

DOC112: Computer Hardware Lecture 18 Page 1
08/12/2003

Lecture 18: Designing a Central Processor Unit 2: The Controller

We continue defining the functionality of our processor by considering how to implement (in
hardware) all the instructions that do not use the memory.

Two Register Instructions

MOVE Rdest, Rsrc E1 A←Rscr
 E2 Rdest←Shifter Shifter set to no change
ADD Rdest, Rsrc E1 A←Rscr
 E2 B←Rdest
 E3 Rdest←ALUres;C←ALUcout ALU=A+B, Cin=0
COMPARE Rdest, Rsrc E1 A←Rscr
 E2 B←Rdest
 E3 C←ALUcout ALU=A-B, Cin=0

SUBTRACT, AND, OR and XOR are all done the same way as ADD, they just have different ALU
settings. COMPARE is just a subtract with a check to see that the result is zero. Because we have not
incorporated any hardware to test to see if the ALU is all zero, all we can do is check the carry. This
will be zero if Rscr>=Rdest, and 1 otherwise. Since the COMPARE result is used by the SKIP
instructions, the carry register must be an input to the controller.

One Register instructions

CLEAR Rdest E1 Rdest ←ALUres ALU = zero out
INC Rdest E1 A←Rdest
 E2 B←ALUres ALU = zero out
 E3 Rdest←ALUres; C←ALUcout ALU=A+B, Cin=1
DEC Rdest E1 A←Rdest
 E2 B←ALUres ALU = -1 out
 E3 Rdest←ALUres; C←ALUcout ALU=A+B, Cin=0
COMP Rdest E1 A←Rdest
 E2 B←ALUres ALU = -1 out
 E3 Rdest←ALUres ALU=A⊕B
ASL Rdest E1 A←Rdest
 E2 Rdest←Shifter Shifter set to Arithmetic left
RETURN Rdest E1 A←Rdest
 E2 PC←Shifter Shifter set to no change

The other shifts will be done in the same way as ASL (arithmetic shift left). They have the same number of
cycles, but the shifter settings will change. Notice that the COMP instruction simply flips the bits of the
destination register. In order to negate a register we would need to use a COMP followed by and INC
instruction.

No Register Instructions
All the skip instructions either increment the program counter or do nothing. The NOP instruction
would not even require one cycle to execute.

SKIP E.1 PC←PC+1

DOC112: Computer Hardware Lecture 18 Page 2
08/12/2003

Limitations of the design
The register transfers suggest possible improvements to the hardware design. For example, if we
consider the INC, DEC and COMP instructions we see that in each case register B is loaded from the
main bus, where register A is loaded from the programmer’s registers. Perhaps another multiplexer
could be incorporated to allow both these operations to take place at the same time. There are lots of
other possible improvements if you look carefully, but we are in a headlong rush to get the mark one
processor out on the market.

The Fetch Cycle
Before we can execute an instruction we need to fetch it from memory. This will be the same for
every instruction and will need the following register transfers:

F1 MAR←PC; PC←PC+1
F2 MDR←Memory
F3 IR←MDR

If only the memory were able to drive more than one
register, we could shorten this to two cycles, but that is life.
So, we now know that to execute one instruction we will
need between three and seven clock cycles. We can now
draw the finite state machine for our controller. At present
we have not considered the outputs associated with each
state, we will spend the next lecture designing the output
logic. At first sight it looks remarkably simple, having only
seven states. We scrapped the idle state in the manual
processor, since the software department told me that the
processor will never be idle. If it's not executing a program it will be interrogating the input/output
devices for new data.

The first problem is to determine the conditions for the state changes. Clearly F1 to F2, F2 to F3 and
E4 to F4 are unconditional, but for the others we will need to determine which instruction we are
executing, and how many cycles it will need. This looks difficult, since the instruction is determined
by an 8 bit opcode, and we don’t really want 8 inputs to the state sequencing logic if we are to follow
our established design method. However, we can now make use of the fact that we have not as yet
chosen what the opcodes should be for each instruction. If there were some bits of the opcode whose
function was to indicate the number of cycles required by an instruction then we could make use of
those bits to design our state sequencing logic. Looking at the instructions that we have designed we
chose the following pattern:

No of Cycles No of Instructions IR Bits 31:30:29
0 1 0 0 0
1 5 0 1 *
2 7 1 0 *
3 13 1 1 *
4 1 0 0 1

If we indicate instructions that take three cycles by putting the top two bits to 11, we can
accommodate a possible 64 such instructions. Similarly we can allow for up to 64 two and one cycle
instructions and 32 zero or four cycle instructions. This gives us a lot of flexibility since we know
that, sooner or later, the software department will be on the phone asking for more instructions despite
our warnings. Our problem now has three inputs and three flip flops determining the state, so, unless
we can simplify things further, we will not be able to minimise the state sequencing logic using
Karnaugh maps. We don't really want to use an un-minimised circuit, so we could look for a way to
reduce the problem from a six input one to a four input one. It turns out that by choosing a good state

F3

F2

F1

E1

E3

E4

E2

0

0

0

0

DOC112: Computer Hardware Lecture 18 Page 3
08/12/2003

assignment we can fix things so that the condition for returning to F1 can be evaluated at each state.
The problem is, can we find a simple function that will be 1 if we need to continue to the next execute
cycle and zero otherwise. The XOR function does the job for us. For example, the condition for
returning from E1 to F1 is IR31=0 and IR30=1, if the state E1 had assignment Q2=0, Q1=1, then we
could use the condition (IR31⊕Q2 + IR30⊕Q1). This would work everywhere except for four cycle
instructions which will yield zero at state F3. To fix this we arrange that Q0=1 at F3 and zero at E1,E2
and E3, and now our condition becomes:
 C = IR31⊕Q2 + IR30⊕Q1 + IR29•Q0
C=0 means return to F1, C=1 means continue to the next state. We have allocated completely the
states F3, E1, E2 and E3, and we can now complete the state assignment table in any consistent way.
We chose:

State Q2 Q1 Q0 Minterm
F1 0 0 0 Q2'•Q1'•Q0'
F2 0 1 1 Q2'•Q1•Q0
F3 0 0 1 Q2'•Q1'•Q0
E1 0 1 0 Q2'•Q1•Q0'
E2 1 0 0 Q2•Q1'•Q0'
E3 1 1 0 Q2•Q1•Q0'
E4 1 1 1 Q2•Q1•Q0

Unused 1 0 1 Q2•Q1'•Q0

Now we have reduced our problem to a standard sequential design, which we can solve by the usual
design method.

The truth table that expresses the sequencing logic is as follows:

C This
State

Q2 Q1 Q0 Next
State

D2 D1 D0

0 F1 0 0 0 F2 0 1 1
0 F2 0 1 1 F3 0 0 1
0 F3 0 0 1 F1 0 0 0
0 E1 0 1 0 F1 0 0 0
0 E2 1 0 0 F1 0 0 0
0 E3 1 1 0 F1 0 0 0
0 E4 1 1 1 F1 0 0 0
0 Unused 1 0 1 * * * *
1 F1 0 0 0 F2 0 1 1
1 F2 0 1 1 F3 0 0 1
1 F3 0 0 1 E1 0 1 0
1 E1 0 1 0 E2 1 0 0
1 E2 1 0 0 E3 1 1 0
1 E3 1 1 0 E4 1 1 1
1 E4 1 1 1 F1 0 0 0
1 Unused 1 0 1 * * * *

This yields the following Karnaugh Maps, and equations for the state sequencing logic:

DOC112: Computer Hardware Lecture 18 Page 4
08/12/2003

D2 = C•Q2•Q1’ + C•Q1•Q0’
D1 = C•Q1’ + C•Q2•Q0’ + Q2’•Q1’•Q0’
D0 = Q2’•Q1’•Q0’ + Q2’•Q1•Q0 + C•Q2•Q1•Q0’
The equation for D0 can be simplified further by use the exclusive or simplification rule
D0 = Q2’• (Q1⊕Q0)’ + C•Q2•Q1•Q0’.
In practice though, this will not help since we have to decode the states in our output logic. The final
circuit for the state sequencing logic is:

We need to back check the don’t care states to see that the machine will not get trapped. It turns out
that for C=0, the unused state will jump to F0 (000), and if C=1 it will jump to E2 (110). This is
probably acceptable. In any case it should not be a problem as we will definitely need to add some
extra hardware to force the processor to do a particular operation at start up. In practice this will be a
jump to the start of a stored program in ROM, which will load a minimal operating system.

D1 Q1 Q0
00 01 11 10

00 1 0 0 0
C Q2 01 0 * 0 0

11 1 * 0 1
10 1 1 0 0

D2 Q1 Q0
00 01 11 10

00 0 0 0 0
C Q2 01 0 * 0 0

11 1 * 0 1
10 0 0 0 1

D0 Q1 Q0
00 01 11 10

00 1 0 1 0
C Q2 01 0 * 0 0

11 0 * 0 1
10 1 0 1 0

C•Q2•Q0'

C•Q1'

C•Q0'

C•Q2•Q1'

C•Q1•Q0'
C•E3

D0 Q0

Q0'

D1 Q1

Q1'

D2 Q2

Q2'

IR31 IR30 IR29

F1 F2 F3 E1 E2 E3 E4 C

