Department of Computing Course DoC 112 / Hardware
Lecture 4

In the last lecture we have seen how combinational digital circuits can be built from their input/output function, i.e. from
their truth table. The simplest method is to substitute an AND gate for each 1 in the truth table (minterm) with the inputs
coming either directly from the circuit input or their inverted value. The outputs of the AND gates are connected to a many-
input OR gate. Thus, we could build a general device of any number of inputs (within reason) which could realise an
arbitrary number of minterms.

Let us look at the following circuit and its truth table:
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The truth table has five 1s therefore we can write the Boolean expression by inspection to be:
R=A'""B'sC + A'*BeC + A*B'*C + A*B+C' + A*B*C

Thus this circuit can be built from five three-input AND gates and a five-input OR gate. However, a more general circuit
shown below can generate all possible three-input digital circuits.
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This is called a Programmable Array Logic (PAL) device and for the three-input circuit has eight three-input AND gates
(the number of possible functions) and one eight-input OR gate.

The PAL device comes with so called "fusible links". Gaps are shown at the output of the three-input AND gates. As long
as they are left alone, they provide no signal to the OR gate and the "unprogrammed" output of this device is always equals
to Logic-0. The device may be "programmed" by special equipment which sends a large current through selected links and
"fuses" them so that they will conduct and thus any selected AND gate (corresponding to the minterm of the truth table)
could provide a 1 to the OR gate and make the output of the OR gate equal to 1. Notice that it makes no difference what the
input values are at any one time, only one AND gate's output will be a 1. (Again, this is how minterms are defined!).

Let us go back to our original circuit, which had only four gates of various kinds. We started with a relatively simple circuit
and by using our general method ended up with a much more complicated one. If we use a PAL device then we end up
using the eight three-input AND gates and one eight-input OR gates built into the PAL. However, if we use separate ICs, a
solution with lots of gates is expensive, and we should try to simplify it.
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Another observation from the truth table may be made. There are five 1s (five AND gates) but only three 0s. Can we use
the 0s and have a simpler circuit? Of course we can! There is duality and we should never forget it. Using duality we can
write down (by inspection) the following Boolean product of maxterms:

R = (A+B+C) ¢ (A+B'+C) * (A'+B+C)

It is a bit tricky because we want to make certain that for all inputs which provide 0 output, there is at least one of the
bracketed terms which is equal to 0. The first such input is equal to 000; therefore, (A+B+C) will is zero, and so on. This
circuit will require a three-input AND gate and three three-input OR gates. Now, this is a bit better!

However, we have seen from the last lecture that we can do even better. We can use a Karnaugh-map or K-map to do our
minimization (at least up to five variables). In this case we have:
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or: R=C + AeB and end up with two gates, a two-input OR and a two-input AND gate. Hurray! Could you have guessed
this by looking at the circuit?? Maybe -- but it is not easy.

Now we will look at a practical problem from the point of view of building a cost-effective digital circuit. We will be
particularly interested in finding a reasonably inexpensive solution to a specific digital problem with the use of real ICs. We
are restricted to use only three types of ICs: the 7400 (four two-input NAND gates), the 7406 (six inverters) and the 7408
(four two-input AND gates). Thus, we have restrictions as to what gate types to use and in addition to minimising for the
number of gates we use, we must be careful to ensure that we use the smallest number of ICs for the circuit. This will
require some gate transformations which will be demonstrated below.

Design Exercise 1

Build a three-input, one-output digital circuit. One of the inputs is specified as a control input (we shall designate the
control input as C). When this control input is at the logical 0 value, the output is the logical (or Boolean) AND function of
the other two inputs. When C is at the logical 1 level, the output is equal to the Boolean OR function of the other two
inputs. You may use only two-input AND, NAND and Inverter gates.

C
Control
Y c R
A > 0 AB
% R
B ——> 1 A+B

Step 1 Generate the Truth Table

The first step of the design is to translate the verbal description of the problem into a truth table. In this case, this can be
done by inspection:
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Step 2 Generate the Karnaugh Map

The next step is to minimise the four-term canonical minterm expression, either by Boolean algebra manipulation or by
using Karnaugh maps. I prefer the map, so here we go:

(Be careful! The order of the entries in the map follow 00->01->11->10 not the order in the truth table!).
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Step 3 Minimize the Boolean Expression

The next step is to group together neighbouring ones (or zeros) to produce a simpler expression. In this case, there are the
same number of ones and zeros, no "don't care" terms and it is most likely that minimising for ones or zeros will produce
similar results; therefore, we will do it only for ones.
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We get: R=Be¢C + A*B + A<C

At this point we examine the minimised Boolean equation whether common factors could be collected and brackets put back
into the equation since this will reduce the number of required gates. Here we can write:

R = A¢B+C) + B*C
Step 4 Draw the Circuit

We draw the circuit in its minimised form.
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Step 5 Transform Gates for The Minimum Number of ICs

We assign ICs, build and then test the circuit. However, the circuit is in a mixed form; i.e. it has both AND and OR gates
but we do not have OR gates in our IC repertoire. Therefore, the OR gates have to be changed to AND (or NAND) gates
before we could build the circuit.
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We can do this by applying DeMorgan's formula; i.e. (A'+B')' = AB. However, we do not have to go back to the Boolean
equation, we can do this gate transformation operation on the circuit diagram, as shown above. We introduce two inverters
(which cancel each other) at the appropriate places in the circuit and transform the gates accordingly.

Moving the remaining circles to the outputs of the AND gates turn them into NAND gates so we end up with four NAND
gates and two inverters. And the final circuit is:
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Step 6 Build the Circuit, Test it and Calculate its Cost

This circuit can be built from two ICs, a type 7400 (four two-input NAND gates) and a type 7406 (six inverters). The total
cost of the circuit is calculated by a formula that takes into account “socket costs” and “gate costs”. Whenever an IC device
is used on a circuit board, a space must be reserved for it and possibly a socket must be provided. All these add cost to the
final completed circuit board. Even if only one inverter gate is used in a type SN7408 package of six inverters, the cost
associated with the IC package must be included in the total cost.

When an IC package is not completely utilised (i.e., not all the gates in it are used), the “gates costs” should reflect this fact.
If only one gate out of four is used, this should result in a cheaper circuit than when all gates are used. The justification for
this cost decrease is that another, unrelated circuit also placed on the same circuit board may need an extra gate, which then
could be supplied. This is not an exact calculation but when most gates of all ICs are utilised, it does give a good
approximate answer.

Thus, the formula for cost calculation is:

Each IC used = 0.5 + U*0.48 (£5s) U = utilisation factor

Where 0.5 is the “socket costs”, 0.48 is the “gate costs” and U is the utilisation factor of the IC and is equal to the number of
gates used in the IC divided by the total number of gates in the IC. In our example, the two ICs give:

Cost = [0.5 + (4/4)*0.48] + [0.5 + (2/6)*0.48] = £ 1.64
This seems to be a reasonable price and a simple circuit. However, it is very difficult to prove that this is the least expensive
circuit. For example, we find out that a different type of IC, type SN7411 has three three-input NAND gates. Therefore, we
can realize the Boolean equation R=AB+BC+AC which we had before, by collecting terms. Using the SN7411 we produce
the circuit shown below which uses three 2-inputs NANDs and one 3-input NAND:

A —

B

c Do
And the total cost is [0.5 + (3/4)*0.48] + [0.5 + (1/3)%0.48] = £ 1.52
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The three circuit diagrams of the three SN7400 type integrated circuits, which are used in this lecture and also in the coming
assessed course work assignment, are shown below:
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