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Lecture 3: The Canonical Form of Combinatorial Circuits and its Minimisation

We have already seen that circuits can be represented by Boolean equations, and indeed any digital circuit
has a corresponding system of Boolean equations, and vice versa. For this lecture, we will consider only
combinatorial circuits, that is those whose outputs are defined as functions of their inputs only (not in terms
of other outputs). That is to say a set of equations of the form:

X1 = f1(A,B,C,D) X2 = f2(A,B,C,D) X3 = f3(A,B,C,D)
where X1,X2 and X3 are outputs,  A, B, C and D are inputs and f1, f2 and f3 are Boolean functions. Circuits
where the outputs can appear on the right hand side of the equation as well are called sequential circuits, and
we will deal with them later in the course.

Any combinational circuit can be expressed in one of two canonical forms. (A canonical form is
simply a standard way of writing a mathematical equation.) To do this we first define a minterm.  Suppose a

circuit has n inputs designated A, B, C,  etc.   a minterm is simply a
Boolean product term in which for each input , say K, either K or its
complement K' appears exactly once. For example, if we have a three
input circuit with inputs A, B and C then:

A•B'•C' and A•B•C' are both minterms, but
A•B' and B'•C' are not minterms,

since they do not contain all the input variables.
The canonical form is a set of Boolean equations, one for each output,
in which each equation is a Boolean sum of minterms.

A simple example is the three input majority circuit which has
output 1 when two or more of its inputs are 1. Let the inputs be A, B,
and C and the output be X, then we can write all the possible input
states in the form of a truth table, as shown in Diagram 3.1. For each
input state yielding a 1 output the corresponding minterm must appear
in the canonical equation, which is therefore:

X = A'•B•C + A•B'•C + A•B•C' + A•B•C
The canonical form can be derived directly from the equations, without drawing up a truth table, by
multiplying out the brackets and augmenting the terms that do not contain all the variables. For example
consider the badly designed circuit, shown in Diagram 3.2, and represented by the equation:

X = A'•(B'+C•(A+B))
We first multiply out the brackets to get:

X = A'•B' + A•A'•C + A'•B•C
and since A•A' is always 0 this simplifies
to:

X = A'•B' + A'•B•C
We have one minterm A'.B•C, but the first
term does not contain input C. To augment
this we note that for any Boolean variable
(C+C') = 1, and so

A'•B' = A'•B'•(C+C') = A'•B'•C + A'•B'•C',
and so the canonical form is:

X= A'•B'•C + A'•B'•C' + A'•B•C.
The strength (and purpose) of the canonical form is that it allows us to devise a simple algorithm for
designing any circuit automatically, starting from a set of Boolean equations and finishing with an
integrated circuit. We will see next lecture the structure of an integrated circuit, called a programmable logic
array, which  supports this design methodology. However, we also note that the canonical form is not the
smallest representation of most circuits, and consequently not the best implementation. We therefore now
consider how to transform the canonical form into the smallest circuit that implements it.  This is done by
factorisation and simplification (essentially the reverse of the augmentation process that we used in deriving
the canonical form). For example if we consider the majority circuit defined by the truth table of Diagram
3.1:

X =  A'•B•C +  A•B'•C +  A•B•C' + A•B•C
we can see that we can factorise A•B out of the last two terms giving

X = A'•B•C + A•B'•C + A•B•(C'+C) = A'•B•C + A•B'•C + A•B

 

Diagram 3.1: 
The truth Table for a majority 

voter 

A B C D  
0 0 0 0  
0 0 1 0  
0 1 0 0  
0 1 1 1 Minterm 
1 0 0 0  
1 0 1 1 Minterm 
1 1 0 1 Minterm 
1 1 1 1 Minterm 

 

Diagram 3.2: A badly designed circuit 

C 

B 

A 

X 
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and this factorisation has already reduced the number of gates that we will need in the implementation.
However, this is not the minimum form of the circuit, which can be derived by first expanding the
expression to:

X =  A'•B•C +  A•B'•C +  A•B•C' + A•B•C + A•B•C + A•B•C
and then applying the three possible factorisations to get the minimal form:

X = B•C + A•C + A•B
Factorisations of this kind are not easy to see not easy to see, and one practical visual aid to find them is
called the Karnaugh Map. The Karnaugh Map is simply the truth table written out as a two dimensional
array. The format for two three and four variables is shown in Diagram 3.3. Notice that the order in which
the input values are written preserves the rule that adjacent values change in only one variable. Each non-
zero square represents a minterm which will appear in the canonical  equation. Factorisations can be found
by identifying adjacent 1s in either the horizontal or vertical directions (but not the diagonal direction).

Consider the two input map first. This corresponds to the
canonical equation:

X = A'•B + A•B' + A•B
Looking at the map we can see two possible
simplifications, or factorisations of the expression which
are:

X = A•(B'+B) + A'•B = A + A'•B
 and X = B•(A'+A) + A•B' = B +  A•B'
In practice we would apply both of these to obtain the
minimal form which is X = A + B. To do this we indicate

simplifications by circling the adjacent 1s as shown in Diagram 3.4. Each circle will represent one term in
the expression (NB we use the term circle loosely here to mean a closed boundary around adjacent squares
on the Karnaugh map). The fact that a 1 in the Karnaugh map
may appear in more than one circle is irrelevant. Thus, in
diagram 3.4 we see that the last row circled together is
independent of B, and corresponds to the term A, and similarly
the last column corresponds to the term B in the simplest form.

In general a circle on the Karnaugh map of a group of
1’s represents a factorization applied to the canonical form. In
the Canonical form every 1 on the Karnaugh map has a corresponding term in the equation. However, if we
can circle adjacent 1s then only one term, corresponding to the area covered by the circle, need appear in the
equation. The areas circled must have side lengths of 1, 2 or 4 - never 3.

Figure 3.5 shows a four by four Karnaugh map, and
indicates some possible circles on it. To find the
term that corresponds to a circle we find the inputs
that do not vary in that circle. The circle covering
the second column is defined by C=0, D=1. The
inputs A and B can be either 1 or 0 at within the
circle. To make sure that the output is a 1 at all four
input values within that circle we simply need
ensure that C’•D = 1. Notice that we always try to
find the largest possible circle since this will

correspond to the greatest simplification. In diagram 3.5 we could find a greater simplification by circling
together the 1s in the fourth column.

We can now consider the at the four input majority voter again. We can see that there are may
possible factorisations which can be applied. Consider in particular the square block of four ones in the
bottom right hand corner. The top pair corresponds to the minterms A•B•C•D + A•B•C•D' which simplifies
to A•B•C, and the bottom pair corresponds to A•B'•C•D + A•B'•C•D', which simplifies to A•B'•C. There is a
further factorisation of these two simplified terms to A•C, and this will always be the case for any square
block of four, or any row or column of the Karnaugh Map where all the entries are ones. Clearly the bigger
the block that we can mark the fewer the variables in each term, and the simpler the expression. Hence we
can derive the simplest expression using the six groups of four ones shown in Diagram 3.6. Inspection tells

 

Diagram 3.3: Sample Karnaugh Maps 

Three input majority circuit   

Four Input 
Majority 
Circuit  

Two Input OR gate 

  BC 
  00 01 11 10 

0 0 0 1 0 A 
1 0 1 1 1 

  CD 
  00 01 11 10 

00 0 0 1 0 AB 
01 0 1 1 1 

 11 1 1 1 1 
 10 0 1 1 1 

 B 
  0 1 

0 0 1 A 
1 1 1 

 

 Term B 

Term A  Diagram 3.4 

 B 
  0 1 

0 0 1 A 
1 1 1 

 

 

Term 

A'•B•C•D' 

Term  A  
Term C'•D 

Term 
A'•B'•C 

Diagram 3.5:  

Areas of the Karnaugh Map  described by some terms 

  CD 
  00 01 11 10 

00 0 1 1 1 
01 0 1 0 1 
11 1 1 1 1 

AB 

10 1 1 1 1 
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us the which variables appear in the terms. These are just the ones that are always constant in the circled
block. From the Karnaugh map we read the simplified expression for the four input majority voter as:

X =  A•B + A•C + A•D + B•C + B•D + C•D

The Karnaugh map must be treated as cyclic, so that the last row and column should be considered
to be adjacent to the first. We can make this explicit by moving the top row to the bottom, and then the first
column to the right hand side end. Consider the four input map shown in Diagram 3.7.  Without cycling,
there are no apparent simplifications, but when the cycle is made explicit the two possible simplifications
become clear.

In many applications we may know that
some possible input states may never
occur, and therefore we do not care about
the outputs of the circuit. We can make
these explicit in the truth table by placing a
cross in the output column rather than a
zero or one. This has the advantage in
minimisation problems that the
corresponding points in the Karnaugh map
may be treated as either a 1 or a 0 for the
purpose of simplification. For example, considering again the four input majority circuit, if we happen to
know the input states 0000 and 0100 never occur we can make them as don't cares in the Karnaugh map as
shown in Diagram 3.8. Clearly it is advantageous to treat 0100 as a 1 then we can obtain a major
simplification simplification with the central block of eight which corresponds to the term B in the second
row.

We can apply the principal of duality to all of the preceding material. Firstly we define a maxterm,
which is a Boolean sum term in which for each input, for example, K, either K or its complement K' appears
exactly once. Thus for a four input circuit, A+B'+C+D  and A+B+C'+D' are maxterms. The dual canonical
form is a boolean product of maxterms:

X = (A'+B+C+D)•(A+B'+C+D)•(A+B+C'+D)•(A+B+C+D')
Notice the characteristic of the dual canonical form which is that if any of the maxterms is zero the output is
zero. The maxterms are therefore derived from the zeros in the truth table. Karnaugh maps can again be
used, but this time it is adjacent zeros that represent possible simplifications. These simplifications follow
the rule: (A'+B)•(A+B) = B

Don't cares can be applied in the same way, but remembering that simplifications will arise by
treating them as zeros not ones.Lastly, it should be noted that the choice of canonical form will often lead to
a dramatic simplification. A trivial, but telling example is the design of the OR function.

A B X
0 0 0 Maxterm
0 1 1 Minterm
1 0 1 Minterm
1 1 1 Minterm
The minterm expression which we noted above is X = A•B + A•B + A•B whereas the maxterm expression is
X = (A + B).

 

  CD 
  00 01 11 10 

00 X 0 1 0 
01 X 1 1 1 
11 1 1 1 1 

AB 

10 0 1 1 1 
 

C•D 

B 

A•D A•C 

X =  A•D + A•C + B + C•D  

Diagram 3.8 

 

  CD 
  00 01 11 10 

00 0 0 1 0 
01 0 1 1 1 
11 1 1 1 1 

AB 

10 0 1 1 1 
 

A•B 

C•D 
B•D 

B•C 

A•D A•C 

X =  A•B + A•D + A•C + B•C + C•D + B•D 

Diagram 3.6 

 01 11 10 00 
01   1 1 
11  1   
10 1  1  
00 1    

 

Diagram 3.7: Cycling a Karnaugh Map 

 00 01 11 10 
00  1   
01 1   1 
11   1  
10  1  1 

 


