
DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 1

Department of Computing
Course DOC 112   --  Hardware

Lecture 10: Traffic Lights -- A Design Example

In this lecture we will work through a design example from problem statement to digital circuits.

The Problem:  The traffic department is trying out a new system of traffic lights.  We have to design a
synchronous digital circuit, a Moore Machine, which operates this new type of traffic light at a simple
road crossing.

R2A2G2

R1

G1

A1

N-S E-W
(SAFE)

RED GREEN
RED AMBER
GREEN RED
AMBER RED
RED GREEN

(UNSAFE)

RED GREEN
RED AMBER
RED RED
GREEN RED
AMBER RED
RED RED
RED GREEN

There are six lights to operate.  The Red, Amber, and Green lights in the North-South direction will
be designated as R1, A1, G1.  Similarly, the lights in the East-West direction will be called R2, A2,
and G2.  When the digital signals are in the Logic-1 state they turn their respective lights on, otherwise
the lights are off.  A digital clock signal will be supplied and at each clock pulse the lights should
change according the schedule given above.  There are two types of road crossing: safe ones that
require one sequence, and dangerous ones that require another (delayed green) sequence.  One digital
input signal called SAFE will indicate whether the road crossing is safe.  Thus, we have a one-input,
six-output synchronous system to design.

Step 1:  Understand the problem and decide how many states you need.

Here, "understanding the problem" refers to the understanding of the verbally described problem and
its translation into digital circuit terms.  Usually, the determination of the number of required states is
not a trivial problem; and the determination of the minimum number of states may be very difficult.
Probably, a reasonable approach is to find a number of states for which a state transition diagram can
be constructed and then look at the problem again because, possibly, we can discover that some states
are duplicated and thus can be eliminated.  Our problem is simple enough, so this will not happen here.

 
R1

A1

G1

R2

A2

G2

SAFE 

CLOCK

Traffic light  
 
controller 

SAFE=0 SAFE=1 
 <-1-> <-2->  <-1-> <-2-> 
R A G   R A G R A G   R A G 
1  0  0   0  0  1 1  0  0   0  0  1 
1  0  0   0  1  0 1  0  0   0  1  0 
1  0  0   1  0  0 0  0  1   1  0  0 
0  0  1   1  0  0 0  1  0   1  0  0 
0  1  0   1  0  0
1  0  0   1  0  0

1  0  0   0  0  1 1  0  0   0  0  1 

Looking at the transition table, we see that there are six states in the first column (dangerous
intersection) and four states in the second.  However we do not need ten states because all four states



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 2

in the second column (the same six outputs) are included in the six states of the first column.  Hooray!
We need only six states.  Let us number them 1 to 6 in the order they are shown in the state transition
table.

Step 2.  Construct the state transition diagram (ignore outputs)

 
1

5

6 2 

3 

4

0 

0

1

1

0

0,1 0 

0,1

STATE <-1-> <-2->
R  A  G R  A  G

1 1   0   0 0   0   1
2 1   0   0 0   1   0
3 1   0   0 1   0   0  (A)
4 0   0   1 1   0   0
5 0   1   0 1   0   0
6 1   0   0 1   0   0  (B)

N-S E-W

Two states (3 and 6), labelled A and B, have exactly the same traffic light outputs. Could they be
merged as one state?  The answer is no, unfortunately, because the state after 3 is 4 while the state after
6 is 1.

Step 3:  Select the type and number of flip-flops for the circuit.

Since the number of states is equal to six, the minimum number of flip-flops, which can support six
states, is three.  The maximum number of flip-flops one may use is six (one flip-flop per state).  For
this design example we will use three D-type flip-flops.  There will be two unused states.

Step 4:  Assign state numbers to flip-flop outputs and construct the transition table.

While there are some heuristic rules for assigning states to flip-flop outputs, they are difficult to apply
and do not guarantee a minimum circuit.  We will minimise the K-maps only for 1.   Therefore, we will
not use the two states 000 and 001, which will be the two unused states 7 and 8.  The idea behind this
choice is that a large number of 1s may provide easier minimisation so we use states with few 1s for
the unused states.  The rest of the flip-flop outputs are assigned in order while constructing the
transition table.

 Flip-Flop Q (t      )  SAFE  State(t n )  -->  State(t      )n+1  SAFE  Q (t  )n

0 1 2 0 000 (7) XXX 
0 2 3 0 001 (8) XXX 
0 3 4 0 010 (1) --> (2) 0 1 1 
0 4 5 0 011 (2) --> (3) 1 0 0 
0 5 6 0 100 (3) --> (4) 1 0 1 
0 6 1 0 101 (4) --> (5) 1 1 0 
0 7 U 0 110 (5) --> (6) 1 1 1 
0 8 U 0 111 (6) --> (1) 0 1 0 

1 1 2 1 000 (7) XXX 
1 2 4 1 001 (8) XXX 
1 3 U 1 010 (1) --> (2) 0 1 1 
1 4 5 1 011 (2) --> (4) 1 0 1 
1 5 1 1 100 (3) XXX 
1 6 U 1 101 (4) --> (5) 1 1 0 
1 7 U 1 110 (5) --> (1) 0 1 0 
1 8 U 1 111 (6) XXX 

i i n+1 

State Transitions Using State Numbers Assignment of Flip-flop Outputs



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 3

We may go now to the next step directly (fill out K-maps and minimise).  But in order to avoid errors
in transferring the data from the transition table to the K-maps, a rearranged transition table is
constructed first.

The order of the signals S (SAFE) and Qi (the flip-flop outputs) are rearranged according to the
sequence they are entered into the table (instead of 00->01->10->11 we use 00->01->11->10).  Also,
since we are using D-type flip-flops, the terms Qi(tn+1) become simply Di

X 1

1

00

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

XX 01
11

X
10

X1
0
0

1XX

D1

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

XX 10
10

X
11

X1
1
1

0XX

D2

S,Q1

Q2,Q3

01 11 10

01

11

00

10

XX 10
0

X
10

X0
1
0

X

D3

S Q1 Q2 Q3 D1 D2 D3

0 0 0 0 X X X
0 0 0 1 X X X
0 0 1 1 1 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 0 1 1 1 0
0 1 1 1 0 1 0
0 1 1 0 1 1 1
1 1 0 0 X X X
1 1 0 1 1 1 0
1 1 1 1 X X X
1 1 1 0 0 1 0
1 0 0 0 X X X
1 0 0 1 X X X
1 0 1 1 1 0 1
1 0 1 0 0 1 1

Step 5: Fill in K-Maps and determine the minimised expressions  (see above).

The next step is to determine the required logic expressions for the three flip-flop inputs D1, D2, and
D3. We use graphical method, i.e. the K-maps for the minimisation; however, any minimising
algorithm can be used.  One piece of caution should be mentioned here:  we have to construct nine (!)
combinational logic circuits.  In addition to the three circuits for the flip-flop inputs, six simpler (only
three-input) output control circuits must be built for the six traffic light signals R1 to G2.

The K-Maps minimise each circuit individually; however, when multiple outputs are required,
minimisation can arise by reusing expressions.  For example, if for one circuit the term S'•Q1•Q3'
appears, which appears for another circuit as well, this part of the circuit has to be built only once and
the signal used as many times as needed.  For this reason, we will not try to factorise the expressions
until we have all nine expressions.  Also, we have to check whether the circuit works.



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 4

Step 6:  Construct the Diagram for all States (including don't cares).

Once minimisation of the K-Maps is determined and the indicated grouping of 1s and 0s are shown, we
can replace the "don't care" outputs with the actual outputs (since this is exactly what the grouping
show).  Thus, we have now a completely defined sequential circuit and before we determine the
Boolean expressions for the flip-flop inputs we should check whether the system behaves correctly
even if it starts from one of the unused state.  A convenient way of checking this is by constructing the
complete transition diagram in which the unused states 000 and 001 by states 7 and 8 respectively.

0

1

D2 D3

Q2,Q3
00 01 11 10

01

11

00

10

11 0

11
1

10
01

0
0

111

D1

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

00 10
10

0
11

11
1
1

000

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

01 10
01 10

00
1
0

111

1

6

8

7

4

2

3

5

0,1

0

1

0

1

0,1

0,1

0

0,1

0
1

1

S,Q1

S Q1 Q2 Q3 D1 D2 D3

(7) 0 0 0 0 1 0 1 (4)
(8) 0 0 0 1 1 0 0 (3)
(2) 0 0 1 1 1 0 0 (3)
(1) 0 0 1 0 0 1 1 (2)
(3) 0 1 0 0 1 0 1 (4)
(4) 0 1 0 1 1 1 0 (5)
(6) 0 1 1 1 0 1 0 (1)
(5) 0 1 1 0 1 1 1 (6)
(3) 1 1 0 0 1 0 0 (3)
(4) 1 1 0 1 1 1 0 (5)
(6) 1 1 1 1 0 1 0 (1)
(5) 1 1 1 0 0 1 0 (1)
(7) 1 0 0 0 1 0 1 (4)
(8) 1 0 0 1 1 0 1 (4)
(2) 1 0 1 1 1 0 1 (4)
(1) 1 0 1 0 0 1 1 (2)

Disaster struck!  If the SAFE input is logic 1 (safe crossing) and the system finds itself in state 3 then it
will be stuck in state 3.  We cannot allow this, we have to go back and change some  "don't care" bit(s)
since we chose one value for it but could have chosen another.  The state in trouble is State 3, flip-flop
outputs 100 and K-map entry 1100.  Looking at the K-maps, we can see that by changing the 0
indicated for this term in the K-map for D3 to a 1 will cause minimal damage (i.e. will add one extra
term to the expression.

The changed table is shown below.  If we check in the transition table the entry for 1100 will change to
1101 and the system will move to State 4 from State 3 regardless of the SAFE input.  We have
repaired our system.  All other illegal states ultimately end up in a proper state so we have a working
system.

It would be possible to make a bit safer system by requiring that all illegal states must go immediately
to State 3 or State 6 (R1=R2=1) in which case we have to go back to the K-maps and change other
"don't care" entries to satisfy these conditions.  We will not complicate our problem with this extra
work.



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 5

.

1

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

01 10
01 10

00
1
0

111

D3

S Q1 Q2 Q3 D1 D2 D3

(7) 0 0 0 0 1 0 1 (4)
(8) 0 0 0 1 1 0 0 (3)
(2) 0 0 1 1 1 0 0 (3)
(1) 0 0 1 0 0 1 1 (2)
(3) 0 1 0 0 1 0 1 (4)
(4) 0 1 0 1 1 1 0 (5)
(6) 0 1 1 1 0 1 0 (1)
(5) 0 1 1 0 1 1 1 (6)
(3) 1 1 0 0 1 0 1 (4)
(4) 1 1 0 1 1 1 0 (5)
(6) 1 1 1 1 0 1 0 (1)
(5) 1 1 1 0 0 1 0 (1)
(7) 1 0 0 0 1 0 1 (4)
(8) 1 0 0 1 1 0 1 (4)
(2) 1 0 1 1 1 0 1 (4)
(1) 1 0 1 0 0 1 1 (2)

Step 7:  Construct the Output Circuits in G

Unfortunately, there are six such circuits but fortunately they have three inputs only (Moore Machine).
Their K-Maps can be filled out by the requirements of lights to be either ON or OFF for each given
state.  Here again we will start by ignoring the two unused states which will provide "don't care"
outputs to find the minimised circuits.  Again, filling out the K-maps with the selected 1s and 0s will
give us the actual operation of the lights for states 7 and 8.  We will have to look at these whether they
are safe.

X

Q1
Q2,Q3

00 01 11 10

1

0

1

0X

11 1

0X

Q1
Q2,Q
3 00 01 11 10

1

0

0

1X

00 0

0X

Q1
Q2,Q3

00 01 11 10

1

0

Q1
Q2,Q3

00 01 11 10

1

0

0

1X

11 0

1X
1

0X

00 0

0X
Q1

Q2,Q3
00 01 11 10

1

0 XX

1 000

0 0

Q1
Q2,Q3

00 01 11 10

1

0

0

0

00 0

1X

STATE Q1 Q2 Q3 R1 A1 G1 R2 A2 G2

2 0 1 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 0 1
3 1 0 0 1 0 0 1 0 0
4 1 0 1 0 0 1 1 0 0
6 1 1 1 1 0 0 1 0 0
5 1 1 0 0 1 0 1 0 0

R1 = Q1' + Q2'•Q3' + Q2•Q3 A1 = Q1•Q2•Q3' G1 = Q2'•Q3

R2 = Q1 A2 = Q1'•Q3 G2 = Q1'•Q3'



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 6

In summary we have the following circuits to build:

D1 = Q2' + S'•Q1•Q3' + Q1'•Q3
D2 = Q1•Q3 + Q2•Q3'
D3 = Q2'•Q3' + S'•Q3' + S•Q1'
R1 = Q1' + Q2'•Q3' + Q2•Q3
A1 = Q1•Q2•Q3'    or  Q2•Q1•Q3' The common terms are underlined
G1 = Q2'•Q3
R2 = Q1
A2 = Q1'•Q3
G2 = Q1'•Q3'

A Different State Assignment

If we want to try to find a simpler overall circuit, we may try different flip-flop assignments for the
states.  One idea is to minimise the output circuitry.  We could, for example, make R1=Q1 and
R2=Q2, if these simple assignments will give us a correct complete state assignment.  The third
output, Q3 has to be assigned such that all used states are distinct.  One possible set of assignments are
shown below:

0

0

11

Q1
Q2,Q3

00 01 11 10

1

0

Q1
Q2,Q3

00 01 11 10

1

0

1

0X

1

X 0X

00 0

1X
Q1

Q2,Q3
00 01 11 10

1

0 1X

00 00

0X

X 00
Q1

Q2,Q3
00 01 11 10

1

0

1

1X

10 0

1X

Q1
Q2,Q3

00 01 11 10

1

0

0

X

00 1

0X
Q1

Q2,Q3
00 01 11 10

1

0

0

0X

01 0

Q1 Q2 Q3 R1 A1 G1 R2 A2 G2 STATE

0 0 0 X X X X X X 7
0 0 1 X X X X X X 8
0 1 1 0 0 1 1 0 0 4
0 1 0 0 1 0 1 0 0 5
1 0 0 1 0 0 0 0 1 1
1 0 1 1 0 0 0 1 0 2
1 1 1 1 0 0 1 0 0 3
1 1 0 1 0 0 1 0 0 6

R1=Q1 A1=Q1'•Q3' G1=Q1'•Q3

R2=Q2 A2=Q2'•Q3 G2=Q2'•Q3'

The output circuits require only two-input NAND gates.  But of course, we have to redesign the input
circuitry with the new flip-flop assignments.



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 7

0

1
X

X

X

X 0

1

00

S,Q1 00 01 11 10

01

11

00

10

X 10
11

1
10

X0
1
X

0X

D1

S,Q1

Q2,Q3
00 01 11 10

01

11

00

10

XX 11
0
0

01
X1

01XX

D2

S,Q1

Q2,Q3

01 11 10

01

11

00

10

XX 00
1

1
01

X1 X
X

D3

S Q1 Q2 Q3 D1 D2 D3

(7) 0 0 0 0 X X X
(8) 0 0 0 1 X X X
(4) 0 0 1 1 0 1 0 (5)
(5) 0 0 1 0 1 1 0 (6)
(1) 0 1 0 0 1 0 1 (2)
(2) 0 1 0 1 1 1 1 (3)
(3) 0 1 1 1 0 1 1 (4)
(6) 0 1 1 0 1 0 0 (1)
(1) 1 1 0 0 1 0 1 (2)
(2) 1 1 0 1 0 1 1 (4)
(3) 1 1 1 1 X X X
(6) 1 1 1 0 X X X
(7) 1 0 0 0 X X X
(8) 1 0 0 1 X X X
(4) 1 0 1 1 0 1 0 (5)
(5) 1 0 1 0 1 0 0 (1)

This circuit seems to be simpler than the first one.

1

6

8

7

4

2

3

5

0,1

0

1

0,1

0,1

0

1

0

0,1

0
1

1

D1 = S'•Q2'  +  Q3'

D2 = S'•Q1'  +  Q3

D3 = Q2'  +  Q1•Q3

R1 = Q1

A1 = Q1'•Q3'

G1 = Q1'•Q3

R2 = Q2

A2 = Q2'•Q3

G2 = Q2'•Q3'



DOC 112 Hardware Lecture 10 --   11/12/03  --   Page 8

And the final circuit is:

Q1

Q1'

D3 Q3

Q3'

D2 Q2

Q2'

D1 R1

R2

A1

G1

A2

G2

S


