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Lecture 11: Registers 
  
Registers are used widely in computer systems for a variety of purposes such as the address 
register, the program counter &c. which you will meet (or have already met) in other parts of the 
course. The purpose of this lecture is to introduce you to the different ways registers can be 
constructed to achieve the functionality required in a computer. 
  
We have already seen one example of a register, namely the bank of flip-flops that store the state of 
a synchronous circuit.    A set of n  flip flops can store any binary number in the range 0 to 2n -1, or  
-(2n-1 -1) to +(2n-1 -1), depending on how we choose to represent that number. In the case of the 
state register that we have already seen, we are concerned with the simple functionality of loading 
and storing a binary number - the state - and so 
we need nothing more than a set of D-type flip 
flops with a common clock. 
  
Frequently however, information in digital 
computers is in serial form. That means that, in 
contrast to the state register, where a number is 
read from the bits at one instant of time, the 
bits of a number are a function of time, and 
arrive one after the other on successive falling 
edges of a clock. The timing Diagram 11.1 
shows a serial bit stream representing a binary 
number with four bits. In practice, most of the 
processing carried out inside a computer is 
done in parallel, to increase the speed, whereas 
most of the transfer of information between 
computers is carried out in serial to reduce the 
cost of the cables. (A serial signal can be 
carried on a cable containing a pair of wires, 
which is clearly going to be cheaper than a 
cable containing nine wires for transmitting an 
eight bit number). So one important task is to 
convert serial information into parallel form, 
and this is done using a shift register. Shift 
registers can be most simply be constructed by 
joining up a set of D-type flip flops as shown in Diagram 11.2. On each successive clock falling 
edge, the data bit (Q) on a flip flop is loaded onto the flip flop on its right. Thus successive serial 
bits arriving at the input travel through the register in four clock pulses.  
 

 
It is clear that parallel to serial conversion can be 
achieved in an analogous manner, provided that 
we can load the parallel data into the register. To 
do this we need to add some further control 
circuitry which determines the function of the 
register. In the simplest case we need to allow 
each flip flop to select its input either from the 
previous stage (for serial/parallel conversion) or 
from an input bit for parallel load. The circuit 
that achieves this selection is called a 
multiplexor, and is shown in Diagram 11.3.  We 
can add this to our previous register circuit to 



  
DOC112: Computer Hardware Lecture 11 Page 2 
11/10/00 

create a general purpose serial to parallel and parallel to serial converter as shown in Diagram 11.4. 
Clearly repetitive structures of this type can be of any length, and it should be noted that the time 
taken to load serial data will increase with length. In fact, the inclusion of a serial load facility 
complicates our previous synchronous design methodology, and therefore it is usual to use a 
separate clock from the system clock to convert between serial and parallel systems, and to use 
other control lines to indicate when a conversion is complete and the register can be read. 
 
Note the convention that 
is normally used that 
registers are labelled 
such that the most 
significant bit has the 
highest index (PO3 
above), and drawn with 
the most significant bit 
on the left so that they 
conform to the same 
conventions used to 
write a binary number. In 
Diagram 11.4 the bits 
arrive least significant 
first, though this is not a 
universal convention. 
 
   
Serial to parallel conversion is not the only use of shift registers. It is well known that shifting a 
register by one place to the left, and filling the bottom bit with zero, is equivalent to multiplying the 

number by two (providing the register is long 
enough to represent the result), and conversely, 
shifting right is equivalent to dividing by two. 
Thus, in a general purpose shift register we 
might identify four modes in which we would 
expect it to function: 

 
Hold 00 
Shift Right 01 
Shift Left 10 
Parallel Load 11 

 
We can design a register to do this simply by 
adding functionality to the multiplexor. If we 
represent each of our four modes by the binary 
number as shown above, then we require a 
binary to unary converter for the control of our 
multiplexor. The circuit for this is diagram 
11.5. It will be clear that it is only possible for 
one of the four output lines to be 1 at any one 
time.  Using this as a component in its own 
right, we can design the four way multiplexer 
shown in Diagram 11.6. This is really a four 
position switch, with the position selected by 
the binary input on lines C0 and C1. In turn, 
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this component can be incorporated into the general purpose shift register of diagram 11.7. Here 
just one stage is shown, and can be duplicated to form a register of any desired length. The 
multiplexer control inputs are not drawn in for simplicity, but will be the same for all stages of the 
register. 
 
 
We have already met registers in 
another form, namely counters, 
and we have seen that it is 
possible to design them to operate 
in synchronisation with the 
system clock. It is sometimes 
useful to build counters for the 
specific purpose of dividing 
clocks. This is required when we 
have different timing 
requirements, such as we noted when considering serial to parallel conversion, and the requirement 
turns up in other circumstances. To see how this works in practice, consider the one bit counter 
shown in Diagram 11.8. Here the value of D is taken directly from Q', and therefore at each clock 

pulse the flip flop will 
simply change state. 
Now if we look at the 
timing diagrams, we see 
that Q will output a 
square wave which will 
be exactly half the 
frequency of the clock. 
We can therefore 
consider the circuit a 
clock divider. Any 
counter can be used in 
this way, remembering 

that we can always design a synchronous counter to count to any number and then reset to zero. 
Thus, if we wish to divide a clock by say seven, we can do so by the circuit corresponding to the 
Moore machine of Diagram 11.9, though the output, which is the divided clock, cannot be made to 
have an equal mark to space ratio. This is not usually a problem, since in any clock the timing of 
the falling edge is all that we are concerned with. One obvious application of clock dividers is in 

wrist watches or quartz 
clocks. Here, the regulator 
is a quartz crystal which 
has a characteristic 
property that allows a 
very accurate square wave 
of around 1MHz to be 
produced. However, the 
stepper motor which 
drives the second hand 
needs one pulse every 
second, and hence we 
need to interpose a circuit 

which divides the clock by 106.  This  can be done with a synchronous counter with 20 stages, but, 
such a counter would have a lot of complex state sequencing logic. An alternative is to use a set of 
successive dividers. For example, we could design a circuit to divide by 256 by concatenating two 
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synchronous divide by sixteen circuits. In this configuration the clock input to the second stage is 
the output of the first stage as shown in Diagram 11.10. Note that, although a zero to sixteen 
counter requires a lot of extra logic if we use the D type flip flops, with the J-K flip flops the 
required sequencing logic is very simple. Hence, this strategy represents a viable way to achieve 
dividing by large numbers. Taking the above idea to its extreme, we could make our basic elements 
the divide by two circuit of Diagram 11.8, and this then creates a famous circuit called the ripple 
through counter, which is shown in 
Diagram 11.11.  If a counter is to be 
limited to a particular maximum value, 
then the 'clear' input function normally 
provided can be used. Thus, if we wish 
to count to 11, then we would require 
four stages, and the 'clear' input to 
each stage would be determined by the 
minterm Q3•Q2•Q1'•Q0' , which in 
effect resets the counter to zero when 
it sees that the output is 12.  
  
It is very important to note that the 
ripple through counter violates our 
principle of keeping the digital design synchronous. The correct state will only be present on the 
outputs at a short time after the counting clock pulse, which will vary depending on how far the 
change propagates. It is therefore very important to realise that this counter should be used only 
with extreme care, and only when there is no time critical functionality in the circuit. 
 

 
 
 


