can quote identi-
fiers with double quotes (although backticks still are allowable).

CREATE TABLE "my table" ("my-int-column" INT);

Note
Enabling ANSTI_QUOTES has the additional effect that string literals must be written using

single quotes. If you use double quotes, the server will interpret the value as an identifier,
not as a string.

Names of built-in functions normally are not reserved and can be used as identifiers
without quotes. However, if the IGNORE_SPACE SQL mode is enabled, function names
become reserved and must be quoted if used as identifiers.

For instructions on setting the SQL mode, see Section 2.1,“The Server SQL Mode.”

Identifier length. Most identifiers have a maximum length of 64 characters. The maxi-
mum length for aliases is 256 characters.

Identifier qualifiers. Depending on context, an identifier might need to be qualified
to make clear what it refers to.To refer to a database, just specify its name:

2.2 MySQL Identifier Syntax and Naming Rules

USE db_name;
SHOW TABLES FROM db_name;

To refer to a table, you have two choices:

= A fully qualified table name consists of a database identifier and a table identifier:

SHOW COLUMNS FROM db_name.tbl_name;
SELECT * FROM db_name.tbl_name;

= A table identifier by itself refers to a table in the default (current) database. If sampdb
is the default database, the following statements are equivalent:

SELECT * FROM member;
SELECT * FROM sampdb.member;

If no database has been selected, you cannot refer to a table without specifying a data-
base qualifier because it is unclear which database the table belongs to.

The same considerations about qualifying table names apply to names of views (which
are “virtual” tables) and stored programs.

To refer to a table column, there are three choices:

= A name written as db_name. tbl_name.col_name is fully qualified.

= A partially qualified name written as tbl_name.col_name refers to a column in the
named table in the default database.

= An unqualified name written simply as col_name refers to whatever table is indi-
cated by the surrounding context. The following two queries use the same column
names, but the context supplied by the FrRoM clause of each statement indicates the
table from which to select the columns:

SELECT last_name, first_name FROM president;
SELECT last_name, first_name FROM member;

It’s usually unnecessary to supply fully qualified names, although it’s always legal to do
so if you like. If you select a database with a USE statement, that database becomes the de-
fault database and is implicit in every unqualified table reference. If you're using a SELECT
statement that refers to only one table, that table is implicit for every column reference in
the statement. It’s necessary to qualify identifiers only when a table or database cannot be
determined from context. For example, if a statement refers to tables from multiple data-
bases, any table not in the default database must be referenced using the
db_name. tb1l_name form to let MySQL know which database contains the table. Simi-
larly, if a query uses multiple tables and refers to a column name that is used in more than
one table, it’s necessary to qualify the column identifier with a table identifier to make it
clear which column you mean.

If you use quotes when referring to a qualified name, quote individual identifiers
within the name separately. For example:

SELECT * FROM " sampdb' . member' WHERE ' sampdb' . member’ . member_id® > 100;

105

106

Chapter 2 Using SQL to Manage Data

Do not quote the name as a whole. This statement is incorrect:

SELECT * FROM " sampdb.member' WHERE ' sampdb.member.member_id"® > 100;

The requirement that a reserved word be quoted if used as an identifier is waived if the
word follows a qualifier period because context then dictates that the reserved word is an
identifier.

2.3 Case Sensitivity in SQL Statements

Case sensitivity rules in SQL statements vary for different statement elements, and also de-
pend on what you are referring to and the operating system of the machine on which the
server is running.

SQL keywords and function names. Keywords and function names are not case sen-
sitive. They can be given in any lettercase. The following statements all retrieve the same
information (although the column headings displayed for the result will differ in
lettercase):

SELECT NOW () ;
select now();
sE1EcCT nOw() ;

Database, table, and view names. MySQL represents databases and tables using direc-
tories and files in the underlying filesystem on the server host. As a result, the default case
sensitivity of database and table names depends on the way the operating system on that
host treats filenames. Windows filenames are not case sensitive, so a MySQL server run-
ning on Windows does not treat database and table names as case sensitive. Servers run-
ning on Unix usually treat database and table names as case sensitive because Unix
filenames are case sensitive. An exception is that names in HES+ filesystems under Mac
OS X are not case sensitive.

MySQL represents each view using a file, so the preceding remarks about tables also
apply to views.

Stored program names. Stored function and procedure names and event names are
not case sensitive. Trigger names are case sensitive, which differs from standard SQL.

Column and index names. Column and index names are not case sensitive in
MySQL.The following statements all retrieve the same information:

SELECT name FROM student;
SELECT NAME FROM student;
SELECT nAmE FROM student;

Alias names. By default, table aliases are case sensitive. You can specify an alias in any
lettercase (upper, lower, or mixed), but if you use it multiple times in a statement, you
must use the same lettercase each time. If the lower_case_table_names variable is non-
zero, table aliases are not case sensitive.

String values. Case sensitivity of a string value depends on whether it is a binary or
non-binary string, and, for a non-binary string, on the collation of its character set. This is

2.4 Character Set Support

true for literal strings and the contents of string columns. For further information, see
Section 3.1.2,“String Values.”

You should consider lettercase issues when you create databases and tables on a ma-
chine with case sensitive filenames if it is possible that you will someday move them to a
machine where filenames are not case sensitive. Suppose that you create two tables named
abce and ABC on a Unix server where those names are treated differently. You would have
problems moving the tables to a Windows machine, where abc and aBc would not be dis-
tinguishable because names are not case sensitive. You would also have trouble replicating
the tables from a Unix master server to a Windows slave server.

One way to avoid having case sensitivity become an issue is to pick a given lettercase
and always create databases and tables using names in that lettercase. Then case of names
won'’t be a problem if you move a database to a different server. I recommend using low-
ercase. This will help also if you are using InnoDB tables, because InnoDB stores database
and table names internally in lowercase.

To force creation of databases and tables with lowercase names even if not specified
that way in CREATE statements, configure the server by setting the
lower_case_table_names system variable. See Section 11.2.6,“Operating System
Constraints on Database Object Names,” for more information.

Regardless of whether a database or table name is case sensitive on your system, you
must refer to it using the same lettercase throughout a given query. That is not true for
SQL keywords, function names, or column and index names, all of which may be referred
to in varying lettercase style throughout a query. However, the query will be more read-
able if you use a consistent lettercase rather than mixed lettercase (SelECt NamE FrOm ...).

2.4 Character Set Support

MySQL supports multiple character sets, and character sets can be specified independently
at the server, database, table, column, or string constant level. For example, if you want a
table’s columns to use latinl by default, but also to include a Hebrew column and a
Greek column, you can do that. In addition, you can explicitly specify collations (sorting
orders). It is possible to find out what character sets and collations are available, and to
convert data from one character set to another.

This section provides general background on using MySQL’s character set support.
Chapter 3, “Data Types,” provides more specific discussion of character sets, collations, bi-
nary versus non-binary strings, and how to define and work with character-based table
columns. Chapter 12, discusses how to configure which character sets the server makes
available.

MySQL character set support provides the following features:

» The server allows simultaneous use of multiple character sets.

= A given character set can have one or more collations.You can choose the collation
most appropriate for your applications.

107

108

Chapter 2 Using SQL to Manage Data

= Unicode support is provided by the ut£8 and ucs2 character sets, with additional
sets available as of MySQL 6.0.4.

= You can specify character sets at the server, database, table, column, and string con-
stant level:

= The server has a default character set.

= CREATE DATABASE enables you to assign the database character set, and ALTER
DATABASE enables you to change it.

» CREATE TABLE and ALTER TABLE have clauses for table- and column-level
character set assignment. (Details are given in Chapter 3.)

s The character set for string constants is determined by context or can be
specified explicitly.

= Functions and operators are available for converting individual values from one
character set to another or for determining the character set of a value. Similarly, the
COLLATE operator can be used to alter the collation of a string and the COLLATION ()
function returns the collation of a string.

= SHOW statements and INFORMATION_SCHEMA tables provide information about the
available character sets and collations.

» The server automatically reorders indexes when you change the collation of an in-
dexed character column.

You cannot mix character sets within a string, or use different character sets for differ-
ent rows of a given column. However, by using a Unicode character set (which represents
characters for many languages within a single encoding), you may be able to implement
multi-lingual support of the type you desire.

2.4.1 Specifying Character Sets

Character set and collation assignments can be made at several levels, from the default used
by the server to the character set used for individual strings.

The server’s default character set and collation are built in at compile time.You
can override them at server startup by using the --character-set-server and
--collation-server options or at runtime by setting the character_set_server and
collation_server system variables. If you specify only the character set, its default colla-
tion becomes the server’s default collation. If you specify a collation, it must be compatible
with the character set. (A collation is compatible with a character set if its name begins
with the character set name. For example, ut £8_danish_ci is compatible with ut£8 but
not with latinl.)

In SQL statements that create databases and tables, two clauses are used for specifying
database, table, and column character set and collation values:

CHARACTER SET charset
COLLATE collation

2.4 Character Set Support

CHARSET can be used as a synonym for CHARACTER SET. charset is the name of a char-
acter set supported by the server, and collation is the name of one of that character set’s
collations. These clauses can be specified together or separately. If both are given, the colla-
tion name must be compatible with the character set. If only CHARACTER SET is given, its
default collation is used. If only COLLATE is given, the character set is implicit in the first
part of the character set name. These rules apply at several levels:

= To specify a default character set and collation for a database when you create it, use
this statement:

CREATE DATABASE db_name CHARACTER SET charset COLLATE collation;

If no character set or collation is given, the server defaults are used for the database.

= To specify a default character set and collation for a table, use CHARACTER SET and
COLLATE table options at table creation time:

CREATE TABLE tbl_name (...) CHARACTER SET charset COLLATE collation;

If no character set or collation is given, the database defaults are used for the table.

= Columns in a table can be assigned a character set and collation explicitly with
CHARACTER SET and COLLATE attributes. For example:

c CHAR(10) CHARACTER SET charset COLLATE collation

If no character set or collation is given, the table defaults are used for the column.
These attributes apply to the CHAR, VARCHAR, TEXT, ENUM, and SET data types.

It’s also possible to sort string values according to a specific collation by using the
COLLATE operator. For example, if ¢ is a latinl column that has a collation of
latinl_swedish_ci, but you want to order it using Spanish sorting rules, do this:

SELECT ¢ FROM t ORDER BY ¢ COLLATE latinl_spanish_ci;

2.4.2 Determining Character Set Availability and Current Settings
To find out which character sets and collations are available, use these statements:
SHOW CHARACTER SET;

SHOW COLLATION;

Each statement supports a LIKE clause that narrows the results to those character set or
collation names matching a pattern. For example, this statement lists the Latin-based char-
acter sets:

mysgl> SHOW CHARACTER SET LIKE 'latin%';

Fmmm o e B T T o +
| Charset | Description | Default collation | Maxlen |
R B e B T B +
| latinl | cpl252 West European | latinl_swedish ci | 1
| latin2 | ISO 8859-2 Central European | latin2 general ci | 1

109

110 Chapter 2 Using SQL to Manage Data

| latin5 | ISO 8859-9 Turkish | latin5_turkish ci | 1
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1

fommmm oo oo oo fommmm +

This statement lists the collations available for the ut£8 character set (collation names
always begin with the character set name):

mysqgl> SHOW COLLATION LIKE 'utf8%';

B T T B P B ettt O T O Tt +
| Collation | Charset | Id | Default | Compiled | Sortlen |
o Hmmm e Hmmm e Hmmm e Hmmm o e +
| utf8_general ci | utfs | 33 | Yes | Yes | 1
| utfs_bin | utfs | 83 | | Yes | 1]
| utf8_unicode_ci | utfs | 192 | | Yes | 8 |
| utf8_icelandic_ci | utfs8 | 193 | | Yes | 8 |
| utf8_latvian_ci | utfs | 194 | | Yes | 8

| utf8_romanian_ci | utf8 | 195 | | Yes | 8 |
| utf8_slovenian_ci | utfs8 | 196 | | Yes | 8 |

As can be seen in the output from these statements, each character set has at least one
collation and one of them is its default collation.

Information about the available character sets and collations is also available in the
CHARACTER_SETS and COLLATIONS tables in the INFORMATION_SCHEMA database (see
Section 2.7,“Obtaining Database Metadata”).

To display the server’s current character set and collation settings, use SHOW VARIABLES:

mysqgl> SHOW VARIABLES LIKE 'character_set_%';

o Hmmm e +
| variable_name | value |
- B +

| character_set_client | latinl |

| character_set_connection | latinl |

| character_set_database | latinl |

| character_set_filesystem | binary |

| character_set_results | latinl |

| character_set_server | latinl |

| character_set_system | utfs |

B et B +

mysqgl> SHOW VARIABLES LIKE 'collation_%';
B e +
| Variable_name | Value |
o B T T +

| collation_connection
| collation_database
| collation_server

2.4 Character Set Support 111

Several of these system variables affect how a client communicates with the server after
establishing a connection. For details, refer to Section 3.1.2.2,“Character Set-Related
System Variables.”

2.4.3 Unicode Support

One of the reasons there are so many character sets is that different character encodings
have been developed for different languages. This presents several problems. For example, a
given character that is common to several languages might be represented by different nu-
meric values in different encodings. Also, different languages require different numbers of
bytes to represent characters. The latinl character set is small enough that every character
fits in a single byte, but languages such as those used in Japan and China contain so many
characters that they require multiple bytes per character.

The goal of Unicode is to provide a unified character-encoding system within which
character sets for all languages can be represented in a consistent manner.

2.4.3.1 Unicode Support Prior to MySQL 6.0

Prior to MySQL 6.0.4, Unicode support includes only characters in the Basic Multilin-
gual Plane (BMP), which is limited to 65,536 characters. There is no support for supple-
mentary characters outside the BMP. Unicode capabilities are provided through two
character sets:

= The ucs2 character set corresponds to the Unicode UCS-2 encoding. It represents
each character using two bytes, most significant byte first. This character set does not
represent characters that require more than two bytes. UCS is an abbreviation for
Universal Character Set.

= The ut£8 character set has a variable-length format in which characters are repre-
sented using from one to three bytes. It corresponds to the Unicode UTF-8 encod-
ing. UTF is an abbreviation for Unicode Transformation Format.

2.4.3.2 Unicode Support in MySQL 6.0 and Up
As of MySQL 6.0.4, Unicode support includes supplementary characters that lie outside
the Basic Multilingual Plane, which has the following implications:

= The ucs2 character set is not changed in MySQL 6.0. Each character still takes two
bytes. However, there are new ut£16 and ut£32 character sets that are like ucs2 but
with support for supplementary characters. For ut£16, BMP characters take two
bytes (as for ucs2) and supplementary characters take four bytes. For ut£32, all char-
acters take four bytes.

= Previously, ut£8 characters required from one to three bytes each. With support for
supplementary characters, ut£8 characters require from one to four bytes each.

= For databases and tables created before MySQL 6.0 that used the ut£8 character set,
they will display as using the ut£8mb3 character set in MySQL 6.0. (For example,

112

Chapter 2 Using SQL to Manage Data

you will see ut£8mb3 if you use SHOW CREATE TABLE.) Except for the name,
utfsmb3 in MySQL 6.0 is exactly the same as ut£8 before 6.0.

To convert tables from the old (three-byte) ut£8 to the new (four-byte) ut£s, dump
the tables with mysgldump before upgrading to MySQL 6.0 and reload the dump file after
upgrading. Be sure to also run mysql_upgrade after upgrading to make sure that any ad-
ditional required changes are made to the system tables in the mysql database.

2.5 Selecting, Creating, Dropping, and Altering
Databases

MySQL provides several database-level statements: USE for selecting a default database,
CREATE DATABASE for creating databases, DROP DATABASE for removing them, and ALTER
DATABASE for modifying global database characteristics.

The keyword SCHEMA is a synonym for DATABASE in any statement where the latter
occurs.

2.5.1 Selecting Databases

The USE statement selects a database to make it the default (current) database for a given
connection to the server:

USE db_name;

You must have some access privilege for the database or you cannot select it.

It is not strictly necessary to select a database explicitly. If you have access to a database,
you can use its tables without selecting it first if you use qualified names that identify both
the database and the table. For example, to retrieve the contents of the president table in
the sampdb database without selecting the database first, write the query like this:

SELECT * FROM sampdb.president;

However, it’s usually more convenient to refer to tables without having to specify a
database qualifier.

Selecting a database doesn’t mean that it must be the default for the duration of the
connection.You can issue USE statements as necessary to switch between databases. Nor
does selecting a database limit you to using tables only from that database. While one data-
base is the default, you can refer to tables in other databases by qualifying their names with
the appropriate database identifier.

When you disconnect from the server, any notion by the server of which database was
the default for the connection disappears. If you connect to the server again, it doesn’t re-
member what database you had selected previously.

2.5 Selecting, Creating, Dropping, and Altering Databases

2.5.2 Creating Databases
To create a database, use a CREATE DATABASE statement:

CREATE DATABASE db_name;

The conditions on database creation are that the name must be a legal identifier, the
database must not already exist, and you must have sufficient privileges to create it.

‘When you create a database, the MySQL server creates a directory under its data direc-
tory that has the same name as the database. The new directory is called the database di-
rectory. The server also creates a db. opt file in the database directory for storing database
attributes.

CREATE DATABASE supports several optional clauses. The full syntax is as follows:

CREATE DATABASE [IF NOT EXISTS] db_name
[CHARACTER SET charset] [COLLATE collation];

Normally, an error occurs if you try to create a database that already exists. To suppress
this error and create a database only if it does not already exist, add an IF NOT EXISTS
clause:

CREATE DATABASE IF NOT EXISTS db_name;

By default, the server character set and collation become the database default character
set and collation.You can use the CHARACTER SET and COLLATE clauses to set these data-
base attributes explicitly. For example:

CREATE DATABASE mydb CHARACTER SET utf8 COLLATE utf8_icelandic_ci;

If CHARACTER SET is given without COLLATE, the default collation for the character set
is used. If COLLATE is given without CHARACTER SET, the first part of the collation name
determines the character set.

The character set must be one of those supported by the server, such as latinl or
sjis.The collation should be a legal collation for the character set. For further discussion
of character sets and collations, see Chapter 3.

MySQL stores the database character set and collation attributes in the db. opt file.
When you create a new table, if the table definition does not specify its own default char-
acter set and collation, the database defaults become the table defaults.

To sce the definition for an existing database, use a SHOW CREATE DATABASE statement:
mysql> SHOW CREATE DATABASE mydb\G
IS RS S EEE S S SRS SRS EEEEEEEEE S 1' row RS S E RS SRS SR SRR EEEEEEEE

Database: mydb
Create Database: CREATE DATABASE ‘mydb’
/*140100 DEFAULT CHARACTER SET utf8
COLLATE utf8_icelandic_ci */

113

114

Chapter 2 Using SQL to Manage Data

2.5.3 Dropping Databases
Dropping a database is as easy as creating one, assuming that you have sufficient privileges:

DROP DATABASE db_name;

The DROP DATABASE statement is not something to use with wild abandon. It removes
the database and all its contents (tables, stored routines, and so forth), which are therefore
gone forever unless you have been making backups regularly.

A database is represented by a directory under the data directory, and the directory is
intended for storage of objects such as tables, views, and triggers. If a DROP DATABASE
statement fails, the reason most likely is that the database directory contains files not asso-
ciated with database objects. DRoP DATABASE will not delete such files, and as a result will
not delete the directory, either. This means that the database directory continues to exist
and will show up if you issue a SHOW DATABASES statement. To really drop the database if
this occurs, manually remove any extraneous files and subdirectories from the database di-
rectory, and then issue the DROP DATABASE statement again.

2.5.4 Altering Databases

The ALTER DATABASE statement makes changes to a database’s global attributes. Currently,
the only such attributes are the default character set and collation:

ALTER DATABASE [db_name] [CHARACTER SET charset] [COLLATE collation];

The earlier discussion for CREATE DATABASE describes the effect of the CHARACTER SET
and COLLATE clauses, at least one of which must be given.
If you omit the database name, ALTER DATABASE applies to the default database.

2.6 Creating, Dropping, Indexing, and
Altering Tables

MySQL enables you to create tables, drop (remove) them, and change their structure with
the CREATE TABLE, DROP TABLE, and ALTER TABLE statements. The CREATE INDEX and
DROP INDEX statements enable you to add or remove indexes on existing tables. The fol-
lowing sections provide the details for these statements, but first it’s necessary to discuss
the storage engines that MySQL supports for managing different types of tables.

2.6.1 Storage Engine Characteristics

MySQL supports multiple storage engines (or “table handlers” as they used to be known).
Each storage engine implements tables that have a specific set of properties or characteris-
tics. Table 2.1 briefly describes the storage engines currently available in MySQL distribu-
tions, and later discussion provides more detail about individual engine features. In
MySQL 5.0 and up, all of the engines shown are available except Falcon, which requires
MySQL 6.0.

2.6 Creating, Dropping, Indexing, and Altering Tables

Table 2.1 MySQL Storage Engines

Storage Engine Description

ARCHIVE Archival storage (no modification of rows after insertion)
BLACKHOLE Engine that discards writes and returns empty reads
CSv Storage in comma-separated values format
EXAMPLE Example (“stub”) storage engine

Falcon Transactional engine

FEDERATED Engine for accessing remote tables

InnoDB Transactional engine with foreign keys

MEMORY In-memory tables

MERGE Manages collections of MyISAM tables

MyISAM The default storage engine

NDB The engine for MySQL Cluster

Some of the engine names have synonyms. MR G_MyISAM and NDBCLUSTER are
synonyms for MER GE and NDB, respectively. The MEMORY and InnoDB storage en-
gines originally were known as HEAP and Innobase, respectively. The latter names are still
recognized but deprecated.

For MySQL 5.1 and up, the server is based on a “pluggable” architecture that provides
a standard interface and that enables engines to be loaded and unloaded at runtime. Con-
sequently, storage engines from third-party developers can be integrated easily into the
server.

2.6.1.1 Checking Which Storage Engines Are Available

The engines actually available to you for a given server depend on your version of’
MySQL, how the server was configured at build time, and the options with which it was
started. For details on configuring and activating storage engines, see Section 12.7,“Stor-
age Engine Configuration.”

To see which storage engines the server knows about, use the SHOW ENGINES state-
ment. [t provides information that helps you determine the answers to questions such as
which transactional storage engines are available. The output shown here uses the format
from MySQL 5.0:

mysgl> SHOW ENGINES\G

LR R R R SRR R EEEEEEEEEEEEEEEE S l. TOow khkkhkhkkkhkkkhkhkkhkhkhkhhkhkhkhkhhkdhkkkxkk
Engine: MyISAM

Support: DEFAULT

Comment: Default engine as of MySQL 3.23 with great performance

115

116

Chapter 2 Using SQL to Manage Data

RS S S SRS S EE SRR SRR EEEEEEEE 2 row EEE SRS E RS SR SRR SR EEEEEEEEE]
Engine: MEMORY

Support: YES

Comment: Hash based, stored in memory, useful for temporary tables

Kkkkkkkhkkkhkkkhkkhkhkkhkkkk* 3 TOW **H*kkkkkkkhkhkhhkkhhkkkkkkkh*

Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys

The value in the Support column is YES or NO to indicate that the engine is or is not
available, DISABLED if the engine is present but turned off, or DEFAULT for the storage en-
gine that the server uses by default. The engine designated as DEFAULT should be consid-

ered available.

SHOW ENGINES as of MySQL 5.1 displays the 5.0 columns plus columns related to
transaction support:

mysql> SHOW ENGINES\G

EEEEEEEEEEEEEEEEEEEEEEEEEEE] 1 row EEEEEEEEEEEEEEEEEEEEEEEEEE RS

Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
XA: YES
Savepoints: YES

Khkkkkhkkkkxhkkhkkhhhkhxhkxkkhkkk* g TOW ***kkkkkkhkkhkhkhkhhhkkkhk k%

Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
Transactions: NO
XA: NO
Savepoints: NO

The Transactions column indicates whether an engine supports transactions. XA and

Savepoints indicate whether an engine supports distributed transactions (not covered in
this book) and partial transaction rollback.

MySQL 5.1 and up has an INFORMATION_SCHEMA table named ENGINES that provides
the same information as SHOW ENGINES.You can use this table as follows to check for

available engines that support transactions (the output shown is from MySQL 6.0, which
includes the Falcon storage engine):

mysgl> SELECT ENGINE FROM INFORMATION SCHEMA.ENGINES
-> WHERE TRANSACTIONS = 'YES';

2.6 Creating, Dropping, Indexing, and Altering Tables

| Falcon |
| InnoDB |

2.6.1.2 Table Representation on Disk

Each time you create a table, MySQL creates a disk file that contains the table’s format
(that is, its definition). The format file has a basename that is the same as the table name
and an . frm extension. That is, for a table named t, the format file is named t . frm. The
server creates the file in the database directory for the database that the table belongs to.
The . frm file is an invariant because there is one for every table, no matter which storage
engine manages the table. The name of a table as used in SQL statements might differ
from the table-name part of the associated . frm file if the name contains characters that
are problematic in filenames. See Section 11.2.6,“Operating System Constraints on Data-
base Object Names,” for a description of the rules for mapping from SQL names to
filenames.

Individual storage engines may also create other files that are unique to the table, to be
used for storing the table’s content. For a given table, any files specific to it are located in
the database directory for the database that contains the table. Table 2.2 shows the file-
name extensions for the table-specific files that some storage engines create.

Table 2.2 Table Files Created by Storage Engines

Storage Engine Files on Disk

MyISAM .MYD (data), .MYI (indexes)

MERGE .MRG (list of constituent MylSAM table names)
InnoDB .ibd (data and indexes)

ARCHIVE .ARZ (data), .ARM (metadata)

Csv .CSV (data), .csM (metadata)

For some storage engines, the format file is the only file specifically associated with a
particular table. Other engines may store table content elsewhere than on disk, or may use
one or more tablespaces (storage areas shared by multiple tables):

= MEMORY table contents are stored in memory, not on disk.

= By default, InnoDB stores table data and indexes in its shared tablespace. That is, all
InnoDB table contents are managed within a shared storage area, not within files
specific to a particular table. InnoDB creates . ibd files only if you configure it to
use individual per-table tablespaces.

= Falcon stores table data and indexes in tablespace files. There is a default Falcon ta-
blespace, and you can create others on demand. Any of them can store the contents
of multiple tables.

117

118

Chapter 2 Using SQL to Manage Data

= The BLACKHOLE and EXAMPLE storage engines don’t actually store any data, so
they need not create any files.

= The FEDERATED engine provides access to tables located at remote MySQL
servers. It doesn’t create any data files itself.

The following sections characterize the features and behavior of selected MySQL stor-
age engines. For additional information about how engines represent tables physically, see
Section 11.2.3,“Representation of Tables in the Filesystem.”

2.6.1.3 The MylSAM Storage Engine
The MyISAM storage engine is the default engine in MySQL, unless you have configured
your server otherwise. The following list describes some of its features:

= MyISAM provides key compression. It uses compression when storing runs of suc-
cessive similar string index values. MyISAM also can compress runs of similar nu-
meric index values because numeric values are stored with the high byte first.
(Index values tend to vary faster in the low-order bytes, so high-order bytes are
more subject to compression.) To enable numeric compression, use the
PACK_KEYS=1 option when creating a MyISAM table.

= MyISAM provides more features for AUTO_INCREMENT columns than do other stor-
age engines. For more information, see Section 3.4, “Working with Sequences.”

= Each MyISAM table has a flag that is set when the table is checked by the server or
by the myisamchk program. MyISAM tables also have a flag indicating whether a
table was closed properly when last used. If the server shuts down abnormally or the
machine crashes, the flags can be used to detect tables that need to be checked. To
do this automatically, start the server with the --myisam-recover option. This
causes the server to check the table flags whenever it opens a MyISAM table and
perform a table repair if necessary.

= MyISAM supports full-text searching through the use of FULLTEXT indexes.
= MyISAM supports spatial data types and SPATIAL indexes.

2.6.1.4 The MERGE Storage Engine

MERGE tables provide a means for grouping a set of MyISAM tables into a single logical
unit. Querying a MERGE table in effect queries all the constituent tables. One advantage
of this is that you can exceed the maximum table size allowed by the filesystem for indi-
vidual MyISAM tables.

The tables that make up a MERGE table must all have the same structure. This means
the columns in each table must be defined with the same names and types in the same or-
der, and the indexes must be defined in the same way and in the same order. It is allowable
to mix compressed and uncompressed tables. (To produce compressed tables, use
myisampack; see Appendix E “MySQL Program Reference.”)

2.6 Creating, Dropping, Indexing, and Altering Tables

For an example, see Section 2.6.2.5,“Using MER GE Tables.” Partitioned tables provide
an alternative to the use of MER GE tables, and are not limited to MyISAM tables. See
Section 2.6.2.6,“Using Partitioned Tables.”

2.6.1.5 The MEMORY Storage Engine

The MEMORY storage engine uses tables that are stored in memory and that have fixed-
length rows, two properties that make them very fast.

MEMORY tables are temporary in the sense that their contents disappear when the
server terminates. That is,a MEMORY table still exists when the server restarts, but will
be empty. However, in contrast to temporary tables created with CREATE TEMPORARY
TABLE, MEMORY tables are visible to other clients.

MEMORY tables have characteristics that enable them to be handled more simply, and
thus more quickly:

= By default, MEMORY tables use hashed indexes, which are very fast for equality
comparisons but slow for range comparisons. Consequently, hashed indexes are used
only for comparisons performed with the = and <=> equality operators, but not for
comparison operators such as < or >. Hashed indexes also are not used in ORDER BY
clauses for this reason.

= Rows are stored in MEMORY tables using fixed-length format for easier process-
ing. A consequence is that you cannot use the BLOB and TEXT variable-length data
types. VARCHAR is a variable-length type, but is allowed because it is treated internally
as CHAR, a fixed-length type.

If you want to use a MEMORY table for comparisons that look for a range of values
using operators such as <, >, or BETWEEN, you can use BTREE indexes instead. (See Section
2.6.4.2,“Creating Indexes.”)

2.6.1.6 The InnoDB Storage Engine

The InnoDB storage engine was originally developed by Innobase Oy, which subse-
quently was acquired by Oracle. InnoDB offers these features:

= Transaction-safe tables with commit and rollback. Savepoints can be created to
enable partial rollback.

= Automatic recovery after a crash.

= Foreign key and referential integrity support, including cascaded delete and update.

= Row-level locking and multi-versioning for good concurrency performance under
query mix conditions that include both retrievals and updates.

= By default, InnoDB manages tables within a single shared tablespace, rather than by
using table-specific files like most other storage engines. The tablespace can consist
of multiple files and can include raw partitions. The InnoDB storage engine, in

119

120

Chapter 2 Using SQL to Manage Data

effect, treats the tablespace as a virtual filesystem within which it manages the con-
tents of all InnoDB tables. Tables thus can exceed the size allowed by the filesystem
for individual files.You can also configure InnoDB to use individual tablespaces, one
per table. In this case, each table has an .ibd file in its database directory.

2.6.1.7 The Falcon Storage Engine
The Falcon storage engine is available as of MySQL 6.0. Falcon offers these features:

= Transaction-safe tables with commit and rollback. Savepoints can be created to en-
able partial rollback.

= Automatic recovery after a crash.

= Flexible locking levels and multi-versioning for good concurrency performance un-
der query mix conditions that include both retrievals and updates.

= Row compression during storage and decompression during retrieval to save space.

» Low overhead for administration.

2.6.1.8 The FEDERATED Storage Engine

The FEDERATED storage engine provides access to tables that are managed by other
MySQL servers. In other words, the contents of a FEDERATED table really are located
remotely. When you create a FEDERATED table, you specify the host where the other
server is running and provide the username and password of an account on that server.
‘When you access the FEDERATED table, the local server connects to the remote server
using this account. For an example, see Section 2.6.2.7,“Using FEDERATED Tables.”

2.6.1.9 The NDB Storage Engine
NDB is MySQLSs cluster storage engine. For this storage engine, the MySQL server actu-
ally acts as a client to a cluster of other processes that provide access to the NDB tables.
Cluster node processes communicate with each other to manage tables in memory. The
tables are replicated among cluster processes for redundancy. Memory storage provides
high performance, and the cluster provides high availability because it survives failure of
any given node.

NDB configuration and use is beyond the scope of this book and is not covered fur-
ther here. See the MySQL Reference Manual for current details.

2.6.1.10 Other Storage Engines
There are several other MySQL storage engines that I will group here under the “miscel-
laneous” category:

» The ARCHIVE engine provides archival storage. It’s intended for storage of large
numbers of rows that are written once and never modified thereafter. For this reason,
it supports only a limited number of statements. INSERT and SELECT work, but

2.6 Creating, Dropping, Indexing, and Altering Tables

REPLACE always acts like INSERT, and you cannot use DELETE or UPDATE. R ows are
compressed during storage and decompressed during retrieval to save space. The
ARCHIVE engine does not support indexing until MySQL 5.1.6, at which point an
AR CHIVE table can include an indexed AUTO_INCREMENT column; other columns
still cannot be indexed.

» The BLACKHOLE engine creates tables for which writes are ignored and reads re-
turn nothing.

= The CSV engine stores data in comma-separated values format. For each table, it
creates a .csv file in the database directory. This is a plain text file in which each
table row appears as a single line. The CSV engine does not support indexing.

= The EXAMPLE engine is a minimal demonstration of how to get started writing a
storage engine. It exists mainly for developers to examine its source code and study
the basic concepts involved in hooking a storage engine into the server.

2.6.1.11 Storage Engine Portability Characteristics
Any table managed by a given MySQL server is portable to another server in the sense
that you can dump it into a text file with mysqldump, move the dump file to the machine
where the other server runs, and load the file to re-create the table. Another kind of
portability is “binary portability,” which means that you can directly copy the disk files
that represent the table to another machine, install them into the corresponding locations
under the data directory, and expect the MySQL server there to be able to use the table.

A general condition for binary portability of tables is that the source and destination
servers must be feature compatible. For example, the destination server must support the
storage engine that manages the tables. If the server does not have the appropriate engine,
it cannot access tables created by that engine on the source server.

Some storage engines create tables that are binary portable and some do not. The fol-
lowing list summarizes binary portability for individual engines:

= MyISAM and InnoDB tables are stored in machine-independent format and are
binary portable, assuming that your processor uses two’s-complement integer arith-
metic and IEEE floating-point format. Unless you have some kind of oddball
machine, neither of these conditions should present any real issues. In practice,
you’re probably most likely to see portability-compromising variation in hardware
if you're using an embedded server built for a special-purpose device, as these
devices sometimes use processors that have nonstandard operating characteristics.

= MERGE tables are portable if their constituent MyISAM files are portable.

= MEMORY tables are not binary portable because their contents are stored in mem-
ory, not on disk.

= CSV tables are binary portable because their .csv data files are plain text.
= BLACKHOLE tables are binary portable because they contain no data.

121

122 Chapter 2 Using SQL to Manage Data

» For the FEDERATED engine, the concept of portability does not apply because
the contents of a FEDERATED table are stored by another server.

» Falcon log and tablespace files are stored in a machine-dependent format. They are
binary portable only between machines that have identical hardware characteristics.
For example, you cannot move the Falcon files from a little-endian machine to a
big-endian machine.

The requirements described earlier for binary portability of MyISAM and InnoDB
tables between two machines are that the tables either contain no floating-point columns,
or that both machines use the same floating-point storage format. “Floating-point” means
FLOAT and DOUBLE here. DECIMAL columns contain fixed-point values that use a portable
storage format.

For InnoDB, an additional condition for binary portability is that database and table
names should be lowercase. InnoDB stores these names in lowercase in its data dictionary,
but the . frm file is created using the table name lettercase that you used in the CREATE
TABLE statement. This can result in a case-sensitivity mismatch if you create databases or
tables using names with uppercase characters and then try to move them to a platform
with differing filename case sensitivity.

For InnoDB, binary portability must be assessed for all InnoDB tables taken as a whole,
not at the individual table level. By default, the InnoDB storage engine stores the contents
of all its tables within a shared tablespace rather than within table-specific files. Conse-
quently, it’s the InnoDB tablespace files that are or are not portable, not individual InnoDB
tables. This means that the floating-point portability constraint applies if any InnoDB table
uses floating-point columns. Even if you configure InnoDB to use individual (per-table)
tablespaces, the data dictionary entries are stored in the shared tablespace.

Regardless of a storage engine’s general portability characteristics, you should not at-
tempt to copy table or tablespace files to another machine after you shut down the server
unless the server shut down cleanly. If you perform a copy after an abnormal shutdown,
you cannot assume the integrity of your tables. The tables may be in need of repair or
there may be transaction information still stored in a storage engine’s log files that needs
to be applied or rolled back to bring tables up to date.

It is sometimes possible to tell a running server to leave tables alone while you copy
their files. However, if the server is running and actively updating the tables or has changes
still cached in memory, the table contents on disk will be in flux and the associated files
will not yield usable table copies. For discussion of the conditions under which you can
avoid stopping the server while copying tables, see Section 14.2,“Performing Database
Maintenance with the Server Running.”

2.6.2 Creating Tables

To create a table, use a CREATE TABLE statement. The full syntax for this statement is com-
plex because there are so many optional clauses, but it’s usually fairly simple to use in

2.6 Creating, Dropping, Indexing, and Altering Tables

practice. For example, most of the CREATE TABLE statements that we used in Chapter 1 are
reasonably uncomplicated. If you start with the more basic forms and work up, you
shouldn’t have much trouble.

A CREATE TABLE statement specifies, at a minimum, the table name and a list of the
columns in it. For example:

CREATE TABLE mytbl
(
name CHAR(20),
birth DATE NOT NULL,
weight INT,
sex ENUM('F','M')
)i

In addition to the column definitions, you can specify how the table should be indexed
when you create it. Another option is to leave the table unindexed when you create it and
add the indexes later. For MyISAM tables, that’s a good strategy if you plan to populate
the table with a lot of data before you begin using it for queries. Updating indexes as you
insert each row is much slower than loading the data into an unindexed MyISAM table
and creating the indexes afterward.

We have already covered the basic syntax for CREATE TaBLE in Chapter 1. Details on
how to write column definitions are given in Chapter 3. Here, we deal more generally
with some important extensions to CREATE TABLE that give you a lot of flexibility in how
you construct tables:

= Table options that modify storage characteristics
= Creating a table only if it doesn’t already exist
= Temporary tables that the server drops automatically when the client session ends

= Creating a table from another table or from the result of a SELECT query
= Using MERGE, partitioned, and FEDERATED tables

2.6.2.1 Table Options
To modify a table’s storage characteristics, add one or more table options following the
closing parenthesis in the CREATE TABLE statement. A complete list of options is given in
the description for CREATE TABLE in Appendix E.

One table option is ENGINE = engine_name, which specifies the storage engine to use
for the table. For example, to create a MEMORY or InnoDB table, write the statement
like this:

CREATE TABLE mytbl (...) ENGINE = MEMORY;
CREATE TABLE mytbl (...) ENGINE = InnoDB;

The engine name is not case sensitive. With no ENGINE option, the server creates the
table using the default storage engine. The built-in default is MyISAM, but you can

123

124

Chapter 2 Using SQL to Manage Data

configure the server to use a different default by starting it with the --default-storage-
engine option. At runtime, you can change the default storage engine by setting the
storage_engine system variable.

In MySQL 5.0, a server is configured such that it knows about a fixed set of storage
engines, some of which are always enabled and some of which might not be. If a CREATE
TABLE statement names a storage engine that is known but unavailable, MySQL creates
the table using the default engine and generates a warning. For example, if AR CHIVE is
known to the server but not available, you would see something like this if you try to cre-
ate an AR CHIVE table:
mysqgl> CREATE TABLE t (i INT) ENGINE = ARCHIVE;

Query OK, 0 rows affected, 1 warning (0.01 sec)
mysql> SHOW WARNINGS;

tmm tom b +
| Level | Code | Message

R — RS i +
| Warning | 1266 | Using storage engine MyISAM for table 't' |
fmm P b +

If you name an unknown storage engine, an error occurs.

In MySQL 5.1 and up, the server uses a pluggable architecture that enables storage en-
gines to be loaded at runtime. The concept of “known to the server” thus changes to
mean “those engines that are currently loaded.” If you create a table but name a storage
engine that is not loaded, two warnings occur:

mysgl> CREATE TABLE t (i INT) ENGINE = ARCHIVE;
Query OK, 0 rows affected, 2 warnings (0.01 sec)
mysqgl> SHOW WARNINGS;

|

+
| Warning | 1286 | Unknown table engine 'ARCHIVE'

| Warning |

N

To make sure that a table uses a particular storage engine, be sure to include the
ENGINE table option.The default engine can be changed, so you might not get the default
that you expect if you omit ENGINE. In addition, verify that the CREATE TABLE statement
produces no warnings, which typically indicate that the specified engine was not available
and that the default engine was used instead.

To prevent MySQL from substituting the default storage engine if the engine you
specify is not available, enable the NO_ENGINE_SUBSTITUTION SQL mode.

To determine which storage engine a table uses, issue a SHOW CREATE TABLE statement
and look for the ENGINE option in the output:
mysqgl> SHOW CREATE TABLE t\G

LR EEEEEEEEEEEEE R row EEEEEEEEEEEE R EEEEEEEEEEEEE R

Table: t

2.6 Creating, Dropping, Indexing, and Altering Tables

Create Table: CREATE TABLE ‘t° (
i’ int(11) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latinl

The storage engine is also available in the output from SHOW TABLE STATUS or the
INFORMATION_SCHEMA.TABLES table.

Some table options apply only to particular storage engines. For example, a MIN_ROWS
= n option can be useful for MEMORY tables to enable the MEMORY storage engine to
optimize memory usage:

CREATE TABLE mytbl (...) ENGINE = MEMORY MIN_ROWS = 10000;

If the MEMORY engine considers the value of MIN_ROWS to be large, it may allocate
memory in larger hunks to avoid the overhead of making many allocation calls.

The Max_RoOwWS and AVG_ROW_LENGTH options can help you size a MyISAM table. By
default, MyISAM creates tables with an internal row pointer size that allows table files to
grow up to 256 TB. If you specify the MAX_RowS and AVG_ROW_LENGTH options, that gives
MyISAM information that it should use a pointer size for a table that can hold at least
MAX_ROWS rOWS.

To modify the storage characteristics of an existing table, table options can be used
with an ALTER TABLE statement. For example, to change mytbl from its current storage
engine to InnoDB, do this:

ALTER TABLE mytbl ENGINE = InnoDB;

For more information about changing storage engines, see Section 2.6.5,“Altering
Table Structure.”

2.6.2.2 Provisional Table Creation

To create a table only if it doesn’t already exist, use CREATE TABLE IF NOT EXISTS.You
can use this statement for an application that makes no assumptions about whether a table
that it needs has been set up in advance. The application can go ahead and attempt to cre-
ate the table as a matter of course. The IF NOT EXISTS modifier is particularly useful for
scripts that you run as batch jobs with mysql. In this context, a regular CREATE TABLE
statement doesn’t work very well. The first time the job runs, it creates the table, but the
second time an error occurs because the table already exists. If you use IF NOT EXISTS,
there is no problem. The first time the job runs, it creates the table, as before. For second
and subsequent times, table creation attempts are silently ignored without error. This en-
ables the job to continue processing as if the attempt had succeeded.

If you use IF NOT EXISTS, be aware that MySQL does not compare the table structure
in the CREATE TABLE statement with that of the existing table. If a table exists with the
given name but has a different structure, the statement does not fail. If that is a risk you do
not want to take, it might be better instead to use DROP TABLE IF EXISTS followed by
CREATE TABLE without IF NOT EXISTS.

125

126

Chapter 2 Using SQL to Manage Data

2.6.2.3 Temporary Tables
If you add the TEMPORARY keyword to a table-creation statement, the server creates a tem-
porary table that disappears automatically when your connection to the server terminates:

CREATE TEMPORARY TABLE tbl_name ... ;

This is handy because you don’t have to bother issuing a DROP TABLE statement to get
rid of the table, and the table doesn’t hang around if your connection terminates abnor-
mally. For example, if you have a complex query stored in a batch file that you run with
mysql and you decide not to wait for it to finish, you can kill the script with impunity
and the server will remove any TEMPORARY tables created by the script.

To create a temporary table using a particular storage engine, add an ENGINE table
option to the CREATE TEMPORARY TABLE statement.

Although the server drops a TEMPORARY table automatically when your client session
ends, you can drop it explicitly as soon as youre done with it to enable the server to free
any resources associated with it. This is a good idea if your session with the server will not
end for a while, particularly for temporary MEMORY tables.

A TEMPORARY table is visible only to the client that creates the table. Different clients
can each create a TEMPORARY table with the same name and without conflict because each
client sees only the table that it created.

The name of a TEMPORARY table can be the same as that of an existing permanent
table. This is not an error, nor does the existing permanent table get clobbered. Instead,
the permanent table becomes hidden (inaccessible) to the client that creates the
TEMPORARY table while the TEMPORARY table exists. Suppose that you create a TEMPORARY
table named member in the sampdb database. The original member table becomes hidden,
and references to member refer to the TEMPORARY table. If you issue a DROP TABLE member
statement, the TEMPORARY table 1s removed and the original member table “reappears.” If
you disconnect from the server without dropping the TEMPORARY table, the server auto-
matically drops it for you. The next time you connect, the original member table is visible
again. (The original table also reappears if you rename a TEMPORARY table that hides it to
have a different name.)

The name-hiding mechanism works only to one level. That is, you cannot create two
TEMPORARY tables with the same name.

Keep in mind the following caveats when considering whether to use a TEMPORARY table:

= If your client program automatically reconnects to the server if the connection is
lost, any TEMPORARY tables will be gone when you reconnect. If you were using the
TEMPORARY table to “hide” a permanent table with the same name, the permanent
table now becomes the table that you use. For example, a DROP TABLE after an un-
detected reconnect will drop the permanent table. To avoid this problem, use DROP
TEMPORARY TABLE instead.

= Because TEMPORARY tables are visible only to the connection that created them, they
are not useful if you are using a connection pooling mechanism that does not guar-
antee the same connection for each statement that you issue.

2.6 Creating, Dropping, Indexing, and Altering Tables

= If you use connection pooling or persistent connections, your connection to the
MySQL server will not necessarily close when your application terminates. Those
mechanisms might hold the connection open for use by other clients, which means
that you cannot assume that TEMPORARY tables will disappear automatically when
your application terminates.

2.6.2.4 Creating Tables from Other Tables or Query Results
It’s sometimes useful to create a copy of a table. For example, you might have a data file
that you want to load into a table using LOAD DATAa, but you’re not quite sure about the op-
tions for specifying the data format.You can end up with malformed rows in the original
table if you don’t get the options right the first time. Using an empty copy of the original
table enables you to experiment with the LOAD DATA options for specifying column and
line delimiters until you're satisfied your input rows are being interpreted properly. Then
you can load the file into the original table by rerunning the LOAD DATA statement with
the original table name.
It’s also sometimes desirable to save the result of a query into a table rather than
watching it scroll oft the top of your screen. By saving the result, you can refer to it
later without rerunning the original query, perhaps to perform further analysis on it.
MySQL provides two statements for creating new tables from other tables or from
query results. These statements have differing advantages and disadvantages:

= CREATE TABLE ... LIKE creates a new table as an empty copy of the original one. It
copies the original table structure exactly so that each column is preserved with all
of its attributes and the index structure also is copied. However, the new table is
empty, so if you want to populate it, a second statement is needed (such as INSERT
INTO ... SELECT). Also, CREATE TABLE ... LIKE cannot create a new table from a sub-
set of the original table’s columns, and it cannot use columns from any other table
but the original one.

= CREATE TABLE ... SELECT creates a new table from the result of an arbitrary SELECT
statement. By default, this statement does not copy all column attributes such as
AUTO_INCREMENT. Nor does creating a table by selecting data into it automatically
copy any indexes from the original table, because result sets are not themselves in-
dexed. On the other hand, CREATE TABLE ... SELECT can both create and populate
the new table in a single statement. It also can create a new table using a subset of
the original table and include columns from other tables or columns created as the
result of expressions.

To use CREATE TABLE ... LIKE for creating an empty copy of an existing table, write a
statement like this:

CREATE TABLE new_tbl_name LIKE tbl_name;

127

128

Chapter 2 Using SQL to Manage Data

To create an empty copy of a table and then populate it from the original table, use
CREATE TABLE ... LIKE followed by INSERT INTO ... SELECT:

CREATE TABLE new_tbl_name LIKE tbhl_name;
INSERT INTO new_tbl_name SELECT * FROM thl_name;

To create a table as a temporary copy of itself, include the TEMPORARY keyword:

CREATE TEMPORARY TABLE new_tbl_name LIKE tbl_name;
INSERT INTO new_tbl_name SELECT * FROM tbl_name;

Using a TEMPORARY table with the same name as the original can be useful when you
want to try some statements that modify the contents of the table, but you don’t want to
change the original table. To use prewritten scripts that use the original table name, you
don’t need to edit them to refer to a different table; just add the CREATE TEMPORARY
TABLE and INSERT statements to the beginning of the script. The script will create a tem-
porary copy and operate on the copy, which the server deletes when the script finishes.
(However, bear in mind the auto-reconnect caveat noted in Section 2.6.2.3, “Temporary
Tables.”)

To insert into the new table only some of the rows from the original table, add a WHERE
clause that identifies which rows to select. The following statements create a new table
named student_f that contains only the rows for female students in the student table:

CREATE TABLE student_f LIKE student;
INSERT INTO student_f SELECT * FROM student WHERE sex = 'f';

If you don'’t care about retaining the exact column definitions from the original table,
CREATE TABLE ... SELECT sometimes is easier to use than CREATE TABLE ... LIKE because it
can create and populate the new table in a single statement:

CREATE TABLE student_f SELECT * FROM student WHERE sex = 'f';

CREATE TABLE ... SELECT also can create new tables that don’t contain exactly the same
set of columns in an existing table.You can use it to cause a new table to spring into exis-
tence on the fly to hold the result of an arbitrary sELECT query. This makes it exception-
ally easy to create a table fully populated with the data in which you’re interested, ready to
be used in further statements. However, the new table can contain strange column names
if you’re not careful. When you create a table by selecting data into it, the column names
are taken from the columns that you are selecting. If a column is calculated as the result of
an expression, the name of the column is the text of the expression, which creates a table
with an unusual column name:

mysgl> CREATE TABLE mytbl SELECT PI() * 2;
mysql> SELECT * FROM mytbl;

2.6 Creating, Dropping, Indexing, and Altering Tables

That’s unfortunate, because the column name can be referred to directly only as a
quoted identifier:

mysqgl> SELECT “PI() * 2° FROM mytbl;

Fmmmmm————— +
| PT() * 2 |
- +
| 6.283185 |
e +

To avoid this problem and provide a column name that is easier to work with, use an alias:

mysqgl> DROP TABLE mytbl;
mysgl> CREATE TABLE mytbl SELECT PI() * 2 AS mycol;
mysql> SELECT mycol FROM mytbl;

fmmmmmm e +
| mycol |
Fmm +
| 6.283185 |
Fmm - +

A related snag occurs if you select from different tables columns that have the same
name. Suppose that tables t1 and t2 both have a column ¢ and you want to create a table
from all combinations of rows in both tables. The following statement fails because it at-
tempts to create a table with two columns named c:

mysqgl> CREATE TABLE t3 SELECT * FROM tl INNER JOIN t2;
ERROR 1060 (42S21): Duplicate column name 'c'

To solve this problem, provide aliases as necessary to give each column a unique name
in the new table:

mysql> CREATE TABLE t3 SELECT tl.c, t2.c AS c2
-> FROM t1 INNER JOIN t2;

As mentioned previously, a shortcoming of CREATE TABLE ... SELECT is that not all
characteristics of the original data are incorporated into the structure of the new table. For
example, creating a table by selecting data into it does not copy indexes from the original
table, and it can lose column attributes. The retained attributes include whether the col-
umn is NULL or NOT NULL, the character set and collation, the default value, and the
column comment.

In some cases, you can force specific attributes to be used in the new table by invoking
the casT () function in the SELECT part of the statement. The following CREATE TABLE ...
SELECT statement forces the columns produced by the SELECT to be treated as INT
UNSIGNED, TIME, and DECIMAL (10,5), as you can verify with DESCRIBE:

mysql> CREATE TABLE mytbl SELECT
-> CAST(1 AS UNSIGNED) AS i,
-> CAST(CURTIME() AS TIME) AS t,
-> CAST(PI() AS DECIMAL(10,5)) AS d;

129

130 Chapter 2 Using SQL to Manage Data

mysql> DESCRIBE mytbl;

tm————— e tm————— === Fmmmm e to—————— +
| Field | Type | Null | Key | Default | Extra |
Fmm—————— o Fmm————— Fm———— Fmmm—————— Fmm————— +
| i | int(l) unsigned | NO | | 0 |

| t | time | YES | | NULL | |
| 4 | decimal(10,5) | NO | | 0.00000 | |
tm————— e tm————— === Fmmmm e to—————— +

The allowable cast types are BINARY (binary string), CHAR, DATE, DATETIME, TIME,
SIGNED, SIGNED INTEGER, UNSIGNED, UNSIGNED INTEGER, and DECIMAL.

It is also possible to provide explicit column definitions in the CREATE TABLE part, to
be used for the columns retrieved by the SELECT part. Columns in the two parts are
matched by name, so provide aliases in the SELECT part as necessary to cause them to
match properly:
mysql> CREATE TABLE mytbl (i INT UNSIGNED, t TIME, d DECIMAL(10,5))

-> SELECT

->1ASs i,

-> CAST(CURTIME() AS TIME) AS t,

-> CAST(PI() AS DECIMAL(10,5)) AS d;
mysql> DESCRIBE mytbl;

- B T fmm——— e e e +
| Field | Type | Null | Key | Default | Extra |
e B T P P B e +
| 1 | int(10) unsigned | YES | | NULL |

| t | time | YES | | NULL | |
| a | decimal(10,5) | YES | | NULL | |
- B T fmm——— e e e +

The technique of providing explicit definitions enables you to create numeric columns
with specified precision and scale, character columns that have a different width than that of
the longest value in the result set, and so forth. Also note that the Null and Default attrib-
utes for some of the columns are different in this example from those in the previous one.
You can provide explicit definitions for those attributes in the CREATE TABLE part if
necessary.

2.6.2.5 Using MERGE Tables

The MERGE storage engine enables you to perform queries on a set of MyISAM tables
simultaneously by treating them all as a single logical unit. As described earlier in Section
2.6.1,“Storage Engine Characteristics,” MERGE can be applied to a collection of My-
ISAM tables that all have identical structure. The columns in each table must be defined
with the same names and types in the same order, and the indexes must be defined in the
same way and in the same order.

2.6 Creating, Dropping, Indexing, and Altering Tables

Suppose that you have a set of individual log tables that contain log entries on a year-
by-year basis and that each is defined like this, where cc and vy represent the century
and year:

CREATE TABLE log_CCYY

(
dt DATETIME NOT NULL,
info VARCHAR(100) NOT NULL,
INDEX (dt)

) ENGINE = MyISAM;

If the current set of log tables includes 1og_2004, 1og_2005, log_2006, log_2007, and
log_2008, you can set up a MERGE table that maps onto them like this:

CREATE TABLE log_merge
(
dt DATETIME NOT NULL,
info VARCHAR(100) NOT NULL,
INDEX (dt)
) ENGINE = MERGE UNION = (log_2004, log_2005, log_2006, log_2007, log_2008);

The ENGINE value must be MERGE, and the UNION option lists the tables to be included
in the MER GE table. After the table has been set up, you query it just like any other table,
but the queries will refer to all the constituent tables at once. This query determines the
total number of rows in all the log tables:

SELECT COUNT(*) FROM log_merge;

This query determines how many log entries there are per year:

SELECT YEAR(dt) AS y, COUNT(*) AS entries FROM log_merge GROUP BY y;

Besides the convenience of being able to refer to multiple tables without issuing multi-
ple queries, MER GE tables offer some other nice features:

= A MERGE table can be used to create a logical entity that exceeds the allowable
size of individual MyISAM tables.

= You can include compressed tables in the collection. For example, after a given year
comes to an end, you wouldn’t be adding any more entries to the corresponding log
file, so you could compress it with myisampack to save space. The MER GE table
will continue to function as before.

MERGE tables also support DELETE and UPDATE operations. INSERT is trickier because
MySQL needs to know which table to insert new rows into. MER GE table definitions
can include an INSERT_METHOD option with a value of NO, FIRST, or LAST to indicate that
INSERT is forbidden or that rows should be inserted into the first or last table named in
the UNION option. For example, the following definition would cause an INSERT into

131

132

Chapter 2 Using SQL to Manage Data

log_merge to be treated as an INSERT into log_2008, the last table named in the uNTION
option:
CREATE TABLE log_merge
(

dt DATETIME NOT NULL,

info VARCHAR(100) NOT NULL,

INDEX (dt)
) ENGINE = MERGE UNION = (log_2004, log_ 2005, log_2006, log 2007, log_2008)
INSERT_METHOD = LAST;

When the year 2009 arrives, create a new underlying table, 1log_2009, that has the same
structure as the other log_ccyy tables, and modify the log_merge table to include
log_20009:

CREATE TABLE log_2009 LIKE log_2008;

ALTER TABLE log_merge
UNION = (log 2004, log_2005, log 2006, log_2007, log_2008, log_2009);

2.6.2.6 Using Partitioned Tables
MySQL 5.1 and up supports partitioned tables. Partitioning is similar in concept to the
MERGE storage engine in the sense that it enables use of table contents that are stored in
different locations. However, a partitioned table is a single table, not a logical construct
that maps onto multiple underlying tables. Also, a partitioned table can use storage engines
other than MyISAM, whereas MER GE tables require the use of MyISAM tables.

By sectioning table storage, partitioned tables offer benefits such as these:

» Table storage can be distributed over multiple devices, which may improve access
time by virtue of I/O parallelism.

= The optimizer may be able to localize searches to specific partitions, or to search
partitions in parallel.

To create a partitioned table, supply the list of columns and indexes in the CREATE
TABLE statement, as usual. In addition, specify a PARTITION BY clause that defines a parti-
tioning function to be used to assign rows to partitions, and possibly other partition-
related options. The partitioning function is analogous to the INSERT_METHOD option for
MERGE tables, but is more general because it distributes rows among all partitions,
whereas INSERT_METHOD designates a single table for all inserts.

Partitioning functions assign rows based on ranges or lists of values or hash values:

= Use range partitioning when rows contain a domain of values such as dates, income
level, or weight that can be divided into discrete ranges.

= Use list partitioning when it makes sense to specify an explicit list of values for each
partition, such as sets of postal codes, phone number prefixes, or IDs for entities that
you group by geographical region.

2.6 Creating, Dropping, Indexing, and Altering Tables

= Use hash partitioning to distribute the rows among partitions according to hash val-
ues computed from row keys.You can either supply the hash function yourself or
tell MySQL which columns to use and it will compute values based on those
columns using a built-in hash function.

The partitioning function must be deterministic so that the same input consistently re-
sults in row assignment to the same partition. This rules out the use of functions such as
RAND () Or NOW ().

As a simple example, let’s create a partitioned analog to the MER GE table developed in
Section 2.6.2.5,“Using MER GE Tables.” That MER GE table, 1og_merge, has several un-
derlying log tables containing log entries for the years 2004 through 2008.The correspon-
ding partitioned table will be a single table comprising several underlying partitions. For
data consisting of log entries that each contain a date, the most natural partitioning is by
range. To assign rows for each year to a given partition, use the year part of the date value:

CREATE TABLE log_partition

(
dt DATETIME NOT NULL,
info VARCHAR(100) NOT NULL,
INDEX (dt)

)

PARTITION BY RANGE (YEAR(dt))

(
PARTITION pO VALUES LESS THAN (2005),
PARTITION pl VALUES LESS THAN (2006),
PARTITION p2 VALUES LESS THAN (2007)
PARTITION p3 VALUES LESS THAN (2008),
PARTITION p4 VALUES LESS THAN MAXVALUE

)

’

The MAXVALUE partition is assigned all rows that have dates from the year 2008 or later.
When the year 2009 arrives, you can split this partition so that all year 2008 rows get their
own partition and rows for 2009 and later go into the MAXVALUE partition:

ALTER TABLE log_partition REORGANIZE PARTITION p4
INTO (

PARTITION p4 VALUES LESS THAN (2009),

PARTITION p5 VALUES LESS THAN MAXVALUE
)i

By default, partitions are stored under the directory for the database to which the par-
titioned table belongs. To distribute storage to other locations (for example, to place them
on different physical devices), use the DATA_DIRECTORY and INDEX_DIRECTORY partition
options. For more information about the syntax for these and other partitioning options,
see the description for CREATE TABLE in Appendix E.

133

134

Chapter 2 Using SQL to Manage Data

2.6.2.7 Using FEDERATED Tables
The FEDERATED storage engine enables you to access tables from one MySQL server
that actually are managed by another server.

Suppose that there is no sampdb database on your local server, but there is one available
from the MySQL server running on the host corn.snake.net and that you have an ac-
count for accessing that server. That account can be used by the local server through the
FEDERATED storage engine to make the sampdb tables available on the local server. For
each table that you want to access this way, create a FEDERATED table that has the same
columns as the remote table, but include a connection string that indicates to the local
server how to connect to the remote server.

Suppose that the student table on the remote server has this definition:

CREATE TABLE student
(
name VARCHAR (20) NOT NULL,
sex ENUM('F','M') NOT NULL,
student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (student_id)
) ENGINE = InnoDB;

To create a FEDERATED table on the local server, use the same definition, except that
the ENGINE option should be FEDERATED and a CONNECTION table option should be given
that provides connection information. (Prior to MySQL 5.0.13, use the COMMENT option
instead of CONNECTION.) The following definition creates a table named
federated_student that accesses the student table on corn.snake.net:

CREATE TABLE federated_student
(
name VARCHAR (20) NOT NULL,
sex ENUM('F','M') NOT NULL,
student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (student_id)
) ENGINE = FEDERATED
CONNECTION = 'mysqgl://sampadm:secret@corn.snake.net/sampdb/student';

The connection string in the CONNECTION value indicates that the username and pass-
word of the MySQL account on the remote server are sampadm and secret.The general
connection string syntax is as follows, where square brackets indicate optional information:

mysql://user_namel:password]@host_namel:port_num]/db_name/tbl_name

After you create the federated_student table, you can select from it to access the
remote student table.You can also use INSERT, UPDATE, and DELETE with
federated_student to modify the contents of the student table.

Note that the entire CONNECTION string (including the username and password) is visi-
ble to anyone who can use SHOW CREATE TABLE or similar statements for the FEDER -
ATED table. As of MySQL 5.1.15, you can avoid this problem: Create a stored server
definition using the CREATE SERVER statement (this requires the SUPER privilege) and refer

2.6 Creating, Dropping, Indexing, and Altering Tables

to the server name in the CONNECTION option. To name the server corn_sampdb_server,
use this statement:

CREATE SERVER corn_sampdb_server
FOREIGN DATA WRAPPER mysqgl
OPTIONS (
USER 'sampadm',
PASSWORD 'secret',
HOST 'corn.snake.net',
DATABASE 'sampdb'
)

The MySQL server stores this definition as a row in the servers table in the mysqgl
database. To create a table that refers to the server definition, name the server in the
CONNECTION option using a statement like this:

CREATE TABLE federated_student2
(
name VARCHAR (20) NOT NULL,
sex ENUM('F','M') NOT NULL,
student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (student_id)
) ENGINE = FEDERATED
CONNECTION = 'corn_sampdb_server/student';

Using a server definition is more secure than listing connection parameters in the
CONNECTION option because the definition is visible only to users who have access to the
mysql database. Also, the server definition can make table setup easier because multiple
FEDERATED tables that share the same connection parameters can use the same
definition.

2.6.3 Dropping Tables

Dropping a table is much easier than creating it because you don’t have to specify any-
thing about the format of its contents.You just have to name it:

DROP TABLE tbl_name;

MySQL extends the DROP TABLE statement in several useful ways.To drop multiple ta-
bles, specify them all in the same statement:
DROP TABLE tbl_namel, tbl_name2, ... ;

If you're not sure whether a table exists, but you want to drop it if it does, include 1F
EXISTS in the statement:
DROP TABLE IF EXISTS tbl_name;

The 1F EXISTS clause suppresses the error for nonexistent tables. (For each one, the
server generates a warning that you can view with SHOW WARNINGS.)

135

136

Chapter 2 Using SQL to Manage Data

IF EXISTS is particularly useful in scripts that you use with the mysql client. By de-
fault, mysql exits when an error occurs, and it is an error to try to remove a table that
doesn’t exist. For example, you might have a setup script that creates tables that you use as
the basis for further processing in other scripts. In this situation, you want to make sure
the setup script has a clean slate when it begins. If you use a regular DROP TABLE at the
beginning of the script, it would fail the first time because the tables have never been cre-
ated. If you use IF EXISTS, there is no problem. If the tables are there, they are dropped. If
they are not there, no error occurs and the script continues to execute.

To drop a table only if it is a temporary table, include the TEMPORARY keyword:

DROP TEMPORARY TABLE tbl_name;

2.6.4 Indexing Tables

Indexes are the primary means of speeding up access to the contents of your tables, partic-
ularly for queries that involve joins on multiple tables. This is an important enough topic
that an entire chapter discusses why you use indexes, how they work, and how best to take
advantage of them to optimize your queries (Chapter 5,“Query Optimization”). This sec-
tion covers the characteristics of indexes for the various table types and the syntax for cre-
ating and dropping indexes.

2.6.4.1 Storage Engine Index Characteristics
MySQL provides quite a bit of flexibility in the way you can construct indexes:

= You can index single columns or construct composite indexes that include multiple
columns.

= An index can be constrained to contain only unique values or allowed to contain
duplicate values.

= You can have more than one index on a table to help optimize different queries on
the table that are based on different columns.

= For string data types other than ENUM or SET, you can elect to index a prefix of a
column; that is, only the leftmost n characters, or n bytes for binary string types. (For
BLOB and TEXT columns, you can set up an index only if you specify a prefix
length.) If the column is mostly unique within the prefix length, you usually won’t
sacrifice performance, and may well improve it: Indexing a column prefix rather
than the entire column can make an index much smaller and faster to access.

Not all storage engines offer all indexing features. Table 2.3 summarizes the index
properties for some of MySQL's storage engines. The table does not include the MER GE
storage engine, because MER GE tables are created from MyISAM tables and have similar
index characteristics. Nor does it include the ARCHIVE, BLACKHOLE, CSV, or EX-
AMPLE engines, which support indexing either not at all or only in limited fashion.

2.6 Creating, Dropping, Indexing, and Altering Tables

Table 2.3 Storage Engine Index Characteristics

Index Characteristic MyISAM MEMORY InnoDB Falcon
NULL values allowed Yes Yes Yes Yes
Columns per index 16 16 16 16
Indexes per table 64 64 64 64
Maximum index row size (bytes) 1000 1024/3072 1024/3072 1100
Index column prefixes Yes Yes Yes Yes
Maximum prefix size (bytes) 1000 1024/3072 767 1100
BLOB/TEXT indexes Yes No Yes No
FULLTEXT indexes Yes No No No
SPATIAL indexes Yes No No No
HASH indexes No Yes No No

For the MEMORY and InnoDB storage engines, the index size limit is 1024 bytes be-
fore MySQL 5.0.17/5.1.4 and 3072 bytes from 5.0.17/5.1.4 on.The same is true for the
MEMORY index prefix size limit.

One implication of the differences in index characteristics for the various storage en-
gines is that if you require an index to have certain properties, you may not be able to use
certain types of tables. For example, to use a FULLTEXT or SPATIAL index, you must use a
MyISAM table. To index a TEXT column, you must use MyISAM or InnoDB.

If you have an existing table that you would like to convert to use a different storage
engine that has more suitable index characteristics, use ALTER TABLE to change the engine.
Suppose that you are using a MyISAM table but need the transactional capabilities offered
by InnoDB or Falcon. Convert the table using one of these statements:

ALTER TABLE tbl_name ENGINE = InnoDB;
ALTER TABLE tbl_name ENGINE = Falcon;

2.6.4.2 Creating Indexes
MySQL can create several types of indexes:

= A unique index. This disallows duplicate values. For a single-column index, this en-
sures that the column contains no duplicate values. For a multiple-column (compos-
ite) index, it ensures that no combination of values in the columns is duplicated
among the rows of the table.

= A regular (non-unique) index. This gives you indexing benefits but allows duplicates.

» A FULLTEXT index, used for performing full-text searches. This index type is sup-
ported only for MyISAM tables. For more information, see Section 2.15,“Using
FULLTEXT Searches.”

137

138 Chapter 2 Using SQL to Manage Data

» A spATIAL index. These can be used only with MyISAM tables for the spatial data
types, which are described in Chapter 3. (For other storage engines that support
spatial data types, you can create non-SPATIAL indexes.)

= A HasH index. This is the default index type for MEMORY tables, although you can
override the default to create BTREE indexes instead.

You can create indexes for a new table when you use CREATE TABLE. Examples of this
are shown in Section 1.4.6,“Creating Tables.” To add indexes to existing tables, use ALTER
TABLE Or CREATE INDEX. (MySQL maps CREATE INDEX statements onto ALTER TABLE
operations internally.)

ALTER TABLE is more versatile than CREATE INDEX because it can create any kind of
index supported by MySQL. For example:

ALTER TABLE tbl_name ADD INDEX index_name (index_columns) ;
ALTER TABLE tbl_name ADD UNIQUE index_name (index_columns) ;
ALTER TABLE tbl_name ADD PRIMARY KEY (index_columns);

ALTER TABLE tbl_name ADD FULLTEXT index_name (index_columns);
ALTER TABLE tbl_name ADD SPATIAL index _name (index_columns);

tbl_name is the name of the table to which the index should be added, and
index_columns indicates which column or columns to index. If the index consists of
more than one column, separate the names by commas. The index name index_name is
optional. If you leave it out, MySQL picks a name based on the name of the first indexed
column.

Indexed columns must be NOT NULL if the index is a PRIMARY KEY or SPATIAL index.
Otherwise, they can contain NULL values.

A single ALTER TABLE statement can include multiple table alterations if you separate
them by commas. This enables you to create several indexes at the same time, which is
faster than adding them one at a time with individual ALTER TABLE statements.

To place the constraint on an index that it contain only unique values, create the index
as a PRIMARY KEY or as a UNIQUE index. The two types of index are very similar, but have
two differences:

= A table can contain only one PRIMARY KEY. (This is because the name of a PRIMARY
KEY is always PRIMARY and a table cannot have two indexes with the same name.)
You can place multiple UNIQUE indexes on a table.

= A PRIMARY KEY cannot contain NULL values, whereas a UNIQUE index can. If a
UNIQUE index can contain NULL values, it can contain multiple NULL values. The rea-
son for this is that it is not possible to know whether one NULL represents the same
value as another, so they cannot be considered equal.

CREATE INDEX can add most types of indexes, with the exception of a PRIMARY KEY:

CREATE INDEX index_name ON tbl_name (index_columns) ;
CREATE UNIQUE INDEX index name ON tbl_name (index_columns);

2.6 Creating, Dropping, Indexing, and Altering Tables

CREATE FULLTEXT INDEX index _name ON tbl_name (index_columns);
CREATE SPATIAL INDEX index _name ON tbl_name (index_columns) ;

tbl_name, index_name, and index_columns have the same meaning as for ALTER
TABLE. Unlike ALTER TABLE, the index name is not optional with CREATE INDEX, and you
cannot create multiple indexes with a single statement.

To create indexes for a new table when you issue a CREATE TABLE statement, the syn-
tax is similar to that used for ALTER TABLE, but you specify the index-creation clauses in
addition to the column definitions:

CREATE TABLE tbl_name
(
column definitions ...

INDEX index_name (index_columns),
UNIQUE index_name (index_columns),
PRIMARY KEY (index_columns),
FULLTEXT index _name (index_columns),
SPATIAL index_name (index_columns),

)

As with ALTER TABLE, index_name is optional. MySQL picks an index name if you
leave it out.

As a special case, you can create a single-column PRIMARY KEY or UNIQUE index by
adding a PRIMARY KEY or UNIQUE clause to the end of a column definition. For example,
the following CREATE TABLE statements are equivalent:

CREATE TABLE mytbl
(
i INT NOT NULL PRIMARY KEY,
j CHAR(10) NOT NULL UNIQUE
)i

CREATE TABLE mytbl

(
i INT NOT NULL,
j CHAR(10) NOT NULL,
PRIMARY KEY (i),
UNIQUE (3)

)

The default index type for a MEMORY table is HASH. A hashed index is very fast for
exact-value lookups, which is the typical way MEMORY tables are used. However, if you
plan to use a MEMORY table for comparisons that can match a range of values (for ex-
ample, id < 100), hashed indexes do not work well. In this case, you’ll be better off creat-
ing a BTREE index instead. Do this by adding a USING BTREE clause to the index
definition:

CREATE TABLE namelist

139

140

Chapter 2 Using SQL to Manage Data

id INT NOT NULL,

name CHAR(100),

INDEX USING BTREE (id)
) ENGINE = MEMORY;

To index a prefix of a string column, the syntax for naming the column in the index
definition is col_name (n) rather than simply col_name.The prefix value, n, indicates that
the index should include the first n bytes of column values for binary string types, or the
first n characters for non-binary string types. For example, the following statement creates
a table with a CHAR column and a BINARY column. It indexes the first 10 characters of the
CHAR column and the first 15 bytes of the BINARY column:

CREATE TABLE addresslist

(
name CHAR (30) NOT NULL,
address BINARY (60) NOT NULL,
INDEX (name(10)),
INDEX (address(15))

)

When you index a prefix of a string column, the prefix length, just like the column
length, is specified in the same units as the column data type—that is, bytes for binary
strings and characters for non-binary strings. However, the maximum size of index entries
are measured internally in bytes. The two measures are the same for single-byte character
sets, but not for multi-byte character sets. For non-binary strings that have multi-byte
character sets, MySQL stores into index values as many complete characters as fit within
the allowed maximum byte length.

In some circumstances, you may find it not only desirable but necessary to index a col-
umn prefix rather than the entire column:

» Prefixes are required for indexing BLOB or TEXT columns.

= The length of index rows is equal to the sum of the length of the index parts of the
columns that make up the index. If this length exceeds the maximum allowable
number of bytes in index rows, you can make the index “narrower” by indexing a
column prefix. Suppose that a MyISAM table that uses the latinl single-byte char-
acter set contains four CHAR (255) columns named c1 through c4.An index value
for each full column value takes 255 bytes, so an index on all four columns would
require 1,020 bytes. However, the maximum length of a MyISAM index row is
1,000 bytes, so you cannot create a composite index that includes the entire con-
tents of all four columns. However, you can create the index by indexing a shorter
part of some or all of them. For example, you could index the first 250 characters
from each column.

Columns in FULLTEXT indexes are indexed in full and do not have prefixes. If you spec-
ify a prefix length for a column in a FULLTEXT index, MySQL ignores it.

2.6 Creating, Dropping, Indexing, and Altering Tables

Columns with spatial data types such as POINT or GEOMETRY can be indexed as follows:

= sSPATIAL indexes can be used only for MyISAM tables, and only for columns that
are NOT NULL.The columns are indexed in full.

= Other index types (INDEX, UNIQUE, PRIMARY KEY) can be used with any storage en-
gine other than ARCHIVE that supports spatial data types. Columns can be NULL un-
less part of a PRIMARY KEY.A prefix length in bytes must be specified for each spatial
column in the index except POINT columns.

2.6.4.3 Dropping Indexes
To drop an index, use either a DROP INDEX or an ALTER TABLE statement. To use DROP
INDEX, you must name the index to be dropped:

DROP INDEX index_name ON tbl_name;

To drop a PRIMARY KEY with DROP INDEX, specify the name PRIMARY as a quoted
identifier:

DROP INDEX 'PRIMARY ' ON tbl_name;

That statement is unambiguous because a table may have only one PRIMARY KEY and
its name is always PRIMARY.

Like the CREATE INDEX statement, DROP INDEX is handled internally as an ALTER
TABLE statement. The preceding DROP INDEX statements correspond to the following
ALTER TABLE statements:

ALTER TABLE tbl_name DROP INDEX index_name;
ALTER TABLE tbl_name DROP PRIMARY KEY;

If you don’t know the names of a table’s indexes, use SHOW CREATE TABLE Or SHOW
INDEX to find out.

‘When you drop columns from a table, indexes may be affected implicitly. If you drop a
column that is a part of an index, MySQL removes the column from the index as well. If
you drop all columns that make up an index, MySQL drops the entire index.

2.6.5 Altering Table Structure

ALTER TABLE is a versatile statement and has many uses. We’ve already seen a few of its ca-
pabilities earlier in this chapter (for changing storage engines and for creating and drop-
ping indexes).You can also use ALTER TABLE to rename tables, add or drop columns,
change column data types, and more. This section covers some of its features. Appendix E,
describes the complete syntax for ALTER TABLE.

ALTER TABLE is useful when you find that the structure of a table no longer reflects
what you want to do with it.You might want to use the table to record additional infor-
mation. Perhaps the table contains information that has become superfluous. Maybe exist-
ing columns are too small, or it turns out that you’ve defined columns larger than you

141

142 Chapter 2 Using SQL to Manage Data

need and you’d like to make them smaller to save space and improve query performance.
Here are some situations for which ALTER TABLE is valuable:

» You're running a research project.You assign case numbers to research records using
an AUTO_INCREMENT column.You didn’t expect your funding to last long enough to
generate more than about 50,000 records, so you made the data type SMALLINT
UNSIGNED, which holds a maximum of 65,535 unique values. However, the funding
for the project was renewed, and it looks like you might generate another 50,000
records.You need to make the type bigger to accommodate more case numbers.

= Size changes can go the other way, too. Maybe you created a cHAR (255) column but
now recognize that no value in the table is more than 100 characters long.You can
shorten the column to save space.

= You want to convert a table to use a different storage engine to take advantage of
features offered by that engine. For example, MyISAM tables are not transaction-
safe, but you have an application that needs transactional capabilities. You can con-
vert the affected tables to use InnoDB or Falcon, because those storage engines are
transactional.

The syntax for ALTER TABLE looks like this:

ALTER TABLE tbl_name action [, action] ... ;

Each action specifies a modification that you want to make to the table. Some database
systems allow only a single action in an ALTER TABLE statement, but MySQL allows mul-
tiple actions, separated by commas.

Tip
If you need to remind yourself about a table’s current definition before using ALTER TABLE,

issue a SHOW CREATE TABLE statement. This statement also can be useful after ALTER
TABLE to verify that the alteration affected the table definition as you expect.

The following examples discuss some of the capabilities of ALTER TABLE.

Change a column’s data type. To change a data type, you can use either a CHANGE or
MODIFY clause. Suppose that the column in a table mytbl is SMALLINT UNSIGNED and you
want to change it to MEDIUMINT UNSIGNED. Do so using either of the following
commands:

ALTER TABLE mytbl MODIFY i MEDIUMINT UNSIGNED;
ALTER TABLE mytbl CHANGE i i MEDIUMINT UNSIGNED;

‘Why is the column named twice in the command that uses CHANGE? Because one
thing that CHANGE can do that MODIFY cannot is to rename the column in addition to
changing the type. If you had wanted to rename i to k at the same time you changed the
type, youd do so like this:

ALTER TABLE mytbl CHANGE i k MEDIUMINT UNSIGNED;

2.6 Creating, Dropping, Indexing, and Altering Tables

The important thing with CHANGE is that you name the column you want to change
and then specify the column’s new name and definition. Thus, you must specify the name
twice if you don’t want to rename the column.

To rename a column without changing its data type, use CHANGE old_name new_name
followed by the column’s current definition.

You can assign character sets to individual columns, so it’s possible to use the
CHARACTER SET attribute in a column’s definition to change its character set:

ALTER TABLE t MODIFY c¢ CHAR(20) CHARACTER SET ucs2;

An important reason for changing data types is to improve query efficiency for joins
that compare columns from two tables. Indexes often can be used for comparisons in joins
between similar column types, but comparisons are quicker when both columns are ex-
actly the same type. Suppose that you're running a query like this:

SELECT ... FROM tl INNER JOIN t2 WHERE tl.name = t2.name;

If t1.name is CHAR (10) and t2.name is CHAR (15), the query won’t run as quickly as if
they were both cHAR (15) . You can make them the same by changing t1.name using ei-
ther of these commands:

ALTER TABLE tl MODIFY name CHAR(15);
ALTER TABLE tl CHANGE name name CHAR(15);

Convert a table to use a different storage engine. To convert a table from one stor-
age engine to another, use an ENGINE clause that specifies the new engine name:

ALTER TABLE tbl_name ENGINE = engine_name;

engine_name is a name such as MyISAM, MEMORY, or InnoDB. Lettercase does not matter.

One reason to change a storage engine is to make it transaction-safe. Suppose that you
have a MyISAM table and discover that an application that uses it needs to perform trans-
actional operations, including rollback in case failures occur. MyISAM tables do not sup-
port transactions, but you can make the table transaction-safe by converting it to an
InnoDB or Falcon table:

ALTER TABLE tbl_name ENGINE = InnoDB;
ALTER TABLE tbIl_name ENGINE = Falcon;

When you convert a table to use a different engine, the allowable or sensible conver-
sions may depend on the feature compatibility of the old and new engines. For example,
the following conversions are disallowed:

= If you have a table that includes a BLOB column, you cannot convert the table to use
the MEMORY engine because MEMORY tables do not support BLOB columns.

= If you have a MyISAM table that includes FULLTEXT or SPATIAL indexes, you cannot
convert it to another engine because only MyISAM supports those types of indexes.

143

144 Chapter 2 Using SQL to Manage Data

There are circumstances under which you should not use ALTER TABLE to convert a
table to use a different storage engine:

= MEMORY tables are held in memory and disappear when the server exits. It is not
a good idea to convert a table to type MEMORY if you require the table contents
to persist across server restarts.

= If you use a MERGE table to group a collection of MyISAM tables together, you
should avoid using ALTER TABLE to modify any of the MyISAM tables unless you
make the same change to all of them, and to the MERGE table as well. The proper
functioning of a MER GE table depends on its having the same structure as all of its
constituent MyISAM tables.

= An InnoDB table can be converted to use another storage engine. However, if the
table has foreign key constraints, they will be lost because only InnoDB supports
foreign keys.

Rename a table. Use a RENAME clause that specifies the new table name:

ALTER TABLE tbl_name RENAME TO new_tbl_name;

Another way to rename tables is with RENAME TABLE. The syntax looks like this:
RENAME TABLE old name TO new_name;

One thing that RENAME TABLE can do that ALTER TABLE cannot is rename multiple ta-
bles in the same statement. For example, you can swap the names of two tables like this:
RENAME TABLE t1 TO tmp, t2 TO tl, tmp TO t2;

If you qualify a table name with a database name, you can move a table from one data-

base to another by renaming it. Either of the following statements move the table t from
the sampdb database to the test database:

ALTER TABLE sampdb.t RENAME TO test.t;
RENAME TABLE sampdb.t TO test.t;

You cannot rename a table to a name that already exists.
If you rename a MyISAM table that is part of a MERGE table, you must redefine the
MERGE table to refer to the new name.

2.7 Obtaining Database Metadata

MySQL provides several ways to obtain information about databases and the objects in
them (that is, database metadata):

= SHOW statements such as SHOW DATABASES or SHOW TABLES
= Tables in the INFORMATION_SCHEMA database

» Command-line programs such as mysqglshow or mysgldump

2.7 Obtaining Database Metadata

The following sections describe how to use each of these information sources to access
metadata.

2.7.1 Obtaining Metadata with SHOW

MySQL provides a sHOW statement that displays database metadata in several forms. SHOW is
helpful for keeping track of the contents of your databases and for reminding yourself
about the structure of your tables. The following examples demonstrate a few uses for
SHOW statements.

List the databases managed by the server:

SHOW DATABASES;

Display the CREATE DATABASE statement for a database:

SHOW CREATE DATABASE db_name;

List the tables in the default database or in a given database:

SHOW TABLES;
SHOW TABLES FROM db_name;

SHOW TABLES doesn’t show TEMPORARY tables.
Display the CREATE TABLE statement for a table:

SHOW CREATE TABLE tbl_name;

Display information about columns or indexes in a table:

SHOW COLUMNS FROM tbl_name;
SHOW INDEX FROM tbl_name;

The DESCRIBE tbl_name and EXPLAIN tbl_name statements are synonymous with
SHOW COLUMNS FROM tbl_name.

Display descriptive information about tables in the default database or in a given
database:

SHOW TABLE STATUS;
SHOW TABLE STATUS FROM db_name;

Several forms of the sHOW statement take a LIKE 'pattern' clause allowing a pattern
to be given that limits the scope of the output. MySQL interprets 'pattern' as an SQL
pattern that may include the ‘¢’ and ‘_’ wildcard characters. For example, this statement
displays the names of columns in the student table that begin with ‘s’

mysgl> SHOW COLUMNS FROM student LIKE 's%';

Fmmm - R T P fmm - P fm e e +
| Field | Type | Null | Key | Default | Extra

Fmmmm e o P P B B T T +
| sex | enum('F','M") | NO | | |

| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
bmmm o Hmmm e Hmmmm e Hmmm e B Hmmm e +

145

146

Chapter 2 Using SQL to Manage Data

To match a literal instance of a wildcard character in a LIKE pattern, precede it with a
backslash. Generally, this is done to match a literal °_’, which occurs frequently in database,
table, and column names.

Any sHOw statement that supports a LIKE clause can also be written to use a WHERE
clause. The sHow statement still displays a fixed set of columns, but WHERE provides more
flexibility about specifying which rows to return. The wHERE clause should refer to the
columns displayed by the sHOw statement. If the column name is a reserved word such as
KEY, specify it as a quoted identifier. This statement determines which column in the
student table is the primary key:

mysgl> SHOW COLUMNS FROM student WHERE “Key™ = 'PRI';

Hmmmm e Hmmm e R I Hmmmmm e Hmmm e +
| Field | Type | Null | Rey | Default | Extra |
Hmmmm e Hmmm tmmm e Hmmm e Hmmmm e Hmmmm +
| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
Hmmm o Hmm Hmmm e Hmmm e Hmm o Hmmm +

It’s sometimes useful to be able to tell from within an application whether a given table
exists.You can use SHOW TABLES to find out (but remember that sHow TABLES does not
list TEMPORARY tables):

SHOW TABLES LIKE 'thl_name';
SHOW TABLES FROM db_name LIKE 'tbl_name';

If the sHOwW TABLES statement lists information for the table, it exists. It’s also possible
to determine table existence, even for TEMPORARY tables, with either of the following
statements:

SELECT COUNT (*) FROM tbl_name;
SELECT * FROM tbl_name WHERE FALSE;

Each statement succeeds if the table exists, and fails if it doesn’t. The first statement is
most appropriate for MyISAM tables, for which count (*) with no wHERE clause is highly
optimized. It’s not so good for InnoDB tables, which require a full scan to count the rows.
The second statement is more general because it runs quickly for any storage engine.
These statements are most suitable for use within application programming languages such
as Perl or PHP because you can test the success or failure of the query and take action ac-
cordingly. They’re not especially useful in a batch script that you run from mysql because
you can’t do anything if an error occurs except terminate (or ignore the error, but then
there’s obviously no point in running the query at all).

To determine the storage engine for individual tables, you can use SHOW TABLE STATUS
or sHow CREATE TABLE.The output from either statement includes a storage engine
indicator.

2.7 Obtaining Database Metadata

2.7.2 Obtaining Metadata with INFORMATION_SCHEMA

Another way to obtain information about databases is to access the INFORMATION_SCHEMA
database. INFORMATTON_SCHEMA is based on the SQL standard. That is, the access mecha-
nism is standard, even though some of the content is MySQL-specific. This makes
INFORMATION_SCHEMA more portable than the various sHow statements, which are entirely
MySQL-specific.

INFORMATION_SCHEMA is accessed through SELECT statements and can be used in a flex-
ible manner. sHOW statements always display a fixed set of columns and you cannot capture
the output in a table. With INFORMATION_SCHEMA, the SELECT statement can name specific
output columns and a WHERE clause can specify any expression required to select the infor-
mation that you want. Also, you can use joins or subqueries, and you can use CREATE
TABLE ... SELECT or INSERT INTO ... SELECT to save the result of the retrieval in another
table for further processing.

You can think of INFORMATION_SCHEMA as a virtual database in which the tables are
views for different kinds of database metadata. To see what tables INFORMATION_SCHEMA
contains, use SHOW TABLES. The output displayed here is from MySQL 5.1 (5.0 has fewer
tables):

mysqgl> SHOW TABLES IN INFORMATION_SCHEMA;

CHARACTER_SETS
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
COLUMN_PRIVILEGES
ENGINES

EVENTS

FILES
GLOBAL_STATUS
GLOBAL_VARIABLES
KEY_COLUMN_USAGE
PARTITIONS
PLUGINS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
ROUTINES

SCHEMATA
SCHEMA_PRIVILEGES
SESSION_STATUS
SESSION_VARIABLES
STATISTICS

TABLES
TABLE_CONSTRAINTS

147

148

Chapter 2 Using SQL to Manage Data

| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |

The following list briefly describes the INFORMATION_SCHEMA tables just shown:

= SCHEMATA, TABLES, VIEWS, ROUTINES, TRIGGERS, EVENTS, PARTITIONS, COLUMNS

Information about databases; tables, views, stored routines, triggers, and events
within databases; table partitions; and columns within tables

= FILES
Information about NDB disk data files
= TABLE_CONSTRAINTS, KEY_COLUMN_USAGE

Information about tables and columns that have constraints such as unique-valued
indexes or foreign keys

= STATISTICS
Information about table index characteristics
= REFERENTIAL_CONSTRAINTS
Information about foreign keys
= CHARACTER_SETS, COLLATIONS, COLLATION_CHARACTER_SET_ APPLICABILITY

Information about supported character sets, collations for each character set, and
mapping from each collation to its character set

= ENGINES, PLUGINS
Information about storage engines and server plugins
= USER_PRIVILEGES, SCHEMA_PRIVILEGES, TABLE_PRIVILEGES, COLUMN_PRIVILEGES

Global, database, table, and column privilege information from the user, db,
tables_priv, columns_priv tables in the mysql database

= GLOBAL_VARIABLES, SESSION_VARIABLES, GLOBAL_STATUS, SESSION_STATUS
Global and session values of system and status variables
= PROCESSLIST

Information about the threads executing within the server

Individual storage engines may add their own tables to INFORMATION_SCHEMA. For ex-
ample, Falcon does this if it is enabled.

To determine the columns contained in a given INFORMATION_SCHEMA table, use SHOW
COLUMNS Or DESCRIBE:
mysql> DESCRIBE INFORMATION_SCHEMA.CHARACTER_SETS;
B e e P R R e R +
| Field | Type | Null | Key | Default | Extra |

2.7 Obtaining Database Metadata

e it e o +-————- +-———- - - +
CHARACTER_SET_NAME	varchar(64)	NO			
DEFAULT_COLLATE_NAME	varchar(64)	NO			
DESCRIPTION	varchar(60)	NO			
MAXLEN	bigint(3)	NOo		o	
e ittt e e e o - +-————- +--——- - +-————— +

To display information from a table, use a SELECT statement. (Neither
INFORMATION_SCHEMA nor any of its table or column names are case sensitive.) The general
query to see all the columns in any given INFORMATION_SCHEMA table is as follows:

SELECT * FROM INFORMATION_SCHEMA.tbl_ name;

Include a WHERE clause to be specific about what you want to see.

The preceding section described the use of sHOW statements to determine whether a
table exists or which storage engine it uses. INFORMATION_SCHEMA tables can provide the
same information. This query uses INFORMATION_SCHEMA to test for the existence of a par-
ticular table, returning 1 or O to indicate that the table does or does not exist, respectively:

mysgl> SELECT COUNT(*) FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='member';

Fom——————— +
| COUNT(*) |
Fomm - +
| 1
- +

Use this query to check which storage engine a table uses:

mysgl> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
-> WHERE TABLE_SCHEMA='sampdb' AND TABLE_NAME='student';

2.7.3 Obtaining Metadata from the Command Line

The mysglshow command provides some of the same information as certain SHOW state-
ments, which enables you to get database and table information at your command
prompt.

List databases managed by the server:

% mysqlshow

List tables in a database:

)

% mysqlshow db_name

149

150

Chapter 2 Using SQL to Manage Data

Display information about columns in a table:

)

% mysqlshow db_name tbl_name

Display information about indexes in a table:

% mysqlshow --keys db _name tbl_name

Display descriptive information about tables in a database:

)

% mysqlshow --status db_name

The mysqgldump client program enables you to see the structure of your tables in the
form of a CREATE TABLE statement (much like SHOwW CREATE TaBLE). If you use
mysgldump to review table structure, be sure to invoke it with the --no-data option so
that you don’t get swamped with your table’s data!

% mysqldump --no-data db_name [tbhl_name]

If you specify only the database name without any table names, mysgldump displays the
structure for all tables in the database. Otherwise, it shows information only for the named
tables.

For both mysqlshow and mysqgldump, specify the usual connection parameter options as

nece%ar%suchzﬁ --host, --user, Or --password.

2.8 Performing Multiple-Table Retrievals
with Joins

It does no good to put records in a database unless you retrieve them eventually and do
something with them. That’s the purpose of the SELECT statement: to help you get at your
data. SELECT probably is used more often than any other statement in the SQL language,
but it can also be the trickiest; the conditions you use for choosing rows can be arbitrarily
complex and can involve comparisons between columns in many tables.

The basic syntax of the SELECT statement looks like this:

SELECT select_list # What columns to select
FROM table list # The tables from which to select rows
WHERE row_constraint # What conditions rows must satisfy

GROUP BY grouping columns # How to group results

ORDER BY sorting columns # How to sort results

HAVING group_constraint # What conditions groups must satisfy
LIMIT count; # Row count limit on results

Everything in this syntax is optional except the word SELECT and the select_list
part that specifies what you want to produce as output. Some databases require the FROM
clause as well. MySQL does not, which enables you to evaluate expressions without refer-
ring to any tables:

SELECT SQRT (POW(3,2)+POW(4,2));

2.8 Performing Multiple-Table Retrievals with Joins

In Chapter 1, we devoted quite a bit of attention to single-table SELECT statements,
concentrating primarily on the output column list and the WHERE, GROUP BY, ORDER BY,
HAVING, and LIMIT clauses. This section covers an aspect of SELECT that is often confusing:
writing joins; that is, SELECT statements that retrieve rows from multiple tables. We’ll
discuss the types of join MySQL supports, what they mean, and how to specify them. This
should help you employ MySQL more effectively, because in many cases, the real problem
of figuring out how to write a query is determining the proper way to join tables
together.

One problem with using SELECT is that when you first encounter a new type of prob-
lem, it’s not always easy to see how to write a SELECT query to solve it. However, after you
figure it out, you can use that experience when you run across similar problems in the fu-
ture. SELECT is probably the statement for which past experience plays the largest role in
being able to use it effectively, simply because of the sheer variety of problems to which it
applies.

As you gain experience, you’ll be able to adapt joins more easily to new problems, and
you’ll find yourself thinking things like, “Oh, yes, that’s one of those LEFT JoIN things,”’
or, “Aha, that’s a three-way join restricted by the common pairs of key columns.” (You
may find it encouraging to hear that experience helps you. Or you may find it alarming to
consider that you could wind up thinking in terms like that.)

Many of the examples that demonstrate how to use the forms of join operations that
MySQL supports use the following two tables, t1 and t2:

Table tl: Table t2:

to———t————+ o — -+
| i1 | el | | i2 | 2 |
o —t————+ +o———t-———+
[1la [| 2]c |
[21Db [| 3]b |
[31c | | 4la |
to———t————+ o — -+

The tables are deliberately chosen to be small so that the effect of each type of join can
be readily seen.

Other types of multiple-table SELECT statement are subqueries (one SELECT nested
within another) and UNION statements. These are covered in Section 2.9, “Performing
Multiple-Table Retrievals with Subqueries,” and Section 2.10, “Performing Multiple-
Table Retrievals with UNTON.”

A related multiple-table feature that MySQL supports is the capability of deleting or
updating rows in one table based on the contents of another. For example, you might
want to remove rows in one table that aren’t matched by any row in another, or copy
values from columns in one table to columns in another. Section 2.12, “Multiple-Table
Deletes and Updates,” discusses these types of operations.

151

152

Chapter 2 Using SQL to Manage Data

2.8.1 The Inner Join

If a SELECT statement names multiple tables in the FRoM clause with the names separated
by INNER JOIN, MySQL performs an inner join, which produces results by matching rows
in one table with rows in another table. For example, if you join t1 and t2 as follows, each
row in t1 is combined with each row in t2:

mysqgl> SELECT * FROM tl1 INNER JOIN t2;

N
|

N
|
|
|
|
|
|
|
|
|

N

In this statement, SELECT * means “‘select every column from every table named in the
FROM clause.” You could also write this as SELECT t1.*, t2.*:

SELECT tl.*, t2.* FROM tl INNER JOIN t2;

If you don’t want to select all columns or you want to display them in a different left-
to-right order, just name each column that you want to see, separated by commas.

A join where each row of each table is combined with each row in every other table to
produce all possible combinations is known as the “cartesian product.” Joining tables this
way has the potential to produce a very large number of rows because the possible row
count is the product of the number of rows in each table. A cross join between three tables
that contain 100, 200, and 300 rows, respectively, could return 100 X 200 X 300 = 6 mil-
lion rows. That’s a lot of rows, even though the individual tables are small. In cases like
this, normally a WHERE clause is useful for reducing the result set to a more manageable
size.

If you add a WHERE clause causing tables to be matched on the values of certain
columns, the join selects only rows with equal values in those columns:

mysqgl> SELECT tl.*, t2.* FROM tl INNER JOIN t2 WHERE tl.il = t2.i2;

2.8 Performing Multiple-Table Retrievals with Joins

The cross JOIN and JOIN join types are similar to INNER JOIN. For example, these
statements are equivalent:

SELECT tl.*, t2.* FROM tl INNER JOIN t2 WHERE tl.il = t2.1i2;
SELECT tl.*, t2.* FROM tl CROSS JOIN t2 WHERE tl.il = t2.1i2;
SELECT tl.*, t2.* FROM tl JOIN t2 WHERE tl.il = t2.i2;

The ‘,’ (comma) join operator is similar as well:

SELECT tl.*, t2.* FROM tl, t2 WHERE tl.il = t2.1i2;

However, the comma operator has a different precedence from the other join types,
and it can sometimes produce syntax errors when the other types will not. I recommend
that you avoid the comma operator.

INNER JOIN, CROSS JOIN,and JOIN (but not the comma operator) allow alternative
syntaxes for specifying how to match table columns:

= One syntax uses an ON clause rather than a wHERE clause. The following example
shows this using INNER JOIN:

SELECT tl.*, t2.* FROM tl INNER JOIN t2 ON tl.il = t2.1i2;

ON can be used regardless of whether the columns you’re joining on have the
same name.

= The other syntax involves a USING () clause; this is similar in concept to oN, but the
name of the joined column or columns must be the same in each table. For exam-
ple, the following query joins mytbll.b to mytbl2.b:

SELECT mytbll.*, mytbl2.* FROM mytbll INNER JOIN mytbl2 USING (b);

2.8.2 Qualifying References to Columns from Joined Tables

References to table columns throughout a SELECT statement must resolve unambiguously
to a single table named in the FrRoM clause. If only one table is named, there is no ambigu-
ity; all columns must be columns of that table. If multiple tables are named, any column
name that appears in only one table is similarly unambiguous. However, if a column name
appears in multiple tables, references to the column must be qualified with a table identi-
fier using tb1_name.col_name syntax to specify which table you mean. Suppose that a
table mytbl1 contains columns a and b, and a table mytbl2 contains columns b and c. In
this case, references to columns a or ¢ are unambiguous, but references to b must be quali-
fied as either mytbll.b or mytbl2.b:

SELECT a, mytbll.b, mytbl2.b, ¢ FROM mytbll INNER JOIN mytbl2 ... ;

Sometimes a table name qualifier is not sufficient to resolve a column reference. For ex-
ample, if you're performing a self-join (that is, joining a table to itself), you’re using the table
multiple times within the query and it doesn’t help to qualify a column name with the
table name. In this case, table aliases are useful for communicating your intent.You can
assign an alias to any instance of the table and refer to columns from that instance as

153

154

Chapter 2 Using SQL to Manage Data

alias_name.col_name.The following query joins a table to itself, but assigns an alias to one
instance of the table to enable column references to be specified unambiguously:

SELECT mytbl.coll, m.col2 FROM mytbl INNER JOIN mytbl AS m
WHERE mytbl.coll > m.coll;

2.8.3 Left and Right (Outer) Joins

An inner join shows only rows where a match can be found in both tables. Outer joins
show matches, too, but can also show rows in one table that have no match in the other
table. Two kinds of outer joins are left and right joins. Most of the examples in this section
use LEFT JOIN, which identifies rows in the left table that are not matched by the right
table. RIGHT JOIN is the same except that the roles of the tables are reversed.

A LEFT JoIN works like this: You specify the columns to be used for matching rows in
the two tables. When a row from the left table matches a row from the right table, the
contents of the rows are selected as an output row. When a row in the left table has no
match, it is still selected for output, but joined with a “fake” row from the right table that
contains NULL in all the columns.

In other words, a LEFT JOIN forces the result set to contain a row for every row se-
lected from the left table, whether or not there is a match for it in the right table. The left-
table rows with no match can be identified by the fact that all columns from the right
table are NULL. These result rows tell you which rows are missing from the right table. That
is an interesting and important property, because this kind of problem comes up in many
different contexts. Which customers have not been assigned an account representative? For
which inventory items have no sales been recorded? Or, closer to home with our sampdb
database: Which students have not taken a particular exam? Which students have no rows
in the absence table (that is, which students have perfect attendance)?

Consider once again our two tables, t1 and t2:

Table tl: Table t2:

tmm -+ tmm b ———t
| i1 | el | | i2 | c2 |
o+ +o—— -+
[1]a | | 2]c |
201> [| 3]b |
[31c | | [a |
tmm -+ tmm b ———t

If we use an inner join to match these tables on t1.i1 and t2.i2, we’ll get output
only for the values 2 and 3, because those are the values that appear in both tables:

mysql> SELECT tl.*, t2.* FROM tl INNER JOIN t2 ON tl.il = t2.i2;

2.8 Performing Multiple-Table Retrievals with Joins

A left join produces output for every row in t1, whether or not £2 matches it. To write
a left join, name the tables with LEFT JOIN in between rather than INNER JOIN:

mysgl> SELECT tl.*, t2.* FROM tl1 LEFT JOIN t2 ON tl.il = t2.i2;

Fom - +-———— +
| i1] el | 12 | 2 |
ot +-————- +
| 1] a | NULL | NULL |
2o | 2]c |
' 3le | 31b |
Fom - +-———— +

Now there is an output row even for the t1.1i1 value of 1, which has no match in t2.
All the columns in this row that correspond to t2 columns have a value of NULL.

One thing to watch out for with LEFT JOIN is that unless right-table columns are de-
fined as NOT NULL, you may get problematic rows in the result. For example, if the right
table contains columns with NULL values, you won’t be able to distinguish those NULL val-
ues from NULL values that identify unmatched rows.

As mentioned earlier, a RIGHT JOIN is like a LEFT JOIN with the roles of the tables re-
versed. These two statements are equivalent:

SELECT t1.*, t2.* FROM tl LEFT JOIN t2 ON tl.il = £2.i2;
SELECT t1.*, t2.* FROM t2 RIGHT JOIN tl ON tl.il = t2.i2;

The following discussion in phrased in terms of LEFT JOIN only, but you can adjust it
for RIGHT JOIN by reversing table roles.

LEFT JOIN is especially useful when you want to find only those left table rows that are
unmatched by the right table. Do this by adding a wHERE clause that selects only the rows
that have NULL values in a right table column—in other words, the rows in one table that
are missing from the other:
mysqgl> SELECT t1.*, t2.* FROM tl LEFT JOIN t2 ON tl.il = t2.i2

-> WHERE t2.i2 IS NULL;

i e - +
| 11 | el | i2 | c2 |
Ll L L Fom————- +
| 1| a | NULL | NULL |
-t - +

Normally, when you write a query like this, your real interest is in the unmatched val-
ues in the left table. The NULL columns from the right table are of no interest for display
purposes, so you would omit them from the output column list:

mysgl> SELECT tl.* FROM tl LEFT JOIN t2 ON tl.il = t2.i2
-> WHERE t2.i2 IS NULL;

155

156

Chapter 2 Using SQL to Manage Data

Like INNER JOIN,a LEFT JOIN can be written using an ON clause or a USING () clause
to specify the matching conditions. As with INNER JOIN, ON can be used whether or not
the joined columns from each table have the same name, but USING () requires that they
have the same names.

LEFT JOIN has a few synonyms and variants. LEFT OUTER JOIN is a synonym for LEFT
JOIN. MySQL also supports an ODBC-style notation for LEFT OUTER JOIN that uses
curly braces and oJ (“outer join”):

mysgl> SELECT tl.* FROM { OJ tl LEFT OUTER JOIN t2 ON tl.il = t2.i2 }
-> WHERE t2.i2 IS NULL;

NATURAL LEFT JOIN is similar to LEFT JOIN; it performs a LEFT JOIN, matching all
columns that have the same name in the left and right tables. (Thus, no oN or USING clause
is given.)

As already mentioned, LEFT JOIN is useful for answering “Which values are missing?”
questions. Let’s apply this principle to the tables in the sampdb database and consider a
more complex example than those shown earlier using t1 and t2.

For the grade-keeping project, first mentioned in Chapter 1, we have a student table
listing students, a grade_event table listing the grade events that have occurred, and a
score table listing scores for each student for each grade event. However, if a student was
ill on the day of some quiz or test, the score table wouldn’t contain any score for the stu-
dent for that event. A makeup quiz or test should be given in such cases, but how do we
find these missing rows?

The problem is to determine which students have no score for a given grade event, and
to do this for each grade event. Another way to say this is that we want to find out which
combinations of student and grade event are not present in the score table. This “which
values are not present” wording is a tip-oft that we want a LEFT JoIN.The join isn’t as
simple as in the previous examples, though: We aren’t just looking for values that are not
present in a single column, we’re looking for a two-column combination. The combina-
tions we want are all the student/event combinations. These are produced by joining the
student table to the grade_event table:

FROM student INNER JOIN grade_event
Then we take the result of that join and perform a LEFT JOIN with the score table to
find the matches for student ID/event ID pairs:

FROM student INNER JOIN grade_event
LEFT JOIN score ON student.student_id = score.student.id
AND grade_event.event_id = score.event_id

2.8 Performing Multiple-Table Retrievals with Joins

Note that the on clause allows the rows in the score table to be joined according to
matches in different tables named earlier in the join. That’s the key for solving this prob-
lem.The LEFT JOIN forces a row to be generated for each row produced by the cross join
of the student and grade_event tables, even when there is no corresponding score
table row. The result set rows for these missing score rows can be identified by the fact
that the columns from the score table will all be NULL. We can identify these rows by
adding a condition in the WHERE clause. Any column from the score table will do, but be-
cause we’re looking for missing scores, it’s probably conceptually clearest to test the score
column:

WHERE score.score IS NULL

‘We can also sort the results using an ORDER BY clause. The two most logical orderings
are by event per student and by student per event. I'll choose the first:

ORDER BY student.student_id, grade_event.event_id

Now all we need to do is name the columns we want to see in the output, and we’re
done. Here is the final statement:

SELECT

student .name, student.student_id,

grade_event.date, grade_event.event_id, grade_event.category
FROM

student INNER JOIN grade_event

LEFT JOIN score ON student.student_id = score.student_id

AND grade_event.event_id = score.event_id

WHERE

score.score IS NULL
ORDER BY

student.student_id, grade_event.event_id;

Running the query produces these results:

Fmmm e B T o e e +
| name | student_id | date | event_id | category |
Tt Fmmm P B B +
| Megan | | 2008-09-16 | 410
| Joseph | 2 | 2008-09-03 | 1|0 |
| Katie | | 2008-09-23 | 510
| Devri | 13 | 2008-09-03 | 1] 0
| Devri | 13 | 2008-10-01 | 6| T
| will | 17 | 2008-09-16 | 4]0
| avery | 20 | 2008-09-06 | 210
| Gregory | 23 | 2008-10-01 | 6 | T |
| sarah | 24 | 2008-09-23 | 510
| Carter | 27 | 2008-09-16 | 4]0

157

158

Chapter 2 Using SQL to Manage Data

carter	27	2008-09-23	510
Gabrielle	29	2008-09-16)
Grace	30	2008-09-23	510
Hmmmmmm - Hmmmmmm - Hmmmmmm - tmmmmm - tmmmmm - +

Here’s a subtle point. The output displays the student IDs and the event IDs. The
student_id column appears in both the student and score tables, so at first you might
think that the output column list could name either student.student_id or
score.student_id. That’s not the case, because the entire basis for being able to find the
rows we're interested in is that all the score table columns are returned by the LEFT JOIN
as NULL. Selecting score. student_id would produce only a column of NULL values in the
output. The same principle applies to deciding which event_id column to display. It ap-
pears in both the grade_event and score tables, but the query selects
grade_event .event_id because the score.event_id values will always be NULL.

2.9 Performing Multiple-Table Retrievals with
Subqueries

Subquery support is a capability that allows one SELECT statement to be written within
parentheses and nested inside another. Here’s an example that looks up the IDs for grade
event rows that correspond to tests ('T') and uses them to select scores for those tests:

SELECT * FROM score
WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');

Subqueries can return different types of information:

= A scalar subquery returns a single value.

= A column subquery returns a single column of one or more values.

= A row subquery returns a single row of one or more values.

= A table subquery returns a table of one or more rows of one or more columns.

Subquery results can be tested in difterent ways:

= Scalar subquery results can be evaluated using relative comparison operators such as

= or <.

= INand NOT IN test whether a value is present in a set of values returned by a subquery.

= ALL, ANY, and SOME compare a value to the set of values returned by a subquery.

= EXISTS and NOT EXISTS test whether a subquery result is empty.

A scalar subquery is the most restrictive because it produces only a single value. But as a
consequence, scalar subqueries can be used in the widest variety of contexts. They are appli-
cable essentially anywhere that you can use a scalar operand, such as a term of an expression,

as a function argument, or in the output column list. Column, row, and table subqueries that
return more information cannot be used in contexts that require a single value.

2.9 Performing Multiple-Table Retrievals with Subqueries

Subqueries can be correlated or uncorrelated. This is a function of whether a subquery
refers to and is dependent on values in the outer query.

You can use subqueries with statements other than SELECT. However, for statements
that modify tables (INSERT, REPLACE, DELETE, UPDATE, LOAD DATA) there is currently a re-
striction that the subquery cannot refer to the table being modified.

In some cases, subqueries can be rewritten as joins.You might find subquery rewriting
techniques useful if you’re writing queries that need to run on an older MySQL server, or
if you want to see whether the MySQL optimizer does a better job with a join than a
subquery.

The following sections discuss the kinds of operations you can use to test subquery re-
sults, how to write correlated subqueries, and how to rewrite subqueries as joins.

2.9.1 Subqueries with Relative Comparison Operators

The =, <>, >, >=, <, and <= operators perform relative-value comparisons. When used with
a scalar subquery, they find all rows in the outer query that stand in particular relationship
to the value returned by the subquery. For example, to identify the scores for the quiz that
took place on '2008-09-23", use a scalar subquery to determine the quiz event ID and
then match score rows against that ID in the outer SELECT:

SELECT * FROM score
WHERE event_id =
(SELECT event_id FROM grade_event
WHERE date = '2008-09-23' AND category = 'Q');

With this form of statement, where the subquery is preceded by a value and a relative
comparison operator, it is necessary that the subquery produce a single value.That is, it
must be a scalar subquerys; if it produces multiple values, the statement will fail. In some
cases, it may be appropriate to satisfy the single-value requirement by limiting the sub-
query result with LIMIT 1.

Use of scalar subqueries with relative comparison operators is handy for solving prob-
lems where you'd be tempted to use an aggregate function in a WHERE clause. For example,
to determine which of the presidents in the president table was born first, you might try
this statement:

SELECT * FROM president WHERE birth = MIN(birth);

That doesn’t work because you can’t use aggregates in WHERE clauses. The WHERE clause
determines which rows to select, but the value of MIN() isn’t known until affer the rows
have already been selected. However, you can use a subquery to produce the minimum

birth date like this:

SELECT * FROM president
WHERE birth = (SELECT MIN(birth) FROM president);

159

160

Chapter 2 Using SQL to Manage Data

Other aggregate functions can be used to solve similar problems. The following state-
ment uses a subquery to select the above-average scores from a given grade event:

SELECT * FROM score WHERE event_id = 5
AND score > (SELECT AVG(score) FROM score WHERE event_id = 5);

If a subquery returns a single row, you can use a row constructor to compare a set of
values (that is, a tuple) to the subquery result. This statement returns rows for presidents
who were born in the same city and state as John Adams:

mysql> SELECT last_name, first_name, city, state FROM president
-> WHERE (city, state) =
-> (SELECT city, state FROM president
-> WHERE last_name = 'Adams' AND first_name = 'John');

e - P o +
| last_name | first_name | city | state |
B e e B T R +
| Adams | John | Braintree | MA |
| Adams | John Quincy | Braintree | MA |
fm o B T P T e +

You can also use ROW(city, state) notation, which is equivalent to (city, state).
Both act as row constructors that represent tuples.

2.9.2 IN and NOT IN Subqueries

The 1N and NOT IN operators can be used when a subquery returns multiple rows to be
evaluated in comparison to the outer query. They test whether a comparison value is pres-
ent in a set of values. IN is true for rows in the outer query that match any row returned
by the subquery. NOT IN is true for rows in the outer query that match no rows returned
by the subquery. The following statements use IN and NOT IN to find those students who
have absences listed in the absence table, and those who have perfect attendance (no
absences):

mysql> SELECT * FROM student
-> WHERE student_id IN (SELECT student_id FROM absence);

fm - R o +
| name | sex | student_id |
B P P +
| Ryle | M | 3
abby	F	5
Peter	M	10
will	M	17
avery	F	20
B P P +

mysql> SELECT * FROM student
-> WHERE student_id NOT IN (SELECT student_id FROM absence);
fommmm oo fom— - B et +
name | sex | student_id |

2.9 Performing Multiple-Table Retrievals with Subqueries

Nathan
Liesl

_— — — — 4

IN and NOT 1IN also work for subqueries that return multiple columns. In other words,
you can use them with table subqueries. In this case, use a row constructor to specify the
comparison values to test against each column:

mysql> SELECT last_name, first name, city, state FROM president
-> WHERE (city, state) IN
-> (SELECT city, state FROM president
-> WHERE last_name = 'Roosevelt');

R T O e +
| last_name | first_name | city | state |
tmmm o tmmm tmmm e Hmmm e +
| Roosevelt | Theodore | New York | NY |
| Roosevelt | Franklin D. | Hyde Park | NY |
Fmmmm Fmmm Fmmm - o +

IN and NOT 1IN actually are synonyms for = ANY and <> ALL, which are covered in the
next section.

2.9.3 ALL, ANY, and SOME Subqueries

The ALL and ANY operators are used in conjunction with a relative comparison operator
to test the result of a column subquery. They test whether the comparison value stands in
particular relationship to all or some of the values returned by the subquery. For example,
<= ALL is true if the comparison value is less than or equal to every value that the sub-
query returns, whereas <= ANY is true if the comparison value is less than or equal to any
value that the subquery returns. SOME is a synonym for ANY.

This statement determines which president was born first by selecting the row with a
birth date less than or equal to all the birth dates in the president table (only the earliest
date satisfies this condition):

mysql> SELECT last_name, first_name, birth FROM president
-> WHERE birth <= ALL (SELECT birth FROM president);

Fmmm o Fmmm - Fmmm - +
| last_name | first_name | birth |
Fmmmm e Fmmmm e Fmmmm e +
| Washington | George | 1732-02-22 |
pmmmm e fmmmm e fmmmm e +

161

162

Chapter 2 Using SQL to Manage Data

Less usefully, the following statement returns all rows because every date is less than or
equal to at least one other date (itself):

mysql> SELECT last_name, first _name, birth FROM president
-> WHERE birth <= ANY (SELECT birth FROM president);

Fmmm - T e +
| last_name | first_name | birth

Fmmm B T T P +
Washington	George	1732-02-22
Adams	John	1735-10-30
Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28

When ALL, ANY, or SOME are used with the = comparison operator, the subquery can be
a table subquery. In this case, you test return rows using a row constructor to provide the
comparison values.

mysgl> SELECT last_name, first name, city, state FROM president
-> WHERE (city, state) = ANY
-> (SELECT city, state FROM president
-> WHERE last_name = 'Roosevelt');

B e P e R +
| last_name | first_name | city | state |
Hmmmm e Hmmm e Hmmm e Hmmmm e +
| Roosevelt | Theodore | New York | NY |
| Roosevelt | Franklin D. | Hyde Park | NY |
it B T P e +

As mentioned in the previous section, IN and NOT IN are shorthand for = ANy and <>
aLL. That is, IN means “equal to any of the rows returned by the subquery” and NnoT 1IN
3 29
means “unequal to all rows returned by the subquery.

2.9.4 EXISTS and NOT EXISTS Subqueries

The EXISTS and NOT EXISTS operators merely test whether a subquery returns any rows.
If it does, EXISTS 1s true and NOT EXISTS is false. The following statements show some
trivial examples of these subqueries. The first returns O if the absence table is empty, the
second returns 1:

SELECT EXISTS (SELECT * FROM absence) ;
SELECT NOT EXISTS (SELECT * FROM absence) ;

EXISTS and NOT EXISTS actually are much more commonly used in correlated sub-
queries. For examples, see Section 2.9.5,“Correlated Subqueries.”

With EXISTS and NOT EXISTS, the subquery uses * as the output column list. There’s
no need to name columns explicitly, because the subquery is assessed as true or false based
on whether it returns any rows, not based on the particular values that the rows might

2.9 Performing Multiple-Table Retrievals with Subqueries

contain.You can actually write pretty much anything for the subquery column selection
list, but if you want to make it explicit that you’re returning a true value when the sub-
query succeeds, you might write it with SELECT 1 rather than with SELECT *.

2.9.5 Correlated Subqueries

Subqueries can be uncorrelated or correlated:

= An uncorrelated subquery contains no references to values from the outer query.
An uncorrelated subquery can be executed by itself as a separate statement. For ex-
ample, the subquery in the following statement is uncorrelated because it refers
only to the table t1 and not to t2:

SELECT j FROM t2 WHERE j IN (SELECT i FROM tl);

= A correlated subquery does contain references to values from the outer query, and
thus is dependent on it. Due to this linkage, a correlated subquery cannot be exe-
cuted by itself as a separate statement. For example, the subquery in the following
statement is true for each value of column j in t2 that matches a column i value in
tl:

SELECT j FROM t2 WHERE (SELECT i FROM tl WHERE 1 = j);

Correlated subqueries commonly are used for EXISTS and NOT EXISTS subqueries,
which are useful for finding rows in one table that match or don’t match rows in another.
Correlated subqueries work by passing values from the outer query to the subquery to
see whether they match the conditions specified in the subquery. For this reason, it’s nec-
essary to qualify column names with table names if they are ambiguous (appear in more
than one table).

The following EXISTS subquery identifies matches between the tables—that is, values
that are present in both. The statement selects students who have at least one absence
listed in the absence table:

SELECT student_id, name FROM student WHERE EXISTS
(SELECT * FROM absence WHERE absence.student_id = student.student_id);

NOT EXISTS identifies non-matches—values in one table that are not present in the
other. This statement selects students who have no absences:

SELECT student_id, name FROM student WHERE NOT EXISTS
(SELECT * FROM absence WHERE absence.student_id = student.student_id);

2.9.6 Subqueries in the FROM Clause

Subqueries can be used in the FrRoM clause to generate values. In this case, the result of the
subquery acts like a table. A subquery in the FROM clause can participate in joins, its values
can be tested in the WHERE clause, and so forth. When using this type of subquery, you
must provide a table alias to give the subquery result a name:

mysql> SELECT * FROM (SELECT 1, 2) AS tl INNER JOIN (SELECT 3, 4) AS t2;
Fom b ————————+

163

164

Chapter 2 Using SQL to Manage Data

[112]3]4]
Fo— b ————————+
l1 12]3]4]
Fom o ——b—— -4

2.9.7 Rewriting Subqueries as Joins

It’s often possible to rephrase a query that uses a subquery in terms of a join, and it’s not a
bad idea to examine queries that you might be inclined to write in terms of subqueries. A
join is sometimes more efficient than a subquery, so if a SELECT written as a subquery
takes a long time to execute, try writing it as a join to see whether it performs better. This
section shows how to do that.

2.9.7.1 Rewriting Subqueries That Select Matching Values
Here’s an example statement containing a subquerys; it selects scores from the score table
only for tests (that is, it ignores quiz scores):

SELECT * FROM score

WHERE event_id IN (SELECT event_id FROM grade_event WHERE category = 'T');
The same statement can be written without a subquery by converting it to a simple

join:

SELECT score.* FROM score INNER JOIN grade_event

ON score.event_id = grade_event.event_id WHERE grade_event.category = 'T';
As another example, the following query selects scores for female students:

SELECT * from score

WHERE student_id IN (SELECT student_id FROM student WHERE sex = 'F');
This can be converted to a join as follows:

SELECT score.* FROM score INNER JOIN student

ON score.student_id = student.student_id WHERE student.sex = 'F';
There is a pattern here. The subquery statements follow this form:

SELECT * FROM tablel

WHERE columnl IN (SELECT columnl2a FROM table2 WHERE column2b = value);
Such queries can be converted to a join using this form:

SELECT tablel.* FROM tablel INNER JOIN table2

ON tablel.columnl = table2.column2a WHERE table2.column2b = value;

In some cases, the subquery and the join might return different results. This occurs
when table2 contains multiple instances of column2a.The subquery form produces only
one instance of each column2a value, but the join would produce them all and its output
would include duplicate rows. To suppress these duplicates, begin the join with SELECT
DISTINCT rather than SELECT.

2.10 Performing Multiple-Table Retrievals with UNION

2.9.7.2 Rewriting Subqueries That Select Non-Matching (Missing) Values
Another common type of subquery statement searches for values in one table that are not
present in another table. As we’ve seen before, the “which values are not present” type of
problem is a clue that a LEFT JOIN may be helpful. Here’s the statement with a subquery
seen earlier that tests for students who are not listed in the absence table (it finds those
students with perfect attendance):

SELECT * FROM student
WHERE student_id NOT IN (SELECT student_id FROM absence) ;
This query can be rewritten using a LEFT JOIN as follows:

SELECT student.*
FROM student LEFT JOIN absence ON student.student_id = absence.student_id
WHERE absence.student_id IS NULL;

In general terms, the subquery statement form is as follows:
SELECT * FROM tablel
WHERE columnl NOT IN (SELECT column2 FROM table2);

A query having that form can be rewritten like this:

SELECT tablel.*
FROM tablel LEFT JOIN table2 ON tablel.columnl = table2.column2
WHERE table2.column2 IS NULL;

This assumes that table2.column2 is defined as NOT NULL.

The subquery does have the advantage of being more intuitive than the LEFT JOIN.
“Not in” is a concept that most people understand without difficulty, because it occurs
outside the context of database programming. The same cannot be said for the concept of
“left join,” for which there is no such basis for natural understanding.

2.10 Performing Multiple-Table Retrievals
with UNION

If you want to create a result set that combines the results from several queries, you can
do so by using a UNION statement. For the examples in this section, assume that you have
three tables, t1, t2, and t3 that look like this:

mysgl> SELECT * FROM tl;

o o +
il |
o tmm - +
1	red
2	blue
3	green
o o +

mysql> SELECT * FROM t2;

165

166

Chapter 2 Using SQL to Manage Data

Fommmm e B it +
| a | 1 |
o o +
1904-01-01	100
2004-01-01	200
2004-01-01	200
Fommmm e B it +

Tables t1 and t2 have integer and character columns, and t3 has date and integer
columns. To write a UNION statement that combines multiple retrievals, write several
SELECT statements and put the keyword UNION between them (they must retrieve the
same number of columns). For example, to select the integer column from each table, do
this:

mysgl> SELECT i FROM tl UNION SELECT i FROM t2 UNION SELECT i FROM t3;

UNION has the following properties.

Column name and data types. The column names for the UNION result come from
the names of the columns in the first SELECT. The second and subsequent SELECT state-
ments in the UNION must select the same number of columns, but corresponding columns
need not have the same names or data types. (Normally, you write UNION such that corre-
sponding columns do have the same types, but MySQL performs type conversion as nec-
essary if they do not.) Columns are matched by position rather than by name, which is
why the following two statements return different results, even though they select the
same values from the two tables:

mysql> SELECT i, ¢ FROM tl UNION SELECT i, d FROM t3;

2.10 Performing Multiple-Table Retrievals with UNION

3	green
100	1904-01-01
200	2004-01-01
o tmmm e +

Fmmmm - Fmm——— e +
| i | c |
e Fmm————— +
1	red
2	blue
3	green
1904-01-01	100
2004-01-01	200
e Fmm————— +

In each statement, the data type for each column of the result is determined from the
selected values. In the first statement, strings and dates are selected for the second column.
The result is a string column. In the second statement, integers and dates are selected for
the first column, strings and integers for the second column. In both cases, the result is a
string column.

Duplicate-row handling. By default, unToN eliminates duplicate rows from the
result set:

mysgl> SELECT * FROM tl UNION SELECT * FROM t2 UNION SELECT * FROM t3;

Fmmmm - Fmm——— e +
| 1 | c |
e Fmm————— +
1	red
2	blue
3	green
-1	tan
1904-01-01	100
2004-01-01	200
Fmmmm e R +

t1 and t2 both have a row containing values of 1 and 'red', but only one such row
appears in the output. Also, £3 has two rows containing '2004-01-01"'and 200, one of
which has been eliminated.

UNION DISTINCT is synonymous with UNION; both retain only distinct rows.

If you want to preserve duplicates, change each UNION to UNION ALL:

mysgl> SELECT * FROM t1 UNION ALL SELECT * FROM t2 UNION ALL SELECT * FROM t3;

Fmmm o Fmm———— e +
| i | e |
Fmmmm e R +
1	red
2	blue
3	green

167

168

Chapter 2 Using SQL to Manage Data

-1	tan
1	red
1904-01-01	100
2004-01-01	200
2004-01-01	200
fomm e e i +

If you mix UNION or UNION DISTINCT with UNION ALL, any distinct union operation
takes precedence over any UNION ALL operations to its left.

ORDER BY and LIMIT handling. To sort a UNION result as a whole, place each SELECT
within parentheses and add an ORDER BY clause following the last one. However, because
the UNTION uses column names from the first SELECT, the ORDER BY should refer to those
names, not the column names from the last SELECT:
mysql> (SELECT i, c¢ FROM t1) UNION (SELECT i, d FROM t3)

-> ORDER BY c;

tmmmmm Hmmmmm e +
i |« |
Fm————- Fmmm - +
100	1904-01-01
200	2004-01-01
2	blue
3	green
1	red
Fm————- Fmmm - +

If a sort column is aliased, an ORDER BY at the end of the UNION must refer to the alias.
Also, the ORDER BY cannot refer to table names. If you need to sort by a column specified
as tbl_name.col_name in the first SELECT, alias the column and refer to the alias in the
ORDER BY clause.

Similarly, to limit the number of rows returned by a UNION, add LIMIT to the end of
the statement:

mysqgl> (SELECT * FROM tl) UNION (SELECT * FROM t2) UNION (SELECT * FROM t3)

-> LIMIT 2;

R oo +
T |
R — o +
|1 | red |
| 2 | blue |
tomm e Hmmmmmmmmm oo +

ORDER BY and LIMIT also can be used within a parenthesized individual SELECT of a
UNION to apply only to that SELECT:
mysgl> (SELECT * FROM tl1 ORDER BY i LIMIT 2)

-> UNION (SELECT * FROM t2 ORDER BY i LIMIT 1)
-> UNION (SELECT * FROM t3 ORDER BY d LIMIT 2);

2.11 Using Views

Fmmm o Fmmm +
| i | e |
Fmmmm e Fmmmm e +
1	red
2	blue
-1	tan
1904-01-01	100
2004-01-01	200
Fmmmm e Fmmmm e +

ORDER BY within an individual SELECT is used only if LIMIT is also present, to deter-
mine which rows the LIMIT applies to. It does not aftect the order in which rows appear
in the final UNION result.

If you want to run a UNION-type query on MyISAM tables that have the same struc-
ture, you could set up a MER GE table and query that. One reason this is useful is that it
is simpler to write a query on a MER GE table than the corresponding UNION statement.
A query on the MERGE table is similar to a UNION that selects corresponding columns
from the individual tables that make up the MERGE table. That is, SELECT on a MERGE
table is like uNTON ALL (duplicates are not removed), and SELECT DISTINCT is like UNION
Or UNION DISTINCT (duplicates are removed).

2.11 Using Views

A view is a virtual table. That s, it acts like a table but actually contains no data. Instead, it
is defined in terms of base (“‘real”) tables or other views and provides alternative ways to
look at table data. Often this can simplify applications.

This section describes some applications for views. One thing it does not cover is the
DEFINER clause that views have in common with stored programs and that can be used
for security purposes to control access to view data. For information about DEFINER, see
Section 4.5,“Security for Stored Programs and Views.”

A simple view can be nothing more than a way to select a subset of a table’s
columns. Suppose that you often want to select only the last_name, first_name, city,
and state columns from the president table, but you don’t want to write out all the
columns like this:

SELECT last_name, first_name, city, state FROM president;
Nor do you want to use SELECT *.That’s easier to write, but * retrieves columns that
you don’t want. The solution is to define a view that retrieves only the desired columns:

CREATE VIEW vpres AS
SELECT last_name, first_name, city, state FROM president;

Now the view acts as a “window” into just those columns that you want to see. This
means that you can use SELECT * with the view and get back only the columns named in
the view definition:

mysgl> SELECT * FROM vpres;

169

170

Chapter 2 Using SQL to Manage Data

Fmmmm - B T B T T - +
| last_name | first_name | city | state

P e e e +
| Washington | George | Wakefield | va |
| Adams | John | Braintree | MA

| Jefferson | Thomas | Albemarle County | va

| Madison | James | Port Conway | va

| Monroe | James | Westmoreland County | VA

If you include a wHERE clause, MySQL adds it to the view definition when executing
the statement to further restrict the result:

mysgl> SELECT * FROM vpres WHERE last_name = 'Adams';

Fmmm - B T P P +
| last_name | first_name | city | state |
B e B T R +
| Adams | John | Braintree | MA |
| Adams | John Quincy | Braintree | MA

P - oo fmmm - +

The same is true if you add ORDER By, LIMIT, and so forth.

‘When you use a view, you can refer only to those columns named in the view defini-
tion. That is, you cannot refer to a column that is not part of the view, even if the column
is part of the base table:

mysql> SELECT * FROM vpres WHERE suffix <> '';
ERROR 1054 (42S22): Unknown column 'suffix' in 'where clause'

The column names for a view by default are those named in the output column list of
its SELECT statement. To provide column names explicitly, add a list of names in parenthe-
ses following the view name in the view definition:

mysqgl> CREATE VIEW vpres2 (ln, fn) AS
-> SELECT last_name, first_name FROM president;

Now when you refer to the view, you must use the given column names rather than
the names in the SELECT:

mysqgl> SELECT last_name, first_name FROM vpres2;
ERROR 1054 (42S22) at line 1: Unknown column 'last_name' in 'field list'
mysql> SELECT ln, fn FROM vpres2;

P B T +
| 1n | fn |
o m B +
| washington | George |
| Adams | John

| Jefferson | Thomas

| Madison | James

| Monroe | James

2.11 Using Views 171

A view can be used to perform calculations automatically. In Section 1.4.9.6,“Work-
ing with Dates,” we developed a statement that determines the age of presidents at death.
The same calculation can be incorporated into a view definition:
mysgl> CREATE VIEW pres_age AS

-> SELECT last_name, first_name, birth, death,
-> TIMESTAMPDIFF (YEAR, birth, death) AS age
-> FROM president;

This view includes an age column that is defined as a calculation, and selecting that
column from the view retrieves the results of the calculation:

mysgl> SELECT * FROM pres_age;

e R b mm o bmmmm o Hmmm o Hmmmm e +
| last_name | first_name | birth | death | age
Fmmmm o Fmmm oo Fmmm - B T T P +
| Washington | George | 1732-02-22 | 1799-12-14 | 67 |
| Adams | John | 1735-10-30 | 1826-07-04 | 90
| Jefferson | Thomas | 1743-04-13 | 1826-07-04 | 83 |
| Madison | James | 1751-03-16 | 1836-06-28 | 85 |
| Monroe | James | 1758-04-28 | 1831-07-04 | 73

By including the age calculation in the view definition, it’s no longer necessary to
write out the formula to see the age values. The view hides the details.

A view can refer to multiple tables, which makes it easier to run queries that involve
joins. The following view looks up scores, joining them with student and grade event
information:
mysgl> CREATE VIEW vstudent AS

-> SELECT student.student_id, name, date, score, category
-> FROM grade_event INNER JOIN score INNER JOIN student
-> ON grade_event.event_id = score.event_id

-> AND score.student_id = student.student_id;

When you select from the view, MySQL executes the join and returns information
from multiple tables:

mysgl> SELECT * FROM vstudent;

Hmmmmm e dmmmmm e fmmmmm o Hmmm e Hmmmm e +
| student_id | name | date | score | category |
tmmmm o tmmm e tmmmm e tmmm - Hmmmm e +
\ 1 | Megan | 2008-09-03 | 20 | 0
\ 3 | Kyle | 2008-09-03 | 20 | Q
\ 4 | Katie | 2008-09-03 | 18 |
\ 5 | Abby | 2008-09-03 | 13 | 0
\ 6 | Nathan | 2008-09-03 | 18 |
\ 7 | Liesl | 2008-09-03 | 14 | 0
\ 8 | Ian | 2008-09-03 | 14 | 0

172 Chapter 2 Using SQL to Manage Data

The view makes it trivial to retrieve the scores for a particular student by name:

mysqgl> SELECT * FROM vstudent WHERE name = 'emily';

bmmm o Hmmm e Hmmmm o Hmmmm e Hmmm e +
| student_id | name | date | score | category |
tmmmm e Hmmm e Hmmmm e Hmmm e Hmmmm e +
| 31 | Emily | 2008-09-03 | 11 | 0
| 31 | Emily | 2008-09-06 | 19 | 0
| 31 | Emily | 2008-09-09 | 81 | T
| 31 | Emily | 2008-09-16 | 19 | 0
| 31 | Emily | 2008-09-23 | 9 | 0
| 31 | Emily | 2008-10-01 | 76 | T
tmmm e Hmmmm e Hmmmm e Hmmmm e Hmmmm o +

Some views are updatable, which means that you can insert, update, and delete rows in
the underlying table by means of operations on the view. Here is a simple example:

mysql> CREATE TABLE t (i INT);

mysqgl> INSERT INTO t (i) VALUES(1),(2),(3);
mysgl> CREATE VIEW v AS SELECT i FROM t;
mysqgl> SELECT i FROM v;

fommm - +
i
Fommm - +
1
2
I3
fommm - +

mysql> INSERT INTO v (i) VALUES(4);
mysql> DELETE FROM v WHERE i < 3;
mysqgl> SELECT i FROM v;

o +
i
o +
I3
e
o +

mysgl> UPDATE v SET i = i + 1;
mysqgl> SELECT i FROM v;
o +

[i

o +

| 4 |

2.12 Multiple-Table Deletes and Updates

For a view to be updatable, it must map directly onto a single table, it must select only
columns that are simple references to table columns (not arbitrary expressions), and any
operation on a view row must correspond to an operation on a single row in the under-
lying table. For example, if a view involves a summary calculated using an aggregate func-
tion, each view row can be based on multiple underlying table rows. In this case, the view
is not updatable because there is no way to tell which underlying table row should be
updated.

2.12 Multiple-Table Deletes and Updates

Sometimes it’s useful to delete rows based on whether they match or don’t match rows in
another table. Similarly, it’s often useful to update rows in one table using the contents of
rows in another table. This section describes how to perform multiple-table DELETE and
UPDATE operations. These types of statements draw heavily on the concepts used for joins,
so be sure you’re familiar with the material discussed earlier in Section 2.8, “Performing
Multiple-Table Retrievals with Joins.”

To perform a single-table DELETE or UPDATE, you refer only to the columns of one
table and thus need not qualify the column names with the table name. For example, to
delete all rows in a table t that have id values greater than 100, you'd write a statement
like this:

DELETE FROM t WHERE id > 100;

But what if you want to delete rows based not on properties inherent in the rows
themselves, but rather on their relationship to rows in another table? Suppose that you
want to delete from t those rows with id values that are found in another table £2?

To write a multiple-table DELETE, name all the tables in a FRoM clause and specify the
conditions used to match rows in the tables in the wHERE clause. The following statement
deletes rows from table t1 where there is a matching id value in table t2:

DELETE tl1 FROM tl INNER JOIN t2 ON tl.id = t2.id;

Notice that if a column name appears in more than one of the tables, it becomes am-
biguous and must be qualified with a table name.

The syntax also allows for deleting rows from multiple tables at once.To delete rows
from both tables where there are matching id values, name them both after the DELETE
keyword:

DELETE tl, t2 FROM tl INNER JOIN t2 ON tl.id = t2.id;

‘What if you want to delete non-matching rows? A multiple-table DELETE can use any
kind of join that you can write in a SELECT, so employ the same strategy that you'd use
when writing a SELECT that identifies the non-matching rows. That is, use a LEFT JOIN
or RIGHT JOIN. For example, to identify rows in t1 that have no match in t2, you'd write
a SELECT like this:

SELECT tl.* FROM tl LEFT JOIN t2 ON tl.id = t2.id WHERE t2.id IS NULL;

173

174

Chapter 2 Using SQL to Manage Data

The analogous DELETE statement to find and remove those rows from t1 uses a LEFT
JOIN as well:

DELETE tl FROM tl LEFT JOIN t2 ON tl.id = t2.id WHERE t2.id IS NULL;

MySQL supports a second multiple-table DELETE syntax. With this syntax, use a FROM
clause to list the tables from which rows are to be deleted and a usING clause to join the
tables that determine which rows to delete. The preceding multiple-table DELETE state-
ments can be rewritten using this syntax as follows:

DELETE FROM tl USING tl INNER JOIN t2 ON tl.id = t2.id;
DELETE FROM tl, t2 USING tl INNER JOIN t2 ON tl.id = t2.id;
DELETE FROM tl USING tl LEFT JOIN t2 ON tl.id = t2.id WHERE t2.id IS NULL;

The principles involved in writing multiple-table UPDATE statements are quite similar
to those used for DELETE: Name all the tables that participate in the operation and qualify
column references as necessary. Suppose that the quiz you gave on September 23, 2008,
contained a question that everyone got wrong, and then you discover that the reason for
this is that your answer key was incorrect. As a result, you want to add a point to every-
one’s score. With a multiple-table UPDATE, you can do this as follows:

UPDATE score, grade_event SET score.score = score.score + 1
WHERE score.event_id = grade_event.event_id
AND grade_event.date ='2008-09-23' AND grade_event.category = 'Q';

In this case, you could accomplish the same objective using a single-table update and a
subquery:
UPDATE score SET score = score + 1

WHERE event_id = (SELECT event_id FROM grade_event
WHERE date = '2008-09-23' AND category = 'Q');

But other updates cannot be written using subqueries. For example, you might want
to not only identify rows to update based on the contents of another table, but to copy
column values from one table to another. The following statement copies t1.a to t2.a
for rows that have a matching id column value:

UPDATE tl, t2 SET t2.a = tl.a WHERE t2.id = tl.id;

To perform multiple-table deletes or updates for InnoDB tables, you need not use the
syntax just described. Instead set up a foreign key relationship between tables that includes
an ON DELETE CASCADE or ON UPDATE CASCADE constraint. For details, see Section 2.14,
“Foreign Keys and Referential Integrity.”

2.13 Performing Transactions

A transaction is a set of SQL statements that execute as a unit and that can be canceled if
necessary. Either all the statements execute successfully, or none of them have any effect.
This is achieved through the use of commit and rollback capabilities. If all of the state-
ments in the transaction succeed, you commit it to record their effects permanently in the

2.13 Performing Transactions

database. If an error occurs during the transaction, you roll it back to cancel it. Any state-
ments executed up to that point within the transaction are undone, leaving the database
in the state it was in prior to the point at which the transaction began.

Commit and rollback provide the means for ensuring that halfway-done operations
don’t make their way into your database and leave it in a partially updated (inconsistent)
state. The canonical example of this involves a financial transfer where money from one
account is placed into another account. Suppose that Bill writes a check to Bob for
$100.00 and Bob cashes the check. Bill’s account should be decremented by $100.00 and
Bob’s account incremented by the same amount:

UPDATE account SET balance = balance - 100 WHERE name = 'Bill';
UPDATE account SET balance = balance + 100 WHERE name = 'Bob';

If a crash occurs between the two statements, the operation is incomplete. Depending
on which statement executes first, Bill is $100 short without Bob having been credited, or
Bob is given $100 without Bill having been debited. Neither outcome is correct. If trans-
actional capabilities are not available to you, you have to figure out the state of ongoing
operations at crash time by examining your logs manually in order to determine how to
undo them or complete them. The rollback capabilities of transaction support enable you
to handle this situation properly by undoing the effect of the statements that executed be-
fore the error occurred. (You may still have to determine which transactions weren’t en-
tered and re-issue them, but at least you don’t have to worry about half-transactions
making your database inconsistent.)

Another use for transactions is to make sure that the rows involved in an operation are
not modified by other clients while you’re working with them. MySQL automatically
performs locking for single SQL statements to keep clients from interfering with each
other, but this is not always sufficient to guarantee that a database operation achieves its
intended result, because some operations are performed over the course of several state-
ments. In this case, different clients might interfere with each other. A transaction group
statements into a single execution unit to prevent concurrency problems that could oth-
erwise occur in a multiple-client environment.

Transactional systems typically are characterized as providing ACID properties. ACID
is an acronym for Atomic, Consistent, Isolated, and Durable, referring to four properties
that transactions should have:

* Atomicity: The statements a transaction consists of form a logical unit.You can’t
have just some of them execute.

* Consistency: The database is consistent before and after the transaction executes.
In other words, the transaction doesn’t make a mess of your database.

* Isolation: One transaction has no effect on another.

* Durability: When a transaction executes successfully to completion, its eftects are
recorded permanently in the database.

Transactional processing provides stronger guarantees about the outcome of database
operations, but also requires more overhead in CPU cycles, memory, and disk space.

175

176

Chapter 2 Using SQL to Manage Data

MySQL offers some storage engines that are transaction-safe (such as InnoDB and Falcon),
and some that are not transaction-safe (such as MyISAM and MEMORY). Transactional
properties are essential for some applications and not for others, and you can choose which
ones make the most sense for your applications. Financial operations typically need trans-
actions, and the guarantees of data integrity outweigh the cost of additional overhead. On
the other hand, for an application that logs web page accesses to a database table, a loss of a
few rows if the server host crashes might be tolerable. In this case, you can use a non-
transactional storage engine to avoid the overhead required for transactional processing.

2.13.1 Using Transactions to Ensure Safe Statement Execution

To use transactions, you must use a transactional storage engine such as InnoDB or Fal-
con. Engines such as MyISAM and MEMORY will not work. If you're not sure whether
your MySQL server supports any transactional storage engines, see Section 2.6.1.1,
“Checking Which Storage Engines Are Available.”

By default, MySQL runs in autocommit mode, which means that changes made by in-
dividual statements are committed to the database immediately to make them permanent.
In effect, each statement is its own transaction implicitly. To perform transactions explicitly,
disable autocommit mode and then tell MySQL when to commit or roll back changes.

One way to perform a transaction is to issue a START TRANSACTION (or BEGIN) state-
ment to suspend autocommit mode, execute the statements that make up the transaction,
and end the transaction with a coMMIT statement to make the changes permanent. If an
error occurs during the transaction, cancel it by issuing a ROLLBACK statement instead to
undo the changes. START TRANSACTION suspends the current autocommit mode, so after
the transaction has been committed or rolled back, the mode reverts to its state prior to
the START TRANSACTION. (If autocommit was enabled beforehand, ending the transaction
puts you back in autocommit mode. If it was disabled, ending the current transaction
causes you to begin the next one.)

The following example illustrates this approach. First, create a table to use:

mysqgl> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE = InnoDB;

The statement creates an InnoDB table, but you can use a different transactional stor-
age engine if you like. Next, initiate a transaction with START TRANSACTION, add a couple
of rows to the table, commit the transaction, and then see what the table looks like:

mysql> START TRANSACTION;

mysgl> INSERT INTO t SET name = 'William';
mysgl> INSERT INTO t SET name = 'Wallace';
mysqgl> COMMIT;

mysqgl> SELECT * FROM t;

| wallace |
| william |

2.13 Performing Transactions

You can see that the rows have been recorded in the table. If you had started up a sec-
ond instance of mysql and selected the contents of t after the inserts but before the com-
mit, the rows would not show up. They would not become visible to the second mysql
process until the coMMIT statement had been issued by the first one.

If an error occurs during a transaction, you can cancel it with ROLLBACK. Using the t
table again, you can see this by issuing the following statements:

mysgl> START TRANSACTION;

mysgl> INSERT INTO t SET name = 'Gromit';

mysgl> INSERT INTO t SET name = 'Wallace';

ERROR 1062 (23000): Duplicate entry 'Wallace' for key 1
mysgl> ROLLBACK;

mysgl> SELECT * FROM t;

| wallace |
| william |

The second INSERT attempts to place a row into the table that duplicates an existing
name value. The statement fails because name has a UNIQUE index. After issuing the
ROLLBACK, the table has only the two rows that it contained prior to the failed transaction.
In particular, the INSERT that was performed just prior to the point of the error has been
undone and its effect is not recorded in the table.

Issuing a START TRANSACTION statement while a transaction is in process commits the
current transaction implicitly before beginning a new one.

Another way to perform transactions is to manipulate the autocommit mode directly
using SET statements:

SET autocommit = 0;
SET autocommit = 1;

Setting the autocommit variable to zero disables autocommit mode. The effect of any
statements that follow becomes part of the current transaction, which you end by issuing
a COMMIT or ROLLBACK statement to commit or cancel it. With this method, autocommit
mode remains off until you turn it back on, so ending one transaction also begins the
next one.You can also commit a transaction by re-enabling autocommit mode.

To see how this approach works, begin with the same table as for the previous
examples:

mysgl> DROP TABLE t;
mysqgl> CREATE TABLE t (name CHAR(20), UNIQUE (name)) ENGINE = InnoDB;

Then disable autocommit mode, insert some rows, and commit the transaction:

mysgl> SET autocommit = 0;
mysgl> INSERT INTO t SET name = 'William';

177

178

Chapter 2 Using SQL to Manage Data

mysgl> INSERT INTO t SET name = 'Wallace';
mysgl> COMMIT;
mysqgl> SELECT * FROM t;

| wallace |
| william |

At this point, the two rows have been committed to the table, but autocommit mode
remains disabled. If you issue further statements, they become part of a new transaction,
which may be committed or rolled back independently of the first transaction. To verify
that autocommit is still off and that RornLBACK will cancel uncommitted statements, issue
the following statements:

mysgl> INSERT INTO t SET name = 'Gromit';

mysgl> INSERT INTO t SET name = 'Wallace';

ERROR 1062 (23000): Duplicate entry 'Wallace' for key 1
mysgl> ROLLBACK;

mysqgl> SELECT * FROM t;

| Wwallace |
| william |

To re-enable autocommit mode, use this statement:

mysgl> SET autocommit = 1;

As just described, a transaction ends when you issue a COMMIT or ROLLBACK statement,
or when you re-enable autocommit while it is disabled. Transactions also end under other
circumstances. In addition to the SET autocommit, START TRANSACTION, BEGIN, COMMIT,
and ROLLBACK statements that affect transactions explicitly, certain other statements do so
implicitly because they cannot be part of a transaction. In general, these tend to be DDL
(data definition language) statements that create, alter, or drop databases or objects in
them, or statements that are lock-related. For example, if you issue any of the following
statements while a transaction is in progress, the server commits the transaction first be-
fore executing the statement:

ALTER TABLE
CREATE INDEX
DROP DATABASE
DROP INDEX
DROP TABLE
LOCK TABLES
RENAME TABLE

2.13 Performing Transactions

SET autocommit = 1 (if not already set to 1)
TRUNCATE TABLE
UNLOCK TABLES (if tables currently are locked)

For a complete list of statements that cause implicit commits in your version of
MySQL, see the MySQL Reference Manual.
A transaction also ends if a client’s connection ends or is broken before a commit occurs.
In this case, the server automatically rolls back any transaction the client was performing.
If a client program automatically reconnects after its connection to the server is lost,
the connection will be reset to its default state of having autocommit enabled.
Transactions are useful in all kinds of situations. Suppose that you’re working with the
score table that is part of the grade-keeping project and you discover that the grades for
two students have gotten mixed up and need to be switched. The incorrectly entered
grades are as follows:
mysgl> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);
Fmm - Fmm o +

| student_id | event_id | score |

To fix this, student 8 should be given a score of 13 and student 9 a score of 18.That
can be done easily with two statements:

UPDATE score SET score = 13 WHERE event_id = 5 AND student_id = 8§;
UPDATE score SET score = 18 WHERE event_id = 5 AND student_id = 9;

However, it’s necessary to ensure that both statements succeed as a unit. This is a prob-
lem to which transactional methods may be applied. To use START TRANSACTION, do this:

mysgl> START TRANSACTION;

mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id
mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id
mysgl> COMMIT;

8;
9;

To accomplish the same thing by manipulating the autocommit mode explicitly in-
stead, do this:

mysgl> SET autocommit = 0;

mysql> UPDATE score SET score = 13 WHERE event_id = 5 AND student_id
mysql> UPDATE score SET score = 18 WHERE event_id = 5 AND student_id
mysgl> COMMIT;

mysgl> SET autocommit = 1;

]
o o
~e o~

Either way, the result is that the scores are swapped properly:

mysql> SELECT * FROM score WHERE event_id = 5 AND student_id IN (8,9);

179

180

Chapter 2 Using SQL to Manage Data

Fomm - Bttt tomm - +

| student_id | event_id | score |

2.13.2 Using Transaction Savepoints

MySQL enables you to perform a partial rollback of a transaction. To do this, issue a
SAVEPOINT statement within the transaction to set a marker. To roll back to just that point
in the transaction later, use a ROLLBACK statement that names the savepoint. The following
statements illustrate how this works:

mysgl> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysgl> START TRANSACTION;

mysgl> INSERT INTO t VALUES(1l);

mysqgl> SAVEPOINT my_savepoint;

mysqgl> INSERT INTO t VALUES(2);

mysgl> ROLLBACK TO SAVEPOINT my_savepoint;
mysgl> INSERT INTO t VALUES(3);

mysgl> COMMIT;

mysqgl> SELECT * FROM t;

o +
i
o +
1
[3]
o +

After executing these statements, the first and third rows have been inserted, but the
second one has been canceled by the partial rollback to the my_savepoint savepoint.

2.13.3 Transaction Isolation

Because MySQL is a multiple-user database system, difterent clients can attempt to use
any given table at the same time. Storage engines such as MyISAM use table locking to
keep clients from modifying a table at the same time, but this does not provide good con-
currency performance when there are many updates. The InnoDB storage engine takes a
different approach. It uses row-level locking for finer-grained control over table access by
clients. One client can modify a row at the same time that another client reads or modi-
fies a different row in the same table. If both clients want to modify a row at the same
time, whichever of them acquires a lock on the row gets to modity it first. This provides
better concurrency than table locking. However, there is the question about whether one
client’s transaction should be able to see the changes made by another client’s transaction.

2.13 Performing Transactions 181

InnoDB implements transaction isolation levels to give clients control over what kind of
changes made by other transactions they want to see. Different isolation levels allow or pre-
vent the various problems that can occur when different transactions run simultaneously:

= Dirty reads. A dirty read occurs when a change made by one transaction can be
seen by other transactions before the transaction has been committed. Another
transaction thus might think the row has been changed, even though that will not
really be true if the transaction that changed the row later is rolled back.

= Nonrepeatable reads. A nonrepeatable read refers to the failure by a transaction to
get the same result for a given SELECT statement each time it executes it. This might
happen if one transaction performs a SELECT twice but another transaction changes
some of the rows in between the two executions.

= Phantom rows. A phantom is a row that becomes visible to a transaction when it
was not previously. Suppose that a transaction performs a SELECT and then another
transaction inserts a row. If the first transaction runs the same SELECT again and sees
the new row, that is a phantom.

To deal with these problems, InnoDB supports four transaction isolation levels. These
levels determine which modifications made by one transaction can be seen by other
transactions that execute at the same time:

= READ UNCOMMITTED

A transaction can see row modifications made by other transactions even before they
have been committed.

= READ COMMITTED

A transaction can see row modifications made by other transactions only if they
have been committed.

= REPEATABLE READ

If a transaction performs a given SELECT twice, the result is repeatable. That is, it
gets the same result each time, even if other transactions have changed or inserted
rows in the meantime.

= SERIALIZABLE

This isolation level is similar to REPEATABLE READ but isolates transactions more
completely: Rows examined by one transaction cannot be modified by other trans-
actions until the first transaction completes. This enables one transaction to read
rows and at the same time prevent them from being modified by other transactions
until it is done with them.

Table 2.4 shows for each isolation level whether it allows dirty reads, nonrepeatable
reads, or phantom rows. The table is InnoDB-specific in that REPEATABLE READ does not
allow phantom rows to occur. Some database systems do allow phantoms at the
REPEATABLE READ isolation level.

182 Chapter 2 Using SQL to Manage Data

Table 2.4 Problems Allowed by Isolation Levels

Isolation Level Dirty Reads Nonrepeatable Reads Phantom Rows
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No No
SERIALIZABLE No No No

The default InnoDB isolation level is REPEATABLE READ. This can be changed at
server startup with the --transaction-isolation option, or at runtime with the SET
TRANSACTION statement. The statement has three forms:

SET GLOBAL TRANSACTION ISOLATION LEVEL Ievel;
SET SESSION TRANSACTION ISOLATION LEVEL Ievel;
SET TRANSACTION ISOLATION LEVEL Ievel;

A client that has the SUPER privilege can use SET TRANSACTION to change the global
isolation level, which then applies to any clients that connect thereafter. In addition, any
client can change its own transaction isolation level, either for all subsequent transactions
within its session with the server (if SESSION is specified) or for its next transaction only
(if sEsSION is omitted). No special privileges are required for the client-specific levels.

Most of the information in this section also applies to Falcon. Some differences from
InnoDB are that Falcon does not support the READ UNCOMMITTED isolation level and cur-
rently does not support SERIALIZABLE (although work is in progress to add support for
the latter level).

2.13.4 Non-Transactional Approaches to Transactional Problems

In a non-transactional environment, some transactional issues can be handled and some

cannot. The following discussion covers what can and cannot be achieved without using
transactions.You can use this information to determine whether an application can em-
ploy the techniques here and avoid the overhead of transaction-safe tables.

First, let’s consider how concurrency problems can occur when multiple clients at-
tempt to make changes to a database using operations that each require several statements.
Suppose that you’re in the garment sales business and your cash register software auto-
matically updates your inventory levels whenever one of your salesmen processes a sale.
The sequence of events shown here outlines the operations that take place when multiple
sales occur. For the example, assume that the initial shirt inventory level is 47.

1. Salesman A sells three shirts and registers the sale. The register software begins to
update the database by selecting the current shirt count (47):

SELECT quantity FROM inventory WHERE item = 'shirt';

2.13 Performing Transactions

2. In the meantime, Salesman B has sold two shirts and registered the sale. The soft-
ware at the second register also begins to update the database:

SELECT quantity FROM inventory WHERE item ='shirt';

3. The first register computes the new inventory level to be 47-3 = 44 and updates
the shirt count accordingly:

UPDATE inventory SET quantity = 44 WHERE item = 'shirt';

4. The second register computes the new inventory level to be 47-2 = 45 and updates
the count:

UPDATE inventory SET quantity = 45 WHERE item = 'shirt';

At the end of this sequence of events, you've sold five shirts. That’s good. However, the
inventory level says 45.That’s bad, because it should be 42.The problem is that if you
look up the inventory level in one statement and update the value in another statement,
you have a multiple-statement operation. The action taken in the second statement is de-
pendent on the value retrieved in the first. If separate multiple-statement operations occur
during overlapping time frames, the statements from each operation intertwine and inter-
fere with each other.To solve this problem, it’s necessary that the statements for a given
operation execute without interference from other operations.

To deal with the concurrency issues inherent in the situation just described, you can
take a couple of approaches.

Lock the tables explicitly. You can group statements and execute them as a unit by
surrounding them with Lock TABLES and UNLOCK TABLES statements: Lock all the tables
that you need to use, issue your statements, and release the locks. This prevents anyone
else from changing the tables while you have them locked. Using table locking, the in-
ventory update scenario might be handled like this:

1. Salesman A sells three shirts and registers the sale. The register software begins the in-
ventory process by acquiring a table lock and retrieving the current shirt count (47):

LOCK TABLES inventory WRITE;
SELECT quantity FROM inventory WHERE item = 'shirt';

A WRITE lock is necessary here because the ultimate goal of the operation is to
modify the inventory table, which involves writing to it.

2. In the meantime, Salesman B has sold two shirts and registered the sale. The soft-
ware at the second register also begins to update the database by trying to acquire a

lock:
LOCK TABLES inventory WRITE;

In this case, this statement blocks because Salesman A already holds a lock on the

table.

183

184

Chapter 2 Using SQL to Manage Data

3. The first register computes the new inventory level to be 47-3 = 44, updates the
shirt count, and releases the lock:

UPDATE inventory SET quantity = 44 WHERE item = 'shirt';
UNLOCK TABLES;

4. When the first register releases the lock, the second register’s lock request succeeds,
and it can proceed to retrieve the current shirt count (44):

SELECT quantity FROM inventory WHERE item = 'shirt';

5. The second register computes the new inventory level to be 44-2 = 42, updates the
shirt count, and releases the lock:

UPDATE inventory SET quantity = 42 WHERE item = 'shirt';
UNLOCK TABLES;

Now the statements from the two operations don’t get mixed up and the inventory
level is set properly.

If you're using multiple tables, you must lock all of them before you execute the
grouped statements. If you only read from a particular table, however, you need only a
read lock on it, not a write lock. (This lets other clients read the tables while you're using
them, but prevents clients from writing to them.) Suppose that you have a set of queries
in which you want to make some changes to the inventory table, and you also need to
read some data from a customer table. In this case, you need a write lock on the
inventory table and a read lock on the customer table:

LOCK TABLES inventory WRITE, customer READ;
use the tables here ...
UNLOCK TABLES;

Use relative updates, not absolute updates. For the inventory updating method that
uses explicit table locking, the operation involves looking up the current inventory level
with one statement, computing the new value based on the number of shirts sold, and
then updating the level to the new value with another statement. Another way to keep
operations performed by multiple clients from interfering with each other is to reduce
each operation to a single statement. This eliminates inter-statement dependencies that
arise in multiple-statement operations. Not every operation can be handled by a single
statement, but for the inventory update scenario, this strategy works well. It’s possible to
perform each inventory update in one step simply by modifying the shirt count relative to
its current value:

1. Salesman A sells three shirts and the register software decrements the shirt count
by three:

UPDATE inventory SET quantity = quantity - 3 WHERE item = 'shirt';

2.14 Foreign Keys and Referential Integrity

2. Salesman B sells two shirts and the register software decrements the shirt count
by two:

UPDATE inventory SET quantity = quantity - 2 WHERE item = 'shirt';

With this method, each modification to the database no longer requires multiple state-
ments. This eliminates concurrency issues, so there is no need to use explicit table locks. If
an operation you want to perform is similar to this, there may be no need for transactions
at all.

The non-transactional approaches just described can be applied successfully to many
types of problems, but they have certain limitations:

= Not every operation can be written in terms of relative updates. Sometimes you
must use multiple statements, in which case concurrency issues must be considered
and dealt with.

= You may be able to keep clients from interfering with each other by locking tables
for the duration of a multiple-statement operation, but what happens if an error oc-
curs in the middle of the operation? In this case, you'd want the effects of the earlier
statements to be undone so that the database isn’t left in a half~-modified and incon-
sistent state. Unfortunately, although table locking can help you address concurrency
issues, non-transactional tables provide no assistance in recovering from errors.

= The locking strategy requires you to lock and unlock your tables yourself. If you
revise an operation in such a way that changes the set of tables used, you must
remember to modify the LOCK TABLES statement accordingly.

If any of these issues are significant for your applications, you should use transaction-
safe tables instead, because transactional capabilities help you deal with each issue. A trans-
action handler executes a set of statements as a unit and manages concurrency issues by
preventing clients from getting in the way of each other. It also enables rollback in the
case of failure to keep half-executed operations from damaging your database, and it de-
termines which locks are necessary and acquires them automatically.

Can You Mix Transactional and Non-Transactional Tables?

It is possible to use both transactional and non-transactional tables during the course of a
transaction, but the result might not be what you expect. Statements for non-transactional
tables always take effect immediately, even when autocommit is disabled. In effect, non-
transactional tables are always in autocommit mode and each statement commits immedi-
ately. As a result, if you change a non-transactional table within a transaction and then
attempt a rollback, the non-transactional table changes cannot be undone.

2.14 Foreign Keys and Referential Integrity

A foreign key relationship enables you to declare that an index in one table is related to
an index in another. It also enables you to place constraints on what may be done to the
tables in the relationship. The database enforces the rules of this relationship to maintain

185

186

Chapter 2 Using SQL to Manage Data

referential integrity. For example, the score table in the sampdb sample database contains
a student_id column, which we use to relate score rows to students in the student
table. When we created these tables in Chapter 1, we set up some explicit relationships
between them. One of these was that we declared score.student_id to be a foreign key
for the student.student_id column. That prevents a row from being entered into the
score table unless its student_id value exists in the student table. In other words, the
foreign key prevents entry of scores for non-existent students.

Foreign keys are not useful just for row entry, but for deletes and updates as well. For
example, we could set up a constraint such that if a student is deleted from the student
table, all corresponding rows for the student in the score table are deleted automatically
as well. This is called “cascaded delete,” because the effect of the delete cascades from one
table to another. Cascaded update is possible as well. For example, with cascaded update,
changing a student’s student_id value in the student table also changes the value in the
student’s corresponding score table rows.

Foreign keys help maintain the consistency of your data, and they provide a certain
measure of convenience. Without foreign keys, you are responsible for keeping track of
inter-table dependencies and maintaining their consistency from within your applications.
In some cases, doing this might not be much more work than issuing a few extra DELETE
statements to make sure that when you delete a row from one table, you also delete the
corresponding rows in any related tables. But it is extra work, and if the database engine
will perform consistency checks for you, why not let it? Automatic checking capability
becomes especially useful if your tables have particularly complex relationships.You likely
will not want to be responsible for implementing these dependencies in your applications.

In MySQL, the InnoDB storage engine provides foreign key support. This section de-
scribes how to set up InnoDB tables to define foreign keys, and how foreign keys affect
the way you use tables. First, it’s necessary to define some terms:

= The parent is the table that contains the original key values.

= The child is the related table that refers to key values in the parent.

Parent table key values are used to associate the two tables. Specifically, an index in the
child table refers to an index in the parent. The child index values must match those in
the parent or else be set to NULL to indicate that there is no associated parent table row.
The index in the child table is known as the “foreign key”—that is, the key that is foreign
(external) to the parent table but contains values that point to the parent. A foreign key
relationship can be set up to disallow NULL values, in which case all foreign key values
must match a value in the parent table.

InnoDB enforces these rules to guarantee that the foreign key relationship stays intact
with no mismatches. This is called “referential integrity.”

2.14 Foreign Keys and Referential Integrity

2.14.1 Creating and Using Foreign Keys
The following syntax shows how to define a foreign key in a child table:

[CONSTRAINT constraint_name)
FOREIGN KEY [fk_name)l (index columns)
REFERENCES tbl name (index_columns)
[ON DELETE action]
[ON UPDATE action]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

Although all parts of this syntax are parsed, InnoDB does not implement the semantics
for all the clauses: The MATCH clause is not supported and is ignored if you specify it. Also,
some action values are recognized but have no eftect. (For storage engines other than
InnoDB, the entire FOREIGN KEY definition is parsed but ignored.)

InnoDB pays attention to the following parts of the definition:

» The CONSTRAINT clause, if given, supplies a name for the foreign key constraint. If
you leave it out, InnoDB creates a name.

= FOREIGN KEY indicates the indexed columns in the child table that must match in-
dex values in the parent table. £&_name is the foreign key ID. If given, it is ignored
unless InnoDB automatically creates an index for the foreign key; in that case,
fk_name becomes the index name.

= REFERENCES names the parent table and the index columns in that table to which
the foreign key in the child table refers. The 7index_ columns part of the
REFERENCES clause must have the same number of columns as the 7ndex columns
that follows the FOREIGN KEY keywords.

= ON DELETE enables you to specify what happens to the child table when parent
table rows are deleted. The default if no ON DELETE clause is present is to reject any
attempt to delete rows in the parent table that have child rows pointing to them.To
specify an action value explicitly, use one of the following clauses:

» ON DELETE NO ACTION and ON DELETE RESTRICT are the same as omitting
the oN DELETE clause. (Some database systems have deferred checks, and no
ACTION is a deferred check. In MySQL, foreign key constraints are checked
immediately, so NO ACTION and RESTRICT are the same.)

= ON DELETE CASCADE causes matching child rows to be deleted when the
corresponding parent row is deleted. In essence, the effect of the delete is
cascaded from the parent to the child. This enables you to perform multiple-
table deletes by deleting rows only from the parent table and letting InnoDB
take care of deleting corresponding rows from the child table.

= ON DELETE SET NULL causes index columns in matching child rows to be set
to NULL when the parent row is deleted. If you use this option, all the indexed
child table columns named in the foreign key definition must be defined to
allow NULL values. (One implication of using this action is that you cannot

187

188 Chapter 2 Using SQL to Manage Data

define the foreign key to be a PRIMARY KEY because primary keys do not
allow NULL values.)

= ON DELETE SET DEFAULT is recognized but unimplemented and InnoDB
issues an error.

= ON UPDATE enables you to specify what happens to the child table when parent
table rows are updated. The default if no ON UPDATE clause is present is to reject any
inserts or updates in the child table that result in foreign key values that don’t have
any match in the parent table index, and to prevent updates to parent table index
values to which child rows point. The possible actzon values are the same as for oN
DELETE and have similar effects.

To set up a foreign key relationship, follow these guidelines:

= The child table must have an index where the foreign key columns are listed as its
first columns. The parent table must also have an index in which the columns in the
REFERENCES clause are listed as its first columns. (In other words, the columns in the
key must be indexed in the tables on both ends of the foreign key relationship.) You
must create the parent table index explicitly before defining the foreign key rela-
tionship. InnoDB automatically creates an index on foreign key columns (the refer-
encing columns) in the child table if the CREATE TABLE statement does not include
such an index. This makes it easier to write the CREATE TABLE statement in some
cases. However, an automatically created index will be a non-unique index and will
include only the foreign key columns.You should define the index in the child
table explicitly if you want it to be a PRIMARY KEY or UNIQUE index, or if it should
include other columns in addition to those in the foreign key.

= Corresponding columns in the parent and child indexes must have compatible
types. For example, you cannot match an INT column with a cHAR column. Corre-
sponding character columns must be the same length. Corresponding integer
columns must have the same size and must both be signed or both UNSIGNED.

= You cannot index prefixes of string columns in foreign key relationships. (That is,
for string columns, you must index the entire column, not just a leading prefix of it.)

In Chapter 1, we created tables for the grade-keeping project that have simple foreign
key relationships. Now let’s work through an example that is more complex. Begin by
creating tables named parent and child, such that the child table contains a foreign key
that references the par_id column in the parent table:

CREATE TABLE parent

(
par_id INT NOT NULL,
PRIMARY KEY (par_id)

) ENGINE = INNODB;

CREATE TABLE child
(

2.14 Foreign Keys and Referential Integrity

par_id INT NOT NULL,
child_id INT NOT NULL,
PRIMARY KEY (par_id, child_id),
FOREIGN KEY (par_id) REFERENCES parent (par_id)
ON DELETE CASCADE
ON UPDATE CASCADE
) ENGINE = INNODB;

The foreign key in this case uses ON DELETE CASCADE to specify that when a row is
deleted from the parent table, MySQL also should remove child rows with a matching
par_id value automatically. oN UPDATE CASCADE indicates that if a parent row par_id
value is changed, MySQL also should change any matching par_id values in the child
table to the new value.

Now insert a few rows into the parent table, and then add some rows to the child
table that have related key values:
mysqgl> INSERT INTO parent (par_id) VALUES(1),(2),(3);
mysql> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);
mysgl> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);
mysql> INSERT INTO child (par_id,child_id) VALUES(3,1);

These statements result in the following table contents, where each par_id value in
the child table matches a par_id value in the parent table:

mysgl> SELECT * FROM parent;

Hmmmmmm oo +
| par_id |

Hmmmmmm +

\ 1

\ 2 |

\ 3

Hmmmmmm oo +

mysqgl> SELECT * FROM child;
Hmmmmmm tmmmmmm +

| par_id | child_id |
Hmmmmmm oo Hmmmmmmm o +

\ 1 1

\ 1 2|

\ 2| 1

\ 2| 2|

\ 2 | 3 |

\ 3 1
et e +

To verify that InnoDB enforces the key relationship for insertion, try adding a row to
the child table that has a par_id value not found in the parent table:

mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key

189

190

Chapter 2 Using SQL to Manage Data

constraint fails ('sampdb’ . child’, CONSTRAINT ‘child_ibfk_1' FOREIGN
KEY ('par_id') REFERENCES ‘parent’ ('par_id') ON DELETE CASCADE
ON UPDATE CASCADE)

To test cascaded delete, see what happens when you delete a parent row:

mysql> DELETE FROM parent WHERE par_id = 1;

MySQL deletes the row from the parent table:

mysqgl> SELECT * FROM parent;

Hmmmmmmm e +
| par_id |
B +
| 2|
| 3
fommm +

In addition, it cascades the effect of the DELETE statement to the child table:

mysqgl> SELECT * FROM child;

To test cascaded update, see what happens when you update a parent row:

mysql> UPDATE parent SET par_id = 100 WHERE par_id =2;
mysqgl> SELECT * FROM parent;

PR +

| par_id |

RS +

| 3|

| 100 |
R +

mysqgl> SELECT * FROM child;
RS R +
| par_id | child_id |
RS O +
| 3 1
| 100 | 1
| 100 | 2 |
| 100 | 3 |
RS S +

2.14 Foreign Keys and Referential Integrity

The preceding example shows how to arrange for deletes or updates of a parent row
to cause cascaded deletes or updates of any corresponding child rows.The ON DELETE
and ON UPDATE clauses allow for other actions. For example, one possibility is to let the
child rows remain in the table but have their foreign key columns set to NULL. To do this,
it’s necessary to make several changes to the definition of the child table:

= Use ON DELETE SET NULL rather than oN DELETE CAsCADE.This tells InnoDB to
set the foreign key column (par_id) to NULL instead of deleting the rows.

= Use ON UPDATE SET NULL rather than oN UPDATE cAscaDE.This tells InnoDB to set
the foreign key column (par_id) to NULL when matching parent rows are updated.

= The original definition of child defines par_id as NOT NULL.That won’t work
with ON DELETE SET NULL or ON UPDATE SET NULL, so the column definition
must be changed to allow NULL.

= The original definition of child also defines par_id to be part of a PRIMARY KEY.
However, a PRIMARY KEY cannot contain NULL values. Changing par_id to allow
NULL therefore also requires that the PRIMARY KEY be changed to a UNIQUE index.
UNIQUE indexes enforce uniqueness except for NULL values, which can occur multi-
ple times in the index.

To see the effect of these changes, re-create the parent table using the original defini-
tion and load the same initial rows into it. Then create the child table using the new def-
inition shown here:

CREATE TABLE child
(
par_id INT NULL,
child_id INT NOT NULL,
UNIQUE (par_id, child_id),
FOREIGN KEY (par_id) REFERENCES parent (par_id)
ON DELETE SET NULL
ON UPDATE SET NULL
) ENGINE = INNODB;

With respect to inserting new rows, the child table behaves similarly to the original
definition. That is, it allows insertion of rows with par_id values found in the parent
table, but disallows entry of values that aren’t listed there:

mysqgl> INSERT INTO child (par_id,child_id) VALUES(1,1),(1,2);

mysql> INSERT INTO child (par_id,child_id) VALUES(2,1),(2,2),(2,3);
mysqgl> INSERT INTO child (par_id,child_id) VALUES(3,1);

mysql> INSERT INTO child (par_id,child_id) VALUES(4,1);

ERROR 1452 (23000): Cannot add or update a child row: a foreign key
constraint fails ('sampdb'.'child', CONSTRAINT 'child_ibfk_1' FOREIGN
KEY ('par_id') REFERENCES 'parent' ('par_id') ON DELETE SET NULL

ON UPDATE SET NULL)

191

192

Chapter 2 Using SQL to Manage Data

There is one difference with respect to inserting rows. Because the par_id column
now is defined as NULL, you can explicitly insert rows into the child table that contain
NULL and no error will occur. A difference in behavior also occurs when you delete a par-
ent row. Try removing a parent row and then check the contents of the child table to see
what happens:

mysql> DELETE FROM parent WHERE par_id = 1;
mysqgl> SELECT * FROM child;

e tomm - +
| par_id | child_id |
e o +
| NULL | 1
| NULL | 2 |
| 2 | 1]
| 2 | 2 |
| 2 | 3|
| 3 1|
e o +

In this case, the child rows that had 1 in the par_id column are not deleted. Instead,
the par_id column is set to NULL, as specified by the ON DELETE SET NULL constraint.
Updating a parent row has a similar effect:
mysgl> UPDATE parent SET par_id = 100 WHERE par_id = 2;
mysqgl> SELECT * FROM child;

To see what foreign key relationships an InnoDB table has, use the SHOW CREATE
TABLE Or SHOW TABLE STATUS statement.

If an error occurs when you attempt to create a table that has a foreign key, use the
SHOW ENGINE INNODB STATUS statement to get the full error message.

2.14.2 Living Without Foreign Keys

If your MySQL server doesn’t have InnoDB support, or you are using another storage en-
gine because you need features that InnoDB does not support (such as FULLTEXT indexes
or spatial data types), you cannot take advantage of foreign keys. What should you do to
maintain the integrity of relationships between your tables?

2.14 Foreign Keys and Referential Integrity

The constraints that foreign keys enforce often are not difficult to implement through
application logic. Sometimes, it’s simply a matter of how you approach the data-entry
process. Consider the student and score tables from the grade-keeping project. These are
related by a foreign key relationship through the student_id values in each table. Suppose
that we had created these as MyISAM tables rather than as InnoDB tables. MyISAM does
not support foreign keys, so in this case the relationship between the tables would be im-
plicit rather than explicit. When you administer a test or quiz and have a new set of scores
to add to the database, you'd have to make sure that you don’t add score rows containing
student_id values that are not listed in the student table.

In some respects, this is just a matter of taking the proper approach to data entry. To
avoid inserting scores for nonexistent students, the way you’d enter a set of scores proba-
bly would be to use an application that begins with a list of students from the student
table. For each one, it would take the score and use the student’s ID number to generate a
new score table row. With this procedure, you would never enter a row for a student that
doesn’t exist. Nevertheless, it would still be possible to enter a bad row, for example, if you
issued an INSERT statement manually. (With InnoDB tables and foreign keys, no such pos-
sibility exists.)

‘What about the case where you delete a student row? Suppose that you want to delete
student number 13.This also implies you want to delete any score rows for that student.
With a foreign key relationship in place that specifies cascading delete, you’d simply delete
the student table row with the following statement and let MySQL take care of remov-
ing the corresponding score table rows automatically:

DELETE FROM student WHERE student_id = 13;

‘Without foreign key support, you must explicitly delete rows for all relevant tables to
achieve the same eftect as cascading on DELETE:

DELETE FROM student WHERE student_id = 13;
DELETE FROM score WHERE student_id = 13;

Another way to do this is to use a multiple-table delete that achieves the same effect as
a cascaded delete with a single query. But watch out for a subtle trap. The following state-
ment appears to do the trick, but it’s actually not quite correct:

DELETE student, score FROM student INNER JOIN score
ON student.student_id = score.student_id WHERE student.student_id = 13;

The problem with this statement is that it will fail in the case where the student
doesn’t have any scores. The WHERE clause will find no matches and thus will not delete
anything from the student table. In this case, a LEFT JOIN is more appropriate, because it
will identify which student table row to delete even in the absence of any matching
score table rows:

DELETE student, score FROM student LEFT JOIN score USING (student_id)
WHERE student.student_id = 13;

193

194

Chapter 2 Using SQL to Manage Data

2.15 Using FULLTEXT Searches

MySQL includes the capability for performing full text searches. The full-text search en-
gine enables you to look for words or phrases without using pattern-matching operations.
There are three kinds of full-text search:

= Natural language searching. The search string is parsed into words and the search

looks for rows containing these words.

Boolean mode searching. The search string is parsed into words, but words can be
modified by operator characters that indicate specific requirements such as that a
given word should be present or absent in matching rows, or that rows must con-
tain an exact phrase.

Query expansion searching. This kind of search occurs in two phases. The first phase
is a natural language search. Then a second search is done using the original search
string concatenated with the most highly relevant matching rows from the first
search. This expands the search on the basis of the assumption that words related to
the original search string will match relevant rows that the original string did not.

Full-text search capability is enabled for a given table by creating a special kind of in-
dex and has the following characteristics:

Full-text searches are based on FULLTEXT indexes, which can be created only for
MyISAM tables. Only CHAR, VARCHAR, and TEXT columns can be included in a
FULLTEXT index.

Common words are ignored for FULLTEXT searches, where “common” means “pres-
ent in at least half the rows.” It’s especially important to remember this when you’re
setting up a test table to experiment with the FULLTEXT capability. Be sure to insert
at least three rows into your test table. If the table has just one or two rows, every
word in it will occur at least 50% of the time and you’ll never get any results!

99 ¢¢

There is a built-in list of common words such as “the,” “after,” and “other” that are
called “stopwords” and that are always ignored.

Words that are too short also are ignored. By default, “too short” is defined as fewer
than four characters, but you can reconfigure the server to set the minimum length
to a different value.

Words are defined as sequences of characters that include letters, digits, apostrophes,
and underscores. This means that a string like “full-blooded” is considered to con-
tain two words, “full” and “blooded.” Normally, a full-text search matches whole
words, not partial words, and the FULLTEXT engine considers a row to match a
search string if it includes any of the words in the search string. If you use a boolean
full-text search, you can impose the additional constraint that all the words must be
present (either in any order, or, to perform a phrase search, in exactly the order
listed in the search string). With a boolean search, it’s also possible to match rows
that do not include certain words, or to add a wildcard modifier to match all words
that begin with a given prefix.

2.15 Using FULLTEXT Searches

= A FULLTEXT index can be created for a single column or multiple columns. If it
spans multiple columns, searches based on the index look through all the columns
simultaneously. The flip side of this is that when you perform a search, you must
specify a column list that corresponds exactly to the set of columns that matches
some FULLTEXT index. For example, if you want to search coll sometimes, col2
sometimes, and both col1 and col2 sometimes, you should have three indexes: one
for each of the columns separately, and one that includes both columns.

The following examples show how to use full-text searching by creating FULLTEXT
indexes and then performing queries on them using the MATCH operator. A script to create
the table and some sample data to load into it are available in the fulltext directory of
the sampdb distribution.

A FULLTEXT index is created much the same way as other indexes. That is, you can
define it with CREATE TABLE when creating the table initially, or add it afterward with
ALTER TABLE or CREATE INDEX.Because FULLTEXT indexes require you to use MyISAM
tables, you can take advantage of one of the properties of the MyISAM storage engine if
you're creating a new table to use for FULLTEXT searches: Table loading proceeds more
quickly if you populate the table first and then add the indexes afterward, rather than
loading data into an already indexed table. Suppose that you have a data file named
apothegm. txt containing famous sayings and the people to whom they’re attributed:

Aeschylus Time as he grows old teaches many lessons
Alexander Graham Bell Mr. Watson, come here. I want you!

Benjamin Franklin It is hard for an empty bag to stand upright
Benjamin Franklin Little strokes fell great oaks

Benjamin Franklin Remember that time is money

Miguel de Cervantes Bell, book, and candle

Proverbs 15:1 A soft answer turneth away wrath

Theodore Roosevelt Speak softly and carry a big stick

William Shakespeare But, soft! what light through yonder window breaks?
Robert Burton I light my candle from their torches.

If you want to search by phrase and attribution separately or together, you need to in-
dex each column separately, and also create an index that includes both columns.You can
create, populate, and index a table named apothegm as follows:

CREATE TABLE apothegm (attribution VARCHAR(40), phrase TEXT) ENGINE = MyISAM;
LOAD DATA LOCAL INFILE 'apothegm.txt' INTO TABLE apothegm;
ALTER TABLE apothegm

ADD FULLTEXT (phrase),

ADD FULLTEXT (attribution),

ADD FULLTEXT (phrase, attribution);

195

196

Chapter 2 Using SQL to Manage Data

2.15.1 Natural Language FULLTEXT Searches

After setting up the table, perform natural language full-text searches on it using MATCH to
name the column or columns to search and AGAINST () to specify the search string. For
example:

mysql> SELECT * FROM apothegm WHERE MATCH(attribution) AGAINST('roosevelt');

| Theodore Roosevelt | Speak softly and carry a big stick |
o e +
mysqgl> SELECT * FROM apothegm WHERE MATCH(phrase) AGAINST('time');

o e +
| attribution | phrase

oo e +
| Benjamin Franklin | Remember that time is money

| Aeschylus | Time as he grows old teaches many lessons |
e o +

mysgl> SELECT * FROM apothegm WHERE MATCH(attribution, phrase)
-> AGAINST('bell');

| Alexander Graham Bell | Mr. Watson, come here. I want you! |
| Miguel de Cervantes | Bell, book, and candle
b e +

In the last example, note how the query finds rows that contain the search word in dif-
ferent columns, which demonstrates the FULLTEXT capability of searching multiple
columns at once. Also note that the order of the columns as named in the query is
attribution, phrase.That differs from the order in which they were named when the
index was created (phrase, attribution), which illustrates that order does not matter.
What matters is that there must be some FULLTEXT index that consists of exactly the
columns named.

If you just want to see how many rows a search matches, use COUNT (*):

mysgl> SELECT COUNT(*) FROM apothegm WHERE MATCH(phrase) AGAINST('time');

Output rows for natural language FULLTEXT searches are ordered by decreasing
relevance when you use a MATCH expression in the WHERE clause. Relevance values are

2.15 Using FULLTEXT Searches 197

non-negative floating point values, with zero indicating “no relevance.” To see these val-
ues, use a MATCH expression in the output column list:

mysqgl> SELECT phrase, MATCH(phrase) AGAINST('time') AS relevance
-> FROM apothegm;

e O TR +
| phrase | relevance

e B +
Time as he grows old teaches many lessons	1.3253291845322
Mr. Watson, come here. I want you!	0
It is hard for an empty bag to stand upright	0
Little strokes fell great oaks	0
Remember that time is money	1.3400621414185
Bell, book, and candle	0
A soft answer turneth away wrath	0
Speak softly and carry a big stick	0
But, soft! what light through yonder window breaks?	0
I light my candle from their torches.	0
e B TR +

A natural language search finds rows that contain any of the search words, so a query
such as the following returns rows that contain either “hard” or “soft”:

mysgl> SELECT * FROM apothegm WHERE MATCH (phrase)
-> AGAINST('hard soft');

B e e e +
| attribution | phrase

e R e e +
| Benjamin Franklin | It is hard for an empty bag to stand upright

| Proverbs 15:1 | A soft answer turneth away wrath |
| William Shakespeare | But, soft! what light through yonder window breaks? |
B e e e +

Natural language mode is the default full-text search mode. In MySQL 5.1 and up, you
can specify this mode explicitly by adding IN NATURAL LANGUAGE MODE after the search
string. The following statement performs the same search as the preceding example:

SELECT * FROM apothegm WHERE MATCH (phrase)
AGAINST ('hard soft' IN NATURAL LANGUAGE MODE) ;

2.15.2 Boolean Mode FULLTEXT Searches

Greater control over multiple-word matching can be obtained by using boolean mode
FULLTEXT searches. This type of search is performed by adding IN BOOLEAN MODE after the
search string in the AGAINST () function. Boolean searches have the following characteristics:

= The 50% rule is ignored; searches find words even if they occur in more than half
of the rows.

198

Chapter 2 Using SQL to Manage Data

= Results are not sorted by relevance.

= A phrase search can be performed to require all words to be present in a particular
order. To match a phrase, specify the words of the phrase in double quotes. Matches
occur for rows that contain the same words together in the same order as listed in
the phrase:

mysgl> SELECT * FROM apothegm
-> WHERE MATCH(attribution, phrase)
-> AGAINST('"bell book and candle"' IN BOOLEAN MODE);

o e +
| attribution | phrase

e B TP +
| Miguel de Cervantes | Bell, book, and candle |
oo e +

= It’s possible to perform a boolean mode full-text search on columns that are not
part of a FULLTEXT index, although this is much slower than using indexed
columns.

For boolean searches, modifiers may be applied to words in the search string. A leading
plus or minus sign requires a word to be present or not present in matching rows. For ex-
ample, a search string of 'bell' matches rows that contain “bell,” but a search string of
"+bell -candle' in boolean mode matches only rows that contain “bell” and do not
contain “candle.”

mysgl> SELECT * FROM apothegm
-> WHERE MATCH(attribution, phrase)
-> AGAINST('bell');

| Alexander Graham Bell | Mr. Watson, come here. I want you! |
| Miguel de Cervantes | Bell, book, and candle
e L L Pt R G EE L PP PR PR Pt +
mysqgl> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('+bell -candle' IN BOOLEAN MODE);

| Alexander Graham Bell | Mr. Watson, come here. I want you! |
e e +

2.15 Using FULLTEXT Searches

A trailing asterisk acts as a wildcard so that any row containing words beginning with the

99¢c

search word match. For example 'soft*' matches “soft,” “softly,” “softness,” and so forth:

mysgl> SELECT * FROM apothegm WHERE MATCH (phrase)
-> AGAINST('soft*' IN BOOLEAN MODE);

e e +
| attribution | phrase

B T e +
| Proverbs 15:1 | A soft answer turneth away wrath

| William Shakespeare | But, soft! what light through yonder window breaks?|
| Theodore Roosevelt | Speak softly and carry a big stick |
e e +

However, the wildcard feature cannot be used to match words shorter than the mini-
mum index word length.

The entry for MATCH in Appendix C, “Operator and Function Reference,” lists the full
set of boolean mode modifiers.

Stopwords are ignored just as for natural language searches, even if marked as required.
A search for '+Alexander +the +great' finds rows containing “Alexander” and “great,”
but ignores “the” as a stopword.

2.15.3 Query Expansion FULLTEXT Searches

A full-text search with query expansion performs a two-phase search. The initial search is
like a regular natural language search. Then the most highly relevant rows from this search
are used for the second phase. The words in these rows are used along with the original
search terms to perform a second search. Because the set of search terms is larger, the re-
sult generally includes rows that are not found in the first phase but are related to them.
To perform this kind of search, add wITH QUERY EXPANSION following the search

terms. The following example provides an illustration. The first query shows a natural
language search. The second query shows a query expansion search. Its result includes an
extra row that contains none of the original search terms. This row is found because it
contains the word “candle” that is present in one of the rows found by the natural
language search.
mysgl> SELECT * FROM apothegm

-> WHERE MATCH(attribution, phrase)

-> AGAINST('bell book');

| Miguel de Cervantes | Bell, book, and candle |
| Alexander Graham Bell | Mr. Watson, come here. I want you! |
e e e +

199

200

Chapter 2 Using SQL to Manage Data

mysqgl> SELECT * FROM apothegm
-> WHERE MATCH(attribution, phrase)
-> AGAINST('bell book' WITH QUERY EXPANSION);

e B e e R L +
| attribution | phrase |
T e +
Miguel de Cervantes	Bell, book, and candle
Alexander Graham Bell	Mr. Watson, come here. I want you!
Robert Burton	I light my candle from their torches.
e B e e R L +

2.15.4 Configuring the FULLTEXT Search Engine
Several full-text parameters are configurable and can be modified by setting system vari-
ables. The parameters that determine the shortest and longest words to index in FULLTEXT
indexes are ft_min_word_len and ft_max_word_len.Words with lengths outside the
range defined by these two variables are ignored when FULLTEXT indexes are built. The
default minimum and maximum values are 4 and 84.

Suppose that you want to change the minimum word length from 4 to 3. Do so like this:

1. Start the server with the £t_min_word_len variable set to 3.To ensure that this
happens whenever the server starts, it’s best to place the setting in an option file
such as /etc/my.cnf:

[mysqld]
ft_min_word_len=3

2. For any existing tables that already have FULLTEXT indexes, you must rebuild those
indexes.You can drop and add the indexes, but it’s easier and sufficient to perform a
quick repair operation:

REPAIR TABLE ¢b7 name QUICK;

3. Any new FULLTEXT indexes that you create after changing the parameter will use
the new value automatically.

For more information on setting system variables, see Appendix D. For details on using
option files, see Appendix E

Note

If you use myisamchk to rebuild indexes for a table that contains any FULLTEXT indexes,
see the FULLTEXT-related notes in the myisamchk description in Appendix F.

Data Types

Virtually everything you do in MySQL involves data in some way or another because,
by definition, the purpose of a database management system is to manage data. Even a
statement as simple as SELECT 1 involves evaluation of an expression to produce an inte-
ger data value.

Every data value in MySQL has a type. For example, 37.4 is a number and 'abc’ is a
string. Sometimes data types are explicit, such as when you issue a CREATE TABLE state-
ment that specifies the type for each column you define as part of the table:

CREATE TABLE mytbl
(

int_col INT, # integer-valued column
str_col CHAR(20), # string-valued column
date_col DATE # date-valued column

)i

Other times data types are implicit, such as when you refer to literal values in an ex-
pression, pass values to a function, or use the value returned from a function. The follow-
ing INSERT statement does all of those things:

INSERT INTO mytbl (int_col,str_col,date_col)
VALUES (14,CONCAT('a', 'b'),20090115) ;

The statement performs the following operations, all of which involve data types:

= It assigns the integer value 14 to the integer column int_col.

= It passes the string values 'a' and 'b' to the CONCAT () string-concatenation func-
tion. CONCAT () returns the string value 'ab', which is assigned to the string column

str_col.

= It assigns the integer value 20090115 to the date column date_col.The assignment
involves a type mismatch, but the integer value can reasonably be interpreted as a
date value, so MySQL performs an automatic type conversion that converts the in-
teger 20090115 to the date '2009-01-15".

202 Chapter 3 Data Types

To use MySQL effectively, it’s essential to understand how MySQL handles data. This
chapter describes the types of data values that MySQL can handle, and discusses the issues
involved in working with those types:

= The general categories of data values that MySQL can represent, including the
NULL value.

= The specific data types MySQL provides for table columns, and the properties that
characterize each data type. Some of MySQL’s data types are fairly generic, such as
the BLOB string type. Others behave in special ways that you should understand to
avoid being surprised. These include the TIMESTAMP data type and integer types that
have the AUTO_INCREMENT attribute.

= How the server’s SQL mode affects treatment of bad data values, and the use of
“strict” mode to reject bad values.

= How to generate and work with sequences.

= MySQLss rules for expression evaluation.You can use a wide range of operators and
functions in expressions to retrieve, display, and manipulate data. Expression evalua-
tion includes rules governing type conversion that come into play when a value of
one type is used in a context requiring a value of another type. It’s important to
understand when type conversion happens and how it works; some conversions
don’t make sense and result in meaningless values. Assigning the string '13' to an
integer column results in the value 13. However, assigning the string 'abc' to that
column results in the value 0 (or an error in strict SQL mode) because 'abc' does-
n’t look like a number. Worse, if you perform a comparison without knowing the
conversion rules, you can do considerable damage, such as updating or deleting
every row in a table when you intend to affect only a few specific rows.

= How to choose data types appropriately for your table columns. It’s important to
know how to pick the best type for your purposes when you create a table, and
when to choose one type over another when several related types might be applica-
ble to the kind of values you want to store.

Two appendixes provide additional information that supplements the discussion in this
chapter about MySQL’s data types, operators, and functions. These are Appendix B, “Data
Type Reference,” and Appendix C,“Operator and Function Reference.”

The examples shown throughout this chapter use the CREATE TABLE and ALTER
TABLE statements extensively to create and alter tables. These statements should be reason-
ably familiar to you because we have used them in Chapter 1, “Getting Started with
MySQL,” and Chapter 2,“Using SQL to Manage Data.” See also Appendix E,“SQL
Syntax Reference.”

MySQL supports several storage engines, which differ in their properties. In some
cases, a column with a given data type behaves difterently for different storage engines, so
the way you intend to use a column might determine or influence which storage engine
to choose when you create a table. This chapter refers to storage engines on occasion, but

3.1 Data Value Categories

a more detailed description of the available engines and their characteristics can be found
in Chapter 2.

Data handling depends in some cases on how default values are defined and on the
current SQL mode. For general background on setting the SQL mode, see Section 2.1,
“The Server SQL Mode.” In the current chapter, Section 3.2.3,“Specifying Column
Default Values,” covers default value handing, and Section 3.3, “HowMySQL Handles
Invalid Data Values,” covers strict mode and the rules for treatment of bad data.

3.1 Data Value Categories

MySQL knows about several general categories in which data values can be represented.
These include numbers, string values, temporal values such as dates and times, spatial val-
ues, and the NULL value.

3.1.1 Numeric Values

Numbers are values such as 48,193.62, or -2.378E12. MySQL understands numbers
specified as integers (which have no fractional part), fixed-point or floating-point values
(which may have a fractional part), and bit-field values.

3.1.1.1 Exact-Value and Approximate-Value Numbers
MySQL supports precision math for exact-value numbers, and approximate math for
approximate-value numbers.

Exact-value numbers are used exactly as specified when possible. Exact values include
integers (0, 14, -382) and numbers that have a decimal point (0.0,38.5,-18.247).

Integers can be specified in decimal or hexadecimal format. In decimal format, an in-
teger consists of a sequence of digits with no decimal point. Hexadecimal values are
treated as strings by default, but in numeric contexts a hexadecimal constant is treated
as a 64-bit integer. For example, 0x10 is 16 decimal. Section 3.1.2,“String Values,” later in
this chapter, describes hexadecimal value syntax.

An exact-value number with a fractional part consists of a sequence of digits, a decimal
point, and another sequence of digits. The sequence of digits before or after the decimal
point may be empty, but not both.

Approximate values are represented as floating-point numbers in scientific notation
with a mantissa and exponent. This is indicated by immediately following an integer or
number with a fractional part by ‘e’ or ‘E’, an optional sign character (‘+” or *-’), and an in-
teger exponent. The mantissa and exponent may be signed in any combination: 1.58ES, -
1.58E5,1.58E-5, -1.58E-5.

Hexadecimal numbers cannot be used in scientific notation; the ‘e’ that begins the ex-
ponent part is also a legal hex digit and thus would be ambiguous.

Any number can be preceded by a plus or minus sign character (“+” or *-’) to indicate a
positive or negative value.

Calculations with exact values are exact, with no loss of accuracy within the limits of
the precision possible for such values. For example, you cannot insert 1.23456 as is into a

203

204

Chapter 3 Data Types

column that allows only two digits after the decimal point. Calculations with approximate
values are approximate and subject to rounding error.

MySQL evaluates an expression using exact or approximate math according to the fol-
lowing rules:

= If any approximate value is present in the expression, it is evaluated as a floating-
point (approximate) expression.

= For expressions containing only exact values that are all integers, evaluation uses
BIGINT (64-bit) precision.

= For expressions containing only exact values but where one or more values have a
fractional part, DECIMAL arithmetic is used with 65 digits of precision.

= If any string must be converted to a number to evaluate an expression, it is con-
verted to a double-precision floating-point value. Consequently, the expression is
approximate by the preceding rules.

3.1.1.2 Bit-Field Values
Bit-field values can be written as b'val' or 0Obval, where val consists of one or more
binary digits (0 or 1). For example, b'1001' and 0b1001 represent 9 decimal. These bit-
value notations coincide with the introduction of the BIT data type in MySQL 5.0.3, but
bit-field values can be used more generally in other contexts.

A BIT value in a result set displays as a binary string, which may not print well. To
convert it to an integer, add zero or use CAST():

mysgl> SELECT b'1001' + 0, CAST(b'1001' AS UNSIGNED);

Fomm e o e +
| ©'1001" + 0 | CAST(b'1001' AS UNSIGNED) |
o o +
| 9 | 9 |
Fomm - o +

3.1.2 String Values

Strings are values such as 'Madison, Wisconsin', 'patient shows improvement', Or
even '12345' (which looks like a number, but isn’t). Usually, you can use either single or
double quotes to surround a string value, but there are two reasons to prefer single
quotes:

» The SQL standard specifies single quotes, so statements that use single-quoted
strings are more portable to other database engines.

» If the aNST_QUOTES SQL mode is enabled, MySQL treats the double quote as an
identifier-quoting character, not as a string-quoting character. This means that a
double-quoted value must refer to something like a database or table name. Con-
sider the following statement:

SELECT "last_name" from president;

3.1 Data Value Categories

With ansT_guoTks disabled, the statement selects the literal string "last_name"
once for each row in the president table. With ANSI_QUOTES enabled, the state-
ment selects the values of the 1ast_name column from the table.

For the examples following that use the double quote as a string quoting character,
assume that ANST_QUOTES mode is not enabled.

MySQL recognizes several escape sequences within strings that indicate special charac-
ters, as shown in Table 3.1. Each sequence begins with a backslash character (‘\’) to sig-
nify a temporary escape from the usual rules for character interpretation. Note that a
NUL byte is not the same as the SQL NULL value; NUL is a zero-valued byte, whereas
NULL in SQL signifies the absence of a value.

Table 3.1 String Escape Sequences

Sequence Meaning

\0 NUL (zero-valued byte)

\! Single quote

" Double quote

\b Backspace

\n Newline (linefeed)

\r Carriage return

\t Tab

\\ Single backslash

\Z Control-Z (Windows EOF character)

The escape sequences shown in the table are case sensitive, and any character not listed
in the table is interpreted as itself if preceded by a backslash. For example, \t is a tab, but
\T is an ordinary ‘T’ character.

Table 3.1 shows that you can escape single or double quotes using backslash se-
quences, but you actually have several options for including quote characters within string
values:

= Double the quote character if the string itself is quoted using the same character:
'TI can''t’

"He said, ""I told you so."""

= Quote the string with the other quote character. In this case, you do not double the
quote characters within the string:

"I can't"
'He said, "I told you so."'

205

206

Chapter 3 Data Types

= Escape the quote character with a backslash; this works regardless of the quote
characters used to quote the string:
'T can\'t'
"I can\'t"
"He said, \"I told you so.\""
'He said, \"I told you so.\"'

To turn off the special meaning of backslash and treat it as an ordinary character, en-
able the No_BacksLaSH_ESCAPES SQL mode.

As an alternative to using quotes for writing string values, you can use two forms of
hexadecimal notation. String values may be specified using the standard SQL notation
X'val ', where val consists of pairs of hexadecimal digits (‘0 through ‘9’ and ‘a’ through
‘£). For example, x' 0a' is 10 decimal, and x' ££££' is 65535 decimal. The leading ‘X’ and
the nondecimal hex digits (‘a’ through ‘£’) can be specified in uppercase or lowercase:

mysql> SELECT X'4A', x'4a';

In string contexts, pairs of hexadecimal digits are interpreted as 8-bit numeric byte
values in the range from 0 to 255, and the result is used as a string. In numeric contexts, a
hexadecimal constant is treated as a number. The following statement illustrates the inter-
pretation of a hex constant in each type of context:

mysqgl> SELECT X'61626364', X'61626364'+0;

o o +
| X'61626364' | X'61626364'+0 |
Fomm e o +
| abed | 1633837924 |
o i +

Hexadecimal values also may be written using 0x followed by one or more hexadeci-
mal digits. The leading 0x is case sensitive. 0x0a and 0x0A are legal hexadecimal values,
but 0x0a and 0x0a are not.

As with X' val’ notation, 0x values are interpreted as strings, but may be used as num-
bers in numeric contexts:

mysqgl> SELECT 0x61626364, 0x61626364+0;

3.1 Data Value Categories

X'val ' notation requires an even number of digits. A value such as x'a' is illegal. If a
hexadecimal value written using 0x notation has an odd number of hex digits, MySQL
treats it as though the value has a leading zero. For example, 0xa is treated as 0x0a.

3.1.2.1 Types of Strings and Character Set Support

String values fall into two general categories, binary and non-binary:

= A binary string is a sequence of bytes. These bytes are interpreted without respect
to any concept of character set. A binary string has no special comparison or sorting
properties. Comparisons are done byte by byte based on numeric byte values; all
bytes are significant, including trailing spaces.

= A non-binary string is a sequence of characters. It is associated with a character set,
which determines the allowable characters that may be used and how MySQL in-
terprets the string contents. Character sets have one or more collating (sorting) or-
ders. The particular collation used for a string determines the ordering of characters
in the character set, which affects comparison operations. The default character set
and collation are latinl and latinl_swedish_ci.

Trailing spaces in non-binary strings are not significant in comparisons, except that
for the TEXT types, index-based comparisons are padded at the end with spaces and
a duplicate-key error occurs if you attempt to insert into a unique-valued TEXT in-
dex a value that is different from an existing value only in the number of trailing
spaces.

Character units vary in their storage requirements. A single-byte character set such as
latinl uses one byte per character, but there also are multi-byte character sets in which
some or all characters require more than one byte. For example, the Unicode character
sets available in MySQL are multi-byte. ucs2 is a double-byte character set in which each
character requires two bytes. ut£8 is a variable-length multi-byte character set with char-
acters that take from one to three bytes. (As of MySQL 6.0.4, ut£8 characters can require
up to four bytes.)

To find out which character sets and collations are available in your server, use these
two statements:

mysgl> SHOW CHARACTER SET;

tmmm - b o R +
| Charset | Description | Default collation | Maxlen |
Fmmmm o T e B +
big5	Bigh Traditional Chinese	big5_chinese_ci	2
decs	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hps	HP West European	hp8_english ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latinl	cpl252 West European	latinl_swedish_ci	1
utfs	UTF-8 Unicode	utf8_general_ci	3

207

208

Chapter 3 Data Types

| ucs2 | UCS-2 Unicode | ucs2_general_ci 2|

mysqgl> SHOW COLLATION;

o Hmmm o Hmmm e Hmmmm e Hmmm e Hmmmm e +
| Collation | Charset | Id | Default | Compiled | Sortlen |
B T TP o P e e e +
big5_chinese_ci	bigh	1] Yes	Yes	1	
big5_bin	big5	84		Yes	1
latinl_germanl_ci	latinl	5		Yes	1
latinl_swedish_ci	latinl	8	Yes	Yes	1
latinl_danish_ci	latinl	15		Yes	1
latinl_german2_ci	latinl	31		Yes	2
latinl_bin	latinl	47		Yes	1
latinl_general_ ci	latinl	48		Yes	1
latinl_general_cs	latinl	49		Yes	1
latinl_spanish ci	latinl	94		Yes	1

As shown by the output from SHOW COLLATION, each collation is tied to a particular
character set, and a given character set might have several collations. Collation names usu-
ally consist of a character set name, a language, and an additional suffix. For example,
utf8_icelandic_ci is a collation for the ut£8 Unicode character set in which compar-
isons follow Icelandic sorting rules and characters are compared in case-insensitive fash-
ion. Collation suffixes have the following meanings:

= _ci indicates a case-insensitive collation.
= _cs indicates a case-sensitive collation.

= _bin indicates a binary collation. That is, comparisons are based on numeric charac-
ter code values without reference to any language. For this reason, _bin collation
names do not include any language name. Examples: latinl_bin and ut£8_bin.

Binary and non-binary strings have different sorting properties:

= Binary strings are processed byte by byte in comparisons based solely on the
numeric value of each byte. One implication of this property is that binary strings
appear to be case sensitive ('abc' <> 'ABC'), but that is actually a side effect of the
fact that uppercase and lowercase versions of a letter have different numeric byte
values. There isn’t really any notion of lettercase for binary strings. Lettercase is a
function of collation, which applies only to character (non-binary) strings.

= Non-binary strings are processed character by character in comparisons, and the
relative value of each character is determined by the collating sequence that is used
for the character set. For many collations, uppercase and lowercase versions of a
given letter have the same collating value, so non-binary string comparisons typi-
cally are not case sensitive. However, that is not true for case-sensitive or binary
collations.

3.1 Data Value Categories

Because collations are used for comparison and sorting, they affect many operations:

= Comparisons operators: <, <=, =, <>, >=, >, and LIKE.
= Sorting: ORDER BY,MIN(),and MAX ().

= Grouping: GROUP BY and DISTINCT.

To determine the character set or collation of a string, use the CHARSET () or
COLLATION () function.

Quoted string literals are interpreted according to the current server settings. The de-
fault character set and collation are latinl and latinl swedish ci:

mysgl> SELECT CHARSET('abcd'), COLLATION('abcd');

MySQL treats hexadecimal constants as binary strings by default:

mysql> SELECT CHARSET(X'0123'), COLLATION(X'0123');
Fom - e e e e T +

Two notational conventions can be used to force a string literal to be interpreted with
a given character set. First, a string constant can be designated for interpretation with a
given character set using the following notation, where charset is the name of a sup-
ported character set:

_charset str

The _charset notation is called a “character set introducer.” The string can be written
as a quoted string or as a hexadecimal value. The following examples show how to cause
strings to be interpreted in the latin2 or ut£8 character set:

_latin2 ‘'abc'
_latin2 X'616263"'
_latin2 0x616263
_utf8 'def’

_utf8 X'646566"'
_utf8 0x646566

For quoted strings, whitespace is optional between the introducer and the following
string. For hexadecimal values, whitespace is required.

Second, the notation N' str ' is equivalent to _utf8'str'.N (not case sensitive) and
must be followed immediately by a quoted string literal with no intervening whitespace.

209

210

Chapter 3 Data Types

Introducer notation works for quoted string literals or hexadecimal constants, but not
for string expressions or column values. However, any string value can be used to produce
a string in a designated character set using the CONVERT () function:

CONVERT (str USING charset) ;

Introducers and CONVERT () are not the same. An introducer merely modifies how the
string is interpreted. It does not change the string value (except that for multi-byte char-
acter sets, padding might be added if the string does not contain enough bytes).

CONVERT () takes a string argument and produces a new string in the desired character set.
To see the difference between introducers and CONVERT (), consider the following two
statements that refer to the ucs2 double-byte character set:

mysqgl> SET @sl = _ucs2 'ABCD';

mysqgl> SET @s2 = CONVERT('ABCD' USING ucs2);

Assume that the default character set is 1atinl (a single-byte character set). The first
statement interprets each pair of characters in the string 'ABCD' as a single double-byte
ucs2 character, resulting in a two-character ucs2 string. The second statement converts
each character of the string 'ABCD' to the corresponding ucs2 character, resulting in a
four-character ucs2 string.

What is the “length” of a string? It depends. If you measure with CHAR_LENGTH (), you
get the length in characters. If you measure with LENGTH (), you get the length in bytes.
For strings that contain multi-byte characters the two values differ:

mysql> SELECT CHAR LENGTH(@sl), LENGTH(@sl), CHAR LENGTH(@s2), LENGTH(@s2);

Here is a somewhat subtle point. A binary string is not the same thing as a non-binary
string that has a binary collation:

= The binary string has no character set. It is interpreted with byte semantics and
comparisons use single-byte numeric codes.

= A non-binary string with a binary collation has character semantics and comparisons
use numeric character values that might be based on multiple bytes per character.

Here’s one way to see the difference between binary and non-binary strings with re-
gard to lettercase. Create a binary string and a non-binary string that has a binary colla-
tion, and then pass each string to the UPPER () function:

mysgl> SET @sl = BINARY 'abcd';

mysgl> SET @s2 = _latinl 'abcd' COLLATE latinl_bin;
mysqgl> SELECT UPPER(@sl), UPPER(@s2);

Fmm - Fmmm +

| UPPER(@sl) | UPPER(@s2) |

3.1 Data Value Categories

Why doesn’t UPPER () convert the binary string to uppercase? This happens because
the string has no character set, so there is no way to know which byte values correspond
to uppercase or lowercase characters. To use a binary string with functions such as
UPPER () and LOWER (), you must first convert it to a non-binary string:

mysgl> SELECT @sl, UPPER(CONVERT(@sl USING latinl));

+o————- R ettt +
| @sl | UPPER(CONVERT(@sl USING latinl)) |
o e +
| abcd | ABCD |
Fom———- e e L L +

3.1.2.2 Character Set-Related System Variables

The server maintains several system variables that are involved in various aspects of char-

acter set support. Most of these variables refer to character sets and the rest refer to colla-

tions. Each of the collation variables is linked to a corresponding character set variable.
Some of the character set variables indicate properties of the server or the current

database:

= character_set_systenm indicates the character set used for storing identifiers. This
is always ut £8.

» character set_server and collation_server indicate the server’s default char-
acter set and collation.

» character set_database and collation database indicate the character set and
collation of the default database. These are read-only and set automatically by the
server whenever you select a default database. If there is no default database, they’re
set to the server’s default character set and collation. These variables come into play
when you create a table but specify no explicit character set or collation. In this
case, the table defaults are taken from the database defaults.

Other character set variables influence how communication occurs between the client
and the server:

= character_set_client indicates the character set in which the client sends SQL
statements to the server.

» character set_ results indicates the character set in which the server returns
results to the client. “Results” include data values and also metadata such as column
names.

= character_set_connection is used by the server. When it receives a statement
string from the client, it converts the string from character_set_client to

211

212

Chapter 3 Data Types

character_set_connection and works with the statement in the latter character
set. (There is an exception: Any literal string in the statement that is preceded by a
character set introducer is interpreted using the character set indicated by the intro-
ducer.) collation_connection is used for comparisons between literal strings
within statement strings.

= character_set_filesystem indicates the filesystem character set. It is used for
interpreting literal strings known to refer to filenames in SQL statements such as
LoaD DATA.These filename strings are converted from character_set_client to
character_set_filesystem before opening the file. The default is binary (no
conversion).

Very likely you’ll find that most character set and collation variables are set to the same
value by default. For example, the following output indicates that client/server communi-
cation takes place using the latinl character set:

mysgl> SHOW VARIABLES LIKE 'character_set_%';

B TP P +
| Variable_name | value |
e B +

| character_set_client | latinl |

| character_set_connection | latinl |

| character_set_database | latinl |

| character_set_filesystem | binary |

| character_set_results | latinl |

| character_set_server | latinl |

| character_set_system | utfs |
o R +

mysql> SHOW VARIABLES LIKE 'collation_%';

B T TP B T +
| Variable_name | value
e B e +

| collation _connection | latinl_swedish ci |

| collation_database latinl_swedish_ci |

|
|

| collation_server | latinl_swedish ci |
+

A client that wants to talk to the server using another character set can change the
communication-related variables. For example, if you want to use ut£8, change three
variables:

mysgl> SET character_set_client = utf8;
mysqgl> SET character_set_results = utf8;
mysgl> SET character_set_connection = utf8;

However, it’s more convenient to use a SET NAMES statement for this purpose. The fol-
lowing statement is equivalent to the preceding three SET statements:

mysqgl> SET NAMES 'utf8';

3.1 Data Value Categories

One restriction on setting the communication character set is that you cannot use
ucs2. (In MySQL 6.0 and up, this restriction also applies to ut£16 and ut£32.)

Many client programs support a --default-character-set option that produces the
same effect as a SET NAMES statement by informing the server of the desired communica-
tion character set.

For variables that come in pairs (a character set variable and a collation variable), the
members of the pair are linked in the following ways:

= Setting the character set variable also sets the associated collation variable to the de-
fault collation for the character set.

= Setting the collation variable also sets the associated character set variable to the
character set implied by the first part of the collation name.

For example, Setting character_set_connection to utf8 sets
collation_connection to utf8_general_ci. Setting collation_connection to
latinl_spanish_ci sets character_set_connection to latinl.

3.1.3 Date and Time (Temporal) Values

Dates and times are values such as '2011-06-17"' or '12:30:43'. MySQL also under-
stands combined date/time values, such as '2011-06-17 12:30:43"'.Take special note of
the fact that MySQL represents dates in year-month-day order. This syntax often surprises
newcomers to MySQL, although it is standard SQL format (also known as “ISO 8601
format).You can display date values any way you like using the DATE_FORMAT () function,
but the default display format lists the year first. Input values must be specified with the
year first. For values in other formats, you might be able to convert them for input by
using the STR_TO_DATE () function.

3.1.4 Spatial Values

MySQL supports spatial values, although only for MyISAM, and, as of MySQL 5.0.16,
InnoDB, NDB, and AR CHIVE. This capability enables representation of values such as
points, lines, and polygons. For example, the following statement uses the text representa-
tion of a point value with X andY coordinates of (10, 20) to create a POINT and assigns
the result to a user-defined variable:

SET @pt = POINTFROMTEXT ('POINT (10 20)');

3.1.5 Boolean Values

In expressions, zero is considered false and any non-zero, non-NULL value is considered
true.

The special constants TRUE and FALSE evaluate to 1 and 0, respectively. They are not
case sensitive.

213

214

Chapter 3 Data Types

3.1.6 The NULL Value

NULL is something of a “typeless” value. Generally, it’s used to mean “no value,” “unknown
value,” “missing value,

99 ¢¢ 99 ¢ 99 ¢¢

out of range,” “not applicable,” “none of the above,” and so forth.
You can insert NULL values into tables, retrieve them from tables, and test whether a value
is NULL. However, you cannot perform arithmetic on NULL values; if you try, the result is
NULL. Also, many functions return NULL if you invoke them with a NULL or invalid argu-
ment.

The keyword NULL is written without quotes and is not case sensitive. MySQL also
treats a standalone \N (case sensitive) as NULL:

mysqgl> SELECT \N, ISNULL(\N);

Fm————— B e L L +
| NULL | ISNULL(\N) |
- o +
| NULL | 1
tom———— fomm +

3.2 MySQL Data Types

Each table in a database contains one or more columns. When you create a table using a
CREATE TABLE statement, you specify a data type for each column. A data type is more
specific than a general category such as “number” or “string.” For a column, the data type
is the means by which you precisely characterize the kind of values the column may con-
tain, such as SMALLINT or VARCHAR (32).This in turn determines how MySQL treats those
values. For example, if you have numeric values, you could store them using either a nu-
meric or string column, but MySQL will treat the values somewhat differently depending
on what type you use. Each data type has several characteristics:

= What kind of values it can represent.
= How much space values take up.

= Whether values are fixed-length (all values of the type take the same amount of
space) or variable-length (the amount of space depends on the particular value be-
ing stored)

= How MySQL compares and sorts values of the type

= Whether the type can be indexed

The following discussion surveys MySQL’s data types briefly, and then describes in
more detail the syntax for defining them and the properties that characterize each type,
such as their range and storage requirements. The type specifications are shown as you use
them in CREATE TABLE statements. Optional information is indicated by square brackets
(11). For example, the syntax MEDIUMINT [()] indicates that the maximum display width,
specified as (M), is optional. On the other hand, for VARCHAR (4), the lack of brackets indi-
cates that () is required.

3.2 MySQL Data Types

3.2.1 Overview of Data Types

MySQL has numeric data types for integer, fixed-point, floating-point, and bit values, as
shown in Table 3.2. Numeric types other than BIT can be signed or unsigned. A special
attribute enables sequential integer or floating-point column values to be generated auto-
matically, which is useful in applications that require a series of unique identification
numbers.

Table 3.2 Numeric Data Types

Type Name Meaning

TINYINT A very small integer

SMALLINT A small integer

MEDIUMINT A medium-sized integer

INT A standard integer

BIGINT A large integer

DECIMAL A fixed-point number

FLOAT A single-precision floating-point number
DOUBLE A double-precision floating-point number
BIT A bit field

Table 3.3 shows the MySQL string data types. Strings can hold anything, even arbi-
trary binary data such as images or sounds. Strings can be compared according to whether
they are case sensitive. In addition, you can perform pattern matching on strings. (Actu-
ally, in MySQL, you can even perform pattern matching on numeric types, but it’s more
commonly done with string types.)

Table 3.3 String Data Types

Type Name Meaning

CHAR A fixed-length non-binary (character) string
VARCHAR A variable-length non-binary string
BINARY A fixed-length binary string

VARBINARY A variable-length binary string

TINYBLOB A very small BLOB (binary large object)
BLOB A small BLOB

MEDIUMBLOB A medium-sized BLOB

LONGBLOB A large BLOB

TINYTEXT A very small non-binary string

215

216

Chapter 3 Data Types

Table 3.3 String Data Types

Type Name Meaning

TEXT A small non-binary string

MEDIUMTEXT A medium-sized non-binary string

LONGTEXT A large non-binary string

ENUM An enumeration; each column value may be assigned one enu-
meration member

SET A set; each column value may be assigned zero or more set
members

Table 3.4 shows the MySQL date and types, where cc, vv, MM, DD, hh, mm, and ss repre-
sent century, year, month, day of the month, hour, minute, and second, respectively. For
temporal values, MySQL provides types for dates and times (either combined or separate)
and timestamps (a special type that enables you to track when changes were last made to a
row). There is also a type for efficiently representing year values when you don’t need an
entire date.

Table 3.4 Date and Time Data Types

Type Name Meaning

DATE A date value, in ' ccyy-mMM-DD' format

TIME A time value, in 'hh:mm:ss' format

DATETIME A date and time value, in ' CCYY-MM-DD hh:mm:ss' format
TIMESTAMP A timestamp value, in ' cCYyY-MM-DD hh:mm:ss' format
YEAR A year value, in ccyy or vy format

Table 3.5 shows the MySQL spatial data types. These represent various kinds of geo-
metrical or geographical values.

Table 3.5 Spatial Data Types

Type Name Meaning

GEOMETRY A spatial value of any type

POINT A point (a pair of X,Y coordinates)
LINESTRING A curve (one or more POINT values)
POLYGON A polygon

GEOMETRYCOLLECTION A collection of GEOMETRY values
MULTILINESTRING A collection of LINESTRING values
MULTIPOINT A collection of POINT values

MULTIPOLYGON A collection of POLYGON values

3.2 MySQL Data Types

3.2.2 Specifying Column Types in Table Definitions

To create a table, issue a CREATE TABLE statement that includes a list of the columns in
the table. Here’s an example that creates a table named mytbl with three columns named
f,c,and i:
CREATE TABLE mytbl
(

f FLOAT(10,4),

¢ CHAR(15) NOT NULL DEFAULT 'none',

i TINYINT UNSIGNED NULL
)i

Each column has a name and a type, and attributes can be associated with the type.
The syntax for defining a column is as follows:

col_name col_type [type_attributes] [general_attributes]

The name of the column, col_name, is always first in the definition and must be a legal
identifier. The precise rules for identifier syntax are given in Section 2.2,“MySQL Identi-
fier Syntax and Naming Rules.” Briefly summarized, column identifiers may be up to 64
characters long, and may consist of alphanumeric characters from the system character set,
as well as the underscore and dollar sign characters (°_" and ‘$’). Keywords such as SELECT,
DELETE, and CREATE normally are reserved and cannot be used. However, you can include
other characters within an identifier or use a reserved word as an identifier if you are
willing to put up with the bother of quoting it whenever you refer to it. To quote an
identifier, enclose it within backtick (‘*’) characters. If the ansT_guoTES SQL mode is
enabled, it is allowable to quote identifiers within double quote (‘*’) characters instead.

col_type indicates the column data type; that is, the specific kind of values the col-
umn can hold. Some type specifiers indicate the maximum length of the values you store
in the column. For others, the length is implied by the type name. For example, CHAR (10)
specifies an explicit length of 10 characters, whereas TINYTEXT values have an implicit
maximum length of 255 characters. Some of the type specifiers allow you to indicate a
maximum display width (how many characters to use for displaying values). For fixed-
point and floating-point types, you can specify the number of significant digits and num-
ber of decimal places.

Following the column’s data type, you may specify optional type-specific attributes as
well as more general attributes. These attributes function as type modifiers. They cause
MySQL to change the way it treats column values in some way:

= The type-specific attributes that are allowable depend on the data type you choose.
For example, UNSIGNED and ZEROFILL are allowable only for numeric types, and
CHARACTER SET and COLLATE are allowable only for non-binary string types.

= The general attributes may be given for any data type, with a few exceptions.You
may specify NULL or NOT NULL to indicate whether a column can hold NULL values.
For most data types, you can specify a DEFAULT clause to define a default value for

217

218

Chapter 3 Data Types

the column. Default value handling is described in Section 3.2.3,“Configuring
Time Zone Support.”

If multiple column attributes are present, there are some constraints on the order in
which they may appear. In general, you should be safe if you specify data type-specific at-
tributes such as UNSIGNED or ZEROFILL before general attributes such as NULL or NOT
NULL.

3.2.3 Specifying Column Default Values

For all but BLOB and TEXT types, spatial types, or columns with the AUTO_INCREMENT at-
tribute, you can specify a DEFAULT def_value clause to indicate that a column should be
assigned the value def_value when a new row is created that does not explicitly specify
the column’s value. With some limited exceptions for TIMESTAMP columns, def_value
must be a constant. It cannot be an expression or refer to other columns.

If a column definition includes no explicit DEFAULT clause and the column can take
NULL values, its default value is NULL. Otherwise, the handling of a missing DEFAULT clause
is version dependent.

From MySQL 5.0.2 on, the column is created without any DEFAULT clause. That is, it
has no default value. This aftfects how the server handles the column if a new row that
does not specify a value for the column is inserted into the table:

= When strict SQL mode is not in effect, the column is set to the implicit default for
its data type. (Implicit defaults are described shortly.)

= When strict SQL mode is in effect, an error occurs if the table is transactional. The
statement aborts and rolls back. For non-transactional tables, an error occurs and the
statement aborts if the row is the first row inserted by the statement. If it is not the
first row, you can elect to have the statement abort or to have the column set to its
implicit default with a warning. The choice depends on which strict mode setting is
in effect. See Section 3.3, “How MySQL Handles Invalid Data Values,” for details.

Before MySQL 5.0.2, MySQL defines the column with a DEFAULT clause that specifies
the implicit default value.
The implicit default for a column depends on its data type:

= For numeric columns, the default is 0, except for columns that have the
AUTO_INCREMENT attribute. For AUTO_INCREMENT, the default is the next number in
the column sequence.

= For date and time types except TIMESTAMP, the default is the “zero” value for the
type (for example, '0000-00-00" for DATE). For TIMESTAMP, the default is the cur-
rent date and time for the first TIMESTAMP column in a table, and the “zero” value
for any following TIMESTAMP columns. (TIMESTAMP defaults actually are more com-
plex and are discussed in Section 3.2.6.2,“The TIMESTAMP Data Type.”)

3.2 MySQL Data Types

= For string types other than ENUM, the default is the empty string. For ENU, the de-
fault is the first enumeration element. For ST, the default when the column cannot
contain NULL actually is the empty set, but that is equivalent to the empty string.

You can use the SHOW CREATE TABLE statement to see which columns have a DEFAULT
clause and what the default value is for those columns that have one.

3.2.4 Numeric Data Types
MySQL’s numeric data types group into three groups:

= Exact-value types, which include the integer types and DECIMAL. Integer types are
used for numbers that have no fractional part, such as 43, -3, 0, or -798432.You can
use integer columns for data represented by whole numbers, such as weight to the
nearest pound, height to the nearest inch, number of stars in a galaxy, number of
people in a household, or number of bacteria in a petri dish. The DECIMAL type
stores exact values that may have a fractional part, such as 3.14159, -.00273, or
-4.78.This is a good data type for information such as monetary values. Integer
and DECIMAL values are stored exactly as specified without rounding when possible,
and calculations are exact.

= The floating-point types are available in single precision (FLOAT) and double preci-
sion (DOUBLE). These types, like DECIMAL, are used for numbers that may have a frac-
tional part, but they hold approximate-value numbers such as 3.9E+4 or -0.1E-100
that are subject to rounding. They can be used when exact precision is not required
or for values that are so large that DECIMAL cannot represent them. Some types of
data you might represent as floating-point values are average crop yield, distances, or
unemployment rates.

= The BIT type is used for storing bit-field values.

Values with a fractional part can be assigned to integer columns, but will be rounded
using the “round half up” rule: If the fractional part is .5 or greater, the value is rounded
away from zero to the next integer (up for positive values, down for negative values.)
Conversely, integer values may be assigned to types that allow a fractional part. They are
treated as having a fractional part of zero.

When you specify a number, you should not include commas as a separator. For exam-
ple, 12345678.90 is legal, but 12,345, 678.90 is not.

Table 3.6 shows the name and range of each numeric type, and Table 3.7 shows the
amount of storage required for values of each type. M represents the maximum display width
for integer types, the precision (number of significant digits) for floating-point and decimal
types, and the number of bits for BIT. D represents the scale (number of digits following the
decimal point) for types that have a fractional part; this is also known as the scale.

Storage for DECIMAL values depends on the number of digits on the left and right sides
of the decimal point. For each side, 4 bytes are required for each multiple of nine digits,

219

220

Chapter 3 Data Types

Table 3.6 Numeric Data Type Ranges

Type Specification
TINYINT[(M)]

SMALLINT[(M)]

MEDIUMINT [(M)]

INT[(M)]

BIGINT[(M)]

DECIMAL ([M[,D]1)

FLOAT[(MD)]

DOUBLE[(M, D)]

BIT[(M)]

Range

Signed values: -128 to 127 (-27 to 27-1); Unsigned values: O to
255 (0 to 28-1)

Signed values: -32768 to 32767 (-2° to 215-1); Unsigned val-
ues: 0 to 65535 (0 to 216-1)

Signed values: -8388608 to 8388607 (-223 to 223-1); Unsigned
values: O to 16777215 (0 to 2*-1)

Signed values: -2147483648 to 2147483647 (-23! to 231-1);
Unsigned values: O to 4294967295 (0 to 232-1)

Signed values: -9223372036854775808 to
9223372036854775807 (-2°3 to 2%3-1); Unsigned values: O to
18446744073709551615 (O to 2%-1)

Varies depending on mand D

Minimum non-zero values: £1.175494351E-38; Maximum non-
zero values: +£3.402823466E+38

Minimum non-zero values: +2.2250738585072014E-308;
Maximum non-zero values: £1.7976931348623157E+308

Oto2n-1

Table 3.7 Numeric Data Type Storage Requirements

Type Specification
TINYINTI[(M)]
SMALLINT[(M)]
MEDIUMINT [(M)]
INT[(M)]

BIGINTI[(M)]
DECIMAL ([M[,D]])
FLOATI[(M, D)]
DOUBLE[(M, D)]

BIT[(M)]

Storage Required

1 byte

2 bytes

3 bytes

4 bytes

8 bytes

Varies depending on M, D
4 bytes

8 bytes

Varies depending on i

plus 1 to 4 bytes if there are any remaining digits. Storage per value is the sum of the left

and right side storage.

A BIT (M) value requires approximately (¥+7)/8 bytes.

3.2 MySQL Data Types

3.2.4.1 Exact-Value Numeric Data Types
The exact-value data types include the integer types and the fixed-point DECIMAL type.

The integer types in MySQL are TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.
INTEGER is a synonym for INT. These types vary in the range of values they can represent
and in the amount of storage space they require. (The larger the range, the more storage is
required.) Integer columns can be defined as UNSIGNED to disallow negative values; this
shifts the range for the column upward to begin at 0.

When you define an integer column, you can specity an optional display size m. If
given, ¥ should be an integer from 1 to 255. It represents the number of characters used
to display values for the column. For example, MEDTUMINT (4) specifies a MEDIUMINT col-
umn with a display width of 4. If you define an integer column without an explicit
width, a default width is assigned. The defaults are the lengths of the “longest” values for
each type. Note that displayed values are not chopped to fit within » characters. If the
printable representation of a particular value requires more than u characters, MySQL dis-
plays the full value.

The display size ¥ for an integer column relates only to the number of characters used
to display column values. It has nothing to do with the number of bytes of storage space
required. For example, BIGINT values require 8 bytes of storage regardless of the display
width. It is not possible to magically cut the required storage space for a BIGINT column
in half by defining it as BIGINT (4) . Nor does ¥ have anything to do with the range of
values allowed. If you define a column as INT (3), that doesn’t restrict it to a maximum
value of 999.

DECIMAL is a fixed-point type: Values have a fixed number of decimals. The significance
of this fact is that DECIMAL values are not subject to roundoff error the way that floating-
point values are—a property that makes DECIMAL especially applicable for storing cur-
rency values.

NUMERIC and FIXED are synonyms for DECIMAL.

DECIMAL columns can be defined as UNSIGNED. Unlike the integer types, defining a
DECIMAL type as UNSIGNED doesn’t shift the type’s range upward, it merely eliminates the
negative end.

For a DECIMAL column, you may specify a maximum number of significant digits » and
the number of decimal places D.These correspond to the concepts of “precision” and
“scale” with which you may be familiar. The value of ¥ should be from 1 to 65.The value
of D should be from 0 to 30 and no greater than u.

Mand D are optional. If D is omitted, it defaults to 0. If is omitted as well, it defaults to
10. In other words, the following equivalences hold:

DECIMAL = DECIMAL(10) = DECIMAL(10,0)
DECIMAL(n) = DECIMAL(n,O0)

The maximum possible range for DECIMAL is determined by the values of ¥ and p. If
you vary ¥ and hold D fixed, the range becomes larger as ¥ becomes larger (Table 3.8). If
you hold ¥ fixed and vary b, the range becomes smaller as D becomes larger (Table 3.9).

221

222

Chapter 3 Data Types

Table 3.8 How M Affects the Range of DECIMAL (M,D)

Type Specification Range
DECIMAL(4,1) -999.9 to 999.9
DECIMAL(5,1) -9999.9 to 9999.9
DECIMAL(6,1) -99999.9 to 99999.9

Table 3.9 How D Affects the Range of DECIMAL (M, D)

Type Specification Range

DECIMAL (4,0) -9999 to 9999
DECIMAL (4,1) -999.9 t0 999.9
DECIMAL (4,2) -99.99 to 99.99
Note

Before MySQL 5.0.3, DECIMAL values are stored as strings and have somewhat different
properties from those of the current representation. See the MySQL Reference Manual for
details. To convert DECIMAL columns in an old table to the current format, dump it with
mysgldump and then reload the dump file:

% mysqldump db_name tbl_name > file name
% mysql db_name < file_name

3.2.4.2 Approximate-Value Numeric Data Types

MySQL provides two floating-point types, FLOAT and DOUBLE, that hold approximate-
value numbers. DOUBLE PRECISION is a synonym for DOUBLE. The REAL type is a synonym
for bouBLE by default. If the REAL_as_DEFAULT SQL mode is enabled, REAL is a synonym
for FLOAT.

Floating-point types can be defined as UNSIGNED, which eliminates the negative end of
the type’s range.

For each floating-point type (just as for DECIMAL), you may specify a maximum num-
ber of significant digits and the number of decimal places 0. The value of 1 should be
from 1 to 255.The value of D should be from 0 to 30 and no greater than M.

For FLOAT and DOUBLE, ¥ and D are optional. If you omit both from the column defini-
tion, values are stored to the full precision allowed by your hardware.

FLOAT (p) syntax also is allowed. However, whereas p stands for the required number of
bits of precision in standard SQL, it is treated differently in MySQL. p may range from
0 to 53 and is used only to determine whether the column stores single-precision or
double-precision values. For p values from 0 to 24, the column is treated as single

3.2 MySQL Data Types

precision. For values from 25 to 53, the column is treated as double precision. That is, the
column is treated as a FLOAT or DOUBLE with no ¥ or D values.

3.2.4.3 The BIT Data Type
The BIT data type was introduced in MySQL 5.0.3 as a type for holding bit-field values.
When you define a BIT column, you can specify an optional maximum width » that indi-
cates the “width” of the column in bits. # should be an integer from 1 to 64. If omitted, i
defaults to 1.

Values retrieved from BIT columns are not displayed in printable form by default. To
display a printable representation of bit-field values, add zero or use CAST ():
mysgl> CREATE TABLE t (b BIT(3)); # 3-bit column; holds values 0 to 7
mysgl> INSERT INTO t (b) VALUES(0),(b'1l'),(b'101'),(b'11l1l");
mysgl> SELECT b+0, CAST(b AS UNSIGNED) FROM t;

+-———— o +
| b+0 | CAST(b AS UNSIGNED) |

The BIN() function is useful for displaying bit-field values or the result of computa-
tions on them in binary notation:

mysqgl> SELECT BIN(b), BIN(b & b'101'), BIN(b | b'101') FROM t;

+-—————— o o +
| BIN(b) | BIN(b & b'101') | BIN(b | b'101") |
Fomm - o o +
o	0	101
11	1	111
101	101	101
111	101	111
Fo—————— o Fom e +

3.2.4.4 Numeric Data Type Attributes

The UNSIGNED attribute disallows negative values. It can be used with all numeric types
except BIT, but is most commonly used with integer types. Making an integer column
UNSIGNED doesn’t change the “size” of the underlying data type’s range; it just shifts the
range upward. Consider this table definition:

CREATE TABLE mytbl
(

itiny TINYINT,

itiny u TINYINT UNSIGNED
)i

223

224

Chapter 3 Data Types

itiny and itiny_u both are TINYINT columns with a range of 256 values, but differ in
the set of allowable values. The range of itiny is -128 to 127, whereas the range of
itiny u is shifted up, resulting in a range of 0 to 255.

UNSIGNED is useful for columns into which you plan to store information that doesn’t
take on negative values, such as population counts or attendance figures. Were you to use a
signed column for such values, you would use only half of the data type’s range. By mak-
ing the column UNSIGNED, you effectively double your usable range. For example, if you
use the column for sequence numbers, it will take twice as long to run out of values if
you make it UNSIGNED.

You can also specify UNSIGNED for DECIMAL or floating-point columns, although the
effect is slightly different from that for integer columns. The range does not shift upward,;
instead, the upper end remains unchanged and the lower end becomes zero (effectively
cutting the range in half).

The s1GNED attribute is allowed for all numeric types that allow uNSIGNED. However, it
has no effect because such types are signed by default. STGNED serves simply to indicate
explicitly in a column definition that the column allows negative values.

The zEROFILL attribute can be specified for all numeric types except BIT. It causes dis-
played values for the column to be padded with leading zeros to the display width.You
can use ZEROFILL when you want to make sure column values always display using a
given number of digits. Actually, it’s more accurate to say “a given minimum number of’
digits” because values wider than the display width are displayed in full without being
chopped.You can see this by issuing the following statements:

mysgl> DROP TABLE IF EXISTS mytbl;

mysgl> CREATE TABLE mytbl (my zerofill INT(5) ZEROFILL);
mysql> INSERT INTO mytbl VALUES(1), (100),(10000), (1000000);
mysgl> SELECT my_ zerofill FROM mytbl;

o +
| 00001 |
| 00100 |
| 10000 |
| 1000000 |
o +

Note that the final value is displayed in full, even though it is wider than the column’s
display width.

If you specify the ZEROFILL attribute for a column, it automatically becomes UNSIGNED
as well.

One other attribute, AUTO_INCREMENT, is allowed for integer or floating-point data
types. Specify the AUTO_INCREMENT attribute when you want to generate a series of
unique identifier values. When you insert NULL into an AUTO_INCREMENT column, MySQL
generates the next sequence value and stores it in the column. Normally, unless you take
steps to cause otherwise, AUTO_INCREMENT values begin at 1 and increase by 1 for each

3.2 MySQL Data Types

new row. The sequence may be affected if you delete rows from the table. That is, se-
quence values might be reused; it is storage engine-dependent whether this occurs.

You can have at most one AUTO_INCREMENT column in a table. The column should have
the NOT NULL constraint, and it must be indexed. Generally, an AUTO_INCREMENT column is
indexed as a PRIMARY KEY or UNIQUE index. Also, because sequence values always are posi-
tive, you normally define the column UNSIGNED as well. For example, you can define an
AUTO_INCREMENT column in any of the following ways:

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY) ;
CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE) ;

CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT, PRIMARY KEY (i));
CREATE TABLE ai (i INT UNSIGNED NOT NULL AUTO_INCREMENT, UNIQUE (i));

The first two forms shown specify the index information as part of the column defini-
tion. The second two specify the index as a separate clause of the CREATE TABLE state-
ment. Using a separate clause is optional if the index includes only the AUTO_INCREMENT
column. If you want to create a multiple-column index that includes the AUTO_INCREMENT
column, you must use a separate clause. (For an example of this, see Section 3.4.2.1,
“AUTO_INCREMENT for MyISAM Tables.”

It is always allowable to define an AUTO_INCREMENT column explicitly as NOT NULL, but
if you omit NOT NULL, MySQL adds it automatically.

Section 3.4,“Working with Sequences,” discusses the behavior of AUTO_INCREMENT
columns further.

Following the attributes just described, which are specific to numeric columns, you
may specify NULL or NOT NULL. If you do not specify NULL or NOT NULL for a numeric col-
umn, it allows NULL by default.

You also may specify a default value using the DEFAULT attribute. The following table
contains three INT columns, having default values of -1, 1, and NULL:

CREATE TABLE t

(
il INT DEFAULT -1,
i2 INT DEFAULT 1,
i3 INT DEFAULT NULL

)i

Section 3.2.3,“Specifying Column Default Values,” earlier in the chapter described the
rules that MySQL uses for assigning a default value if a column definition includes no
DEFAULT clause.

3.2.4.5 Choosing Numeric Data Types

‘When you choose a type for a numeric column, consider the range of values that you
need to represent and choose the smallest type that will cover the range. Choosing a larger
type wastes space, leading to tables that are unnecessarily large and that cannot be
processed as efficiently as if you had chosen a smaller type. TINYINT is the best for integers
if the range of values in your data is small, such as a person’s age or number of siblings.

225

226

Chapter 3 Data Types

MEDIUMINT can represent millions of values and can be used for many more types of
values, at some additional cost in storage space. BIGINT has the largest range of all but re-
quires twice as much storage as the next smallest integer type (INT) and should be used
only when really necessary. For floating-point values, DOUBLE takes twice as much space as
FLOAT. Unless you need exceptionally high precision or an extremely large range of val-
ues, you can probably represent your data at half the storage cost by using FLOAT instead
of DOUBLE.

Every numeric column’s range of values is determined by its type. If you attempt to in-
sert a value that lies outside the column’s range, the result depends on whether strict SQL
mode is enabled. If it is, an out of range value results in an error. If strict mode is not en-
abled, truncation occurs: MySQL clips the value to the appropriate endpoint of the range,
uses the result, and generates a warning.

Value truncation occurs according to the range of the data type, not the display width.
For example, a SMALLINT (3) column has a display width of 3 and a range from -32768 to
32767.The value 12345 is wider than the display width but within the range of the col-
umn, so it is inserted without clipping and retrieved as 12345.The value 99999 is outside
the range, so it is clipped to 32767 when inserted. Subsequent retrievals return the value
32767.

For fixed-point or floating-point columns, if values are stored that have more digits in
the fractional part than allowed by the column specification, rounding occurs. If you store
1.23456 in a FLOAT (8,1) column, the result is 1.2. If you store the same value in a
FLOAT (8, 4) column, the result is 1.2346.This means you should define such columns
with a sufficient number of decimals to store values as precise as you require. If you need
accuracy to thousandths, don’t define a type with only two decimal places.

3.2.5 String Data Types

MySQL provides several data types for storing string values. Strings are often used for text
values like these:

'N. Bertram, et al.'
'Pencils (no. 2 lead)'
'123 Elm St.'
'Monograph Series IX'

But strings are actually “generic” types in a sense because you can use them to repre-
sent any value. For example, you can use binary string types to hold binary data, such as
images, sounds, or compressed gzip output.

Table 3.10 shows all the types provided by MySQL for defining string-valued columns,
and the maximum size and storage requirements of each type. ¥ represents the maximum
length of column values (in bytes for binary strings and characters for non-binary strings),
and L represents the actual length of a given value in bytes. w is the number of bytes re-
quired for the widest character in the character set. The BLOB and TEXT types each have
several variants that are distinguished by the maximum size of values they can hold.

3.2 MySQL Data Types

Table 3.10 String Data Types

Type Specification Maximum Size Storage Required
BINARY[(M)] M bytes M bytes
VARBINARY (1) M bytes L+ 1 or 2 bytes
CHAR[(M)] M characters M X wbytes
VARCHAR (M) M characters L+ 1 or 2 bytes
TINYBLOB 281 bytes L+ 1 bytes

BLOB 2'°_1 bytes L + 2 bytes
MEDIUMBLOB 2241 bytes L + 3 bytes
LONGBLOB 23%2_1 bytes L + 4 bytes
TINYTEXT 281 characters L+ 1 bytes

TEXT 2*¢_1 characters L + 2 bytes
MEDIUMTEXT 2241 characters L + 3 bytes
LONGTEXT 23%2_1 characters L + 4 bytes
ENUM('valuel', 'value2',...) 65,535 members 1 or 2 bytes
SET('valuel', 'value2',...) 64 members 1,2, 3, 4, or 8 bytes

Some types hold binary strings (byte strings) and others hold non-binary strings (char-
acter strings). Thus, maximum size as listed in Table 3.10 is given in number of bytes per
value for binary string types and number of characters for non-binary string types. For ex-
ample, BINARY (20) holds 20 bytes, whereas cHAR (20) holds 20 characters (which requires
more than 20 bytes for multi-byte characters). The differences between byte and character
semantics for binary and non-binary strings are characterized in Section 3.1.2,“String
Values.” Each of the binary string types for byte strings has a corresponding non-binary
type for character strings, as shown in Table 3.11.

Table 3.11 Corresponding Binary and Non-Binary String Types

Binary String Type Non-Binary String Type
BINARY CHAR

VARBINARY VARCHAR

BLOB TEXT

Each of the non-binary string types, as well as ENUM and SET, can be assigned a charac-
ter set and collation. Different columns can be assigned different character sets. Character
set assignment is discussed in Section 3.2.5.5,“String Data Type Attributes.”

227

228

Chapter 3 Data Types

BINARY and CHAR are fixed-length string types. For columns of these types, MySQL al-
locates the same amount of storage for every value and pads those that are shorter than
the column length. Padding uses zero (0x00) bytes for BINARY and spaces for CHAR. Be-
cause CHAR (M) must be able to represent the largest possible string in the column’s charac-
ter set, each column requires ¥ X w bytes, where w is the number of bytes required for the
widest character in the character set. For example, ujis characters take from one to three
bytes, so CHAR (20) must be allocated 60 bytes in case a value requires three bytes for all 20
characters.

Other string types are variable-length. The amount of storage taken by a value varies
from row to row and depends on the length of the values actually stored in the column.
This length is represented by L in the table for variable-length types. The extra bytes re-
quired in addition to L are the number of bytes needed to store the length of the value.
MySQL handles variable-length values by storing both the content of the value and a pre-
fix that records its length. These extra prefix “length bytes” are treated as an unsigned inte-
ger. There is a correspondence between a variable-length type’s maximum length, the
number of length bytes required for that type, and the range of the unsigned integer type
that uses the same number of bytes. For example, a MEDTUMBLOB value may be up to 2*-1
bytes long and requires 3 bytes to record the length. The 3-byte integer type MEDIUMINT
has a maximum unsigned value of 2*-1.That’s not a coincidence.

The length prefix for VARBINARY and VARCHAR requires 1 byte if the maximum length
of column values in bytes is less than 256. The requirement is 2 bytes otherwise.

Values for all string types except ENUM and SET are stored as a sequence of bytes and in-
terpreted either as bytes or characters depending on whether the type holds binary or
non-binary strings.Values that are too long to store are chopped to fit. (In strict mode, an
error occurs instead unless the chopped characters are spaces.) But string types range from
very small to very large, with the largest type able to hold nearly 4GB of data, so you
should be able to find something long enough to avoid truncation of your information.
(The eftective maximum column size actually is imposed by the maximum packet size of
the client/server communication protocol, which is IMB by default.)

For ENUM and SET, the column definition includes a list of legal string values, but ENuM
and SET values are stored internally as numbers, as detailed later in Section 3.2.5.4,“The
ENUM and SET Data Types.” Attempting to store a value other than those in the list causes
the value to be converted to ' (the empty string) unless strict mode is enabled. In strict
mode, an error occurs instead.

3.2.5.1 The CHAR and VARCHAR Data Types
The cHAR and VARCHAR string types hold non-binary strings, and thus are associated with a
character set and collation.

The primary differences between cHAR and VARCHAR lie in whether they have a fixed
or variable length, and in how trailing spaces are treated:

= CHAR is a fixed-length type, whereas VARCHAR is a variable-length type.

= Values retrieved from cHAR columns have trailing spaces removed. For a CHAR (1)
column, values that are shorter than u characters are padded to a length of ¥ when

3.2 MySQL Data Types

stored, but trailing spaces are stripped when the values are retrieved. As of MySQL
5.1.20, you can enable the PAD_CHAR_TO_FULL_LENGTH SQL mode to cause re-
trieved CHAR column values to retain trailing spaces.

= For a VARCHAR (M) column, trailing spaces are retained both for storage and retrieval.

CHAR columns can be defined with a maximum length from 0 to 255. ¥ is optional
for cHAR and defaults to 1 if missing. Note that CHAR (0) is legal. A CHAR (0) column can
be used to represent on/oft values if you allow it to be NULL.Values in such a column can
have one of two values: NULL or the empty string. A CHAR (0) column takes very little stor-
age space in the table—only a single bit.

The syntactically allowable range of M for VARCHAR (M) is 1 to 65,535, but the effective
maximum number of characters is less than 65,535 because MySQL has a maximum row
size of 65,535 bytes. That has certain implications:

= A long VARCHAR requires two length bytes, which count against the row size.

= Use of multi-byte characters reduces the number of characters that can fit within
the maximum row size.

= Inclusion of other columns in the table reduces the amount of space for the
VARCHAR column in the row.

Keep in mind two general principles when choosing between CHAR and VARCHAR data
types:

» If your values all are » characters long, a VARCHAR (M) column actually will use more
space than a CHAR (M) column due to the extra byte or bytes required to record the
length of values. On the other hand, if your values vary in length, vARCHAR columns
have the advantage of taking less space. A CHAR (M) column always takes » characters,
even if it is empty or NULL.

= If you're using MyISAM tables and your values don’t vary much in length, CHAR is a
better choice than VARCHAR because the MyISAM storage engine can process fixed-
length rows more efficiently than variable-length rows. See Section 5.3, “Choosing
Data Types for Efficient Queries.”

Note
Before MySQL 5.0.3, VARCHAR is handled somewhat differently:

= The maximum length for VARCHAR is 255.
= Trailing spaces are stripped from VARCHAR values when they are stored.

3.2.5.2 The BINARY and VARBINARY Data Types
The BINARY and VARBINARY types are similar to CHAR and VARCHAR, with the following
differences:

= CHAR and VARCHAR are non-binary types that store characters and have a character
set and collation. Comparisons are based on the collating sequence.

229

230 Chapter 3 Data Types

= BINARY and VARBINARY are binary types that store bytes and have no character set
or collation. Comparisons are based on numeric byte values.

The rules for handling of padding for BINARY values are as follows:

= As of MySQL 5.0.15, short values are padded with 0x00 bytes. Nothing is stripped
on retrieval.

= Before MySQL 5.0.15, short values are padded with spaces. Trailing spaces are
stripped on retrieval.

For VARBINARY, no padding occurs when values are stored and no stripping occurs for
retrieval.

3.2.5.3 The BLOB and TEXT Data Types

A “BLOB” is a binary large object—basically, a container that can hold anything you
want to toss into it, and that you can make about as big as you want. In MySQL, the BLoB
type is really a family of types (TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB). These types are
identical except in the maximum amount of information they can hold (see Table 3.10).
BLOB columns store binary strings. They are useful for storing data that may grow very
large or that may vary widely in size from row to row. Some examples are compressed
data, encrypted data, images, and sounds.

MySQL also has a family of TEXT types (TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT).
These are similar to the corresponding BLOB types, except that TEXT types store non-
binary strings rather than binary strings. That is, they store characters rather than bytes,
and are associated with a character set and collation. This results in the general differences
between binary and non-binary strings that were described earlier in Section 3.1.2,
“String Values.” For example, in comparison operations, BLOB values are compared in byte
units and TEXT values are compared in character units using the column collation.

BLOB or TEXT columns sometimes can be indexed, depending on the storage engine
you’re using:

= The MyISAM and InnoDB storage engines support BLOB and TEXT indexing.
However, you must specify a prefix size to be used for the index. This avoids creat-
ing index entries that might be huge and thereby defeat any benefits to be gained
by that index. The exception is that prefixes are not used for FULLTEXT indexes on
TEXT columns. FULLTEXT searches are based on the entire content of the indexed
columns, so any prefix you specify is ignored.

= MEMORY tables do not support BLOB and TEXT indexes because the MEMORY
engine does not support BLOB or TEXT columns at all.

BLOB or TEXT columns may require special care:

= Due to the typical large variation in the size of BLOB and TEXT values, tables con-
taining them are subject to high rates of fragmentation if many deletes and updates
are done. If you’re using a MyISAM table to store BLOB or TEXT values, you can run

3.2 MySQL Data Types

OPTIMIZE TABLE periodically to reduce fragmentation and maintain good perform-
ance. See Chapter 5, “Query Optimization,” for more information.

» The max_sort_length system variable influences BLOB and TEXT comparison and
sorting operations. Only the first max_sort_length bytes of each value are used.
(For TEXT columns that use a multi-byte character set, this means that comparisons
might involve fewer than max_sort_length characters.) If this causes a problem
with the default max_sort_length value of 1024, you might want to increase the
value before performing comparisons.

= If you're using very large values, you might need to configure the server to increase
the value of the max_allowed_packet parameter. See Section 12.6.2,“General-
Purpose System Variables,” for more information.You will also need to increase the
packet size for any client that wants to use very large values. The mysql and
mysgldump clients support setting this value directly using a startup option.

3.2.5.4 The ENUM and SET Data Types

ENUM and SET are special string data types that allow only values chosen from a fixed (pre-
defined) list of allowable strings. The primary difference between them is that ENuM col-
umn values must consist of exactly one member of the list of values, whereas SET column
values may contain any or all members of the list. In other words, ENuM is used for values
that are mutually exclusive, whereas SET allows multiple choices from the list.

The ENUM data type defines an enumeration. ENUM columns may be assigned values
consisting of exactly one member chosen from a list of values specified at table-creation
time.You can define an enumeration to have up to 65,535 members. Enumerations are
commonly used to represent category values. For example, values in a column defined as
ENUM('N', 'Y') can be either 'N' or 'v'. Or you can use ENUM for such things as avail-
able sizes or colors for a product or for answers to multiple-choice questions in a survey
or questionnaire where a single response must be selected:
employees ENUM('less than 100','100-500','501-1500"', 'more than 1500')
color ENUM('red', 'green', 'blue', 'black')
size ENUM('S','M','L','XL', 'XXL')
vote ENUM('Yes', 'No', 'Undecided')

If you are processing selections from a Web page that includes mutually exclusive radio
buttons, you can use an ENUM to represent the options from which a visitor to your site
chooses. For example, if you run an online pizza-ordering service, ENUM columns can be
used to represent the type of crust and size of pizza a customer orders:
crust ENUM('thin', 'regular', 'pan style', 'deep dish')
size ENUM('small', 'medium', 'large')

If enumeration categories represent counts, it’s important to choose your categories
properly when you create the enumeration. For example, when recording white blood
cell counts from a laboratory test, you might group the counts into categories like this:

wbc ENUM('0-100','101-300','>300")

231

232

Chapter 3 Data Types

If any given test result is provided as an exact count, you can record the value in the
wbc column using the category into which the count falls. But you cannot recover the
original count if you decide you want to convert the column from a category-based ENUM
to an integer column based on exact count. If you really need the exact count, use an in-
teger column instead, and group integer values into categories when you retrieve them
using the CASE construct. For example, if wbc is defined as an integer column, you can
select it as a category like this:

SELECT CASE WHEN wbc <= 100 THEN '0-100"'
WHEN wbc <= 300 THEN '101-300"'
ELSE '>300' END AS 'wbc category'
FROM ...

The SET type is similar to ENUM in the sense that when you create a SET column, you
specify a list of legal set members. But unlike ENUM, each column value may consist of
any number of members from the set. The set may have up to 64 members.You can use
a SET when you have a fixed set of values that are not mutually exclusive as they are in
an ENUM column. For example, you might use a SET to represent options available for an
automobile:

SET ('luggage rack', 'cruise control', 'air conditioning', 'sun roof')

Then particular SET values would represent those options actually ordered by customers:

'cruise control,sun roof'

'luggage rack,air conditioning'

'luggage rack,cruise control,air conditioning'
'air conditioning'

The final value shown (the empty string) means that the customer ordered no options.
This is a legal value for any SET column.

SET column definitions are written as a list of individual strings separated by commas
to indicate what the set members are. A SET column value, on the other hand, is written
as a single string. If the value consists of multiple set members, the members are separated
within the string by commas. This means you shouldn’t use a string containing a comma
as a SET member.

Other uses for SET columns might be for representing information such as patient di-
agnoses or results from selections on Web pages. For a diagnosis, there may be a standard
list of symptoms to ask a patient about, and the patient might exhibit any or all of them:

SET('dizziness', 'shortness of breath', 'cough')
For an online pizza service, the Web page for ordering could have a set of check boxes

for ingredients that a customer wants as toppings on a pizza, several of which might be
chosen:

SET ('pepperoni', 'sausage', 'mushrooms', 'onions', 'ripe olives')

3.2 MySQL Data Types

The way you define the legal value list for an ENUM or SET column is significant in
several ways:

= The list determines the possible legal values for the column, as has already been
discussed.

= If an ENUM or SET column has a collation that is not case sensitive, you can insert
legal values in any lettercase and they will be recognized. However, the lettercase of
the strings as specified in the column definition determines the lettercase of column
values when they are retrieved later. For example, if you have an ENUM('Y"', 'N")
column and you store 'y' and 'n' in it, the values are displayed as 'v' and 'N'
when you retrieve them. If the column has a case sensitive or binary collation, you
must insert values using exactly the lettercase used in the column definition or the
values will not be recognized as legal. On the other hand, you can have distinct ele-
ments that differ only in lettercase, something that is not true when you use a colla-
tion that is not case sensitive.

= The order of values in an ENUM definition is the order used for sorting. The order of
values in a SET definition also determines sort order, although the relationship is
more complicated because column values may contain multiple set members.

= When MySQL displays a SET value that consists of multiple set members, the order
in which it lists the members within the value is determined by the order in which
they appear in the SET column definition.

ENUM and SET are classified as string types because enumeration and set members are
specified as strings when you create columns of these types. However, the ENuM and SET
types actually have a split personality: The members are stored internally as numbers and
you can work with them as such. This means that ENuM and SET types are more efficient
than other string types because they often can be handled using numeric operations
rather than string operations. It also means that ENUM and SET values can be used in either
string or numeric contexts. Finally, ENuM and SET columns can cause confusion if you use
them in string context but expect them to behave as numbers, or vice versa.

MySQL sequentially numbers ENUM members in the column definition beginning with
1. (The value 0 is reserved for the error member, which is represented in string form by
the empty string.) The number of enumeration values determines the storage size of an
ENUM column. One byte can represent 256 values and two bytes can represent 65,536 val-
ues. (Compare this to the ranges of the one-byte and two-byte integer types TINYINT
UNSIGNED and SMALLINT UNSIGNED.) Thus, counting the error member, the maximum
number of enumeration members is 65,536 and the storage size depends on whether
there are more than 256 members.You can specify a maximum of 65,535 (not 65,536)
members in the ENUM definition because MySQL reserves a spot for the error member as
an implicit member of every enumeration. When you assign an illegal value to an ENUM
column, MySQL assigns the error member. (In strict mode, an error occurs instead.)

233

234

Chapter 3 Data Types

The following example demonstrates that you can retrieve ENUM values in either string
or numeric form (which shows the numeric ordering of enumeration members and also
that the NULL value has no number in the ordering):

mysgl> CREATE TABLE e_table (e ENUM('jane', 'fred',6 'will', 'marcia'));
mysgl> INSERT INTO e_table

-> VALUES('jane'), ('fred'), ('will'), ('marcia'), (NULL);
mysqgl> SELECT e, e+0, e+l, e*3 FROM e_table;

Fmm o tom o +
| e | et0 | e+l | e*3 |
e to—m to—m tommm - +
| jane | 1| 2 3
frea	2	3 6	
will	3	4	9
marcia	4	51 12	
NULL	NULL	NULL	NULL
e to—m to—m tommm - +

You can compare ENUM members either by name or number:

mysgl> SELECT e FROM e_table WHERE e='will';

e +
[e |
e +
| will |
- +
mysqgl> SELECT e FROM e_table WHERE e=3;
e +
[e |
e +
| will |
- +

It is possible to define the empty string as a legal enumeration member, but this will
only cause confusion. The string is assigned a non-zero numeric value, just as any other
member listed in the definition. However, an empty string also is used for the error mem-
ber that has a numeric value of 0, so it would correspond to two internal numeric element
values. In the following example, assigning the illegal enumeration value 'x' to the ENUM
column causes the error member to be assigned. This is distinguishable from the empty
string member listed in the column definition only when retrieved in numeric form:
mysql> CREATE TABLE t (e ENUM('a','','b'));
mysql> INSERT INTO t VALUES('a'),(''),('b'),('x');
mysqgl> SELECT e, e+0 FROM t;

3.2 MySQL Data Types

In strict mode, assigning the illegal value 'x' causes an error and no value is stored.

The numeric representation of SET columns s a little different from that for ENUM
columns. Set members are not numbered sequentially. Instead, members correspond to
successive individual bits in the SET value.The first set member corresponds to bit 0, the
second member corresponds to bit 1, and so on. In other words, the numeric values of
SET members all are powers of two. The empty string corresponds to a numeric SET value
of 0.

SET values are stored as bit values. Eight set members per byte can be stored this way,
so the storage size for a SET column is determined by the number of set members, up to a
maximum of 64 members. SET values take 1, 2, 3, 4, or 8 bytes for set sizes of 1 to 8,9 to
16,17 to 24, 25 to 32, and 33 to 64 members.

The representation of a SET as a set of bits is what allows a SET value to consist of
multiple set members. Any combination of bits can be turned on in the value, so the
value may consist of any combination of the strings in the SET definition that correspond
to those bits.

The following example shows the relationship between the string and numeric forms
of a SET column. It displays the numeric value in both decimal and binary form:

mysgl> CREATE TABLE s_table (s SET('table', 'lamp’', 'chair','stool'));
mysgl> INSERT INTO s_table

-> VALUES('table'), ('lamp'), ('chair'), ('stool'), (''), (NULL);
mysqgl> SELECT s, s+0, BIN(s+0) FROM s_table;

e Fo————- b +
| s | s+0 | BIN(s+0) |
e +o————- o - +
table	1	1
lamp	2] 10	
chair	4	100
stool	8	1000
	oo	
NULL	NULL	NULL
o +o————- o +

If you assign to the column s a value of 'lamp, stool', MySQL stores it internally as
10 (binary 1010) because 'lamp' has a value of 2 (bit 1) and 'stool' has a value of 8
(bit 3).

When you assign values to SET columns, the substrings don’t need to be listed in the
same order that you used when you defined the column. However, when you retrieve the
value later, members are displayed within the value in definition order. Also, if you assign
to a SET column a value containing substrings that are not listed as set members, those

235

236

Chapter 3 Data Types

strings drop out and the column is assigned a value consisting of the remaining substrings.
When you retrieve the value later, the illegal substrings will not be present.

If you assign a value of 'chair, couch, table' to the column s in s_table, two
things happen:

= 'couch' drops out because it’s not a member of the set. This occurs because
MySQL determines which bits correspond to each substring of the value to be as-
signed and turns them on in the stored value. 'couch' corresponds to no bit and is
ignored.

= When you retrieve the value later, it appears as ' table, chair'. On retrieval,
MySQL constructs the string value from the numeric value by scanning the bits in
order, which automatically reorders the substrings to the order used when the col-
umn was defined. This behavior also means that if you specify a set member more
than once in a value, it will appear only once when you retrieve the value. If you as-
sign 'lamp,lamp,lamp' to a SET column, it will be simply 'lamp' when retrieved.

In strict mode, use of an illegal SET member causes an error instead and the value is
not stored. In the preceding example, assigning a value containing 'couch' would cause
an error and the assignment would fail.

The fact that MySQL reorders members in a SET value means that if you search for
values using a string, you must list members in the proper order. If you insert
'chair, table' and then search for 'chair, table' you won't find the row; you must
look for it as 'table, chair'.

Sorting and indexing of ENUM and SET columns is done according to the internal
(numeric) values of column values. The following example might appear to be incorrect
because the values are not displayed in alphanumeric order:

mysql> SELECT e FROM e_table ORDER BY e;

e +
| e |
tmm +
| NULL |
| |
| jane |
| fred |
| will |
| marcia |
Fmm +

You can better see what’s going on by retrieving both the string and numeric forms of
the ENUM values:

mysqgl> SELECT e, e+0 FROM e_table ORDER BY e;

| NULL | NULL |

3.2 MySQL Data Types

If you have a fixed set of values and you want them to sort in a particular order, you
can exploit the ENUM sorting properties: Represent the values as an ENUM column in a table
and list the enumeration values in the column definition in the order that you want them
to be sorted. Suppose that you have a table representing personnel for a sports organiza-
tion, such as a football team, and that you want to sort output by personnel position so
that it comes out in a particular order, such as coaches, assistant coaches, quarterbacks,
running backs, receivers, linemen, and so on. Define the column as an ENuM and list the
enumeration elements in the order that you want to see them. Then column values auto-
matically will come out in that order for sort operations.

For cases where you want an ENUM to sort in normal lexical order, you can convert
the column to a non-ENUM string by using CAST () and sorting the result:

mysgl> SELECT CAST(e AS CHAR) AS e_str FROM e_table ORDER BY e_str;

casT () doesn’t change the displayed values, but has the effect in this statement of per-
forming an ENUM-to-string conversion that alters their sorting properties so they sort as
strings.

3.2.5.5 String Data Type Attributes
The attributes unique to the string data types are CHARACTER SET (or CHARSET) and
COLLATE for designating a character set and collating order.You can specify these as op-
tions for the table itself to set its defaults, or for individual columns to override the table
defaults. (Actually, each database also has a default character set and collation, as does the
server itself. These defaults sometimes come into play during table creation, as we’ll see
later.)

The CHARACTER SET and COLLATE attributes apply to the CHAR, VARCHAR, TEXT, ENUM,
and SET data types. They do not apply to the binary string data types (BINARY, VARBINARY,
and BLOB), because those types contain byte strings, not character strings.

237

238

Chapter 3 Data Types

When you specify the CHARACTER SET and COLLATE attributes, whether at the column,
table, or database level, the following rules apply:

= The character set must be one that the server supports. To display the available char-
acter sets, use SHOW CHARACTER SET.

= For a definition that includes both CHARACTER SET and COLLATE, the character set
and collation must be compatible. For example, with a character set of 1atin2, you
could use a collation of latin2_croatian_ci, but not latinl_bin.To display the
collations for each character set, use SHOW COLLATION.

= For a definition with CHARACTER SET but without COLLATE, the character set’s de-
fault collation is used.

= For a definition with cOLLATE but without CHARACTER SET, the character set is de-
termined from the first part of the collation name.

To see how these rules apply, consider the following statement. It creates a table that
uses several character sets:

CREATE TABLE mytbl
(
cl CHAR(10),
c2 CHAR(40) CHARACTER SET latin2,
c3 CHAR(10) COLLATE latinl_germanl_ci,
c4 BINARY (40)
) CHARACTER SET utfs8;

The resulting table has ut£8 as its default character set. No COLLATE table option is
given, so the default table collation is the default ut£8 collation (which is
utf8_general_ci).The c1 column definition contains no CHARACTER SET Or COLLATE
attributes of its own, so the table defaults are used for it. The table-level character set and
collation are not used for c2, ¢3, and c4: c2 and <3 have their own character set informa-
tion, and c4 has a binary string type, so the character set attributes do not apply. For c2,
the collation is latin2_general_ci, the default collation for 1atin2. For c3, the charac-
ter set is latinl, as implied by the collation name latinl_germanl_ci.

To see character set information for an existing table, use SHOW CREATE TABLE:
mysql> SHOW CREATE TABLE mytbl\G
hkkhkhkhkhhkkhkhkhkhhkkhkhhdhhkhhdhkhxkxx l. row hkhkkhkkhkkhkhkkhkhhkkhhkkhkkhhkkhkhkkhhhkkhkhkkkhkkk

Table: mytbl
Create Table: CREATE TABLE ‘mytbl® (

“cl’ char(10) default NULL,

“c2" char(40) character set latin2 default NULL,

“c3’ char(10) character set latinl collate latinl_germanl_ci default NULL,

“c4’ binary(40) default NULL
) ENGINE=MyISAM DEFAULT CHARSET=utf8

3.2 MySQL Data Types

If sHow CREATE TABLE does not display a column character set, it is the same as the
table default character set. If it does not display a column collation, it is the default colla-
tion for the character set.

You can also add the FULL keyword to SHOW COLUMNS to cause it to display collation
information (from which character sets can be derived):

mysgl> SHOW FULL COLUMNS FROM mytbl;

+-—-————- +-—-—————————- +--—-—-—-————————————— +-————- +-—-——- +-——————— +.

| Field | Type | Collation | Null | Key | Default |
- - +--———————— === == +-—-———- +-—-——- +-—-————— +.

| c1 | char(10) | utf8_general_ci | YES | | NULL [..
| <2 | char(40) | latin2_general ci | YES | | NULL [..
| c3 | char(10) | latinl_germanl_ci | YES | | NULL |..
| c4 | binary(40) | NULL | YES | | NULL |..
- - +--—-—-—————————————— +--———- +--——- +-——————— +.

The preceding discussion mentions column and table character set assignments, but
character sets actually can be designated at the column, table, database, or server level.
‘When MySQL processes a character column definition, it determines which character set
to use for it by trying the following rules in order:

1. If the column definition includes a character set, use that set. (This includes the case
where only a COLLATE attribute is present, because that implies which character set
to use.)

2. Otherwise, if the table definition includes a table character set option, use that set.

3. Otherwise, use the database character set as the table default character set, which
also becomes the column character set. If the database was never assigned a charac-
ter set explicitly (for example, if it was created prior to MySQL 4.1), the database
character set is taken from the server character set.

In other words, MySQL searches up through the levels at which character sets may be
specified until it finds a character set defined, and then uses that for the column. The data-
base always has a default character set, so the search process is guaranteed to terminate at
the database level even if no character set is specified explicitly at any of the lower levels.

The character set name binary is special. If you assign the binary character set to a
non-binary string column, that is equivalent to defining the column using the correspon-
ding binary string type. The following pairs of column definitions each show two equiva-
lent definitions:

cl CHAR(10) CHARACTER SET binary
cl BINARY(10)

c2 VARCHAR(10) CHARACTER SET binary
c2 VARBINARY (10)

c3 TEXT CHARACTER SET binary
c3 BLOB

239

240

Chapter 3 Data Types

If you specify CHARACTER SET binary for a binary string column, it is ignored because
the type already is binary. If you specify CHARACTER SET binary for an ENUM or SET, it is
used as is.

If you assign the binary character set as a table option, it applies to each string column
that does not have any character set information specified in its own definition.

MySQL provides some shortcut attributes for defining character columns:

= The ascIzt attribute is shorthand for CHARACTER SET latinl.
= The UNICODE attribute is shorthand for CHARACTER SET ucs2.

= If you use the BINARY attribute for a non-binary string column, ENUM, or SET, it is
shorthand for specifying the binary collation of the column’s character set. For
example, assuming a table default character set of latini, these definitions are
equivalent:

cl CHAR(10) BINARY
c2 CHAR(10) CHARACTER SET latinl BINARY
c3 CHAR(10) CHARACTER SET latinl COLLATE latinl_bin

If you specify the BINARY attribute for a binary string column, it is ignored because
the type already is binary.

The general attributes NULL or NOT NULL can be specified for any of the string types. If
you don'’t specify either of them, NULL is the default. However, defining a string column as
NOoT NULL does not prevent you from storing an empty string (that is, ' ') in the column.
In MySQL, an empty value is different from a missing value, so don’t make the mistake of
thinking that you can force a string column to contain non-empty values by defining it
NOT NULL. If you require string values to be non-empty, that is a constraint you must en-
force from within your own applications.

You can also specify a default value using a DEFAULT clause for all string data types ex-
cept the BLOB and TEXT types. Section 3.2.3,“Specifying Column Default Values,” earlier
in this chapter, described the rules that MySQL uses for assigning a default value if a col-
umn definition includes no DEFAULT clause.

3.2.5.6 Choosing String Data Types
When you choose a data type for a string column, consider the following questions:

Are values represented as character or binary data? For character data, non-binary
string types are most appropriate. For binary data, use a binary string type.

Do you want comparisons to be lettercase-aware? If so, use one of the non-binary
string types, because those store characters and are associated with a character set and
collation.

The case sensitivity of non-binary string values for comparison and sorting purposes is
controlled by the collation that you assign to them. If you want string values to be re-
garded equal regardless of lettercase, use a case-insensitive collation. Otherwise, use either
a binary or case-sensitive collation. A binary collation compares character units using the

3.2 MySQL Data Types

numeric character codes. A case-sensitive collation compares character units using a spe-
cific collating order, which need not correspond to character code order. In either case,
the lowercase and uppercase versions of a given character are considered distinct for com-
parisons. Suppose that 'mysqgl', 'MySQL', and 'MYSQL' are strings in the latinl character
set. They are all considered the same if compared using a case-insensitive collation such as
latinl_swedish_ci, but as three different strings if compared using the binary
latinl_bin collation or case-sensitive latinl_general_cs collation.

If you want to use a string column both for case-sensitive and not case-sensitive com-
parisons, use a collation that corresponds to the type of comparison you will perform
most often. For comparisons of the other type, apply the COLLATE operator to change the
collation. For example, if mycol is a CHAR column that uses the latinl character set, you
can assign it the latinl_swedish_ci collation to perform case-insensitive comparisons
by default. The following comparison is not case sensitive:

mycol = 'ABC'

For those times when you need case-sensitive comparisons, use the latinl_general_
cs or latinl_bin collation. The following comparisons are case sensitive (it doesn’t mat-
ter whether you apply the COLLATE operator to the left hand string or the right hand
string):
mycol COLLATE latinl_general cs = 'ABC'
mycol COLLATE latinl_bin = 'ABC'
mycol = 'ABC' COLLATE latinl_general_cs
mycol = 'ABC' COLLATE latinl_bin

Do you want to minimize storage requirements? If so, use a variable-length type,
not a fixed-length type.

Will the allowable column values always be chosen from a fixed set of legal
values? If so, ENUM or SET might be a good choice.

ENUM also can be useful if you have a limited set of string values that you want to sort
in some non-lexical order. Sorting of ENuM values occurs according to the order in which
you list the enumeration values in the column definition, so you can make the values sort
in any order you want.

Are trailing pad values significant? If values must be retrieved exactly as they are
stored without addition or removal of trailing spaces (or 0x00 bytes, for binary data types)
during storage or retrieval, use a TEXT or VARCHAR column for non-binary strings and a
BLOB Or VARBINARY column for binary strings. This factor is important also if you are stor-
ing compressed, hashed, or encrypted values computed in such a way that the encoding
method might result in trailing spaces. Table 3.12 shows how trailing padding is handled
for storage and retrieval operations for various string data types.

As of MySQL 5.1.20, you can enable the PAD_CHAR_TO_FULL_LENGTH SQL mode to
cause retrieved CHAR column values to retain trailing spaces. For BINARY columns prior to
MySQL 5.0.15, short values are padded with spaces for storage and trailing spaces are
stripped for retrieval.

241

242

Chapter 3 Data Types

Table 3.12 String Data Type Pad-Value Handling

Data Type Storage Retrieval
CHAR Padded Stripped
BINARY Padded No action
VARCHAR, No action No action
VARBINARY

TEXT, BLOB No action No action

Result

Retrieved values have no trailing
padding

Retrieved values have no trailing
padding

Trailing padding is not changed

Trailing padding is not changed

3.2.6 Date and Time Data Types

MySQL provides several data types for storing temporal values: DATE, TIME, DATETIME,
TIMESTAMP, and YEAR. Table 3.13 shows these types and the range of legal values for each

type. The storage requirements for each type are shown in Table 3.14.

Table 3.13 Date and Time Data Types

Type Specification Range

DATE '1000-01-01"' to '9999-12-31"

TIME '-838:59:59' t0 '838:59:59"

DATETIME '1000-01-01 00:00:00"' to '9999-12-31 23:59:59"
TIMESTAMP '1970-01-01 00:00:01' to '2038-01-19 03:14:07"
YEAR[(M)] 1901 to 2155 for YEAR (4), and 1970 to 2069 for YEAR (2)

Table 3.14 Date and Time Data Type Storage Requirements

Type Specification Storage Required
DATE 3 bytes

TIME 3 bytes
DATETIME 8 bytes
TIMESTAMP 4 bytes

YEAR 1 byte

Each date and time type has a “zero” value that is stored when you insert a value that
is illegal for the type, as shown in Table 3.15.The “zero” value also is the default value for
date and time columns that are defined with the NOT NULL constraint. Depending on the

SQL mode, illegal values might be treated as errors and rejected; see Section 3.3,

“HowMySQL Handles Invalid Data Values.”

3.2 MySQL Data Types

Table 3.15 Date and Time Type “Zero” Values

Type Specification Zero Value

DATE '0000-00-00"

TIME '00:00:00"

DATETIME '0000-00-00 00:00:00"
TIMESTAMP '0000-00-00 00:00:00"
YEAR 0000

MySQL always represents dates with the year first, in accordance with the standard
SQL and ISO 8601 specifications. For example, December 3, 2008, is represented as
'2008-12-03"'. However, MySQL does allow some leeway in how you can specify input
dates. For example, it will convert two-digit year values to four digits, and you need not
supply a leading zero digit for month and day values that are less than 10. However, you
must specify the year first and the day last. Formats that you may be more used to, such as
'12/3/99" or '3/12/99", will not be interpreted as you might intend. In such cases, you
might find the STR_To_DATE () function useful for converting strings in non-ISO format
to ISO-format dates. Section 3.2.6.5,“Working with Date and Time Values,” further dis-
cusses the date interpretation rules that MySQL uses.

For combined date and time values, it is allowable to specify a ‘T’ character rather than
a space between the date and time (for example, '2008-12-31T12:00:00").

Time or combined date and time values can include a microseconds part following the
time, consisting of a decimal point and up to six digits. (For example, '12:30:15.5" or
'2008-06-15 10:30:12.000045'.) However, current support in MySQL for microsec-
ond values is only partial. Some temporal functions use them, but you cannot store a tem-
poral value that includes a microseconds part in a table; the microseconds part is
discarded.

For retrieval, you can display date and time values in a variety of formats by using the
DATE_FORMAT () and TIME_FORMAT () functions.

3.2.6.1 The DATE, TIME, and DATETIME Data Types

The DATE and TIME types hold date and time values. The DATETIME type holds combined
date and time values. The formats for the three types of values are ' ccyy-mm-pp',
"hh:mm:ss', and ' CCYY-MM-DD hh:mm:ss',where cC, YY, MM, DD hh, mm, and ss
represent century, year, month, day, hour, minute, and second, respectively.

For the DATETINME type, the date and time parts are both required; if you assign a DATE
value to a DATETIME column, MySQL automatically adds a time part of ' 00:00:00".
Conversions work in the other direction as well. If you assign a DATETIME value to a DATE
or TIME column, MySQL discards the part that is irrelevant:
mysql> CREATE TABLE t (dt DATETIME, d DATE, t TIME);

mysgl> INSERT INTO t (dt,d,t) VALUES(NOW(), NOW(), NOW());
mysql> SELECT * FROM t;

243

244

Chapter 3 Data Types

MySQL treats the time in DATETIME and TIME values slightly different. For DATETIME,
the time part represents a time of day and must be in the range from '00:00:00" to
'23:59:59'. A TIME value, on the other hand, represents elapsed time—that’s why the
range shown in Table 3.13 for TIME columns includes values larger than '23:59:59' and
negative values.

One thing to watch out when inserting TIME values into a table is that if you use a
“short” (not fully qualified) value, it may not be interpreted as you expect. For example,
you’ll probably find that if you insert '30' and '12:30"', into a TIME column, one value
will be interpreted from right to left and the other from left to right, resulting in stored
values of '00:00:30" and '12:30:00"'.If you consider '12:30" to represent a value of
“12 minutes, 30 seconds,” you should specify it in fully qualified form as '00:12:30".

3.2.6.2 The TIMESTAMP Data Type

TIMESTAMP is a temporal data type that stores combined date and time values. (The word
“timestamp” might appear to connote time only, but that is not the case.) The TIMESTAMP
data type has the special properties noted in the following discussion.

TIMESTAMP columns have a range of values from '1970-01-01 00:00:01' to '2038-
01-19 03:14:07'.The range is tied to Unix time, where the first day of 1970 is “day
zero,” also known as “the epoch.” Values are stored as a four-byte number of seconds since
the epoch. The beginning of 1970 determines the lower end of the TIMESTAMP range. The
upper end of the range corresponds to the maximum four-byte value for Unix time.

Values are stored in Universal Coordinated Time (UTC). When you store a TIMESTAMP
value, the server converts it from the connection’s time zone to UTC. When you retrieve
the value later, the server converts it back from UTC to the connection’s time zone, so
you see the same value that you stored. However, if another client connects to the server,
uses a different time zone, and retrieves the value, it will see the value adjusted to its own
time zone. In fact, you can see this effect within a single connection if you change your
own time zone:

mysqgl> CREATE TABLE t (ts TIMESTAMP);

mysql> SET time_zone = '+00:00°'; # set time zone to UTC
mysgl> INSERT INTO t VALUES('2000-01-01 00:00:00');
mysqgl> SELECT ts FROM t;

3.2 MySQL Data Types

| 2000-01-01 00:00:00 |

o - +
mysgl> SET time_zone = '+03:00'; # advance time zone 3 hours
mysqgl> SELECT ts FROM t;
R e EE e e +
| ts |
o - +
| 2000-01-01 03:00:00 |
e e e +

These examples specify time zones using values given as a signed offset in hours and
minutes relative to UTC. It is also possible to use named time zones such as
'Europe/Zurich' if the server time zone tables have been set up as described in Section
12.9.1,“Configuring Time Zone Support.”

TIMESTAMP has automatic initialization and update properties.You can designate any
single TIMESTAMP column in a table to have either or both of these properties:

= “Automatic initialization” means that for new rows the column is set to the current
timestamp if you omit it from the INSERT statement or set it to NULL.

= “Automatic update” means that for existing rows the column is updated to the cur-
rent timestamp when you change any other column. Setting a column to its current
value does not count as a change.You must set it to a different value for automatic
update to occur.

In addition, if you set any TIMESTAMP column to NULL, its value is set to the current
timestamp. You can defeat this by defining the column with the NULL attribute to allow
NULL values to be stored in the column.

Only one TIMESTAMP column in a table can be designated to have automatic proper-
ties. You cannot have automatic initialization for one TIMESTAMP column and automatic
update for another. Nor can you have automatic initialization for multiple columns, or
automatic update for multiple columns.

The syntax for specifying a TIMESTAMP column is as follows, assuming a column name
of ts:

ts TIMESTAMP [DEFAULT constant_value] [ON UPDATE CURRENT_TIMESTAMP]

The DEFAULT and ON UPDATE attributes can be given in any order, if both are given.
The default value can be CURRENT_TIMESTAMP or a constant value such as 0 or a value in
'CCYY-MM-DD hh:mm:ss' format. Synonyms for CURRENT_TIMESTAMP are
CURRENT_TIMESTAMP () and Now () ; they’re all interchangeable in a TIMESTAMP definition.

245

246 Chapter 3 Data Types

To have one or both of the automatic properties for the first TIMESTAMP column in
a table, you can define it using various combinations of the DEFAULT and ON UPDATE
attributes:

= With DEFAULT CURRENT_TIMESTAMP, the column has automatic initialization. It also
has automatic update if ON UPDATE CURRENT_TIMESTAMP is given.

» With neither attribute, MySQL defines the column with both bEFAULT
CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP.

= With a DEFAULT constant_value attribute that specifies a constant value, the
column does not have automatic initialization. It does have automatic update if
ON UPDATE CURRENT_TIMESTAMP is given.

= Without DEFAULT but with ON UPDATE CURRENT_TIMESTAMP, the default value is O
and the column has automatic update.

To use automatic initialization or update for a TIMESTAMP column other than the first
one, you must explicitly define the first one with a DEFAULT constant_value attribute
and without ON UPDATE CURRENT_TIMESTAMP.Then you can use DEFAULT
CURRENT_TIMESTAMP Or ON UPDATE CURRENT_TIMESTAMP (or both) with any other single
TIMESTAMP column.

If you want to defeat automatic initialization or update for a TIMESTAMP column, set it
explicitly to the desired value for insert or update operations. For example, you can pre-
vent an update from changing the column by setting the column to its current value.

TIMESTAMP column definitions also can include NULL or NOT NULL.The default is NOT
NULL. Its effect is that when you explicitly set the column to NULL, MySQL sets it to the
current timestamp. (This is true both for inserts and updates.) If you specify NULL, setting
the column to NULL stores NULL rather than the current timestamp.

If you want a table to contain a column that is set to the current timestamp for new
rows and that remains unchanged thereafter, you can achieve that two ways:

= Use a TIMESTAMP column declared as follows without an ON UPDATE attribute:

ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

When you create a new row, initialize the column to the current timestamp by set-
ting it to NULL or by omitting it from the INSERT statement. The column will retain
its value for subsequent updates unless you change it explicitly.

= Use a DATETIME column. When you create a row, initialize the column to Now ().
Whenever you update the row thereafter, leave the column alone.

If you want a table to contain columns for both a time-created value and a last-
modified value, use two TIMESTAMP columns:

CREATE TABLE t
(
t_created TIMESTAMP DEFAULT 0,
t_modified TIMESTAMP DEFAULT CURRENT_ TIMESTAMP

3.2 MySQL Data Types

ON UPDATE CURRENT_TIMESTAMP
. other columns ...
)i

When you insert a new row, set both TIMESTAMP columns to NULL to set them to the
insertion timestamp. When you update an existing row, leave both columns alone;
t_modified will be updated automatically to the modification timestamp if any other
columns change value.

3.2.6.3 The YEAR Data Type
YEAR is a one-byte data type intended for efficient representation of year values. A YEAR
column definition may include a specification for a display width », which should be either
4 or 2.If you omit ¥ from a YEAR definition, the default is 4. YEAR (4) has a range of 1901
to 2155. YEAR (2) has a range of 1970 to 2069, but only the last two digits are displayed.You
can use the YEAR type when you want to store date information but only need the year
part of the date, such as year of birth, year of election to office, and so forth. When you do
not require a full date value, YEAR is much more space-efficient than other date types.
TINYINT has the same storage size as YEAR (one byte), but not the same range. To cover
the same range of years as YEAR by using an integer type, you would need a SMALLINT,
which takes twice as much space. If the range of years you need to represent coincides
with the range of the YEAR type, YEAR is more space-efficient than SMALLINT. Another ad-
vantage of YEAR over an integer column is that MySQL converts two-digit values into
four-digit values for you using MySQL’s usual year-guessing rules. For example, 97 and 14
become 1997 and 2014. However, be aware that inserting the numeric value 00 into a
four-digit YEAR column results in the value 0000 being stored, not 2000. If you want a
value of 00 to convert to 2000, specify it in string form as '0' or '00".

3.2.6.4 Date and Time Data Type Attributes
The following remarks apply to all temporal types except TIMESTAMP:

= The general attributes NULL or NOT NULL may be specified. If you don’t specify ei-
ther of them, NULL is the default.

= You can also specify a default value using a DEFAULT clause. Section 3.2.3,
“Specifying Column Default Values,” described the rules that MySQL uses for as-
signing a default value if a column definition includes no DEFAULT clause.

Note that because default values must be constants, you cannot use a function such
as Now () to supply a value of “the current date and time” as the default for a
DATETIME column.To achieve that result, set the column value explicitly to Now ()
whenever you create a new row, or else consider using a TIMESTAMP column in-
stead. Alternatively, set up a trigger that initializes the column to the appropriate
value; see Section 4.3, “Triggers.”

TIMESTAMP columns are special; the default for the first such column in a table is the
current date and time, and the “zero” value for any others. However, the full set of rules

247

248

Chapter 3 Data Types

governing default values is more complex. See Section 3.2.6.2,“The TIMESTAMP Data
Type,” for details.

3.2.6.5 Working with Date and Time Values

MySQL tries to interpret input values for date and time columns in a variety of formats,
including both string and numeric forms. Table 3.16 shows the allowable formats for each
of the date and time types.

Table 3.16 Date and Time Type Input Formats

Type Allowable Formats
DATETIME, 'CCYY-MM-DD hh:mm:ss'
TIMESTAMP 'YY-MM-DD hh:mm:ss'
' CCYYMMDDhhmmss''
' YYMMDDhhmmss''
CCYYMMDDhhmms s
YYMMDDhhmmss
DATE 'CCYY-MM-DD'
'YY-MM-DD'
'CCYYMMDD'
' YYMMDD'
CCYYMMDD
YYMMDD
TIME 'hh:mm:ss'
' hhmmss'
hhmmss
YEAR 'CCYY!
vy
CCYY
YY

MySQL interprets formats that have no century part (cc) using the rules described in
Section 3.2.6.6, “Interpretation of Ambiguous Year Values.” For string formats that include
delimiter characters, you don’t have to use ‘-’ for dates and *:’ for times. Any punctuation
character may be used as the delimiter. Interpretation of values depends on context, not
on the delimiter. For example, although times are typically specified using a delimiter of
.7, MySQL won't interpret a value containing ‘:” as a time in a context where a date is
expected. In addition, for the string formats that include delimiters, you need not specify

3.2 MySQL Data Types

two digits for month, day, hour, minute, or second values that are less than 10.The follow-
ing are all equivalent:

'2012-02-03 05:04:09"

'2012-2-03 05:04:09"

'2012-2-3 05:04:09"'

'2012-2-3 5:04:09"

'2012-2-3 5:4:09"

'2012-2-3 5:4:9'

MySQL may interpret values with leading zeros in different ways depending on
whether they are specified as strings or numbers. The string 1001231 will be seen as a
six-digit value and interpreted as '2000-12-31" for a DATE, and as '2000-12-31
00:00:00" for a DATETIME. On the other hand, the number 001231 will be seen as 1231
after the parser gets done with it and then the interpretation becomes problematic. This is
a case where it’s best to supply a string value '001231", or else use a fully qualified value
if you are using numbers (that is, 20001231 for DATE and 200012310000 for DATETIME).

In general, you may freely assign values between the DATE, DATETIME, and TIMESTAMP
types, although there are certain restrictions to keep in mind:

= If you assign a DATETIME or TIMESTAMP value to a DATE, the time part is discarded.

= If you assign a DATE value to a DATETIME or TIMESTAMP, the time part of the result-
ing value is set to zero ('00:00:00").

= The types have different ranges. In particular, TIMESTAMP has a more limited range
(1970 to 2038); so, for example, you cannot assign a pre-1970 DATETIME value to a
TIMESTAMP and expect reasonable results. Nor can you assign values that are far in
the future to a TIMESTAMP.

MySQL provides many functions for working with date and time values. See
Appendix C for more information.

3.2.6.6 Interpretation of Ambiguous Year Values

For all date and time types that include a year part (DATE, DATETIME, TIMESTAMP, YEAR),
MySQL handles values that contain two-digit years by converting them to four-digit
years:

= Year values from 00 to 69 become 2000 to 2069
= Year values from 70 to 99 become 1970 to 1999

You can see the effect of these rules most easily by storing different two-digit values
into a YEAR column and then retrieving the results. This also demonstrates something you
should take note of:

mysgl> CREATE TABLE y_table (y YEAR);
mysgl> INSERT INTO y_table VALUES(68), (69),(99),(00),('00');

249

250

Chapter 3 Data Types

mysqgl> SELECT * FROM y_ table;

Observe that 00 is converted to 0000, not to 2000. That’s because, as a number, 00 is
the same as 0, and is a perfectly legal value for the YEAR type. If you insert a numeric zero,
that’s what you get.To get 2000 using a value that does not contain the century, insert the
string '0' or '00'.You can make sure that MySQL sees a string and not a number by in-
serting YEAR values using CAST (value AS CHAR) to produce a string result uniformly re-
gardless of whether value is a string or a number.

Keep in mind that the rules for converting two-digit to four-digit year values provide
only a reasonable guess. There is no way for MySQL to be certain about the meaning of a
two-digit year when the century is unspecified. MySQL’s conversion rules are adequate
for many situations, but if they don’t produce the values that you want, it is necessary to
provide unambiguous data with four-digit years. For example, to enter birth and death
dates into the president table, which lists U.S. presidents back into the 1700s, four-digit
year values are in order.Values in these columns span several centuries, so letting MySQL
guess the century from a two-digit year is definitely the wrong thing to do.

3.2.7 Spatial Data Types

Spatial values enable representation of values such as points, lines, and polygons. These
data types are implemented per the OpenGIS specification, which is available at the Open
Geospatial Consortium Web site (http://www.opengeospatial.org/). Table 3.17 lists the
spatial data types that MySQL supports.

Table 3.17 Spatial Data Types

Type Name Meaning

GEOMETRY A spatial value of any type

POINT A point (a pair of X,Y coordinates)
LINESTRING A curve (one or more POINT values)
POLYGON A polygon

GEOMETRYCOLLECTION A collection of GEOMETRY values
MULTILINESTRING A collection of LINESTRING values
MULTIPOINT A collection of POINT values

MULTIPOLYGON A collection of POLYGON values

http://www.opengeospatial.org/

3.2 MySQL Data Types

The level of support for spatial types varies by storage engine. The most complete sup-
port is implemented in MyISAM. Other engines such as InnoDB, NDB, and ARCHIVE
offer more limited support. For example, in MyISAM tables, spatial values can be indexed
using either SPATIAL or non-SPATIAL indexes (using INDEX, UNIQUE, Or PRIMARY KEY).
Other engines that support spatial data types can use only non-SPATIAL indexes (except
ARCHIVE, which cannot index spatial columns at all). If a table is partitioned, it cannot
contain spatial columns.

Spatial columns included in a SPATIAL index cannot use NULL to represent missing val-
ues within columns, because SPATIAL indexes do not allow NULL values. Depending on
your application, it might be acceptable to use an empty (zero-dimensional) value instead.

MySQL works with spatial values in three formats. One is the internal format that
MySQL uses for storing spatial values in tables. The other two are the Well-Known Text
(WKT) and Well-Known Binary (WKB) formats; these are standards for representing spa-
tial values as text strings or in binary format. The syntax for text strings and the binary
representation are defined in the OpenGIS specification. For example, the WKT format
for a POINT value with coordinates of x and y is written as a string:

'"POINT (x y) '

Note the absence of a comma between the coordinate values. In lists of multiple coor-
dinates, commas separate pairs of x and y values. The following string represents a
LINESTRING value consisting of several points:

'LINESTRING (10 20, 0 0, 10 20, 0 0)'

More complex values have a more complex representation. This POLYGON has a rectan-
gular outer boundary and a triangular inner boundary:

'POLYGON((0 0, 100 0, 100 100, 0 100, 0 0), (30 30, 30 60, 45 60, 30 30))"'

Because spatial values can be complex, most operations on them are done by invoking
functions. The set of spatial functions is extensive and includes functions for converting
from one format to another (see Appendix C).

The following example shows how to use several aspects of spatial support:

mysgl> CREATE TABLE pt_tbl (p POINT);
mysgl> INSERT INTO pt_tbl (p) VALUES

-> (POINTFROMTEXT ('POINT(0 0)')),

-> (POINTFROMTEXT ('POINT(0 50)')),

-> (POINTFROMTEXT (' POINT (100 100)'));
mysgl> CREATE FUNCTION dist (pl POINT, p2 POINT)

-> RETURNS FLOAT DETERMINISTIC

-> RETURN SQRT(POW(X(p2)-X(pl),2) + POW(Y(p2)-Y(pl),2));
mysgl> SET @ref pt = POINTFROMTEXT ('POINT(0 0)');
mysqgl> SELECT ASTEXT(p), dist (p, @ref_pt) AS dist FROM pt_tbl;
B Fom - +

251

252 Chapter 3 Data Types

| ASTEXT (p) | dist |
oo m e Fom e +
POINT(0 0)	0
POINT (0 50)	50
POINT (100 100)	141.42135620117
fom e tom e +

The example performs these operations:
1. It creates a table that includes a spatial column.

2. It populates the table with some POINT values, using the POINTFROMTEXT () func-
tion that produces an internal-format value from a WKT representation.

3. It creates a stored function that computes the distance between two points, using
the x() and Y () functions to extract point coordinates.

4. It computes the distance of each point in the table from a given reference point.

3.3 How MySQL Handles Invalid Data Values

Historically, the dominant principle for data handling in MySQL has been, “Garbage in,
garbage out.” In other words, MySQL attempts to store any data value you give it, but if
you don'’t verify the value first before storing it, you may not like what you get back out.
However, as of MySQL 5.0.2, several SQL modes are available that enable you to reject
bad values and cause an error to occur instead. The following discussion first discusses
how MySQL handles improper data by default, and then covers the changes that occur
when you enable the various SQL modes that affect data handling.

By default, MySQL handles out-of-range or otherwise improper values as follows:

= For numeric or TIME columns, values that are outside the legal range are clipped to
the nearest endpoint of the range and the resulting value is stored.

= For string columns other than ENUM or SET, strings that are too long are truncated
to fit the maximum length of the column.

= Assignments to an ENUM or SET column depend on the values that are listed as legal
in the column definition. If you assign to an ENUM column a value that is not listed
as an enumeration member, the error member is assigned instead (that is, the empty
string that corresponds to the zero-valued member). If you assign to a SET column
a value containing substrings that are not listed as set members, those strings drop
out and the column is assigned a value consisting of the remaining members.

= For date or time columns, illegal values are converted to the appropriate “zero”
value for the type (see Table 3.15).

These conversions are reported as warnings for statements such as INSERT, REPLACE,
UPDATE, LOAD DATA, and ALTER TABLE.You can use SHOW WARNINGS after executing one
of those statements to see the warning messages.

3.3 How MySQL Handles Invalid Data Values

To turn on stricter checking of inserted or updated data values, enable one of the fol-
lowing SQL modes:

mysqgl> SET sql_mode = 'STRICT ALL_TABLES';
mysgl> SET sqgl_mode = 'STRICT_ TRANS_TABLES';

For transactional tables, both modes are identical: If an invalid or missing value is
found, an error occurs, the statement aborts and rolls back, and has no effect. For non-
transactional tables, the modes have the following effects:

= For both modes, if an invalid or missing value is found in the first row of a state-
ment that inserts or updates rows, an error occurs. The statement aborts and has no
effect, which is similar to what happens for transactional tables.
= Ifan error occurs after the first row in a statement that inserts or updates multiple
rows, some rows already will have been modified. The two strict modes control
whether the statement aborts at that point or continues to execute:
= With STRICT_ALIL_TABLES, an error occurs and the statement aborts. R ows
affected earlier by the statement will already have been modified, so the result
is a partial update.
= With STRICT_TRANS_TABLES, MySQL aborts the statement for non-
transactional tables only if doing so would have the same effect as for a trans-
actional table. That is true only if the error occurs in the first row; an error in
a later row leaves the earlier rows already changed. Those changes cannot be
undone for a non-transactional table, so MySQL continues to execute the
statement to avoid a partial update. It converts each invalid value to the clos-
est legal value, as defined earlier in this section. For a missing value, MySQL
sets the column to the implicit default for its data type. Implicit defaults were
described in Section 3.2.3,“Specifying Column Default Values.”

Strict mode actually does not enable the strictest checking that MySQL can per-
form.You can enable any or all of the following modes to impose additional constraints
on input data:

= ERROR_FOR_DIVISION_BY_ZERO prevents entry of values if division by zero occurs
in strict mode. (Without strict mode, a warning occurs and NULL is inserted.)
= NO_ZERO_DATE prevents entry of the “zero” date value in strict mode.
= NO_ZERO_IN_DATE prevents entry of incomplete date values that have a month or
day part of zero in strict mode.
For example, to enable strict mode for all storage engines and also check for divide-
by-zero errors, set the SQL mode like this:
mysqgl> SET sql_mode = 'STRICT ALL_TABLES,ERROR_FOR_DIVISION_BY ZERO';
To turn on strict mode and all of the additional restrictions, you can simply enable
TRADITIONAL mode:

mysql> SET sql_mode = 'TRADITIONAL';

253

254

Chapter 3 Data Types

TRADITIONAL is shorthand for “both strict modes, plus a bunch of other restrictions.”
This is more like the way that other “traditional” SQL DBMSs act with regard to data
checking.

It 1s also possible to selectively weaken strict mode in some respects. If you enable the
ALLOW_INVALID_DATES SQL mode, MySQL doesn’t perform full checking of date parts.
Instead, it requires only that months be in the range from 1 to 12 and days be in the
range from 1 to 31 (which allows invalid values such as '2000-02-30"' or '2000-06-31").
Another way to suppress errors is to use the IGNORE keyword with INSERT or UPDATE
statements. With IGNORE, statements that would result in an error due to invalid values re-
sult only in a warning.

The various options available give you the flexibility to choose the level of validity
checking that is appropriate for your applications.

3.4 Working with Sequences

Many applications need to generate unique numbers for identification purposes. The re-
quirement for unique values occurs in a number of contexts: membership numbers, sam-
ple or lot numbering, customer IDs, bug report or trouble ticket tags, and so forth.

MySQLs mechanism for providing unique numbers is through the AUTO_INCREMENT
column attribute, which enables you to generate sequential numbers automatically. How-
ever, AUTO_INCREMENT columns are handled somewhat differently by the various storage
engines that MySQL supports, so it’s important to understand not only the general con-
cepts underlying the AUTO_INCREMENT mechanism, but also the differences between stor-
age engines. This section describes how AUTO_INCREMENT columns work in general and
for specific storage engines so that you can use them effectively without running into the
traps that sometimes surprise people. It also describes how you can generate a sequence
without using an AUTO_INCREMENT column.

3.4.1 General AUTO_INCREMENT Properties
AUTO_INCREMENT columns must be defined according to the following conditions:
= There can be only one column per table with the AUTO_INCREMENT attribute and it

should have an integer data type. (AUTO_INCREMENT is also allowed for floating-
point types, but is rarely used that way:.)

= The column must be indexed. It is most common to use a PRIMARY KEY or UNIQUE
index, but it is allowable to use a non-unique index.

= The column must have a NOT NULL constraint. MySQL makes the column NoT
NULL even if you don’t explicitly declare it that way.

Once created, an AUTO_INCREMENT column behaves like this:

= Inserting NULL into an AUTO_INCREMENT column causes MySQL to generate the
next sequence number automatically and insert that value into the column.

3.4 Working with Sequences

AUTO_INCREMENT sequences normally begin at 1 and increase monotonically, so suc-
cessive rows inserted into a table get sequence values of 1,2, 3, and so forth. Under
some circumstances and depending on the storage engine, it may be possible to set
or reset the next sequence number explicitly or to reuse values deleted from the
top end of the sequence.

The value of the most recently generated sequence number can be obtained by
calling the LAST_INSERT_ID() function.This enables you to reference the
AUTO_INCREMENT value in subsequent statements even without knowing what the
value is. LAST_INSERT_ID() returns O if no AUTO_INCREMENT value has been gener-
ated during the current connection.

LAST_INSERT_ID() is tied only to AUTO_INCREMENT values generated during the
current connection to the server. In particular, it is not affected by AUTO_INCREMENT
activity associated with other clients.You can generate a sequence number, and then
call LAST_INSERT_ID() to retrieve it later in the same connection, even if other
clients have generated their own sequence values in the meantime.

For a multiple-row INSERT that generates several AUTO_INCREMENT values,
LAST_INSERT_ID() returns the first one.

If you use INSERT DELAYED for storage engines that support delayed inserts, the
AUTO_INCREMENT value is not generated until the row actually is inserted. In this
case, LAST_INSERT_ID() cannot be relied on to return the sequence value.

Inserting a row without specifying an explicit value for the AUTO_INCREMENT col-
umn is the same as inserting NULL into the column. If ai_col is an
AUTO_INCREMENT column, these statements are equivalent:

INSERT INTO t (ai_col,name) VALUES (NULL, 'abc');
INSERT INTO t (name) VALUES('abc');

By default, inserting 0 into an AUTO_INCREMENT column has the same effect as in-
serting NULL. If you enable the No_auTo_vaLuE_oN_zERO SQL mode, inserting a 0
results in a 0 being stored, not the next sequence value.

If you insert a row and specify a non-NULL, non-zero value for an AUTO_INCREMENT
column that has a unique index, one of two things will happen. If a row already ex-
ists with that value, a duplicate-key error occurs. If a row does not exist with that
value, the row is inserted with the AUTO_INCREMENT column set to the given value.
If this value is larger than the current next sequence number, the sequence is reset
to continue with the next value after that for subsequent rows. In other words, you
can “bump up” the counter by inserting a row with a sequence value greater than
the current counter value.

Bumping up the counter can result in gaps in the sequence, but you also can exploit
this behavior to generate a sequence that begins at a value higher than 1. Suppose

that you create a table with an AUTO_INCREMENT column, but you want the sequence
to begin at 1000 rather than at 1.To achieve this, insert a “fake” row with a value of

255

256

Chapter 3 Data Types

999 in the AUTO_INCREMENT column. Rows inserted subsequently are assigned se-
quence numbers beginning with 1000, after which you can delete the fake row.

‘Why might you want to begin a sequence with a value higher than 1? One reason
is to make sequence numbers all have the same number of digits. If you’re generat-
ing customer ID numbers, and you expect never to have more than a million cus-
tomers, you could begin the series at 1,000,000.You’ll be able to add well over a
million customer records before the digit count for customer ID values changes.

= For some storage engines, values deleted from the top of a sequence are reused. In
this case, if you delete the row containing the largest value in an AUTO_INCREMENT
column, that value is reused the next time you generate a new value. An implication
of this property is that if you delete all the rows in the table, all values are reused
and the sequence starts over beginning at 1.

= If you use UPDATE to set an AUTO_INCREMENT column to a value that already exists
in another row, a duplicate-key error occurs if the column has a unique index. If
you update the column to a value larger than any existing column value, the se-
quence continues with the next number after that for subsequent rows. If you up-
date the column by assigning 0 to it, it is set to O (regardless of whether
NO_AUTO_VALUE_ON_ZERO is enabled).

= If you use REPLACE to update a row based on the value of the AUTO_INCREMENT col-
umn, the AUTO_INCREMENT value does not change. If you use REPLACE to update a
row based on the value of some other PRIMARY KEY or UNIQUE index, the
AUTO_INCREMENT column is updated with a new sequence number if you set it to
NULL, or if you set it to 0 and NO_AUTO_VALUE_ON_ZERO is not enabled.

3.4.2 Storage Engine-Specific AUTO_INCREMENT Properties

The general AUTO_INCREMENT characteristics just described form the basis for understand-
ing sequence behavior specific to other storage engines. Most engines implement behav-
ior that for the most part is similar to that just described, so keep the preceding discussion
in mind as you read on.

3.4.2.1 AUTO_INCREMENT for MylSAM Tables
MyISAM tables offer the most flexibility for sequence handling. The MyISAM storage
engine has the following AUTO_INCREMENT characteristics:

= MyISAM sequences normally are monotonic. The values in an automatically gener-
ated series are strictly increasing and are not reused if you delete rows. If the maxi-
mum value is 143 and you delete the row containing that value, MySQL still
generates the next value as 144. There are two exceptions to this behavior:

3.4 Working with Sequences

= If you empty a table with TRUNCATE TABLE, the counter is reset to begin at 1.

= Values deleted from the top of a sequence are reused if you use a composite
index to generate multiple sequences within a table. (This technique is dis-
cussed shortly.)

= MyISAM sequences begin at 1 by default, but it is possible to start the sequence at
a higher value. With MyISAM tables, you can specify the initial value explicitly by
using an AUTO_INCREMENT = n option in the CREATE TABLE statement. The follow-
ing example creates a MyISAM table with an AUTO_INCREMENT column named seq
that begins at 1,000,000:

CREATE TABLE mytbl

(
seq INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (seq)

) ENGINE = MYISAM AUTO_INCREMENT = 1000000;

A table can have only one AUTO_INCREMENT column, so there is never any ambigu-
ity about the column to which the terminating AUTO_INCREMENT = n option ap-
plies, even if the table has multiple columns.

= You can change the current sequence counter for an existing MyISAM table with
ALTER TABLE. If the sequence currently stands at 1000, the following statement
causes the next number generated to be 2000:

ALTER TABLE mytbl AUTO_INCREMENT = 2000;

If you want to reuse values that have been deleted from the top of the sequence,
you can do that, too.The following statement will set the counter down as far as
possible, causing the next number to be one larger than the current maximum
sequence value:

ALTER TABLE mytbl AUTO_INCREMENT = 1;

You cannot use the AUTO_INCREMENT option to set the current counter lower than
the current maximum value in the table. If an AUTO_INCREMENT column contains
the values 1 and 10, using AUTO_INCREMENT = 5 sets the counter so that the next
automatic value is 11.

The MyISAM storage engine supports the use of composite (multiple-column) in-
dexes for creating multiple independent sequences within the same table.To use this
feature, create a multiple-column PRIMARY KEY or UNIQUE index that includes an
AUTO_INCREMENT column as its final column. For each distinct key in the leftmost column
or columns of the index, the AuTO_INCREMENT column will generate a separate sequence
of values. For example, you might use a table named bugs for tracking bug reports of
several software projects, where the table is defined as follows:

257

258

Chapter 3 Data Types

CREATE TABLE bugs
(
proj_name VARCHAR (20) NOT NULL,
bug_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
description VARCHAR(100),
PRIMARY KEY (proj_name, bug_id)
) ENGINE = MYISAM;

Here, the proj_name column identifies the project name and the description col-
umn contains the bug description. The bug_id column is an AUTO_INCREMENT column; by
creating an index that ties it to the proj_name column, you can generate an independent
series of sequence numbers for each project. Suppose that you enter the following rows
into the table to register three bugs for SuperBrowser and two for SpamSquisher:

mysgl> INSERT INTO bugs (proj_name,description)

-> VALUES ('SuperBrowser', 'crashes when displaying complex tables');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES ('SuperBrowser', 'image scaling does not work');
mysgl> INSERT INTO bugs (proj_name,description)

-> VALUES ('SpamSquisher', 'fails to block known blacklisted domains');
mysgl> INSERT INTO bugs (proj_name,description)

-> VALUES ('SpamSquisher', 'fails to respect whitelist addresses');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES ('SuperBrowser', 'background patterns not displayed');

The resulting table contents are as follows:

mysqgl> SELECT * FROM bugs ORDER BY proj_name, bug_ id;

fails to block known blacklisted domains

SpamSquisher fails to respect whitelist addresses

SuperBrowser

|

|

| SuperBrowser
| image scaling does not work
|

SuperBrowser background patterns not displayed

.
|
.
SpamSquisher |
|
|
|
|
.

|
.
| |
| |
| crashes when displaying complex tables |
| |
| |
.

The table numbers the bug_id values for each project separately, regardless of the or-
der in which rows are entered for projects.You need not enter all rows for one project
before you enter rows for another.

If you use a composite index to create multiple sequences, values deleted from the top
of each individual sequence are reused. This differs from the usual MyISAM behavior of
not reusing values.

3.4 Working with Sequences 259

3.4.2.2 AUTO_INCREMENT for MEMORY Tables
The MEMORY storage engine has the following AUTO_INCREMENT characteristics:

= The initial sequence value can be set with an AUTO_INCREMENT = n table option in
the CREATE TABLE statement, and can be modified after table creation time using
that option with ALTER TABLE.

= Values that are deleted from the top of the sequence normally are not reused. If you
empty the table with TRUNCATE TABLE, the sequence is reset to begin at 1.

= Composite indexes cannot be used to generate multiple independent sequences
within a table.

3.4.2.3 AUTO_INCREMENT for InnoDB Tables
The InnoDB storage engine has the following AUTO_INCREMENT characteristics:

= As of MySQL 5.0.3, the initial sequence value can be set with an AUTO_INCREMENT
= n table option in the CREATE TABLE statement, and can be modified after table
creation time using that option with ALTER TABLE.

= Values that are deleted from the top of the sequence normally are not reused. If you
empty the table with TRUNCATE TABLE, the sequence is reset to begin at 1. Reuse
can occur under the following conditions as well. The first time that you generate a
sequence value for an AUTO_INCREMENT column, InnoDB uses one greater than the
current maximum value in the column (or 1 if the table is empty). InnoDB main-
tains this counter in memory for use in generating subsequent values; it is not
stored in the table itself. This means that if you delete values from the top of the se-
quence and then restart the server, the deleted values are reused. Restarting the
server also cancels the effect of using an AUTO_INCREMENT table option in a CREATE
TABLE or ALTER TABLE statement.

= Gaps in a sequence can occur if transactions that generate AUTO_INCREMENT values

are rolled back.

= Composite indexes cannot be used to generate multiple independent sequences
within a table.

3.4.3 lIssues to Consider with AUTO INCREMENT Columns

You should keep the following points in mind to avoid being surprised when you use
AUTO_INCREMENT columns:

= Although it is common to use the term “AUTO_INCREMENT column,”
AUTO_INCREMENT is not a data type; it’s a data type attribute. Furthermore,
AUTO_INCREMENT is an attribute intended for use only with integer or floating-point
types. Older versions of MySQL are lax in enforcing this constraint and will let you
define a data type such as cHAR with the AUTO_INCREMENT attribute. However, only
the integer or floating-point types work correctly as AUTO_INCREMENT columns.

260

Chapter 3 Data Types

= The primary purpose of the AUTO_INCREMENT mechanism is to enable you to gen-

erate a sequence of positive integers. The use of non-positive numbers in an
AUTO_INCREMENT column is unsupported. Consequently, you may as well define
AUTO_INCREMENT columns to be UNSIGNED. With integer columns, using UNSIGNED
also has the advantage of giving you twice as many sequence numbers before you
hit the upper end of the data type’s range.

Don'’t be fooled into thinking that adding AUTO_INCREMENT to a column definition
is a magic way of getting an unlimited sequence of numbers. It’s not;
AUTO_INCREMENT sequences are always bound by the range of the underlying data
type. For example, if you use a TINYINT column, the maximum sequence number is
127.When you reach that limit, your application begins to fail with duplicate-key
errors. If you use TINYINT UNSIGNED instead, the limit is extended to 255, but there
is still a limit.

Clearing a table’s contents entirely with TRUNCATE TABLE may reset a sequence
to begin again at 1, even for storage engines that normally do not reuse
AUTO_INCREMENT values. The sequence reset occurs due to the way that MySQL
attempts to optimize a complete table erasure operation: When possible, it tosses
the data rows and indexes and re-creates the table from scratch rather than delet-
ing rows one at a time. This causes sequence number information to be lost. If
you want to delete all rows but preserve the sequence information, you can sup-
press this optimization by using DELETE with a WHERE clause that is always true, to
force MySQL to evaluate the condition for each row and thus to delete every
row individually:

DELETE FROM tbl_name WHERE TRUE;

3.4.4 Tips for Working with AUTO_INCREMENT Columns

This section describes some useful techniques for working with AUTO_INCREMENT
columns.

3.4.4.1 Adding a Sequence Number Column to a Table
Suppose that you create and populate a table:

mysqgl> CREATE TABLE t (¢ CHAR(10));
mysgl> INSERT INTO t VALUES('a'),('b'),('c');
mysqgl> SELECT * FROM t;

3.4 Working with Sequences

Then you decide that you want to include a sequence number column in the table. To
do this, issue an ALTER TABLE statement to add an AUTO_INCREMENT column, using the
same kind of type definition that you'd use with CREATE TABLE:

mysql> ALTER TABLE t ADD i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY;
mysql> SELECT * FROM t;

Note how MySQL assigns sequence values to the AUTO_INCREMENT column automati-
cally. You need not do so yourself.

3.4.4.2 Resequencing an Existing Column
If a table already has an AUTO_INCREMENT column, but you want to renumber it to elimi-
nate gaps in the sequence that may have resulted from row deletions, the easiest way to do
it is to drop the column and then add it again. When MySQL adds the column, it assigns
new sequence numbers automatically.

Suppose that a table t looks like this, where i is the AUTO_INCREMENT column:

mysqgl>
->
mysqgl>

->

CREATE TABLE t (c CHAR(10), i INT UNSIGNED AUTO_INCREMENT

NOT NULL PRIMARY KEY);

INSERT INTO t (c)

VALUES('a'), ('b'), ('c"),('d"), (*e"), (*£*),('g"), (*h*), (*i"), (*3"), ('k");

mysql> DELETE FROM t WHERE c IN('a','d','f','g','j");
mysql> SELECT * FROM t;

e +————

| < | i

o to———

|| 2]

e | 3]

| e | 5]

b 8]

| i |9

|k 11

R Fo——

The following ALTER TABLE statement drops the column and then adds it again,

renumbering the column in the process:

mysqgl>
->
->

->

ALTER TABLE t

DROP PRIMARY KEY,

DROP i,

ADD i INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,

261

262

Chapter 3 Data Types

-> AUTO_INCREMENT = 1;
mysgl> SELECT * FROM t;

The AUTO_INCREMENT = 1 clause resets the sequence to begin again at 1. For a
MyISAM, MEMORY, or InnoDB table, you can use a value other than 1 to begin the
sequence at a different value. For other storage engines, omit the AUTO_INCREMENT clause,
because they do not allow the initial value to be specified this way. The sequence will
begin at 1.

Note that although it’s easy to resequence a column, and the question, “How do you
do it?” is a common one, there is usually very little need to do so. MySQL doesn’t care
whether a sequence has holes in it, nor do you gain any performance efficiencies by rese-
quencing. In addition, if you have rows in another table that refer to the values in the
AUTO_INCREMENT column, resequencing the column destroys the correspondence between
tables.

3.4.5 Generating Sequences Without AUTO_INCREMENT

MySQL supports a method for generating sequence numbers that doesn’t use an AUTO_
INCREMENT column at all. Instead, it uses an alternative form of the LAST_INSERT_ID()
function that takes an argument. If you insert or update a column using LAST_INSERT_
ID (expr), the next call to LAST_INSERT_ID() with no argument returns the value of
expr. In other words, MySQL treats expr as though it was generated as an AUTO_
INCREMENT value. This enables you to create a sequence number and then retrieve it later
in your session, confident that the value will not have been affected by the activity of
other clients.

One way to use this strategy is to create a single-row table containing a value that you
update each time you want the next value in the sequence. For example, you can create
and initialize the table like this:

CREATE TABLE seq table (seqg INT UNSIGNED NOT NULL) ;
INSERT INTO seq table VALUES(O);

Those statements set up seq_table with a single row containing a seq value of 0.To
use the table, generate the next sequence number and retrieve it like this:

UPDATE seq_table SET seq = LAST_INSERT ID(seqg+l);
SELECT LAST_INSERT_ID();

3.4 Working with Sequences

The UPDATE statement retrieves the current value of the seq column and increments it
by 1 to produce the next value in the sequence. Generating the new value using
LAST_INSERT_ID (seqg+1l) causes it to be treated like an AUTO_INCREMENT value, which
allows it to be retrieved by calling LAST_INSERT_ID() without an argument.
LAST_INSERT_ID() is client-specific, so you get the correct value even if other clients have
generated other sequence numbers in the interval between the UPDATE and the SELECT.

Otbher uses for this method are to generate sequence values that increment by a value
other than 1, or that are negative. For example, this statement can be executed repeatedly
to generate a sequence of numbers that increase by 100 each time:

UPDATE seq_table SET seq = LAST_INSERT_ID(seqg+100);

Repeating the following statement generates a sequence of decreasing numbers:

UPDATE seq_table SET seq = LAST_INSERT ID(seqg-1);

You can also use this technique to generate a sequence that begins at an arbitrary
value, by setting the seq column to an appropriate initial value.

The preceding discussion describes how to set up a counter using a table with a single
row. That’s okay for a single counter. If you want several counters, add another column to
the table to serve as a counter identifier, and use a different row in the table for each
counter. Suppose that you have a Web site and you want to put some “this page has been
accessed n times” counters in several pages. Create a table with two columns. One col-
umn holds a name that uniquely identifies each counter. The other holds the current
counter value.You can still use the LAST_INSERT_ID() function, but you determine
which row it applies to by using the counter name. For example, you can create such a
table with the following statement:

CREATE TABLE counter

(
name VARCHAR(255) CHARACTER SET latinl COLLATE latinl_general_cs NOT NULL,
value INT UNSIGNED,
PRIMARY KEY (name)

)

The name column is a string so that you can name a counter whatever you want, and
it’s defined as a PRIMARY KEY to prevent duplicate names. This assumes that applications
using the table agree on the names they’ll be using. For Web counters, uniqueness of
counter names is ensured simply by using the pathname of each page within the docu-
ment tree as its counter name. The name column has a case-sensitive collation to cause
pathname values to be treated as case sensitive. (If your system has pathnames that are not
case sensitive, use a collation that is not case sensitive.)

To use the counter table, the INSERT ... ON DUPLICATE KEY UPDATE statement is use-
ful, because it can insert a new row for a page that has not yet been counted, or update
the count for an existing page. Also, by using LAST_INSERT_ID(expr) to generate the
counter value, you can easily retrieve the current counter after updating it. For example,

263

264

Chapter 3 Data Types

to initialize or increment the counter for the site’s home page, and then retrieve the
counter for display, do this:

INSERT INTO counter (name, value)

VALUES ('index.html', LAST INSERT_ID(1))

ON DUPLICATE KEY UPDATE value = LAST INSERT_ID(value+l);
SELECT LAST_INSERT_ID();

An alternative approach for incrementing counters of existing pages without using
LAST_INSERT_ID() is to do this:

UPDATE counter SET value = value+l WHERE name = 'index.html';
SELECT value FROM counter WHERE name = 'index.html';

However, that doesn’t work correctly if another client increments the counter after
you issue the UPDATE and before you issue the SELECT.You could solve that problem by
putting LOCK TABLES and UNLOCK TABLES around the two statements. Or you could cre-
ate the table using a transactional storage engine and update the table within a transac-
tion. Either method blocks other clients while you're using the counter, but the
LAST_INSERT_ID () method accomplishes the same thing more easily. Because its value is
client-specific, you always get the value you inserted, not the one from some other client,
and you don’t have to complicate the code with locks or transactions to keep other
clients out.

3.5 Expression Evaluation and Type Conversion

Expressions contain terms and operators and are evaluated to produce values. Terms can
include values such as constants, function calls, references to table columns, and scalar sub-
queries. These values may be combined using different kinds of operators, such as arith-
metic or comparison operators, and terms of an expression may be grouped with
parentheses. Expressions occur most commonly in the output column list and WHERE
clause of SELECT statements. For example, here is a query that is similar to one used for
age calculations in Chapter 1:

SELECT
CONCAT (last_name, ', ', first_name),
TIMESTAMPDIFF (YEAR, birth, death)

FROM president

WHERE
birth > '1900-1-1' AND DEATH IS NOT NULL;

Each selected value represents an expression, as does the content of the WHERE clause.
Expressions also occur in the WHERE clause of DELETE and UPDATE statements, the
VALUES () clause of INSERT statements, and so forth.

‘When MySQL encounters an expression, it evaluates the expression to produce a re-
sult. For example, (4*3) DIV (4-2) evaluates to the value 6. Expression evaluation may

3.5 Expression Evaluation and Type Conversion

involve type conversion, such as when MySQL converts the number 960821 into a date
'1996-08-21" if the number is used in a context requiring a DATE value.

This section discusses how you can write expressions in MySQL and the rules that
govern the various kinds of type conversions that MySQL performs during the process of
expression evaluation. Each of MySQL’s operators is listed here, but MySQL has so many
functions that only a few are touched on. For more information, see Appendix C.

3.5.1 Writing Expressions

An expression can be as simple as a single constant, such as the numeric value 0 or string
value 'abc'.

Expressions can use function calls. Some functions take arguments (values inside the
parentheses), and some do not. Multiple arguments should be separated by commas.
When you invoke a built-in function, there can be spaces around arguments, but if there
is a space between the function name and the opening parenthesis, the MySQL parser
might misinterpret the function name. The usual result is a syntax error.You can tell
MySQL to allow spaces after names of built-in functions by enabling the TGNORE_SPACE
SQL mode. However, that also causes function names to be treated as reserved words.

Expressions can include references to table columns. In the simplest case, when the
table to which a column belongs is clear from context, a column reference may be given
simply as the column name. Only one table is named in each of the following SELECT
statements, so the column references are unambiguous, even though the same column
names are used in each statement:

SELECT last_name, first_name FROM president;
SELECT last_name, first_name FROM member;

If it’s not clear which table should be used, a column name can be qualified by preced-
ing it with the proper table name. If it’s not even clear which database should be used, the
table name can be preceded by the database name.You can also use these more-specific
qualified forms in unambiguous contexts if you simply want to be more explicit:

SELECT
president.last_name, president.first_name,
member.last_name, member.first_name

FROM president INNER JOIN member

WHERE president.last_name = member.last_name;

SELECT sampdb.student.name FROM sampdb.student;

Scalar subqueries can be used to provide a single value in an expression. The subquery
requires surrounding parentheses:

SELECT * FROM president WHERE birth = (SELECT MAX (birth) FROM president);

265

266

Chapter 3 Data Types

Finally, you can combine all these kinds of values (constants, function calls, column ref-
erences, and subqueries) to form more complex expressions.

3.5.1.1 Operator Types

Terms of expressions can be combined using several kinds of operators. This section de-
scribes what they do, and Section 3.5.1.2,“Operator Precedence,” discusses the order in
which they are evaluated.

Arithmetic operators, listed in Table 3.18, include the usual addition, subtraction, mul-
tiplication, and division operators, as well as the modulo operator. Arithmetic is per-
formed using BIGINT (64-bit) integer values for +, -, and * when both operands are
integers. If both operands are integers, the result is unsigned if either operand is unsigned.
For each operator other than DIV, if any operand is an approximate value, double-
precision floating-point arithmetic is used. This is also true for strings converted to num-
bers, because strings are converted to double-precision numbers. Be aware that if an inte-
ger operation involves large values such that the result exceeds 64-bit range, you will get
unpredictable results. (Actually, you should try to avoid exceeding 63-bit values; one bit is
needed to represent the sign.)

Table 3.18 Arithmetic Operators

Operator Syntax Meaning

+ a+ b Addition; sum of operands

- a-b Subtraction; difference of operands

- -a Unary minus; negation of operand

* a * b Multiplication; product of operands

/ a /b Division; quotient of operands

DIV a DIV b Division; integer quotient of operands

% a%$hb Modulo; remainder after division of operands

Logical operators, shown in Table 3.19, evaluate expressions to determine whether
they are true (non-zero) or false (zero). It is also possible for a logical expression to evalu-
ate to NULL if its value cannot be ascertained. For example, 1 AND NULL is of indetermi-
nate value.

Table 3.19 Logical Operators

Operator Syntax Meaning

AND, && a AND b, a && b Logical intersection; true if both operands are
true

OR, || aOR b, a||b Logical union; true if either operand is true

XOR a XOR b Logical exclusive-OR; true if exactly one operand
is true

NOT, ! NOT a, 'a Logical negation; true if operand is false

3.5 Expression Evaluation and Type Conversion

As alternative forms of AND, OR, and NOT, MySQL supports the &&, | |,and ! operators,
respectively, as used in the C programming language. Note in particular the | | operator.
Standard SQL specifies | | as the string concatenation operator, but in MySQL it signifies
a logical or operation. If you use the following expression, expecting it to perform string
concatenation, you may be surprised to discover that it returns the number 0:

‘abc' || 'def’ -0

This happens because 'abc' and 'def' are converted to integers for the operation,
and both turn into 0. In MySQL, you must use CONCAT ('abc', 'def') or proximity to
perform string concatenation:

CONCAT ('abc', 'def ") — 'abcdef'!
'abc' 'def! — ‘'abcdef!

If you want the standard SQL behavior for | |, enable the PTPES_as_concaT SQL
mode.

Bit operators, shown in Table 3.20, perform bitwise intersection, union, and exclusive-
OR, where each bit of the result is evaluated as the logical AND, OR, or exclusive-OR
of the corresponding bits of the operands.You can also perform bit shifts left or right. Bit
operations are performed using BIGINT (64-bit) integer values.

Table 3.20 Bit Operators

Operator Syntax Meaning

& a &b Bitwise AND (intersection); each bit of result is set if correspon-
ding bits of both operands are set

| a| b Bitwise OR (union); each bit of result is set if corresponding bit of
either operand is set

~ a”™b Bitwise exclusive-OR; each bit of result is set only if exactly one
corresponding bit of the operands is set

<< a << b Left shift of a by b bit positions

>> a > b Right shift of a by b bit positions

Comparison operators, shown in Table 3.21, include operators for testing relative mag-
nitude or lexical ordering of numbers and strings, as well as operators for performing pat-
tern matching and for testing NULL values. The <=> operator is MySQL-specific.

For a discussion of the comparison properties of strings, see Section 3.1.2,“String
Values.”

267

268

Chapter 3 Data Types

Table 3.21 Comparison Operators

Operator Syntax Meaning

= a=>b True if operands are equal

<=> a <=> b True if operands are equal (even if NULL)

<>, I= a<>b, al!=b True if operands are not equal

< a<b True if a is less than b

<= a<=5b True if a is less than or equal to b

>= a>=b True if a is greater than or equal to b

> a>b True if a is greater than b

IN a IN (bl, b2, ...) True if a is equal to any of b1, b2, ...

BETWEEN a BETWEEN b AND c True if a is between the values of b and c,
inclusive

NOT BETWEEN a NOT BETWEEN b AND c True if a is not between the values of b and

¢, inclusive

LIKE a LIKE b SQL pattern match; true if a matches b

NOT LIKE a NOT LIKE b SQL pattern match; true if a does not
match b

REGEXP a REGEXP b Regular expression match; true if a
matches b

NOT REGEXP a NOT REGEXP b Regular expression match; true if a does
not match b

IS NULL a IS NULL True if operand is NULL

IS NOT NULL a IS NOT NULL True if operand is not NULL

Pattern matching enables you to look for values without having to specify an exact lit-
eral value. MySQL provides SQL pattern matching using the LIKE operator and the wild-
card characters ‘%’ (match any sequence of characters) and °_’" (match any single character).
MySQL also provides pattern matching based on the REGEXP operator and regular expres-
sions that are similar to those used in Unix programs such as grep, sed, and vi.You must
use one of these pattern-matching operators to perform a pattern match; you cannot use
the = operator. To reverse the sense of a pattern match, use NOT LIKE or NOT REGEXP.

The two types of pattern matching differ in important respects besides the use of dif-
ferent operators and pattern characters:

= LIKE is multi-byte safe. REGEXP works correctly only for single-byte character sets
and does not take collation into account.

= LIKE SQL patterns match only if the entire string is matched. REGEXP regular ex-
pressions match if the pattern is found anywhere in the string.

3.5 Expression Evaluation and Type Conversion

Patterns used with the LIKE operator may include the ‘¢’ and ‘_’ wildcard characters.
For example, the pattern 'Frank%' matches any string that begins with 'Frank':

'Franklin' LIKE 'Frank$’ -1
'Frankfurter' LIKE 'Frank%' -1

The wildcard character ‘¢’ matches any sequence of characters, including the empty se-
quence, so 'Frank%' matches 'Frank':
'Frank' LIKE 'Frank%' -1

This also means the pattern '$' matches any string, including the empty string. How-
ever, 's' will not match NULL. In fact, any pattern match with a NULL operand fails:
'Frank' LIKE NULL - NULL
NULL LIKE '$%' - NULL

MySQL’s LIKE operator compares its operands as binary strings if either operand is a
binary string. If the operands are non-binary strings, LIKE compares them according to
their collation:

'Frankly' LIKE 'Frank%' -1
'frankly' LIKE 'Frank%' -1
BINARY 'Frankly' LIKE 'Frank%' -1
BINARY 'frankly' LIKE 'Frank%' -0
'Frankly' COLLATE latinl_general_cs LIKE 'Frank%' — 1
'frankly' COLLATE latinl_general_cs LIKE 'Frank%' — 0
'Frankly' COLLATE latinl_bin LIKE 'Frank$' -1
'frankly' COLLATE latinl_bin LIKE 'Frank$' - 0

This behavior differs from that of the standard SQL LIKE operator, which is case
sensitive.

The other wildcard character allowed with LIKE is °_’, which matches any single char-
acter. The pattern '___ ' matches any string of exactly three characters. 'c_t' matches
'‘cat', 'cot', 'cut',and even 'c_t"' (because ‘_’ matches itself).

Wildcard characters may be specified anywhere in a pattern. ' $bert' matches
"Englebert’', 'Bert’',and 'Albert'. '$bert%' matches all of those strings, and also
strings like 'Berthold', 'Bertram',and 'Alberta’. 'b%t' matches 'Bert', 'bent',and
'burnt'.

To match literal instances of the ‘%’ or °_’ characters, turn off their special meaning by
preceding them with a backslash ("\%” or _’):

'abc' LIKE 'a%c' -1
'abc' LIKE 'a\%c' - 0
a%c' LIKE 'a\%c' -1
'abc' LIKE 'a_c' -1
'abc' LIKE 'a_c' - 0
'a_c' LIKE 'a_c' -1

269

270 Chapter 3 Data Types

MySQL’s other form of pattern matching uses regular expressions. The operator is
REGEXP rather than LIKE. The following examples demonstrate several common regular
expression pattern characters.

The ‘.’ character is a wildcard that matches any single character:

‘abc' REGEXP 'a.c' -1

The [...] construction matches any character listed between the square brackets.
'e' REGEXP '[aeiou]’ -1
'f' REGEXP '[aeiou]’ -0

You can specify a range of characters by listing the endpoints of the range separated by
a dash (‘-’), or negate the sense of the class (to match any character not listed) by specify-
ing ‘~” as the first character of the class:
‘abc' REGEXP '[a-z]' -1
'abc' REGEXP '[“a-z]' -0

“*” means “match any number of the previous thing,” so that, for example, the pattern
'x* ' matches any number of ‘x’ characters:

'abcdef' REGEXP 'a.*f' - 1
'abc' REGEXP '[0-9]*abc' - 1
'abc' REGEXP '[0-9]1[0-9]1*' -0

“Any number” includes zero instances, which is why the second expression succeeds.
To match one or more instances of the preceding thing rather than zero or more, use ‘+’
instead of “*’:

'abc' REGEXP 'cd*!' -1
'abc' REGEXP 'cd+' - 0
'abcd' REGEXP 'cd+' -1

'~pattern' and 'patterns' anchor a pattern match so that the pattern pattern
matches only when it occurs at the beginning or end of a string, and ' “patterns’
matches only if pattern matches the entire string:

REGEXP 'b'
'abc' REGEXP '"“b'
'abc' REGEXP 'bS$'
'abc' REGEXP '“abcs'
'abcd' REGEXP '“abcs'

'abc

Ll Ll
o~ o o

MySQLs regular expression matching has other special pattern elements as well. See
Appendix C for more information.

A LIKE or REGEXP pattern can be taken from a table column, although this will be
slower than a constant pattern if the column contains several different values. The pattern
must be examined and converted to internal form each time the column value changes.

3.5 Expression Evaluation and Type Conversion

3.5.1.2 Operator Precedence

When MySQL evaluates an expression, it looks at the operators to determine the order in
which it should group the terms of the expression. Some operators have higher prece-
dence; that is, they are “stronger” than others in the sense that they are evaluated earlier
than others. For example, multiplication and division have higher precedence than addi-
tion and subtraction. The following two expressions are equivalent because * and DIV are
evaluated before + and -:

3 +4*2-10DIV 2 - 6
3+8-5 - 6

Operator precedence is shown in the following list, from highest precedence to lowest.
Operators listed on the same line have the same precedence. Operators at a higher prece-
dence level are evaluated before operators at a lower precedence level. Operators at the
same precedence level are evaluated left to right.

BINARY COLLATE

!

- (unary minus) ~ (unary bit negation)
* / DIV % MOD

+ -

<< >>

&

< <= = <=> <> = >= > IN IS LIKE REGEXP RLIKE
BETWEEN CASE WHEN THEN ELSE

NOT

AND &&

XOR

or ||

Some operators have a different precedence depending on the SQL mode or MySQL
version. See Appendix C for details.

If you need to override the precedence of operators and change the order in which
expression terms are evaluated, use parentheses to group terms:

1+2*3-4/5 — 6.2000
(L +2) * (3 -4) /5 — -0.6000

3.5.1.3 NULL Values in Expressions
Take care when using NULL values in expressions, because the result may not always be
what you expect. The following guidelines will help you avoid surprises.

271

272

Chapter 3 Data Types

If you supply NULL as an operand to any arithmetic or bit operator, the result is NULL:

1 + NULL — NULL
1 | NULL — NULL

With logical operators, the result is NULL unless the result can be determined with

certainty:

1 AND NULL - NULL
1 OR NULL 51

0 AND NULL 50

0 OR NULL — NULL

NULL as an operand to any comparison or pattern-matching operator produces a NULL
result, except for the <=>, IS NULL, and IS NOT NULL operators, which are intended
specifically for dealing with NULL values:

1 = NULL — NULL
NULL = NULL — NULL
1 <=> NULL -0
NULL LIKE '$’ — NULL
NULL REGEXP '.*' — NULL
NULL <=> NULL 51
1 IS NULL -0
NULL IS NULL -1

Functions generally return NULL if given NULL arguments, except for those functions de-
signed to deal with NULL arguments. For example, IFNULL () is able to handle NULL argu-
ments and returns true or false appropriately. On the other hand, STRCMP () expects
non-NULL arguments; if you pass it a NULL argument, it returns NULL rather than true or false.

In sorting operations, NULL values group together. They appear first in ascending sorts
and last in descending sorts.

3.5.2 Type Conversion
Whenever a value of one type is used in a context that requires a value of another type,
MySQL performs type conversion automatically according to the kind of operation
you're performing. Conversion may occur for any of the following reasons:
= Conversion of operands to a type appropriate for evaluation of an operator
= Conversion of a function argument to a type expected by the function
= Conversion of a value for assignment into a table column that has a different type
You can also perform explicit type conversion using a cast operator or function.

The following expression involves implicit type conversion. It consists of the addition
operator + and two operands, 1 and '2':

1+ 2 -3

3.5 Expression Evaluation and Type Conversion

The operands are of different types (number and string), so MySQL converts one of
them to make them the same type. But which one should it change? In this case, + is a
numeric operator, so MySQL wants the operands to be numbers thus and converts the
string '2"' to the number 2. Then it evaluates the expression to produce the result 3.

Here’s another example. The CONCAT () function concatenates strings to produce a
longer string as a result. To do this, it interprets its arguments as strings, no matter what
type they are. If you pass it a bunch of numbers, CONCAT () converts them to strings, and
then returns their concatenation:

CONCAT (1,23,456) — '123456"

If the call to CONCAT () is part of a larger expression, further type conversion may take
place. Consider the following expression and its result:

REPEAT ('X',CONCAT(1,2,3)/10) — ' XXXXXXXXXXXX!

CONCAT (1, 2,3) produces the string '123'.The expression '123' /10 is converted to
123/10 because division is an arithmetic operator. The result of this expression is 12. 3, but
REPEAT () expects an integer repeat count, so the count is rounded to produce 12.Then
REPEAT ('X',12) produces a string result of 12 ‘X’ characters.

If all arguments to CONCAT () are non-binary strings, the result is a non-binary string. If
any argument is a binary string, the result is a binary string. The latter principle includes
the case of numeric arguments, which are converted to binary strings. These examples
both appear to produce the same result:

CONCAT('1','23") - 1123
CONCAT (1,'23") - '123"

But if you check the result with CHARSET (), you can see that the expressions return a
non-binary and binary string, respectively:

CHARSET (CONCAT('1"','23")) — 'latinl’
CHARSET (CONCAT (1, '23")) — 'binary’

A general principle to keep in mind is that, by default, MySQL attempts to convert
values to the type required by an expression rather than generating an error. Depending
on the context, it converts values of each of the three general categories (numbers,
strings, or dates and times) to values in any of the other categories. However, values can’t
always be converted from one type to another. If a value to be converted to a given type
doesn’t look like a legal value for that type, the conversion fails. Conversion to numbers
of things like 'abc' that don’t look like numbers results in a value of 0. Conversion to
date or time types of things that don’t look like a date or time result in the “zero” value
for the type. For example, converting the string 'abc' to a date results in the “zero” date
'0000-00-00". On the other hand, any value can be treated as a string, so generally it’s
not a problem to convert a value to a string.

273

274

Chapter 3 Data Types

If you want to prevent conversion of illegal values to the closest legal values during
data input operations, you can enable strict mode to cause errors to occur instead. See
Section 3.3,“How MySQL Handles Invalid Data Values.”

MySQL also performs more minor type conversions. If you use a floating-point value
in an integer context, the value is converted (with rounding). Conversion in the other di-
rection works as well; an integer can be used without problem as a floating-point number.

Hexadecimal constants are treated as binary strings unless the context clearly indicates
a number. In string contexts, each pair of hexadecimal digits is converted to a character
and the result is used as a string. The following examples illustrate how this works:

0x61 - 'a'
0x61 + 0 — 97

X'6l! - 'a’
X'61l" + 0 - 97

CONCAT (0x61) - 'a'
CONCAT (0x61 + 0) - 97!
CONCAT (X'61") - 'a'
CONCAT (X'61' + 0) - 97"

For comparisons, context determines whether to treat a hexadecimal constant as a
binary string or a number:

= This expression treats the operands as binary strings and performs a byte-by-byte
comparison.

0x0d0a = '\r\n' -1

= This expression compares a hexadecimal constant to a number, so it is converted to
a number for the comparison.

0x0a = 10 - 1

= This expression performs a binary string comparison. The first byte of the left
operand has a lesser value than the first byte of the right operand, so the result
is false.

0xeel00 > Oxff - 0

= In this expression, the right operand hex constant is converted to a number because
of the arithmetic operator. Then for the comparison, the left operand is converted
to a number. The result is false because 0xee00 (60928) is not numerically less than
ox£ff (255).

Oxee00 > Oxff+0 -1
It’s possible to force a hexadecimal constant to be treated as a non-binary string by us-
ing a character set introducer or CONVERT () :

0x61 5 gt
0x61 = 'A' - 0

3.5 Expression Evaluation and Type Conversion

_latinl 0x61 = 'A' -1
CONVERT (0x61 USING latinl) = 'A' -1

Some operators force conversion of the operands to the type expected by the opera-
tor, no matter what the type of the operands is. Arithmetic operators are an example of
this. They expect numbers, and the operands are converted accordingly:

3+ 4 - 17
30 4+ 4 - 7
130 4 4 - 7

In a string-to-number conversion, it’s not enough for a string simply to contain a
number somewhere. MySQL doesn’t look through the entire string hoping to find a
number, it looks only at the beginning; if the string has no leading numeric part, the con-
version result is 0.

'1973-2-4' + 0 — 1973
'12:14:01" + 0 - 12
'23-skidoo' + 0 — 23
'-23-gkidoo' + 0 - -23
'carbon-14' + 0 - 0

MySQLSs string-to-number conversion rule converts numeric-looking strings to
floating-point values:

'-428.9" + 0 — -428.9
'3E-4' + 0 — 0.0003

This conversion does not work for hexadecimal-looking constants, though. Only the
leading zero is used:

'Oxff' + 0 -0

The bit operators are even stricter than the arithmetic operators. They want the opera-
tors to be not just numeric, but integers, and type conversion is performed accordingly.
This means that a fractional number such as 0.3 is not considered true, even though it’s
non-zero; that’s because when it’s converted to an integer, the result is 0. In the following
expressions, the operands are not considered true until they have a value of at least 1:

0.3 | .04 -0
1.3 | .04 -1
0.3 & .04 -0
1.3 & .04 -0
1.3 & 1.04 -1

Pattern matching operators expect to operate on strings. This means you can use
MySQL5s pattern matching operators on numbers because it will convert them to strings
in the attempt to find a match!

12345 LIKE '1%' -1
12345 REGEXP 'l.*5' -1

275

276

Chapter 3 Data Types

The magnitude comparison operators (<, <=, =, and so on) are context sensitive; that is,
they are evaluated according to the types of their operands. The following expression
compares the operands numerically because they both are numbers:

2 <11 -1

This expression involves string operands and thus results in a lexical comparison:
‘20 < 11 -0

In the following comparisons, the types are mixed, so MySQL compares them as num-
bers. As a result, both expressions are true:

‘2 < 11 -1
2 < '11 -1

When evaluating comparisons, MySQL converts operands as necessary according to
the following rules:

= Other than for the <=> operator, comparisons involving NULL values evaluate as NULL.
(<=> 1s like =, except that NULL <=> NULL is true, whereas NULL = NULL is NULL.)

= If both operands are strings, they are compared lexically as strings. Binary strings are
compared on a byte-by-byte basis using the numeric value of each byte. Compar-
isons for non-binary strings are performed character-by-character using the collat-
ing sequence of the character set in which the strings are expressed. If the strings
have different character sets, the comparison may result in an error or fail to yield
meaningful results. A comparison between a binary and a non-binary string is
treated as a comparison of binary strings.

= If both operands are integers, they are compared numerically as integers.

= Hexadecimal constants that are not compared to a number are compared as binary
strings.

= Other than for IN(), if either operand is a TIMESTAMP or DATETIME value and the
other is a constant, the operands are compared as TIMESTAMP values. This is done to
make comparisons work better for ODBC applications.

= Otherwise, the operands are compared numerically as double-precision floating-
point values. Note that this includes the case of comparing a string and a number.
The string is converted to a double-precision number, which results in a value of 0
if the string doesn’t look like a number. For example, '14.3" converts to 14.3, but
'L4.3' converts to 0.

3.5.2.1 Date and Time Interpretation Rules

MySQL freely converts strings and numbers to date and time values as demanded by
context in an expression, and vice versa. Date and time values are converted to numbers
in numeric context; numbers are converted to dates or times in date or time contexts.
This conversion to a date or time value happens when you assign a value to a date or

3.5 Expression Evaluation and Type Conversion

time column or when a function requires a date or time value. In comparisons, the gen-
eral rule is that date and time values are compared as strings.

If the table mytbl contains a DATE column date_col, the following statements are
equivalent:
INSERT INTO mytbl SET date_col = '2025-04-13';
INSERT INTO mytbl SET date_col = '20250413';
INSERT INTO mytbl SET date_col = 20250413;

In the following examples, the argument to the To_DAYS () function is interpreted as
the same value for all three expressions:

TO_DAYS('2025-04-13") — 739719
TO_DAYS('20250413") — 739719
TO_DAYS (20250413) — 739719

3.5.2.2 Testing and Forcing Type Conversion
To see how type conversion will be handled in an expression, issue a SELECT query that
evaluates the expression so that you can examine the result:

mysgl> SELECT X'41', X'41' + 0;
o Fmm - +

If you cannot tell from inspection the type of an expression, select it into a new table
and check the table definition:

mysql> CREATE TABLE t SELECT X'41' AS coll, X'41' + 0 AS col2;
mysql> DESCRIBE t;

o tmmm o tmm - +mm R Hmmmm e +
| Field | Type | Null | Key | Default | Extra |
tmmm - tmmmmm o o Hmmmm e Hmmm e +
| coll | varbinary(l) | NO | | |
| col2 | double(17,0) | NO | |0 |
o tmmm o o Hmmmm e Hmmm e +

Testing expression evaluation is especially useful for statements such as DELETE or
UPDATE that modify rows, because you want to be sure you’re affecting only the intended
rows. One way to check an expression is to run a preliminary SELECT statement with the
same WHERE clause that youre going to use with the DELETE or UPDATE statement to ver-
ify that the clause selects the proper rows. Suppose that the table mytbl has a CHAR col-
umn char_col containing these values:

'abc!'
00"
'def"’

277

278

Chapter 3 Data Types

IOOI
"ghi'

Given these values, what is the effect of the following statement?

DELETE FROM mytbl WHERE char_col = 00;

The intended effect is probably to delete the two rows containing the value '00'.The
actual effect would be to delete all the rows—an unpleasant surprise. This happens as a
consequence of MySQL’s comparison rules. char_col is a string column, but 00 in the
statement is not quoted, so it is treated as a number. By MySQL’s comparison rules, a
comparison involving a string and a number evaluates as a comparison of two numbers.
As MySQL executes the DELETE statement, it converts each value of char_col to a num-
ber and compares it to 0. Unfortunately, although '00' converts to 0, so do all the strings
that don’t look like numbers. As a result, the WHERE clause is true for every row, and the
DELETE statement empties the table. This is a case where it would have been prudent to
test the WHERE clause with a SELECT statement prior to executing the DELETE, because that
would have shown you that too many rows are selected by the expression:

mysgl> SELECT char col FROM mytbl WHERE char_col = 00;

B T +
| char_col |
Hmmmmm oo +
| abc |
| 00 |
| def |
| 00 |
| ghi |
Hmmmmm oo +

When you're uncertain about the way a value will be used, you may want to exploit
MySQLs type conversion to force an expression to a value of a particular type, or to call a
function that performs the desired conversion. The following list demonstrates several
useful conversion techniques.

Add +0 or +0.0 to a term to force conversion to a numeric value:

0x65 - 'e'
0x65 + 0 — 101
0x65 + 0.0 — 101.0

To chop off the fractional part of a number, use FLOOR () or CAST ().To add a fractional
part to an integer, add an exact-value zero with the required number of decimal digits:

FLOOR(13.3) - 13
CAST(13.3 AS SIGNED) - 13

13 + 0.0 — 13.0

13 + 0.0000 — 13.0000

If you want rounding instead, use ROUND () rather than CAST().

3.5 Expression Evaluation and Type Conversion

Use CAST () or CONCAT () to turn a value into a string:

14 - 14
CAST (14 AS CHAR) - 14"
CONCAT (14) - 14

CONCAT () returns a binary string if it must convert a numeric argument to string form,
so the final two examples actually differ in their result. The caST () expression returns a
non-binary string, whereas the CONCAT () expression returns a binary string.

Use HEX () to convert a number to a hexadecimal string:

HEX (255) - 'FF'
HEX (65535) — 'FFFF'
You can also use HEX () with a string value to convert it to a string of hex digit pairs
representing successive bytes in the string:
HEX ('abcd') ; — '61626364"
Use ASCII() to convert a single-byte character to its ASCII value:

A - A
ASCII('A") — 65

To go in the other direction from ASCII code to character, use CHAR () :

CHAR (65) - 'A'

Use DATE_ADD () or INTERVAL arithmetic to force a string or number to be treated as a
date:

DATE_ADD (20080101, INTERVAL 0 DAY) — '2008-01-01"
20080101 + INTERVAL 0 DAY — '2008-01-01"
DATE_ADD('20080101', INTERVAL O DAY) — '2008-01-01"
'20080101' + INTERVAL O DAY — '2008-01-01"

Generally, you can convert a date value to numeric form by adding zero:

CURDATE () — '2007-09-07"
CURDATE () +0 — 20070907

Temporal values with a time part convert to a value with a microseconds part:

NOW () — '2007-09-07 16:15:29"
NOW () +0 — 20070907161529.000000
CURTIME () — '16:15:29"

CURTIME () +0 — 161529.000000

To chop off the fractional part, cast the value to an integer:
CAST (NOW () AS UNSIGNED) — 20070907161529
CAST (CURTIME() AS UNSIGNED) - 161529

To convert a string from one character set to another, use CONVERT () . To check
whether the result has the desired character set, use the CHARSET () function:

279

280

Chapter 3 Data Types

'abcd’ — 'abcd'
CONVERT ('abcd' USING ucs2) — 'abcd'
CHARSET ('abcd") — 'latinl’
CHARSET (CONVERT ('abcd' USING ucs2)) — 'ucs2'

Preceding a string with a character set introducer does not cause conversion of the string,
but MySQL interprets it as though it has the character set indicated by the introducer:

CHARSET (_ucs2 'abcd') — 'ucs2'
To determine the hexadecimal value of the UTF-8 character that corresponds to a

given hexadecimal UCS-2 character, combine coNVERT () with HEX (). The following ex-
pression determines the UTF-8 value of the trademark symbol:

HEX (CONVERT (_ucs2 0x2122 USING utf8)) — 'E284A2"

To change the collation of a string, use the cOLLATE operator. To check whether the
result has the desired collation, use the cOLLATION () function:
COLLATION ('abcd') — 'latinl_swedish_ci'
COLLATION('abcd' COLLATE latinl_bin) — 'latinl_bin'

The character set and collation must be compatible. If they are not, use a combination
of CONVERT () to convert the character set first and COLLATE to change the collation:
CONVERT ('abcd' USING latin2) COLLATE latin2_bin

To convert a binary string to a non-binary string that has a given character set, use
CONVERT () :

0x61626364 — ‘'abcd’
0x61626364 = 'ABCD' -0
CONVERT (0x61626364 USING latinl) = 'ABCD' -1

Alternatively, for binary quoted strings or hexadecimal values, use an introducer to
change the interpretation of the binary string:

_latinl 0x61626364 = 'ABCD' -1

To cast a non-binary string to a binary string, use the BINARY keyword:

'abcd' = 'ABCD' -1
BINARY 'abcd' = 'ABCD' - 0
'abcd' = BINARY 'ABCD' - 0

3.6 Choosing Data Types

Section 3.2,“MySQL Data Types,” described the various data types from which you can
choose and the general properties of those types, such as the kind of values they may con-
tain, how much storage space they take, and so on. But how do you actually decide which
types to use when you create a table? This section discusses issues to consider that will
help you choose.

3.6 Choosing Data Types

The most “generic” data types are the string types.You can store anything in them be-
cause numbers and dates can be represented in string form. So should you just define all
your columns as strings and be done with it? No. Let’s consider a simple example. Sup-
pose that you have values that look like numbers.You could represent these as strings, but
should you? What happens if you do?

For one thing, you’ll probably use more space, because numbers can be stored more
efficiently using numeric columns than string columns.You’ll also notice some differences
in query results due to the different ways that numbers and strings are handled. For exam-
ple, the sort order for numbers is not the same as for strings. The number 2 is less than the
number 11, but the string ' 2" is lexically greater than the string '11'.You can work
around this by using the column in a numeric context like this:

SELECT col_name + 0 as num ... ORDER BY num;

Adding zero to the column forces a numeric sort, but is that a reasonable thing to do?
It’s a useful technique sometimes, but you don’t want to have to use it every time you
want a numeric sort. Causing MySQL to treat a string column as a number has a couple
of significant implications. It forces a string-to-number conversion for each column value,
which is inefficient. Also, using the column in a calculation prevents MySQL from using
any index on the column, which slows down the query further. Neither of these per-
formance degradations occur if you store the values as numbers in the first place.

The preceding example illustrates that several issues come into play when you choose
data types. The simple choice of using one representation rather than another has implica-
tions for storage requirements, query handling, and processing performance. The follow-
ing list gives a quick rundown of factors to think about when picking a type for a
column.

What kind of values will the column hold? Numbers? Strings? Dates? Spatial val-
ues? This is an obvious question, but you must ask it.You can represent any type of value
as a string, but as we’ve just seen, it’s likely that you’ll get better performance if you use
other more appropriate types for numeric values. (This is also true for temporal and spa-
tial values.) However, assessing the kind of values you’re working with isn’t necessarily
trivial, particularly for other people’s data. It’s especially important to ask what kind of
values the column will hold if you're setting up a table for someone else, and you must be
sure to ask enough questions to get sufficient information for making a good decision.

Do your values lie within some particular range? If they are integers, will they al-
ways be non-negative? If so, you can use UNSIGNED. If they are strings, will they always be
chosen from among a fixed, limited set of values? If so, you may find ENUM or SET a useful
type.

There is a tradeoff between the range of a type and the amount of storage it uses. How
“big” a type do you need? For numbers, you can choose small types with a limited range
of values, or large types with a much larger range. For strings, you can make them short
or long, so you wouldn’t choose cHAR (255) if all the values you want to store contain
fewer than 10 characters.

281

282

Chapter 3 Data Types

What are the performance and efficiency issues? Some types can be processed
more efficiently than others. Numeric operations generally can be performed more
quickly than string operations. Short strings can be compared more quickly than long
strings, and also involve less disk overhead. For MyISAM tables, performance is better for
fixed-length rows than for variable-length rows.

The following sections consider these issues in more detail, except for the performance
issues, which are covered in Section 5.3, “Choosing Data Types for Efficient Queries.”

Before we proceed, I should point out that, although you want to make the best data
type choices you can when you create a table, it’s not the end of the world if you make a
choice that turns out to be nonoptimal.You can use ALTER TABLE to change the type to a
better one. This might be as simple as changing a SMALLINT to MEDIUMINT after finding
out your data set contains values larger than you originally thought. Or it can be more
complex, such as changing a CHAR to an ENUM with a specific set of allowed values.You
can use PROCEDURE ANALYSE() to obtain information about your table’s columns, such as
the minimum and maximum values as well as a suggested optimal type to cover the range
of values in a column:

SELECT * FROM tbl_name PROCEDURE ANALYSE() ;

The output from this query may help you determine that a smaller type can be used,
which can improve the performance of queries that involve the table and reduce the
amount of space required for table storage. For more information about PROCEDURE
ANALYSE (), see Section 5.3,“Choosing Data Types for Efficient Queries.”

3.6.1 What Kind of Values Will the Column Hold?

The first thing you think of when you’re trying to decide on a data type is the kind of
values the column will be used for because this has the most evident implications for the
type you choose. In general, you do the obvious thing:You store numbers in numeric
columns, strings in string columns, and dates and times in temporal columns. If your
numbers have a fractional part, you use a DECIMAL or floating-point type rather than an
integer type. But sometimes there are exceptions. The principle here is that you need to
understand the nature of your data to be able to choose the type in an informed manner.
If you're going to store your own data, you probably have a good idea of how to charac-
terize it. On the other hand, if others ask you to set up a table for them, it’s sometimes a
different story. It may not be so easy to know just what you’re working with. Be sure to
ask enough questions to find out what kind of values the table really should contain.
Suppose that you're told that a table needs a column to record “amount of precipita-
tion.” Is that a number? Or is it “mostly” numeric—that is, typically but not always coded
as a number? For example, when you watch the news on television, the weather report
generally includes a measure of precipitation. Sometimes this is a number (as in “0.25
inches of rain”), but sometimes it’s a “trace” of precipitation, meaning “not much at all.”
That’s fine for the weather report, but what does it mean for storage in a database? You
either need to quantify “trace” as a number so that you can use a numeric data type to

3.6 Choosing Data Types

record precipitation amounts, or you need to use a string so that you can record the word
“trace.” Or you could come up with some more complicated arrangement, using a num-
ber column and a string column where you fill in one column and leave the other one
NULL. It should be obvious that you want to avoid that option, if possible; it makes the
table harder to understand and it makes query-writing much more difficult.

I would probably try to store all rows in numeric form, and then convert them as nec-
essary for display purposes. For example, if any non-zero amount of precipitation less
than .01 inches is considered a trace amount, you could display values from the column

like this:

SELECT IF (precip>0 AND precip<.01, 'trace',precip) FROM ... ;

Some values are obviously numeric but you must determine whether to use an integer
or non-integer type.You should ask what your units are and what accuracy you require. Is
whole-unit accuracy sufficient or do you need to represent fractional units? This may help
you distinguish between integer and fixed-point or floating-point data types. For exam-
ple, if you're recording weights to the nearest pound, you can use an integer column. If
you want to record fractional units, you’d use a fixed-point or floating-point column. In
some cases, you might even use multiple columns—for example, to record weight in
terms of pounds and ounces.

Height is a numeric type of information for which there are several representational
possibilities:

= Use a string such as '6-2" for a value like “6 feet, 2 inches.” This has the advantage
of having a form that’s easy to look at and understand (certainly more so than “74
inches”), but it’s difficult to use this kind of value for mathematical operations such
as summation or averaging.

= Use one numeric column for feet and another for inches. This would be a little eas-
ier to work with for numerical operations, but two columns are more difficult to
use than one.

= Use one numeric column representing inches. This is easiest for a database to work
with, and least meaningful for humans. But remember that you don’t have to pres-
ent values in the same format that you use to work with them.You can reformat
values for meaningful display using MySQL’s many functions. That means this
might be the best way to represent height.

Another type of numeric information is currency, such as U.S. dollars. For monetary
calculations, youre working with values that have dollars and cents parts. These look like
floating-point values, but FLOAT and DOUBLE are subject to rounding error and may not be
suitable except for rows in which you need only approximate accuracy. Because people
tend to be touchy about their money, it’s more likely you need a type that affords perfect
accuracy.You have a couple of choices:

= You can represent money as a DECIMAL (1, 2) type, choosing M as the maximum
width appropriate for the range of values you need. This gives you values with two

283

284

Chapter 3 Data Types

decimal places of accuracy. The advantage of DECIMAL is that values are not subject
to roundoff error and calculations are exact.

= You can represent all monetary values internally as cents using an integer type. The
advantage is that calculations are done internally using integers, which is very fast.
The disadvantage is that you will need to convert values on input or output by
multiplying or dividing by 100.

Some kinds of “numbers” aren’t. Telephone numbers, credit card numbers, and Social
Security numbers all can be written using non-digit characters such as spaces or dashes
and cannot be stored directly in a numeric column unless you strip the non-digits. But
even with non-digits stripped, you may want to store values as strings rather than as num-
bers to avoid loss of leading zeros.

If you need to store date information, do the values include a time? That is, will they
ever need to include a time? MySQL doesn’t provide a date type that has an optional time
part: DATE never has a time, and DATETIME must have a time. If the time really is optional,
use a DATE column to record the date, and a separate TIME column to record the time.
Then allow the TIME column to be NULL and interpret that as “no time”:

CREATE TABLE mytbl
(

date DATE NOT NULL, # date is required

time TIME NULL # time is optional (may be NULL)
)i

One type of situation in which it’s especially important to determine whether you
need a time value occurs when you’re joining two tables with a master-detail relationship
that are “linked” based on date information. Suppose that you're conducting research in-
volving test subjects. Following a standard initial battery of tests, you might run several
additional tests, with the choice of tests varying according to the results of the initial tests.
You can represent this information using a master-detail relationship, in which the subject
identification information and the standard initial tests are stored in a master row and any
additional tests are stored as rows in a secondary detail table. Then you link together the
two tables based on subject ID and the date on which the tests are given.

The question you must answer in this situation is whether you can use just the date or
whether you need both date and time. This depends on whether a subject might go
through the testing procedure more than once during the same day. If so, record the time
(for example, the time that the procedure begins), using either a DATETIME column or
separate DATE and TIME columns that both must be filled in. Without the time value, you
will not be able to associate a subject’s detail rows with the proper master rows if the sub-
ject is tested twice in a day.

I've heard people claim “I don’t need a time; I will never test a subject twice on the
same day.” Sometimes they’re correct, but I have also seen some of these same people turn
up later wondering how to prevent detail rows from being mixed up with the wrong

3.6 Choosing Data Types

master row after entering data for subjects who were tested multiple times in a day. Sorry,
by then it’s too late!

Sometimes you can deal with this problem by retrofitting a TIME column into the ta-
bles. Unfortunately, it’s difficult to fix existing rows unless you have some independent
data source, such as the original paper rows. Otherwise, you have no way to disambiguate
detail rows to associate them with the proper master row. Even if you have an independ-
ent source of information, this is very messy and likely to cause problems for applications
that you've already written to use the tables. It’s best to explain the issues to the table
owners and make sure that you've gotten a good characterization of the data values be-
fore creating their tables.

Sometimes you have incomplete data, and this will influence your choice of data types.
You may be collecting birth and death dates for genealogical research, and sometimes all
you can find out is the year or year and month someone was born or died, but not the
exact date. If you use a DATE column, you can’t enter a date unless you have the full date.
If you want to be able to record whatever information you have, even if it’s incomplete,
you may have to keep separate year, month, and day columns. Then you can enter such
parts of the date as you have and leave the rest NULL. Another possibility is to use DATE
values in which the day or month and day parts are set to 0. Such “fuzzy” dates can be
used to represent incomplete date values.

3.6.2 Do Your Values Lie Within Some Particular Range?

If you’ve decided on the general category from which to pick a data type for a column,
thinking about the range of values you want to represent will help you narrow down
your choices to a particular type within that category. Suppose that you want to store in-
teger values. The range of your values determines the types you can use. If you need val-
ues in the range from 0 to 1000, you can use anything from a SMALLINT up to a BIGINT.
If your values range up to 2 million, you can’t use SMALLINT, so your choices range from
MEDIUMINT tOo BIGINT.

You could, of course, simply use the largest type for the kind of value you want to
store (BIGINT for the examples in the previous paragraph). Generally, however, you should
use the smallest type that is large enough for your purposes. By doing so, you’ll minimize
the amount of storage used by your tables, and they will give you better performance be-
cause smaller columns usually can be processed more quickly than larger ones. (Reading
smaller values requires less disk activity, and more key values fit into the key cache, allow-
ing indexed searches to be performed faster.)

If you don’t know the range of values you’ll need to be able to represent, you either
must guess or use BIGINT to accommodate the worst possible case. If you guess and the
type you choose turns out later to be too small, all is not lost. Use ALTER TABLE later to
make the column bigger.

Sometimes you even find out that you can make a column smaller. In Chapter 1, we
created a score table for the grade-keeping project that had a score column for record-
ing quiz and test scores. The column was created using INT in order to keep the discussion

285

286

Chapter 3 Data Types

simpler, but you can see now that if scores are in the range from 0 to 100, a better choice
would be TINYINT UNSIGNED, because that would use less storage.

The range of values in your data also affects the attributes you can use with your data
type. If values never are negative, you can use UNSIGNED; otherwise, you can't.

String types don’t have a “range” in the same way numeric columns do, but they have a
length, and the maximum length you need affects the column types you can use. If you're
storing character strings that are shorter than 256 characters, you can use CHAR, VARCHAR,
or TINYTEXT. If you want longer strings, you can use VARCHAR or a longer TEXT type.

For a string column used to represent a fixed set of values, you might consider using
an ENUM or SET data type. These can be good choices because they are represented inter-
nally as numbers. Operations on them are performed numerically, which makes them
more efficient than other string types. They also can be more compact than other string
types, which saves space. In addition, you can prevent entry of values not present in the
list of legal values by enabling strict SQL mode. See Section 3.3, “How MySQL Handles
Invalid Data Values.”

When characterizing the range of values you have to deal with, the best terms are “al-
ways” and “never” (as in “always less than 1000” or “never negative”), because they enable
you to constrain your data type choices more tightly. But be wary of using these terms
when they’re not really justified. Be especially wary if youre consulting with other people
about their data and they start throwing around those two terms. When people say “al-
ways” or “never,” be sure they really mean it. Sometimes people say their data always have
a particular characteristic when they really mean “almost always.”

Suppose that you're designing a table for a group of investigators who tell you, “Our
test scores are always O to 100.” Based on that statement, you choose TINYINT and you
make it UNSIGNED because the values are always non-negative. Then you find out that the
people who code the data for entry into the database sometimes use -1 to mean “student
was absent due to illness.” Oops. They didn’t tell you that. It might be acceptable to use
NULL to represent such values, but if not, you’ll have to record a -1, and then you can’t use
an UNSIGNED column. (This is an instance where ALTER TABLE comes to your rescue.)

Sometimes decisions about these cases can be made more easily by asking a simple
question: Are there ever exceptions? If an exceptional case ever occurs, even just once,
you must allow for it.You will find that people who talk to you about designing a data-
base invariably think that if exceptions don’t occur very often, they don’t matter. When
you’re creating a table, you can’t think that way. The question you need to ask isn’t “how
often do exceptions occur?” It’s “do exceptions ever occur?” If they do, you must take
them into account.

3.6.3 Inter-Relatedness of Data Type Choice Issues

You can’t always consider the issues involved in choosing data types as though they are
independent of one another. For example, range is related to storage size for numeric
types: As you increase the range, you require more storage, which affects performance.
Or consider the implications of using AUTO_INCREMENT to create a column for holding

3.6 Choosing Data Types

unique sequence numbers. That single choice has several consequences involving the data
type, indexing, and the use of NULL:

= AUTO_INCREMENT is a column attribute that is best used with integer types. That im-
mediately limits your choices to TINYINT through BIGINT.

= An AUTO_INCREMENT column is intended only for generating sequences of positive
values, so you should define it as UNSIGNED.

= AUTO_INCREMENT columns must be indexed. Furthermore, to prevent duplicates in
the column, the index should be unique, so you should define the column as a
PRIMARY KEY Or as a UNIQUE index.

= AUTO_INCREMENT columns must be NOT NULL. (If you omit NOT NULL, MySQL adds
it automatically.)
All of this means you do not just define an AUTO_INCREMENT column like this:

mycol arbitrary_ type AUTO_INCREMENT

You define it like this:

mycol integer_ type UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (mycol)

Or like this:

mycol integer_ type UNSIGNED NOT NULL AUTO_INCREMENT,
UNIQUE (mycol)

287

This page intentionally left blank

A

Stored Programs

MySQL supports several types of objects that are stored on the server side for later use.
Some are invoked on demand; others execute automatically when table modifications oc-
cur or when a scheduled time is reached:

= Stored functions return a result from a calculation and can be used in expressions.

= Stored procedures do not return a result directly but can be used to perform gen-
eral computations or produce result sets that are passed back to the client.

= Triggers are associated with a table and are defined to execute when the table is
modified via INSERT, DELETE, or UPDATE statements.

= Events execute on a time-activated basis according to a schedule.

MySQL added support for stored functions and procedures in version 5.0.0, triggers in
5.0.2, and events in 5.1.6. Whether you use the MySQL 5.0 or 5.1 series, it is best to use
recent versions to avoid problems in the early implementations of these object types.

Stored programs provide several benefits and capabilities:

= The executable part of the object can be written using compound statements that
extend SQL syntax to include blocks, loops, and conditional statements. (Section
E.1,“SQL Statement Syntax,” shows the syntax for all such statements.)

= Stored programs are stored on the server side, so all the code needed to define them
is sent over the network only once at program-creation time, not each time you
want to execute them. This reduces overhead.

= They enable encapsulation of complex calculations into program units that can be
easily invoked by name.

= They provide a means to standardize computational operations. If you provide a set
of stored programs as a “library” that many applications can use, those applications
all perform the operations in the same way.

= They provide a mechanism for handling errors.

= They improve database security because you can enable controlled access to sensi-
tive data by appropriate selection of the privileges a program has when it executes.

290 Chapter 4 Stored Programs

This chapter uses the following terminology:

= “Stored programs” refers collectively to stored objects of all types (functions, proce-
dures, triggers, and events).

= “Stored routines” is a more limited term that refers only to stored functions and
procedures. Both types of objects are defined using very similar syntax, so it is often
natural to discuss them together. In fact, the term “stored procedures” is frequently
used to refer both to procedures and functions. However, I find this unhelpfully
ambiguous and will not use the term that way.

Later sections in this chapter discuss how to write and use each type of stored pro-
gram. However, before getting into the details of any particular type of stored program,
we’ll begin with a discussion of an issue common to all of them: how to write compound
statements.

4.1 Compound Statements and Statement
Delimiters

A simple stored program that has a body consisting of a single SQL statement can be
written without any special treatment. The following procedure uses a SELECT statement
that displays the names of the tables in the sampdb database:

CREATE PROCEDURE sampdb_tables ()
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'sampdb' ORDER BY TABLE_NAME;

However, a stored program need not be limited to a single simple statement. The code
can contain multiple SQL statements, and it can use constructs such as local variables,
conditional statements, loops, and nested blocks. To write a stored program that uses these
features, use a compound statement, which consists of BEGIN and END to form a block
within which an arbitrary number of statements can be written. The following procedure
displays a greeting with your username, or “earthling” if you are an anonymous user:

CREATE PROCEDURE greetings ()
BEGIN
77 = 16 for username + 60 for hostname + 1 for '@’
DECLARE user CHAR(77) CHARACTER SET utf8;
SET user = (SELECT CURRENT_USER());
IF INSTR(user,'@') > 0 THEN
SET user = SUBSTRING_INDEX (user,'@',1);
END IF;
IF user = '' THEN # anonymous user

SET user = 'earthling';
END IF;
SELECT CONCAT('Greetings, ',user, '!') AS greeting;
END;

4.1 Compound Statements and Statement Delimiters

An issue that arises in the use of compound statements is that the statements within a
block must be separated semicolon (‘;’) characters as delimiters. That also is the default
statement delimiter for the mysqgl program, so there is a conflict if you try to define stored
programs using mysql.To deal with this, use the delimiter command to redefine mysql’s
statement delimiter to a character or string that does not appear in the routine definition.
That causes mysgl not to interpret semicolons as terminators and to pass the entire object
definition to the server as a single statement.You can redefine the terminator to semi-
colon again after defining the stored program.The following example temporarily
changes the mysqgl delimiter to $ while a stored procedure is being defined, and then exe-
cutes the procedure after restoring the default delimiter:
mysgl> delimiter $
mysgl> CREATE PROCEDURE show_times ()

-> BEGIN
-> SELECT 'Local time is:', CURRENT_TIMESTAMP;
-> SELECT 'UTC time is:', UTC_TIMESTAMP;
-> END$
mysgl> delimiter ;
mysgl> CALL show_times();

+
| UTC time is: |
b o +
| UTC time is: |
tmmmm e +

The delimiter need not be $, and it need not be a single character:

mysqgl> delimiter EOF
mysgl> CREATE PROCEDURE show_times()
-> BEGIN
-> SELECT 'Local time is:', CURRENT_TIMESTAMP;
-> SELECT 'UTC time is:', UTC_TIMESTAMP;
-> END EOF
mysgl> delimiter ;

The principle to keep in mind is this: If a stored program’s body contains any internal
semicolons, you should redefine the delimiter while defining the program.

A compound statement need not be used only for complex stored programs.You can
use one even if a program body consists of a single statement, or even no statements:
CREATE PROCEDURE do_little ()

BEGIN
DO SLEEP(1);

291

292

Chapter 4 Stored Programs

END;

CREATE PROCEDURE do_nothing ()
BEGIN
END;

For stylistic consistency, you might prefer to use BEGIN and END for all stored program
definitions.

4.2 Stored Functions and Procedures

Stored functions calculate a value to be returned to the caller for use in expressions, just
like built-in functions such as cos () or HEX (). Stored procedures are executed as stand-
alone operations using the CALL statement rather than in expressions. Use a procedure if
you need only to perform a computation to produce an effect or action without return-
ing a value, or if the computation produces result sets (which a function is not allowed to
do). These are guidelines, not hard and fast rules. For example, if you need to return more
than one value, you cannot use a function. But you may be able to use a procedure, be-
cause procedures support parameter types that can have their values set when the proce-
dure executes, such that those values can be accessed by the caller after the procedure
finishes.

To create a stored function or procedure, use a CREATE FUNCTION Or CREATE
PROCEDURE statement. The following example creates a function that takes an integer-
valued parameter representing a year. (I use p_ as a prefix to distinguish parameter names
from other names such as those of tables or columns.) The function uses a subquery to
determine how many presidents were born in that year and returns the count:
mysqgl> delimiter $
mysgl> CREATE FUNCTION count_born_in_year(p_year INT)

-> RETURNS INT
-> READS SQL DATA
-> BEGIN
-> RETURN (SELECT COUNT(¥*) FROM president WHERE YEAR(birth) = p_year);
-> END$
mysqgl> delimiter ;

The function has a RETURNS clause to indicate the data type of its return value and a
body that computes that value. The function body must include at least one RETURN state-
ment to return a value to the caller. By defining a calculation as a function, you have a
simple way to execute it without specifying all the logic each time, and it can be invoked
just like a built-in function:

mysgl> SELECT count_born_in_year(1908);

4.2 Stored Functions and Procedures

mysqgl> SELECT count_born_in_year(1913);

Here, the function is invoked by itself, but stored functions can be used within arbi-
trarily complex expressions.

You cannot return multiple values from a given function.You could write multiple
functions and invoke them all from within a single statement, but another approach is to
use a stored procedure that “returns” values via oUT parameters. The procedure should
compute the desired values and assign them to the parameters, which then can be
accessed by the caller after the procedure returns. For details, see Section 4.2.2,“Stored
Procedure Parameter Types.”

If you define a stored function with the same name as a built-in function, you should
qualify the function name with the database name when you invoke it. For example, if
you define a stored function named PI () in the sampdb database, invoke it as
sampdb. PI () to make clear that you do not mean the built-in function. (To avoid this
ambiguity, it’s best not to use names of built-in functions.)

A stored procedure is similar to a stored function, but it doesn’t return a value. There-
fore, it does not have a RETURNS clause or any RETURN statements. The following simple
stored procedure is similar to the count_born_in_year () function, but instead of calcu-
lating a count as a return value, it displays a result set containing a row of information for
each president born in the given year.

mysgl> delimiter $
mysqgl> CREATE PROCEDURE show_born_in_year(p_year INT)
-> BEGIN
-> SELECT first_name, last_name, birth, death
-> FROM president
-> WHERE YEAR(birth) = p_year;
-> END$
mysgl> delimiter ;

Unlike stored functions, stored procedures are not used in expressions. They are in-
voked using the CALL statement:

mysqgl> CALL show_born_in_year(1908);

fomm e fomm e fomm e tomm - +
| first_name | last_name | birth | death |
Fomm e B Fomm e tomm - +
| Lyndon B. | Johnson | 1908-08-27 | 1973-01-22 |
B e Hmmmmmmm o Hmmmmmmm oo e et +
mysqgl> CALL show_born_in_year(1913);

fomm e fomm e fomm e tomm - +

| first_name | last_name | birth | death

293

294

Chapter 4 Stored Programs

+ +

| Richard M. | Nixon | 1913-01-09 | 1994-04-22 |

| Gerald R. | Ford | 1913-07-14 | 2006-12-26 |
+ +

The procedure body in this case executes a SELECT statement. As the example illus-
trates, the result set from this statement is not returned as the procedure value, but instead
is sent to the client. A procedure can generate multiple result sets, each of which is sent in
turn to the client.

The examples thus far have only selected information, but stored routines also can
modify tables, as shown by the next example. update_expiration() is a stored routine
that updates data. It takes the ID of a Historical League member and updates the appro-
priate membership row with the given expiration date:

CREATE PROCEDURE update_expiration (p_id INT UNSIGNED, p_date DATE)
BEGIN

UPDATE member SET expiration = p_date WHERE member_id = p_id;
END;

The following calls of update_expiration() set member expirations to one year
from the current date and to “lifetime membership” (NULL means “no expiration”):

mysqgl> CALL update_expiration(61, CURDATE() + INTERVAL 1 YEAR);
mysqgl> CALL update_expiration(87, NULL);

Stored functions are subject to the restriction that they cannot modify a table that is be-
ing read or written by the statement that invoked the function. Stored procedures normally
do not have this restriction, but do become subject to it if they are invoked from within a
stored function. For example, you cannot call update_expiration() from within a stored
function that is used in a statement that selects from the member table.

4.2.1 Privileges for Stored Functions and Procedures

Stored functions and procedures belong to a database.To create a stored function or pro-
cedure, you must have the CREATE ROUTINE privilege for that database. By default, when
you create a stored routine, the server automatically grants you the EXECUTE and ALTER
ROUTINE privileges if you do not already have them, so that you can execute the routine
or drop it. If you do drop the routine, the server also automatically revokes those privi-
leges.You can set the automatic_sp_privileges system variable to O if you don’t want
automatic privilege granting and revocation to occur.

If the server has binary logging enabled, stored functions are subject to additional con-
ditions that are intended to make the binary log safe for backups and replication by re-
stricting creation of functions that are non-deterministic or modify data. (If a function
produces different results for given input values, restoring data by re-executing the binary

4.2 Stored Functions and Procedures

log can fail to restore the original data, and the function can replicate differently on mas-
ter and slave servers.) These conditions are:

= Ifthe log_bin_trust_function_creators system variable is not enabled, you
must have the SUPER privilege to be able to create stored functions. Also, each func-
tion that you create should be deterministic and should not modify data.To signal
this, declare it with one of the DETERMINISTIC, NO SQL, or READS SQIL DATA char-
acteristics. For example:

CREATE FUNCTION half (p_value DOUBLE)
RETURNS DOUBLE
DETERMINISTIC
BEGIN
RETURN p_value / 2;
END;

= Ifthe log_bin_trust_function_creators system variable is enabled, no restric-
tions are enforced. This is most appropriate in situations where you can trust all
users of the MySQL server not to define unsafe stored functions.

The conditions relating to log_bin_trust_function_creators also apply to trigger
creation. Before MySQL 5.1.6, you are not likely to notice this because you must have
the sUPER privilege to create triggers, and SUPER overrides the log_bin_trust_
function_ creators restrictions.

4.2.2 Stored Procedure Parameter Types

Stored procedure parameters can have one of three types. For an IN parameter, the caller
passes a value into the procedure. The value can be modified within the procedure, but
any changes are not visible to the caller after the procedure returns. An ouT parameter is
the opposite. The procedure assigns a value to the parameter, which can be accessed by
the caller after the procedure returns. An INOUT parameter enables the caller to pass in a
value, and to get back a value.

To specify a parameter type explicitly, use IN, oUT, or INOUT immediately preceding the
parameter name in the parameter list. Parameters are IN by default if no type is given.

To use an OUT or INOUT parameter, specify a variable name when you call the proce-
dure. The procedure can set the parameter value, and the corresponding variable will have
that value when the procedure returns. The oUT and INOUT parameter types can be espe-
cially useful when you require a computation that produces multiple result values. (A
stored function returns only a single value, so it is inapplicable to such situations.)

The following procedure demonstrates use of OUT parameters. It counts the number of
male and female students in the student table and returns the counts via its parameters so
that the caller can access them:

CREATE PROCEDURE count_students_by_sex (OUT p_male INT, OUT p_female INT)
BEGIN

295

296

Chapter 4 Stored Programs

SELECT COUNT (*) FROM student WHERE sex = 'M' INTO p_male;
SELECT COUNT(*) FROM student WHERE sex = 'F' INTO p_female;
END;

To invoke the procedure, supply user-defined variables for the parameters. The proce-
dure puts the counts into these parameters, and after it returns, the variables contain the
counts:

mysgl> CALL count_students_by_sex(@mcount, @fcount);
mysgl> SELECT 'Number of male students: ', @mcount;

B e B +
| Number of male students: | emcount |
B e fmmmm +
| Number of male students: | 16 |
B T fmmmm +
mysgl> SELECT 'Number of female students:', @fcount;
B e B +
| Number of female students: | @fcount |
B e fmmmm +
| Number of female students: | 15 |
B T fmmmm +

More involved examples might require additional parameters. For example, you might
write a procedure that has an IN parameter that indicates the ID for a test or quiz in the
score table. The procedure could compute descriptive statistics from the relevant scores
(mean, standard deviation, range, and so forth), and then pass back all those values to the
caller by means of oUT parameters.

The 1N, ouT, and INOUT keywords do not apply to stored functions, triggers, or events.
For stored functions, all parameters are like IN parameters. Triggers and events do not
have parameters at all.

4.3 Triggers

A trigger is a stored program that is associated with a particular table and is defined to ac-
tivate for INSERT, DELETE, or UPDATE statements for that table. A trigger can be set to acti-
vate either before or after each row processed by the statement. The trigger definition
includes a statement that executes when the trigger activates.

The following list describes some of the benefits that triggers provide:

= A trigger can examine or change new data values to be inserted or used to update a
row. This enables you to enforce data integrity constraints, such as verifying that a
percentage is a value from 0 to 100. It also makes it possible to perform input data
filtering.

= A trigger can supply default values for a column based on an expression. This en-
ables you to work around the restriction that default values in column definitions
must be constants.

4.3 Triggers

= A trigger can examine the current contents of a row before it is deleted or updated.
This capability can be exploited to perform logging of changes to existing rows, for
example.

To create a trigger, use the CREATE TRIGGER statement. The definition indicates the
particular type of statement for which the trigger activates (INSERT, UPDATE, or DELETE),
and whether it activates before or after rows are modified. The basic syntax for trigger
creation looks like this:
CREATE TRIGGER trigger_name

{BEFORE | AFTER} when the trigger activates

the trigger name

#
{INSERT | UPDATE | DELETE} # what statement activates it
ON tbl_name # the associated table

#

FOR EACH ROW trigger_stmt; what the trigger does

tbl_name is the table with which the trigger is associated; trigger_name is the name
of the trigger itself. For trigger naming, I like to adopt a convention that helps make the
trigger purpose and table association clear, such as bi_tbI_name or ai_tbl_name for a
BEFORE INSERT or AFTER INSERT trigger on tbl_name.

trigger_stmt is the trigger body; that is, the statement that executes when the trigger
activates. In a trigger body, the syntax NEW. col_name can be used to refer to columns in
the new row to be inserted or updated in an INSERT or UPDATE trigger. Similarly,

OLD. col_name can be used to refer to columns in the old row to be deleted or updated in
a DELETE or UPDATE trigger. To change a column value within a BEFORE trigger before the
value is stored in the table, use SET NEW.col_name = value.

The following example shows a trigger bi_t for INSERT statements for a table t that
has an integer percent column for storing percentage values (0 to 100) and a DATETIME
column. The trigger uses BEFORE so that it can examine data values before they are in-
serted into the table.

mysqgl> CREATE TABLE t (percent INT, dt DATETIME);
mysgl> delimiter $
mysgl> CREATE TRIGGER bi_t BEFORE INSERT ON t
-> FOR EACH ROW BEGIN
-> SET NEW.dt = CURRENT_TIMESTAMP;

-> IF NEW.percent <) THEN

-> SET NEW.percent = 0;

-> ELSEIF NEW.percent > 100 THEN
-> SET NEW.percent = 100;

-> END IF;

-> END$

mysqgl> delimiter ;

The trigger performs two actions:

= For attempts to insert a percentage value that lies outside the range from 0 to 100,
the trigger converts the value to the nearest endpoint.

297

298

Chapter 4 Stored Programs

= The trigger automatically provides a value of CURRENT_TIMESTAMP for the
DATETIME column. In effect, this works around the limitation that a column’s de-
fault value must be a constant, and implements TIMESTAMP-like automatic initializa-
tion for a DATETIME column.

To see how the trigger works, insert some rows into the table, and then retrieve its
contents:
mysgl> INSERT INTO t (percent) VALUES(-2); DO SLEEP(2);
mysgl> INSERT INTO t (percent) VALUES(30); DO SLEEP(2);
mysgl> INSERT INTO t (percent) VALUES(120);
mysgl> SELECT * FROM t;

| 2008-05-15 18:38:22 |
| 2008-05-15 18:38:24 |
| 2008-05-15 18:38:26 |
N

The privilege required to create and drop triggers is version-specific. Before MySQL
5.1.6, you must have the supeRr privilege. As of MySQL 5.1.6, access control is more cor-
rectly handled: Because a trigger is associated with a table, you must have the TRIGGER
privilege for that table to be able to create and drop triggers for it.

4.4 Events

MySQL 5.1.6 and up has an event scheduler that enables you to perform time-activated
database operations. An event is a stored program that is associated with a schedule. The
schedule defines the time or times at which the event executes, and optionally when the
event ceases to exist. Events are especially useful for performing unattended administrative
operations such as periodic updates to summary reports, expiration of old data, or log
table rotation. This section demonstrates row expiration. For an example that shows how
to perform event-based log table rotation, see Section 12.5.7.4, “Expiring or Rotating
Log Tables.”

The event scheduler does not run by default, so you must turn it on if you want to use
events. Put the following lines in an option file that the server reads at startup:
[mysqld]
event_scheduler=0N

To check the status of the event scheduler at runtime, use this statement:
SHOW VARIABLES LIKE 'event_scheduler';

To stop or start the scheduler at runtime, change the value of the event_scheduler
system variable (it 1s a GLOBAL variable, so you must have the SUPER privilege):

SET GLOBAL event_scheduler = OFF; # or 0
SET GLOBAL event_scheduler = ON; # or 1

4.4 Events

If you stop the scheduler, no events run. It is also possible to leave the scheduler run-
ning but disable individual events, as discussed later.

Note

If you set event_scheduler t0 DISABLED at startup, you can check but not change its sta-
tus at runtime. Also, you can create events, but they will not execute.

The event scheduler writes to the server’s error log, which you can check for informa-
tion about what the scheduler is doing. It logs events as it runs them, as well as errors that
occur during event execution. If the event scheduler is not running when you expect it
to be, check the error log for a message that indicates the reason why.

The following example shows how to create a simple event that deletes old rows from
a table. Suppose that you have a table named web_session that holds state information
for sessions associated with users who visit your Web site, and that this table has a
DATETIME column named last_visit that indicates the time of each user’s most recent
visit. To keep this table from accumulating stale rows, you can set up an event that period-
ically purges them.To execute the event every six hours and have it expire rows more
than a day old, write the event definition like this:

CREATE EVENT expire_web_session
ON SCHEDULE EVERY 4 HOUR
DO
DELETE FROM web_session
WHERE last_visit < CURRENT_TIMESTAMP - INTERVAL 1 DAY;

The EVERY n interval clauses specifies periodic execution at fixed intervals. The
interval values are like those used for the DATE_ADD () function, such as HOUR, DAY, or
MONTH. Following EVERY, you can also include STARTS datetime and ENDS datetime op-
tions that specify the initial and final execution time. By default, an EVERY event runs for
the first time immediately after it is created and has no final time.

The po clause defines the event body, which is an SQL statement that executes when
the event runs. As for other stored program types, this can be a simple statement or a
compound statement written using BEGIN and END.

To create an event that runs only one time, use the AT scheduling type rather than
EVERY. A definition such as the following creates an event that executes once, an hour in
the future:

CREATE EVENT one_shot
ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 1 HOUR
DO ... ;

To disable an event to stop it from executing, or to re-enable a disabled event, use
ALTER EVENT:

ALTER EVENT event_name DISABLE;
ALTER EVENT event_name ENABLE;

299

300

Chapter 4 Stored Programs

An event belongs to a database, so you must have the EVENT privilege for that database
to create or drop events for it.

4.5 Security for Stored Programs and Views

‘When you create a stored program, you create an object that is to be executed later. The
same is true when you define a view: It sets up a SELECT statement intended for later invo-
cation. This “execute later” aspect of such objects means that the user who causes object
execution might not be the user who originally created it, which raises an important ques-
tion: What security context should the server use for checking access privileges at execu-
tion time? That is, which account’s privileges should apply?

By default, the server uses the account of the user who defined the object. Suppose
that I define a stored procedure p () that accesses tables belonging to me. If I give you the
EXECUTE privilege for p (), you can say CALL p() to invoke the procedure and it will ac-
cess my tables on your behalf because it runs with my privileges. This type of security
context can be good or bad:

= It’s good in the sense that it enables carefully written stored programs to be set up
that provide controlled access to tables for users who are not able to access them
directly.

= It’s bad if a user creates a stored program that accesses sensitive data but forgets
that other people who can invoke the object have the same access to that data as
its definer.

The definer for a stored program or view can be specified explicitly by including a
DEFINER = account clause in the CREATE statement for the object.This causes the named
account to be treated as the definer for purposes of access checking at execution time. For
example:

CREATE DEFINER = 'sampadm'@'localhost' PROCEDURE count_students()
SELECT COUNT(*) FROM student;

In a DEFINER clause, the definer value can be an account name in 'user_name'@
'host_name' format as used in account-management statements such as CREATE USER.
(See Section 12.4.1.1,“Specifying Account Names.”) For this format, user_name and
host_name must both be given. Alternatively, the value can be CURRENT_USER or
CURRENT_USER () to indicate the account of the user who executes the statement
(the same account that is used by default if no DEFINER clause is present).

If you have the SUPER privilege, you can give any syntactically legal account name as
the DEFINER value; a warning occurs if the account does not exist at the time. If you do
not have the SUPER privilege, you can set the definer only to your own account, using ei-
ther the literal account name or CURRENT_USER.

For views and stored functions and procedures, you can specify the SOL SECURITY
characteristic, which gives you an additional means of control over execution time access-
checking. SO, SECURITY takes a value of DEFINER (execute with the definer’s privileges)
or INVOKER (execute with the privileges of the user who invoked the object).

4.5 Security for Stored Programs and Views 301

SQL SECURITY INVOKER is preferable for situations when you don’t want a stored pro-
gram or view to execute with any more privileges than a user already has. The following
view accesses a table in the mysql database, but runs with invoker privileges. That way, if
the invoker has no access to mysql .user, the view won'’t subvert that restriction.

CREATE SQL SECURITY INVOKER VIEW v
AS SELECT CONCAT (User, '@',Host) AS Account, Password FROM mysql.user;

Triggers and events are invoked automatically by the server, so the concept of “invok-
ing user’” does not apply. Thus, they have no sQL SECURITY characteristic and always exe-
cute with definer privileges.

If a stored program or view runs with definer privileges at execution time and the de-
finer account does not exist, an error occurs.

This page intentionally left blank

5

Query Optimization

The world of relational database theory is a world dominated by tables and sets, and op-
erations on tables and sets. A database is a set of tables, and a table is a set of rows and
columns. When you issue a SELECT statement to retrieve rows from a table, you get back
another set of rows and columns—that is, another table. These are abstract notions that
make no reference to the underlying representation a database system uses to operate on
the data in your tables. Another abstraction in set theory is that operations on tables hap-
pen all at once; queries are conceptualized as set operations for which there is no concept
of time.

The real world, of course, is quite different. Database management systems implement
abstract concepts but do so on real hardware bound by real physical constraints. As a re-
sult, queries take time—sometimes an annoyingly long time. And we, being impatient
creatures, don’t like to wait, so we leave the abstract world of instantaneous mathematical
operations on sets and look for ways to speed up our queries. Fortunately, there are several
techniques for doing so:

= Create indexes on tables to enable the database server to look up rows more
quickly.

= Consider how to write queries to take advantage of those indexes to the fullest ex-
tent, and use the EXPLAIN statement to check whether the MySQL server really is
doing so.

= Write queries to affect the server’s scheduling mechanism so that queries arriving
from multiple clients cooperate better.

= Tune the server’s configurable operating parameters to get it to perform more
efficiently.

= Analyze what’s going on with the underlying hardware and how to work around its
physical constraints to improve performance.

This chapter focuses on those kinds of issues, with the goal of assisting you in optimiz-
ing the performance of your database system so that it processes your queries as quickly as

304

Chapter 5 Query Optimization

possible. MySQL is already quite fast, but even the fastest database can run queries more
quickly if you help it do so.

5.1 Using Indexing

Many techniques are available to you for speeding up queries, but indexing is the most
important one. That is, in general, the one thing that makes the most difference is the
proper use of indexes. It’s often true that when a query runs slowly, adding indexes solves
the problem immediately. But it doesn’t always work like that, because optimization isn’t
always simple. Nevertheless, if you don’t use indexes, in many cases you’re just wasting
your time trying to improve performance by other means. Use indexing first to get the
biggest performance boost and then see what other techniques might be helpful.

This section describes what an index 1s and how indexing improves query perform-
ance. It also discusses the circumstances under which indexes might degrade performance
and provides guidelines for choosing indexes for your table wisely. In the next section,
we’ll discuss MySQL's query optimizer that attempts to find the most efficient way to ex-
ecute queries. It’'s good to have some understanding of the optimizer in addition to
knowing how to create indexes because then you’ll be better able to take advantage of
the indexes you create. Certain ways of writing queries actually prevent your indexes
from being useful, and you’ll want to avoid having that happen.

5.1.1 Benefits of Indexing

Let’s consider how an index works, beginning with a table that has no indexes. An unin-
dexed table is simply an unordered collection of rows. Figure 5.1 shows the ad table that
was discussed in Chapter 1,“Getting Started with MySQL.” Because there are no indexes
on this table, finding the rows for a particular company requires examination of each row
in the table to see whether it matches the desired value. This involves a full table scan,
which is slow, as well as tremendously inefficient if the table is large but contains only a
few rows that match the search criteria.

ad table
company_num ad_num [hit_fee
14 48 0.01
23 49 0.02
17 52 0.01
13 55 0.03
23 62 0.02
23 63 0.01
23 64 0.02
13 77 0.03
23 99 0.03
14 101 0.01
13 102 0.01
17 119 0.02

Figure 5.1 Unindexed ad table.

5.1 Using Indexing

Figure 5.2 shows the same table, but with the addition of an index on the
company_num column in the ad table. The index contains an entry for each row in the ad
table, but the index entries are sorted by company_num value. Now, instead of searching
through the table row by row looking for items that match, we can use the index. Sup-
pose that we’re looking for all rows for company 13.We begin scanning the index and
find three values for that company. Then we reach the index value for company 14, which
is higher than the one we're looking for. Index values are sorted, so when we read the in-
dex row containing 14, we know we won'’t find any more matches and can quit looking.
Thus, one efficiency gained by using the index is that we can tell where the matching
rows end and can skip the rest. Another efficiency comes about through the use of posi-
tioning algorithms for finding the first matching entry without doing a linear scan from
the start of the index (for example, a binary search is much quicker than a scan). That way,
we can quickly position to the first matching value and save a lot of time in the search.
Databases use various techniques for positioning to index values quickly, but it’s not so
important here what those techniques are. What’s important is that they work and that in-
dexing is a good thing because it enables their use.

ad table
index company_num ad_num |hit_fee
13 14 48 0.01
13 23 49 0.02
13 17 52 0.01
14 13 55 0.03
14 23 62 0.02
17 23 63 0.01
17 23 64 0.02
23 13 77 0.03
23 23 99 0.03
23 14 101 0.01
23 13 102 0.01
23 17 119 0.02

Figure 5.2 Indexed ad table.

You might be asking why we don’t just sort the data rows and dispense with the in-
dex.Wouldn't that produce the same type of improvement in search speed? Yes, it
would—if the table had a single index. But you might want to add a second index, and
you can't sort the data rows two different ways at once. For example, you might want one
index on customer names and another on customer ID numbers or phone numbers. Us-
ing indexes as entities separate from the data rows solves the problem and enables multiple
indexes to be created. In addition, rows in the index are generally shorter than data rows.
When you insert or delete new values, it’s easier to move around shorter index values to
maintain the sort order than to move around the longer data rows.

The particular details of index implementations vary for different MySQL storage
engines. For example, for a MyISAM table, the table’s data rows are kept in a data file,

305

306

Chapter 5 Query Optimization

and index values are kept in an index file.You can have more than one index on a table,
but they’re all stored in the same index file. Each index in the index file consists of a
sorted array of key rows that are used for fast access into the data file.

By contrast, the InnoDB storage engine does not separate data rows and index values
in the same way, although it does maintain indexes as sets of sorted values. By default, the
InnoDB engine uses a single tablespace within which it manages data and index storage
for all InnoDB tables. InnoDB can be configured to create each table with its own table-
space, but even so, a given table’s data and indexes are stored in the same tablespace file.

The preceding discussion describes the benefit of an index in the context of single-
table queries, where the use of an index speeds searches significantly by eliminating the
need for full table scans. Indexes are even more valuable when you’re running queries in-
volving joins on multiple tables. In a single-table query, the number of values you need to
examine per column is the number of rows in the table. In a multiple-table query, the
number of possible combinations skyrockets because it’s the product of the number of
rows in the tables.

Suppose that you have three unindexed tables, t1, £2, and t3, each containing a col-
umn il, i2, and i3, respectively, and each consisting of 1,000 rows that contain the num-
bers 1 through 1000. A query to find all combinations of table rows in which the values
are equal looks like this:

SELECT t1.il, t2.i2, t3.i3
FROM tl INNER JOIN t2 INNER JOIN t3
WHERE tl1.il = t2.i2 AND t2.i2 = t3.1i3;

The result of this query should be 1,000 rows, each containing three equal values. If
we process the query in the absence of indexes, we have no idea which rows contain
which values without scanning them all. Consequently, we must try all combinations to
find the ones that match the wHERE clause. The number of possible combinations is 1,000
X 1,000 X 1,000 (one billion!), which is a million times more than the number of
matches. That’s a lot of wasted effort. To make things worse, as the tables grow, the time to
process joins on those tables grows even more if no indexes are used, leading to very poor
performance. We can speed things up considerably by indexing the tables, because the in-
dexes enable the query to be processed like this:

Select the first row from table t1 and see what value the row contains.

2. Using the index on table t2, go directly to the row that matches the value from t1.
Similarly, using the index on table t3, go directly to the row that matches the value
from t2.

3. Proceed to the next row of table t1 and repeat the preceding procedure. Do this
until all rows in t1 have been examined.

In this case, we still perform a full scan of table t1, but we can do indexed lookups on
t2 and t3 to pull out rows from those tables directly. The query runs about a million
times faster this way—literally. This example is contrived for the purpose of making a

5.1 Using Indexing

point, but the problems it illustrates are real, and adding indexes to tables that have none
often results in dramatic performance gains.
MySQL uses indexes in several ways:

= As just described, indexes are used to speed up searches for rows matching terms of
a WHERE clause or rows that match rows in other tables when performing joins.

= For queries that use the MIN() or MAX () functions, the smallest or largest value in
an indexed column can be found quickly without examining every row.

= MySQL can often use indexes to perform sorting and grouping operations quickly
for ORDER BY and GROUP BY clauses.

= Sometimes MySQL can use an index to read all the information required for a
query. Suppose that you're selecting values from an indexed numeric column in a
MyISAM table, and you're selecting no other columns from the table. In this case,
when MySQL reads an index value from the index file, it obtains the same value
that it would get by reading the data file. There’s no reason to read values twice, so
the data file need not even be consulted.

5.1.2 Costs of Indexing

In general, if MySQL can figure out how to use an index to process a query more
quickly, it will. This means that, for the most part, if you don’t index your tables, you're
hurting yourself.You can see that I'm painting a rosy picture of the benefits of indexing.
Are there disadvantages? Yes, there are. There are costs both in time and in space. In prac-
tice, these drawbacks tend to be outweighed by the advantages, but you should know
what they are.

First, indexes speed up retrievals but slow down inserts and deletes, as well as updates
of values in indexed columns. That is, indexes slow down most operations that involve
writing. This occurs because writing a row requires writing not only the data row; it re-
quires changes to any indexes as well. The more indexes a table has, the more changes
need to be made, and the greater the average performance degradation. Most tables re-
ceive many reads and few writes, but for a table with a high percentage of writes, the cost
of index updating might be significant. Section 5.4, “Loading Data Efficiently, discusses
what you can do to reduce this cost.

Second, an index takes up disk space, and multiple indexes take up correspondingly
more space. This might cause you to reach a table size limit more quickly than if there are
no indexes:

= For a MyISAM table, indexing it heavily may cause the index file to reach its maxi-
mum size more quickly than the data file.

= All InnoDB tables that are located within the InnoDB shared tablespace compete
for the same common pool of space, and adding indexes depletes storage within this
tablespace more quickly. However, unlike the files used for MyISAM tables, the
InnoDB shared tablespace is not bound by your operating system’s file-size limit,

307

308

Chapter 5 Query Optimization

because it can be configured to use multiple files. As long as you have additional
disk space, you can expand the tablespace by adding new components to it.

InnoDB tables that use individual tablespaces store data and index values together
in the same file, so adding indexes causes the table to reach the maximum file size
more quickly.

The practical implication of both these factors is that if you don’t need a particular in-
dex to help queries perform better, don’t create it.

5.1.3 Choosing Indexes

The syntax for creating indexes is covered in Section 2.6.4.2,“Creating Indexes.” I assume
here that you’ve read that section. But knowing syntax doesn’t in itself help you deter-
mine how your tables should be indexed. That requires some thought about the way you
use your tables. This section gives some guidelines on how to identify candidate columns
for indexing and how best to set up indexes.

Index columns that you use for searching, sorting, or grouping, not columns you
select for output. In other words, the best candidate columns for indexing are the
columns that appear in your WHERE clause, columns named in join clauses, or columns that
appear in ORDER BY or GROUP BY clauses. Columns that appear only in the output column
list following the seLECT keyword are not good candidates:

SELECT

col_a <« not a candidate
FROM

tbll LEFT JOIN tbl2

ON tbll.col_b = tbl2.col_c <« candidates
WHERE

col_d = expr; < a candidate

The columns that you display and the columns you use in the WHERE clause might be
the same, of course. The point is that appearance of a column in the output column list is
not in itself a good indicator that it should be indexed.

Columns that appear in join clauses or in expressions of the form coll = col2in
WHERE clauses are especially good candidates for indexing. col_b and col_c in the query
just shown are examples of this. If MySQL can optimize a query using joined columns, it
cuts down the potential table-row combinations quite a bit by eliminating full table scans.

Consider column cardinality. The cardinality of a column is the number of distinct
values that it contains. For example, a column that contains the values 1,3,7,4,7,and 3
has a cardinality of four. Indexes work best for columns that have a high cardinality rela-
tive to the number of rows in the table (that is, columns that have many unique values
and few duplicates). For a column that contains many different age values, an index read-
ily differentiates rows. For a column that is used to record sex and contains only the two
values 'M' and 'F', an index will not help. If the values occur about equally, you’ll get
about half of the rows whichever value you search for. Under these circumstances, the

5.1 Using Indexing

index might never be used at all, because the query optimizer generally skips an index in
favor of a full table scan if it determines that a value occurs in a large percentage of a
table’s rows. The conventional wisdom for this percentage used to be 30%. Nowadays the
optimizer is more complex and takes other factors into account, so the percentage is not
the sole determinant of when MySQL prefers a scan over using an index.

Index short values. Use smaller data types when possible. For example, don’t use a
BIGINT column if a MEDIUMINT is large enough to hold the values you need to store, and
don’t use CHAR (100) if none of your values are longer than 25 characters. Smaller values
improve index processing in several ways:

= Shorter values can be compared more quickly, so index lookups are faster.
= Smaller values result in smaller indexes that require less disk I/0.

= With shorter key values, index blocks in the key cache hold more key values.
MySQL can hold more keys in memory at once, which improves the likelihood of
locating key values without reading additional index blocks from disk.

For the InnoDB storage engine, which uses clustered indexes, it’s especially beneficial
to keep the primary key short. A clustered index is one where the data rows are stored to-
gether with (that is, clustered with) the primary key values. Other indexes are secondary
indexes; these store the primary key value with the secondary index values. A lookup in a
secondary index yields a primary key value, which then is used to locate the data row. The
implication is that primary key values are duplicated into each secondary index, so if pri-
mary key values are longer, the extra storage is required for each secondary index as well.

Index prefixes of string values. If you're indexing a string column, specify a prefix
length whenever it’s reasonable to do so. For example, if you have a cHAR (200) column,
don’t index the entire column if most values are unique within the first 10 or 20 charac-
ters. Indexing the first 10 or 20 characters will save a lot of space in the index, and proba-
bly will make your queries faster as well. By indexing shorter values, you gain the
advantages described in the previous item relating to comparison speed and disk I/O re-
duction.You want to use some common sense, of course. Indexing just the first character
from a column isn’t likely to be that helpful because the resulting index won'’t have very
many distinct values.

You can index prefixes of CHAR, VARCHAR, BINARY, VARBINARY, TEXT, and BLOB
columns, using the syntax described in Section 2.6.4.2, “Creating Indexes.”

Take advantage of leftmost prefixes. When you create an n-column composite in-
dex, you actually create n indexes that MySQL can use. A composite index serves as sev-
eral indexes because any leftmost set of columns in the index can be used to match rows.
Such a set is called a “leftmost prefix.” (This is different from indexing a prefix of a col-
umn, which creates an index using the first n characters or bytes of column values.)

Suppose that you have a table with a composite index on columns named state,
city,and zip. Rows in the index are sorted in state/city/zip order, so they’re auto-
matically sorted in state/city order and in state order as well. This means that
MySQL can take advantage of the index even if you specify only state values in a query,

309

310

Chapter 5 Query Optimization

or only state and city values. Thus, the index can be used to search the following com-
binations of columns:

state, city, zip
state, city
state

MySQL cannot use the index for searches that don’t involve a leftmost prefix. For ex-
ample, if you search by city or by zip, the index isn’t used. If you're searching for a given
state and a particular ZIP code (columns 1 and 3 of the index), the index can’t be used
for the combination of values, although MySQL can narrow the search using the index to
find rows that match the state.

Don’t over-index. Don'’t index everything in sight based on the assumption “the
more, the better.” Every additional index takes extra disk space and hurts performance of
write operations, as has already been mentioned. Indexes must be updated and possibly
reorganized when you modify the contents of your tables, and the more indexes you
have, the longer this takes. If you have an index that is rarely or never used, you’ll slow
down table modifications unnecessarily. In addition, MySQL considers indexes when
generating an execution plan for retrievals. Creating extra indexes creates more work for
the query optimizer. It’s also possible (if unlikely) that MySQL will fail to choose the best
index to use when you have too many indexes. Maintaining only the indexes you need
helps the query optimizer avoid making such mistakes.

If you're thinking about adding an index to a table that is already indexed, consider
whether the index you're considering adding is a leftmost prefix of an existing multiple-
column index. If so, don’t bother adding the index because, in effect, you already have it.
For example, if you already have an index on state, city, and zip, there is no point in
adding an index on state.The exception to this is that for FULLTEXT indexes, you must
have a separate index for each distinct set of columns that you want to search.

Match index types to the type of comparisons you perform. When you create an
index, most storage engines choose the index implementation they will use. For example,
InnoDB always uses B-tree indexes. MyISAM also uses B-tree indexes, except that it uses
R-tree indexes for spatial data types. The MEMORY storage engine uses hash indexes by
default, but also supports B-tree indexes and enables you to select which one you want.
To choose an index type, consider what kind of comparison operations you plan to per-
form on the indexed column:

= For a hash index, a hash function is applied to each column value. The resulting
hash values are stored in the index and used to perform lookups. (A hash function
implements an algorithm that is likely to produce distinct hash values for distinct
input values. The advantage of using hash values is that they can be compared more
efficiently than the original values.) Hash indexes are very fast for exact-match
comparisons performed with the = or <=> operators. But they are poor for compar-
isons that look for a range of values, as in these expressions:
id < 30
weight BETWEEN 100 AND 150

5.2 The MySQL Query Optimizer

= B-tree indexes can be used effectively for comparisons involving exact or range-
based comparisons that use the <, <=, =, >=, >, <>, 1 =, and BETWEEN operators. B-tree
indexes can also be used for LIKE pattern matches if the pattern begins with a lit-
eral string rather than a wildcard character.

If you use a MEMORY table only for exact-value lookups, a hash index is a good
choice. This is the default index type for MEMORY tables, so you need do nothing spe-
cial. If you need to perform range-based comparisons with a MEMORY table, you
should use a B-tree index instead. To specify this type of index, add USING BTREE to your
index definition. For example:

CREATE TABLE lookup
(

id INT NOT NULL,

name CHAR(20),

PRIMARY KEY USING BTREE (id)
) ENGINE = MEMORY;

If the types of searches that you expect to use warrant it, a single MEMORY table can
have both hash indexes and B-tree indexes, even on the same column.

Some types of comparisons cannot use indexes. If you perform comparisons only by
passing column values to a function such as STRCMP (), there is no value in indexing the
column. The server must evaluate the function value for each row, which precludes use of
an index on the column.

Use the slow-query log to identify queries that may be performing badly. This
log can help you find queries that might benefit from indexing. (See Section 12.5,
“Maintaining Logs,” for general discussion of MySQL’s logs.) The slow-query log is
written as text, so it is viewable with any file-display program, or you can use the
mysgldumpslow utility to summarize its contents. If a given query shows up over and
over in this log, that’s a clue you’ve found a query that might not be written optimally.
You may be able to rewrite it to make it run more quickly. Keep in mind when assessing
your slow-query log that “slow” is measured in real time, so more queries will show
up in the slow-query log on a heavily loaded server than on a lightly loaded one.

5.2 The MySQL Query Optimizer

When you issue a statement that selects rows, MySQL analyzes it to see whether any
optimizations can be used to process the statement more quickly. In this section, we’ll
look at how the query optimizer works. For additional information about optimization
measures that MySQL takes, consult the optimization chapter in the MySQL Reference
Manual.

311

312

Chapter 5 Query Optimization

The MySQL query optimizer takes advantage of indexes, of course, but it also uses
other information. For example, if you issue the following query, MySQL will execute it
very quickly, no matter how large the table is:

SELECT * FROM tbl_name WHERE FALSE;

In this case, MySQL looks at the WHERE clause, realizes that no rows can possibly satisfy
the query, and doesn’t even bother to search the table.You can see this by issuing an
EXPLAIN statement, which tells MySQL to display some information about how it would
execute a SELECT query without actually executing it. To use EXPLAIN, just put the word
EXPLAIN in front of the SELECT statement:
mysql> EXPLAIN SELECT * FROM tbl_name WHERE FALSE\G

EEEEEEEEEEEEEEEEEEEEEEEEEEE] 1 row EEEE SRS EEEEEEEEEEEEEEEEEEEE]

id: 1

select_type: SIMPLE

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Impossible WHERE

Normally, EXPLAIN returns more information than that, including values more inform-
ative than NULL about the indexes that will be used to scan tables, the types of joins that
will be used, and estimates of the number of rows that will need to be examined from
each table.

In some cases, EXPLAIN actually does execute part of a query, if it contains subqueries
in the FROM clause: EXPLAIN must execute the subqueries to find out what they return be-
fore analyzing the main SELECT statement.

5.2.1 How the Optimizer Works

The MySQL query optimizer has several goals, but its primary aims are to use indexes
whenever possible and to use the most restrictive index in order to eliminate from con-
sideration as many rows as possible as soon as possible. That last part might sound back-
ward and unintuitive. After all, your goal in issuing a SELECT statement is to find rows, not
to reject them. The reason the optimizer tries to reject rows is that the faster it can elimi-
nate rows, the more quickly the rows that do match your criteria can be found. Queries
can be processed more quickly if the most restrictive tests can be done first. Suppose that
you have a query that tests two columns, each of which has an index on it:

SELECT col3 FROM mytable
WHERE coll = 'some value' AND col2 = 'some other value';

5.2 The MySQL Query Optimizer 313

Suppose also that the test on coll matches 900 rows, the test on col2 matches 300
rows, and that both tests together succeed on 30 rows. Testing col1 first results in 900
rows that must be examined to find the 30 that also match the col2 value. That’s 870
failed tests. Testing col2 first results in 300 rows that must be examined to find the 30 that
also match the col1 value. That’s only 270 failed tests, so less computation and disk I/O is
required. As a result, the optimizer will test col2 first because doing so results in less work
overall.

To help the optimizer take advantage of indexes, use the guidelines described here.
Analyze your tables. This generates index value distribution statistics that help the
optimizer make better estimates about index effectiveness. By default, when you compare
values in indexed columns to a constant, the optimizer assumes that key values are distrib-

uted evenly within the index. The optimizer will also do a quick check of the index to
estimate how many entries will be used when determining whether the index should be
used for constant comparisons. For MyISAM and InnoDB tables, you can tell the server
to perform an analysis of key values by using ANALYZE TABLE.

A table that is populated only once and then remains static need be analyzed only
once after being loaded. A table that undergoes updates should be reanalyzed occasionally
(at a frequency corresponding to how often updates occur).

Use EXPLAIN to verify optimizer operation. The EXPLAIN statement can tell you
whether indexes are being used. This information is helpful when you'’re trying different
ways of writing a statement or checking whether adding indexes actually will make a dif-
ference in query execution efficiency. For examples, see Section 5.2.2, “Using EXPLAIN to
Check Optimizer Operation.”

Give the optimizer hints or override it when necessary. You can use FORCE INDEX,
USE INDEX, Oor IGNORE INDEX after a table name in the table list of a join to give the
server guidance about which indexes to prefer. See the description for SELECT in
Appendix E,“SQL Syntax Reference.”

You can also use STRAIGHT_JOIN to force the optimizer to use tables in a particular
order. Normally, the MySQL optimizer considers itself free to determine the order in
which to scan tables to retrieve rows most quickly. On occasion, the optimizer will make
a nonoptimal choice. If you find this happening, you can override the optimizer’s choice
using the STRATIGHT_JOIN keyword. A join performed with STRAIGHT_JOIN is like a cross
join but forces the tables to be joined in the order named in the FrRoM clause.

If you do this, you should order the tables so that the first table is the one from which
the smallest number of rows will be chosen. If you are not sure which table this is, put the
table with the greatest number of rows first. In other words, try to order the tables to
cause the most restrictive selection to come first. Queries perform better the earlier you
can narrow the possible candidate rows.

STRAIGHT_JOIN can be specified at two points in a SELECT statement.You can specify
it between the SELECT keyword and the selection list to have a global effect on all cross

314

Chapter 5 Query Optimization

joins in the statement, or you can specify it in the FrRoM clause. The following two state-
ments are equivalent:

SELECT STRAIGHT_JOIN ... FROM tl INNER JOIN t2 INNER JOIN t3 ... ;
SELECT ... FROM tl STRAIGHT_JOIN t2 STRAIGHT_JOIN t3 ... ;

Be sure to try the query with and without STRAIGHT_JOIN. MySQL might have some
good reason not to use indexes in the order you think is best, and STRAIGHT_JOIN may
not actually help. (Check the execution plans with EXPLAIN to see how MySQL handles
each statement.)

Compare columns that have the same data type. When you compare indexed
columns, identical data types will give you better performance than dissimilar types. For
example, INT is different from BIGINT, so an INT/INT or BIGINT/BIGINT comparison is
faster than an INT/BIGINT comparison. CHAR (10) is considered the same as CHAR (10) or
VARCHAR (10) but different from CHAR (12) or VARCHAR (12). If columns that you compare
frequently have different types, you can use ALTER TABLE to modify one of them so that
the types match.

Make indexed columns stand alone in comparison expressions. If you use a col-
umn in a function call or as part of a more complex term in an arithmetic expression,
MySQL can’t use the index because it must compute the value of the expression for
every row. Sometimes this is unavoidable, but many times you can rewrite a query to get
the indexed column to appear by itself.

The following WHERE clauses illustrate how this works. They are equivalent arithmeti-
cally, but quite different for optimization purposes:

WHERE mycol * 2 < 4
WHERE mycol < 4 / 2

For the first line, MySQL must retrieve the value of mycol for each row, multiply by 2,
and then compare the result to 4. In this case, no index can be used. Each value in the
column must be retrieved so that the expression on the left side of the comparison can be
evaluated. For the second line, the optimizer simplifies the expression 4/2 to the value 2,
and then uses an index on mycol to quickly find values less than 2. Therefore, the second
line is better than the first.

Let’s consider another example. Suppose that you have an indexed DATE column
date_col.If you issue a query such as the one following, the index isn’t used:

SELECT * FROM mytbl WHERE YEAR (date_col) < 1990;

The expression doesn’t compare 1990 to an indexed column; it compares 1990 to a
value calculated from the column, and that value must be computed for each row. As a re-
sult, the index on date_col is not used and query execution requires a full table scan.
What's the fix? Just use a literal date, and then the index on date_col can be used to find
matching values in the columns:

WHERE date_col < '1990-01-01"

5.2 The MySQL Query Optimizer

But suppose that you don'’t have a specific date.You might be interested instead in
finding rows that have a date that lies within a certain number of days from today. There
are several ways to express a comparison of this type—not all of which are equally effi-
cient. Here are three possibilities:

WHERE TO_DAYS (date_col) - TO_DAYS(CURDATE()) < cutoff
WHERE TO_DAYS (date_col) < cutoff + TO_DAYS(CURDATE())
WHERE date_col < DATE_ADD(CURDATE(), INTERVAL cutoff DAY)

For the first line, no index is used because the column must be retrieved for each row
so that the value of To_DAYS (date_col) can be computed. The second line is better.
Both cutoff and TO_DAYS (CURDATE ()) are constants, so the right-hand side of the com-
parison can be calculated by the optimizer once before processing the query, rather than
once per row. But the date_col column still appears in a function call, preventing use of
the index. The third line is best of all. Again, the right-hand side of the comparison can be
computed once as a constant before executing the query, but now the value is a date. That
value can be compared directly to date_col values, which no longer need to be con-
verted to days. In this case, the index can be used.

Don’t use wildcards at the beginning of a LIKE pattern. Some string searches use a
WHERE clause of the following form:

WHERE col_name LIKE '$string%'

That’s the correct thing to do if you want to find the string no matter where it occurs
in the column. But don’t put ‘%’ on both sides of the string simply out of habit. If you’re
really looking for the string only when it occurs at the beginning of the column, leave
out the first ‘¢’. Suppose that you're looking in a column containing last names for names
like MacGregor or MacDougall that begin with 'Mac'. In that case, write the WHERE
clause like this:

WHERE last_name LIKE 'Mac%'

The optimizer looks at the literal initial part of the pattern and uses the index to find
rows that match as though you’d written the following expression, which is in a form that
enables an index on last_name to be used:

WHERE last_name >= 'Mac' AND last_name < 'Mad'

This optimization does not apply to pattern matches that use the REGEXP operator.
REGEXP expressions are never optimized.

Take advantage of areas in which the optimizer is more mature. MySQL can do
joins and subqueries, but subquery support is more recent, having been added in MySQL
4.1. Consequently, the optimizer has been better tuned for joins than for subqueries in
some cases. This has a practical implication when you have a subquery that runs slowly.
As discussed in Section 2.9.7, “Rewriting Subqueries as Joins,” some subqueries can be
reformulated as logically equivalent joins. If your slow subquery is one of these, try writ-
ing it as a join to see whether it performs better.

315

316

Chapter 5 Query Optimization

Test alternative forms of queries, but run them more than once. When testing al-
ternative forms of a query (for example, a subquery versus an equivalent join), run it sev-
eral times each way. If you run a query only once each of two different ways, you’ll often
find that the second query is faster just because information from the first query is still
cached and need not actually be read from the disk.You should also try to run queries
when the system load is relatively stable to avoid effects due to other activities on your
system.

Avoid overuse of MySQL’s automatic type conversion. MySQL will perform auto-
matic type conversion, but if you can avoid conversions, you may get better performance.
For example, if num_col is an integer column, each of these queries will return the same
result:

SELECT * FROM mytbl WHERE num_col = 4;
SELECT * FROM mytbl WHERE num col = '4';

But the second query involves a type conversion. The conversion operation itself in-
volves a small performance penalty for converting the integer and string to double to per-
form the comparison. A more serious problem is that if num_col is indexed, a comparison
that involves type conversion may prevent the index from being used.

The opposite kind of comparison (comparing a string column to a numeric value)
also can prevent use of an index. Suppose that you write a query like this:

SELECT * FROM mytbl WHERE str_col = 4;

In this case, an index on str_col cannot be used because there can be many different
string values in str_col that are equal to 4 when converted to a number (for example,
"4','4.0',and '4th'). The only way to know which values qualify is to read each one,
convert it, and perform the comparison. To avoid this problem if you are looking for a
particular value such as '4', specify it that way in the query:

SELECT * FROM mytbl WHERE str_col = '4';

5.2.2 Using EXPLAIN to Check Optimizer Operation

The EXPLAIN statement is useful for gaining insight into the execution plans that the op-
timizer generates for processing statements. In this section, I'll show two uses for EXPLAIN:

= To see whether writing a query different ways aftects whether an index can be used.

= To see the effect that adding indexes to a table has on the optimizer’s ability to gen-
erate efficient execution plans.

The discussion describes only those EXPLAIN output fields that are relevant for the ex-
amples. EXPLAIN output is discussed further in Appendix E. The output shown is what I
see on my system. Depending on your server version and configuration, you might see
somewhat different results.

In Section 5.2.1,“How the Optimizer Works,” the point was made that the way you
write an expression can determine whether the optimizer can use available indexes.

5.2 The MySQL Query Optimizer

Specifically, the discussion there used the example that of the three following logically
equivalent WHERE clauses, only the third enables use of an index:

WHERE TO_DAYS (date_col) - TO_DAYS(CURDATE()) < cutoff
WHERE TO_DAYS (date_col) < cutoff + TO_DAYS(CURDATE())
WHERE date_col < DATE_ADD(CURDATE(), INTERVAL cutoff DAY)

EXPLAIN enables you to check whether one way of writing an expression is better than
another. To see this, let’s try using each of the WHERE clauses to search for expiration col-
umn values in the member table, using a cutoff value of 30 days. However, as originally
created, the member table has no index on the expiration column.To enable the rela-
tionship to be seen between index use and how an expression is written, first index the

expiration column:

mysgl> ALTER TABLE member ADD INDEX (expiration);

Then try EXPLAIN with each form of the expression to see what execution plans the
optimizer comes up with:

mysgl> EXPLAIN SELECT * FROM MEMBER
-> WHERE TO_DAYS(expiration) - TO_DAYS(CURDATE()) < 30\G
IR RS SR SRS S SRS SRS EEEEEEEEEE] 1 row IS RS S EEE S SRS SRS EEEEEEE S
id: 1
select_type: SIMPLE
table: MEMBER

type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL

rows: 102

Extra: Using where
mysgl> EXPLAIN SELECT * FROM MEMBER
-> WHERE TO_DAYS(expiration) < 30 + TO_DAYS(CURDATE())\G
R E SRR SRR SR SRS SR SRR EEEEEEEE] 1 row IR RS SR SRR SRS EEEEEEEEEEEE S
id: 1
select_type: SIMPLE
table: MEMBER

type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL

rows: 102

Extra: Using where
mysgl> EXPLAIN SELECT * FROM MEMBER
-> WHERE expiration < DATE_ADD (CURDATE (), INTERVAL 30 DAY)\G

kkkkkkkkkkkhkkkhkkkhkkkhkxk TOW *hFkkkkkhkkkhxhkkhkhkkhhkhxhkk k%

317

318 Chapter 5 Query Optimization

id: 1
select_type: SIMPLE
table: MEMBER
type: range
possible_keys: expiration
key: expiration

key_len: 4
ref: NULL
rows: 6

Extra: Using where

The results for the first two statements show that the index is not used. The type value
indicates how values will be read from a table. ALL means “all rows will be examined.”
That is, a full table scan will be performed, without benefit of an index.The NULL in each
of the key-related columns also indicates that no index will be used.

By contrast, the result for the third statement shows that the wHERE clause has been
written such that the optimizer can use the index on the expiration column:

= The type value indicates that it can use the index to search for a specific range of
values (those less than the date given on the right side of the expression).

» The possible_keys and key values show that the index on expiration is consid-
ered a candidate index and also is the index that actually would be used.

= The rows value shows that the optimizer estimates that it would need to examine 6
rows to process the query. That’s better than the value of 102 for the first two exe-
cution plans.

A second use for EXPLAIN is to find out whether adding indexes would help the opti-
mizer execute a statement more efficiently. For this example, I will use just two tables that
initially are unindexed. This suffices to show the effect of creating indexes. The same prin-
ciples apply to more complex joins that involve many tables.

Suppose that we have two tables t1 and t2, each with 1,000 rows containing the val-
ues 1 to 1000.The query that we’ll examine looks for those rows where corresponding
values from the two tables are the same:

mysql> SELECT tl1.il, t2.i2 FROM t1 INNER JOIN t2
-> WHERE t1.il = t2.i2;

5.2 The MySQL Query Optimizer

With no indexes on either of the tables, EXPLAIN produces this result:

mysgl> EXPLAIN SELECT tl1.il, t2.i2 FROM tl INNER JOIN t2
-> WHERE tl.il = t2.i2\G

Kkkkkkkhkkhkhkkhkhkkkhkxkkhkxk | TOW X**kkkhkkhhhxhhkxhhkkhkhkkkk

id: 1
select_type: SIMPLE
table: tl
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1000
Extra:
PR RS S S RS S EREEE SRR EEEEEEEEE 2' row RS S S SRS S S SRS S SRR EEEEEEE S ST
id: 1
select_type: SIMPLE
table: t2
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 1000

Extra: Using where

Here, ALL in the type column indicates a full table scan that examines all rows. NULL in
the possible_keys column indicates that no candidate indexes were found for speeding
up the query. (The key, key_len, and ref columns all are NULL as well due to the lack of
a suitable index.) Using where indicates that information in the WHERE clause is used to
identify qualifying rows.

Those pieces of information tell us that the optimizer finds no useful information for
executing the query more efficiently and will proceed as follows:

= It will perform a full scan of t1.

= For each row from t1, it will perform a full scan of t2, using the information in the
WHERE clause to identify qualifying rows.

The rows values show the optimizer’s estimates about how many rows it will need to
examine at each stage of the query. The estimate is 1000 for t1 because a full scan will be
done. Similarly, the estimate is 1000 for t2, but this is for each row in t1.In other words,
the number of row combinations that the optimizer estimates it will examine to process
the query is 1,000 X 1,000, or one million. That is highly wasteful of effort, because only
1,000 combinations actually satisfy the conditions in the WHERE clause.

319

320 Chapter 5 Query Optimization

To make this query more efficient, add an index on one of the joined columns and try
the EXPLAIN statement again:
mysgl> ALTER TABLE t2 ADD INDEX (i2);

mysqgl> EXPLAIN SELECT tl.il, t2.i2 FROM tl INNER JOIN t2
-> WHERE tl.il = t2.i2\G

khkhkhkhkhhhhhhhhhhhhhhhhhhdddk l row LRSS S SRS SRR RS EEEEEEEET

id:
select_type:
table:

type:
possible_keys:
key:

key_len:

ref:

rows:

Extra:

1
SIMPLE
tl

ALL
NULL
NULL
NULL
NULL
1000

Kkkkkkkhkkkhkkkhkkkhkkkhkk*) TOW **H*kkkkkhkkhkhkhhkkhhkkhkhkkk*

id: 1
select_type: SIMPLE
table: t2
type: ref
possible_keys: i2
key: i2
key_len: 5
ref: sampdb.tl.il
rows: 10
Extra: Using where; Using index

This is an improvement. The output for t1 is unchanged (indicating that a full scan still
will be done on the table), but the optimizer can process t2 differently:

= type has changed from ALL to ref, meaning that a reference value (the value from
t1) can be used to perform an index lookup to locate qualifying rows in t2.

» The reference value is given in the ref field: sampdb.t1.11.

» The rows value has dropped from 1000 to 10, which shows that the optimizer be-
lieves that it will need to examine only 10 rows in t2 for each row in t1. (That is a
somewhat pessimistic estimate. In fact, only one row in t2 will match each row
from t1. We'll see a bit later how to help the optimizer improve this estimate.) The
total estimated number of row combinations is 1,000 X 10 = 10,000. That’s much
better than the previous estimate of one million in the absence of any indexing.

Is there any value in indexing t1? After all, for this particular join, it’s necessary to scan
one of the tables, and no index is needed to do that.To see whether there’s any effect,
index t1.il and run EXPLAIN again:

5.2 The MySQL Query Optimizer

mysgl> ALTER TABLE tl1 ADD INDEX (il);
mysqgl> EXPLAIN SELECT tl.il, t2.i2 FROM tl INNER JOIN t2
-> WHERE tl.il = t2.i2\G

kkkkkkkkkkkhkkkhkkkhkxkhkxk TOW ¥*Fkkkkkhkkkkxhkhkhkhhkhkxkx k%

id: 1
select_type: SIMPLE
table: tl
type: index
possible_keys: il
key: 11
key_len: 5
ref: NULL
rows: 1000
Extra: Using index

dhkkkkkkkkxhkkkhkxhkxkkkxhk 9 row LR R R R R R R EEEEEEEEEEEEEEEEES

id: 1
select_type: SIMPLE
table: t2
type: ref
possible_keys: 12
key: 12
key_len: 5
ref: sampdb.tl.il
rows: 10
Extra: Using where; Using index

This output is similar to that for the previous EXPLAIN, but adding the index did make
some difference in the output for t1. type has changed from NULL to index and Extra

has changed from blank to Using index.These changes indicate that, although a full scan
of the indexed values still would be done, the optimizer now can read them directly from
the index without touching the data file at all. You will see this kind of result for a
MyISAM table when the optimizer knows that it can get all the information it needs by
consulting only the index file.You’ll also see it for InnoDB tables when the optimizer can
use information solely from the index without another seek to get the data row.

One further step we can take to help the optimizer make better cost estimates is to
run ANALYZE TABLE. This causes the server to generate statistics about the distribution of
key values. Analyzing the tables and running EXPLAIN again yields a better rows estimate:

mysqgl> ANALYZE TABLE tl, t2;
mysql> EXPLAIN SELECT tl1.il, t2.i2 FROM tl INNER JOIN t2
-> WHERE tl.il = t2.i2\G

khkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkhkhkhkhkkkkkxx l row LR R R R R EEEEEEEEEEEEEEEET

id: 1
select_type: SIMPLE
table: tl
type: index
possible_keys: il

321

322

Chapter 5 Query Optimization

key: il
key_len: 5

ref: NULL

rows: 1000

Extra: Using index

Kkkkkkkhkkkhkkkhkkkhkkkkkk*) TOW **H*kkkkkkkhkkhhkkhhkkhhkkkk

id: 1
select_type: SIMPLE
table: t2
type: ref

possible_keys: 12
key: i2
key_len: 5

ref: sampdb.tl.il
rows: 1

Extra: Using where; Using index

In this case, the optimizer now estimates that each value from t1 will match only one
row in t2.

5.3 Choosing Data Types for Efficient Queries

Your choice of data type can influence query performance in several ways. This section
provides guidelines for choosing data types that can help queries run more quickly.

Use numeric rather than string operations. Calculations involving numbers gener-
ally are faster than those involving strings. Consider comparison operations. Numbers can
be compared in a single operation. String comparisons may involve several byte-by-byte
or character-by-character comparisons, more so as the strings become longer.

If a string column has a limited number of values, you can use an ENUM or SET type to
get the advantages of numeric operations. These types are represented internally as num-
bers and can be processed more efficiently.

Consider alternative representations for strings. Sometimes you can improve perform-
ance by representing string values as numbers. For example, to represent IP numbers in
dotted-quad notation, such as 192.168.0.4, you might use a string. Or you could instead
convert the IP numbers to integer form by storing each part of the dotted-quad form in
one byte of a four-byte INT UNSIGNED type. Storing integers would both save space and
speed lookups. On the other hand, representing IP numbers as INT values might make it
difficult to perform pattern matches such as you might do if you wanted to look for
numbers in a given subnet. Perhaps you can do the same thing by using bitmask opera-
tions. These kinds of issues illustrate that you cannot consider only space issues; you must
decide which representation is most appropriate based on what you want to do with the
values. (Whatever choice you make, the INET_ATON () and INET_NTOA () functions can
help convert between the two representations.)

Don’t use larger types when smaller ones will do. Smaller types can be processed
more quickly than larger types. For strings in particular, processing time is in direct

5.3 Choosing Data Types for Efficient Queries

relationship to string length. Also, with smaller types, your tables will be smaller and
require less overhead for disk activity. If a column is indexed, using shorter values gives
you even more of a performance boost. Not only will the index speed up queries, shorter
index values can be processed more quickly than longer values.

For columns that use fixed-size data types, choose the smallest type that will hold the
required range of values. Don’t use BIGINT if MEDIUMINT will do. Don’t use DOUBLE if you
need only FLOAT precision. If you are using fixed-length CHAR columns, don’t make them
unnecessarily long. If the longest value you store in a column is 40 characters long, don’t
define it as CHAR (255) ; define it as CHAR (40).

For variable-size types, you may still be able to save space with smaller types. A BLOB
uses 2 bytes to record the length of the value, a LONGBLOB uses 4 bytes. If you're storing
values that are never as long as 64KB, using BLOB saves you 2 bytes per value. (Similar
considerations apply for TEXT types.)

If you have a choice about row storage format, use one that is optimal for your
storage engine. For MyISAM tables, use fixed-length columns rather than variable-
length columns. For example, make all character columns CHAR rather than varcHAR. The
tradeoft is that your table will use more space, but if you can afford the extra space, fixed-
length rows can be processed more quickly than variable-length rows. This is especially
true for tables that are modified often and therefore more subject to fragmentation:

= With variable-length rows, you get more fragmentation of a table on which you
perform many deletes or updates due to the diftering sizes of the rows.You’ll need
to run OPTIMIZE TABLE periodically to maintain performance. This is not an issue
with fixed-length rows.

= Tables with fixed-length rows are easier to reconstruct if you have a table crash. The
beginning of each row can be determined because they all are at positions that are
multiples of the fixed row size, something that is not true with variable-length
rows. This is not a performance issue with respect to query processing, but it can
certainly speed up the table repair process.

Although converting a MyISAM table to use fixed-length columns can improve per-
formance, you should consider the following issues first:

= Fixed-length columns are faster but take more space. CHAR (n) columns always take
n characters per value (even empty ones) because values are padded with trailing
spaces when stored in the table. VARCHAR (n) columns take less space because only
as many characters are allocated as necessary to store each value, plus one or two
bytes per value to record the length. Thus, if you are choosing between CHAR and
VARCHAR columns, the tradeoff is one of time versus space. If speed is your primary
concern, use CHAR columns to get the performance benefits of fixed-length
columns. If space is at a premium, use VARCHAR columns. As a rule of thumb,
you can assume that fixed-length rows will improve performance even though
more space is used. But for an especially critical application, you might want to

323

324

Chapter 5 Query Optimization

implement a table both ways and run some tests to determine which alternative
actually is better for your particular application.

= Sometimes you cannot use a fixed-length type, even if you want to. There is no
fixed-length type for strings longer than 255 characters, for example.

MEMORY tables currently are stored using fixed-length rows, so it doesn’t matter
whether you use CHAR or VARCHAR columns. Both are treated implicitly as CHAR.

For InnoDB tables, the internal row storage format does not treat fixed-length and
variable-length columns differently (all rows use a header containing pointers to the col-
umn values), so using fixed-length cHAR columns is not in itself intrinsically simpler than
using variable-length VARCHAR columns. Consequently, the primary performance factor is
the amount of storage used for rows. Because CHAR on average takes more space than
VARCHAR, it’s preferable to use VARCHAR to minimize the amount of storage and disk I/O
needed to process rows.

Define columns to be NOT NULL. If a column is NOT NULL, it can be handled more
quickly because MySQL doesn’t have to check the column’s values during query process-
ing to see whether they are NULL. It also saves one bit per row in the table. Avoiding NULL
in columns may make your queries simpler because you don’t have to check for NULL as a
special case, and simpler queries generally can be processed more quickly.

Consider using ENUM columns. If you have a string column that has low cardinality
(contains only a limited number of distinct values), consider converting it to an ENUM
column. ENUM values can be processed quickly because they are represented internally as
numeric values.

Use PROCEDURE ANALYSE (). Run PROCEDURE ANALYSE() to see what it tells you
about the columns in your table:

SELECT * FROM tbl_name PROCEDURE ANALYSE() ;
SELECT * FROM tbl_name PROCEDURE ANALYSE(16,256);

One column of the output will be a suggestion for the optimal data type for each of
the columns in your table. The second example tells PROCEDURE ANALYSE () not to sug-
gest ENUM types that contain more than 16 values or that take more than 256 bytes (you
can change the values as you like). Without such restrictions, the output may be very
long; ENUM definitions are often difticult to read.

Based on the output from PROCEDURE ANALYSE (), you may find that your table can be
changed to take advantage of a more efficient type. If you decide to change a column’s
type, use ALTER TABLE.

Defragment tables that are subject to fragmentation. Tables that are modified a
great deal, particularly those that contain variable-length columns, are subject to fragmen-
tation. Fragmentation is bad because it leads to unused space in the disk blocks used to
store your table. Over time, you must read more blocks to get the valid rows, and per-
formance is reduced. This is true for any table with variable-length rows, but is particu-
larly acute for BLOB or TEXT columns because they can vary so much in size.

5.3 Choosing Data Types for Efficient Queries

Use of OPTIMIZE TABLE on a regular basis helps keep performance on the table from
degrading. OPTIMIZE TABLE can be used to defragment MyISAM tables. A defragmenta-
tion method that works for any storage engine is to dump the table with mysqgldump, and
then drop and re-create it using the dump file:

oe

mysqldump db_name tbl_name > dump.sql
% mysql db_name < dump.sql

Pack data into a BLOB or TEXT column. Using a BLOB or TEXT column to store data
that you pack and unpack in your application may enable you to get everything with a
single retrieval operation rather than with several. This can also be helpful for data values
that are not easy to represent in a standard table structure or that change over time. In the
discussion of the ALTER TABLE statement in Chapter 2,“Using SQL to Manage Data,”
one of the examples dealt with a table being used to hold results from the fields in a Web-
based questionnaire. That example discussed how you could use ALTER TABLE to add
columns to the table whenever you add questions to the questionnaire.

Another way to approach this problem is to have the application program that
processes the Web form pack the data into some kind of data structure, and then insert it
into a single BLOB or TEXT column. For example, you could represent the questionnaire
responses using XML and store the XML string in a TEXT column. This adds application
overhead on the client side for encoding the data (and decoding it later when you re-
trieve rows from the table), but simplifies the table structure, and eliminates the need to
change the table structure when you change your questionnaire.

On the other hand, BLoB and TEXT values can cause their own problems, especially if
you do a lot of DELETE or UPDATE operations. Deleting such values can leave large holes
in the table that will be filled in later with a row or rows of probably difterent sizes. (The
preceding discussion of defragmentation suggests how you might deal with this.)

Use a synthetic index. Synthetic index columns can sometimes be helpful. One
method is to create a hash value based on other columns and store it in a separate col-
umn. Then you can find rows by searching for hash values. However, note that this tech-
nique is good only for exact-match queries. (Hash values are useless for range searches
with operators such as < or >=.) Hash values can be generated by using the MD5 () func-
tion. Other options are to use SHAL () or CRC32 (). Or you can compute your own hash
values using logic within your application. Remember that a numeric hash value can be
stored very efficiently. Also, if the hash algorithm might produce string values that have
trailing spaces, do not store them using a data type that is subject to trailing-space
removal.

A synthetic hash index can be particularly useful with BLOB and TEXT columns. It can
be much quicker to find these kinds of values using a hash as an identifier value than by
searching the BLOB or TEXT column itself.

Avoid retrieving large BLOB or TEXT values unless you must. For example, a
SELECT * query that retrieves entire rows isn’t a good idea unless youre sure the WHERE
clause is going to restrict the results to just the rows you want. Otherwise, you may be
pulling potentially very large values over the network for no purpose. This is another case

325

326

Chapter 5 Query Optimization

where BLOB or TEXT identifier information stored in a synthetic index column can be
useful. You can search that column to determine the row or rows you want and then re-
trieve the BLOB or TEXT values from the qualifying rows.

Segregate BLOB or TEXT columns into a separate table. Under some circumstances,
it may make sense to move these columns out of a table into a secondary table, if that en-
ables you to convert the table to fixed-length row format for the remaining columns. This
will reduce fragmentation in the primary table and allow you to take advantage of the
performance benefits of having fixed-length rows. It also enables you to run SELECT *
queries on the primary table without pulling large BLOB or TEXT values over the network.

5.4 Loading Data Efficiently

Most of the time you’ll probably be concerned about optimizing SELECT statements be-
cause they are the most common type of statement and because it’s not always straightfor-
ward to figure out how to optimize them. By comparison, loading data into your database
is straightforward. Nevertheless, there are strategies you can use to improve the efficiency
of data-loading operations. The basic principles are these:

= Bulk loading is more efficient than single-row loading because the key cache need
not be flushed after each input record is loaded. It can be flushed at the end of the
batch of records. The more you can reduce key cache flushing, the faster data load-
ing will be. (Index modifications are made in the key cache before being written to
disk; flushing the cache once rather than many times significantly reduces disk I/0.)

= Loading is faster when a table has no indexes than when it is indexed. If there are
indexes, not only must the row’s contents be added to the table, each index must
also be modified to reflect the addition of the new row.

= Shorter SQL statements are faster than longer statements because they involve less
parsing on the part of the server and because they can be sent over the network
from the client to the server more quickly.

Some of these factors may seem minor (the last one in particular), but if you're loading
a lot of data, even small efficiencies make a difference. From the preceding general princi-
ples, several practical conclusions can be drawn about how to load data most quickly.

LoAD DATA (all forms) is more efficient than INSERT because it loads rows in bulk. The
server must parse and interpret only one statement, not several. Also, the index needs
flushing only after all rows have been processed, rather than after each row.

LOAD DATA is more efficient without LocAL than with it. Without LocaL, the file must
be located on the server and you must have the FILE privilege, but the server can read the
file directly from disk. With LoAD DATA LOCAL, the client reads the file and sends it over
the network to the server, which is slower.

If you must use INSERT, try to use the syntax that specifies multiple rows to be inserted
in a single statement:

INSERT INTO tbl_name VALUES(...),(...),... ;

5.4 Loading Data Efficiently

The more rows you can specify in the statement, the better. This reduces the total
number of statements required and minimizes the amount of index flushing. This princi-
ple might seem to contradict the earlier one that shorter statements can be processed
faster than longer statements. But there is no contradiction. The issues here are that a sin-
gle INSERT statement that inserts multiple rows is shorter overall than an equivalent set of
individual single-row INSERT statements, and the multiple-row statement can be
processed on the server with much less index flushing.

If you use mysgldump to generate database backup files, it generates multiple-row
INSERT statements by default: The --opt (optimize) option is enabled, which turns on the
--extended-insert option that produces multiple-row INSERT statements, as well as
some other options that allow the dump file to be processed more efficiently when it is
reloaded.

Avoid using the --complete-insert option with mysgldump; the resulting INSERT
statements will be for single rows and will be longer and require more parsing than will
multiple-row statements.

If you must use multiple INSERT statements, group them if possible to reduce index
flushing. For transactional storage engines, do this by issuing the INSERT statements
within a single transaction rather than in autocommit mode:

START TRANSACTION;

INSERT INTO tbIl_name ... ;
INSERT INTO tbl_name ... ;
INSERT INTO tbIl_name ... ;
COMMIT;

For non-transactional storage engines, obtain a write lock on the table and issue the
INSERT statements while the table is locked:

LOCK TABLES tbl_name WRITE;
INSERT INTO tbl_name ... ;
INSERT INTO tbl_name ... ;
INSERT INTO tbl_name ... ;
UNLOCK TABLES;

Either way, you obtain the same benefit: The index is flushed once after all the state-
ments have been executed rather than once per INSERT statement. The latter is what hap-
pens in autocommit mode or if the table has not been locked.

For MyISAM tables, another strategy for reducing index flushing is to use the
DELAY_KEY_WRITE table option. With this option, data rows are written to the data file
immediately as usual, but the key cache is flushed only occasionally rather than after each
insert. To use delayed index flushing on a server-wide basis, start mysqgld with the
--delay-key-write=ALL option. In this case, index block writes for a table are delayed
until blocks must be flushed to make room for other index values, until a FLUSH TABLES
statement has been executed, or until the table is closed.

327

328

Chapter 5 Query Optimization

If you choose to use delayed key writes for MyISAM tables, abnormal server shut-
downs can cause loss of index values. This is not a fatal problem because MyISAM in-
dexes can be repaired based on the data rows. However, to make sure that the repairs do
happen, start the server with the --myisam-recover=FORCE option. This option causes
the server to check MyISAM tables when it opens them and repair them automatically
as necessary.

For a replication slave server, you might want to use --delay-key-write=ALL to delay
index flushing for all MyISAM tables, regardless of how they were created originally on
the master server.

Use the compressed client/server protocol to reduce the amount of data going over
the network. For most MySQL clients, this can be specified using the --compress
command-line option. Generally, this should only be used on slow networks because
compression requires quite a bit of processor time.

Let MySQL insert default values for you. That is, don’t specify columns in INSERT
statements that will be assigned the default value anyway. On average, your statements will
be shorter, reducing the number of characters sent over the network to the server. In ad-
dition, because the statements contain fewer values, the server does less parsing and value
conversion.

For MyISAM tables, if you need to load a lot of data into a new table to populate it,
it’s faster to create the table without indexes, load the data, and then create the indexes. It’s
faster to create the indexes all at once rather than to modify them for each row. For a
table that already has indexes, data loading may be faster if you drop or deactivate the in-
dexes beforehand, and then rebuild or reactivate them afterward. These strategies do not
apply to InnoDB tables; InnoDB has no optimizations for separate index creation.

If you're considering using the strategy of dropping or deactivating indexes for loading
data into MyISAM tables, think about the overall circumstances of your situation in as-
sessing whether any benefit is likely to be obtained. If you’re loading a small amount of
data into a large table, rebuilding the indexes probably will take longer than just loading
the data without any special preparation.

To drop and rebuild indexes, use DROP INDEX and CREATE INDEX, or the index-related
forms of ALTER TABLE. To deactivate and reactivate indexes, you have two choices:

= You can use the DISABLE KEYS and ENABLE KEYS forms of ALTER TABLE:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

These statements turn oft and on updating of any non-unique indexes in the table.

The pDISABLE KEYS and ENABLE KEYS clauses for ALTER TABLE are the preferred
method for index deactivation and activation, because the server does the work. (If
you’re using a LOAD DATA statement to load data into an empty MyISAM table, the
server performs this optimization automatically.)

= The myisamchk utility can perform index manipulation. It operates directly on the
table files, so to use it you must have write access to the table files.You should also

5.5 Scheduling and Locking Issues

observe the precautions described in Section 14.2, “Performing Database Mainte-
nance with the Server Running,” for keeping the server from accessing a table
while you’re using its files.

To deactivate a MyISAM table’s indexes with myisamchk, first make sure you’ve
told the server to leave the table alone, and then move into the appropriate database
directory and run the following command:

o

% myisamchk --keys-used=0 tbl_name

After loading the table with data, reactivate the indexes:

o

% myisamchk --recover --quick --keys-used=n tbl_name

n is interpreted as a bitmask indicating which indexes to enable. Bit O (the first bit)
corresponds to index 1. For example, if a table has three indexes, the value

of n should be 7 (111 binary).You can determine index numbers with the
--description option:

% myisamchk --description tbl_name

The preceding data-loading principles also apply to mixed-query environments in-
volving clients performing different kinds of operations. For example, generally you
should avoid long-running SELECT queries on tables that are changed (written to) fre-
quently. That causes a lot of contention and poor performance for the writers. A possible
way around this, if your writes are mostly INSERT operations, is to add new rows to an
auxiliary table and then add those rows to the main table periodically. This is not a viable
strategy if you need to be able to access new rows immediately, but if you can afford to
leave them inaccessible for a short time, use of the auxiliary table will help you two ways.
First, it reduces contention with SELECT queries that are taking place on the main table,
so they execute more quickly. Second, it takes less time overall to load a batch of rows
from the auxiliary table into the main table than it would to load the rows individually;
the key cache need be flushed only at the end of each batch, rather than after each indi-
vidual row.

One application for this strategy is when you're logging Web page accesses from your
Web server into a MySQL database. In this case, it may not be a high priority to make
sure that the entries get into the main table right away.

If you're using mixed INSERT and SELECT statements with a MyISAM table, you might
be able to take advantage of concurrent inserts. This feature enables the inserts to take
place at the same time as retrievals without the use of an auxiliary table. For details, see
Section 5.5.3, “Using Concurrent Inserts.”

5.5 Scheduling and Locking Issues

The previous sections focus primarily on making individual queries faster. MySQL also
enables you to affect the scheduling priorities of statements, which may allow queries ar-
riving from several clients to cooperate better so that individual clients aren’t locked out

329

330

Chapter 5 Query Optimization

for a long time. Changing the priorities can also ensure that particular kinds of queries
are processed more quickly. This section looks at MySQL’s default scheduling policy and
the options that are available to you for influencing this policy. It also describes the use of
concurrent inserts and the effect that storage engine locking levels have on concurrency
among clients. For the purposes of this discussion, a client performing a retrieval (a
SELECT) is a reader. A client performing an operation that modifies a table (DELETE,
INSERT, REPLACE, Or UPDATE) 1s a Writer.

MySQL’s default scheduling policy can be summarized like this:

= Writes have higher priority than reads.

= Writes to a table must occur one at a time, and write requests are processed in the
order in which they arrive.

= Multiple reads from a table can be processed simultaneously.

The MyISAM, MER GE, and MEMORY storage engines implement this scheduling
policy with the aid of table locks. Whenever a client accesses a table, a lock for it must be
acquired first. When the client is finished with a table, the lock on it can be released.

It’s possible to acquire and release locks explicitly by issuing LOCK TABLES and UNLOCK
TABLES statements, but normally the server’s lock manager automatically acquires locks as
necessary and releases them when they no longer are needed. The type of lock required
depends on whether a client is writing or reading.

A client performing a write to a table must have a lock for exclusive table access. The
table is in an inconsistent state while the operation is in progress because the data row is
being deleted, added, or changed, and any indexes on the table may need to be updated to
match. Allowing other clients to access the table while the table is in flux would cause
problems. It’s clearly a bad thing to allow two clients to write to the table at the same
time because that would quickly corrupt the table into an unusable mess. But it’s not
good to allow a client to read from an in-flux table, either, because the table might be
changing at the location being read, and the results would be inaccurate.

A client performing a read from a table must have a lock to prevent other clients from
writing to the table and changing it during the read. The lock need not be for exclusive
access, however. Reading doesn’t change the table, so there is no reason one reader should
prevent another from accessing the table. Therefore, a read lock enables other clients to
read the table at the same time.

MySQL provides several statement modifiers that allow you to influence its scheduling

policy:
= The Low_PRIORITY keyword applies to DELETE, INSERT, LOAD DATA, REPLACE, and
UPDATE statements.
= The HIGH_PRIORITY keyword applies to SELECT and INSERT statements.

= The DELAYED keyword applies to INSERT and REPLACE statements.

5.5 Scheduling and Locking Issues

The LOW_PRIORITY and HIGH_PRIORITY modifiers have an effect only for storage en-
gines that use table locks (MyISAM, MER GE, and MEMORY). The DELAYED modifier
works for MyISAM, MEMORY, ARCHIVE, and (as of MySQL 5.1.19) BLACKHOLE
tables.

5.5.1 Changing Statement Scheduling Priorities

The Low_PRIORITY keyword affects execution scheduling for DELETE, INSERT, LOAD
DATA, REPLACE, and UPDATE statements. Normally, if a write operation for a table arrives
while the table is being read, the writer blocks until the reader is done. (Once a query has
begun it will not be interrupted, so the reader is allowed to finish.) If another read re-
quest arrives while the writer is waiting, the reader blocks, too, because the default sched-
uling policy is that writers have higher priority than readers. When the first reader
finishes, the writer proceeds, and when the writer finishes, the second reader proceeds.

If the write request is a LOW_PRIORITY request, the write is not considered to have a
higher priority than reads. In this case, if a second read request arrives while the writer is
waiting, the second reader is allowed to slip in ahead of the writer. Only when there are
no more readers is the writer allowed to proceed. One implication of this scheduling
modification is that, theoretically, it’s possible for Low_PRIORITY writes to be blocked for-
ever: If additional read requests keep arriving while previous ones are still in progress, the
new requests are allowed to get in ahead of the Low_PRIORITY write.

The HIGH_PRIORITY keyword for SELECT queries is similar. It enables a SELECT to slip
in ahead of a waiting write, even if the write normally has higher priority. Another effect
is that a high-priority sELECT will execute ahead of normal SELECT statements, because
those will block for the write.

If you want all statements that support the LOW_PRIORITY option to be treated as hav-
ing low priority by default, start the server with the --low-priority-updates option.
The effect of this option can be canceled for individual INSERT statements by using
INSERT HIGH_PRIORITY to elevate them to the normal write priority.

5.5.2 Using Delayed Inserts

The DELAYED modifier applies to INSERT and REPLACE statements. When a DELAYED insert
request arrives for a table, the server puts the rows in a queue and returns a status to the
client immediately so that the client can proceed even before the rows have been in-
serted. If readers are reading from the table, the rows in the queue are held until there are
no readers. Then the server begins inserting the rows in the delayed-row queue.The
server checks periodically whether any new read requests have arrived and are waiting. If
so, the delayed-row queue is suspended and the readers are allowed to proceed. When
there are no readers left, the server begins inserting delayed rows again. This process con-
tinues until the queue is empty.

LOW_PRIORITY and DELAYED are similar in the sense that both allow row insertion
to be deferred, but they are quite different in how they aftect client operation.

331

332

Chapter 5 Query Optimization

LOW_PRIORITY forces the client to wait until the rows can be inserted. DELAYED enables
the client to continue and the server bufters the rows in memory until it has time to
process them.

INSERT DELAYED is useful if other clients may be running lengthy SELECT statements
and you don’t want to block waiting for completion of the insertion. The client issuing
the INSERT DELAYED can proceed more quickly because the server simply queues the row
to be inserted.

You should be aware of certain other differences between normal INSERT and INSERT
DELAYED behavior, however. The client gets back an error if the INSERT DELAYED state-
ment contains a syntax error, but other information that would normally be available is
not. For example, you can'’t rely on getting the AUTO_INCREMENT value when the state-
ment returns. Also, you won’t get a count for the number of duplicates on unique in-
dexes. This happens because the insert operation returns a status before the operation
actually has been completed. Another implication is that because rows from INSERT
DELAYED statements are queued in memory, the rows are lost if the server crashes or is
killed with xi11 -9. (This doesn’t happen with a normal ki11 -TERM kill; in that case,
the server inserts the rows before exiting.)

5.5.3 Using Concurrent Inserts

The MyISAM storage engine allows an exception to the general principle that readers
block writers. This occurs under the condition that a MyISAM table has no holes in the
middle of the data file, such as can result from deleting or updating rows. When the table
has no holes, any INSERT statements must necessarily add rows at the end rather than in
the middle. Under such circumstances, MySQL allows clients to add rows to the table
even while other clients are reading from it. These are known as “concurrent inserts”
because they take place at the same time as retrievals without being blocked.

If you want to use concurrent inserts, note the following:

= Do not use the Low_PRIORITY modifier with your INSERT statements. It causes
INSERT always to block for readers and thus prevents concurrent inserts from being
performed.

= Readers that need to lock the table explicitly but still want to allow concurrent in-
serts should use LOCK TABLES ... READ LOCAL rather than LOCK TABLES ... READ. The
LocaL keyword acquires a lock that enables concurrent inserts to proceed, because
it applies only to existing rows in the table and does not block new rows from be-
ing added to the end.

= LOAD DATA operations should use the CONCURRENT modifier to allow SELECT state-
ments for the table to take place at the same time.

= A MyISAM table that has holes in the middle cannot be used for concurrent in-
serts. However, you can defragment the table with the OPTIMIZE TABLE statement.
That eliminates the holes, at least until further deletes or updates occur.

5.5 Scheduling and Locking Issues

5.5.4 Locking Levels and Concurrency

The scheduling modifiers discussed in the preceding sections allow you to influence the
default scheduling policy. For the most part, these modifiers were introduced to deal with
issues that arise from the use of table-level locks, which is what the MyISAM, MER GE,
and MEMORY storage engines use to manage table contention.

The InnoDB storage engine implements locking at a different level and thus has dif-
fering performance characteristics in terms of contention management. InnoDB uses
row-level locks, but only as necessary. (In many cases, such as when only reads are done,
InnoDB may use no locks at all.)

The locking level used by a storage engine has a significant effect on concurrency
among clients. Suppose that two clients each want to update a row in a given table. To per-
form the update, each client requires a write lock. For a MyISAM table, the engine will
acquire a table lock for the first client, which causes the second client to block until the
first one has finished. With an InnoDB table, greater concurrency can be achieved: Both
updates can proceed simultaneously as long as both clients aren’t updating the same row.

The general principle is that table locking at a finer level enables better concurrency,
because more clients can be using a table at the same time if they use different parts of it.
The practical implication is that different storage engines will be better suited for differ-
ent statement mixes:

= MyISAM is extremely fast for retrievals. However, the use of table-level locks can
be a problem in environments with mixed retrievals and updates, especially if the
retrievals tend to be long-running. Under these conditions, updates may need to
wait a long time before they can proceed.

= InnoDB tables can provide better performance when there are many updates.
Because locking is done at the row level rather than at the table level, the extent
of the table that is locked is smaller. This reduces lock contention and improves
CONCUITENcY.

Table locking does have an advantage over finer levels of locking in terms of deadlock
prevention. With table locks, deadlock never occurs. The server can determine which
tables are needed by looking at the statement and locking them all ahead of time. With
InnoDB tables, deadlock can occur because the storage engine does not acquire all neces-
sary locks at the beginning of a transaction. Instead, locks are acquired as they are deter-
mined to be necessary during the course of processing the transaction. It’s possible that
two statements will acquire locks and then try to acquire further locks that each depend
on already-held locks being released. As a result, each client holds a lock that the other
needs before it can continue. This results in deadlock, and the server must abort one of
the transactions.

333

334

Chapter 5 Query Optimization

5.6 Administrative-Level Optimizations

The previous sections describe optimizations that can be performed by unprivileged
MySQL users. Administrators who have control of the MySQL server or the machine on
which it runs can perform additional optimizations. For example, some server parameters
pertain to query processing and may be tuned, and certain hardware configuration factors
have a direct effect on query processing speed. In many cases, these optimizations improve
the performance of the server as a whole, and thus have a beneficial effect for all MySQL
users.

In general, you should keep the following principles in mind when performing
administrative optimizations:

= Accessing data in memory is faster than accessing data from disk.
» Keeping data in memory as long as possible reduces disk activity.

» Retaining information from an index is more important than retaining contents of
data rows.

The most common way to apply these principles is to increase the size of the server’s
caches. The server has many parameters (system variables) that you can change to config-
ure its operation. Several of these directly affect the speed of query processing. The most
important parameters you can change are the sizes of the table cache and the caches used
by the storage engines to buffer information for indexing operations. If you have memory
available, allocating it to the server’s caches enables information to be held in memory
longer and reduces disk activity. This is good, because it’s much faster to access informa-
tion from memory than to read it from disk.You can configure the size of several caches:

= When the server opens table files, it tries to keep them open so as to minimize the
number of file-opening operations. To do this, it maintains information about open
files in the table cache.The table_cache system variable (table_open_cache in
MySQL 5.1) controls the size of this cache. If the server accesses lots of tables, the
table cache fills up and the server closes tables that haven’t been used for a while to
make room for opening new tables. To assess how eftective the table cache is, check
the Opened_tables status indicator:

SHOW STATUS LIKE 'Opened_tables';

Opened_tables indicates the number of times a table had to be opened because it
wasn'’t already open. (This value is also displayed as the opens value in the output of
the mysqgladmin status command.) If the number remains stable or increases
slowly, it’s probably set to about the right value. If the number grows quickly, it
means the cache is too small and that tables often have to be closed to make room
to open other tables. If you have file descriptors available, increasing the table cache
size will reduce the number of table opening operations.

= The MyISAM key buffer is used to hold index blocks for index-related operations
on MyISAM tables. Its size is controlled by the key_buffer_size system variable.

5.6 Administrative-Level Optimizations 335

Larger values allow MySQL to hold more index blocks in memory at once, which
increases the likelihood of finding key values in memory without having to read a
new block from disk. The default size of the key buffer is 8MB. If you have lots of
memory, that’s a very conservative value and you should be able to increase it sub-
stantially and see a considerable improvement in performance for index-based re-
trievals and for index creation and modification operations.

You can create additional key caches for MyISAM tables and assign specific tables
to them. This can help query processing for those tables, as explained in Section
5.6.1, “Using MyISAM Key Caches.”

= The InnoDB storage engine has its own cache for buffering data and index values,
and it also maintains a log buffer. The sizes for these resources are controlled by
the innodb_buffer_pool_size and innodb_log_buffer_size system Variables,
respectively.

= Another special cache is the query cache, described later in Section 5.6.2, “Using
the Query Cache.”

Instructions for setting system variables can be found in Section 12.6.1, “Checking
and Setting System Variable Values.” When you change parameter values, follow these
guidelines:

= Change one parameter at a time. Otherwise, you're varying multiple independent
variables and it becomes more difficult to assess the effect of each change.

= Increase system variable values incrementally. If you increase a variable by a huge
amount on the theory that more is always better, you may run your system out of re-
sources, causing it to thrash or slow to a crawl because you've set the value too high.

= Rather than experimenting with parameter tuning on your production MySQL
server, it might be prudent to set up a separate test server.

= To get an idea of the kinds of parameter variables that are likely to be appropriate
for your system, take a look at the my-small. cnf, my-medium.cnf, my-large.cnf,
and my-huge. cnf option files included with MySQL distributions. (On Unix, you
can find them under the share directory in binary distributions and under the
support-files directory in source distributions. On Windows, they are located in
the base installation directory, and the filename suffix is . ini.) These files will give
you some idea of which parameters are best to change for servers that receive dif-
ferent levels of use, and also some representative values to use for those parameters.

Other strategies you can adopt to help the server operate more efficiently include the
following:

= Disable storage engines that you don’t need. The server won'’t allocate any memory
for disabled engines, allowing you to devote it to other uses. Most storage engines
can be excluded from the server binary at configuration time if you build MySQL
from source. For those engines that are included in the server, many can be disabled

336

Chapter 5 Query Optimization

at runtime with the appropriate startup options. For details, see Section 12.7.1,
“Selecting Which Storage Engines a Server Supports.”

= Keep grant table permissions simple. Although the server caches grant table con-
tents in memory, if you have any rows in the tables_priv, columns_priv, or
procs_priv tables, the server must check their contents when it does privilege
checking for SQL statements. If those tables are empty, the server can optimize its
privilege checking to skip those privilege levels.

= If you build MySQL from source, configure it to use static libraries rather than
shared libraries. Dynamic binaries that use shared libraries save on disk space, but
static binaries are faster. However, some systems require dynamic linking if you use
the user-defined function (UDF) mechanism. On such systems, static binaries will
not work.

5.6.1 Using MyISAM Key Caches

When MySQL executes a statement that uses indexes from MyISAM tables, it uses a key
cache to hold index values. The cache enables disk I/O to be reduced: If key values
needed from a table are found in the cache, they need not be read from disk again. How-
ever, the key cache is a finite resource and it is shared among all MyISAM tables by
default. If key values are not found in the cache and the cache is full, contention results:
Some values currently in the cache must be discarded to make room for new values. The
next time the discarded values are needed, they must be read from disk again.

If you have an especially heavily used MyISAM table, it would be beneficial to ensure
that its keys remain in memory, but contention in the cache works against this. Con-
tention can arise either when keys need to be read from the same table, or from other
tables. You might avoid same-table contention by making the key cache large enough to
hold all of a given table’s indexes completely, but keys from other tables would still con-
tend for space in the cache.

MySQL offers a solution to this problem because it supports setting up multiple key
caches and enables a table’s indexes to be assigned to and preloaded into a given cache.
This can be useful if you have a table that sees especially heavy use and you have suffi-
cient memory to load its indexes into the cache.This capability enables you to avoid both
same-table and other-table contention: Create a cache that is large enough to hold a
table’s indexes completely and devote the cache exclusively to the use of that table. No
disk I/0O is necessary after the keys have been loaded into the cache. Also, key values will
never need to be discarded from the cache and key lookups for the table can be done in
memory.

The following example shows how to set up a key cache for the member table in the
sampdb database, using a cache with a name of member_cache and a size of 1MB.You
must have the SUPER privilege to carry out these instructions.

1. Set up a separate key cache large enough to hold the indexes from the table:

mysgl> SET GLOBAL member cache.key buffer size = 1024*1024;

5.6 Administrative-Level Optimizations

Assign the table to the key cache:

mysgl> CACHE INDEX member IN member_ cache;

tmm o b Hmmm o Hmmm oo +
| Table | op | Msg_type | Msg_text |
Hmmmmm b Hmmmm e Hmmmm e +
| sampdb.member | assign_to_keycache | status | OK |
o mm b Hmmmm o Hmmmm o +

Preload the table’s indexes into its key cache:

mysgl> LOAD INDEX INTO CACHE member;

Fmmmm e o Fmmmm oo o +
| Table | op | Msg_type | Msg_text |
o m e Fmmm e O B e +
| sampdb.member | preload_keys | status | OK |
fmmmmmmmmmm e fmmmmm e fmmmmm - Hmmmmmm - +

If you want to load other tables into the same cache or create other key caches for

other tables, that can be done as well. For more information about key caches, consult
Section 12.7.2, “Configuring the MyISAM Storage Engine.”

The effects of the statements that set up a separate key cache do not persist across

server restarts. If you want the cache to be used each time the server runs, you must
arrange to execute the statements at each restart. To do this, you can put them in a file
and name the file with the --init-file server option.

5.6.2 Using the Query Cache

The MySQL server can use a query cache to speed up processing of SELECT statements
that are executed repeatedly. The resulting performance improvement often is dramatic.
The query cache has these characteristics:

= The first time a given SELECT statement is executed, the server remembers the text
of the query and the results that it returns.

= The next time the server sees that statement, it doesn’t bother to execute it again.
Instead, the server pulls the result directly from the query cache and returns it to
the client.

= Query caching is based on the literal text of query strings as they are received by
the server. Queries are considered the same if the text of the queries is exactly the
same. Queries are considered different if they differ in lettercase or come from
clients that are using different character sets or communication protocols. They also
are considered different if they are otherwise identical but do not actually refer to
the same tables (for example, if they refer to identically named tables in different
databases).

= A query is not cached if the query returns non-deterministic results. For example, a
query that uses Now () returns different results over time, so it cannot be cached.

337

338 Chapter 5 Query Optimization

= When a table is modified, any cached queries that refer to it become invalid and are
discarded. This prevents the server from returning out-of-date results.

Support for the query cache is built in by default. If you don’t want to use the cache,
and want to avoid incurring even the minimal overhead that it involves, you can build the
server without it by running the configure script with the --without-query-cache
option.

To determine whether a server supports the query cache, check the value of the
have_query_cache system variable:

mysql> SHOW VARIABLES LIKE 'have_query_cache';

B it T - +
Mode Meaning
0 Don’t cache query results or retrieve cached results
1 Cache queries except those that begin with SELECT SQL_NO_CACHE
2 Cache on demand only those queries that begin with SELECT
SQL_CACHE

For servers that do include query cache support, cache operation is based on the values
of three system variables:

= query_cache_type determines the operating mode of the query cache.The fol-
lowing table shows the possible mode values.

= query_cache_size determines the amount of memory to allocate for the cache,
in bytes.

= query_cache_limit sets the maximum result set size that will be cached; query re-
sults larger than this value are never cached.

For example, to enable the query cache and allocate 16MB of memory for it, use the
following settings in an option file:
[mysqld]
query_cache_type=1
query_cache_size=16M

The amount of memory indicated by query_cache_size is allocated even if
query_cache_type is zero. To avoid wasting memory, set the size to zero unless you plan
to enable the cache. Note that a size of zero effectively disables the cache even if
query_cache_type 1S non-zero.

5.6 Administrative-Level Optimizations

Individual clients begin with query caching behavior in the state indicated by the
server’s default caching mode. A client can change the default caching mode for its
queries by using this statement:

SET query_cache_type = val;

val can be 0, 1, or 2, which have the same meanings as when setting the query_
cache_type variable at server startup. In a SET statement, the symbolic values OFF, ON,
and DEMAND are synonyms for 0, 1, and 2.

A client also can control caching of individual queries by adding a modifier following
the SELECT keyword. SELECT SQL_CACHE for a cacheable query causes the result to be
cached if the cache mode is ON or DEMAND. SELECT SQL_NO_CACHE causes the result not to
be cached.

Suppression of caching can be useful for queries that retrieve information from a con-
stantly changing table. In that case, the cache is unlikely to be of much use. Suppose that
you're logging Web server requests to a table in MySQL, and also that you periodically
run a set of summary queries on the table. For a reasonably busy Web server, new rows
will be inserted into the table frequently and thus any query results cached for the table
become invalidated quickly. The implication is that although you might issue the sum-
mary queries repeatedly, it’s unlikely that the query cache will be of any value for them.
Under such circumstances, it makes sense to issue the queries using the SQL_NO_CACHE
modifier to tell the server not to bother caching their results.

5.6.3 Hardware Optimizations

The earlier part of this chapter discusses techniques that help improve your server’s per-
formance regardless of your hardware configuration.You can of course get better hard-
ware to make your server run faster. But not all hardware-related changes are equally
valuable. When assessing what kinds of hardware improvements you might make, the most
important principles are the same as those that apply to server parameter tuning: Put as
much information in fast storage as possible, and keep it there as long as possible.

The following items describe several aspects of hardware configuration that can be
modified to improve server performance.

Install more memory into your machine. This enables you to configure larger values
for the server’s cache and buffer sizes, which enables it to keep data in memory longer
and with less need to fetch information from disk.

Reconfigure your system to remove all disk swap devices. This may be possible if
you have enough RAM to do all swapping into a memory filesystem. Otherwise, some
systems will continue to swap to disk even if you have sufficient RAM for swapping.

Add faster disks to improve I/O latency. Seek time is typically the primary deter-
minant of performance here. It’s slow to move the heads laterally; after the heads have
been positioned, reading blocks off the track is fast by comparison. However, if you have a
choice between adding more memory and getting faster disks, add more memory. Mem-
ory is always faster than your disks, and adding memory enables you to use larger caches,
which reduces disk activity.

339

340

Chapter 5 Query Optimization

Take advantage of parallelism by redistributing disk activity across physical
devices. If you can split reading or writing across multiple physical devices, it will be
quicker than reading and writing everything from the same device. For example, if you
store databases on one device and logs on another, writing to both devices at once will be
faster than if databases and logs share the same device. Note that using different partitions
on the same physical device doesn’t count as parallelism. That won'’t help because they’ll
still contend for the same physical resource (disk heads). The procedure for moving logs
and databases is described in Section 11.3, “Relocating Data Directory Contents.”

Before you relocate data to a different device, make sure that you understand your sys-
tem’s load characteristics. If there’s some other major activity already taking place on a
particular physical device, putting a database there may actually make performance worse.
For example, you may not realize any overall benefit if you process a lot of Web traffic and
move a database onto the device where your Web server document tree is located.

Use of RAID devices can give you some advantages of parallelism as well.

Use multi-processor hardware. For a multi-threaded application like the MySQL
server, multi-processor hardware can execute multiple threads at the same time.

0

Introduction to MySQL
Programming

This chapter describes some of the reasons for writing your own MySQL-based pro-
grams rather than using the standard client programs included in MySQL distributions. It
also gives a conceptual overview of the interfaces we’ll use for the three languages cov-
ered in the following chapters (C, Perl, and PHP), and discusses factors to consider when
choosing a language for a program.

6.1 Why Write Your Own MySQL Programs?

MySQL distributions include a set of client programs. For example, mysqldump exports
table definitions and contents, mysqlimport loads data files into tables, mysqladmin per-
forms administrative operations, and mysql lets you interact with the server to execute ar-
bitrary SQL statements.

The standard client programs handle many of the most common tasks that MySQL
users need to perform, but applications sometimes have requirements that are outside the
capabilities of those clients. To address this issue, the MySQL server has a client applica-
tion programming interface (API) that gives you the flexibility to satisfy whatever special-
ized requirements your applications may have. The client API provides access to the
MySQL server and opens up possibilities limited only by your own imagination.

In this part of the book, we’ll discuss what you need to know to write MySQL-based
programs for accessing your databases. To understand what you gain by writing your own
programs, consider what you can accomplish that way in comparison to using the capa-
bilities of the mysql client and its no-frills interface to the MySQL server:

= You can customize input handling. With mysql, you enter raw SQL statements.
‘With your own programs, you can provide input methods for the user that are
more intuitive and easier to use.Your program can eliminate the need for its users
to know SQL, or even to be aware of the role of the database in the task being per-
formed. Input collection can be something as rudimentary as a command-line in-
terface that prompts the user and reads a value, or a more sophisticated screen-based

342 Chapter 6 Introduction to MySQL Programming

entry form implemented using a screen management package such as curses or
S-Lang, an X window using T'cl/Tk, or a form in a Web page.

For most people, it’s a lot easier to specify search parameters by filling in a form
than by issuing a SELECT statement. For example, a real estate agent looking for
houses in a certain price range, style, or location just wants to enter search parame-
ters into a form and get back the qualifying offerings with a minimum of fuss. Sim-
ilar considerations apply for entering new rows or updating existing rows: A
keyboard operator in a data entry department should need to know only the values
to be entered into rows, not the SQL syntax for INSERT, REPLACE, or UPDATE.

= You can validate input provided by the user. For example, you can check
dates to make sure they conform to the format that MySQL expects, or you can
require certain fields to be filled in. This enhances the safety and security of your
applications.

= You can generate input automatically. Some applications might not even involve
a human user, such as when input for MySQL is generated by another program.
You might configure your Web server to write log entries to MySQL rather than to
a file, or set up a system-monitoring program that runs periodically and records sta-
tus information to a database.

= You can customize your output. mysql output is essentially unformatted; you
have a choice of tab-delimited or tabular style. If you want nicer-looking output,
you must format it yourself. This might range from something as simple as printing
“Missing”’ rather than NULL to more complex report-generation requirements. Con-
sider the following report:

State City Sales
AZ Mesa $94,384.24
Phoenix $17,328.28

Subtotal $117,712.52

CA Los Angeles $118,198.18
Oakland $38,838.36

Subtotal $157,036.54

TOTAL $274,749.06

This report includes several specialized elements:
= Customized headers.

= Suppression of repeating values in the state column so that the values are
printed only when they change.

= Subtotal and total calculations.

6.1 Why Write Your Own MySQL Programs? 343

= Formatting of numbers, such as 94384.24, to print as dollar amounts, such as
$94,384.24.

Another common task involving complex formatting is invoice production,
where you need to associate each invoice header with information about the
customer and about each item ordered. This kind of report can easily exceed
mysqgl’s formatting capabilities.

For some types of tasks, you may not want to produce any output at all. Per-
haps you’re simply retrieving information to calculate a result that you insert
back into another database table. Or you want the output to go somewhere
other than to the user running the query. For example, if you’re extracting
names and email addresses to feed automatically into a process that generates
form letters for bulk email, your program does produce output, but it con-
sists of messages that go to the mail recipients, not to the person running the
program.

= You can work around constraints imposed by the nature of SQL itself. For the
most part, SQL scripts consist of a set of statements executed one at a time from
beginning to end, with minimal error checking. If you execute a file of SQL
queries using mysql in batch mode, mysql either quits after the first error, or, if you
specify the --force option, executes all the queries indiscriminately, no matter how
many errors occur. By writing your own program, it’s possible to selectively adapt
to the success or failure of queries by providing flow control around statement-
execution operations.You can make execution of one query contingent on the suc-
cess or failure of another, or make decisions about what to do next based on the
result of a previous query.

It is true that MySQL supports stored programs, which provides additional flexibil-
ity at the SQL level by means of flow-control and error-handling constructs. How-
ever, these constructs are not as flexible as those provided by general-purpose
programming languages.

SQL has very limited persistence across statements. It’s difficult to use the results
from one query and apply them to another or to tie together the results of multiple
queries. LAST_INSERT ID() can be used to get the AUTO_ INCREMENT value that was
most recently generated by a prior statement, and user variables can be assigned val-
ues and referred to later. But that’s about all. This limitation makes certain common
operations difficult to perform using SQL alone, such as retrieving a set of rows and
using each one as the basis for a complex series of subsequent operations. If you re-
trieve a list of customers and then look up a detailed credit history for each one, the
process may involve several queries per customer.

In general, a tool other than mysql is needed for tasks that involve master-detail re-
lationships and have complex output-formatting requirements. A program provides

344 Chapter 6 Introduction to MySQL Programming

the “glue” that links queries together and enables you to use the output from one
query as the input to another.

= You can integrate MySQL into any application. Many programs stand to benefit
by exploiting the capability of a database to provide information. The client-
programming interface gives you the means to do this. An application that must
verify a customer number or check whether an item is present in inventory can do
so by issuing a quick query. A Web application that enables a client to ask for all
books by a certain author can look them up in a database and send the results to
the client’s browser.

It’s possible to achieve a kind of rudimentary “integration” of MySQL into an ap-
plication by using a shell script that invokes mysql with an input file containing
SQL statements, and then postprocessing the output using other utilities. But that
can become ugly, especially as your task becomes more involved. It may also pro-
duce a sense of “this works, but it feels wrong” as the application grows by accre-
tion into a messy patchwork. In addition, the process-creation overhead of a shell
script that runs other commands may be more than you want to incur. It can be
more effective to use the client interface to interact with the MySQL server
directly, extracting exactly the information you want as you need it at each phase
of your application’s execution.

Chapter 1, “Getting Started with MySQL,” enumerated several goals with respect to
our sampdb sample database that require us to write programs to interact with the
MySQL server. Some of these goals are shown in the following list:

= Format the Historical League member directory for printing
= Enable online presentation and searching of the member directory
= Send membership renewal notices by email

= Easily enter student scores into the gradebook using a Web browser

One issue that we’ll consider in some detail is the question of how to integrate
MySQL’s capabilities into a Web environment. MySQL provides no direct support for
Web applications, but by combining MySQL with appropriate tools, you can issue queries
from your Web server on behalf of a client user and report the results to the user’s
browser. This enables your databases to be accessed easily over the Web.

There are two complementary perspectives on the marriage of MySQL and the Web:

= Use a Web server to provide enhanced access to MySQL. In this case, your
main interest is your database, and you want to use the Web as a tool to gain easier
access to your data. This is the point of view that a MySQL administrator would
take. The place of a database in such a scenario is explicit and obvious because it’s
the focus of your interest. For example, you can write Web pages that enable you to
see a list of the tables in your database, and to examine the structure or contents of
each one.

6.2 APIs Available for MySQL

= Use MySQL to enhance the capabilities of your Web server. In this case, your
primary interest is your Web site, and you may want to use MySQL as a tool for
making your site’s content more valuable to the people who visit it. This is the
point of view a Web developer would take. For example, if you run a message board
or discussion list at the site, you can use a database to keep track of the messages.
The role of MySQL in this case is more subtle; users of the site might not even be
aware that a database plays a part in the services the site offers.

These perspectives need not be mutually exclusive. For example, in the Historical
League scenario, we’ll use the Web as a means for members to gain easy access to the
contents of the membership directory by making entries available online. That is a use of
the Web to provide access to the database. At the same time, adding directory content to
the League’s Web site increases the site’s value to members. That is a use of the database to
enhance the services provided at the site.

No matter how you view the integration of MySQL with the Web, the implementa-
tion is similar. You connect your Web site front end to your MySQL back end, using the
Web server as an intermediary. The Web server collects information from a client user,
sends it to the MySQL server in the form of a query, and then retrieves the result and re-
turns it to the client’s browser for viewing.

You don'’t have to put your data online, of course, but often there are benefits to doing
so, particularly in comparison with accessing your data via the standard MySQL client
programs:

= People accessing your data through the Web can use whichever browser they prefer,
on whatever platform they prefer. They’re not limited to systems on which the
standard MySQL client programs run. No matter how widespread the MySQL
clients are, Web browsers are more so.

= The interface for a Web application can be made simpler to use than that of a
standalone command-line MySQL client.

= A Web interface can be customized to the requirements of a particular application.
The MySQL clients are general-purpose tools with a fixed interface.

= Dynamic Web pages extend MySQL capabilities to do things that are difficult or

impossible to do using only the standard MySQL clients. For example, you can’t re-
ally use them to put together an application that incorporates a shopping cart.

Any programming language can be used to write Web-based applications, but some are
more suitable than others. We’ll consider this issue in Section 6.3, “Choosing an AP1.”

6.2 APIs Available for MySQL

The MySQL server has a low-level “native” client-server protocol that defines how client
programs establish connections to and communicate with it. Clients can use this protocol
at various levels of abstraction:

345

346 Chapter 6 Introduction to MySQL Programming

= To facilitate application development, MySQL provides a client library written in
the C programming language that enables you to access MySQL databases from
within any C program.The client library implements an application programming
interface (API) consisting of a set of data structures and functions that map onto
native protocol operations. The C API provided by this library is much more con-
venient to work with than the native protocol.

= MySQL interfaces for other languages can link the C client library into the lan-
guage processor. The client library thus provides the means whereby MySQL bind-
ings for other languages can be built on top of the C API. This type of interface
exists for Perl, PHP, Python, Ruby, C++,Tcl, and others.

= There are also interfaces for other languages that implement the native client-server
protocol directly rather than using the C library to handle communication. These
exist for Java, PHP, and Ruby, for example.

Each language binding defines its own interface that specifies the rules for accessing
MySQL.There is insufficient space here to discuss all of the APIs available for MySQL.
Instead, we’ll concentrate on three of the most popular APIs:

= The C client library API. This is the primary programming interface to MySQL.
It’s used, for example, to implement the standard clients in the MySQL distribution,
such as mysql, mysqladmin, and mysgldump.

= The DBI (Database Interface) API for Perl. DBI is implemented as a Perl mod-
ule that interfaces with other modules at the DBD (Database Driver) level, each of
which provides access to a specific database engine. The particular DBD module
used here is the one that provides MySQL support. We’ll use MySQL with DBI to
create standalone scripts to be invoked from the command line and scripts to be in-
voked by a Web server to provide Web access to MySQL.

= The PHP API. PHP is a server-side scripting language that provides a convenient
way of embedding programs in Web pages. Such a page is processed by PHP on the
server host before being sent to the client, which enables the script to generate
dynamic content, such as including the result of a MySQL query into the page.
Like DBI, PHP includes support for accessing several database engines in addition
to MySQL. It has engine-specific interfaces, and interfaces that are more engine-
independent. This book uses one of the latter, known as PHP Data Objects (PDO).

The present chapter provides a comparative overview of these three APIs to describe
their general characteristics and to give you an idea why you might choose one over an-
other for particular applications. Each of the following three chapters discusses one of the
APIs in detail.

There’s no reason to consider yourself locked into a single API, of course. Get to
know several APIs and arm yourself with the knowledge that enables you to choose be-
tween them wisely. If you have a large project with several components, you might use
multiple APIs and write some parts in one language and other parts in another language,

6.2 APIs Available for MySQL

depending on which one is most appropriate for each piece of the job.You may also find
it instructive to implement an application in several ways if you have time. This gives you
direct experience with different APIs as they apply to your own applications.

If you do not have the software required for using any of the APIs, see Appendix A,
“Obtaining and Installing Software.”

Should you be interested in additional MySQL programming information beyond
what the following chapters provide, other books are available. The two with which I am
most familiar (because I wrote them) are MySQL and Perl for the Web (New Riders, 2001)
and MySQL Cookbook, second edition (O’Reilly, 2006). The first provides extensive cov-
erage of the use of MySQL and DBI in Web environments. The second discusses how to
write MySQL programs using Perl DBI, the PHP PEAR DB module, Ruby DBI (similar
to Perl DBI), Python’s DB-API interface, and the Java JDBC interface. If you're interested
specifically in Java, see MySQL and Java Developer’s Guide (Matthews, Cole, and Gradecki;
Wiley, 2003). One of the authors (Mark Matthews) is the creator of MySQL
Connector/J, the official Java interface for MySQL.

6.2.1 The C API

The C API is used within the context of compiled C programs. It’s a client library that
provides an interface for talking to the MySQL server, giving you the capabilities you
need for establishing a connection to and conversing with the server.

The C clients provided in the MySQL distribution are based on this API. The C client
library also serves as the basis for most of the MySQL bindings for other languages. For
example, the MySQL-specific driver for the Per]l DBI module is made MySQL-aware by
linking in the code for the MySQL C client library.

6.2.2 The Perl DBI API

The DBI API is used within the context of applications written for the Perl scripting lan-
guage. This API tries to work with as many databases as possible, while at the same time
hiding database-specific details from the script writer. DBI does this using Perl modules
that work together in a two-level architecture (see Figure 6.1):

= The DBI (database interface) level provides the general-purpose interface for client
scripts. This level provides an abstraction that does not refer to specific database
engines.

= The DBD (database driver) level provides support for various database engines by
means of drivers that are engine specific. The DBD-level module that implements
DBI support for MySQL is named DBD::mysql.

The DBI architecture enables you to write applications in relatively generic fashion.
When you write a DBI script, you use a standard set of database-access calls. The DBI
layer invokes the proper driver at the DBD level to handle your requests, and the driver
handles the specific issues involved in communicating with the particular database server
you want to use. The DBD level passes data returned from the server back up to the DBI

347

348

Chapter 6 Introduction to MySQL Programming

Application Perl script
level $dbh = DBI->connect ("DBI:mysql'...");
...0r..
$dbh = DBI->connect ("DBI:Pg:...");

Perl interpreter
Database
Interface DBI
level /
Database
Driver MySQL PostgreSQL Other
level driver driver DBDs
RDBMS MySQL PostgreSQL Other
level server server servers

Figure 6.1 DBI architecture.

layer, which presents the data to your application. The form of the data is consistent no
matter the database from which the data originated.

From the application writer’s point of view, the result is an interface that hides differ-
ences between database engines, yet works with a wide variety of engines—as many as
there are drivers for. DBI provides a consistent client interface that increases portability
because you can access each database engine in a uniform fashion.

The one aspect of script writing that is necessarily engine-specific occurs when you
connect to a database server, because you must indicate which driver to use to establish
the connection. For example, to use a MySQL database, you connect like this:

$dbh = DBI->connect ("DBI:mysql:...");

To use PostgreSQL or Oracle instead, connect like this:

$dbh = DBI->connect ("DBI:Pg:...");
$dbh = DBI->connect ("DBI:Oracle:...");

After you’ve made the connection, you don’t need to make any specific reference to
the driver. DBI and the driver itself work out the database-specific details.

That’s the theory, anyway. However, you should be aware of two factors that work
against DBI script portability:

= SQL implementations differ between RDBMS engines, and it’s perfectly possible to
write SQL statements for one engine that another will not understand. If your SQL
is reasonably generic, your scripts will be correspondingly portable between en-
gines. But if your SQL is engine dependent, your scripts will be, too. For example,

6.2 APIs Available for MySQL

if you use the MySQL-specific SHOW VARIABLES statement, your script won'’t work
with other database servers.

= DBD modules often provide engine-specific types of information to enable script
writers to use particular features of particular database systems. For example, the
DBD for MySQL provides a way to access properties of the columns in a query re-
sult such as the maximum length of values in each column, whether columns are
numeric, and so forth. Other database servers don’t necessarily make analogous
types of information available. DBD-specific features are antithetical to portability;
by using them, you make it more difficult to use a script written for MySQL with
other database systems.

Despite the potential of these two factors for making your scripts database specific, the
DBI mechanism for providing database access in an abstract fashion is a reasonable means
of achieving portability. It’s up to you to decide how much you want to take advantage
of nonportable features. As you will discover in Chapter 8,“Writing MySQL Programs
Using Perl DBI,” I make little effort to avoid MySQL-specific constructs provided by the
MySQL DBD. That’s because you should know what those constructs are so that you can
decide for yourself whether to use them. For further information, see Appendix H, “Perl
DBI API Reference,” which lists all the MySQL-specific constructs.

6.2.3 The PHP API

Like Perl, PHP is a scripting language. Unlike Perl, PHP is designed less as a general-
purpose language than as a language for writing Web applications. The PHP API is used
primarily as a means of embedding executable scripts into Web pages. This makes it easy
for Web developers to write pages with dynamically generated content. When a client
browser sends a request for a PHP page to a Web server, PHP executes any script it finds
in the page and replaces it with the script’s output. The result is sent to the browser. This
enables the page that actually appears in the browser to change according to the circum-
stances under which the page is requested. For example, when the following short PHP
script is embedded in a Web page, it displays the IP number of the client host that re-
quested the page:

<?php echo $ SERVER["REMOTE_ADDR"]; 2>

As a less trivial and more interesting application, you can use a script to provide up-to-
the-minute information to visitors based on the contents of your database. The following
example shows a simple script such as might be used at the Historical League Web site.
The script issues a query to determine the current League membership count and reports
it to the person visiting the site:

<html>

<head>

<title>U.S. Historical League</title>
</head>

<body bgcolor="white">

349

350

Chapter 6 Introduction to MySQL Programming

<p>Welcome to the U.S. Historical League Web Site.</p>
<?php
USHL home page

try
{
$dbh = new PDO("mysgl:host=localhost;dbname=sampdb", "sampadm", "secret");
$dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
$sth = $dbh->query ("SELECT COUNT(*) FROM member");
$count = $sth->fetchColumn (0);
print ("<p>The League currently has $count members.</p>");
$dbh = NULL; # close connection

}

catch (PDOException $e) { } # empty handler (catch but ignore errors)
2>

</body>

</html>

PHP scripts typically look like HTML pages with executable code embedded inside
<?php and ?> tags. A page can contain any number of code fragments. This provides an
extremely flexible approach to script development. For example, you can write a PHP
script as a normal HTML page initially to set up the general page framework, and then
add code later to generate the dynamic parts of the page.

PHP actually has multiple types of database interfaces. Among these is a set of low-
level libraries, each of which works with a single database engine and which make no
effort to unify the interface to different engines the way DBI does. Instead, the interface
to each engine looks much like the interface for the corresponding C library that imple-
ments the low-level API for that engine. For example, the names of the PHP functions
that you use to access MySQL from within PHP scripts are very similar to the names of
the functions in the MySQL C client library.

A more DBI-like approach is available for PHP by using the PHP Data Objects
(PDO) extension. This extension provides a more abstract interface to database engines
using a two-level architecture similar to that used by DBI. The PHP scripts in Chapter 9,
“Writing MySQL Programs Using PHP,” employ the PDO extension for database access.

6.3 Choosing an API

This section provides general guidelines to help you choose an API for various types of
applications. It compares the capabilities of the C, DBI, and PHP APIs to give you some
idea of their relative strengths and weaknesses, and to indicate when you might choose
one over another.

I am not advocating any one of these languages over the others, although I do have my
preferences.You will have your own preferences, too, as have the technical reviewers for
this book. One reviewer felt that I should emphasize the importance of C for MySQL

6.3 Choosing an API

programming to a much greater extent, whereas another thought I should come down
much harder on C programming and discourage its use. The lesson from these varying
viewpoints is that you should weigh the factors discussed in this section and come to
your own conclusions.

A number of considerations enter into assessing which API is most suitable for a par-
ticular task:

= Intended execution environment. The context in which you expect the applica-
tion to be used.

= Performance. How efficiently applications perform when written in the API
language.

= Ease of development. How convenient the API and its language make application
writing.

= Portability. Whether the application will be used for database systems other than
MySQL.

The following discussion further examines each of these factors. Be aware that some of
the factors interact. For example, you want an application that performs well, but it might
be just as important to use a language that lets you develop the application quickly even if
it doesn’t perform quite as efficiently.

6.3.1 Execution Environment

When you write an application, you generally have some idea of the environment in
which it will be used. For example, it might be a report generator program that you in-
voke from the shell, or an accounts payable summary program that runs as a cron job at
the end of each month. Commands run from the shell or from cron generally stand on
their own and require little information from the execution environment. On the other
hand, you might be writing an application intended to be invoked by a Web server. Such
a program might expect to be able to extract very specific types of information from its
execution environment: What browser is the client using? What parameters were entered
into a mailing list subscription request form? Did the client supply the correct password
for accessing personnel information?

Each API language varies in its suitability for writing applications in these differing
environments:

= C is a general-purpose language, so in principle you can use it for anything. In
practice, C tends to be used more often for standalone programs rather than for
Web programming. One reason might be that it’s not as easy to perform text pro-
cessing and memory management in C as it is in Perl or in PHP, and those capabili-
ties tend to be heavily used in Web applications.

= Perl, like C, is suitable for writing standalone programs. However, it also happens
that Perl is quite useful for Web site development—for example, by using the

351

352 Chapter 6 Introduction to MySQL Programming

CGIL.pm module. This makes Perl a handy language for writing applications that
link MySQL with the Web. Such an application can interface to the Web via the
CGI.pm module and interface to MySQL using DBI.

= PHP is intended by design for writing Web applications, so that’s obviously the en-
vironment to which it is best suited. Furthermore, database access is one of PHP’s
biggest strengths, so it’s a natural choice for Web applications that perform MySQL-
related tasks. It’s possible to use PHP as a standalone interpreter (for example, to ex-
ecute scripts from the shell), but it’s not used that way very much.

Given these considerations, C and Perl are the most likely candidate languages if you’re
writing a standalone application. For Web applications, Perl and PHP are most suitable. If
you need to write both types of applications, but don’t know any of these languages and
want to learn as few as possible, Perl might be your best option.

6.3.2 Performance

All other things being equal, we prefer to have applications run as quickly as possible.
However, the actual importance of performance tends to be related to the frequency with
which a program is used. For a program that you run once a month as a cron job during
the night, performance might not matter that much. On the other hand, if you run a pro-
gram many times a second on a heavily used Web site, every bit of efficiency you gain can
make a big difference. In the latter case, performance plays a significant role in the useful-
ness and appeal of your site. A slow site is annoying for visitors, no matter what the site is
about, and if you depend on the site as a source of income, decreased performance trans-
lates directly into reduced revenue.You cannot service as many connections at a time, and
visitors who tire of waiting give up and go elsewhere.

Performance assessment is a complex issue. The best indicator of how well your appli-
cation will perform when written for a particular API is to write it under that API and
try it. And the best comparative test is to implement multiple versions under different
APIs to see how they stack up against each other. Of course, that’s not how development
usually works. More often, you just want to get your program written. After it’s working,
you can think about tuning it to see whether it can run faster or use less memory, or
whether it has some other aspect that you can improve. But there are at least two general
factors that you can count on as affecting performance in a relatively consistent way:

= Compiled programs execute more quickly than interpreted scripts.

» For interpreted languages used in a Web context, performance is better when the
interpreter is invoked as a module that is part of the Web server itself rather than as
a separate process.

6.3.2.1 Compiled Versus Interpreted Languages

As a general principle, compiled applications are more efficient, use less memory, and exe-
cute more quickly than an equivalent version of the program written in a scripting lan-
guage. This is due to the overhead involved with the language interpreter that executes

6.3 Choosing an API

the scripts. C is compiled and Perl and PHP are interpreted, so C programs generally will
run faster than Perl or PHP scripts. Thus, C might be the best choice for a heavily used
program.

Other factors tend to diminish the distinction between compiled and interpreted pro-
grams. For one thing, writing in C generally gives you a faster program, but it’s quite pos-
sible to write inefficient C programs. Writing a program in a compiled language is no
automatic passport to better performance; it’s still necessary to think about what you're
doing. In addition, the difference between compiled and interpreted programs is lessened
if a scripted application spends most of its time executing code in compiled MySQL
client library routines that are linked into the interpreter engine.

6.3.2.2 Standalone Versus Module Versions of Language Interpreters
For Web-based applications, script language interpreters are usually used in one of two
forms—at least for Apache, the Web server used in this book for writing Web applications:

= You can arrange for Apache to invoke the script interpreter as a separate process. In
this mode of operation, when Apache needs to run a Perl or PHP script, it starts the
corresponding interpreter and tells it to execute the script. In this case, Apache uses
the interpreters as CGI programs—that is, it communicates with them using the
Common Gateway Interface (CGI) protocol.

= The interpreter can be used as a module that is linked in directly to the Apache bi-
nary and that runs as part of the Apache process itself. In Apache terms, the Perl and
PHP interpreters take the form of the mod_perl and mod_php modules.

Perl and PHP advocates will argue the speed advantages of their favorite interpreter,
but all agree that the form in which the interpreter runs is a much bigger factor than the
languages themselves. Either interpreter runs much faster as a module than as a standalone
CGI application. With a standalone application, it’s necessary to start up the interpreter
each time a script is to be executed, so you incur a significant penalty in process-creation
overhead. When used as a module within an already running Apache process, an inter-
preter’s capabilities can be accessed from your Web pages instantly. This dramatically im-
proves performance by reducing overhead and translates directly into an increased
capacity to handle incoming requests and to dispatch them quickly.

The startup penalty for a standalone interpreter typically results in at least an order of
magnitude poorer performance than the module interpreter. Interpreter startup cost is
particularly significant when you consider that Web page serving typically involves quick
transactions with light processing rather than substantial ones with a lot of processing. If
you spend a lot of time just starting up and not very much actually executing the script,
you're wasting most of your resources. It’s like spending most of the day getting ready for
work, arriving at 4 o’clock in the afternoon, and then going home at 5.

You might wonder why there is any benefit with the module versions of the inter-
preters—after all, you must still start up Apache itself, right? The savings comes from the
fact that a given Apache process handles multiple requests. When Apache starts, it imme-
diately spawns a pool of child processes to be used to handle incoming requests. When a

353

354

Chapter 6 Introduction to MySQL Programming

request arrives that involves execution of a script, there is already an Apache process ready
and waiting to handle it. Also, each instance of Apache services multiple requests, so the
process startup cost is incurred only once per set of requests, not once per request.
(Apache 2 can use multiple threads rather than separate processes to reduce the overhead
even more.)

One potentially significant difference between Perl and PHP is that Perl has a bigger
memory footprint; Apache processes are larger with mod_per1l linked in than with
mod_php. PHP was designed under the assumptions that it must live cooperatively within
another process and that it might be activated and deactivated multiple times within the
life of that process. Per]l was designed to be run from the command line as a standalone
program, not as a language meant to be embedded in a Web server process. This probably
contributes to its larger memory footprint; as a module, Perl simply isn’t running in its
natural environment. Other factors that contribute to the larger footprint are script
caching and additional Perl modules that scripts use. In both cases, more code is brought
into memory and remains there for the life of the Apache process. (To minimize this
problem, there are techniques that allow you to designate only certain Apache processes as
enabled for mod_perl.That way, you incur the extra memory overhead only for those
processes that execute Perl scripts. The mod_per1l area of the Apache Web site has a good
discussion of various strategies from which to choose.Visit http://perl.apache.org/docs/
for more information.)

The standalone version of a language interpreter does have one advantage over its
module counterpart, in that you can arrange for it to run scripts under a different user ID.
The module versions run scripts under the same user ID as the Web server, which is typi-
cally an account with minimal privileges for security reasons. That doesn’t work very well
for scripts that require specific privileges (for example, if you need to read or write pro-
tected files). You can combine the module and standalone approaches if you like: Use the
module version by default and the standalone version for situations in which scripts need
to run with the privileges of a particular user.

‘What this adds up to is that, whether you choose Perl or PHP, you should try to use it
as an Apache module rather than by invoking a separate interpreter process. Reserve use
of the standalone interpreter only for those cases that cannot be handled by the module,
such as scripts that require special privileges. For these instances, you can process your
script by using Apache’s suEXEC mechanism to start up the interpreter under a given
user ID.

6.3.3 Development Time

The factors just described affect the performance of your applications, but raw execution
efficiency may not be your only goal. Your own time is important, too, as is ease of pro-
gramming, so another factor to consider in choosing an API for MySQL programming is
how quickly you can develop your applications. If you can write a Perl or PHP script in
half the time it takes to develop the equivalent C program, you might elect not to use the
C API, even if the resulting application doesn’t run quite as fast. It’s often reasonable to be

http://perl.apache.org/docs/

6.3 Choosing an API 355

less concerned about a program’s execution time than about the time you spend writing
it, particularly for applications that aren’t executed frequently. An hour of your time is
worth a lot more than an hour of machine time!

Generally, scripting languages enable you to get a program going more quickly, espe-
cially for working out a prototype of the finished application. At least two factors con-
tribute to this. First, scripting languages tend to provide higher-level constructs than
compiled languages. This enables you to think at a higher level of abstraction, so you can
think about what you want to do rather than about the details involved in doing it. For
example, PHP associative arrays and Perl hashes are great time savers for maintaining data
involving key/value relationships (such as student ID/student name pairs). C has no such
construct. If you wanted to implement it in C, you would need to write code to handle
many low-level details involving issues such as memory management and string manipu-
lation, and you would need to debug it. This takes time.

Second, the development cycle has fewer steps for scripting languages than for com-
piled languages. With C, you engage in an edit-compile-test cycle during application de-
velopment. Every time you modify a program, you must recompile it before testing. With
Perl and PHP, the development cycle is simply edit-test because you can run a script im-
mediately after each modification with no compiling. On the other hand, the C compiler
enforces more constraints on your program in the form of stricter type checking. The
greater discipline imposed by the compiler can help you avoid bugs that you would not
catch as easily in looser languages, such as Perl and PHP. If you misspell a variable name in
C, the compiler will warn you. PHP and Perl won’t do so unless you ask them to.These
tighter constraints can be especially valuable as your applications become larger and more
difficult to maintain.

In general, the tradeoff is the usual one between compiled and interpreted languages
for development time versus performance: Do you want to develop the program using a
compiled language so that it will execute more quickly when it runs, but spend more
time writing it? Or do you want to write the program as a script so that you can get it
running in the least amount of time, even at the cost of some execution speed?

It’s also possible to combine the two approaches. Write a script as a “first draft” to
quickly develop an application prototype to test out your logic and make sure the algo-
rithms are appropriate. If the program proves useful and is executed frequently enough
that performance becomes a concern, you can recode it as a compiled application. This
gives you the best of both worlds: quick prototyping for initial development of the appli-
cation, and the best performance for the final product.

In a strict sense, the Perl DBI and PHP APIs give you no capabilities that are not al-
ready present in the C client library. However, the environment in which MySQL capa-
bilities are embedded is very difterent for C than for Perl or PHP. Consider what tasks
you’ll need to perform as you interact with the MySQL server and ask how much each
API language will help you carry them out. Here are some examples:

= Memory management. In C, you find yourself working with malloc() and
free() for any tasks involving dynamically allocated data structures. Perl and PHP

356 Chapter 6 Introduction to MySQL Programming

handle that for you. For example, they allow arrays to grow in size automatically,
and dynamic-length strings can be used without ever thinking about memory
management.

= Text manipulation. Perl has the most highly developed capabilities in this area, and
PHP runs a close second. C is very rudimentary by comparison, coming in a distant
third.

Of course, in C you can write your own libraries to encapsulate tasks such as memory
management and text processing into functions that make the job easier. But then you
still have to debug them, and you want your algorithms to be efficient, too. In these re-
spects, it’s a fair bet that the algorithms in Perl and PHP for these things have had the
benefit of being examined by many pairs of eyes, so generally they should be both well
debugged and reasonably efficient.You can save your own time by taking advantage of the
time that others have already put into the job. (On the other hand, if an interpreter does
happen to have a bug, you may simply have to live with it or try to find a workaround
until the problem is fixed. When you write in C, you have a finer level of control over the
behavior of your program.)

The languages differ in how “safe” they are. The C API provides the lowest-level inter-
face to the server and enforces the least policy. In this sense, it provides the least amount
of safety net. If you execute API functions out of order, you may be lucky and get an
“out-of-sync” error, or you may be unlucky and have your program crash. Per]l and PHP
both protect you pretty well. A script will fail if you don’t do things in the proper order,
but the interpreter won't crash. Another fertile source of crashing bugs in C programs is
the use of dynamically allocated memory and pointers associated with them. Per] and
PHP handle memory management for you, so your scripts are much less likely to die
from memory management bugs.

Development time is affected by the amount of external support that is available for a
language. C external support is available in the form of wrapper libraries that encapsulate
MySQL C API functions into routines that are easier to use. Libraries that do this are
available for both C and C++. Perl undoubtedly has the largest number of add-ons, in the
form of Perl modules (these are similar in concept to Apache modules). There is even an
infrastructure in place designed to make it easy to locate and obtain these modules (the
CPAN, or Comprehensive Perl Archive Network). Using Perl modules, you gain access to
all kinds of functions without writing a line of code. Want to write a script that generates
a report from a database, and then mail it to someone as an attachment? Just visit
cpan.perl.org, get one of the MIME modules, and you have instant attachment-
generation capability. PHP has archives known as PEAR (PHP Extension and Application
Repository) and PECL (PHP Extension Community Library), available at pear.php.net
and pecl.php.net.

6.3 Choosing an API 357

6.3.4 Portability

The question of portability has to do with how easily a program written to use MySQL
can be modified to use a different database engine. This may be something you don’t care
about. However, unless you can predict the future, it is a little risky to say, “I'll never use
this program with any database other than MySQL.” Suppose that you get a different job
and want to use your old programs, but your new employer uses a different database sys-
tem? What then? If portability is a priority, you should consider the clear differences be-
tween APIs:

= DBI provides the most portable API because database independence is an explicit
DBI design goal.

= PHP script portability is similar to DBI if you use the PDO database-access exten-
sion mentioned earlier. If you use only the low-level database-access libraries, PHP
is less portable because it doesn’t provide the same sort of uniform interface to vari-
ous database engines that DBI does. The PHP function calls for each supported
database tend to resemble those in the corresponding underlying C API. To use a
different engine, at a2 minimum you’ll need to change the names of the database-
related functions that you invoke.You may also have to revise your application’s
logic a bit as well because the interfaces for the various databases don’t all work
quite the same way.

= The C API provides the least portability between databases. By its very nature it is
designed specifically for MySQL.

Portability in the form of database independence is especially important when you
need to access multiple database systems within the same application. This can involve
simple tasks such as moving data from one RDBMS to another, or more complex under-
takings, such as generating a report based on information combined from a number of
database systems.

This page intentionally left blank

v

Writing MySQL
Programs Using C

MySQL provides a client library written in the C programming language that you can
use to write client programs that access MySQL databases. This library defines an applica-
tion programming interface that includes the following facilities:

= Connection management routines that establish and terminate a session with a server

= Routines that construct SQL statements, send them to the server, and process the
results

= Status-checking and error-reporting functions for determining the exact reason for
an error when an API call fails

= Routines that help you process options given in option files or on the command line

This chapter shows how to use the C client library to write your own programs, using
conventions that are reasonably consistent with those used by the client programs in-
cluded in the MySQL distribution. I assume that you know something about program-
ming in C, but I've tried not to assume that you’re an expert.

The first part of this chapter develops a series of short programs. The series culminates
in a simple program that serves as the framework for a client skeleton that does nothing
but connect to and disconnect from the server. The reason for this is that although
MySQL client programs are written for different purposes, one thing they all have in
common is that they must establish a connection to the server.

The resulting skeleton program is generic, so it is usable as the basis for any number of
other client programs. After developing it, we’ll pause to consider how to execute various
kinds of SQL statements. Initially, we’ll discuss how to handle specific hardcoded state-
ments, and then develop code that can be used to process arbitrary statements. After that,
we’ll add some statement-processing code to the skeleton to develop another program
that’s similar to the mysql client and that can be used to issue statements interactively.

360 Chapter 7 Writing MySQL Programs Using C

The chapter then demonstrates several other activities that the client library enables
you to perform:

= Writing client programs that communicate with the server over secure connections
using the Secure Sockets Layer (SSL) protocol

= Writing applications that use libmysgld, the embedded server library

= Sending multiple statements to the server at once and processing the result sets that
come back

» Using server-side prepared statements

This chapter discusses only those functions and data types from the client library that
we need for the example programs. For a comprehensive listing of all functions and types,
see Appendix G, “C API Reference” (online).You can use that appendix as a reference for
further background on any part of the client library you're trying to use.

The example programs are available online so that you can try them directly without
typing them in yourself. They are part of the sampdb distribution, located under the capi
directory of the distribution. See Appendix A, “Obtaining and Installing Software,” for
downloading instructions.

Where to Find Example Programs

A common question on the MySQL mailing list is “Where can | find some examples of
clients written in C?” The answer, of course, is “right here in this book.” But something
many people seem not to consider is that a MySQL source distribution includes several
client programs that happen to be written in C (mysgl, mysgladmin, and mysqgldump, for
example). Because the distribution is readily available, it provides you with quite a bit of ex-
ample client code. Therefore, if you haven’t already done so, grab a source distribution
sometime and take a look at the programs in its client and tests directories.

7.1 Compiling and Linking Client Programs

This section describes the steps involved in compiling and link