
DOC 112 -- Hardware -- 27-Oct-03-- Page 1

Department of Computing
DOC 112 - Computer Hardware

Lecture 2: Gates, Integrated Circuits and Boolean Functions

While Boolean algebra is the fundamental formal system for digital circuit designers, digital (i.e.
binary) circuits are their main tools. Digital circuits are similar to Boolean block diagrams but each
block is replaced by an easily recognizable graphical symbol or Gate. Not only this makes the
operator words AND, OR and NOT redundant (and therefore unnecessary), but also this allows the
expansion of the "operators" into a larger class of gates. The basic fundamental operations and
equivalent gate symbols are:

 AND OR NOT

The NOT gate is called an Inverter gate in digital gate terminology. Actually, the little circle symbol
is all that needed for "inversion" of a Boolen value but it is unusual that the circle is used by itself
since then it is impossible to tell which is the input and which is the output.

A A'

The circle symbol on the other hand, can be attached to any gate symbol whose output is then
inverted. In this manner we can define two new gates: NAND and NOR.

A ANAND NOR
B B

NAND = (A•B)' NOR = (A+B)'

The significance of these gates is that they are the fundamental building blocks of most practical
digital circuits. If one wants to build a relatively small digital circuit, one is most likely to use a
digital circuit board with sockets into which ready-made Digital Integrated Circuit or simply IC
devices can be inserted. Today most simple ICs are already standardised and the most common ones
belong to the so-called 7400 series. The simple ones are made by Small Scale Integration
technology (or SSI) and as an example, the schematic diagram of the 7408 device is shown on the
next page.

DOC 112 -- Hardware -- 27-Oct-03-- Page 2

14 13 12 11 10 9 8

1 2 3 4 5 6 7

7008

As shown, this IC has fourteen pins out of which twelve are used for four two-input AND gates and
two are used for supplying power to the device (Vsupply = 5 volts, and Ground = 0 volts). Most
simple SSI IC devices have either 14 or 16 pins. We will work with these in the tutorials and they
will be also used (on paper) in larger design exercises.

Since ICs come with given number and type of gates it is not immediately obvious how one could
build an arbitrary digital circuit. However, we will show now that by using inverters and DeMorgan's
theorem one can transform AND gates to OR gates and vice versa. In fact, a two-input NAND gate is
all that is needed to build any digital circuit. We can show this by building an Inverter, an AND and
an OR gate purely from NAND gates.

R

R = (A•A)' = A' R = ((A•B)')' = A•B R = (A'•B')' = A + B

A R
A

R
B

A R

B

Finally, often we need more than two inputs for realising terms like (A+B+C+D). Cascading gates
can provide multiple inputs. Lets see what happens if we cascade two two-input NAND gates, what
kind of three-input device do we get?

A X (?)

B
C

A B C (B•C)' (A•(B•C)')'

0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1

X = (A•(B•C)')' = A' + B•C

By Boolean algebra X = ((A) • (B•C)')' and applying DeMorgan we do not get a three-input
NAND gate.

DOC 112 -- Hardware -- 27-Oct-03-- Page 3

So, how can we create a three-input NAND gate?

OR

R = (A•(B•C))' = (A•B•C)'

A R

B
C

A R

B
C

DeMorgan's law can also be used to show that a NAND gate with inverted inputs is equivalent to an
AND gate and the same gate transformation works for the NOR gate (remember duality?).

R = (A+B)' = A'•B'

R = (A'+B')' = A•B R = (A'•B')' = A + B

A
 R

B

R = (A•B)' = A' + B'

A
 R
B

A
 R
B

A
 R
B

There are two more useful two-input gates called the Exclusive OR or XOR and the same with
inverted output; i.e. the Exclusive NOR, or XNOR gates. We show the symbols and truth tables for
these gates below. We will get familiar with these gates later on in the course.

A
XOR

B

A
XNOR

B

A B XOR A B XNOR

0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

We have now looked at one one-input and six two-input gates. One may ask the question: How
many different gates one can build? With other words, how many different truth tables can we
produce for an arbitrary gate with a given number of inputs? We show below that for a one input gate
there could be four ((2*1)2 = 4) possible truth tables:

DOC 112 -- Hardware -- 27-Oct-03-- Page 4

?

A R0 R1 R2 R3

0 0 0 1 1
1 0 1 0 1

A Rn

The fourth column, or the truth table values indicated by R2 agree with the inverter or NOT
function. Instead of considering these truth tables only as a list of ones and zeros, we could look at
the functional relationship between the input variable A and the output Rn (the truth table values).
We already know that for output R2 we have the functional relationship R = A'. How about the
others?

The first output column, or column R0 does not change so it is a constant. In fact, it is the constant 0
(R = 0). Column R1 is simply R = A. And finally, column R3 is the constant 1. We can provide
now the same information in functional form:

 R0 R1 R2 R3

A 0 A A' 1

The functional description is an extremely important way of looking at digital systems. Now we may
look at the possible truth tables for a general gate with two inputs. There are (2*2)2 = 16 different
possible truth tables:

?

AB R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14
R15
00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 AND A B XOR OR NOR XNOR B' A' NAND 1

A
 Rn
B

DOC 112 -- Hardware -- 27-Oct-03-- Page 5

We can already recognise many of the output combinations as known digital functions:

Now we examine a new idea: Functional Description with Control Variables or the idea of a
variable function generator block. Let us modify the two-input gate so it looks like this:

?

C

A R

Only the interpretation (and symbols) of the input variables has changed, this is still a two-input one
output digital circuit. However, functionally, this circuit has one input variable, one output variable,
and one control variable. It is assumed that the control variable is set either to 0 or 1 and then the
circuit becomes a one-input, one-output device, providing the function R = f(A).

 The control variable now can choose between two possible functions. Thus we can write:

R = f(C)(A)

For example, we could chose between the unaltered input variable A or its complement A'; thus we
have:

f(0)(A) = A f(1)(A) = A'

And the truth tables are:

A R = f(0)(A) = A R = f(1)(A) = A'

0 0 1
1 1 0

The truth table can be rearranged to indicate a general two-input one-output device:

C A R

0 0 0
0 1 1

1 0 1
1 1 0

 A R

C

A simple AND gate can also be used as a controlled Boolean function generator:

DOC 112 -- Hardware -- 27-Oct-03-- Page 6

C A R

0 0 0
0 1 0

1 0 0
1 1 1

A R

C

Therefore:
f(0) = 0 (nothing) f(1) = A (the unchanged input)

Thinking in terms of functionality, we can see that an AND gate used as a controlled gate stops the
signal to go through when the control signal value is 0 and it lets it go through unaltered when the
control signal value is 1.

From the AND gate functions we can build a multiplexer which will become extremely useful later
in the course.

A

B

C

R

C AB R

0 00 0
0 01 1 B
0 10 0
0 11 1

1 00 0
1 01 0 A
1 10 1
1 11 1

The multiplexer has been designed on functional lines. The outputs of two controlled AND gates are
connected to an OR gate. When the control input's value is 0, it disables the output of the upper AND
gate (input A) and allows input B to go through. When it's output is 1 then it is the reverse and input
A goes through. It behaves as a switch.

