

DOC112: Computer Hardware Lecture 13 Page 1
03/12/2003

Lecture 13: Arithmetic

Addition

The addition of two binary numbers is carried out in a bitwise fashion, just as normal addition. We
add any two bits according to the following truth table:

A B SUM CARRY
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

SUM = A'•B + A•B'
CARRY = A•B

Notice that in our design method for combinational circuits we do not use the "exclusive or" gate. The
truth table for this gate is the same as that for SUM above. At the transistor level it is possible to make
"exclusive or" and “exclusive nor” gates as simply as nand and nor gates, and therefore we should
always look for "exclusive or" and “exclusive nor” simplification.
The minterm formulation of XOR and XNOR simplifications is :
 XOR : A'•B + A•B' = A⊕B

XNOR : (A•B + A'•B') = (A⊕B)'
Where ⊕ stands for the "exclusive or" function. In the above
equations there is one instance of this:
 SUM = A⊕B
The above equations make up a "half adder". When adding numbers of more than one bit in length we
need to add the carry from the previous stage as well as the two digits. The full adder has a carry in
(Cin the table below) and is represented by the following truth table:

Which yields the equations:

SUM = A'•B' •C + A'•B•C' + A•B'•C' + A•B•C
 = A'•(B'•C+B•C') + A•(B'•C'+B•C)
 = A'•(B⊕C) + A•(B⊕C)'
 = A⊕B⊕C
CARRY = A'•B•C + A•B'•C + A•B•C' + A•B•C
 = C•(A'•B+A•B') + A•B
 = C•(A⊕B) + A•B
Any precision arithmetic can be implemented by means of a
half adder for the bottom two bits followed by a set of full
adders for all the other bits connected as shown in Diagram
13.1. Notice that the more bits that are required, the longer it

 A B Cin SUM Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A

B

C

S

 Cin
A
B

S

Cout

Cout
Full Adder

Cin
S2

S1

A0
B0 S0

&c.

Diagram 13.1: The n-Bit Adder

Cout
Full Adder

Cin

Cout
Half Adder

A1
B1

A2
B2

DOC112: Computer Hardware Lecture 13 Page 2
03/12/2003

will take for the adder to complete the sum.

It is possible also to add two streams of serial data
using a full adder and a flip flop to delay the carry
from one stage to the next as shown in Diagram
13.2. Notice that the serial data streams must be
ordered with the least significant bit first.

Subtraction
Subtraction circuitry can be designed in an analogous manner, but this time we need to considering
borrowing from the next most significant bit. The truth table for a full subtractor which takes B from
A with a pay back P from the previous stage is:

A B P DIFFERENCE BORROW
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

DIFFERENCE =A⊕B⊕P
BORROW=B•P+A'•(B+P)

The full subtractor for one bit can be implemented as shown in diagram 13.3, and circuit for n bits is
connected in an equivalent manner to Diagram 13.1. In practice, subtraction is often achieved by twos
complement addition. The twos complement of a binary digit is found by complementing the
individual bits of a number and adding one to the bottom digit, losing the carry in the case where the
number was a zero. The method is illustrated by Diagram 13.4

A
B
P

Difference

Borrow

Diagram 13.3 One bit full subtractor

Cin

Full
Adder

Input A

Input B

1

Diagram 13.4 Twos Complement Subtractor

Output
A-B

Multiplication
 Multiplication of two numbers is carried out by a process of multiplying all combinations of
the individual digits, and adding them up in the appropriate positions. For example, we can multiply
13 by 42 by taking the four individual products 4×3, 4×1, 2×3 and 2×1, and adding them raised to the
appropriate power of 10 to form: 4×1×10

2
 + 4×3×10

1
 + 2×1×10

1
 ×2×3. This is the way that long

multiplication is normally carried out. We can apply the same principal to binary arithmetic. In the
simplest case let us consider multiplying two two digit numbers:
 A1A0 × B1B0 = A1 × B1 × 22 + A1 × B0 × 21 + A0 × B1 × 21 + A0 × B0
Now, since A1, A0, B1 and B0 are all binary digits we can replace the multiplies by ANDs
 A1A0 × B1B0 = A1•B1 × 22 + A1•B0 × 21 + A0 •B1 × 21 + A0•B0

D-Q

Serial In Full
Adder

A

B

Cin

Sum

Cout

Serial Out

Diagram 13.2 The Serial Adder

DOC112: Computer Hardware Lecture 13 Page 3
03/12/2003

And, since multiply by two is equivalent to shift right, we can replace these by shifts which we hard
wire to obtain the multiplier of Diagram 13.5.

The next step is to apply the same reasoning
recursively. In other words we can design a
four bit multiplier by breaking each four digit
number into two groups of two, and writing:
PQ×RS =
 P×R×2

4 + P×S×2
2
 + Q×R×2

2
 + Q×S

We observe that since P,Q,R and S are two
digit numbers, the products P×R, P×S, Q×R
and Q×S can be computed using the two bit
multiplier that we just designed. Thus the
circuit for our four bit multiplier is given in
Diagram 13.6. Clearly we can extend this
idea to design a multiplier for a bit length of
any power of two.

 The above design only works for unsigned binary digits. In order to extend it to signed
numbers we need to add further circuitry to detect if either of the input numbers is negative. This can
be done quite simply by looking at the top bit, which in twos compliment arithmetic is 1 for negative
numbers. This top bit can be used to control a multiplexer which either selects the number or its twos
complement. The twos complement can be implemented by an inverting each bit then incrementing
with an adder. The output sign can be determined by the exclusive or of the input signs, and a twos
complement circuit with a multiplexer is also required to set it correctly.

Division
It is not usual to build a combinational circuit to carry out division. Instead this is done procedurally,
with a sequential circuit, or in the machine code using shifts and subtracts.

Cout

4 bit
Adder

Cin

2 bit
multiplier

0

0
0

A3
A2
B3
B2

A3
A2
B1
B0
A1
A0
B3
B2

A1
A0
B1
B0

Output
O=A*B

O7

O6

O5

O4

O3
O2
O1
O0

Diagram 13.6: Four bit multiplier

2 bit
multiplier

2 bit
multiplier

2 bit
multiplier

Cout

4 bit
Adder

Cin

Cout

4 bit
Adder

Cin

Inputs
A =A3A2A1A0
B =B3B2B1B0

op0

Diagram 13.5:The two bit combinatorial multiplier

A1

A0

B1

B0

A0•B0

A1•B0

A0•B1

A1•B1

A C

B S

Half
Adder

A C

B S

Half
Adder

op1

op2

op3

