
DoC-112 Hardware Lecture 15 -- 11/27/01 Page 1

Department of Computing
Course DOC 112 -- Hardware

Lecture 15: Let's Put it All Together! -- A Manual Processor (part 2)

In the last figure of the last lecture a detailed diagram of our manual processor was shown but it only indicated that function
and multiplexer selection lines were needed, it did not show where they came from. These lines determine the operations the
processor executes and they are hard wired to the Instruction Regiter (IR) outputs. In order not to clutter up the diagram,
we will indicate the IR outputs as IR0 (least significant bit) to IR7 (most significant bit). We also add names to the clocks
which operate the registers and now the circuit diagram becomes more complete:

SHIFTER RES

C

A

B

IR

ALU

A

B

CY-in

CY-out

Res
8

MPX

MPX
1

IR7 IR0
Data In

Carry Out

Data
 Out

8

8

8

8

IR6 IR5 IR4IR7

select
select

IR3 IR2 IR1

IR0

select

select

CLKIR

CLKRES

CLKC

CLKB

CLKA

We show the assignment of the IR register bits below:

. .
IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

These bits are assigned in groups: SELA, which is one bit, selects the type of input into the A register; SELALU (3 bits)
which selects the ALU function; SELSHFT (3 bits) selects the SHIFTER function, and, finally, SELCY (1 bit) which
selects the Carry-in to the ALU. We show schematically these group assignments below:

.

IR7 IR6 IR4 IR1 IR0

SELA SELALU SELSHFT SELCY

IR3

An explanation is needed why extra multiplexers were connected between the ALU and the input lines such that the ouput of
the shifter may be loaded into the A register instead of the data on the input lines. This hardware arrangement used to be
standard practice for very old and very small computers when the ALU was refered to as the Accumulator. This trick will
allow the summation of a list of numbers. At first, two numbers are loaded into the A and B registers, respectively, the plus
and unchanged functions are selected, which means that the sum A plus B appears at the output of the shifter. When data
are clocked into the A register, the upper path is chosen (by setting IR7 to 0). During the next cycle the result at the output of
the shifter is loaded into the A register (which is A+B) and then a new number is loaded into the B register. Selecting the
plus operation again, will give the result of the sum of three numbers ... and so forth.

DoC-112 Hardware Lecture 15 -- 11/27/01 Page 2

This seems to work; however, a modification is needed to the program execution steps shown in the last lecture. Before the
input data is loaded into the A register, an operation code must be loaded into the IR register which then will control the
computer's operation during the loading process. Also, we should not forget about the role of the C flip-flop. It must hold
value 0 by the time the arithmetic operation is executed since only this value will provide us with the correct A plus B
function. Thus, the C flip-flop must be also loaded during the first two loading operations. The modified operating sequence
is then:

1. Load the bits on the "Data In" lines into the IR register. The first op-code

2. Load the A register From Data In or SHIFTER

3. Load the B and the C registers C is set to zero

4. Load the "Data In" lines into the IR register The second op-code

5. Load the RES and the C registers The results

 Go back to step 1

All these required operations can be expressed as the apearance of clock signals. Thus we must design now a sequential
circuit which produces these clock signals at the appropriate time within the time sequence. However, something is still
dodgy.

How do we know that the sequence is at Step 1 when we want to start the computer? We must have an outside line which
synchronises the operation of this processor. We will call this the OPERATE (its value is 1) or IDLE (its value is 0). We
also must have an IDLE state in which the processor is sitting while the OPERATE/IDLE line is at value 0. When this line
is set to 1 the first clock pulse will start the processor properly. Finally we have the proper form of the control circuit:

.

OPERATE

CONTROL
System Clock

CLKIR
CLKA
CLKB
CLKRES
CLKC

Thus we have six states (three flip-flops) and the following transition diagram:

 Input = OPERATE/IDLE

 State 0
 idle
 no output

0

 State 1
out

CLKIR

1

 State 2
 out
 CLKA

1

0
 State 3
 out
 CLKB
 CLKC

1

0

 State 4
 out
 CLKIR

1

 State 5
 out
 CLKRES
 CLKC

0

0

0

1
1

DoC-112 Hardware Lecture 15 -- 11/27/01 Page 3

We have now a standard sequential circuit design with three flip-flops, six useful states and five outputs. Instead of starting
with state assignment for the state transition diagram, I start with the output ciruits, trying to make them as simple as
possible. (This seemed to work well in Lecture 10).

. .

Flip-Flop Outputs State Required Clock Output

 000 0 none
 001 1 CLKIR
 100 2 CLKA
 010 3 CLKC , CLKB
 101 4 CLKIR
 110 5 CLKC, CLKRES

The K-maps and minimized Boolean expressions for the output clocks are shown next.

00 01 11 10

Q1,Q0
Q2

0

1

0 0 X 0

1 0 X 0

00 01 11 10
Q2

0

1

Q1,Q0
00 01 11 10

Q2

0

1

Q1,Q0

00 01 11 10
Q2

0

1

Q1,Q0

00 01 11 10
Q2

0

1

Q1,Q0

0 1 X 1

0 1 X 0

0 0 X 1

0 0 X 1

CLKA = Q2•Q1'•Q0' CLKB = Q0 CLKC = Q1

CLKIR = Q0 CLKRES = Q2•Q1

0 1 X 0

0 1 X 0

0 0 X 0

0 0 X 1

. .
Not bad

We can now design the controlled counter by constructing its state transition table:

.

OPERATE/IDLE Current State Flip-flops Next State D2 D1 D0

 0 0 000 0 0 0 0
 0 1 001 0 0 0 0
 0 2 100 0 0 0 0
 0 3 010 0 0 0 0
 0 4 101 0 0 0 0
 0 5 110 0 0 0 0
 0 6 011 ? X X X
 0 7 111 ? X X X

 1 0 000 1 0 0 1
 1 1 001 2 1 0 0
 1 2 100 3 0 1 0
 1 3 010 4 1 0 1
 1 4 101 5 1 1 0
 1 5 110 1 0 0 1
 1 6 011 ? X X X
 1 7 111 ? X X X

And the Karnaugh Maps and the minimised Boolean circuit equations are shown below:

DoC-112 Hardware Lecture 15 -- 11/27/01 Page 4

. .

Q1,Q0

RESET,Q2

D2 = RESET•(Q0 + Q2'•Q1)

00 01 11 10

00

01

11

10

Q1,Q0

RESET,Q2

D1 = RESET•Q2•Q1'

00 01 11 10

00

01

11

10

0 0 X 0

0 0 X 0

0 1 X 0

0 1 X 1

0 0 X 0

0 0 X 0

1 1 X 0

0 0 X 0

Q1,Q0

RESET,Q2

D1 = RESET•(Q2 + Q0')

00 01 11 10

00

01

11

10

0 0 X 0

0 0 X 0

1 1 X 1

1 0 X 1

Checking the unused states, we have:

. .

OPERATE/IDLE Current State Flip-flops Next State D2 D1 D0

 0 6 011 0 0 0 0
 0 7 111 0 0 0 0

 1 6 011 2 1 0 0
 1 7 111 4 1 0 1

Thus, if the OPERATE/IDLE signal is at logical 0 the system drops into the IDLE state immediately and the processor is
ready to start working properly.

Are we ready now? It seems so; we have the sequential circuit working properly, all we need is to buy the components, wire
them, apply power and we are ready to operate the computer. But, unfortunately, it may not work. There is one "small" fact
we have overlooked. The operation of the processor relies on clock signals; however, the sequential circuit provides steady
signals (outputs of flip-flops). What we called CLOCKA, CLOCKB, etc., are ordinary outputs, not clock signals. Well,
one idea is to use AND gates to provide clock signals:

. .
System
Clock

CLOCKA

Q2
Q1'
Q0

As long as we use this processor as a calculator (set up input data by hand), this will work well. Remember that flip-flop
outputs always change just a bit after (delay!) of the rising edge of the clock:

DoC-112 Hardware Lecture 15 -- 11/27/01 Page 5

1

0
CLOCKs

1

0
Result

1

0
Input data

time

However, externally programmed processors are also used as integral elements of digital systems in which case the input data
would be synchronised with the system clock. In this case we have the following situation:

1

0
CLOCKs

1

0
Result

1

0
Input data

time

? ? ? ? ? ? ? ? ? ? ? ? ?

The input data are changing just about the same time when the clocks have their rising edges. This means that the actual data
seen by the flip-flops is "undetermined", i.e. we cannot predict what the results will be. This does not make a very good
computer, does it? Thus, we have to delay the rising edges of the clock signals which are input to the flip-flops of the
sequential circuit we have just designed. The easiest way of reliably achieving this is to invert the clock signal and now we
have the following stable timing diagram:

. .

1

0
CLOCKs

1

0
Result

1

0
Input data

time

DoC-112 Hardware Lecture 15 -- 11/27/01 Page 6

Inverting the clocks means using NAND gates instead of AND gates; a trivial but significant change!

.
System
Clock

CLOCKA
Q2
Q1'
Q0

The processor has been now designed and can be built and it will work. How shall we advertise it?

Well, it is an eight-bit (easily expandable for any number of bits) externally programmed processor, but how many different
operations can it execute? There are basically seven bits which control the operation type, three for the ALU function
selection, three for the Shifter circuit, and one for the input Carry. If we want to be a bit optimistic, we can say that it has
27=128 instructions, but we would not be very honest. First of all, not all the shifter function selections with different carry
input selections provide unique and meaningful operations; secondly, some operations of the ALU with a specific carry
selection do not provide useful operations either. We will leave the determination of the number of useful operations as an
exercise for you.

To complete this two lectures on a processor design, let us examine how we could produce the decrement operation with our
computer. The machine code (explained) is given below:

Decrement a Number

1. Set OPERATE/IDLE signal to 0 and Processor is in IDLE sate
 apply a couple of clocks.

2. Set OPERATE/IDLE signal to 1 and Processor is now waiting for the first function
 apply one clock pulse. selection data.

3. Set input data to 11110000 and Code is in the IR register. Output of ALU is
 apply one clock pulse. 11111111 (= -1), shifter = unchanged.

4. Apply one clock pulse Because IRX=1 the ALU output is clocked
 into the A register; it has now -1.

5. Set input data to dddddddd; the Number is clocked now into the B register.
 number you want to decrement 0 is clocked into the B register.

6. Set input data to 00110000 and Code is in the IR register. The selected
 apply one clock pulse. operation is: plus.

7. Apply one clock pulse. The result "B plus (-1)" is clocked into the
 RES register, the C bit indicates whether the
 result is equal to -1 in which case it is 0.

Thus, we can do it !!

