

DOC112: Computer Hardware Lecture 9 Page 1
10/15/01

Lecture 9: Finite State representation of digital circuits

We noted that any member of the class of circuits called flip flops can be conveniently be
represented by a finite state machine, and in general any synchronous circuit can be modelled by a
finite state machine, and vice versa. A finite state
machine in its most general form can be
represented by a pair of equations:
 S(t+1) = f(S(t), I(t))

O(t+1) = g(S(t), I(t))
Where S(t) represents the state at time t and can
take only a finite set of values, normally thought
of as integers. I(t) and O(t) are the inputs and
outputs which are also normally discrete bounded
variables and f and g are functions. Synchronous
circuits which conform equation 9.1 are called
Mealy machines, and are represented by the block
Diagram 9.1. There is a simpler form of finite
state machine which is sometimes used where the
output is only a function of the state, and the
equation pair becomes:
 S(t+1) = f(S(t), I(t))

O(t) = g(S(t))
Circuits of this form are called Moore machines, and are represented Diagram 9.2. In both cases
the blocks f and g compute the finite state machine functions and are implemented by
combinational logic. We will call block g the decode logic and block f the state control (or state
sequencing) logic. The blocks marked d-q are called state registers and consist of a bank of flip
flops.

The fact that synchronous circuits can be represented by finite state machines gives us the basis of
a design methodology. As with programme design (or indeed any engineering design task) we can
most easily solve a problem at the highest functional level, hence it is better to design the finite
state machine before considering how to construct it out of gates. The methodology for circuit
design can be stated as follows:

1. Determine the number of states required by the system
2. Determine the state transitions and outputs and draw the finite state machine
3. Choose the way in which the states will be represented (State Assignment)
4. Express the state sequence logic as a set of Boolean equations combining the states and the

inputs, using the existing methodology based on finding minterms. Minimise using the
Karnaugh map method.

5. Express the required outputs as a Boolean function of the states, and minimize using
Karnaugh maps if possible.

7. Draw the circuit.

We will now consider a simple example which will
illustrate some of the issues concerned with this
methodology. It is a counting circuit, similar to that
designed in the previous lecture. The input will be
taken from a push button, and the output will be a
digit in the range 0 to 5 displayed on a seven
segment display (see diagram 9.3). The seven
segment display is a device with seven inputs. A
logical 1 will cause the appropriate segment to be
illuminated. Such a circuit might used to set the

Diagram 9.1 The Mealy Machine

f

I

S

O g

D-Q

Diagram 9.2 The Moore Machine

f
I S O g D-Q

1 1
2
3
4

0

5
6

Sequential
Counter

Diagram 9.3: A Sequential Design Problem

DOC112: Computer Hardware Lecture 9 Page 2
10/15/01

time in a digital clock.
The design of the finite state machine is quite straight forward. Clearly there are six states, which
we can label 0 to 5 representing the digit that will be displayed. If we assume that the circuit
operates on a slow clock, advances when the input button is pushed (one) then the state transitions
are also straight forward. The outputs pose more of a problem since we must decide which of the
seven segments to illuminate for each state. For example in state 0 we require segments 0,1,2,4,5
and 6 to be illuminated. Thus we might write the corresponding output A as {1,1,1,0,1,1,1}. When
we have specified all the outputs we have completed the finite state machine design, which is given
in Diagram 9.4. Note the convention that in a Moore machine the outputs are written in the nodes,
(below the state name). In the Mealy machine they are written on the arcs.

In order to translate a finite state
machine into a circuit, we must first
decide how the states are to be
represented. The simplest possibility is
that we allocate one flip flop per state, so
that our d-q box in diagram 9.2 is made
up of six flip flops. The consequence of
this is that the decode logic is very
simple. It is specified entirely by the OR
function. For example, consider output
number 1 (which illuminates the top
segment). It should be one in states 0,2,3
and 5. Thus we can write:
 O1 = Q0 + Q2 + Q3 + Q5
However, this arrangement is likely to use many more components than we need, since the states
could be encoded on just three flip flops rather than six. But here again is a problem, since three
flip flops can represent eight states, that is to say, if we treat the outputs of the flip flops as a three
bit number, we have eight possibilities, and we need to decide which number encodes (or
represents) each state. This is the state assignment problem, and the choices that we make will
effect both the output and the state sequencing logic.

If we maintain the notation that Si represents the ith state, we can note immediately that each state
has a corresponding minterm with the three flip flop outputs as its variables, so we could make a
provisional assignment for example:
 S0 = Q2'•Q1'•Q0' S1 = Q2'•Q1'•Q0 etc
and immediately we can write our decode logic in the canonical form as
 O1 = Q2'•Q1'•Q0' + Q2'•Q1•Q0' + Q2'•Q1•Q0 + Q2•Q1'•Q0
and apply the Karnaugh map method to determine the minimum circuit for each output. The input
logic we can now construct by considering each state in turn. The design decomposes into a
separate problem for each state. The equations for a state can be derived simply by looking at the
arrows that point to that state in the finite state machine diagram. We can obtain an equation
directly in the canonical form. For example:
 N0 = S5•I + S0•I'
where N0 means the next state is to be S0. Here again we have a problem that we can minimise
using the standard Karnaugh map method. However, the new state needs to be presented to the D
input of the flip flops, and thus must be encoded. This encoding is simply a set of OR gates, so
following the state assignment used above we have that:
 D0 = N1 + N3 + N5
That is to say, the D0 value should be set to 1 when the next state is S1 (001) or S3 (011) or S5
(101). D0 is the bottom bit of the number that defines the state. Similarly:
 D1 = N2 + N3 and D2 = N4 + N5
We can substitute for the N values to obtain for example

1

1

1

1

1

1

0 0

0

0

0

0

4
E

3
D

2
C

1
B

0
A

5
F

Output Vectors

A = {1,1,1,0,1,1,1}
B = {1,0,0,0,0,0,1}
etc.

Diagram 9.4:
Moore machine for
the six state counter

DOC112: Computer Hardware Lecture 9 Page 3
10/15/01

 D1 = S1•I + S2•I' + S2•I + S3•I'
 = Q2'•Q1'•Q0•I + Q2'•Q1•Q0'•I' + Q2'•Q1•Q0'•I + Q2'•Q1•Q0•I'
which is now the Boolean equation of the whole state sequencing logic in canonical form ready for
minimisation. Once the state assignment has been made, the unused states become don't care states,
in that we expect that they will never appear when the circuit is in correct operation. Remembering
that don't cares may be treated as either zero or one, and, when using the minterm canonical form
we can benefit if we treat them as ones, we add them to the Karnaugh maps for simplification of

the resulting circuit.

When a synchronous circuit has
been designed in this way it is
necessary to check that it will start
up correctly. The problem is that,
since we have treated the
unassigned states as don't cares,
we cannot define how they will
behave. For example, it is possible
that the unassigned states form a
closed finite state machine as
shown in Diagram 9.5, and on start
up the circuit never enters any of
the required states and therefore
does not perform correctly. We
could avoid this problem by
explicitly including the unassigned
states in the design, for example
making them all lead to a known
state, as shown in Diagram 9.6, but
this would have the disadvantage
that the resulting circuit may not
be the smallest possible. Another
strategy would be to check to see
what state transitions are implied
when the don’t cares have been
allocated particular values, and
modify the circuit if it is unsafe. A
third possibility is to use the set
and reset features on standard flip

flops to force the circuit into an assigned state either on start up, or on the press of a reset button.

Unfortunately, in general, there
is no easy way to see which
state assignment will result in
the best simplification of the
whole circuit. One strategy is
to try out all possibilities, and
determine which gives the best
overall result. At first sight this
looks like a daunting task,
since the number of ways we
could allocate the eight possibilities to the six states is 56. However fortunately many of them can
be eliminated. For example, consider one possible state assignment shown in Diagram 9.7. We note
that flip flops usually always have complementary outputs, and thus if we negate any column this

0,1

0,1
7 6

1

1

1

1

1

1

0
0

0

0

0

0

4

3

2
1

0

5

Diagram 9.5: Unallocated States

1

1

1

1

1

1

0
0

0

0

0

0

4

3

2
1

0

5

Diagram 9.6: Explicitly allocated unused states

0,1

0,1

7

6

State Assignment Isomorphs
0 000 100 010 110
1 001 101 011 111
2 010 110 000 100
3 011 111 001 101
4 100 000 110 010
5 101 001 111 011

These isomorphs are created by:

Invert Column 1
Invert Column 2
Invert Columns 1 and 2

Diagram 9.7: Isomorphic assignments

DOC112: Computer Hardware Lecture 9 Page 4
10/15/01

will not result in a different circuit, since all we do is exchange the Q and Q' outputs of the flip
flop. Applying this principal we can generate a further seven isomorphic assignments by negating
the different combinations of columns.

A small refinement of our specification is to make the digit change on the 0 to 1 transition of the
input button. We could do this by buffering the input through a T type flip flop, but an alternative
strategy is to use the design of diagram 9.8. We have here a twelve state machine, so the strategy of
using one flip flop per state will be very wasteful. We can choose to use four flip flops, and make
an assignment of the sixteen possibilities to the twelve states, but now the number of possible
assignments increases to 1820, and even allowing for the symmetries we have over a hundred
possibilities to choose from. Thus to determine the optimal state assignment it will not be possible
to evaluate all possibilities. Consequently we need to rely on heuristic rules of the form:
• All those states that have the same next state for the same input should be given adjacent state

assignments
• The next states of a state produced by applying adjacent input conditions should be given

adjacent state assignments.
In our case the second rule suggests that the neighbouring states in our diagram should be given
adjacent state assignments, ie going round the ring in diagram 9.4 we would use 000 001 011 111
110 100 and back to 000. There are many such rules quoted but it is beyond the scope of this
course to discuss them.

0
A

1
B

0
B

1
A

11
F

0

0

0
0

0

1

1

1

1

1

1

Diagram 9.8: Edge Counter

