
  
DOC112: Computer Hardware Lecture 19 Page 1 
08/12/2003 

Lecture 19: Designing a Central Processor Unit 3: The Output Logic 
 
The final step in designing the processor is to design the output logic for the controller. This is the 
logic that determines the values of the clock gates (c0-c14), the arithmetic functions (f0-f4) and the 
multiplexer settings (s0-s8).  These values will depend on both the state of the processor and the 
instruction being executed. We will assume that each state has been decoded into a single line, and we 
will use Boolean variables: 
 F1,F2,F3,E1,E2,E3 and E4 
to indicate the state. Thus, for example E1=1 if the processor is in state E1 and 0 at all other times. We 
will also assume that the instruction being executed has been decoded, and we will name the 
corresponding Boolean variables the same as the instruction: 
 LOAD, STORE, JUMP, CALL, LOADINDIRECT etc. 
Thus LOAD=1 if and only if we are executing the LOAD instruction. We will return to the question 
of implementing these Boolean variables later. 
 
The Clock Gates 
During any state of the processor, certain registers are loaded, but not all registers. The clock gates 
control which registers are loaded by gating the system clock. For example, if we choose the MAR 
register, the circuit will be: 

 
Thus, if we can set the variable CMAR to 1 for each state where the MAR is to be loaded, then it will 
receive a clock pulse from the system clock at the same time that the state change occurs. If, on the 
other hand CMAR=0 then the MAR register cannot change. To determine the circuit for CMAR, and 
the other clock gates, we need to go back to the register transfers and determine which cycles each 
register receives a clock pulse and for which instructions. Looking through the instructions we find 
that: 
 
CMAR = F1 + E1•(LOAD + STORE) + E2•.(LOADINDIRECT + STOREINDIRECT) 
 
In other words the MAR changes state always in state F1, and in E1, but only when the LOAD or 
STORE instructions are being executed, and lastly in state E2 when the LOADINDIRECT and 
STOREINDIRECT instructions are being executed. This is a simple Boolean equation for which we 
can write a direct implementation. However, we can simplify it considerably if we note that during 
certain cycles it doesn’t matter if we load the MAR, since we are not using the memory. Looking at 
the register transfers we do not need its value to be retained further than the next cycle, so we can 
write: 

CMAR = F1 + E1 + E2 
Thus the circuit for determining the output c11 is: 

 
The equation for the MDR is found similarly 

CMDR = F2 + E2•LOAD + E3•LOADINDIRECT 
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and again we can simplify this since we usually only load the MDR on the cycle before we use it. 
However, we need to preserve its value between E1 and E3, during the LOADINDIRECT instruction, 
and so: 

CMDR = F2 + E2•LOAD + E3 
 
The instruction register IR c12 is even simpler since it always receives a clock edge in F2 and at no 
other time, thus 
 CIR = F2 
 
The memory clock, c13, receives a pulse only when a store instruction is executed. Hence we have: 

CMemory = E2•STORE + E3•STOREINDIRECT 
We can't simplify this for fear of corrupting the memory. 
 
The program counter has rather a nasty equation: 

CPC=F1+E1•(CALL + CALLINDIRECT + JUMP  + SKIP + 
                             SKIPPOSITIVE•C’ + SKIPNEGATIVE•C) +  
                                      E2•(JUMPINDIRECT+RETURN) + E3•(CALLINDIRECT+CALL) 

Unfortunately it does not seem likely that we can simplify this further, since we need to maintain the 
value in the program counter from one instruction to the next. 
 
For the A register, (c7) we can always load it in cycle E1, and in some cases we need the value 
preserved through cycle E2. Hence we can use: 
  CA = E1 + E2•STOREINDIRECT 
 
The B register (c8) can always be loaded in the E2 state 

CB = E2 
 
The C register records the result of an arithmetic operation for the next instruction. Since all 
arithmetic operations reach the result in E3 we could take the easy option and write: 
 CC = E3 
though this would mean that if a skip instruction were used after a non arithmetic operation (say a 
LOAD instruction) its result would be unpredictable, since 
the ALU carry would have been loaded during the E3 state of 
the LOAD instruction. A safer implementation would be to 
load it during E3, but only for one or two register 
instructions. Rather than write these out in full we could 
express this as: 
 CC= E3•(ONE+TWO) 
We will see later that it will be helpful to use the Boolean 
variables ONE and TWO in other cases.  
 
We have now determined all the clock gates except for those 
of the seven general purpose registers. Here we have been 
careful in laying out the instructions to ensure that if a 
register is to be loaded its number will be stored in the 
instruction register at bits 20-23. Going through our register 
transfer definitions we can write that there should be a clock 
pulse on Rdest in the following conditions: 
    CRdest = E4+ E3•(ONE + LOAD ) +  
                    E2•(SHIFT + MOVE +  
                              CALL+CALLINDIRECT) +  
                    E1•CLEAR 
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Where ONE, as above, means all the one register instructions, and SHIFT means any shift instruction, 
or in Boolean equations SHIFT=ASL+ASR+LSR. This equation cannot be easily simplified, since the 
general purpose registers are used by the programmers and we cannot arbitrarily change their values. 
We need to decode bits 20 to 23. In the instruction we have allowed four bits for the register 
indicators, and so we will be able to incorporate up to sixteen registers if we choose to expand the 
processor. However, in the present design we have only seven, so a 3bit decoder will serve the 
purpose. The decoder is shown in the figure above. 
 
Output Logic 2: The arithmetic function setters. 
 
The shifter function can be easily determined, since most of the time it is used it is in the unchanged 
mode (passing data from A to the internal bus). The shifts only occur in the shift instructions. The 
shifter function is described by the following table: 
 

Instruction f4 f3 
 0 0 
ARITHMETIC SHIFT LEFT (ASL) 0 1 
ARITHMETIC SHIFT RIGHT (ASR) 1 0 
LOGICAL SHIFT RIGHT (LSR) 1 1 

 
From this table we can see that we can implement these function lines using: 
 f4 = ASR+LSR 
 f3 = ASL+LSR 
The default is then 00 and need not be explicitly set. 
 
The use of the ALU is as follows: 
 

Instruction Function f2 f1 f0 
Default zero 0 0 0 
Unused B-A 0 0 1 
E3.(SUBTRACT + COMPARE) A-B 0 1 0 
E3.(DEC + INC + ADD) AplB 0 1 1 
COMP.E3 A⊕B 1 0 0 
OR.E3 AorB 1 0 1 
AND.E3 AandB 1 1 0 
DEC.E2 + COMP.E2 -1 1 1 1 

 
As with the shifter we need to turn these round, so that 
f2 = E3•(COMP+OR+AND) + E2•.(COMP+DEC) 
f1 = E3•(SUBTRACT+COMPARE+DEC+INC+ADD+AND) + E2•(COMP+DEC) 
f0 =E3•(DEC + INC + ADD + OR) +E2•(COMP+DEC) 
 
The carry input is required to be a 1 in only 1 place, which is INC•E3. For all other cases it must be 
set to zero. Hence we have 
f4 = INC•E3 
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Output Logic 3: The Select Inputs 
 
The selection inputs are defiend as follows 
s2 s1 s0 Select s6 s5 s4 Select s3 Select 
0 0 0 R0 0 0 0 Shifter 0 Bus 
0 0 1 R1 0 0 1 ALU 1 incrementer 
0 1 0 R2 0 1 0 PC   
0 1 1 R3 0 1 1    
1 0 0 R4 1 0 0 Mask   
1 0 1 R5 1 0 1 MAR   
1 1 0 R6 1 1 0    
1 1 1 Bus 1 1 1    

 
Firstly, the register select, s2,s1,s0 can be taken directly from the Rsrc or the Rdest fields of the 
instructions. Examining the register transfers we find that A and B are loaded from the bus (as 
opposed to the registers) during E2•INC, E2•COMP and E2•DEC. In fact we note that if we are 
executing a one register instruction we can always set the selector for A and B to the bus (1,1,1). So 
we can write this condition as 
 SBus = E2•ONE 
At other times A and B can be loaded from the registers. Going through the register transfers we see 
that A and B need to be connected to Rsrc, (which will be the instruction register bits 16-19) during 
state E1 for all the indirect instructions and all the two register instructions. At all other times it can be 
connected to Rdest, which is IR bits 20-23.  We can therefore write another select condition as: 
 SRsrc = E1•(INDIRECT + TWO) 
With these two functions implemented we see that the selection bits s0,s1 and s2 can be provided by 
the following circuit. 

 
The internal bus selector has three spare inputs, which we could use to add further functionality to the 
processor. The most common usage is to loop A back to the registers via the shifter, so we will set this 
as default, and look at the conditions where we need to select the other inputs. 
 SPC = E2•(CALL+CALLINDIRECT) 
 SALU = E1•CLEAR + (E2+E3)•(INC+DEC+COMP) + TWO•E3  
 SMask = E1•LOAD+JUMP + STORE) + E3•CALL 
 SMDR =  LOAD•E3 + E4 
Looking again at the table defining the selection bits we can see that: 
 S4 = SALU + SMAR 
 S5 = SPC 
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 S6 = SMask + SMDR 
With thought we could probably simplify these equations by looking at the times when the internal 
bus is and isn’t used, but for the moment we will press on. 
 
The PC selector has the default to be BUS (0) and we set it to the incrementer (1) with the following 
conditions: 
 s3 = F1 + E1•(CALL+CALLINDIRECT) 
 
Defining the opcodes 
To finish up, we can consider how to define the opcodes to simplify our output logic as far as 
possible. We have already specified that the top two or three bits are used to determine the number of 
memory cycles that are required. We have also seen that it would be useful to have a simple way of 
telling which type of instruction we have (One register, Two register etc.). We can do this quite 
simply by choosing bit 29 = 1 for an indirect instruction, and bit 28 to be 1 for a two register 
instruction. In our equations above we can now substitute INDIRECT=IR29, TWO=IR28 This means 
that four of our opcodes are now completely defined. These are: 
 LOADINDIRECT which is the only four cycle instruction: 
 LOADINDIRECT = IR31’•IR30’•IR29 
JUMPINDIRECT which is the only three cycle instruction which is also indirect: 
 JUMPINDIRECT = IR31•IR30’•IR29 
MOVE which is the only 2 register 2 cycle instruction 
 MOVE = IR31•IR30’•IR29’•IR28 
NOP which is the only no cycle instruction, (though if we were clever we might be able to make some 
of the skips fall into this category). 
 NOP = IR31’•IR30’•IR29’ 
The other instructions fall into the following categories: 
 
1101 Three cycle two register instructions, ADD, COMPARE, SUBTRACT, AND, OR and XOR 
1100 Three cycle instructions (excluding 2 register and indirect) LOAD, CALL, DEC, INC, COMP 
1000 Two cycle instructions (excluding 2 register and indirect) STORE, ASL, ASR, LSR, RETURN  
0100 One cycle instructions SKIP, SKIPPOSITIVE, SKIPNEGATIVE, CLEAR, JUMP 
 
We can allocate all these using the next three bits, leaving one bit spare, and we can write Boolean 
equations for the other variables that we have introduced above (SHIFT and ONE). Notice that we are 
using the massive redundancy of our instruction set to simplify both the state sequencing logic and the 
output logic. If we did not have this, we would need to take more care of how we define our opcodes. 
We can use our last bit to save some hardware in simplifying some of our boolean expressions, though 
this saving is hardly worth doing, so we will just reserve it for hardware expansion. 
 
 
The Mark 2 version 
 
This completes the design of the output logic, so we can make a wiring list, build the circuits and test 
our processor. It will only cost about twice as much as a Pentium IV, and we can probably run it as 
fast as 100KHz (Yes K not M). So, if we want to sell any we will need to think about a mark 2 
version. 
 
Our aim in designing the mark one processor was to keep everything simple, but several of our 
choices would result in the speed being slower. So here are one or two suggestions as to how to make 
the mark 2 version of the processor go faster. 
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Firstly, we used 32 bits for each instruction, but only four of our instruction set use those 32 bits. The 
rest are at most 16 bits. This means that for most of our fetch cycles we are fetching redundant bits 
from memory. In order to keep the speed up we still should fetch 32 bits at a time, but we could 
reduce the number of fetches if we could pack all instructions, other than the memory reference ones 
into 16 bits. This would reduce the number of fetch cycles by nearly half, and thus increase the speed 
by more than one quarter. There are many possible strategies we could adopt for this. The simplest 
would be to arrange some multiplexers so that we can switch either the top or the bottom sixteen bits 
of the IR to the controller inputs. The memory reference instructions could be forced to start on a 32 
bit boundary by inserting a NOP instruction where necessary. There are more complex, and more 
efficient ways of packing up the program instructions. 
 
Secondly, we could introduce more arithmetic hardware. For example, we could introduce a 16 bit 
multiplier that multiplies the bottom bits 16 of A and B to produce a 32 bit result. Other hardware 
additions could include a register to record when the result of an arithmetic operation was zero. By 
adding in a multiplexer to select register B independently from A we could almost certainly reduce the 
number of execution cycles for a large number of instructions. 
 
Lastly, we could consider ways in which we could speed up the clock. This would mean looking at the 
combinational logic (multiplexers and arithmetic circuits and the state sequencing and output logic) to 
see if we can optimise its speed. 


