
DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 1

Department of Computing Course
Course DOC 112, Hardware

Lecture 12

Registers, Multiplexers, Decoders, Comparators and What Not

Registers

As you know by now from your Computer Architecture course, data processing is usually done on fixed size binary "words".
Data are stored in computers in registers which can be thought of simply as collections of D-type flip-flops. The schematic
diagram of such a register is shown in the "IC" format below:

. .

D Q

Q'

D Q

Q'

D Q

Q'

D Q

Q'

IB(N-1)

OB(N-1)

IB(2)

OB(2) OB(1) OB(0)

IB(1) IB(0)
CLOCK

By convention we number the bits from 0 to N-1 for a N-bit register and may assign its contents the positive numerical value
∑((2n)*OB(n)). (However, it is important to remember that bits are bits are bits and the interpretation of what they represent
can be made up by anybody).

For example, the IC type SN74273 is such an 8-bit register. It has 20 pins and in addition to the 8 input, 8 output, CLOCK,
VCC, and GND pins, it has a pin designated as CLR which clears (sets to 0) all eight bits, a very useful facility some times.
(Incidentally, the price of this IC is £1.42)

We also have short hand notations for registers. Three of the most common ones are shown below:

. .

R4

R0 R7

1 024 36 570347

01 0 1 1 0 0 1

Registers can contain either data or control bits and are the fundamental building blocks of digital computers. One of the
most basic operation between registers is register transfer which means the copying of the contents of one register into
another without the loss of data in the first one.

As a first exercise, we will build the hardware for a general register transfer engine which contains eight registers and may be
represented by the following schematic diagram:

SWITCH

SELECT

R0

R7

R2

R1

P

(CLOCK)

••••••••••••••

DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 2

. .
Multiplexers

.

SEL0 SEL1

A

B

C

D

ENABLE

OUTPUT

EN SEL1 SEL0 OUT

0 X X 0
1 0 0 A
1 0 1 B
1 1 0 C
1 1 1 D

For each push of the button P a clock pulse is generated. The switch is set before the push and it can be set such that the
contents of any one register can be transferred to any other register during one clock pulse. Hence, the order of events:

1. Select the input register.
2. Select the output register
3. Generate a clock pulse to transfer

For simplicity, we can assume for now that each register is a one-bit register, i.e. a simple D-type flip-flop. In order to build
this circuit we have to understand how a multiplexer and a demultiplexer (decoder) works. The whole idea about
multiplexers is that the output is equal to one of the inputs when it is enabled. Thus the output side of the switch can be
realised with an eight-to-one multiplexer

The Register Transfer Circuit using a 8-1 Multiplexer

. .

••••••••••••••

8-to-1
 mulplx

S2 S1 S0

D Q

D Q

D Q

R0

R1

R7

Notice that only one line appears as the output of the multiplexer and this line is connected to the inputs of all registers.
However, by setting the bits in the "select" register (with bits S0, S1, and S2) any one of the register output may appear as
input to all the registers. But, nothing happens yet, because registers are made up of flip-flops and flip-flops require a clock
signal before they change their storage outputs. Thus we have solved the problem of selecting any one of the registers as a
source register, we still have to select a proper destination register (just one specific destination register regardless of the fact
that all the inputs are connected).

DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 3

.

S
1

S
0

EN

F
G
H

E

S
1

S
0

EN

B
C

A

D

S0
S1
S2

ENABLE

We also have to see whether one can buy an 8-to-1 multiplexer. The answer is yes, type SN7400 is just such a device. But, if
we had only , say 4-to-1 multiplexers (or we want larger than 8-to-1) with enable inputs, we could use two of these to build an
8-to-1 device. We use functional reasoning to do this and arrive at the following circuit:

Functionally, multiplexers have a clear dedicated function. This does not mean that they cannot be used for other purposes.
For example, you could have used it for your hardware assessed course work which you have just completed and you could
have designed your circuit in ten minutes. Let's say have the functions A(XOR)B for (C1,C2)=00, B for controls 01, A'•B
for 10 and function (A'+B) for 11. According to my fast (and possibly slightly inaccurate) estimation, you would have
needed 6 NAND, 3 AND and 4 inverter gates, i.e. 4 ICs and estimated cost of £3.24.

However, noticing that a multiplexer can provide four different functions, and the simplifying facts that
A(XOR)B = (A'•B+A•B'); and, also that (A•B')' = A'+B, you could have built the following circuit:

.

S
1

S
0

EN

b
c

a

d

C1
C2
A
B

Vcc

OUT
SN74153

The control functions select between the four inputs which are generated by a simple circuit. Since the available IC is a type
SN74153 which is £0.90 and has two 4-to-1 multiplexers; therefore, it is 1/2 utilised. The rest of the circuit uses two ICs
with utilisation factors of 3/4 and 1/2 respectively, so we get a total cost of 3*(0.50) + (3/4+1/2)*0.48 + (1/2)*0.90 and we get
£ 2.55. Not only a savings in money but time!.

Demultiplexers

Let us get back to our original problem of the general register transfer engine. We have solved the problem (with a
multiplexer) of providing all the registers with the output of one selected register (the source register), but now we must apply
the clock to only one register (the destination register, that is) in order that the data transfer can take place. There is an IC
device for this function, it is called either a demultiplexer or decoder. The circuit diagram of a 2-4 demultiplexer with
enable is shown below:

DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 4

SEL0
SEL1

ENABLE
D00

D01

D10

D11

A good way to describe the operation of a decoder/demultiplexer is to look at its functional truth table:

.

EN SEL1 D00 D01 D10 D11

0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

When the enable input is 0 (exactly the same as for all other functional circuits), then all outputs are 0. However, when the
decoder operates properly then exactly one of its outputs is equal to 1. The selection of the output is determined by the values
on the selection lines. Does this remind you of anything? Well, it may remind you of minterms. Because a decoder is a
minterm generator! Obviously, a three-input (meaning selection input) decoder has eight outputs, a four-input one has
sixteen. How do we build a three-input decoder from two-input decoders? Well, all we need is one inverter gate. Look how
it is done:

.

S
1

S
0

EN

S
1

S
0

EN

D000
D001
D010
D011

D100
D101
D110
D111

SEL0
SEL1

SEL2

While the three selection inputs do provide eight decoder outputs, we lost our ENABLE input. If the ENABLE input is
required (which it is in our example, as you will see below), then we need eight additional two-input AND gates.

There are a wide variety of decoder/demultiplexers. There is a dual 2-to-4 decoder, type SN74139, or a 3-to-8 decoder,
SN74138 and even a 4-to-16 decoder (with enable - a device with 24 pins), type SN74154, with respective prices of £ 0.90, £
0.85, and £ 2.30 respectively. Remembering that the decoder is a minterm generator, in order to redo our assigned course
work (four inputs, one output), we can do no work at all by buying a 4-to-16-decoder, and a sixteen-input OR gate. It may
cost us more but no circuits to design. And it will solve any one of the 110 circuits you have been working on!

DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 5

The Final Circuit

We can show now how the multiplexer and the demultiplexer are used to build our "register transfer" engine. Remember
that with this circuit, when a clock pulse applied, the contents of any selected register can be transfered into any other
register. A computer operation which we show symbolically as:

 Rdest <-- Rsource

. .

•••••••••

8-to-1

mulplx

D Q

D Q

D Q

R1

R2

R7

8-to-1

dempx

•••••

ENABLE

SELECT

SELECT

 CLOCK DESTINATION SOURCE
 SELECT SELECT

Comparator Circuits (or: creating computer intelligence).

We will conclude this general discussion on looking at digital circuits from a functional point of view by showing how to
build a comparator circuit. The input to a simple binary comparator circuit usually comes from two registers; thus the inputs
are considered to be two simple positive binary numbers of "n" bits, say number A and B. There are three outputs, and just
like a decoder, only one of the outputs is equal to 1. The three outputs indicate the fact whether A>B, A=B, or A<B. This
starts to look more and more like intelligence in hardware.

We can realise (again, functional thinking!) that we need to provide only two outputs, since the third one is the NOR function
of the other two. Let us first look at the block diagram of a 4-bit comparator:

.

A0
A1

A3
A2

B0
B1

B3
B2

A>B

A<B

A=B

ENABLE

DOC 112. Hardware Lecture 12 -- 11/19/03 -- Page 6

We could build now the circuit buy setting up the 8-input, twice 256-output truth tables and start minimising. Would not get
very far with our K-maps. The other possibility is to write down the Boolean equation by functional thinking of the sort: A
is larger than B if A3 is equal to 1 and B3 is equal to 0 (remember, we have positive binary numbers in the range of 0 to 15);
or if A3 and B3 are equal to each other and A2 is equal to 1 and B2 is equal to 0; and so forth.

Again, functionally thinking, the fact that A3=1 and B3=0 can be expressed by the Boolean term A•B' and the fact that A3
equal to B3 with [A3<+>B3]' or the expression (A3•B3+A3'•B3'). Thus, we can write the Boolean equation as:

A>B = A3•B3' + (A3•B3+A3'•B3')•((B2•A2') + (A2•B2+A2'+B2')•((A1•B1') +

(A1•B1+A1'•B1')•A0•B0')))

and go from there. But, there is an easier; i.e. functional way of solving this problem. We can first build a one-bit
comparator:

. .

A

B

A>B

A=B

A<B

and then "functionally” build a four-bit one:

. .

A
B

A>B

A=B

A
B

A>B

A=B

A
B

A>B

A=B
A
B

A>B

A=B

A3
B3

A2
B2

A1
B1

A0
B0

EN EN EN EN

VCC

