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Lecture 13: Arithmetic 
 
Addition 
 
The addition of two binary numbers is carried out in a bitwise fashion, just as normal addition. We 
add any two bits according to the following truth table: 
 
A B SUM CARRY 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

 

 
SUM = A'•B + A•B' 
CARRY = A•B 
 
 

Notice that in our design method for combinational circuits we do not use the "exclusive or" gate. The 
truth table for this gate is the same as that for SUM above. At the transistor level it is possible to make 
"exclusive or" and “exclusive nor” gates as simply as nand and nor gates, and therefore we should 
always look for "exclusive or" and “exclusive nor” simplification. 
The minterm formulation of XOR and XNOR simplifications is : 
 XOR :    A'•B + A•B' = A⊕B 

XNOR : (A•B + A'•B') = (A⊕B)' 
Where ⊕ stands for the "exclusive or" function. In the above 
equations there is one instance of this: 
 SUM = A⊕B 
The above equations make up a "half adder". When adding numbers of more than one bit in length we 
need to add the carry from the previous stage as well as the two digits. The full adder has a carry in 
(Cin the table below) and is represented by the following truth table: 
 

 
Which yields the equations: 
 
SUM =  A'•B' •C +  A'•B•C' + A•B'•C' + A•B•C 
 =  A'•(B'•C+B•C') + A•(B'•C'+B•C) 
 = A'•(B⊕C) + A•(B⊕C)' 
 = A⊕B⊕C 
CARRY =  A'•B•C + A•B'•C + A•B•C' + A•B•C 
 =  C•(A'•B+A•B') + A•B 
 =  C•(A⊕B) + A•B 
Any precision arithmetic can be implemented by means of a 
half adder for the bottom two bits followed by a set of full 
adders for all the other bits connected as shown in Diagram 
13.1. Notice that the more bits that are required, the longer it 

 A B Cin SUM Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Diagram 13.1: The n-Bit Adder 
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will take for the adder to complete the sum.  
 
It is possible also to add two streams of serial data 
using a full adder and a flip flop to delay the carry 
from one stage to the next as shown in Diagram 
13.2. Notice that the serial data streams must be 
ordered with the least significant bit first. 
 
Subtraction 
Subtraction circuitry can be designed in an analogous manner, but this time we need to considering 
borrowing from the next most significant bit. The truth table for a full subtractor which takes B from 
A with a pay back P from the previous stage is: 
 
A B P DIFFERENCE BORROW 
0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

 
DIFFERENCE =A⊕B⊕P 
BORROW=B•P+A'•(B+P) 
 
 
 
 
 

 
The full subtractor for one bit can be implemented as shown in diagram 13.3, and circuit for n bits is 
connected in an equivalent manner to Diagram 13.1. In practice, subtraction is often achieved by twos 
complement addition. The twos complement of a binary digit is found by complementing the 
individual bits of a number and adding one to the bottom digit, losing the carry in the case where the 
number was a zero. The method is illustrated by  Diagram 13.4 
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Multiplication 
 Multiplication of two numbers is carried out by a process of multiplying all combinations of 
the individual digits, and adding them up in the appropriate positions. For example, we can multiply 
13 by 42 by taking the four individual products 4×3, 4×1, 2×3 and 2×1, and adding them raised to the 
appropriate power of 10 to form: 4×1×10

2
 + 4×3×10

1
 + 2×1×10

1
 ×2×3.  This is the way that long 

multiplication is normally carried out. We can apply the same principal to binary arithmetic. In the 
simplest case let us consider multiplying two two digit numbers: 
 A1A0 × B1B0 = A1 × B1 × 22  + A1 × B0  × 21  + A0 × B1 × 21 + A0 × B0 
Now, since A1, A0, B1 and B0 are all binary digits we can replace the multiplies by ANDs 
 A1A0 × B1B0 = A1•B1 × 22  + A1•B0 × 21  + A0 •B1 × 21 + A0•B0 
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And, since multiply by two is equivalent to shift right, we can replace these by shifts which we hard 
wire to obtain the multiplier of Diagram 13.5.  
 
The next step is to apply the same reasoning 
recursively. In other words we can design a 
four bit multiplier by breaking each four digit 
number into two groups of two, and writing:  
PQ×RS =  
       P×R×2

4  + P×S×2
2
  + Q×R×2

2
 + Q×S 

We observe that since P,Q,R and S are two 
digit numbers, the products P×R, P×S, Q×R 
and Q×S can be computed using the two bit 
multiplier that we just designed. Thus the 
circuit for our four bit multiplier  is given in 
Diagram 13.6. Clearly we can extend this 
idea to design a multiplier for a bit length of 
any power of two. 
 
 The above design only works for unsigned binary digits. In order to extend it to signed 
numbers we need to add further circuitry to detect if either of the input numbers is negative. This can 
be done quite simply by looking at the top bit, which in twos compliment arithmetic is 1 for negative 
numbers. This top bit can be used to control a multiplexer which either selects the number or its twos 
complement. The twos complement can be implemented by an inverting each bit then incrementing 
with an adder. The output sign can be determined by the exclusive or of the input signs, and a twos 
complement circuit with a multiplexer is also required to set it correctly. 
 
Division 
It is not usual to build a combinational circuit to carry out division. Instead this is done procedurally, 
with a sequential circuit, or in the machine code using shifts and subtracts. 
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Diagram 13.6: Four bit multiplier 
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Diagram 13.5:The two bit combinatorial multiplier 
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