

DOC112: Computer Hardware Lecture 11 Page 1
11/10/00

Lecture 11: Registers

Registers are used widely in computer systems for a variety of purposes such as the address
register, the program counter &c. which you will meet (or have already met) in other parts of the
course. The purpose of this lecture is to introduce you to the different ways registers can be
constructed to achieve the functionality required in a computer.

We have already seen one example of a register, namely the bank of flip-flops that store the state of
a synchronous circuit. A set of n flip flops can store any binary number in the range 0 to 2n -1, or
-(2n-1 -1) to +(2n-1 -1), depending on how we choose to represent that number. In the case of the
state register that we have already seen, we are concerned with the simple functionality of loading
and storing a binary number - the state - and so
we need nothing more than a set of D-type flip
flops with a common clock.

Frequently however, information in digital
computers is in serial form. That means that, in
contrast to the state register, where a number is
read from the bits at one instant of time, the
bits of a number are a function of time, and
arrive one after the other on successive falling
edges of a clock. The timing Diagram 11.1
shows a serial bit stream representing a binary
number with four bits. In practice, most of the
processing carried out inside a computer is
done in parallel, to increase the speed, whereas
most of the transfer of information between
computers is carried out in serial to reduce the
cost of the cables. (A serial signal can be
carried on a cable containing a pair of wires,
which is clearly going to be cheaper than a
cable containing nine wires for transmitting an
eight bit number). So one important task is to
convert serial information into parallel form,
and this is done using a shift register. Shift
registers can be most simply be constructed by
joining up a set of D-type flip flops as shown in Diagram 11.2. On each successive clock falling
edge, the data bit (Q) on a flip flop is loaded onto the flip flop on its right. Thus successive serial
bits arriving at the input travel through the register in four clock pulses.

It is clear that parallel to serial conversion can be
achieved in an analogous manner, provided that
we can load the parallel data into the register. To
do this we need to add some further control
circuitry which determines the function of the
register. In the simplest case we need to allow
each flip flop to select its input either from the
previous stage (for serial/parallel conversion) or
from an input bit for parallel load. The circuit
that achieves this selection is called a
multiplexor, and is shown in Diagram 11.3. We
can add this to our previous register circuit to

DOC112: Computer Hardware Lecture 11 Page 2
11/10/00

create a general purpose serial to parallel and parallel to serial converter as shown in Diagram 11.4.
Clearly repetitive structures of this type can be of any length, and it should be noted that the time
taken to load serial data will increase with length. In fact, the inclusion of a serial load facility
complicates our previous synchronous design methodology, and therefore it is usual to use a
separate clock from the system clock to convert between serial and parallel systems, and to use
other control lines to indicate when a conversion is complete and the register can be read.

Note the convention that
is normally used that
registers are labelled
such that the most
significant bit has the
highest index (PO3
above), and drawn with
the most significant bit
on the left so that they
conform to the same
conventions used to
write a binary number. In
Diagram 11.4 the bits
arrive least significant
first, though this is not a
universal convention.

Serial to parallel conversion is not the only use of shift registers. It is well known that shifting a
register by one place to the left, and filling the bottom bit with zero, is equivalent to multiplying the

number by two (providing the register is long
enough to represent the result), and conversely,
shifting right is equivalent to dividing by two.
Thus, in a general purpose shift register we
might identify four modes in which we would
expect it to function:

Hold 00
Shift Right 01
Shift Left 10
Parallel Load 11

We can design a register to do this simply by
adding functionality to the multiplexor. If we
represent each of our four modes by the binary
number as shown above, then we require a
binary to unary converter for the control of our
multiplexor. The circuit for this is diagram
11.5. It will be clear that it is only possible for
one of the four output lines to be 1 at any one
time. Using this as a component in its own
right, we can design the four way multiplexer
shown in Diagram 11.6. This is really a four
position switch, with the position selected by
the binary input on lines C0 and C1. In turn,

DOC112: Computer Hardware Lecture 11 Page 3
11/10/00

this component can be incorporated into the general purpose shift register of diagram 11.7. Here
just one stage is shown, and can be duplicated to form a register of any desired length. The
multiplexer control inputs are not drawn in for simplicity, but will be the same for all stages of the
register.

We have already met registers in
another form, namely counters,
and we have seen that it is
possible to design them to operate
in synchronisation with the
system clock. It is sometimes
useful to build counters for the
specific purpose of dividing
clocks. This is required when we
have different timing
requirements, such as we noted when considering serial to parallel conversion, and the requirement
turns up in other circumstances. To see how this works in practice, consider the one bit counter
shown in Diagram 11.8. Here the value of D is taken directly from Q', and therefore at each clock

pulse the flip flop will
simply change state.
Now if we look at the
timing diagrams, we see
that Q will output a
square wave which will
be exactly half the
frequency of the clock.
We can therefore
consider the circuit a
clock divider. Any
counter can be used in
this way, remembering

that we can always design a synchronous counter to count to any number and then reset to zero.
Thus, if we wish to divide a clock by say seven, we can do so by the circuit corresponding to the
Moore machine of Diagram 11.9, though the output, which is the divided clock, cannot be made to
have an equal mark to space ratio. This is not usually a problem, since in any clock the timing of
the falling edge is all that we are concerned with. One obvious application of clock dividers is in

wrist watches or quartz
clocks. Here, the regulator
is a quartz crystal which
has a characteristic
property that allows a
very accurate square wave
of around 1MHz to be
produced. However, the
stepper motor which
drives the second hand
needs one pulse every
second, and hence we
need to interpose a circuit

which divides the clock by 106. This can be done with a synchronous counter with 20 stages, but,
such a counter would have a lot of complex state sequencing logic. An alternative is to use a set of
successive dividers. For example, we could design a circuit to divide by 256 by concatenating two

DOC112: Computer Hardware Lecture 11 Page 4
11/10/00

synchronous divide by sixteen circuits. In this configuration the clock input to the second stage is
the output of the first stage as shown in Diagram 11.10. Note that, although a zero to sixteen
counter requires a lot of extra logic if we use the D type flip flops, with the J-K flip flops the
required sequencing logic is very simple. Hence, this strategy represents a viable way to achieve
dividing by large numbers. Taking the above idea to its extreme, we could make our basic elements
the divide by two circuit of Diagram 11.8, and this then creates a famous circuit called the ripple
through counter, which is shown in
Diagram 11.11. If a counter is to be
limited to a particular maximum value,
then the 'clear' input function normally
provided can be used. Thus, if we wish
to count to 11, then we would require
four stages, and the 'clear' input to
each stage would be determined by the
minterm Q3•Q2•Q1'•Q0' , which in
effect resets the counter to zero when
it sees that the output is 12.

It is very important to note that the
ripple through counter violates our
principle of keeping the digital design synchronous. The correct state will only be present on the
outputs at a short time after the counting clock pulse, which will vary depending on how far the
change propagates. It is therefore very important to realise that this counter should be used only
with extreme care, and only when there is no time critical functionality in the circuit.

