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Lecture 1: An Introduction to Boolean Algebra 
 
The operation of almost all modern digital computers is based on two-valued or binary systems.  Binary 
systems were known in the ancient Chinese civilisation and by the classical Greek philosophers who created 
a well structured binary system, called propositional logic, in which propositions may be TRUE or FALSE, 
and are stated as functions of other propositions which are connected by the three basic logical connectives:  
AND, OR, and NOT.  Hence the statement 
 
IF it is raining  OR  the weather forecast is bad    THEN  I will take an umbrella with me 
 
connects the proposition  I will take an umbrella with me  functionally to the two propositions  it is raining  
and  the weather forecast is bad .  We can see that the 'umbrella' proposition can be considered as output 
while the other two as inputs and consequently a simple block diagram of this rule can be drawn (Diagram 
1.1).  The meaning of the OR connective is that the output is TRUE if either one of the input propositions is 
TRUE.  Since there are only two possible 
values for any proposition, we can easily 
calculate a truth value for I will take an 
umbrella  for all possible input conditions.  
This produces the Truth Table of the basic 
OR function as: 
Raining Bad Forecast Umbrella 
FALSE FALSE FALSE 
FALSE TRUE TRUE 
TRUE FALSE TRUE 
TRUE TRUE TRUE 
We can make the propositons as complex as we require.  For example, if we want to include the propostion  
I will take the car,  we may make a statement such as:  If I do not take the car then I will take the umbrella if 
it is raining or the weather forecast is bad.  However, to find the correct block diagram and binary equations 
we have to state the proposition in a well structured way  using brackets to indicate how the proposition is 
composed.  The correct statement is: 
 
 (Take Umbrella ) =  ( NOT (Take Car ) ) AND ( (Bad Forecast ) OR (Raining ) ) 
 
Notice that we have changed the IF verbal construction into an equation with binary variables.   
The block diagram is shown in Diagram 
1.2. 
 
To simplify the handling of complex 
binary connectives, the mathematician 
Boole developed Boolean Algebra in the 
last century, using ordinary algebraic 
notation, and 1 for TRUE and 0 for 
FALSE. In this course we will use the 
symbol  •  for the AND  and  +  for the OR 
connectives or Boolean operators. The 
NOT, which is a unary operator, we will 
denote with a post fix prime, eg A' means 
NOT A.  (Alternatives that you may see in 
books are ∧  for AND, ∨ for OR, and either 
overscore or prefix ¬   for NOT) . Using the 
values 1 for TRUE and 0 for FALSE the 
truth tables of the three basic operators are 
given in Diagram 1.3. 
   
 
 
 

 

OR 
Rain 

Bad Weather Forecast Take  

Umbrella 

Diagram 1.1 

 

Raining 

Bad Forecast 

Car Take 
Umbrella 

OR 

NOT 
AND 

Diagram 1.2 

 

    AND                           OR                             NOT 
       •                                 +                                  ' 
  A  B   R             A   B   R                        A   R 
  0  0     0                     0   0    0                          0   1 
  0  1     0                     0   1    1                          1   0 
  1  0     0                     1   0    1 
  1  1     1                     1   1    1 

Diagram 1.3: Truth Tables 
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The precedence of the operators is: 
 
OPERATOR SYMBOL PRECEDENCE 

NOT ' Highest 
AND • Middle 
OR + Lowest 

 
The Boolean equation of the above block diagram (1.2) in fully bracketed form is given by: 
 U = ( (C')•( (W)+(R) ) 
or, accepting the precedence rules, in simpler form it is: 
 U = C' •( W + R ) 
We can use these basic truth tables to evaluate the overall truth table of a more complex expression.  For 
example, to find out whether we should take our umbrella or not we can evaluate the overall truth of the 
proposition using a table as shown in Diagram 1.4.  We shall call this the Truth Table Method. Note that, in 
this case, there are eight possible different combinations of input values since there are three independent 
inputs and 8 = 23. 
 

Diagram 1.4: The Umbrella Truth Table 

R W C X1=R+W X2=C' U=X1•X2 
0 0 0 0 1 0 
0 0 1 0 0 0 
0 1 0 1 1 1 
0 1 1 1 0 0 
1 0 0 1 1 1 
1 0 1 1 0 0 
1 1 0 1 1 1 
1 1 1 1 0 0 

Inputs Partial Results Output 
 

 
Once one has defined a notation for an algebra, the rules to manipulate expressions follow. The most simple 
are the rules that concern the unary operator NOT: 
 (A')' = A 
 A • A' = 0 
 A + A' = 1 
General rules like the distributive, commutative, and associative rules hold for the AND and OR binary 
operators (except one weird one) so that: 
Distributive: A•(B+C) = A•B + A•C 
 A+(B•C) = (A+B)•(A+C)  (the weird one!) 
Commutative: A•B = B•A 
 A+B = B+A     
Associative: (A•B)•C = A•(B•C) 
 (A+B)+C = A+(B+C) 
In addition, there are simplification rules for Boolean equations.  There are three important groups of 
simplification rules.  The first one uses just one variable: 
 A•A = A 
 A+A = A 
The second group uses Boolean constants 0 and 1: 
 A • 0 = 0 
 A • 1 = A 
 A + 0 = A 
 A + 1 = 1 
The third group involves two or more variables and contains a large number of possible simplification rules 
(or theorems) such as: 
 A + A•( B ) =  A  ( proof:  A + A•B = A•(1+B) = A•1 = A  ) 
Note that in this expression either A or B may stand for any complex Boolean expression. 
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There are two important rules which constitute de Morgan's theorem: 
 (A+B)' =  A' • B' 
 (A•B)' =  A' + B' 
This theorem is widely used in Boolean logic design. Stated in words it is:  To "invert" (negate) a Boolean 
expression, you replace the AND operator with the OR operator (or vice versa) and invert the individual 
terms.  The theorem holds for any number of terms, so: 
 (A+B+C)' = ( (A+B)+C)' = ( (A+B)' )•C' = A'•B'•C' 
and similarly: 
 (A•B•C•....•X)' = A' + B' + C' + ......+ X' 
You may have noticed by now that rules are often given in pairs.  It makes sense that in a binary system 
there is some kind of symmetry between the two operators.  For Boolean algebra this symmetry is called 
Duality.  Every equation has its dual which one can generate by replacing the AND operators with ORs (and 
vice versa) and the constants 0 with 1s (and vice versa). 
 
For example, the dual equation of the important simplifying rule: 
 A + A•B = A 
is: 
 A•(A+B) = A  (proof:  A•A + A•B = A + A•B = A ) 
Do not mix up or get confused between a dual expression which is generated by the above rules and the 
complement (or inverted) expression which is generated by applying the NOT operator.  The rules are 
similar, but they mean very different things. 
Finally, let us consider the proposition (I am not taking an umbrella), or: 
 (U)' = ( C'•(W+R) )'  
Apply de Morgan's theorem 
 U' = (C')' + (W+R)'  
Apply de Morgan's theorem again 
 U' = (C')' + W'•R' 
And simplify U' = C + W'•R' 


