
Administrator
ISBN: 0766811603

1

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 1

Basic Principles of Digital
Systems

O U T L I N E

1.1 Digital Versus
Analog Electronics

1.2 Digital Logic Levels

1.3 The Binary Number
System

1.4 Hexadecimal
Numbers

1.5 Digital Waveforms

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Describe some differences between analog and digital electronics.

• Understand the concept of HIGH and LOW logic levels.

• Explain the basic principles of a positional notation number system.

• Translate logic HIGHs and LOWs into binary numbers.

• Count in binary, decimal, or hexadecimal.

• Convert a number in binary, decimal, or hexadecimal to any of the other
number bases.

• Calculate the fractional binary equivalent of any decimal number.

• Distinguish between the most significant bit and least significant bit of a bi-
nary number.

• Describe the difference between periodic, aperiodic, and pulse waveforms.

• Calculate the frequency, period, and duty cycle of a periodic digital wave-
form.

• Calculate the pulse width, rise time, and fall time of a digital pulse.

Digital electronics is the branch of electronics based on the combination and switching
of voltages called logic levels. Any quantity in the outside world, such as temperature,

pressure, or voltage, can be symbolized in a digital circuit by a group of logic voltages that,
taken together, represent a binary number. �

Each logic level corresponds to a digit in the binary (base 2) number system. The bi-
nary digits, or bits, 0 and 1, are sufficient to write any number, given enough places. The
hexadecimal (base 16) number system is also important in digital systems. Since every
combination of four binary digits can be uniquely represented as a hexadecimal digit, this
system is often used as a compact way of writing binary information.

Inputs and outputs in digital circuits are not always static. Often they vary with time.
Time-varying digital waveforms can have three forms:

1. Periodic waveforms, which repeat a pattern of logic 1s and 0s

2. Aperiodic waveforms, which do not repeat

3. Pulse waveforms, which produce a momentary variation from a constant logic level

2 C H A P T E R 1 • Basic Principles of Digital Systems

1.1 Digital Versus Analog Electronics

Continuous Smoothly connected. An unbroken series of consecutive values with
no instantaneous changes.

Discrete Separated into distinct segments or pieces. A series of discontinuous
values.

Analog A way of representing some physical quantity, such as temperature or ve-
locity, by a proportional continuous voltage or current. An analog voltage or current
can have any value within a defined range.

Digital A way of representing a physical quantity by a series of binary numbers.
A digital representation can have only specific discrete values.

The study of electronics often is divided into two basic areas: analog and digital electron-
ics. Analog electronics has a longer history and can be regarded as the “classical” branch
of electronics. Digital electronics, although newer, has achieved greater prominence
through the advent of the computer age. The modern revolution in microcomputer chips, as
part of everything from personal computers to cars and coffee makers, is founded almost
entirely on digital electronics.

The main difference between analog and digital electronics can be stated simply. Ana-
log voltages or currents are continuously variable between defined values, and digital volt-
ages or currents can vary only by distinct, or discrete, steps.

Some keywords highlight the differences between digital and analog electronics:

Analog Digital

Continuously variable Discrete steps

Amplification Switching

Voltages Numbers

An example often used to illustrate the difference between analog and digital devices
is the comparison between a light dimmer and a light switch. A light dimmer is an analog
device, since it can make the light it controls vary in brightness anywhere within a defined
range of values. The light can be fully on, fully off, or at some brightness level in between.
A light switch is a digital device, since it can turn the light on or off, but there is no value
in between those two states.

The light switch/light dimmer analogy, although easy to understand, does not show
any particular advantage to the digital device. If anything, it makes the digital device seem
limited.

One modern application in which a digital device is clearly superior to an analog one
is digital audio reproduction. Compact disc players have achieved their high level of popu-
larity because of the accurate and noise-free way in which they reproduce recorded music.
This high quality of sound is possible because the music is stored, not as a magnetic copy
of the sound vibrations, as in analog tapes, but as a series of numbers that represent ampli-
tude steps in the sound waves.

Figure 1.1 shows a sound waveform and its representation in both analog and digital
forms.

The analog voltage, shown in Figure 1.1b, is a copy of the original waveform and in-
troduces distortion both in the storage and playback processes. (Think of how a photocopy
deteriorates in quality if you make a copy of a copy, then a copy of the new copy, and so on.
It doesn’t take long before you can’t read the fine print.)

A digital audio system doesn’t make a copy of the waveform, but rather stores a code
(a series of amplitude numbers) that tells the compact disc player how to re-create the orig-
inal sound every time a disc is played. During the recording process, the sound waveform

K E Y T E R M S

1.2 • Digital Logic Levels 3

is “sampled” at precise intervals. The recording transforms each sample into a digital num-
ber corresponding to the amplitude of the sound at that point.

The “samples” (the voltages represented by the vertical bars) of the digitized audio
waveform shown in Figure 1.1c are much more widely spaced than they would be in a real
digital audio system. They are shown this way to give the general idea of a digitized wave-
form. In real digital audio systems, each amplitude value can be indicated by a number
having as many as 16,000 to 65,000 possible values. Such a large number of possible val-
ues means the voltage difference between any two consecutive digital numbers is very
small. The numbers can thus correspond extremely closely to the actual amplitude of the
sound waveform. If the spacing between the samples is made small enough, the repro-
duced waveform is almost exactly the same as the original.

❘❙❚ SECTION 1.1 REVIEW PROBLEM

1.1 What is the basic difference between analog and digital audio reproduction?

1.2 Digital Logic Levels

Logic level A voltage level that represents a defined digital state in an electronic
circuit.

Logic HIGH (or logic 1) The higher of two voltages in a digital system with two
logic levels.

Logic LOW (or logic 0) The lower of two voltages in a digital system with two
logic levels.

Positive logic A system in which logic LOW represents binary digit 0 and logic
HIGH represents binary digit 1.

Negative logic A system in which logic LOW represents binary digit 1 and logic
HIGH represents binary digit 0.

Digitally represented quantities, such as the amplitude of an audio waveform, are usually
represented by binary, or base 2, numbers. When we want to describe a digital quantity
electronically, we need to have a system that uses voltages or currents to symbolize binary
numbers.

The binary number system has only two digits, 0 and 1. Each of these digits can be de-
noted by a different voltage called a logic level. For a system having two logic levels, the

K E Y T E R M S

FIGURE 1.1
Digital and Analog Sound Reproduction

4 C H A P T E R 1 • Basic Principles of Digital Systems

lower voltage (usually 0 volts) is called a logic LOW or logic 0 and represents the digit 0.
The higher voltage (traditionally 5 V, but in some systems a specific value such as 1.8 V,
2.5 V or 3.3 V) is called a logic HIGH or logic 1, which symbolizes the digit 1. Except for
some allowable tolerance, as shown in Figure 1.2, the range of voltages between HIGH and
LOW logic levels is undefined.

FIGURE 1.2
Logic Levels Based on �5 V
and 0 V

�5 V

�2 V

Logic HIGH

Logic LOW

Undefined

�0.8 V

0 V

For the voltages in Figure 1.2:

�5 V � Logic HIGH � 1

0 V � Logic LOW � 0

The system assigning the digit 1 to a logic HIGH and digit 0 to logic LOW is called
positive logic. Throughout the remainder of this text, logic levels will be referred to as
HIGH/LOW or 1/0 interchangeably.

(A complementary system, called negative logic, also exists that makes the assign-
ment the other way around.)

1.3 The Binary Number System

Binary number system A number system used extensively in digital systems,
based on the number 2. It uses two digits, 0 and 1, to write any number.

Positional notation A system of writing numbers where the value of a digit
depends not only on the digit, but also on its placement within a number.

Bit Binary digit. A 0 or a 1.

Positional Notation

The binary number system is based on the number 2. This means that we can write any
number using only two binary digits (or bits), 0 and 1. Compare this to the decimal system,
which is based on the number 10, where we can write any number with only ten decimal
digits, 0 to 9.

The binary and decimal systems are both positional notation systems; the value of a
digit in either system depends on its placement within a number. In the decimal number
845, the digit 4 really means 40, whereas in the number 9426, the digit 4 really means 400
(845 � 800 � 40 � 5; 9426 � 9000 � 400 � 20 � 6). The value of the digit is determined
by what the digit is as well as where it is.

In the decimal system, a digit in the position immediately to the left of the decimal
point is multiplied by 1 (100). A digit two positions to the left of the decimal point is mul-

K E Y T E R M S

N O T E

1.3 • The Binary Number System 5

tiplied by 10 (101). A digit in the next position left is multiplied by 100 (102). The posi-
tional multipliers, as you move left from the decimal point, are ascending powers of 10.

The same idea applies in the binary system, except that the positional multipliers are
powers of 2 (20 � 1, 21 � 2, 22 � 4, 23 � 8, 24 � 16, 25 � 32, . . .). For example, the bi-
nary number 101 has the decimal equivalent:

(1 � 22) � (0 � 21) � (1 � 20)

� (1 � 4) � (0 � 2) � (1 � 1)

� 4 � 0 � 1

� 5

❘❙❚ EXAMPLE 1.1 Calculate the decimal equivalents of the binary numbers 1010, 111, and 10010.

SOLUTIONS 1010 � (1�23) � (0�22) � (1�21) � (0�20)

� (1�8) � (0�4) � (1�2) � (0�1)

� 8 � 2 � 10

111 � (1�22) � (1�21) � (1�20)

� (1�4) � (1�2) � (1�1)

� 4 � 2 � 1 � 7

10010 � (1�24) � (0�23) � (0�22) � (1�21) � (0�20)

� (1�16) � (0�8) � (0�4) � (1�2) � (0�1)

� 16 � 2 � 18
❘❙❚

Binary Inputs

Most significant bit The leftmost bit in a binary number. This bit has the
number’s largest positional multiplier.

Least significant bit The rightmost bit of a binary number. This bit has the
number’s smallest positional multiplier.

A major class of digital circuits, called combinational logic, operates by accepting logic
levels at one or more input terminals and producing a logic level at an output. In the analy-
sis and design of such circuits, it is frequently necessary to find the output logic level of a
circuit for all possible combinations of input logic levels.

The digital circuit in the black box in Figure 1.3 has three inputs. Each input can have
two possible states, LOW or HIGH, which can be represented by positive logic as 0 or 1.
The number of possible input combinations is 23 � 8. (In general, a circuit with n binary
inputs has 2n input combinations, ranging from 0 to 2n�1.) Table 1.1 shows a list of these
combinations, both as logic levels and binary numbers, and their decimal equivalents.

K E Y T E R M S

FIGURE 1.3
3-Input Digital Circuit

6 C H A P T E R 1 • Basic Principles of Digital Systems

A list of output logic levels corresponding to all possible input combinations, applied
in ascending binary order, is called a truth table. This is a standard form for showing the
function of a digital circuit.

The input bits on each line of Table 1.1 can be read from left to right as a series of 3-
bit binary numbers. The numerical values of these eight input combinations range from 0
to 7 (2n possible input combinations, having decimal equivalents ranging from 0 to 2n�1)
in decimal.

Bit A is called the most significant bit (MSB), and bit C is called the least significant
bit (LSB). As these terms imply, a change in bit A is more significant, since it has the
greatest effect on the number of which it is part.

Table 1.2 shows the effect of changing each of these bits in a 3-bit binary number and
compares the changed number to the original by showing the difference in magnitude. A
change in the MSB of any 3-bit number results in a difference of 4. A change in the LSB of
any binary number results in a difference of 1. (Try it with a few different numbers.)

TABLE 1.1 Possible Input Combinations for a 3-Input Digital Circuit

Logic Level Binary Value Decimal Equivalent

A B C A B C

L L L 0 0 0 0
L L H 0 0 1 1
L H L 0 1 0 2
L H H 0 1 1 3
H L L 1 0 0 4
H L H 1 0 1 5
H H L 1 1 0 6
H H H 1 1 1 7

TABLE 1.2 Effect of Changing the LSB and MSB of a Binary Number

A B C Decimal

Original 0 1 1 3
Change MSB 1 1 1 7 Difference � 4
Change LSB 0 1 0 2 Difference � 1

FIGURE 1.4
Example 1.2: 4-Input Digital Circuit

Digital circuit

A (MSB)

D (LSB)

B
Y

C

Inputs Outputs

❘❙❚ EXAMPLE 1.2 Figure 1.4 shows a 4-input digital circuit. List all the possible binary input combinations to
this circuit and their decimal equivalents. What is the value of the MSB?

1.3 • The Binary Number System 7

❘❙❚

Knowing how to construct a binary sequence is a very important skill when working
with digital logic systems. Two ways to do this are:

1. Learn to count in binary. You should know all the binary numbers from 0000 to 1111
and their decimal equivalents (0 to 15). Make this your first goal in learning the basics
of digital systems.

Each binary number is a unique representation of its decimal equivalent. You can
work out the decimal value of a binary number by adding the weighted values of all the
bits.

For instance, the binary equivalent of the decimal sequence 0, 1, 2, 3 can be written
using two bits: the 1’s bit and the 2’s bit. The binary count sequence is:

00 (� 0 � 0)

01 (� 0 � 1)

10 (� 2 � 0)

11 (� 2 � 1)

To count beyond this, you need another bit: the 4’s bit. The decimal sequence 4, 5,
6, 7 has the binary equivalents:

100 (� 4 � 0 � 0)

101 (� 4 � 0 � 1)

110 (� 4 � 2 � 0)

111 (� 4 � 2 � 1)

The two least significant bits of this sequence are the same as the bits in the 0 to 3
sequence; a repeating pattern has been generated.

SOLUTION Since there are four inputs, there will be 24 � 16 possible input combina-
tions, ranging from 0000 to 1111 (0 to 15 in decimal). Table 1.3 shows the list of all possi-
ble input combinations.

The MSB has a value of 8 (decimal).

TABLE 1.3 Possible Input
Combinations for a 4-Input Digital Circuit

A B C D Decimal

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15

8 C H A P T E R 1 • Basic Principles of Digital Systems

The sequence from 8 to 15 requires yet another bit: the 8’s bit. The three LSBs of
this sequence repeat the 0 to 7 sequence. The binary equivalents of 8 to 15 are:

1000 (� 8 � 0 � 0 � 0)

1001 (� 8 � 0 � 0 � 1)

1010 (� 8 � 0 � 2 � 0)

1011 (� 8 � 0 � 2 � 1)

1100 (� 8 � 4 � 0 � 0)

1101 (� 8 � 4 � 0 � 1)

1110 (� 8 � 4 � 2 � 0)

1111 (� 8 � 4 � 2 � 1)

Practice writing out the binary sequence until it becomes familiar. In the 0 to 15 se-
quence, it is standard practice to write each number as a 4-bit value, as in Example 1.2,
so that all numbers have the same number of bits. Numbers up to 7 have leading zeros
to pad them out to 4 bits.

This convention has developed because each bit has a physical location in a digital
circuit; we know a particular bit is logic 0 because we can measure 0 V at a particular
point in a circuit. A bit with a value of 0 doesn’t go away just because there is not a 1 at
a more significant location.

While you are still learning to count in binary, you can use a second method.

2. Follow a simple repetitive pattern. Look at Tables 1.1 and 1.3 again. Notice that the least
significant bit follows a pattern. The bits alternate with every line, producing the pattern
0, 1, 0, 1, The 2’s bit alternates every two lines: 0, 0, 1, 1, 0, 0, 1, 1, The 4’s
bit alternates every four lines: 0, 0, 0, 0, 1, 1, 1, 1, This pattern can be expanded to
cover any number of bits, with the number of lines between alternations doubling with
each bit to the left.

Decimal-to-Binary Conversion

There are two methods commonly used to convert decimal numbers to binary: sum of pow-
ers of 2 and repeated division by 2.

Sum of Powers of 2

You can convert a decimal number to binary by adding up powers of 2 by inspection,
adding bits as you need them to fill up the total value of the number. For example, convert
5710 to binary.

6410 � 5710 � 3210

• We see that 32 (�25) is the largest power of two that is smaller than 57. Set the 32’s bit
to 1 and subtract 32 from the original number, as shown below.

57 � 32 � 25

• The largest power of two that is less than 25 is 16. Set the 16’s bit to 1 and subtract 16
from the accumulated total.

25 � 16 � 9

• 8 is the largest power of two that is less than 9. Set the 8’s bit to 1 and subtract 8 from the
total.

9 � 8 � 1

• 4 is greater than the remaining total. Set the 4’s bit to 0.

• 2 is greater than the remaining total. Set the 2’s bit to 0.

1.3 • The Binary Number System 9

• 1 is left over. Set the 1’s bit to 1 and subtract 1.

1 � 1 � 0

• Conversion is complete when there is nothing left to subtract. Any remaining bits should
be set to 0.

1

32 16 8 4 2 1

57 – 32 = 25

❘❙❚ EXAMPLE 1.3 Convert 9210 to binary using the sum-of-powers-of-2 method.

SOLUTION 128 � 92 � 64

1

32 16 8 4 2 1

92 – 64 = 28

64

1

32 16 8 4 2 1

92 – (64 + 16) = 12

64

0 1

1

32 16 8 4 2 1

57 – (32 + 16 + 8) = 11 1

1

32 16 8 4 2 1

57 – (32 + 16 + 8 + 1) = 01 1 0 0 1

5710 = 1110012

1

32 16 8 4 2 1

92 – (64 + 16 + 8) = 4

64

0 1 1

1

32 16 8 4 2 1

92 – (64 + 16 + 8 + 4) = 0

64

0 1 1 1 0 0

1

32 16 8 4 2 1

57 – (32 + 16) = 91

9210 = 10111002 ❘❙❚

Repeated Division by 2
Any decimal number divided by 2 will leave a remainder of 0 or 1. Repeated division by 2
will leave a string of 0s and 1s that become the binary equivalent of the decimal number.
Let us use this method to convert 4610 to binary.

1. Divide the decimal number by 2 and note the remainder.

46/2 � 23 � remainder 0 (LSB)

The remainder is the least significant bit of the binary equivalent of 46.

2. Divide the quotient from the previous division and note the remainder. The remainder is
the second LSB.

23/2 � 11 � remainder 1

10 C H A P T E R 1 • Basic Principles of Digital Systems

3. Continue this process until the quotient is 0. The last remainder is the most significant
bit of the binary number.

11/2 � 5 � remainder 1

5/2 � 2 � remainder 1

2/2 � 1 � remainder 0

1/2 � 0 � remainder 1 (MSB)

To write the binary equivalent of the decimal number, read the remainders from the bot-
tom up.

4610 � 1011102

❘❙❚ EXAMPLE 1.4 Use repeated division by 2 to convert 11510 to a binary number.

SOLUTION 115/2 � 57 � remainder 1 (LSB)

57/2 � 28 � remainder 1

28/2 � 14 � remainder 0

14/2 � 7 � remainder 0

7/2 � 3 � remainder 1

3/2 � 1 � remainder 1

1/2 � 0 � remainder 1 (MSB)

Read the remainders from bottom to top: 1110011.

11510 � 11100112
❘❙❚

In any decimal-to-binary conversion, the number of bits in the binary number is the
exponent of the smallest power of 2 that is larger than the decimal number.

For example, for the numbers 9210 and 4610,

27 � 128 � 92 7 bits: 1011100

26 � 64 � 46 6 bits: 101110

Fractional Binary Numbers

Radix point The generalized form of a decimal point. In any positional number
system, the radix point marks the dividing line between positional multipliers that
are positive and negative powers of the system’s number base.

Binary point A period (“.”) that marks the dividing line between positional mul-
tipliers that are positive and negative powers of 2 (e.g., first multiplier right of bi-
nary point � 2�1; first multiplier left of binary point � 20).

In the decimal system, fractional numbers use the same digits as whole numbers, but the
digits are written to the right of the decimal point. The multipliers for these digits are neg-
ative powers of 10—10�1 (1/10), 10�2 (1/100), 10�3 (1/1000), and so on.

So it is in the binary system. Digits 0 and 1 are used to write fractional binary num-
bers, but the digits are to the right of the binary point—the binary equivalent of the deci-
mal point. (The decimal point and binary point are special cases of the radix point, the
general name for any such point in any number system.)

K E Y T E R M S

1.3 • The Binary Number System 11

Each digit is multiplied by a positional factor that is a negative power of 2. The first
four multipliers on either side of the binary point are:

binary
point

23 22 21 20 � 2�1 2�2 2�3 2�4

� 8 � 4 � 2 � 1 � 1/2 � 1/4 � 1/8 � 1/16

❘❙❚ EXAMPLE 1.5 Write the binary fraction 0.101101 as a decimal fraction.

SOLUTION 1 � 1/2 � 1/2

0 � 1/4 � 0

1 � 1/8 � 1/8

1 � 1/16 � 1/16

0 � 1/32 � 0

1 � 1/64 � 1/64

1/2 � 1/8 � 1/16 � 1/64 � 32/64 � 8/64 � 4/64 � 1/64

� 45/64

� 0.70312510
❘❙❚

Fractional-Decimal-to-Fractional-Binary Conversion

Simple decimal fractions such as 0.5, 0.25, and 0.375 can be converted to binary fractions
by a sum-of-powers method. The above decimal numbers can also be written 0.5 � 1/2,
0.25 � 1/4, and 0.375 � 3/8 � 1/4 � 1/8. These numbers can all be represented by nega-
tive powers of 2. Thus, in binary,

0.510 � 0.12

0.2510 � 0.012

0.37510 � 0.0112

The conversion process becomes more complicated if we try to convert decimal frac-
tions that cannot be broken into powers of 2. For example, the number 1/5 � 0.210 cannot
be exactly represented by a sum of negative powers of 2. (Try it.) For this type of number,
we must use the method of repeated multiplication by 2.

Method:

1. Multiply the decimal fraction by 2 and note the integer part. The integer part is either 0
or 1 for any number between 0 and 0.999. . . . The integer part of the product is the
first digit to the left of the binary point.

0.2 � 2 � 0.4 Integer part: 0

2. Discard the integer part of the previous product. Multiply the fractional part of the pre-
vious product by 2. Repeat step 1 until the fraction repeats or terminates.

0.4 � 2 � 0.8 Integer part: 0

0.8 � 2 � 1.6 Integer part: 1

0.6 � 2 � 1.2 Integer part: 1

0.2 � 2 � 0.4 Integer part: 0

(Fraction repeats; product is same as in step 1)

12 C H A P T E R 1 • Basic Principles of Digital Systems

Read the above integer parts from top to bottom to obtain the fractional binary num-
ber. Thus, 0.210 � 0.00110011 . . .2 � 0.0�0�1�1�2. The bar shows the portion of the digits
that repeats.

❘❙❚ EXAMPLE 1.6 Convert 0.9510 to its binary equivalent.

SOLUTION 0.95 � 2 � 1.90 Integer part: 1

0.90 � 2 � 1.80 Integer part: 1

0.80 � 2 � 1.60 Integer part: 1

0.60 � 2 � 1.20 Integer part: 1

0.20 � 2 � 0.40 Integer part: 0

0.40 � 2 � 0.80 Integer part: 0

0.80 � 2 � 1.60 Fraction repeats last four digits

0.9510 � 0.111�1�0�0�2
❘❙❚

❘❙❚ SECTION 1.3 REVIEW PROBLEMS

1.2. How many different binary numbers can be written with 6 bits?

1.3. How many can be written with 7 bits?

1.4. Write the sequence of 7-bit numbers from 1010000 to 1010111.

1.5. Write the decimal equivalents of the numbers written for Problem 1.4.

1.4 Hexadecimal Numbers
After binary numbers, hexadecimal (base 16) numbers are the most important numbers in
digital applications. Hexadecimal, or hex, numbers are primarily used as a shorthand form
of binary notation. Since 16 is a power of 2 (24 � 16), each hexadecimal digit can be con-
verted directly to four binary digits. Hex numbers can pack more digital information into
fewer digits.

Hex numbers have become particularly popular with the advent of small computers,
which use binary data having 8, 16, or 32 bits. Such data can be represented by 2, 4, or 8
hexadecimal digits, respectively.

Counting in Hexadecimal

The positional multipliers in the hex system are powers of sixteen: 160 � 1, 161 � 16,
162 � 256, 163 � 4096, and so on.

We need 16 digits to write hex numbers; the decimal digits 0 through 9 are not suffi-
cient. The usual convention is to use the capital letters A through F, each letter representing
a number from 1010 through 1510. Table 1.4 shows how hexadecimal digits relate to their
decimal and binary equivalents.

Counting Rules for Hexadecimal Numbers:

1. Count in sequence from 0 to F in the least significant digit.

2. Add 1 to the next digit to the left and start over.

3. Repeat in all other columns.

For instance, the hex numbers between 19 and 22 are 19, 1A, 1B, 1C, 1D, 1E, 1F, 20,
21, 22. (The decimal equivalents of these numbers are 2510 through 3410.)

N O T E

TABLE 1.4 Hex Digits and
Their Binary and Decimal
Equivalents

Hex Decimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

1.4 • Hexadecimal Numbers 13

❘❙❚ EXAMPLE 1.7 What is the next hexadecimal number after 999? After 99F? After 9FF? After FFF?

SOLUTION The hexadecimal number after 999 is 99A. The number after 99F is 9A0.
The number after 9FF is A00. The number after FFF is 1000.

❘❙❚ EXAMPLE 1.8 List the hexadecimal digits from 19016 to 20016, inclusive.

SOLUTION The numbers follow the counting rules: Use all the digits in one position,
add 1 to the digit one position left, and start over.

For brevity, we will list only a few of the numbers in the sequence:

190, 191, 192, . . . , 199, 19A, 19B, 19C, 19D, 19E, 19F,

1A0, 1A1, 1A2, . . . , 1A9, 1AA, 1AB, 1AC, 1AD, 1AE, 1AF,

1B0, 1B1, 1B2, . . . , 1B9, 1BA, 1BB, 1BC, 1BD, 1BE, 1BF,

1C0, . . . , 1CF, 1D0, . . . , 1DF, 1E0, . . . , 1EF, 1F0, . . . , 1FF, 200
❘❙❚

❘❙❚ SECTION 1.4A REVIEW PROBLEMS

1.6. List the hexadecimal numbers from FA9 to FB0, inclusive.

1.7. List the hexadecimal numbers from 1F9 to 200, inclusive.

Hexadecimal-to-Decimal Conversion

To convert a number from hex to decimal, multiply each digit by its power-of-16 positional
multiplier and add the products. In the following examples, hexadecimal numbers are indi-
cated by a final “H” (e.g., 1F7H), rather than a “16” subscript.

❘❙❚ EXAMPLE 1.9 Convert 7C6H to decimal.

SOLUTION 7 � 162 � 710 � 25610 � 179210

C � 161 � 1210 � 1610 � 19210

6 � 160 � 610 � 110 � 610

199010

❘❙❚ EXAMPLE 1.10 Convert 1FD5H to decimal.

SOLUTION 1 � 163 � 110 � 409610 � 409610

F � 162 � 1510 � 25610 � 384010

D � 161 � 1310 � 1610 � 20810

5 � 160 � 510 � 110 � 510

814910
❘❙❚

❘❙❚ SECTION 1.4B REVIEW PROBLEM

1.8 Convert the hexadecimal number A30F to its decimal equivalent.

Decimal-to-Hexadecimal Conversion

Decimal numbers can be converted to hex by the sum-of-weighted-hex-digits method
or by repeated division by 16. The main difficulty we encounter in either method is

14 C H A P T E R 1 • Basic Principles of Digital Systems

remembering to convert decimal numbers 10 through 15 into the equivalent hex digits,
A through F.

Sum of Weighted Hexadecimal Digits

This method is useful for simple conversions (about three digits). For example, the decimal
number 35 is easily converted to the hex value 23.

3510 � 3210 � 310 � (2 � 16) � (3 � 1) � 23H

❘❙❚ EXAMPLE 1.11 Convert 17510 to hexadecimal.

SOLUTION 25610 � 17510 � 1610

Since 256 � 162, the hexadecimal number will have two digits.

(11 � 16) � 175 � (10 � 16)

16 1

175 � (A � 16) � 175 � 160 � 15

16 1

175 � ((A � 16) � (F � 1))

� 175 � (160 � 15) � 0
❘❙❚

Repeated Division by 16

Repeated division by 16 is a systematic decimal-to-hexadecimal conversion method that is
not limited by the size of the number to be converted.

It is similar to the repeated-division-by-2 method used to convert decimal numbers to
binary. Divide the decimal number by 16 and note the remainder, making sure to express it
as a hex digit. Repeat the process until the quotient is zero. The last remainder is the most
significant digit of the hex number.

❘❙❚ EXAMPLE 1.12 Convert 3158110 to hexadecimal.

SOLUTION 31581/16 � 1973 � remainder 13 (D) (LSD)

1973/16 � 123 � remainder 5

123/16 � 7 � remainder 11 (B)

7/16 � 0 � remainder 7 (MSD)

3158110 � 7B5DH
❘❙❚

❘❙❚ SECTION 1.4C REVIEW PROBLEM

1.9 Convert the decimal number 8137 to its hexadecimal equivalent.

Conversions Between Hexadecimal and Binary

Table 1.4 shows all 16 hexadecimal digits and their decimal and binary equivalents. Note
that for every possible 4-bit binary number, there is a hexadecimal equivalent.

Binary-to-hex and hex-to-binary conversions simply consist of making a conversion
between each hex digit and its binary equivalent.

A

A F

1.5 • Digital Waveforms 15

❘❙❚ EXAMPLE 1.13 Convert 7EF8H to its binary equivalent.

SOLUTION Convert each digit individually to its equivalent value:

7H � 01112

EH � 11102

FH � 11112

8H � 10002

The binary number is all the above binary numbers in sequence:

7EF8H � 1111110111110002

The leading zero (the MSB of 0111) has been left out. ❘❙❚

❘❙❚ SECTION 1.4D REVIEW PROBLEMS

1.10 Convert the hexadecimal number 934B to binary.

1.11 Convert the binary number 11001000001101001001 to hexadecimal.

1.5 Digital Waveforms

Digital waveform A series of logic 1s and 0s plotted as a function of time.

The inputs and outputs of digital circuits often are not fixed logic levels but digital wave-
forms, where the input and output logic levels vary with time. There are three possible
types of digital waveform. Periodic waveforms repeat the same pattern of logic levels over
a specified period of time. Aperiodic waveforms do not repeat. Pulse waveforms follow a
HIGH-LOW-HIGH or LOW-HIGH-LOW pattern and may be periodic or aperiodic.

Periodic Waveforms

Periodic waveform A time-varying sequence of logic HIGHs and LOWs that re-
peats over a specified period of time.

Period (T) Time required for a periodic waveform to repeat. Unit: seconds (s).

Frequency (f) Number of times per second that a periodic waveform repeats.
f � 1/T Unit: Hertz (Hz).

Time HIGH (th) Time during one period that a waveform is in the HIGH state.
Unit: seconds (s).

Time LOW (tl) Time during one period that a waveform is in the LOW state.
Unit: seconds (s).

Duty cycle (DC) Fraction of the total period that a digital waveform is in the
HIGH state. DC � th/T (often expressed as a percentage: %DC � th/T � 100%).

Periodic waveforms repeat the same pattern of HIGHs and LOWs over a specified period
of time. The waveform may or may not be symmetrical; that is, it may or may not be HIGH
and LOW for equal amounts of time.

K E Y T E R M S

K E Y T E R M

16 C H A P T E R 1 • Basic Principles of Digital Systems

❘❙❚ EXAMPLE 1.14 Calculate the time LOW, time HIGH, period, frequency, and percent duty cycle for
each of the periodic waveforms in Figure 1.5.

FIGURE 1.5
Example 1.14: Periodic Digital Waveforms

How are the waveforms similar? How do they differ?

SOLUTION

a. Time LOW: tl � 3 ms

Time HIGH: th � 1 ms

Period: T � tl � th � 3 ms � 1 ms � 4 ms

Frequency: f � 1/T � 1/(4 ms) � 0.25 kHz � 250 Hz

Duty cycle: %DC � (th/T) � 100% � (1 ms/4 ms) � 100%

� 25%

(1 ms � 1/1000 second; 1 kHz � 1000 Hz.)

b. Time LOW: tl � 2 ms

Time HIGH: th � 2 ms

Period: T � tl � th � 2 ms � 2 ms � 4 ms

Frequency: f � 1/T � 1/(4 ms) � 0.25 kHz � 250 Hz

Duty cycle: %DC � (th/T) � 100% � (2 ms/ 4 ms) � 100%

� 50%

c. Time LOW: tl � 1 ms

Time HIGH: th � 3 ms

Period: T � tl � th � 1 ms � 3 ms � 4 ms

Frequency: f � 1/T � 1/(4 ms) � 0.25 kHz and 250 Hz

Duty cycle: %DC � (th/T) � 100% � (3 ms/ 4 ms) � 100%

� 75%

The waveforms all have the same period but different duty cycles. A square waveform,
shown in Figure 1.5b, has a duty cycle of 50%. ❘❙❚

Aperiodic Waveforms

Aperiodic waveform A time-varying sequence of logic HIGHs and LOWs that
does not repeat.

An aperiodic waveform does not repeat a pattern of 0s and 1s. Thus, the parameters of
time HIGH, time LOW, frequency, period, and duty cycle have no meaning for an aperi-
odic waveform. Most waveforms of this type are one-of-a-kind specimens. (It is also worth
noting that most digital waveforms are aperiodic.)

K E Y T E R M

1.5 • Digital Waveforms 17

Figure 1.6 shows some examples of aperiodic waveforms.

FIGURE 1.6
Aperiodic Digital Waveforms

FIGURE 1.7
Example 1.15: Waveforms

❘❙❚ EXAMPLE 1.15 A digital circuit generates the following strings of 0s and 1s:

a. 0011111101101011010000110000

b. 0011001100110011001100110011

c. 0000000011111111000000001111

d. 1011101110111011101110111011

The time between two bits is always the same. Sketch the resulting digital waveform
for each string of bits. Which waveforms are periodic and which are aperiodic?

SOLUTION Figure 1.7 shows the waveforms corresponding to the strings of bits above.
The waveforms are easier to draw if you break up the bit strings into smaller groups of, say,
4 bits each. For instance:

a. 0011 1111 0110 1011 0100 0011 0000

All of the waveforms except Figure 1.7a are periodic.

❘❙❚

Pulse Waveforms

Pulse A momentary variation of voltage from one logic level to the opposite level
and back again.

Amplitude The instantaneous voltage of a waveform. Often used to mean maxi-
mum amplitude, or peak voltage, of a pulse.

Edge The part of the pulse that represents the transition from one logic level to
the other.

Rising edge The part of a pulse where the logic level is in transition from a LOW
to a HIGH.

K E Y T E R M S

18 C H A P T E R 1 • Basic Principles of Digital Systems

Falling edge The part of a pulse where the logic level is a transition from a HIGH
to a LOW.

Leading edge The edge of a pulse that occurs earliest in time.

Trailing edge The edge of a pulse that occurs latest in time.

Pulse width (tw) Elapsed time from the 50% point of the leading edge of a pulse
to the 50% point of the trailing edge.

Rise time (tr) Elapsed time from the 10% point to the 90% point of the rising
edge of a pulse.

Fall time (tf) Elapsed time from the 90% point to the 10% point of the falling
edge of a pulse.

Figure 1.8 shows the forms of both an ideal and a nonideal pulse. The rising and falling
edges of an ideal pulse are vertical. That is, the transitions between logic HIGH and LOW
levels are instantaneous. There is no such thing as an ideal pulse in a real digital circuit. Cir-
cuit capacitance and other factors make the pulse more like the nonideal pulse in Figure 1.8b.

Pulses can be either positive-going or negative-going, as shown in Figure 1.9. In a pos-
itive-going pulse, the measured logic level is normally LOW, goes HIGH for the duration

FIGURE 1.8
Ideal and Nonideal Pulses

a. Ideal pulse (instantaneous transitions)

t

1

0
t1 t2

t

1

0
t1 t2

b. Nonideal pulse

0.5

FIGURE 1.9
Pulse Edges

1.5 • Digital Waveforms 19

of the pulse, and returns to the LOW state. A negative-going pulse acts in the opposite di-
rection.

Nonideal pulses are measured in terms of several timing parameters. Figure 1.10
shows the 10%, 50%, and 90% points on the rising and falling edges of a nonideal pulse.
(100% is the maximum amplitude of the pulse.)

FIGURE 1.10
Pulse Width, Rise Time, Fall
Time

FIGURE 1.11
Example 1.16: Pulse

The 50% points are used to measure pulse width because the edges of the pulse are not
vertical. Without an agreed reference point, the pulse width is indeterminate. The 10% and
90% points are used as references for the rise and fall times, since the edges of a nonideal
pulse are nonlinear. Most of the nonlinearity is below the 10% or above the 90% point.

❘❙❚ EXAMPLE 1.16 Calculate the pulse width, rise time, and fall time of the pulse shown in Figure 1.11.

SOLUTION From the graph in Figure 1.11, read the times corresponding to the 10%,
50%, and 90% values of the pulse on both the leading and trailing edges.

Leading edge: 10%: 2 �s Trailing edge: 90%: 20 �s

50%: 5 �s 50%: 25 �s

90%: 8 �s 10%: 30 �s

20 C H A P T E R 1 • Basic Principles of Digital Systems

S U M M A R Y

1. The two basic areas of electronics are analog and digital
electronics. Analog electronics deals with continuously vari-
able quantities; digital electronics represents the world in
discrete steps.

2. Digital logic uses defined voltage levels, called logic levels,
to represent binary numbers within an electronic system.

3. The higher voltage in a digital system represents the binary
digit 1 and is called a logic HIGH or logic 1. The lower volt-
age in a system represents the binary digit 0 and is called a
logic LOW or logic 0.

4. The logic levels of multiple locations in a digital circuit can
be combined to represent a multibit binary number.

5. Binary is a positional number system (base 2) with two
digits, 0 and 1, and positional multipliers that are powers
of 2.

6. The bit with the largest positional weight in a binary
number is called the most significant bit (MSB); the bit
with the smallest positional weight is called the least sig-
nificant bit (LSB). The MSB is also the leftmost bit in
the number; the LSB is the rightmost bit.

7. A decimal number can be converted to binary by sum of
powers of 2 (add place values to get a total) or repeated divi-
sion by 2 (divide by 2 until quotient is 0; remainders are the
binary value).

8. The hexadecimal number system is based on 16. It uses 16
digits, from 0–9 and A–F, with power-of-16 multipliers.

9. Each hexadecimal digit uniquely corresponds to a 4-bit bi-
nary value. Hex digits can thus be used as shorthand for bi-
nary.

10. A digital waveform is a sequence of bits over time. A wave-
form can be periodic (repetitive), aperiodic (nonrepetitive),
or pulsed (a single variation and return between logic levels.)

11. Periodic waveforms are measured by period (T: time for one
cycle), time HIGH (th), time LOW (tl), frequency (f: number
of cycles per second), and duty cycle (DC or %DC: fraction
of cycle in HIGH state).

12. Pulse waveforms are measured by pulse width (tw: time from
50% of leading edge of 50% of trailing edge), rise time (tr:
time from 10% to 90% of rising edge) and fall time (tf: time
from 90% to 10% of falling edge).

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

G L O S S A R Y

Amplitude The instantaneous voltage of a waveform. Often
used to mean maximum amplitude, or peak voltage, of a pulse.

Analog A way of representing some physical quantity, such as
temperature or velocity, by a proportional continuous voltage or
current. An analog voltage or current can have any value within
a defined range.

Aperiodic waveform A time-varying sequence of logic
HIGHs and LOWs that does not repeat.

Binary number system A number system used extensively in
digital systems, based on the number 2. It uses two digits to
write any number.

Bit Binary digit. A 0 or a 1.

Pulse width: 50% of leading edge to 50% of trailing edge.

tw � 25 �s � 5 �s � 20 �s

Rise time: 10% of rising edge to 90% of rising edge.

tr � 8 �s � 2 �s � 6 �s

Fall time: 90% of falling edge to 10% of falling edge.

tf � 30 �s � 20 �s � 10 �s ❘❙❚

❘❙❚ SECTION 1.5 REVIEW PROBLEMS

A digital circuit produces a waveform that can be described by the following periodic bit
pattern: 0011001100110011.

1.12 What is the duty cycle of the waveform?

1.13 Write the bit pattern of a waveform with the same duty cycle and twice the frequency
of the original.

1.14 Write the bit pattern of a waveform having the same frequency as the original and a
duty cycle of 75%.

Problems 21

Continuous Smoothly connected. An unbroken series of con-
secutive values with no instantaneous changes.

Digital A way of representing a physical quantity by a series
of binary numbers. A digital representation can have only spe-
cific discrete values.

Digital waveform A series of logic 1s and 0s plotted as a
function of time.

Discrete Separated into distinct segments or pieces. A series of
discontinous values.

Duty cycle (DC) Fraction of the total period that a digital
waveform is in the HIGH state. DC � th/T (often expressed as a
percentage: %DC � th/T � 100%).

Edge The part of the pulse that represents the transition from
one logic level to the other.

Fall time (tf) Elapsed time from the 90% point to the 10%
point of the falling edge of a pulse.

Falling edge The part of a pulse where the logic level is in
transition from a HIGH to a LOW.

Frequency (f) Number of times per second that a periodic
waveform repeats. f � 1/T Unit: Hertz (Hz).

Hexadecimal number system Base-16 number system. Hexa-
decimal numbers are written with sixteen digits, 0–9 and A–F,
with power-of-16 positional multipliers.

Leading edge The edge of a pulse that occurs earliest in time.

Least significant bit (LSB) The rightmost bit of a binary
number. This bit has the number’s smallest positional multiplier.

Logic HIGH The higher of two voltages in a digital system
with two logic levels.

Logic level A voltage level that represents a defined digital
state in an electronic circuit.

Logic LOW The lower of two voltages in a digital system
with two logic levels.

Most significant bit (MSB) The leftmost bit in a binary num-
ber. This bit has the number’s largest positional multiplier.

Negative logic A system in which logic LOW represents bi-
nary digit 1 and logic HIGH represents binary digit 0.

Period (T) Time required for a period waveform to repeat.
Unit: seconds (s).

Periodic waveform A time-varying sequence of logic HIGHs
and LOWs that repeats over a specified period of time.

Positional notation A system of writing numbers in which the
value of a digit depends not only on the digit, but also on its
placement within a number.

Positive logic A system in which logic LOW represents binary
digit 0 and logic HIGH represents binary digit 1.

Pulse A momentary variation of voltage from one logic level
to the opposite level and back again.

Pulse width (tw) Elapsed time from the 50% point of the lead-
ing edge of a pulse to the 50% point of the trailing edge.

Radix point The generalized form of a decimal point. In any
positional number system, the radix point marks the dividing
line between positional multipliers that are positive and negative
powers of the system’s number base.

Rise time (tr) Elapsed time from the 10% point to the 90%
point of the rising edge of a pulse.

Rising edge The part of a pulse where the logic level is in
transition from a LOW to a HIGH.

Time HIGH (th) Time during one period that a waveform is in
the HIGH state. Unit: seconds (s).

Time LOW (tl) Time during one period that a waveform is in
the LOW state. Unit: seconds (s).

Trailing edge The edge of a pulse that occurs latest in time.

P R O B L E M S

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 1.1 Digital Versus Analog Electronics

1.1 Which of the following quantities is analog in nature and
which digital? Explain your answers.

a. Water temperature at the beach

b. Weight of a bucket of sand

c. Grains of sand in a bucket

d. Waves hitting the beach in one hour

e. Height of a wave

f. People in a square mile

Section 1.2 Digital Logic Levels

1.2 A digital logic system is defined by the voltages 3.3 volts
and 0 volts. For a positive logic system, state which volt-
age corresponds to a logic 0 and which to a logic 1.

Section 1.3 The Binary Number System

1.3 Calculate the decimal values of each of the following bi-
nary numbers:

a. 100 f. 11101

b. 1000 g. 111011

c. 11001 h. 1011101

d. 110 i. 100001

e. 10101 j. 10111001

1.4 Translate each of the following combinations of HIGH
(H) and LOW (L) logic levels to binary numbers using
positive logic:

a. H H L H d. L L L H

b. L H L H e. H L L L

c. H L H L

22 C H A P T E R 1 • Basic Principles of Digital Systems

1.5 List the sequence of binary numbers from 101 to 1000.

1.6 List the sequence of binary numbers from 10000 to
11111.

1.7 What is the decimal value of the most significant bit for
the numbers in Problem 1.6

1.8 Convert the following decimal numbers to binary. Use the
sum-of-powers-of-2 method for parts a, c, e, and g. Use
the repeated-division-by-2 method for parts b, d, f, and h.

a. 7510 e. 6310

b. 8310 f. 6410

c. 23710 g. 408710

d. 19810 h. 819310

1.9 Convert the following fractional binary numbers to their
decimal equivalents.

a. 0.101

b. 0.011

c. 0.1101

1.10 Convert the following fractional binary numbers to their
decimal equivalents.

a. 0.01 c. 0.010101

b. 0.0101 d. 0.01010101

1.11 The numbers in Problem 1.10 are converging to a closer
and closer binary approximation of a simple fraction that
can be expressed by decimal integers a/b. What is the
fraction?

1.12 What is the simple decimal fraction (a/b) represented by
the repeating binary number 0.101010 . . . ?

1.13 Convert the following decimal numbers to their binary
equivalents. If a number has an integer part larger than 0,
calculate the integer and fractional parts separately.

a. 0.7510 e. 1.7510

b. 0.62510 f. 3.9510

c. 0.187510 g. 67.8410

d. 0.6510

Section 1.4 Hexadecimal Numbers

1.14 Write all the hexadecimal numbers in sequence from
308H to 321H inclusive.

1.15 Write all the hexadecimal numbers in sequence from
9F7H to A03H inclusive.

1.16 Convert the following hexadecimal numbers to their deci-
mal equivalents.

a. 1A0H e. F3C8H

b. 10AH f. D3B4H

c. FFFH g. C000H

d. 1000H h. 30BAFH

1.17 Convert the following decimal numbers to their hexadeci-

mal equivalents.

a. 70910

b. 188910

c. 409510

d. 409610

e. 1012810

f. 3200010

g. 3276810

1.18 Convert the following hexadecimal numbers to their bi-
nary equivalents.

a. F3C8H

b. D3B4H

c. 8037H

d. FABDH

e. 30ACH

f. 3E7B6H

g. 743DCFH

1.19 Convert the following binary numbers to their hexadeci-
mal equivalents.

a. 1011110100001102

b. 1011011010102

c. 1100010110112

d. 1101011110001002

e. 101010111100001012

f. 110011000101101112

g. 1010000000000000002

Section 1.5 Digital Waveforms

1.20 Calculate the time LOW, time HIGH, period, frequency,
and percent duty cycle for the waveforms shown in Fig-
ure 1.12. How are the waveforms similar? How do they
differ?

1.21 Which of the waveforms in Figure 1.13 are periodic and
which are aperiodic? Explain your answers.

1.22 Sketch the pulse waveforms represented by the following
strings of 0s and 1s. State which waveforms are periodic
and which are aperiodic.

a. 11001111001110110000000110110101

b. 111000111000111000111000111000111

c. 11111111000000001111111111111111

d. 01100110011001100110011001100110

e. 011101101001101001011010011101110

1.23 Calculate the pulse width, rise time, and fall time of the
pulse shown in Figure 1.14.

1.24 Repeat Problem 1.23 for the pulse shown in Figure 1.15.

Answers To Section Review Problems 23

FIGURE 1.12
Problem 1.20: Periodic
Waveforms

FIGURE 1.14
Problem 1.23: Pulse

FIGURE 1.15
Problem 1.24: Pulse

FIGURE 1.13
Problem 1.21: Aperiodic and
Periodic Waveforms

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 1.1

1.1 An analog audio system makes a direct copy of the recorded
sound waves. A digital system stores the sound as a series of bi-
nary numbers.

Section 1.3

1.2 64; 1.3. 128; 1.4. 1010000, 1010001, 1010010,
1010011, 1010100, 1010101, 1010110, 1010111; 1.5. 80,
81, 82, 83, 84, 85, 86, 87.

Section 1.4a

1.6 FA9, FAA, FAB, FAC, FAD, FAE, FAF, FB0, 1.7 1F9,
1FA, 1FB, 1FC, 1FD, 1FE, 1FF, 200.

Section 1.4b

1.8 4174310.

Section 1.4c

1.9 1FC9.

Section 1.4d

1.10 1001001101001011. 1.11 C8349.

Section 1.5

1.12 50%; 1.13 0101010101010101;
1.14 0111011101110111.

25

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 2

Logic Functions and Gates

O U T L I N E

2.1 Basic Logic
Functions

2.2 Logic Switches and
LED Indicators

2.3 Derived Logic
Functions

2.4 DeMorgan’s
Theorems and Gate
Equivalence

2.5 Enable and Inhibit
Properties of Logic
Gates

2.6 Integrated Circuit
Logic Gates

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Describe the basic logic functions: AND, OR, and NOT

• Draw simple switch circuits to represent AND, OR and Exclusive OR func-
tions.

• Draw simple logic switch circuits for single-pole single-throw (SPST) and
normally open and normally closed pushbutton switches.

• Describe the use of light-emitting diodes (LEDs) as indicators of logic
HIGH and LOW states.

• Describe those logic functions derived from the basic ones: NAND, NOR,
Exclusive OR, and Exclusive NOR.

• Explain the concept of active levels and identify active LOW and HIGH
terminals of logic gates.

• Choose appropriate logic functions to solve simple design problems.

• Draw the truth table of any logic gate.

• Draw any logic gate, given its truth table.

• Draw the DeMorgan equivalent form of any logic gate.

• Determine when a logic gate will pass a digital waveform and when it will
block the signal.

• Describe several types of integrated circuit packaging for digital logic
gates.

All digital logic functions can be synthesized by various combinations of the three ba-
sic logic functions: AND, OR, and NOT. These so-called Boolean functions are the

basis for all further study of combinational logic circuitry. (Combinational logic circuits
are digital circuits whose outputs are functions of their inputs, regardless of the order the
inputs are applied.) Standard circuits, called logic gates, have been developed for these and
for more complex digital logic functions.

Logic gates can be represented in various forms. A standard set of distinctive-shape
symbols has evolved as a universally understandable means of representing the various
functions in a circuit. A useful pair of mathematical theorems, called DeMorgan’s theo-
rems, enables us to draw these gate symbols in different ways to represent different aspects
of the same function. A newer way of representing standard logic gates is outlined in
IEEE/ANSI Standard 91-1984, a standard copublished by the Institute of Electrical and

26 C H A P T E R 2 • Logic Functions and Gates

Electronic Engineers and the American National Standards Institute. It uses a set of sym-
bols called rectangular-outline symbols.

Logic gates can be used as electronic switches to block or allow passage of digital
waveforms. Each logic gate has a different set of properties for enabling (passing) or in-
hibiting (blocking) digital waveforms. �

2.1 Basic Logic Functions

Boolean variable A variable having only two possible values, such as
HIGH/LOW, 1/0, On/Off, or True/False.

Boolean algebra A system of algebra that operates on Boolean variables. The bi-
nary (two-state) nature of Boolean algebra makes it useful for analysis, simplifica-
tion, and design of combinational logic circuits.

Boolean expression An algebraic expression made up of Boolean variables and
operators, such as AND, OR, or NOT. Also referred to as a Boolean function or a
logic function.

Logic gate An electronic circuit that performs a Boolean algebraic function.

At its simplest level, a digital circuit works by accepting logic 1s and 0s at one or more in-
puts and producing 1s or 0s at one or more outputs. A branch of mathematics known as
Boolean algebra (named after 19th-century mathematician George Boole) describes the
relation between inputs and outputs of a digital circuit. We call these input and output val-
ues Boolean variables and the functions Boolean expressions, logic functions, or
Boolean functions. The distinguishing characteristic of these functions is that they are
made up of variables and constants that can have only two possible values: 0 or 1.

All possible operations in Boolean algebra can be created from three basic logic func-
tions: AND, OR, and NOT.1 Electronic circuits that perform these logic functions are
called logic gates. When we are analyzing or designing a digital circuit, we usually don’t
concern ourselves with the actual circuitry of the logic gates, but treat them as black boxes
that perform specified logic functions. We can think of each variable in a logic function as
a circuit input and the whole function as a circuit output.

In addition to gates for the three basic functions, there are also gates for compound
functions that are derived from the basic ones. NAND gates combine the NOT and AND
functions in a single circuit. Similarly, NOR gates combine the NOT and OR functions.
Gates for more complex functions, such as Exclusive OR and Exclusive NOR, also exist.
We will examine all these devices later in the chapter.

NOT, AND, and OR Functions

Truth table A list of all possible input values to a digital circuit, listed in ascend-
ing binary order, and the output response for each input combination.

Inverter Also called a NOT gate or an inverting buffer. A logic gate that changes
its input logic level to the opposite state.

Bubble A small circle indicating logical inversion on a circuit symbol.

K E Y T E R M S

K E Y T E R M S

1Words in uppercase letters represent either logic functions (AND, OR, NOT) or logic levels (HIGH,
LOW). The same words in lowercase letters represent their conventional nontechnical meanings.

2.1 • Basic Logic Functions 27

Distinctive-shape symbols Graphic symbols for logic circuits that show the func-
tion of each type of gate by a special shape.

IEEE/ANSI Standard 91-1984 A standard format for drawing logic circuit sym-
bols as rectangles with logic functions shown by a standard notation inside the rec-
tangle for each device.

Rectangular-outline symbols Rectangular logic gate symbols that conform to
IEEE/ANSI Standard 91-1984.

Qualifying symbol A symbol in IEEE/ANSI logic circuit notation, placed in the
top center of a rectangular symbol, that shows the function of a logic gate. Some of
the qualifying symbols include: 1 � “buffer”; & � “AND”; �1 � “OR”

Buffer An amplifier that acts as a logic circuit. Its output can be inverting or non-
inverting.

NOT Function

The NOT function, the simplest logic function, has one input and one output. The input can
be either HIGH or LOW (1 or 0), and the output is always the opposite logic level. We can
show these values in a truth table, a list of all possible input values and the output result-
ing from each one. Table 2.1 shows a truth table for a NOT function, where A is the input
variable and Y is the output.

The NOT function is represented algebraically by the Boolean expression:

Y � A�

This is pronounced “Y equals NOT A” or “Y equals A bar.” We can also say “Y is the
complement of A.”

The circuit that produces the NOT function is called the NOT gate or, more usually,
the inverter. Several possible symbols for the inverter, all performing the same logic func-
tion, are shown in Figure 2.1.

The symbols shown in Figure 2.1a are the standard distinctive-shape symbols for the
inverter. The triangle represents an amplifier circuit, and the bubble (the small circle on the
input or output) represents inversion. There are two symbols because sometimes it is con-
venient to show the inversion at the input and sometimes it is convenient to show it at the
output.

Figure 2.1b shows the rectangular-outline inverter symbol specified by IEEE/ANSI
Standard 91-1984. This standard is most useful for specifying the symbols for more com-
plex digital devices. We will show the basic gates in both distinctive-shape and rectangu-
lar-outline symbols, although most examples will use the distinctive-shape symbols.

The “1” in the top center of the IEEE symbol is a qualifying symbol, indicating the
logic gate function. In this case, it shows that the circuit is a buffer, an amplifying circuit
used as a digital logic element. The arrows at the input and output of the two IEEE symbols
show inversion, like the bubbles in the distinctive-shape symbols.

AND Function

AND gate A logic circuit whose output is HIGH when all inputs (e.g., A AND
B AND C) are HIGH.

Logical product AND function.

The AND function combines two or more input variables so that the output is HIGH
only if all the inputs are HIGH. The truth table for a 2-input AND function is shown in
Table 2.2.

K E Y T E R M S

Table 2.1 NOT Function
Truth Table

A Y

0 1
1 0

FIGURE 2.1
Inverter Symbols

Table 2.2 2-input AND
Function Truth Table

A B Y

0 0 0
0 1 0
1 0 0
1 1 1

OR Function

OR gate A logic circuit whose output is HIGH when at least one input (e.g., A
OR B OR C) is HIGH.

Logical sum OR function.

The OR function combines two or more input variables in such a way as to make the out-
put variable HIGH if at least one input is HIGH. Table 2.4 gives the truth table for the 2-in-
put OR function.

K E Y T E R M S

28 C H A P T E R 2 • Logic Functions and Gates

Algebraically, this is written:

Y � A � B

Pronounce this expression “Y equals A AND B.” The AND function is similar to mul-
tiplication in linear algebra and thus is sometimes called the logical product. The dot be-
tween variables may or may not be written, so it is equally correct to write Y � AB. The
logic circuit symbol for an AND gate is shown in Figure 2.2 in both distinctive-shape and
IEEE/ANSI rectangular-outline form. The qualifying symbol in IEEE/ANSI notation is the
ampersand (&).

We can also represent the AND function as a set of switches in series, as shown in Fig-
ure 2.3. The circuit consists of a voltage source, a lamp, and two series switches. The lamp
turns on when switches A AND B are both closed. For any other condition of the switches,
the lamp is off.

FIGURE 2.2
2-Input AND Gate Symbols

Voltage
source Lamp

A

A B

B

FIGURE 2.3
AND Function Represented by Switches

Table 2.3 shows the truth table for a 3-input AND function. Each of the three inputs
can have two different values, which means the inputs can be combined in 23 � 8 different
ways. In general, n binary (i.e., two-valued) variables can be combined in 2n ways.

Figure 2.4 shows the logic symbols for the device. The output is HIGH only when all
inputs are HIGH.

Table 2.3 3-input AND
Function Truth Table

A B C Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

FIGURE 2.4
3-Input AND Gate Symbols

Table 2.4 2-input OR
Function Truth Table

A B Y

0 0 0
0 1 1
1 0 1
1 1 1

2.1 • Basic Logic Functions 29

The algebraic expression for the OR function is:

Y � A � B

which is pronounced “Y equals A OR B.” This is similar to the arithmetic addition func-
tion, but it is not the same. The last line of the truth table tells us that 1 � 1 � 1 (pro-
nounced “1 OR 1 equals 1”), which is not what we would expect in standard arithmetic.
The similarity to the addition function leads to the name logical sum. (This is different
from the “arithmetic sum,” where, of course, 1 � 1 does not equal 1.)

Figure 2.5 shows the logic circuit symbols for an OR gate. The qualifying symbol for
the OR function in IEEE/ANSI notation is “�1,” which tells us that one or more inputs
must be HIGH to make the output HIGH.

The OR function can be represented by a set of switches connected in parallel, as in
Figure 2.6. The lamp is on when either switch A OR switch B is closed. (Note that the lamp
is also on if both A and B are closed. This property distinguishes the OR function from the
Exclusive OR function, which we will study later in this chapter.)

FIGURE 2.5
2-Input OR Gate Symbols

Voltage
source Lamp

A

B

A � B

FIGURE 2.6
OR Function Represented by Switches

Like AND gates, OR gates can have several inputs, such as the 3-input OR gates
shown in Figure 2.7. Table 2.5 shows the truth table for this gate. Again, three inputs can be
combined in eight different ways. The output is HIGH when at least one input is HIGH.

FIGURE 2.7
3-Input OR Gate Symbols

❘❙❚ EXAMPLE 2.1 State which logic function is most suitable for the following operations. Draw a set of

Application switches to represent each function.

1. A manager and one other employee both need a key to open a safe.

2. A light comes on in a storeroom when either (or both) of two doors is open. (Assume
the switch closes when the door opens.)

3. For safety, a punch press requires two-handed operation.

SOLUTION

1. Both keys are required, so this is an AND function. Figure 2.8a shows a switch repre-
sentation of the function.

Table 2.5 3-input OR
Function Truth Table

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

30 C H A P T E R 2 • Logic Functions and Gates

2. One or more switches closed will turn on the lamp. This OR function is shown in Fig-
ure 2.8b.

3. Two switches are required to activate a punch press, as shown in Figure 2.8c. This is an
AND function.

DC
voltage
source

Key switch
(manager)

Key switch
(employee)

Electronic
lock

a. Two keys to open a safe (AND)

AC
voltage
source

Lamp

Door switch A

Door switch B

b. One or more switches turn on a lamp (OR)

AC
voltage
source

Hand
switch A

Hand
switch B

Solenoid
(punch)

c. Two switches are required to activate a punch press (AND)

FIGURE 2.8
Example 2.1

❘❙❚

Active Levels

Active level A logic level defined as the “ON” state for a particular circuit input
or output. The active level can be either HIGH or LOW.

Active HIGH An active-HIGH terminal is considered “ON” when it is in the
logic HIGH state. Indicated by the absence of a bubble at the terminal in distinc-
tive-shape symbols.

Active LOW An active-LOW terminal is considered “ON” when it is in the logic
LOW state. Indicated by a bubble at the terminal in distinctive-shape symbols.

An active level of a gate input or output is the logic level, either HIGH or LOW, of the ter-
minal when it is performing its designated function. An active LOW is shown by a bubble
or an arrow symbol on the affected terminal. If there is no bubble or arrow, we assume the
terminal is active HIGH.

K E Y T E R M S

2.2 • Logic Switches and LED Indicators 31

The AND function has active-HIGH inputs and an active-HIGH output. To make the
output HIGH, inputs A AND B must both be HIGH. The gate performs its designated func-
tion only when all inputs are HIGH.

The OR gate requires input A OR input B to be HIGH for its output to be HIGH. The
HIGH active levels are shown by the absence of bubbles or arrows on the terminals.

❘❙❚ SECTION REVIEW PROBLEM FOR SECTION 2.1

A 4-input gate has input variables A, B, C, and D and output Y. Write a descriptive sentence
for the active output state(s) if the gate is
2.1 AND;

2.2 OR.

2.2 Logic Switches and LED Indicators
Before continuing on, we should examine a few simple circuits that can be used for input
or output in a digital circuit. Single-pole single-throw (SPST) and pushbutton switches can
be used, in combination with resistors, to generate logic voltages for circuit inputs. Light
emitting diodes (LEDs) can be used to monitor outputs of circuits.

Logic Switches

VCC The power supply voltage in a transistor-based electronic circuit. The term
often refers to the power supply of digital circuits.

Pull-up resistor A resistor connected from a point in an electronic circuit to the
power supply of that circuit.

Figure 2.9a shows a single-pole single-throw (SPST) switch connected as a logic switch.
An important premise of this circuit is that the input of the digital circuit to which it is con-
nected has a very high resistance to current. When the switch is open, the current flowing
through the pull-up resistor from VCC to the digital circuit is very small. Since the current
is small, Ohm’s law states that very little voltage drops across the pull-up resistor; the volt-
age is about the same at one end as at the other. Therefore, an open switch generates a logic
HIGH at point X.

K E Y T E R M S

High
input
resistance

Vcc

Digital
circuit

X

a. Circuit b. Logic levels

1

0
Open OpenClosed

FIGURE 2.9
SPST Logic Switch

When the switch is closed, the majority of current flows to ground, limited only by the
value of the pull-up resistor. (Since a pull-up resistor is typically between 1 k� and 10 k�,
the LOW-state current in the resistor is about 0.5 mA to 5 mA.) Point X is approximately
at ground potential, or logic LOW. Thus the switch generates a HIGH when open and a
LOW when closed. The pull-up resistor provides a connection to VCC in the HIGH state

32 C H A P T E R 2 • Logic Functions and Gates

and limits power supply current in the LOW state. Figure 2.9b shows the voltage levels
when the switch is closed and when it is open.

Figure 2.10 shows how pushbuttons can be used as logic inputs. Figure 2.10a shows a
normally open pushbutton and a pull-up resistor. The pushbutton has a spring-loaded
plunger that makes a connection between two internal contacts when pressed. When re-
leased, the spring returns the plunger to the “normal” (open) state. The logic voltage at X
is normally HIGH, but LOW when the button is pressed.

Vcc

X

a. Normally open pushbutton

Press Release

Vcc

X

c. Two-pole pushbutton

X

Press Release

X

b. Normally closed pushbutton

Y

Press Release

N.C.COM

Vcc

Y

N.O.

1

0

1

0

FIGURE 2.10
Pushbuttons as Logic Switches

Figure 2.10b shows a normally closed pushbutton. The internal spring holds the
plunger so that the connection is normally made between the two contacts. When the but-
ton is pressed, the connection is broken and the resistor pulls up the voltage at X to a logic
HIGH. At rest, X is grounded and the voltage at X is LOW.

It is sometimes desirable to have normally HIGH and normally LOW levels available
from the same switch. The two-pole pushbutton in Figure 2.10c provides such a function.
The switch has a normally open and a normally closed contact. One contact of each switch
is connected to the other, in an internal COMMON connection, allowing the switch to have
three terminals rather than four. The circuit has two pull-up resistors, one for X and one for
Y. X is normally HIGH and goes LOW when the switch is pressed. Y is opposite.

LED Indicators

LED Light-emitting diode. An electronic device that conducts current in one di-
rection only and illuminates when it is conducting.

K E Y T E R M S

2.2 • Logic Switches and LED Indicators 33

A device used to indicate the status of a digital output is the light-emitting diode or LED.
This is sometimes pronounced as a word (“led”) and sometimes said as separate initials
(“ell ee dee”). This device comes in a variety of shapes, sizes, and colors, some of which
are shown in the photo of Figure 2.11. The circuit symbol, shown in Figure 2.12, has two
terminals, called the anode (positive) and cathode (negative). The arrow coming from the
symbol indicates emitted light.

Anode Cathode

FIGURE 2.11
LEDs

FIGURE 2.12
Light-Emitting Diode (LED)

The electrical requirements for the LED are simple: current flows through the LED if
the anode is more positive than the cathode by more than a specified value (about 1.5
volts). If enough current flows, the LED illuminates. If more current flows, the illumination
is brighter. (If too much flows, the LED burns out, so a series resistor is used to keep the
current in the required range.) Figure 2.13 shows a circuit in which an LED illuminates
when a switch is closed.

Figure 2.14 shows an AND gate driving an LED. In Figure 2.14a, the LED is on
when Y is HIGH (5 volts), since the anode of the LED is more positive than the cathode.

Vcc

470 �

�

�

FIGURE 2.13
Condition for LED Illumination

A Y

B
470 �

a. LED on when Y is HIGH

A Y

B

470 �

Vcc

b. LED on when Y is LOW

FIGURE 2.14
AND Gate Driving an LED

34 C H A P T E R 2 • Logic Functions and Gates

In Figure 2.14b, the LED turns on when Y is LOW (0 volts), again since the anode is
more positive than the cathode.

Figure 2.15 shows a circuit in which an LED indicates the status of a logic switch.
When the switch is open, the 1 k� pull-up applies a HIGH to the inverter input. The in-
verter output is LOW, turning on the LED (anode is more positive than cathode). When the
switch is closed, the inverter input is LOW. The inverter output is HIGH (same value as
VCC), making anode and cathode voltages equal. No current flows through the LED, and it
is therefore off. Thus, the LED is on for a HIGH state at the switch and off for a LOW.
Note, however, that the LED is on when the inverter output is LOW.

❘❙❚ SECTION 2.2 REVIEW PROBLEM

2.3 A single-pole single-throw switch is connected such that one end is grounded and one
end is connected to a 1 k� pull-up resistor. The other end of the resistor connects to
the circuit power supply, VCC. What logic level does the switch provide when it is
open? When it is closed?

2.3 Derived Logic Functions

NAND gate A logic circuit whose output is LOW when all inputs are HIGH.

NOR gate A logic circuit whose output is LOW when at least one input is HIGH.

Exclusive OR gate A 2-input logic circuit whose output is HIGH when one input
(but not both) is HIGH.

Exclusive NOR gate A 2-input logic circuit whose output is the complement of
an Exclusive OR gate.

Coincidence gate An Exclusive NOR gate.

The basic logic functions, AND, OR, and NOT, can be combined to make any other logic
function. Special logic gates exist for several of the most common of these derived func-
tions. In fact, for reasons we will discover later, two of these derived-function gates,
NAND and NOR, are the most common of all gates, and each can be used to create any
logic function.

NAND and NOR Functions

The names NAND and NOR are contractions of NOT AND and NOT OR, respectively.
The NAND is generated by inverting the output of an AND function. The symbols for the
NAND gate and its equivalent circuit are shown in Figure 2.16.

The algebraic expression for the NAND function is:

Y � A�����B�

K E Y T E R M S

S1

470 �

Vcc

1k �

Vcc

FIGURE 2.15
LED Indicates Status of Switch

2.3 • Derived Logic Functions 35

The entire function is inverted because the bubble is on the NAND gate output.
Table 2.6 shows the NAND gate truth table. The output is LOW when A AND B are

HIGH.
We can generate the NOR function by inverting the output of an OR gate. The NOR

function truth table is shown in Table 2.7. The truth table tells us that the output is LOW
when A OR B is HIGH.

Figure 2.17 shows the logic symbols for the NOR gate.

FIGURE 2.16
NAND Gate Symbols

The algebraic expression for the NOR function is:

Y � A�����B�

The entire function is inverted because the bubble is on the gate output.
We know that the outputs of both gates are active LOW because of the bubbles on

the output terminals. The inputs are active HIGH because there are no bubbles on the in-
put terminals.

Multiple-Input NAND and NOR Gates

Table 2.8 shows the truth tables of the 3-input NAND and NOR functions. The logic circuit
symbols for these gates are shown in Figure 2.18.

Table 2.6 NAND Function
Truth Table

A B Y

0 0 1
0 1 1
1 0 1
1 1 0

Table 2.7 NOR Function
Truth Table

A B Y

0 0 1
0 1 0
1 0 0
1 1 0

FIGURE 2.17
NOR Gate Symbols

Table 2.8 3-input NAND and NOR Function Truth Tables

A B C A�����B�����C� A�����B�����C�

0 0 0 1 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0

The truth tables of these gates can be generated by understanding the active levels of
the gate inputs and outputs. The NAND output is LOW when A AND B AND C are
HIGH. This is shown in the last line of the NAND truth table. The NOR output is LOW
if one or more of A OR B OR C is HIGH. This describes all lines of the NOR truth table
except the first.

Table 2.9 shows the truth table for the XOR function.
Another way of looking at the Exclusive OR gate is that its output is HIGH when the

inputs are different and LOW when they are the same. This is a useful property in some ap-
plications, such as error detection in digital communication systems. (Transmitted data can
be compared with received data. If they are the same, no error has been detected.)

The XOR function is expressed algebraically as:

Y � A � B

The Exclusive NOR function is the complement of the Exclusive OR function and
shares some of the same properties. The symbol, shown in Figure 2.20, is an XOR gate

36 C H A P T E R 2 • Logic Functions and Gates

Exclusive OR and Exclusive NOR Functions

The Exclusive OR function (abbreviated XOR) is a special case of the OR function. The
output of a 2-input XOR gate is HIGH when one and only one of the inputs is HIGH.
(Multiple-input XOR circuits do not expand as simply as other functions. As we will see
in a later chapter, an XOR output is HIGH when an odd number of inputs is HIGH.)

Unlike the OR gate, which is sometimes called an Inclusive OR, a HIGH at both in-
puts makes the output LOW. (We could say that the case in which both inputs are HIGH is
excluded.)

The gate symbol for the Exclusive OR gate is shown in Figure 2.19.

FIGURE 2.19
Exclusive OR Gate

Table 2.9 Exclusive OR
Function Truth Table

A B Y

0 0 0
0 1 1
1 0 1
1 1 0

FIGURE 2.18
3-Input NAND and NOR Gates

FIGURE 2.20
Exclusive NOR Gate

2.4 • DeMorgan’s Theorems and Gate Equivalence 37

with a bubble on the output, implying that the entire function is inverted. Table 2.10 shows
the Exclusive NOR truth table.

The algebraic expression for the Exclusive NOR function is:

Y � A�����B�

The output of the Exclusive NOR gate is HIGH when the inputs are the same and
LOW when they are different. For this reason, the XNOR gate is also called a coincidence
gate. This same/different property is similar to that of the Exclusive OR gate, only oppo-
site in sense. Many of the applications that make use of this property can use either the
XOR or the XNOR gate.

❘❙❚ SECTION 2.3 REVIEW PROBLEMS

The output of a logic gate turns on an LED when it is HIGH. The gate has two inputs, each
of which is connected to a logic switch, as shown in Figure 2.21.

2.4 What type of gate will turn on the light when the switches are in opposite positions?

2.5 Which gate will turn off the light only when both switches are HIGH?

2.6 What type of gate turns on the light only when both switches are LOW?

2.7 Which gate turns on the light when the switches are in the same position?

2.4 DeMorgan’s Theorems and Gate Equivalence

DeMorgan’s theorems Two theorems in Boolean algebra that allow us to trans-
form any gate from an AND-shaped to an OR-shaped gate and vice versa.

DeMorgan equivalent forms Two gate symbols, one AND-shaped and one OR-
shaped, that are equivalent according to DeMorgan’s theorems.

Recall the truth table (repeated in Table 2.11) and description of a 2-input NAND gate.
“Output Y is LOW if inputs A AND B are HIGH.” Or, “Output Y is LOW if all inputs are
HIGH.” The condition of this sentence is satisfied in the last line of Table 2.11.

We could also describe the gate function by saying, “Output Y is HIGH if A OR B (OR
both) are LOW,” or, “The output is HIGH if at least one input is LOW.” These conditions
are satisfied by the first three lines of Table 2.11.

The gates in Figure 2.22 represent positive- and negative-logic forms of a NAND gate.
Figure 2.23 shows the logic equivalents of these gates. In the first case, we combine the in-

K E Y T E R M S

Table 2.10 Exclusive NOR
Function Truth Table

A B Y

0 0 1
0 1 0
1 0 0
1 1 1

Vcc

Vcc
A

B

Y
Logic
gate

FIGURE 2.21
Section Review Problems: Logic Gate Properties

Table 2.11 NAND Truth
Table

A B Y

0 0 1
0 1 1
1 0 1
1 1 0

38 C H A P T E R 2 • Logic Functions and Gates

puts in an AND function, then invert the result. In the second case, we invert the variables,
then combine the inverted inputs in an OR function.

The Boolean function for the AND-shaped gate is given by:

Y � A�����B�

The Boolean expression for the OR-shaped gate is:

Y � A�����B�

The gates shown in Figure 2.22 are called DeMorgan equivalent forms. Both gates
have the same truth table, but represent different aspects or ways of looking at the NAND
function. We can extend this observation to state that any gate (except XOR and XNOR)
has two equivalent forms, one AND, one OR.

A gate can be categorized by examining three attributes: shape, input, and output. A
question arises from each attribute:

1. What is its shape (AND/OR)?

AND: all

OR: at least one

2. What active level is at the gate inputs (HIGH/LOW)?

3. What active level is at the gate output (HIGH/LOW)?

The answers to these questions characterize any gate and allow us to write a descrip-
tive sentence and a truth table for that gate. The DeMorgan equivalent forms of the gate
will yield opposite answers to each of the above questions.

Thus the gates in Figure 2.22 have the following complementary attributes:

Basic Gate DeMorgan Equivalent

Boolean Expression A�����B� A�� B�
Shape AND OR

Input Active Level HIGH LOW

Output Active Level LOW HIGH

❘❙❚ EXAMPLE 2.2 Analyze the shape, input, and output of the gates shown in Figure 2.24 and write a Boolean
expression, a descriptive sentence, and a truth table of each one. Write an asterisk beside
the active output level on each truth table. Describe how these gates relate to each other.

A AB AB

B

a. AND then invert b. Invert then OR

A
A

B

A
B

B�

FIGURE 2.22
NAND Gate and DeMorgan Equivalent

FIGURE 2.23
Logic Equivalents of Positive and Negative NAND Gates

A Y Y

B

a. b.

A

B

FIGURE 2.24
Example 2.2 Logic Gates

2.4 • DeMorgan’s Theorems and Gate Equivalence 39

SOLUTION

a. Boolean expression: Y � A�����B�
Shape: OR (at least one)

Input: HIGH

Output: LOW

Descriptive sentence: Output Y is LOW if A OR B is HIGH.

Truth table: Table 2.12 Truth Table
of Gate in Figure 2.24a.

A B Y

0 0 1
0 1 0*
1 0 0*
1 1 0*

b. Boolean expression: Y � A� � B�
Shape: AND (all)

Input: LOW

Output: HIGH

Descriptive sentence: Output Y is HIGH if A AND B are LOW.

Truth table: Table 2.13 Truth Table
of Gate in Figure 2.124b.

A B Y

0 0 1*
0 1 0
1 0 0
1 1 0

Both gates in this example yield the same truth table. Therefore they are DeMorgan
equivalents of one another (positive- and negative-NOR gates). ❘❙❚

The gates in Figures 2.22 and 2.24 yield the following algebraic equivalencies:

A�����B� � A� � B�
A�����B� � A� � B�

These equivalencies are known as DeMorgan’s theorems. (You can remember how to
use DeMorgan’s theorems by a simple rhyme: “Break the line and change the sign.”)

It is tempting to compare the first gate in Figure 2.22 and the second in Figure 2.24
and declare them equivalent. Both gates are AND-shaped, both have inversions. However,
the comparison is false. The gates have different truth tables, as we have found in Tables
2.11 and 2.13. Therefore they have different logic functions and are not equivalent. The
same is true of the OR-shaped gates in Figures 2.22 and 2.24. The gates may look similar,
but since they have different truth tables, they have different logic functions and are there-
fore not equivalent.

The confusion arises when, after changing the logic input and output levels, you forget
to change the shape of the gate. This is a common, but serious, error. These inequalities can
be expressed as follows:

A�����B� � A� � B�
A�����B� � A� � B�

SOLUTION

Boolean expression: Y � A� �� B� �� C�
Shape: OR (at least one)

Input: LOW

Output: LOW

Descriptive sentence: Output Y is LOW if A OR B OR C is LOW.

Truth table:

40 C H A P T E R 2 • Logic Functions and Gates

As previously stated, any AND- or OR-shaped gate can be represented in its DeMor-
gan equivalent form. All we need to do is analyze a gate for its shape, input, and output,
then change everything.

❘❙❚ EXAMPLE 2.3 Analyze the gate in Figure 2.25 and write a Boolean expression, descriptive sentence, and
truth table for the gate. Mark active output levels on the truth table with asterisks. Find the
DeMorgan equivalent form of the gate and write its Boolean expression and description.

Table 2.14 Truth Table
of Gate in Figure 2.25

A B C Y

0 0 0 0*
0 0 1 0*
0 1 0 0*
0 1 1 0*
1 0 0 0*
1 0 1 0*
1 1 0 0*
1 1 1 1

C
B
A

Y
FIGURE 2.25
Example 2.3: Logic Gates

C
B
A

Y
FIGURE 2.26
Example 2.3: DeMorgan
Equivalent of Gate in
Figure 2.25

Boolean expression: Y � ABC

Descriptive sentence: Output Y is HIGH if A AND B AND C are HIGH.
❘❙❚

❘❙❚ SECTION 2.4 REVIEW PROBLEM

2.8 The output of a gate is described by the following Boolean expression:

Y � A� � B� � C� � D�

Write the Boolean expression for the DeMorgan equivalent form of this gate.

Figure 2.26 shows the DeMorgan equivalent form of the gate in Figure 2.25. To create
this symbol, we change the shape from OR to AND and invert the logic levels at both input
and output.

2.5 • Enable and Inhibit Properties of Logic Gates 41

2.5 Enable and Inhibit Properties of Logic Gates

Digital signal (or pulse waveform) A series of 0s and 1s plotted over time.

True form Not inverted.

Complement form Inverted.

Enable A logic gate is enabled if it allows a digital signal to pass from an input to
the output in either true or complement form.

Inhibit (or disable) A logic gate is inhibited if it prevents a digital signal from
passing from an input to the output.

In phase Two digital waveforms are in phase if they are always at the same logic
level at the same time.

Out of phase Two digital waveforms are out of phase if they are always at oppo-
site logic levels at any given time.

In Chapter 1, we saw that a digital signal is just a string of bits (0s and 1s) generated over
time. A major task of digital circuitry is the direction and control of such signals. Logic
gates can be used to enable (pass) or inhibit (block) these signals. (The word “gate” gives
a clue to this function; the gate can “open” to allow a signal through or “close” to block its
passage.)

AND and OR Gates

The simplest case of the enable and inhibit properties is that of an AND gate used to pass or
block a logic signal. Figure 2.27 shows the output of anAND gate under different conditions
of input A when a digital signal (an alternating string of 0s and 1s) is applied to input B.

K E Y T E R M S

FIGURE 2.27
Enable/Inhibit Properties of an
AND Gate

Recall the properties of an AND gate: both inputs must be HIGH to make the out-
put HIGH. Thus, if input A is LOW, the output must always be LOW, regardless of the
state of input B. The digital signal applied to B has no effect on the output, and we say
that the gate is inhibited or disabled. This is shown in the first half of the timing dia-
gram in Figure 2.27.

If A AND B are HIGH, the output is HIGH. When A is HIGH and B is LOW, the out-
put is LOW. Thus, output Y is the same as input B if input A is HIGH; that is, Y and B are
in phase with each other. The input waveform is passed to the output in true form, and
we say the gate is enabled. The last half of the timing diagram in Figure 2.27 shows this
waveform.

It is convenient to define terms for the A and B inputs. Since we apply a digital sig-
nal to B, we will call it the Signal input. Since input A controls whether or not the signal

Each type of logic gate has a particular set of enable/inhibit properties that can be pre-
dicted by examining the truth table of the gate. Let us examine the truth table of the AND
gate to see how the method works.

Divide the truth table in half, as shown in Table 2.15. Since we have designated A as
the Control input, the top half of the truth table shows the inhibit function (A � 0), and the
bottom half shows the enable function (A � 1). To determine the gate properties, we com-
pare input B (the Signal input) to the output in each half of the table.

Inhibit mode: If A � 0 and B is pulsing (B is continuously going back and forth be-
tween the first and second lines of the truth table), output Y is always 0. Since the Signal in-
put has no effect on the output, we say that the gate is disabled or inhibited.

Enable mode: If A � 1 and B is pulsing (B is going continuously between the third and
fourth lines of the truth table), the output is the same as the Signal input. Since the Signal
input affects the output, we say that the gate is enabled.

❘❙❚ EXAMPLE 2.4 Use the method just described to draw the output waveform of an OR gate if the input
waveforms of A and B are the same as in Figure 2.27. Indicate the enable and inhibit por-
tions of the timing diagram.

SOLUTION Divide the OR gate truth table in half. Designate input A the Control input
and input B the Signal input.

As shown in Table 2.16, when A � 0 and B is pulsing, the output is the same as B and
the gate is enabled. When A � 1, the output is always HIGH. (At least one input HIGH
makes the output HIGH.) Since B has no effect on the output, the gate is inhibited. This is
shown in Figure 2.29 in graphical form.

Table 2.15 AND Truth Table
Showing Enable/Inhibit
Properties

A B Y

0 0 0 (Y � 0)
0 1 0 Inhibit

1 0 0 (Y � B)
1 1 1 Enable

42 C H A P T E R 2 • Logic Functions and Gates

passes to the output, we will call it the Control input. These definitions are illustrated in
Figure 2.28.

Table 2.16 OR Truth Table
Showing Enable/Inhibit
Properties

A B Y

0 0 0 (Y � B)
0 1 1 Enable

1 0 1 (Y � 1)
1 1 1 Inhibit

FIGURE 2.28
Control and Signal Inputs of an AND Gate

2.5 • Enable and Inhibit Properties of Logic Gates 43

❘❙❚

Example 2.4 shows that a gate can be in the inhibit state even if its output is HIGH. It
is natural to think of the HIGH state as “ON,” but this is not always the case. Enable or in-
hibit states are determined by the effect the Signal input has on the gate’s output. If an in-
put signal does not affect the gate output, the gate is inhibited. If the Signal input does af-
fect the output, the gate is enabled.

NAND and NOR Gates

When inverting gates, such as NAND and NOR, are enabled, they will invert an input sig-
nal before passing it to the gate output. In other words, they transmit the signal in comple-
ment form. Figures 2.30 and 2.31 show the output waveforms of a NAND and a NOR gate
when a square waveform is applied to input B and input A acts as a Control input.

FIGURE 2.29
Example 2.4 OR Gate Enable/Inhibit Waveform

FIGURE 2.30
Enable/Inhibit Properties of a
NAND Gate

FIGURE 2.31
Enable/Inhibit Properties of a
NOR Gate

The truth table for the XOR gate, showing the gate’s dynamic properties, is given in
Table 2.19.

Notice that when A � 0, the output is in phase with B and when A � 1, the output is
out of phase with B. A useful application of this property is to use an XOR gate as a pro-
grammable inverter. When A � 1, the gate is an inverter; when A � 0, it is a noninverting
buffer.

The XNOR gate has properties similar to the XOR gate. That is, an XNOR has no in-
hibit state, and the Control input switches the output in and out of phase with the Signal
waveform, although not the same way as an XOR gate does. You will derive these proper-
ties in one of the end-of-chapter problems.

Table 2.20 summarizes the enable/inhibit properties of the six gates examined above.

44 C H A P T E R 2 • Logic Functions and Gates

The truth table for the NAND gate is shown in Table 2.17, divided in half to show the
enable and inhibit properties of the gate.

Table 2.18 shows the NOR gate truth table, divided in half to show its enable and in-
hibit properties.

Figures 2.30 and 2.31 show that when the NAND and NOR gates are enabled, the Sig-
nal and output waveforms are opposite to one another; we say that they are out of phase.

Compare the enable/inhibit waveforms of theAND, OR, NAND, and NOR gates. Gates
of the same shape are enabled by the same Control level. AND and NAND gates are enabled
by a HIGH on the Control input and inhibited by a LOW. OR and NOR are the opposite. A
HIGH Control input inhibits the OR/NOR; a LOW Control input enables the gate.

Exclusive OR and Exclusive NOR Gates

Neither the XOR nor the XNOR gate has an inhibit state. The Control input on both of
these gates acts only to determine whether the output waveform will be in or out of phase
with the input signal. Figure 2.32 shows the dynamic properties of an XOR gate.

Table 2.19 XOR Truth Table
Showing Dynamic Properties

A B Y

0 0 0 (Y � B)
0 1 1 Enable

1 0 1 (Y � B�)
1 1 0 Enable

Table 2.20 Summary of Enable/Inhibit Properties

Control AND OR NAND NOR XOR XNOR

A � 0 Y � 0 Y � B Y � 1 Y � B� Y � B Y � B�
A � 1 Y � B Y � 1 Y � B� Y � 0 Y � B� Y � B

❘❙❚ SECTION 2.5 REVIEW PROBLEM

2.9 Briefly explain why an AND gate is inhibited by a LOW Control input and an OR gate
is inhibited by a HIGH Control input.

Table 2.17 NAND Truth
Table Showing Enable/Inhibit
Properties

A B Y

0 0 1 (Y � 1)
0 1 1 Inhibit

1 0 1 (Y � B�)
1 1 0 Enable

Table 2.18 NOR Truth Table
Showing Enable/Inhibit
Properties

A B Y

0 0 1 (Y � B�)
0 1 0 Enable

1 0 0 (Y � 0)
1 1 0 Inhibit

FIGURE 2.32
Dynamic Properties of an Exclusive OR Gate

2.5 • Enable and Inhibit Properties of Logic Gates 45

Tristate Buffers

Tristate buffer A gate having three possible output states: logic HIGH, logic
LOW, and high-impedance.

High-impedance state The output state of a tristate buffer that is neither logic
HIGH nor logic LOW, but is electrically equivalent to an open circuit.

Bus A common wire or parallel group of wires connecting multiple circuits.

In the previous section, logic gates were used to enable or inhibit signals in digital circuits.
In the AND, NAND, NOR, and OR gates, however, the inhibit state was always logic
HIGH or LOW. In some cases, it is desirable to have an output state that is neither HIGH
nor LOW, but acts to electrically disconnect the gate output from the circuit. This third
state is called the high-impedance state and is one of three available states in a class of de-
vices known as tristate buffers.

Figure 2.33 shows the logic symbols for two tristate buffers, one with a noninverting
output and one with an inverting output. The third input, O�E� (Output enable), is an active-
LOW signal that enables or disables the buffer output.

When O�E� � 0, as shown in Figure 2.34a, the noninverting buffer transfers the input
value directly to the output as a logic HIGH or LOW. When O�E� � 1, as in Figure 2.34b, the
output is electrically disconnected from any circuit to which it is connected. (The open
switch in Figure 2.34b does not literally exist. It is shown as a symbolic representation of
the electrical disconnection of the output in the high-impedance state.)

K E Y T E R M S

IN OUT

OE

a. Noninverting

IN OUT

b. Inverting

OE

FIGURE 2.33
Tristate Buffers

IN OUT � IN

OE � 0

a. Output enabled

OUT � HI-ZIN

OE � 1

b. Output disabled

FIGURE 2.34
Electrical Equivalent of Tristate
Operation

This type of enable/disable function is particularly useful when digital data are trans-
ferred from more than one source to one or more destinations along a common wire (or
bus), as shown in Figure 2.35. (This is the underlying principle in modern computer sys-
tems, where multiple components use the same bus to pass data back and forth.) The desti-
nation circuit in Figure 2.35 can receive data from source 1 or source 2. If the source cir-
cuits were directly connected to the bus, they could produce contradictory logic levels at
the destination. To prevent this, only one source is enabled at a time, with control of this
switching left to the two tristate buffers.

OE1

Digital
source 1

OE2

Digital
source 2

Destination

Bus

FIGURE 2.35
Using Tristate Buffers to Switch
Two Sources to a Single
Destination

46 C H A P T E R 2 • Logic Functions and Gates

2.6 Integrated Circuit Logic Gates

Integrated circuit (IC) An electronic circuit having many components, such as
transistors, diodes, resistors, and capacitors, in a single package.

Small scale integration (SSI) An integrated circuit having 12 or fewer gates in
one package.

Medium scale integration (MSI) An integrated circuit having the equivalent of
12 to 100 gates in one package.

Large scale integration (LSI) An integrated circuit having from 100 to 10,000
equivalent gates.

Very large scale integration (VLSI) An integrated circuit having more than
10,000 equivalent gates.

Transistor-transistor logic (TTL) A family of digital logic devices whose basic
element is the bipolar junction transistor.

Complementary metal-oxide-semiconductor (CMOS) A family of digital logic
devices whose basic element is the metal-oxide-semiconductor field effect transis-
tor (MOSFET).

Chip An integrated circuit. Specifically, a chip of silicon on which an integrated
circuit is constructed.

Dual in-line package (DIP) A type of IC with two parallel rows of pins for the
various circuit inputs and outputs.

Printed circuit board (PCB) A circuit board in which connections between
components are made with lines of copper on the surfaces of the circuit board.

Breadboard A circuit board for wiring temporary circuits, usually used for pro-
totypes or laboratory work.

Wire-wrap A circuit construction technique in which the connecting wires are
wrapped around the posts of a special chip socket, usually used for prototyping or
laboratory work.

Through-hole A means of mounting DIP ICs on a circuit board by inserting the
IC leads through holes in the board and soldering them in place.

Surface-mount technology (SMT) A system of mounting and soldering inte-
grated circuits on the surface of a circuit board, as opposed to inserting their leads
through holes on the board.

Small outline IC (SOIC) An IC package similar to a DIP, but smaller, which is
designed for automatic placement and soldering on the surface of a circuit board.
Also called gull-wing, for the shape of the package leads.

Thin shrink small outline package (TSSOP) A thinner version of an SOIC
package.

Plastic leaded chip carrier (PLCC) A square IC package with leads on all four
sides designed for surface mounting on a circuit board. Also called J-lead, for the
profile shape of the package leads.

Quad flat pack (QFP) A square surface-mount IC package with gull-wing leads.

Ball grid array (BGA) A square surface-mount IC package with rows and
columns of spherical leads underneath the package.

Data sheet A printed specification giving details of the pin configuration, electri-
cal properties, and mechanical profile of an electronic device.

Data book A bound collection of data sheets. A digital logic data book usually
contains data sheets for a specific logic family or families.

Portable document format (PDF) A format for storing published documents in
compressed form.

K E Y T E R M S

2.6 • Integrated Circuit Logic Gates 47

All the logic gates we have looked at so far are available in integrated circuit form.
Most of these small scale integration (SSI) functions are available either in transistor-
transistor logic (TTL) or complementary metal-oxide-semiconductor (CMOS) tech-
nologies. TTL and CMOS devices differ not in their logic functions, but in their con-
struction and electrical characteristics.

TTL and CMOS chips are designated by an industry-standard numbering system.
TTL devices and the more recent members of the CMOS family are numbered according
to the general format 74XXNN, where XX is a family identifier and NN identifies the spe-
cific logic function. For example, the number 74ALS00 represents a quadruple 2-input
NAND device (indicated by 00) in the advanced low power Schottky (ALS) family of TTL.
(Earlier versions of CMOS had a different set of unrelated numbers of the form 4NNNB or
4NNNUB where NNN was the logic function designator. The suffixes B and UB stand for
buffered and unbuffered, respectively.)

Table 2.21 lists the quadruple 2-input NAND function as implemented in different
logic families. These devices all have the same logic function, but different electrical char-
acteristics.

Table 2.21 Part Numbers for a Quad 2-input NAND Gate in Different Logic Families

Part Number Logic Family

74LS00 Low-power Schottky TTL
74ALS00 Advanced low-power Schottky TTL
74F00 FAST TTL
74HC00 High-speed CMOS
74HCT00 High-speed CMOS (TTL-compatible inputs)
74LVX00 Low-voltage CMOS
74ABT00 Advanced BiCMOS (TTL/CMOS hybrid)

Table 2.22 Part Numbers for Different Functions
within a Logic Family (High-Speed CMOS)

Part Number Function

74HC00 Quadruple 2-input NAND
74HC02 Quadruple 2-input NOR
74HC04 Hex inverter
74HC08 Quadruple 2-input AND
74HC32 Quadruple 2-input OR
74HC86 Quadruple 2-input XOR

Table 2.22 lists several logic functions available in the high-speed CMOS family.
These devices all have the same electrical characteristics, but different logic functions.

Until recently, the most common way to package logic gates has been in a plastic or
ceramic dual in-line package, or DIP, which has two parallel rows of pins. The standard
spacing between pins in one row is 0.1� (or 100 mil). For packages having fewer than 28
pins, the spacing between rows is 0.3� (or 300 mil). For larger packages, the rows are
spaced by 0.6� (600 mil).

This type of package is designed to be inserted in a printed circuit board in one of
two says: (a) the pins are inserted through holes in the circuit board and soldered in place;
or (b) a socket is soldered to the circuit board and the IC is placed in the socket. The latter
method is more expensive, but makes chip replacement much easier. A socket can occa-
sionally cause its own problems by making a poor connection to the pins of the IC.

The DIP is also convenient for laboratory and prototype work, since it can also be in-
serted easily into a breadboard, a special type of temporary circuit board with internal
connections between holes of a standard spacing. It is also convenient for wire-wrapping,
a technique in which a special tool is used to wrap wires around posts on the underside of
special sockets.

48 C H A P T E R 2 • Logic Functions and Gates

The outline of a 14-pin DIP is shown in Figure 2.36. There is a notch on one end to
show the orientation of the pins. When the IC is oriented as shown and viewed from
above, pin 1 is at the top left corner and the pins number counterclockwise from that
point.

Besides DIP packages, there are numerous other types of packages for digital ICs, in-
cluding, among others, small outline IC (SOIC), thin shrink small outline package
(TSSOP), plastic leaded chip carrier (PLCC), quad flat pack (QFP), and ball grid ar-
ray (BGA) packages. They are used mostly in applications where circuit board space is at
a premium and in manufacturing processes relying on surface-mount technology (SMT).
In fact, these devices represent the majority of IC packages found in new designs. Some of
these IC packaging options are shown in Figure 2.37.

FIGURE 2.36
14-Pin DIP (Top View)

a. b. c.

d. e.

FIGURE 2.37
Some IC Packaging Options

SMT is a sophisticated technology which relies on automatic placement of chips and
soldering of pins onto the surface of a circuit board, not through holes in the circuit board.
This technique allows a manufacturer to mount components on both sides of a circuit
board.

2.6 • Integrated Circuit Logic Gates 49

Primarily due to the great reduction in board space requirements, most new ICs are
available only in the newer surface-mount packages and are not being offered at all in the
DIP package. However, we will look at DIP offerings in logic gates because they are in-
expensive and easy to use with laboratory breadboards and therefore useful as a learning
tool.

Logic gates come in packages containing several gates. Common groupings available
in DIP packages are six 1-input gates, four 2-input gates, three 3-input gates, or two 4-in-
put gates, although other arrangements are available. The usual way of stating the num-
ber of logic gates in a package is to use the numerical prefixes hex (6), quad or quadru-
ple (4), triple (3), or dual (2).

Some common gate packages are listed in Table 2.23.

Table 2.23 Some Common Logic Gate ICs

Gate Family Function

74HC00A High-speed CMOS Quad 2-input NAND
74HC02 High-speed CMOS Quad 2-input NOR
74ALS04 Advanced low-power Schottky TTL Hex inverter
74LS11 Low-power Schottky TTL Triple 3-input AND
74F20 FAST TTL Dual 4-input NAND
74HC27 High-speed CMOS Triple 3-input NOR

Information about pin configurations, electrical characteristics, and mechanical
specifications of a part is available in a data sheet provided by the chip manufacturer.
A collection of data sheets for a particular logic family is often bound together in a
data book. More recently, device manufacturers have been making data sheets available
on their corporate World Wide Web sites in portable document format (PDF), read-
able by a special program such as Adobe Acrobat Reader. Links to some of these man-
ufacturers can be found on the Online Companion Web site for this book.
(http://www.electronictech.com)

Figure 2.38 shows the internal diagrams of gates listed in Table 2.23. Notice that the
gates can be oriented inside a chip in a number of ways. That is why it is important to con-
firm pin connections with a data sheet.

In addition to the gate inputs and outputs there are two more connections to be made
on every chip: the power (VCC) and ground connections. In TTL, connect VCC to �5 Volts
and GND to ground. In CMOS, connect the VCC pin to the supply voltage (�3 V to �6 V)
and GND to ground. The gates won’t work without these connections.

Every chip requires power and ground. This might seem obvious, but it’s surprising
how often it is forgotten, especially by students who are new to digital electronics. Proba-
bly this is because most digital circuit diagrams don’t show the power connections, but as-
sume that you know enough to make them.

The only place a chip gets its required power is through the VCC pin. Even if the power
supply is connected to a logic input as a logic HIGH, you still need to connect it to the
power supply pin.

Even more important is a good ground connection. A circuit with no power connection
will not work at all. A circuit without a ground may appear to work, but it will often pro-
duce bizarre errors that are very difficult to detect and repair.

In later chapters, we will work primarily with complex ICs in PLCC packages. The
power and ground connections are so important to these chips that they will not be left to
chance; they are provided on a specially designed circuit board. Only input and output pins
are accessible for connection by the user.

As digital designs become more complex, it is increasingly necessary to follow good
practices in board layout and prototyping procedure to ensure even minimal functionality.

50 C H A P T E R 2 • Logic Functions and Gates

Thus, hardware platforms for prototype and laboratory work will need to be at least par-
tially constructed by the board manufacturer in order to supply the requirements of a stable
circuit configuration.

❘❙❚ SECTION REVIEW PROBLEM FOR SECTION 2.6

2.10. How are the pins numbered in a dual in-line package?

S U M M A R Y

1. Digital systems can be analyzed and designed using Boolean
algebra, a system of mathematics that operates on variables
that have one of two possible values.

2. Any Boolean expression can be constructed from the three
simplest logic functions: NOT, AND, and OR.

3. A NOT gate, or inverter, has an output state that is in the op-
posite logic state of the input.

4. The main 2-input logic functions are described as follows,
for inputs A and B and output Y:
AND: Y is HIGH if A AND B are HIGH. (Y � A � B)
OR: Y is HIGH if A OR B is HIGH. (Y � A � B)
NAND: Y is LOW if A AND B are HIGH. (Y � A�����B�)
NOR: Y is LOW if A OR B is HIGH. (Y � A�����B�)

XOR: Y is HIGH if A OR B is HIGH, but not if both
are HIGH. (Y � A � B)

XNOR: Y is LOW if A OR B is HIGH, but not if both are
HIGH. (Y � A�����B�)

5. The function of a logic gate can be represented by a truth
table, a list of all possible inputs in binary order and the out-
put corresponding to each input state.

6. DeMorgan’s theorems (A���� �B� � A� � B� and A�����B� � A� � B�)
allow us to represent any gate in an AND form and an OR
form.

7. To change a gate into its DeMorgan equivalent form, change
its shape from AND to OR or vice versa and change the ac-
tive levels of inputs and output.

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74HC00A

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74HC02A

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74ALS04

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74LS11

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74F20

1413 12 11 10 9 8

1 2 3 4 5 6 7

Vcc

74HC27

FIGURE 2.38
Pinouts of ICs Listed in Table 2.23

Glossary 51

Active HIGH An active-HIGH terminal is considered “ON”
when it is in the logic HIGH state. Indicated by the absence of a
bubble at the terminal in distinctive-shape symbols.

Active level A logic level defined as the “ON” state for a par-
ticular circuit input or output. The active level can be either
HIGH or LOW.

Active LOW An active-LOW terminal is considered “ON”
when it is in the logic LOW state. Indicated by a bubble at the
terminal in distinctive-shape symbols.

AND gate A logic circuit whose output is HIGH when all in-
puts (e.g., A AND B AND C) are HIGH.

Ball grid array (BGA) A square surface-mount IC package
with rows and columns of spherical leads underneath the package.

Boolean algebra A system of algebra that operates on
Boolean variables. The binary (two-state) nature of Boolean al-
gebra makes it useful for analysis, simplification, and design of
combinational logic circuits.

Boolean expression An algebraic expression made up of
Boolean variables and operators, such as AND (�), OR (�), or
NOT (�). Also referred to as a Boolean function or a logic
function.

Boolean variable A variable having only two possible values,
such as HIGH/LOW, 1/0, On/Off, or True/False.

Breadboard A circuit board for wiring temporary circuits,
usually used for prototypes or laboratory work.

Bubble A small circle indicating logical inversion on a circuit
symbol.

Buffer An amplifier that acts as a logic circuit. Its output can
be inverting or noninverting.

Bus A common wire or parallel group of wires connecting
multiple circuits.

Chip An integrated circuit. Specifically, a chip of silicon on
which an integrated circuit is constructed.

Clock generator A circuit that generates a periodic digital
waveform.

Coincidence gate An Exclusive NOR gate.

Complement form Inverted.

Complementary metal-oxide-semiconductor (CMOS) A
family of digital logic devices whose basic element is the metal-
oxide-semiconductor field effect transistor (MOSFET).

Data book A bound collection of data sheets. A digital logic
data book usually contains data sheets for a specific logic family
or families.

Data sheet A printed specification giving details of the pin
configuration, electrical properties, and mechanical profile of an
electronic device.

DeMorgan equivalent forms Two gate symbols, one AND-
shaped and one OR-shaped, that are equivalent according to De-
Morgan’s theorems.

DeMorgan’s theorems Two theorems in Boolean algebra that
allow us to transform any gate from an AND-shaped to an OR-
shaped gate and vice versa.

Digital signal (or pulse waveform) A series of 0s and 1s plot-
ted over time.

Distinctive-shape symbols Graphic symbols for logic circuits
that show the function of each type of gate by a special shape.

Dual in-line package (DIP) A type of IC with two parallel
rows of pins for the various circuit inputs and outputs.

Enable A logic gate is enabled if it allows a digital signal to pass
from an input to the output in either true or complement form.

Exclusive NOR gate A two-input logic circuit whose output is
the complement of an Exclusive OR gate.

8. A logic switch can be created from a single-pole single-
throw switch by grounding one end and tying the other end
to VCC through a pull-up resistor. The logic level is available
on the same side of the switch as the resistor. An open switch
is HIGH and a closed switch is LOW. A similar circuit can be
made with a pushbutton switch.

9. A light emitting diode (LED) can be used to indicate logic
HIGH or LOW levels. To indicate a HIGH, ground the cath-
ode through a series resistor (about 470 � for a 5-volt power
supply) and apply the logic level to the anode. To indicate a
LOW, tie the anode to VCC through a series resistor and apply
the logic level to the cathode.

10. Logic gates can be used to pass or block digital signals. For
example, an AND gate will pass a digital signal applied to in-
put B if the input A is HIGH (Y � B). If input A is LOW, the
signal is blocked and the gate output is always LOW (Y � 0).
Similar properties apply to other gates, as summarized in
Table 2.20.

11. Tristate buffers have outputs that generate logic HIGH and
LOW when enabled and a high-impedance state when dis-
abled. The high-impedance state is electrically equivalent to
an open circuit.

12. Logic gates are available as integrated circuits in a variety of
packages. Packages that have fewer than 12 gates are called
small scale integration (SSI) devices.

13. Many logic functions have an industry-standard part number
of the form 74XXNN, where XX is an alphabetic family des-
ignator and NN is a numeric function designator (e.g.
74HC02 � Quadruple 2-input NOR gate in the high-speed
CMOS family).

14. Some common IC packages include dual in-line package
(DIP), small outline IC (SOIC), thin shrink small outline
package (TSSOP), plastic leaded chip carrier (PLCC), quad
flat pack (QFP), and ball grid array (BGA) packages.

15. Most new IC packages are for surface mounting on a printed
circuit board. These have largely replaced DIPs in through-
hole circuit boards, due to better use of board space.

16. IC pin connections and functional data can be determined
from manufacturers’ data sheets, available in paper format or
electronically via the Internet.

17. All ICs require power and ground, which must be applied to
special power supply pins on the chip.

G L O S S A R Y

52 C H A P T E R 2 • Logic Functions and Gates

Exclusive OR gate A two-input logic circuit whose output is
HIGH when one input (but not both) is HIGH.

Floating An undefined logic state, neither HIGH nor LOW.

High-impedance state The output state of a tristate buffer that
is neither logic HIGH nor logic LOW, but is electrically equiva-
lent to an open circuit.

IEEE/ANSI Standard 91-1984 A standard format for draw-
ing logic circuit symbols as rectangles with logic functions
shown by a standard notation inside the rectangle for each de-
vice.

In phase Two digital waveforms are in phase if they are al-
ways at the same logic level at the same time.

Inhibit (or disable) A logic gate is inhibited if it prevents a
digital signal from passing from an input to the output.

Integrated circuit (IC) An electronic circuit having many
components, such as transistors, diodes, resistors, and capaci-
tors, in a single package.

Inverter Also called a NOT gate or an inverting buffer. A logic
gate that changes its input logic level to the opposite state.

Large scale integration (LSI) An integrated circuit having
from 100 to 10,000 equivalent gates.

LED Light emitting diode. An electronic device that con-
ducts current in one direction only and illuminates when it is
conducting.

Logic function See Boolean expression.

Logic gate An electronic circuit that performs a Boolean alge-
braic function.

Logical product AND function.

Logical sum OR function.

Medium scale integration (MSI) An integrated circuit having
the equivalent of 12 to 100 gates in one package.

NAND gate A logic circuit whose output is LOW when all in-
puts are HIGH.

NOR gate A logic circuit whose output is LOW when at least
one input is HIGH.

OR gate A logic circuit whose output is HIGH when at least
one input (e.g., A OR B OR C) is HIGH.

Out of phase Two digital waveforms are out of phase if they
are always at opposite logic levels at any given time.

Plastic leaded chip carrier (PLCC) A square IC package
with leads on all four sides designed for surface mounting on a
circuit board. Also called J-lead, for the profile shape of the
package leads.

Portable document format (PDF) A format for storing pub-
lished documents in compressed form.

Printed circuit board (PCB) A circuit board in which con-
nections between components are made with lines of copper on
the surfaces of the circuit board.

Pull-up resistor A resistor connected from a point in an elec-
tronic circuit to the power supply of that circuit. In a digital cir-
cuit it supplies the required logic level in a HIGH state and lim-
its current from the power supply in the LOW state.

Quad flat pack (QFP) A square surface-mount IC package
with gull-wing leads.

Qualifying symbol A symbol in IEEE/ANSI logic circuit no-
tation, placed in the top center of a rectangular symbol, that
shows the function of a logic gate. Some qualifying symbols in-
clude: 1 � “buffer”; & � “AND”; �1 � “OR”

Rectangular-outline symbols Rectangular logic gate symbols
that conform to IEEE/ANSI Standard 91-1984.

Small outline IC (SOIC) An IC package similar to a DIP, but
smaller, which is designed for automatic placement and solder-
ing on the surface of a circuit board. Also called gull-wing, for
the shape of the package leads.

Small-scale integration (SSI) An integrated circuit having 12
or fewer gates in one package.

Surface-mount technology (SMT) A system of mounting
and soldering integrated circuits on the surface of a circuit
board, as opposed to inserting their leads through holes on the
board.

Thin shrink small outline package (TSSOP) A thinner ver-
sion of an SOIC package.

Through-hole A means of mounting DIP ICs on a circuit
board by inserting the IC leads through holes in the board and
soldering them in place.

Transistor-transistor logic (TTL) A family of digital logic
devices whose basic element is the bipolar junction transistor.

Tristate buffer A gate having three possible output states:
logic HIGH, logic LOW, and high-impedance.

True form Not inverted.

Truth table A list of all possible input values to a digital cir-
cuit, listed in ascending binary order, and the output response for
each input combination.

VCC The power supply voltage in a transistor-based electronic
circuit. The term often refers to the power supply of digital circuits.

Very large scale integration (VLSI) An integrated circuit
having more than 10,000 equivalent gates.

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 2.1 Basic Logic Functions

2.1 Draw the symbol for the NOT gate (inverter) in both rec-
tangular-outline and distinctive-shape forms.

2.2 Draw the distinctive-shape and rectangular-outline sym-
bols for a 3-input AND gate.

2.3 Draw the distinctive-shape and rectangular-outline sym-
bols for a 3-input OR gate.

2.4 Write a sentence that describes the operation of a 4-input
AND gate that has inputs P, Q, R, and S and output T.
Make the truth table of this gate and draw an asterisk be-

P R O B L E M S

Problems 53

side the line(s) of the truth table indicating when the gate
output is in its active state.

2.5 Write a sentence that describes the operation of a 4-input
OR gate with inputs J, K, L, and M and output N. Make
the truth table of this gate and draw an asterisk beside the
line(s) of the truth table indicating when the gate output is
in its active state.

2.6 State how three switches must be connected to represent a
3-input AND function. Draw a circuit diagram showing
how this function can control a lamp.

2.7 State how four switches must be connected to represent a
4-input OR function. Draw a circuit diagram showing
how this function can control a lamp.

Section 2.2 Logic Switches and LED Indicators

2.8 Sketch the circuit of a single-pole single-throw (SPST)
switch used as a logic switch. Briefly explain how it
works.

2.9 Refer to Figure 2.10 (logic pushbuttons). Should the nor-
mally open pushbutton be considered an active HIGH or
active LOW device? Briefly explain your choice.

2.10 Should the normally closed pushbutton be considered an
active HIGH or active LOW device? Why?

2.11 Briefly state what is required for an LED to illuminate.

2.12 Briefly state the relationship between the brightness of an
LED and the current flowing through it. Why is a series
resistor required?

2.13 Draw a circuit showing how an OR-gate output will illu-
minate an LED when the gate output is LOW. Assume the
required series resistor is 470 �.

Section 2.3 Derived Logic Functions

2.14 For a 4-input NAND gate with inputs A, B, C, and D and
output Y:

a. Write the truth table and a descriptive sentence.

b. Write the Boolean expression.

c. Draw the logic circuit symbol in both distinctive-
shape and rectangular-outline symbols.

2.15 Repeat Problem 2.14 for a 4-input NOR gate.

2.16 State the active levels of the inputs and outputs of a
NAND gate and a NOR gate.

2.17 Write a descriptive sentence of the operation of a 5-input
NAND gate with inputs A, B, C, D, and E and output Y.
How many lines would the truth table of this gate have?

2.18 Repeat Problem 2.17 for a 5-input NOR gate.

2.19 A pump motor in an industrial plant will start only if the
temperature and pressure of liquid in a tank exceed a cer-
tain level. The temperature sensor and pressure sensor,
shown in Figure 2.39 each produce a logic HIGH if the
measured quantities exceed this value. The logic circuit
interface produces a HIGH output to turn on the motor.
Draw the symbol and truth table of the gate that corre-
sponds to the action of the logic circuit.

2.20 Repeat Problem 2.19 for the case in which the motor is
activated by a logic LOW.

FIGURE 2.39
Problem 2.19: Temperature and Pressure Sensors

FIGURE 2.40
Problem 2.21: Circuit for Two-Way Switch

FIGURE 2.41
Problem 2.22: Logic Circuit

on a light from either the top or the bottom of the stair-
well and off at the other end. The circuit also allows any-
one coming along after you to do the same thing, no mat-
ter which direction they are coming from.

The lamp is ON when the switches are in the same po-
sitions and OFF when they are in opposite positions.
What logic function does this represent? Draw the truth
table of the function and use it to explain your reasoning.

2.22 Find the truth table for the logic circuit shown in Figure
2.41.

2.23 Recall the description of a 2-input Exclusive OR gate:
“Output is HIGH if one input is HIGH, but not both.”
This is not the best statement of the operation of a multi-
ple-input XOR gate. Look at the truth table derived in
Problem 2.22 and write a more accurate description of n-
input XOR operation.

Section 2.4 DeMorgan’s Theorems and Gate
Equivalence

2.24 For each of the gates in Figure 2.42:

a. Write the truth table.

b. Indicate with an * which lines on the truth table show
the gate output in its active state.

2.21 Figure 2.40 shows a circuit for a two-way switch for a
stairwell. This is a common circuit that allows you to turn

54 C H A P T E R 2 • Logic Functions and Gates

Section 2.5 Enable and Inhibit Properties
of Logic Gates

2.26 Draw the output waveform of the Exclusive NOR gate
when a square waveform is applied to one input and

a. The other input is held LOW

b. The other input is held HIGH

c. Convert the gate to its DeMorgan equivalent form.

d. Rewrite the truth table and indicate which lines on the
truth table show output active states for the DeMorgan
equivalent form of the gate.

2.25 Refer to Figure 2.43. State which two gates of the three
shown are DeMorgan equivalents of each other. Explain
your choice.

A

B

Y

FIGURE 2.44
Problem 2.28: Input Waveforms

FIGURE 2.45
Problem 2.29: Waveforms

How does this compare to the waveform that would
appear at the output of an Exclusive OR gate under the
same conditions?

2.27 Sketch the input waveforms represented by the following
32-bit sequences (use 1/4-inch graph paper, 1 square per
bit):

A: 0000 0000 0000 1111 1111 1111 1111 0000

B: 1010 0111 0010 1011 0101 0011 1001 1011

Assume that these waveforms represent inputs to a
logic gate. (Spaces are provided for readability only.)
Sketch the waveform for gate output Y if the gate function
is:

a. AND

b. OR

c. NAND

d. NOR

e. XOR

f. XNOR

2.28 Repeat Problem 2.27 for the waveforms shown in Fig-
ure 2.44.

2.29 The A and B waveforms shown in Figure 2.45 are inputs
to an OR gate. Complete the sketch by drawing the wave-
form for output Y.

2.30 Repeat Problem 2.29 for a NOR gate.

2.31 Figure 2.46 shows a circuit that will make a lamp flash at
3 Hz when the gasoline level in a car’s gas tank drops be-
low a certain point. A float switch in the tank monitors
the level of gasoline. What logic level must the float
switch produce to make the light flash when the tank is
approaching empty? Why?

2.32 Repeat Problem 2.31 for the case where the AND gate is
replaced by a NOR gate.

2.33 Will the circuit in Figure 2.46 work properly if theAND
gate is replaced by an Exclusive OR gate?Why or why not?

2.34 Make a truth table for the tristate buffers shown in Figure
2.33. Indicate the high-impedence state by the notation

C
B
A

Y

a.

C
B
A

Y

c.

B
A

Y

d.
FIGURE 2.42
Problem 2.24: Logic Gates

X
Y

a. b. c.

X
Y

X
Y

FIGURE 2.43
Problem 2.25: Logic Gates

B
A

Y

b.

Answers to Section Review Problems 55

Section 2.1

2.1 AND: “A AND B AND C AND D must be HIGH to make Y
HIGH.” 2.2. OR: “A OR B OR C OR D must be HIGH to
make Y HIGH.”

Section 2.2

2.3 When the switch is open, it provides a logic HIGH because
of the pull-up resistor. A closed switch is LOW, due to the con-
nection to ground.

Section 2.3

2.4 XOR; 2.5 NAND; 2.6 NOR; 2.7 XNOR.

Section 2.4

2.8 Y � A��B��C��D�

Section 2.5

2.9 An AND needs two HIGH inputs to make a HIGH output. If
the Control input is LOW, the output can never be HIGH; the
output remains LOW. An OR output is HIGH if one input is
HIGH. If the Control input is HIGH, the output is always HIGH,
regardless of the level at the Signal input. In both cases, the out-
put is “stuck” at one level, signifying that the gate is inhibited.

Section 2.6

2.10 Viewed from above, with the notch in the package away
from you, pin 1 is on the left side at the far end. The pins are
numbered counterclockwise from that point.

“Hi-Z” How do the enable properties of these gates differ
from gates such as AND and NAND?

Section 2.6 Integrated Circuit Logic Gates

2.35 Name two logic families used to implement digital logic
functions. How do they differ?

2.36 List the industry-standard numbers for a quadruple 2-input
NAND gate in low power Schottky TTL, CMOS, and
high-speed CMOS technologies.

2.37 Repeat Problem 2.36 for a quadruple 2-input NOR gate.
How does each numbering system differentiate between
the NAND and NOR functions?

2.38 List six types of packaging that a logic gate could
come in.

FIGURE 2.46
Problem 2.31: Gasoline Level Circuit

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

57

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 3

Boolean Algebra and
Combinational Logic

O U T L I N E

3.1 Boolean
Expressions, Logic
Diagrams, and Truth
Tables

3.2 Sum-of-Products
(SOP) and Product-
of-Sums (POS) Forms

3.3 Theorems of
Boolean Algebra

3.4 Simplifying SOP and
POS Expressions

3.5 Simplification by
the Karnaugh Map
Method

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Explain the relationship between the Boolean expression, logic diagram,
and truth table of a logic gate network and be able to derive any one from
either of the other two.

• Draw logic gate networks in such a way as to cancel out internal inversions
automatically (bubble-to-bubble convention).

• Write the sum of products (SOP) or product of sums (POS) forms of a
Boolean equation.

• Use rules of Boolean algebra to simplify the Boolean expressions derived
from logic diagrams and truth tables.

• Apply the Karnaugh map method to reduce Boolean expressions and logic
circuits to their simplest forms.

In Chapter 3, we will examine the rudiments of combinational logic. A combinational
logic circuit is one in which two or more gates are connected together to combine sev-

eral Boolean inputs. These circuits can be represented several ways, as a logic diagram,
truth table, or Boolean expression.

A Boolean expression for a network of logic gates is often not in its simplest form. In
such a case, we may be using more components than would be required for the job, so it is
of benefit to us if we can simplify the Boolean expression. Several tools are available to us,
such as Boolean algebra and a graphical technique known as Karnaugh mapping. We can
also simplify the Boolean expression by taking care to draw the logic diagrams in such a
way as to automatically eliminate inverting functions within the circuit. �

58 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.1 Boolean Expressions, Logic Diagrams and Truth Tables

Logic gate network Two or more logic gates connected together.

Logic diagram A diagram, similar to a schematic, showing the connection of
logic gates.

Combinational logic Digital circuitry in which an output is derived from the
combination of inputs, independent of the order in which they are applied.

Combinatorial logic Another name for combinational logic.

In Chapter 2, we examined the functions of single logic gates. However, most digital cir-
cuits require multiple gates. When two or more gates are connected together, they form a
logic gate network. These networks can be described by a truth table, a logic diagram
(i.e., a circuit diagram), or a Boolean expression. Any one of these can be derived from any
other.

A digital circuit built from gates is called a combinational (or combinatorial) logic
circuit. The output of a combinational circuit depends on the combination of inputs. The
inputs can be applied in any sequence and still produce the same result. For example, an
AND gate output will always be HIGH if all inputs are HIGH, regardless of the order in
which they became HIGH. This is in contrast to sequential logic, in which sequence mat-
ters; a sequential logic output may have a different value with two identical sets of inputs
if those inputs were applied in a different order. We will study sequential logic in a later
chapter.

Boolean Expressions from Logic Diagrams

Bubble-to-bubble convention The practice of drawing gates in a logic diagram
so that inverting outputs connect to inverting inputs and noninverting outputs con-
nect to noninverting inputs.

Order of precedence The sequence in which Boolean functions are performed,
unless otherwise specified by parentheses.

Writing the Boolean expression of a logic gate network is similar to finding the expression
for a single gate. The difference is that in a multiple gate network, the inputs will usually
not consist of single variables, but compound expressions that represent outputs of previ-
ous gates.

These compound expressions are combined according to the same rules as single vari-
ables. In an OR gate, with inputs x and y, the output will always be x � y regardless of
whether x and y are single variables (e.g., x � A, y � B, output � A � B) or compound ex-
pressions (e.g., x � AB, y � AC, output � AB � AC).

Figure 3.1 shows a simple logic gate network, consisting of a single AND and a
single OR gate. The AND gate combines inputs A and B to give the output expression AB.
The OR combines the AND function and input C to yield the compound expression
AB � C.

K E Y T E R M S

K E Y T E R M S

A AB

B

C

AB CY ��

FIGURE 3.1
Boolean Expression from a Gate Network

3.1 • Boolean Expressions, Logic Diagrams and Truth Tables 59

❘❙❚ EXAMPLE 3.1 Derive the Boolean expression of the logic gate network shown in Figure 3.2a.

A AB

CD

B

C

D

ABY �� CD

A

B

C

D

Y

a. Logic gate network

b. Boolean expression from logic gate network

FIGURE 3.2
Example 3.1

Figure 3.2b shows the gate network with the output terms indicated for each gate. The
AND and NAND functions are combined in an OR function to yield the output expression:

Y � AB � C�D�
❘❙❚

The Boolean expression in Example 3.1 includes a NAND function. It is possible to
draw the NAND in its DeMorgan equivalent form. If we choose the gate symbols so that
outputs with bubbles connect to inputs with bubbles, we will not have bars over groups of
variables, except possibly one bar over the entire function. In a circuit with many inverting
functions (NANDs and NORs), this results in a cleaner notation and often a clearer idea of
the function of the circuit. We will follow this notation, which we will refer to as the bubble-
to-bubble convention, as much as possible.

❘❙❚ EXAMPLE 3.2 Redraw the circuit in Figure 3.2 to conform to the bubble-to-bubble convention. Write the
Boolean expression of the new logic diagram.

Solution

A AB

B

C
D

AB CY �� D�

C D�

FIGURE 3.3
Example 3.2
Using DeMorgan Equivalents to Simplify a Circuit

Figure 3.3 shows the new circuit. The NAND has been converted to its DeMorgan
equivalent so that its active-HIGH output drives an active-HIGH input on the OR gate. The
new Boolean expression is Y � AB � C� � D�. ❘❙❚

Boolean functions are governed by an order of precedence. Unless otherwise speci-
fied, AND functions are performed first, followed by ORs. This order results in a form sim-
ilar to that of linear algebra, where multiplication is performed before addition, unless
otherwise specified.

Solution

60 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Figure 3.4 shows two logic diagrams, one whose Boolean expression requires paren-
theses and one that does not.

A AB

B

C

AB AC�

AC

a. No parentheses required (AND, then OR)

A

B

C

(A B�

A B�

C)�(A B)�

A B� C�

b. Parentheses required (OR, then AND)

FIGURE 3.4
Order of Precedence

The AND functions in Figure 3.4a are evaluated first, eliminating the need for paren-
theses in the output expression. The expression for Figure 3.4b requires parentheses since
the ORs are evaluated first.

❘❙❚ EXAMPLE 3.3 Write the Boolean expression for the logic diagrams in Figure 3.5.

FIGURE 3.5
Example 3.5
Order of Precedence

A

B

Y

S

C

a.

P

Q

R

b.

3

2

1

3

2

1

Solution Examine the output of each gate and combine the resultant terms as re-
quired.

Figure 3.5a: Gate 1: A� � B�
Gate 2: B � C

Gate 3: Y � Gate 1 � Gate2 � A� � B� � B � C

Figure 3.5b: Gate 1: P� � Q� � P � Q�
Gate 2: Q � R�
Gate 3: S � G�a�t�e�1� � G�a�t�e�2� � (P � Q�)(Q � R�) � (P � Q�)(Q � R�)

3.1 • Boolean Expressions, Logic Diagrams and Truth Tables 61

Note that when two bubbles touch, they cancel out, as in the doubly inverted P input
or the connection between the outputs of gates 1 and 2 and the inputs of gate 3. In the re-
sultant Boolean expression, bars of the same length cancel; bars of unequal length do not.

❘❙❚

❘❙❚ SECTION 3.1A REVIEW PROBLEM

3.1 Write the Boolean expression for the logic diagrams in Figure 3.6, paying attention to
the rules of order of precedence.

A

B

OUT

C
D

a.

W

X

Z

Y

b.

Y

FIGURE 3.6
Section Review Problem 3.1

Logic Diagrams from Boolean Expressions

Levels of gating The number of gates through which a signal must pass from in-
put to output of a logic gate network.

Double-rail inputs Boolean input variables that are available to a circuit in both
true and complement form.

Synthesis The process of creating a logic circuit from a description such as a
Boolean equation or truth table.

We can derive a logic diagram from a Boolean expression by applying the order of prece-
dence rules. We examine an expression to create the first level of gating from the circuit in-
puts, then combine the output functions of the first level in the second level gates, and so
forth. Input inverters are often not counted as a gating level, as we usually assume that each
variable is available in both true (noninverted) and complement (inverted) form. When in-
put variables are available to a circuit in true and complement form, we refer to them as
double-rail inputs.

The first level usually will be AND gates if no parentheses are present, OR gates if
parentheses are used. (Not always, however; parentheses merely tell us which functions to
synthesize first.) Although we will try to eliminate bars over groups of variables by use of
DeMorgan’s theorems and the bubble-to-bubble convention, we should recognize that a
bar over a group of variables is the same as having those variables in parentheses.

Let us examine the Boolean expression Y � AC � BD � AD. Order of precedence
tells us that we synthesize the AND functions first. This yields three 2-input AND gates,
with outputs AC, BD, and AD, as shown in Figure 3.7a. In the next step, we combine these
AND functions in a 3-input OR gate, as shown in Figure 3.7b.

K E Y T E R M S

62 C H A P T E R 3 • Boolean Algebra and Combinational Logic

When the expression has OR functions in parentheses, we synthesize the ORs first, as
for the expression Y � (A � B)(A � C � D)(B � C). Figure 3.8 shows this process. In the
first step, we synthesize three OR gates for the terms (A � B), (A � C � D), and (B � C).
We then combine these terms in a 3-input AND gate.

FIGURE 3.7
Logic Diagram for
Y � AC � BD � AD

A AC

BD

AD

B

C

D

a. ANDs first

A

B

C

D

b. Combine ANDs in an OR gate

ACY BD�� AD�

C
D

A

B

Y (A B)(A C

a. ORs first

b. Combine ORs in an AND gate

C
D

A

B

(A

(B

� B)

(A C D)

C)

� � � D)(B� C)�

�

� �

FIGURE 3.8
Logic Diagram for Y � (A � B)
(A � C � D) (B � C)

❘❙❚ EXAMPLE 3.4 Synthesize the logic diagrams for the following Boolean expressions:

1. P � QR�S� � S�T

2. X � (W � Z � Y)V� � (W� � V)Y�

Solution

1. Recall that a bar over two variables acts like parentheses. Thus the QR�S� term is synthe-
sized from a NAND, then an AND, as shown in Figure 3.9a. Also shown is the second
AND term, S�T.

3.1 • Boolean Expressions, Logic Diagrams and Truth Tables 63

Figure 3.9b shows the terms combined in an OR gate.

FIGURE 3.9
Example 3.4
Logic Diagram of
P � QR�S� � S�T

R

Q

RS

S

T

S
ST

QRS

a. Combine inputs (NAND, then AND)

R

Q

RS

S

T

S
ST

QRS

P QRS ST

b. First and second level gates combined in and OR

� �

2. Figure 3.10 shows the synthesis of the second logic diagram in three stages. Figure
3.10a shows how the circuit inputs are first combined in two OR gates. We do this first
because the ORs are in parentheses. In Figure 3.10b, each of these functions is com-
bined in an AND gate, according to the normal order of precedence. The AND outputs
are combined in a final OR function, as shown in Figure 3.10c.

FIGURE 3.10
Example 3.4
Logic Diagram for X �
(W � Z � Y)V� � (W� � V)Y�

W

W

Z
Y

V

b. Combine with ANDs (order of precedence)

c. Find output (OR)

a. ORs first (parentheses)

W

W

W

Z
Y

V

Y

V

(W

W

W

Z
Y

V
W

Y

V

� Z

W

W

� V

Y�

W � Z

� V

Y�

W � Z

� V)Y

(W �

X (W� X� (W�Y)V�

Z � Y)V

� V

Y�

(W � Z Y)V�

(W V)Y

V)Y�

�

64 C H A P T E R 3 • Boolean Algebra and Combinational Logic

❘❙❚ EXAMPLE 3.5 Use DeMorgan’s theorem to modify the Boolean equation in part 1 of Example 3.4 so that
there is no bar over any group of variables. Redraw Figure 3.9b to reflect the change.

Solution

P � QR�S� � S�T � Q(R� � S�) � S�T

Figure 3.11a shows the modified logic diagram. The levels of gating could be further
reduced from three to two (not counting input inverters) by “multiplying through” the
parentheses to yield the expression:

P � QR� � QS� � S�T

Figure 3.11b shows the logic diagram for this form. We will examine this simplifica-
tion procedure more formally in a later section of this chapter.

FIGURE 3.11
Example 3.5: Reworking Figure 3.9b

a. Logic diagram of P � Q(R � S) � ST

b. Logic diagram of P � QR � QS � ST

Q(R

ST

Q

R

S

T

S

QRQ

R

S

T

QS

ST

P

� S)

Q(R �� S) � ST

P QR �� QS � ST

(R � S)

❘❙❚

Truth Tables from Logic Diagrams or Boolean Expressions

There are two basic ways to find a truth table from a logic diagram. We can examine the
output of each gate in the circuit and develop its truth table. We then use our knowledge of
gate properties to combine these intermediate truth tables into the final output truth table.
Alternatively, we can develop a Boolean expression for the logic diagram and by examin-
ing the expression fill in the truth table in a single step. The former method is more thor-
ough and probably easier to understand when you are learning the technique. The latter
method is more efficient, but requires some practice and experience. We will look at both.

Examine the logic diagram in Figure 3.12. Since there are three binary inputs, there
will be eight ways those inputs can be combined. Thus, we start by making an 8-line truth
table, as in Table 3.1.

FIGURE 3.12
Logic Diagram for AB � C

ABA

B

C

AB � C

3.1 • Boolean Expressions, Logic Diagrams and Truth Tables 65

The OR gate output will describe the function of the whole circuit. In order to assess
the OR function, we must first evaluate the AND output. We add a column to the truth table
for the AND gate and look for the lines in the table where both A AND B equal logic 1 (in
this case, the last two rows). For these lines, we write a 1 in the AB column. Next, we look
at the values in column C and the AB column. If there is a 1 in either column, we write a 1
in the column for the final output.

Table 3.1 Truth Table for Figure 3.12

A B C AB AB � C

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

❘❙❚ EXAMPLE 3.6 Derive the truth table for the logic diagram shown in Figure 3.13.

FIGURE 3.13
Example 3.6
Logic Diagram

A

B

C

Solution The Boolean equation for Figure 3.13 is (A� � B�)(A � C). We will create a
column for each input variable and for each term in parentheses, as well as a column for the
final output. Table 3.2 shows the result. For the lines where A OR B is 0, we write a 1 in the
(A� � B�) column. Where A OR C is 1, we write a 1 in the (A � C) column. For the lines
where there is a 1 in both the (A� � B�) AND (A � C) columns, we write a 1 in the final out-
put column.

Table 3.2 Truth Table for Figure 3.13

A B C (A� � B�) (A � C) (A� � B�)(A � C)

0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 1 0

❘❙❚

66 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Another approach to finding a truth table involves analysis of the Boolean expression
of a logic diagram. The logic diagram in Figure 3.14 can be described by the Boolean ex-
pression Y � A�BC � A� C� � B� D�.

A
B
C

D

Y

FIGURE 3.14
Logic Diagram

Table 3.3 Truth Table for Figure 3.14

A B C D Y terms

0 0 0 0 1 A� C�, B� D�
0 0 0 1 1 A� C�
0 0 1 0 1 B� D�
0 0 1 1 0
0 1 0 0 1 A� C�
0 1 0 1 1 A� C�
0 1 1 0 1 A�BC
0 1 1 1 1 A�BC
1 0 0 0 1 B� D�
1 0 0 1 0
1 0 1 0 1 B� D�
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

❘❙❚ SECTION 3.16 REVIEW PROBLEM

3.2 Find the truth table for the logic diagram shown in Figure 3.15.

A

B

C

Y

FIGURE 3.15
Section Review Problem 3.2

We can examine the Boolean expression to determine that the final output of the cir-
cuit will be HIGH under one of the following conditions:

1. A � 0 AND B � 1 AND C � 1;

2. A � 0 AND C � 0;

3. B � 0 AND D � 0.

All we have to do is look for these conditions in the truth table and write a 1 in the out-
put column whenever a condition is satisfied. Table 3.3 shows the result of this analysis
with each line indicating which term, or terms, contribute to the HIGH output.

3.2 • Sum-of-Products and Product-of-Sums Forms 67

3.2 Sum-of-Products and Product-of-Sums Forms

Product term A term in a Boolean expression where one or more true or comple-
ment variables are ANDed (e.g., A� C�).

Minterm A product term in a Boolean expression where all possible variables ap-
pear once in true or complement form (e.g., A� B� C�; A B� C�).

Sum term A term in a Boolean expression where one or more true or comple-
ment variables are ORed (e.g., A� � B � D�).

Maxterm A sum term in a Boolean expression where all possible variables ap-
pear once, in true or complement form (e.g., (A� � B� � C); (A � B� � C)).

Sum-of-products (SOP) A type of Boolean expression where several product
terms are summed (ORed) together (e.g., A� B C� � A� B� C � A B C).

Product-of-sums (POS) A type of Boolean expression where several sum terms
are multiplied (ANDed) together (e.g., (A� � B� � C)(A � B� � C�)(A� � B� � C�)).

Bus form A way of drawing a logic diagram so that each true and complement
input variable is available along a continuous conductor called a bus.

Suppose we have an unknown digital circuit, represented by the block in Figure 3.16.
All we know is which terminals are inputs, which are outputs, and how to connect the
power supply. Given only that information, we can find the Boolean expression of the
output.

The first thing to do is find the truth table by applying all possible input combinations
in binary order and reading the output for each one. Suppose the unknown circuit in Figure
3.16 yields the truth table shown in Table 3.4.

The truth table output is HIGH for three conditions:

1. When A AND B AND C are all LOW, OR

2. When A is LOW AND B AND C are HIGH, OR

3. When A is HIGH AND B AND C are LOW.

K E Y T E R M S

FIGURE 3.16
Digital Circuit with
Unknown Function

Table 3.4 Truth
Table for Figure 3.19

A B C Y

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Each of those conditions represents a minterm in the output Boolean expression. (A
minterm is a product term (AND term) that includes all variables (A, B, C) in true or com-
plement form.) The minterms are:

1. A� B� C�
2. A� B C

3. A B� C�

68 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Since condition 1 OR condition 2 OR condition 3 produces a HIGH output from the
circuit, the Boolean function Y consists of all three minterms summed (ORed) together, as
follows:

Y � A� B� C� � A� B C � A B� C�

This expression is in a standard form called sum-of-products (SOP) form. Figure
3.17 shows the equivalent logic circuit.

FIGURE 3.17
Logic Circuit for Y � A� B� C� � A�BC � A B� C�

The inputs A, B, and C and their complements are shown in bus form. Each variable
is available, in true or complement form, at any point along a conductor. This is a useful,
uncluttered notation for circuits that require several of the input variables more than once.

We can derive an SOP expression from a truth table as follows:

1. Every line on the truth table that has a HIGH output corresponds to a minterm in
the truth table’s Boolean expression.

2. Write all truth table variables for every minterm in true or complement form. If a
variable is 0, write it in complement form (with a bar over it); if it is 1, write it
in true form (no bar).

3. Combine all minterms in an OR function.

❘❙❚ EXAMPLE 3.7 Tables 3.5 and 3.6 show the truth tables for the Exclusive OR and the Exclusive NOR func-
tions. Derive the sum-of-products expression for each of these functions and draw the logic
diagram for each one.

N O T E

Table 3.5 XOR
Truth Table

A B A � B

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.6 XNOR
Truth Table

A B A �B

0 0 1
0 1 0
1 0 0
1 1 1

3.2 • Sum-of-Products and Product-of-Sums Forms 69

Solution

XOR: The truth table yields two product terms: A�B and AB�. Thus, the SOP form of the
XOR function is A � B � A�B � AB�. Figure 3.18 shows the logic diagram for this
equation.

A B

A � B � AB � AB

FIGURE 3.18
Example 3.7
SOP Form of XOR Function

A B

A � B � AB � AB

FIGURE 3.19
Example 3.7
SOP Form of XNOR Function

We can also find the Boolean function of a truth table in product-of-sums (POS)
form. The product-of-sums form of a Boolean expression consists of a number of max-
terms (i.e., sum terms (OR terms) containing all variables in true or complement form)
that are ANDed together. To find the POS form of Y, we will find the SOP expression for Y�
and apply DeMorgan’s theorems.

Recall DeMorgan’s theorems:

x�����y�����z� � x� y� zz�
x��y��z� � x� � y� � z�

When the theorems were introduced, they were presented as two-variable theorems,
but in fact they are valid for any number of variables.

XNOR: The product terms for this function are: A� B� and AB. The SOP form of the XNOR
function is A � B � A� B� � AB. The logic diagram in Figure 3.19 represents the XNOR
function. ❘❙❚

70 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Let’s reexamine Table 3.4. To find the sum-of-products expression for Y, we wrote a
minterm for each line where Y � 1. To find the SOP expression for Y�, we must write a
minterm for each line where Y � 0. Variables A, B, and C must appear in each minterm, in
true or complement form. A variable is in complement form (with a bar over the top) if its
value is 0 in that minterm, and it is in true form (no bar) if its value is 1.

We get the following minterms for Y�:

A� B� C

A� B C�
A B� C

A B C�
A B C

Thus, the SOP form of Y� is

Y� � A� B� C � A� B C� � A B� C � A B C� � A B C

To get Y in POS form, we must invert both sides of the above expression and apply De-
Morgan’s theorems to the righthand side.

Y � Y � A� B� C � A� B C� � A B� C � A B C� � A B C

� (A� B� C)(A� B C�)(A B� C)(A B C�)(A B C)

� (A � B � C�)(A � B� � C)(A� � B � C�)(A� � B� � C)(A� � B� � C�)

This Boolean expression can be implemented by the logic circuit in Figure 3.20.
We don’t have to go through the whole process outlined above every time we want to

find the POS form of a function. We can find it directly from the truth table, following the

FIGURE 3.20
Logic Circuit for Y � (A � B � C�) (A � B� � C)(A� � B � C�) (A� � B� � C)(A� � B� � C�)

procedure summarized below. Use this procedure to find the POS form of the expression
given by Table 3.4. The terms in this expression are the same as those derived by DeMor-
gan’s theorem.

3.2 • Sum-of-Products and Product-of-Sums Forms 71

Table 3.7 Truth Table for Example 3.8 (with minterms
and maxterms)

A B C D Y Minterms Maxterms

0 0 0 0 1 A� B� C� D�
0 0 0 1 1 A� B� C� D
0 0 1 0 0 A � B � C� � D
0 0 1 1 1 A� B� C D
0 1 0 0 0 A � B� � C � D
0 1 0 1 0 A � B� � C � D�
0 1 1 0 0 A � B� � C� � D
0 1 1 1 0 A � B� � C� � D�
1 0 0 0 1 A B� C� D�
1 0 0 1 0 A� � B � C � D�
1 0 1 0 1 A B� C D�
1 0 1 1 0 A� � B � C� � D�
1 1 0 0 1 A B C� D�
1 1 0 1 1 A B C� D
1 1 1 0 1 A B C D�
1 1 1 1 0 A� � B� � C� � D�

Deriving a POS expression from a truth table:

1. Every line on the truth table that has a LOW output corresponds to a maxterm in
the truth table’s Boolean expression.

2. Write all truth table variables for every maxterm in true or complement form. If
a variable is 1, write it in complement form (with a bar over it); if it is 0, write it
in true form (no bar).

3. Combine all maxterms in an AND function.

Note that these steps are all opposite to those used to find the SOP form of
the Boolean expression.

❘❙❚ EXAMPLE 3.8 Find the Boolean expression, in both SOP and POS forms, for the logic function repre-
sented by Table 3.7. Draw the logic circuit for each form.

N O T E

Solution All minterms (for SOP form) and maxterms (for POS form) are shown in the
last two columns of Table 3.5.

Boolean Expressions:

SOP form:

Y � A� B� C� D� � A� B� C� D � A� B� C D � A B� C� D� � A B� C D� � A B C� D�
� A B C� D � A B C D�

POS form:

Y � (A � B � C� � D)(A � B� � C � D)(A � B� � C � D�)(A � B� � C� � D)
(A � B� � C� � D�)(A� � B � C � D�)(A� � B � C� � D�)
(A� � B� � C� � D�)

The logic circuits are shown in Figures 3.21 and 3.22.

72 C H A P T E R 3 • Boolean Algebra and Combinational Logic

FIGURE 3.22
Example 3.8
POS Form

FIGURE 3.21
Example 3.8
SOP Form

❘❙❚

3.3 • Theorems of Boolean Algebra 73

❘❙❚ SECTION 3.2 REVIEW PROBLEM

3.3 Find the SOP and POS forms of the Boolean functions represented by the following
truth tables.

a. b.A B C Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

A B C Y

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

3.3 Theorems of Boolean Algebra
The main reason to learn Boolean algebra is to learn how to minimize the number of logic
gates in a network. Boolean expressions with many terms, such as those represented by the
logic diagrams in Figures 3.21 and 3.22, are seldom in their simplest form. It is often pos-
sible to apply some techniques of Boolean algebra to derive a simpler form of expression
that requires fewer gates to implement.

For example, the logic circuit in Figure 3.21 requires eight 4-input AND gates and
an 8-input OR gate. Using Boolean algebra, we can reduce its Boolean expression to
Y � AD� � A� B� C� � A� B� D � A B C�. This form can be implemented with 4 AND gates and
a 4-input OR. You will use a simplification technique for this example in an end-of-
chapter problem. In the meantime, let us examine some basic rules of Boolean algebra.

Commutative, Associative, and Distributive Properties

Commutative property A mathematical operation is commutative if it can be ap-
plied to its operands in any order without affecting the result. For example, addition
is commutative (a � b � b � a), but subtraction is not (a � b � b � a).

Associative property A mathematical function is associative if its operands can be
grouped in any order without affecting the result. For example, addition is associative
((a � b) � c � a � (b � c)), but subtraction is not ((a � b) � c � a � (b � c)).

Distributive property Full name: distributive property of multiplication over ad-
dition. The property that allows us to distribute (“multiply through”) an AND
across several OR functions. For example, a(b � c) � ab � ac.

AND and OR functions are both commutative and associative. The commutative property
states that AND and OR operations are independent of input order. For inputs x and y,

Theorem 1: xy � yx

and

Theorem 2: x � y � y � x

The associative property allows us to perform several two-input AND or OR functions in
any order. In other words,

Theorem 3: (xy)z � x(yz) � (xz)y

and

Theorem 4: (x � y) � z � x � (y � z) � (x � z) � y

K E Y T E R M S

74 C H A P T E R 3 • Boolean Algebra and Combinational Logic

The distributive property allows us to “multiply through” an AND function across
several OR functions. For example,

Theorem 5: x(y � z) � xy � xz

and

Theorem 6: (x � y)(w � z) � xw � xz � yw � yz

Figure 3.23 shows the logic gate equivalents of these theorems.

A

AC

BC

AD

BD

B C D

A

B

C

D

Y

Y

a. POS form

b. SOP form

FIGURE 3.24
Example 3.9
Distributive Property

❘❙❚ EXAMPLE 3.9 Find the Boolean expression of the POS circuit in Figure 3.24a. Apply the distributive
property to transform the circuit to an SOP form.

FIGURE 3.23
Distributive Properties

3.3 • Theorems of Boolean Algebra 75

Solution The Boolean expression for Figure 3.24a is Y � (A� � B)(C� � D). Using the
distributive property, we get the expression Y � A� C� � BC� � A�D � BD. The logic diagram
for this expression is shown in Figure 3.24b.

In Example 3.9, we see that the distributive property can be used to convert a POS
circuit to SOP or vice versa. In this case, the circuit was not simplified, just trans-
formed.

❘❙❚ EXAMPLE 3.10 Write the Boolean expression for the circuit in Figure 3.25a. Use the distributive property
to convert this to an SOP circuit.

FIGURE 3.25
Example 3.10
Distributive Property

A B C D

C

D

E

F

Y

Y

A

B

a. POS form

b. SOP form

E F

ABCE

ABCF

ABDE

ABDF

Solution The Boolean expression for Figure 3.25a is AB(C � D)(E� � F�). The distribu-
tive property can be applied in two stages:

Y � (ABC � ABD)(E� � F�)

� ABCE� � ABCF� � ABDE� � ABDF�

The logic diagram for this equation is shown in Figure 3.25b. This results in a network
that is “wider” (more gates on one level), but also “flatter” (fewer levels). The advantage of
the second circuit is that signals would pass through the network faster, since it has fewer
levels of gating. ❘❙❚

Single-Variable Theorems

There are thirteen theorems that can be used to manipulate a single variable in a Boolean
expression. An easy way to remember these theorems is to divide them into three groups:

1. Six theorems: x AND/OR/XOR 0/1

2. Six theorems: x AND/OR/XOR x/ x�
3. One theorem: Double Inversion

76 C H A P T E R 3 • Boolean Algebra and Combinational Logic

x AND/OR/XOR 0/1

The theorems in the first group can be generated by asking what happens when x, a
Boolean variable or expression, is at one input of an AND, an OR, or an XOR gate and a 0
or a 1 is at the other.

Examine the truth table of the gate in question. Hold one input of the gate constant and
find the effect of the other on the output. This is the same procedure we used in Chapter 2
to examine the enable/inhibit properties of logic gates.

Each of these six theorems can be represented by a logic gate, as shown in Figure 3.26.

A x Y

0 0 0

0 1 0

1 0 0

1 1 1

x � 0:

A x Y

0 0 0

0 1 1

1 0 1

1 1 0

If x � 0, Y � 0

If x � 1, Y � 0

(Can never have both inputs HIGH, therefore output is always LOW.)

Theorem 7: x � 0 � 0

x � 0:

If x � 0, Y � 0

If x � 1, Y � 1

(LOW input enables OR gate.)

Theorem 8: x � 0 � x

x � 0:

FIGURE 3.26
X AND/OR/XOR 0/1

A x Y

0 0 0

0 1 1

1 0 1

1 1 1

3.3 • Theorems of Boolean Algebra 77

If x � 0, Y � 0

If x � 1, Y � 1

(XOR acts as a noninverting buffer.)

Theorem 9: x � 0 � x

x � 1:

A x Y

0 0 0

0 1 0

1 0 0

1 1 1

A x Y

0 0 0

0 1 1

1 0 1

1 1 1

If x � 0, Y � 0

If x � 1, Y � 1

(HIGH input enables AND gate.)

Theorem 10: x � 1 � x

x � 1:

A x Y

0 0 0

0 1 1

1 0 1

1 1 0

If x � 0, Y � 1

If x � 1, Y � 1

(One input always HIGH, therefore output is always HIGH.)

Theorem 11: x � 1 � 1

x � 1:

If x � 0, Y � 1

If x � 1, Y � 0

(XOR acts as an inverting buffer.)

Theorem 12 x � 1 � x�

x AND/OR/XOR x/ x�
Six theorems are generated by combining a Boolean variable or expression, x, with itself or
its complement in an AND, an OR, or an XOR function.

Again, we can use the AND, OR, and XOR truth tables. For the first three theorems,
we look only at the lines where both inputs are the same. For the other three, we use the
lines where the inputs are different.

A x Y

0 0 0

0 1 1

1 0 1

1 1 1

78 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Figure 3.27 shows the logic gates that represent these theorems.

x � x:

If x � 0, Y � 0

If x � 1, Y � 1

Theorem 13: x � x � x

x � x:

A x Y

0 0 0

0 1 1

1 0 1

1 1 0

If x � 0, Y � 0

If x � 1, Y � 1

Theorem 14: x � x � x

x � x:

If x � 0, Y � 0

If x � 1, Y � 0

(Output is LOW if neither input is HIGH or if both are.)

Theorem 15: x � x � 0

A x Y

0 0 0

0 1 0

1 0 0

1 1 1

FIGURE 3.27
X AND/OR/XOR X/X�

If x � 0, Y � 1

If x � 1, Y � 1

(One input HIGH, but not both.)

Theorem 18: x � x� � 1

Double Inversion

The final single-variable theorem is just common sense. It states that a variable or expres-
sion inverted twice is the same as the original variable or expression. It is given by:

Theorem 19: x� � x

This theorem is illustrated by the two inverters in Figure 3.28.

Multivariable Theorems

There are numerous multivariable theorems we could learn, but we will look only at five of
the most useful.

3.3 • Theorems of Boolean Algebra 79

x � x�:

A x Y

0 0 0

0 1 0

1 0 0

1 1 1

A x Y

0 0 0

0 1 1

1 0 1

1 1 1

If x � 0, Y � 0

If x � 1, Y � 0

(Since inputs are opposite, can never have both HIGH. Output always LOW.)

Theorem 16: x � x� � 0

x � x�:

A x Y

0 0 0

0 1 1

1 0 1

1 1 0

If x � 0, Y � 1

If x � 1, Y � 1

(Since inputs are opposite, one input always HIGH. Therefore, output is always HIGH.)

Theorem 17: x � x� � 1

x � x�:

x x x � x

FIGURE 3.28
Double Inversion

80 C H A P T E R 3 • Boolean Algebra and Combinational Logic

DeMorgan’s Theorems

We have already seen DeMorgan’s theorems. We will list them again, but will not comment
further on them at this time.

Theorem 20: x�y� � x� � y�

Theorem 21: x�����y� � x� yy�

Other Multivariable Theorems

Theorem 22: x � xy � x

Proof:

x � xy � x (1 � y) (Distributive property)

� x � 1 (1 � y � 1; Theorem)

� x

Figure 3.29 illustrates the circuit in this theorem. Note that the equivalent is not a cir-
cuit at all, but a single, unmodified variable. Thus, the circuit shown need never be built.

FIGURE 3.29
Theorem 22

x

xyy

x � xy � x

❘❙❚ EXAMPLE 3.11 Simplify the following Boolean expressions, using Theorem 22 and other rules of Boolean
algebra. Draw the logic circuits of the unsimplified and simplified expressions.

a. H � KL� � K

b. Y � (A�����B�)CD � (A�����B�)

c. W � (PQR � P� Q�)(S � T) � (P� � Q�)(S � T) � (S � T)

Solution Figure 3.30 shows the logic circuits for the unsimplified and simplified ver-
sions of the above expressions.

a. Let x � K, let y � L�:

H � x � xy � K � KL�

Theorem 22 states x � xy � x. Therefore K � KL� � K.

b. Let x � (A�����B�), let y � CD:

Y � x � xy � x � A�����B�

c. Let x � S � T, let y � (P� � Q�):

Since x � xy � x, (P� � Q�)(S � T) � (S � T) � (S � T).

W � (PQR � P� Q�)(S � T) � (S � T)

Let x � S � T, let y � (PQR � P� Q�)

W � x � xy � x � S � T

Alternate method:

W � (PQR � P� Q�)(S � T) � (P� � Q�)(S � T) � (S � T)

By the distributive property:

W � ((PQR � P� Q�) � (P� � Q�))(S � T) � (S � T)

Let x � S � T, let y � ((PQR � P� Q�) � (P� � Q�)):

W � x � xy � x � S � T

3.3 • Theorems of Boolean Algebra 81

FIGURE 3.30
Example 3.11
Logic Circuits for Unsimplified and Simplified Expressions

❘❙❚

82 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Theorem 23: (x � y)(x � z) � x � yz

Proof: (x � y)(x � z) � xx � xz � xy � yz (Distributive property)

� (x � xy) � xz � yz (xx � x; Associative property)

� x � xz � yz (x � xy � x (Theorem 22))

� (x � xz) � yz (Associative property)

� x � yz (Theorem 22)

Figure 3.31 shows the logic circuits for the left and right sides of the equation for The-
orem 23. This theorem is a special case of one of the distributive properties, Theorem 6,
where w � x.

FIGURE 3.31
Theorem 23

❘❙❚ EXAMPLE 3.12 Simplify the following Boolean expressions, using Theorem 23 and other rules of Boolean
algebra. Draw the logic circuits of the unsimplified and simplified expressions.

a. L � (M � N�)(M � P�)

b. Y � (A�����B� � AB)(A�����B� � C)

Solution Figure 3.32 shows the logic circuits for the unsimplified and simplified ver-
sions of the above expressions.

FIGURE 3.32
Example 3.12
Logic Circuits for Unsimplified and Simplified Expressions

3.3 • Theorems of Boolean Algebra 83

Theorem 23: (x � y)(x � z) � x � yz

a. Let x � M, let y � N�, let z � P�:

L � (x � y)(x � z) � x � yz � M � N� P�

b. Let x � A� � B, let y � AB, let z � C:

Y � (x � y)(x � z) � x � yz � A�����B� � ABC � A� B� � ABC
❘❙❚

Theorem 24: x � x�y � x � y

Proof: Since (x � y)(x � z) � x � yz, then for y � x�:

x � xx�y � (x � x�)(x � y)
� 1 � (x � y) (x � x� � 1)

� x � y

Figure 3.33 illustrates Theorem 24 with a logic circuit.

FIGURE 3.33
Theorem 24

Here is another way to remember Theorem 24:
If a variable (x) is ORed with a term consisting of a different variable (y) AND the
first variable’s complement (x�), the complement disappears.

x � x�y � x � y

❘❙❚ EXAMPLE 3.13 Simplify the following Boolean expressions, using Theorem 24 and other rules of Boolean
algebra. Draw the logic circuits of the unsimplified and simplified forms of the expres-
sions.

a. W � U� � UV�
b. P � QR�S � (Q� � R � S�) T

J � K�M� (K� � L � M) � KM

Solution Figure 3.34 shows the circuits for the unsimplified and simplified expressions.

Theorem 24: x � x�y � x � y

a. Let x � U�, let y � V�:

W � x � x�y � x � y � U� � V�

b. P � QR�S � (Q� � R � S�) T

� QR�S � Q R�S T (DeMorgan’s theorem)

Let x � QR�S, let y � T:

P � x � x�y � x � y � QR�S � T

N O T E

84 C H A P T E R 3 • Boolean Algebra and Combinational Logic

c. Let x � KM, let y � (K� � L � M):

J � x � x�y � x � y � KM � K� � L � M

� K� � L � (M � KM) (Associative property)

� K� � L � M (Theorem 22)
❘❙❚

The rules of Boolean algebra are summarized in Table 3.8. Don’t try to memorize
all these rules. The commutative, associative, and distributive properties are the same

FIGURE 3.34
Example 3.13
Logic Circuits for Unsimplified and Simplified Expressions

3.3 • Theorems of Boolean Algebra 85

as their counterparts in ordinary algebra. The single-variable theorems can be reasoned
out by your knowledge of logic gate operation. That leaves only five multivariable
theorems.

Table 3.8 Theorems of Boolean Algebra

Commutative Properties

1. x � y � y � x
2. x � y � y � x

Associative Properties

3. x � (y � z) � (x � y) � z
4. x(yz) � (xy)z

Distributive Properties

5. x(y � z) � xy � xz
6. (x � y)(w � z) � xw � xz � yw � yz

x AND/OR/XOR 0/1

7. x � 0 � 0
8. x � 0 � x
9. x � 0 � x

10. x � 1 � x
11. x � 1 � 1
12. x � 1 � x�

x AND/OR/XOR x/ x�
13. x � x � x
14. x � x � x
15. x � x � 0
16. x � x�� 0
17. x � x� � 1
18. x � x� � 1

Double Inversion

19. x� � x

DeMorgan’s Theorems

20. x�y� � x� � y�
21. x�������������y��� � x� y�

Other Multivariable Theorems

22. x � xy � x
23. (x � y)(x � z) � x � yz
24. x � x�y � x � y

❘❙❚ SECTION 3.3 REVIEW PROBLEMS

3.4 Use theorems of Boolean algebra to simplify the following Boolean expressions.

a. Y � A�C� � (A� � C�)D

b. Y � A� � C� � ACD

c. Y � (AB� � B�C)(AB� � C�)

86 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.4 Simplifying SOP and POS Expressions

Maximum SOP simplification The form of an SOP Boolean expression that can-
not be further simplified by canceling variables in the product terms. It may be pos-
sible to get a POS form of the expression with fewer terms or variables.

Maximum POS simplification The form of a POS Boolean expression that can-
not be further simplified by canceling variables in the sum terms. It may be possible
to get an SOP form of the expression with fewer terms or variables.

Earlier in this chapter, we discovered that we can generate a Boolean equation from a
truth table and express it in sum-of-products (SOP) or product-of-sums (POS) form.
From this equation, we can develop a logic circuit diagram. The next step in the design
or analysis of a circuit is to simplify its Boolean expression as much as possible, with the
ultimate aim of producing a circuit that has fewer physical components than the unsim-
plified circuit.

In Section 3.2, we found the SOP and POS forms of the Boolean expression repre-
sented by Table 3.9. These forms yield the logic diagrams shown in Figures 3.17 and 3.20.
For convenience, the circuits are illustrated again in Figure 3.35. The corresponding alge-
braic expressions can be simplified by the rules of Boolean algebra to give us a simpler cir-
cuit in each case.

K E Y T E R M S

Table 3.9 Truth
Table for the SOP and
POS Networks in
Figure 3.35

A B C Y

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

FIGURE 3.35
Unsimplified SOP and POS Networks

The sum-of-products and product-of-sums expressions represented by Table 3.9 are:

Y � A� B� C� � A� B C � A B� C� (SOP)

and

Y � (A � B � C�)(A � B� � C)(A� � B � C�)(A� � B� � C)(A� � B� � C�) (POS)

3.4 • Simplifying SOP and POS Expressions 87

The SOP form is fairly easy to simplify:

Y � A� B� C� � A� B C � A B� C�
� (A� � A) B� C� � A� B C (Distributive property)

� 1 � B� C� � A� B C (x � x� � 1)

� B� C� � A� B C (x � 1 � x)

Since we cannot cancel any more SOP terms, we can call this final form the maxi-
mum SOP simplification. The logic diagram for the simplified expression is shown in
Figure 3.36.

FIGURE 3.36
Simplified SOP Circuit

Two terms in an SOP expression can be reduced to one if they are identical except
for one variable that is in true form in one term and complement form in the other.
Such a grouping of a variable and its complement always cancels.

xyz� � xyz � xy(z� � z) � xy

There is a similar procedure for the POS form. Examine the following expression:

Y � (A � B � C�)(A � B � C)

Recall Theorem 23: (x � y)(x � z) � x � yz.
Let x � A � B, let y � C�, let z � C.

Y � (A � B) � C�C (Theorem 23)

� (A � B) � 0 (xx� � 0)

� (A � B) (x � 0 � x)

A POS expression can be simplified by grouping two terms that are identical except
for one variable that is in true form in one term and complement form in the other.

(x � y � z�)(x � y � z) � (x � y) � z�z � x � y

Let us use this procedure to simplify the POS form of the previous Boolean expres-
sion, shown again below with the terms numbered for our reference. The numbered value
of each term corresponds to the binary value of the line in the truth table from which it is
derived.

(1) (2) (5) (6) (7)

Y � (A � B � C�) (A � B� � C) (A� � B � C�) (A� � B� � C) (A� � B� � C�)

There can be more than one way to simplify an expression. The following grouping of
the numbered POS terms is one possibility.

N O T E

N O T E

88 C H A P T E R 3 • Boolean Algebra and Combinational Logic

(1)(5): (A � B � C�) (A� � B � C�) � B � C�
(2)(6): (A � B� � C) (A� � B� � C) � B� � C

(6)(7): (A� � B� � C) (A� � B� � C�) � A� � B�

Combining the above terms, we get the expression:

Y � (B � C�)(B� � C)(A� � B�)

Figure 3.37 shows the logic diagram for this expression. Compare this logic diagram
and that of Figure 3.36 with the unsimplified circuits of Figure 3.35. Since there are no
more cancellations of POS terms possible, we can call this the maximum POS simplifica-
tion. We can, however, apply other rules of Boolean algebra and simplify further.

Y � (B � C�)(B� � C)(A� � B�)

� (B� � A�C)(B � C�) (Theorem 23)

� B� B � B� C� � A� B C � A� C C� (Distributive property)

� B� C� � A� B C (x � x� � 0)

This is the same result we got when we simplified the SOP form of the expression.
To be sure you are getting the maximum SOP or POS simplification, you should be

aware of the following guidelines:

1. Each term must be grouped with another, if possible.

2. When attempting to group all terms, it is permissible to group a term more than once,
such as term (6) above. The theorems x � x � x (POS forms) and x � x � x (SOP forms)
imply that using a term more than once does not change the Boolean expression.

3. Each pair of terms should have at least one term that appears only in that pair. Other-
wise, you will have redundant terms that will need to be canceled later. For example,
another possible group in the POS simplification above is terms (5) and (7). But since
both these terms are in other groups, this pair is unnecessary and would yield a term you
would have to cancel.

❘❙❚ EXAMPLE 3.14 Find the maximum SOP simplification for the Boolean function represented by Table 3.10.
Draw the logic diagram for the simplified expression.

Solution SOP form:

(8) (9) (10) (11) (12) (14)

Y � A B� C� D� � A B� C� D � A B� C D� � A B� C D � A B C� D� � A B C D�

FIGURE 3.37
Simplified POS Circuit

3.4 • Simplifying SOP and POS Expressions 89

Group the terms as follows:

(8) � (9): A B� C� D� � A B� C� D � A B� C�
(10) � (11): A B� C D� � A B� C D � A B� C

(12) � (14): A B C� D� � A B C D� � A B D�

Combine the simplified groups and apply techniques of Boolean algebra to simplify
further:

Y � A B� C� � A B� C � A B D�
� A B�(C� � C) � A B D�
� A B� � A B D�
� A(B� � B D�) Distributive property

� A(B� � D�) Theorem 24: x � x�y � x � y

� A B� � A D�

Figure 3.38 Shows the logic diagram of the simplified expression.

Table 3.10 Truth Table for
Example 3.14

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0

0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0

1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1

1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

A

B

D

Y � AB � AD

❘❙❚ SECTION 3.4 REVIEW PROBLEM

3.5 Find the maximum SOP and POS simplifications for the function represented by
Table 3.11. ❘❙❚

FIGURE 3.38
Example 3.14
Simplified SOP Circuit

Table 3.11 Truth
Table for Section
Review Problem

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

90 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.5 Simplification by the Karnaugh Map Method

Karnaugh map A graphical tool for finding the maximum SOP or POS simplifi-
cation of a Boolean expression. A Karnaugh map works by arranging the terms of
an expression in such a way that variables can be canceled by grouping minterms
or maxterms.

Cell The smallest unit of a Karnaugh map, corresponding to one line of a truth
table. The input variables are the cell’s coordinates, and the output variable is the
cell’s contents.

Adjacent cell Two cells are adjacent if there is only one variable that is different
between the coordinates of the two cells. For example, the cells for minterms ABC
and A�BC are adjacent.

Pair A group of two adjacent cells in a Karnaugh map. A pair cancels one vari-
able in a K-map simplification.

Quad A group of four adjacent cells in a Karnaugh map. A quad cancels two
variables in a K-map simplification.

Octet A group of eight adjacent cells in a Karnaugh map. An octet cancels three
variables in a K-map simplification.

In Example 3.14, we derived a sum-of-products Boolean expression from a truth table and
simplified the expression by grouping minterms that differed by one variable. We made
this task easier by breaking up the truth table into groups of four lines. (It is difficult for the
eye to grasp an overall pattern in a group of 16 lines.) We chose groups of four because
variables A and B are the same in any one group and variables C and D repeat the same bi-
nary sequence in each group. This allows us to see more easily when we have terms differ-
ing by only one variable.

The Karnaugh map, or K-map, is a graphical tool for simplifying Boolean expres-
sions that uses a similar idea. A K-map is a square or rectangle divided into smaller squares
called cells, each of which represents a line in the truth table of the Boolean expression to
be mapped. Thus, the number of cells in a K-map is always a power of 2, usually 4, 8, or
16. The coordinates of each cell are the input variables of the truth table. The cell content
is the value of the output variable on that line of the truth table. Figure 3.39 shows the for-
mats of Karnaugh maps for Boolean expressions having two, three, and four variables,
respectively.

There are two equivalent ways of labeling the cell coordinates: numerically or by true
and complement variables. We will use the numerical labeling since it is always the same,
regardless of the chosen variables.

The cells in the Karnaugh maps are set up so that the coordinates of any two adjacent
cells differ by only one variable. By grouping adjacent cells according to specified rules,
we can simplify a Boolean expression by canceling variables in their true and complement
forms, much as we did algebraically in the previous section.

Two-Variable Map

Table 3.12 shows the truth table of a two-variable Boolean expression.
The Karnaugh map shown in Figure 3.40 is another way of showing the same infor-

mation as the truth table. Every line in the truth table corresponds to a cell, or square, in the
Karnaugh map.

The coordinates of each cell correspond to a unique combination of input variables
(A, B). The content of the cell is the output value for that input combination. If the truth
table output is 1 for a particular line, the content of the corresponding cell is also 1. If the
output is 0, the cell content is 0.

K E Y T E R M S

3.5 • Simplification by the Karnaugh Map Method 91

The SOP expression of the truth table is

Y � A� B� � A� B

which can be simplified as follows:

Y � A� (B� � B)

� A�

FIGURE 3.39
Karnaugh Map Formats

Table 3.12 Truth
Table for a Two-
Variable Boolean
Expression

A B Y

0 0 1
0 1 1
1 0 0
1 1 0

FIGURE 3.40
Karnaugh Map for Table 3.12

92 C H A P T E R 3 • Boolean Algebra and Combinational Logic

We can perform the same simplification by grouping the adjacent pair of 1s in the
Karnaugh map, as shown in Figure 3.41.

When we circle a pair of 1s in a K-map, we are grouping the common variable in
two minterms, then factoring out and canceling the complements.

To find the simplified form of the Boolean expression represented in the K-map, we
examine the coordinates of all the cells in the circled group. We retain coordinate variables
that are the same in all cells and eliminate coordinate variables that are different in differ-
ent cells.

In this case:

A� is a coordinate of both cells of the circled pair. (Keep A�.)

B� is a coordinate of one cell of the circled pair, and B is a coordinate of the other. (Dis-
card B/B�.)

Y � A�

Three- and Four-Variable Maps

Refer to the forms of three- and four-variable Karnaugh maps shown in Figure 3.39.
Each cell is specified by a unique combination of binary variables. This implies that the
three-variable map has 8 cells (since 23 � 8) and the four-variable map has 16 cells
(since 24 � 16).

The variables specifying the row (both maps) or the column (the four-variable map) do
not progress in binary order; they advance such that there is only one change of variable
per row or column. For example, the numbering of the rows is 00, 01, 11, 10, rather than
the binary order 00, 01, 10, 11. If we were to use binary order, adjacent cells in rows 2 and
3 or 3 and 4 would differ by two variables, meaning we could not factor out and cancel a
pair of complements by grouping these cells. For instance, we cannot cancel comple-
mentary variables from the pair A� B C � A B� C, which differs by two variables.

The number of cells in a group must be a power of 2, such as 1, 2, 4, 8, or 16.

A group of four adjacent cells is called a quad. Figure 3.42 shows a Karnaugh map for
a Boolean function whose terms can be grouped in a quad. The Boolean expression dis-
played in the K-map is:

Y � A� B� C � A� B C � A B C � A B� C

A and B are both part of the quad coordinates in true and complement form. (Discard
A and B.)

C is a coordinate of each cell in the quad. (Keep C.)

Y � C

Grouping cells in a quad is equivalent to factoring two complementary pairs of vari-
ables and canceling them.

Y � (A � A�)(B � B�)C � C

You can verify that this is the same as the original expression by multiplying out the
terms.

An octet is a group of eight adjacent cells. Figure 3.43 shows the Karnaugh map for
the following Boolean expression:

N O T E

N O T E

FIGURE 3.41
Grouping a Pair of Adjacent
Cells

FIGURE 3.42
Quad

FIGURE 3.43
Octet

3.5 • Simplification by the Karnaugh Map Method 93

Y � A� B C� D� � A� B C� D � A� B C D � A� B C D�
� A B C� D� � A B C� D � A B C D � A B C D�

Variables A, C, and D are all coordinates of the octet cells in true and complement
form. (Discard A, C, and D.)

B is a coordinate of each cell. (Keep B.)

Y � B

The algebraic equivalent of this octet is an expression where three complementary
variables are factored out and canceled.

Y � (A � A�)B(C � C�)(D � D�) � B

A Karnaugh map completely filled with 1s implies that all input conditions yield an
output of 1. For a Boolean expression Y, Y � 1.

Grouping Cells Along Outside Edges

The cells along an outside edge of a three- or four-variable map are adjacent to cells along
the opposite edge (only one change of variable). Thus we can group cells “around the out-
side” of the map to cancel variables. In the case of the four-variable map, we can also
group the four corner cells as a quad, since they are all adjacent to one another.

❘❙❚ EXAMPLE 3.15 Use Karnaugh maps to simplify the following Boolean expressions:

a. Y � A� B� C� � A� B� C � A B� C� � A B� C

b. Y � A� B� C� D� � A� B� C D� � A B� C� D� � A B� C D�

Solutions Figure 3.44 shows the Karnaugh maps for the Boolean expressions labeled a
and b. Cells in each map are grouped in a quad.

N O T E

FIGURE 3.44
Example 3.15
K-Maps

a. A and C are both coordinates of two cells in true form and two cells in complement
form. (Discard A and C.)
B� is a coordinate of each cell. (Keep B�.)

Y � B�

b. A and C are both coordinates of two cells in true form and two cells in complement
form. (Discard A and C.)
B� and D� are coordinates of each cell. (Keep B� and D�.)

Y � B� D�
❘❙❚

94 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Loading a K-Map From a Truth Table

We don’t need a Boolean expression to fill a Karnaugh map if we have the func-
tion’s truth table.

Figures 3.45 and 3.46 show truth table and Karnaugh map forms for three- and four-vari-
able Boolean expressions. The numbers in parentheses show the order of terms in binary
sequence for both forms.

The Karnaugh map is not laid out in the same order as the truth table. That is, it is not
laid out in a binary sequence. This is due to the criterion for cell adjacency: no more than
one variable change between rows or columns is permitted.

N O T E

Filling in a Karnaugh map from a truth table is easy when you understand a system for
doing it quickly. For the three-variable map, fill row 1, then row 2, skip to row 4, then go
back to row 3. By doing this, you trace through the cells in binary order. Use the mnemonic
phrase “1, 2, skip, back” to help you remember this.

The system for the four-variable map is similar but must account for the columns as
well. The rows get filled in the same order as the three-variable map, but within each row,
fill column 1, then column 2, skip to column 4, then go back to column 3. Again, “1, 2,
skip, back.”

FIGURE 3.45
Order of Terms (Three-Variable
Function)

FIGURE 3.46
Order of Terms (Four-Variable
Function)

3.5 • Simplification by the Karnaugh Map Method 95

The four-variable map is easier to fill from the truth table if we break up the truth table
into groups of four lines, as we have done in Figure 3.46. Each group is one row in the Kar-
naugh map. Following this system will quickly fill the cells in binary order.

Go back and follow the order of terms on the four-variable map in Figure 3.46, using
this system. (Remember, for both rows and columns, “1, 2, skip, back.”)

Multiple Groups

If there is more than one group of 1s in a K-map simplification, each group is a
term in the maximum SOP simplification of the mapped Boolean expression. The
resulting terms are ORed together.

❘❙❚ EXAMPLE 3.17 Use the Karnaugh map method to simplify the Boolean function represented by Table 3.13.

N O T E

Table 3.13 Truth Table for
Example 4.3

A B C D Y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0

0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0

1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

FIGURE 3.47
Example 3.17
K-Map

Solution Figure 3.47 shows the Karnaugh map for the truth table in Table 3.14. There
are two groups of 1s—a pair and a quad.

Pair:

Variables A�, B�, and D� are coordinates of both cells. (Keep A� B� D�.) C is a coordinate of
one cell and C� is a coordinate of the other. (Discard C.)

Term: A� B� D�

Quad:

Both A and C are coordinates of two cells in true form and two cells in complement
form. (Discard A and C.)

B and D are coordinates of all four cells. (Keep B D.)

Term: B D

Combine the terms in an OR function:

Y � A� B� D� � B D
❘❙❚

96 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Overlapping Groups

A cell may be grouped more than once. The only condition is that every group must
have at least one cell that does not belong to any other group. Otherwise, redundant
terms will result.

N O T E

FIGURE 3.48
Example 3.18
K-Maps

a. The simplified Boolean expression drawn from the first map has three terms.

Y � A� B� � A B � B C

b. The second map yields an expression with four terms.

Y � A� B� � A B � B C � A� C

One of the last two terms is redundant, since neither of the pairs corresponding to these
terms has a cell belonging only to that pair. We could retain either pair of cells and its cor-
responding term, but not both.

We can show algebraically that the last term is redundant and thus make the expres-
sion the same as that in part a.

Y � A� B� � A B � B C � A� C

� A� B� � A B � B C � A� (B � B�) C

� A� B� � A B � B C � A� B C � A� B� C

� A� B� (1 � C) � A B � B C (1 � A�)

� A� B� � A B � B C
❘❙❚

Table 3.14 Truth Table
for Example 3.18

A B C Y

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

❘❙❚ EXAMPLE 3.18 Simplify the function represented by Table 3.14.

Solution The Karnaugh map for the function in Table 3.14 is shown in Figure 3.48, with
two different groupings of terms.

3.5 • Simplification by the Karnaugh Map Method 97

Conditions for Maximum Simplification

The maximum simplification of a Boolean expression is achieved only if the circled
groups of cells in its K-map are as large as possible and there are as few groups as
possible.

❘❙❚ EXAMPLE 3.19 Find the maximum SOP simplification of the Boolean function represented by Table 3.15.

Solution The values of Table 3.15 are loaded into the three K-maps shown in Figure
3.49. Three different ways of grouping adjacent cells are shown. One results in maximum
simplification; the other two do not.

N O T E

Table 3.15 Truth Table for
Example 3.19

A B C D Y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1

0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1

1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1

1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

FIGURE 3.49
Example 3.19
K-Maps

We get the maximum SOP simplification by grouping the two octets shown in Figure
3.49a. The resulting expression is

a. Y � B� � D

Figures 3.49b and c show two simplifications that are less than the maximum because the
chosen cell groups are smaller than they could be. The resulting expressions are:

b. Y � A� B� � A B� � D

c. Y � B� � B D

Neither of these expressions is the simplest possible, since both can be reduced by Boolean
algebra to the form in Figure 3.49a.

❘❙❚

98 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Using K-Maps for Partially Simplified Circuits

Figure 3.50 shows a logic diagram that can be further simplified. If we want to use a Kar-
naugh map for this process, we must do one of two things:

1. Fill in the K-map from the existing product terms. Each product term that is not a
minterm will represent more than one cell in the Karnaugh map. When the map is filled,
regroup the cells for maximum simplification.

2. Expand the sum-of-products expression of the circuit to get a sum-of-minterms
form. Each minterm represents one cell in the K-map. Group the cells for maximum
simplification.

FIGURE 3.50
Logic Diagram That Can Be
Further Simplified

FIGURE 3.51
Further Simplification of Logic Diagram (Figure 3.50)

Figure 3.51 shows the K-map derived from the existing circuit and the regrouped cells
that yield the maximum simplification.

The algebraic method requires us to expand the existing Boolean expression to get a
sum of minterms. The original expression is:

Y � A� B C� D� � A B D� � A� C

The theorem (x � x�) � 1 implies that we can AND a variable with a term in true and
complement form without changing the term. The expanded expression is:

Y � A� B C� D� � A B (C � C�) D� � A� (B � B�) C (D � D�)

� A� B C� D� � A B C D� � A B C� D�
� A� B C D � A� B C D� � A� B� C D � A� B� C D�

The terms of this expression can be loaded into a K-map and simplified, as shown in
Figure 3.51b. Figure 3.52 shows the logic diagram for the simplified expression.

3.5 • Simplification by the Karnaugh Map Method 99

Solution Figure 3.54a shows the Karnaugh map of Figure 3.53 with terms grouped as
shown in the original circuit. Figure 3.54b shows the terms regrouped for the maximum
simplification, which is given by:

Y � A� D � B� D � A� B C�

Alternate method: The Boolean expression for the circuit in Figure 3.53 is:

Y � A� B C� � A� C D � B� C� D � A B� C D

FIGURE 3.52
Simplified Circuit

❘❙❚ EXAMPLE 3.20 Use a Karnaugh map to find the maximum SOP simplification of the circuit shown in
Figure 3.53.

FIGURE 3.53
Example 3.20
Circuit to Be Simplified

FIGURE 3.54
Example 3.20
Maximum Simplification of
Figure 3.53

100 C H A P T E R 3 • Boolean Algebra and Combinational Logic

This expands to the following expression:

Y � A� B C� (D � D�) � A� (B � B�) C D � (A � A�) B� C� D � A B� C D

� A� B C� D � A� B C� D� � A� B C D � A� B� C D � A B� C� D

� A� B� C� D � A B� C D

This expression can be loaded directly into the K-map and simplified, as shown in Fig-
ure 3.54b. The logic diagram for the simplified expression is shown in Figure 3.55.

FIGURE 3.55
Example 3.20
Simplified Circuit

❘❙❚

Don’t Care States

Don’t care state An output state that can be regarded as either HIGH or LOW, as
is most convenient. A don’t care state is the output state of a circuit for a combina-
tion of inputs that will never occur.

Sometimes a digital circuit will be intended to work only for certain combinations of in-
puts; any other input values will never be applied to the circuit.

In such a case, it may be to our advantage to use so-called don’t care states to sim-
plify the circuit. A don’t care state is shown in a K-map cell as an “X” and can be either a
0 or a 1, depending on which case will yield the maximum simplification.

A common application of the don’t care state is a digital circuit designed for binary-
coded decimal (BCD) inputs. In BCD, a decimal digit (0–9) is encoded as a 4-bit binary
number (0000–1001). This leaves six binary states that are never used (1010, 1011, 1100,
1101, 1110, 1111). In any circuit designed for BCD inputs, these states are don’t care
states.

All cells containing 1s must be grouped if we are looking for a maximum SOP simpli-
fication. (If necessary, a group can contain one cell.) The don’t care states can be used to
maximize the size of these groups. We need not group all don’t care states, only those that
actually contribute to a maximum simplification.

❘❙❚ EXAMPLE 3.21 The circuit in Figure 3.56 is designed to accept binary-coded decimal inputs. The output is
HIGH when the input is the BCD equivalent of 5, 7, or 9. If the BCD equivalent of the in-
put is not 5, 7 or 9, the output is LOW. The output is not defined for input values greater
than 9.

Find the maximum SOP simplification of the circuit.

K E Y T E R M S

3.5 • Simplification by the Karnaugh Map Method 101

Solution The Karnaugh map for the circuit is shown in Figure 3.57a.

We can designate three of the don’t care cells as 1s—those corresponding to input
states 1011, 1101, and 1111. This allows us to group the 1s into two overlapping quads,
which yield the following simplification.

Y � D4 D1 � D3 D1

The ungrouped don’t care states are treated as 0s. The corresponding circuit is shown in
Figure 3.57b.

FIGURE 3.56
Example 3.21
Circuit to be Simplified

D1
LSB

MSB

D2

D3
Y

D4

FIGURE 3.57
Example 3.21
Karnaugh Map and Logic
Diagram

D2 D1

D3 D1

D4 D1

D4 D3

D4

D3

D1

❘❙❚ EXAMPLE 3.22 One type of decimal code is called 2421 code, so called because of the positional weights
of its bits. (For example, 1011 in 2421 code is equivalent to 2 � 2 � 1 � 5 in decimal.
1100 is equivalent to decimal 2 � 4 � 6.) Table 3.16 shows how this code compares to its
equivalent decimal digits and to the BCD code used in Example 3.21.

2421 code is sometimes used because it is “self-complementing,” a property that BCD
code does not have, but that is useful in digital decimal arithmetic circuits.

The bits of the BCD code are designated D4 D3 D2 D1. The bits of the 2421 code are
designated Y4 Y3 Y2 Y1.

Use the Karnaugh map method to design a logic circuit that accepts any BCD input
and generates an output in 2421 code, as specified by Table 3.16.

Solution The required circuit is called a code converter. Each 4-bit BCD input corre-
sponds to a 4-bit 2421 output. Thus, we must find four Boolean expressions, one for each

Table 3.16 BCD and 2421 Code

Decimal BCD Code 2421 Code
Equivalent D4 D3 D2 D1 Y4 Y3 Y2 Y1

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 0 0
5 0 1 0 1 1 0 1 1
6 0 1 1 0 1 1 0 0
7 0 1 1 1 1 1 0 1
8 1 0 0 0 1 1 1 0
9 1 0 0 1 1 1 1 1

Applications

102 C H A P T E R 3 • Boolean Algebra and Combinational Logic

FIGURE 3.58
Example 3.22
K-Maps: BCD to 2421

FIGURE 3.59
Example 3.22
BCD-to-2421 Code Converter

3.5 • Simplification by the Karnaugh Map Method 103

bit of the 2421 code. We can derive each Boolean expression from a truth table represented
by the corresponding output column in Table 3.16.

We can load the 2421 values into four different Karnaugh maps, as shown in Fig-
ure 3.58. The cells corresponding to the unused input BCD codes 1010, 1011, 1100,
1101, 1110, and 1111 are don’t care states in each map.

The K-maps yield the following simplifications:

Y4 � D4 � D3 D2 � D3 D1

Y3 � D4 � D3 D2 � D3 D�1

Y2 � D4 � D�3 D2 � D3 D�2 D1

Y1 � D1

Figure 3.59 shows the logic diagram for these equations.
❘❙❚

POS Simplification

Until now, we have looked only at obtaining the maximum SOP simplification from a Kar-
naugh map. It is also possible to find the maximum POS simplification from the same map.

Figure 3.60 shows a Karnaugh map with the cells grouped for an SOP simplification
and a POS simplification. The SOP simplification is shown in Figure 3.60a and the POS
simplification in Figure 3.60b.

FIGURE 3.60
SOP and POS Forms on a
K-Map

When we derive the POS form of an expression from a truth table, we use the lines
where the output is 0 and we use the complements of the input variables on these lines as
the elements of the selected maxterms. The same principle applies here.

The maxterms are:

(A � B � C) Top left cell

(A� � B � C) Bottom left cell

(A� � B � C�) Bottom right cell

The variables are canceled in much the same way as in the SOP form. Remember,
however, that the POS variables are the complements of the variables written beside the
Karnaugh map.

If there is more than one simplified term, the terms are ANDed together, as in a full
POS form.

Cancellations:

Outside pair: A is present in both true and complement form in the pair. (Dis-
card A.)

B and C are present in both cells of the pair. (Keep B and C.)
Term: B � C

104 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Bottom pair: A� and B are present in both cells of the pair. (Keep A� and B.)

C is present in both true and complement form in the pair. (Dis-
card C.)

Term: A� � B

Maximum POS simplification:

Y � (A� � B)(B � C)

Compare this with the maximum SOP simplification:

Y � A� C � B

By the Boolean theorem (x � y)(x � z) � x � yz, we see that the SOP and POS forms
are equivalent.

❘❙❚ EXAMPLE 3.23 Find the maximum POS simplification of the logic function represented by Table 3.17.

Solution Figure 3.61 shows the Karnaugh map from the truth table in Table 3.17. The
cells containing 0s are grouped in two quads and there is a single 0 cell left over.

Simplification:

Corner quad: (B � D)

Horizontal quad: (A � B)

Single cell: (A� � B� � C � D�)

Y � (A � B)(B � D)(A� � B� � C � D�) ❘❙❚

Table 3.17 Truth Table
for Example 3.23

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0

0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1

1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1

1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

FIGURE 3.61
Example 3.23
POS Simplification of Table 3.17

S U M M A R Y

1. Two or more gates connected together form a logic gate network or combinational logic circuit, which can be described by a truth

table, a logic diagram, or a Boolean expression.
2. The output of a combinational logic circuit is always the

same with the same combination of inputs, regardless of the
order in which they are applied.

3. The order of precedence in a logic gate network is AND, then
OR, unless otherwise indicated by parentheses.

4. DeMorgan’s theorems: xx�����y� � x� � y�
x�����y� � x� � y�

5. Inequalities: x�����y� � x� � y�

x�����y� � x� � y�
6. A logic gate network can be drawn to simplify its Boolean

expression by ensuring that bubbled (active-LOW) outputs
drive bubbled inputs and outputs with no bubble (active-
HIGH) drive inputs with no bubble. Some gates might need
to be drawn in their DeMorgan equivalent form to achieve
this.

7. In Boolean expressions, logic inversion bars of equal lengths

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

Glossary 105

For example, addition is associative ((a � b) � c � a � (b �
c)), but subtraction is not ((a � b) � c � a � (b � c)).

Bubble-to-bubble convention The practice of drawing gates
in a logic diagram so that inverting outputs connect to inverting
inputs and noninverting outputs connect to noninverting inputs.

Bus form A way of drawing a logic diagram so that each true
and complement input variable is available along a conductor
called a bus.

Cell The smallest unit of a Karnaugh map, corresponding to
one line of a truth table. The input variables are the cell’s coordi-
nates and the output variable is the cell’s contents.

Combinational logic Digital circuitry in which an output is
derived from the combination of inputs, independent of the order
in which they are applied.

Combinatorial logic Another name for combinational logic.

Commutative property A mathematical operation is commu-
tative if it can be applied to its operands in any order without
affecting the result. For example, addition is commutative (a �
b � b � a), but subtraction is not (a � b � b � a).

Distributive property Full name: distributive property of mul-
tiplication over addition. The property that allows us to distrib-

cancel; bars of unequal lengths do not. Bars of equal length
represent bubble-to-bubble connections.

8. A logic diagram can be derived from a Boolean expression
by order of precedence rules: synthesize ANDs before ORs,
unless parentheses indicate otherwise. Inversion bars act as
parentheses for a group of variables.

9. A truth table can be derived from a logic gate network either
by finding truth tables for intermediate points in the network
and combining them by the laws of Boolean algebra, or by
simplifying the Boolean expression into a form that can be
directly written into a truth table.

10. A sum-of-products (SOP) network combines inputs in AND
gates to yield a group of product terms that are combined in
an OR gate (logical sum) output.

11. A product-of-sums (POS) network combines inputs in OR
gates to yield a group of sum terms that are combined in an
AND gate (logical product) output.

12. An SOP Boolean expression can be derived from the lines in
a truth table where the output is at logic 1. Each product term
contains all inputs in true or complement form, where inputs
at logic 0 have a bar and inputs at logic 1 do not.

13. A POS expression is derived from the lines where the output
is at logic 0. Each sum term contains all inputs in true or
complement form, where inputs at logic 1 have a bar and in-
puts at logic 0 do not.

14. Theorems of Boolean algebra, summarized in Table 3.8, al-
low us to simplify logic gate networks.

15. SOP networks can be simplified by grouping pairs of product
terms and applying the Boolean identity xyz � xyz� � xy.

16. POS networks can be simplified by grouping pairs of
sum terms and applying the Boolean identity (x � y � z)
(x � y � z�) � (x � y).

17. To achieve maximum simplification of an SOP or POS net-
work, each product or sum term should be grouped with an-
other if possible. A product or sum term can be grouped more
than once, as long as each group has a term that is only in
that group.

18. A Karnaugh map can be used to graphically reduce a
Boolean expression to its simplest form by grouping adjacent
cells containing 1s. One cell is equivalent to one line of a
truth table. A group of adjacent cells that contain 1s repre-
sents a simplified product term.

19. Adjacent cells in a K-map differ by only one variable. Cells
around the outside of the map are considered adjacent.

20. A group in a K-map must be a power of two in size: 1, 2, 4,
8, or 16. A group of two is called a pair, a group of four is a
quad, and a group of eight is an octet.

21. A pair cancels one variable. A quad cancels two variables.
An octet cancels three variables.

22. A K-map can have multiple groups. Each group repre-
sents one simplified product term in a sum-of-products
expression.

23. Groups in K-maps can overlap as long as each group has one
or more cells that appear only in that group.

24. Groups in a K-map should be as large as possible for maxi-
mum SOP simplification.

25. Don’t care states represent output states of input combina-
tions that will never occur in a circuit. They are represented
by Xs in a truth table or K-map and can be used as 0s or 1s,
whichever is most advantageous for the simplification of the
circuit.

G L O S S A R Y
Adjacent cell Two cells are adjacent if there is only one vari-
able that is different between the coordinates of the two cells.

Associative property A mathematical function is associative if its operands can be grouped in any order without affecting the result.

ute (“multiply through”) an AND across several OR functions.
For example, a(b � c) � ac � bc.

Don’t care state An output state that can be regarded either as
HIGH or LOW, as is most convenient. A don’t care state is the
output state of a circuit for a combination of inputs that will
never occur.

Karnaugh map A graphical tool for finding the maximum
SOP or POS simplification of a Boolean expression. A Karnaugh
map works by arranging the terms of an expression in such a
way that variables can be cancelled by grouping minterms or
maxterms.

Levels of gating The number of gates through which a signal
must pass from input to output of a logic gate network.

Logic diagram A diagram, similar to a schematic, showing
the connection of logic gates.

Logic gate network Two or more logic gates connected
together.

Maximum POS simplification The form of a POS Boolean
expression which cannot be further simplified by cancelling
variables in the sum terms. It may be possible to get an SOP
form with fewer terms or variables.

106 C H A P T E R 3 • Boolean Algebra and Combinational Logic

Maximum SOP simplification The form of an SOP Boolean
expression which cannot be further simplified by cancelling
variables in the product terms. It may be possible to get a POS
form with fewer terms or variables.

Maxterm A sum term in a Boolean expression where all pos-
sible variables appear once in true or complement form.

Minterm A product term in a Boolean expression where all
possible variables appear once in true or complement form.

Octet A group of eight cells in a Karnaugh map. An octet can-
cels three variables in a K-map simplification.

Order of precedence The sequence in which Boolean func-
tions are performed, unless otherwise specified by parentheses.

Pair A group of two cells in a Karnaugh map. A pair cancels
one variable in a K-map simplification.

Product term A term in a Boolean expression where one or
more true or complement variables are ANDed.

Product-of-sums (POS) A type of Boolean expression where
several sum terms are multiplied (ANDed) together.

Quad A group of four cells in a Karnaugh map. A quad cancels
two variables in a K-map simplification.

Sum term A term in a Boolean expression where one or more
true or complement variables are ORed.

Sum-of-products (SOP) A type of Boolean expression where
several product terms are summed (ORed) together.

Synthesis The process of creating a logic circuit from a descrip-
tion such as a Boolean equation or truth table.

P R O B L E M S
Problem numbers set in color indicate more difficult problems: those
with underlines indicate most difficult problems.

Section 3.1 Boolean Expressions, Logic Diagrams, and

Truth Tables

3.1 Write the unsimplified Boolean expression for each of the
logic gate networks shown in Figure 3.62.

3.2 Write the unsimplified Boolean expression for each of the
logic gate networks shown in Figure 3.63.

3.3 Redraw the logic diagrams of the gate networks shown in
Figure 3.63 a, e, f, h, i, and j so that they conform to the

FIGURE 3.62
Problem 3.1
Logic Circuits

Problems 107

bubble-to-bubble convention. Rewrite the Boolean ex-
pression of each of the redrawn circuits.

FIGURE 3.63
Problem 3.2
Logic Circuits

i.

Y

A

B

C

h.

Y

A

B

C

e.

Y

A

B

C

f.

Y

A

B

C

g.

M

J

K

L

M

b.

H

J
K
L

d.

X

Q

R

S
T

a.

T

X
U
V

W

c.

X

Q

R

S

T

j.

Y

A

B

D

C

3.4 The circuit in Figure 3.64 is called a majority vote circuit.
It will turn on an active-HIGH indicator lamp only if a
majority of inputs (two out of three) are HIGH. Write the
Boolean expression for the circuit.

logic circuit.

3.6 Draw the logic circuit for each of the following Boolean
expressions:

a. Y � AB � BC

b. Y � ACD � BCD

c. Y � (A � B)(C � D)

d. Y � A � BC � D

e. Y � A�C� � B�����C�
f. Y � A�C� � B � C

g. Y � A�BD � B�C � A�����C�
h. Y � A�B � A�C � B�C�
i. Y � A�B � A�C � B�C�

3.7 Use DeMorgan’s theorems to modify the Boolean equa-
tions in Problem 3.6, parts e, f, g, h, and i so that there is
no bar over any group of variables. Redraw the logic dia-
grams of the circuits to reflect the changes. (The final cir-
cuit versions should conform to the bubble-to-bubble
convention.)

3.8 Write the truth tables for the logic diagrams in Figure
3.62, parts b, e, f, and g.

3.9 Write the truth tables for the logic diagrams in Figure
3.63, parts a, h, i, and j.

3.10 Write the truth tables for the Boolean expression in Prob-
lem 3.6, parts c, d, e, f, h, and i.

Section 3.2 Sum-of-Products (SOP) and Product-of-
Sums (POS) Forms

3.11 Find the Boolean expression, in both sum-of-products
(SOP) and product-of-sums (POS) forms, for the logic

108 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.5 Suppose you wish to design a circuit that indicates when
three out of four inputs are HIGH. The circuit has four in-
puts, D3, D2, D1, and D0 and an active-HIGH output, Y.
Write the Boolean expression for the circuit and draw the

A B C Y

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

A B C Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

3.13 Find the Boolean expression, in both sum-of-products
(SOP) and product-of-sums (POS) forms, for the logic
function represented by the following truth table. Draw
the logic diagram for the POS form only.

3.14 Find the Boolean expression, in both sum-of-products
(SOP) and product-of-sums (POS) forms, for the logic
function represented by the following truth table. Draw
the logic diagram for the SOP form only.

FIGURE 3.64
Problem 3.4
Majority Vote Circuit

function represented by the following truth table. Draw
the logic diagram for each form.

3.12 Find the Boolean expression, in both sum-of-products
(SOP) and product-of-sums (POS) forms, for the logic
function represented by the following truth table. Draw
the logic diagram for the SOP form only.

Problems 109

tion.

Section 3.3 Theorems of Boolean Algebra

3.17 Write the Boolean expression for the circuit shown in
Figure 3.65 Use the distributive property to transform the
circuit into a sum-of-products (SOP) circuit.

3.18 Write the Boolean expression for the circuit shown in
Figure 3.66 Use the distributive property to transform the
circuit into a sum-of-products (SOP) circuit.

3.19 Use the rules of Boolean algebra to simplify the follow-

ing expressions as much as possible.

a. Y � A A B � C

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

A

B
C

D

Y

FIGURE 3.65
Problem 3.17
Logic Circuit

3.15 Write the POS form of the 2-input XOR function. Draw
the logic diagram of the POS form of the XOR function.

3.16 Write the POS form of the 2-input XNOR function. Draw
the logic diagram of the POS form of the XNOR func-

FIGURE 3.66
Problem 3.18
Logic Circuit

A

B

C

D

E

F

A B C Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

A B C Y

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

b. Y � A A� B � C

c. J � K � L L�
d. S � (T � U) V V�
e. S � T � V V�
f. Y � (A B� � C�)(B D� � F)

3.20 Use the rules of Boolean algebra to simplify the following
expressions as much as possible.

a. M � P Q � P��Q� R

b. M � P Q � P Q R

c. S � (T�����U�) V � (T � U)

d. Y � (A� � B � D�) A C � A B� D

e. Y � (A� � B � D�) A C � A B� D

f. P � (Q��R� � S T)(Q��R� � Q)

g. U � (X � Y� � W� Z)(W Y � Y � W� Z)

3.21 Use the rules of Boolean algebra to simplify the following
expressions as much as possible.

a. Y � A��B� C D � (A� � B�) C�����D� � A� � B�
b. Y � A��B� C D � (A� � B�) C�����D� � A� � B�
c. K � (L� M � L M�)(M N� � L M N) � M(N� � L)

Section 3.4 Simplifying SOP and POS Expressions

3.22 Use the rules of Boolean algebra to find the maximum
SOP and POS simplifications of the function represented
by the following truth table.

3.23 Use the rules of Boolean algebra to find the maximum
SOP and POS simplifications of the function represented
by the following truth table.

3.24 Use the rules of Boolean algebra to find the maximum
SOP and POS simplifications of the function represented
by the following truth table.

110 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.25 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

3.29 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

A B C D Y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

A B C D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

3.27 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

A B C D Y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

3.28 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

A B C Y

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

3.26 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

Problems 111

3.35 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

Section 3.4 Simplification by the Karnaugh Map
Method

3.31 Use the Karnaugh map method to find the maximum SOP

A B C D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

simplification of the logic diagram in Figure 3.21.

3.32 Use the Karnaugh map method to reduce the following
Boolean expressions to their maximum SOP simplifica-
tions:

a. Y � A� B� C � A� B C � A B C

b. Y � A� B� C � A� B C � A B C� � A B C � A B� C

c. Y � A� B� C� � A� B C � A B C � A B� C

d. Y � A� B� C� D� � A� B� C� D � A� B� C D � A� B� C D�
� A� B C D� � A B C� D � A B C D� � A B� C� D�
� A B� C D�

3.33 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

3.34 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 0 1 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 X

3.36 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

3.30 Use the rules of Boolean algebra to find the maximum
SOP simplification of the function represented by the fol-
lowing truth table.

112 C H A P T E R 3 • Boolean Algebra and Combinational Logic

3.37 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

3.40 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

3.38 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

3.39 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

3.41 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Problems 113

3.42 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

3.45 Repeat Problem 3.44 for the circuit in Figure 3.68.

3.46 Refer to the BCD-to-2421 code converter developed in
Example 3.22. Use a similar design procedure to develop

A B C D Y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

A B C D Y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

A B C D Y

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

3.43 Use the Karnaugh map method to reduce the Boolean ex-
pression represented by the following truth table to sim-
plest SOP form.

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

simplification.

FIGURE 3.67
Problem 3.44:
Logic Circuit

FIGURE 3.68
Problem 3.45:
Logic Circuit

the circuit of a 2421-to-BCD code converter.

3.47 Excess-3 code is a decimal code that is generated by
adding 0011 (� 310) to a BCD code. Table 3.18 shows

3.44 The circuit in Figure 3.67 represents the maximum SOP
simplification of a Boolean function.

Use a Karnaugh map to derive the circuit for the maximum POS

114 C H A P T E R 3 • Boolean Algebra and Combinational Logic

A N S W E R S T O S E C T I O N R E V I E W

P R O B L E M S

Section 3.1

3.1a Y � A�B�C�����D� b OUT � (W� � X� � Y)Z�

Section 3.2

Section 3.3

3.3a SOP: Y � A B� C� � A B� C

POS: Y � (A � B � C)(A � B � C�)(A � B� � C)
(A � B� � C�)(A� � B� � C)(A� � B� � C�)

b SOP: Y � A� B� C� � A B� C� � A B� C � A B C�
POS: Y � (A � B � C�)(A � B� � C)(A � B� � C�)

(A� � B� � C�)

Section 3.4

3.4a Y � A�C� or Y � A� � C� 3.4b Y � A�C� � D or
Y � A� � C� � D

3.4c Y � AB�

Section 3.5

3.5 SOP: Y � A�C � BC� POS: Y � (A� � C�)(B � C)

A B C Y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Table 3.18 BCD and Excess-3 Code

Decimal BCD Code Excess-3
Equivalent D4 D3 D2 D1 E4 E3 E2 E1

0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

the relationship between a decimal digital code, natural
BCD code, and Excess-3 code. Draw the circuit of a
BCD-to-Excess-3 code converter, using the Karnaugh
map method to simplify all Boolean expressions.

3.48 Repeat Problem 3.47 for an Excess-3-to-BCD code con-
verter.

115

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 4

Introduction to PLDs
and MAX�PLUS II

O U T L I N E

4.1 What is a PLD?

4.2 Programming PLDs
using MAX�PLUS II

4.3 Graphic Design File

4.4 Compiling
MAX�PLUS II Files

4.5 Hierarchical Design

4.6 Text Design File
(VHDL)

4.7 Creating a Physical
Design

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Describe some advantages of programmable logic over fixed-function
logic.

• Name some types of programmable logic devices (PLDs).

• Use Altera’s MAX�PLUS II PLD Design Software to enter simple combi-
national circuits using schematic capture.

• Use VHDL entity declarations, architecture bodies, and concurrent signal
assignments to enter simple combinational circuits.

• Create circuit symbols from schematic or VHDL designs and use them in
hierarchical designs for PLDs.

• Assign device and pin numbers to schematic or VHDL designs and compile
them for programming Altera MAX7000S or FLEX10K20 devices.

• Program Altera PLDs via a JTAG interface and a ByteBlaster Parallel Port
Download Cable.

In the first three chapters of this book, we examined logic gates and Boolean algebra.
These basic foundations of combinational circuitry, as well as the sequential logic cir-

cuits we will study in a later chapter, form the fundamental building blocks of many digi-
tal integrated circuits (ICs).

In the past, such digital ICs were fixed in their logic functions; it was not possible to
change designs without changing the chips in a circuit. Programmable logic offers the dig-
ital circuit designer the possibility of changing design function even after it has been built.
A programmable logic device (PLD) can be programmed, erased, and reprogrammed
many times, allowing easier prototyping and design modification. (The industry marketing
buzz often refers to “rapid prototyping” and “reduced time to market.”) The number of IC
packages required to implement a design with one or more PLDs is often reduced, com-
pared to a design fabricated using standard fixed-function ICs.

PLDs can be programmed from a personal computer (PC) or workstation running
special software. This software is often associated with a set of programs that allow us to
design circuits for various PLDs. MAX�PLUS II, owned by Altera Corporation, is such
a software package. MAX�PLUS II allows us to enter PLD designs, either as schemat-
ics or in several hardware description languages (specialized computer languages for
modeling and synthesizing digital hardware). A design can contain components that are
in themselves complete digital circuits. MAX�PLUS II converts the design information

116 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

into a binary form that can be transferred into a PLD via a special interface connected to the
parallel port of a PC. �

4.1 What Is a PLD?

Programmable logic device (PLD) A digital integrated circuit that can be pro-
grammed by the user to implement any digital logic function.

Complex PLD (CPLD) A digital device consisting of several programmable sec-
tions with internal interconnections between the sections.

MAX�PLUS II CPLD design and programming software owned by Altera Cor-
poration.

Schematic capture A technique of entering CPLD design information by using a
CAD (computer aided design) tool to draw a logic circuit as a schematic. The
schematic can then be interpreted by design software to generate programming in-
formation for the CPLD.

Compile The process used by CPLD design software to interpret design informa-
tion (such as a drawing or text file) and create required programming information
for a CPLD.

One of the most far-reaching developments in digital electronics has been the introduction
of programmable logic devices (PLDs). Prior to the development of PLDs, digital cir-
cuits were constructed in various scales of integrated circuit logic, such as small scale inte-
gration (SSI) and medium scale integration (MSI) devices. These devices contained logic
gates and other digital circuits. The functions were determined at the time of manufacture
and could not be changed. This necessitated the manufacture of a large number of device
types, requiring shelves full of data books just to describe them. Also, if a designer wanted
a device with a particular function that was not in a manufacturer’s list of offerings, he or
she was forced to make a circuit that used multiple devices, some of which might contain
functions neither wanted nor needed, thus wasting circuit board space and design time.

Programmable logic provides a solution to these problems. A PLD is supplied to the
user with no logic function programmed in at all. It is up to the designer to make the PLD
perform in whatever way a design requires; only those functions required by the design
need be programmed. Since several functions can usually be combined in the design and
programmed onto a single chip, the package count and required board space can be re-
duced as well. Also, if a design needs to be changed, a PLD can be reprogrammed with the
new design information, often without removing it from the circuit.

PLD is a generic term. There is a wide variety of PLD types, including PAL (pro-
grammable array logic), GAL (generic array logic), EPLD (erasable PLD), CPLD (com-
plex PLD), FPGA (field-programmable gate array), as well as several others. We will be
focussing on CPLDs as a representative type of PLD. Although terminology varies some-
what throughout the industry, we will use the term CPLD to mean a device with several
programmable sections that are connected internally. In effect, a CPLD is several intercon-
nected PLDs on a single chip. This structure is not apparent to the user and doesn’t really
concern us at this time, except as background information. We will look at the structure of
PALs, GALs, and CPLDs in Chapter 8. We will use the term “PLD” when we are referring
to a generic device and “CPLD” as a more specific type of PLD.

A complication in the use of programmable logic is that we must use specialized com-
puter software to design and program our circuit. Initially, this might seem as though we
are adding another level of work to the design, but when these computer techniques are
mastered, it shortens the design process greatly and yields a level of flexibility not other-
wise available.

K E Y T E R M S

4.1 • What Is a PLD? 117

Let’s look at two examples, comparing the use of SSI logic versus programmable
logic.

❘❙❚ EXAMPLE 4.1 Figure 4.1 shows a majority vote circuit, as described in Problem 3.4 of Chapter 3. This cir-
cuit will produce a HIGH output when two out of three inputs are HIGH. Write the Boolean
equation for the circuit and state the minimum number and type of 74HC devices required
to build the circuit. How many packages would be required to build two such circuits?

FIGURE 4.1
Majority Vote Circuit

Y

A

B

C

FIGURE 4.2
74HC Devices Required to Build a Majority Vote Circuit

BA Y

74HC08A 74HC4075

Vcc

Vcc C

Solution

Boolean equation: Y � AB � BC � AC

Figure 4.2 shows the 74HC devices required to build the majority vote circuit: one
74HC08A quad 2-input AND gate and one 74HC4075 triple 3-input OR gate. Figure 4.2
also shows connections between the devices. Note that unused gate inputs are grounded
and unused outputs are left open.

Two majority vote circuits would require 6 ANDs and two ORs. This requires one
more 74HC08A package.

❘❙❚ EXAMPLE 4.2 Show how a CPLD can be programmed with a majority vote function, using a schematic
capture tool. State how many CPLDs would be required to build two majority vote
circuits.

Solution A CPLD can be programmed by entering the schematic directly, using PLD
programming software, such as Altera Corporation’s MAX�PLUS II. Figure 4.3 shows
the circuit as entered in a MAX�PLUS II Graphic Design File.

118 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.3
MAX�PLUS II Graphic Design File of a Majority Vote Circuit

A
INPUT

INPUT

INPUT

AND2

AND2

AND2

OR3

Y
OUTPUTB

C

The design can be compiled by MAX�PLUS II to create the information required to
program the CPLD with the majority vote circuit. If a second copy of the circuit is re-
quired, the first circuit can easily be duplicated by a Copy and Paste procedure. The two
circuits can than be compiled together and used to program a single CPLD.

❘❙❚

4.2 Programming PLDs using MAX�PLUS II

Design entry The process of using software tools to describe the design require-
ments of a PLD. Design entry can be done by entering a schematic or a text file that
describes the required digital function.

Fitting Assigning internal PLD circuitry, as well as input and output pins, for a
PLD design.

Simulation Verifying design function by specifying a set of inputs and observing
the resultant outputs. Simulation is generally shown as a series of input and output
waveforms.

Programming Transferring design information from the computer running PLD
design software to the actual PLD chip.

Download Program a PLD from a computer running PLD design and program-
ming software.

Software tools Specialized computer programs used to perform specific functions
such as design entry, compiling, fitting, and so on. (Sometimes just called “tools.”)

Suite (of software tools) A related collection of tools for performing specific
tasks. MAX�PLUS II is a suite of tools for designing and programming digital
functions in a PLD.

Target device The specific PLD for which a digital design is intended.

Altera UP-1 board A circuit board, part ofAltera’s University Program Design
Laboratory Package, containing two CPLDs and a number of input and output devices.

In order to take a digital design from the idea stage to the programmed silicon chip, we
must go through a series of steps known as the PLD Design Cycle. These include design
entry, simulation, compiling, fitting, and programming. All steps require the use of PLD
software, such as Altera’s MAX�PLUS II, a suite of software tools, to perform the vari-
ous tasks of the design cycle. Some tasks, such as design entry, require a great deal of at-
tention; others, such as fitting a design to a specified CPLD, are done automatically during
the compiling process.

We will be using MAX�PLUS II as a vehicle for learning the concepts that relate to
PLD design and programming. The target devices for our designs will be two Altera
CPLDs, both installed on a circuit board available from Altera called the University Pro-

K E Y T E R M S

4.2 • Programming PLDs Using MAX+PLUS II 119

gram Design Laboratory Package. We will generally refer to this board, shown in Figure
4.4, as the Altera UP-1 board.

FIGURE 4.4
Altera UP-1 Board

FIGURE 4.5
Altera MAX7000S and FLEX10K CPLDs

Figure 4.5 shows photos of the two CPLDs used in the Altera UP-1 Board. Figure 4.5a
shows the CPLD from the MAX7000S family, part number EPM7128SLC84-7. Figure
4.5b shows the CPLD from Altera’s FLEX10K series, part number EPF10K20RC240-4.
These part numbers are meaningful and will be discussed in detail in Chapter 8.

In the remaining part of this chapter, we will learn how to enter a design in
MAX�PLUS II in both graphical and text format, how to compile the design, and how to
download it into either one of the CPLDs on the Altera UP-1 circuit board.

Treat this design example as a tutorial in MAX�PLUS II. Follow along with all the
steps on your own computer to get the maximum benefit from the chapter. If you do not
have access to the Altera UP-1 board or an equivalent, you can still follow through most of
the steps.

120 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

Although the examples in this book are created with the Altera UP-1 board in mind,
they will easily adapt to other circuit boards carrying an Altera EPM7128S or other
similar CPLD. One such board is available from Intectra Inc. For further informa-
tion, contact Intectra at:

Intectra, Inc
2629 Terminal Blvd
Mountain View, CA 94043 U.S.A.
Ph 650-967-8818 Fx 650-967-8836
intectra@best.com
www.intectra.com (Web site in Spanish only)

4.3 Graphic Design File

Graphic Design File (gdf) A PLD design file in which the digital design is en-
tered as a schematic.

Project A set of MAX�PLUS II files associated with a particular PLD design.

One way of entering PLD designs is to create a Graphic Design File. This type of file
contains a representation of a digital circuit, such as in Figure 4.3, showing components
and their interconnections, as well as specifying the inputs and output names of the
circuit.

MAX�PLUS II automatically generates a number of other files to keep track of the
PLD programming information represented by the Graphic Design File. These files, taken
together, represent a project in MAX�PLUS II. All operations required to create a pro-
gramming file for a CPLD are performed on a project, not a file. Thus, it is important dur-
ing the design process to keep track of what the current project is. The MAX�PLUS II
toolbar, shown in Figure 4.6, makes this fairly easy.

K E Y T E R M S

N O T E

Create
New
File

Open
File

Save
File

Undo
Last
Action

Compiler

Hierarchy
Display

Timing
Simulator

Timing
Analyzer

Set Project
to Current
File

Programmer
Project Save
and Check

Project Save
and Simulate

Project
Save and
Compile

Text
Search
and
Replace

Search
for Text

FIGURE 4.6
MAX�PLUS II Toolbar

The toolbar has a number of buttons that pertain to the current project of a PLD de-
sign. The operations performed by these buttons can all be done through the regular menus
of MAX�PLUS II, but the toolbar offers a quick way to access many available functions.
Not all buttons on the toolbar in Figure 4.6 are labeled, just the ones that you will find par-
ticularly convenient at this time. You can find out the function of any button by placing the
cursor on the button and reading a description at the bottom of the window.

4.3 • Graphic Design File 121

In particular, notice the buttons that create, open, and save files (standard Windows
icons) and the button that sets the project to the current file. When creating a new file, make
it standard practice to first Save the file, then Set Project to Current File. If you do this as
a habit, you (and MAX�PLUS II) will always know what the current project is. If you
don’t, you will find that you are saving or compiling some other project and wondering
why your last set of changes didn’t work.

Another good practice is to create a new Windows folder for each new design that you
enter. Since MAX�PLUS II creates many files in the design process, the folders would be-
come unmanageable if designs were not kept in separate folders.

MAX�PLUS II installs a folder for working with design files called max2work. The
examples in this text will be created in a subfolder of max2work. If you are working in a
situation where many people share a computer and you have access to a network drive of
your own, you may wish to keep your working files in a max2work folder on the network
drive. Avoid storing your working files on a local hard drive unless you are the only one
with regular access to the computer. Examples in this book will not specify a drive letter,
but will indicate drive:\max2work\folder.

Most of these examples are also available on the accompanying CD in the folder
called Student Files. A special icon, shown in the margin, will indicate the example file-
name.

In the following sections, we will go through the process of creating a file in detail, us-
ing the majority vote circuit of Figure 4.3 as an example. The example assumes that
MAX�PLUS II is properly installed on your computer and running. For installation in-
structions, see the file SE_READ on the accompanying CD or the MAX�PLUS II Instal-
lation section of MAX�PLUS II Getting Started, available from Altera.

Entering Components

Primitives Basic functional blocks, such as logic gates, used in PLD design files.

Instance A single copy of a component in a PLD design file.

To create a Graphic Design File, click the New File icon on the tool bar or choose
New on the MAX�PLUS II File menu. The dialog box, shown in Figure 4.7 appears. Se-
lect Graphic Editor file and choose OK.

K E Y T E R M S

FIGURE 4.7
New Dialog Box

Maximize the window and click the Save icon or choose Save As or Save from the
File menu. In the dialog box shown in Figure 4.8, save the file in a new folder (e.g.,
drive:\max2work\maj_vote\maj_vote.gdf) and choose OK. (If you have not created the
new folder, just type the complete path name in the File Name box. MAX�PLUS II will

122 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

create a new folder.) Click the icon to Set Project to Current File or choose this action
from the File, Project menu.

The first design step is to lay out and align the required components. We require three
2-input AND gates, a 3-input OR gate, three input pins, and one output pin. These basic
components are referred to as primitives. Let us start by entering three copies of the AND
gate primitive, called and2.

Click the left mouse button to place the cursor (a flashing square) somewhere in the
middle of the active window. Right-click to get a pop-up menu, shown in Figure 4.9, and
choose Enter Symbol. The dialog box in Figure 4.10 appears. Type and2 in the Symbol
Name box and choose OK. A copy or instance of the and2 primitive appears in the active
window.

FIGURE 4.8
Save As Dialog Box

FIGURE 4.9
Enter Symbol Pop-up Menu

You can repeat the above procedure to get two more instances of the and2 primitive, or
you can use the Copy and Paste commands. These are the same icons and File commands
as for other Windows programs. Highlight the and2 symbol by clicking it. Right-click the
symbol to get the pop-up menu shown in Figure 4.11 and choose Copy. You can also click
the Copy icon on the toolbar or use the Copy command in the File menu.

4.3 • Graphic Design File 123

FIGURE 4.10
Enter Symbol Dialog Box

FIGURE 4.11
Copying a Component

124 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.12
Pasting a Component

FIGURE 4.13
Aligned Components

Paste an instance of the primitive by clicking to place the cursor, then right-clicking to
bring up the menu shown in Figure 4.12. Choose Paste. The component will appear at the
cursor location, marked in Figure 4.12 by the square at the top left corner of the pop-up
menu.

Enter the remaining components by following the Enter Symbol procedure outlined
above. The primitives are called or3, input, and output. When all components are entered
we can align them, as in Figure 4.13 by highlighting, then dragging each one to a desired
location.

Connecting Components

To connect components, click over one end of one component and drag a line to one end
of a second component. When you drag the line, a horizontal and a vertical broken line
mark the cursor position, as shown in Figure 4.14. These lines help you align connections
properly.

4.3 • Graphic Design File 125

FIGURE 4.14
Dragging a Line to Connect Components

A line will automatically make a connection to a perpendicular line, as shown in Fig-
ure 4.15.

A line can have one 90-degree bend, as at the inputs of the AND gates. If a line re-
quires two bends, such as shown at the AND outputs in Figure 4.16, you must draw two
separate lines.

Assigning Pin Names

Before a design can be compiled, its inputs and outputs must be assigned names. We could
also specify pin numbers, if we wished to make the design conform to a particular CPLD,
but it is not necessary to do so at this stage. It may not even be desirable to assign pin num-
bers, since the design we enter can be used as a component or subdesign of a larger circuit.
We may also wish MAX�PLUS II to assign pins to make the best use of the CPLD’s in-
ternal resources. At any rate, we will leave this step out for now.

FIGURE 4.15
Making a 90-degree Bend and a Connection

126 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.17
Assigning Pin Names

FIGURE 4.16
Line with Two 90-degree Bends

Figure 4.17 shows the naming procedure. Pins A and B have already been assigned
names. Highlight a pin by clicking on it. Right-click the highlighted pin and choose Edit
Pin Name from the pop-up menu. You could also double-click the pin name to highlight it.
Type in the new name.

If there are several pins that are spaced one above the other, you can highlight the
top pin name, as described above, then highlight successive pin names by using the
Enter key.

4.4 • Compiling MAX+PLUS II Files 127

4.4 Compiling MAX�PLUS II Files

Programmer Object File (pof) Binary file used to program a PLD of the Altera
MAX series.

SRAM Object File (sof) Binary file used to configure a PLD of the Altera FLEX
series.

Volatile A device is volatile if it does not retain its stored information after the
power to the device is removed.

Nonvolatile Able to retain stored information after power is removed.

The MAX�PLUS II compiler converts design entry information into binary files that
can be used to program a PLD. Before compiling, we should assign a target device to the
design.

From the Assign menu, shown in Figure 4.18, select Device. From the dialog box in
Figure 4.19, select the target device. For the Altera UP-1 board, this would be either the
EPM7128SLC84-7 (shown) or the FLEX10K20RC240-4. The device family for the
EPM7128S device is MAX7000S.

K E Y T E R M S

FIGURE 4.18
Assign Menu

To see the EPM7128SLC84-7 device, the box that says Show Only Fastest Speed
Grades must be unchecked.

The compiler has a number of settings that can be chosen prior to the actual compile
process. Figure 4.20 shows some of the settings that should be selected from the Process-
ing menu of the Compiler window. You can open the Compiler window from the
MAX�PLUS II menu or by clicking the Compiler button on the toolbar at the top of the
screen.

N O T E

128 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

Design Doctor is a utility that checks for adherence to good design practice and will
warn you of any bad design choices. (Design Doctor will not stop the design from compil-
ing, but will suggest potential problems that could result from a particular design.) The
Timing SNF Extractor creates a Simulation Netlist File, which is required to perform a
timing simulation of the design. We will perform this step in later MAX�PLUS II designs.
(If you are not able to select the Timing SNF Extractor, then uncheck the Functional
SNF Extractor option.) Smart Recompile allows the compiler to use previously compiled
portions of the design to which no changes have been made. This allows the compiler to
avoid having to compile the entire design each time a change is made to one part of the de-
sign.

To start the compile process, click Start in the Compiler window. While in progress,
the window will look something like Figure 4.21. Message of three types may appear dur-
ing the compile process. Info messages (green text) are for information only. Warning
messages (blue text) tell you of potential, but nonfatal, problems with the design. Error
messages (red text) inform you of design flaws that render the design unusable. A PLD can
still be programmed if the compiler generates info or warning messages, but not if it gen-
erates an error.

Depending on the device chosen, the compiler generates either a Programmer Ob-
ject File (pof) or SRAM Object File (sof). The pof is used to program a MAX-series
PLD. The sof is used to configure a FLEX-series PLD. The difference is that the MAX de-

FIGURE 4.19
Device Dialog Box

FIGURE 4.20
MAX�PLUS II Compiler Settings

4.5 • Hierarchial Design 129

vice is nonvolatile, that is, it retains its programming information after the power has been
removed. The FLEX-series device is volatile, meaning that its programming information
must be loaded each time the device powers up.

4.5 Hierarchical Design

Hierarchical design A PLD design that is ordered in layers or levels. The highest
level of design contains components that are themselves complete designs. These
components may, in turn, have lower level designs embedded within them.

A MAX�PLUS II Graphical Design File can be used as part of a hierarchical design.
That is, it can be represented as a component in a higher-level design. Figure 4.22 shows a
gdf that is constructed as a hierarchical design. It contains two majority vote circuits whose

K E Y T E R M S

FIGURE 4.21
MAX�PLUS II Compiler Operation

A1
INPUT

maj_vote

maj_vote

INPUT

INPUT
AND2

Y
OUTPUT

B1

C1

A2
INPUT

INPUT

INPUTB2

C2

A

B

C

A

B

C

Y

Y

FIGURE 4.22
Two-level Majority Vote Circuit (2votes.gdf)

outputs are combined in an AND gate. Thus, the output would be HIGH if two out of three
inputs were HIGH on both blocks labeled maj_vote. These blocks are complete designs in
their own right, and thus form a lower level of the design hierarchy.

Default Symbols and User Libraries

Default symbol A graphical symbol that represents a PLD design as a block,
showing only the design’s inputs and outputs. The symbol can be used as a compo-
nent in any Graphic Design File.

User library A folder containing symbols that can be used in a gdf file.

Top level (of a hierarchy) The file in a hierarchy that contains components speci-
fied in other design files and is not itself a component of a higher-level file.

We can create a default symbol for the majority vote circuit of Figure 4.3 from the
MAX�PLUS II File menu, as shown in Figure 4.23. This action will create a symbol file
with the same name as the Graphic Design File and the extension sym. Before creating
the symbol, make sure that the gdf is saved and that the project is set to the current file.

K E Y T E R M S

130 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.23
Creating a Default Symbol

The symbol can be embedded into a gdf, as in Figure 4.22.
Beforewecanuse thenewsymbol,wemustmakesure thatMAX�PLUSIIknowswhere

to find it. MAX�PLUS II looks for a component first in the present working directory, then
in the user library folders in the order of priority listed in the User Libraries dialog box.

To create a path to a user library, select User Libraries from the Options menu
(Figure 4.24) in MAX�PLUS II. In the resultant dialog box, shown in Figure 4.25,
select the appropriate drive and directories by double-clicking on the name in the Di-
rectories box. When the desired directory appears in the Directory Name box, click

4.5 • Hierarchical Design 131

Add, then OK.

FIGURE 4.24
Options Menu

FIGURE 4.25
User Libraries Dialog Box

132 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

If you are using MAX�PLUS II on a shared computer (e.g., in a computer lab),
you should be aware that a library path that points to another user’s directory can
cause MAX�PLUS II to look there before (or instead of) looking in your directory,
resulting in the apparent inability of MAX�PLUS II to find your file.

For example, suppose you have a file called g:\max2work\my_file.gdf, where
g:\ is a network drive mapped exclusively to your user account. (i.e., everyone has
a g:\ drive mapping, unique to their user account.) Further suppose that
another user, against standard lab protocol, has created a file with the same name
on the local hard drive: c:\max2work\my_file.gdf. (Don’t think this doesn’t hap-
pen. It does.)

At compile time, MAX�PLUS II will look for my_file.gdf first in the direc-
tory where the active project resides, then in the folders specified in the user library
paths. If the user library path c:\max2work\ has a higher priority than
g:\max2work\, it will compile the version of myfile.gdf found on the c: \drive.
When you make changes to the copy on the g: \drive, they will not take effect be-
cause the file on g:\ is not being compiled.

To remedy this, delete the user libraries that point to local drives, such as a:\ or
c:\. If you have no assigned network drive on your system, delete all user libraries
except for your own. Since a user library is just the name of a folder where
MAX�PLUS II should look for files, this won’t do any great harm.

Creating a Design Hierarchy

The circuit in Figure 4.22 is saved as 2votes.gdf. If we double-click on either symbol la-

N O T E

A21
INPUT

2votes

2votes

INPUT

INPUT
AND2

Y
OUTPUT

B21

C21

A11
INPUT

INPUT

INPUTB11

C11

A22
INPUT

INPUT

INPUTB22

C22

A12
INPUT

INPUT

INPUTB12

C12

A2

B2

C2

A1

B1

C1

A1

B1

C1

A2

B2

C2

Y

Y

FIGURE 4.26
Further Levels of Hierarchy (4votes.gdf)

beled maj vote, the MAX�PLUS II Graphic Editor will bring the file maj_vote.gdf to
the foreground. Thus, we say that 2votes.gdf is at the top level of the current hierarchy.

We can extend the hierarchy further by making a symbol for 2votes.gdf and embed-
ding it in a higher-level file called 4votes.gdf, shown in Figure 4.26. This circuit generates
a HIGH output if (two out of three of (A11, B11, C11) are HIGH AND two out of three of

➥ 2votes.gdf
maj_vote.gdf

➥ 4votes.gdf

4.6 • Text Design File (VHDL) 133

(A21, B21, C21) are HIGH) OR the same is true for (A12, B12, C12) AND (A22, B22,
C22). If we double-click on either symbol for 2votes, the Graphic Editor will bring the file
2votes.gdf to the foreground.

MAX�PLUS II can display the hierarchy of a design. To see the hierarchy structure,
click the Hierarchy icon on the MAX�PLUS II toolbar (the yellow pyramid) or choose
Hierarchy Display from the MAX�PLUS II menu. Figure 4.27 shows the hierarchy for
the project 4votes. Note that the highest level has two subdesigns, each of which breaks
down further into two subdesigns. Thus, using hierarchical design and symbols for gdf or
other design files allows us to create multiple instances of a basic design (maj_vote.gdf)
and use it in many places.

In order to correctly show the hierarchy display, the top-level file of the project (in
this case 4votes.gdf) must be compiled first.

4.6 Text Design File (VHDL)

Hardware description language A computer language used to design digital cir-
cuits by entering text-based descriptions of the circuits.

AHDL (Altera Hardware Description Language) Altera’s proprietary text-
entry design tool for PLDs.

VHDL (VHSIC Hardware Description Language) An industry-standard com-
puter language used to model digital circuits and produce programming data for
PLDs.

VHSIC Very high speed integrated circuit

Syntax The “grammar” of a computer language. (i.e., the rules of construction of
language statements)

ASICs (application specific integrated circuits) Integrated circuits that are con-
structed for a specific design purpose. The term could refer to a PLD, although it
usually means a custom-designed fixed function device.

An alternative to schematic entry, and ultimately a more powerful PLD design technique is
the use of a text-based design tool, or hardware description language, such as Altera’s
AHDL (Altera Hardware Description Language) or the industry-standard VHDL (VH-
SIC Hardware Description Language). A designer creates a text file, framed within a
certain set of rules known as the syntax of the language and uses a compiler to create pro-

K E Y T E R M S

N O T E

FIGURE 4.27
Hierarchy Display for Project “4votes”

134 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

gramming data much as he or she would with a Graphic Design File. Hardware description
languages can be used to generate hardware for hierarchical designs, either as components
in graphic or text files or as higher level design entities containing other designs.

AHDL, while very easy to use, has a much narrower application than VHDL because
it is one of many proprietary tools on the market aimed at the programming requirements
of a particular manufacturer’s line of CPLDs. Since VHDL is an industry-standard lan-
guage and the MAX�PLUS II compiler supports both languages, we will concentrate on
VHDL.

VHDL was originally developed by defense contractors in the U.S. and is now the
required standard for all ASICs (application specific integrated circuits) designed for
the U.S. military. It has been standardized by the Institute of Electrical and Electronics
Engineers (IEEE) and has been enjoying increasing popularity in the electronics design
community. The original VHDL standard was written in 1987 and updated in 1993 (IEEE
Std. 1076-1993). This standard and other related ones continue to undergo revision. The
current status of Std. 1076 can be determined from the IEEE Standards web site at
http://www.standards.ieee.org.

Entity and Architecture

Entity A VHDL structure that defines the inputs and outputs of a design.

Architecture A VHDL structure than defines the relationship between input, out-
put, and internal signals or variables in a design.

Port A name assigned to an input or output of a VHDL design entity.

Mode (of a port) The kind of port, such as input or output.

Signal A name given to an internal connection in a VHDL architecture.

Variable A block of working memory used for internal calculation or storage in a
VHDL architecture.

Type A set of characteristics associated with a VHDL port name, signal, or vari-
able that determines the allowable values of the port, signal, or variable.

Library A collection of VHDL design units that have been previously compiled.

Package A group of VHDL design elements that can be used by more than one
VHDL file.

IEEE Standard 1164 The standard which defines a variety of VHDL types and
operations, including the STD_LOGIC and STD_LOGIC_VECTOR types.

Concurrent Simultaneous.

Concurrent signal assignment A relationship between an input and output port
or signal in which the output is changed as soon as there is a change in input. If the
file has more than one concurrent signal assignment, they are all evaluated simulta-
neously.

Selected signal assignment statement A concurrent signal assignment in VHDL
in which a value is assigned to a signal, depending on the alternative values of an-
other signal or variable.

Comment Explanatory text in a VHDL (or other computer language) file that is
ignored by the computer at compile time.

Vector A group of digital signals or variables, usually related numerically, that
can be treated as a single multibit variable.

Bit string literal A group of bits assigned to the elements of a vector, enclosed in
double quotes (e.g., “001011”).

K E Y T E R M S

4.6 • Text Design File (VHDL) 135

Every VHDL file requires at least two structures: an entity declaration and an archi-
tecture body. The entity declaration defines the external aspects of the VHDL func-
tion; that is, the input and output names and the name of the function. The architec-
ture body defines the internal aspects; that is, how the inputs and outputs behave with
respect to one another and with respect to other signals or functions that are internal
only.

Let us examine the structure of a VHDL design for the majority vote circuit defined in
Figure 4.1. The complete VHDL file for the majority vote circuit is shown next. The dou-
ble dashes before the first two lines are to indicate that these lines are comments. There are
also a few other comments to illustrate the use of VHDL.

—— maj_vot2.vhd

—— VHDL implementation of a majority vote circuit

—— Library contains standard VHDL logic types

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

—— Entity defines inputs and outputs

ENTITY maj_vot2 IS

PORT (

a, b, c : IN STD LOGIC;

y : OUT STD LOGIC);

END maj_vot2;

—— Architecture describes input/output relationship

ARCHITECTURE majority OF maj_vot2 IS

BEGIN

y <= (a and b) or (b and c) or (a and c);

END majority;

VHDL is not case-sensitive, so statements written in lowercase and uppercase are
equivalent. For example, (Y �� A AND B;) is equivalent to (y �� a and
b;). However, Altera’s style guidelines for VHDL suggest that all keywords, de-
vices, constants, and primitives be capitalized and everything else be written in
lowercase letters. The VHDL style guideline can be referred to in the MAX�PLUS
II Help menu.

The name of the entity, maj_vot2, is given in the first and last lines of the entity dec-
laration. The VHDL file that contains this entity must be named maj_vot2.vhd. Figure
4.28 shows how the design entity looks if it is converted to a symbol for use in a Graphic
Design File.

The Boolean equation for a 3-input majority vote circuit is Y � AB � BC � AC. In the
architecture body, we can write this operation as:

y <= (a and b) or (b and c) or (a and c);

The operator <= assigns the value of the right hand side of the equation to the left hand
side. Whenever there is a change in a, b, or c, the statement is re-evaluated and the new
value is assigned to y. Note that VHDL logical operators (such as and and or) have equal
precedence, so we must make the order of precedence explicit with parentheses.

The Boolean equation above is an example of a concurrent signal assignment state-
ment. Concurrent means “simultaneous.” The implication is that any number of concurrent
signal assignments can be listed in a VHDL architecture body and the order in which they
are evaluated does not depend on the order in which they are written, since all statements
are concurrent. In this way, a concurrent structure imitates combinational hardware, where

N O T E

FIGURE 4.28
Graphical Representation of a
VHDL Design Entity

➥ maj_vot2.vhd

136 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

a change in one input that is common to several circuits makes all circuits change at the
same time.

Enclosed in the entity declaration is a port definition. A port is a connection from the
PLD to the outside world. Figure 4.29 shows the possible modes of a port. Mode IN refers

IN

INOUT
CPLD
logic

OUT

BUFFER

FIGURE 4.29
VHDL Port Modes

OUT

BUFFER
a

b

c

x � � a and b;

y � � x or c;

FIGURE 4.30
BUFFER and OUT Modes

to a port that is only for input. Mode OUT is output only. Mode INOUT is a bidirectional
port, in which data can flow in either direction, based on the status of a control input. Mode
BUFFER is a special case of OUT that has a feedback connection back into the CPLD
logic that can be used as part of another Boolean expression.

Figure 4.30 shows the difference between BUFFER and OUT modes. Port x (defined
by x <= a and b;) must be of mode BUFFER because it is fed back and used as part of
the expression for port y (defined by y <= x or c;). Port y can be of mode OUT since it
has no feedback, only an output.

In addition to defining the port modes, the entity declaration also defines what type
each port is. The type of a port, signal, or variable defines what values it is allowed to have.
Three common types in VHDL are BIT, STD_LOGIC, and INTEGER. Multibit extensions
of these types include BIT_VECTOR and STD_LOGIC_VECTOR.

Ports, signals and variables of type BIT can have a value of ‘0’ or ‘1’. When using
these values, they must be enclosed in single quotes.

The STD_LOGIC (standard logic) type, also called IEEE Std.1164 Multi-Valued
Logic, has been defined to give a broader range of output values than just ‘0’ and ‘1’. Any
port, signal, or variable of type STD_LOGIC or STD_LOGIC_VECTOR can have any of
the values listed below.

‘U’, –– Uninitialized

‘X’, –– Forcing Unknown

‘0’, –– Forcing 0

‘1’, –– Forcing 1

‘Z’, –– High Impedance

4.6 • Text Design File (VHDL) 137

‘W’, –– Weak Unknown

‘L’, –– Weak 0

‘H’, –– Weak 1

‘-’ –– Don’t care

“Forcing” levels are deemed to be the equivalent of a gate output. “Weak” levels are
specified by a pull-up or pull-down resistor. (“Weak” levels are usually used in circuit
modeling, where it is important to distinguish between gate outputs and pull-up/down.
These levels will not be of importance to us.) The ‘Z’ state is used as the high-impedance
state of a tristate buffer.

The majority of applications can be handled by ‘X’, ‘0’, ‘1’, and ‘Z’ values.
To use STD_LOGIC in a VHDL file, you must include the following reference to the

VHDL library called ieee and the std_logic_1164 package before the entity declaration:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

Why use STD_LOGIC rather than BIT, if we only use ‘0’ and ‘1’ values? The usual
reason is for compatibility with existing VHDL components that might be used in our de-
sign entities. For example, the Altera Library of Parameterized Modules (LPM) contains

Table 4.1 Some Common VHDL Types

How
Type Values Written Examples

BIT 0 or 1 Single quotes ‘0’, ‘1’

STD_LOGIC U, X, 0, 1, Z, W, L, H, - Single quotes ‘X’, ‘0’, ‘1’, ‘Z’

INTEGER Whole numbers No quotes 4095, 7, -120, -1

BIT_VECTOR Multiple instances of 0 or 1 Double quotes “100110”

STD_LOGIC_VECTOR Multiple instances of U, Double “1001100”,
X, 0, 1, Z, W, L, H, - quotes “00ZZ11”,

“ZZZZZZZZ”

Y3

Y2

Y1

Y0

D0

D1

FIGURE 4.31
2-line-to-4-line Decoder

138 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

predesigned components that are written using STD_LOGIC types. To include these com-
ponents in a VHDL design, the design must be written with STD_LOGIC types, as well.

The INTEGER type can take on whole-number values. When used in a VHDL file, an
integer is written without quotes. Table 4.1 summarizes the BIT, STD_LOGIC, and INTE-
GER types, as well as the BIT_VECTOR and STD_LOGIC_VECTOR types.

❘❙❚ EXAMPLE 4.3 Figure 4.31 shows the logic diagram of a 2-line-to-4-line decoder. The circuit detects the
presence of a particular binary code and makes one and only one output HIGH, depending
on the value of the 2-bit number D1D0. Write a VHDL file that describes the decoder.

Solution The circuit has two inputs and four outputs, which are numerically related. We
could describe the two inputs as separate names, as we could the four outputs. Or, we could
show the inputs and outputs as two groups of related ports, called vectors. The elements of
the vector can be treated separately or as a group.

Case 1: separate variables

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode1 IS

PORT(

d1, d0 : IN STD_LOGIC;

y0, y1, y2, y3 : OUT STD_LOGIC);

END decode1;

ARCHITECTURE decoder1 OF decode1 IS

BEGIN

y0 <= (not d1) and (not d0);

y1 <= (not d1) and (d0);

y2 <= (d1) and (not d0);

y3 <= (d1) and (d0);

END decoder1;

Case 2: vectors (elements treated separately)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode2 IS

PORT (

d : IN STD_LOGIC_VECTOR (1 downto 0);

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decode2;

ARCHITECTURE decoder2 OF decode2 IS

BEGIN

y(0) <= (not d(1)) and (not d(0));

y(1) <= (not d(1)) and (d(0));

y(2) <= (d(1)) and (not d(0));

y(3) <= (d(1)) and (d(0));

END decoder2;

In Case 2, we specify the length of the vector by the construct (3 downto 0), indicat-
ing that Y3 is the leftmost bit in the vector. We could also use the constructs (0 to 3),
(4 downto 1), or (1 to 4), depending on our requirements. Each individual element of the
vector is specified by a number in parentheses.

Case 3: vectors (elements treated as a group)

— — decode2a.vhd

— — 4-channel decoder

➥ decode1.vhd

➥ decode2.vhd

➥ decode2a.vhd

4.6 • Text Design File (VHDL) 139

— — Makes one and only one output HIGH for each

— — binary combination of (d1, d0).

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode2a IS

PORT (

d : IN STD_LOGIC_VECTOR (1 downto 0);

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decode2a;

ARCHITECTURE decoder OF decode2a IS

BEGIN

—— Choose a signal assignment for y

—— based on binary value of d

—— Default case: all outputs deactivated

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

END decoder;

In Case 3, we use a selected signal assignment statement to assign a value to all
bits of vector y for each combined value of vector d. For example, when d(1) � 0 and
d(0) � 0, the values assigned to y are: y(3) � 1, y(2) � 0, y(1) � 0, y(0) � 0. Similar as-
signments are made for other values of d. The result is a construct that acts much like a
truth table of the decoder circuit. The others clause is necessary to define a default case

FIGURE 4.32
MAX�PLUS II Template Menu

FIGURE 4.33
VHDL Template Dialog Box

140 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

since the STD_LOGIC_VECTOR type contains values other than ‘0’ and ‘1’.
The multibit values assigned to the vectors, called bit string literals, must be enclosed

in double quotes. ❘❙❚

VHDL Templates in MAX�PLUS II

MAX�PLUS II offers a shortcut to creating VHDL structure in a Template Menu. Fig-
ure 4.32 shows this menu, which is available in the MAX�PLUS II Text Editor window.
To choose a template, select the one desired from the VHDL Template dialog box, shown
in Figure 4.33.

Choosing the Entity Declaration template results in the following text:

ENTITY __entity_name IS

GENERIC (__parameter_name : string :� __default_value;

__parameter_name : integer:� __default_value);

PORT (

__input_name, __input_name : IN STD_LOGIC;

__input_vector_name : IN STD_LOGIC_VECTOR (__high

downto __low);

__bidir_name, __bidir_name : INOUT STD_LOGIC;

__output_name, __output_name : OUT STD_LOGIC);

END __entity_name;

To convert this into a valid entity for our use, we delete the lines we do not need and
substitute input and output names into the template. For our majority vote circuit, we had
inputs called A, B, and C and an output called Y. Thus, we can modify the template to yield
the entity declaration:

ENTITY maj_vot2 IS

PORT (

a, b, c : IN STD_LOGIC;

A1
INPUT

maj_vote

MAJ_VOT2

INPUT

INPUT
AND2

Y
OUTPUT

B1

C1

A2
INPUT

INPUT

INPUTB2

C2

A

B

C

a

b

c

Y

y

FIGURE 4.34
GDF Containing Symbols from Other GDF and VHDL Files

y : OUT STD_LOGIC);

END maj_vot2;

Integrating VHDL and Graphical Design Components

We can create a default symbol for the VHDL majority vote function, much as we did for
the same function in the Graphic Design File. In the Text Editor File menu, select Create

4.7 • Creating a Physical Design 141

Default Symbol. We can integrate this new symbol into a two-level majority vote circuit,
as shown in Figure 4.34. This circuit contains primitives (AND gate, input pins, and output
pin), a gdf symbol (maj_vote), and a symbol created from a VHDL file (MAJ_VOT2).
Double-clicking on either symbol will bring forward its original design file.

4.7 Creating a Physical Design

Assignment and Configuration File (acf) A MAX�PLUS II file that contains
information about the configuration options for a project, including assigned device
and pin numbers.

K E Y T E R M S

The previous sections have concentrated on the design aspects of a project. Of course, the
ultimate goal of this procedure is to create a physical version of the design. Before we can
program our majority vote circuit into hardware, we must assign the input and output pin
numbers on the target CPLD. At that point we can recompile the design file and program
the CPLD.

Assigning Pin Numbers

Before proceeding with this step, make sure that you have assigned a device part number to
the design. Save the file and set the project to the current file.

To assign a pin number, click on the pin to highlight it, then right-click to see the pop-
up menu in Figure 4.35. Choose Assign, then Pin/Location/Chip. You could also do this
from the Assign menu at the top of the screen.

FIGURE 4.35
Pop-up Menu for Pin Assignments

142 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.36
Pin/Location/Chip Assignment
Dialog Box

Table 4.2 Pin Assignment
for a Majority Vote Circuit

Pin Name Pin Number

A1 12
B1 16
C1 18
A2 15
B2 17
C2 21
Y 4

FIGURE 4.37
Pin Assignments in ACF (Before
Copying)

4.7 • Creating a Physical Design 143

We can assign pin numbers in the dialog box in Figure 4.36.
Type A1 in the Node Name box, 12 in the Pin box and click Add. Type B1 in the

Node Name box, assign this name to pin 16, and click Add. Repeat this procedure until all
names are assigned, as in Table 4.2. When all assignments are complete, click OK.

We can also assign pin numbers by editing the Assignment and Configuration File
(acf), as shown in Figures 4.37 and 4.38. This technique works especially well if you need
to assign pin numbers to a sequence of numerically related inputs and outputs.

Figure 4.37 shows the acf with four pin assignments made. We can add the others eas-
ily by using a copy-and-paste procedure. Highlight the line you wish to copy and copy it to
the Windows clipboard (use Copy in the File menu or the Copy icon on the toolbar or
Ctrl-C). Paste three copies into the acf and modify them so that they represent the remain-
ing required pin assignments, as shown in Figure 4.38.

Figure 4.39 shows the input pin assignments as they appear in the gdf file.

FIGURE 4.38
Pin Assignments in ACF (After Copying)

FIGURE 4.39
Pin Assignments as Seen in gdf File

144 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

Programming CPLDs on the Altera UP-1 Circuit Board

ByteBlaster An Altera ribbon cable and connector used to program or configure
Altera CPLDs via the parallel port (LPT port) of an IBM PC or compatible.

JTAG Joint Test Action Group. A standards body that developed the format
(called IEEE Std. 1149.1) for testing and programming devices while they are in-
stalled in a system.

ISP In-system programmability. The ability of a PLD (such as a MAX7000S) to
be programmed without removing it from a circuit board.

ICR In-circuit reconfigurability. The ability of a PLD (such as a FLEX10K) to be
configured without removing it from a circuit board.

K E Y T E R M S

FIGURE 4.40
ByteBlaster Parallel Port Download Cable (By Permission of Altera Corporation)

TDI Test Data In. In a JTAG port, the serial input data to a device.

TDO Test Data Out. The JTAG signal, the serial output data from a device.

TMS Test Mode Select. The JTAG signal that controls the downloading of test or
programming data.

TCK Test Clock. The JTAG signal that drives the JTAG downloading process
from one state to the next.

JTAG Chain Multiple JTAG-compliant devices whose TDI and TDO ports form
a continuous chain connection. Such a chain allows multi-device programming.

The CPLDs on the Altera UP-1 circuit board are programmed via the programming soft-
ware in MAX�PLUS II and a ribbon cable called the ByteBlaster. The ByteBlaster,
shown in Figure 4.40, connects to the parallel port of a PC running MAX�PLUS II to a
10-pin male socket that complies with the JTAG standard. This standard specifies a four-
wire interface, originally developed for testing chips without removing them from a circuit
board, but can also be used to program or configure PLDs.

4.7 • Creating a Physical Design 145

FIGURE 4.41
MAX9000, MAX7000S, and MAX7000A Programming with the ByteBlaster Cable
(By Permission of Altera Corporation)

FIGURE 4.42
JTAG Chain Device Programming and Configuration with the ByteBlaster Cable (By Permission
of Altera Corporation)

PLDs that can be programmed or configured while installed on a circuit board are
called in-system programmable (ISP) or in-circuit reconfigurable (ICR). ISP is used to
refer to nonvolatile devices, such as MAX7000S; ICR refers to volatile devices, such as
FLEX10K.

The JTAG interface has four wires, as well as power and ground connections, as
shown in Figure 4.41. Data are sent to a device from a JTAG controller (i.e., the PC) via the
TDI (Test Data In) line. Data return from the device via TDO (Test Data Out). The data
transfer is controlled by TMS (Test Mode Select). The process is driven from one step to
the next by TCK (Test Clock).

Multiple devices can be programmed in a JTAG Chain, as shown in Figure 4.42. This
connection allows both CPLDs on the Altera UP-1 Board to be programmed at the same
time. The UP-1 board also has a female 10-pin socket labeled JTAG out, which allows two
or more boards to be chained together. The choice of programming one or more CPLDs, or

146 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

the CPLDs on one or more UP-1 boards, is determined by the placement of four on-board
jumpers. These jumper positions are explained in the Altera University Program Design
Laboratory Package User Guide. A copy of the User Guide is included in Appendix A for
reference and is available at Altera’s Web site.

The operation of the JTAG port is controlled automatically by MAX�PLUS II, so fur-
ther details are not necessary at this time. For further information on the JTAG interface,
refer to Altera Application Note 39, JTAG Boundary-Scan Testing in Altera Devices, in-

FIGURE 4.43
Hardware Setup Dialog Box

cluded in the Altera Documentation folder on the accompanying CD.

MAX�PLUS II Programmer

To program a device on the Altera UP-1 board, set the jumpers to program the EPM7128S
or configure the EPF10K20, as shown in the Altera University Program Design Laboratory
Package User Guide. Connect the ByteBlaster cable from the parallel port of the PC run-
ning MAX�PLUS II to the 10-pin JTAG header. (You may have to run a 25-wire cable

FIGURE 4.44
Programmer Dialog Box
(MAX7000S Device)

4.7 • Creating a Physical Design 147

(male-D-connector-to-female-D-connector) to make it reach.) Plug an AC adapter (9-volt
dc output) into the power jack of the UP-1 board.

Open the top-level file of the project you wish to download to the UP-1 board (e.g.,
maj_vote.gdf). Set the project to the current file. Invoke the MAX�PLUS II Programmer
from the MAX�PLUS II menu or click the Programmer button (the icon showing the blue
ribbon cable) on the MAX�PLUS II toolbar.

If you have never programmed a device with your copy of MAX�PLUS II, you will
need to set up the hardware configuration. Click Hardware Setup in the Options menu to

FIGURE 4.45
JTAG Menu

FIGURE 4.46
Multi-Device JTAG Chain Setup

get the dialog box in Figure 4.43.
Select ByteBlaster in the Hardware Type box. Ensure that Parallel Port is the same

as the port the ByteBlaster is plugged into (usually LPT1:). Click OK. (If you have a
choice, configure your parallel port as an Enhanced Communications Port (ECP) in your
computer’s CMOS setup. For most users this step is not necessary, as the port is already
configured this way.)

148 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

FIGURE 4.47
Select Programming File Dialog Box

If the current project was compiled with the MAX7000S device selected, the pof file

for the project will auto-
matically be available.
The Programmer dialog
box will appear as in Fig-
ure 4.44. To download,
click Program.

If the project was
compiled for the
FLEX10K device and the
device is to be configured
via a ByteBlaster, it must
be configured via the
Multi-Device JTAG
Chain available in the
JTAG menu. Select the
JTAG menu, shown in
Figure 4.45, and choose
Multi-Device JTAG

Chain Setup.
In the Multi-Device

JTAG Chain Setup win-
dow, shown in Figure
4.46, select the pull-
down menu for the de-
vice name. Select
EPF10K20. Choose
Delete All to clear the
box of any previous pro-
gramming file names.
Choose the Select Pro-
gramming File button.

The Select Pro-
gramming File dialog
box will appear, as in
Figure 4.47. Find and se-
lect the file
drive:\max2work\maj_v

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

Glossary 149

ote\maj_vote.sof. Click
OK. Choose the Add
button in the JTAG setup
box to add the SRAM
Object File (sof) to the
list. Choose the Detect
JTAG Chain Info button
to set up the hardware for
programming. Choose
OK. Click the Configure
button in the Program-
mer dialog box to down-
load the binary informa-
tion to the FLEX10K
CPLD on the UP-1
board.

S U M M A R Y
1. A programmable logic device (PLD) is a digital device that is

shipped blank and whose function is determined by the end
user.

2. PLDs offer design flexibility, reduce board space and pack-
age count, and can be used to develop digital designs more
quickly than fixed-function logic.

3. Some types of PLDs include PAL (programmable array
logic), GAL (generic array logic), EPLD (erasable PLD),
CPLD (complex PLD), FPGA (field-programmable gate ar-
ray).

4. Complex PLDs (CPLDs) are devices with several program-
mable sections that are interconnected inside the chip.

5. PLD design and programming requires special software,
such as Altera’s MAX�PLUS II.

6. PLD designs can be entered by schematic capture (Graphic
Design Files) or text-based languages, such as Altera Hard-
ware Description Language (AHDL) and VHSIC Hardware
Description Language (VHDL).

7. MAX�PLUS II organizes PLD design files in a project.
Since many operations in MAX�PLUS II are performed on
a project, you should set the project to the current file (File
menu) whenever you change windows and make a modifica-
tion to a design file.

8. Save your work every time you pause for thought.
9. A MAX�PLUS II Graphic Design File (gdf) consists of

graphical symbols of components that are interconnected by
lines drawn between inputs and outputs of the components.

10. Circuit inputs and outputs in a gdf have special symbols. The
input and output pins must be named, but need not be num-
bered in the first stages of a design.

11. The MAX�PLUS II compiler translates the design informa-
tion from a gdf or text file into binary data that can be down-
loaded into a PLD. For a MAX7000S, the compiler generates
a Programmer Object File (pof) to program the device. For a
FLEX10K, an SRAM Object File (sof) is generated to con-
figure the device.

12. MAX7000S devices are nonvolatile; they stay programmed
when the power is removed from the chip. FLEX10K devices
are volatile; they lose their programming data when power is
removed.

13. If a CPLD part number is not specified, the MAX�PLUS II
compiler will automatically select one. It is good practice to
assign the part number of the device before compiling, as this
can affect the accuracy of certain parts of the design process,
such as simulation. The CPLDs on the Altera UP-1 board are
EPM7128SLC84-7 and EPF10K20RC240-4.

14. Some useful compiler options are: Design Doctor (checks
for good design practice), Timing SNF Extractor (compiles
data required for timing simulations), and Smart Recompile
(allows part of the compile process to be skipped if only part
of a design has changed).

15. Compiler messages can be in green text (Info), blue text
(Warning; possible problems, but not fatal), or red text (Er-
ror; fatal, compiling stops).

16. MAX�PLUS II files can be arranged in a design hierarchy.
That is, a MAX�PLUS II file can contain components that
are complete MAX�PLUS II designs in and of themselves.

17. A file that contains other designs, but is not part of a higher-
level design, is called the top level of a hierarchy.

18. If the top level of a hierarchy is a gdf, lower-level designs are
embedded in the gdf as default symbols that are created from
the original design files of the components.

19. MAX�PLUS II looks for default symbols in the present
working directory, then in the directories specified as user li-
braries.

20. VHDL (VHSIC Hardware Description Language) is a text-
based programming language used to model and program
digital circuits.

21. Every VHDL file requires an entity declaration, which de-
scribes the external aspects of the design (inputs and out-
puts), and an architecture body, which describes the relation-

ship between the inputs and outputs.

22. The entity declaration defines ports (inputs and outputs) and
the type of each port (the range of values each port can have).

23. Some common types are BIT (0 or 1), STD_LOGIC (nine-
valued standard logic), and INTEGER (whole numbers).

24. The STD_LOGIC type can take on any of the following
values:

‘U’,— — Uninitialized

‘X’,— — Forcing Unknown

‘0’,— — Forcing 0

‘1’,— — Forcing 1

‘Z’,— — High Impedance

‘W’,— — Weak Unknown

‘L’,— — Weak 0

‘H’,— — Weak 1

150 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

‘-’ — — Don’t care

25. STD_LOGIC is defined in a library called ieee. To use STD
LOGIC, include the following two statements at the begin-
ning of a file

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

26. A port in VHDL is an input or output. A signal is an internal
connection, like a wire. A variable is a piece of working
memory reserved by the VHDL file.

27. The simplest way to relate inputs and outputs in a VHDL de-
sign is with a concurrent signal assignment statement, which
has the form: x <= (a and b) or c; The port or sig-
nal on the left side is assigned the value of the logic expres-
sion on the right side. (Variables are assigned with a different
operator.)

28. A port, signal, or variable can have a multiple-bit construc-
tion of type BIT_VECTOR or STD_LOGIC_VECTOR.
These structures are called vectors and can be referred to a
separate elements (e.g., y(3) <= d(1) and d(0);) or
as a group (e.g., y <= “1000”).

29. A selected signal assignment statement can act as a truth
table in VHDL. It assigns alternative values to one or more
outputs, depending on the alternative values on one or more
inputs.

30. VHDL constructs and statements can be selected in generic
form from a template menu in MAX�PLUS II.

31. VHDL designs can be embedded in a gdf as default symbols.
32. Pin numbers must be assigned to a design before it can be

downloaded to a CPLD. Pins can be assigned in the Pin/ Lo-
cation/Chip dialog box (accessed by highlighting a pin sym-
bol and right-clicking) or by editing the project’s Assignment
and Configuration File (acf).

33. An Altera CPLD can be programmed directly from a PC par-
allel port via a ByteBlaster cable.

34. The ByteBlaster cable implements a programming interface
specified by a standard (IEEE Std. 1149.1) of the Joint Test
Action Group (JTAG).

35. A JTAG port is a 4-wire interface for loading test and
programming information into one or more JTAG-compliant
devices. It consists of an input (TDI), output (TDO), mode
select (TMS), and clock (TCK).

G L O S S A R Y
AHDL (Altera Hardware Description Language) Altera’s
proprietary text-entry design tool for PLDs.

Altera UP-1 Board A circuit board, part of Altera’s Univer-
sity Program Design Laboratory Package, containing two
CPLDs and a number of input and output devices.

Architecture A VHDL structure than defines the relationship
between input, output, and internal signals or variables in a design.

ASICs (application specific integrated circuits) Integrated
circuits that are constructed for a specific design purpose. The
term could refer to a PLD, although it usually means a custom-
designed fixed function device.

Assignment and Configuration File (acf) A MAX�PLUS II
file that contains information about the configuration options for
a project, including assigned device and pin numbers.

Bit string literal A group of bits assigned to the elements of a
vector, enclosed in double quotes (e.g., “001011”).

ByteBlaster An Altera ribbon cable and connector used to
program or configure Altera CPLDs via the parallel port (LPT
port) of an IBM PC or compatible.

Comment Explanatory text in a VHDL (or other computer
language) file that is ignored by the computer at compile time.

Compile The process used by CPLD design software to inter-
pret design information (such as a drawing or text file) and cre-
ate required programming information for a CPLD.

Complex PLD (CPLD) A digital device consisting of several
programmable sections with internal interconnections between
the sections.

Concurrent Simultaneous.

Concurrent signal assignment A relationship between an in-
put and output port or signal in which the output is changed as
soon as there is a change in input. If the file has more than one
concurrent signal assignment, they are all evaluated simultane-
ously.

Default symbol A graphical symbol that represents a PLD de-
sign as a block, showing only the design’s inputs and outputs.
The symbol can be used as a component in any Graphic Design
File.

Design entry The process of using software tools to describe
the design requirements of a PLD. Design entry can be done by
entering a schematic or a text file that describes the required dig-
ital function.

Download Program a PLD from a computer running PLD de-
sign and programming software.

Entity A VHDL structure that defines the inputs and outputs
of a design.

Fitting Assigning internal PLD circuitry, as well as input and
output pins, for a PLD design.

Graphic Design File (gdf) A PLD design file in which the
digital design is entered as a schematic.

Hardware description language A computer language used
to design digital circuits by entering text-based descriptions of
the circuits.

Hierarchical design A PLD design that is ordered in layers or
levels. The highest level of design contains components that are
themselves complete designs. These components may, in turn,
have lower-level designs embedded within them.

ICR In-circuit reconfigurability. The ability of a PLD (such as
a FLEX10K) to be configured without removing it from a circuit
board.

IEEE Standard 1164 The standard which defines a variety of
VHDL types and operations, including the STD_LOGIC and
STD_LOGIC_VECTOR types.

ISP In-system programmability. The ability of a PLD (such as
a MAX7000S) to be programmed without removing it from a
circuit board.

JTAG Joint Test Action Group. A standards body that devel-
oped the format (called IEEE Std. 1149.1) for testing and pro-
gramming devices while they are installed in a system.

Problems 151

JTAG Chain Multiple JTAG-compliant devices whose TDI
and TDO ports form a continuous chain connection. Such a
chain allows multi-device programming.

Library A collection of VHDL design units that have been
previously compiled.

MAX�PLUS II CPLD design and programming software
owned by Altera Corporation.

Mode (of a port) The kind of port, such as input or output.

Nonvolatile Able to retain stored information after power is
removed.

Package A group of VHDL design elements that can be used
by more than one VHDL file.

Port A name assigned to an input or output of a VHDL design
entity.

Programmable logic device (PLD) A digital integrated cir-
cuit that can be programmed by the user to implement any digi-
tal logic function.

Programmer Object File (pof) Binary file used to program a
PLD of the Altera MAX series.

Programming Transferring design information from the computer running PLD design software to the actual PLD chip.

Project A set of MAX�PLUS II files associated with a partic-
ular PLD design.

Schematic capture A technique of entering CPLD design in-
formation by using a CAD (computer aided design) tool to draw
a logic circuit as a schematic. The schematic can then be inter-
preted by design software to generate programming information
for the CPLD.

Selected signal assignment statement A concurrent signal as-
signment in VHDL in which a value is assigned to a signal, de-
pending on the alternative values of another signal or variable.

Signal A name given to an internal connection in a VHDL
architecture.

Simulation Verifying design function by specifying a set of
inputs and observing the resultant outputs. Simulation is gener-
ally shown as a series of input and output waveforms.

signing and programming digital functions in a PLD.

Syntax The “grammar” of a computer language (i.e., the rules
of construction of language statements).

Target device The specific PLD for which a digital design is
intended.

TCK Test Clock. The JTAG signal that drives the JTAG down-
loading process from one state to the next.

D3

Y
D2

D1

D0

S0

S1

FIGURE 4.48
Problem 4.4
4-to-1 Multiplexer

Software tools Specialized computer programs used to per-
form specific functions such as design entry, compiling, fitting,
and so on. (Sometimes just called “tools”.)

SRAM Object File (sof) Binary file used to configure a PLD
of the Altera FLEX series.

Suite (of software tools) A related collection of tools for per-
forming specific tasks. MAX�PLUS II is a suite of tools for de-

Table 4.3 Pin Assignments for
Multiplexer Circuit

Function Pin

S1 12
S0 16
D0 15
D1 17
D2 21
D3 25
Y 4

TDI Test Data In. In a JTAG port, the serial input data to a device.

TDO Test Data Out. The JTAG signal, the serial output data
from a device.

Y3

Y2

Y1

Y0

S0

S1

D

FIGURE 4.49
Problem 4.9
4-channel Demultiplexer

152 C H A P T E R 4 • Introduction to PLDs and MAX+PLUS II

TMS Test Mode Select. The JTAG signal that controls the
downloading of test or programming data.

Top level (of a hierarchy) The file in a hierarchy that contains
components specified in other design files and is not itself a
component of a higher-level file.

a gdf file.

Variable A block of working memory used for internal calcu-
lation or storage in a VHDL architecture.

Vector A group of digital signals or variables, usually related
numerically, that can be treated as a single multi-bit variable.

VHDL (VHSIC Hardware Description Language) An in-

Table 4.4 Pin Assignments
for Demultiplexer Circuit

Function Pin

S1 12
S0 16
D 15
Y0 4
Y1 6
Y2 8
Y3 10

Table 4.5 Pin Assignments
for Equality Comparator

Function Pin

A1 12
A2 16
B1 15
B2 17

AEQB 4

Type A set of characteristics associated with a VHDL port
name, signal, or variable that determines the allowable values of
the port, signal, or variable.

User library A folder containing symbols that can be used in

A1

B1

A2

AEQB

B2

FIGURE 4.50
Problem 4.10
2-bit Equality Comparator

FIGURE 4.51
Problem 4.11
Half Adder

A

B
SUM

CARRY

A

B SUM

CARRY
IN CARRY

OUT

FIGURE 4.52
Problem 4.12
Full Adder

dustry-standard computer language used to model digital circuits
and produce programming data for PLDs.

VHSIC Very high speed integrated circuit

Volatile A device is volatile if it does not retain its stored in-

Problems 153

formation after the power to the device is removed.

P R O B L E M S
a. primitives

b. instance

4.8 Use MAX�PLUS II to create a Graphic Design File for
the multiplexer circuit shown in Figure 4.48. Save the file
as drive:\max2work\chapt4\problems\4to1mux.gdf. As-
sign pins as in Table 4.3. Set the project to the current file
and compile.

4.9 Figure 4.49 shows the circuit for a 4-channel demulti-
plexer, which switches a digital input to one of four out-
puts, depending in the states of two “select inputs.”
Figure 4.49

Use MAX�PLUS II to create a Graphic Design File for
the demultiplexer circuit. Save the file as
drive:\max2work\chapt4\problems\4ch_dmux.gdf. As-
sign pins as in Table 4.4. Set the project to the current file
and compile.

4.10 Repeat Problem 4.9 for the 2-bit equality comparator in
Figure 4.50. This circuit generates a HIGH output when
the two 2-bit numbers A2A1 and B2B1 are equal. Save the
file as drive:\max2work\chapt4\problems\eq_comp.
gdf. Use the pin assignments in Table 4.5.

4.11 Use MAX�PLUS II to create a Graphic Design File for
the half-adder circuit shown in Figure 4.51. The half-
adder adds 2 bits to generate a sum and a carry output.
Save the file as drive:\max2work\chapt4\problems\
halfadd.gdf. Create a default symbol for the file and
compile, after setting the project to the current file. Do
not assign pin numbers at this time.

4.12 Use MAX�PLUS II to create a Graphic Design File for
the full adder circuit shown in Figure 4.52. The full adder
combines two bits A and B, plus an input carry from a
previous stage to generate a sum and a carry output.

Save the file as drive:\max2work\chapt4\problems\ful-
ladd.gdf. Assign pin numbers as shown in Table 4.6. Set
the project to the current file and compile.

4.13 Examine the half adder circuit in Figure 4.51 and the full
adder circuit in Figure 4.52. You should find two half
adders in the full adder circuit. Use the half adder symbol
you created in Problem 4.11 to create a full adder as a
hierarchical design, consisting of two half adders and
other logic. Save the file as drive:\max2work\chapt4\

Table 4.6 Pin Assignments for
Full Adder

Function Pin

A 12
B 15

CARRY IN 33
SUM 6

CARRY OUT 4

Section 4.1 What Is a PLD?

4.1 List some of the advantages of programmable logic over
fixed-function logic.

4.2 What does CPLD stand for? How is it different from the
term PLD?

4.3 List some types of PLDs other than CPLDs.

4.4 Figure 4.48 shows a 4-to-1 multiplexer circuit. (The cir-
cuit switches one of four digital inputs to a single output,
depending on the states of two “select inputs.”) State the
number of 74HC type devices required to make this cir-
cuit. You may use the following devices: 74HC04 hex in-
verter; 74HC11 triple 3-input AND gate; 74HC4002 dual
4-input NOR gate (there are no 4-input OR devices avail-
able in the 74HC family). State how many devices are re-
quired to make two multiplexers.

Section 4.3 Graphic Design File

Section 4.4 Compiling MAX�PLUS II Files

4.5 Briefly describe the difference between a design file and a
project in MAX�PLUS II.

4.6 State two ways to set the MAX�PLUS II project to the
current file.

4.7 State the definitions of the following terms:

155

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 5

Combinational Logic Functions

O U T L I N E

5.1 Decoders

5.2 Encoders

5.3 Multiplexers

5.4 Demultiplexers

5.5 Magnitude
Comparators

5.6 Parity Generators
and Checkers

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Design binary decoders using logic gates.

• Create decoder designs in MAX�PLUS II, using Graphic Design Files or
VHDL.

• Create MAX�PLUS II simulation files to verify the operation of combina-
tional circuits.

• Design BCD-to-seven-segment and hexadecimal-to-seven-segment de-
coders, including special features such as ripple blanking, using VHDL and
Graphic Design Files in MAX�PLUS II.

• Use MAX�PLUS II Graphic Design Files and VHDL to generate the de-
sign for a 3-bit binary and a BCD priority encoder.

• Describe the circuit and operation of a simple multiplexer and program
these functions in VHDL.

• Draw logic circuits for multiplexer applications, such as single-channel
data selection, multibit data selection, waveform generation, and time-
division multiplexing (TDM).

• Describe demultiplexer circuits and program them using VHDL.

• Define the operation of a CMOS analog switch and its use in multiplexers
and demultiplexers.

• Define the operation of a magnitude comparator and program its function
in VHDL.

• Explain the use of parity as an error-checking system and draw simple
parity-generation and checking circuits..

Anumber of standard combinational logic functions have been developed for digital
circuits that represent many of the useful tasks that can be performed with digital

circuits.
Decoders detect the presence of particular binary states and can activate other circuits

based on their input values or can convert an input code to a different output code. Encoders
generate a binary or binary coded decimal (BCD) code corresponding to an active input.

Multiplexers and demultiplexers are used for data routing. They select a transmission
path for incoming or outgoing data, based on a selection made by a set of binary-related
inputs.

156 C H A P T E R 5 • Combinational Logic Functions

Magnitude comparators determine whether one binary number is less than, greater
than, or equal to another binary number.

Parity generators and checkers are used to implement a system of checking for errors
in groups of data. �

5.1 Decoders

Decoder A digital circuit designed to detect the presence of a particular digital
state.

The general function of a decoder is to activate one or more circuit outputs upon detec-
tion of a particular digital state. The simplest decoder is a single logic gate, such as a
NAND or AND, whose output activates when all its inputs are HIGH. When combined
with one or more inverters, a NAND or AND can detect any unique combination of binary
input values.

An extension of this type of decoder is a device containing several such gates, each of
which responds to a different input state. Usually, for an n-bit input, there are 2n logic
gates, each of which decodes a different combination of input variables. A variation is a
BCD device with 4 input variables and 10 outputs, each of which activates for a different
BCD input.

Some types of decoders translate binary inputs to other forms, such as the decoders
that drive seven-segment numerical displays, those familiar figure-8 arrangements of LED
or LCD outputs (“segments”). The decoder has one output for every segment in the display.
These segments illuminate in unique combinations for each input code.

Single-Gate Decoders

The simplest decoder is a single gate, sometimes in combination with one or more invert-
ers, used to detect the presence of one particular binary value. Figure 5.1 shows two such
decoders, both of which detect an input D3D2D1D0 � 1111.

K E Y T E R M S

D3

Y � D3D2D1D0
D2

D1

D0

D3
D2

D1

D0

Y � D3D2D1D0

FIGURE 5.1
Single-Gate Decoders

The decoder in Figure 5.1a generates a logic HIGH when its input is 1111. The de-
coder in Figure 5.1b responds to the same input, but makes the output LOW instead.

In Figure 5.1, we designate D3 as the most significant bit of the input and D0 the least
significant bit. We will continue this convention for multi-bit inputs.

In Boolean expressions, we will indicate the active levels of inputs and outputs sepa-
rately. For example, in Figure 5.1, the inputs to both gates are the same, so we write
D3D2D1D0 for the inputs of both gates. The gates in Figures 5.1a and b have outputs with
opposite active levels, so we write the output variables as complements (Y and Y�).

❘❙❚ EXAMPLE 5.1 Figure 5.2 shows three single-gate decoders. For each one, state the output active level and
the input code that activates the decoder. Also write the Boolean expression of each output.

5.1 • Decoders 157

Solution Each decoder is a NAND or AND gate. For each of these gates, the output is
active when all inputs are HIGH. Because of the inverters, each circuit has a different code
that fulfils this requirement.

Figure 5.2a: Output: Active LOW

Input code: D3D2D1D0 � 1001

Y� � DD3D�2D�1DD0

Figure 5.2b: Output: Active LOW

Input code: D2D1D0 � 001

Y� � D�2D�1D0

Figure 5.2c: Output: Active HIGH

Input code: D3D2D1D0 � 1010

Y � D3D�2D1D�0 ❘❙❚

Single-gate decoders are often used to activate other digital circuits under various
operating conditions, particularly if there is a choice of circuits to activate. For example,
single-gate decoders are used to enable peripheral devices in a personal computer (PC).
A combination of binary values, called the address, specifies a unique set of conditions to
enable a particular peripheral device.

❘❙❚ EXAMPLE 5.2
A PC has two serial port cards called COM1 and COM2. Each card is activated when ei-
ther one of two control inputs called �I�O�R� (Input/Output Read) and I�O�W� (Input/Output
Write) are active and a unique 10-bit address is present. I�O�R� and I�O�W� are active-LOW.
The address is specified by bits A9A8A7A6A5A4A3A2A1A0, which can be represented by
three hexadecimal digits. The decoder outputs, C�O�M�1�_�E�n�a�b�l�e� and C�O�M�2�_�E�n�a�b�l�e� are
both active-LOW.

The card for COM1 activates when (I�O�R� OR I�O�W� is LOW) AND the address is
between 3F8H and 3FFH.

The card for COM2 activates when (I�O�R� OR I�O�W� is LOW) AND the address is
between 2F8H and 2FFH.

Create a Graphic Design File in MAX�PLUS II that implements the specified
decoder.

Solution The lowest address that activates COM1 is

A9A8A7A6A5A4A3A2A1A0 � 3F8H � 11 1111 1000

The highest COM1 address is

A9A8A7A6A5A4A3A2A1A0 � 3FFH � 11 1111 1111

FIGURE 5.2
Example 5.1
Single-Gate Decoders

D3

D2

D1

D0

D3

D2

D1

D0

D2

D1

D0

Application

158 C H A P T E R 5 • Combinational Logic Functions

Since any address in this range is valid, we can represent the last three bits, A2A1A0, as
don’t care states. Thus, for COM1, we should decode the address:

A9A8A7A6A5A4A3A2A1A0 � 11 1111 1XXX

Similarly, for COM2:

Low address: A9A8A7A6A5A4A3A2A1A0 � 2F8H � 10 1111 1000

High address: A9A8A7A6A5A4A3A2A1A0 � 2FFH � 10 1111 1111

Decode: A9A8A7A6A5A4A3A2A1A0 � 10 1111 1XXX

Figure 5.3 shows the gdf representation of the decoder circuit, including inputs for the
control signals I�O�R� and I�O�W�.

A5
INPUT

INPUT

INPUT

NAND8

NAND8

NOT

BOR2

OUTPUT

A4

A3

A8
INPUT

INPUT

INPUT
A7

A6

IOW
INPUT

INPUT

INPUT

IOR

A9

OUTPUT

COM2_enable

COM1_Enable

FIGURE 5.3
Example 5.2
COM Port Decoders

❘❙❚

❘❙❚ SECTION 5.1A REVIEW PROBLEM

5.1 Draw a single-gate decoder that detects the input state D3D2D1D0 � 1100

a. with active-HIGH indication

b. with active-LOW indication

Multiple-Output Decoders

Decoder circuits often are constructed with multiple outputs. In effect, such a device is a
collection of decoding gates controlled by the same inputs. A decoder circuit with n inputs
can activate up to m � 2n load circuits. Such a decoder is usually described an n-line-to-m-
line decoder.

5.1 • Decoders 159

Figure 5.4 shows the logic circuit of a 2-line-to-4-line decoder. The circuit detects
the presence of a particular state of the 2-bit input D1D0, as shown by the truth table in
Table 5.1. One and only one output is HIGH for any input combination, provided the en-
able input G� is LOW. The active input of each line is shown in boldface. The subscript of
the active output is the same as the value of the 2-bit input. For example, if D1D0 � 10, out-
put Y2 is active since 10 (binary) � 2 (decimal).

D1

G

D0

Y1

Y2

Y0

Y3

FIGURE 5.4
2-line-to-4-line Decoder with Enable

Table 5.1 Truth Table of a 2-to-4 Decoder with Enable

G� D1 D0 Y0 Y1 Y2 Y3

0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 1 0 0 0 1
1 X X 0 0 0 0

If we are using the decoder to activate one of four output loads, it is possible that there are
situations where we want no output to be active. In such a case, we can deactivate all out-
puts (make them all LOW) by setting G� HIGH.

We can create the 2-line-to-4-line decoder of Figure 5.4 as a graphic or text file in
MAX�PLUS II and create a symbol for it that can be used in higher-level graphic files.
Figure 5.5 shows the symbol for the decoder.

D1

D0

Y0

Y1

Y2

Y3

G

1

FIGURE 5.5
MAX�PLUS II Graphic
Symbol for a 2-to-4 Decoder
with Enable

160 C H A P T E R 5 • Combinational Logic Functions

Figure 5.6 shows the circuit for a 3-line-to-8-line decoder, again with an active-LOW
enable, G�. In this case, the decoder outputs are active LOW. One and only one output is ac-
tive for any given combination of D2D1D0. Table 5.2 shows the truth table for this decoder.
Again if the enable line is HIGH, no output is active.

D0

D2

G

D1

Y1

Y2

Y0

Y3

Y5

Y6

Y4

Y7

FIGURE 5.6
3-line-to-8-line Decoder with
Enable

Table 5.2 Truth Table of a 3-to-8 Decoder with Enable

G� D2 D1 D0 Y�0 Y�1 Y�2 Y�3 Y�4 Y�5 Y�6 Y�7

0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 1 1 1 1
0 0 1 0 1 1 0 1 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 0 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 0
1 X X X 1 1 1 1 1 1 1 1

❘❙❚ EXAMPLE 5.3
Figure 5.7 shows a partial Graphic Design File, created in MAX�PLUS II, that shows how
a 3-line-to-8-line decoder, such as the one shown in Figure 5.6, can be used in a micro-
computer memory system as an address decoder. Each block labeled 8k_sram is a mem-
ory chip capable of holding 8192 (8K) bytes of data. Since there are eight such devices, the

Application

5.1 • Decoders 161

whole system can hold 8 � 8192 � 65,536 (64K) bytes. (Although this amount of mem-
ory may seem small by the standards of a desktop computer, it may be typical of a small
stand-alone computer system (called an embedded system or a microcontroller) that is
used in control applications.)

Each 8K block is enabled by a LOW at its G input. Briefly explain the function of the
decoder in the system.

Solution Since only one decoder output is LOW at any one time, the decoder allows
only one memory block to be active at any one time. The active block is chosen by inputs
ADDR15ADDR14ADDR13, which are connected to D2D1D0 on the decoder. The active
memory block is the one connected to the y output whose subscript matches the binary
value of these inputs. For example, when ADDR15ADDR14ADDR13 � 110, the block con-
nected to y6 is active.

If the decoder is the same as the one in Figure 5.6, no outputs will be active, and there-
fore no memory block will be enabled, when G� � 1. (Note that the MAX�PLUS II
Graphic Editor cannot represent an input or output with an inversion bar. Some conven-
tions would represent an active-LOW terminal with an “n” prefix, indicating “NOT” (e.g.,
nG). This is a matter of personal choice, but without such an indication it is not possible to
tell the active level of an input or output from the MAX�PLUS II Graphic Design File.)

❘❙❚

The decoders in Figure 5.6 and 5.7 have identical functions, but the symbol in Figure
5.7 shows the D inputs and Y outputs as multibit vectors or busses. Figure 5.7 also shows
how the individual signals in a bus can be connected to separate parts of the circuit in a
MAX�PLUS II Graphic Design File.

To make the connections, draw and label a line extending from each terminal. To label
a line, highlight the line by clicking on it with the left mouse button, then right-click. Se-
lect Enter Node/Bus Name from the pop-up menu and enter the text. Lines that have the
same names are automatically connected by their text references. If a line is a multiple line,

INPUT

OUTPUT

INPUT

INPUTADDR[15..13]

MEM_SELECT

y[0..7]

ADDR[12..0]
ADDR[12..0]

8k_sram

y0

dq0

dq[0..7]
dq[0..7]

d[2..0] y[0..7]

g

g

addr dq
8k_sram

ADDR[12..0]

y4

dq4

g

addr dq

8k_sram

y1

dq1

g

addr dq
8k_sram

y5

dq5

g

addr dq

8k_sram

y2

dq2

g

addr dq
8k_sram

y6

dq6

g

addr dq

8k_sram
ADDR[12..0]

y3

dq3

g

addr dq
8k_sram

y7

dq7

g

addr dq

ADDR[12..0]

ADDR[12..0]

ADDR[12..0]

ADDR[12..0]

ADDR[12..0]

ADDR[12..0]

FIGURE 5.7
Example 5.3
Address Decoder for a Memory System

162 C H A P T E R 5 • Combinational Logic Functions

it must have signal designators in brackets (e.g., y[0..7]). Individual signals from a bus
must be numbered in a way that corresponds to the multiple-bit line (e.g., y0, y1, y2, and
so on).

❘❙❚ SECTION 5.1B REVIEW PROBLEM

5.2 How many inputs are required for a binary decoder with 16 outputs? How many inputs
are required for a decoder with 32 outputs?

Simulation of a 2-Line-to-4-Line Decoder

Timing diagram A diagram showing how two or more digital waveforms in a
system relate to each other over time.

Simulation The verification, using timing diagrams, of the logic of a digital de-
sign before programming it into a PLD.

Stimulus waveforms A set of user-defined input waveforms in a simulator file
designed to imitate input conditions of a digital circuit.

Response waveforms A set of output waveforms generated by a simulator for a
particular digital design in response to a set of stimulus waveforms.

Propagation delay Time difference between a change on a digital circuit input
and a change on an output in response to the input change.

An important part of the CPLD design process is simulation of the design. A simulation
tool allows us to see whether the output responses to a set of circuit inputs are what we ex-
pected in our initial design idea. The simulator works by creating a timing diagram. We
specify a set of input (stimulus) waveforms. The simulator looks at the relationship be-
tween inputs and outputs, as defined by the design file, and generates a set of response
outputs.

Figure 5.8 shows a set of simulation waveforms created for the 2-line-to-4-line de-
coder in Figure 5.4. The inputs D1 and D0 are combined as a single 2-bit value, to which
an increasing binary count is applied as a stimulus. The decoder output waveforms are ob-
served individually to determine the decoder’s response. Once we have entered the design
in the MAX�PLUS II Graphic Editor and compiled it, we can create the waveforms as
follows.

K E Y T E R M S

FIGURE 5.8
Simulation Waveforms for a 2-
to-4 Decoder with Enable

From the File menu, select New. On the resultant dialog box, select Waveform Edi-
tor File, with a default file extension scf. From the File menu, choose Save As, then enter
drive:\max2work\chapt05\decoders\2to4dcdr.scf.

➥ 2to4dcdr.gdf
2to4dcdr.scf

5.1 • Decoders 163

We specify the inputs and outputs we want to view by selecting Enter Nodes from
SNF on the Node menu, shown in Figure 5.9. In the dialog box that pops up (Figure 5.10),
there are two boxes labelled Available Nodes & Groups and Selected Nodes & Groups,
with an arrow (��) pointing from one to the other. Select the List button to show the
“available” signals and click the arrow to transfer them all to the “selected” box. Click OK
to close the box.

Figure 5.11 shows the simulation waveforms in their uninitialized (default) states. In-
puts and outputs are shown by symbols in front of the signal names. Inputs are at logic 0
and outputs are indicated as X or unknown values.

FIGURE 5.9
Node Menu

FIGURE 5.10
Selecting Nodes for Waveform
Editor

FIGURE 5.11
Default Values of Simulation Waveforms

164 C H A P T E R 5 • Combinational Logic Functions

We now set the timing length of the simulation. The default value is 1 �s, written
1.0us. For this example, we will leave the end time at the default value. However, if we
want to change it, we select End Time (File menu, Figure 5.12) and enter the new time for
the end of simulation in the dialog box of Figure 5.13. Click OK.

FIGURE 5.12
Setting the End Time of a
Simulation (File Menu)

FIGURE 5.13
End Time Dialog Box

FIGURE 5.14
Setting Simulation Grid
Size (Options Menu)

FIGURE 5.15
Grid Size Dialog Box

The End Time dialog sets the end of the simulation. We should also set the Grid Size,
which determines the size of the smallest time division in the simulation. To do so, select
Grid Size from the Options menu, shown in Figure 5.14. In the dialog box of Figure 5.15,
enter the value 20ns and click OK. (We will use this value for many of our simulations

5.1 • Decoders 165

because it corresponds to one half period of the oscillator on the Altera UP-1 board. In the
simulator, one full period requires two grid spaces.)

When we created the simulation file, the D inputs were entered as separate waveforms.
We can join these waveforms to make a Group. Highlight both D1 and D0 by clicking on
one name and dragging the mouse to the next name, as in Figure 5.16. From the Node
menu or the pop-up menu in Figure 5.17, select Enter Group. The dialog box shown in
Figure 5.18 appears, containing the most likely name derived from the highlighted group.
Either type a new group name or accept the original name by clicking OK.

FIGURE 5.16
Highlighting a Group

FIGURE 5.17
Pop-up Menu (Enter Group)

FIGURE 5.18
Enter Group Dialog Box

Save the file. From the MAX�PLUS II menu, bring the Simulator to the front and
click Start. When the simulation is finished (almost immediately), click Open SCF and
maximize the window. From the View menu, select Fit in Window or select the toolbar
button for this function.

The simulator output, shown in Figure 5.21, shows the result of a repeating binary
count at the decoder input when the outputs are always enabled. The outputs activate in a
repeating sequence, from Y0 to Y3.

You will notice that the D inputs change exactly on the grid lines, but the Y outputs
change slightly after. This is due to propagation delay, defined as the time between an

166 C H A P T E R 5 • Combinational Logic Functions

As a decoder stimulus, we will define an increasing binary count on the D inputs.
Highlight the input group by clicking in the Value column. Use the Overwrite Count tool-
bar button to create an increasing binary count on the group, D[1..0]. Fill in the dialog box
as shown in Figure 5.19 and click OK. The count is increased every 40 ns (2 � 20 ns), as
shown in Figure 5.20.

Overwrite Count
Button

FIGURE 5.20
Group Input with Binary Count

FIGURE 5.19
Overwrite Count Value Dialog
Box

Fit in Window
Button

FIGURE 5.21
Decoder Simulation with Enable
Always Active

input change and the time an output changes in response to that input. In the
EPM7128SLC84-7 CPLD, for which this simulation is created, propagation delay is about
7 nanoseconds. (The MAX�PLUS II simulator accounts for the propagation delay in dif-
ferent CPLDs.) Later simulations in this chapter will not necessarily show the delay, as the
timing chosen may be very long compared to delay times.

To see the result of the enable input, highlight the G waveform from approximately
500 ns to 1 �s by dragging the mouse along this part of the waveform. Overwrite the high-
lighted part by clicking the Overwrite with HIGH button. When we run the simulation
again, we get the waveforms shown in Figure 5.8.

VHDL Binary Decoder

Selected signal assignment statement A concurrent signal assignment in VHDL
in which a value is assigned to a signal, depending on the alternative values of an-
other signal or variable.

Conditional signal assignment statement A concurrent VHDL construct that as-
signs a value to a signal, depending on a sequence of conditions being true or false.

In Chapter 4, we saw an example of how we can use VHDL to define the function of a
2-line-to-4-line decoder. For reference the description is replicated below, with the differ-
ence that the input and output ports are defined as BIT rather than STD_LOGIC types.
(This is sufficient for a combinational circuit like a decoder, as the only I/O (input/output)
values required are ‘0’ and ‘1’. If we use BIT types, we do not require a reference to the
IEEE library, as we do to define STD_LOGIC types.)

ENTITY decode1 IS

PORT(

d1, d0 : IN BIT;

y0, y1, y2, y3 : OUT BIT);

END decode1;

ARCHITECTURE decoder1 OF decode1 IS

BEGIN

y0 <= (not d1) and (not d0);

y1 <= (not d1) and (d0);

y2 <= (d1) and (not d0);

y3 <= (d1) and (d0);

END decoder1;

The above formulation has no enable input. If we wish to include the enable function,
we must modify the entity declaration to include that input and change the signal assign-
ment statements, as well. The new VHDL code is as follows.

ENTITY decode2 IS

PORT(

d1, d0, g : IN BIT;

y0, y1, y2, y3 : OUT BIT);

END decode2;

ARCHITECTURE decoder2 OF decode2 IS

BEGIN

y0 <= (not d1) and (not d0) and (not g);

y1 <= (not d1) and (d0) and (not g);

y2 <= (d1) and (not d0) and (not g);

y3 <= (d1) and (d0) and (not g);

END decoder2;

K E Y T E R M S

5.1 • Decoders 167

Overwrite with
HIGH Button

➥ decode1.vhd

➥ decode2.vhd

168 C H A P T E R 5 • Combinational Logic Functions

In addition to coding the Boolean expressions directly, we can use two types of
concurrent signal assignments to create decoder circuits: the selected signal assign-
ment statement and the conditional signal assignment statement. Both the Altera
VHDL manual and the Help menu in MAX�PLUS II have a section on “Golden
Rules” for VHDL. The VHDL Golden Rules suggest that you should use a selected sig-
nal assignment rather than a conditional signal assignment, if possible. This is because,
in certain cases, the selected signal assignment uses the internal circuitry of the CPLD
more efficiently.

The selected signal assignment has the form:

label: WITH __expression SELECT

__signal <=__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

The signal indicated in the second line of the statement template is assigned one of
several expressions, depending on the constant value of the expression in the first line. The
label is optional. Examine the selected signal statement below:

circuit: WITH mode SELECT

y <= q WHEN “00”

not q WHEN “01”,

p WHEN “11”,

‘1’ WHEN others;

Signal y is assigned one of three values, p, q, or not q, depending on the status of a
two-bit variable called mode. Note that the value of y for the case when mode � “10” is
not explicitly stated. This is covered by the last clause (WHEN others), which defines a
default value for signal y of logic 1.

The following VHDL code implements a 2-line-to-4-line decoder using a selected sig-
nal assignment statement.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode3 IS

PORT(

d : IN STD_LOGIC_VECTOR (1 downto 0);

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decode3;

ARCHITECTURE decoder OF decode3 IS

BEGIN

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

END decoder;

The selected signal assignment statement evaluates input d. For every possible combi-
nation of the 2-bit input vector, d, a particular value is assigned to the 4-bit vector, y. (For
example, for the case d1d0 � 10 (� 210), the output y2 is HIGH: y3y2y1y0 � 0100.)

The default case (“WHEN others”) is required because of the multivalued logic type
STD_LOGIC_VECTOR. Since a STD_LOGIC_VECTOR can have values other than ‘0’
and ‘1’, the values listed for d don’t cover all possible cases. The default output (which will
never occur if we only use ‘0’ and ‘1’ inputs) is chosen such that no output is active in the

➥ decode3.vhd

5.1 • Decoders 169

default case. The default case would not be required if we chose to use BIT_VECTOR,
rather than STD_LOGIC_VECTOR, since the listed combinations of d cover all possible
combinations of a BIT_VECTOR. However, it is a good practice to include the default
case, in order to account for all possible contingencies.

In order to include an enable input (g) in a decoder, we can increase the input vector
size to include the g input, as shown in the following code.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode3a IS

PORT(

d : IN STD_LOGIC_VECTOR (1 downto 0);

g : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decode3a;

ARCHITECTURE decoder OF decode3a IS

SIGNAL inputs : STD_LOGIC_VECTOR (2 downto 0);

BEGIN

inputs(2) <= g;

inputs(1 downto 0) <= d;

WITH inputs SELECT

y <= “0001” WHEN “000”,

“0010” WHEN “001”,

“0100” WHEN “010”,

“1000” WHEN “011”,

“0000” WHEN others;

END decoder;

To include g and d in a single vector, we create a signal called inputs, a vector with
three elements in the sequence g, d(1), d(0). When assigning the d to the last two elements
of inputs, we must be explicit about which elements of inputs we want to use. Since d
only contains two elements and we are assigning them to two elements of inputs, we don’t
need to list the elements of d explicitly.

We can use a selected signal assignment statement to evaluate all inputs, including g ,
and assign outputs accordingly. When g � ‘0’, the decoder outputs are assigned the same
as they were in the example without the enable input. The cases where g � ‘1’ are covered
by the others clause. In this default case, all decoder outputs are LOW (inactive).

Another way to include an enable input is to use a conditional signal assignment state-
ment, which makes an assignment based on a Boolean expression. This template for the
conditional signal assignment statement is:

__signal <= __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

The first Boolean expression in the statement is evaluated. If it is true, the correspond-
ing expression is assigned to the signal. If false, the next Boolean expression is evaluated,
and so on until a true Boolean expression is found. If none are true, the signal is assigned a
default expression, listed last in the statement.

The VHDL code below implements the decoder with an active-LOW enable. If g is
LOW, one decoder output activates, depending on the value of d. Note that the d inputs are
defined as type INTEGER, rather than BIT_VECTOR or STD_LOGIC_VECTOR. In this
situation, we don’t need to specify the number of inputs; the compiler automatically de-
fines the required inputs d1 and d0 when fitting the design to the selected CPLD. Also,
since d is of type INTEGER, we write its value in the selected signal assignment statement
directly, without quotes.

➥ decode3a.vhd

170 C H A P T E R 5 • Combinational Logic Functions

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY decode4g IS

PORT(

d : IN INTEGER RANGE 0 to 3;

g : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR (0 to 3));

END decode4g;

ARCHITECTURE a OF decode4g IS

BEGIN

y <= “1000” WHEN (d=0 and g=‘0’) ELSE

“0100” WHEN (d=1 and g=‘0’) ELSE

“0010” WHEN (d=2 and g=‘0’) ELSE

“0001” WHEN (d=3 and g=‘0’) ELSE

“0000”;

END a;

MAX�PLUS II Report File

In the Altera Golden Rules, we are told to choose a selected signal assignment over a con-
ditional signal assignment because it uses the CPLD resources more efficiently. How do
we check this assertion? Is it always true? This information is stored in a MAX�PLUS II
report file (rpt), which is created at compile time.

The compile process of MAX�PLUS II goes on behind the scenes; until now we have
not enquired about the result of this process. One of many functions of the compiler is to
reduce the design information in a graphic or text file to a series of Boolean equations that
can be programmed into a PLD.

For example, the report file decode3a.rpt, for the file that uses the selected signal as-
signment, gives us the following information under the EQUATIONS heading.

** EQUATIONS **

d0 : INPUT;

d1 : INPUT;

g : INPUT;

—— Node name is ‘y0’

—— Equation name is ‘y0’, location is LC117, type is output.

y0 = LCELL(_EQ001 $ GND);

_EQ001 = !d0 & !d1 & !g;

—— Node name is ‘y1’

—— Equation name is ‘y1’, location is LC115, type is output.

y1 = LCELL(_EQ002 $ GND);

_EQ002 = d0 & !d1 & !g;

—— Node name is ‘y2’

—— Equation name is ‘y2’, location is LC118, type is output.

y2 = LCELL(_EQ003 $ GND);

_EQ003 = !d0 & d1 & !g;

—— Node name is ‘y3’

—— Equation name is ‘y3’, location is LC120, type is output.

y3 = LCELL(_EQ004 $ GND);

_EQ004 = d0 & d1 & !g;

Each output is designated as a node. Let us examine the equation of one node in detail
so that we will know how to interpret the others.

➥ decode4g.vhd

➥ decode3a.rpt

5.1 • Decoders 171

The Boolean format in the report file uses different operators than VHDL. They are as
follows:

! = NOT

& = AND

= OR

$ = XOR

Thus, the equation given as _EQ001 = !d0 & !d1 & !g is equivalent to the
Boolean expression _EQ001 � d�0 � d�1 � g�.

In the expression (y0 = LCELL (_EQ001 $ GND);), equation _EQ001 is XORed
with GND (logic 0) and applied to an LCELL (logic cell) primitive to yield y0. The
LCELL represents one output of the CPLD. The XOR function is a way to either invert or
not invert a logic function by setting one XOR input to GND (noninverting) or VCC (in-
verting). Thus _EQ001 is applied to a CPLD output without inversion.

A comment in the report file indicates that y0 is assigned to logic cell LC117 (out of
128), which corresponds to pin 75 (out of 84) on the CPLD. Other equations are assigned
to other LCELLs with other Boolean functions, as appropriate. Every pin number on the
CPLD package is permanently connected to a specific LCELL. The compiler chooses the
LCELL/pin assignments automatically; if we desire specific pin number assignments, we
must assign them explicitly before compiling.

How does this compare with the report file for the design with the conditional signal
assignment? If you examine decode4g.rpt, you will find that the Boolean equations are ex-
actly the same. Thus, we can conclude that for a simple function, such as a 2-line-to-4-line
decoder with enable, the two statement forms are easy enough for the compiler to interpret
both in the most efficient way.

Seven-Segment Decoders

Seven-segment display An array of seven independently controlled light-emit-
ting diode (LED) or liquid crystal display (LCD) elements, shaped like a figure-8,
which can be used to display decimal digits and other characters by turning on the
appropriate elements.

Common anode display A seven-segment LED display where the anodes of all
the LEDs are connected to the circuit supply voltage. Each segment is illuminated
by a logic LOW at its cathode.

Common cathode display A seven-segment display in which the cathodes of all
LEDs are connected together and grounded. A logic HIGH illuminates a segment
when applied to its anode.

Display

The seven-segment display, shown in Figure 5.22, is a numerical display device used to
show digital circuit outputs as decimal digits (and sometimes hexadecimal digits or other
alphabetic characters). It is called a seven-segment display because it consists of seven lu-
minous segments, usually LEDs or liquid crystals, arranged in a figure-8. We can display
any decimal digit by turning on the appropriate elements, designated by lowercase letters,
a through g. It is conventional to designate the top segment as a and progress clockwise
around the display, ending with g as the center element.

Figure 5.23 shows the usual convention for decimal digit display. Some variation
from this convention is possible. For example, we could have drawn the digits 6 and 9
with “tails” (i.e., with segment a illuminated for 6 or segment d for 9). By convention, we

K E Y T E R M S

➥ decode4g.rpt

b

a

d

c

f

e

g

FIGURE 5.22
Seven-segment Numerical
Display

172 C H A P T E R 5 • Combinational Logic Functions

display digit 1 by illuminating segments b and c, although segments e and f would also
work.

The electrical requirements for an LED circuit are simple. Since an LED is a diode, it
conducts when its anode is positive with respect to its cathode, as shown in Figure 5.24a. A
decoder/driver for an LED display will illuminate an element by completing this circuit, ei-
ther by supplying VCC or ground. A series resistor limits the current to prevent the diode
from burning out and to regulate its brightness. If the anode is �5 volts with respect to
cathode, the resistor value should be in the range of 220 � to 470 �.

FIGURE 5.23
Convention for Displaying Decimal Digits

Vcc Vcca b c

a b c

a. Circuit requirements for
an illuminated LED

b. Common cathode b. Common anode

FIGURE 5.24
Electrical Requirements for LED Displays

Seven-segment displays are configured as common anode or common cathode, as
shown in Figures 5.24b and c. In a common cathode display, the cathodes of all LEDs are
connected together and brought out to one or more pin connections on the display package.
The cathode pins are wired externally to the circuit ground. We illuminate the segments by
applying logic HIGHs to individual anodes.

Similarly, the common anode display has the anodes of the segments brought out to
one or more common pins. These pins must be tied to the circuit power supply (VCC).
The segments illuminate when a decoder/driver makes their individual cathodes LOW.
Figure 5.25 shows how the diodes could be physically laid out in a common anode dis-
play.

The two types of displays allow the use of either active HIGH or active LOW circuits
to drive the LEDs, thus giving the designer some flexibility. However, it should be noted
that the majority of seven-segment decoders are for common-anode displays.

5.1 • Decoders 173

❘❙❚ EXAMPLE 5.4 Sketch the segment patterns required to display all 16 hexadecimal digits on a seven-
segment display. What changes from the patterns in Figure 5.23 need to be made?

Solution The segment patterns are shown in Figure 5.26.

Hex digits B and D must be displayed as lowercase letters, b and d, to avoid confusion
between B and 8 and between D and 0. To make 6 distinct from b, 6 must be given a tail
(segment a) and to make 6 and 9 symmetrical, 9 should also have a tail (segment d). ❘❙❚

Decoder

BCD Binary coded decimal. A code in which each individual digit of a decimal
number is represented by a 4-bit binary number (e.g., 905 (decimal) � 1001 0000
0101 (BCD)).

A BCD-to-seven-segment decoder is a circuit with a 4-bit input for a BCD digit and
seven outputs for segment selection. To display a number, the decoder must translate the
input bits to a combination of active outputs. For example, the input digit D3D2D1D0 �
0000 must illuminate segments a, b, c, d, e, and f to display the digit 0. We can make a truth

K E Y T E R M S

Vcc

a

b

c

d

e

f

g

FIGURE 5.25
Physical Placement of LEDs in a
Common Anode Display

FIGURE 5.26
Hexadecimal Digit Display Format

174 C H A P T E R 5 • Combinational Logic Functions

table for each of the outputs, showing which must be active for every digit we wish to display.
The truth table for a common-anode decoder (active LOW outputs) is given in Table 5.3.

The illumination of each segment is determined by a Boolean function of the input
variables, D3D2D1D0. From the truth table, the function for segment a is

a � D�3D�2D�1D0 � D�3D2D�1D�0 � D�3D2D1D�0

(Since the display is active-LOW, this means segment a is OFF for digits 1, 4, and 6.)
If we assume that inputs 1010 to 1111 are never going to be used (“don’t care states”,

symbolized by X), we can make any of these states produce HIGH or LOW outputs, de-
pending on which is most convenient for simplifying the segment functions. Figure 5.27a
shows a Karnaugh map simplification for segment a. The resultant function is

a � D�3D�2D�1D0 � D2D�0

The corresponding partial decoder is shown in Figure 5.27b.
We could do a similar analysis for each of the other segments, but if we are program-

ming the decoder function into a CPLD, it is just as simple to write the truth table directly
into a selected signal assignment statement, as shown in the VHDL code that follows.

—— bcd_7seg.vhd

—— BCD-to-seven-segment decoder

ENTITY bcd_7seg IS

PORT(

d3, d2, d1, d0 : IN BIT;

a, b, c, d, e, f, g : OUT BIT);

END bcd_7seg;

ARCHITECTURE seven_segment OF bcd_7seg IS

SIGNAL input : BIT_VECTOR (3 downto 0);

SIGNAL output: BIT_VECTOR (6 DOWNTO 0);

BEGIN

input <= d3 & d2 & d1 & d0;

WITH input SELECT

output <= “0000001” WHEN “0000”,

“1001111” WHEN “0001”,

Table 5.3 Truth Table for Common Anode BCD-to-Seven-Segment Decoder

Digit D3 D2 D1 D0 a b c d e f g

0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 1 1 1 1
2 0 0 1 0 0 0 1 0 0 1 0
3 0 0 1 1 0 0 0 0 1 1 0
4 0 1 0 0 1 0 0 1 1 0 0
5 0 1 0 1 0 1 0 0 1 0 0
6 0 1 1 0 1 1 0 0 0 0 0
7 0 1 1 1 0 0 0 1 1 1 1
8 1 0 0 0 0 0 0 0 0 0 0
9 1 0 0 1 0 0 0 1 1 0 0

1 0 1 0 X X X X X X X
1 0 1 1 X X X X X X X

Invalid Range 1 1 0 0 X X X X X X X
1 1 0 1 X X X X X X X
1 1 1 0 X X X X X X X
1 1 1 1 X X X X X X X

➥ bcd_7seg.vhd

5.1 • Decoders 175

“0010010” WHEN “0010”,

“0000110” WHEN “0011”,

“1001100” WHEN “0100”,

“0100100” WHEN “0101”,

“1100000” WHEN “0110”,

“0001111” WHEN “0111”,

“0000000” WHEN “1000”,

“0001100” WHEN “1001”,

“1111111” WHEN others;

—— Separate the output vector to make individual pin outputs.

a <= output(6);

b <= output(5);

c <= output(4);

d <= output(3);

e <= output(2);

f <= output(1);

g <= output(0);

END seven_segment;

a

D2

D1

D0

D3

b. Decoder for segment a (common anode)

a. K � map

 Segment a

00

D3D2

D1D0

00 01 11 10

01

11

10

0 1 0 0

1 0 0 1

X X X X

0 0 X X

FIGURE 5.27
Decoding Segment a

The inputs D3D2D1D0 are defined separately, then concatenated (linked in sequence)
by the & operator to make a BIT_VECTOR called input. This is equivalent to the follow-
ing four concurrent signal assignments:

input (3) <= d3;

input (2) <= d2;

input (1) <= d1;

input (0) <= d0;

176 C H A P T E R 5 • Combinational Logic Functions

Why not simply define d as a vector? If we wish to create a graphic symbol for the
seven-segment decoder, the above method creates a symbol shown with four separate in-
puts, rather than a single thick line for a 4-bit bus input. The design will work either way.

For each value of input, a signal assignment defines the output vector, each bit of
which represents the value of one segment. For example, the first clause (“0000001”
WHEN “0000”) sets all segments ON except segment g, thus displaying the digit “0”.

As a variation, we could define a signal called d_inputs of type INTEGER with
RANGE 0 to 9. The WHEN clauses would evaluate the integer values 0 to 9, as follows.

WITH d_inputs SELECT

output <= “0000001” WHEN 0,

“1001111” WHEN 1,

“0010010” WHEN 2,

“0000110” WHEN 3,

“1001100” WHEN 4,

“0100100” WHEN 5,

“0100000” WHEN 6,

“0001111” WHEN 7,

“0000000” WHEN 8,

“0000100” WHEN 9,

“1111111” WHEN others; —— blank

Ripple Blanking

Ripple blanking A technique used in a multiple-digit numerical display that sup-
presses leading or trailing zeros in the display, but allows internal zeros to be dis-
played.

R�B�I� Ripple blanking input

R�B�O� Ripple blanking output

PROCESS A VHDL construct that contains statements that are executed if there
is a change in a signal in its sensitivity list.

Sensitivity list A list of signals in a PROCESS statement that are monitored to
determine whether the PROCESS should be executed.

CASE statement A VHDL construct in which there is a choice of statements to
be executed, depending on the value of a signal or variable.

IF statement A VHDL construct within a process that executes a series of state-
ments, if a Boolean test condition is true.

A feature often included in seven-segment decoders is ripple blanking. The ripple blank-
ing feature allows for suppression of leading or trailing zeros in a multiple digit display,
while allowing zeros to be displayed in the middle of a number.

Each display decoder has a ripple blanking input (R�B�I�) and a ripple blanking output
(R�B�O�), which are connected in cascade, as shown in Figure 5.28. If the decoder input
D3D2D1D0 is 0000, it displays digit 0 if R�B�I� � 1 and shows a blank if R�B�I� � 0.

If R�B�I� � 1 OR D3D2D1D0 is (NOT 0000), then R�B�O� � 1. When we cascade two or
more displays, these conditions suppress leading or trailing zeros (but not both) and still
display internal zeros.

To suppress leading zeros in a display, ground the R�B�I� of the most significant digit
decoder and connect the R�B�O� of each decoder to the R�B�I� of the next least significant digit.
Any zeros preceding the first nonzero digit (9 in this case) will be blanked, as R�B�I� � 0
AND D3D2D1D0 � 0000 for each of these decoders. The 0 inside the number 904 is
displayed since its R�B�I� � 1.

K E Y T E R M S

5.1 • Decoders 177

Trailing zeros are suppressed by reversing the order of R�B�I� and R�B�O� from the above
example. R�B�I� is grounded for the least significant digit and the R�B�O� for each decodercas-
cades to the R�B�I� of the next most significant digit.

We can implement the ripple blanking feature in a VHDL file by modifying the file
for a standard BCD- or hexadecimal-to-seven-segment decoder to include a CASE state-
ment within a PROCESS. A PROCESS is a construct containing statements that are ex-
ecuted if a signal in the sensitivity list of the PROCESS changes. The general form of a
PROCESS is:

PROCESS (sensitivity list)
BEGIN

statements;
END PROCESS;

A CASE statement can be one of the constructs used inside a process if we want to se-
lect among several alternatives. It takes the following form:

FIGURE 5.28
Zero Suppression in Seven-segment Displays

D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0

D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0 D3 D2 D1 D0

178 C H A P T E R 5 • Combinational Logic Functions

—— CASE statement within a PROCESS

PROCESS (__signal_name, __signal_name, __signal_name)

BEGIN

CASE __expression IS

WHEN __constant_value =>

__statement;

__statement;

WHEN __constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

END PROCESS;

Whether the digit “0” is displayed or suppressed is conditional upon the value of R�B�I�.This can
be tested by an IF statement within the PROCESS. An IF statement executes one or more
VHDL statements, depending on the state of a test condition. It has the following syntax.

IF __expression THEN

__statement;

__statement;

ELSIF __expression THEN

__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

The following VHDL code demonstrates the ripple blanking function.

–– sevsegrb.vhd

ENTITY sevsegrb IS

PORT(

nRBI, d3, d2, d1, d0 : IN BIT;

a, b, c, d, e, f, g, nRBO : OUT BIT);

END sevsegrb;

ARCHITECTURE seven_segment OF sevsegrb IS

SIGNAL input: BIT_VECTOR (3 DOWNTO 0);

SIGNAL output: BIT_VECTOR (6 DOWNTO 0);

BEGIN

input <= d3 & d2 & d1 & d0;

—— Process Statement

PROCESS (input, nRBI)

BEGIN

IF (input = “0000” and nRBI =‘0’) THEN

—— 0 suppressed

output <= “1111111”;

nRBO <= ‘0’;

ELSIF (input = “0000” and nRBI = ‘1’) THEN

—— 0 displayed

output <= “0000001”;

nRBO <= ‘1’;

ELSE

CASE input IS

WHEN “0001” => output <= “1001111”; —— 1

➥ sevsegrb.vhd

5.2 • Encoders 179

WHEN “0010” => output <= “0010010”; —— 2

WHEN “0011” => output <= “0000110”; —— 3

WHEN “0100” => output <= “1001100”; —— 4

WHEN “0101” => output <= “0100100”; —— 5

WHEN “0110” => output <= “0100000”; —— 6

WHEN “0111” => output <= “0001111”; —— 7

WHEN “1000” => output <= “0000000”; —— 8

WHEN “1001” => output <= “0000100”; —— 9

WHEN others => output <= “1111111”; —— blank

END CASE;

nRBO <= ‘1’;

END IF;

–— Separate the output vector to make individual pin outputs.

a <= output(6);

b <= output(5);

c <= output(4);

d <= output(3);

e <= output(2);

f <= output(1);

g <= output(0);

END PROCESS;

END seven_segment;

❘❙❚ SECTION 5.1C REVIEW PROBLEM

5.3 When would it be logical to suppress trailing zeros in a multiple-digit display and
when should trailing zeros be displayed?

5.2 Encoders

Encoder A circuit that generates a binary code at its outputs in response to one or
more active input lines.

Priority encoder An encoder that generates a binary or BCD output correspond-
ing to the subscript of the active input having the highest priority. This is usually
defined as the input with the largest subscript value.

The function of a digital encoder is complementary to that of a digital decoder. A decoder
activates a specified output for a unique digital input code. An encoder operates in the re-
verse direction, producing a particular digital code (e.g., a binary or BCD number) at its
outputs when a specific input is activated.

Figure 5.29 shows an 3-bit binary encoder. The circuit generates a unique 3-bit binary
output for every active input provided only one input is active at a time.

The encoder has only 8 permitted input states out of a possible 256. Table 5.4 shows
the allowable input states, which yield the Boolean equations used to design the encoder.
These Boolean equations are:

Q2 � D7 � D6 � D5 � D4

Q1 � D7 � D6 � D3 � D2

Q0 � D7 � D5 � D3 � D1

The D0 input is not connected to any of the encoding gates, since all outputs are in
their LOW (inactive) state when the 000 code is selected.

K E Y T E R M S

180 C H A P T E R 5 • Combinational Logic Functions

Priority Encoder

The shortcoming of the encoder circuit shown in Figure 5.29 is that it can generate wrong
codes if more than one input is active at the same time. For example, if we make D3 and D5

HIGH at the same time, the output is neither 011 or 101, but 111; the output code does not
correspond to either active input.

One solution to this problem is to assign a priority level to each input and, if two or
more are active, make the output code correspond to the highest-priority input. This is
called a priority encoder. Highest priority is assigned to the input whose subscript has the
largest numerical value.

❘❙❚ EXAMPLE 5.5 Figures 5.30a through c show a priority encoder with three different combinations of in-
puts. Determine the resultant output code for each figure. Inputs and outputs are active
HIGH.

FIGURE 5.29
3-bit Encoder (No Input Priority)

Table 5.4 Partial Truth Table for a 3-bit Encoder

D7 D6 D5 D4 D3 D2 D1 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1 1 1

FIGURE 5.30
Example 5.5
Priority Encoder Inputs

5.2 • Encoders 181

Solution

Figure 5.30a: The highest-priority active input is D5. D4 and D1 are ignored. Q2Q1Q0

� 101.

Figure 5.30b: The highest-priority active input is D4. D1 is ignored. Q2Q1Q0 � 100.

Figure 5.30c: The highest-priority active input is D7. All other inputs are ignored.
Q2Q1Q0 � 111.

❘❙❚

The encoding principle of a priority encoder is that a low-priority input must not
change the code resulting from a higher-priority input.

For example, if inputs D3 and D5 are both active, the correct output code is Q2Q1Q0 � 101.
The code for D3 would be Q2Q1Q0 � 011. Thus, D3 must not make Q1 � 1. The Boolean
expressions for Q2, Q1, and Q0 covering only these two codes are:

Q2 � D5 (HIGH if D5 is active.)

Q1 � D3D�5 (HIGH if D3 is active AND D5 is NOT active.)

Q0 � D3 � D5 (HIGH if D3 OR D5 is active.)

The truth table of an 3-bit priority encoder is shown in Table 5.5.

N O T E

Table 5.5 Truth Table for an 3-bit Priority Encoder

D7 D6 D5 D4 D3 D2 D1 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 X 0 1 0
0 0 0 0 1 X X 0 1 1
0 0 0 1 X X X 1 0 0
0 0 1 X X X X 1 0 1
0 1 X X X X X 1 1 0
1 X X X X X X 1 1 1

Table 5.6 Binary Outputs and
Corresponding Decimal Values

Q2 Q1 Q0 Code Value

1 1 1 7
1 1 0 6
1 0 1 5
1 0 0 4
0 1 1 3
0 1 0 2
0 0 1 1
0 0 0 0

Restating the encoding principle, a bit goes HIGH if it is part of the code for an active
input AND it is NOT kept LOW by an input with a higher priority. We can use this princi-
ple to develop a mechanical method for generating the Boolean equations of the outputs.

1. Write the codes in order from highest to lowest priority, as in Table 5.6.

182 C H A P T E R 5 • Combinational Logic Functions

2. Examine each code. For a code with value n, add a Dn term to each Q equation where
there is a 1. For example, for code 111, add the term D7 to the equations for Q2, Q1, and
Q0. For code 110, add the term D6 to the equations for Q2 and Q1. (Steps 1 and 2 gen-
erate the nonpriority encoder equations listed earlier.)

3. Modify any Dn terms to ensure correct priority. Every time you write a Dn term, look at
the previous lines in the table. For each previous code with a 0 in the same column as
the 1 that generates Dn, use an AND function to combine Dn with a corresponding D�.
For example, code 101 generates a D5 term in the equations for Q2 and Q0. The term in
the Q2 equation need not be modified because there are no previous codes with a 0 in
the same column. The term in the Q0 equation must be modified since there is a 0 in the
Q0 column for code 110. This generates the term D�6D5.

The equations from the 3-bit encoder of Figure 5.29 are modified by the priority en-
coding principle as follows:

Q2 � D7 � D6 � D5 � D4

Q1 � D7 � D6 � D�5D�4D3 � D�5D�4D2

Q0 � D7 � D�6D5 � D�6D�4D3 � D�6D�4D�2D1

VHDL Priority Encoder

The most obvious way to program a priority encoder inVHDL is to use the equations derived
in the previous section in a set of concurrent signal assignment statements, as follows.

—— hi_pri8a.vhd

ENTITY hi_pri8a IS

PORT(

d : IN BIT_VECTOR(7 downto 0);

q : OUT BIT_VECTOR (2 downto 0));

END hi_pri8a;

ARCHITECTURE a OF hi_pri8a IS

BEGIN

—— Concurrent Signal Assignments

q(2) <= d(7) or d(6) or d(5) or d(4);

q(1) <= d(7) or d(6)

or ((not d(5)) and (not d(4)) and d(3))

or ((not d(5)) and (not d(4)) and d(2));

q(0) <= d(7) or ((not d(6)) and d(5))

or ((not d(6)) and (not d(4)) and d(3))

or ((not d(6)) and (not d(4)) and (not d(2)) and d(1));

END a;

Although this code works, it is not terribly elegant, nor does it give any insight into the
operation of the encoder circuit. Also, if we expand our encoder output by one or more bits,
the equations become more cumbersome with each new bit and soon become impractically
large and susceptible to typing errors. A VHDL conditional signal assignment statement is
an ideal alternative for use in a priority encoder circuit. A section of VHDL code using this
format is shown below.

–— hi_pri8b.vhd

ENTITY hi_pri8b IS

PORT(

d : IN BIT_VECTOR (7 downto 0);

q : OUT INTEGER RANGE 0 to 7);

END hi_pri8b;

➥ hi_pri8a.vhd

➥ hi_pri8b.vhd
hi_pri8b.scf

5.2 • Encoders 183

ARCHITECTURE a OF hi_pri8b IS

BEGIN

—— Conditional Signal Assignment

encoder:

q <= 7 WHEN d(7)=‘1’ ELSE

6 WHEN d(6)=‘1’ ELSE

5 WHEN d(5)=‘1’ ELSE

4 WHEN d(4)=‘1’ ELSE

3 WHEN d(3)=‘1’ ELSE

2 WHEN d(2)=‘1’ ELSE

1 WHEN d(1)=‘1’ ELSE

0;

END a;

Output q is defined as type INTEGER. Since it ranges from 0 to 7, the MAX�PLUS
II VHDL compiler will automatically assign three outputs: Q2, Q1, and Q0. The conditional
signal assignment statement evaluates the first WHEN clause to determine if its condition
(d(7) � ‘1’) is true. If so, it assigns q the value of 7 (Q2Q1Q0 � 111). If the first condi-
tion is false, the next WHEN clause is evaluated, assigning q the value 6 (Q2Q1Q0 � 110)
if true, and so on until all WHEN clauses have been evaluated. If no clause is true, then the
default value (0: Q2Q1Q0 � 000) is assigned to the output.

In the conditional signal assignment, the highest-priority condition is examined first.
If it is true, the output is assigned according to that condition and no further conditions are
evaluated. If the first condition is false, the condition of next priority is evaluated, and so on
until the end. Thus, a low-priority input cannot alter the code resulting from an input of
higher priority, as required by the priority encoding principle.

The effect is similar to that of an IF statement, where a sequence of conditions is eval-
uated, but only one output assignment is made. However, an IF statement must be used
within a PROCESS statement, if we choose to use it. The IF statement for a priority en-
coder is as shown below.

PROCESS (d)

BEGIN

IF (d(7) = ‘1’) THEN

q <= 7;

ELSIF (d(6) = ‘1’) THEN

q <= 6;

�

�

�

ELSIF (d(1) = ‘1’ THEN

q <= 1;

ELSE

q <= 0;

END IF;

END PROCESS;

Figure 5.31 shows the simulation of an 3-bit priority encoder. The d inputs are shown
separately, so that we can easily determine which inputs are active. The q outputs are
grouped so as to show the encoded output value as a hexadecimal number.

BCD Priority Encoder

A BCD priority encoder, illustrated in Figure 5.32, accepts ten inputs and generates a BCD
code (0000 to 1001), corresponding to the highest-priority active input. The truth table for
this circuit is shown in Table 5.7, with a simulation of the circuit shown in Figure 5.33.

184 C H A P T E R 5 • Combinational Logic Functions

FIGURE 5.31
Simulation File for a 3-bit Priority Encoder

D2

D1

D0

HIPR/BCD

D3

D7

D5

D4

D6

Q3

Q1

Q2

Q0

D9

D8

FIGURE 5.32
BCD Priority Encoder

Table 5.7 Truth Table of a BCD Priority Encoder

D9 D8 D7 D6 D5 D4 D3 D2 D1 Q3 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 X 0 0 1 0
0 0 0 0 0 0 1 X X 0 0 1 1
0 0 0 0 0 1 X X X 0 1 0 0
0 0 0 0 1 X X X X 0 1 0 1
0 0 0 1 X X X X X 0 1 1 0
0 0 1 X X X X X X 0 1 1 1
0 1 X X X X X X X 1 0 0 0
1 X X X X X X X X 1 0 0 1

FIGURE 5.33
Simulation File for a BCD Priority Encoder

5.3 • Multiplexers 185

Derivation of the BCD priority encoder equations and development of a VHDL de-
scription of the circuit are left as exercises in the end-of-chapter problems.

❘❙❚ SECTION 5.2 REVIEW PROBLEM

5.4 State the main limitation of the 3-bit binary encoder shown in Figure 5.29. How can
the encoder be modified to overcome this limitation?

5.3 Multiplexers

Multiplexer A circuit that directs one of several digital signals to a single output,
depending on the states of several select inputs.

Data inputs The multiplexer inputs that feed a digital signal to the output when
selected.

Select inputs The multiplexer inputs that select a digital input channel.

Double-subscript notation A naming convention where two or more numerically
related groups of signals are named using two subscript numerals. Generally, the
first digit refers to a group of signals and the second to an element of a group. (e.g.,
X03 represents element 3 of group 0 for a set of signal groups, X.)

A multiplexer (abbreviated MUX) is a device for switching one of several digital signals to
an output, under the control of another set of binary inputs. The inputs to be switched are
called the data inputs; those that determine which signal is directed to the output are
called the select inputs.

K E Y T E R M S

➥ CD: hi_pri10.scf

Y
D2

D1

D0

S1

S0

D3

OUTPUT

OR4AND3

AND3

AND3

AND3
INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

N
O

T

N
O

T

FIGURE 5.34
4-to-1 Multiplexer

Figure 5.34 shows the logic circuit for a 4-to-1 multiplexer, with data inputs labelled
D0 to D3 and the select inputs labelled S0 and S1. By examining the circuit, we can see that
the 4-to-1 MUX is described by the following Boolean equation:

Y � D0S�1S�0 � D1S�1S0 � D2S1S�0 � D3S1S0

186 C H A P T E R 5 • Combinational Logic Functions

For any given combination of S1S0, only one of the above four product terms will be
enabled. For example, when S1S0 � 10, the equation evaluates to:

Y � (D0 �0) � (D1 �0) � (D2 �1) � (D3 �0) � D2

The MUX equation can be described by a truth table as in Table 5.8. The subscript of
the selected data input is the decimal equivalent of the binary combination S1S0.

Figure 5.35 shows two symbols used for a 4-to-1 multiplexer. The first symbol shows
the data and select inputs as individual lines. The second symbol shows the data inputs as
a single 4-bit bus line and the select inputs as a 2-bit bus.

Table 5.8 4-to-1 MUX
Truth Table

S1 S0 Y

0 0 D0

0 1 D1

1 0 D2

1 1 D3

D2

D1

D0

S0S1

D3

Y D

S

Y

4

2

a. 4-to-1 MUX symbol
showing individual lines

b. 4-to-1 MUX symbol
showing bus lines

FIGURE 5.35
Multiplexer Symbols

In general, a multiplexer with n select inputs will have m � 2n data inputs. Thus, other
common multiplexer sizes are 8-to-1 (for 3 select inputs) and 16-to-1 (for 4 select inputs).
Data inputs can also be multiple-bit busses, as in Figure 5.36. The slash through a thick
data line and the number 4 above the line indicate that it represents four related data
signals. In this device, the select inputs switch groups of data inputs, as shown in the truth
table in Table 5.9.

D2

D1

D0

S0S1

D3

Y

4

4

4

4

4

FIGURE 5.36
4-to-1 4-bit Bus Multiplexer

Table 5.9 Truth Table for a
4-to-1 4-bit Bus MUX

S1 S0 Y3 Y2 Y1 Y0

0 0 D03D02D01D00

0 1 D13D12D11D10

1 0 D23D22D21D20

1 1 D33D32D31D30

The naming convention shown in Table 5.9, known as double-subscript notation, is
used frequently for identifying variables that are bundled in numerically related groups, the
elements of which are themselves numbered. The first subscript identifies the group that a
variable belongs to; the second subscript indicates which element of the group a variable
represents.

Multiplexing of Time-Varying Signals

We can observe the function of a multiplexer by using time-varying waveforms, such as a
series of digital pulses. If we apply a different digital signal to each data input, and step the

5.3 • Multiplexers 187

select inputs through an increasing binary sequence, we can see the different input wave-
forms appear at the output in a predictable sequence, as shown by the simulation wave-
forms in Figure 5.37. The frequencies shown in the simulation were chosen to make as
great a contrast as possible between adjacent inputs so that the different selected inputs
could easily be seen.

In Figure 5.37, we initially see the D0 waveform appearing at the Y output when
S1S0 � 00, followed in sequence by the D1, D2, and D3 waveforms when S1S0 � 01, 10,
and 11, respectively. (The S1S0 input combination is shown as a single hexadecimal value be-
tween 0 and 3, labelled S[1..0].)

This simulation can be created in the MAX�PLUS II simulator by defining a base
clock pulse length (e.g., 40 ns) and assigning that to one of the inputs (D1 in this case).
Other input waveforms are set to periods of 2, 4, and 8 times the base waveform period (for
D3, D2, and D0, respectively). The select input count waveforms are set to allow three cy-
cles of the longest waveform (D0) to appear at Y when selected.

VHDL Implementation of Multiplexers

A multiplexer can be represented in MAX�PLUS II as a Graphic Design File, similar to
the diagram of Figure 5.34, or in a hardware description language such as VHDL.

Several different VHDL constructs can be used to define a multiplexer. We can use
a concurrent signal assignment statement, a selected signal assignment statement, or a
CASE statement within a PROCESS. We will briefly look at each form for a 4-to-1
multiplexer. Later, you will be required to extend these constructs to larger multiplexer
circuits.

Concurrent Signal Assignment

Recall that the concurrent signal assignment statement takes the form:

__signal <= __expression;

We can use this to encode the Boolean expression that describes a 4-to-1 MUX. The
VHDL file that incorporates this statement is as follows.

—— mux4.vhd

—— 4-to-1 multiplexer

—— Directs one of four input signals (d0 to d3) to output,

—— depending on status of select bits (s1, s0).

FIGURE 5.37
Simulation Waveforms for a 4-to-1 MUX

➥ mux4.vhd
mux4.scf

188 C H A P T E R 5 • Combinational Logic Functions

ENTITY mux4 IS

PORT(

d0, d1, d2, d3 : IN BIT;

s : IN BIT_VECTOR (1 downto 0);

y : OUT BIT);

END mux4;

ARCHITECTURE mux4to1 OF mux4 IS

BEGIN

—— Concurrent Signal Assignment

y<= ((not s(1)) and (not s(0)) and d0)

or ((not s(1)) and (s(0)) and d1)

or ((s(1)) and (not s(0)) and d2)

or ((s(1)) and (s(0)) and d3);

END mux4to1;

While the concurrent signal assignment is fairly easy to use, it becomes cumbersome
for larger multiplexers, such as 8-to-1 or greater.

The entity declaration will be identical for the other VHDL examples. The only
change we will make will be to replace the concurrent signal assignment in the architecture
body with some other VHDL construct.

Selected Signal Assignment Statement

This construct has the following form (the label is optional):

__label:

WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

The 4-to-1 MUX can be described in VHDL as follows, using a selected signal as-
signment:

ENTITY mux4sel IS

PORT(

d0, d1, d2, d3 : IN BIT;

s : IN BIT_VECTOR (1 downto 0);

y : OUT BIT);

END mux4sel;

ARCHITECTURE mux4to1 OF mux4sel IS

BEGIN

M: WITH s SELECT

y <= d0 WHEN “00”,

d1 WHEN “01”,

d2 WHEN “10”,

d3 WHEN “11”;

END mux4to1;

The selected signal assignment evaluates the expression in the WITH clause (in this
case, the 2-bit vector, s) and, depending on its value, selects an expression to assign to y.
Thus, if s1s0 � 00, y � d0. If s1s0 � 01, then y � d1, and so on for the remaining values
of s1s0.

➥ mux4sel.vhd

5.3 • Multiplexers 189

CASE Statement within a PROCESS

In our MUX example, we could use a CASE statement as follows:

ENTITY mux4case IS

PORT(

d0, d1, d2, d3 : IN BIT;

s : IN BIT_VECTOR (1 downto 0);

y : OUT BIT);

END mux4case;

ARCHITECTURE mux4to1 OF mux4case IS

BEGIN

—— CASE statement within a PROCESS

—— Monitor select inputs and execute if they change

PROCESS (s)

BEGIN

CASE s IS

WHEN “00” => y <= d0;

WHEN “01” => y <= d1;

WHEN “10” => y <= d2;

WHEN “11” => y <= d3;

WHEN others => y <= ‘0’;

END CASE;

END PROCESS;

END mux4to1;

If the select inputs change, the PROCESS statements are executed. The CASE state-
ment evaluates the select input vector, s, and chooses a signal assignment based on its
value. It is good design practice to include a default case (the “others” clause) even when
there are no obvious other cases. A default case is essential when using STD_LOGIC types
rather than BIT types, as ‘0’ and ‘1’ values do not cover all possible cases for STD
LOGIC signals. (Recall from Chapter 4 that STD_LOGIC is a nine-valued logic type, in-
corporating such things as “Don’t Care” (‘-’), “Unknown” (‘X’), and “High Impedance”
(‘Z’), as well as ‘0’ and ‘1’.)

Multiplexer Applications

Multiplexers are used for a variety of applications, including selection of one data stream
out of several choices, switching multiple-bit data from several channels to one multiple-
bit output, sharing data on one output over time, and generating bit patterns or waveforms.

Single-Channel Data Selection

The simplest way to use a multiplexer is to switch the select inputs manually in order to di-
rect one data source to the MUX output. Example 5.6 shows a pair of single-pole single-
throw (SPST) switches supplying the select input logic for this type of application.

❘❙❚ EXAMPLE 5.6 Figure 5.38 shows a digital audio switching system. The system shown can select a signal
from one of four sources (compact disc (CD) players, labelled CD0 to CD3) and direct it to
a digital signal processor (DSP) at its output. We assume we have direct access to the au-
dio signals in digital form.

Make a table listing which digital audio source in Figure 5.38 is routed to the DSP for
each combination of the multiplexer select inputs, S1 and S0.

➥ mux4case.vhd

190 C H A P T E R 5 • Combinational Logic Functions

Solution

D2

D1

D0

S0S1

D3

Y DSP

CD0

MUX

CD1

CD2

CD3

Vcc

Channel-select
switches

FIGURE 5.38
Example 5.6
Single-Channel Data Selection

Table 5.10 Sources Selected by a 4-to-1 MUX in
Figure 5.38

S1 S0 Selected Input Selected Source

0 0 D0 CD0

0 1 D1 CD1

1 0 D2 CD2

1 1 D3 CD3

❘❙❚

Multi-Channel Data Selection

Example 5.6 assumes that the output of a multiplexer is a single bit or stream of bits. Some
applications require several bits to be selected in parallel, such as when data would be rep-
resented on a numerical display.

Figure 5.39 shows a circuit, based on a quadruple (4-channel) 2-to-1 multiplexer, that
will direct one of two BCD digits to a seven-segment display. The bits D03D02D01D00 act
as a 4-bit group input, since the first digit of all four subscripts is 0. When the MUX select
input (S) is 0, these inputs are all connected to the outputs Y3Y2Y1Y0. Similarly, when the
select input is 1, inputs D13D12D11D10 are connected to the Y outputs.

The seven-segment display in Figure 5.39 will display “4” if S � 0 (D0 inputs se-
lected) and “9” if S � 1 (D1 inputs selected).

5.3 • Multiplexers 191

❘❙❚ EXAMPLE 5.7 Draw the symbol for a multiplexer that will select one of four 4-bit channels and direct it to
a 4-bit output. Create a VHDL file that implements this function and a simulation showing
the operation of the device.

Solution Figure 5.40 shows the symbol for the 4-channel, 4-bit multiplexer. This sym-
bol is shown with the data inputs and outputs in bus form. The data inputs are labelled in
groups D0 to D3, which contain the individual inputs [D03..D00] to [D33..D30].

A VHDL file describing this function is listed below.

–— quad4to1.vhd

ENTITY quad4to1 IS

PORT(

s : IN INTEGER RANGE 0 to 3;

d0 : IN BIT_VECTOR (3 downto 0);

d1 : IN BIT_VECTOR (3 downto 0);

d2 : IN BIT_VECTOR (3 downto 0);

d3 : IN BIT_VECTOR (3 downto 0);

y : OUT BIT_VECTOR (3 downto 0));

END quad4to1;

ARCHITECTURE mux4 OF quad4to1 IS

BEGIN

–— Selected Signal Assignment

MUX4: WITH s SELECT

y <= d0 WHEN 0,

d1 WHEN 1,

d2 WHEN 2,

d3 WHEN 3;

END mux4;

Figure 5.41 shows a set of simulation waveforms for the multiplexer. The D inputs are
shown in groups of four, the value of each shown as a steady hexadecimal value. The select
inputs are grouped, showing an increasing 2-bit binary count as a hexadecimal value (0 to 3,
then repeating). As the S inputs select each group of D inputs, their combined value is di-
rected to the Y output group.

D01

D02

D03

S

D00

D0

D2

D3

D1

D11

D12

D13

D10

Y0

Y1

Y2

Y3

BCD/7SEG
0

1

0

0

1

0

0

1

BCD0

BCD1

7-Segment
Display

a

b

c

d

e

f

g

FIGURE 5.39
Quadruple 2-to-1 MUX as a
Digital Output Selector

D2

D1

D0

S0S1

D3

Y

4

4

4

4

4

FIGURE 5.40
Example 5.7
4-channel 4-bit MUX

➥ quad4to1.vhd
quad4to1.scf

192 C H A P T E R 5 • Combinational Logic Functions

❘❙❚

Time-Dependent Multiplexer Applications

Counter A digital circuit whose output produces a fixed sequence of binary states
when an input called the clock receives a series of pulses. The output advances by
one for each clock pulse (e.g., the output state of a 4-bit binary counter progresses
in order from 0000 to 1111, then repeats).

Clock A signal that controls the operation of a sequential digital circuit, such as a
counter, by advancing its outputs to the next state when it receives a pulse.

Positive edge The point on a digital waveform where the logic level of the wave-
form makes a LOW-to-HIGH transition.

A time-dependent multiplexer application is one that uses the MUX input channels one af-
ter the other in a repeating time sequence. We can create such an application by applying a
set of changing binary signals to the MUX select inputs. For this function, we can use a 3-
bit binary counter to generate a binary sequence that goes from 000 to 111 (8 states) and
repeats indefinitely, the outputs advancing by one with every pulse applied to the clock in-
put of the counter.

K E Y T E R M S

Figure 5.42 shows the timing diagram of a 3-bit counter. The outputs Q2Q1Q0 change
every time the clock signal makes a transition from LOW to HIGH. If you read the Q

FIGURE 5.41
Example 5.7
Simulation for a 4-channel 4-bit MUX

CLOCK

Q0

Q1

Q2

FIGURE 5.42
Timing Diagram of a 3-bit Counter

5.3 • Multiplexers 193

waveforms from bottom to top, you will see that they generate a repeating binary sequence
(000, 001, 010, 011, 100, 101, 110, 111, 000 . . .).

Solution Figure 5.44a shows the waveform generator circuit. The output waveform
with respect to the counter inputs is shown in Figure 5.44b. This pattern is relatively diffi-
cult to generate by other means since it has several unequal HIGH and LOW sequences in
one period.

D2

D1

D0

Q0

Q1

Q2

S0

S1

S2

MUX

CTR DIV 8

CLOCK

D3

D7

D5

D4

D6

Y

FIGURE 5.43
Time-Dependent Selection of Eight Multiplexer Channels

D7 D6 D5 D4 D3 D2 D1 D0

0 1 1 0 0 1 0 1

If we connect the counter outputs Q2Q1Q0 to the select inputs of an 8-to-1 MUX, as in
Figure 5.43, we will select the channels in sequence, one after the other. The counter is la-
belled CTR DIV 8 because its most significant bit output has a frequency equal to the clock
frequency divided by eight. The triangle on the clock input indicates that it is active when
the clock waveform makes a transition from one logic level to another. Since there is no in-
verting bubble on the clock input, we know that the active clock transition is from LOW to
HIGH (i.e., a positive edge).

Waveform Generation. A multiplexer and counter can be used as a programmable
waveform generator. The output waveform can be programmed to any pattern by switching
the logic levels on the data inputs. This is an easy way to generate an asymmetrical wave-
form, a task which is more complicated using other digital circuits. The circuit can also
generate symmetrical waveforms by alternating the logic levels of consecutive groups of
inputs.

❘❙❚ EXAMPLE 5.8 Draw a circuit that uses an 8-to-1 multiplexer to generate a programmable 8-bit repeating
pattern. Draw the timing diagram of the select inputs and the output waveform for the fol-
lowing pattern of data inputs.

194 C H A P T E R 5 • Combinational Logic Functions

❘❙❚ EXAMPLE 5.9 The programmable waveform generator in Figure 5.44 generates a symmetrical pulse
waveform having a frequency of 1 kHz when the data inputs are set as follows.

How should the switches be set to generate a symmetrical 2 kHz waveform? A sym-
metrical 4 kHz waveform?

Solution

Pattern for 2 kHz:

Q0

Q1

Q2

Y

Q0

Q1

Q2

S0

S1

S2

MUX

CTR DIV 8

CLOCK

D2

D1

D0

D3

D7

D5

D4

D6

Y

FIGURE 5.44
Example 5.8
Programmable Waveform
Generator

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 1 1 1

D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 1 0 0 1 1

5.3 • Multiplexers 195

Pattern for 4 kHz:

❘❙❚

Time Division Multiplexing

Time division multiplexing (TDM) A technique of using one transmission line
to send many signals simultaneously by making them share the line for equal frac-
tions of time.

Time slot A period of time during which a transmitted data element has sole ac-
cess to a transmission path.

Bit multiplexing A TDM technique in which one bit is sent from each channel
during the channel’s assigned time slot.

Byte (or word) multiplexing A TDM technique in which a byte (or word) is sent
from each channel during its assigned time slot. (A byte is eight bits; a word is a
group of bits whose size varies with the particular system.)

Time division multiplexing is a method of improving the efficiency of a transmission sys-
tem by sharing one transmission path among many signals. For example, if we wish to
send four 4-bit numbers over a single transmission line, we can transmit the bits one after
the other, as shown in Figure 5.45.

K E Y T E R M S

In Figure 5.45, we see the least significant bit of the 4-bit word p0 transmitted, fol-
lowed by the LSB of p1, p2, then p3. After that, the second bit of each word is transmitted
in sequence, then all the third bits, and finally, all MSBs in sequence. Each bit is assigned
a time slot in the sequence. During that time, the bit has sole access to the transmission
line. When its time elapses, the next bit is sent and so on in sequence, until the channel as-
signment returns to the original location. This technique, known as bit multiplexing, can
be implemented by a circuit similar to the waveform generator shown in Figure 5.44.
Rather than fixed switch inputs, the data inputs would be some data source, such as a digi-
tized audio signal.

We can also arrange our circuit so that one byte (8 bits) or one word (a group of bits)
is sent through a selected channel. In this case, we must keep the channel selected for
enough clock pulses to transmit the byte or word, then move to the next one. This tech-
nique is called byte (or word) multiplexing. Figure 5.46 shows a data stream of four 4-bit
words that are word-multiplexed down a data transmission path.

D7 D6 D5 D4 D3 D2 D1 D0

0 1 0 1 0 1 0 1

p00 p10 p20 p30 p01 p11 p21 p23 p33 p00

FIGURE 5.45
4 � 4 Data Stream (Bit Multiplexing)

p00 p01 p02 p03 p10 p11 p12 p32 p33 p00

FIGURE 5.46
4 � 4 Data Stream (Word Multiplexing)

196 C H A P T E R 5 • Combinational Logic Functions

Telephone companies use TDM to maximize the use of their phone lines. Speech or
data is digitally encoded for transmission. Each speech or data channel becomes a multi-
plexer data input which shares time with all other channels on a single phone line. A
counter on the MUX selects the speech channels one after the other in a continuous se-
quence. The counter must switch the channels fast enough so that there is no apparent in-
terruption of the transmitted conversation or data stream.

❘❙❚ EXAMPLE 5.10 Draw a diagram of a circuit that uses an 8-to-1 multiplexer to share one telephone line
among eight digitized speech channels.

Write a VHDL file for the multiplexer and create a simulation to show its operation.

Solution Figure 5.47 shows the required multiplexer circuit. Each channel is connected
to a data input and a 3-bit binary counter is connected to the select inputs.

The VHDL code for the multiplexer is:

ENTITY mux_8ch IS

PORT(

sel : IN BIT_VECTOR (2 downto 0);

d : IN BIT_VECTOR (7 downto 0);

y : OUT BIT);

END mux_8ch;

ARCHITECTURE a OF mux_8ch IS

BEGIN

—— Selected Signal Assignment

MUX8: WITH sel SELECT

y <= d(0) WHEN “000”,

D2

D1

D0

Q0

Q1

Q2

S0S1S2

MUX

CTR DIV 8

CLOCK

D3

D7

D5

D4

D6

CH2

CH1

CH0

CH3

CH7

CH5

CH4

CH6

Y Telephone
line

Digitized speech channels

FIGURE 5.47
Example 5.10
Time-Division Multiplexing of Telephone Channels

➥ mux_8ch.vhd
mux_8ch.scf

5.4 • Demultiplexers 197

d(1) WHEN “001”,

d(2) WHEN “010”,

d(3) WHEN “011”,

d(4) WHEN “100”,

d(5) WHEN “101”,

d(6) WHEN “110”,

d(7) WHEN “111”;

END a;

The simulation is shown in Figure 5.48. For clarity, digital data are present on the
MUX inputs just before and after they are switched to the Y output. The output shows the
channel data in sequence, starting with channel 0.

❘❙❚

❘❙❚ SECTION 5.3 REVIEW PROBLEM

5.5 What defines whether a multiplexer application is time-dependent or not? What addi-
tional component can be added to make a MUX application time-dependent?

5.4 Demultiplexers

Demultiplexer A circuit that uses a binary decoder to direct a digital signal from
a single source to one of several destinations.

A demultiplexer performs the reverse function of a multiplexer. A multiplexer (MUX)
directs one of several input signals to a single output; a demultiplexer (DMUX) directs a
single input signal to one of several outputs. In both cases, the selected input or output is
chosen by the state of an internal decoder.

Figure 5.49 shows the logic circuit for a 1-to-4 demultiplexer. Compare this to Figure
5.4, a 4-output decoder. This circuits are the same except that the active-LOW enable input
has been changed to an active-HIGH data input. The circuit in Figure 5.49 could still be
used as a decoder, except that its enable input would be active-HIGH.

K E Y T E R M S

FIGURE 5.48
Simulation for an 8-bit Time-Division Multiplexer

198 C H A P T E R 5 • Combinational Logic Functions

Each AND gate in the demultiplexer enables or inhibits the signal output according to
the state of the select inputs, thus directing the data to one of the output lines. For instance,
S1S0 � 10 directs incoming digital data to output Y2.

Figure 5.50 illustrates the use of a single device as either a decoder or a demultiplexer.
In Figure 5.50a, input D is tied HIGH. When an output is selected by S1 and S0, it goes
HIGH, acting as a decoder with active-HIGH outputs. In Figure 5.50b, D acts as a demul-
tiplexer data input. The data are directed to the output selected by S1 and S0.

Since a single device can be used either way, this implies that any of the VHDL bi-
nary decoder designs used in this chapter can also be used as demultiplexers.

A decoder/demultiplexer can have active-LOW outputs, but only if the D input is also
active-LOW. This is important because the demultiplexer data must be inverted twice to re-
tain its original logic values.

Demultiplexing a TDM Signal

In Example 5.10, we saw how a multiplexer could be used to send 8 digital channels across
a single line, multiplexed over time. Obviously, such a system is not of much value if the
signals cannot be sorted out at the receiving end. The received digital data must be demul-
tiplexed and sent to their appropriate destinations.

N O T E

S1

D

S0

Y1

Y2

Y0

Y3

FIGURE 5.49
4-bit Decoder/Demultiplexer

S0

S1

Y2

Y3

Y1

Y0Binary
input

D

S0

S1

Y2

Y3

Y1

Y0Channel
select

Signal D

a. Decoder b. Demultiplexer

Vcc

FIGURE 5.50
Same Device Used as a Decoder or Demultiplexer

5.4 • Demultiplexers 199

The process is the reverse of multiplexing; data are sent to an output selected by a counter
at the DMUX select inputs. (We assume that the counters at the MUX and DMUX select in-
puts are somehow synchronized or possibly, if located close together, are the same counter.)

❘❙❚ EXAMPLE 5.11 Draw a demultiplexing circuit that will take the multiplexed output of the circuit in Fig-
ure 5.47 and distribute it to 8 different local telephone circuits. Write a VHDL file for the
demultiplexer and create a simulation file that shows its operation. Use active-LOW out-
puts for the demultiplexer. How does this affect the outputs when they are not transmit-
ting data?

Solution Figure 5.51 shows the original multiplexing circuit connecting to the new de-
multiplexing circuit. The diagram indicates that the two sides of the circuit are separated
by some distance. The clock is shared between both sides of the circuit, but is generated
on the MUX side. Both sides share a common ground. Each side of the circuit has its own
3-bit counter.

The VHDL code for the demultiplexer is as follows. (This is the same implementation
as a 3-line-to-8-line decoder with an enable input.)

—— dmux8.vhd

—— 1-to-8 demultiplexer/decoder

—— Decoder: set d to ‘0’; outputs are activated by

—— binary combination of s.

—— Demultiplexer: apply data stream to d; data directed to

—— y output with subscript same as value of s.

—— Outputs and d are active-LOW. DMUX data are inverted twice

—— to keep them true.

D2

D1

D0

Q0

Q1

Q2

S0S1S2

MUX DMUX

CTR DIV 8

CLOCK

D3

D7

D5

D4

D6

CH2

CH1

CH0

CH3

CH7

CH5

CH4

CH6

Y

Y2

Y1

Y0

Y3

Y7

Y5

Y4

Y6

D

S0

S2
S1

Q0Q1
Q2

CTR DIV 8

CH2

CH1

CH0

CH3

CH7

CH5

CH4

CH6

FIGURE 5.51
Example 5.11
Time-Division Multiplexing and
Demultiplexing

➥ dmux8.vhd
dmux8.scf

200 C H A P T E R 5 • Combinational Logic Functions

ENTITY dmux8 IS

PORT(

s : IN INTEGER Range 0 to 7;

d : IN BIT;

y : OUT BIT_VECTOR (0 to 7));

END dmux8;

ARCHITECTURE a OF dmux8 IS

SIGNAL output : BIT_VECTOR (0 to 7);

BEGIN

PROCESS (d, s)

BEGIN

IF (d � ‘1’) THEN

output <= “11111111”;

ELSE

CASE s IS

WHEN 0 => output <= “01111111”;

WHEN 1 => output <= “10111111”;

WHEN 2 => output <= “11011111”;

WHEN 3 => output <= “11101111”;

WHEN 4 => output <= “11110111”;

WHEN 5 => output <= “11111011”;

WHEN 6 => output <= “11111101”;

WHEN 7 => output <= “11111110”;

WHEN OTHERS => output <= “11111111”;

END CASE;

END IF;

y <= output;

END PROCESS;

END a;

The simulation, shown in Figure 5.52, has as its input data the output of the original
MUX simulation in Figure 5.48. Data are distributed to the outputs in sequence. Compare
the DMUX output data to the MUX input data in Figure 5.48.

FIGURE 5.52
Example 5.11
Demultiplexer Simulation

Note that idle channels sit HIGH. This is opposite from the status of the idle MUX
lines and may affect circuit operation. If so, a DMUX with active-HIGH outputs and ac-
tive-HIGH enable should be used. ❘❙❚

www.electronictech.com

5.4 • Demultiplexers 201

CMOS Analog Multiplexer/Demultiplexer

CMOS analog switch A CMOS device that will pass an analog or digital signal
in either direction, when enabled. Also called a transmission gate. There is no TTL
equivalent.

An interesting device used in some CMOS medium-scale integration multiplexers and de-
multiplexers, as well as other applications, is the CMOS analog switch, or transmission
gate. This device has the property of allowing signals to pass in two directions, instead of
only one, thus allowing both positive and negative voltages and currents to pass. It also has
no requirement that the voltages be of a specific value such as �5 volts. These properties
make the device suitable for passing analog signals.

K E Y T E R M S

FIGURE 5.53
Line Drivers

Figure 5.53 shows several symbols, indicating the development of the transmission gate
concept. Figures 5.53a and b show amplifiers whose output and input are clearly defined by
the direction of the triangular amplifier symbol. A signal has one possible direction of flow.
Figure 5.53b includes an active-LOW gating input, which can turn the signal on and off.

Figure 5.53c shows two opposite-direction overlapping amplifier symbols, with a gat-
ing input to enable or inhibit the bidirectional signal flow. The signal through the transmis-
sion gate may be either analog or digital.

Analog switches are available in packages of four switches with part numbers such as
4066B (standard CMOS) or 74HC4066 (high-speed CMOS).

Several available CMOS MUX/DMUX chips use analog switches to send signals in
either direction. Figure 5.54 illustrates the design principle as applied to a 4-channel
MUX/DMUX.

S0

S1

FIGURE 5.54
4-Channel CMOS MUX/DMUX

If four signals are to be multiplexed, they are connected to inputs D0 to D3. The de-
coder, activated by S1 and S0, selects which one of the four switches is enabled. Figure 5.54
shows Channel 2 active (S1S0 � 10).

202 C H A P T E R 5 • Combinational Logic Functions

Since all analog switch outputs are connected together, any selected channel connects
to Y, resulting in a multiplexed output. To use the circuit in Figure 5.54 as a demultiplexer,
the inputs and outputs are merely reversed.

❘❙❚ EXAMPLE 5.12 A CMOS 4097B dual 8-channel MUX/DMUX can be used simultaneously as a multi-
plexer on one half of the device and as a demultiplexer on the other side.

Q0

Q1

Q2

S0

S1

S2

FIGURE 5.55
Example 5.12
4097B MUX/DMUX as a Time
Division MUX/DMUX

5.5 • Magnitude Comparators 203

A circuit in a recording studio uses one side of a 4097B MUX/DMUX to multi-
plex 8 digital audio channels into a digital signal processor (DSP), using time division
multiplexing. The other half of the 4097B takes the processed signals from a DSP
output and distributes them to 8 channels on a digital audio tape (DAT) unit. Draw
the circuit.

Solution Figure 5.55 shows a possible circuit. The counter can be part of the DSP. An
audio source channel is selected by the counter inputs, data are sent to the DSP, where they
are processed and sent to the same channel of the DAT. The counter advances by one, se-
lecting a new channel and repeating the process.

❘❙❚

SomeanalogMUX/DMUXdevices inhigh-speedCMOSinclude:74HC40518-channel
MUX/DMUX, 74HC4052 dual 4-channel MUX/DMUX, and 74HC4053 triple 2-channel
MUX/DMUX.

5.5 Magnitude Comparators

Magnitude comparator A circuit that compares two n-bit binary numbers, indi-
cates whether or not the numbers are equal, and, if not, which one is larger.

If we are interested in finding out whether or not two binary numbers are the same, we
can use a magnitude comparator. The simplest comparison circuit is the Exclusive
NOR gate, whose circuit symbol is shown in Figure 5.56 and whose truth table is given in
Table 5.11.

The output of the XNOR gate is 1 if its inputs are the same (A � B, symbolized
AEQB) and 0 if they are different. For this reason, the XNOR gate is sometimes called a
coincidence gate.

We can use several XNORs to compare each bit of two multi-bit binary numbers. Fig-
ure 5.57 shows a 2-bit comparator with one output that goes HIGH if all bits of A and B are
identical.

K E Y T E R M S

If the most significant bit (MSB) of A equals the MSB of B, the output of the upper
XNOR is HIGH. If the least significant bits (LSBs) are the same, the output of the lower
XNOR is HIGH. If both these conditions are satisfied, then A � B, which is indicated by a
HIGH at the AND output. This general principle applies to any number of bits:

AEQB � (A�n���1�����B�n���1�) � (A�n���2�����B�n���2�) ... (A�1�����B�1�) � (A�0�����B�0�)

for two n-bit numbers, A and B.
Some magnitude comparators also include an output that activates if A is greater than

B (symbolized A � B or AGTB) and another that is active when A is less than B (symbol-
ized A � B or ALTB). Figure 5.58 shows the comparator of Figure 5.57 expanded to in-
clude the “greater than” and “less than” functions.

Let us analyze the AGTB circuit. The AGTB function has two AND-shaped gates that
compare A and B bit-by-bit to see which is larger.

FIGURE 5.56
Exclusive NOR Gate

Table 5.11 XNOR
Truth Table

A B Y

0 0 1
0 1 0
1 0 0
1 1 1

AEQB

FIGURE 5.57
2-bit Magnitude Comparator

204 C H A P T E R 5 • Combinational Logic Functions

1. The 2-input gate examines the MSBs of A and B. If A1 � 1 AND B1 � 0, then we know
that A � B. (This implies one of the following inequalities: 10 � 00; 10 � 01; 11 � 00;
or 11 � 01.)

2. If A1 � B1, then we don’t know whether or not A � B until we compare the next most
significant bits, A0 and B0. The 3-input gate makes this comparison. Since this gate is
enabled by the XNOR, which compares the two MSBs, it is only active when A1 � B1.
This yields the term (A�1�����B�1�)A0B�0 in the Boolean expression for the AGTB function.

3. If A1 � B1 AND A0 � 1 AND B0 � 0, then the 3-input gate has a HIGH output, telling
us, via the OR gate, that A � B. (The only possibilities are (01 � 00) and (11 � 10).)

Similar logic works in the ALTB circuit, except that inversion is on the A, rather than
the B bits. Alternatively, we can simplify either the AGTB or the ALTB function by using a
NOR function. For instance, if we have developed a circuit to indicate AEQB and ALTB,
we can make the AGTB function from the other two, as follows:

AGTB � A�E�Q�B�����A�L�T�B�

This Boolean expression implies that if A is not equal to or less than B, then it must be
greater than B.

Figure 5.59 shows a 4-bit comparator with AEQB, ALTB, and AGTB outputs.
The Boolean expressions for the outputs are:

AEQB � (A�3����B�3�)(A�2�����B�2�)(A�1�����B�1�)(A�0�����B�0�)

ALTB � A�3B3 � (A�3����B�3�)A�2 B2 � (A�3����B�3�)(A�2����B�2�)A�1B1 � (A�3����B�3�)
(A�2����B�2�)(A�1����B�1�)A�0B0

AGTB � A�E�Q�B�����A�L�T�B�

This comparison technique can be expanded to as many bits as necessary. A 4-bit com-
parator requires four AND-shaped gates for its ALTB function. We can interpret the
Boolean expression for this function as follows.

A � B if:

1. The MSB of A is less than the MSB of B, OR

2. The MSBs are equal, but the second bit of A is less than the second bit of B, OR

3. The first two bits are equal, but the third bit of A is less than the third bit of B, OR

4. The first three bits are equal, but the LSB of A is less than the LSB of B

Expansion to more bits would use the same principle of comparing bits one at a time,
beginning with the MSBs.

AEQB

AGTB

ALTB

FIGURE 5.58
2-bit Comparator With AEQB,
AGTB, and ALTB Outputs

5.5 • Magnitude Comparators 205

❘❙❚ EXAMPLE 5.13
A digital thermometer has two input probes. A circuit in the thermometer converts the
measured temperature at each probe to an 8-bit number, as shown by the block in Figure

ALTB

AEQB

AGTB

FIGURE 5.59
4-bit Magnitude Comparator

Application

A7 A6 A5 A4 A3 A2 A1

A B

A0 B7 B6 B5 B4 B3 B2 B1 B0

Probe
input

Probe
input

Converter

FIGURE 5.60
Example 5.13
Two-channel Digital Thermometer

5.60.
In addition to measuring the temperature at each input, the thermometer has a com-

parison function that indicates whether the temperature at one input is greater than, equal
to, or less than the temperature at the other input.

Draw a logic diagram showing how a magnitude comparator could be connected to
light a green LED for AGTB, an amber LED for AEQB, and a red LED for ALTB.

Solution Figure 5.61 shows the logic diagram of the magnitude comparator connected

206 C H A P T E R 5 • Combinational Logic Functions

to the thermometer’s digital output.

When one of the comparator outputs goes HIGH, it sets the output of the correspond-
ing inverter LOW. This provides a current path to ground for the indicator LED for that
output, causing it to illuminate.

❘❙❚

VHDL Magnitude Comparators

The most obvious way to create a VHDL representation of a magnitude comparator is to
use a concurrent signal assignment statement for each comparing function. For example,
the following VHDL code can represent the 2-bit magnitude comparator of Figure 5.57:

—— compare2.vhd

ENTITY compare2 IS

PORT(

a, b : IN BIT_VECTOR (1 downto 0);

agtb, aeqb, altb : OUT BIT);

END compare2;

ARCHITECTURE a OF compare2 IS

BEGIN

altb <= (not (a(1)) and b(1))

or ((not (a(1) xor b(1))) and (not (a(0)) and b(0)));

aeqb <= (not (a(1) xor b(1))) and (not (a(0) xor b(0)));

agtb <= (a(1) and not (b(1)))

or ((not (a(1) xor b(1))) and (a(0) and not (b(0))));

END a;

A simulation for this file is shown in Figure 5.62. The comparison outputs go HIGH to
indicate A � B, A � B, or A � B.

Although this approach works, it is not a very good one. Due to the complexity of the
Boolean equations for ALTB and AGTB, it is difficult to type them without making errors.
(Try it!) The difficulty increases greatly with the number of required inputs.

A7 A6 A5 A4 A3 A2 A1

A

G

B

A0 B7 B6 B5 B4 B3 B2 B1 B0

Probe
input

Probe
input

Converter

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0

Comparator

ALTB AEQB AGTB

Vcc Vcc Vcc

A R

FIGURE 5.61
Example 5.13
Temperature Comparator Block Diagram

➥ compare2.vhd
compare2.scf

5.5 • Magnitude Comparators 207

The following code for a 4-bit comparator illustrates a much more efficient method.
Since VHDL allows inputs to be represented as integers, we can define the required size of
inputs A and B and compare them using IF statements. For every comparison, we assign an
output vector consisting of bits for ALTB, AEQB, and AGTB one of the values 110, 101, or
011, for active-LOW outputs. For example, if A � 12 and B � 9, then the output vector
would be 011 (i.e., A � B). An active-LOW output will illuminate a LOW-sense LED,
such as those on the Altera UP-1 board.

—— compare4.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY compare4 IS

PORT(

a, b : IN INTEGER RANGE 0 TO 15;

agtb, aeqb, altb : OUT STD_LOGIC);

END compare4;

ARCHITECTURE a OF compare4 IS

SIGNAL compare : STD_LOGIC_VECTOR (2 downto 0);

BEGIN

PROCESS (a,b)

BEGIN

IF a<b THEN

compare <= “110”;

ELSIF a=b THEN

compare <= “101”;

ELSIF a>b THEN

compare <= “011”;

ELSE

compare <= “111”;

END IF;

agtb <= compare(2);

aeqb <= compare(1);

altb <= compare(0);

END PROCESS;

END a;

The beauty of this method is that the number of input bits can be changed by modify-
ing one number: the range of the INTEGER-type input. For example, a 12-bit comparator
is identical to the 4-bit comparator in the previous VHDL code, except that the inputs have
a range of 0 to 4095 (� 212�1). Using this method, we can program an EPM7128S CPLD

FIGURE 5.62
Simulation for a 2-bit Magnitude Comparator

➥ compare4.vhd
compare4.scf

208 C H A P T E R 5 • Combinational Logic Functions

with a comparator up to 28 bits wide (range of 0 to 268,435,455). If we do, however, there
is no room for anything else.

❘❙❚ EXAMPLE 5.14 Write a VHDL file that uses IF statements to compare two 8-bit numbers A and B. The de-
sign should have outputs for AEQB, ALTB, and AGTB.

Solution

—— compare8.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY compare8 IS

PORT(

a, b : IN INTEGER RANGE 0 TO 255;

agtb, aeqb, altb : OUT STD_LOGIC);

END compare8;

ARCHITECTURE a OF compare8 IS

SIGNAL compare : STD_LOGIC_VECTOR (2 downto 0);

BEGIN

PROCESS (a,b)

BEGIN

IF a<b THEN

compare <= “110”;

ELSIF a=b THEN

compare <= “101”;

ELSIF a>b THEN

compare <= “011”;

ELSE

compare <= “111”;

END IF;

agtb <= compare(2);

aeqb <= compare(1);

altb <= compare(0);

END PROCESS;

END a;
❘❙❚

5.6 Parity Generators and Checkers

Parity A system that checks for errors in a multi-bit binary number by counting
the number of 1s.

Even parity An error-checking system that requires a binary number to have an
even number of 1s.

Odd parity An error-checking system that requires a binary number to have an
odd number of 1s.

Parity bit A bit appended to a binary number to make the number of 1s even or
odd, depending on the type of parity.

When data are transmitted from one device to another, it is necessary to have a system of
checking for errors in transmission. These errors, which appear as incorrect bits, occur as a
result of electrical limitations such as line capacitance or induced noise.

K E Y T E R M S

➥ compare8.vhd

5.6 • Parity Generators and Checkers 209

Parity error checking is a way of encoding information about the correctness of data
before they are transmitted. The data can then be verified at the system’s receiving end.
Figure 5.63 shows a block diagram of a parity error-checking system.

The parity generator in Figure 5.63 examines the outgoing data and adds a bit called
the parity bit that makes the number of 1s in the transmitted data odd or even, depending
on the type of parity. Data with EVEN parity have an even number of 1s, including the
parity bit, and data with ODD parity have an odd number of 1s.

The data receiver “knows” whether to expect EVEN or ODD parity. If the incoming
number of 1s matches the expected parity, the parity checker responds by indicating that
correct data have been received. Otherwise, the parity checker indicates an error.

❘❙❚ EXAMPLE 5.16 Data are transmitted from a PC serial port to a modem in groups of 7 data bits plus a parity
bit. What should the parity bit, P, be for each of the following data if the parity is EVEN?
If the parity is ODD?

a. 0110110

b. 1000000

c. 0010101

Solution

a. 0110110 Four 1s in data. (4 is an even number.)
EVEN parity: P � 0
ODD parity: P � 1

b. 1000000 One 1 in data. (1 is an odd number.)
EVEN parity: P � 1
ODD parity: P � 0

c. 0010101 Three 1s in data. (3 is an odd number.)
EVEN parity: P � 1
ODD parity: P � 0

❘❙❚

An Exclusive OR gate can be used as a parity generator or a parity checker. Figure
5.64 shows the gate, and Table 5.12 is the XOR truth table. Notice that each line of the
XOR truth table has an even number of 1s if we include the output column.

Figure 5.65 shows the block diagram of a circuit that will generate an EVEN parity bit
from 2 data bits, A and B, and transmit the three bits one after the other, that is, serially, to
a data receiver.

FIGURE 5.63
Parity Error Checking

FIGURE 5.64
Exclusive OR Gate

210 C H A P T E R 5 • Combinational Logic Functions

Figure 5.66 shows a parity checker for the parity generator in Figure 5.65. Data are re-
ceived serially, but read in parallel. The parity bit is re-created from the received values of
A and B, and then compared to the received value of P to give an error indication, P�. If P
and A � B are the same, then P� � 0 and the transmission is correct. If P and A � B are
different, then P� � 1 and there has been an error in transmission.

❘❙❚ EXAMPLE 5.17 The following data and parity bits are transmitted four times: ABP � 101.

1. State the type of parity used.

2. The transmission line over which the data are transmitted is particularly noisy and the
data arrive differently each time as follows:

a. ABP � 101

b. ABP � 100

c. ABP � 111

d. ABP � 110

Indicate the output P� of the parity checker in Figure 5.66 for each case and state what
the output means.

Solution

1. The system is using EVEN parity.

2. The parity checker produces the following responses:

a. ABP � 101
A � B � 1�0 � 1

P� � (A � B) � P � 1�1 � 0 Data received correctly.

b. ABP � 100
A � B � 1 � 0 � 1

P� � (A � B) � P � 1 � 0 � 1 Transmission error. (Parity bit incorrect.)

c. ABP � 111

Table 5.12 Exclusive
OR Truth Table

A B A � B

0 0 0
0 1 1
1 0 1
1 1 0

FIGURE 5.65
Even Parity Generation

FIGURE 5.66
Even Parity Checking

5.6 • Parity Generators and Checkers 211

A � B � 1 � 1 � 0
P� � (A � B) � P � 0 � 1 � 1 Transmission error. (Data bit B incorrect.)

d. ABP � 110
A � B � 1 � 1 � 0

P� � (A � B) � P � 0 � 0 � 0 Transmission error undetected. (B and P
incorrectly received.)

❘❙❚

The second and third cases in Example 5.17 show that parity error-detection cannot
tell which bit is incorrect.

The fourth case points out the major flaw of parity error detection: An even number of
errors cannot be detected. This is true whether the parity is EVEN or ODD. If a group of
bits has an even number of 1s, a single error will change that to an odd number of 1s, but a
double error will change it back to even. (Try a few examples to convince yourself this is
true.)

An ODD parity generator and checker can be made using an Exclusive NOR, rather
than an Exclusive OR, gate. If a set of transmitted data bits require a 1 for EVEN parity, it
follows that they require a 0 for ODD parity. This implies that EVEN and ODD parity gen-
erators must have opposite-sense outputs.

❘❙❚ EXAMPLE 5.18 Modify the circuits in Figures 5.65 and 5.66 to operate with ODD parity. Verify their oper-
ation with the data bits AB � 11 transmitted twice and received once as AB � 11 and once
as AB � 01.

Solution Figure 5.67a shows an ODD parity generator and Figure 5.67b shows an ODD
parity checker. The checker circuit still has an Exclusive OR output since it presents the
same error codes as an EVEN parity checker. The parity bit is re-created at the receive end

of the transmission path and compared with the received parity bit. If they are the same,
P� � 0 (correct transmission). If they are different, P� � 1 (transmission error).

Verification:

Generator:

Data: AB � 11 Parity: P � A�����B� � 1�����1� � 1

Checker:

Received data: AB � 11

P� � (A � B) � P � (1 � 1) � 1 � 1 � 1 � 0 (Correct transmission)

FIGURE 5.67
Example 5.18
ODD Parity Generator and Checker

212 C H A P T E R 5 • Combinational Logic Functions

Generator:

Data: AB � 11 Parity: P � A�����B� � 1�����1� � 1

Checker:

Received data: AB � 01

P� � (A � B) � P � (0 � 1) � 1 � 0 � 1 � 1 (Incorrect transmission)
❘❙❚

Parity generators and checkers can be expanded to any number of bits by using an
XOR gate for each pair of bits and combining the gate outputs in further stages of 2-input
XOR gates. The true form of the generated parity bit is PE, the EVEN parity bit. The com-
plement form of the bit is PO, the ODD parity bit.

Table 5.13 shows the XOR truth table for 4 data bits and the ODD and EVEN par-
ity bits. The EVEN parity bit PE is given by (A � B) � (C � D). The ODD parity bit

PO is given by P�E � (�A�����B�)�����(�C�����D�)�. For every line in Table 5.13, the bit com-
bination ABCDPE has an even number of 1s and the group ABCDPO has an odd num-
ber of 1s.

❘❙❚ EXAMPLE 5.19 Use Table 5.13 to draw a 4-bit parity generator and a 4-bit parity checker that can generate
and check either EVEN or ODD parity, depending on the state of one select input.

Table 5.13 Even and Odd Parity Bits for 4-bit Data

A B C D A � B C � D PE PO

0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 0 0 1
0 1 0 0 1 0 1 0
0 1 0 1 1 1 0 1
0 1 1 0 1 1 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 1 1 0 1 0
1 1 0 0 0 0 0 1
1 1 0 1 0 1 1 0
1 1 1 0 0 1 1 0
1 1 1 1 0 0 0 1

FIGURE 5.68
Example 5.19
4-bit Parity Generator

5.6 • Parity Generators and Checkers 213

❘❙❚ EXAMPLE 5.20 Draw the circuit for an 8-bit EVEN/ODD parity generator.

Solution An 8-bit parity generator is an expanded version of the 4-bit generator in the
previous example. The circuit is shown in Figure 5.70.

❘❙❚

❘❙❚ SECTION 5.6 REVIEW PROBLEM

5.6 Data (including a parity bit) are detected at a receiver configured for checking ODD
parity. Which of the following data do we know are incorrect? Could there be errors in
the remaining data? Explain.

a. 010010

b. 011010

c. 1110111

d. 1010111

e. 1000101

Solution Figure 5.68 shows the circuit for a 4-bit parity generator. The XOR gate at the
output is configured as a programmable inverter to give PE or PO. When E�V�E�N�/ODD � 0,
the parity output is not inverted and the circuit generates PE. When E�V�E�N�/ODD � 1, the

FIGURE 5.69
Example 5.19
4-bit Parity Checker

FIGURE 5.70
Example 5.20
8-bit Parity Generator

214 C H A P T E R 5 • Combinational Logic Functions

S U M M A R Y

1. A decoder detects the presence of a particular binary code.
The simplest decoder is an AND or NAND gate, which can
detect a binary code when combined with the right combina-
tion of input inverters.

2. Multiple-output decoders are implemented by a series of sin-
gle-gate decoders, each of which responds to a different in-
put code.

3. For an n-input decoder, there can be as many as 2n unique
outputs.

4. MAX�PLUS II can simulate the function of a digital circuit
by generating a set of output waveforms in response to a de-
fined set of input waveforms.

5. VHDL constructs such as selected signal assignment state-
ments and conditional signal assignments can describe de-
coders. Both statement types assign alternative values to a
VHDL port or signal, based on the state of another port or
signal.

6. A selected signal assignment statement has the form:

label: WITH __expression SELECT

__signal ��__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

7. A conditional signal assignment statement has the form:

__signal �� __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

8. SIGNALs act as internal connections in a VHDL design en-
tity. They can be single lines or vectors and are declared be-
fore the BEGIN clause of an ARCHITECTURE body.

9. The report file of a MAX�PLUS II project contains design
and configuration information, including the Boolean equa-
tions that the compiler derives from the design entry file(s) of
the project.

10. A seven-segment display is an array of seven luminous seg-
ments (usually LED or LCD), arranged in a figure-8 pattern,
used to display numerical digits.

11. The segments in a seven-segment display are designated by
lowercase letters a through g. The sequence of labels goes
clockwise, starting with segment a at the top and ending with
g in the center.

12. Seven-segment displays are configured as common anode
(active-LOW inputs) or common cathode (active-HIGH seg-
ments).

13. A seven-segment decoder can be described with a truth table
or Boolean equation for each segment function. Since the
segment functions do not simplify very much, it is often eas-
ier to program a CPLD with a VHDL truth table, in the form
of a selected signal assignment statement, rather than with
the Boolean equations of the decoder.

14. A multiplexer (MUX) is a circuit that directs a signal or
group of signals (called the data inputs) to an output, based
on the status of a set of select inputs.

15. Generally, for n select inputs in a multiplexer, there are m � 2n

data inputs. Such a multiplexer is referred to as an m-to-1
multiplexer.

16. The selected data input in a MUX is usually denoted by a
subscript that is the decimal equivalent of the combined bi-
nary value of the select inputs. For example, if the select in-
puts in an 8-to-1 MUX are set to S2S1S0 � 100, data input D4

is selected since 100 (binary) � 4 (decimal).
17. A MUX can be designed to switch groups of signals to a

multi-bit output. The inputs can be denoted by double sub-
script notation, where the first subscript indicates the num-
ber of the signal group and the second subscript the ele-
ment in the group. For example, a MUX can have a 4-bit
set of inputs called D03D02D01D00 and another 4-bit input
group called D13D12D11D10, each of which can be
switched to a 4-bit output called Y3Y2Y1Y0 by the state of
one select input.

18. A multiplexer can be used in time-dependent applications if
a binary counter is applied to its select inputs.

19. Some examples of time-dependent MUX applications are
waveform or bit pattern generation and time-division multi-
plexing (TDM).

20. In time division multiplexing, several digital signals share a
single transmission path by allotting a time slot for every sig-
nal, during which that signal has sole access to the transmis-
sion path.

21. TDM can be configured for bit multiplexing, in which a
channel transmits one bit each time it is selected, or byte (or
word) multiplexing, in which a channel transmits and entire
byte or word each time it is selected.

22. A demultiplexer (DMUX) receives data from a single source
and directs the data to one of several outputs, which is se-
lected by the status of a set of select inputs.

23. A decoder with an enable input can also act as a demulti-
plexer if the enable input of the decoder is used as a data in-
put for a demultiplexer.

24. A TDM signal can be demultiplexed by applying a binary
count to the DMUX’s select inputs at the same rate as the
count is applied to the select input of the multiplexer that
originally sent the data.

25. A CMOS analog multiplexer or demultiplexer works by us-
ing a decoder to enable a set of analog data transmission
switches. It can be used in either direction.

26. A magnitude comparator determines whether two binary
numbers are equal and, if not, which one is greater.

27. The simplest equality comparator is an XNOR gate, whose
output is HIGH if both inputs are the same.

28. A pair of multiple-bit numbers can be compared by a set of
XNOR gates whose outputs are ANDed. The circuit com-
pares the two numbers bit-by-bit.

29. Given two numbers A and B, the Boolean function A�nBn,
if true, indicates that the nth bit of A is less than the nth
bit of B.

30. Given two numbers A and B, the Boolean function AnB�n,
if true, indicates that the nth bit of A is greater than the nth
bit of B.

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

31. The less-than and greater-than functions can be combined
with an equality comparator to determine, bit-by-bit, how
two numbers compare in magnitude to one another.

32. A magnitude comparator can be best implemented in VHDL
by using INTEGER types for the inputs and using IF state-
ments to compare their respective magnitudes.

33. Parity checking is a system of error detection that works by
counting the number of 1s in a group of bits.

34. Even parity requires a group of bits to have an even number
of 1s. Odd parity requires a group of bits to have an odd num-
ber of 1s. This is achieved by appending a parity bit to
the data whose value depends on the number of 1s in the
data bits.

35. An XOR gate is the simplest even parity generator. Each line
in its truth table has an even number of 1s, if the output col-
umn is included.

36. An XNOR gate can be used to generate an odd parity bit
from two data bits.

37. A parity checker consists of a parity generator on the receive
end of a transmission system and a comparator to determine
if the locally generated parity bit is the same as the transmit-
ted parity bit.

38. Parity generators and checkers can be expanded to any num-
ber of bits by using an XOR gate for each pair of bits and
combining the gate outputs in further stages of 2-input XOR
gates.

Glossary 215

G L O S S A R Y

BCD Binary coded decimal. A code in which each individual
digit of a decimal number is represented by a 4-bit binary num-
ber. (e.g., 905 (decimal) � 1001 0000 0101 (BCD)).

Bit multiplexing A TDM technique in which one bit is sent
from each channel during its assigned time slot.

Byte (or word) multiplexing A TDM technique in which a
byte (or word) is sent from each channel during its assigned time
slot. (A byte is eight bits; a word is a group of bits whose size
varies with the particular system.)

CASE statement A VHDL construct in which there is a
choice of statements to be executed, depending on the value of a
signal or variable.

Clock A signal that controls the operation of a sequential digi-
tal circuit, such as a counter, by advancing its outputs to the next
state when it receives a pulse.

CMOS analog switch A CMOS device that will pass an ana-
log or digital signal in either direction, when enabled. Also
called a transmission gate. There is no TTL equivalent.

Common anode display A seven-segment LED display where
the anodes of all the LEDs are connected to the circuit supply
voltage. Each segment is illuminated by a logic LOW at its
cathode.

Common cathode display A seven-segment display in which
the cathodes of all LEDs are connected together and grounded.
A logic HIGH illuminates a segment when applied to its anode.

Conditional signal assignment statement A concurrent
VHDL construct that assigns a value to a signal, depending on a
sequence of conditions being true or false.

Counter A digital circuit whose output produces a fixed se-
quence of binary states when an input called the clock receives a
series of pulses. The output advances by one for each clock
pulse (e.g., the output state of a 4-bit binary counter progresses
in order from 0000 to 1111, then repeats).

Data inputs The multiplexer inputs that feed a digital signal to
the output when selected.

Decoder A digital circuit designed to detect the presence of a
particular digital state.

Demultiplexer A circuit that uses a binary decoder to direct a
digital signal from a single source to one of several destinations.

Double-subscript notation A naming convention where two or
more numerically related groups of signals are named using two

subscript numerals. Generally, the first digit refers to a group of
signals and the second to an element of a group. (e.g., X03 repre-
sents element 3 of group 0 for a set of signal groups, X.)

Encoder A circuit that generates a digital code at its outputs in
response to one or more active input lines.

Even parity An error-checking system that requires a binary
number to have an even number of 1s.

IF statement A VHDL construct within a process that exe-
cutes a series of statements, if a Boolean test condition is true.

Magnitude comparator A circuit that compares two n-bit bi-
nary numbers, indicates whether or not the numbers are equal,
and, if not, which one is larger.

Multiplexer A circuit that directs one of several digital sig-
nals to a single output, depending on the states of several select
inputs.

Odd parity An error-checking system that requires a binary
number to have an odd number of 1s.

Parity A system that checks for errors in a multi-bit binary
number by counting the number of 1s.

Parity bit A bit appended to a binary number to make the
number of 1s even or odd, depending on the type of parity.

Positive edge The point on a digital waveform where the logic
level of the waveform makes a LOW-to-HIGH transition.

Priority encoder An encoder that generates a binary or BCD
output corresponding to the subscript of the active input having
the highest priority. This is usually defined as the input with the
largest subscript value.

PROCESS A VHDL construct that contains statements that
are executed if there is a change in a signal in its sensitivity list.

Propagation delay Time difference between a change on a
digital circuit input and a change on an output in response to the
input change.

R�B�I� Ripple blanking input.

R�B�O� Ripple blanking output.

Response waveforms A set of output waveforms generated by
a simulator tool for a particular digital design in response to a set
of stimulus waveforms.

Ripple blanking A technique used in a multiple-digit numeri-
cal display that suppresses leading or trailing zeros in the dis-
play, but allows internal zeros to be displayed.

216 C H A P T E R 5 • Combinational Logic Functions

Select inputs The multiplexer inputs which select a digital in-
put channel.

Selected signal assignment statement A concurrent signal as-
signment in VHDL in which a value is assigned to a signal, de-
pending on the alternative values of another signal or variable.

Sensitivity list A list of signals in a PROCESS statement that
are monitored to determine whether the PROCESS should be ex-
ecuted.

Seven-segment display An array of seven independently con-
trolled light-emitting diode (LED) or liquid crystal display
(LCD) elements, shaped like a figure-8, which can be used to
display decimal digits and other characters by turning on the ap-
propriate elements.

Simulation The verification of the logic of a digital design be-
fore programming it into a PLD.

Stimulus waveforms A set of user-defined input waveforms
on a simulator file designed to imitate input conditions of a digi-
tal circuit.

Time division multiplexing (TDM) A technique of using one
transmission line to send many signals simultaneously by mak-
ing them share the line for equal fractions of time.

Time slot A period of time during which a transmitted data el-
ement has sole access to a transmission path.

Timing diagram A diagram showing how two or more digital
waveforms in a system relate to each other over time.

P R O B L E M S

Section 5.1 Decoders

5.1 When a HIGH is on the outputs of each of the decoding
circuits shown in Figure 5.71, what is the binary code ap-
pearing at the inputs? Write the Boolean expression for
each decoder output.

Write the equation giving the general relation between n
and m.

5.6 A microcomputer system has a RAM capacity of 128
megabytes (MB), split into 16 MB portions. Each RAM
device is enabled by a low at a G� input. Draw a logic dia-
gram showing how a binary decoder can select one par-
ticular RAM device.

5.7 Briefly describe the difference between a selected signal
assignment statement and a conditional signal assignment
statement in VHDL. State which one is the preferred
statement in VHDL files and why.

5.8a. Write a VHDL file for a 3-line-to-8-line decoder with ac-
tive-LOW outputs and no enable. Use a selected signal
assignment statement. Assign the device as an EPM
7128SLC84.

b. Write the Boolean equations for the decoder in part a,
as reported in the decoder’s MAX�PLUS II report
file. (Use the form (x� � y� � z��x � y � z) rather than
(!x & !y & !z #x & y & z).)

c. Change the decoder in part a so that its outputs are
active-HIGH. Compile the design and examine the
resulting report file to find the Boolean equations of
the modified design. Write the equations and state

D0

D1

D2

D3

D0

D1

D2

D3

D0

D1

D2

D3

FIGURE 5.71
Problem 5.1
Decoding Circuits

5.2 Draw the decoding circuit for each of the following
Boolean expressions:

a. Y� � D�3D2D�1D0

b. Y� � D�3D�2D1D0

c. Y � D�3D�2D1D0

d. Y� � D3D2D�1D�0

e. Y � D3D2D�1D0

5.3 Use a Graphic Design File in MAX�PLUS II to draw the
logic diagram of a 2-line-to-4-line decoder with active-
HIGH outputs and an active-LOW enable input. Create a
simulation file to show the operation of the circuit.

5.4 Use a Graphic Design File in MAX�PLUS II to draw the
logic diagram of a 3-line-to-8-line decoder with active-
HIGH outputs and an active-LOW enable input. Create a
simulation file to show the operation of the circuit.

5.5 For a generalized n-line-to-m-line decoder, state the value
of m if n is:

a. 5

b. 6

c. 8

Problems 217

how the compiler deals the change in output active
level.

5.9 Create a MAX�PLUS II simulation file for the decoder
in Problem 5.8.

5.10 Write a VHDL file for a 3-line-to-8-line decoder with ac-
tive-LOW outputs and an active-LOW enable input.

5.11 Create a MAX�PLUS II simulation file for the decoder
in Problem 5.10.

5.12 Write a truth table for a hexadecimal-to-seven-segment
decoder for a common anode display. Use the digit pat-
terns of Figure 5.26 as a model.

5.13 Use the truth table derived in Problem 5.12 to derive the
Boolean equations for each segment driver. Simplify the
equations as much as possible, using any convenient
method.

5.14 Write a VHDL file for the hexadecimal-to-seven-segment
decoder described in Problem 5.12.

5.15 Modify the VHDL file for the hexadecimal-to-seven-
segment decoder from Problem 5.14 to add a ripple-
blanking feature.

5.16 Draw a diagram consisting of four seven-segment dis-
plays, each driven by a BCD-to-seven-segment decoder
with ripple blanking. The circuit should be configured to
suppress all leading zeros. Show the displayed digits and
R�B�O�/R�B�I� logic levels for each of the following displayed
values: 100, 217, 1024.

Section 5.2 Encoders

5.17 Figure 5.72 shows a BCD priority encoder with three dif-
ferent sets of inputs. Determine the resulting output code
for each input combination. Inputs and outputs are active
HIGH.

5.18 Derive the Boolean equations for the outputs of a BCD
priority encoder, based on the encoding principle stated in
Section 5.2. Show all work.

5.19 Create a Graphic Design File in MAX�PLUS II for a
BCD priority encoder, based on the equations in Problem
5.18. Also generate a simulation for this function.

5.20 Write a VHDL file that implements the function of a
BCD priority encoder. Create a simulation file for this
function. Write the Boolean equations of the encoder, as
shown in the encoder’s report file. State how the equa-
tions from the report file compare to the equations you
derived in Problem 5.18.

5.21 Write a VHDL file that implements the function of a 4-bit
binary priority encoder. Create a simulation file for this
function.

Section 5.3 Multiplexers

5.22 Make a table listing which digital audio source in Fig-
ure 5.73 is routed to output Y for each combination of

the multiplexer select inputs. (CD � compact disc;
DAT � digital audio tape.)

5.23 Draw symbols for an 8-to-1 and a 16-to-1 multiplexer.
Write the truth table for each multiplexer, showing which
data input is selected for every binary combination of the
select inputs.

5.24 Make a Graphic Design File in MAX�PLUS II for an 8-
to-1 multiplexer circuit. Also create a simulation that
shows the operation of the device.

5.25 Write the Boolean expression describing an 8-to-1 multi-
plexer. Evaluate the equation for the case where input D5

is selected.

5.26 Draw the symbol for a quadruple 8-to-1 multiplexer (i.e.,
a MUX with eight switched groups of 4 bits each). Write
the truth table for this device, showing which data inputs
are selected for every binary combination of the select in-
puts. Use double-subscript notation.

FIGURE 5.72
Problem 5.17
BCD Priority Encoder

218 C H A P T E R 5 • Combinational Logic Functions

5.27 Write a VHDL file for the quadruple 8-to-1 multiplexer in
Problem 5.26. Create a MAX�PLUS II simulation for
the design to verify its operation.

5.28 Draw the symbol for an octal 4-to-1 multiplexer (i.e., a
MUX with four switched groups of 8 bits each). Write the
truth table for this device, showing which data inputs are
selected for every binary combination of the select inputs.
Use double-subscript notation.

5.29 Write a VHDL file for the octal 4-to-1 multiplexer in the
Problem 5.28. Create a MAX�PLUS II simulation for
the design to verify its operation. Write its Boolean equa-
tions from the project report file.

5.30 Write a VHDL file for an 8-to-1 multiplexer using a con-
current signal assignment statement to encode the multi-
plexer’s Boolean equation directly. Would this be a good
method for encoding a larger device, such as a 16-to-1
multiplexer? Explain your answer.

5.31 Write a VHDL file for an 8-to-1 multiplexer using a se-
lected signal assignment statement. Would this be a good
method for encoding a larger device, such as a 16-to-1
multiplexer? Explain your answer.

5.32 Write a VHDL file for a 16-to-1 multiplexer using the
method you believe to be most efficient.

5.33 Draw the circuit of a programmable waveform generator
based on an 8-to-1 multiplexer. Draw a timing diagram of
this circuit for the following input data:

a. D7D6D5D4D3D2D1D0 � 01100101

b. D7D6D5D4D3D2D1D0 � 01010101

5.34 The data pattern in Problem 5.34b generates a symmetrical
12 kHz waveform. Write the data patterns required to pro-
duce a 6 kHz waveform and a 3 kHz waveform at the out-
put of a MUX-based programmable waveform generator.

Section 5.4 Demultiplexers

5.35 Make a Graphic Design File in MAX�PLUS II for a
1-to-4 demultiplexer circuit with active-LOW outputs and
an active-LOW enable input. Create a simulation that
shows how this device can be used as a demultiplexer or
decoder.

5.36 Make a Graphic Design File in MAX�PLUS II for a
1-to-8 demultiplexer circuit with active-HIGH outputs.
Create a simulation that shows the operation of the device.

5.37 Write a VHDL file that implements the function of a 1-to-
16 demultiplexer.

5.38 Briefly state what characteristics of an analog switch
make it suitable for transmitting analog signals.

5.39 Draw a diagram showing how eight analog switches
can be connected to a decoder to form an 8-channel
MUX/DMUX circuit. Briefly explain why the same
circuit can be used as a multiplexer or as a demulti-
plexer.

5.40 Draw a circuit showing how a 74HC4052 dual 4-channel
analog MUX/DMUX can be used to multiplex four trans-
mitted digital audio channels onto a phone line and de-
multiplex four received audio channels from another
phone line.

FIGURE 5.73
Problem 5.22
Digital Audio Multiplexer

Answers to Section Review Problems 219

Section 5.5 Magnitude Comparators

5.41 Briefly explain the operation of the ALTB portion of the
2-bit magnitude comparator shown in Figure 5.58.

5.42 Draw the ALTB portion of a 4-bit magnitude comparator
as a Graphic Design File in MAX�PLUS II. Create a
simulation for the circuit and briefly explain its operation.

5.43 Use MAX�PLUS II to create a 3-bit magnitude com-
parator that has outputs for AEQB, AGTB, and ALTB
functions. Create a simulation that shows the operation of
this circuit.

5.44 Write the Boolean expressions for the AEQB, ALTB, and
AGTB outputs of a 6-bit magnitude comparator.

5.45 Write a VHDL file that implements the functions A � B,
A � B and A � B for two 16-bit numbers.

5.46 Write a VHDL file that implements the following six
comparison functions in a single device for two 4-bit in-
puts A and B: A � B, A 	 B, A � B, A
 B, A � B,
and A � B. Make the outputs indicate active-LOW.

5.47 Create a simulation that verifies the operation of the six-
function comparator in Problem 5.46.

Section 5.6 Parity Generators and Checkers

5.48 What parity bit, P, should be added to the following data
if the parity is EVEN? If the parity is ODD?

a. 1111100

b. 1010110

c. 0001101

5.49 The following data are transmitted in a serial communica-
tion system (P is the parity bit). What parity is being used
in each case?

a. ABCDEFGHP � 010000101

b. ABCDEFGHP � 011000101

c. ABCDP � 01101

d. ABCDEP � 101011

e. ABCDEP � 111011

5.50 The data ABCDEFGHP � 110001100 are transmitted in
a serial communication system. Give the output P� of a
receiver parity checker for the following received data.
State the meaning of the output P� for each case.

a. ABCDEFGHP � 110101100

b. ABCDEFGHP � 110001101

c. ABCDEFGHP � 110001100

d. ABCDEFGHP � 110010100

5.51 Use MAX�PLUS II to create a Graphic Design File for a
5-bit parity generator with a switchable EVEN/ODD out-
put. Create a simulation file to show the operation of the
device.

5.52 Use MAX�PLUS II to create a Graphic Design File for a
5-bit parity checker corresponding to the parity generator
in Problem 5.51. Create a simulation file to show the op-
eration of the device.

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 5.1a
5.1 The decoders are shown in Figure 5.74.

Section 5.2
5.4 The encoder in Figure 5.29 can have only one input active at
any time. If more than one input is active, it may generate incor-
rect output codes. The circuit can be modified according to the
priority encoding principle, as expressed by the Boolean equa-
tions for the 3-bit priority encoder, to ensure that a low-
priority input is not able to modify the code generated by a
higher-priority input.

Section 5.3
5.5 A multiplexer application is time-dependent if its channels
are selected in a repeating sequence. This can be accomplished
by connecting a binary counter to the select inputs of the multi-
plexer.

Section 5.6
5.6 Parts a and c are certainly incorrect because each has an
even number of 1s. Items b, d, and e could have an even number
of errors, which is undetectable by parity checking.

YD2

D1

D0

D3

YD2

D1

D0

D3

FIGURE 5.74
Decoders

Section 5.1b
5.2 A decoder with 16 outputs requires 4 inputs. A decoder with
32 outputs requires 5 inputs.

Section 5.1c
5.3 Trailing zeros could logically be suppressed after a decimal
point or if there are digits displaying a power-of-ten exponent
(e.g., 455. or 4.55 02), that is, if the zeros are nonsignificant. The
zeros should be displayed if they set the location of the decimal
point (e.g., 450).

221

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 6

Digital Arithmetic and
Arithmetic Circuits

O U T L I N E

6.1 Digital Arithmetic

6.2 Representing
Signed Binary
Numbers

6.3 Signed Binary
Arithmetic

6.4 Hexadecimal
Arithmetic

6.5 Numeric and
Alphanumeric
Codes

6.6 Binary Adders and
Subtractors

6.7 BCD Adders

6.8 Carry Generation in
MAX � PLUS II

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Add or subtract two unsigned binary numbers.

• Write a signed binary number in true-magnitude, 1’s complement, or 2’s
complement form.

• Add or subtract two signed binary numbers.

• Explain the concept of overflow.

• Calculate the maximum sum or difference of two signed binary numbers
that will not result in an overflow.

• Add or subtract two hexadecimal numbers.

• Write decimal numbers in BCD codes, such as 8421 (Natural BCD) and
Excess-3 code.

• Construct a Gray code sequence.

• Use the ASCII table to convert alphanumeric characters to hexadecimal or
binary numbers and vice versa.

• Derive the logic gate circuits for full and half adders, given their truth tables.

• Demonstrate the use of full and half adder circuits in arithmetic and other
applications.

• Add and subtract n-bit binary numbers, using parallel binary adders and
logic gates.

• Explain the difference between ripple carry and parallel carry.

• Design a circuit to detect sign-bit overflow in a parallel adder.

• Draw circuits to perform BCD arithmetic and explain their operation.

• Use VHDL to program CPLD devices to perform various arithmetic func-
tions, such as parallel adders, overflow detectors, and 1’s complementers.

There are two ways of performing binary arithmetic: with unsigned binary numbers or
with signed binary numbers. Signed binary numbers incorporate a bit defining the sign

of a number; unsigned binary numbers do not. Several ways of writing signed binary num-
bers are true-magnitude form, which maintains the magnitude of the number in binary
value, and 1’s complement and 2’s complement forms, which modify the magnitude but
are more suited to digital circuitry.

222 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

Hexadecimal arithmetic is used for calculations that would be awkward in binary due
to the large number of bits involved. Important applications of hexadecimal arithmetic are
found in microcomputer systems.

In addition to positional number systems, binary numbers can be used in a variety of
nonpositional number codes, which can represent numbers, letters, and computer control
codes. Binary coded decimal (BCD) codes represent decimal digits as individually en-
coded groups of bits. Gray code is a binary code used in special applications. American
Standard Code for Information Interchange (ASCII) represents alphanumeric and control
code characters in a 7- or 8-bit format.

There are a number of different digital circuits for performing digital arithmetic, most
of which are based on the parallel binary adder, which in turn is based on the full adder and
half adder circuits. The half adder adds two bits and produces a sum and a carry. The full
adder also allows for an input carry from a previous adder stage. Parallel adders have many
full adders in cascade, with carry bits connected between the stages.

Specialized adder circuits are used for adding and subtracting binary numbers, gener-
ating logic functions, and adding numbers in binary-coded decimal (BCD) form. �

6.1 Digital Arithmetic

Signed binary number A binary number of fixed length whose sign is repre-
sented by one bit, usually the most significant bit, and whose magnitude is repre-
sented by the remaining bits.

Unsigned binary number A binary number whose sign is not specified by a sign
bit. A positive sign is assumed unless explicitly stated otherwise.

Digital arithmetic usually means binary arithmetic, or perhaps BCD arithmetic. Binary
arithmetic can be performed using signed binary numbers, in which the MSB of each
number indicates a positive or negative sign, or unsigned binary numbers, in which the
sign is presumed to be positive.

The usual arithmetic operations of addition and subtraction can be performed using
signed or unsigned binary numbers. Signed binary arithmetic is often used in digital cir-
cuits for two reasons:

1. Calculations involving real-world quantities require us to use both positive and negative
numbers.

2. It is easier to build circuits to perform some arithmetic operations, such as subtraction,
with certain types of signed numbers than with unsigned numbers.

Unsigned Binary Arithmetic

Operand A number upon which an arithmetic function operates (e.g., in the ex-
pression x � y � z, x and y are the operands).

Augend The number in an addition operation to which another number is added.

Addend The number in an addition operation that is added to another.

Sum The result of an addition operation.

Carry A digit that is “carried over” to the next most significant position when the
sum of two single digits is too large to be expressed as a single digit.

K E Y T E R M S

K E Y T E R M S

6.1 • Digital Arithmetic 223

Sum bit (single-bit addition) The least significant bit of the sum of two 1-bit bi-
nary numbers.

Carry bit A bit that holds the value of a carry (0 or 1) resulting from the sum of
two binary numbers.

Addition

When we add two numbers, they combine to yield a result called the sum. If the sum is
larger than can be contained in one digit, the operation generates a second digit, called the
carry. The two numbers being added are called the augend and the addend, or more gen-
erally, the operands.

For example, in the decimal addition 9 � 6 � 15, 9 is the augend, 6 is the addend, and
15 is the sum. Since the sum cannot fit into a single digit, a carry is generated into a second
digit place.

Four binary sums give us all of the possibilities for adding two n-bit binary numbers:

0 � 0 � 00

1 � 0 � 01

1 � 1 � 10 (110 � 110 � 210)

1 � 1 � 1 � 11 (110 � 110 � 110 � 310)

Each of these results consists of a sum bit and a carry bit. For the first two results
above, the carry bit is 0. The final sum in the table is the result of adding a carry bit from a
sum in a less significant position.

When we add two 1-bit binary numbers in a logic circuit, the result always consists of
a sum bit and a carry bit, even when the carry is 0, since each bit corresponds to a measur-
able voltage at a specific circuit location. Just because the value of the carry is 0 does not
mean it has ceased to exist.

❘❙❚ EXAMPLE 6.1 Calculate the sum 10010 � 1010.

SOLUTION

(Carry from sum of 2nd LSBs)

1
10010

� 1010
11100

❘❙❚ EXAMPLE 6.2 Calculate the sum 10111 � 10010.

SOLUTION

(Carry bits)

1 11
10111

� 10010
101001

❘❙❚

❘❙❚ SECTION 6.1A REVIEW PROBLEMS

6.1 Add 11111 � 1001.

6.2 Add 10011 � 1101.

224 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

Subtraction

Difference The result of a subtraction operation.

Minuend The number in a subtraction operation from which another number is
subtracted.

Subtrahend The number in a subtraction operation that is subtracted from an-
other number.

Borrow A digit brought back from a more significant position when the subtra-
hend digit is larger than the minuend digit.

In unsigned binary subtraction, two operands, called the subtrahend and the minuend, are
subtracted to yield a result called the difference. In the operation x � a � b, x is the dif-
ference, a is the minuend, and b is the subtrahend. To remember which comes first, think of
the minuend as the number that is diminished (i.e., something is taken away from it).

Unsigned binary subtraction is based on the following four operations:

0 � 0 � 0

1 � 0 � 1

1 � 1 � 0

10 � 1 � 1 (210 � 110 � 110)

The last operation shows how to obtain a positive result when subtracting a 1 from a 0:
borrow 1 from the next most significant bit.

Borrowing Rules:

1. If you are borrowing from a position that contains a 1, leave behind a 0 in the borrowed-
from position.

2. If you are borrowing from a position that already contains a 0, you must borrow from a
more significant digit that contains a 1. All 0s up to that point become 1s, and the last
borrowed-from digit becomes a 0.

❘❙❚ EXAMPLE 6.3 Subtract 1110 � 1001.

SOLUTION

(New 2nd LSB) (Bit borrowed from 2nd LSB)

01
1110

� 1001
0101

❘❙❚ EXAMPLE 6.4 Subtract 10000 � 101.

SOLUTION

1111
10000 (original 10000 (After borrowing

� 101 problem) � 101 from higher-order bits)

1011
❘❙❚

K E Y T E R M S

6.2 • Representing Signed Binary Numbers 225

❘❙❚ SECTION 6.1B REVIEW PROBLEMS

6.3 Subtract 10101 � 10010.

6.4 Subtract 10000 � 1111.

6.2 Representing Signed Binary Numbers

Sign bit A bit, usually the MSB, that indicates whether a signed binary number is
positive or negative.

Magnitude bits The bits of a signed binary number that tell us how large the
number is (i.e., its magnitude).

True-magnitude form A form of signed binary number whose magnitude is rep-
resented in true binary.

1’s complement A form of signed binary notation in which negative numbers are
created by complementing all bits of a number, including the sign bit.

2’s complement A form of signed binary notation in which negative numbers are
created by adding 1 to the 1’s complement form of the number.

Positive numbers are the same in all three notations.

Binary arithmetic operations are performed by digital circuits that are designed for a fixed
number of bits, since each bit has a physical location within a circuit. It is useful to have a
way of representing binary numbers within this framework that accounts not only for the
magnitude of the number, but for the sign as well.

This can be accomplished by designating one bit of a binary number, usually the most
significant bit, as the sign bit and the rest as magnitude bits. When the number is negative,
the sign bit is 1, and when the number is positive, the sign bit is 0.

There are several ways of writing the magnitude bits, each having its particular advan-
tages. True-magnitude form represents the magnitude in straight binary form, which is
relatively easy for a human operator to read. Complement forms, such as 1’s comple-
ment and 2’s complement, modify the magnitude so that it is more suited to digital cir-
cuitry.

True-Magnitude Form

In true-magnitude form, the magnitude of a number is translated into its true binary value.
The sign is represented by the MSB, 0 for positive and 1 for negative.

❘❙❚ EXAMPLE 6.5 Write the following numbers in 6-bit true-magnitude form:

a. 2510 b. �2510 c. 1210 d. �1210

SOLUTION Translate the magnitudes of each number into 5-bit binary, padding with
leading zeros as required, and set the sign bit to 0 for a positive number and 1 for a nega-
tive number.

a. 011001 b. 111001 c. 001100 d. 101100
❘❙❚

N O T E

K E Y T E R M S

226 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

1’s Complement Form

True-magnitude and 1’s complement forms of binary numbers are the same for positive
numbers—the magnitude is represented by the true binary value and the sign bit is 0. We
can generate a negative number in one of two ways:

1. Write the positive number of the same magnitude as the desired negative number. Com-
plement each bit, including the sign bit; or

2. Subtract the n-bit positive number from a binary number consisting of n 1s.

❘❙❚ EXAMPLE 6.6 Convert the following numbers to 8-bit 1’s complement form:

a. 5710 b. �5710 c. 7210 d. �7210

SOLUTION Positive numbers are the same as numbers in true-magnitude form. Nega-
tive numbers are the bitwise complements of the corresponding positive number.

a. 5710 � 00111001

b. �5710 � 11000110

c. 7210 � 01001000

d. �7210 � 10110111

We can also generate an 8-bit 1’s complement negative number by subtracting its pos-
itive magnitude from 11111111 (eight 1s). For example, for part b:

11111111
�00111001 (5710)

11000110 (�5710)
❘❙❚

2’s Complement Form

Positive numbers in 2’s complement form are the same as in true-magnitude and 1’s com-
plement forms. We create a negative number by adding 1 to the 1’s complement form of the
number.

❘❙❚ EXAMPLE 6.7 Convert the following numbers to 8-bit 2’s complement form:

a. 5710 b. �5710 c. 7210 d. �7210

SOLUTION

a. 57 � 00111001

b. �57 � 11000110 (1’s complement)
1

11000111 (2’s complement)

c. 72 � 01001000

d. �72 � 10110111 (1’s complement)
1

10111000 (2’s complement)
❘❙❚

A negative number in 2’s complement form can be made positive by 2’s complement-
ing it again. Try it with the negative numbers in Example 6.7.

6.3 • Signed Binary Arithmetic 227

6.3 Signed Binary Arithmetic

Signed binary arithmetic Arithmetic operations performed using signed binary
numbers.

Signed Addition

Signed addition is done in the same way as unsigned addition. The only difference is that
both operands must have the same number of magnitude bits, and each has a sign bit.

❘❙❚ EXAMPLE 6.8 Add �3010 and �7510. Write the operands and the sum as 8-bit signed binary numbers.

SOLUTION

�30 00011110
�75 �01001011

�105 01101001
(Magnitude bits)
(Sign bit)

❘❙❚

Subtraction

The real advantage of complement notation becomes evident when we subtract signed bi-
nary numbers. In complement notation, we add a negative number instead of subtracting a
positive number. We thus have only one kind of operation—addition—and can use the
same circuitry for both addition and subtraction.

This idea does not work for true-magnitude numbers. In the complement forms, the
magnitude bits change depending on the sign of the number. In true-magnitude form, the
magnitude bits are the same regardless of the sign of the number.

Let us subtract 8010 � 6510 � 1510 using 1’s complement and 2’s complement addi-
tion. We will also show that the method of adding a negative number to perform subtrac-
tion is not valid for true-magnitude signed numbers.

1’s Complement Method

End-around carry An operation in 1’s complement subtraction where the carry
bit resulting from a sum of two 1’s complement numbers is added to that sum.

Add the 1’s complement values of 80 and �65. If the sum results in a carry beyond the sign
bit, perform an end-around carry. That is, add the carry to the sum.

8010 � 01010000

6510 � 01000001
�6510 � 10111110 (1’s complement)

80 01010000
�65 � 10111110

1 00001110
1 (End-around carry)

�15 00001111

K E Y T E R M

K E Y T E R M

→

228 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

2’s Complement Method

Add the 2’s complement values of 80 and �65. If the sum results in a carry beyond the sign
bit, discard it.

8010 � 01010000

6510 � 01000001
�6510 � 10111110 (1’s complement)

� 1
10111111 (2’s complement)

80 01010000
�65 � 10111111
�15 1 00001111

(Discard carry)

True-Magnitude Method

8010 � 01010000

6510 � 01000001
�6510 � 11000001

80 01010000
�65 � 11000001

? 1 00010001

If we perform an end-around carry, the result is 00010010 � 1810. If we discard the
carry, the result is 00010001 � 1710. Neither answer is correct. Thus, adding a negative
true-magnitude number is not equivalent to subtraction.

Negative Sum or Difference

All examples to this point have given positive-valued results. When a 2’s complement ad-
dition or subtraction yields a negative sum or difference, we can’t just read the magnitude
from the result, since a 2’s complement operation modifies the bits of a negative number.
We must calculate the 2’s complement of the sum or difference, which will give us the pos-
itive number that has the same magnitude. That is, �(�x) � �x.

❘❙❚ EXAMPLE 6.9 Subtract 6510 � 8010 in 2’s complement form.

SOLUTION

6510 � 01000001

8010 � 01010000
�8010 � 10101111 (1’s complement)

� 1
10110000 (2’s complement)

65 01000001
�80 � 10110000

11110001

Take the 2’s complement of the difference to find the positive number with the same
magnitude.

11110001 (�15)
00001110 (1’s complement)

� 1
00001111 (2’s complement) (�15)

←

6.3 • Signed Binary Arithmetic 229

00001111 � �1510. We generated this number by complementing 11110001. Thus,
11110001 � �1510. ❘❙❚

Range of Signed Numbers

The largest positive number in 2’s complement notation is a 0 followed by n 1s for a num-
ber with n magnitude bits. For instance, the largest positive 4-bit number is 0111 � �710.
The negative number with the largest magnitude is not the 2’s complement of the largest
positive number. We can find the largest negative number by extension of a sequence of 2’s
complement numbers.

The 2’s complement form of �710 is 1000 � 1 � 1001. The positive and negative
numbers with the next largest magnitudes are 0110 (� �610) and 1010 (� �610). If we
continue this process, we will get the list of numbers in Table 6.1.

We have generated the 4-bit negative numbers from �110 (1111) through �710 (1001)
by writing the 2’s complement forms of the positive numbers 1 through 7. Notice that these
numbers count down in binary sequence. The next 4-bit number in the sequence (which is
the only binary number we have left) is 1000. By extension, 1000 � �810. This number is
its own 2’s complement. (Try it.) It exemplifies a general rule for the n-bit negative number
with the largest magnitude.

A 2’s complement number consisting of a 1 followed by n 0s is equal to �2n.
Therefore, the range of a signed number, x, is �2n � x � 2n � 1 for a number with
n magnitude bits.

❘❙❚ EXAMPLE 6.10 Write the largest positive and negative numbers for an 8-bit signed number in decimal and
2’s complement notation.

SOLUTION

01111111 � �127 (7 magnitude bits: 27 � 1 � 127)

10000000 � �128 (1 followed by seven 0s: �27 � �128)

❘❙❚ EXAMPLE 6.11 Write �1610

a. As an 8-bit 2’s complement number

b. As a 5-bit 2’s complement number

(8-bit numbers are more common than 5-bit numbers in digital systems, but it is use-
ful to see how we must write the same number differently with different numbers of bits.)

SOLUTION

a. An 8-bit number has 7 magnitude bits and 1 sign bit.

�16 � 00010000

�16 � 11101111 (1’s complement)
� 1

11110000 (2’s complement)

b. A 5-bit number has 4 magnitude bits and 1 sign bit. Four magnitude bits are not enough
to represent 16. However, a 1 followed by n 0s is equal to �2n. For a 1 and four 0s, �2n

� �24 � �16. Thus, 10000 � �1610.
❘❙❚

N O T E

Table 6.1 4-bit 2’s
Complement Numbers

Decimal 2’s Complement

�7 0111
�6 0110
�5 0101
�4 0100
�3 0011
�2 0010
�1 0001

0 0000
�1 1111
�2 1110
�3 1101
�4 1100
�5 1011
�6 1010
�7 1001
�8 1000

230 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The last five bits of the binary equivalent of �16 are the same in both the 5-bit and 8-bit
numbers.

The 8-bit number is padded with leading 1s. This same general pattern applies for
any negative number with a power-of-2 magnitude. (�2n � n 0s preceded by all 1s
within the defined number size.)

❘❙❚ SECTION 6.3 REVIEW PROBLEM

6.5 Write �32 as an 8-bit 2’s complement number.

6.6 Write �32 as a 6-bit 2’s complement number.

Sign Bit Overflow

Overflow An erroneous carry into the sign bit of a signed binary number that re-
sults from a sum or difference larger than can be represented by the number of
magnitude bits.

Signed addition of positive numbers is performed in the same way as unsigned addition.
The only problem occurs when the number of bits in the sum of two numbers exceeds the
number of magnitude bits and overflows into the sign bit. This causes the number to ap-
pear to be negative when it is not. For example, the sum 75 � 96 � 171 causes an overflow
in 8-bit signed addition. In unsigned addition the binary equivalent is:

1001011
� 1100000

10101011

In signed addition, the sum is the same, but has a different meaning.

0 1001011
� 0 1100000

1 0101011
(Sign bit) (Magnitude bits)

The sign bit is 1, indicating a negative number, which cannot be true, since the sum of
two positive numbers is always positive.

A sum of positive signed binary numbers must not exceed 2n � 1 for numbers hav-
ing n magnitude bits. Otherwise, there will be an overflow into the sign bit.

Overflow in Negative Sums

Overflow can also occur with large negative numbers. For example, the addition of �8010

and �6510 should produce the result:

�8010 � (�6510) � �14510

N O T E

K E Y T E R M

N O T E

6.3 • Signed Binary Arithmetic 231

In 2’s complement notation, we get:

�8010 � 01010000
�8010 � 10101111 (1’s complement)

� 1
10110000 (2’s complement)

�6510 � 01000001
�6510 � 10111110 (1’s complement)

� 1
10111111 (2’s complement)

�80 10110000
� (�65)8 � 10111111

? 1 01101111
(Incorrect magnitude � 11110)
(Erroneous sign bit � 0)
(Discard carry)

This result shows a positive sum of two negative numbers—clearly incorrect. We can
extend the statement we made earlier about permissible magnitudes of sums to include
negative as well as positive numbers.

A sum of signed binary numbers must be within the range of �2n � sum � 2n �1
for numbers having n magnitude bits. Otherwise, there will be an overflow into the
sign bit.

For an 8-bit signed number in 2’s complement form, the permissible range of sums is
10000000 � sum � 01111111. In decimal, this range is �128 � sum � �127.

A sum of two positive numbers is always positive. A sum of two negative numbers
is always negative. Any 2’s complement addition or subtraction operation that ap-
pears to contradict these rules has produced an overflow into the sign bit.

❘❙❚ EXAMPLE 6.12 Which of the following sums will produce a sign bit overflow in 8-bit 2’s complement no-
tation? How can you tell?

a. 6710 � 3310

b. 6710 � 6310

c. �9610 � 2210

d. �9610 � 4210

SOLUTION A sign bit overflow is generated if the sum of two positive numbers appears
to produce a negative result or the sum of two negative numbers appears to produce a pos-
itive result. In other words, overflow occurs if the operand sign bits are both 1 and the sum
sign bit is 0 or vice versa. We know this will happen if an 8-bit sum is outside the range
(�128 � sum � �127).

a. �6710 01000011 (no overflow;
�3310 00100001 sum of positive numbers
10010 01100100 is positive.)

N O T E

N O T E

232 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

b. �6710 01000011 (Overflow; sum of
�6310 00111111 positive numbers is negative.
13010 10000010 Sum � �127; out of range.)

c. �96 � 01100000
�96 � 10011111 (1’s complement)

� 1
10100000 (2’s complement)

�22 � 00010110
�22 11101001 (1’s complement)

� 1
11101010 (2’s complement)

�96 10100000
�22 11101010

�118 1 10001010
(Magnitude bits)
(Sign bit)
(Discard carry)

(No overflow; sum of two negative numbers is negative.)

d. �96 � 01100000
�96 � 10011111 (1’s complement)

� 1
10100000 (2’s complement)

�42 � 00101010
�42 11010101 (1’s complement)

� 1
11010110 (2’s complement)

�96 10100000
�42 11010110

�138 1 01110110
(Magnitude bits)
(Sign bit)
(Discard carry)

(Overflow; sum of two negative numbers is positive. Sum � �128; out of range.)
❘❙❚

The carry bit generated in 1’s and 2’s complement operations is not the same as an
overflow bit. (See Example 6.12, parts c and d.) An overflow is a change in the sign
bit, which leads us to believe that the number is opposite in sign from its true value.
A carry is the result of an operation carrying beyond the physical limits of an n-bit
number. It is similar to the idea of an odometer rolling over from 999999.9 to
1 000000.0. There are not enough places to hold the new number, so it goes back to
the beginning and starts over.

6.4 Hexadecimal Arithmetic
(This section may be omitted without loss of continuity.)
The main reason to be familiar with addition and subtraction in the hexadecimal system
is that it is useful for calculations related to microcomputer and memory systems.

N O T E

6.4 • Hexadecimal Arithmetic 233

Microcomputer systems often use binary numbers of 8, 16, 20, or 32 bits. Rather than write
out all these bits, we use hex numbers as shorthand. Binary numbers having 8, 16, 20, or 32
bits can be represented by 2, 4, 5, or 8 hex digits, respectively.

Hex Addition

Hex addition is very much like decimal addition, except that we must remember how to
deal with the hex digits A to F. A few sums are helpful:

F � 1 � 10

F � F � 1E

F � F � 1 � 1F

The positional multipliers for the hexadecimal system are powers of 16. Thus, the
most significant bit of the first sum is the 16’s column. The equivalent sum in decimal is:

1510 � 110 � 1610 � 10H

The second sum is the largest possible sum of two hex digits; the carry to the next po-
sition is 1. This shows that the sum of two hex digits will never produce a carry larger than
1. The second sum can be calculated as follows:

FH � FH � 1510 � 1510

� 3010

� 1610 � 1410

� 10H � EH

� 1EH

The third sum shows that if there is a carry from a previous sum, the carry to the next
bit will still be 1.

It is useful to think of any digits larger than 9 as their decimal equivalents. For any
digit greater than 1510 (FH), subtract 1610, convert the difference to its hex equiva-
lent, and carry 1 to the next digit position.

❘❙❚ EXAMPLE 6.13 Add 6B3H � A9CH.

SOLUTION

Hex Decimal Equivalents

6B3 (6) (11) (3)
�A9C � (10) (9) (12)

(16) (20) (15)

For sums greater than 15, subtract 16 and carry 1 to the next position:

Hex Decimal Equivalents

(Carry) ����������� 11 (1) (1)
6B3 (6) (11) (3)

� A9C � (10) (9) (12)
114F (1) (1) (4) (15)

Sum: 6B3H � A9CH � 114FH. ❘❙❚

N O T E

234 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

Hex Subtraction

There are two ways to subtract hex numbers. The first reverses the addition process in the
previous section. The second is a complement form of subtraction.

❘❙❚ EXAMPLE 6.14 Subtract 6B3H � 49CH.

SOLUTION

Hex Decimal Equivalent
6B3 (6) (11) (3)

� 49C � (4) (9) (12)

To subtract the least significant digits, we must borrow 10H (1610) from the previous
position. This leaves the subtraction looking like this:

Hex Decimal Equivalent
(Borrow)�������������� 1

6A3 (6) (10) (16 � 3)
� 49C � (4) (9) (12)

217 (2) (1) (7) ❘❙❚

The second subtraction method is a complement method, where, as in 2’s complement
subtractions, we add a negative number to subtract a positive number.

Calculate the 15’s complement of a hex number by subtracting it from a number hav-
ing the same number of digits, all Fs. Calculate the 16’s complement by adding 1 to this
number. This is the negated value of the number.

❘❙❚ EXAMPLE 6.15 Negate the hex number 15AC by calculating its 16’s complement.

SOLUTION

FFFF
� 15AC

EA53 (15’s complement)
� 1

EA54 (16’s complement)

The original value, 15AC, can be restored by calculating the 16’s complement of
EA54. Try it.

❘❙❚ EXAMPLE 6.16 Subtract 8B63 � 55D7 using the complement method.

SOLUTION Find the 16’s complement of 55D7.

FFFF
� 55D7

AA28 (15’s complement)
� 1

AA29 (16’s complement)

6.5 • Numeric and Alphanumeric Codes 235

Therefore, �55D7 � AA29.

1
8B63

� AA29
1 358C

(Discard
carry)

Difference: 8B63 � 55D7 � 358C. ❘❙❚

❘❙❚ SECTION 6.4 REVIEW PROBLEM

6.7 Perform the following hexadecimal calculations:

a. A25F � 74A2

b. 7380 � 5FFF

6.5 Numeric and Alphanumeric Codes

BCD Codes

Binary-coded decimal (BCD). A code that represents each digit of a decimal
number by a binary value.

BCD stands for binary-coded decimal. As the name implies, BCD is a system of writing
decimal numbers with binary digits. There is more than one way to do this, as BCD is a
code, not a positional number system. That is, the various positions of the bits do not nec-
essarily represent increasing powers of a specified number base.

Two commonly used BCD codes are 8421 code, where the bits for each decimal digit
are weighted, and Excess-3 code, where each decimal digit is represented by a binary num-
ber that is 3 larger than the true binary value of the digit.

8421 Code

8421 code A BCD code that represents each digit of a decimal number by its 4-
bittrue binary value.

The most straightforward BCD code is the 8421 code, also called Natural BCD. Each dec-
imal digit is represented by its 4-bit true binary value. When we talk about BCD code, this
is usually what we mean.

This code is called 8421 because these are the positional weights of each digit. Table
6.2 shows the decimal digits and their BCD equivalents.

8421 BCD is not a positional number system, because each decimal digit is encoded
separately as a 4-bit number.

❘❙❚ EXAMPLE 6.17 Write 498710 in both binary and 8421 BCD.

SOLUTION The binary value of 498710 can be calculated by repeated division by 2:

498710 � 1 0011 0111 10112

K E Y T E R M

K E Y T E R M

Table 6.2 Decimal Digits and
Their 8421 BCD Equivalents

Decimal BCD
Digit (8421)

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

236 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The BCD digits are the binary values of each decimal digit, encoded separately. We
can break bits into groups of 4 for easier reading. Note that the first and last BCD digits
each have a leading zero to make them 4 bits long.

498710 � 0100 1001 1000 0111BCD
❘❙❚

Excess-3 Code

Excess-3 Code A BCD code that represents each digit of a decimal number by a
binary number derived by adding 3 to its 4-bit true binary value.

9’s complement A way of writing decimal numbers where a number is made
negative by subtracting each of its digits from 9 (e.g., �726 � 999 � 726 � 273 in
9’s complement).

Self-complementing A code that automatically generates a negative equivalent
(e.g., 9’s complement for a decimal code) when all its bits are inverted.

Excess-3 code is a type of BCD code that is generated by adding 112 (310) to the
8421 BCD codes. Table 6.3 shows the Excess-3 codes and their 8421 and decimal
equivalents.

The advantage of this code is that it is self-complementing. If the bits of the Excess-3
digit are inverted, they yield the 9’s complement of the decimal equivalent.

We can generate the 9’s complement of an n-digit number by subtracting it from a
number made up of n 9s. Thus, the 9’s complement of 632 is 999 � 632 � 367.

The Excess-3 equivalent of 632 is 1001 0110 0101. If we invert all the bits, we get
0110 1001 1010. The decimal equivalent of this Excess-3 number is 367, the 9’s comple-
ment of 632.

This property is useful for performing decimal arithmetic digitally.

Gray Code

Gray code A binary code that progresses such that only one bit changes between
two successive codes.

Table 6.4 shows a 4-bit Gray code compared to decimal and binary values. Any two adja-
cent Gray codes differ by exactly one bit.

Gray code can be extended indefinitely if you understand the relationship between
the binary and Gray digits. Let us name the binary digits b3b2b1b0, with b3 as the
most significant bit, and the Gray code digits g3g2g1g0 for a 4-bit code. For a 4-bit
code:

g3 � b3

g2 � b3 � b2

g1 � b2 � b1

g0 � b1 � b0

For an n-bit code, the MSBs are the same in Gray and binary (gn � bn). The other
Gray digits are generated by the Exclusive OR function of the binary digits in the same
position and the next most significant position.

K E Y T E R M

K E Y T E R M S

Table 6.3 Decimal Digits and
Their 8421 and Excess-3
Equivalents

Decimal
Digit 8421 Excess-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Table 6.4 4-Bit Gray Code

True Gray
Decimal Binary Code

0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

6.5 • Numeric and Alphanumeric Codes 237

Another way to generate a Gray code sequence is to recognize the inherent symmetry
in the code. For example, a 2-bit Gray code sequence is given by:

00
01
11
10

To generate a 3-bit Gray code, write the 2-bit sequence, then write it again in reverse
order.

00
01
11
10
10
11
01
00

Add an MSB of 0 to the first four codes and an MSB of 1 to the last four codes. The
sequence followed by the last two bits of all codes is symmetrical about the center of the
sequence.

000
001
011
010
110
111
101
100

We can apply a similar process to generate a 4-bit Gray code. Write the 3-bit sequence,
then again in reverse order. Add an MSB of 0 to the first half of the table and an MSB of 1
to the second half. This procedure yields the code in Table 6.4.

ASCII Code

Alphanumeric code A code used to represent letters of the alphabet and numeri-
cal characters.

ASCII American Standard Code for Information Interchange. A 7-bit code for
representing alphanumeric and control characters.

Case shift Changing letters from capitals (uppercase) to small letters (lowercase)
or vice versa.

Digital systems and computers could operate perfectly well using only binary numbers.
However, if there is any need for a human operator to understand the input and output data
of a digital system, it is necessary to have a system of communication that is understand-
able to both a human operator and the digital circuit.

A code that represents letters (alphabetic characters) and numbers (numeric charac-
ters) as binary numbers is called an alphanumeric code. The most commonly used al-
phanumeric code is ASCII (“askey”), which stands for American Standard Code for Infor-
mation Interchange. ASCII code represents letters, numbers, and other “typewriter
characters” in 7 bits. In addition, ASCII has a repertoire of “control characters,” codes that

K E Y T E R M S

238 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

are used to send control instructions to and from devices such as video display terminals,
printers, and modems.

Table 6.5 shows the ASCII code in both binary and hexadecimal forms. The code for
any character consists of the bits in the column heading, then those in the row heading. For
example, the ASCII code for “A” is 10000012 or 41H. The code for “a” is 11000012 or
61H. The codes for capital (uppercase) and lower case letters differ only by the second
most significant bit, for all letters. Thus, we can make an alphabetic case shift, like using
the Shift key on a typewriter or computer keyboard, by switching just one bit.

Numeric characters are listed in column 3, with the least significant digit of the ASCII
code being the same as the represented number value. For example, the numeric character
“0” is equivalent to 30H in ASCII. The character “9” is represented as 39H.

The codes in columns 0 and 1 are control characters. They cannot be displayed on any
kind of output device, such as a printer or video monitor, although they may be used to
control the device. For instance, if the codes 0AH (Line Feed) and ODH (Carriage Return)

Table 6.5 ASCII Code

MSBs

000 001 010 011 100 101 110 111
(0) (1) (2) (3) (4) (5) (6) (7)

LSBs

0000 (0) NUL DLE SP 0 @ P ’ p
0001 (1) SOH DC1 ! 1 A Q a q
0010 (2) STX DC2 ″ 2 B R b r
0011 (3) ETX DC3 # 3 C S c s
0100 (4) EOT DC4 $ 4 D T d t
0101 (5) ENQ NAK % 5 E U e u
0110 (6) ACK SYN & 6 F V f v
0111 (7) BEL ETB ′ 7 G W g w
1000 (8) BS CAN (8 H X h x
1001 (9) HT EM) 9 I Y i y
1010 (A) LF SUB * : J Z j z
1011 (B) VT ESC � ; K [k {
1100 (C) FF FS , � L \ l |
1101 (D) CR GS - = M] m }
1110 (E) SO RS . � N ^ n �
1111 (F) SI US / ? O — o DEL

Control Characters:
NUL–NUll DLE–Data Link Escape
SOH–Start of Header DC1–Device Control 1
STX–Start Text DC2–Device Control 2
ETX–End Text DC3–Device Control 3
EOT–End of Transmission DC4–Device Control 4
ENQ–Enquiry NAK–No Acknowledgment
ACK–Acknowledge SYN–Synchronous Idle
BEL–Bell ETB–End of Transmission Block
BS–Backspace CAN–Cancel
HT–Horizontal Tabulation EM–End of Medium
LF–Line Feed SUB–Substitute
VT–Vertical Tabulation ESC–Escape
FF–Form Feed FS–Form Separator
CR–Carriage Return GS–Group Separator
SO–Shift Out RS–Record Separator
SI–Shift In US–Unit Separator
SP–Space DEL–Delete

6.6 • Binary Adders and Subtractors 239

are sent to a printer, the paper will advance by one line and the print head will return to the
beginning of the line.

The displayable characters begin at 20H (“space”) and continue to 7EH (“tilde”).
Spaces are considered ASCII characters.

❘❙❚ EXAMPLE 6.17 Encode the following string of characters into ASCII (hexadecimal form). Do not include
quotation marks.

“Total system cost: $4,000,000. @ 10%”

SOLUTION Each character, including spaces, is represented by two hex digits as follows:

54 6F 74 61 6C 20 73 79 73 74 65 6D 20 63 6F 73 74 3A 20

T o t a 1 SP s y s t e m SP c o s t : SP

24 34 2C 30 30 30 2C 30 30 30 2E 20 40 20 31 30 25

$ 4 , 0 0 0 , 0 0 0 . SP @ SP 1 0 %
❘❙❚

❘❙❚ SECTION 6.5 REVIEW PROBLEM

6.8 Decode the following sequence of hexadecimal ASCII codes.

54 72 75 65 20 6F 72 20 46 61 6C 73 65 3A 20 31
2F 34 20 3C 20 31 2F 32

6.6 Binary Adders and Subtractors

Half and Full Adders

Half adder A circuit that will add two bits and produce a sum bit and a carry bit.

Full adder A circuit that will add a carry bit from another full or half adder and
two operand bits to produce a sum bit and a carry bit.

There are only three possible sums of two 1-bit binary numbers:

0 � 0 � 00

0 � 1 � 01

1 � 1 � 10

We can build a simple combinational logic circuit to produce the above sums. Let us
designate the bits on the left side of the above equalities as inputs to the circuit and the bits
on the right side as outputs. Let us call the LSB of the output the sum bit, symbolized by �,
and the MSB of the output the carry bit, designated COUT.

Figure 6.1 shows the logic symbol of the circuit, which is called a half adder. Its truth
table is given in Table 6.6. Since addition is subject to the commutative property, (A � B �
B � A), the second and third lines of the truth table are the same.

The Boolean functions of the two outputs, derived from the truth table, are:

COUT � AB

� � A�B � AB� � A � B

N O T E

K E Y T E R M S

FIGURE 6.1
Half Adder

Table 6.6 Half Adder Truth
Table

A B COUT �

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

240 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The corresponding logic circuit is shown in Figure 6.2.
The half adder circuit cannot account for an input carry, that is, a carry from a lower-

order 1-bit addition. A full adder, shown in Figure 6.3, can add two 1-bit numbers and ac-
cept a carry bit from a previous adder stage. Operation of the full adder is based on the fol-
lowing sums:

0 � 0 � 0 � 00

0 � 0 � 1 � 01

0 � 1 � 1 � 10

1 � 1 � 1 � 11

Designating the left side of the above equalities as circuit inputs A, B, and CIN and the
right side as outputs COUT and �, we can make the truth table in Table 6.7. (The second and
third of the above sums each account for three lines in the full adder truth table.)

The unsimplified Boolean expressions for the outputs are:

COUT � A� B CIN � A B� CIN � A B C�IN � A B CIN

� � A� B� CIN � A� B C�IN � A B� C�IN � A B CIN

There are a couple of ways to simplify these expressions.

Karnaugh Map Method

Since we have expressions for � and COUT in sum-of-products form, let us try to use the
Karnaugh maps in Figure 6.4 to simplify them. The expression for � doesn’t reduce at all.
The simplified expression for COUT is:

COUT � A B � A CIN � B CIN

FIGURE 6.2
Half Adder Circuit

FIGURE 6.3
Full Adder

Table 6.7 Full Adder Truth
Table

A B CIN COUT �

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

FIGURE 6.4
K-Maps for a Full Adder

The corresponding logic circuits for � and COUT, shown in Figure 6.5, don’t give us
much of a simplification.

Boolean Algebra Method

The simplest circuit for COUT and � involves the Exclusive OR function, which we cannot
derive from K-map groupings. This can be shown by Boolean algebra, as follows:

COUT � A� B CIN � A B� CIN � A B C�IN � A B CIN

� (A� B � A B�)CIN � A B (C�IN � CIN)

� (A � B) CIN � A B

6.6 • Binary Adders and Subtractors 241

� � (A� B� � AB) CIN � (A� B � A B�) C�IN

� (A�����B�) CIN � (A � B) C�IN Let x � A � B

� x� CIN � x C�IN

� x � CIN

� (A � B) � CIN

The simplified expressions are as follows:

COUT � (A � B) CIN � A B

� � (A � B) � CIN

Figure 6.6 shows the logic circuit derived from these equations. If you refer back to
the half adder circuit in Figure 6.2, you will see that the full adder can be constructed from
two half adders and an OR gate, as shown in Figure 6.7.

N O T E

FIGURE 6.5
Full Adder from K-Map Simplification

FIGURE 6.6
Full Adder from Logic Gates

242 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

❘❙❚ EXAMPLE 6.18 Evaluate the Boolean expression for � and COUT of the full adder in Figure 6.8 for the fol-
lowing input values. What is the binary value of the outputs in each case?

a. A � 0, B � 0, CIN � 1

b. A � 1, B � 0, CIN � 0

c. A � 1, B � 0, CIN � 1

d. A � 1, B � 1, CIN � 0

SOLUTION The output of a full adder for any set of inputs is simply given by COUT � �
A � B � CIN. For each of the stated sets of inputs:

a. COUT � � A � B � CIN � 0 � 0 � 1 � 01

b. COUT � � A � B � CIN � 1 � 0 � 0 � 01

c. COUT � � A � B � CIN � 1 � 0 � 1 � 10

d. COUT � � A � B � CIN � 1 � 1 � 0 � 10

We can verify each of these sums algebraically by plugging the specified inputs into
the full adder Boolean equations:

COUT � (A � B) CIN � A B

� � (A � B) � CIN

a. COUT � (0 � 0) � 1 � 0 � 0

� 0 � 1 � 0

� 0 � 0 � 0

� � (0 � 0) � 1
� 0 � 1 � 1 (Binary equivalent: COUT � � 01)

b. COUT � (1 � 0) � 0 � 1 � 0

� 1 � 0 � 0

� 0 � 0 � 0

� � (1 � 0) � 0

� 1 � 0 � 1 (Binary equivalent: COUT � � 01)

c. COUT � (1 � 0) � 1 � 1 � 0

� 1 � 1 � 0

� 1 � 0 � 1

� � (1 � 0) � 1

� 1 � 1 � 0 (Binary equivalent: COUT � � 10)

Half Adder Half Adder

FIGURE 6.7
Full Adder From Two Half Adders

FIGURE 6.8
Example 6.18
Full Adder

6.6 • Binary Adders and Subtractors 243

d. COUT � (1 � 1) � 0 � 1 � 1

� 0 � 0 � 1

� 0 � 1 � 1

� � (1 � 1) � 0

� 0 � 0 � 0 (Binary equivalent: COUT � � 10)

In each case, the binary equivalent is the same as the number of HIGH inputs, regard-
less of which inputs they are.

❘❙❚ EXAMPLE 6.19 Combine a half adder and a full adder to make a circuit that will add two 2-bit numbers.
Check that the circuit will work by adding the following numbers and writing the binary
equivalents of the inputs and outputs:

a. A2 A1 � 01, B2 B1 � 01

b. A2 A1 � 11, B2 B1 � 10

SOLUTION The 2-bit adder is shown in Figure 6.9. The half adder combines A1 and B1;
A2, B2, and C1 are added in the full adder. The carry output, C1, of the half adder is con-
nected to the carry input of the full adder. (A half adder can be used only in the LSB of a
multiple-bit addition.)

FIGURE 6.9
Example 6.19
2-Bit Adder

Sums:

a. 01 � 01 � 010

A1 � 1, B1 � 1 C1 � 1, �1 � 0

A2 � 0, B2 � 0, C1 � 1 C2 � 0, �2 � 1

(Binary equivalent: A2 A1 � B2 B1 � C2 �2 �1 � 010)

b. 11 � 10 � 101

A1 � 1, B1 � 0 C1 � 0, �1 � 1

A2 � 1, B2 � 1, C1 � 0 C2 � 1, �2 � 0

(Binary equivalent: A2 A1 � B2 B1 � C2 �2�1 � 101) ❘❙❚

244 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

Parallel Binary Adder/Subtractor

Parallel binary adder A circuit, consisting of n full adders, that will add two
n-bit binary numbers. The output consists of n sum bits and a carry bit.

Ripple carry A method of passing carry bits from one stage of a parallel adder to
the next by connecting COUT of one full adder to CIN of the following stage.

Cascade To connect an output of one device to an input of another, often for the
purpose of expanding the number of bits available for a particular function.

As Example 6.19 implies, a binary adder can be expanded to any number of bits by us-
ing a full adder for each bit addition and connecting their carry inputs and outputs in
cascade. Figure 6.10 shows four full adders connected as a 4-bit parallel binary
adder.

K E Y T E R M S

FIGURE 6.10
4-Bit Parallel Binary Adder

The first stage (LSB) can be either a full adder with its carry input forced to logic 0 or
a half adder, since there is no previous stage to provide a carry. The addition is done one bit
at a time, with the carry from each adder propagating to the next stage.

❘❙❚ EXAMPLE 6.20 Verify the summing operation of the circuit in Figure 6.10 by calculating the output for the
following sets of inputs:

a. A4 A3 A2 A1 � 0101, B4 B3 B2 B1 � 1001

b. A4 A3 A2 A1 � 1111, B4 B3 B2 B1 � 0001

SOLUTION At each stage, A � B � CIN � COUT �.

a. 0101 � 1001 � 1110
(510 � 910 � 1410)

A1 � 1, B1 � 1, C0 � 0; C1 � 1, �1 � 0

A2 � 0, B2 � 0, C1 � 1; C2 � 0, �2 � 1

A3 � 1, B3 � 0, C2 � 0; C3 � 0, �3 � 1

A4 � 0, B4 � 1, C3 � 0; C4 � 0, �4 � 1

(Binary equivalent: C4 �4 �3 �2 �1 � 01110)

www.electronictech.com

6.6 • Binary Adders and Subtractors 245

b. 1111 � 0001 � 10000
(1510 � 110 � 1610)

A1 � 1, B1 � 1, C0 � 0; C1 � 1, �1 � 0

A2 � 1, B2 � 0, C1 � 1; C2 � 1, �2 � 0

A3 � 1, B3 � 0, C2 � 1; C3 � 1, �3 � 0

A4 � 1, B4 � 0, C3 � 1; C4 � 1, �4 � 0

(Binary equivalent: C4 �4 �3 �2 �1 � 10000)
❘❙❚

The internal carries in the parallel binary adder in Figure 6.10 are achieved by a sys-
tem called ripple carry. The carry output of one full adder cascades directly to the carry
input of the next. Every time a carry bit changes, it “ripples” through some or all of the fol-
lowing stages. A sum is not complete until the carry from another stage has arrived. The
equivalent circuit of a 4-bit ripple carry is shown in Figure 6.11.

C0
C1

C2

C3

C4

A1 � B1
A1B1

A2 � B2

A2B2
A3 � B3

A3B3
A4 � B4 A4B4

FIGURE 6.11
4-bit Ripple Carry Chain

A potential problem with this design is that the adder circuitry does not switch instan-
taneously. A carry propagating through a ripple adder adds delays to the summation time
and, more importantly, can introduce unwanted intermediate states.

Examine the sum (1111 � 0001 � 10000). For a parallel adder having a ripple carry,
the output goes through the following series of changes as the carry bit propagates through
the circuit:

C4 �4 �3 �2 �1 � 01111

01110

01100

01000

10000

If the output of the full adder is being used to drive another circuit, these unwanted in-
termediate states may cause erroneous operation of the load circuit.

Fast Carry

Fast carry (or look-ahead carry) A gate network that generates a carry bit di-
rectly from all incoming operand bits, independent of the operation of each full
adder stage.

An alternative carry circuit is called fast carry or look-ahead carry. The idea behind fast
carry is that the circuit will examine all the A and B bits simultaneously and produce an
output carry that uses fewer levels of gating than a ripple carry circuit. Also, since there is

K E Y T E R M

246 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

INPUT

OUTPUT

a1

c1
c1

b1 INPUT

AND2

AND2

OR2

OR2

INPUTa2
b2 INPUT

AND2

OR2

INPUTa3

b3 INPUT

AND2

OR2

INPUTa4

b4 INPUT

AND2

OR2

c0 INPUT

OUTPUTc2 c2AND2

OR3

AND3

AND2

OR4

OR6

GND

VCC

AND3

AND4

OUTPUTc3 c3

AND2

AND3

AND4

AND6

OUTPUTc4 c4

FIGURE 6.12
4-bit Fast Carry Circuit

a carry bit gate network for each internal stage, the propagation delay is the same for each
full adder, regardless of the input operands.

The algebraic relation between operand bits and fast carry output is presented below,
without proof. It can be developed from the fast carry circuit of Figure 6.12 by tracing the
logic of the gates in the circuit.

C4 � A4 B4 � A3 B3 (A4 � B4) � A2 B2 (A4 � B4)(A3 � B3)

� A1 B1 (A4 � B4)(A3 � B3)(A2 � B2)

� C0 (A4 � B4)(A3 � B3)(A2 � B2)(A1 � B1)

6.6 • Binary Adders and Subtractors 247

We can make some intuitive sense of the above expression by examining it a term at a
time. The first term says if the MSBs of both operands are 1, there will be a carry (e.g.,
1000 � 1000 � 10000; carry generated).

The second term says if both second bits are 1 AND at least one MSB is 1, there will
be a carry (e.g., 0100 � 1100 � 10000, or 1100 � 1100 � 11000; carry generated in ei-
ther case). This pattern can be followed logically through all the terms.

The internal carry bits are generated by similar circuits that drive the carry input of
each full adder stage in the parallel adder. In general, we can generate each internal carry
by expanding the following expression:

Cn � AnBn � Cn � 1 (An � Bn)

The algebraic expressions for the remaining carry bits are:

C1 � A1B1 � C0 (A1 � B1)

C2 � A2B2 � A1 B1 (A2 � B2) � C0 (A2 � B2)(A1 � B1)

C3 � A3B3 � A2 B2 (A3 � B3) � A1 B1 (A3 � B3)(A2 � B2)
� C0 (A3 � B3)(A2 � B2)(A1 � B1)

❘❙❚ SECTION 6.6A REVIEW PROBLEM

6.9 Refer to the logic diagrams for the ripple carry and fast carry circuits (Figures 6.11 and
6.12). How many gates must a carry bit propagate through in each device if the effect
of the carry input ripples through to the �4 bit? (See Figure 6.32 on page 273 and Fig-
ure 6.33 on page 273.)

Using VHDL Components to Implement a Parallel Adder

Hierarchy A group of design entities associated in a series of levels or layers in
which complete designs form portions of another, more general design entity. The
more general design is considered to be the higher level of the hierarchy.

Component A complete VHDL design entity that can be used as a part of a
higher-level file in a hierarchical design.

Port An input or output of a VHDL design entity or component.

Component declaration statement A statement that defines the input and output
port names of a component used in a VHDL design entity.

Instantiate To use an instance of a component.

Component instantiation statement A statement that maps port names of a
VHDL component to the port names, internal signals, or variables of a higher-level
VHDL design entity.

VHDL designs can be created using a hierarchy of design entities. Certain functions, such
as full adders, decoders, and so on, can be created once and used in many designs or mul-
tiple times in a single design.

We can create a parallel adder in VHDL by using multiple instances of a full adder
component in the top-level file of a VHDL design hierarchy. Figure 6.13 shows a graphi-
cal illustration of this concept. Each full adder shown is an instance of a component writ-
ten in VHDL, as shown in the following.

—— full_add.vhd

—— Full adder: adds two bits, a and b, plus input carry

—— to yield sum bit and output carry.

K E Y T E R M S

➥ Full_add.vhd

248 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

ENTITY full_add IS

PORT (

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END full_add;

ARCHITECTURE adder OF full_add IS

BEGIN

c_out �� ((a xor b) and c_in) or (a and b) ;

sum �� (a xor b) xor c_in;

END adder;

INPUT

FULL_ADD

a1
INPUTb1

c0 INPUT

OUTPUT c1
sum1OUTPUT

a

b

c_out

sum
c_in

INPUT

FULL_ADD

a2
INPUTb2

OUTPUT c2
sum2OUTPUT

a

b

c_out

sum
c_in

INPUT

FULL_ADD

a3
INPUTb3

OUTPUT c3
sum3OUTPUT

a

b

c_out

sum
c_in

INPUT

FULL_ADD

a4
INPUTb4

OUTPUT c4
sum4OUTPUT

a

b

c_out

sum
c_in

FIGURE 6.13
4-bit Parallel Adder with Ripple
Carry

We can create the same design as in Figure 6.13 using VHDL only. To make this hier-
archical design we require:

1. A separate component file for a full adder (full_add.vhd), saved in a folder where the
compiler can find it (i.e., on a library path)

2. A component declaration statement in the top-level file of the design hierarchy

3. A component instantiation statement for each instance of the full adder component

The general form of a design entity using components is:

ENTITY entity_name IS

PORT (input and output definitions);

END entity_name;

ARCHITECTURE arch_name OF entity_name IS

component declaration(s);

signal declaration(s);

6.6 • Binary Adders and Subtractors 249

BEGIN

Component instantiation(s);

Other statements;

END arch_name;

The VHDL file for a 4-bit parallel adder using full adder components is shown next.

—— add4par.vhd

—— 4-bit parallel adder, using 4 instances

—— of the component full_add

ENTITY add4par IS

PORT(

c0 : IN BIT;

a, b : IN BIT_VECTOR (4 downto 1);

c4 : OUT BIT;

sum : OUT BIT_VECTOR (4 downto 1));

END add4par;

ARCHITECTURE adder OF add4par IS

—— Component declaration

COMPONENT full_add

PORT (

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (3 downto 1);

BEGIN

—— Four Component Instantiation Statements

adder1: full_add

PORT MAP (a �� a(1),

b �� b(1),

c_in �� c0,

c_out �� c(1),

sum �� sum (1));

adder2: full_add

PORT MAP (a �� a(2),

b �� b(2),

c_in �� c(1),

c_out �� c(2),

sum �� sum (2));

adder3: full_add

PORT MAP (a �� a(3),

b �� b(3),

c_in �� c(2),

c_out �� c(3),

sum �� sum (3));

adder4: full_add

PORT MAP (a �� a(4),

b �� b(4),

c_in �� c(3),

c_out �� c4,

sum �� sum (4));

END adder;

➥ add4par.vhd

250 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The component declaration statement defines the ports of the component with the
same names as in the full_add.vhd. Note that the form of the component declaration state-
ment is almost the same as that of the component’s entity declaration. In effect, we are re-
defining the component entity in the top-level file of the design hierarchy.

The component instantiation statement is of the following form:

__instance_name: __component_name

GENERIC MAP (__parameter_name �� __parameter_value ,

__parameter_name �� __parameter_value)

PORT MAP (__component_port �� __connect_port,

__component_port �� __connect_port);

In the generic map, a generalized parameter name can be mapped to a specific value
when the component is instantiated. For example, a parameter name can be given a value
that specifies the number of component output bits. We will not use this feature in our pre-
sent examples.

In the port map, component ports are the names of the ports used in the component file
and connect ports are the names of the ports, variables, or signals used in the higher-level
design entity. For example, the component ports of the full adder component are a, b, c
in, c_out, and sum. The connect ports for the instance adder1 are a(1), b(1), c0, c(1), and
sum(1). The ripple carry from adder1 to adder2 is achieved by mapping the port c_in of
adder2 to c(1), which is also mapped to the port c_out of adder1.

We can write the component instantiation statements more efficiently if we decide to
use all ports of the component in the order they are defined. In this case, we can simply list
the connect ports in the port map in the correct order, as follows:

adder1: full_add PORT MAP (a(1),b(1),c0, c(1),sum(1));

adder2: full_add PORT MAP (a(2),b(2),c(1),c(2),sum(2));

adder3: full_add PORT MAP (a(3),b(3),c(2),c(3),sum(3));

adder4: full_add PORT MAP (a(4),b(4),c(3),c4, sum(4));

If we only wish to use some of the component ports or use them in a different order
than the order in which theywere originally defined, we must use the previous form of port
map (i.e., a �� a(1), etc.).

GENERATE Statements

GENERATE statement A VHDL construct that is used to create repetitive por-
tions of hardware.

The four component instantiation statements shown previously can be written in a more
general form:

adder(i): full_add PORT MAP (a(i), b(i), c(i-1), c(i), sum(i));

A statement that can be written in this indexed form can be implemented using a
GENERATE statement, which has the form:

label:

FOR index IN range GENERATE

statements;

END GENERATE;

The VHDL code that follows shows how to use the statement to create a 4-bit adder.

—— add4gen.vhd

—— 4-bit parallel adder, using a generate statement

—— and components

K E Y T E R M

➥ add4gen.vhd

6.6 • Binary Adders and Subtractors 251

ENTITY add4gen IS

PORT (

c0 : IN BIT;

a, b : IN BIT_VECTOR (4 downto 1);

c4 : OUT BIT;

sum : OUT BIT_VECTOR (4 downto 1));

END add4gen;

ARCHITECTURE adder OF add4gen IS

——Component declaration

COMPONENT full_add

PORT (

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (4 downto 0);

BEGIN

c(0) �� c0;

adders:

FOR i IN 1 to 4 GENERATE

adder: full_add PORT MAP (a(i),b(i),c(i-1),c(i),sum(i));

END GENERATE;

c4 �� c(4);

END adder;

The GENERATE statement will create hardware that corresponds to the range of the
index variable, i. In this case i goes from 1 to 4, so the statement instantiates four instances
of the full adder. Since we have an input carry, an output carry and three internal carries,
we must use a 5-bit signal (BIT_VECTOR (4 downto 0)) if we are to include all carry
bits in indexed form. The input carry, c0, defined in the entity declaration, is assigned to the
vector element c(0). Similarly, the output, c4, is assigned the value of the element c(4).

It is easy to expand the adder width by changing the range of the FOR GENERATE
statement. For example, to make an 8-bit adder, we change the vectors to have a width of
eight bits. The required VHDL code, shown next, requires the same number of lines of
code as the 4-bit adder.

—— add8gen.vhd

—— 8-bit parallel adder, using a generate statement

—— and components

ENTITY add8gen IS

PORT (

C0 : IN BIT;

a, b : IN BIT_VECTOR (8 downto 1);

c8 : OUT BIT;

sum : OUT BIT_VECTOR (8 downto 1));

END add8gen;

ARCHITECTURE adder OF add8gen IS

—— Component declaration

COMPONENT full_add

PORT (

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

➥ add8gen.vhd

252 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

END COMPONENT;

—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (8 downto 0);

BEGIN

c(0) �� c0;

adders:

FOR i IN 1 to 8 GENERATE

adder: full_add PORT MAP (a(i), b(i), c(i-1), c(i),

sum(i));

END GENERATE;

c8 �� c(8);

END adder;

2’s Complement Subtractor

Recall the technique for subtracting binary numbers in 2’s complement notation. For ex-
ample, to find the difference 0101 � 0011 by 2’s complement subtraction:

1. Find the 2’s complement of 0011:

0011
1100 (1’s complement)

�1
1101 (2’s complement)

2. Add the 2’s complement of the subtrahend to the minuend:

0101 (�5)
� 1101 (�3)
1 0010 (�2)

(Discard carry)

We can easily build a circuit to perform 2’s complement subtraction, using a parallel
binary adder and an inverter for each bit of one of the operands. The circuit shown in Fig-
ure 6.14 performs the operation (A � B).

FIGURE 6.14
2’s Complement Subtractor

The four inverters generate the 1’s complement of B. The parallel adder generates the
2’s complement by adding the carry bit (held at logic 1) to the 1’s complement at the B in-
puts. Algebraically, this is expressed as:

A � B � A � (�B) � A � B� � 1

where B� is the 1’s complement of B, and (B� � 1) is the 2’s complement of B.

6.6 • Binary Adders and Subtractors 253

❘❙❚ EXAMPLE 6.21 Verify the operation of the 2’s complement subtractor in Figure 6.14 by subtracting:

a. 1001 � 0011 (unsigned)

b. 0100 � 0111 (signed)

SOLUTION Let B� be the 1’s complement of B.

a. Inverter inputs (B): 0011

Inverter outputs (B�): 1100

Sum (A � B� � 1): 1001 (�9)
1100 � (�3)

� 1
1 0110 (�6)

(Discard carry)

b. Inverter inputs (B): 0111

Inverter outputs (B�): 1000

Sum (A � B� � 1): 0100 (�4)
1000 � (�7)

� 1
Negative result: 1101 (�3)
1’s complement of 1101: 0010

� 1
2’s complement of 1101: 0011 (�3)

❘❙❚

Parallel Binary Adder/Subtractor

Figure 6.15 shows a parallel binary adder configured as a programmable adder/subtractor.
The Exclusive OR gates work as programmable inverters to pass B to the parallel adder in
either true or complement form, as shown in Figure 6.16.

←

FIGURE 6.15
2’s Complement Adder/Subtractor

254 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The A�D�D�/SUB input is tied to the XOR inverter/buffers and to the carry input of the
parallel adder. When A�D�D�/SUB � 1, B is complemented and the 1 from the carry input is
added to the complement sum. The effect is to subtract (A � B). When A�D�D�/SUB � 0, the
B inputs are presented to the adder in true form and the carry input is 0. This produces an
output equivalent to (A � B).

This circuit can add or subtract 4-bit signed or unsigned binary numbers.

❘❙❚ EXAMPLE 6.22 Write a VHDL file to implement the 4-bit adder/subtractor shown in Figure 6.15. Also
create a simulation file to test a representative selection of addition and subtraction
operations.

SOLUTION The VHDL file is as follows:

—— addsub4g.vhd

ENTITY addsub4g IS

PORT (

sub : IN BIT;

a, b : IN BIT_VECTOR (4 downto 1);

c4 : OUT BIT;

sum : OUT BIT_VECTOR (4 downto 1));

END addsub4g;

ARCHITECTURE adder OF addsub4g IS

—— Component declaration

COMPONENT full_add

PORT (

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (4 downto 0);

SIGNAL b_comp : BIT_VECTOR (4 downto 1);

BEGIN

—— add/subtract select to carry input (sub�1 for subtract)

c(0) �� sub;

adders:

FOR i IN 1 to 4 GENERATE

—— invert b for subtract (b(i) xor 1),

—— do not invert for add (b(i) xor 0)

b_comp(i) �� b(i) xor sub;

adder: full_add PORT MAP (a(i), b_comp(i), c(i-1), c(i),

sum(i));

END GENERATE;

c4 �� c(4);

END adder;

FIGURE 6.16
XOR as a Programmable Inverter

➥ addsub4g.vhd

6.6 • Binary Adders and Subtractors 255

The VHDL code for the adder/subtractor is the same as that for the 4-bit adder created
using a GENERATE statement, except that there is an input to select the add or subtract func-
tion. This input (sub) is tied to c(0) and to a set of XOR functions that invert b for subtraction.
Input b is transferred through the XOR functions without inversion for the add function.

FIGURE 6.17
Example 6.21 Simulation of a
4-bit Adder/Subtractor

❘❙❚ EXAMPLE 6.23 Note that the simulation in Figure 6.17 shows some intermediate states on the sum wave-
form in between steady state values. Examine the transition from the sum F � 0 � F to the
sum F � 1 � 10 by using the Zoom In function in the Simulator window. Briefly explain
how the intermediate states arise in this transition.

SOLUTION Figures 6.18 and 6.19 show the transition from F � 0 � F to F � 1 � 10.
The transition on the sum waveform is from F to E to 0 or in binary from 1111 to 1110 to

Table 6.8 Add/Subtract Results

Hexadecimal Sum/Difference Binary Equivalent

7 � 1 � 8 0111 � 0001 � 0 1000 (Unsigned)
8 � 8 � 10 1000 � 1000 � 1 0000 (Unsigned)
A � 1 � B 1010 � 0001 � 0 1011 (Unsigned)
F � 0 � F 1111 � 0000 � 0 1111 (Unsigned)
F � 1 � 10 1111 � 0001 � 1 0000 (Unsigned)
0 � 1 � F 0000 � 0001 � 1111 (Signed: �1)
0 � 8 � 8 0000 � 1000 � 1000 (Signed: �8)
0 � A � 6 0000 � 1010 � 0110 (Signed: 0 � (�6) � �6)
0 � F � 1 0000 � 1111 � 0001 (Signed: 0 � (�1) � �1)

FIGURE 6.18
Example 6.22
Interval from F to E

Figure 6.17 shows the simulation for the adder/subtractor. Table 6.8 shows the opera-
tions included in the simulation in both hexadecimal and binary form. Note that the sums
are interpreted as unsigned operations and the differences are interpreted as signed opera-
tions. Any sum or difference can be interpreted either way, but this will sometimes result in
a sign bit overflow. (e.g., the sums 8 � 8 � 10 and F � 1 � 10 both indicate an overflow
if they are interpreted as signed additions.)

➥ addSub4g.scf

256 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

0000. This transition is the result of a change from 0 to 1 on the b1 input of the adder/
subtractor.

Figure 6.18 shows the interval from F to E (the time difference between the vertical
line marking 36 ns and the arrow cursor, shown in the box labeled Interval) as 7.4 ns. This
is the delay from b1 to sum1.

Figure 6.19 shows the interval from F to 0 on the sum waveform, given as 12.6 ns.
This interval represents the time required for sum2, sum3, and sum4 to change after a
change on b1. ❘❙❚

Overflow Detection

We will examine two methods for detecting overflow in a binary adder/subtractor: one that
requires access to the sign bits of the operands and result and another that requires access
to the internal carry bits of the circuit.

Recall from Example 6.12 the condition for detecting a sign bit overflow in a sum of
two binary numbers.

If the sign bits of both operands are the same and the sign bit of the sum is different
from the operand sign bits, an overflow has occurred.

This implies that overflow is not possible if the sign bits of the operands are different
from each other. This is true because the sum of two opposite-sign numbers will always be
smaller in magnitude than the larger of the two operands.

Here are two examples:

1. (�15) � (�7) � (�8); �8 has a smaller magnitude than �15.

2. (�13) � (�9) � (�4); �4 has a smaller magnitude than �13.

No carry into the sign bit will be generated in either case.
An 8-bit parallel binary adder will add two signed binary numbers as follows:

SA A7 A6 A5 A4 A3 A2 A1 (SA � Sign bit of A)

SB B7 B6 B5 B4 B3 B2 B1 (SB � Sign bit of B)

S� �7 �6 �5 �4 �3 �2 �1 (S� � Sign bit of sum)

From our condition for overflow detection, we can make a truth table for an overflow
variable, V, in terms of SA, SB, and S�. Let us specify that V � 1 when there is an overflow
condition. This condition occurs when (SA � SB) 	 S�. Table 6.9 shows the truth table for
the overflow detector function.

N O T E

FIGURE 6.19
Example 6.22
Interval from F to 0

Table 6.9 Overflow Detector
Truth Table

SA SB S� V

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

6.6 • Binary Adders and Subtractors 257

The SOP Boolean expression for the overflow detector is:

V � SA SB S�� � S�A S�B S�

Figure 6.20 shows a logic circuit that will detect a sign bit overflow in a parallel binary
adder. The inputs SA, SB, and S� are the MSBs of the adder A and B inputs and � outputs,
respectively.

FIGURE 6.20
Overflow Detector

❘❙❚ EXAMPLE 6.24 Combine two instances of the 4-bit counter shown in Figure 6.15 and other logic to make
an 8-bit adder/subtractor that includes a circuit to detect sign bit overflow.

SOLUTION Figure 6.21 represents the 8-bit adder/subtractor with an overflow detector
of the type shown in Figure 6.20.

FIGURE 6.21
Example 6.24 8-Bit Adder With Overflow Detector

258 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

A second method of overflow detection generates an overflow indication by examin-
ing the carry bits into and out of the MSB of a 2’s complement adder/subtractor.

Consider the following 8-bit 2’s complement sums. We will use our previous knowl-
edge of overflow to see whether overflow occurs and then compare the carry bits into and
out of the MSB.

a. 80H � 80H

b. 7FH � 01H

c. 7FH � 80H

d. 7FH � C0H

a. 80H � 10000000 10000000
�10000000
1 00000000 (Sign bit overflow; V � 1)

Carry into MSB � 0
Carry out of MSB � 1

b. 7FH � 01111111 01111111
01H � 00000001 �00000001

0 10000000 (Sign bit overflow; V � 1)

Carry into MSB � 1
Carry out of MSB � 0

c. 7FH � 01111111 01111111
80H � 10000000 �10000000

0 11111111 (No sign bit overflow; V � 0)

Carry into MSB � 0
Carry out of MSB � 0

d. 7FH � 01111111 01111111
C0H � 11000000 �11000000

1 00111111 (No sign bit overflow; V � 0)

Carry into MSB � 1
Carry out of MSB � 1

The above examples suggest that a 2’s complement sum has overflowed if there is a
carry into or out of the MSB, but not both. For an 8-bit adder/subtractor, we can write the
Boolean equation for this condition as V � C8 � C7. More generally, for an n-bit
adder/subtractor, V � Cn � Cn�1.

Figure 6.22 shows a circuit that can implement the overflow detection from the carry
into and out of the MSB of an 8-bit adder.

C8

�8

C7

V

B8

A8

C7

�7

C6

B7

A7

FIGURE 6.22

❘❙❚

6.7 • BCD Adders 259

❘❙❚ SECTION 6.6B REVIEW PROBLEM

6.10 What is the permissible range of values of a sum or difference, x, in a 12-bit parallel
binary adder if it is written as:

a. A signed binary number?

b. An unsigned binary number?

6.7 BCD Adders
(This section may be omitted without loss of continuity.)

BCD adder A parallel adder whose output is in groups of 4 bits, each group rep-
resenting a BCD digit.

It is sometimes convenient to have the output of an adder circuit available as a BCD num-
ber, particularly if the result is to be displayed numerically. The problem is that most par-
allel adders have binary outputs, and 6 of the 16 possible 4-bit binary sums—1010 to
1111—are not within the range of the BCD code.

BCD numbers range from 0000 to 1001, or 0 to 9 in decimal. The unsigned binary
sum of any two BCD numbers plus an input carry can range from 00000 (� 0000 � 0000
� 0) to 10011 (� 1001 � 1001 � 1 � 1910).

For any sum up to 1001, the BCD and binary values are the same. Any sum greater
than 1001 must be modified, since it requires a second BCD digit. For example, the binary
value of 1910 is 100112. The BCD value of 1910 is 0001 1001BCD. (The most significant
digit of a sum of two BCD digits and a carry will never be larger than 1, since the largest
such sum is 1910.)

Table 6.10 shows the complete list of possible binary sums of two BCD digits (A and
B) and a carry (C), their decimal equivalents, and their corrected BCD values. The MSD of
the BCD sum is shown only as a carry bit, with leading zeros suppressed.

K E Y T E R M

Table 6.10 Binary Sums of Two BCD Digits
and a Carry Bit

BinarySum Corrected BCD
(A � B � C) Decimal (Carry � BCD)

00000 0 0 � 0000
00001 1 0 � 0001
00010 2 0 � 0010
00011 3 0 � 0011
00100 4 0 � 0100
00101 5 0 � 0101
00110 6 0 � 0110
00111 7 0 � 0111
01000 8 0 � 1000
01001 9 0 � 1001
01010 10 1 � 0000
01011 11 1 � 0001
01100 12 1 � 0010
01101 13 1 � 0011
01110 14 1 � 0100
01111 15 1 � 0101
10000 16 1 � 0110
10001 17 1 � 0111
10010 18 1 � 1000
10011 19 1 � 1001

260 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

Figure 6.23 shows how we can add two BCD digits and get a corrected output. The
BCD adder circuit consists of a standard 4-bit parallel adder to get the binary sum and a
code converter to translate it into BCD.

The Binary-to-BCD code converter operates on the binary inputs as follows:

1. A carry output is generated if the binary sum is in the range 01010 � sum � 10011
(BCD equivalent: 1 0000 � sum � 1 1001).

2. If the binary sum is less than 01001, the output is the same as the input.

3. If the sum is in the range 01010 � sum � 10011, the four LSBs of the input must be
corrected to a BCD value. This can be done by adding 0110 to the four LSBs of the in-
put and discarding any resulting carry. We add 01102 (610) because we must account for
six unused codes.

Let’s look at how each of these requirements can be implemented by a digital circuit.

Carry Output

The carry output will be automatically 0 for any uncorrected sum from 00000 to 01001 and
automatically 1 for any sum from 10000 to 10011. Thus, if the binary adder’s carry output,
which we will call C4�, is 1, the BCD adder’s carry output, C4, will also be 1.

Any sum falling between these ranges, that is, between 01010 and 01111, must have
its MSB modified. This modifying condition is a function, designated C4�, of the binary
adder’s sum outputs when its carry output is 0. This function can be simplified by a Kar-
naugh map, as shown in Figure 6.24, resulting in the following Boolean expression.

C4� � �4� �3� � �4� �2�

The BCD carry output C4 is given by:

C4 � C4� � C4�

� C4� � �4� �3� � �4� �2�

The BCD carry circuit is shown in Figure 6.25.

4-bit Adder

FIGURE 6.23
BCD Adder (11⁄2 Digit Output)

6.7 • BCD Adders 261

Sum Correction

The four LSBs of the binary adder output need to be corrected if the sum is 01010 or
greater and need not be corrected if the binary sum is 01001 or less. This condition is indi-
cated by the BCD carry. Let us designate the binary sum outputs as �4� �3� �2� �1� and the
BCD sum outputs as �4 �3 �2 �1.

If C4 � 0, �4 �3 �2 �1 � �4� �3� �2� �1� � 0000;

If C4 � 1, �4 �3 �2 �1 � �4� �3� �2� �1� � 0110.

Figure 6.26 shows a BCD adder, complete with a binary adder, BCD carry, and
sum correction. A second parallel adder is used for sum correction. The B inputs are the
uncorrected binary sum inputs. The A inputs are either 0000 or 0110, depending on the
value of the BCD carry.

FIGURE 6.24
Carry as a Function of Sum
Bits When C4� � 0

C4
�3

�2

�4

C4

FIGURE 6.25
BCD Carry Circuit

C4

Code
converter

�4
 �3
 �2
 �1

C4
 C0 C0

A4 A3 A2 A1 B4 B3 B2 B1

�4 �3 �2 �1

�4 �3 �2 �1

C4 C0

A4 A3 A2 A1 B4 B3 B2 B1

A4 A3 A2 A1 B4 B3 B2 B1

4-bit Adder

4-bit Adder

FIGURE 6.26
BCD Adder

262 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

❘❙❚ EXAMPLE 6.25 Write a VHDL file for a BCD adder, using two parallel adder components, such as in the
logic diagram in Figure 6.26.

SOLUTION

—— bcd_add.vhd

—— BCD adder, using 2 instances of the component add4par

ENTITY bcd_add IS

PORT (

c0 : IN BIT;

a, b : IN BIT_VECTOR (4 downto 1);

c4 : OUT BIT;

sum : OUT BIT_VECTOR (4 downto 1));

END bcd_add;

ARCHITECTURE adder OF bcd add IS

—— Component declaration

COMPONENT add4par

PORT (

c0 : IN BIT;

a, b : IN BIT_VECTOR (4 downto 1);

c4 : OUT BIT;

sum : OUT BIT_VECTOR (4 downto 1));

END COMPONENT;

SIGNAL c4_bin : BIT;

SIGNAL sum_bin : BIT_VECTOR (4 downto 1);

SIGNAL a_bcd : BIT_VECTOR (4 downto 1);

SIGNAL b_bcd : BIT_VECTOR (4 downto 1);

SIGNAL c0_bcd: BIT;

BEGIN

—— Instantiate 4-bit adder (binary sum)

add_bin: add4par

PORT MAP (c0 �� c0,

a �� a,

b �� b,

c4 �� c4_bin,

sum �� sum_bin);

——Instantiate 4-bit adder (binary-BCD converter)

converter: add4par

PORT MAP (c0 �� c0_bcd,

a �� a_bcd,

b �� b_bcd,

sum �� sum);

——Connect components

c0_bcd �� ´0´;

b_bcd �� sum_bin;

a_bcd(4) �� ´0´;

a_bcd(3) �� c4 bin or (sum_bin(4) and sum_bin(3))

or (sum_bin(4) and sum_bin(2));

a_bcd(2) �� c4 bin or (sum_bin(4) and sum_bin(3))

or (sum_bin(4) and sum_bin(2));

a_bcd(1) �� ´0´;

c4 �� c4_bin or (sum_bin(4) and sum_bin(3))

or (sum_bin(4) and sum_bin(2));

END adder;
❘❙❚

➥ bcd_add.vhd

6.8 • Carry Generation in MAX�PLUS II 263

Multiple-Digit BCD Adders

Several BCD adders can be cascaded to add multidigit BCD numbers. Figure 6.27 shows a
4�

1
2

�-digit BCD adder. The carry output of the most significant digit is considered to be a
half-digit since it can only be 0 or 1. The output range of the 4�

1
2

�-digit BCD adder is 00000
to 19999.

FIGURE 6.27
41⁄2-Digit BCD Adder

BCD adders are cascaded by connecting the code converter carry output of one stage to
the binary adder carry input of the next most significant stage. Each BCD output digit repre-
sents a decade, designated as the units, tens, hundreds, thousands, and ten thousands digits.

❘❙❚ SECTION 6.7 REVIEW PROBLEM

6.11 What is the maximum BCD sum of two 3-digit numbers with no carry input? How
many digits are required to display this result on a numerical output?

6.8 Carry Generation in MAX�PLUS II

Speed grade A specification that indicates the internal delay time that can be ex-
pected of a CPLD.

Expander buffer A MAX�PLUS II primitive that supplies an inverted product
term for general use within a CPLD.

The VHDL adder circuits implemented in Section 6.6 were all defined using a ripple carry
format. Is it necessary to design a fast carry circuit when compiling one of these adder de-
signs in MAX�PLUS II? Probably not.

Recall that the design strategy behind the fast carry circuit was to flatten the gate net-
work, that is, to replace a long network (many gates for the carry bit to pass through) with
a wide one (fewer levels of gating). Also recall that any combinational logic function can
be implemented as a sum-of-products (SOP) network, which inherently is a very flat net-
work form.

K E Y T E R M S

264 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

The internal circuit of a MAX7000S CPLD is a programmable SOP network. In order
to program such a device, the MAX�PLUS II compiler must analyze the design entity,
break it into product terms and reassemble it as an SOP network. (This is an oversimplifi-
cation. Sometimes SOP outputs are fed back into the circuit to be reused by other parts of
the circuit, thus lengthening the logic path.)

MAX�PLUS II allows us to choose a style of logic synthesis that balances circuit
speed and chip area occupied by the programmed circuit. The styles can be user-defined or
we can use one of three predefined synthesis styles called Normal, Fast, and WYSIWYG
(What You See Is What You Get). Each one of these styles is optimized for speed, area, or
a compromise. The Normal and Fast styles disassemble the design entity and reassemble it
after optimizing the logic according to the style rules. The WYSIWYG style allows us
(rather than the compiler) to largely define the logic synthesis without altering our design
format by very much.

To choose a synthesis style, select Global Project Logic Synthesis, from the
MAX�PLUS II Assign menu, as shown in Figure 6.28. A drop-down menu in the result-
ing dialog box, shown in Figure 6.29, allows us to select one of the three Altera-defined
synthesis styles.

FIGURE 6.28
Assigning a Synthesis Style (Assign Menu)

FIGURE 6.29
Assigning a Synthesis Style

To use the WYSIWYG style, you must also check the box that says Multi-Level
Synthesis for MAX 5000/7000 Devices.

We can calculate the circuit delays for an adder by running the compiled design
through the MAX�PLUS II Timing Analyzer. Figure 6.30 shows an example of such an
analysis for the parallel adder add4par.vhd with a Normal synthesis style and an
EPM7128SLC84-7 as the selected device.

N O T E

6.8 • Carry Generation in MAX�PLUS II 265

The values in the Destination columns are the delays from logic level changes on the
inputs specified by the Source rows. For example, a change on input a1 reaches the output
sum1 in 7.5 ns and sum4 in 12.5 ns. Most of the entries in the c4 column have two values
(7.5 ns and 11.5 ns), indicating that the delay to output carry is the same from all input bits
(i.e., a fast carry). The actual delay to c4 will depend on the logic level change that takes
place on the source line and thus which logic path is taken. The delay time of 7.5 ns is
about the lowest value possible in the EPM7128SLC84-7 device. (The “�7” tells us that
the chip has a speed grade of minus 7, meaning an internal delay of about 7 ns.)

Figure 6.31 shows the timing analysis of the same adder with a WYSIWYG synthesis
style. (The synthesis style is the only design change.) In this analysis, the delay from an in-
put bit to c4 varies from 7.5 ns (from a4 or b4) to as much as 16.5 ns (for a1, b1, a2, or b2).
Since the lower-order bits result in a longer delay to the carry bit, we can infer that the
compiler has not synthesized a fast carry circuit.

FIGURE 6.30
Delay matrix for a 4-bit adder (Normal Synthesis)

FIGURE 6.31
Delay matrix for a 4-bit adder
(WYSIWYG Synthesis)

266 C H A P T E R 6 • Digital Arithmetic and Arithmetic Circuits

We can examine the actual equations from the MAX�PLUS II report file to confirm
our assessment. The synthesized equations for c4 are given below.

WYSIWYG Synthesis:

—— Node name is ´c4´ � ´|full_add:adder4| :12´
—— Equation name is ´c4´, type is output

c4 � LCELL(_EQ001 $ GND);

_EQ001 � a3 & b3 & b4

b4 & _LC113 & _LC114

a3 & a4 & b3

a4 & _LC113 & _LC114

a4 & b4;

—— Node name is ´|full_add:adder2|:12´
—— Equation name is ´_LC113´, type is buried

_LC113 � LCELL(_EQ008 $ GND);

_EQ008 � a2 & b2

a2 & c0 & _X007

b2 & c0 & _X007

a1 & b1 & _X002;

_X007 � EXP (!a1 & !b1);

_X002 � EXP (!a2 & !b2);

—— Node name is ´|full_add:adder3|:9´
—— Equation name is ´_LC114´, type is buried

_LC114 � LCELL(b3 $ a3);

Normal synthesis:

—— Node name is ´c4´

—— Equation name is ´c4´, location is LC123, type is output.

c4 � LCELL (EQ001 $ VCC);

_EQ001 � !a1 & _X001 & _X002 & _X003 & _X004

!b1 & !c0 & _X001 & _X003 & _X004

!a2 & !b2 & _X003 & _X004

!a3 & !b3 & _X004

!a4 & !b4;

_X001 � EXP (a2 & b2);

_X002 � EXP (b1 & c0);

_X003 � EXP (a3 & b3);

_X004 � EXP (a4 & b4);

The function EXP(signal) is for a MAX�PLUS II primitive called an expander
buffer, which represents a shared logic expander in the CPLD. There will be more detail
about this type of buffer in Chapter 8, but for now, just be aware that this type of buffer sup-
plies inverted product terms for general use within the CPLD.

The Normal synthesis mode generates a sum-of-products equation that uses a num-
ber of expanders, but only one logic cell (i.e., one SOP output), indicated as LC123. The
WYSIWYG synthesis uses an unnumbered output logic cell, which in turn uses two other
logic cell outputs (LC113 and LC114) as inputs. Thus, in the Normal synthesis mode, the
input signals propagate through one logic cell, and in the WYSIWYG mode, the input
signals go through two layers of logic cells, increasing the path length, and thus the de-
lay.

What can we conclude? If MAX�PLUS II is allowed to synthesize a design for a full
adder in the defined Normal style, it will optimize the design equations to produce as flat a
network as possible. Thus we do not need to explicitly design an adder circuit to have a fast
carry function.

Summary 267

S U M M A R Y

1. Addition combines an addend (x) and an augend (y) to get a
sum (z � x � y).

2. Binary addition is based on four sums:

0 � 0 � 0

0 � 1 � 1

1 � 1 � 10

1 � 1 � 1 � 11

3. A sum of two bits generates a sum bit and a carry bit. (For the
first two sums above, the carry bit is 0; the last two sums
have a carry of 1. The last sum includes a carry from a lower-
order bit.)

4. Subtraction combines a minuend (x) and a subtrahend (y) to
get a difference (z � x � y).

5. Binary subtraction is based on the following four differ-
ences:

0 � 0 � 0

1 � 0 � 1

1 � 1 � 0

10 � 1 � 1

6. If the subtrahend bit is larger than the minuend bit, as in the
fourth difference above, a 1 must be borrowed from the next
higher-order bit.

7. Binary addition or subtraction can be unsigned, where the
magnitudes of the operands and result are presumed to be
positive, or signed, where the operands and result can be pos-
itive or negative. The sign is indicated by a sign bit.

8. The sign bit (usually MSB) of a binary number indicates that
the number is positive if it is 0 and negative if it is 1.

9. Signed binary numbers can be written in true-magnitude, 1’s
complement, or 2’s complement form. True magnitude has
the same binary value for positive and negative numbers,
with only the sign bit changed. A 1’s complement negative
number is generated by inverting all bits of the positive num-
ber of the same magnitude. A 2’s complement negative num-
ber is generated by adding 1 to the equivalent 1’s comple-
ment number. Positive numbers are the same in all three
forms.

10. 1’s complement or 2’s complement binary numbers are used
in signed addition or subtraction. Subtraction is performed
by adding a negative number in complement form to another
number in complement form (i.e., x � y � x � (�y)). This
technique does not work for true-magnitude form.

11. A negative sum or difference in 2’s complement subtraction
must be converted to a positive form to read its magnitude
(i.e., �(�x) � �x).

12. A signed binary number, x, with n bits has a valid range of
�2n � x � �(2n �1).

13. A negative number with a power-of-2 magnitude (i.e.,
�2n) is written in 2’s complement form as n 0s preceded
by all 1s to fill the defined size of the number (e.g., in 8-
bit 2’s complement form, �128 � 10000000 (1 followed

by seven 0s; 128 � 27); in 8-bit 2’s complement form, �8 �
11111000 (all 1s, followed by three 0s; 8 � 23).

14. If a sum or difference falls outside the permissible range of
magnitudes for a 2’s complement number, it generates an
overflow into the sign bit of the number. The result is that
the sum of two positive numbers appears to be negative
(e.g., 01111111 � 00000010 � 10000001; 127 � 2 �
129) or the sum of two negative numbers appears to be
positive (e.g., 11111111 � 10000000 � 01111111, where
the carry beyond the 8th place is discarded: �1 � (�128) �
�129).

15. When adding two hexadecimal digits, any digit sum greater
than 15 (F) can be converted to a hexadecimal value by sub-
tracting 16 and carrying a 1 to the next digit position.

16. Hexadecimal numbers can be subtracted conventionally or
by a complement method. To get the 16’s complement of a
number, obtain the 15’s complement by subtracting the num-
ber from all Fs and adding 1 to the result.

17. Binary numbers can be used in nonpositional codes to repre-
sent numbers or alphanumeric characters.

18. Binary coded decimal (BCD) codes represent decimal num-
bers as a series of 4-bit groups of numbers. Natural BCD or
8421 code does this as a positionally weighted code for each
digit (e.g., 158 � 0001 0101 1000 (NBCD)). Other codes,
such as Excess-3, are not positionally weighted.

19. Gray code is a binary code that has a difference of one bit
between adjacent codes. It can be generated by a set of
XOR functions or by recognizing the symmetry inherent in
the code. In any Gray code sequence, the MSB is 0 for the
first half of the sequence and 1 for the second half. The re-
maining bits are symmetrical about the halfway point of the
sequence.

20. ASCII code represents alphanumeric characters and com-
puter control codes as a 7-bit group of binary numbers. Al-
pha characters are listed in uppercase in columns 4 and 5 of
the ASCII table. Lowercase alpha characters are in columns
6 and 7. Numeric characters are in column 3.

21. A half adder combines two bits to generate a sum and a carry.
It can be represented by the following truth table:

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

A B COUT �

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

22. From the half adder truth table, we can derive two equations:

COUT � AB

� � A � B

23. A full adder can accept an input carry from a lower-order adder
and combine the input carry with two operands to generate

268 C H A P T E R 6 • Digital Arithmetic and Arithemtic Circuits

a sum and output carry. Its operation can be summarized in
the following truth table:

31. The port map of a component maps the port names defined in
a component to the port, signal, or variable names defined in
the design entity that uses the component.

32. If all ports of a component are to be used in the same order as
in the component definition in the original component design
entity, the port map can simply contain the user names in the
same order. For example:

adder1: full_add PORT MAP (a(1), b(1),

c0, c(1), sum(1));

33. If only a portion of the component ports are to be used or
they are not used in the same sequence as they are declared,
the port map must be more explicit. For example:

adder1: full_add

PORT MAP (b �� b(1),

a �� a(1),

c_in �� c0,

sum �� sum(1)),

c_out �� c(1);

34. A GENERATE statement can be used to instantiate multiple
instances of a component. The GENERATE statement has
the form:

label:

FOR index IN range GENERATE

statements;

END GENERATE;

35. MAX�PLUS II will synthesize an adder to minimize carry
delays without much intervention.

36. A parallel binary adder can be made into a 2’s complement
subtractor by inverting one set of inputs and tying the input
carry to a logic HIGH.

37. A parallel binary adder can be made into a 2’s complement
adder/subtractor by using a set of XOR gates as programma-
ble inverters and connecting the XOR control line to the
carry input of the adder.

38. One method of detecting a sign bit overflow in a 2’s com-
plement adder/subtractor is to compare the sign bits of the
operands to the sign bit of the result. If the sign bits of
the operands are the same as each other, but different
from the sign bit of the result, there has been an overflow.
The Boolean equation for this detector is given by V � S�� �
SA � SB � S� � S�A � S�B.

39. Another method of overflow detection compares the carry
out of the MSB of the adder/subtractor to the carry into
the MSB. An overflow occurs if there is a carry out of or
into the MSB, but not both. The Boolean equation for this
detector is given by V � Cn � Cn�1, for an n-bit
adder/subtractor.

40. A BCD adder adds two binary coded decimal (BCD) digits
and generates a BCD digit and a carry bit.

41. Since BCD is a 4-bit code, BCD addition can be done with a
4-bit binary adder and a code converter. The code converter
can be synthesized from another 4-bit binary adder and a cir-
cuit to generate a carry.

A B CIN COUT �

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

24. The following Boolean equations for a full adder can be de-
rived from the truth table and Boolean algebra:

COUT � (A � B) CIN � AB

� � (A � B) � CIN

25. Two half adders can be combined to make a full adder.
Operands A and B go to the first half adder. The sum output
of the first half adder and the carry input go to the inputs of
the second half adder. The carry outputs of both half adders
are combined in an OR gate.

26. Multiple full adders can be cascaded to make a parallel bi-
nary adder. Operands A1 and B1 are applied to the first full
adder. Carry bit C0 is grounded. A2 and B2 go to the second
adder stage, and so on. The carry output of one stage is cas-
caded to the carry input of the following stage. This connec-
tion is called ripple carry.

27. Ripple carry has the disadvantage of increasing the time re-
quired to generate an output result as more stages are
added. Fast carry, or look-ahead carry, examines all adder
inputs simultaneously and generates each internal and out-
put carry with a separate circuit. This makes the carry cir-
cuit wider, but flatter, thus reducing the delay time of the
circuit.

28. A parallel adder can be implemented in VHDL by creating a
design entity for a full adder, then using multiple instances of
the full adder as components in the parallel adder.

29. To use a component in a VHDL design hierarchy, we require
a design entity that defines the component, a component dec-
laration in the design entity that uses the component, and a
component instantiation statement for every instance of the
component in the higher-level design entity.

30. The general form of a design entity using components is:

ENTITY entity_name IS

PORT (input and output definitions);

END entity_name;

ARCHITECTURE arch_name OF entity_name IS

component declaration (s);

signal declaration(s);

BEGIN

Component instantiation(s);

Other statements;

END arch_name;

Glossary 269

G L O S S A R Y

1’s complement A form of signed binary notation in which
negative numbers are created by complementing all bits of a
number, including the sign bit.

10’s complement A way of writing decimal numbers where a
negative number is generated by adding 1 to its 9’s complement.

2’s complement A form of signed binary notation in which
negative numbers are created by adding 1 to the 1’s complement
form of the number.

8421 Code (or NBCD; natural binary coded decimal) A
BCD code that represents each digit of a decimal number by its
4-bit true binary value.

9’s complement A way of writing decimal numbers where a
number is made negative by subtracting each of its digits from 9
(e.g., �726 � 999 � 726 � 273 in 9’s complement).

Addend The number in an addition operation that is added to
another.

Alphanumeric code A code used to represent letters of the al-
phabet and numerical characters.

ASCII American Standard Code for Information Inter-
change. A 7-bit code for representing alphanumeric and con-
trol characters.

Augend The number in an addition operation to which another
number is added.

BCD Binary coded decimal. A code that represents each digit
of a decimal number by a 4-bit binary value.

BCD adder A parallel adder whose output is in groups of 4
bits, each group representing a BCD digit.

Borrow A digit brought back from a more significant position
when the subtrahend digit is larger than the minuend digit.

Carry A digit which is “carried over” to the next most signifi-
cant position when the sum of two single digits is too large to be
expressed as a single digit.

Carry bit A bit that holds the value of a carry (0 or 1) result-
ing from the sum of two binary numbers.

Cascade To connect an output of one device to a input of an-
other, often for the purpose of expanding the number of bits
available for a particular function.

Case shift Changing letters from capitals (UPPERCASE) to
small letters (lowercase) or vice versa.

Component A complete VHDL design entity that can be used
as a part of a higher-level file in a hierarchical design.

Component declaration statement A statement that defines
the input and output port names of a component used in a VHDL
design entity.

Component instantiation statement A statement that maps
port names of a VHDL component to the port names, internal
signals, or variables of a higher-level VHDL design entity.

Difference The result of a subtraction operation.

End-around carry An operation in 1’s complement subtrac-
tion where the carry bit resulting from a sum of two 1’s comple-
ment numbers is added to that sum.

Excess-3 code A BCD code that represents each digit of a dec-
imal number by a binary number derived by adding 3 to its 4-bit
true binary value. Excess-3 code has the advantage of being
“self-complementing.”

Expander buffer A MAX�PLUS II primitive that supplies an
inverted product term for general use within a CPLD.

Fast carry (or look-ahead carry) A gate network which gen-
erates a carry bit directly from all incoming operand bits, inde-
pendent of the operation of each full adder stage.

Full adder A circuit that will add a carry bit from another full
or half adder and two operand bits to produce a sum bit and a
carry bit.

GENERATE statement A VHDL construct that is used to
create repetitive portions of hardware.

Gray code A binary code which progresses such that only one
bit changes between two successive codes.

Half adder A circuit that will add two bits and produce a sum
bit and a carry bit.

Hierarchy A group of design entities associated in a series of
levels or layers in which complete designs form portions of an-
other, more general design entity. The more general design is
considered to be the higher level of the hierarchy.

Instantiate To use an instance of a component.

Magnitude bits The part of a signed binary number that tell us
how large the number is (i.e., its magnitude).

Minuend The number in a subtraction operation from which
another number is subtracted.

Operand A number upon which an arithmetic function oper-
ates (e.g., in the expression x � y � z, x and y are the operands).

Overflow An erroneous carry into the sign bit of a signed bi-
nary number which results from a sum larger than can be repre-
sented by the number of magnitude bits.

Parallel binary adder A circuit, consisting of n full adders,
which will add two n-bit binary numbers. The output consists of
n sum bits and a carry bit.

Port An input or output of a VHDL design entity or compo-
nent.

Ripple carry A method of passing carry bits from one stage of
a parallel adder to the next by connecting COUT of one full adder
to CIN of the following stage.

Self-complementing A code that automatically generates a
negative-equivalent (e.g., 9’s complement for a decimal code)
when all its bits are inverted.

Sign bit A bit, usually the MSB, that indicates whether a
signed binary number is positive or negative.

Signed binary arithmetic Arithmetic operations performed
using signed binary numbers.

Signed binary number A binary number of fixed length
whose sign is represented by one bit, usually the most signifi-
cant bit, and whose magnitude is represented by the remaining
bits.

270 C H A P T E R 6 • Digital Arithmetic and Arithemtic Circuits

Speed grade A specification that indicates the internal delay
time that can be expected of a CPLD.

Subtrahend The number in a subtraction operation that is sub-
tracted from another number.

Sum The result of an addition operation.

Sum bit (single-bit addition) The least significant bit of the
sum of two 1-bit binary numbers.

True-magnitude form A form of signed binary number
whose magnitude is represented in true binary.

Unsigned binary arithmetic Arithmetic operations performed
using unsigned binary numbers.

Unsigned binary number A binary number whose sign is not
indicated by a sign bit. A positive sign is assumed unless explic-
itly stated otherwise.

P R O B L E M S

Section 6.1 Digital Arithmetic

6.1 Add the following unsigned binary numbers.

a. 10101 � 1010

b. 10101 � 1011

c. 1111 � 1111

d. 11100 � 1110

e. 11001 � 10011

f. 111011 � 101001

6.2 Subtract the following unsigned binary numbers.

a. 1100 � 100

b. 10001 � 1001

c. 10101 � 1100

d. 10110 � 1010

e. 10110 � 1001

f. 10001 � 1111

g. 100010 � 10111

h. 1100011 � 100111

Section 6.2 Representing Signed Binary Numbers

6.3 Write the following decimal numbers in 8-bit true-magni-
tude, 1’s complement, and 2’s complement forms.

a. �110

b. 67

c. �54

d. �93

e. 0

f. �1

g. 127

h. �127

Section 6.3 Signed Binary Arithmetic

6.4 Perform the following arithmetic operations in the true-
magnitude (addition only), 1’s complement, and 2’s com-
plement systems. Use 8-bit numbers consisting of a sign
bit and 7 magnitude bits. (The numbers shown are in the
decimal system.)

Convert the results back to decimal to prove the cor-
rectness of each operation. Also demonstrate that the idea
of adding a negative number to perform subtraction is not
valid for the true-magnitude form.

a. 37 � 25

b. 85 � 40

c. 95 � 63

d. 63 � 95

e. �23 � 50

f. 120 � 73

g. 73 � 120

6.5 What are the largest positive and negative numbers, ex-
pressed in 2’s complement notation, that can be repre-
sented by an 8-bit signed binary number?

6.6 Perform the following signed binary operations, using 2’s
complement notation where required. State whether or
not sign bit overflow occurs. Give the signed decimal
equivalent values of the sums in which overflow does not
occur.

a. 01101 � 00110

b. 01101 � 10110

c. 01110 � 01001

d. 11110 � 00010

e. 11110 � 00010

6.7 Without doing any binary complement arithmetic, indi-
cate which of the following operations will result in 2’s
complement overflow. (Assume 8-bit representation con-
sisting of a sign bit and 7 magnitude bits.) Explain the
reasons for each choice.

a. �109 � 36

b. 109 � 36

c. 65 � 72

d. �110 � 29

e. 117 � 11

f. 117 � 11

6.8 Explain how you can know, by examining sign or
magnitude bits of the numbers involved, when over-
flow has occurred in 2’s complement addition or sub-
traction.

Section 6.4 Hexadecimal Arithmetic

6.9 Add the following hexadecimal numbers.

a. 27H � 16H

b. 87H � 99H

c. A55H � C5H

d. C7FH � 380H

e. 1FFFH � A80H

Problems 271

6.10 Subtract the following hexadecimal numbers.

a. F86H � 614H

b. E72H � 229H

c. 37FFH � 137FH

d. 5764H � ACBH

e. 7D30H � 5D33H

f. 5D33H � 7D30H

g. 813AH � A318H

Section 6.5 Numeric and Alphanumeric Codes

6.11 Convert the following decimal numbers to true binary,
8421 BCD code, and Excess-3 code.

a. 70910

b. 188910

c. 239510

d. 125910

e. 397210

f. 773010

6.12 Make a table showing the equivalent Gray codes corre-
sponding to the range from 010 to 3110.

6.13 Write your name in ASCII code.

6.14 Encode the following text into ASCII code: “10% off pur-
chases over $50. (Monday only)”

6.15 Decode the following string of ASCII code.

57 41 52 4E 49 4E 47 21 20 54 68 69 73 20 63 6F 6D

6D 61 6E 64 20 65 72 61 73 65 73 20 36 34 30 4D 20

6F 66 20 6D 65 6D 6F 72 79 2E

Section 6.6 Binary Adders and Subtractors

6.16 Write the truth table for a half adder, and from the table
derive the Boolean expressions for both Co (carry output)
and � (sum output) in terms of inputs A and B. Draw the
half adder circuit.

6.17 Write the truth table for a full adder, and from the table
derive the simplest possible Boolean expressions for
COUT and � in terms of A, B, and CIN.

6.18 From the equations in Problems 6.16 and 6.17, draw a
circuit showing a full adder constructed from two half
adders.

6.19 Evaluate the Boolean expression for � and COUT of
the full adder in Figure 6.7 for the following input
values. What is the binary value of the outputs in each
case?

a. A � 0, B � 0, CIN � 0

b. A � 0, B � 1, CIN � 0

c. A � 0, B � 1, CIN � 1

d. A � 1, B � 1, CIN � 1

6.20 Verify the summing operation of the circuit in Figure
6.10, as follows. Determine the output of each full adder
based on the inputs shown below. Calculate each sum
manually and compare it to the 5-bit output
(C4 �4 �3 �2 �1) of the parallel adder circuit.

a. A4 A3 A2 A1 � 0100, B4 B3 B2 B1 � 1001

b. A4 A3 A2 A1 � 1010, B4 B3 B2 B1 � 0110

c. A4 A3 A2 A1 � 0101, B4 B3 B2 B1 � 1101

d. A4 A3 A2 A1 � 1111, B4 B3 B2 B1 � 0111

6.21 Briefly describe the differences in the underlying design
strategies of the ripple carry adder and the fast carry
adder (i.e., what makes the fast carry faster than the ripple
carry?). What is the main limitation for the fast carry cir-
cuit?

6.22 Write the general form of the fast carry equation. Use it
to generate Boolean expression for C1, C2, and C3 for a
fast carry adder.

6.23 The following equation describes the carry output func-
tion for a parallel binary adder:

COUT � A4 B4 � A3 B3 (A4 � B4)

� A2 B2 (A4 � B4)(A3 � B3)

� A1 B1 (A4 � B4)(A3 � B3)(A2 � B2)

� CIN (A4 � B4)(A3 � B3)(A2 � B2)
(A1 � B1)

Briefly explain how to interpret the third term of this
equation.

6.24 Write a VHDL file for an 8-bit parallel adder, using eight
instances of a full adder component.

6.25 Create a simulation for the 8-bit adder of Problem 6.24,
showing a representative sample of sums. How many dif-
ferent sums would be required to show all possible com-
binations of inputs?

6.26 Write a VHDL file that creates a 12-bit adder using a
GENERATE statement.

6.27 Create a simulation file for the 12-bit adder of Problem
6.26 showing only one transition, as follows. Set input a
to 000 from 0 to 500 ns, then 001 from 500 ns to 1 �s.
Set input b to FFF from 0 to 1 �s. From the simulation,
determine the internal delays from a1 to each of the sum
bits. Confirm your observations with the delay matrix
from a timing analysis.

6.28 Use MAX�PLUS II to create a Graphic Design File for a
2’s complement subtractor based on a 4-bit parallel bi-
nary adder. Explain how the circuit generates the 2’s
complement of B for the subtraction A � B.

6.29 Use MAX�PLUS II to create a Graphic Design File for a
2’s complement adder/subtractor based on a 4-bit parallel
binary adder. Explain how the circuit is programmed to
add or subtract and how it produces the 2’s complement
of B for the subtraction A � B.

6.30 Use MAX�PLUS II to draw a circuit that will detect an
overflow condition in a 4-bit 2’s complement adder/
subtractor. The detector output should go HIGH upon
overflow detection. Draw the circuit truth table, explain
what all input and output variables are, and show any
Boolean equations you need to complete the circuit de-
sign.

6.31 Modify the 4-bit adder/subtractor drawn in Figure 6.15 to
include an overflow detection circuit.

272 C H A P T E R 6 • Digital Arithmetic and Arithemtic Circuits

6.32 Create a simulation for the 4-bit adder/subtractor with
overflow detection (Problem 6.31), using the following
representative hexadecimal input values: F � 1 � 10
(carry, but no overflow); 7 � 1 � 8 (overflow, but no
carry); 8 � 8 � 10 (carry and overflow); 0 � 1 � F (re-
sult � �1).

6.33 Modify the VHDL file for the 4-bit parallel binary
adder/subtractor (addsub4g.vhd) to include an overflow
detection circuit. Use two different methods.

6.34 What is the permissible range of values that a sum or dif-
ference, x, can have in a 16-bit parallel binary adder if it
is written as:

a. A signed binary number

b. An unsigned binary number

Section 6.7 BCD Adders

6.35 What is the maximum BCD sum of two 3-digit BCD
numbers plus an input carry? How many digits are
needed to display the result?

6.36 What is the maximum BCD sum of two 4-digit BCD
numbers plus an input carry? How many digits are
needed to display the result?

6.37 Based on the answers to Problems 6.35 and 6.36, formu-
late a general rule to calculate the maximum BCD sum of
two n-digit BCD numbers plus a carry bit.

6.38 Derive the Boolean expression for a BCD carry output as
a function of the sum of two BCD digits.

6.39 Draw the circuit for a binary-to-BCD code converter.

6.40 Write a VHDL file to implement a binary-to-BCD code
converter for a BCD adder. Use a selected signal assign-
ment or CASE statement.

6.41 Write a VHDL file that uses the binary-to-BCD code con-
verter of Problem 6.40 and a 4-bit parallel binary adder as
components in a BCD adder.

6.42 Write a VHDL file that uses a code converter and parallel
adder as components in a design that will add two 2-digit
BCD numbers and produce a 21⁄2 digit result.

6.43 Draw the block diagram of a circuit that will add two
3-digit BCD numbers and display the result as a series
of decimal digits. How many digits will the output dis-
play?

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 6.1a

6.1 101000; 6.2 100000.

Section 6.1b

6.3 11; 6.4 1

Section 6.3

6.5 11100000; 6.6 100000.

Section 6.4

6.7a 11701H 6.7b 1281H

Section 6.5

6.8 “True or False: 1/4 � 1/2”

Section 6.6a

6.9 Figures 6.32 and 6.33 show the propagation paths for the
carry bits.

Fast carry: 3 gates

Ripple carry: 8 gates

Section 6.6b

6.10a Signed: �2048 � x � �2047 (11 magnitude bits, 1 sign
bit)
6.10b Unsigned: 0 � x � �4095 (12 magnitude bits, no sign
bit: positive implied)

Section 6.7

6.11 Maximum BCD sum � 1001 1001 1001 � 1001 1001
1001 � 1 1001 1001 1000BCD � 199810. This sum requires a
3�

1
2

�-digit numerical display.

Answers to Section Review Problems 273

INPUT

OUTPUT

a1

c1 c1

b1 INPUT

AND2

AND2

OR2

OR2

INPUTa2

b2 INPUT

AND2

OR2

INPUTa3

b3 INPUT

AND2

OR2

INPUTa4

b4 INPUT

AND2

OR2

c0 INPUT

OUTPUTc2 c2AND2

OR3

AND3

AND2

OR4

OR6

GND

VCC

AND3

AND4

OUTPUTc3 c3

AND2

AND3

AND4

AND6

OUTPUTc4 c4

FIGURE 6.32
Fast Carry from A4/B4 to C4.

C0

C4

A1 � B1
A1B1

A2 � B2

A2B2

A3 � B3
A3B3

A4 � B4
A4B4

FIGURE 6.33
Ripple Carry from C0 to C4

275

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 7

Introduction to Sequential Logic

O U T L I N E

7.1 Latches

7.2 NAND/NOR Latches

7.3 Gated Latches

7.4 Edge-Triggered D
Flip-Flops

7.5 Edge-Triggered JK
Flip-Flops

7.6 Edge-Triggered T
Flip-Flops

7.7 Timing Parameters

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Explain the difference between combinational and sequential circuits.

• Define the set and reset functions of an SR latch.

• Draw circuits, function tables, and timing diagrams of NAND and NOR
latches.

• Explain the effect of each possible input combination to a NAND and a
NOR latch, including set, reset, and no change functions, as well as the am-
biguous or forbidden input condition.

• Design circuit applications that employ NAND and NOR latches.

• Describe the use of the ENABLE input of a gated SR or D latch as an en-
able/inhibit function and as a synchronizing function.

• Outline the problems involved with using a level-sensitive ENABLE input
on a gated SR or D latch.

• Explain the concept of edge-triggering and why it is an improvement over
level-sensitive enabling.

• Draw circuits, function tables, and timing diagrams of edge-triggered D,
JK, and T flip-flops.

• Describe the toggle function of a JK flip-flop and a T flip-flop.

• Describe the operation of the asynchronous preset and clear functions of D,
JK, and T flip-flops and be able to draw timing diagrams showing their
functions.

• Use MAX�PLUS II to create simple circuits and simulations with D
latches and D, JK, and T flip-flops.

• Create simple flip-flop designs using VHDL.

The digital circuits studied to this point have all been combinational circuits, that is, cir-
cuits whose outputs are functions only of their present inputs. A particular set of input

states will always produce the same output state in a combinational circuit.

276 C H A P T E R 7 • Introduction to Sequential Logic

This chapter will introduce a new category of digital circuitry: the sequential circuit.
The output of a sequential circuit is a function both of the present input conditions and the
previous conditions of the inputs and/or outputs. The output depends on the sequence in
which the inputs are applied.

We will begin our study of sequential circuits by examining the two most basic se-
quential circuit elements: the latch and the flip-flop, both of which are part of the general
class of circuits called bistable multivibrators. These are similar devices, each being used
to store a single bit of information indefinitely. The difference between a latch and a flip-
flop is the condition under which the stored bit is allowed to change.

Latches and flip-flops are also used as integral parts of more complex devices, such as
programmable logic devices (PLDs), usually when an input or output state must be stored.
�

7.1 Latches

Sequential circuit A digital circuit whose output depends not only on the present
combination of inputs, but also on the history of the circuit.

Latch A sequential circuit with two inputs called SET and RESET, which make
the latch store a logic 0 (reset) or 1 (set) until actively changed.

SET 1. The stored HIGH state of a latch circuit.
2. A latch input that makes the latch store a logic 1.

RESET 1. The stored LOW state of a latch circuit.
2. A latch input that makes the latch store a logic 0.

All the circuits we have seen up to this point have been combinational circuits. That is,
their present outputs depend only on their present inputs. The output state of a combina-
tional circuit results only from a combination of input logic states.

The other major class of digital circuits isthe sequential circuit. The present outputs
of a sequential circuit depend not only on its present inputs, but also on its past input states.

The simplest sequential circuit is the SR latch, whose logic symbol is shown in Figure
7.1a. The latch has two inputs, SET (S) and RESET (R), and two complementary outputs,
Q and Q�. If the latch is operating normally, the outputs are always in opposite logic states.

K E Y T E R M S

FIGURE 7.1
SR Latch (Active HIGH Inputs)

The latch operates like a momentary-contact pushbutton with START and STOP func-
tions, shown in Figure 7.2. A momentary-contact switch operates only when it is held
down. When released, a spring returns the switch to its rest position.

Suppose the switch in Figure 7.2 is used to control a motor starter. When you push the
START button, the motor begins to run. Releasing the START switch does not turn the
motor off; that can be done only by pressing the STOP button. If the motor is running,

7.1 • Latches 277

pressing the START button again has no effect, except continuing to let the motor run. If
the motor is not running, pressing the STOP switch has no effect, since the motor is already
stopped.

There is a conflict if we press both switches simultaneously. In such a case we are
trying to start and stop the motor at the same time. We will come back to this point
later.

The latch SET input is like the START button in Figure 7.2. The RESET input is like
the STOP button.

By definition:

A latch is set when Q � 1 and Q� � 0.
A latch is reset when Q � 0 and Q� � 1.

The latch in Figure 7.1 has active-HIGH SET and RESET inputs. To set the latch, make
R � 0 and make S � 1. This makes Q � 1 until the latch is actively reset, as shown in the
timing diagram in Figure 7.1b. To activate the reset function, make S � 0 and make R � 1.
The latch is now reset (Q � 0) until the set function is next activated.

Combinational circuits produce an output by combining inputs. In sequential circuits,
it is more accurate to think in terms of activating functions. In the latch described, S and R
are not combined by a Boolean function to produce a particular result at the output. Rather,
the set function is activated by making S � 1, and the reset function is activated by mak-
ing R � 1, much as we would activate the START or STOP function of a motor starter by
pressing the appropriate pushbutton.

The timing diagram in Figure 7.1b shows that the inputs need not remain active after
the set or reset functions have been selected. In fact, the S or R input must be inactive be-
fore the opposite function can be applied, in order to avoid conflict between the two func-
tions.

❘❙❚ EXAMPLE 7.1 Latches can have active-HIGH or active-LOW inputs, but in each case Q � 1 after the set
function is applied and Q � 0 after reset. For each latch shown in Figure 7.3, complete the
timing diagram shown. Q is initially LOW in both cases. (The state of Q before the first ac-
tive SET or RESET is unknown unless specified, since the present state depends on previ-
ous history of the circuit.)

N O T EFIGURE 7.2
Industrial Pushbutton (e.g.,
Motor Starter)

FIGURE 7.3
Example 7.1
SR Latch

278 C H A P T E R 7 • Introduction to Sequential Logic

SOLUTION The Q and Q� waveforms are shown in Figure 7.3. Note that the outputs re-
spond only to the first set or reset command in a sequence of several pulses.

❘❙❚ EXAMPLE 7.2 Figure 7.4 shows a latching HOLD circuit for an electronic telephone. When HIGH, the
HOLD output allows you to replace the handset without disconnecting a call in progress.

FIGURE 7.4
Example 7.2
Latching HOLD Button

The two-position switch is the telephone’s hook switch (the switch the handset pushes
down when you hang up), shown in the off-hook (in-use) position. The normally closed
pushbutton is a momentary-contact switch used as a HOLD button. The circuit is such that
the HOLD button does not need to be held down to keep the HOLD active. The latch “re-
members” that the switch was pressed, until told to “forget” by the reset function.

Describe the sequence of events that will place a caller on hold and return the call
from hold. Also draw timing diagrams showing the waveforms at the HOLD input, hook
switch inputs, S input, and HOLD output for one hold-and-return sequence. (HOLD out-
put � 1 means the call is on hold.)

SOLUTION To place a call on hold, we must set the latch. We can do so if we press and
hold the HOLD switch, then the hook switch. This combines two HIGHs—one from the
HOLD switch and one from the on-hook position of the hook switch—into the AND gate,
making S � 1 and R � 0. Note the sequence of events: press HOLD, hang up, release
HOLD. The S input is HIGH only as long as the HOLD button is pressed. The handset can
be kept on-hook and the HOLD button released. The latch stays set, as S � R � 0 (neither
SET not RESET active) as long as the handset is on-hook.

To restore a call, lift the handset. This places the hook switch into the off-hook posi-
tion and now S � 0 and R � 1, which resets the latch and turns off the HOLD condition.

Figure 7.5 shows the timing diagram for the sequence described.

FIGURE 7.5
Example 7.2
HOLD Timing Diagram

❘❙❚

7.2 • NAND/NOR Latches 279

❘❙❚ SECTION 7.1 REVIEW PROBLEM

7.1 A latch with active-HIGH S and R inputs is initially set. R is pulsed HIGH three times,
with S � 0. Describe how the latch responds.

7.2 NAND/NOR Latches
An SR latch is easy to build with logic gates. Figure 7.6 shows two such circuits, one made
from NOR gates and one from NANDs. The NAND gates in the second circuit are drawn
in DeMorgan equivalent form.

FIGURE 7.6
SR Latch Circuits

The two circuits both have the following three features:

1. OR-shaped gates

2. Logic level inversion between the gate input and output

3. Feedback from the output of one gate to an input of the opposite gate

During our examination of the NAND and NOR latches, we will discover why these
features are important.

A significant difference between the NAND and NOR latches is the placement of SET
and RESET inputs with respect to the Q and Q� outputs. Once we define which output is
Q and which is Q�, the locations of the SET and RESET inputs are automatically defined.

In a NOR latch, the gates have active-HIGH inputs and active-LOW outputs. When the
input to the Q gate is HIGH, Q � 0, since either input HIGH makes the output LOW.
Therefore, this input must be the RESET input. By default, the other is the SET input.

In a NAND latch, the gate inputs are active LOW (in DeMorgan equivalent form) and
the outputs are active HIGH. A LOW input on the Q gate makes Q � 1. This, therefore, is
the SET input, and the other gate input is RESET.

Since the NAND and NOR latch circuits have two binary inputs, there are four possi-
ble input states. Table 7.1 summarizes the action of each latch for each input combination.
The functions are the same for each circuit, but they are activated by opposite logic levels.

Table 7.1 NOR and NAND Latch Functions

S R Action (NOR Latch) S� R� Action (NAND Latch)

0 0 Neither SET nor RESET 0 0 Both SET and RESET
active; output does not active; forbidden condi-
change from previous tion
state

0 1 RESET input active 0 1 SET input active
1 0 SET input active 1 0 RESET input active

1 1 Both SET and RESET 1 1 Neither SET nor RESET
active; forbidden condi- active; output does not
tion change from previous

state

280 C H A P T E R 7 • Introduction to Sequential Logic

We will examine the NAND latch circuit for each of the input conditions in Table 7.1.
The analysis of a NOR latch is similar and will be left as an exercise.

NAND Latch Operation

Figure 7.7 shows a NAND latch in its two possible stable states. In each case the inputs S�
and R� are both HIGH (inactive).

S 1�
Q 1

1

�

0

R 1�
Q 0� Q 1�

a. Set

S 1�
Q 0

0

�

1

R 1�

b. Reset

FIGURE 7.7
NAND Latch Stable States

Figure 7.7a shows the latch in its SET condition (Q � 1). The feedback connections
from each gate output to the input of the opposite gate keep the latch in a stable condition.
The upper gate has a LOW on the “inner” input. Since, for a NAND gate, either input LOW
makes the output HIGH, this makes Q � 1. This HIGH value is fed to the gate on the other
side of the latch. The lower gate has both inputs HIGH, thus keeping its output LOW. The
LOW at Q� feeds back to the upper gate, forming a closed loop of consistent logic levels.
There is no tendency for the outputs to change under these conditions.

Figure 7.7b shows a similar state for the latch in a RESET condition (Q � 0). As with
the SET state, the stability of the latch depends on the feedback connections. The logic val-
ues of the latch gate inputs are the same as before, except that the LOW input is on the
lower gate, not the upper gate as in the SET condition.

Figure 7.8 shows a NAND latch as a Graphic Design File created with MAX�PLUS
II. The inputs are labeled nS and nR and one output as nQ as we cannot enter input names
with bars over them. (BOR2 � “Bubbled OR, 2-inputs”.)

nS
INPUT

OUTPUT

OUTPUT
INPUT

BOR2

BOR2

nR

Q

nQ

FIGURE 7.8
Graphic Design File representation of a NAND Latch.

The documentation for MAX�PLUS II recommends that you do not create your
own latch circuits or similar cross-coupled structures. Rather, you should use primi-
tives such as LATCH, or components such as lpm_latch, which can be used in gdf
or vhd files. We will use the design in Figure 7.8 only to illustrate the function of a
NAND latch and to generate some timing data with the MAX�PLUS II simulator.

In order to make MAX�PLUS II synthesize this circuit as we have drawn it in Figure
7.8, we must select Global Project Logic Synthesis from the Assign Menu (Figure 7.9).

N O T E

7.2 • NAND/NOR Latches 281

In the resulting dialog box (Figure 7.10), we must choose the WYSIWYG (What You See
Is What You Get) synthesis style and check the box that says Multi-Level Synthesis for
MAX5000/7000 Devices.

FIGURE 7.9
Assign Menu

FIGURE 7.10
Choosing WYSIWYG Synthesis Style

When we compile the graphic file, MAX�PLUS II synthesizes the following equa-
tions, which we can read in the project report file:

** EQUATIONS **

nR : INPUT;

nS : INPUT;

—— Node name is ‘nQ’ � ‘:3’

—— Equation name is ‘nQ’, type is output

nQ � LCELL(_EQ001 $ GND);

_EQ001 � !nR

!Q;

—— Node name is ‘Q’ � ‘:2’

—— Equation name is ‘Q’, type is output

Q � LCELL (_EQ002 $ GND);

_EQ002 � !nS

!nQ;

We can rewrite the synthesized latch equations as:

Q � n�S� � n�Q�
nQ � n�R� � Q�

➥ nd_latch.gdf

282 C H A P T E R 7 • Introduction to Sequential Logic

When we run the MAX�PLUS II Timing Analyzer, we get the delay matrix shown in
Figure 7.11. The delays are symmetrical for this circuit. The delay from nS to Q (7.5 ns) is
through one gate; from nS to nQ (12.5 ns) is through two gates. These values are the same
for the path from nR to nQ (7.5 ns; one gate) and from nR to Q (12.5 ns; two gates). We can
see these changes on simulation waveforms for the SET and RESET functions.

FIGURE 7.11
NAND Latch Delay Matrix (WYSIWYG Synthesis)

Figures 7.12 and 7.13 show the transition of a NAND latch from the RESET to the SET
condition. In Figure 7.12a, the latch is stable in the RESET condition (Q � 0) at time t � 0
(i.e., before a SET pulse is applied to the latch). At time t � 0, the S� input goes LOW (Fig-
ure 7.12b) and 7.5 ns later, the output Q goes HIGH (Figure 7.12c). This applies a HIGH
to the lower gate in the latch and at t � 12.5 ns (Figure 7.12d), the Q� output goes LOW,
closing the loop. The latch is now in a new stable configuration and the S� input can go back
HIGH, as shown in Figure 7.12e.

Q 0�

S 0�
Q 1

1

�

0

R 1�
Q 0�

d. t � 12.5ns

S 1�
Q 1�

R 1�

e. Stable (t � 12.5ns)

1

1

S 1�
Q 0

0

�

1

R 1�
Q 1� Q 0�

a. Stable (t � 0)

S 0�
Q 1�

R 1�

b. Initiate set (t � 0)

Q 1�

S 0�
Q 1�

R 1�

c. t � 7.5ns

FIGURE 7.12
RESET-to-SET transition

www.electronictech.com

7.2 • NAND/NOR Latches 283

The waveforms in Figure 7.13 also show this transition. The simulation window has a
2.5 ns grid, so three grid spaces are equivalent to 7.5 ns and five grid spaces to 12.5 ns. The
waveforms show Q going HIGH 7.5 ns after nS goes LOW, followed by nQ going LOW at
12.5 ns after nS.

Figures 7.14 and 7.15 show the same thing for the RESET function. The latch is in a
stable SET condition at time t � 0 (Figure 7.14a). Input R� goes LOW at t � 0 (Figure
7.14b). At time t � 7.5 ns, Q� goes HIGH, which is transferred to the upper gate in the latch
circuit Figure 7.14c). Since both inputs of the upper gate are now HIGH, Q goes LOW at
time t � 12.5 ns (Figure 7.14d). At this point the latch is stable in the RESET condition and
the input R� can return to the HIGH (inactive) state, as shown in Figure 7.14e. Figure 7.15
shows the simulation waveforms for this transition.

FIGURE 7.13
NAND Latch SET function
simulation

S 1�
Q 0

0

�

1

R 0�
Q 1� Q 1�

d. t � 12.5ns

S 1�
Q 0

0

�

1

R 1�

e. Stable (t � 12.5ns)

S 1�
Q 1

1 1

1

�

0

1

0

R 1�
Q 0� Q 0�

a. Stable (t � 0)

S 1�
Q 1�

R 0�

b. Initiate reset (t � 0)

Q 1�

S 1�
Q 1�

R 0�

c. t � 7.5ns

FIGURE 7.14
SET-to-RESET Transition

FIGURE 7.15
NAND latch RESET function
simulation

284 C H A P T E R 7 • Introduction to Sequential Logic

Note that the latch is not stable in its new condition until the new logic levels have
propagated through both gates. Figure 7.16 shows the result of a RESET pulse that only
lasts for 7.5 ns. This pulse is too short to allow both gates to change states. The outputs
both oscillate, since the changing logic levels never “catch up” as they move around the
latch. This is due to the fact that both paths (nS-Q-nQ and nR-nQ-Q) are the same length.
If one path were slightly longer, the logic level controlled by the longer path would domi-
nate and the latch would stabilize in one state or the other.

FIGURE 7.16
NAND latch oscillation due to a
RESET pulse that is too short

Figure 7.17 shows a NAND latch with S� � R� � 0. This implies that both SET and
RESET functions are active. Since a NAND gate requires at least one input LOW to make
the output HIGH, both outputs respond by going HIGH. This condition is not unstable in
and of itself, but instability can result when the inputs change.

There are three possible results when the outputs go back to the HIGH state.

1. The SET input goes HIGH before the RESET input. In this case the latch resets, as
RESET is the last input active. This is shown in the simulation in Figure 7.18.

S 0�
Q 1

1

�

1

R 0�
Q 1�

FIGURE 7.17
NAND Latch Forbidden State

FIGURE 7.18
SET goes HIGH before RESET

FIGURE 7.19
RESET goes HIGH before SET

2. The RESET input goes HIGH before SET. In this case, the latch sets, as shown in Fig-
ure 7.19.

7.2 • NAND/NOR Latches 285

3. The SET and RESET inputs go HIGH at the same time. This is an unstable case. Figure
7.20 shows how the latch will oscillate under this condition. When the inputs S� and R�
are both LOW (Figure 7.20a), both latch outputs are HIGH. When S� and R� go HIGH
(Figure 7.20b), all gate inputs are HIGH. This makes both outputs LOW (Figure 7.20c).
The LOWs transfer across the latch to the opposite gates and, after a delay, make both
outputs HIGH (Figure 7.20d). At this point, oscillations will be sustained until the latch
is SET or RESET. The simulation waveforms in Figure 7.21 show the oscillatory condi-
tion of the latch outputs.

Q 0�

S 1�
Q 1

1

�

1

R 1�
Q 1�

d. t � 12.5ns

S 1�
Q 0

0

�

0

R 1�

e. t � 17.5ns

0

0

S 0�
Q 1

1

�

1

1

1

R 0�
Q 1� Q 1�

a. t � 0

S 1�
Q 1�

R 1�

b. t � 0

Q 0�

S 1�
Q 0�

R 1�

c. t � 7.5ns

FIGURE 7.20
NAND Latch Forbidden State Transition

In practice, the oscillatory condition of Figure 7.21 is unlikely to be sustained for very
long. One of the two gates is likely to be slightly faster than the other, which will allow one
state or the other to dominate.

FIGURE 7.21
SET and RESET go HIGH simultaneously

The operation of the NAND latch can be summarized in a function table, shown in
Table 7.2. The notation Qt�1 indicates that the column shows the value of Q after the spec-
ified input is applied. Qt indicates the present state of the Q input.* Thus, the entry for the
no change state indicates that after the inputs S� � 0, R� � 0 are applied, the next state of the
output is the same as its present state.

*Many sources (such as data sheets) use the notation Q0 to refer to the previous state of Q. We will
use the notation indicated (Qt for present state and Qt�1 for next state) so as to be able to reserve Q0

for the least significant bit of a circuit requiring multiple Q outputs.

286 C H A P T E R 7 • Introduction to Sequential Logic

Table 7.3 shows the function table for the NOR latch.

Practical Synthesis in MAX�PLUS II

The NAND latch shown previously (Figure 7.8) was synthesized in MAX�PLUS II, using
the WYSIWYG synthesis style. We did this so as to be able to use the MAX�PLUS II
simulation tool to get waveforms for a standard NAND latch. However, if we allow
MAX�PLUS II to synthesize the latch circuit in the Normal synthesis style, the software
will choose a more stable configuration, shown in Figure 7.22.

Table 7.2 NAND Latch Function Table

S� R� Qt�1 Q�t�1 Function

0 0 1 1 Forbidden
0 1 1 0 Set
1 0 0 1 Reset
1 1 Qt Q�t No Change

Table 7.3 NOR Latch Function Table

S R Qt�1 Q�t�1 Function

0 0 Qt Q�t No Change
0 1 0 1 Reset
1 0 1 0 Set
1 1 0 0 Forbidden

Vcc

nQ

nS

nR

Q
FIGURE 7.22
NAND Latch as synthesized by
MAX�PLUS II (NORMAL
synthesis)

The equations for the circuit in Figure 7.22 from the MAX�PLUS II report file are
given as:

** EQUATIONS **

nR : INPUT;

nS : INPUT;

—— Node name is ‘nQ’

—— Equation name is ‘nQ’, location is LC117, type is output.

nQ � LCELL(_EQ001 $ VCC);

_EQ001 � nR & Q;

—— Node name is ´Q´ � ´�2�1´

—— Equation name is ´Q´, location is LC115, type is output.

Q � LCELL(_EQ002 $!ns);

_EQ002 � nR & nS & Q;

We can rewrite the above equations as:

Q � (nR � nS � Q) � n�S�
nQ � (nR � Q) � 1 � n�R�����Q�

Without going into a detailed analysis, we will just note that the latching occurs
through a combination of the XOR gate at Q and the feedback from the Q output to the 3-
input AND. The lower AND/XOR structure simply serves to invert the Q output to provide
a complementary value at nQ.

This configuration is more stable because both SET and RESET functions go through
the same path (the 3-input AND gate). Delay is the same from nS to Q and from nR to Q.
In the WYSIWYG version, the path is equal from nS to nQ and from nR to Q, but not from
nS to Q and nR to Q. The SET and RESET pulses thus go through different paths in the

7.2 • NAND/NOR Latches 287

WYSIWYG synthesis, resulting in unequal delays from the inputs to the Q output, which
can lead to instability.

Latch as a Switch Debouncer

Pushbutton or toggle switches are sometimes used to generate pulses for digital circuit in-
puts, as illustrated in Figure 7.23. However, when a switch is operated and contact is made
on a new terminal, the contact, being mechanical, will bounce a few times before settling
into the new position. Figure 7.23d shows the effect of contact bounce on the waveform for
a pushbutton switch. The contact bounce is shown only on the terminal where contact is
being made, not broken.

FIGURE 7.23
Switches as Pulse Generators

Contact bounce can be a serious problem, particularly when a switch is used as an in-
put to a digital circuit that responds to individual pulses. If the circuit expects to receive
one pulse, but gets several from a bouncy switch, it will behave unpredictably.

A latch can be used as a switch debouncer, as shown in Figure 7.24a. When the push-
button is in the position shown, the latch is set, since S� � 0 and R� � 1. (Recall that the
NAND latch inputs are active LOW.) When the pushbutton is pressed, the R� contact

FIGURE 7.24
NAND Latch as a Switch
Debouncer

288 C H A P T E R 7 • Introduction to Sequential Logic

bounces a few times, as shown in Figure 7.24b. However, on the first bounce, the latch is
reset. Any further bounces are ignored, since the resulting input state is either S� � R� � 1
(no change) or S� � 1, R� � 0 (reset).

Similarly, when the pushbutton is released, the S� input bounces a few times, setting the
latch on the first bounce. The latch ignores any further bounces, since they either do not
change the latch output (S� � R� � 1) or set it again (S� � 0, R� � 1). The resulting waveforms
at Q and Q� are free of contact bounce and can be used reliably as inputs to digital sequen-
tial circuits.

❘❙❚ EXAMPLE 7.3 A NOR latch can be used as a switch debouncer, but not in the same way as a NAND latch.
Figure 7.25 shows two NOR latch circuits, only one of which works as a switch debouncer.
Draw a timing diagram for each circuit, showing R, S, Q, and Q�, to prove that the circuit in
Figure 7.25b eliminates switch contact bounce but the circuit in Figure 7.25a does not.

FIGURE 7.25
Example 7.3
NOR Latch Circuits

SOLUTION Figure 7.26 shows the timing diagrams of the two NOR latch circuits. In the
circuit in Figure 7.25a, contact bounce causes the latch to oscillate in and out of the for-
bidden state of the latch (S � R � 1). This causes one of the two outputs to bounce for each
contact closure. (Use the function table of the NOR latch to examine each part of the tim-
ing diagram to see that this is so.)

By making the resistors pull down rather than pull up, as in Figure 7.25b, the latch os-
cillates in and out of the no change state (S � R � 0) as a result of contact bounce. The first

FIGURE 7.26
Example 7.3
NOR Latch Circuits

7.3 • Gated Latches 289

bounce on the SET terminal sets the latch, and other oscillations are disregarded. The first
bounce on the RESET input resets the latch, and further pulses on this input are ignored.

The principle illustrated here is that a closed switch must present the active input level
to the latch, since switch bounce is only a problem on contact closure. Thus, a closed
switch must make the input of a NOR latch HIGH or the input of a NAND latch LOW to
debounce the switch waveform.

The NOR latch is seldom used in practice as a switch debouncer. The pull-down re-
sistors need to be about 500 � or less to guarantee a logic LOW at the input of a
TTL NOR gate. In such a case, a constant current of about 10 mA flows through the
resistor connected to the normally closed portion of the switch. This value is unac-
ceptably high in most circuits, as it draws too much idle current from the power
supply. For this reason, the NAND latch, which uses higher-value pull-up resistors
(about 1 k� or larger) and therefore draws less idle current, is preferred for a
switch debouncer.

❘❙❚

❘❙❚ SECTION 7.2 REVIEW PROBLEM

7.2 Why is the input state S � R � 1 considered forbidden in the NOR latch? Why is the
same state in the NAND latch the no change condition?

7.3 Gated Latches

Gated SR latch An SR latch whose ability to change states is controlled by an
extra input called the ENABLE input.

Steering gates Logic gates, controlled by the ENABLE input of a gated latch, that
steer a SET or RESET pulse to the correct input of an SR latch circuit.

Transparent latch (gated D latch) A latch whose output follows its data input
when its ENABLE input is active.

Gated SR Latch

It is not always desirable to allow a latch to change states at random times. The circuit
shown in Figure 7.27, calleda gated SR latch, regulates the times when a latch is allowed
to change state.

The gated SR latch has two distinct subcircuits. One pair of gates is connected as an
SR latch. A second pair, called the steering gates, can be enabled or inhibited by a control
signal, called ENABLE, allowing one or the other of these gates to pass a SET or RESET
signal to the latch gates.

The ENABLE input can be used in two principal ways: (1) as an ON/OFF signal, and
(2) as a synchronizing signal.

Figure 7.27b shows the ENABLE input functioning as an ON/OFF signal. When EN-
ABLE � 1, the circuit acts as an active-HIGH latch. The upper gate converts a HIGH at S
to a LOW at S�, setting the latch. The lower gate converts a HIGH at R to a LOW at R�, thus
resetting the latch.

When ENABLE � 0, the steering gates are inhibited and do not allow SET or RESET
signals to reach the latch gate inputs. In this condition, the latch outputs cannot change.

K E Y T E R M S

N O T E

290 C H A P T E R 7 • Introduction to Sequential Logic

Figure 7.27c shows the ENABLE input as a synchronizing signal. A periodic pulse
waveform is present on the ENABLE line. The S and R inputs are free to change at ran-
dom, but the latch outputs will change only when the ENABLE input is active. Since the
ENABLE pulses are equally spaced in time, changes to the latch output can occur only at
fixed intervals. The outputs can change out of synchronization if S or R change when
ENABLE is HIGH. We can minimize this possibility by making the ENABLE pulses as
short as possible.

Table 7.4 represents the function table for a gated SR latch.

FIGURE 7.27
Gated SR Latch

Table 7.4 Gated SR Latch Function Table

EN S R Qt�1 Q�t�1 Function

1 0 0 Qt Q�t No change
1 0 1 0 1 Reset
1 1 0 1 0 Set
1 1 1 0 0 Forbidden
0 X X Qt Q�t Inhibited

7.3 • Gated Latches 291

❘❙❚ EXAMPLE 7.4 Figure 7.28 shows two gated latches with the same S and R input waveforms but different
ENABLE waveforms. EN1 has a 50% duty cycle. EN2 has a duty cycle of 16.67%.

Draw the output waveforms, Q1 and Q2. Describe how the length of the ENABLE
pulse affects the output of each latch, assuming that the intent of each circuit is to synchro-
nize the output changes to the beginning of the ENABLE pulse.

FIGURE 7.28
Example 7.4
Effect of ENABLE Pulse Width

SOLUTION Figure 7.28b shows the completed timing diagram. The longer ENABLE
pulse at latch 1 allows the output to switch too soon during pulses 1 and 4. (“Too soon”
means before the beginning of the next ENABLE pulse.) In each of these cases, the S and R
inputs change while the ENABLE input is HIGH. This premature switching is eliminated in
latch 2 because the S and R inputs change after the shorter ENABLE pulse is finished. A
shorter pulse gives less chance for synchronization error, since the time for possible output
changes is minimized.

❘❙❚

Transparent Latch (Gated D Latch)

Figure 7.29 shows the equivalent circuit of a gated D (“data”) latch, or transparent latch.
This circuit has two modes. When the ENABLE input is HIGH, the latch is transparent be-
cause the output Q goes to the level of the data input, D. (We say, “Q follows D.”) When
the ENABLE input is LOW, the latch stores the data that was present at D when ENABLE
was last HIGH. In this way, the latch acts as a simple memory circuit.

292 C H A P T E R 7 • Introduction to Sequential Logic

The latch in Figure 7.29 is a modification of the gated SR latch, configured so that the
S and R inputs are always opposite. Under these conditions, the states S � R � 0 (no
change) and S � R � 1 (forbidden) can never occur. However, the equivalent of the no
change state happens when the ENABLE input is LOW, when the latch steering gates are
inhibited.

Figure 7.30 shows the operation of the transparent latch in the inhibit (no change), set,
and reset states. When the latch is inhibited, the steering gates block any LOW pulses to the
latch gates; the latch does not change states, regardless of the logic level at D.

FIGURE 7.29
Transparent Latch

FIGURE 7.30
Operation of Transparent Latch

If EN � 1, Q follows D. When D � 1, the upper steering gate transmits a LOW to the
SET input of the latch and Q � 1. When D � 0, the lower steering gate transmits a LOW
to the RESET input of the output latch and Q � 0.

Table 7.5 shows the function table for a transparent latch.

Table 7.5 Function Table of a Transparent Latch

EN D Qt�1 Q�t�1 Function Comment

0 X Qt Q�t No Change Store

1 0 0 1 Reset Transparent
1 1 1 0 Set

7.3 • Gated Latches 293

Implementing D Latches in MAX�PLUS II

A D latch can be implemented in MAX�PLUS II as a primitive in a Graphic Design File
or in a VHDL design entity. It can also be created with a behavioral or structural descrip-
tion in a VHDL file.

Figure 7.31 shows a D latch primitive in a MAX�PLUS II Graphic Design File. Fig-
ure 7.32 shows a simulation of the latch. From 0 to 500 ns, ENABLE is HIGH and the latch
is in the transparent mode (Q follows D). When ENABLE goes LOW, the last value of D (0)
is stored until ENABLE goes high again, just before 800 ns. When ENABLE goes LOW
again, a new value of D (1) is stored until the end of the simulation.

Q

LATCH

INPUTD
INPUTENA

OUTPUT Q
D

ENA

FIGURE 7.31
D-Latch in a MAX�PLUS II Graphic Design File

FIGURE 7.32
Simulation for a D Latch

➥ d_latch.gdf
d_latch.scf

InVHDL, a PROCESS statement is concurrent, but the statements inside the PROCESS
are sequential. In other words, anything described by a PROCESS acts like a separate compo-
nent in a design entity. However, the interior of the component so described acts as a sequen-
tial circuit. Since the behavior of a D latch is sequential, its description can be created inside a
PROCESS. (You can pull a latch out of a bin of parts and connect it in a circuit, but the in-
side of the part is sequential.) The following VHDL code describes a D latch.

—— d_lch.vhd

—— D latch with active-HIGH level-sensitive enable

ENTITY d_lch IS

PORT(

d, ena : IN BIT;

q : OUT BIT);

END d_lch;

ARCHITECTURE a OF d_lch IS

BEGIN

PROCESS (d, ena)

BEGIN

IF (ena � ´1´) THEN

q �� d;

END IF;

END PROCESS;

END a;

➥ d_lch.vhd
d_lch.scf

294 C H A P T E R 7 • Introduction to Sequential Logic

Another method, recommended by the MAX�PLUS II documentation, is to instanti-
ate a LATCH primitive in a VHDL file. The primitive is contained in the altera library, in
a package called maxplus2. The component declaration for this primitive is:

COMPONENT LATCH

PORT (d : IN STD_LOGIC;

ena : IN STD_LOGIC;

q : OUT STD_LOGIC);

END COMPONENT;

Since the component declaration is in the maxplus2 package, you do not have to de-
clare it in the file in which you are using it. A VHDL file that uses the latch primitive is
listed next. The component declaration uses STD LOGIC types, so we must include the
type definitions in the ieee library (std_logic_1164 package).

—— lch_prim.vhd

—— D latch with active-HIGH level-sensitive enable

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY lch_prim IS

PORT(

d_in, enable : IN STD_LOGIC;

q_out : OUT STD_LOGIC);

END lch_prim;

ARCHITECTURE a OF lch_prim IS

BEGIN

—— Instantiate a latch from a MAX�PLUS II primitive

latch_primitive: latch

PORT MAP (d �� d_in,

ena �� enable,

q �� q_out);

END a;

More information about MAX�PLUS II primitives can be found in MAX�PLUS II
Help. In the Help menu, select Primitives. By clicking on the name of a particular primi-
tive, you can determine whether it can be instantiated in a VHDL file and what its compo-
nent declaration is, if available.

❘❙❚ EXAMPLE 7.5 A system for monitoring automobile traffic is set up at an intersection, with four sensors,
placed as shown in Figure 7.33. Each sensor monitors traffic for a particular direction.
When a car travels over a sensor, it produces a logic HIGH. The status of the sensor system

➥ lch_prim.vhd

FIGURE 7.33
Example 7.5
Sensor Placement in a Traffic
Intersection

7.3 • Gated Latches 295

is captured for later analysis by a set of D latches, as shown in Figure 7.34. A timing pulse
enables the latches once every five seconds and thus stores the system status as a “snap-
shot” of the traffic pattern.

Figure 7.35 shows the timing diagram of a typical traffic pattern at the intersection.
The D inputs show the cars passing through the intersection in the various lanes. Complete
this timing diagram by drawing the Q outputs of the latches.

How should we interpret the Q output waveforms?

1

ENA

Data Logging SystemSensors

Timing
Pulse

D1 Q1

2

ENA

D2 Q2

3

ENA

D3 Q3

4

ENA

D4

Q1

Q2

Q3

Q4Q4

FIGURE 7.34
Example 7.5
D Latch Collection of Data

FIGURE 7.35
Example 7.5
Latch Configuration and Timing
Diagram

296 C H A P T E R 7 • Introduction to Sequential Logic

SOLUTION Figure 7.35 shows the completed timing diagram. The ENABLE input
synchronizes the random sensor pattern to a 5-second standard interval. A HIGH on any Q
output indicates a car over a sensor at the beginning of the interval. For example, at the
beginning of the first interval, there is a car in the northbound lane (Q1) and one in the
southbound lane (Q2). Similar interpretations can be made for each interval.

❘❙❚

Multi-bit Latches in VHDL

Library of Parameterized Modules (LPM) A standardized set of components
for which certain properties can be specified when the component is instantiated.

Parameter (in an LPM component) A property of a component that can be
specified when the component is instantiated.

Generic map A VHDL construct that maps one or more parameters of a compo-
nent to a value for that instance of the component.

Port map A VHDL construct that maps the name of a port in a component to the
name of a port, variable, or signal in a design entity that uses the component.

We can easily use VHDL to implement latches with multiple D inputs and Q outputs, but
with a common ENABLE line, as in Figure 7.34. Three approaches are:

1. Use a behavioral description, as we did earlier for a single latch (d_lch.vhd). Use
STD_LOGIC_VECTOR types for D and Q, rather than STD_LOGIC.

2. Altera recommends using a latch primitive or predefined component, rather than cre-
ating your own latch structures. We can use multiple LATCH primitives, instantiated
by a GENERATE statement, as we did for multiple instances of a full adder in
Chapter 6.

3. Use a latch component from the Library of Parameterized Modules (LPM). These
components are specified in the lpm_components package in the lpm library.

Certain properties of an LPM component, such as the number of inputs or outputs,
can be specified when the component is instantiated. These properties are referred to as
parameters, and are listed in a generic map. For example, to make the latch output
and input four bits wide, we set the parameter called LPM_WIDTH to a value of 4.
The various parameters of an LPM component can be found in the LPM Quick Refer-
ence on the CD that accompanies this book or in the MAX�PLUS II Help menu under
Megafunctions/LPM.

An input or output of an LPM component is called a port. A port map is used to make
a correspondence between the port names in the component declaration and the port names
used in the file containing the component. Since LPM components are declared in a sepa-
rate package, we must refer to the MAX�PLUS II Help or the LPM Quick Reference to
determine the port names for a component. LPM components are instantiated the same as
any other component.

The three VHDL files that follow each specify a 4-bit latch with common enable, each
using one of the above methods.

Behavioral Description:

—— ltch4bhv.vhd

—— D latch with active-HIGH level-sensitive enable

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

K E Y T E R M S

7.3 • Gated Latches 297

ENTITY ltch4bhv IS

PORT(d : IN STD_LOGIC_VECTOR (3 downto 0);

enable : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR (3 downto 0));

END ltch4bhv;

ARCHITECTURE a OF ltch4bhv IS

BEGIN

PROCESS (enable, d)

BEGIN

IF (enable � ´1´) THEN

q �� d;

END IF;

END PROCESS;

END a;

4 LATCH Primitives and a GENERATE Statement:

—— ltch4prm.vhd

—— D latch with active-HIGH level-sensitive enable

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY ltch4prm IS

PORT(d_in : IN STD_LOGIC_VECTOR (3 downto 0);

enable : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR (3 downto 0));

END ltch4prm;

ARCHITECTURE a OF ltch4prm IS

BEGIN

—— Instantiate a latch from a MAX�PLUS II primitive

latch4:

FOR i IN 3 downto 0 GENERATE

latch_primitive: latch

PORT MAP (d �� d_in (i), ena �� enable, q �� q_out (i));

END GENERATE;

END a;

LPM Latch:

—— ltch4lpm.vhd

—— 4-BIT D latch with active-HIGH level-sensitive enable

—— Uses a latch component from the Library of Parameterized

—— Modules (LPM)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY ltch4lpm IS

PORT(d_in : IN STD_LOGIC_VECTOR (3 downto 0);

enable : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR (3 downto 0));

END ltch4lpm;

➥ ltch4bhv.vhd

➥ ltch4prm.vhd

➥ ltch4lpm.vhd
ltch4lpm.scf

298 C H A P T E R 7 • Introduction to Sequential Logic

ARCHITECTURE a OF ltch4lpm IS

BEGIN

—— Instantiate latch from an LPM component

latch4: lpm_latch

GENERIC MAP (LPM_WIDTH �� 4)

PORT MAP (data �� d_in,

gate �� enable,

q �� q_out);

END a;

All three files can be tested with the same simulation, shown in Figure 7.36. The in-
puts, d_in, represent a 4-bit group of signals, as do the outputs, q_out. An increasing
count, from 5 to C (0101 to 1100) is applied to d_in. This count contains both states (0 and
1) for each input bit. For each applied input state, the output bus, q_out, does not change
until the enable line goes HIGH.

FIGURE 7.36
Simulation of a 4-bit D Latch

❘❙❚ SECTION 7.3 REVIEW PROBLEM

7.3 Write the VHDL code for a 16-bit latch with common active-HIGH enable, using
MAX�PLUS II latch primitives.

7.4 Edge-Triggered D Flip-Flops

Edge The HIGH-to-LOW (negative edge) or LOW-to-HIGH (positive edge) tran-
sition of a pulse waveform.

CLOCK An enabling input to a sequential circuit that is sensitive to the positive-
or negative-going edge of a waveform.

Edge-triggered Enabled by the positive or negative edge of a digital waveform.

Edge-sensitive Edge-triggered.

Level-sensitive Enabled by a logic HIGH or LOW level.

Flip-flop A sequential circuit based on a latch whose output changes when its
CLOCK input receives an edge.

In Example 7.4, we saw how a shorter pulse width at the ENABLE input of a gated latch in-
creased the chance of the output being synchronized to the ENABLE pulse waveform. This
is because a shorter ENABLE pulse gives less chance for the SET and RESET inputs to
change during the time the latch is enabled.

A logical extension of this idea is to enable the latch for such a small time that the
width of the ENABLE pulse is almost zero. The best approximation we can make to this is
to allow changes to the circuit output only when an enabling, or CLOCK, input receives the
edge of an input waveform. An edge is the part of a waveform that is in transition from

K E Y T E R M S

7.4 • Edge-Triggered D Flip-Flops 299

LOW to HIGH (positive edge) or HIGH to LOW (negative edge), as shown in Figure 7.37.
We can say that a device enabled by an edge is edge-triggered or edge-sensitive.

FIGURE 7.37
Edges of a CLOCK Waveform

Since the CLOCK input enables a circuit only while in transition, we can refer to it as
a “dynamic” input. This is in contrast to the ENABLE input of a gated latch, which is level-
sensitive or “static,” and will enable a circuit for the entire time it is at its active level.

Latches vs. Flip-Flops

Edge detector A circuit in an edge-triggered flip-flop that converts the active
edge of a CLOCK input to an active-level pulse at the internal latch’s SET and RE-
SET inputs.

A gated latch with a clock input is called a flip-flop. Although the distinction is not always
understood, we will define a latch as a circuit with a level-sensitive enable (e.g., gated D
latch) or no enable (e.g., NAND latch) and a flip-flop as a circuit with an edge-triggered
clock (e.g., D flip-flop). A NAND or NOR latch is sometimes called an SR flip-flop. By our
definition this is not correct, since neither of these circuits has a clock input. (An SR flip-flop
would be like the gated SR latch of Figure 7.27 with a clock instead of an enable input.)

The symbol for the D, or data, flip-flop is shown in Figure 7.38. The D flip-flop has
the same behavior as a gated D latch, except that the outputs change only on the positive
edge of the clock waveform, as opposed to the HIGH state of the enable input. The tri-
angle on the CLK (clock) input of the flip-flop indicates that the device is edge-triggered.

Table 7.6 shows the function table of a positive edge-triggered D flip-flop.
Figure 7.39 shows the equivalent circuit of a positive edge-triggered D flip-flop. The

circuit is the same as the transparent latch of Figure 7.29, except that the enable input
(called CLK in the flip-flop) passes through an edge detector, a circuit that converts a pos-
itive edge to a brief positive-going pulse. (A negative edge detector converts a negative
edge to a positive-going pulse.)

K E Y T E R M

FIGURE 7.38
D Flip-Flop Logic Symbol

Table 7.6 Function Table for a Positive
Edge-Triggered D Flip-Flop

CLK D Qt�1 Q�t�1 Function

↑ 0 0 1 Reset
↑ 1 1 0 Set
0 X Qt Q�t Inhibited
1 X Qt Q�t Inhibited
↓ X Qt Q�t Inhibited

FIGURE 7.39
D Flip-Flop Equivalent Circuit

300 C H A P T E R 7 • Introduction to Sequential Logic

Figure 7.40 shows a circuit that acts as a simplified positive edge detector. Edge de-
tection depends on the fact that a gate output does not switch immediately when its input
switches. There is a delay of about 3 to 10 ns from input change to output change, called
propagation delay.

FIGURE 7.40
Positive Edge Detector

FIGURE 7.41
Operation of a D Flip-Flop

When input x, shown in the timing diagram of Figure 7.40, goes from LOW to HIGH,
the inverter output, x�, goes from HIGH to LOW after a short delay. This delay causes both
x and x� to be HIGH for a short time, producing a high-going pulse at the circuit output im-
mediately following the positive edge at x.

When x returns to LOW, x� goes HIGH after a delay. However, there is no time in this
sequence when both AND inputs are HIGH. Therefore, the circuit output stays LOW after
the negative edge of the input waveform.

Figure 7.41 shows how the D flip-flop circuit operates. When D � 0 and the edge de-
tector senses a positive edge at the CLK input, the output of the lower NAND gate steers a
low-going pulse to the RESET input of the latch, thus storing a 0 at Q. When D � 1, the up-
per NAND gate is enabled. The edge detector sends a high-going pulse to the upper steer-
ing gate, which transmits a low-going SET pulse to the output latch. This action stores a
1 at Q.

7.4 • Edge-Triggered D Flip-Flops 301

❘❙❚ EXAMPLE 7.6 Figure 7.42 shows a MAX�PLUS II Graphic Design File with a D latch and a D flip-
flop connected to the same data input and clock. Create a MAX�PLUS II simulation that
illustrates the difference between the latch (level-sensitive enable) and the flip-flop (edge-
triggered clock).

Q

DFF

OUTPUT Q_flip_flop
D

CLRN

PRN

Q

LATCH

INPUTD
INPUTCLK

OUTPUT Q_latch
D

ENA

FIGURE 7.42
D Latch and D Flip-Flop

SOLUTION The simulation, shown in Figure 7.43, has a 200 ns grid. Several points
on the waveform indicate the similarities and differences between the latch and flip-flop
operation.

FIGURE 7.43
Simulation showing the Difference between D Latch and D Flip Flop

1. At 1.2 �s, D goes HIGH. The latch output (Q_latch) and the flip-flop output
(Q_ flip_ flop) both go HIGH at 1.4 �s, since the beginning of the enable HIGH state
and the positive edge of the CLK both correspond to this time.

2. D goes LOW at 2 �s. Both Q outputs go LOW at 2.8 �s since the positive edge of the
CLK and its HIGH level occur at the same time.

3. The D input goes HIGH at 4.4 �s, in the middle of a CLK pulse. Since the CLK line is
HIGH, Q_ latch changes immediately. Q_ flip_ flop does not change until the next pos-
itive edge, at 6 �s.

4. D goes LOW at 7.8 �s. Q_latch also changes at this time, since CLK is HIGH.
Q_ flip_ flop changes on the next positive edge, at 9.2 �s.

❘❙❚

➥ latch_ff.gdf
latch_ff.scf

302 C H A P T E R 7 • Introduction to Sequential Logic

Note that the latch output is in an unknown state until the first CLK pulse, whereas the
flip-flop output is LOW, even before the first CLK pulse. This is because Altera CPLDs
have power-on reset circuitry that ensures that flip-flop outputs in a CPLD are LOW im-
mediately after power is applied to the device. The MAX�PLUS II simulator accounts for
this condition.

❘❙❚ EXAMPLE 7.7 Two positive edge-triggered D flip-flops are connected as shown in Figure 7.44a. Inputs D0

and CLK are shown in the timing diagram. Complete the timing diagram by drawing the
waveforms for Q0 and Q1, assuming that both flip-flops are initially reset.

FIGURE 7.44
Example 7.7
Circuit and Timing Diagram

SOLUTION Figure 7.44b shows the output waveforms. Q0 follows D0 at each point
where the clock input has a positive edge. One result of this is that the HIGH pulse on D0

between clock pulses 5 and 6 is ignored, since D0 � 0 on positive edges 5 and 6.
Since D1 � Q0 and Q1 follows D1, the waveform at Q1 is the same as at Q0, but de-

layed by one clock cycle. If Q0 changes due to CLK, we assume that the value of D1 is the
same as Q0 just before the clock pulse. This is because delays within the circuitry of the
flip-flops ensure that their outputs will not change for several nanoseconds after an applied
clock pulse. Therefore, the level at D1 remains constant long enough for it to be clocked
into the second flip-flop.

The data entering the circuit at D0 are moved, or shifted, from one flip-flop to the next.
This type of data movement, called “serial shifting,” is frequently used in data communi-
cation and digital arithmetic circuits. ❘❙❚

❘❙❚ SECTION 7.4 REVIEW PROBLEM

7.4 Which part of a D flip-flop accounts for the difference in operation between a D flip-
flop and a D latch? How does it work?

7.5 • Edge-Triggered JK Flip-Flops 303

7.5 Edge-Triggered JK Flip-Flops

Toggle Alternate between opposite binary states with each applied clock pulse.

A versatile and widely used sequential circuit is the JK flip-flop.
Figure 7.45 shows the logic symbols of a positive- and a negative-edge triggered JK

flip-flop. J acts as a SET input and K acts as a RESET input, with the output changing on
the active clock edge in response to J and K. When J and K are both HIGH, the flip-flop
will toggle between opposite logic states with each applied clock pulse. The function ta-
bles of the devices in Figure 7.45 are shown in Table 7.7.

Figure 7.46 shows the simplified circuit of a negative-edge triggered JK flip-flop. The
circuit is like that of a gated SR latch with an edge detector (an SR flip-flop), except that
there are two extra feedback lines from the latch outputs to the steering gate inputs. This
extra feedback is responsible for the flip-flop’s toggling action.

Figure 7.47 illustrates how the additional two lines cause the flip-flop to toggle. The
cross-feedback from Q to K and from Q� to J enables one, but not both, of the steering gates.
The edge detector just after the CLK input produces a short positive-going pulse upon de-
tecting a negative edge on the CLK waveform. The enabled steering gate complements and
transmits this pulse to the latch, activating either the set or reset function. This in turn
changes the latch state and enables the opposite steering gate.

Since all inputs of the steering gates must be HIGH to enable one of the latch func-
tions, J and K must both be HIGH to sustain a repeated toggling action. Under these con-
ditions, Q� and Q alternately enable one of the steering gates.

K E Y T E R M

Table 7.7 Function Tables for Edge-Triggered JK Flip-Flops

CLK J K Qt�1 Q�t�1 Function CLK J K Qt�1 Q�t�1 Function

↑ 0 0 Qt Q�t No change ↓ 0 0 Qt Q�t No change
↑ 0 1 0 1 Reset ↓ 0 1 0 1 Reset
↑ 1 0 1 0 Set ↓ 1 0 1 0 Set
↑ 1 1 Q�t Qt Toggle ↓ 1 1 Q�t Qt Toggle

0 X X Qt Q�t Inhibited 0 X X Qt Q�t Inhibited
1 X X Qt Q�t Inhibited 1 X X Qt Q�t Inhibited
↓ X X Qt Q�t Inhibited ↑ X X Qt Q�t Inhibited

Positive Edge-Triggered Negative Edge-Triggered

FIGURE 7.45
Edge-Triggered JK Flip-Flops

FIGURE 7.46
JK Flip-Flop Circuit (Simplified)

304 C H A P T E R 7 • Introduction to Sequential Logic

❘❙❚ EXAMPLE 7.8 The J, K, and CLK inputs of a negative edge-triggered JK flip-flop are as shown in the tim-
ing diagram in Figure 7.48. Complete the timing diagram by drawing the waveforms for Q
and Q�. Indicate which function (no change, set, reset, or toggle) is performed at each clock
pulse. The flip-flop is initially reset.

FIGURE 7.47
Toggle Action of a JK Flip-Flop

FIGURE 7.48
Example 7.8
Timing Diagram (Negative-Edge-Triggered JK Flip-Flop)

SOLUTION The completed timing diagram is shown in Figure 7.48. The outputs change
only on the negative edges of the CLK waveform. Note that the same output sometimes re-
sults from different inputs. For example, the function at clock pulse 4 is reset and the func-
tion at pulses 5 and 6 is no change, but the Q waveform is LOW in each case.

❘❙❚ EXAMPLE 7.9 The toggle function of a JK flip-flop is often used to generate a desired output sequence
from a series of flip-flops. The circuit shown in Figure 7.49 is configured so that all flip-
flops are permanently in toggle mode.

Assume that all flip-flops are initially reset. Draw a timing diagram showing the CLK,
Q0, Q1, and Q2 waveforms when eight clock pulses are applied. Make a table showing each

7.5 • Edge-Triggered JK Flip-Flops 305

combination of Q2, Q1, and Q0. What pattern do the outputs form over the period shown on
the timing diagram?

SOLUTION The circuit timing diagram is shown in Figure 7.50. All flip-flops are in tog-
gle mode. Each time a negative clock edge is applied to the flip-flop CLK input, the Q out-
put will change to the opposite state.

FIGURE 7.49
Example 7.9
Circuit

FIGURE 7.50
Example 7.9
Timing Diagram

For flip-flop 0, this happens with every clock pulse, since it is clocked directly by the
CLK waveform. Each of the other flip-flops is clocked by the Q output waveform of the
previous stage. Flip-flop 1 is clocked by the negative edge of the Q0 waveform. Flip-flop 2
toggles when Q1 goes from HIGH to LOW.

Table 7.8 shows the flip-flop outputs after each clock pulse. The outputs form a 3-bit
number that counts from 000 to 111 in binary sequence, then returns to 000 and repeats.

This flip-flop circuit is called a 3-bit asynchronous counter. ❘❙❚

Synchronous versus Asynchronous Circuits

Synchronous Synchronized to the system clock.

Asynchronous Not synchronized to the system clock

The asynchronous counter in Figure 7.49 has the advantage of being simple to construct
and analyze. However, because it is asynchronous (that is, not synchronized to a single
clock), it is seldom used in modern digital designs. The main problem with this and other
asynchronous circuits is that their outputs do not change at the same time, due to delays
in the flip-flops. This yields intermediate states that are not part of the desired output
sequence.

K E Y T E R M S

Table 7.8 Sequence of
Outputs for Circuit in Figure
7.49

Clock
Pulse Q2 Q1 Q0

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
8 0 0 0

306 C H A P T E R 7 • Introduction to Sequential Logic

Figure 7.51 shows a simulation of a circuit similar to that in Figure 7.49. The outputs
are shown separately, and also as a group labeled Q[2..0] that shows the combined binary
value of the outputs.

➥ asynch3.gdf
asynch3.scf

FIGURE 7.51
Simulation of a 3-bit Asynchronous Counter

Figure 7.52 shows a detail of the simulation at the point where the output goes from
7 to 0 (111 to 000). At 300 ns, the circuit output is 111. A negative clock edge, applied to
flip-flop 0, makes Q0 toggle after a short delay. The output is now 110 (�610). The result-
ing negative edge on Q0 clocks flip-flop 1, making it toggle, and yields a new output of 100
(�410). The negative edge on Q1 clocks flip-flop 2, making the output equal to 000 after a
short delay.

FIGURE 7.52
Detail of simulation for a 3-bit
Asynchronous Counter

Thus, the output goes through two short intermediate states that are not in the desired
output sequence. Instead of going directly from 111 to 000, as in Figure 7.50, the output
goes in the sequence 111–110–100–000. We see in Figure 7.51 that the counter output goes
through one or more intermediate transitions after each negative edge of the Q0 waveform.
In other words, intermediate states arise whenever a change propagates through more than
one flip-flop. This happens because the flip-flops are clocked from different sources.

➥ sync3.gdf
sync3.scf Q

JKFF

J

K
CLRN

PRN

INPUTCLK

Q

JKFF

J

CLRN

PRN
Q

JKFFAND2

CLRN

PRN

OUTPUT
OUTPUT

Q0OUTPUT
Q1

Q2

K K

J

VCC

FIGURE 7.53
3-bit Synchronous Counter

7.5 • Edge-Triggered JK Flip-Flops 307

Figure 7.53 shows the circuit of a 3-bit synchronous counter. Unlike the circuit in
Figure 7.49, the flip-flops in this circuit are clocked from a common source. Therefore,
flip-flop delays do not add up through the circuit, and all the outputs change at the same
time. Figure 7.54 shows a simulation of the circuit of Figure 7.53. Note that the outputs
progress in a binary sequence, and there are no intermediate states.

FIGURE 7.54
Simulation of a 3-bit Synchronous Counter

The circuit works as follows:

1. Flip-flop 0 is configured for toggle mode (J0K0 � 11). Since the flip-flops in Figure
7.53 are positive edge-triggered, Q0 toggles on each positive clock edge.

2. Q0 is connected to inputs J1 and K1. Since these inputs are tied together, only two states
are possible: no change (JK � 00) or toggle (JK � 11). If Q0 � 1, Q1 toggles. Otherwise,
it does not change. This results in a Q1 waveform that toggles at half the rate of Q0.

3. J2 and K2 are both tied to the output of an AND gate. The AND gate output is HIGH if
both Q1 and Q0 are HIGH. This makes Q2 toggle, since J2K2 � 11. In all other cases,
there is no change on Q2. The result of this is that Q2 toggles every fourth clock pulse,
the only times when Q1 and Q0 are both HIGH.

Asynchronous Inputs (Preset and Clear)

Synchronous inputs The inputs of a flip-flop that do not affect the flip-flop’s Q
outputs unless a clock pulse is applied. Examples include D, J, and K inputs.

Asynchronous inputs The inputs of a flip-flop that change the flip-flop’s Q out-
puts immediately, without waiting for a pulse at the CLK input. Examples include
preset and clear inputs.

Preset An asynchronous set function.

Clear An asynchronous reset function.

The D, J, and K inputs of the flip-flops examined so far are called synchronous inputs.
This is because any effect they have on the flip-flop outputs is synchronized to the CLK
input.

Another class of input is also provided on many flip-flops. These inputs, called asyn-
chronous inputs, do not need to wait for a clock pulse to make a change at the output. The
two functions usually provided are preset, an asynchronous set function, and clear, an
asynchronous reset function. These functions are generally active LOW, and are abbrevi-
ated P�R�E� and C�L�R�.

Figure 7.55 shows a modification to the JK flip-flop of Figure 7.46. The P�R�E� and C�L�R�
inputs have direct access to the latch gates of the flip-flop and thus are not affected by the

K E Y T E R M S

308 C H A P T E R 7 • Introduction to Sequential Logic

CLK input. They act exactly the same as the SET and RESET inputs of an SR latch and will
override any synchronous input functions currently active.

❘❙❚ EXAMPLE 7.10 The waveforms for the CLK, J, K, P�R�E�, and C�L�R� inputs of a negative edge-triggered JK
flip-flop are shown in the timing diagram of Figure 7.56. Complete the diagram by draw-
ing the waveform for output Q.

FIGURE 7.55
P�R�E� and C�L�R� Inputs

FIGURE 7.56
Example 7.10
Waveforms

SOLUTION The Q waveform is shown in Figure 7.56. The asynchronous inputs cause an
immediate change in Q, whereas the synchronous inputs must wait for the next negative
clock edge. If asynchronous and synchronous inputs are simultaneously active, the asyn-
chronous inputs have priority. This occurs in two places: pulse 3 (K, P�R�E�) and pulse 10
(J, C�L�R�).

The diagram shows the synchronous functions (no change, reset, set, and toggle) at each
clock pulse and the asynchronous functions (preset and clear) at the corresponding transi-
tion points.

❘❙❚

The function table of a negative edge-triggered JK flip-flop with preset and clear func-
tions is shown in Table 7.9.

7.5 • Edge-Triggered JK Flip-Flops 309

If preset and clear functions are not used, they should be disabled by connecting
them to logic HIGH (for active-LOW inputs). This prevents them from being acti-
vated inadvertently by circuit noise. The synchronous functions of some flip-flops
will not operate properly unless P�R�E� and C�L�R� are HIGH. In MAX�PLUS II, the
asynchronous inputs of all flip-flop primitives are set to a default level of HIGH.

Using Asynchronous Reset in a Synchronous Circuit

Master Reset An asynchronous reset input used to set a sequential circuit to a
known initial state.

Figure 7.57 shows an application of asynchronous clear inputs in a 3-bit synchronous
counter. An input called RESET is tied to the asynchronous C�L�R� inputs of all flip-
flops. The counter output is set to 000 when the RESET line goes LOW.

K E Y T E R M

N O T E

Table 7.9 Function Table of a Negative Edge-Triggered JK Flip-Flop with Preset and Clear
Functions

P�R�E� C�L�R� CLK J K Q�t�1 Q�t�1 Function

Synchronous Functions 1 1 ↓ 0 0 Qt Q�t No change
1 1 ↓ 0 1 0 1 Reset
1 1 ↓ 1 0 1 0 Set
1 1 ↓ 1 1 Q�t Qt Toggle

Asynchronous Functions 0 1 X X X 1 0 Preset
1 0 X X X 0 1 Clear
0 0 X X X 1 1 Forbidden

1 1 0 X X Qt Q�t Inhibited
1 1 1 X X Qt Q�t Inhibited
1 1 ↑ X X Qt Q�t Inhibited

X � Don’t care ↓ � HIGH-to-LOW transition
Qt � Present state of Q ↑ � LOW-to-HIGH transition
Qt�1 � Next state of Q

Q

JKFF

J

K
CLRN

PRN

INPUTCLK
INPUTRESET

Q

JKFF

J

CLRN

PRN
Q

JKFFAND2

CLRN

PRN

OUTPUT
OUTPUT

Q0OUTPUT
Q1

Q2

K K

J

VCC

FIGURE 7.57
Synchronous Counter with Asynchronous Reset

310 C H A P T E R 7 • Introduction to Sequential Logic

Figure 7.58 shows a set of simulation waveforms that illustrate the asynchronous clear
function. When RESET is HIGH, the count proceeds normally. The positive clock edge at
440 ns drives the counter to state 011. The reset pulse at 460 ns sets the counter to 000 as
soon as it goes LOW. On the next clock edge, the count proceeds from 000.

The function that sets all flip-flops in a circuit to a known initial state is sometimes
called Master Reset.

❘❙❚ SECTION 7.5 REVIEW PROBLEM

7.5 What is the main difference between synchronous and asynchronous circuits, such as
the two counters in Figures 7.49 and 7.53? What disadvantage is there to an asynchro-
nous circuit?

7.6 Edge-Triggered T Flip-Flops

T (toggle) flip-flop A flip-flop whose output toggles between HIGH and LOW
states on each applied clock pulse when a synchronous input, called T, is active.

In the section on the JK flip-flop, we saw how that device can be set to toggle between
HIGH and LOW output states. Other types of flip-flops can perform this function, as well.
For example, Figure 7.59 shows a D flip-flop configured for toggle operation. Since Q fol-
lows D and D � Q� in this circuit, then the flip-flop output must change to its opposite state
with each clock pulse. Figure 7.60 shows a MAX�PLUS II simulation of this circuit.

K E Y T E R M

Q

DFF

NOT
D

CLRN

PRN

CLK INPUT

OUTPUT Q

FIGURE 7.59
D Flip-Flop Configured for Toggle Function

➥ notg2d.gdf
notg2d.scf

FIGURE 7.58
Simulation of Synchronous Counter with Asynchronous Reset

7.6 • Edge-Triggered T Flip-Flops 311

It is seldom useful for flip-flops in synchronous circuits to be permanently configured
in toggle mode. What made the JK flip-flops suitable elements for the synchronous counter
in Figure 7.53 was the fact that sometimes they toggled and sometimes they didn’t, de-
pending on the current point in the output sequence of the counter. Figure 7.61 shows a D
flip-flop configured for a switchable toggle function.

FIGURE 7.60
Simulation of D Flip-Flop in Toggle Mode

Q

DFF
XOR

D

CLRN

PRN

CLK INPUT

T INPUT
OUTPUT Q

FIGURE 7.61
Switchable Toggle Function for
a D Flip-Flop

The XOR gate acts as an inverter when the T input is HIGH and as a noninverting
buffer when T is LOW. Thus, when T is LOW, the Q output is circulated back to the D in-
put of the flip-flop and the current value of Q is reloaded on the next clock pulse. When T
is HIGH, the circuit acts like that of Figure 7.59 and toggles.

A T flip-flop has this equivalent function. Figure 7.62 shows the symbol of a T flip-
flop in a MAX�PLUS II Graphic Design File. A MAX�PLUS II simulation in Figure
7.63 shows the operation of this device. The Q output toggles on each clock pulse when

➥ d_toggle.gdf
d_toggle.scf

➥ t_flipflop.gdf
t_flipflop.scf

Q

TFF

T

CLRN

PRN

CLK INPUT

T INPUT OUTPUT Q

FIGURE 7.62
T Flip-Flop

FIGURE 7.63
Simulation of T Flip-Flop

312 C H A P T E R 7 • Introduction to Sequential Logic

T is HIGH; otherwise Q retains its last value. A function table for the T flip-flop is shown
in Table 7.10.

Table 7.10 Function Table for a T
Flip-Flop

CLK T Qt�1 Function

↑ 0 Qt No Change
↑ 1 Q�t Toggle
0 X Qt Inhibited
1 X Qt Inhibited
↓ X Qt Inhibited

❘❙❚ SECTION 7.6 REVIEW PROBLEM

7.6 Draw a circuit showing how the JK flip-flops in Figure 7.53 can be replaced by T flip-
flops.

7.7 Timing Parameters

Setup time (tsu) The time required for the synchronous inputs of a flip-flop to be
stable before a CLK pulse is applied.

Hold time (th) The time that the synchronous inputs of a flip-flop must remain
stable after the active CLK transition is finished.

Pulse width (tw) Minimum time required for an active-level pulse applied to a
CLK, C�L�R�, or P�R�E� input, as measured from the midpoint of the leading edge of the
pulse to the midpoint of the trailing edge.

Recovery time (trec) Minimum time from the midpoint of the trailing edge of a
C�L�R� or P�R�E� pulse to the midpoint of an active CLK edge.

Propagation delay The time required for the output of a digital circuit to change
states after a change at one or more of its inputs.

Flip-flops are electrical devices with inherent internal switching delays. As such, they have
specific requirements for the timing of the input and output waveforms in order for them to
operate reliably. We will examine the basic timing requirements for two small scale inte-
gration (SSI) devices: the 74LS107A JK flip-flop (LSTTL family) and the 74HC107 JK
flip-flop (high-speed CMOS family). Figure 7.64 shows some of the basic timing require-
ments of a JK flip-flop.

Figure 7.64a illustrates the definitions of setup time (tsu), hold time (th), and pulse
width (tW). The notation used for the “J or K” waveform indicates that the J or K input
could be at either logic level and makes a transition to the opposite level at some point. The
setup time is measured from the midpoint of the J or K transition to the midpoint of the ac-
tive CLK edge. The logic level on the J or K input must be steady for at least this time for
the flip-flop to operate correctly. Setup time for both LSTTL and high-speed CMOS flip-
flops is about 20 ns.

Similarly, the hold time is measured from the midpoint of the CLK transition to the
midpoint of the next J or K transition. The J or K level must be held steady for at least this
time to ensure dependable operation. Hold time is 0 for LSTTL and 3 ns for a high-speed
CMOS flip-flop.

The pulse width, tw, shows how long the CLK needs to be held LOW after an active
CLK edge. Although the LOW level does not itself latch data into the flip-flop, internal
logic levels must reach a steady state before the device can accept a new clock pulse. This

K E Y T E R M S

7.7 • Timing Parameters 313

minimum pulse width allows the necessary time for these internal transitions. The data
sheet for a 74HC107 flip-flop (high-speed CMOS) gives the clock pulse width as 16 ns; a
data sheet for a 74LS107A device gives the value as 20 ns.

Figure 7.64b shows the pulse width required at the C�L�R� input, the propagation delay
from C�L�R� to Q and Q�, and the recovery time that must be allowed from the end of a C�L�R�
pulse to the beginning of a CLK pulse. These times also apply to a pulse on the P�R�E� input
of a flip-flop.

Propagation delay is the result of internal electrical delays, primarily the charging and
discharging of internal capacitances of the gate transistor junctions. The practical result of
this is that a pulse at the C�L�R� input makes Q go LOW, but not immediately; there is a
delay of several nanoseconds between input pulse and output response.

Propagation delay is defined by the direction of the output transition. The delay at Q,
which goes from HIGH to LOW, is called tpHL. The delay at Q�, which goes from LOW to
HIGH when cleared, is called tpLH. Values for propagation delay from C�L�R� to Q or Q� are
about 20 ns for LSTTL and 31 ns for high-speed CMOS.

The recovery time, trec, allows the internal logic levels of the flip-flop to reach a steady
state after a C�L�R� pulse. When the internal levels are stable, the device is ready to accept an
active CLK edge. The recovery time for high-speed CMOS is 20 ns and 25 ns for an
LSTTL device. (The LSTTL data sheet treats this parameter as a species of setup time; it is
shown as setup time after the C�L�R� is inactive. Same thing.)

Finally, Figure 7.64c shows the propagation delay from CLK to Q. This is the time
from the midpoint of an active CLK edge to the midpoint of a transition at Q caused by that
CLK edge. The parameters are defined, as before, by the direction of the output transition.
Propagation delays tpLH and tpHL are 20 ns, maximum, for a 74LS107A device and 25 ns
for a 74HC107 flip-flop.

FIGURE 7.64
Timing Parameters of a JK Flip-Flop

314 C H A P T E R 7 • Introduction to Sequential Logic

The timing restrictions of a flip-flop imply that there is a maximum CLK frequency be-
yond which the device will not operate reliably. Data sheets give these values as about 30
MHz for both LSTTL and high-speed CMOS devices.

Table 7.11 summarizes the timing parameters of a 74LS107A flip-flop and a 74HC107
device. The values for the latter device are for Vcc � 4.5 V and a temperature range of
�55°C to 25°C; they increase with a higher temperature range or a lower supply voltage.

Table 7.11 Timing Parameters of an LSTTL and a High-Speed
CMOS Flip-Flop

Symbol Parameter 74LS107A 74HC107

tsu Setup time 20 ns 20 ns
th Hold time 0 ns 3 ns
tw C�L�R� pulse width 25 ns 16 ns

CLK pulse width 20 ns 16 ns
trec Recovery time 25 ns 20 ns
tpHL Propagation delay
tpLH (from C�L�R�) 20 ns 31 ns

(from CLK) 20 ns 25 ns
fmax Maximum frequency 30 MHz 30 MHz

❘❙❚ EXAMPLE 7.11 The timing diagrams in Figure 7.65 represent some of the timing parameters of a JK flip-
flop. From these diagrams, determine the setup and hold times and the propagation delays
from CLK and C�L�R� to Q and Q�.

FIGURE 7.65
Example 7.11
Timing Parameters

SOLUTION The values are as follows:

Setup time � 15 ns

Hold time � 5 ns

Propagation delays (from CLK): 25 ns (tpLH and tpHL)
(from C�L�R�): 20 ns(tpLH and tpHL)

Summary 315

❘❙❚ SECTION 7.7 REVIEW PROBLEM

7.7 An active edge on the clock input of a JK flip-flop makes Q go from HIGH-to-LOW.
Name the timing parameter that measures the delay between the input and output
change. Write the symbol for the parameter.

S U M M A R Y

1. A combinational circuit combines inputs to generate a partic-
ular output logic level that is always the same, regardless of
the order in which the inputs are applied. A sequential circuit
might generate different outputs for the same inputs, depend-
ing on the sequence in which the inputs were applied.

2. An SR latch is a sequential circuit with SET (S) and RESET
(R) inputs and complementary outputs (Q and Q�). By defini-
tion, a latch is set when Q � 1 and reset when Q � 0.

3. A latch sets when its S input activates. When S returns to the
inactive state, the latch remains in the set condition until ex-
plicitly reset by activating its R input.

4. A latch can have active-HIGH inputs (designated S and R) or
active-LOW inputs (designated S� and R�).

5. Two basic SR latch circuits are the NAND latch and the
NOR latch, each consisting of two gates with cross-coupled
feedback. In the NAND form, we draw the gates in their
DeMorgan equivalent form so that each circuit has OR-
shaped gates, inversion from input to output, and feedback to
the opposite gate.

6. A NOR latch has active-HIGH inputs. It is described by the
following function table:

9. A gated SR latch controls the times when a latch can switch.
The circuit consists of a pair of latch gates and a pair of steer-
ing gates. The steering gates are enabled or inhibited by a
control signal called ENABLE. When the steering gates are
enabled, they can direct a set or reset pulse to the latch gates.
When inhibited, the steering gates block any set or reset
pulses to the latch gates so the latch output cannot change.

10. A gated D (“data”) latch can be constructed by connecting
opposite logic levels to the S and R inputs of an SR latch.
Since S and R are always opposite, the D latch has no forbid-
den state. The no change state is provided by the inhibit
property of the ENABLE input.

11. In a gated D latch (or transparent latch), Q follows D when
ENABLE is active. This is the transparent mode of the latch.
When ENABLE is inactive, the latch stores the last value of D.

12. A D latch can be described in VHDL by an IF statement
within a PROCESS. The PROCESS statement in VHDL is
concurrent, but the statements inside the PROCESS are se-
quential.

13. A D latch can also be implemented in VHDL by instantiating
a LATCH primitive as a component in a VHDL design entity
or by instantiating a component called lpm_latch from the
Library of Parameterized Modules (LPM).

14. An LPM component is a standard component with certain
properties, called parameters, that can be specified when the
component is instantiated. The inputs and outputs of an LPM
component are called ports. Parameter values are assigned in
the generic map of a component instantiation statement.
Component port names are associated with user port names
in the port map of a component instantiation statement.

15. A flip-flop is like a gated latch that responds to the edge of a
pulse applied to an enable input called CLOCK. A flip-flop
output will change only when the input makes a transition
from LOW to HIGH (for a positive edge-triggered device) or
HIGH to LOW (for a negative edge-triggered device).

16. In a positive edge-triggered D flip-flop, Q follows D when
there is a positive edge on the clock input.

17. D flip-flops are used primarily for data storage and transfer.
18. A JK flip-flop has two synchronous inputs, called J and K. J

acts as an active-HIGH set input. K acts as an active-HIGH
reset function. When both inputs are asserted, the flip-flop
toggles between 0 and 1 with each applied clock pulse.

19. The toggle function in a JK flip-flop is implemented with ad-
ditional cross-coupled feedback from the latch gate outputs
to the steering gate inputs.

20. A chain of JK flip-flops can implement an asynchronous bi-
nary counter if the Q of each flip-flop is connected to the

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

S R Qt�1 Q�t�1 Function

0 0 Qt Q�t No change
0 1 0 1 Reset
1 0 1 0 Set
1 1 0 0 Forbidden

7. A NAND latch has active-LOW inputs and is described by
the following function table:

S� R� Qt�1 Q�t�1 Function

0 0 1 1 Forbidden
0 1 1 0 Set
1 0 0 1 Reset
1 1 Qt Q�t No change

8. A NAND latch can be used as a switch debouncer for a
switch with a grounded common terminal, a normally open,
and a normally closed contact. When the switch operates,
one contact closes, resetting the latch on the first bounce.
Further bounces are ignored. When the switch returns to its
normal position, it sets the latch on the first bounce and fur-
ther bounces are ignored.

316 C H A P T E R 7 • Introduction to Sequential Logic

clock input of the next. Although this is an easy way to
create a counter, it is seldom used because internal flip-flop
delays result in unwanted intermediate states in the count
sequence.

21. JK flip-flops can be combined with a network of logic gates
to make a synchronous binary counter. The gates are con-
nected in such a way that each flip-flop toggles when all pre-
vious bits are HIGH; otherwise the flip-flops are in a no
change state. Although more complex than an asynchronous
counter, a synchronous counter is free of unwanted interme-
diate states.

22. Many flip-flops are provided with asynchronous preset (set)
and clear (reset) functions. Since these functions are con-
nected directly to the latch gates of a flip-flop, they act im-
mediately, without waiting for the clock. In most cases, these
functions are active-LOW.

23. Asynchronous inputs, such as preset and clear, are usually
designed so that they will override the synchronous inputs,
such as D or JK.

24. Unused asynchronous inputs should be disabled by tying
them to a logic HIGH (for an active-LOW input). Flip-flop
primitives in MAX�PLUS II automatically have their asyn-

chronous inputs connected to HIGH unless otherwise speci-
fied by a design entry file.

25. The outputs of a T (toggle) flip-flop toggle with each clock
pulse when the T input is HIGH and do not change when T is
LOW.

26. Several important timing parameters for a flip-flop include:
setup and hold time, propagation delay, minimum pulse
width, and recovery time.

27. Setup time is the time before a clock edge that a synchronous
input must be held steady. Hold time is the time after an ap-
plied clock edge that an input level must be held constant.

28. Propagation delay is the time for an input change, such as on
CLK or C�L�R�, to have an effect on an output, such as Q. Prop-
agation time is always indicated with respect to the change in
output level: tpLH for a LOW-to-HIGH output transition and
tpHL for a HIGH-to-LOW output change.

29. Minimum pulse width, tw, indicates how long a CLK or C�L�R�
input must be held after an active edge or level is applied be-
fore returning to the original level.

30. Recovery time is the minimum time required from the end of
an active level on one input (such as C�L�R�) to an active CLK
edge.

G L O S S A R Y

Asynchronous Not synchronized to the system clock.

Asynchronous inputs The inputs of a flip-flop that change the
flip-flop’s Q outputs immediately, without waiting for a pulse at
the CLK input. Examples include preset and clear inputs.

Clear An asynchronous reset function.

CLOCK An enabling input to a sequential circuit that is sensi-
tive to the positive- or negative-going edge of a waveform.

Edge The HIGH-to-LOW (negative edge) or LOW-to-HIGH
(positive edge) transition of a pulse waveform.

Edge detector A circuit in an edge-triggered flip-flop that con-
verts the active edge of a CLOCK input to an active-level pulse
at the internal latch’s SET and RESET inputs.

Edge-sensitive Edge-triggered.

Edge-triggered Enabled by the positive or negative edge of a
digital waveform.

Flip-flop A sequential circuit based on a latch whose output
changes when its CLOCK input receives either an edge or a
pulse, depending on the device.

Gated SR latch An SR latch whose ability to change states is
controlled by an extra input called the ENABLE input.

Generic map A VHDL construct that maps one or more para-
meters of a component to a value for that instance of the compo-
nent.

Hold time (th) The time that the synchronous inputs of a
flip-flop must remain stable after the active CLK transition is
finished.

Latch A sequential circuit with two inputs called SET and RE-
SET, which make the latch store a logic 0 (reset) or 1 (set) until
actively changed.

Level-sensitive Enabled by a logic HIGH or LOW level.

Library of Parameterized Modules (LPM) A standardized
set of components for which certain properties can be specified
when the component is instantiated.

Master Reset An asynchronous reset input used to set a se-
quential circuit to a known initial state.

Parameter (in an LPM component) A property of a compo-
nent that can be specified when the component is instantiated.

Preset An asynchronous set function.

Port map A VHDL construct that maps the name of a port in a
component to the name of a port, variable, or signal in a design
entity that uses the component.

Propagation delay The time required for the output of a digi-
tal circuit to change states after a change at one or more of its in-
puts.

Pulse width (tw) Minimum time required for an active-level
pulse applied to a CLK, C�L�R�, or P�R�E� input, as measured from
the midpoint of the leading edge of the pulse to the midpoint of
the trailing edge.

Recovery time (trec) Minimum time from the midpoint of the
trailing edge of a C�L�R� or P�R�E� pulse to the midpoint of an active
CLK edge.

Reset 1. The stored LOW state of a latch circuit. 2. A latch in-
put that makes the latch store a logic 0.

Sequential circuit A digital circuit whose output depends not
only on the present combination of inputs, but also on the his-
tory of the circuit.

Set 1. The stored HIGH state of a latch circuit. 2. A latch input
that makes the latch store a logic 1.

Setup time (tsu) The time required for the synchronous inputs
of a flip-flop to be stable before a CLK pulse is applied.

Problems 317

Steering gates Logic gates, controlled by the ENABLE input
of a gated latch, that steer a SET or RESET pulse to the correct
input of an SR latch circuit.

Synchronous Synchronized to the system clock.

Synchronous inputs The inputs of a flip-flop that do not affect
the flip-flop’s Q outputs unless a clock pulse is applied. Exam-
ples include D, J, and K inputs.

Toggle Alternate between binary states with each applied
clock pulse.

T (toggle) flip-flop A flip-flop whose output toggles between
HIGH and LOW states on each applied clock pulse when a syn-
chronous input, called T, is active.

Transparent latch (gated D latch) A latch whose output fol-
lows its data input when its ENABLE input is active.

P R O B L E M S

Section 7.1 Latches

7.1 Complete the timing diagram in Figure 7.66 for the ac-
tive-HIGH latch shown. The latch is initially set.

7.2 Repeat Problem 7.1 for the timing diagram shown in Fig-
ure 7.67.

FIGURE 7.67
Problem 7.2
Timing Diagram

FIGURE 7.66
Problem 7.1
Timing Diagram

FIGURE 7.68
Problem 7.3
Timing Diagram

7.3 Complete the timing diagram in Figure 7.68 for the ac-
tive-LOW latch shown.

7.4 Figure 7.69 shows an active-LOW latch used to control a
motor starter. The motor runs when Q � 1 and stops
when Q � 0. (Problem continues . . .)

FIGURE 7.69
Problem 7.4
Latch for Motor Starter

318 C H A P T E R 7 • Introduction to Sequential Logic

The motor is housed in a safety enclosure that has an
access hatch for service. A safety interlock prevents the
motor from running when the hatch is open. The HATCH
switch opens when the hatch opens, supplying a logic
HIGH to the circuit. The START switch is a normally
open momentary-contact pushbutton (LOW when
pressed). The STOP switch is a normally closed momen-
tary-contact pushbutton (HIGH when pressed).

Draw the timing diagram of the circuit, showing START,
STOP, HATCH, S�, R�, and Q for the following sequence of
events:

a. START is pressed and released.

b. The hatch cover is opened.

c. START is pressed and released.

d. The hatch cover is closed.

e. START is pressed and released.

f. STOP is pressed and released.

Briefly describe the functions of the three switches and
how they affect the motor operation.

Section 7.2 NAND/NOR Latches

7.5 Draw a NAND latch, correctly labeling the inputs and
outputs. Describe the operation of a NAND latch for all
four possible combinations of S� and R�.

7.6 Draw a NOR latch, correctly labeling the inputs and out-
puts. Describe the operation of a NOR latch for all four
possible combinations of S and R.

7.7 The timing diagram in Figure 7.70 shows the input wave-
forms of a NAND latch. Complete the diagram by show-
ing the output waveforms.

7.8 Figure 7.71 shows the input waveforms to a NOR latch.
Draw the corresponding output waveforms.

7.9 Figure 7.72 represents two input waveforms to a latch
circuit.

a. Draw the outputs Q and Q� if the latch is a NAND
latch.

b. Draw the output waveforms if the latch is a NOR
latch.

(Note that in each case, the waveforms will produce the
forbidden state at some point. Even under this condition, it
is still possible to produce unambiguous output wave-
forms. Refer to Figures 7.18 and 7.19 for guidance.)

7.10 a. Draw a timing diagram for a NAND latch showing
each of the following sequences of events:

i. S� and R� are both LOW; S� goes HIGH before R�.

ii. S� and R� are both LOW; R� goes HIGH before S�.

iii. S� and R� are both LOW; S� and R� go HIGH simulta-
neously.

b. State why S� � R� � 0 is a forbidden state for the
NAND latch.

c. Briefly explain what the final result is for each of the
above transitions.

7.11 a Draw a timing diagram for a NOR latch showing each
of the following sequences of events:

i. S and R are both HIGH; S goes LOW before R.

ii. S and R are both HIGH, R goes LOW before S.

iii. S and R are both HIGH, S and R go LOW simulta-
neously.

FIGURE 7.70
Problem 7.7
Timing Diagram

FIGURE 7.71
Problem 7.8
Input Waveforms to a NOR
Latch

FIGURE 7.72
Problem 7.9
Input Waveforms to a Latch

Problems 319

b. Briefly explain what the final result is for each of the
transitions listed in part a of this question.

c. State why S � R � 1 is a forbidden state for the NOR
latch.

7.12 Figure 7.73 shows the effect of mechanical bounce on the
switching waveforms of a single-pole double-throw
(SPDT) switch.

a. Briefly explain how this effect arises.

b. Draw a NAND latch circuit that can be used to elimi-
nate this mechanical bounce, and briefly explain how
it does so.

Section 7.3 Gated Latches

7.13 Complete the timing diagram for the gated latch shown in
Figure 7.74.

7.14 Complete the timing diagram for the gated latch shown in
Figure 7.75.

FIGURE 7.73
Problem 7.12
Effect of Mechanical Bounce on
a SPDT Switch

FIGURE 7.74
Problem 7.13
Gated Latch

FIGURE 7.75
Problem 7.14
Gated Latch

320 C H A P T E R 7 • Introduction to Sequential Logic

7.15 A pump motor can be started at two different locations
with momentary-contact pushbuttons S1 and S2. It can be
stopped by momentary-contact pushbuttons ST1 and ST2.
As in Problem 7.4, a RUN input on the motor controller
must be kept HIGH to keep the motor running. After the
motor is stopped, a timer prevents the motor from starting
for 5 minutes.

Draw a circuit block diagram showing how an SR
latch and some additional gating logic can be used in

such an application. The timer can be shown as a block
activated by the STOP function. Assume that the timer
output goes HIGH for 5 minutes when activated.

7.16 The S and R waveforms in Figure 7.76 are applied to two
different gated latches. The ENABLE waveforms for the
latches are shown as EN1 and EN2. Draw the output
waveforms Q1 and Q2, assuming that S, R, and EN are all
active HIGH. Which output is least prone to synchroniza-
tion errors? Why?

FIGURE 7.76
Problem 7.16
Waveforms

FIGURE 7.77
Problem 7.17
Waveforms

Problems 321

7.17 Figure 7.77 represents the waveforms of the EN and D in-
puts of a 4-bit transparent latch. Complete the timing dia-
gram by drawing the waveforms for Q1 to Q4.

7.18 An electronic direction finder aboard an aircraft uses a 4-
bit number to distinguish 16 different compass points as
follows:

Direction Degrees Gray Code
N 0/360 0000
NNE 22.5 0001
NE 45 0011
ENE 67.5 0010
E 90 0110
ESE 112.5 0111
SE 135 0101
SSE 157.5 0100

S 180 1100
SSW 202.5 1101
SW 225 1111
WSW 247.5 1110
W 270 1010
WNW 295.5 1011
NW 315 1001
NNW 337.5 1000

The output of the direction finder is stored in a 4-bit
latch so that the aircraft flight path can be logged by a
computer. The latch is periodically updated by a continu-
ous pulse on the latch enable line.

Figure 7.78 shows a sample reading of the direction
finder’s output as presented to the latch. (Problem con-
tinues . . .)

Q2

Q1

D1

EN

Q3

Q4

Q2

Q1

D3

D4

D2

D1

ENEN

4-bit Latch

NNE
NE

EN
E

E
E

S
E

SE
SSESSSW

SW
W

S
W

W
W

N
W

NW
NNW N

Compass Data
converter

D2

Q3

Q4

D3

D4

FIGURE 7.78
Problem 7.18
Direction Finder and Sample Output

322 C H A P T E R 7 • Introduction to Sequential Logic

a. Complete the timing diagram by filling in the data for
the Q outputs.

b. Based on the completed timing diagram of Figure
7.78, make a rough sketch of the aircraft’s flight path
for the monitored time.

7.19 Write a VHDL file for an 8-bit latch, using LATCH prim-
itives. Create a simulation file that demonstrates the oper-
ation of all eight bits.

7.20 Write a VHDL file for an 8-bit latch, using a component
from the Library of Parameterized Modules. Create a
simulation file that tests the latch for all eight bits.

Section 7.4 Edge-Triggered D Flip-Flops

7.21 The waveforms in Figure 7.79 are applied to the inputs of
a positive edge-triggered D flip-flop and a gated D latch.
Complete the timing diagram where Q1 is the output of
the flip-flop and Q2 is the output of the gated latch. Ac-

count for any differences between the Q1 and Q2 wave-
forms.

7.22 Complete the timing diagram for a positive edge-trig-
gered D flip-flop if the waveforms shown in Figure 7.80
are applied to the flip-flop inputs.

7.23 Repeat Problem 7.22 for the waveforms shown in Figure
7.81.

7.24 Repeat Problem 7.22 for the waveforms shown in Figure
7.82.

7.25 Draw a logic diagram of a D flip-flop configured for tog-
gle mode. (Hint: The D input must always be the opposite
of the Q output.)

7.26 Write a VHDL file that defines a 12-bit D flip-flop with a
clock common to all flip-flops, using MAX�PLUS II
primitives. The component declaration for the DFF com-
ponent is as follows:

FIGURE 7.79
Problem 7.21
Waveforms

FIGURE 7.80
Problem 7.22
Waveforms

FIGURE 7.81
Problem 7.23
Waveforms

Problems 323

COMPONENT DFF

PORT (d : IN STD_LOGIC;

clk : IN STD_LOGIC;

clrn : IN STD_LOGIC;

prn : IN STD_LOGIC;

q : OUT STD_LOGIC;

END COMPONENT;

Disregard the clrn (active-LOW clear) and prn (ac-
tive-LOW preset) ports for this problem. (Hint: you may
have to use a component declaration in your file that only
declares the ports d, clk, and q.)

7.27 Write a VHDL file that creates a 12-bit D flip-flop, using
the LPM component lpm_ff. (This component is instanti-
ated as a D flip-flop by default. The required LPM com-
ponent port names are: data, clock, and q.)

Section 7.5 Edge-Triggered JK Flip-Flops

7.28 The waveforms in Figure 7.83 are applied to a negative
edge-triggered JK flip-flop. Complete the timing diagram
by drawing the Q waveform.

7.29 Repeat Problem 7.28 for the waveforms in Figure 7.84.

7.30 Given the inputs x, y, and z to the circuit in Figure 7.85,
draw the waveform for output Q.

FIGURE 7.82
Problem 7.24
Waveforms

CLK

J

K

Q

FIGURE 7.83
Problem 7.28
Waveforms

CLK

J

K

Q

FIGURE 7.84
Problem 7.29
Waveforms

CLK

CLKCLK

x
y

z

x

J

K

y

z

Q

Q

Q

FIGURE 7.85
Problem 7.30
Inputs to Circuit

324 C H A P T E R 7 • Introduction to Sequential Logic

7.31 Assume that all flip-flops in Figure 7.86 are initially set.
Draw a timing diagram showing the CLK, Q0, Q1, and Q2

waveforms when eight clock pulses are applied. Make a
table showing each combination of Q2, Q1, and Q0. What
pattern do the outputs form over the period shown on the
timing diagram?

7.32 Refer to the JK flip-flop circuit in Figure 7.87. Is the cir-
cuit synchronous or asynchronous? Explain your answer.

7.33 Assume all flip-flops in the circuit in Figure 7.87 are
reset. Analyze the operation of the circuit when six-

teen clock pulses are applied by making a table show-
ing the sequence of states of Q3Q2Q1Q0, beginning at
0000.

7.34 Draw a timing diagram showing the sequence of states
from the table derived in Problem 7.33.

7.35 The waveforms shown in Figure 7.88 are applied to a
negative edge-triggered JK flip-flop. The flip-flop’s Preset
and Clear inputs are active LOW. Complete the timing di-
agram by drawing the output waveforms.

FIGURE 7.86
Problem 7.31
Flip-Flops

Q

JKFF

J

K
CLRN

PRN

INPUTCLK

Q

JKFF

J

CLRN

PRN
Q

JKFF

AND2

CLRN

PRN

OUTPUT
OUTPUT

q0OUTPUT
q1

q2

K K

J

AND3

VCC

Q

JKFF

CLRN

PRN

K

J

OUTPUT q3

FIGURE 7.87
Problem 7.32
Flip-Flop Circuit

FIGURE 7.88
Problem 7.35
Waveforms

CLK

J

K

PRE

CLR

Q

Q

Problems 325

7.36 Repeat Problem 7.35 for the waveforms in Figure 7.89.

7.37 Create a MAX�PLUS II Graphic Design File for the
synchronous circuit in Figure 7.87. Modify the circuit to
add an asynchronous Master Reset function. Create a
simulation file to verify the circuit operation.

7.38 Modify the gdf created in Problem 7.37 to include a Master
Reset function and an asynchronous preset function that will
set the state of the circuit to Q3Q2Q1Q0 � 1010 when acti-
vated. Create a simulation file to verify the circuit operation.

7.39 The term asynchronous is sometimes used to refer to the
configuration of a circuit (e.g., a 3-bit asynchronous
counter) and sometimes to a type of input to a device
(e.g., an asynchronous clear input). Briefly explain how
these two usages are similar and how they are different.

7.40 Write a VHDL file for a 12-bit D flip-flop that uses
MAX�PLUS II DFF primitives, similar to that in Problem
7.26. Include active-LOW asynchronous clear (CLRN)

and preset (PRN) inputs. Create a simulation file to verify
the operation of your design.

7.41 Write a VHDL file for a 12-bit D flip-flop with asynchro-
nous preset and clear, using the LPM component lpm_ff,
similar to that in Problem 7.27. Required ports: data,
clock, aclr (asynchronous clear), aset (asynchronous set),
and q. Ports aset and aclr are active-HIGH. Add two sig-
nals to the VHDL design to make them active-LOW. Cre-
ate a simulation file to verify the operation of your design.

Section 7.6 Edge-Triggered T Flip-Flops

7.42 The T and CLK waveforms for a positive-edge triggered
T flip-flop is shown in Figure 7.90. Complete the timing
diagram.

7.43 The T and CLK waveforms for a positive-edge triggered
T flip-flop is shown in Figure 7.91. Complete the timing
diagram.

CLK

J

K

PRE

CLR

Q

FIGURE 7.89
Problem 7.36
Waveforms

FIGURE 7.90
Problem 7.42
Timing Diagram

T

CLK

Q

T

CLK

Q

FIGURE 7.91
Problem 7.43
Timing Diagram

326 C H A P T E R 7 • Introduction to Sequential Logic

FIGURE 7.93
Problem 7.50
Timing Diagram

FIGURE 7.92
Problem 7.49
Timing Parameters

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 7.1

7.1 The latch resets (i.e., Q goes LOW) upon receiving the first
reset pulse. At that point, the latch is already reset, so further
pulses are ignored.

Section 7.2

7.2 The NOR latch has active-HIGH inputs. If you make both
inputs HIGH, you are attempting to set and reset the latch at the
same time, which is a contradictory action. A NAND latch has
active-LOW inputs. Therefore, if both inputs are HIGH, neither
the set nor reset function activates and there is no change on the
latch output.

Section 7.3

7.3

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY lch16prm IS

PORT(d_in : IN STD_LOGIC_VECTOR (15 downto 0);

enable : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR (15 downto 0));

END lchl6prm;

ARCHITECTURE a OF lch16prm IS

BEGIN

—— Instantiate a latch from a MAX�PLUS II primitive

latch4:

FOR i IN 15 downto 0 GENERATE

latch_primitive: latch

PORT MAP (d �� d in (i),

ena �� enable, q �� q out (i));

END GENERATE;

END a;

Section 7.4

7.4 The edge detector circuit in the clock circuit accounts for
the operational difference between a D flip-flop and a D latch. It
works by using the difference in internal delay times between
the gates that comprise the flip-flop’s clock input circuit.

Section 7.5

7.5 The flip-flops in asynchronous circuits are not all clocked at
the same time; they are asynchronous with respect to the system
clock. The flip-flops in a synchronous circuit have a common
clock connection, which makes them synchronous to the system
clock. The disadvantage to asynchronous circuits is that the in-
ternal delays of flip-flops can lead to unwanted intermediate
states, since the flip-flops do not all change at the same time.

7.44 Refer to the synchronous circuit in Figure 7.87. Create a
MAX�PLUS II Graphic Design File for a circuit with
the same function, using T flip-flops rather than JK flip-
flops. Include an asynchronous reset input in the circuit.
Create a simulation file to test the operation of the circuit.

7.45 Write a VHDL file that implements the circuit you
drew in Problem 7.44. Use TFF primitives in the
design.

Section 7.7 Timing Parameters

7.46 Use a TTL or high-speed CMOS data sheet, as appropri-
ate, to look up the setup and hold times of the following
devices:

a. 74LS74A

b. 74HC76

c. 74LS76A

d. 74LS107A

e. 74ALS112A

f. 74HC112

7.47 Draw a timing diagram showing the setup and hold times
for a 74LS76A flip-flop.

7.48 Draw timing diagrams (to scale) showing setup and hold
times, minimum CLK and C�L�R� pulse widths, recovery
time, and propagation delay times from CLK and C�L�R� for
both 74LS107A and 74HC107 flip-flops.

7.49 Write names and values of the JK flip-flop timing para-
meters illustrated in Figure 7.92.

7.50 Repeat Problem 7.49 for the timing diagram in
Figure 7.93.

Answers to Review Section 327

Section 7.6

7.6 The circuit is shown in Figure 7.94.

Section 7.7

7.7 The parameter is called propagation delay. For the specified
output transition, the symbol is tpHL.

Q

TFF

T

CLRN

PRN

INPUTCLK

Q

TFF

T

CLRN

PRN
Q

TFF

AND2

CLRN

PRN

OUTPUT
OUTPUT

Q0OUTPUT
Q1

Q2

T

VCC

FIGURE 7.94
Solution to Section Review Problem 7.6

329

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 8

Introduction to Programmable
Logic Architectures

O U T L I N E

8.1 Programmable
Sum-of-Products
Arrays

8.2 PAL Fuse Matrix and
Combinational
Outputs

8.3 PAL Outputs with
Programmable
Polarity

8.4 PAL Devices with
Programmable
Polarity

8.5 Universal PAL and
Generic Array Logic

8.6 MAX7000S CPLD

8.7 FLEX10K CPLD

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Draw a diagram showing the basic hardware conventions for a sum-of-
products-type programmable logic device.

• Describe the structure of a programmable array logic (PAL) AND matrix.

• Draw fuses on the logic diagram of a PAL to implement simple logic
functions.

• Describe the structures of combinational, programmable polarity, and
registered PAL outputs.

• Determine the number and type of outputs from a PAL/GAL part number.

• Explain the structure of an output logic macrocell (OLMC).

• State differences between Universal PAL and generic array logic (GAL)
and standard PAL.

• Interpret the logic diagrams of Universal PAL and GAL devices to deter-
mine the number of outputs and product terms and the type of control
signals available in a device.

• Interpret block diagrams to determine the basic structure of an Altera
MAX7000S CPLD, including macrocell configuration, Logic Array Blocks
(LABs), control signals, and product term expanders.

• State the differences between PLDs based on sum-of-products (SOP) archi-
tecture versus look-up table (LUT) architecture.

• Interpret block diagrams to determine the basic structure of a logic element
in an Altera FLEX10K CPLD, including look-up tables, cascade chains,
carry chains, and control signals.

• Interpret block diagrams to determine how a logic element in a FLEX10K
device relates to the overall structure of the device.

• Interpret block diagrams to determine how logic array blocks and embed-
ded array blocks relate to the overall structure of a FLEX10K CPLD.

In the past several chapters, we have been usingAltera’s MAX�PLUS II software to make
circuit designs for downloading into a complex programmable logic device (CPLD). We

have treated this device as a black box—something whose function we design, but whose
structure we do not really understand. In this chapter, we will look inside the box. �

330 C H A P T E R 8 • Introduction to Programmable Logic Architectures

Before we examine the structure of an Altera MAX7000S CPLD, we will look at the
internal structure of several simpler devices that are based on similar technologies, such as
the PAL16L8 and PAL16R8 low-density PLDs (largely for an historical overview), the
PALCE16V8, and the GAL22V10.

These devices are based on programmable matrices of sum-of-products (SOP)
circuits, as is the Altera MAX series of devices. The main programming element is the
EEPROM (electrically erasable programmable read-only memory) cell. EEPROM-based
devices will retain their programmed data when power is removed from the device.

The Altera FLEX series of CPLDs is based on another technology altogether. It stores
logic functions in look-up tables (LUTs) that act as truth tables with four input bits. The
main logic element of the FLEX series is the SRAM (static random access memory) cell.
SRAM-based CPLDs must have their programming data loaded every time they are
powered up. They have the advantage of being faster than EEPROM devices, with a higher
bit capacity.

8.1 Programmable Sum-of-Products Arrays

Product line A single line on a logic diagram used to represent all inputs to an
AND gate (i.e., one product term) in a PLD sum-of-products array.

Input line A line that applies the true or complement form of an input variable to
the AND matrix of a PLD.

PAL Programmable array logic. Programmable logic with a fixed OR matrix and
a programmable AND matrix.

The original programmable logic devices (PLDs) consisted of a number of AND and
OR gates organized in sum-of-products (SOP) arrays in which connections were made or
broken by a matrix of fuse links. An intact fuse allowed a connection to be made; a blown
fuse would break a connection.

Figure 8.1a shows a simple fuse matrix connected to a 4-input AND gate. True and
complement forms of two variables, A and B, can be connected to the AND gate in any com-
bination by blowing selected fuses. In Figure 8.1a, fuses for A� and B are blown. The output
of the AND gate represents the product term AB�, the logical product of the intact fuse lines.

Figure 8.1b shows a more compact notation for the AND-gate fuse matrix. Rather than
showing each AND input individually, a single line, called the product line, goes into the
AND gate, crossing the true and complement input lines. An intact connection
to an input line is shown by an “X” on the junction between the input line and the product line.

A symbol convention similar to Figure 8.1b has been developed for programmable
logic. Figure 8.2 shows an example.

The circuit shown in Figure 8.2 is a sum-of-products network whose Boolean
expression is given by:

F � A� B� C � A B� C�

The product terms are accumulated by the AND gates as in Figure 8.1b. A buffer having
true and complement outputs applies each input variable to the AND matrix, thus
producing two input lines. Each product line can be joined to any input line by leaving the
corresponding fuse intact at the junction between the input and product lines.

If a product line, such as for the third AND gate, has all its fuses intact, we do not show
the fuses on that product line. Instead, this condition is indicated by an “X” through the
gate. The output of the third AND gate is a logic 0, since (A� A B� B C� C) � 0. This is nec-
essary to enable the OR gate output:

A� B� C � A B� C� � 0 � A� B� C � A B� C�

K E Y T E R M S

8.1 • Programmable Sum-of-Products Arrays 331

Unconnected inputs are HIGH (e.g., A� � 1 � B� � 1 � 1 �C � A� B� C for the the first prod-
uct line).

If the unused AND output was HIGH, the function F would be:

A� B� C + A B� C� + 1 = 1

The configuration in Figure 8.2, with a programmable AND matrix and a hardwired
OR connection, is called PAL (programmable array logic) architecture.1

Since any combinational logic function can be written in SOP form, any Boolean
function can be programmed into these PLDs by blowing selected fuses. The programming

BA

A B

A B

BA

A B

A B

a. Crosspoint fuse matrix (A and B intact)

b. PLD notation for fuse matrix

Blown

Intact

FIGURE 8.1
Crosspoint Fuse Matrix

FIGURE 8.2
PLD Symbology

1PAL is a registered trademark of Vantis Semiconductor.

332 C H A P T E R 8 • Introduction to Programmable Logic Architectures

is done by special equipment and its associated software. The hardware and software se-
lects each fuse individually and applies a momentary high-current pulse if the fuse is to be
blown.

The main problem with fuse-programmable PLDs is that they can be programmed
one time only; if there is a mistake in the design and/or programming or if the design
is updated, we must program a new PLD. More recent technology has produced sev-
eral types of erasable PLDs, based not on fuses but on floating-gate metal-oxide-
semiconductor transistors. These transistors also form the basis of memory technolo-
gies such as electrically erasable programmable read-only memory (EEPROM or
E2PROM).

8.2 PAL Fuse Matrix and Combinational Outputs

JEDEC Joint Electron Device Engineering Council

JEDEC file An industry-standard form of text file indicating which fuses are
blown and which are intact in a programmable logic device.

Text file An ASCII-coded document stored on disk.

Checksum An error-checking code derived from the accumulated sum of the data
being checked.

Cell A programmable location in a PLD, specified by the intersection of an input
line and a product line.

Product line first cell number The lowest cell number on a particular product
line in a PAL AND matrix where all cells are consecutively numbered.

Input line number A number assigned to a true or complement input line in a
PAL AND matrix.

Multiplexer A circuit that selects one of several signals to be directed to a
single output.

Figure 8.3 shows the logic diagram of a PAL16L8 PAL circuit. This device can produce up
to eight different sum-of-products expressions, one for each group of AND and OR gates.
The device has active-LOW tristate outputs, as indicated by the “L” in the part number.
Each is controlled by a product line from the related AND matrix.

The pins that can be used only as inputs or outputs are marked “I” or “O,” re-
spectively. Six of the pins can be used as inputs or outputs and are marked “I/O.” The
I/O pins can also feed back a derived Boolean expression into the matrix, where it
can be employed as part of another function. A detail of an I/O section is shown in
Figure 8.4.

The part number of a PAL device gives the designer information about the number of
inputs and outputs and their configurations, as follows:

Number of inputs
Output type:

H � Active HIGH
L � Active LOW
P � Programmable polarity
R � Registered (D flip-flop)
X � XOR registered
C � Complementary (both HIGH and LOW)

Number of (registered) outputs

PAL 16 R 8

K E Y T E R M S

8.2 • PAL Fuse Matrix and Combinational Outputs 333

The numbering system has some potential ambiguities. For example, it is not possible
to use 16 inputs and 8 outputs in a PAL16L8 device at the same time; 6 of the inputs are
actually input/output pins. Some possible configurations are as follows:

16 inputs (10 dedicated � 6 I/O) and 2 dedicated outputs

10 dedicated inputs and 8 outputs (2 dedicated � 6 I/O)

12 inputs (10 dedicated � 2 I/O) and 6 outputs (2 dedicated � 4 I/O)

Each of the outputs of the PAL16L8 is buffered by a tristate inverter, whose ENABLE
input is controlled by its own product line. When the ENABLE line of the tristate inverter is

FIGURE 8.3
Unprogrammed PAL16L8

334 C H A P T E R 8 • Introduction to Programmable Logic Architectures

HIGH, the inverter output is the same as it would normally be—a logic HIGH or LOW, de-
termined by the state of the corresponding OR gate output.

When the ENABLE line is LOW, the inverter output is in the high-impedance state.
The output acts as an open circuit, neither HIGH nor LOW; it is as though the output was
completely disconnected from the circuit. The inverter is permanently enabled if all fuses
on the ENABLE product line are blown, and permanently disabled if these fuses are
all intact.

Published logic diagrams of PAL devices generally do not have fuses drawn on them.
This allows us to draw fuses for any application. In practice, PLDs have become too
complex to manually draw fuse maps for most applications.

Historically, PLD programming would begin with fuses drawn on a logic diagram, and
each fuse would be selected and blown individually by someone operating a hardware de-
vice constructed for such a purpose.

Fuse assignment is now done with special software such asABEL, CUPL, or PALASM.
These programs will take inputs such as Boolean equations, truth tables, or other forms and
produce the simplest SOP solution to the particular problem. (MAX�PLUS II is not config-
ured to generate programming data for low-density PALs, although it can generate data for
similar devices in the Altera Classic PLD series.)

The end result of such software is a JEDEC file, an industry-standard way of listing
which fuses in the PLD should remain intact and which should be blown. The JEDEC file
is stored on disk as an ASCII text file. Most PLD programmers will accept the JEDEC file
and use it as a template for blowing fuses in the target device.

Fuse locations, called cells, are specified by two numbers: the product line first cell
number, shown along the left side of the diagram, and the input line number, shown
along the top. The address of any particular fuse is the sum of its product line first cell
number and its input line number. The fuses on the PAL16L8 device are numbered from
0000 to 2047 (� 2016 � 31).

Figure 8.5 shows an example of a JEDEC file for a PAL16L8 application. The file
starts with an ASCII “Start Text” character (^B). Next is some information required by the
PAL programmer about the type of device (PAL16L8), number of fuses (2048), and so
forth. The fuse information starts with the line L0000, which is the first product line. The
1s and 0s which follow show the programmed state of each cell in each product line; a 1 is
a blown fuse and a 0 is an intact fuse. In other words, each 0 in the JEDEC file represents
an X in the same position on the PAL logic diagram.

The product terms for first sum-of-products output are set by the states of fuses
0000 to 0255 (eight product lines). In the file shown, all fuses are blown in the first product

I/O

FIGURE 8.4
PAL16L8 I/O Section

8.2 • PAL Fuse Matrix and Combinational Outputs 335

line, the second product line shows three intact fuses, and so forth. Since all fuses are
intact in the last three lines, they need not be shown in the JEDEC file.

Whenever some unprogrammed product lines are omitted from the fuse map, the last
fuse line shown ends with an asterisk (*). The next line with programmed fuses is indicated
by a new fuse number. For example, the second group of fuses (0256 to 0511) in Figure 8.5
begins after the line marked L0256 in the JEDEC file. The remaining fuse lines are
similarly indicated.

The JEDEC file in Figure 8.5 ends with a hexadecimal checksum (C8DCF), an error-
checking code derived from the programming data, and an ASCII “End Text” code (^C).

FIGURE 8.5
Sample JEDEC File

336 C H A P T E R 8 • Introduction to Programmable Logic Architectures

In order to examine the general principle of fuse programming, let us develop the pro-
grammed logic diagram for a common combinational circuit: a 4-to-1 multiplexer. (After
developing the fuse maps for several examples, we will not refer to this technique again.)

This circuit, shown in Figure 8.6a, directs one of four input logic signals, D0 to D3, to
output Y, depending on the state of two select inputs S0 and S1. The circuit works on the
enable/inhibit principle; each AND gate is enabled by a different combination of S1 S0. The
binary state of the select inputs is the same as the decimal subscript of the selected data
input. For instance, S1 S0 � 10 selects data input D2; the AND gate corresponding to D2 is
enabled and the other three ANDs are inhibited.

The logic equation for output Y is given by:

Y � D0 S�1 S�0 � D1 S�1 S0 � D2 S1 S�0 � D3 S1 S0

Since the outputs of the PAL16L8 are active LOW, as illustrated in Figure 8.6b,
we should rewrite the equation as follows:

Y� � D�0 S�1 S�0 � D�1 S�1 S0 � D�2 S1 S�0 � D�3 S1 S0

The D inputs must be complemented to reverse the effect of the active-LOW output.
The output is enabled when the EN input is HIGH. Figure 8.7 shows the PAL16L8A logic
diagram with fuses for the multiplexer application.

8.3 PAL Outputs With Programmable Polarity
The multiplexer application developed in the previous section uses a PAL device whose
output is always fixed at the active-LOW polarity. This fixed polarity is suitable for most
applications, but Boolean functions that would normally have active-HIGH outputs must
be implemented in DeMorgan equivalent form, which is not always very straightforward.

Some applications require both active-HIGH and active-LOW outputs. In such cases,
it is useful to have a device whose output polarity is fuse programmable.

Figure 8.8 shows the logic diagram of a PAL20P8 PAL device. This device is the same
as a PAL16L8, except that there are four more dedicated inputs, and the polarity of each
output is programmable. The Exclusive OR gate on each output is programmed to act as ei-
ther an inverter or a buffer. When its associated fuse is intact, the XOR input is grounded
and passes the output of its related SOP network in true form. When combined with the
output inverter, this produces an active-LOW output. When the polarity fuse is blown, the
fused XOR input floats to the HIGH state, inverting the SOP output; the output pin be-
comes active HIGH.

FIGURE 8.6
4-to-1 Multiplexer Circuits

8.3 • PAL Outputs With Programmable Polarity 337

The polarity fuses are given numbers higher than those of the main fuse array. In this
case, the product line fuses are numbered 0000 to 2559 and the output polarity fuses are
numbered 2560 to 2567.

Figure 8.9 illustrates the selection of output polarity. Two Boolean functions, F1 and
F2, are programmed into the fuse array, with outputs at pins (17) and (15), respectively.
The equations are:

F1 � A B � A� B�
F2 � A B � A� B�

FIGURE 8.7
Programmed Logic Diagram for a 4-to-1 Multiplexer

FIGURE 8.8
PAL20P8 Logic Diagram

338 C H A P T E R 8 • Introduction to Programmable Logic Architectures

We could, if we chose, rewrite F2 to show the output as active LOW:

F��2� � A B � A� B�

The portion of the PAL20P8 logic diagram shown in Figure 8.9 represents the fuses
required to program F1 and F2. Pins (14) and (16) supply inputs A and B to the matrix. The
ENABLE lines of the tristate output buffers float HIGH, since all fuses are blown on the
corresponding product lines, thus permanently enabling the output buffers.

The fuses numbered 2565 and 2567 select the polarity at pins (15) and (17). Fuse
2565 is blown. The fused input to the corresponding XOR gate floats HIGH, thus making
the gate into an inverter. Combined with the tristate buffer, this makes pin (17) active
HIGH.

Fuse 2567 is intact. This grounds the input to the corresponding XOR gate, making the
gate into a noninverting buffer. Combined with the tristate output buffer, this makes pin
(15) active LOW.

8.3 • PAL Outputs With Programmable Polarity 339

❘❙❚ EXAMPLE 8.1 Show how a PAL20P8 device can be used to implement the following logic functions by
drawing fuses on the device’s logic diagram.

NOT: F1 � A�
AND: F2 � BC

OR: F3 � D � E

NAND: F4 � F�G�
NOR: F5 � H�����J�
XOR: F6 � K � L � K� L � K L�

XNOR: F7 � M�������N� � M� N� � M N

How would the implementation of these logic functions differ if only active-LOW out-
puts were available, as in a PAL16L8?

SOLUTION The PAL20P8 has 14 dedicated inputs, 2 dedicated outputs, and 6 lines that
can be used as inputs or outputs. Our functions need 13 input variables and 7 output
variables. We will use six I/O pins (pins (16) through (21)) and one dedicated output
(pin (15)) for the output variables.

FIGURE 8.9
PAL Outputs With Programmable Polarity

340 C H A P T E R 8 • Introduction to Programmable Logic Architectures

All functions must be in SOP form. Outputs for NOT, AND, OR, Exclusive OR, and
Exclusive NOR are active HIGH. Therefore, polarity fuses on the outputs for F1, F2, F3,
F6, and F7 are blown. NAND and NOR outputs are active LOW; the polarity fuses for F4
and F5 remain intact.

Figure 8.10 shows the logic diagram of the programmed PAL. If only active-LOW out-
puts were available, we would need to rewrite some of the equations to make the outputs
correspond to their DeMorgan equivalent forms, as follows:

AND: F2 � B� � C�
OR: F3 � D� E�

XOR: F6 � K � L � K� L� � K L

XNOR: F7 � M�����N� � M� N � M N�

FIGURE 8.10
Programmed Logic Diagram for Seven Logic Functions

❘❙❚

8.4 • PAL Devices With Registered Outputs 341

8.4 PAL Devices With Registered Outputs

Register A digital circuit such as a flip-flop or array of flip-flops that stores one
or more bits of digital information.

Registered output An output of a programmable array logic (PAL) device having
a flip-flop (usually D-type) that stores the output state.

Flip-flops are generally found in programmable logic devices as registered outputs.
A register is one or more flip-flops used to store data. Registered outputs in programmable
array logic (PAL) devices can be used for the same functions as individual flip-flops.

Figure 8.11 shows the logic diagram of a PAL device with eight registered outputs:
a PAL16R8. The fuse matrix is identical to that of a PAL16L8 device; the differences

K E Y T E R M S

FIGURE 8.11
PAL16R8 Logic Diagram

342 C H A P T E R 8 • Introduction to Programmable Logic Architectures

FIGURE 8.12
Example 8.2
Rotation to the Right (4-bit Data)

between the two devices are the registered outputs, a dedicated clock input (pin 1), and a
pin for enabling all registered outputs (pin 11).

With Registered PAL, the number of outputs shown in the part number indicates the
number of registered outputs. For example, a PAL16R4 device has four registered outputs
and four combinational I/O pins, a PAL16R6 device has six registered outputs and two
combinational I/O pins, and a PAL16R8 has eight registered outputs.

❘❙❚ EXAMPLE 8.2 A common data operation is that of “rotation.” Figure 8.12 illustrates how a 4-bit number
can be rotated to the right by 0, 1, 2, or 3 places by a circuit called a “barrel shifter.”
To rotate the data, move all bits the required number of places to the right. As data reach
the rightmost position, move them to the beginning so that they are transferred in a
closed loop.

This operation is usually performed by serially shifting the data the required number
of places and feeding back the last output to the first input of a serial shift register.

Rotation can also be accomplished by a parallel transfer operation. We can load the
bits of the input into four D flip-flops in the order determined by two select inputs, S1 and
S0. Assume that the binary number S1 S0 is the same as the rotation number in Figure 8.12.
Table 8.1 summarizes the contents of the circuit after one clock pulse is applied.

Table 8.1 Rotation to the Right by a Selectable Number of Bits

S1 S0 QA QB QC QD Rotation

0 0 A B C D 0
0 1 D A B C 1
1 0 C D A B 2
1 1 B C D A 3

Sketch a circuit, using gates and flip-flops, that can accomplish this rotation as a
parallel transfer function. Briefly explain its operation.

Write the Boolean expression(s) for the circuit.
Show how the circuit can be implemented by a PAL16R4 device by drawing fuses on

its logic diagram.

SOLUTION Figure 8.13 shows a parallel transfer circuit (barrel shifter) that will
perform the specified rotation. The circuit works by enabling one AND gate in each group
of four for each combination of S1 and S0. For example, when S1 S0 � 00, the rotation is
0 and the leftmost AND gate of each group is enabled, transferring the parallel data into
the flip-flops so that DA � A, DB � B, DC � C, and DD � D. After one clock pulse, QA

QB QC QD � ABCD.

8.4 • PAL Devices With Registered Outputs 343

FIGURE 8.13
Example 8.2
Rotation by Parallel Transfer (Barrel Shifter)

Similarly, if S1 S0 � 10, we select a rotation of 2. The third AND gate from the left is
selected in each group of four. This makes the data DA � C, DB � D, DC � A, and DD �
B appear at the flip-flop inputs. After one clock pulse, QA QB QC QD � CDAB.

The same principle governs the circuit operation for the other two select codes. The
Boolean equations for the circuit are:

QA � S�1 S�0 A � S�1 S0 D � S1 S�0 C � S1 S0 B

QB � S�1 S�0 B � S�1 S0 A � S1 S�0 D � S1 S0 C

QC � S�1 S�0 C � S�1 S0 B � S1 S�0 A � S1 S0 D

QD � S�1 S�0 D � S�1 S0 C � S1 S�0 B � S1 S0 A

344 C H A P T E R 8 • Introduction to Programmable Logic Architectures

FIGURE 8.14
Example 8.2
Programmed PLD for Selectable Bit Rotation

These equations imply that each registered output requires us to use four product lines,
one for each product term. The programmed logic diagram is shown in Figure 8.14. ❘❙❚

8.5 • Universal PAL and Generic Array Logic (GAL) 345

8.5 Universal PAL and Generic Array Logic (GAL)

One-time programmable (OTP) A property of some PLDs that allows them to
be programmed, but not erased.

Generic array logic (GAL) A type of programmable logic device whose outputs
can be configured as combinational or registered and whose programming matrix is
based on electrically erasable logic cells.

Universal PAL A PLD based on erasable cells and configurable outputs, much
like GAL, but primarily designed to emulate PAL devices, such as PAL16L8.

Output logic macrocell (OLMC) An input/output circuit that can be pro-
grammed for a variety of input or output configurations, such as active HIGH or
active LOW, combinational or registered. Often just called a macrocell.

In-system programmability (ISP) The ability of a PLD to be programmed
through a standard four-wire interface while installed in a circuit.

JTAG port A four-wire interface specified by the Joint Test Action Group
(JTAG) used for loading test data or programming data into a PLD installed
in a circuit.

Architecture cell A programmable cell that, in combination with other architec-
ture cells, sets the configuration of a macrocell.

Global architecture cell An architecture cell that affects the configuration of all
macrocells in a device.

Local architecture cell An architecture cell that affects the configuration of one
macrocell only.

Global clock A clock signal in a PLD that clocks all registered outputs in
the device.

There are several limitations of standard low-density PALs. First, these devices are
one-time programmable (OTP). Since the AND matrix of a PAL is programmable by
blowing metal fuse links, programming is permanent; there is no opportunity to
correct or update a design. In development of a new design, where many modifications
must be made to the original design, this can be particularly wasteful. Second,
standard PAL outputs are permanently configured either as combinational or registered.
A given PAL has a certain number of each type of output, which may not be optimum
for the design. Third, a standard PAL cannot be programmed while it is installed in a
circuit.

A number of low-density PLDs have been developed to address these concerns.
Devices such as the PALCE16V8 Universal PAL (Vantis Corporation), and the
GAL16V8 and GAL22V10 Generic Array Logic (Lattice Semiconductor)* are based on
sum-of-products fuse matrices, just as the earlier-version PALs. However, these devices
are based on electrically erasable read only memory (EEPROM or E2PROM) cells, rather
than fuses, which allow them to be erased and reprogrammed about 10,000 times. A
programmed device will hold its data for about 20 years.

Universal PALs and GALs also have programmable input/output configurations.
An I/O pin can be configured as a registered output, a combinational output, or a
dedicated input, as required. Additionally, an output can be specified as active-HIGH or
active-LOW.

K E Y T E R M S

*Vantis has recently been acquired by Lattice, so these devices are really produced by the same
company

346 C H A P T E R 8 • Introduction to Programmable Logic Architectures

1 1

0 X
1 0

SL13

SL03

SG1

D Q

 Q

1 1
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL03SG1

I/O315

24 27 28 31
CLK OE

VCC

Select eighth
product term

Select output
enable term

Select registered or
combinational output

Select input or
feedback type

Select active
high or low

FIGURE 8.15
Output Logic Macrocell for a PALCE16V8 PLD

Devices such as the ispGAL22V10 or the Altera MAX7000S series can be pro-
grammed while installed in a circuit via a standard four-wire interface called a JTAG port.
This property is known as in-system programmability (ISP).

PALCE16V8

Figure 8.15 shows one I/O pin and its associated circuitry for a PALCE16V8 Universal
PAL. (The “V” stands for “variable” or “versatile” architecture.) It consists of a program-
mable SOP array with 8 product terms and an output logic macrocell (OLMC), or just
“macrocell”, which determines the I/O configuration for that pin. The various configura-
tion options are selected by a network of four multiplexers that are programmed by a set of
architecture cells that set the MUX select inputs HIGH or LOW.

A global architecture cell, SG1, selects configuration options for all macrocells in the
device. Two local configuration cells, SL0n and SL1n, select configurations for I/On only.
(In this case, the cells shown are SL03 and SL13 for configuration of I/O3.)

Figure 8.16 shows the different macrocell configurations for a PALCE16V8 Universal
PAL. Most of these configurations are designed to emulate an I/O of a standard PAL, so
that an old-style PAL can be replaced by a Universal PAL, and can be programmed by data
for the older PAL. The macrocells can also be configured in a pattern that does not conform
to an older device.

Figure 8.17 shows the logic diagram of a PALCE16V8 Universal PAL. The device has
eight dedicated inputs, eight macrocells, a Clock pin and an Output Enable pin. The latter two
signals are shown in the macrocell diagram of Figure 8.15 as the lines labeled CLK and OE.

If there are registered outputs, the clock input (pin 1) provides a global clock function.
That is, all registered outputs are clocked simultaneously by this signal. (Some other PLDs
provide an option to clock a registered output from a product term in the AND matrix, al-
lowing several clock functions in one chip.) If there are no registered outputs used in the
PLD, pin 1 can be used as an input.

8.5 • Universal PAL and Generic Array Logic (GAL) 347

Pin 11 provides an active-LOW Output Enable function. This is selected by local
architecture cells to provide control of the output tristate buffer, either from the O��E pin or from
a product term in theAND matrix. If the O��E function is unused, the pin can be used as an input.

GAL22V10

Figure 8.18 shows the logic diagram of a GAL22V10 generic array logic device.
This industry-standard device has a number of features that make it superior to the
PALCE16V8.

FIGURE 8.16
Macrocell Configurations for a PALCE16V8 PLD (Courtesy of Lattice Semiconductor Corporation)

D Q D Q

OE OE

a. Registered active low b. Registered active high

c. Combinatorial I/O active low d. Combinatorial I/O active high

e. Combinatorial output active low f. Combinatorial output active high

g. Dedicated input

CLK CLK

VCC VCC

Note 1 Note 1

Note 2

Adjacent I/O pinNotes:
1. Feedback is not available on pins 15 and 16 in
 the combinatorial output mode.
2. This configuration is not available on pins 15 and 16.

Q Q

348 C H A P T E R 8 • Introduction to Programmable Logic Architectures

1 1

0 X
1 0

SL14

SL04

SG1
D Q

1 0
0 X

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL04SG1

I/O416

I/O517

I/O618

I/O719

20

242330

24

31

16

23

8

15

0

7

4 7 8 11 12 15 16 19 20 27 28 31

VCC

1 1

0 X
1 0

SL16

SL06

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL06SG1

VCC

1 1

0 X
1 0

SL17

SL07

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL07SG0

CLK OE

VCC
VCC

1 1

0 X
1 0

SL15

SL05

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL05SG1

VCC

242330 4 7 8 11 12 15 16 19 20 27 28 31

CLK/I0 1

I1 2

I2 3

I3 4

I4 5

1 0

Q

Q

Q

Q

FIGURE 8.17 (a)
PALCE16V8 Logic Diagram (Courtesy of Lattice Semiconductor Corporation)

8.5 • Universal PAL and Generic Array Logic (GAL) 349

1 1

0 X
1 0

SL10

SL00

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL00SG0242330

56

63

48

55

40

47

32

39

4 7 8 11 12 15 16 19 20 27 28 31

VCC

1 1

0 X
1 0

SL12

SL02

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL02SG1

VCC

1 1

0 X
1 0

SL13

SL03

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL03SG1

I/O315

I/O214

I/O113

CLK OE

VCC

GND

1 1

0 X
1 0

SL11

SL01

SG1
D Q

1 0
0 X

1 0

1 1
1 0
0 0
0 1

1 0
1 1
0 X

SL01SG1

VCC

OE/19

242330 4 7 8 11 12 15 16 19 20 27 28 31

I8

I/O012

13
10

9

I7 8

I6 7

I5 6

Q

Q

Q

Q

FIGURE 8.17 (b)
(PALCE16V8 Logic Diagram

350 C H A P T E R 8 • Introduction to Programmable Logic Architectures

FIGURE 8.18
GAL22V10 Logic Diagram

1. There are more outputs (10 as opposed to 8 for the 16V8).

2. There are more inputs (11 dedicated inputs, plus any I/O lines used as inputs).

3. The output logic macrocells are of different sizes, allowing expressions with larger
numbers of product terms in some OLMCs than others. There are two OLMCs with
each of the following numbers of product lines: 8, 10, 12, 14, and 16. This allows more
flexibility in design, while minimizing the number of product lines.

8.6 • MAX7000S CPLD 351

FIGURE 8.19
GAL22V10 OLMC Configurations

4. OLMC configuration is much simpler than that of a PALCE16V8. Two architecture
cells per macrocell, S0 and S1, select the output type, as shown in Figure 8.19.

5. There are product lines for Synchronous Preset (SP) and Asynchronous Reset (AR). The
SP line sets all flip-flops HIGH on the first clock pulse after it becomes active. The AR
line sets all flip-flops LOW as soon as it activates, without waiting for the clock pulse.
(Note that these lines set or reset the Q output of each flip-flop. An active-LOW regis-
tered output inverts this state at the output pin.)

8.6 MAX7000S CPLD

CPLD Complex programmable logic device. A programmable logic device con-
sisting of several interconnected programmable blocks.

Logic Array Block (LAB) A group of macrocells that share common resources
in a CPLD.

Programmable Interconnect Array (PIA) An internal bus with programmable
connections that link together the Logic Array Blocks of a CPLD.

K E Y T E R M S

Buried logic Logic circuitry in a PLD that has no connection to the input or out-
put pins of the PLD, but is used solely as internal logic.

I/O Control Block A circuit in an Altera CPLD that controls the type of tristate
switching used in a macrocell output.

Parallel logic expanders Product terms that are borrowed from neighboring
macrocells in the same LAB.

Shared logic expanders Product terms that are inverted and fed back into the
programmable AND matrix of an LAB for use by any other macrocell in the LAB.

Figure 8.20 shows the block diagram of an Altera MAX7000S Complex PLD (CPLD).
A device of this type—the EPM7128SLC84—is one of the two devices installed on the
Altera UP-1 University Program board, so we will use it as a specific example of the
MAX7000S family of devices.

352 C H A P T E R 8 • Introduction to Programmable Logic Architectures

INPUT/GCLK1

INPUT/GCLRn

INPUT/OE2/GCLK2
INPUT

Macrocells
1 to 16

PIA

Macrocells
17 to 32

Macrocells
33 to 48

Macrocells
49 to 64

I/O
Control
Block

I/O
Control
Block

I/O
Control
Block

I/O
Control
Block

6 to 16

6 to 16 16

36

6 to 16

6

6 to 16 I/O Pins

6 to 16 6 to 16

6 to 16 16 16

36 36

6 6

6

6 to 16

6 to 16

6 Output Enables

LAB A

LAB C

LAB B

LAB D

6 Output Enables

6 to 16

6 to 16

16

36

6 to 16

6 to 16

6 to 16 I/O Pins

6 to 16 I/O Pins

6 to 16 I/O Pins

FIGURE 8.20
MAX 7000E and MAX 7000S Device Block Diagram (Courtesy of Altera)

The part number breaks up as follows:

EPM7 MAX7000 family

128 number of macrocells

S in-system programmable

LC84 84-pin PLCC package

8.6 • MAX7000S CPLD 353

The main structure of the MAX7000S is a series of Logic Array Blocks (LABs),
linked by a Programmable Interconnect Array (PIA). Each LAB is a group of
16 macrocells that can share common product terms and lend or borrow unused product
terms among each other. A single LAB has similar I/O and programming capability to a
low-density PLD, so a CPLD like the MAX7000S can be thought of as an array of inter-
connected PALs or GALs on a single chip.

An EPM7128S has 8 LABs, for a total of 8 � 16 � 128 macrocells. However, these
are not all available to the user as I/Os; the number of available I/O pins depends on the de-
vice package. Figure 8.20 indicates that each LAB in a MAX7000S device has from 6 to
16 I/O pins. For an EPM7128S in a 160-pin PQFP package, there are 12 I/Os per LAB, for
a total of 96 available pins. For the same device in an 84-pin PLCC package, there are only
8 I/Os per LAB, for a total of 64 pins.

In practice, if an EPM7128SLC84 is to be programmed in-circuit (i.e., while installed
on a circuit board), there are only 60 I/Os available, as four pins are required for the pro-
gramming interface. The macrocells that are not connected to user I/O pins can only be
used for buried logic, or logic that is internal to the chip only.

As implied in Figure 8.20, all I/O pins connect to and from their associated LAB via
an I/O Control Block (a circuit that controls the tristate switching of signals at an I/O pin).
The I/O pin signals also connect directly to the PIA, where they are available for use in
other LABs. Sixteen lines connect the macrocell outputs of each LAB to the PIA, again for
use throughout the device. The PIA communicates to each LAB via 36 product lines to
provide connections from other LABs.

The MAX7000S family has four pins that can be configured as control signals or
inputs. GCLK1 is a global clock that is common to all macrocells in the device and can
be used to synchronously clock all registers. OE1 is an output enable that can globally
activate or disable the tristate outputs of the device macrocells. GCLRn is an active-
LOW global clear function. The fourth control pin can be configured as an input, as can
the other three pins, or as a second global clock (GCLK2) or output enable (OE2). If
the control functions are not used, these pins add four inputs to the available total.
These assignments can be made by the MAX�PLUS II software during the design
process.

Figure 8.21 shows a macrocell from a MAX7000S device. The macrocell is similar to
that of a GAL or Universal PAL in that it provides a sum-of-products function with active-
HIGH or -LOW options and the choice of registered or combinational output. Registered out-
puts can be clocked with one of two global clocks or by a product term from the AND matrix.
The register can be cleared globally or by a product term and preset with a product term.

The macrocell has five dedicated product terms, which is fewer than found in the PAL
and GAL matrices we examined earlier. This is generally sufficient to implement most
logic functions. If more terms are required, they can be supplied by a set of shared logic
expanders or parallel logic expanders.

Shared logic expanders do not add more product terms to a given macrocell. They
do make the programming of the entire LAB more efficient by allowing a product term
to be programmed once and used in several macrocells of the same LAB. One product
term per macrocell is inverted and fed back into the shared expander pool of product
terms. Since there are 16 macrocells per LAB, the shared logic expander pool has up to
16 product terms.

Parallel logic expanders allow a macrocell to borrow up to 15 product terms from its
three lower-numbered neighbors (5 product terms per neighboring macrocell). For exam-
ple, macrocell 4 can borrow up to 5 terms each from macrocells 3, 2, and 1. By using its 5
dedicated product terms and the maximum number of parallel expanders, a macrocell can
have up to 20 product terms at its disposal. These borrowed terms are not usable by the
macrocell from which they were borrowed. The parallel expanders are set up so that a
lower-number cell lends product terms to a higher-number cell, so the number of available
terms depends on how close to the end of a chain a macrocell is. Expander assignments are
done automatically by MAX�PLUS II at compile time.

354 C H A P T E R 8 • Introduction to Programmable Logic Architectures

8.7 FLEX10K CPLD

Look-up table (LUT) A circuit that implements a combinational logic function
by storing a list of output values that correspond to all possible input combinations.

Logic element (LE) A circuit internal to a CPLD used to implement a logic func-
tion as a look-up table.

Cascade chain A circuit in a CPLD that allows the input width of a Boolean
function to expand beyond the width of one logic element.

Carry chain A circuit in a CPLD that is optimized for efficient operation of carry
functions between logic elements.

Embedded array block (EAB) A relatively large block of storage elements in a
CPLD (2048 bits in a FLEX10K device), used for implementing complex logic
functions in look-up table format.

All programmable logic devices we have seen until now have been based on sum-of-
products arrays. Another major type of PLD is based on look-up table (LUT) architecture.
In this architecture, a number of storage elements are used to synthesize logic functions by
storing each function as a truth table. To illustrate the look-up table concept, let us use the
truth table of a 2-bit equality comparator, shown in Table 8.2.

The comparator examines inputs A1A0 and B1B0 and makes output AEQB equal to
logic 1 if A1A0 � B1B0. If we were to implement the circuit as an SOP array, we would first
find the Boolean expression by combining the four product terms from the truth table and
then program the appropriate cells in a CPLD AND matrix. The look-up table implemen-
tation of this function is based on a totally different concept.

K E Y T E R M S

Product-
Term
Select
Matrix

16 Expander
Product Terms

36 Signals
from PIA

Clear
Select

Clock/
Enable
Select

Register
Bypass

to I/O
Control
Block

to PIA

from
I/O pin

Global
Clear

Global
ClocksLAB Local Array

Parrellel Logic
Expanders
(from other
macrocells)

Shared Logic
Expanders

Programmable
Register

Fast Input
Select

VCC

PRN

CLRN

D Q

ENA

2

FIGURE 8.21
MAX 7000E and MAX 7000S Device Macrocell (Courtesy of Altera)

8.7 • FLEX10K CPLD 355

A1
A0
B1
B0

AEQB

AEQB

LUT

a. 2-bit comparator look-up table

b. Stuctural concept of a look-up table

Storage
Elements

D Q

Q0

D Q

Q1

D Q

Q15

ADDR0

ADDR1

ADDR15

ADDR0
ADDR1

ADDR15

Address decoder

A1
A0
B1
B0

FIGURE 8.22
Look-up Table

Figure 8.22 shows the structural concept of a 4-bit look-up table circuit. An array of 16
flip-flops (Q0 through Q15) contain data for all possible combinations of A1A0B1B0, one
flip-flop per combination. The LUT inputs A1A0B1B0 are decoded by an internal address
decoder. Each decoder output activates a tristate buffer that passes or blocks the output of
one flip-flop. The active buffer passes the contents of the flip-flop to AEQB; all other
buffers are in the high-impedance state, blocking the data from the other flip-flops.

The contents of the flip-flops are loaded when the look-up table is configured (pro-
grammed) with the required function. After that the flip-flops retain their information until
they are reconfigured. For our comparator example, flip-flops 0, 5, 10, and 15 are all set
(Q � 1). All other flip-flops are reset (Q � 0). Examine Table 8.2 to confirm that this is true.

The 16-bit storage element in Figure 8.22, combined with switching to choose a com-
binational or registered output and to interconnect with other parts of the chip, is called a
logic element (LE). A logic element performs a function similar to that of a macrocell in
SOP-type PLDs.

Figure 8.23 shows the structure of a logic element in an Altera FLEX10K CPLD. In
addition to the LUT, the LE has circuitry to select various control functions, such as clock
and reset, a flip-flop for registered output, some expansion circuitry (cascade and carry),
and interconnections to local and global busses.

The cascade chain circuit, shown in Figure 8.24 allows the user to program
Boolean functions with more than four inputs, thus requiring more than one LUT. The

Table 8.2 Truth Table for a 2-bit Equality
Comparator

A1 A0 B1 B0 Decimal AEQB

0 0 0 0 0 1
0 0 0 1 1 0
0 0 1 0 2 0
0 0 1 1 3 0

0 1 0 0 4 0
0 1 0 1 5 1
0 1 1 0 6 0
0 1 1 1 7 0

1 0 0 0 8 0
1 0 0 1 9 0
1 0 1 0 10 1
1 0 1 1 11 0

1 1 0 0 12 0
1 1 0 1 13 0
1 1 1 0 14 0
1 1 1 1 15 1

356 C H A P T E R 8 • Introduction to Programmable Logic Architectures

d[3..0] LUT

OR Cascade Chain

LE1

d[7..4] LUT

LE2

d[(4n-1)..(4n-4)] LUT

LEn

d[3..0] LUT

AND Cascade Chain

LE1

d[7..4] LUT

LE2

d[(4n-1)..(4n-4)] LUT

LEn

FIGURE 8.24
Cascade Chain Operation (Courtesy of Altera)

FIGURE 8.23
FLEX10K Logic Element (Courtesy of Altera)

DATA3

DATA2

DATA1

DATA4

LABCTRL1

LABCTRL2

Chip-Wide
Reset

LABCTRL3

LABCTRL4

Carry-Out

Clock
Select

Cascade-Out

Clear/
Preset
Logic

to FastTrack
Interconnect

to LAB local
Interconnect

Look-Up
Table
(LUT)

Carry
Chain

Cascade
Chain

Carry-In Cascade-In

ENA
CLRN

D Q
PRN

Register Bypass Programmable
Register

8.7 • FLEX10K CPLD 357

a1 s1

b1

LUT

Carry
Chain

Register

Carry-In

a2 s2

b2

LUT

Carry
Chain

Register

LE1

LE2

an sn

bn

LUT

Carry
Chain

Register

Carry-OutLUT

Carry
Chain

Register

LEn

LEn + 1

FIGURE 8.25
Carry Chain Operation
(n-bit Full Adder)
(Courtesy of Altera)

cascade chain can be AND- or OR-type, depending on what DeMorgan equivalent form is
most appropriate.

The carry chain, shown in Figure 8.25 allows for efficient fast-carry implementation
of adders, comparators, and other circuits that depend on the combination of low-order
bits to define high-order functions (i.e., circuits whose inputs become wider with higher-
order bits). Figure 8.25 shows the carry chain as implemented by an n-bit adder.

A Logic Array Block (LAB), shown in Figure 8.26, consists of eight logic elements
and a local interconnect. The LAB is connected to the rest of the device by a series of row
and column interconnects, which Altera calls a FastTrack Interconnect. Figure 8.27 shows
the overall structure of a FLEX10K device, with several LABs and a number of

358 C H A P T E R 8 • Introduction to Programmable Logic Architectures

Carry-In and
Cascade-In

Carry-Out and
Cascade-Out

LE1

LE2

LE3

LE4

LE5

LE6

LE7

LE8LE8

Dedicated Inputs and
Global Signals

2482

6

LAB Local
Interconnect

LAB Control
Signals

Column-to-Row
Interconnect

Column
Interconnect

Row Interconnect

4

4

4

4

4

4

4

4

4

4

8 2

16 4

16
8

FIGURE 8.26
FLEX10K LAB (Courtesy of Altera)

Embedded Array Blocks (EABs). An EAB is an array of 2048 storage elements that can
be used to efficiently implement complex logic functions.

The FLEX10K device found on the Altera UP-1 board—the EPF10K20RC240-4—
has an array of 6 rows by 24 columns of LABs, which gives a total of 144 LABs
(� 8 � 144 � 1152 logic elements). The device also has 6 EABs (6 � 2048 � 12288 bits
of EAB storage). Note that one EAB has significantly more storage capacity than all
LABs combined.

The FLEX10K series of CPLDs (and LUT-based devices generally) are based on
static random access memory (SRAM) technology. The advantage of this configuration
is that it can be manufactured with a very high density of storage cells and it pro-
grams quickly compared to an EEPROM-based SOP device. The disadvantage is that
SRAM cells are volatile; that is, they do not retain their data when power is removed
from the circuit. An SRAM-based device must be reconfigured every time it is pow-
ered up.

1. Programmable logic devices (PLDs) are configured in two basic architectures: sum-of-products (SOP), which usually consist of a se-

Summary 359

IOE IOE IOE IOE IOE IOE IOE IOE IOE IOE

IOE IOE

IOE

IOE

IOE IOE IOE IOE IOE IOE IOE IOE

IOE

IOE

IOE

IOE

IOE

IOE

Logic Array

Logic Array
Block (LAB)

Logic Element (LE)

Local Interconnect

Embedded Array

Embedded Array Block (EAB)

I/O Element
(IOE)

Column
Interconnect

Row
Interconnect

Logic
Array

EAB

EAB

FIGURE 8.27
FLEX10K Device Block Diagram (Courtesy of Altera)

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

S U M M A R Y

ries of programmable AND/OR circuits, and look-up table
(LUT), that stores the truth table of a Boolean function in a
small memory.

2. Programmable array logic (PAL) is an SOP-type architecture
in which there are a series of programmable AND gates that
have a fixed connection to an OR-gate output.

3. Connections from PLD inputs to PAL AND arrays were his-
torically made by leaving intact selected fuses in a crosspoint
fuse array. In modern PLDs, these connections are made by
programming EEPROM (electrically erasable programmable
read only memory) cells.

4. An AND-gate input in a PAL array is called a product line.
5. A PAL16L8 PLD is an SOP device with up to 16 inputs

and up to 8 outputs. There are 10 dedicated inputs, 2 dedi-
cated outputs, and 6 pins that can be configured as input or
output. All outputs in the PAL16L8 are active-LOW.

6. A PAL is programmed by a computer and programming
hardware that uses a JEDEC file as a template for determin-

ing which fuses to blow and which to leave intact.
7. Some PAL devices have programmable-polarity outputs.

This is achieved with an XOR gate that has a programmable
cell or fuse on one input to switch the output between invert-
ing and noninverting levels.

8. A registered PLD output consists of a flip-flop (usually
D-type) on the output of an SOP matrix.

9. A PAL part number indicates the number of registered out-
puts (e.g., a PAL16R8 has eight registered outputs).

10. Early-version standard PALs are limited in that they are
one-time programmable (OTP), their outputs are perma-
nently configured as combinational or registered, and they
cannot be programmed in-system. Later-version PALs
(e.g., PAL16CE16V8 Universal PAL) and GALs (generic
array logic such as GAL22V10) overcome these limita-
tions.

11. PALs and GALs with configurable architecture have outputs
that can be combinational or registered, with various input or

360 C H A P T E R 8 • Introduction to Programmable Logic Architectures

21. If the ISP capability of a CPLD is to be used, there are four
fewer pins available on the CPLD for user I/O.

22. Each MAX7000S macrocell has five dedicated product lines
and capability to borrow or share additional product terms
with neighboring macrocells in the same LAB.

23. Shared logic expanders allow one product term per
macrocell to be shared with other macrocells in the LAB,
totaling 16 product terms per LAB. The expander inverts
the product term and feeds it back into the LAB AND
matrix.

24. Parallel logic expanders allow a macrocell to borrow product
lines from neighboring macrocells. These borrowed product
lines are only available to one macrocell.

25. Expander assignments are done automatically by MAX�
PLUS II at compile time.

26. MAX7000S devices are based on EEPROM cells and are
thus nonvolatile.

27. The Altera FLEX10K series of CPLDs is based on a look-up
table (LUT) architecture. A look-up table consists of a 16-bit
array of storage elements that are selected by four logic
inputs.

28. An LUT combined with switching, configuration, and ex-
pansion circuitry comprises a logic element (LE), whose
function is equivalent to a macrocell in an SOP-type device.

29. Eight logic elements and a local interconnect make up a
Logic Array Block (LAB).

30. LABs in a FLEX10K device are interconnected by global
row and column busses.

31. The number of inputs in a logic function can be ex-
panded beyond the capacity of one logic element by using
cascade chains.

32. Carry chains can be used to more efficiently implement carry
functions in adders, counters, and comparators.

33. FLEX10K devices are based on SRAM technology and are
therefore volatile; they must be reconfigured each time
power is applied to the circuit.

feedback options.
12. Configurable output circuits in a PLD are called output logic

macrocells (OLMCs) or just macrocells.
13. Macrocells are configured by programming architecture

cells. Global architecture cells affect all macrocells in a de-
vice. A local architecture cell affects only the macrocell in
which it is found.

14. GALs and Universal PALs have global control signals, such
as clock, clear, and output enable, that can be applied to all
macrocells in the device.

15. A GAL22V10 has ten macrocells, a global clock that can be
used as a combinational input for nonclocked designs, and
eleven dedicated inputs.

16. The GAL22V10 macrocells are not all the same size. There
are two macrocells with each of the following numbers of
product terms: 8, 10, 12, 14, 16.

17. PLDs that can be programmed while installed in a circuit are
called in-system programmable (ISP). They are programmed
by a 4-wire interface that complies to a standard published
by the Joint Test Action Group (JTAG) and the IEEE (Std.
1149.1).

18. An Altera MAX7000S CPLD consists of groups of 16
macrocells, called Logic Array Blocks (LABs), that are
interconnected by an internal bus called a Programmable
Interconnect Array (PIA).

19. The number of macrocell outputs in an LAB that are con-
nected to I/O pins depends on the CPLD package type.
Macrocells that do not have external connections can still be
used for buried logic function.

20. MAX7000S devices have four programmable control pins:
global clock (GCLK1), Global Output Enable (OE1), Global
Clear (GCLRn), and a pin that can be configured as a second
global clock (GCLK2) or as a second global output enable
(OE2). If these functions are not used, the associated pins
can be used as standard I/Os.

21. If the ISP capability of a CPLD is to be used, there are four
fewer pins available on the CPLD for user I/O.

G L O S S A R Y

Architecture cell A programmable cell that, in combination
with other architecture cells, sets the configuration of a macrocell.

Buried logic Logic circuitry in a PLD that has no connection
to the input or output pins of the PLD, but is used solely as
internal logic.

Carry chain A circuit in a CPLD that is optimized for efficient
operation of carry functions between logic elements.

Cascade chain A circuit in a CPLD that allows the input
width of a Boolean function to expand beyond the width of one
logic element.

Cell A fuse location in a programmable logic device, specified
by the intersection of an input line and a product line.

Checksum An error-checking code derived from the accumulat-
ing sum of the data being checked.

CPLD Complex programmable logic device. A programmable
logic device consisting of several interconnected programmable
blocks.

Embedded array block (EAB) A relatively large block of stor-
age elements in a CPLD (2048 bits in a FLEX10K device), used
for implementing complex logic functions in look-up table format.

Generic array logic (GAL) A type of programmable logic de-
vice whose outputs can be configured as combinational or regis-
tered and whose programming matrix is based on electrically
erasable logic cells.

Global architecture cell An architecture cell that affects the
configuration of all macrocells in a device.

Global clock A clock signal in a PLD that clocks all registered
outputs in the device.

I/O Control Block A circuit in an Altera CPLD that controls
the type of tristate switching used in a macrocell output.

Input line A line which applies the true or complement form
of an input variable to the AND matrix of a PLD.

Input line number A number assigned to a true or comple-
ment input line in a PAL AND matrix.

Problems 361

In-system programmability (ISP) The ability of a PLD to be
programmed through a standard four-wire interface while in-
stalled in a circuit.

JEDEC Joint Electron Device Engineering Council

JEDEC file An industry standard form of text file indicating
which fuses are blown and which are intact in a programmable
logic device.

JTAG Port A four-wire interface specified by the Joint Test
Action Group (JTAG) used for loading test data or programming
data into a PLD installed in a circuit.

Local architecture cell An architecture cell that affects the
configuration of one macrocell only.

Logic Array Block (LAB) A group of macrocells that share
common resources in a CPLD.

Logic element (LE) A circuit internal to a CPLD used to
implement a logic function as a look-up table.

Look-up table (LUT) A circuit that implements a
combinational logic function by storing a list of output values
that correspond to all possible input combinations.

Multiplexer A circuit which selects one of several signals to
be directed to a single output.

One-time programmable (OTP) A property of some PLDs
that allows them to be programmed, but not erased.

Output logic macrocell (OLMC) An input/output circuit that
can be programmed for a variety of input or output configura-
tions, such as active HIGH or active LOW, combinational, or
registered. Often just called a macrocell.

PAL Programmable array logic. Programmable logic with a
fixed OR matrix and a programmable AND matrix.

Parallel logic expanders Product terms that are borrowed
from neighboring macrocells in the same LAB.

Product line A single line on a logic diagram used to repre-
sent all inputs to an AND gate (i.e., one product term) in a PLD
sum-of-products array.

Product line first cell number The lowest cell number on a
particular product line in a PAL AND matrix where all cells are
consecutively numbered.

Programmable Interconnect Array (PIA) An internal bus
with programmable connections that link together the Logic
Array Blocks of a CPLD.

Programmable logic device (PLD) A logic device whose
function can be programmed by the user, usually in sum-of-
products form.

Register A digital circuit such as a flip-flop that stores one
or more bits of digital information.

Registered output An output of a programmable array logic
(PAL) device having a flip-flop (usually D-type) which stores the
output state.

Shared logic expanders Product terms that are inverted and
fed back into the programmable AND matrix of an LAB for use
by any other macrocell in the LAB.

Text file An ASCII-coded document stored on a magnetic
disk.

Universal PAL A PLD based on erasable cells and config-
urable outputs, much like GAL, but primarily designed to
emulate PAL devices, such as PAL16L8.

P R O B L E M S

Problem numbers set in color indicate more difficult problems;
those with underlines indicate most difficult problems.

Section 8.1 Introduction to Progammable Logic

Section 8.2 PAL Fuse Matrix and Combinational
Outputs

Section 8.3 PAL Outputs With Programmable Polarity

8.1 Draw a diagram showing the basic configuration and
symbology for a PLD sum-of-products array.

8.2 Draw a basic PAL circuit having four inputs, eight prod-
uct terms, and one active-LOW combinational output.
Draw fuses on your diagram showing how to make the
following Boolean expression:

F� � A� B C� � B� C D � A� C D � A C� D

8.3 Modify the PAL circuit drawn in Problem 8.2 to make
two outputs having eight product terms and programma-
ble polarity. Draw fuses on the diagram for each of the
following functions:

F1 � A B C� � �B C D � A� C D � A C� D

���F2 � A� B C� � B� C D � A� C D � A C� D

8.4 Make a photocopy of Figure 8.8 (PAL20P8 logic dia-
gram). Draw fuses on the PAL20P8 logic diagram show-
ing how to make a BCD-to-2421 code converter, as devel-
oped in Example 3.22.

Table 8.3 shows how the two codes relate to each
other. The equations are listed on page 362.

Table 8.3 BCD and 2421 Code

BCD Code 2421 CodeDecimal
Equivalent D4 D3 D2 D1 Y4 Y3 Y2 Y1

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1
4 0 1 0 0 0 1 0 0
5 0 1 0 1 1 0 1 1
6 0 1 1 0 1 1 0 0
7 0 1 1 1 1 1 0 1
8 1 0 0 0 1 1 1 0
9 1 0 0 1 1 1 1 1

362 C H A P T E R 8 • Introduction to Programmable Logic Architectures

The Boolean equations for the BCD-to-2421 de-
coder are:

Y4 � D4 � D3D2 � D3D1

Y3 � D4 � D3D2 � D3D�1

Y2 � D4 � D�3D2 � D3D�2D1

Y1 � D1

8.5 Repeat Problem 8.4 for a 2421-to-BCD code converter.

8.4 PAL Devices with Registered Outputs

8.6 What is a registered output?

8.7 State the number of registered outputs for each of the
following PAL devices:

a. PAL16R4
b. PAL16R6
c. PAL16R8

8.5 Universal PAL and Generic Array Logic (GAL)

8.8 Name two features of a PALCE16V8 that make it supe-
rior to a PAL16L8.

8.9 State the difference between a global architecture cell
and a local architecture cell in a PALCE16V8.

8.10 How many macrocells are there in a GAL22V10? How
many product lines do these macrocells have?

8.11 State the four configurations possible with a macrocell
in a GAL22V10.

8.12 Is there a global output enable function available for a
PALCE16V8? For a GAL22V10?

8.13 Can the registered outputs of a PALCE16V8 be clocked
by a product term function from the PAL AND matrix?

8.14 Can the registered outputs of a GAL22V10 be clocked
by a product term function from the GAL AND matrix?

8.15 Are the Asynchronous Reset (AR) and Synchronous
Preset (SP) functions in a GAL22V10 global or local?
Explain your answer in one sentence.

8.6 MAX7000S CPLD

8.16 State one way in which a Complex PLD, such as an
Altera MAX7000S, differs from a low-density PAL
or GAL.

8.17 How many macrocells are available in the following
CPLDs:
a. EPM7032
b. EPM7064
c. EPM7128S
d. EPM7160S

8.18 Which of the CPLDs listed in Problem 8.17 are in-system
programmable? What does it mean when a device is in-
system programmable?

8.19 How many logic array blocks (LABs) are there in an Al-
tera MAX7000S CPLD?

8.20 How many user I/O pins are there in an EPM7128SLC84
CPLD? How many pins per LAB does this represent?

8.21 What can be done with the macrocells in an LAB that do
not connect to I/O pins?

8.22 State the possible clock configurations of a MAX7000S
macrocell.

8.23 State the possible reset configurations of a MAX7000S
macrocell.

8.24 State the possible preset configurations of a MAX7000S
macrocell.

8.25 How many dedicated product terms are available in a
MAX7000S macrocell? How can this number of product
terms be supplemented? What is the maximum number
of product terms available to a macrocell?

8.26 How many shared logic expanders are available in
an LAB?

8.7 FLEX10K CPLD

8.27 Briefly state the difference between CPLDs having sum-
of-products architecture and look-up table architecture.

8.28 How many inputs can a look-up table accept in an Altera
FLEX10K logic element? How can this be expanded?

8.29 What is the purpose of the carry chain in a FLEX10K
CPLD?

8.30 How many logic elements are there in a FLEX10K LAB?

8.31 How many bits of storage are there in an Embedded Ar-
ray Block in a FLEX10K CPLD?

363

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 9

Counters and Shift Registers

O U T L I N E

9.1 Basic Concepts of
Digital Counters

9.2 Synchronous
Counters

9.3 Design of
Synchronous
Counters

9.4 Programming
Binary Counters in
VHDL

9.5 Control Options for
Synchronous
Counters

9.6 Programming
Presettable and
Bidirectional
Counters in VHDL

9.7 Shift Registers

9.8 Programming Shift
Registers in VHDL

9.9 Shift Register
Counters

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Determine the modulus of a counter.

• Determine the number of outputs required by a counter for a given
modulus.

• Determine the maximum modulus of a counter, given the number of circuit
outputs.

• Draw the count sequence table, state diagram, and timing diagram of a
counter.

• Determine the recycle point of a counter’s sequence.

• Calculate the frequencies of each counter output, given the input clock
frequency.

• Draw a circuit for any full sequence synchronous counter.

• Determine the count sequence, state diagram, timing diagram, and modulus
of any synchronous counter.

• Complete the state diagram of a synchronous counter to account for unused
states.

• Design the circuit of a truncated sequence synchronous counter, using flip-
flops and logic gates.

• Use MAX�PLUS II to create a graphic design file for any synchronous
counter circuit.

• Use behavioral descriptions in VHDL to design synchronous counters of
any modulus.

• Use a parameterized counter from the Library of Parameterized Modules in
a VHDL file.

• Use the MAX�PLUS II simulation tool to verify the operation of synchro-
nous counters.

• Implement various counter control functions, such as parallel load, clear,
count enable, and count direction, both in Graphic Design Files and in
VHDL.

• Design a circuit to decode the output of the counter, both in a MAX�PLUS
II Graphic Design File or in VHDL.

• Draw a logic circuit of a serial shift register and determine its contents over
time given any input data.

364 C H A P T E R 9 • Counters and Shift Registers

Counters and shift registers are two important classes of sequential circuits. In the sim-
plest terms, a counter is a circuit that counts pulses. As such, it is used in many circuit

applications, such as event counting and sequencing, timing, frequency division, and con-
trol. A basic counter can be enhanced to incorporate functions such as synchronous or
asynchronous parallel loading, synchronous or asynchronous clear, count enable, direc-
tional control, and output decoding. In this chapter, we will design counters using
schematic entry, VHDL, and counters from the Library of Parameterized Modules and ver-
ify their operation using the MAX�PLUS II simulator.

Shift registers are circuits that store and move data. They can be used in serial data
transfer, serial/parallel conversion, arithmetic functions, and delay elements. As with coun-
ters, many shift registers have additional functions such as parallel load, clear, and direc-
tional control. We can implement these circuits using schematic entry, VHDL, and LPM
components. �

9.1 Basic Concepts of Digital Counters

Counter A sequential digital circuit whose output progresses in a predictable re-
peating pattern, advancing by one state for each clock pulse.

Recycle To make a transition from the last state of the count sequence to the first
state.

Count sequence The specific series of output states through which a counter
progresses.

State diagram A diagram showing the progression of states of a sequential
circuit.

Modulus The number of states through which a counter sequences before
repeating.

Modulo-n (or mod-n) counter A counter with a modulus of n.

UP counter A counter with an ascending sequence.

DOWN counter A counter with a descending sequence.

K E Y T E R M S

• Draw a timing diagram showing the operation of a serial shift register.

• Draw the logic circuit of a general parallel-load shift register.

• Draw a timing diagram showing the operation of a parallel-load shift
register.

• Draw the general logic circuit of a bidirectional shift register and explain
the concepts of right-shift and left-shift.

• Use timing diagrams to explain the operation of a bidirectional shift
register.

• Describe the operation of a universal shift register.

• Design shift registers, ring counters, and Johnson counters with the
MAX�PLUS II Graphic Editor or VHDL.

• Verify the operation of shift registers, ring counters, and Johnson counters
using the MAX�PLUS II simulation tool.

• Design a decoder for a Johnson counter.

• Use a ring counter or a Johnson counter as an event sequencer.

• Compare binary, ring, and Johnson counters in terms of the modulus and
the required decoding for each circuit.

9.1 • Basic Concepts of Digital Counters 365

The simplest definition of a counter is “a circuit that counts pulses.” Knowing only this, let
us look at an example of how we might use a counter circuit.

❘❙❚ EXAMPLE 9.1 Figure 9.1 shows a 10-bit binary counter that can be used to count the number of people
passing by an optical sensor. Every time the sensor detects a person passing by, it produces
a pulse. Briefly describe the counter’s operation. What is the maximum number of people
it can count? What happens if this number is exceeded?

Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

CLK

CTR DIV 1024

Optical
sensor

FIGURE 9.1
Example 9.1
10-bit Counter

Solution The counter has a 10-bit output, allowing a binary number from 00 0000 0000
to 11 1111 1111 (0 to 1023) to appear at its output. The sensor causes the counter to ad-
vance by one binary number for every pulse applied to the counter’s clock (CLK) input. If
the counter is allowed to register no people (i.e., 00 0000 0000), then the circuit can count
1023 people, since there are 1024 unique binary combinations of a 10-bit number, includ-
ing 0. (This is because 210 � 1024.) When the 1024th pulse is applied to the clock input,
the counter rolls over to 0 (or recycles) and starts counting again. (After this point, the
counter would not accurately reflect the number of people counted.)

The counter is labeled CTR DIV 1024 to indicate that one full cycle of the counter re-
quires 1024 clock pulses (i.e., the frequency of the MSB output signal (Q9) is the clock fre-
quency divided by 1024).

❘❙❚

A counter is a digital circuit that has a number of binary outputs whose states progress
through a fixed sequence. This count sequence can be ascending, descending, or nonlinear.

The output sequence of a counter is usually defined by its modulus, that is, the num-
ber of states through which the counter progresses. An UP counter with a modulus of 12
counts through 12 states from 0000 up to 1011 (0 to 11 in decimal), recycles to 0000, and
continues. A DOWN counter with a modulus of 12 counts from 1011 down to 0000, recy-
cles to 1011, and continues downward. Both types of counter are called modulo-12, or just
mod-12 counters, since they both have sequences of 12 states.

State Diagram

The states of a counter can be represented by a state diagram. Figure 9.2 compares the
state diagram of a mod-12 UP counter to an analog clock face. Each counter state is illus-
trated in the state diagram by a circle containing its binary value. The progression is shown
by a series of directional arrows.

Both the clock face and the state diagram represent a closed system of counting. In
each case, when we reach the end of the count sequence, we start over from the beginning
of the cycle.

For instance, if it is 10:00 a.m. and we want to meet a friend in four hours, we know
we should turn up for the appointment at 2:00 p.m. We arrive at this figure by starting at 10
on the clock face and counting 4 digits forward in a “clockwise” circle. This takes us two
digits past 12, the “recycle point” of the clock face.

Similarly, if we want to know the 8th state after 0111 in a mod-12 UP counter, we start
at state 0111 and count 8 positions in the direction of the arrows. This brings us to state
0000 (the recycle point) in 5 counts and then on to state 0011 in another 3 counts.

366 C H A P T E R 9 • Counters and Shift Registers

Number of Bits and Maximum Modulus

Maximum modulus (mmax) The largest number of counter states that can be rep-
resented by n bits (mmax � 2n).

Full-sequence counter A counter whose modulus is the same as its maximum
modulus (m � 2n for an n-bit counter).

Binary counter A counter that generates a binary count sequence.

Truncated-sequence counter A counter whose modulus is less than its maxi-
mum modulus (m � 2n for an n-bit counter).

The state diagram of Figure 9.2 represents the states of a mod-12 counter as a series of 4-
bit numbers. Counter states are always written with a fixed number of bits, since each bit
represents the logic level of a physical location in the counter circuit. A mod-12 counter re-
quires four bits because its highest count value is a 4-bit number: 1011.

The maximum modulus of a 4-bit counter is 16 (� 24). The count sequence of a mod-
16 UP counter is from 0000 to 1111 (0 to 15 in decimal), as illustrated in the state diagram
of Figure 9.3.

In general, an n-bit counter has a maximum modulus of 2n and a count sequence from
0 to 2n � 1 (i.e., all 0s to all 1s). Since a mod-16 counter has a modulus of 2n (� mmax), we
say that it is a full-sequence counter. We can also call this a binary counter if it generates
the sequence in binary order. A counter, such as a mod-12 counter, whose modulus is less
than 2n, is called a truncated sequence counter.

Count-Sequence Table and Timing Diagram

Count-sequence table A list of counter states in the order of the count sequence.

Two ways to represent a count sequence other than a state diagram are by a count se-
quence table and by a timing diagram. The count sequence table is simply a list of counter
states in the same order as the count sequence. Tables 9.1 and 9.2 show the count sequence
tables of a mod-16 UP counter and a mod-12 UP counter, respectively.

K E Y T E R M S

K E Y T E R M S

FIGURE 9.2
Mod-12 State Diagram and
Analog Clock Face

9.1 • Basic Concepts of Digital Counters 367

We can derive timing diagrams from each of these tables. We know that each
counter advances by one state with each applied clock pulse. The mod-16 count se-
quence shows us that the Q0 waveform changes state with each clock pulse. Q1 changes
with every two clock pulses, Q2 with every four, and Q3 with every eight. Figure 9.4
shows this pattern for the mod-16 UP counter, assuming the counter is a positive edge-
triggered device.

FIGURE 9.3
State Diagram of a Mod-16
Counter

Table 9.1 Mod-16
Count Sequence Table

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Table 9.2 Mod-12
Count-Sequence Table

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011

CLK

Q0

Q1

Q2

Q3

FIGURE 9.4
Mod-16 Timing Diagram

368 C H A P T E R 9 • Counters and Shift Registers

A divide-by-two ratio relates the frequencies of adjacent outputs of a binary counter.
For example, if the clock frequency is fc � 16 MHz, the frequencies of the output wave-
forms are: 8 MHz (f0 � fc/2); 4 MHz (f1 � fc/4); 2 MHz (f2 � fc/8); 1 MHz (f3 � fc/16).

We can construct a similar timing diagram, illustrated in Figure 9.5, for a mod-12 UP
counter. The changes of state can be monitored by noting where Q0 (the least significant
bit) changes. This occurs on each positive edge of the CLK waveform. The sequence pro-
gresses by 1 with each CLK pulse until the outputs all go to 0 on the first CLK pulse after
state Q3Q2Q1Q0 � 1011.

The output waveform frequencies of a truncated sequence counter do not necessarily
have a simple relationship to one another as do binary counters. For the mod-12 counter
the relationships between clock frequency, fc, and output frequencies are: f0 � fc/2; f1 �
fc/4; f2 � fc/12; f3 � fc/12. Note that both Q2 and Q3 have the same frequencies (f2 and f3),
but are out of phase with one another.

❘❙❚ EXAMPLE 9.2 Draw the state diagram, count sequence table, and timing diagram for a mod-12 DOWN
counter.

Solution Figure 9.6 shows the state diagram for the mod-12 DOWN counter. The states
are identical to those of a mod-12 UP counter, but progress in the opposite direction. Table
9.3 shows the count sequence table of this circuit.

CLK

Q0

Q1

Q2

Q3

FIGURE 9.5
Mod-12 Timing Diagram

FIGURE 9.6
Example 9.2
State Diagram of a Mod-12 DOWN Counter

9.2 • Synchronous Counters 369

The timing diagram of this counter is illustrated in Figure 9.7. The output starts in
state Q3Q2Q1Q0 � 1011 and counts DOWN until it reaches 0000. On the next pulse, it re-
cycles to 1011 and starts over.

❘❙❚

❘❙❚ SECTION 9.1 REVIEW PROBLEM

9.1 How many outputs does a mod-24 counter require? Is this a full-sequence or a trun-
cated sequence counter? Explain your answer.

9.2 Synchronous Counters

Synchronous counter A counter whose flip-flops are all clocked by the same
source and thus change in synchronization with each other.

Present state The current state of flip-flop outputs in a synchronous sequential
circuit.

Next state The desired future state of flip-flop outputs in a synchronous sequen-
tial circuit after the next clock pulse is applied.

Memory section A set of flip-flops in a synchronous circuit that hold its present
state.

K E Y T E R M S

Table 9.3 Count-
Sequence Table for a
Mod-12 DOWN Counter

Q3Q2Q1Q0

1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CLK

Q0

Q1

Q2

Q3

FIGURE 9.7
Example 9.2
Timing Diagram of a Mod-12 DOWN Counter

370 C H A P T E R 9 • Counters and Shift Registers

Control section The combinational logic portion of a synchronous circuit that de-
termines the next state of the circuit.

Status lines Signals that communicate the present state of a synchronous circuit
from its memory section to its control section.

Command lines Signals that connect the control section of a synchronous circuit
to its memory section and direct the circuit from its present to its next state.

In Chapter 7, we briefly examined the circuits of a 3-bit and a 4-bit synchronous counter
(Figures 7.53 and 7.87, respectively). A synchronous counter is a circuit consisting of flip-
flops and control logic, whose outputs progress through a regular predictable sequence,
driven by a clock signal. The counter is synchronous because all flip-flops are clocked at
the same time.

Figure 9.8 shows the block diagram of a synchronous counter, which consists of a
memory section to keep track of the present state of the counter and a control section to
direct the counter to its next state. The memory section is a sequential circuit (flip-flops)
and the control section is combinational (gates). They communicate through a set of status
lines that go from the Q outputs of the flip-flops to the control gate inputs and command
lines that connect the control gate outputs to the synchronous inputs (J, K, D, or T) of the
flip-flops. Outputs can be tied directly to the status lines or can be decoded to give a se-
quence other than that of the flip-flop output states. The circuit might have inputs to imple-
ment one or more control functions, such as changing the count direction, clearing the
counter, or presetting the counter to a specific value.

Memory section
(flip-flops)

Input
lines

Output
lines

Status
lines

Command
lines

Output
decoder
(optional)

CLK

Control section
(gates)

FIGURE 9.8
Synchronous Counter Block Diagram

Analysis of Synchronous Counters

A 3-bit synchronous binary counter based on JK flip-flops is shown in Figure 9.9. Let us
analyze its count sequence in detail so that we can see how the J and K inputs are affected
by the Q outputs and how transitions between states are made. Later we will look at the
function of truncated sequence counter circuits and counters that are made from flip-flops
other than JK.

The synchronous input equations are given by:

J2 � K2 � Q1�Q0

J1 � K1 � Q0

J0 � K0 � 1

9.2 • Synchronous Counters 371

For reference, the JK flip-flop function table is shown in Table 9.4:

CLK

VCC

OUTPUT
Q2

AND2

OUTPUT
Q1

OUTPUT

INPUT

Q0

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

FIGURE 9.9
3-bit Synchronous Binary Counter

Table 9.4 Function Table of a JK Flip-Flop

J K Qt � 1 Function

0 0 Qt No change
0 1 0 Reset
1 0 1 Set
1 1 �Qt Toggle

Qt indicates the state of Q before a clock pulse is applied. Qt�1 indicates the state of Q
after the clock pulse.

Assume the counter output is initially Q2Q1Q1 � 000. Before any clock pulses are ap-
plied, the J and K inputs are at the following states:

J2 � K2 � Q1�Q0 � 0�0 � 0 (No change)

J1 � K1 � Q0 � 0 (No change)

J0 � K0 � 1 (Constant) (Toggle)

The transitions of the outputs after the clock pulse are:

Q2: 0 → 0 (No change)

Q1: 0 → 0 (No change)

Q0: 0 → 1 (Toggle)

The output goes from Q2Q1Q1 � 000 to Q2Q1Q1 � 001 (see Figure 9.10). The transi-
tion is defined by the values of J and K before the clock pulse, since the propagation delays
of the flip-flops prevent the new output conditions from changing the J and K values until
after the transition.

The new conditions of the J and K inputs are:

J2 � K2 � Q1�Q0 � 0�1 � 0 (No change)

J1 � K1 � Q0 � 1 (Toggle)

J0 � K0 � 1 (Constant) (Toggle)

372 C H A P T E R 9 • Counters and Shift Registers

The transitions of the outputs generated by the second clock pulse are:

Q2: 0 → 0 (No change)

Q1: 0 → 1 (Toggle)

Q0: 1 → 0 (Toggle)

The new output is Q2Q1Q0 � 010, since both Q0 and Q1 change and Q2 stays the
same. The J and K conditions are now:

J2 � K2 � Q1�Q0 � 1�0 � 0 (No change)

J1 � K1 � Q0 � 0 (No change)

J0 � K0 � 1 (Constant) (Toggle)

The output transitions are:

Q2: 0 → 0 (No change)

Q1: 1 → 1 (No change)

Q0: 0 → 1 (Toggle)

The output is now Q2Q1Q0 � 011, which results in the JK conditions:

J2 � K2 � Q1�Q0 � 1�1 � 1 (Toggle)

J1 � K1 � Q0 � 1 (Toggle)

J0 � K0 � 1 (Constant) (Toggle)

The above conditions result in output transitions:

Q2: 0 → 1 (Toggle)

Q1: 1 → 0 (Toggle)

Q0: 1 → 0 (Toggle)

All the outputs toggle and the new output state is Q2Q1Q0 � 100. The J and K values
repeat the above pattern in the second half of the counter cycle (states 100 to 111). Go
through the exercise of calculating the J, K, and Q values for the rest of the cycle. Compare
the result with the timing diagram in Figure 9.10.

CLK

Q0

Q1

Q2

0

0

0

0

Recycle
point

0

0

1

1

1

FIGURE 9.10
Timing Diagram for a Synchronous 3-bit Binary Counter

In the counter we have just analyzed, the combinational circuit generates either a tog-
gle (JK � 11) or a no change (JK � 00) state at each point through the count sequence. We
could use any combination of JK modes (no change, reset, set, or toggle) to make the tran-
sitions from one state to the next. For instance, instead of using only the no change and
toggle modes, the 000 → 001 transition could also be done by making Q0 set (J0 � 1,

9.2 • Synchronous Counters 373

K0 � 0) and Q1 and Q2 reset (J1 � 0, K1 � 1 and J2 � 0, K2 � 1). To do so we would need
a different set of combinational logic in the circuit.

The simplest synchronous counter design uses only the no change (JK � 00) or toggle
(JK � 11) modes, since the J and K inputs of each flip-flop can be connected together. The
no change and toggle modes allow us to make any transition (i.e., not just in a linear se-
quence), even though for truncated sequence and nonbinary counters this is not usually the
most efficient design.

There is a simple progression of algebraic expressions for the J and K inputs of a syn-
chronous binary (full sequence) counter, which uses only the no change and toggle states:

J0 � K0 � 1

J1 � K1 � Q0

J2 � K2 � Q1�Q0

J3 � K3 � Q2�Q1�Q0

J4 � K4 � Q3�Q2�Q1�Q0

etc.

The J and K inputs of each stage are the ANDed outputs of all previous stages. This
implies that a flip-flop toggles only when the outputs of all previous stages are HIGH. For
example, Q2 doesn’t change unless both Q1 AND Q0 are HIGH (and therefore J2 � K2 � 1)
before the clock pulse. In a 3-bit counter, this occurs only at states 011 and 111, after which
Q2 will toggle, along with Q1 and Q0, giving transitions to states 100 and 000 respectively.
Look at the timing diagram of Figure 9.10 to confirm this.

Determining the Modulus of a Synchronous Counter

We can use a more formal technique to analyze any synchronous counter, as follows.

1. Determine the equations for the synchronous inputs (JK, D, or T) in terms of the Q out-
puts for all flip-flops. (For counters other than straight binary full sequence types, the
equations will not be the same as the algebraic progressions previously listed.)

2. Lay out a table with headings for the Present State of the counter (Q outputs before CLK
pulse), each Synchronous Input before CLK pulse, and Next State of the counter (Q out-
puts after the clock pulse).

3. Choose a starting point for the count sequence, usually 0, and enter the starting point in
the Present State column.

4. Substitute the Q values of the initial present state into the synchronous input equations
and enter the results under the appropriate columns.

5. Determine the action of each flip-flop on the next CLK pulse (e.g., for a JK flip-flop, the
output either will not change (JK � 00), or will reset (JK � 01), set (JK � 10), or tog-
gle (JK � 11)).

6. Look at the Q values for every flip-flop. Change them according to the function deter-
mined in Step 5 and enter them in the column for the counter’s next state.

7. Enter the result from Step 6 on the next line of the column for the counter’s present state
(i.e., this line’s next state is the next line’s present state).

8. Repeat the above process until the result in the next state column is the same as the ini-
tial state.

❘❙❚ EXAMPLE 9.3 Find the count sequence of the synchronous counter shown in Figure 9.11 and, from the
count sequence table, draw the timing diagram and state diagram. What is the modulus of
the counter?

374 C H A P T E R 9 • Counters and Shift Registers

Solution The J and K equations are:

J2 � Q1�Q0 J1 � Q0 J0 � Q�2

K2 � 1 K1 � Q0 K0 � 1

The output transitions can be determined from the values of the J and K functions be-
fore each clock pulse, as shown in Table 9.5.

FIGURE 9.11
Synchronous Counter of Unknown Modulus

CLK

VCC

OUTPUT
Q2

AND2

OUTPUT
Q1

OUTPUT

INPUT

NOT

Q0

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

VCC

CLK

Q0

Q1

Q2

0

0

0

0

Recycle

0

0

0

0

1

a. Timing diagram b. State diagram

000

001

010011

100

FIGURE 9.12
Example 9.3
Timing Diagram and State
Diagram of a Mod-5 Counter

Table 9.5 State Table for Figure 9.11

Present State Synchronous Inputs Next State

Q2Q1Q0 J2K2 J1K1 J0K0 Q2Q1Q0

000 01 (R) 00 (NC) 11 (T) 001
001 01 (R) 11 (T) 11 (T) 010
010 01 (R) 00 (NC) 11 (T) 011
011 11 (T) 11 (T) 11 (T) 100
100 01 (R) 00 (NC) 01 (R) 000

❘❙❚

Since there are five unique output states, the counter’s modulus is 5.
The timing diagram and state diagram are shown in Figure 9.12. Since this circuit pro-

duces one pulse on Q2 for every 5 clock pulses, we can use it as a divide-by-5 circuit.

9.2 • Synchronous Counters 375

The analysis in Example 9.3 did not account for the fact that the counter uses only 5 of
a possible 8 output states. In any truncated sequence counter, it is good practice to deter-
mine the next state for each unused state to ensure that if the counter powers up in one of
these unused states, it will eventually enter the main sequence.

❘❙❚ EXAMPLE 9.4 Extend the analysis of the counter in Example 9.3 to include its unused states. Redraw the
counter’s state diagram to show how these unused states enter the main sequence (if they do).

Solution The synchronous input equations are:

J2 � Q1�Q0 J1 � Q0 J0 � Q�2

K2 � 1 K1 � Q0 K0 � 1

The unused states are Q2Q1Q0 � 101, 110, and 111. Table 9.6 shows the transitions
made by the unused states. Figure 9.13 shows the completed state diagram.

Table 9.6 State Table for Mod-5 Counter Including Unused States

Present State Synchronous Inputs Next State

Q2Q1Q0 J2K2 J1K1 J0K0 Q2Q1Q0

000 01 (R) 00 (NC) 11 (T) 001
001 01 (R) 11 (T) 11 (T) 010
010 01 (R) 00 (NC) 11 (T) 011
011 11 (T) 11 (T) 11 (T) 100
100 01 (R) 00 (NC) 01 (R) 000

101 01 (R) 11 (T) 01 (R) 010
110 01 (R) 00 (NC) 01 (R) 010
111 11 (T) 11 (T) 01 (R) 000

❘❙❚

❘❙❚ SECTION 9.2 REVIEW PROBLEM

9.2 A 4-bit synchronous counter based on JK flip-flops is described by the following set of
equations:

J3 � Q2Q1Q0 J2 � Q1Q0 J1 � Q�3Q0 J0 � 1
K3 � Q0 K2 � Q1Q0 K1 � Q0 K0 � 1

FIGURE 9.13
Example 9.4
Complete State Diagram

376 C H A P T E R 9 • Counters and Shift Registers

Assume the counter output is at 1000 in the count sequence. What will the output be
after one clock pulse? After two clock pulses?

9.3 Design of Synchronous Counters

Excitation table A table showing the required input conditions for every possible
transition of a flip-flop output.

State machine A synchronous sequential circuit.

A synchronous counter can be designed using established techniques that involve the der-
ivation of Boolean equations for the counter’s next state logic. Alternatively, several VHDL
structures can be used to define counters; we can use a behavioral description of the
counter, or we can use a state machine definition in VHDL that specifies each present and
next state explicitly.

In addition to the classical counter design techniques, we will examine the design of a
counter through a behavioral description in VHDL. We will leave the state machine design
for the following chapter.

Classical Design Technique

There are several steps involved in the classical design of a synchronous counter.

1. Define the problem. Before you can begin design of a circuit, you have to know what its
purpose is and what it should do under all possible conditions.

2. Draw a state diagram showing the progression of states under various input conditions
and what outputs the circuit should produce, if any.

3. Make a state table which lists all possible Present States and the Next State for each
one. List the present states in binary order.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each Present State to its Next State.

5. The logic levels of the synchronous inputs are Boolean functions of the flip-flop outputs
and the control inputs. Simplify the expression for each input and write the simplified
Boolean expression.

6. Use the Boolean expressions found in step 5 to draw the required logic circuit.

Flip-flop Excitation Tables

In the synchronous counter circuits we examined earlier in this chapter, we used JK flip-
flops that were configured to operate only in toggle or no change mode. We can use any
type of flip-flop for a synchronous sequential circuit. If we choose to use JK flip-flops, we
can use any of the modes (no change, reset, set, or toggle) to make transitions from one
state to another.

A flip-flop excitation table shows all possible transitions of a flip-flop output and the
synchronous input levels needed to effect these transitions. Table 9.7 is the excitation table
of a JK flip-flop.

If we want a flip-flop to make a transition from 0 to 1, we can use either the toggle
function (JK � 11) or the set function (JK � 10). It doesn’t matter what K is, as long as
J � 1. This is reflected by the variable pair (JK � 1X) beside the 0→ 1 entry in Table
9.7. The X is a don’t care state, a 0 or 1 depending on which is more convenient for the
simplification of the Boolean function of the J or K input affected.

Table 9.8 shows a condensed version of the JK flip-flop excitation table.

K E Y T E R M S

9.3 • Design of Synchronous Counters 377

Design of a Synchronous Mod-12 Counter

We will follow the procedure outlined above to design a synchronous mod-12 counter cir-
cuit, using JK flip-flops. The aim is to derive the Boolean equations of all J and K inputs
and to draw the counter circuit.

1. Define the problem. The circuit must count in binary sequence from 0000 to 1011 and
repeat. The output progresses by 1 for each applied clock pulse. Since the outputs are
4-bit numbers, we require 4 flip-flops.

2. Draw a state diagram. The state diagram for this problem is shown in Figure 9.14.

3. Make a state table showing each present state and the corresponding next state.

4. Use flip-flop excitation tables to fill in the J and K entries in the state table. Table 9.9
shows the combined result of steps 3 and 4. Note that all present states are in binary order.

We assume for now that states 1100 to 1111 never occur. If we assign their corre-
sponding next states to be don’t care states, they can be used to simplify the J and K ex-
pressions we derive from the state table.

Table 9.7 JK Flip-Flop Excitation Table

Transition Function JK

0 → 0 No change 00 0X
or
reset 01

0 → 1 Toggle 11 1X
or
set 10

1 → 0 Toggle 11 X1
or
reset 01

1 → 1 No change 00 X0
or
set 10

Table 9.8 Condensed
Excitation Table for a JK
Flip-Flop

Transition JK

0 → 0 0X
0 → 1 1X
1 → 0 X1
1 → 1 X0

FIGURE 9.14
State Diagram for a Mod-12
Counter

378 C H A P T E R 9 • Counters and Shift Registers

Let us examine one transition to show how the table is completed. The transition
from Q3Q2Q1Q0 � 0101 to Q3Q2Q1Q0 � 0110 consists of the following individual flip-
flop transitions.

Q3: 0 → 0 (No change or reset; J3K3 � 0X)
Q2: 1 → 1 (No change or set; J2K2 � X0)
Q1: 0 → 1 (Toggle or set; J1K1 � 1X)
Q0: 1 → 0 (Toggle or reset; J0K0 � X1)

The other lines of the table are similarly completed.

5. Simplify the Boolean expression for each input. Table 9.9 can be treated as eight truth
tables, one for each J or K input. We can simplify each function by Boolean algebra or
by using a Karnaugh map.

Figure 9.15 shows K-map simplification for all 8 synchronous inputs. These maps
yield the following simplified Boolean expressions.

J0 � 1
K0 � 1

J1 � Q0

K1 � Q0

J2 � Q�3Q1Q0

K2 � Q1Q0

J3 � Q2Q1Q0

K3 � Q1Q0

6. Draw the required logic circuit. Figure 9.16 shows the circuit corresponding to the
above Boolean expressions.

We have assumed that states 1100 to 1111 will never occur in the operation of the
mod-12 counter. This is normally the case, but when the circuit is powered up, there is no
guarantee that the flip-flops will be in any particular state.

If a counter powers up in an unused state, the circuit should enter the main sequence
after one or more clock pulses. To test whether or not this happens, let us make a state

Table 9.9 State Table for a Mod-12 Counter

Present State Next State Synchronous Inputs

Q3Q2Q1Q0 Q3Q2Q1Q0 J3K3 J2K2 J1K1 J0K0

0000 0 0 0 1 0 X 0 X 0X 1 X
0001 0 0 1 0 0 X 0 X 1X X 1
0010 0 0 1 1 0 X 0 X X0 1 X
0011 0 1 0 0 0 X 1 X X1 X 1

0100 0 1 0 1 0 X X 0 0X 1 X
0101 0 1 1 0 0 X X 0 1X X 1
0110 0 1 1 1 0 X X 0 X0 1 X
0111 1 0 0 0 1 X X 1 X1 X 1

1000 1 0 0 1 X 0 0 X 0X 1 X
1001 1 0 1 0 X 0 0 X 1X X 1
1010 1 0 1 1 X 0 0 X X0 1 X
1011 0 0 0 0 X 1 0 X X1 X 1

1100 XXXX XX XX XX XX
1101 XXXX XX XX XX XX
1110 XXXX XX XX XX XX
1111 XXXX XX XX XX XX

9.3 • Design of Synchronous Counters 379

FIGURE 9.15
K-Map Simplification of Table 9.9

C
LK

O
U

T
P

U
T

Q
3

A
N

D
3

A
N

D
3

A
N

D
2

O
U

T
P

U
T

Q
2

O
U

T
P

U
T

IN
P

U
T

N
O

T

Q
1

O
U

T
P

U
T

Q
0

JK
F

F C
LR

N

P
R

N
Q

J K

JK
F

F C
LR

N

P
R

N
Q

J K

JK
F

F C
LR

N

P
R

N
Q

J K

JK
F

F

V
C

C

C
LR

N

P
R

N
Q

J K

FI
G

U
R

E
9.

16
Sy

nc
hr

on
ou

s
M

od
-1

2
C

ou
nt

er

380

9.3 • Design of Synchronous Counters 381

table, applying each unused state to the J and K equations as implemented, to see what the
Next State is for each case. This analysis is shown in Table 9.10.

Figure 9.17 shows the complete state diagram for the designed mod-12 counter. If the
counter powers up in an unused state, it will enter the main sequence in no more than four
clock pulses.

If we want an unused state to make a transition directly to 0000 in one clock pulse, we
have a couple of options:

1. We could reset the counter asynchronously and otherwise leave the design as is.

2. We could rewrite the state table to specify these transitions, rather than make the unused
states don’t cares.

Option 1 is the simplest and is considered perfectly acceptable as a design practice.
Option 2 would yield a more complicated set of Boolean equations and hence a more com-
plex circuit, but might be worthwhile if a direct synchronous transition to 0000 were
required.

Table 9.10 Unused States in a Mod-12 Counter

Present State Synchronous Inputs Next State

Q3Q2Q1Q0 J3K3 J2K2 J1K1 J0K0 Q3Q2Q1Q0

0000 00 00 00 11 1101
1101 00 00 11 11 1110
1110 00 00 00 11 1111
1111 11 01 11 11 0000

FIGURE 9.17
Complete State Diagram of
Mod-12 Counter in Figure 9.16

382 C H A P T E R 9 • Counters and Shift Registers

❘❙❚ EXAMPLE 9.5 Derive the synchronous input equations of a 4-bit synchronous binary counter based on D
flip-flops. Draw the corresponding counter circuit.

Solution The first step in the counter design is to derive the excitation table of a D flip-
flop. Recall that Q follows D when the flip-flop is clocked. Therefore the next state of Q is
the same as the input D for any transition. This is illustrated in Table 9.11.

Table 9.11 Excitation
Table of a D Flip-Flop

Transition D

0 → 0 0
0 → 1 1
1 → 0 0
1 → 1 1

Table 9.12 State Table for a 4-bit Binary Counter

Present State Next State Synchronous Inputs

Q3Q2Q1Q0 Q3Q2Q1Q0 D3D2D1D0

0000 0001 0001
0001 0010 0010
0010 0011 0011
0011 0100 0100

0100 0101 0101
0101 0110 0110
0110 0111 0111
0111 1000 1000

1000 1001 1001
1001 1010 1010
1010 1011 1011
1011 1100 1100

1100 1101 1101
1101 1110 1110
1110 1111 1111
1111 0000 0000

This state table yields four Boolean equations, for D3 through D0, in terms of the pres-
ent state outputs. Figure 9.18 shows four Karnaugh maps used to simplify these functions.

The simplified equations are:

D3 � Q�3Q2Q1Q0 � Q3Q�2 � Q3Q�1 � Q3Q�0

D2 � Q�2Q1Q0 � Q2Q�1 � Q1Q�0

D1 � Q�1Q0 � Q1Q�0

D0 � Q�0

Next, we must construct a state table, shown in Table 9.12, with present and next states
for all possible transitions. Note that the binary value of D3D2D1D0 is the same as the next
state of the counter.

9.3 • Design of Synchronous Counters 383

These equations represent the maximum SOP simplifications of the input functions.
However, we can rewrite them to make them more compact. For example the equation for
D3 can be rewritten, using DeMorgan’s theorem (x� � y� � z� � x�y�z�) and our knowledge of
Exclusive OR (XOR) functions (x�y � xy� � x � y).

D3 � Q�3Q2Q1Q0 � Q3Q�2 � Q3Q�1 � Q3Q�0

� Q�3(Q2Q1Q0) � Q3(Q�2 � Q�1 � Q�0)

� Q�3(Q2Q1Q0) � Q3(Q�2�Q�1�Q�0�)

� Q3 � Q2Q1Q0

We can write similar equations for the other D inputs as follows:

D2 � Q2 � Q1Q0

D1 � Q1 � Q0

D0 � Q0 � 1

These equations follow a predictable pattern of expansion. Each equation for an input
Dn is simply Qn XORed with the logical product (AND) of all previous Qs.

Figure 9.19 shows the circuit for the 4-bit counter, including an asynchronous
reset.

FIGURE 9.18
Example 9.5
K-Maps for a 4-bit Counter Based on D Flip-Flops

384 C H A P T E R 9 • Counters and Shift Registers

❘❙❚

In Section 7.6 (Edge-Triggered T Flip-Flops) of Chapter 7, we saw how a D flip-flop
could be configured for a switchable toggle function (refer to Figure 7.59). The flip-flops in
Figure 9.19 are similarly configured. Each flip-flop output, except Q0, is fed back to its in-
put through an Exclusive OR gate. The other input to the XOR controls whether this feed-
back is inverted (for toggle mode) or not (for no change mode). Recall that x � 0 � x and
x � 1 � x�.

For example, Q3 is fed back to D3 through an XOR gate. The feedback is inverted only
if the 3-input AND gate has a HIGH output. Thus, the Q3 output toggles only if all previ-
ous bits are HIGH (Q3Q2Q1Q0 � 0111 or 1111). The flip-flop toggle mode is therefore
controlled by the states of the XOR and AND gates in the circuit.

❘❙❚ SECTION 9.3 REVIEW PROBLEM

9.3 A 4-bit synchronous counter must make a transition from state Q3Q2Q1Q0 � 1011 to
Q3Q2Q1Q0 � 1100. Write the required states of the synchronous inputs for a set of
four JK flip-flops used to implement the counter. Write the required states of the syn-
chronous inputs if the counter is made from D flip-flops.

CLOCK

RESET

INPUT

INPUT

OUTPUT
Q3

XOR
AND3

AND2

DFF

CLRN

PRN
QD

OUTPUT
Q2

XOR
DFF

CLRN

PRN
QD

OUTPUT
Q1

XOR
DFF

CLRN

PRN
QD

OUTPUT
Q0

DFF

CLRN

PRN
QD

NOT

FIGURE 9.19
Example 9.5
4-bit Counter Using D
Flip-Flops

9.4 • Programming Binary Counters in VHDL 385

9.4 Programming Binary Counters in VHDL

If statement A VHDL construct in which statements within the IF statement are
executed only when a specified Boolean condition is satisfied.

Attribute A property associated with a named identifier in VHDL. (For example,
the attribute EVENT, when associated with the identifier clk (written
clk’EVENT), indicates, when true, that a transition has occurred on the input
called clk.)

When using VHDL to create a counter, we can take several approaches. We can encode the
Boolean equations of the counter directly with concurrent signal assignment statements;
we can use VHDL code to describe the behavior of the counter; we can use a CASE state-
ment to implement the state diagram of the counter; or we can use a predefined counter,
such as those found in the MAX�PLUS II Library of Parameterized Modules (LPM) and
map its ports to the ports of a VHDL design entity.

If we chose to use concurrent signal assignments to encode the Boolean equations of a
counter, we could derive the following equations for a 4-bit counter with D flip-flops.

d(3)<= q(3)xor(q(2)and q(1)and q(0));,

d(2)<= q(2)xor(q(1)and q(0));

d(1)<= q(1)xor q(1);,

d(0)<= not q(0);,

In Chapter 5, we saw that using concurrent signal assignment statements is an ineffi-
cient way to code many digital functions. (For one thing, if we use this procedure, we must
know what the equations are. Getting to that point requires a lot of work that can be done
by the VHDL compiler.) While acknowledging this as a possible option, we will not exam-
ine this method any further for the count logic of binary counters.

In this section, we will design a counter using a behavioral description and using an LPM
counter. The design of a counter as a state machine will be examined in the next chapter.

Behavioral Description of Counters

The following VHDL code shows the behavioral description of a simple 8-bit counter
(ct_simp.vhd) with asynchronous clear.

ENTITY ct_simp IS

PORT(

clk : IN BIT;

clear : IN BIT;

q : OUT INTEGER RANGE 0 TO 255);

END ct_simp;

ARCHITECTURE a OF ct_simp IS

BEGIN

PROCESS (clk, clear)

VARIABLE count : INTEGER RANGE 0 TO 255;

BEGIN

If (clear = ‘0’) THEN

count := 0;

ELSE

IF (clk’EVENT AND clk = ‘1’) THEN

count := count + 1;

END IF;

K E Y T E R M S

➥ ct_simp.vhd

386 C H A P T E R 9 • Counters and Shift Registers

END IF;

q <= count;

END PROCESS;

END a;

Recall that the PROCESS statement has the following syntax:

PROCESS (sensitivity list)
[VARIABLE variable name :type [range];]

BEGIN

Process statements
END PROCESS;

Square brackets [] indicate an optional part of the code.
When there is a change in an item in the sensitivity list, the process statements are ex-

ecuted. For a synchronous counter, the list would often only include clock, since any action
in a synchronous circuit depends on a clock transition. Since the clear function in this
counter is asynchronous, the clear input must also be monitored for any changes.

To hold the accumulating output value of the counter, we define a variable called
count, presumed to have an initial value of 0, but defined for the range of 0 to 255. (This 8-
bit value rolls over to 0 when the count exceeds 255.) The variable (any variable) is local to
the process in which it is defined. We update the value of count by an IF statement, with
the form:

IF (condition) THEN
Statement[s];

[ELSIF (condition) THEN
statement[s];]

[ELSE

statement[s];]
END IF;

The clause (IF (clear=‘0’) THEN) monitors the asynchronous clear function in-
dependently of the clock and executes the variable assignment that sets the output to 0 if
the Boolean condition (clear=‘0’) is true. Otherwise, the clock is monitored for a pos-
itive edge by the condition (clk’EVENT AND clk = ‘1’). The clause clk’EVENT
(pronounced “clock tick event”) is a predefined attribute of the clock signal and is true if
there has just been a change on clock. The combination of this and the condition clk =
‘1’ indicates that a positive edge has just occurred. If this is true, the count is incremented.

As a final step, the accumulated count must be assigned to an output port. This is done
in the concurrent signal assignment q <= count at the end of the process.

Note the difference in types of assignments. A variable is assigned by the :� opera-
tor (e.g., count := count + 1;). A signal is assigned by the <= operator (eg.,
q <= count).

LPM Counters in VHDL

We can use a component (lpm_counter) from the Library of Parameterized Modules
(LPM) to instantiate a counter in VHDL. When using an LPM counter, we don’t need to
describe the behavior of the counter, as this has been done for us in the module itself. All
we need to do is map the ports and parameters of the LPM component to the ports of the
VHDL design entity. We do this by using a generic map to specify the parameters we need
and a port map to map the ports of the LPM device either to an external port or an internal
signal. The VHDL code below shows the VHDL implementation (lpm_simp.vhd) of the
same 8-bit counter as in the previous behavioral example.

—— lpm_simp.vhd

—— Eight-bit binary counter based on a component

➥ lpm_simp.vhd

9.4 • Programming Binary Counters in VHDL 387

—— from the Library of Parameterized Modules (LPM)

—— Counter has an active-LOW asynchronous clear.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY lpm_simp IS

PORT(

clk, clear : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR (7 downto 0));

END lpm_simp;

ARCHITECTURE count OF lpm_simp IS

SIGNAL clrn : STD_LOGIC;

BEGIN

count8: lpm_counter

GENERIC MAP (LPM_WIDTH => 8)

PORT MAP (clock => clk,

aclr => clrn,

q => q(7 downto 0));

clrn <= not clear;

END count;

LPM components require us to use two packages: the std_logic_1164 package in
the ieee library to define STD_LOGIC types used in the LPM components and the
lpm_components package in the lpm library to define the components themselves.
Since LPM components are defined using STD_LOGIC and STD_LOGIC_VECTOR
types, we should use these types for our other identifiers as well.

The entity declaration defines the inputs and outputs of our counter and need not cor-
respond to the port names for the LPM counter. That correspondence is defined in the ar-
chitecture body, where we instantiate the counter module. The counter is defined in a com-
ponent instantiation statement, which takes the following form:

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value,

__parameter_name => __parameter_value)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

The component name is the name of the LPM component. Parameter names are those
defined in the LPM component, such as LPM_WIDTH. Parameter values are those values
assigned in the instance of the component. Component ports are the LPM port names. Con-
nect ports are the names of identifiers declared in the entity or as signals or variables.

If we want to invert the active level of an LPM input port, we must use a signal
assignment statement. (e.g., clrn <= not clear;) We need to do this because a VHDL
input port cannot be “updated” (modified); only an output can be assigned a new value as
a result of a Boolean expression. Thus, we create a signal called clrn that maps to the
aclr (asynchronous clear) port of the LPM counter. This is connected to the clear input of
the counter circuit via an inverter. Figure 9.20 shows the graphic equivalent of this
mapping.

❘❙❚ SECTION 9.4 REVIEW PROBLEM

9.4 Write a VHDL code segment that increments a variable called count upon detection of
a negative edge of an input called clock.

388 C H A P T E R 9 • Counters and Shift Registers

9.5 Control Options for Synchronous Counters

Parallel load A function that allows simultaneous loading of binary values into
all flip-flops of a synchronous circuit. Parallel loading can be synchronous or
asynchronous.

Presettable counter A counter with a parallel load function.

Clear Reset (synchronous or asynchronous).

Count enable A control function that allows a counter to progress through its
count sequence when active and disables the counter when inactive.

Bidirectional counter A counter that can count up or down, depending on the
state of a control input.

Terminal count The last state in a count sequence before the sequence repeats
(e.g., 1111 is the terminal count of a 4-bit binary UP counter; 0000 is the terminal
count of a 4-bit binary DOWN counter).

Ripple carry out or ripple clock out (RCO) An output that produces one pulse
with the same period as the clock upon terminal count.

Synchronous counters can be designed with a number of features other than just straight
counting. Some of the most common features include:

• Synchronous or asynchronous parallel load, which allows the count to be set to any
value whenever a LOAD input is asserted

• Synchronous or asynchronous clear (reset), which sets all of the counter outputs to zero

• Count enable, which allows the count sequence to progress when asserted and inhibits
the count when deasserted

• Bidirectional control, which determines whether the counter counts up or down

• Output decoding, which activates one or more outputs when detecting particular states
on the counter outputs

• Ripple carry out or ripple clock out (RCO), a special case of output decoding that
produces a pulse upon detecting the terminal count, or last state, of a count sequence.

K E Y T E R M S

INPUT
clock

INPUT
clear

clrn

OUTPUT
qd[7..0]

LPM_COUNTER

LPM_AVALUE=
LPM_DIRECTION=
LPM_MODULUS=
LPM_SVALUE=
LPM_WIDTH=8

ac
lr

NOT

q[]

FIGURE 9.20
Graphic Equivalent of an LPM
Counter with Active-Low Clear

9.5 • Control Options for Synchronous Counters 389

We will examine the implementation of these functions, first as Graphic Design Files
in MAX�PLUS II, and then, in the next section, in VHDL, both as behavioral descriptions
and as functions of LPM counters.

Parallel Loading

Figure 9.21 shows the symbol of a 4-bit presettable counter (i.e., a counter with a paral-
lel load function). The parallel inputs, P3 to P0, have direct access to the flip-flops of the
counter. When the LOAD input is asserted, the values at the P inputs are loaded directly
into the counter and appear at the Q outputs.

Parallel loading requires at least two sets of inputs: the load data (P3 to P0) and the
load command (LOAD). If the load function is synchronous, as described below, it
also requires a clock input.

N O T E

Q3 Q2 Q1 Q0

P3 P2 P1 P0

CLOCK

MSB LSB

LOAD
CTR DIV 16

FIGURE 9.21
4-bit Counter with Parallel Load

FIGURE 9.22
Synchronous vs. Asynchronous Load

Parallel loading can be synchronous or asynchronous. The MAX�PLUS II simulation
in Figure 9.22 shows the difference. Two waveforms, QS[3..0] and QA[3..0], represent the
outputs of two 4-bit counters with synchronous and asynchronous load, respectively. Both
counters have the same clock, load, and P inputs. The count is already in progress at the be-
ginning of the simulation window and shows both counters advancing with each clock
pulse: 4, 5, 6.

When LOAD goes HIGH at 500 ns, the value of P[3..0] (� AH) is loaded into the
asynchronously loading counter (QA[3..0]) immediately after a short propagation delay
(12.5 ns). The counter with synchronous load (QS[3..0]) is not loaded until the next posi-
tive clock edge, shown at 560 ns.

Synchronous Load

The logic diagram of Figure 9.23 shows the concept of synchronous parallel load. De-
pending on the status of the LOAD input, the flip-flop will either count according to its

➥ 4b_al_sl.scf

390 C H A P T E R 9 • Counters and Shift Registers

count logic (the next-state combinational circuit) or load an external value. The flip-flop
shown is the most significant bit of a 4-bit binary counter, such as shown in Figure
9.19, but with the count logic represented only by an input pin. (For the fourth bit of a
counter, the Boolean equation of the count logic is given by D3 � Q3 � Q2Q1Q0. It is
left out in order to more clearly show the operation of the count/load function select
circuit.)

The LOAD input selects whether the flip-flop synchronous input will be fed by the
count logic or by the parallel input P3. When LOAD � 0, the upper AND gate steers the
count logic to the flip-flop, and the count progresses with each clock pulse. When LOAD �
1, the lower AND gate loads the logic level at P3 directly into the flip-flop on the next clock
pulse.

CLOCK

P3

OUTPUT
Q3

AND2

OR2

Count_Logic

LOAD

INPUT

NOT

INPUT

INPUT

INPUT

DFF

CLRN

PRN
QDAND2

FIGURE 9.23
Count/Load Selection

CLOCK

RESET

P3

OUTPUT
Q3

AND2

AND3

OR2LOAD

INPUT

NOT

XOR

INPUT

INPUT

INPUT
DFF

CLRN

PRN
QDAND2

Q2
INPUT

Q1
INPUT

Q0
INPUT

Count logic

FIGURE 9.24
Counter Element with Synchronous Load and Asynchronous Clear

Figure 9.24 shows the same circuit, but includes the count logic. If we leave out the
3-input AND gate, as in Figure 9.25, we have a circuit that can be used as a general element
(called sl_count) in a synchronous presettable counter. Figure 9.26 shows the logic dia-
gram of a 4-bit synchronously presettable counter consisting of four instances of the
counter element of Figure 9.25 and appropriate AND gates for a synchronous counter. This
diagram implements a synchronous counter like that of Figure 9.19, but also incorporates
a synchronous load function.

Figure 9.27 shows a simulation of the counter in Figure 9.26. The first 19 clock pulses
drive the counter through its normal 4-bit cycle from 0H to FH, then up to 2H. At this
point, we set the LOAD input HIGH and the value at the P inputs (9H) is loaded into the
counter on the rising edge of the next clock pulse. An asynchronous RESET pulse at 880 ns
drives the counter outputs to 0H, after which the count resumes.

➥ sl_count.gdf
4bit_sl.gdf
4bit_sl.scf

9.5 • Control Options for Synchronous Counters 391

CLOCK

RESET

P

OUTPUT
Q

AND2

OR2

COUNT

LOAD

INPUT

NOT

XOR

INPUT

INPUT

INPUT

INPUT

DFF

CLRN

PRN
QDAND2

FIGURE 9.25
Counter Element with Synchronous Load and Asychronous Reset (sl_count)

INPUT
P2

INPUT
P1

INPUT
P0

INPUT
CLOCK

INPUT
RESET

INPUT

VCC

AND2

AND3

LOAD

Q3

Q2

Q1

Q0

INPUT
P3

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

FIGURE 9.26
4-bit Counter with Synchronous Load and Asynchronous Reset

392 C H A P T E R 9 • Counters and Shift Registers

Asynchronous Load

The asynchronous load function of a counter makes use of the asynchronous preset and
clear inputs of the counter’s flip-flops. Figure 9.28 shows the circuit implementation of the
asynchronous load function, without any count logic.

When ALOAD (Asynchronous LOAD) is HIGH, both NAND gates in Figure 9.28 are
enabled. If the P input is HIGH, the output of the upper NAND gate goes LOW, activating
the flip-flop’s asynchronous PRESET input, thus setting Q � 1. The lower NAND gate has
a HIGH output, thus deactivating the flip-flop’s CLEAR input.

If P is LOW the situation is reversed. The upper NAND output is HIGH and the lower
NAND has a LOW output, activating the flip-flop’s CLEAR input, resetting Q. Thus, Q will
be the same value as P when the ALOAD input is asserted. When ALOAD is not asserted (�
0), both NAND outputs are HIGH and thus do not activate either the preset or clear func-
tion of the flip-flop.

Figure 9.29 shows the asynchronous load circuit with an asynchronous clear (reset)
function added. The flip-flop can be cleared by a logic LOW either from the P input (via
the lower NAND gate) or the CLEAR input pin. The clear function disables the upper
NAND gate when it is LOW, preventing the flip-flop from being cleared and preset simul-
taneously. This extra connection also ensures that the clear function has priority over the
load function.

FIGURE 9.27
Simulation of 4-bit Counter with Synchronous Load and Asynchronous Reset

CLK

COUNT

DFF

OUTPUT
Q

INPUT

INPUT

NOT
NAND2

NAND2

CLRN

PRN
QD

P
INPUT

ALOAD
INPUT

FIGURE 9.28
Asynchronous LOAD Element

9.5 • Control Options for Synchronous Counters 393

❘❙❚ EXAMPLE 9.6 Use MAX�PLUS II to redraw the circuit in Figure 9.29 to create a general element called
al_count that can be used in a synchronous counter with asynchronous load and clear. (Re-
fer to Figure 9.25 for a similar element with synchronous load.)

Solution Figure 9.30 shows the modified circuit, which includes an XOR gate for part
of the count logic. The remainder of the count logic must be supplied externally to this el-
ement for each bit of the counter.

OUTPUT
Q

BNOR2
NOT

DFF

CLRN

PRN
QD

NAND2

NAND3
P

INPUT

ALOAD
INPUT

D
INPUT

CLK
INPUT

CLEAR
INPUT

FIGURE 9.29
Asynchronous LOAD Element with Asynchronous Clear

❘❙❚ EXAMPLE 9.7 Draw a circuit with four instances of al_count (from Example 9.6) to make a 4-bit syn-
chronous counter with asynchronous load and reset. Create a simulation that tests the func-
tion of the counter.

Solution Figure 9.31 shows the circuit. (Compare this circuit to the counter with syn-
chronous load in Figure 9.26. This difference between the two is in the load function, not
the count logic.)

The Boolean function applied to the COUNT input of each instance of al_count con-
sists of the logical product of all previous output bits. (COUNT3 � Q2Q1Q0, COUNT2 �
Q1Q0, COUNT1 � Q0, COUNT0 � 1.) When combined with the XOR at the COUNT input

CLK

COUNT

CLEAR

DFFXOR

INPUT

OUTPUT
Q

INPUT

INPUT

NOT
NAND2

NAND3

BNOR2
CLRN

PRN
QD

P
INPUT

ALOAD
INPUT

FIGURE 9.30
Example 9.6
Counter Element with Asynchronous Load and Clear (al_count)

➥ al_count.gdf

➥ 4bit_al.gdf
4bit_al.scf

394 C H A P T E R 9 • Counters and Shift Registers

of each element, this yields the Boolean equations for a binary counter based on D flip-
flops, as derived in Example 9.5. The circuitry inside each instance of al_count also gen-
erates the asynchronous load and clear functions.

Figure 9.32 shows a MAX�PLUS II simulation of the counter. The counter cycles
through its full range and continues. A pulse at 700 ns loads the counter with the value 9H
(� 10012), after which the count continues from that point.

FIGURE 9.31
Example 9.7
4-bit Counter with Asynchronous Load and Reset

INPUT
P2

INPUT
P1

INPUT
P0

INPUT
CLOCK

INPUT
RESET

INPUT
VCC

AND2

AND3

LOAD

Q3

Q2

Q1

Q0

INPUT
P3

OUTPUT

al_count

Q

CLEAR

ALOAD

COUNT

P

CLK

OUTPUT

al_count

Q

CLEAR

ALOAD

COUNT

P

CLK

OUTPUT

al_count

Q

CLEAR

ALOAD

COUNT

P

CLK

OUTPUT

al_count

Q

CLEAR

ALOAD

COUNT

P

CLK

FIGURE 9.32
Example 9.7
Simulation of a 4-bit Counter
with Asynchronous Load and
Reset

9.5 • Control Options for Synchronous Counters 395

The reset pulse at 900 ns clears the counter. The LOAD pulse starting at 1.02 �s
shows how the load function has precedence over the count function. When LOAD is
asserted, 9H is loaded and the count does not increase until LOAD is deasserted. The
RESET pulse at 1.08 �s overrides both load and count functions. When RESET is
deasserted, 9H is asynchronously reloaded.

❘❙❚

Count Enable

The counter elements in Figures 9.25 (sl_count) and 9.30 (al_count) are just D flip-flops
configured for switchable toggle operation with additional circuitry for load and clear
functions. Normally, when these elements are used in synchronous counters, the count pro-
gresses when the input to the element’s XOR gate goes HIGH. In other words, the count
progresses when the counter element is switched from a no change to a toggle mode.

In order to arrest the count sequence, we must disable the count logic of the counter
circuit. Figure 9.33 shows a simple modification to the 4-bit counter circuit of Figure 9.26
that can achieve this function. Each AND gate has an extra input which is used to enable or
inhibit the count logic function to each flip-flop.

Figure 9.34 shows a simulation of the counter. Note that the count progresses normally
when COUNT_ENA is HIGH and stops when COUNT_ENA is LOW, even though the
clock pulses remain constant throughout the simulation.

Also note that the count enable has no effect on the synchronous load and asynchro-
nous reset functions. In the latter part of the simulation, the count stops at AH (Q3Q2Q1Q0

� 10102), when COUNT_ENA goes LOW. At 760 ns, the synchronous load function loads
the value of 9H into the counter. The counter stays at this value, even after LOAD is no
longer active, since the count is still disabled. At 880 ns, an asynchronous reset pulse clears
the counter. The count resumes on the first clock pulse after COUNT_ENA goes HIGH
again.

Bidirectional Counters

Figure 9.35 shows the logic diagram of a 4-bit synchronous DOWN counter. Its count se-
quence starts at 1111 and counts backwards to 0000, then repeats. The Boolean equations
for this circuit will not be derived at this time, but will be left for an exercise in an end-of-
chapter problem.

We can intuitively analyze the operation of the counter if we understand that the upper
three flip-flops will each toggle when their associated XOR gates have a HIGH input from
the rest of the count logic.

Q0 is set to toggle on each clock pulse. Q1 toggles whenever Q0 is LOW (every second
clock pulse, at states 1110, 1100, 1010, 1000, 0110, 0100, 0010, and 0000). Q2 toggles
when Q1 AND Q0 are LOW (1100, 1000, 0100, and 0000). Q3 toggles when Q2 AND Q1

AND Q0 are LOW (1000 and 0000). The result of this analysis can be represented by a tim-
ing diagram, such as the simulation shown in Figure 9.36. As we expect, the counter will
count down from 1111 (FH) to 0000 (0H) and repeat.

We can create a bidirectional counter by including a circuit to select count logic for an
UP or DOWN sequence. Figure 9.37 shows a basic synchronous counter element that can
be used to create a synchronous counter. The element is simply a D flip-flop configured for
switchable toggle mode.

Four of these elements can be combined with selectable count logic to make a 4-bit
bidirectional counter, as shown in Figure 9.38. Each counter element has a pair of
AND-shaped gates and an OR gate to steer the count logic to the XOR in the element.
When DIR � 1, the upper gate in each pair is enabled and the lower gates disabled,

➥ 4bit_sle.gdf
4bit_sle.scf

➥ element.gdf

396 C H A P T E R 9 • Counters and Shift Registers

FIGURE 9.34
Simulation of 4-bit Counter
with Synchronous Load,
Asynchronous Reset, and
Count Enable

INPUT
P2

INPUT
P1

INPUT
P0

INPUT
CLOCK

INPUT
RESET

INPUT

VCC

AND3

AND2

AND2

AND4

LOAD

INPUT
COUNT_ENA

Q3

Q2

Q1

Q0

INPUT
P3

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

OUTPUT

sl_count

Q

RESET

LOAD

COUNT

P

CLOCK

FIGURE 9.33
4-bit Counter with Synchronous Load, Asynchronous Reset, and Count Enable

9.5 • Control Options for Synchronous Counters 397

CLOCK

RESET

INPUT

NOT

INPUT

OUTPUT
Q3

XOR
BAND3

BAND2

DFF

CLRN

PRN
QD

OUTPUT
Q2

XOR
DFF

CLRN

PRN
QD

OUTPUT
Q1

XOR
DFF

CLRN

PRN
QD

OUTPUT
Q0

DFF

CLRN

PRN
QD

NOT

FIGURE 9.35
4-bit Synchronous DOWN Counter

FIGURE 9.36
4-bit DOWN Counter Simulation

398 C H A P T E R 9 • Counters and Shift Registers

steering the UP count logic to the counter element. When DIR � 0, the lower gate in each
pair is enabled, steering the DOWN count logic to the counter element. The directional
function can also be combined with the load and count enable functions, as was shown for
unidirectional UP counters.

Figure 9.39 shows a simulation of the bidirectional counter of Figure 9.38. The
waveforms show the UP count when DIR is HIGH and the DOWN count when DIR
is LOW.

CLOCK

COUNT

RESET

DFFXOR

INPUT

OUTPUT
QINPUT

INPUT

CLRN

PRN
QD

FIGURE 9.37
Synchronous Counter Element (T Flip-Flop)

INPUT
RESET

INPUT

VCC

CLOCK

Q3
OUTPUT

element

Q

COUNT

CLOCK

RESET

Q2
OUTPUT

element

Q

COUNT

CLOCK

RESET

Q1
OUTPUT

element

Q

COUNT

CLOCK

RESET

Q0
OUTPUT

element

Q

COUNT

CLOCK

RESET

INPUT

AND4

BAND4

AND3

BAND3

AND2

OR2

OR2

OR2

BAND2

DIR

FIGURE 9.38
4-bit Bidirectional Counter

9.5 • Control Options for Synchronous Counters 399

Decoding the Output of a Counter

Figure 9.40 shows a graphic design file of a 4-bit bidirectional counter with an output de-
coder. The counter is the one shown in Figure 9.38, represented as a logic circuit symbol.
The decoder component decode16 is a module written in VHDL, as listed below.

FIGURE 9.39
Simulation of 4-bit Bidirectional Counter

CLOCK

RESET
INPUT

INPUT

INPUT

4bit_dir

OUTPUT

OUTPUT

OUTPUT

DIR

CLOCK

RESET

DIR Q3

Q2

Q1

Q0

Q3

Q2

Q1

Q0

Q3

Q2

Q1

Q0

OUTPUT
sel [3..0] y [0..15]

Q [3..0]
Y [0..15]

DECODE16

FIGURE 9.40
4-bit Bidirectional Counter with Output Decoder

—— decode16.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decode16 IS

PORT(

sel : IN INTEGER RANGE 0 to 15;

y : OUT BIT_VECTOR (0 to 15));

END decode16;

ARCHITECTURE a OF decode16 IS

BEGIN

WITH sel SELECT

y <= x“7FFF” WHEN 0,

x“BFFF” WHEN 1,

x“DFFF” WHEN 2,

x“EFFF” WHEN 3,

x“F7FF” WHEN 4,

x“FBFF” WHEN 5,

➥ 4bit_dir.gdf
4bit_dir.scf

400 C H A P T E R 9 • Counters and Shift Registers

x“FDFF” WHEN 6,

x“FEFF” WHEN 7,

x“FF7F” WHEN 8,

x“FFBF” WHEN 9,

x“FFDF” WHEN 10,

x“FFEF” WHEN 11,

x“FFF7” WHEN 12,

x“FFFB” WHEN 13,

x“FFFD” WHEN 14,

x“FFFE” WHEN 15,

X“FFFF” WHEN others;

END a;

The decoder has 16 outputs, one for each state of the counter. For each state, one and
only one output will be low. (Refer to the section on binary decoders in Chapter 5 for a
more detailed description of n-line-to-m-line binary decoders.)

Figure 9.41 shows a portion of the simulation waveforms (i.e., only the count value
and the decoder outputs) for the circuit in Figure 9.40. As the count progresses up or down,
as shown by the waveform for Q[3..0], the decoder outputs respond by going LOW in
sequence.

Output decoders for binary counters can also be configured to have active HIGH out-
puts. In this case, one and only one output would be HIGH for each output state of the
counter.

Terminal Count and RCO

A special case of output decoding is a circuit that will detect the terminal count, or last state,
of a count sequence and activate an output to indicate this state. The terminal count depends
on the count sequence.A 4-bit binary UP counter has a terminal count of 1111; a 4-bit binary
DOWN counter has a terminal count of 0000.A circuit to detect these conditions must detect
the maximum value of an UP count and the minimum value of a DOWN count.

FIGURE 9.41
Simulation of 4-bit Decoder

➥ CD: decode16.vhd
4bit_dcd.gdf
4bit_dcd.scf

9.5 • Control Options for Synchronous Counters 401

The decoder shown in Figure 9.42 fulfills both of these conditions. The directional in-
put DIR enables the upper gate when HIGH and the lower gate when LOW. Thus, the up-
per gate generates a HIGH output when DIR � 1 AND Q3Q2Q1Q0 � 1111. The lower gate
generates a HIGH when DIR � 0 AND Q3Q2Q1Q0 � 0000.

Figure 9.43 shows the terminal count decoder combined with a 4-bit bidirectional
counter. The decoder is also used to enable a NAND gate output that generates an RCO sig-
nal. RCO stands for ripple carry out or ripple clock out. The purpose of RCO is to produce
exactly one clock pulse upon terminal count and have the positive edge of RCO at the end
of the counter cycle, for a counter that has a positive edge-triggered clock.

Q0

Q1

OUTPUT
MAX_MIN

AND6

OR2

Q3
Q2

INPUT

DIR
INPUT

INPUT

INPUT
INPUT

BAND6

GND

VCC

FIGURE 9.42
Terminal Count Decoder for a 4-bit Bidirectional Counter

OUTPUT

OUTPUT

OUTPUT

Q2

OUTPUT
Q3

Q1

Q0

OUTPUT

INPUT

INPUT

INPUT

term_dcd

4bit_dir

MAX_MIN MAX_MIN

OUTPUT
NAND2

RCO

DIR
NOT

CLOCK

RESET

DIR

Q2

Q3

Q1

Q0

CLOCK

RESET

DIR

Q2

Q3

Q1

Q0

FIGURE 9.43
4-bit Bidirectional Counter with Terminal Count Detection

This function is generally found in counters with a fixed number of bits (i.e., fixed-
function counter chips, not PLDs) and is used to asynchronously clock a further counter
stage, as in Figure 9.44. This allows us to extend the width of the counter beyond the num-
ber of bits available in the fixed-function device. This is not necessary when designing syn-
chronous counters in programmable logic, but is included for the sake of completeness.

➥ term_dcd.gdf

➥ 4bit_rco.gdf
4bit_rco.scf

402 C H A P T E R 9 • Counters and Shift Registers

The NAND gate in Figure 9.43 is enabled upon terminal count and passes the clock
signal through to RCO. The NAND output sits HIGH when inhibited. The clock is inverted
in the RCO circuit so that when the NAND gate inverts it again, the circuit generates a
clock pulse in true form.

Figure 9.45 shows the simulation of the circuit of Figure 9.43. In the first half of
the simulation, the counter is counting DOWN. The terminal count decoder output,
MAX_MIN, goes HIGH when Q3Q2Q1Q0 � 0000. RCO generates a pulse at that time. For
the second half, the counter is counting UP. MAX_MIN is HIGH when Q3Q2Q1Q0 � 1111
and RCO generates a pulse at that time.

DIR

DIR

Q3 Q2 Q1 Q0

Q3 Q2 Q1 Q0

DIR

RCOCLK

CTR DIV 16 CTR DIV 16

Q3 Q2 Q1 Q0

Q7 Q6 Q5 Q4

FIGURE 9.44
Counter Expansion Using RCO

FIGURE 9.45
Simulation of a 4-bit Bidirectional Counter with Terminal Count Detection

Note that the RCO pulse appears to be half the width of the MAX_MIN pulse. Al-
though the NAND gate that generates RCO is enabled for the whole MAX_MIN pulse,
the clock input is HIGH for the first half-period, which is the same as the RCO inhibit
level.

The positive edge of RCO is at the end of the pulse. The idea is to synchronize the pos-
itive edge of the clock with the positive edge of RCO. However, since the RCO decoder is
combinational, a propagation delay of about 7 ns is introduced.

❘❙❚ SECTION 9.5 REVIEW PROBLEM

9.5 Figure 9.46 shows two presettable counters, one with asynchronous load and clear, the
other with synchronous load and clear. The counter with asynchronous functions has a
4-bit output labeled QA. The synchronously loaded counter has a 4-bit output labeled
QS. The load and reset inputs to both counters are active LOW.

9.6 • Programming Presettable and Bidirectional Counters in VHDL 403

Figure 9.47 shows a partial timing diagram for the counters. Complete the diagram.

9.6 Programming Presettable and Bidirectional
Counters in VHDL
The presettable counters and bidirectional counters described in the previous section can
be easily implemented in VHDL, either as behavioral descriptions or as LPM components.
We will initially examine the behavioral descriptions of two counters, one with asynchro-
nous load and clear and one with synchronous load and clear. We will then examine some
options available in the module lpm_counter.

OUTPUT

OUTPUT

OUTPUT

QA2

OUTPUT

4bit_al

QA3

QA1

QA0

CLOCK

RESET

LOAD

P0

P3

P2

P1 Q2

Q3

Q1

Q0

OUTPUT

OUTPUT

OUTPUT

QS2

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

4bit_sl

QS3

QS1

QS0

CLOCK

RESET

LOAD

P0

P3

P2

P1

CLOCK

RESET

LOAD

P0

P3

P2

P1

Q2

Q3

Q1

Q0

FIGURE 9.46
Section Review Problem 9.5
Two Presettable Counters

CLOCK

P 0 8 5

0 1 2 3

0 1 2 3

QA

QS

LOAD

RESET

FIGURE 9.47
Timing Diagram for Counters in Figure 9.46

404 C H A P T E R 9 • Counters and Shift Registers

Behavioral Description

The following lists the VHDL code for an 8-bit bidirectional counter with count enable,
terminal count decoding, and asynchronous load and clear:

ENTITY pre_ct8a IS

PORT (

clk, count_ena : IN BIT;

clear, load, direction : IN BIT;

p : IN INTEGER RANGE 0 TO 255;

max_min : OUT BIT;

qd : OUT INTEGER RANGE 0 TO 255);

END pre_ct8a;

ARCHITECTURE a OF pre_ct8a IS

BEGIN

PROCESS (clk, clear, load)

VARIABLE cnt : INTEGER RANGE 0 TO 255;

BEGIN

IF (clear = ‘0’) THEN —— Asynchronous clear

cnt := 0;

ELSIF (load = ‘1’ and clear = ‘1’) THEN —— Asynchronous load

cnt := p;

ELSE

IF (clk’EVENT AND clk = ‘1’) THEN

IF (count_ena = ‘1’ and direction = ‘0’) THEN

cnt := cnt - 1;

ELSIF (count_ena = ‘1’ and direction = ‘1’) THEN

cnt := cnt + 1;

END IF;

END IF;

END IF;

qd <= cnt;

—— Terminal count decoder

IF (cnt = 0 and direction = ‘0’) THEN

max_min <= ‘1’;

ELSIF (cnt = 255 and direction = ‘1’) THEN

max_min <= ‘1’;

ELSE

max_min <= ‘0’;

END IF;

END PROCESS;

END a;

The load and clear functions of this counter are asynchronous, so these identifiers are
part of the sensitivity list of the PROCESS statement; the statements in the process will ex-
ecute if there is a change on the clear, load, or clock inputs. Load and clear are checked by
IF statements, independently of the clock. Since load and clear are checked first, they have
precedence over the clock. Clear has precedence over load since load can only activate if
clear is not active.

If clear and load are not asserted, the clock status is checked by a clause in an IF state-
ment: (IF (clk’EVENT and CLK = ‘1’) THEN). If this condition is true, then a
count variable is incremented or decremented, depending on the states of a count enable in-
put and a directional control input. If the count enable input is not asserted, the count is
neither incremented nor decremented.

➥ pre_ct8a.vhd

9.6 • Programming Presettable and Bidirectional Counters in VHDL 405

The count value is assigned to the counter outputs by the signal assignment statement
(qd <= cnt;) after the clear, load, clock, count enable, and direction inputs have been
evaluated. Possible results from the signal assignment are:

• qd � 0 (clear � 0),

• qd � p (load � 1 AND clear � 1),

• increment qd (count_ena � 1 AND direction � 1),

• decrement qd (count_ena � 1 AND direction � 0), or

• no change on qd (count_ena � 0).

The terminal count is decoded by determining the count direction and value of the
count variable. If the count is UP and the count value is maximum (25510 � FFH) or the
count is DOWN and the count value is minimum (0 � 00H), a terminal count decoder out-
put called max_min goes HIGH.

The code for the same 8-bit counter, but with synchronous clear and load, is shown next.

ENTITY pre_ct8s IS

PORT (

clk, count_ena : IN BIT;

clear, load, direction : IN BIT;

p : IN INTEGER RANGE 0 TO 255;

max_min : OUT BIT;

qd : OUT INTEGER RANGE 0 TO 255);

END pre_ct8s;

ARCHITECTURE a OF pre_ct8s IS

BEGIN

PROCESS (clk)

VARIABLE cnt : INTEGER RANGE 0 TO 255;

BEGIN

IF (clk’EVENT AND clk = ‘1’) THEN

IF (clear = ‘0’) THEN —— Synchronous clear

cnt := 0;

ELSIF (load = ‘1’) THEN —— Synchronous load

cnt := p;

ELSIF (count_ena = ‘1’ and direction = ‘0’) THEN

cnt := cnt - 1;

ELSIF (count_ena � ‘1’ and direction = ‘1’) THEN

cnt := cnt + 1;

END IF;

END IF;

qd <= cnt;

—— Terminal count decoder

IF (cnt = 0 and direction = ‘0’) THEN

max_min <= ‘1’;

ELSIF (cnt = 255 and direction = ‘1’) THEN

max_min <= ‘1’;

ELSE

max_min <= ‘0’;

END IF;

END PROCESS;

END a;

The PROCESS statement in the synchronous counter has only one identifier in its sen-
sitivity list—that of the clock input. Load and clear status are not evaluated until after the

➥ pre_ct8s.vhd

406 C H A P T E R 9 • Counters and Shift Registers

process checks for a positive clock edge. Otherwise the code is the same as for the asyn-
chronously loading counter.

Figure 9.48 shows a detail of a simulation of the asynchronously loading counter. It
shows the point where the count rolls over from FFH to 00H and activates the max_min
output. The directional output changes shortly after this point and shows the terminal count
decoding for a DOWN count, the point where the counter rolls over from 00H to FFH. In
the UP count, max_min is HIGH when the counter output is FFH, but not 00H. In the
DOWN count, max_min goes HIGH when the counter output is 00H, but not FFH.

Figure 9.49 shows the operation of the asynchronous load and clear functions. Figure
9.50 show the synchronous load and clear. The inputs are identical for each simulation;
each has two pairs of load pulses and a pair of clear pulses. The first pulse of each pair is
arranged so that it immediately follows a positive clock edge; the second pulse of each pair
immediately precedes a positive clock edge.

In the counter with asynchronous load and clear, these functions are activated by the
first pulse of each pair and again on the second pulse. For the counter with synchronous
load and clear, only the second pulse of each pair has an effect, since the load and clear
functions must be active during or just prior to an active clock edge, in order to satisfy

FIGURE 9.48
Simulation Detail of 8-bit VHDL Counter (Bidirectional with Terminal Count Detection)

FIGURE 9.49
Simulation Detail of 8-bit VHDL Counter with Asynchronous Load and Clear

➥ pre_ct8a.scf

9.6 • Programming Presettable and Bidirectional Counters in VHDL 407

setup-time requirements of the counter flip-flops. The end of the load and clear pulse can
correspond to the positive clock edge, as the flip-flop hold time is zero.

Also note that the counter with synchronous load and clear has no intermediate glitch
states on its outputs. (The simulation for the asynchronously loading counter shows glitch
states on output qd at 21.04 �s, 21.10 �s, 21.22 �s, and 21.44 �s. Refer to the section on
Synchronous versus Asynchronous Circuits in Chapter 7 for further discussion of interme-
diate states in asynchronous circuits.)

Figures 9.51 and 9.52 show further simulation details for our two VHDL counters.
Both show the priority of the load, clear, and count enable functions. Both diagrams show
that load and clear are independent of count enable and that clear has precedence over load.
Again note that the counter with synchronous load and clear is free of intermediate glitch
states.

FIGURE 9.50
Simulation Detail of 8-bit VHDL
Counter with Synchronous Load
and Clear

FIGURE 9.51
Simulation Detail of 8-bit VHDL
Counter Showing Priority of
Count Enable, Asynchronous
Load, and Asynchronous Clear

FIGURE 9.52
Simulation Detail of 8-bit VHDL
Counter Showing Priority of
Count Enable, Synchronous
Load, and Synchronous Clear

408 C H A P T E R 9 • Counters and Shift Registers

LPM Counters

Earlier in this chapter, we saw how a parameterized counter from the Library of Parame-
terized Modules (LPM) could be used as a simple 8-bit counter. The component
lpm_counter has a number of other functions that can be implemented using specific ports
and parameters. These functions are indicated in Table 9.13.

Table 9.13 Available Functions of an LPM counter

Function Ports Parameters Description

Basic count operation clock, q [] LPM_WIDTH Output q[] increases by one with each positive clock edge.
LPM_WIDTH is the number of output bits.

Synchronous load sload, data [] none When sload � 1, output q[] goes to the value at input data[]
on the next positive clock edge. data[] has the same width
as q[].

Synchronous clear sclr none When sclr � 1, output q[] goes to zero on positive clock
edge.

Synchronous set sset LPM_SVALUE When sset � 1, output goes to value of LPM_SVALUE on
positive clock edge. If LPM_SVALUE is not specified, q[]
goes to all 1s.

Asynchronous load aload, data[] none Output goes to value at data[] when aload � 1.

Asynchronous clear aclr none Output goes to zero when aclr � 1.

Asynchronous set aset LPM_AVALUE Output goes to value of LPM_AVALUE when aset � 1.
If LPM_AVALUE is not specified, outputs all go HIGH
when aset � 1.

Directional control updown LPM_DIRECTION Optional direction control. Default direction is UP. Only one
of updown and LPM_DIRECTION can be used.
updown � 1 for UP count, updown � 0 for DOWN count.
LPM_DIRECTION � “UP”, “DOWN”, or “DEFAULT”

Count enable cnt_en none When cnt_en � 1, count proceeds upon positive clock edges.
No effect on other synchronous functions (sload, sclr, sset).
Defaults to “enabled” when not specified.

Clock enable clk_en none All synchronous functions are enabled when clk_en � 1.
Defaults to “enabled” when not specified.

Modulus control none LPM_MODULUS Modulus of counter is set to value of LPM_MODULUS

Output decoding eq[15..0] none Sixteen active-HIGH decoded outputs, one for each internal
(GDF or AHDL only; counter value from 0 to 15.
not available in VHDL)

The only ports that are required by an LPM counter are clock, and one of q[] (counter
outputs) or eq[] (decoder outputs). The only required parameter is LPM_WIDTH, which
specifies the number of counter output bits. All other ports and parameters are optional, al-
though certain ones must be used together. (For instance, ports sload and data[] are op-
tional, but both must be used for the synchronous load function.) If unused, a port or para-
meter will be held at a default logic level.

To use any of the functions of an LPM component in a VHDL file, we use a compo-
nent instantiation statement and specify the required parameters in a generic map and the
ports in a port map.

9.6 • Programming Presettable and Bidirectional Counters in VHDL 409

The VHDL component declaration, shown below, indicates that all parameters
except LPM_WIDTH are defined as having type STRING, which requires
the parameter value to be written in double quotes, even if numeric. (e.g,
LPM_MODULUS => “12”). Since LPM_WIDTH is defined as type POSITIVE (i.e.,
any integer � 0) it must be written without quotes (e.g., LPM_WIDTH => 8).
Default values of all ports and parameters are also included in the component decla-
ration (e.g., clk_en: IN STD_LOGIC := ‘1’; the default value of the clock en-
able input is ‘1’). The LPM component declaration can also be found in the
MAX�PLUS II Help menu (Help; Megafunctions/LPM; lpm_counter).

VHDL Component Declaration for lpm_counter:

COMPONENT lpm_counter

GENERIC (LPM_WIDTH: POSITIVE;

LPM_MODULUS: STRING := “UNUSED”;

LPM_AVALUE: STRING:= “UNUSED”;

LPM_SVALUE: STRING := “UNUSED”;

LPM_DIRECTION: STRING := “UNUSED”;

LPM_TYPE: STRING := “L_COUNTER”;

LPM_PVALUE: STRING := “UNUSED”;

LPM_HINT : STRING := “UNUSED”);

PORT (data: IN STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0) := (OTHERS => ‘0’);

clock: IN STD_LOGIC;

cin: IN STD_LOGIC := ‘0’;

clk_en: IN STD_LOGIC := ‘1’;

cnt_en: IN STD_LOGIC := ‘1’;

updown: IN STD_LOGIC := ‘1’

sload: IN STD_LOGIC := ‘0’;

sset: IN STD_LOGIC := ‘0’;

sclr: IN STD_LOGIC := ‘0’;

aload: IN STD_LOGIC := ‘0’;

aset: IN STD_LOGIC := ‘0’;

aclr: IN STD_LOGIC := ‘0’;

cout: OUT STD_LOGIC;

q: OUT STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0));

END COMPONENT;

❘❙❚ EXAMPLE 9.8 Write a VHDL file for an 8-bit LPM counter with ports for the following functions: asyn-
chronous load, asynchronous clear, directional control, and count enable.

Solution The required VHDL file is shown below. Note that no behavioral descriptions
are required for the functions, only a mapping from the defined port names to the entity in-
puts and outputs.

—— pre_lpm8

—— 8-bit presettable counter with asynchronous clear and load,

—— count enable, and a directional control port

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

N O T E

410 C H A P T E R 9 • Counters and Shift Registers

ENTITY pre_lpm8 IS

PORT (

clk, count_ena : IN STD_LOGIC;

clear, load, direction : IN STD_LOGIC;

p : IN STD_LOGIC_VECTOR(7 downto 0);

qd : OUT STD_LOGIC_VECTOR(7 downto 0));

END pre_lpm8;

ARCHITECTURE a OF pre_lpm8 IS

BEGIN

counter1: lpm_counter

GENERIC MAP (LPM_WIDTH => 8)

PORT MAP (clock => clk,

updown => direction,

cnt_en => count_ena,

data => p,

aload => load,

aclr => clear,

q => qd);

END a;

❘❙❚ EXAMPLE 9.9 Write a VHDL file that uses an LPM counter to generate a DOWN counter with a modulus
of 500. Create a MAX�PLUS II simulation file to verify the counter’s operation.

Solution A mod-500 counter requires nine bits since 28 � 500 � 29. Since the counter
always counts DOWN, we can use the parameter LPM_DIRECTION to specify the
DOWN counter rather than using an unnecessary port. The required VHDL code is given
below.

Note that the value of LPM_WIDTH is written without quotes, since it is defined as
type POSITIVE in the component declaration. LPM_MODULUS and LPM_DIRECTION
are written in double quotes, since the component declaration defines them as type
STRING.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

Use lpm.lpm_components.ALL;

ENTITY mod5c_lpm IS

PORT (

clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR (8 downto 0));

END mod5c_lpm;

ARCHITECTURE a OF mod5c_lpm IS

BEGIN

counter1: lpm_counter

GENERIC MAP(LPM_WIDTH => 9,

LPM_DIRECTION => “DOWN”,

LPM_MODULUS => “500”)

PORT MAP (clock => clk,

q => q);

END a;

Figure 9.53 shows a partial simulation of the counter, indicating the point at which the
output rolls over from 0 to 499 (decimal).

➥ mod5c_lpm.vhd
mod5c_lpm.scf

➥ pre_lpm8.vhd

9.6 • Programming Presettable and Bidirectional Counters in VHDL 411

If we are designing a counter for the Altera UP-1 circuit board, we can simulate the
on-board oscillator by choosing a clock period of 40 ns, which corresponds to a clock fre-
quency of 25 MHz. The default simulation period is from 0 to 1 �s, which only gives 1 �s
� 40 ns/clock period � 25 clock periods. This is not enough time to show the entire count
cycle. The minimum value for the end of the simulation time is:

40 ns/clock period 	 500 clock periods � 20000 ns � 20 �s.

If we wish to see a few clock cycles past the recycle point, we can set the simulation
end time to 20.1 �s. (In the MAX�PLUS II Simulator window, select File menu; End
Time. Enter the value 20.1us (no spaces) into the Time window and click OK.)

To view the count waveform, q, in decimal rather than hexadecimal, select the wave-
form by clicking on it. Either right-click to get a pop-up menu or select Enter Group from
the simulator Node menu, as in Figure 9.54. This will bring up the Enter Group dialog
box shown in Figure 9.55. Select DEC (for decimal) and click OK.

FIGURE 9.53
Example 9.9
Partial Simulation of a Mod-500 LPM DOWN Counter

FIGURE 9.54
Selecting a Group in a MAX�PLUS II Simulation

FIGURE 9.55
Changing the Name or Radix of a Group

412 C H A P T E R 9 • Counters and Shift Registers

❘❙❚ EXAMPLE 9.10 Write a VHDL file that instantiates a 12-bit LPM counter with asynchronous clear and syn-
chronous set functions. Design the counter to set to 2047 (decimal). Create a simulation to
verify the counter operation.

Solution The required VHDL file is:

—— sset_lpm.vhd

—— 12-bit LPM counter with sset and aclr

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY sset_lpm IS

PORT(

clk : IN STD_LOGIC;

clear, set : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR (11 downto 0));

END sset_lpm;

ARCHITECTURE a OF sset_lpm IS

BEGIN

counter1: lpm_counter

GENERIC MAP (LPM_WIDTH => 12,

LPM_SVALUE => “2047”)

PORT MAP (clock => clk,

sset => set,

aclr => clear,

q => q);

END a;

Figure 9.56 shows the simulation file of the counter. The full count sequence would
take over 160 �s, so we will assume the count portion of the design works properly. Only
the set and clear functions are fully simulated. The count waveform is shown in decimal.

❘❙❚

❘❙❚ SECTION 9.6 REVIEW PROBLEM

9.6 The first part of a VHDL process statement includes a sensitivity list: PROCESS

(sensitivity list). How should this be written for a counter with asynchronous
clear and for a counter with synchronous clear?

FIGURE 9.56
Example 9.10
Simulation of a 12-bit Counter with Synchronous Set to 2047 and Asynchronous Clear

➥ sset_lpm.vhd
sset_lpm.scf

9.7 • Shift Registers 413

9.7 Shift Registers

Shift register A synchronous sequential circuit that will store and move n-bit
data, either serially or in parallel, in n flip-flops.

SRGn Abbreviation for an n-bit shift register (e.g., SRG4 indicates a 4-bit shift
register).

Serial shifting Movement of data from one end of a shift register to the other at a
rate of one bit per clock pulse.

Parallel transfer Movement of data into all flip-flops of a shift register at the
same time.

Rotation Serial shifting of data with the output(s) of the last flip-flop connected
to the synchronous input(s) of the first flip-flop. The result is continuous circulation
of the same data.

Right shift A movement of data from the left to the right in a shift register. (Right
is defined in MAX�PLUS II as toward the LSB.)

Left shift A movement of data from the right to the left in a shift register. (Left is
defined in MAX�PLUS II as toward the MSB.)

Bidirectional shift register A shift register that can serially shift bits left or right
according to the state of a direction control input.

Parallel-load shift register A shift register that can be preset to any value by di-
rectly loading a binary number into its internal flip-flops.

Universal shift register A shift register that can operate with any combination of
serial and parallel inputs and outputs (i.e., serial in/serial out, serial in/parallel out,
parallel in/serial out, parallel in/parallel out). A universal shift register is often bidi-
rectional, as well.

A shift register is a synchronous sequential circuit used to store or move data. It consists
of several flip-flops, connected so that data are transferred into and out of the flip-flops in a
standard pattern.

Figure 9.57 represents three types of data movement in three 4-bit shift registers. The
circuits each contain four flip-flops, configured to move data in one of the ways shown.

Figure 9.57a shows the operation of serial shifting. The stored data are taken in one at
a time from the input and moved one position toward the output with each applied clock
pulse.

Parallel transfer is illustrated in Figure 9.57b. As with the synchronous parallel load
function of a presettable counter, data move simultaneously into all flip-flops when a clock
pulse is applied. The data are available in parallel at the register outputs.

Rotation, depicted in Figure 9.57c, is similar to serial shifting in that data are shifted
one place to the right with each clock pulse. In this operation, however, data are continu-
ously circulated in the shift register by moving the rightmost bit back to the leftmost flip-
flop with each clock pulse.

Serial Shift Registers

Figure 9.58 shows the most basic shift register circuit: the serial shift register, so called be-
cause data are shifted through the circuit in a linear or serial fashion. The circuit shown
consists of four D flip-flops connected in cascade and clocked synchronously.

For a D flip-flop, Q follows D. The value of a bit stored in any flip-flop after a clock
pulse is the same as the bit in the flip-flop to its left before the pulse. The result is that when
a clock pulse is applied to the circuit, the contents of the flip-flops move one position to the

K E Y T E R M S

➥ srg4_sr.gdf
srg4_sr.scf

414 C H A P T E R 9 • Counters and Shift Registers

right and the bit at the circuit input is shifted into Q3. The bit stored in Q0 is overwritten by
the former value of Q1 and is lost. Since the data move from left to right, we say that the
shift register implements a right shift function. (Data movement in the other direction, re-
quiring a different circuit connection, is called left shift.)

Let us track the progress of data through the circuit in two cases. All flip-flops are ini-
tially cleared in each case.

Case 1: A 1 is clocked into the shift register, followed by a string of 0s, as shown in Fig-
ure 9.59. The flip-flop containing the 1 is shaded.

Before the first clock pulse, all flip-flops are filled with 0s. Data In goes to a 1 and on the
first clock pulse, the 1 is clocked into the first flip-flop. After that, the input goes to 0. The 1
moves one position right with each clock pulse, the register filling up with 0s behind it, fed by
the 0 at Data In.After four clock pulses, the 1 reaches the Data Out flip-flop. On the fifth pulse,
the 0 coming behind overwrites the 1 at Q0, leaving the register filled with 0s.

Q3 Q2 Q1 Q0

a. Serial shifting

Q3 Q2 Q1 Q0

b. Parallel transfer

Q3 Q2 Q1 Q0

c. Rotation

FIGURE 9.57
Data Movement in a 4-bit Shift Register

Clock

OUTPUT
Q1

OUTPUT

INPUT

INPUT

Q0

OUTPUT
Q2

OUTPUT
Q3

Q0Q1Q2Q3
Serial_in

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

FIGURE 9.58
4-bit Serial Shift Register Configured to Shift Right

9.7 • Shift Registers 415

Case 2: Figure 9.60 shows a shift register, initially cleared, being filled with 1s.
As before, the initial 1 is clocked into the shift register and reaches the Data Out line

on the fourth clock pulse. This time, the register fills up with 1s, not 0s, because the Data
input remains HIGH.

Figure 9.61 shows a MAX�PLUS II simulation of the 4-bit serial shift register in Fig-
ure 9.58 through 9.60. The first half of the simulation shows the circuit operation for Case

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0

0

0 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 0 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 1 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 1 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 0 1

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 0 0

1

0

0

0

0

FIGURE 9.59
Shifting a “1” Through a Shift
Register (Shift Right)

416 C H A P T E R 9 • Counters and Shift Registers

FIGURE 9.60
Filling a Shift Register with
“1”s (Shift Right)

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0

0

0 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 0 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 1 0 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 1 1 0

Clock

Data in Data out
Q3 Q2 Q1 Q0

Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 1 1 1

1

1

1

1

FIGURE 9.61
Simulation of a 4-bit Shift
Register (Shift Right)

9.7 • Shift Registers 417

1, above. The 1 enters the register at Q3 on the first clock pulse after serial_in (Data In)
goes HIGH. The 1 moves one position for each clock pulse, which is seen in the simulation
as a pulse moving through the Q outputs.

Case 2 is shown in the second half of the simulation. Again, a 1 enters the register at
Q3. The 1 continues to be applied to serial_in, so all Q outputs stay HIGH after receiving
the 1 from the previous flip-flop.

Conventions differ about whether the rightmost or leftmost bit in a shift register
should be considered the most significant bit. The Altera Library of Parameterized
Modules uses the convention of the leftmost bit being the MSB, so this is the con-
vention we will follow. The convention has no physical meaning; the concept of
right or left shift only makes sense on a logic diagram. The actual flip-flops may be
laid out in any configuration at all in the physical circuit and still implement the
right or left shift functions as defined on the logic diagram. (That is to say, wires,
circuit board traces, and internal programmable logic connections can run wherever
you want; left and right are defined on the logic diagram.)

❘❙❚ EXAMPLE 9.11 Use the MAX�PLUS II Graphic Editor to create the logic diagram of a 4-bit serial shift
register that shifts left, rather than right.

Solution Figure 9.62 shows the required logic diagram. The flip-flops are laid out the
same way as in Figure 9.58, with the MSB (Q3) on the left. The D input of each flip-flop is
connected to the Q output of the flip-flop to its right, resulting in a looped-back connection.
A bit at D0 is clocked into the rightmost flip-flop. Data in the other flip-flops are moved one
place to the left. The bit in Q2 overwrites Q3. The previous value of Q3 is lost.

N O T E

Clock

OUTPUT
Q1

OUTPUT

INPUT

INPUT

Q0

OUTPUT
Q2

OUTPUT
Q3

Q0D0Q1D1Q2D2Q3D3

Serial_in

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

FIGURE 9.62
4-bit Serial Shift Register Configured to Shift Left

❘❙❚ EXAMPLE 9.12 Draw a diagram showing the movement of a single 1 through the register in Figure 9.62.
Also draw a diagram showing how the register can be filled up with 1s.

Solution Figures 9.63 and 9.64 show the required data movements.

➥ srg4_sl.gdf
srg4_sl.scf

418 C H A P T E R 9 • Counters and Shift Registers

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
0

0

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
1

1

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

1
0

0

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
1

0
0

0

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
0

0
0

0

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
0

0

FI
G

U
R

E
9.

63
Sh

if
tin

g
a

“1
”

T
hr

ou
gh

 a
 S

hi
ft

 R
eg

is
te

r
(S

hi
ft

 L
ef

t)

9.7 • Shift Registers 419

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
0

0

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
1

1

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

1
1

1

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
1

1
1

1

C
lo

ck

D
at

a
ou

t

D
at

a
in

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
1

1
1

1

FI
G

U
R

E
9.

64
Fi

lli
ng

 a
 S

hi
ft

 R
eg

is
te

r
w

ith
 “

1”
s

(S
hi

ft
 L

ef
t)

420 C H A P T E R 9 • Counters and Shift Registers

❘❙❚ EXAMPLE 9.13 Use the MAX�PLUS II simulator to verify the operation of the shift-left serial shift regis-
ter in Figure 9.62.

Solution Figure 9.65 shows the simulation of the shift operations shown in Example
9.12. Compare this simulation to the one in Figure 9.61 to see how the opposite shift di-
rection appears on a timing diagram.

❘❙❚

Bidirectional Shift Registers

Figure 9.66 shows the logic diagram of a bidirectional shift register. This circuit com-
bines the properties of the right shift and left shift circuits, seen earlier in Figures 9.58 and
9.62. This circuit can serially move data right or left, depending on the state of a control in-
put, called DIRECTION.

The shift direction is controlled by enabling or inhibiting four pairs of AND-OR
circuit paths that direct the bits at the flip-flop outputs to other flip-flop inputs. When
DIRECTION � 0, the right-hand AND gate in each pair is enabled and the flip-flop outputs
are directed to the D inputs of the flip-flops one position left. Thus the enabled pathway is
from Left_Shift_In to Q0, then to Q1, Q2, and Q3.

When DIRECTION � 1, the left-hand AND gate of each pair is enabled, directing the
data from Right_Shift_In to Q3, then to Q2, Q1, and Q0. Thus, DIRECTION � 0 selects left
shift and DIRECTION � 1 selects right-shift.

Figure 9.67 shows a MAX�PLUS II simulation of the bidirectional shift register in
Figure 9.66. The simulation shows the left shift function from 0 to 500 ns and right shift af-
ter 500 ns. Both Right_Shift_In and Left_Shift_In are applied in both parts of the simula-
tion, but the circuit responds only to one for each function.

For the left shift function, a 1 is applied to Q0 at 140 ns and shifted left. The
Right_Shift_In pulse is ignored. Similarly, for the right shift function, a 1 is applied to Q3

at 540 ns and shifted right. Left_Shift_In is ignored.

FIGURE 9.65
Simulation of a 4-bit Shift Register (Shift Left)

➥ srg4_bi.gdf
srg4_bi.scf

9.7 • Shift Registers 421

AND2

OR2

AND2

AND2

OR2

AND2

AND2

OR2

AND2

AND2

OR2

AND2

C
LO

C
K

IN
P

U
T

IN
P

U
T

D
IR

E
C

T
IO

N
IN

P
U

T

N
O

T

Le
ft_

S
hi

ft_
In

R
ig

ht
_S

hi
ft_

In

IN
P

U
T

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

O
U

T
P

U
T

Q
1

O
U

T
P

U
T

Q
0

O
U

T
P

U
T

Q
2

O
U

T
P

U
T

Q
3

FI
G

U
R

E
9.

66
B

id
ir

ec
tio

na
l S

hi
ft

 R
eg

is
te

r

422 C H A P T E R 9 • Counters and Shift Registers

Shift Register with Parallel Load

Earlier in this chapter, we saw how a counter could be set to any value by synchronously
loading a set of external inputs directly into the counter flip-flops. We can implement the
same function in a shift register, as shown in Figure 9.68.

The circuit is similar to that of the bidirectional shift register in Figure 9.66. The syn-
chronous input of each flip-flop is fed by an AND-OR circuit that directs one of two signals
to the flip-flop: the output of the previous flip-flop (shift function) or a parallel input (load
function). The circuit is configured such that the shift function is enabled when LOAD � 0
and the load function is enabled when LOAD � 1.

Figure 9.69 shows a simulation of the parallel-load shift register circuit of Figure 9.68.
In the first part of the simulation, the shift function is selected. This is tested by sending a
1 through the circuit in a right-shift pattern. Next, at 400 ns, LOAD goes HIGH, and the
parallel input value AH (� 10102) is synchronously loaded into the circuit. The LOAD in-
put goes LOW, thus causing the circuit to revert to the shift function. The data in the regis-
ter are right-shifted out, followed by 0s. At 640 ns, the value FH (� 11112) is loaded into
the circuit, then right-shifted out.

Figure 9.70 shows the logic circuit of a universal shift register. This circuit can im-
plement any combination of serial and parallel inputs and outputs. It can also serially shift
data left or right or hold data, depending on the states of S1 and S0, which form a 2-bit func-
tion select input.

Each AND-OR circuit acts as a multiplexer to direct one of several possible data
sources to the synchronous inputs of each flip-flop. For instance, if we trace the paths
through the corresponding AND-OR circuit, we find that the possible sources of data at D2,
the synchronous input of the second flip-flop, are Q3 (S1S0 � 01), P2 (S1S0 � 11), Q1 (S1S0

� 10), and Q2(S1S0 � 00). These are the inputs required for the right-shift, parallel load,
left-shift, and hold functions, respectively. All functions are synchronous, including the
parallel load and hold functions.

The hold function is a synchronous no change function, implemented by feeding back
the Q output of a flip-flop to its synchronous (D) input. It is necessary to have this function,
so that the flip-flops will not synchronously clear when none of the other functions is
selected.

FIGURE 9.67
Simulation of a 4-bit
Bidirectional Shift Register

➥ srg4_par.gdf
srg4_par.scf

➥ srg4_uni.gdf
srg4_uni.scf

9.7 • Shift Registers 423

AND2

OR2

AND2

AND2

OR2

AND2

AND2

OR2

AND2

AND2

OR2

AND2

C
LO

C
K

IN
P

U
T

IN
P

U
T

LO
A

D

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

N
O

T

S
E

R
IA

L_
IN

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

O
U

T
P

U
T

Q
1

O
U

T
P

U
T

Q
0

O
U

T
P

U
T

Q
2

O
U

T
P

U
T

Q
3

P
1

P
0

P
2

P
3

FI
G

U
R

E
9.

68
Se

ri
al

 S
hi

ft
 R

eg
is

te
r

w
ith

 P
ar

al
le

l L
oa

d

424 C H A P T E R 9 • Counters and Shift Registers

Table 9.14 summarizes the various possible inputs to each flip-flop as a function of S1

and S0.

FIGURE 9.69
Simulation of a 4-bit Serial Shift Register with Parallel Load

Table 9.14 Flip-Flop Inputs as a Function of S1S0 in a Universal Shift Register

S1 S0 Function D3 D2 D1 D0

0 0 Hold Q3 Q2 Q1 Q0

0 1 Shift Right RSI* Q3 Q2 Q1

1 0 Shift Left Q2 Q1 Q0 LSI**
1 1 Load P3 P2 P1 P0

*RSI � Right-shift input
**LSI � Left-shift input

❘❙❚ EXAMPLE 9.14 Create a simulation file to verify the operation of the universal shift register of Figure 9.70.

Solution Figure 9.71 shows a possible solution. The following functions are tested:
hold, right shift (LSI ignored), hold, left shift (RSI ignored), load FH, asynchronous clear,
load FH, shift right for two clocks, shift left for three clocks.

O
U

T
P

U
T

Q
1

O
U

T
P

U
T

Q
0

O
U

T
P

U
T

Q
2

O
U

T
P

U
T

Q
3

IN
P

U
T

LS
I

C
LO

C
K

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

IN
P

U
T

N
O

T

N
O

T

IN
P

U
T

R
S

I

P
0

S
1 P
1

P
2

P
3

OR4
AND3

AND3

AND3

AND3 D
F

F

C
LR

N

P
R

N
Q

D
D

3
Q

3

OR4
AND3

AND3

AND3

AND3 D
F

F

C
LR

N

P
R

N
Q

D
D

2
Q

2

OR4
AND3

AND3

AND3

AND3 D
F

F

C
LR

N

P
R

N
Q

D
D

1
Q

1

OR4
AND3

AND3

AND3

AND3 D
F

F

C
LR

N

P
R

N
Q

D
D

0
Q

0

C
LE

A
R

IN
P

U
T

IN
P

U
T

S
0

S
1

S
0

 0
 0

H
O

LD
 0

 1
S

H
IF

T
 R

IG
H

T
 1

 0
S

H
IF

T
 L

E
F

T
 1

 1
LO

A
D

FI
G

U
R

E
9.

70
4-

bi
t U

ni
ve

rs
al

 S
hi

ft
 R

eg
is

te
r

425

426 C H A P T E R 9 • Counters and Shift Registers

❘❙❚

❘❙❚ SECTION 9.7 REVIEW PROBLEM

9.7 Can the D flip-flops in Figure 9.58 be replaced by JK flip-flops? If so, what modifica-
tions to the existing circuit are required?

9.8 Programming Shift Registers in VHDL

Structural design A VHDL design technique that connects predesigned compo-
nents using internal signals.

Dataflow design A VHDL design technique that uses Boolean equations to define
relationships between inputs and outputs.

Behavioral design A VHDL design technique that uses descriptions of required
behavior to describe the design.

As with other circuit applications, we can take several approaches to programming shift
registers in VHDL. Three basic design techniques are structural, dataflow, and behav-
ioral descriptions. We will use each of these techniques to design a 4-bit shift register, such
as the one shown in Figure 9.58.

Structural Design

Structural design is like taking components out of a bin and connecting them together to
make a circuit. We can use the DFF component from the MAX�PLUS II primitives
library and instantiate enough components to make a shift register, with connections made

K E Y T E R M S

FIGURE 9.71
Example 9.14
Simulation of a 4-bit Universal Shift Register

9.8 • Programming Shift Registers in VHDL 427

by internal signals. The code to make a 4-bit shift register using the structural design tech-
nique is shown here in the file srg4strc.vhd.

—— srg4strc.vhd

—— Structural description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY srg4strc IS

PORT(

serial_in, clk : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(3 downto 0));

END srg4strc;

ARCHITECTURE right_shift of srg4strc IS

COMPONENT DFF

PORT (d : IN STD_LOGIC;

clk : IN STD_LOGIC;

q : OUT STD_LOGIC);

END COMPONENT;

BEGIN

flip_flop_3: dff

PORT MAP (serial_in, clk, qo(3));

dffs:

FOR i IN 2 downto 0 GENERATE

flip_flops_2_to_0: dff

PORT MAP (qo(i + 1), clk, qo(i));

END GENERATE;

END right_shift;

The design entity srg4strc.vhd instantiates four D flip-flops from the altera.
maxplus2 package and connects them by assigning common inputs and outputs to related
components. A different way of writing the component instantiations would be as follows.

flip_flop_3: dff

PORT MAP (serial_in, clk, qo(3));

flip_flop_2: dff

PORT MAP(qo(3), clk, qo(2));

flip_flop_1: dff

PORT MAP(qo(2), clk, qo(1));

flip_flop_0: dff

PORT MAP(qo(1), clk, qo(0));

Since the component ports are in the sequence (D, clk, Q), the component instantia-
tions shown above imply that the D input of a flip-flop is fed by the Q of the previous
flip-flop.

The port identifier qo is defined as mode BUFFER, not as OUT, because it is some-
times used as an input and sometimes as an output. A port of mode OUT can only be used
as an output. A port of mode BUFFER has a feedback connection so that the output can be
reused in the programmed AND matrix of the CPLD macrocell. Figure 9.72 illustrates the
difference between these modes.

Rather than defining connections in the component instantiations, we would also be
able to use an internal signal to connect the flip-flops. This method allows us to use a
port of mode OUT, rather than BUFFER. The file srg4str2.vhd shows this alternative
way.

➥ srg4strc.vhd
srgstrc.scf

428 C H A P T E R 9 • Counters and Shift Registers

——srg4str2.vhd

—— Structural description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY srg4str2 IS

PORT (

serial_in, clk : IN STD_LOGIC;

qo : OUT STD_LOGIC_VECTOR(3 downto 0));

END srg4str2;

ARCHITECTURE right_shift of srg4str2 IS

COMPONENT DFF

PORT (d : IN STD_LOGIC;

clk : IN STD_LOGIC;

q : OUT STD_LOGIC);

END COMPONENT;

SIGNAL connect : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

flip_flop_3: dff

PORT MAP (serial_in, clk, connect(3));

dffs:

FOR i IN 2 downto 0 GENERATE

flip_flops_2_to_0: dff

PORT MAP (connect(i + 1), clk, connect(i));

END GENERATE;

qo <= connect;

END right_shift;

In this case, the internal signal connect is used to tie the flip-flops together. The circuit
output derives from a signal assignment statement at the end of the file. Since the internal
signal connect is used to fulfil the flip-flop input/output functions, qo can be defined solely
as an output.

Dataflow Design

Dataflow design describes a design entity in terms of the Boolean relationships between
different parts of the circuit. The Boolean relationships in a 4-bit shift register are defined
by the expressions for the flip-flop synchronous inputs:

QDAND
Matrix

CLK

PIN

Feedback to
AND matrix

n

b. Driver of mode BUFFER

QDAND
Matrix

CLK

PIN
n

a. Driver of mode OUT

FIGURE 9.72
OUT vs. BUFFER

➥ srg4str2.vhd
srg4str2.scf

9.8 • Programming Shift Registers in VHDL 429

D3 � serial_in

D2 � Q3

D1 � Q2

D0 � Q1

The design entity srg4dflw.vhd illustrates the use of the dataflow design method for a
4-bit serial shift register.

—— srg4dflw.vhd

—— Dataflow description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4dflw IS

PORT (

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(3 downto 0));

END srg4dflw;

ARCHITECTURE right_shift of srg4dflw IS

SIGNAL d : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

PROCESS (clk)

BEGIN

—— Define a 4-bit D flip-flop

IF clk’EVENT and clk = ‘1’ THEN

q <= d;

END IF;

END PROCESS;

d <= serial_in & q(3 downto 1);

END right_shift;

Before the flip-flops can be connected, they must be defined in a PROCESS state-
ment. The statements inside the process are sequential, as they must be to define a flip-
flop, but the process itself is a concurrent statement. Signals are applied concurrently
(simultaneously) to the construct implied by the process (the flip-flops) and all other
concurrent constructs in the design entity (the connections between q and d and the se-
rial input).

A signal assignment statement implements the Boolean equations for the shift register.
It is written as a single statement for efficiency, but could also be written as four separate
assignment statements, as follows:

d(3) <= serial_in;

d(2) <= q(3);

d(1) <= q(2);

d(0) <= q(1);

We must define q as mode BUFFER, since we are using it as both input and output.

Behavioral Design

We can create a VHDL design entity from the description of its desired behavior. In the
case of a shift register, we know that after a clock pulse all data move over one position and
the first flip-flop in the chain accepts a bit from a serial input, as indicated in Table 9.15. We
can use this behavioral description to implement a serial shift register, as shown in the
VHDL file srg4behv.vhd.

Table 9.15 Next States
of Flip-Flops in a Serial
Shift Register

Q3 Q2 Q1 Q0

serial_in Q3 Q2 Q1

➥ srg4dflw.vhd
srg4dflw.scf

430 C H A P T E R 9 • Counters and Shift Registers

—— srg4behv.vhd

—— Behavioral description of a 4-bit serial shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4behv IS

PORT (

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(3 downto 0));

END srg4behv;

ARCHITECTURE right_shift of srg4behv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT and clk = ‘1’) THEN

q <= serial_in & q(3 downto 1);

END IF;

END PROCESS;

END right_shift;

In the behavioral design, we are not concerned with the flip-flop inputs or other inter-
nal connections; the behavioral description is sufficient for the VHDL compiler to synthe-
size the required hardware. Compare this to the dataflow description, where we created a
set of flip-flops, then assigned Boolean functions to the D inputs. In this case, the behav-
ioral design method combines these two steps into one.

❘❙❚ EXAMPLE 9.15 Write the code for a VHDL design entity that implements a 4-bit bidirectional shift regis-
ter with asynchronous clear. Create a simulation that verifies the design function.

Solution The VHDL code for the bidirectional shift register, srg4bidi.vhd, follows. A
CASE statement monitors the directional control of the shift register. We require the
others clause of the CASE statement since the identifier direction is of type STD_LOGIC;
the cases ‘0’ and ‘1’ do not cover all possible values of STD_LOGIC. Since we want no ac-
tion to be taken in the default case, we use the keyword NULL.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg4bidi IS

PORT (

clk, clear : IN STD_LOGIC;

rsi, lsi : IN STD_LOGIC;

direction : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(3 downto 0));

END srg4bidi;

ARCHITECTURE bidirectional_shift of srg4bidi IS

BEGIN

PROCESS (clk, clear)

BEGIN

IF clear = ‘0’ THEN

q <= “0000”; —— asynchronous clear

ELSIF (clk‘EVENT and clk = ‘1’) THEN

CASE direction IS

WHEN ‘0’ =>

q <= q(2 downto 0) & lsi; —— left shift

www.electronictech.com

➥ srg4behv.vhd
srg4behv.scf

➥ srg4bidi.vhd
srg4bidi.scf

9.8 • Programming Shift Registers in VHDL 431

WHEN ‘1’ =>

q <= rsi & q(3 downto 1); —— right shift

WHEN others =>

NULL;

END CASE;

END IF;

END PROCESS;

END bidirectional_shift;

Figure 9.73 shows the simulation of the shift register, with the left shift function in the
first half of the simulation and the right shift function in the second half.

FIGURE 9.73
Example 9.15
4-bit Bidirectional Shift Register

❘❙❚

Shift Registers of Generic Width

GENERIC A clause in the entity declaration of a VHDL component that lists the
parameters that can be specified when the component is instantiated.

All multibit VHDL components we have examined until now have been of a specified width
(e.g., 2-to-4 decoder, 8-bit MUX, 8-bit adder, 4-bit counter). VHDL allows us to create com-
ponents having a generic, or unspecified, width or other parameter which is specified when
the component is instantiated. In the entity declaration of such a component, we indicate an
unspecified parameter (such as width) in a GENERIC clause. The unspecified parameter
must be given a default value in the GENERIC clause, indicated by :� value.

When we instantiate the component, we specify the parameter value in a generic map,
as we have done with components from the Library of Parameterized Modules. The design
entity srt_bhv.vhd below behaviorally defines an n-bit right-shift register, with a default
width of four bits given by the statement (GENERIC (width : POSITIVE := 4);).

The entity srt8_bhv.vhd instantiates the n-bit register as an 8-bit circuit by specifying
the bit width in a generic map. If no value is specified, the component is presumed to have
a default width of four, as defined in the component’s entity declaration.

—— srt_bhv.vhd

K E Y T E R M

432 C H A P T E R 9 • Counters and Shift Registers

—— Behavioral description of an n-bit shift register
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt_bhv IS

GENERIC (width : POSITIVE := 4);

PORT (

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END srt_bhv;

ARCHITECTURE right_shift of srt_bhv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

q(width-1 downto 0) <= serial_in & q(width-1 downto 1);

END IF;

END PROCESS;

END right_shift;

—— srt8_bhv.vhd

—— 8-bit shift register that instantiates srt_bhv

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt8_bhv IS

PORT(

data_in, clock : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(7 downto 0));

END srt8_bhv;

ARCHITECTURE right_shift of srt8_bhv IS

COMPONENT srt_bhv

GENERIC (width : POSITIVE);

PORT (

serial_in, clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

BEGIN

Shift_right_8: srt_bhv

GENERIC MAP (width=> 8)

PORT MAP (serial_in => data_in,

clk => clock,

q => qo);

END right_shift;

❘❙❚ EXAMPLE 9.16 Write the code for a VHDL design entity that defines a universal shift register with a
generic width. (The default width is eight bits.) Instantiate this entity as a component in a
file for a 16-bit universal shift register.

Solution

—— srg_univ.vhd

—— Universal shift register with generic width

—— Default width = 8 bits

➥ srt_bhv.vhd
srt8_bhv.vhd
srt8_bhv.scf

9.8 • Programming Shift Registers in VHDL 433

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_arith.ALL;

ENTITY srg_univ IS

GENERIC (width : POSITIVE := 8);

PORT (

clk, clear : IN STD_LOGIC;

rsi, lsi : IN STD_LOGIC;

function_select : IN STD_LOGIC_VECTOR(1 downto 0);

p : IN STD_LOGIC_VECTOR(width-1 downto 0);

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END srg_univ;

ARCHITECTURE universal_shift of srg_univ IS

BEGIN

PROCESS (clk, clear)

BEGIN

IF clear = ‘0’ THEN

-- Conversion function to convert integer 0 to vector

-- of any width. Requires ieee.std_logic_arith package.

q <= CONV_STD_LOGIC_VECTOR(0, width);

ELSIF (clk’EVENT and clk = ‘1’) THEN

CASE function_select IS

WHEN “00” =>

q <= q; —— Hold

WHEN “01” =>

q <= rsi & q(width-1 downto 1); -- Shift right

WHEN “10” =>

q <= q(width-2 downto 0) & lsi; -- Shift left

WHEN “11” =>

q <= p; —— Load

WHEN OTHERS =>

NULL;

END CASE;

END IF;

END PROCESS;

END universal_shift;

—— srg16uni.vhd

—— 16-bit universal shift register (instantiates srg_univ)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srg16uni IS

PORT (

clock, clr : IN STD_LOGIC;

rsi, lsi : IN STD_LOGIC;

s : IN STD_LOGIC_VECTOR(1 downto 0);

parallel_in : IN STD_LOGIC_VECTOR(15 downto 0);

qo : BUFFER STD_LOGIC_VECTOR(15 downto 0));

END srg16uni;

ARCHITECTURE universal_shift of srg16uni IS

COMPONENT srg_univ

GENERIC (width : POSITIVE);

PORT (

clk, clear : IN STD_LOGIC;

➥ srg_univ.vhd
srg16uni.vhd

434 C H A P T E R 9 • Counters and Shift Registers

rsi, lsi : IN STD_LOGIC;

function_select : IN STD_LOGIC_VECTOR(1 downto 0);

p : IN STD_LOGIC_VECTOR(width-1 downto 0);

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END COMPONENT;

BEGIN

Shift_universal_16: srg_univ

GENERIC MAP (width=> 16)

PORT MAP (clk => clock,

clear => clr,

rsi => rsi,

lsi => lsi,

function_select => s,

p => parallel_in,

q => qo);

END universal_shift;

When we are designing the clear function in srg_univ.vhd, we must account for the
fact that we must set all bits of a vector of unknown width to ‘0’. To get around this prob-
lem, we use a conversion function that changes an INTEGER value of 0 to a
STD_LOGIC_VECTOR of width bits and assigns the value to the output. The required
conversion function, CONV_STD_LOGIC_VECTOR(value, number_of_bits), is found
in the std_logic_arith package in the ieee library. We could also use the construct

q <= (others => ‘0’);

which states that the default case is to set all bits of q to 0 when clear is 0. Since there is no
other case specified, all bits of q are cleared.

❘❙❚

LPM Shift Registers

The Library of Parameterized Modules contains a shift register component, lpm_shiftreg,
that we can instantiate in a VHDL design entity. The various functions of lpm_shiftreg are
listed in Table 9.16.

The following VHDL code instantiates lpm_shiftreg as an 8-bit shift register with se-
rial input and serial output. In this case, the LPM component is declared explicitly, with the
component declaration statement listing only the ports and parameters used by the design
entity. The component instantiation statement lists the port names from the design entity in
the same order as the corresponding component port names. By default the register direc-
tion is LEFT (i.e., toward the MSB).

—— srg8_lpm.vhd

—— 8-bit serial shift register (shift left by default)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

9.8 • Programming Shift Registers in VHDL 435

ENTITY srg8_lpm IS

PORT (

clk : IN STD_LOGIC;

serial_in : IN STD_LOGIC;

serial_out : OUT STD_LOGIC);

END srg8_lpm;

ARCHITECTURE lpm_shift of srg8_lpm IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE);

PORT (

clock, shiftin : IN STD_LOGIC;

shiftout : OUT STD_LOGIC);

END COMPONENT;

BEGIN

Shift_8: lpm_shiftreg

GENERIC MAP (LPM_WIDTH=> 8)

PORT MAP (clk, serial_in, serial_out);

END lpm_shift;

Figure 9.74 shows a simulation of the shift register, with the data shifting from right to
left (LSB to MSB). Since there is no parallel output (q[]) instantiated in our design, we
would not normally be able to monitor the progress of bits from flip-flop to flip-flop; we
would only see shiftin, and then, eight clock cycles later, shiftout. However, we are able to
monitor the flip-flop states as buried nodes (Shift_8|dffs[7..0].Q). These buried nodes are
the last eight lines in the simulation.

Table 9.16 Available Functions for lpm_shiftreg

Function Ports Parameters Description

Basic serial operation clock, shiftin, LPM_WIDTH Data moves serially from shiftin to shiftout. Parallel outputs
shiftout, q[] appear at q[].

Load sload, data[] none When sload � 1, q[] goes to the value at input data[] on the
next positive clock edge. Data[] has the same width as
LPM_WIDTH.

Synchronous clear sclr none When sclr � 1, q[] goes to zero on positive clock edge

Synchronous set sset LPM_SVALUE When sset � 1, output goes to value of LPM_SVALUE on
positive clock edge. If LPM_SVALUE is not specified q[]
goes to all 1s.

Asynchronous clear aclr none Output goes to zero when aclr � 1.

Asynchronous set aset LPM_AVALUE Output goes to value of LPM_AVALUE when aset � 1.
If LPM_AVALUE is not specified, outputs all go HIGH
when aset � 1.

Directional control none LPM_DIRECTION Optional direction control. Default direction is LEFT.
LPM_DIRECTION � “LEFT” or “RIGHT”.
If shiftin and shiftout are used, the serial shift always goes
through the entire shift register, in the direction given by
LPM_DIRECTION.

Clock enable enable none All synchronous functions are enabled when enable � 1.
Defaults to “enabled” when not specified.

➥ srg8_lpm.vhd
srg8_lpm.scf

436 C H A P T E R 9 • Counters and Shift Registers

❘❙❚ EXAMPLE 9.17 Modify the VHDL code just shown to make the serial shift register shift right, rather than
left. Create a simulation to verify the circuit function. How do the positions of shiftin
and shiftout ports relate to the internal flip-flops for the right-shift and left-shift imple-
mentations?

Solution The modified VHDL code is shown next as design entity srg8lpm2. The only
difference is the addition of the parameter LPM_DIRECTION to both the component dec-
laration and component instantiation statements.

—— srg8_lpm2.vhd

—— 8-bit serial shift register (shift right)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY srg8lpm2 IS

PORT (

clk : IN STD_LOGIC;

serial_in : IN STD_LOGIC;

serial_out : OUT STD_LOGIC);

END srg8_lpm2;

ARCHITECTURE lpm_shift of srg8_lpm2 IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE; LPM_DIRECTION: STRING);

PORT (

clock, shiftin : IN STD_LOGIC;

shiftout : OUT STD_LOGIC);

END COMPONENT;

BEGIN

shift_8: lpm)_shiftreg

GENERIC MAP (LPM_WIDTH=> 8, LPM_DIRECTION => “RIGHT”)

PORT MAP (clk, serial_in, serial_out);

END lpm_shift;

FIGURE 9.74
Simulation of an 8-bit LPM Shift
Register (Shift Left)

➥ srg8_lpm2.vhd
srg8_lpm2.scf

9.8 • Programming Shift Registers in VHDL 437

The simulation for the right-shift register is shown in Figure 9.75. The inputs are identi-
cal to those of Figure 9.74, but the internal shift direction is opposite. The LPM component
configures the serial shift input and output such that they allow data to go through the entire
register, regardless of shift direction. For left-shift, serial_in (shiftin) is applied to D0, and
is shifted toward Q7. For right-shift, the same serial_in is applied to D7 and shifted toward
Q0. Thus, there is no right shift input or left shift input in this component, and also no bidi-
rectional shift that can be controlled by an input port. Shift direction can only be set by the
value of a parameter and is therefore fixed when a component is instantiated.

❘❙❚ EXAMPLE 9.18 Write the VHDL code for an 8-bit LPM shift register with both parallel and serial outputs,
parallel load and asynchronous clear. Create a simulation to verify the design operation.

Solution The VHDL code for the parallel load shift register follows as srg8lpm3.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY srg8lpm3 IS

PORT (

clk, ld, clr : IN STD_LOGIC;

p : IN STD_LOGIC_VECTOR(7 downto 0);

q_out : OUT STD_LOGIC_VECTOR(7 downto 0);

serial_out : OUT STD_LOGIC);

END srg8lpm3;

ARCHITECTURE lpm_shift of srg8lpm3 IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE);

PORT (

clock, load : IN STD_LOGIC;

aclr : IN STD_LOGIC;

data : IN STD_LOGIC_VECTOR (7 downto 0);

q : OUT STD_LOGIC_VECTOR (7 downto 0);

shiftout : OUT STD_LOGIC);

END COMPONENT;

BEGIN

FIGURE 9.75
Example 9.17
Simulation of an 8-bit LPM Shift
Register (Shift Right)

➥ srg8lpm3.vhd
srg8lpm3.scf

438 C H A P T E R 9 • Counters and Shift Registers

Shift_8: lpm_shiftreg

GENERIC MAP (LPM_WIDTH=> 8)

PORT MAP (clk, ld, clr, p, q_out, serial_out);

END lpm_shift;

The simulation for srg8lpm3 is shown in Figure 9.76. The load input is initially
HIGH, causing the shift register to load 55H (� 01010101) on the first clock pulse. Since
we have not instantiated the serial input shiftin, the serial input reverts to a default value of
‘1’, causing the register to be filled with 1s. If we did not want this to be the case, we
would have to instantiate the shiftin port and set it to ‘0’. ❘❙❚

❘❙❚ SECTION 9.8 REVIEW PROBLEM

9.8 When a shift register is encoded in VHDL, why are its outputs defined as BUFFER,
not OUT?

9.9 Shift Register Counters

Ring counter A serial shift register with feedback from the output of the last flip-
flop to the input of the first.

Johnson counter A serial shift register with complemented feedback from the
output of the last flip-flop to the input of the first. Also called a twisted ring counter

By introducing feedback into a serial shift register, we can create a class of synchronous
counters based on continuous circulation, or rotation, of data.

If we feed back the output of a serial shift register to its input without inversion, we
create a circuit called a ring counter. If we introduce inversion into the feedback loop, we
have a circuit called a Johnson counter. These circuits can be decoded more easily than
binary counters of similar size and are particularly useful for event sequencing.

Ring Counters

K E Y T E R M S

FIGURE 9.76
Example 9.18
Simulation of an 8-bit LPM Shift
Register with Parallel Load

9.9 • Shift Register Counters 439

Figure 9.77 shows a 4-bit ring counter made from D flip-flops. This circuit could also be
constructed from SR or JK flip-flops, as can any serial shift register.

A ring counter circulates the same data in a continuous loop. This assumes that the

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

FIGURE 9.77
4-bit Ring Counter

data have somehow been placed into the circuit upon initialization, usually by synchronous
or asynchronous preset and clear inputs, which are not shown.

Figure 9.78 shows the circulation of a logic 1 through a 4-bit ring counter. If we as-
sume that the circuit is initialized to the state Q3Q2Q1Q0 � 1000, it is easy to see that the 1
is shifted one place right with each clock pulse. The feedback connection from Q0 to D3

ensures that the input of flip-flop 3 will be filled by the contents of Q0, thus recirculating
the initial data. The final transition in the sequence shows the 1 recirculated to Q3.

A ring counter is not restricted to circulating a logic 1. We can program the counter to
circulate any data pattern we happen to find convenient.

Figure 9.79 shows a ring counter circulating a 0 by starting with an initial state of
Q3Q2Q1Q0 � 0111. The circuit is the same as before; only the initial state has changed.
Figure 9.80 shows the timing diagrams for the circuit in Figures 9.78 and 9.79.

Ring Counter Modulus and Decoding

The maximum modulus of a ring counter is the maximum number of unique states in its
count sequence. In Figures 9.78 and 9.79, the ring counters each had a maximum modulus
of 4. We say that 4 is the maximum modulus of the ring counters shown, since we can
change the modulus of a ring counter by loading different data at initialization.

For example, if we load a 4-bit ring counter with the data Q3Q2Q1Q0 � 1000, the fol-
lowing unique states are possible: 1000, 0100, 0010, and 0001. If we load the same circuit
with the data Q3Q2Q1Q0 � 1010, there are only two unique states: 1010 and 0101. De-
pending on which data are loaded, the modulus is 4 or 2.

Most input data in this circuit will yield a modulus of 4. Try a few combinations.

The maximum modulus of a ring counter is the same as the number of bits in its
output.

A ring counter requires more flip-flops than a binary counter to produce the same
number of unique states. Specifically, for n flip-flops, a binary counter has 2n unique states
and a ring counter has n.

This is offset by the fact that a ring counter requires no decoding. A binary counter
used to sequence eight events requires three flip-flops andeight 3-input decoding gates. To
perform the same task, a ring counter requires eight flip-flops and no decoding gates.

As the number of output states of an event sequencer increases, the complexity of the de-
coder for the binary counter also increases. A circuit requiring 16 output states can be imple-
mented with a 4-bit binary counter and sixteen 4-input decoding gates. If you need 18 output
states, you must have a 5-bit counter (24
 18
 25) and eighteen 5-input decoding gates.

The only required modification to the ring counter is one more flip-flop for each addi-

N O T E

440 C H A P T E R 9 • Counters and Shift Registers

tional state. A 16-state ring counter needs 16 flip-flops and an 18-state ring counter must
have 18 flip-flops. No decoding is required for either circuit.

Johnson Counters

Figure 9.81 shows a 4-bit Johnson counter constructed from D flip-flops. It is the same as
a ring counter except for the inversion in the feedback loop where Q�0 is connected to D3.
The circuit output is taken from flip-flop outputs Q3 through Q0. Since the feedback intro-
duces a “twist” into the recirculating data, a Johnson counter is also called a “twisted ring

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 0 0 0

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 1 0 0

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 1 0

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 0 1

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 0 0 0

FIGURE 9.78
Circulating a 1 in a Ring Counter

9.9 • Shift Register Counters 441

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 1 1 1

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 0 1 1

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 1 0 1

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

1 1 1 0

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 1 1 1

FIGURE 9.79
Circulating a 0 in a Ring Counter

442 C H A P T E R 9 • Counters and Shift Registers

counter.”
Figure 9.82 shows the progress of data through a Johnson counter that starts cleared

(Q3Q2Q1Q0 � 0000). The shaded flip-flops represents 1s and the unshaded flip-flops are 0s.
Every 0 at Q0 is fed back to D3 as a 1 and every 1 is fed back as a 0. The count se-

quence for this circuit is given in Table 9.17. There are 8 unique states in the count se-
quence table.

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 0 0

FIGURE 9.81
4-bit Johnson Counter

FIGURE 9.80
Timing Diagrams for Figures 9.78 and 9.79

Table 9.17 Count Sequence of
a 4-bit Johnson Counter

Q3 Q2 Q1 Q0

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

FI
G

U
R

E
9.

82
D

at
a

C
ir

cu
la

tio
n

in
 a

 4
-b

it
Jo

hn
so

n
C

ou
nt

er

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
0

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
1

1
0

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
0

0
0

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
1

0
0

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

1
1

1
1

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

0
1

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
1

1
1

C
lo

ck

Q
3

Q
2

Q
1

Q
0

Q Q

D
Q Q

D
Q Q

D
Q Q

D

0
0

1
1

443

444 C H A P T E R 9 • Counters and Shift Registers

❘❙❚ EXAMPLE 9.19 Write the VHDL code for a Johnson counter of generic width and instantiate it as an 8-bit
counter. List the sequence of states in a table, assuming the counter is initially cleared, and
create a simulation to verify the circuit’s operation. Include a clear input (synchronous).

Solution The VHDL design entities for the generic-width component and the 8-bit
Johnson counter follow.

—— jnsn_ct.vhd

—— Johnson counter of generic width

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY jnsn_ct IS

GENERIC (width : POSITIVE := 4);

PORT (

clk, clr : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END jnsn_ct;

ARCHITECTURE johnson_counter of jnsn_ct IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

IF clr = ‘0’ THEN

q <= (others => ‘0’); —— n-bit clear function (n = width)

ELSE

q(width-1 downto 0) <= (not q(0)) & q(width-1 downto 1);

END IF;

END IF;

END PROCESS;

END johnson_counter;

—— jnsn_ct8.vhd

—— 8-bit Johnson counter using component jnsn_ct

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY jnsn_ct8 IS

PORT(

clock, clear : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(7 downto 0));

END jnsn_ct8;

ARCHITECTURE johnson_counter of jnsn_ct8 IS

COMPONENT jnsn_ct GENERIC (width : POSITIVE);

PORT(

clk, clr : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

BEGIN

johnson: jnsn_ct

GENERIC MAP (width=> 8)

PORT MAP (clk => clock

clr => clear,

q => qo);

END johnson_counter;

➥ jnsn_ct.vhd
jnsn_ct8.vhd
jnsn_ct8.scf

9.9 • Shift Register Counters 445

❘❙❚

Johnson Counter Modulus and Decoding

The maximum modulus of a Johnson counter is 2n for a circuit with n flip-flops.

The Johnson counter represents a compromise between binary and ring counters, whose
maximum moduli are, respectively, 2n and n for an n-bit counter.

N O T E

Table 9.18 Count Sequence of an 8-bit Johnson Counter

Q7Q6Q5Q4Q3Q2Q1Q0

00000000
10000000
11000000
11100000
11110000
11111000
11111100
11111110
11111111
01111111
00111111
00011111
00001111
00000111
00000011
00000001

FIGURE 9.83
Example 9.19
Simulation of an 8-bit Johnson
Counter

Note that in the component file (jnsn_ct.vhd), the counter is cleared synchronously by
the statement (q <= (others => ‘0’);). Recall that the clause (others => ‘0’)
can be used to set all bits of a signal aggregate to the value ‘0’. This is a simple way to
clear a vector of unknown width without using a conversion function.

Table 9.18 shows the count sequence for the 8-bit Johnson counter.
The simulation of the Johnson counter, including one full cycle and a clear, is shown

in Figure 9.83.

446 C H A P T E R 9 • Counters and Shift Registers

If it is used for event sequencing, a Johnson counter must be decoded, unlike a ring
counter. Its output states are such that each state can be decoded uniquely by a 2-input
AND or NAND gate, depending on whether you need active-HIGH or active-LOW indica-
tion. This yields a simpler decoder than is required for a binary counter.

Table 9.19 shows the decoding of a 4-bit Johnson counter.

Clock

Q3 Q2 Q1 Q0
Q

Q

D Q

Q

D Q

Q

D Q

Q

D

0 0 0 0

Q3Q0

Q3Q2

Q2Q1

Q1Q0

Q3Q0

Q3Q2

Q2Q1

Q1Q0

FIGURE 9.84
4-bit Johnson Counter with Output Decoding

Table 9.19 Decoding a 4-bit Johnson Counter

Q3 Q2 Q1 Q0 Decoder Outputs Comment

0 0 0 0 �Q3�Q0 MSB � LSB
� 0

1 0 0 0 Q3�Q2 “1/0”

1 1 0 0 Q2�Q1 Pairs

1 1 1 0 Q1�Q0

1 1 1 1 Q3Q0 MSB � LSB
� 1

0 1 1 1 �Q3Q2 “0/1”

0 0 1 1 �Q2Q1 Pairs

0 0 0 1 �Q1Q0

9.9 • Shift Register Counters 447

Decoding a sequential circuit depends on the decoder responding uniquely to every
possible state of the circuit outputs. If we want to use only 2-input gates in our decoder, it
must recognize two variables for every state that are both active only in that state.

A Johnson counter decoder exploits what might be called the “1/0 interface” of the
count sequence table. Careful examination of Tables 9.17 and 9.18 reveals that for every
state, except where the outputs are all 1s or all 0s, there is a side-by-side 10 or 01 pair
which exists only in that state.

Each of these pairs can be decoded to give unique indication of a particular state. For
example, the pair Q3Q�2 uniquely indicates the second state since Q3 � 1 AND Q2 � 0 only
in the second line of the count sequence table. (This is true for any size of Johnson counter;
compare the second lines of Tables 9.17 and 9.18. In the second line of both tables, the
MSB is 1 and the 2nd MSB is 0.)

For the states where the outputs are all 1s or all 0s, the most significant AND least sig-
nificant bits can be decoded uniquely, these being the only states where MSB � LSB.

Figure 9.84 shows the decoder circuit for a 4-bit Johnson counter.
The output decoder of a Johnson counter does not increase in complexity as the mod-

ulus of the counter increases. The decoder will always consist of 2n 2-input AND or
NAND gates for an n-bit counter. (For example, for an 8-bit Johnson counter, the decoder
will consist of sixteen 2-input AND or NAND gates.)

❘❙❚ EXAMPLE 9.20 Draw the timing diagram of the Johnson counter decoder of Figure 9.84, assuming the
counter is initially cleared.

Solution Figure 9.85 shows the timing diagram of the Johnson counter and its decoder
outputs.

FIGURE 9.85
Example 9.20
Johnson Counter Decoder
Outputs

❘❙❚

448 C H A P T E R 9 • Counters and Shift Registers

S U M M A R Y

1. A counter is a circuit that progresses in a defined sequence at
the rate of one state per clock pulse.

2. The modulus of a counter is the number of states through
which the counter output progresses before repeating.

3. A counter with an ascending sequence of states is called an
UP counter. A counter with a descending sequence of states
is called a DOWN counter.

4. In general, the maximum modulus of a counter is given by 2n

for an n-bit counter.
5. A counter whose modulus is 2n is called a full-sequence

counter. The count progresses from 0 to 2n � 1, which corre-
sponds to a binary output of all 0s to all 1s.

6. A counter whose output is less than 2n is called a truncated
sequence counter.

7. The adjacent outputs of a full-sequence binary counter have
a frequency ratio of 2�1. The less significant of the two bits
has the higher frequency.

8. The outputs of a truncated sequence counter do not necessar-
ily have a simple frequency relationship.

9. A synchronous counter consists of a series of flip-flops, all
clocked from the same source, that stores the present state of
the counter and a combinational circuit that monitors the
counter’s present state and determines its next state.

10. A synchronous counter can be analyzed by a formal proce-
dure that includes the following steps:

a. Write the Boolean equations for the synchronous inputs
of the counter flip-flops in terms of the present state of
the flip-flip outputs.

b. Evaluate each Boolean equation for an initial state to find
the states of the synchronous inputs.

c. Use flip-flop function tables to determine each flip-flop
next state.

d. Set the next state to the new present state.
e. Continue until the sequence repeats.

11. The analysis procedure above should be applied to any un-
used states of the counter to ensure that they will enter the
count sequence properly.

12. A synchronous counter can be designed using a formal
method that relies on the excitation tables of the flip-flops used
in the counter. An excitation table indicates the required logic
levels on the flip-flop inputs to effect a particular transition.

13. The synchronous counter design procedure is based on the
following steps:

a. Draw the state diagram of the counter and use it to list
the relationship between the counter’s present and next
states. The table should list the counter’s present states in
binary order.

b. For the initial design, unused states can be set to a known
destination, such as 0, or treated as don’t care states.

c. Use the flip-flop excitation table to determine the synchro-
nous input levels for each present-to-next state transition.

d. Use Boolean algebra or Karnaugh maps to find the sim-
plest equations for the flip-flop inputs (JK, D, or T) in
terms of Q.

e. Unused states should be analyzed by substituting their
values into the Boolean equations of the counter. This
will verify whether or not an unused state will enter the
count sequence properly.

14. If a counter must reset to 0 from an unused state, the flip-
flops can be reset asynchronously to their initial states or the
counter can be designed with the unused states always hav-
ing 0 as their next state.

15. A counter can be designed in VHDL by using a behavioral
description or a structural design that uses a component from
the Library of Parameterized Modules (LPM).

16. A behavioral counter design requires a PROCESS statement
that lists the clock signal and any asynchronous inputs in its
sensitivity list. An IF statement inside the PROCESS can
monitor the active clock edge by using the predefined
EVENT attribute (e.g., clk�EVENT) and increment a count
variable.

17. A variable is local to a PROCESS and is assigned with the :�
operator. A signal is global to the VHDL design entity and is
assigned with the <= operator. (Recall that a signal is like an
internal connecting wire and a variable is a piece of working
memory.)

18. A structural counter design can use an LPM component
(lpm_counter) and instantiate the component in a component
instantiation statement. The statement’s generic map speci-
fies the component parameters, and its port map indicates the
correspondence between the component port names and the
user port, signal, or variable names.

19. Some of the most common control features available in syn-
chronous counters include:

a. Synchronous or asynchronous parallel load, which al-
lows the count to be set to any value whenever a LOAD
input is asserted

b. Synchronous or asynchronous clear (reset), which sets all
of the counter outputs to zero

c. Count enable, which allows the count sequence to
progress when asserted and inhibits the count when de-
asserted

d. Bidirectional control, which determines whether the
counter counts up or down

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❘❙❚ SECTION 9.9 REVIEW PROBLEM

9.9 How many flip-flops are required to produce 24 unique states in each of the following
types of counters: binary counter, ring counter, Johnson counter? How many and what
type of decoding gates are required to produce an active-LOW decoder for each type
of counter?

Glossary 449

e. Output decoding, which activates one or more outputs
when detecting particular states on the counter outputs

f. Ripple carry out or ripple clock out (RCO), a special case
of output decoding that produces a pulse upon detecting
the terminal count, or last state, of a count sequence

20. The parallel load function of a counter requires load data
(the parallel input values) and a load command input, such as
LOAD, that transfer the parallel data when asserted. If the
load function is synchronous, a clock pulse is also required.

21. Synchronous load transfers data to the counter outputs on an
active clock edge. Asynchronous load operates as soon as the
load input activates, without waiting for the clock.

22. Synchronous load is implemented by a function select circuit
that selects either the count logic or the direct parallel input
to be applied to the synchronous input(s) of a flip-flop.

23. Asynchronous load is implemented by enabling or inhibiting
a pair of NAND gates, one of which asserts a flip-flop clear
input and the other of which asserts a preset input for the
same flip-flop.

24. The count enable function enables or disables the count logic
of a counter without affecting other functions, such as clock
or clear. This can be done by ANDing the count logic with
the count enable input signal.

25. A flip-flop in an UP counter toggles when all previous bits
are HIGH. A flip-flop in a DOWN counter toggles when all
previous bits are LOW. A circuit that selects one of these two
conditions (a pair of AND-shaped gates, combined in an OR
gate; essentially a 2-to-1 multiplexer) can implement a bidi-
rectional count.

26. An output decoder asserts one output for each counter state.
A special case is a terminal count decoder that detects the
last state of a count sequence.

27. RCO (ripple clock out) generates one clock pulse upon termi-
nal count, with its positive edge at the end of the count cycle.

28. Asynchronous inputs to a behaviorally defined counter in
VHDL must be included in the sensitivity list of the process
defining the counter. Asynchronous inputs must be checked
inside the process before the clock is checked for an active
edge.

29. Synchronous inputs to a behaviorally defined counter should
not be included in the sensitivity list of the process defining
the counter. Synchronous inputs must be checked inside the
IF statement that checks the clock edge.

30. A shift register is a circuit for storing and moving data. Three
basic movements in a shift register are: serial (from one flip-
flop to another), parallel (into all flip-flops at once), and rota-
tion (serial shift with a connection from the last flip-flop out-
put to the first flip-flop input).

31. Serial shifting can be left (toward the MSB) or right (away
from the MSB). This is the convention used by
MAX�PLUS II. Some data sheets indicate the opposite rela-
tionship between right/left and LSB/MSB.

32. A function select circuit can implement several shift register
variations: bidirectional serial shift, parallel load with serial
shift, and universal shift (parallel/serial in/out and bidirec-
tional in one device). The circuit directs data to the D inputs
of each flip-flop from one of several sources, such as from
the flip-flop immediately to the left or right or from an exter-
nal parallel input.

33. A shift register can be created in VHDL by the structural,
dataflow, or behavioral method.

34. A structural design instantiates components, such as D flip-
flops, and connects them with internal signals.

35. A dataflow design uses internal Boolean relationships be-
tween inputs and outputs. It is similar to a structural model,
except that it must contain a process to create the flip-flops.

36. A behavioral design method uses a description of the shift
register function to generate the required hardware.

37. A VHDL component can be created with parameters (such as
width) that are specified when the component is instantiated.
The parameters are listed in a GENERIC clause in the com-
ponent’s entity declaration. Each parameter must be given a
default value. The parameters are specified in a generic map
in the design entity that instantiates the component.

38. A ring counter is a serial shift register with the serial output
fed back to the serial input so that the internal data is contin-
uously circulated. The initial value is generally set by asyn-
chronous preset and clear functions.

39. The maximum modulus of a ring counter is n for a circuit with
n flip-flops, as compared to 2n for a binary counter. A ring
counter output is self-decoding, whereas a binary counter re-
quires m
 2n AND or NAND gates with n inputs each.

40. A Johnson counter is a ring counter where the feedback is
complemented. A Johnson counter has 2n states for an n-bit
counter which can be uniquely decoded by 2n 2-input AND
or NAND gates.

G L O S S A R Y
Attribute A property associated with a named identifier in
VHDL. (e.g., the attribute EVENT, when associated with the
identifier clk (written clk�EVENT), indicates whether a transi-
tion has occurred on the input called clk.)

Behavioral design A VHDL design technique that uses de-
scriptions of required behavior to describe the design.

Bidirectional counter A counter that can count up or down,
depending on the state of a control input.

Bidirectional shift register A shift register that can serially
shift bits left or right according to the state of a direction control
input.

Binary counter A counter that generates a binary count
sequence.

Clear Reset (synchronous or asynchronous)

Command lines Signals that connect the control section of a
synchronous circuit to its memory section and direct the circuit
from its present to its next state.

Conditional signal assignment statement A signal assign-
ment statement that is executed only when a Boolean condition
is satisfied.

Control section The combinational logic portion of a
synchronous circuit that determines the next state of the
circuit.

Count enable A control function that allows a counter to
progress through its count sequence when active and disables the
counter when inactive.

450 C H A P T E R 9 • Counters and Shift Registers

Count sequence The specific series of output states through
which a counter progresses.

Counter A sequential digital circuit whose output progresses
in a predictable repeating pattern, advancing by one state for
each clock pulse.

Count-sequence table A list of counter states in the order of
the count sequence.

Dataflow design A VHDL design technique that uses Boolean
equations to define relationships between inputs and outputs.

DOWN counter A counter with a descending sequence.

Excitation table A table showing the required input condi-
tions for every possible transition of a flip-flop output.

Full-sequence counter A counter whose modulus is the same
as its maximum modulus (m � 2n for an n-bit counter).

GENERIC A clause in the entity declaration of a VHDL com-
ponent that lists the parameters that can be specified when the
component is instantiated.

Johnson counter A serial shift register with complemented
feedback from the output of the last flip-flop to the input of the
first. Also called a twisted ring counter

Left shift A movement of data from the right to the left in a shift
register. (Left is defined in MAX�PLUS II as toward the MSB.)

Maximum modulus (mmax) The largest number of counter
states that can be represented by n bits (mmax � 2n)

Memory section A set of flip-flops in a synchronous circuit
that hold its present state.

Modulo-n (or mod-n) counter A counter with a modulus of n.

Modulus The number of states through which a counter se-
quences before repeating.

Next state The desired future state of flip-flop outputs in a syn-
chronous sequential circuit after the next clock pulse is applied.

Parallel load A function that allows simultaneous loading of
binary values into all flip-flops of a synchronous circuit. Parallel
loading can be synchronous or asynchronous.

Parallel-load shift register A shift register that can be preset
to any value by directly loading a binary number into its internal
flip-flops.

Parallel transfer Movement of data into all flip-flops of a
shift register at the same time.

Present state The current state of flip-flop outputs in a syn-
chronous sequential circuit.

Presettable counter A counter with a parallel load function.

Recycle To make a transition from the last state of the count
sequence to the first state.

Right shift A movement of data from the left to the right in a
shift register. (Right is defined in MAX�PLUS II as toward the
LSB.)

Ring counter A serial shift register with feedback from the
output of the last flip-flop to the input of the first.

Ripple carry out or ripple clock out (RCO) An output that
produces one pulse with the same period as the clock upon ter-
minal count.

Rotation Serial shifting of data with the output(s) of the last
flip-flop connected to the synchronous input(s) of the first flip-
flop. The result is continuous circulation of the same data.

Serial shifting Movement of data from one end of a shift reg-
ister to the other at a rate of one bit per clock pulse.

Shift register A synchronous sequential circuit that will store
and move n-bit data, either serially or in parallel, in n flip-flops.

SRGn Symbol for an n-bit shift register (e.g., SRG4 indicates
a 4-bit shift register).

State diagram A diagram showing the progression of states of
a sequential circuit.

State machine A synchronous sequential circuit.

Status lines Signals that communicate the present state of a syn-
chronous circuit from its memory section to its control section.

Structural design A VHDL design technique that connects
predesigned components using internal signals.

Synchronous counter A counter whose flip-flops are all
clocked by the same source and thus change in synchronization
with each other.

Terminal count The last state in a count sequence before the
sequence repeats (e.g., 1111 is the terminal count of a 4-bit bi-
nary UP counter; 0000 is the terminal count of a 4-bit binary
DOWN counter).

Truncated-sequence counter A counter whose modulus is
less than its maximum modulus (m � 2n for an n-bit counter)

Universal shift register A shift register that can operate with
any combination of serial and parallel inputs and outputs (i.e.,
serial in/serial out, serial in/parallel out, parallel in/serial out,
parallel in/parallel out). A universal shift register is often bidi-
rectional, as well.

UP counter A counter with an ascending sequence.

P R O B L E M S
Problem numbers set in color indicate more difficult problems;
those with underlines indicate most difficult problems.

9.1 Basic Concepts of Digital Counters

9.1 A parking lot at a football stadium is monitored before a
game to determine whether or not there is available space
for more cars. When a car enters the lot, the driver takes a
ticket from a dispenser which also produces a pulse for
each ticket taken.

The parking lot has space for 4095 cars. Draw a block

diagram which shows how you can use a digital counter
to light a LOT FULL sign after 4095 cars have entered.
(Assume no cars leave the lot until after the game, so you
don’t need to keep track of cars leaving the lot.) How
many bits should the counter have?

9.2 Figure 9.86 shows a mod-16 which controls the opera-
tion of two digital sequential circuits, labeled Circuit 1
and Circuit 2. Circuit 1 is positive edge-triggered and
clocked by counter output Q1. Circuit 2 is negative edge-
triggered and clocked by Q3. (Q3 is the MSB output of

Problems 451

the counter.)

a. Draw the timing diagram for one complete cycle of
the circuit operation. Draw arrows on the active edges
of the waveforms that activate Circuit 1 and Circuit 2.

b. State how many times Circuit 1 is clocked for each
time that Circuit 2 is clocked.

9.3 Draw the timing diagram for one complete cycle of a
mod-8 counter, including waveforms for CLK, Q0, Q1,
and Q2, where Q0 is the LSB.

9.4 How many bits are required to make a counter with a
modulus of 64? Why? What is the maximum count of
such a counter?

9.5 a. Draw the state diagram of a mod-10 UP counter.

b. Use the state diagram drawn in part a to answer the
following questions:

i. The counter is at state 0111. What is the count af-
ter 7 clock pulses are applied?

ii. After 5 clock pulses, the counter output is at
0001. What was the counter state prior to the
clock pulses?

iii. The counter output is at 1000 after 15 clock
pulses. What was the original output state?

9.6 What is the maximum modulus of a 6-bit counter? A 7-
bit? 8-bit?

9.7 Draw the count sequence table and timing diagram of a
mod-10 UP counter.

9.8 Draw the state diagram, count sequence table, and timing
diagram of a mod-10 DOWN counter.

9.9 A mod-16 counter is clocked by a waveform having a fre-
quency of 48 kHz. What is the frequency of each of the
waveforms at Q0, Q1, Q2, and Q3?

9.10 A mod-10 counter is clocked by a waveform having a fre-
quency of 48 kHz. What is the frequency of the Q3 output
waveform? The Q0 waveform? Why is it difficult to deter-
mine the frequencies of Q1 and Q2?

9.2 Synchronous Counters

9.11 Draw the circuit for a synchronous mod-16 UP counter
made from negative edge-triggered JK flip-flops.

9.12 Write the Boolean equations required to extend the
counter drawn in Problem 9.11 to a mod-64 counter.

9.13 Write the J and K equations for the MSB of a synchro-
nous mod-256 (8-bit) UP counter.

9.14 Analyze the operation of the synchronous counter in Fig-
ure 9.87 by drawing a state table showing all transitions,
including unused states. Use this state table to draw a
state diagram and a timing diagram. What is the counter’s
modulus?

9.15 a. Write the equations for the J and K inputs of each flip-

Q3 Q2 Q1 Q0

CLK

Circuit 1

CLK

CTR DIV 16

Circuit 2

FIGURE 9.86
Problem 9.2
Mod-16 Counter Driving Two Sequential Circuits

FIGURE 9.87
Problem 9.14
Synchronous Counter

452 C H A P T E R 9 • Counters and Shift Registers

flop of the synchronous counter represented in Figure
9.88.

b. Assume that Q3Q2Q1Q0 � 1010 at some point in the
count sequence. Use the equations from part a to pre-
dict the circuit outputs after each of three clock pulses.

9.16 Analyze the operation of the counter shown in Figure
9.89. Predict the count sequence by determining the J and
K inputs and resulting transitions for each counter output
state. Draw the state diagram and the timing diagram. As-
sume that all flip-flop outputs are initially 0.

9.3 Design of Synchronous Counters

9.17 Draw the timing diagram and state diagram of a synchro-
nous mod-10 counter with a positive edge-triggered
clock.

9.18 Design a synchronous mod-10 counter, using positive
edge-triggered JK flip-flops. Check that unused states
properly enter the main sequence. Draw a state diagram
showing the unused states.

9.19 Design a synchronous mod-10 counter, using positive
edge-triggered D flip-flops. Check that unused states
properly enter the main sequence. Draw a state diagram
showing the unused states.

9.20 Design a synchronous 3-bit binary counter using T flip-
flops.

9.21 Table 9.20 shows the count sequence for a biquinary se-
quence counter. The sequence has ten states, but does not
progress in binary order. The advantage of the sequence
is that its most significant bit has a divide-by-10 ratio, rel-
ative to a clock input, and a 50% duty cycle. Design the

FIGURE 9.89
Problem 9.16
Counter

FIGURE 9.88
Problem 9.15
Synchronous Counter

Problems 453

synchronous counter circuit for this sequence, using D
flip-flops. Hint: When making the state table, list all pre-
sent states in binary order. The next states will not be in
binary order.

9.4 Programming Binary Counters in VHDL

9.22 Write the VHDL code for a behavioral description of a 6-
bit binary counter with asynchronous clear.

9.23 Create a simulation file in MAX�PLUS II to verify the op-
eration of the counter in Problem 9.22. (Use a 40 ns clock,
which approximates the clock period of the oscillator on the
Altera UP-1 board.) Note: To make a useful simulation, you
must include the recycle point, which may be beyond the de-
fault end time of the simulation (1 ms). To change the end
time, select End Time from the MAX�PLUS II File menu in
the Simulator menu. To change the clock period, select Grid
Size from the MAX�PLUS II Options menu in the Simula-
tor window. The default clock period is two grid spaces.

9.24 Write a VHDL file that instantiates a counter from the
Library of Parameterized Modules to make a 12-bit bi-
nary counter. Create a MAX�PLUS II simulation to
verify the operation of the counter. (Refer to the note af-
ter Problem 9.23.)

9.5 Control Options for Synchronous Counters

9.25 Briefly explain the difference between asynchronous and
synchronous parallel load in a synchronous counter. Draw
a partial timing diagram that illustrates both functions for
a 4-bit counter.

9.26 Refer to the 4-bit counter of Figure 9.26 (p. 391). The
graphic design files for the counter are found on the CD
accompanying this text as 4bit_sl.gdf and sl_count.gdf in
the folder drive:\Student_Files\Chapter09. Copy these
files to a new folder and use the MAX�PLUS II graphic
editor to expand the counter of Figure 9.26 to a 5-bit
counter with synchronous load and asynchronous reset.
Save and compile the file to make sure that there are no
design errors.

9.27 Create a MAX�PLUS II simulation to verify the func-
tions of the counter in Problem 9.26. The simulation must
include the recycle point of the counter and show that the

load is really synchronous and that the reset is really
asynchronous.

9.28 Refer to the 4-bit counter of Figure 9.33 (p. 396). The
graphic design files for the counter are found on the ac-
companying CD as 4bit_sle.gdf and sl_count.gdf in the
folder drive:\Student Files\Chapter09. Copy these files
to a new folder and modify the synchronous count ele-
ment sl_count.gdf so that it implements an active-HIGH
synchronous load and an active-LOW synchronous clear
function, as well as the binary count function. Create a
default symbol for the new element and substitute it in
4bit_sle.gdf for the existing counter elements sl_count.
The load function should have priority over count enable,
and clear (reset) should have priority over both. Save and
compile the new file. Hints: (1) The clear function makes
Q � 0 after a clock pulse. (2) Q follows D.

9.29 Create a MAX�PLUS II simulation to verify the func-
tions of the counter in Problem 9.28. The simulation must
include the recycle point of the counter and show that the
load and clear really are synchronous and that load has
priority over count enable and clear has priority over
both.

9.30 Derive the Boolean equations for the synchronous
DOWN-counter in Figure 9.35.

9.31 Write the Boolean equations for the count logic of the 4-
bit bidirectional counter in Figure 9.38. Briefly explain
how the logic works.

9.32 Draw a MAX�PLUS II Graphic Design File for a bidi-
rectional counter, using T flip-flops. Create a simulation
of the counter to verify its function

9.33 Use MAX�PLUS II to create a synchronous bidirec-
tional counter with synchronous load, asynchronous reset,
and count enable. The count enable should not affect the
operation of the load and reset functions. The functions
should have the following priority: (1) clear; (2) load; and
(3) count. Create a MAX�PLUS II simulation to verify
the operation of your design.

9.6 Programming Presettable and Bidirectional
Counters in VHDL

9.34 Write the VHDL code for a counter that uses a behavioral
description of the following functions: 12-bit binary UP
count; active-LOW asynchronous clear, active-LOW syn-
chronous load, active-LOW count enable, terminal count
decoder. The clear function should have the highest prior-
ity, followed by load, then count enable. Create a simula-
tion in MAX�PLUS II that verifies the functions of this
counter.

9.35 Write theVHDL code for a behavioral description of a bidi-
rectional counter with a modulus of 24. The counter should
also have an active-LOW synchronous clear function that
has priority over the count. Create a MAX�PLUS II simu-
lation file to verify the counter operation.

9.36 Write the VHDL code for a 4-bit counter with two decod-
ing outputs called eq8 and eq12. Out eq8 goes HIGH
when the count equals 8 and eq12 goes HIGH when the
count equals 12 (decimal). The counter should also have
an active-LOW asynchronous clear function that has pri-

Table 9.20 Biquinary
Sequence

Q3Q2Q1Q0

0000
0001
0010
0011

0100
1000
1001
1010

1011
1100

454 C H A P T E R 9 • Counters and Shift Registers

ority over the count. Create a MAX�PLUS II simulation
file to verify the counter operation.

9.37 Modify the VHDL code in Example 9.10 (p. 412) so that
the counter synchronously sets to all 1s (� 4095), rather
than to 2047. Do not use SVALUE � 4095. Create a sim-
ulation in MAX�PLUS II that verifies the operation of
the counter. State the main difference between the code
for Example 9.10 and the solution to this problem.

9.38 Use a counter from the Library of Parameterized Modules
to implement the counter described in Problem 9.35. Cre-
ate a MAX�PLUS II simulation file to verify the opera-
tion of the counter.

9.39 Write a VHDL file that instantiates an 8-bit LPM count
with synchronous load and clear, count enable, and direc-
tional control. Also include a terminal count decoder.
(The LPM counter has no port for the terminal count
function, so it must be done separately.) Create a
MAX�PLUS II simulation to verify the operation of the
counter.

9.7 Shift Registers

9.40 Use the MAX�PLUS II Graphic Editor to draw the cir-
cuit of a serial shift register constructed from JK flip-
flops. Create a simulation to verify the operation of the
shift register.

9.41 Use the MAX�PLUS II Graphic Editor to create the
logic diagram of the 4-bit serial shift register based on JK
flip-flops that shifts left, rather than right. Create a simu-
lation to verify the operation of the shift register.

9.42 The following bits are applied in sequence to the input of
a 6-bit serial right-shift register: 0111111 (0 is applied
first). Draw the timing diagram.

9.43 After the data in Problem 9.42 are applied to the 6-bit
shift register, the serial input goes to 0 for the next 8
clock pulses and then returns to 1. Write the internal
states, Q5 through Q0, of the shift register flip-flops after
the first 2 clock pulses. Write the states after 6, 8, and 10
clock pulses.

9.44 Complete the timing diagram of Figure 9.90, which is for
a serial shift register (right-shift). Assume the shift regis-
ter is initially cleared. What happens to the state of the
circuit if D7 stays HIGH beyond the end of the diagram
and the CLK input continues to pulse?

9.45 An 8-bit right-shift serial-in-serial-out shift register is
initially cleared and has the following data clocked into
its serial input: 1011001110. Draw a timing diagram of
the circuit showing the CLK, Serial Input, and Serial
Output. (Assume the individual flip-flop outputs are not
accessible.)

FIGURE 9.90
Problem 9.44
Timing Diagram

Problems 455

9.46 Complete the logic circuit shown in Figure 9.91 to make
a bidirectional shift register.

9.47 Complete the logic circuit shown in Figure 9.92 to make
a parallel-in-serial-out shift register.

9.8 Programming Shift Registers in VHDL

9.48 Write the VHDL code for an 8-bit serial shift register us-
ing a structural design procedure. Use JK flip-flops.
(MAX�PLUS II primitive: JKFF.) Create a
MAX�PLUS II simulation file to verify the operation of
your design.

9.49 Repeat Problem 9.48 using a dataflow design procedure.

9.50 Modify the VHDL code for the behaviorally designed
shift register srg4behv.vhd so that the shift register
moves the data left, not right. Hint: The statement
q (3 downto 0) <= serial_in & q(3 downto

1); is equivalent to the following two statements:

q(3) <= serial_in;

q(2 downto 0) <= q(3 downto 1);

Create a simulation file to verify the operation of this
device.

9.51 Modify the VHDL code for the left-shift register Problem
9.50 to make a shift register of generic width. Use this
component in another VHDL file to make a 32-bit shift
register that shifts left. Create a simulation file to verify
the operation of this design.

9.52 Write the code for a VHDL design entity that implements
a 4-bit universal shift register with asynchronous clear.
Create a simulation that verifies the design function.

9.53 Use MAX�PLUS II to create simulations for the
generic-width and the 16-bit universal shift registers in
Example 9.16 (p. 432). What is the difference in width
between the default value of the generic shift register and
the instantiated component in the 16-bit file? Given this
difference, why can the generic-width shift register be
correctly used as a component in the 16-bit design entity?

9.54 Use an LPM shift register in a VHDL file to instantiate a
48-bit shift register with the following functions: serial
input, parallel output, synchronous clear.

9.55 Use an LPM shift register in a VHDL file to instantiate a
10-bit shift register with the following functions: serial
input and output whose internal value can be synchro-

FIGURE 9.91
Problem 9.46
Logic Circuit

FIGURE 9.92
Problem 9.47
Logic Circuit

456 C H A P T E R 9 • Counters and Shift Registers

nously set to 960. Create a MAX�PLUS II simulation to
verify the operation of the design.

9.9 Shift Register Counters

9.56 Write the VHDL code for a ring counter of generic width
and instantiate it as an 8-bit ring counter. List the se-
quence of states in a table, assuming the counter is ini-
tially cleared, and create a simulation to verify the cir-
cuit’s operation. Include a clear input (synchronous).

9.57 Construct the count sequence table of a 5-bit Johnson
counter, assuming the counter is initially cleared. What
changes must be made to the decoder part of the circuit in
Figure 9.84 (p. 446) if it is to decode the 5-bit Johnson
counter?

9.58 A control sequence has ten steps, each activated by a
logic HIGH. Use MAX�PLUS II to design a counter and
decoder in each of the following configurations to pro-
duce the required sequence: binary counter, ring counter,
and Johnson counter. You may use a Graphic Design File
or VHDL. Create a simulation for each counter and de-
coder.

9.59 Use the MAX�PLUS II Graphic Editor to design a 4-bit
ring counter that can be asynchronously initialized to
Q3Q2Q1Q0 � 1000 by using only the clear inputs of its
flip-flops. No presets allowed. Hint: use a circuit with a

“double twist” in the data path.

A N S W E R S T O S E C T I O N R E V I E W
P R O B L E M S
Section 9.1

9.1 A mod-24 UP counter goes from 00000 to 10111 (0 to 23).
This requires 5 outputs. The counter is a truncated sequence
since its modulus is less than 25 � 32.

Section 9.2

9.2 1001, 0000

Section 9.3

9.3 JK flip-flops: J3K3 � X0, J2K2 � 1X, J1K1 � X1, J0K0 � X1
D flip-flops: D3 � 1, D2 � 1, D1 � 0, D0 � 0

Section 9.4

9.4 If (clock‘EVENT AND clock = ‘0’) THEN

count := count + 1;

END IF;

Section 9.5

9.5 The completed timing diagram is shown in Figure 9.93.

Section 9.6

9.6 Asynchronous clear: PROCESS (clock, clear); Synchronous
clear: PROCESS (clock)

Section 9.7

9.7 JK flip-flops can be used in the shift register of Figure 9.58.
The Q output of any stage connects to the J input of the next
stage and the �Q output of any stage connects to the K input of
the next. The serial_in input connects directly to the J input of
the first flip-flop. Serial_in is applied to K of the first flip-flop
through an inverter (NOT gate).

Section 9.8

9.8 A shift register output is defined as a port of mode BUFFER
because this mode allows a signal to be fed back into the PLD
matrix and reused as an input to another part of the circuit.

Section 9.9

Binary: 5 flip-flops, 24 5-inputs NANDs; Ring: 24 flip-flops, no

CLOCK

P 0 8 5

0 1 2 3 4 8 9 A 0 1 2 5

0 1 2 3 4 8 9 A 0 1 2 5

6

6

QA

QS

LOAD

RESET

FIGURE 9.93
Answer to Section Review Problem 9.5

457

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 10

State Machine Design

O U T L I N E

10.1 State Machines

10.2 State Machines with
No Control Inputs

10.3 State Machines with
Control Inputs

10.4 Switch Debouncer
for a Normally Open
Pushbutton Switch

10.5 Unused States in
State Machines

10.6 Traffic Light
Controller

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter you will be able to:

• Describe the components of a state machine.

• Distinguish between Moore and Mealy implementations of state machines.

• Draw the state diagram of a state machine from a verbal description.

• Use the “classical” (state table) method of state machine design to deter-
mine the Boolean equations of the state machine.

• Translate the Boolean equations of a state machine into a Graphic Design
File in Altera’s MAX�PLUS II software.

• Write VHDL code to implement state machines.

• Create simulations in MAX�PLUS II to verify the function of a state ma-
chine design.

• Determine whether the output of a state machine is vulnerable to asynchro-
nous changes of input.

• Design state machine applications, such as a switch debouncer, a single-
pulse generator, and a traffic light controller.

10.1 State Machines

State machine A synchronous sequential circuit, consisting of a sequential logic
section and a combinational logic section, whose outputs and internal flip-flops
progress through a predictable sequence of states in response to a clock and other
input signals.

Moore machine A state machine whose output is determined only by the sequen-
tial logic of the machine.

Mealy machine A state machine whose output is determined by both the sequen-
tial logic and the combinational logic of the machine.

State variables The variables held in the flip-flops of a state machine that deter-
mine its present state. The number of state variables in a machine is equivalent to
the number of flip-flops.

K E Y T E R M S

458 C H A P T E R 1 0 • State Machine Design

The synchronous counters and shift registers we examined in Chapter 9 are examples of a
larger class of circuits known as state machines. As described for synchronous counters in
Section 9.2, a state machine consists of a memory section that holds the present state of the
machine and a control section that determines the machine’s next state. These sections com-
municate via a series of command and status lines. Depending on the type of machine, the
outputs will either be functions of the present state only or of the present and next states.

Figure 10.1 shows the block diagram of a Moore machine. The outputs of a Moore
machine are determined solely by the present state of the machine’s memory section. The
output may be directly connected to the Q outputs of the internal flip-flops, or the Q out-
puts might pass through a decoder circuit. The output of a Moore machine is synchronous
to the system clock, since the output can only change when the machine’s internal state
variables change.

The block diagram of a Mealy machine is shown in Figure 10.2. The outputs of the
Mealy machine are derived from the combinational (control) section of the machine, as

FIGURE 10.1
Moore-Type State Machine

FIGURE 10.2
Mealy-Type State Machine

10.2 • State Machines with No Control Inputs 459

well as the sequential (memory) part of the machine. Therefore, the outputs can change
asynchronously when the combinational circuit inputs change out of phase with the clock.
(When we say that the outputs change asynchronously, we generally do not mean a change
via a function such as asynchronous reset that directly affects the machine’s flip-flops.)

❘❙❚ SECTION 10.1 REVIEW PROBLEM

10.1 What is the main difference between a Moore-type state machine and a Mealy-type
state machine?

10.2 State Machines with No Control Inputs

Bubble A circle in a state diagram containing the state name and values of the
state variables.

A state machine can be designed using a classical technique, similar to that used to design
a synchronous counter. We can also use a VHDL design method. We will design several
state machines, using both classical and VHDL techniques.

As an example of these techniques, we will design a state machine whose output de-
pends only on the clock input: a 3-bit counter with a Gray code count sequence. A 3-bit
Gray code, shown in Table 10.1, changes only one bit between adjacent codes and is there-
fore not a binary-weighted sequence.

K E Y T E R M S

Table 10.1 3-bit Gray
Code Sequence

Q2Q1Q0

000
001
011
010
110
111
101
100

000

001

011

010110

111

101

100FIGURE 10.3
Gray Code on a Shaft Encoder

Gray code is often used in situations where it is important to minimize the effect of
single-bit errors. For example, suppose the angle of a motor shaft is measured by a detected
code on a Gray-coded shaft encoder, shown in Figure 10.3. The encoder indicates a 3-bit
number for each of eight angular positions by having three concentric circular segments for
each code. A dark band indicates a 1 and a transparent band indicates a 0, with the MSB as
the outermost band. The dark or transparent bands are detected by three sensors that detect

460 C H A P T E R 1 0 • State Machine Design

light shining through a transparent band. (A real shaft encoder has more bits to indicate an
angle more precisely. For example, a shaft encoder that measures an angle of one degree
would require nine bits, since there are 360 degrees in a circle and 28 � 360 � 29.)

For most positions on the encoder, the error of a single bit results in a positional error of
only one eighth of the circle. This is not true with binary coding, where single bit errors can
give larger positional errors. For example if the positional decoder reads 100 instead of 000,
this is a difference of 4 in binary. The same codes differ by only one position in Gray code.

Classical Design Techniques

We can summarize the classical design technique for a state machine, as follows:

1. Define the problem.

2. Draw a state diagram.

3. Make a state table that lists all possible present states and inputs and the next state and
output state for each present state/input combination. List the present states and inputs
in binary order.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. The next
state variables are functions of the inputs and present state variables.

5. Write the output value for each present state/input combination. The output variables
are functions of the inputs and present state variables.

6. Simplify the Boolean expression for each output and synchronous input.

7. Use the Boolean expressions found in step 6 to draw the required logic circuit.

Let us follow this procedure to design a 3-bit Gray code counter. We will modify the
procedure to account for the fact that there are no inputs other than the clock and no out-
puts that must be designed apart from the counter itself.

1. Define the problem. Design a counter whose outputs progress in the sequence defined in
Table 10.1.

2. Draw a state diagram. The state diagram is shown in Figure 10.4. In addition to the val-
ues of state variables shown in each circle (or bubble), we also indicate a state name,
such as s0, s1, s2, and so on. This name is independent of the value of state variables.
We use numbered states (s0, s1, . . .) for convenience, but we could use any names we
wanted to.

000
S0

S1
001

S2
011

S3
010

S4
010

S5
111

S6
101

S7
100

FIGURE 10.4
State Diagram for a 3-bit Gray
Code Counter

3. Make a state table. The state table, based on D flip-flops, is shown in Table 10.2. Since
there are eight unique states in the state diagram, we require three state variables (23 �
8), and hence three flip-flops. Note that the present states are in binary-weighted order,
even though the count does not progress in this order. In such a case, it is essential to
have an accurate state diagram, from which we derive each next state. For example, if

10.2 • State Machines with No Control Inputs 461

The K-maps yield three Boolean equations:

D2 � Q1Q�0 � Q2Q0

D1 � Q1Q�0 � Q�2Q0

D0 � Q�2 Q�1 � Q2Q1

6. Draw the logic circuit for the state machine. Figure 10.6 shows the circuit for a 3-bit
Gray code counter, drawn as a Graphic Design File in MAX�PLUS II. A simulation
for this circuit is shown in Figure 10.7, with the outputs shown as individual waveforms
and as a group with a binary value.

Table 10.2 State Table for a 3-bit Gray Code Counter

Synchronous
Present State Next State Inputs

Q2Q1Q0 Q2Q1Q0 D2D1D0

000 001 001
001 011 011
010 110 110
011 010 010

100 000 000
101 100 100
110 111 111
111 101 101

Q0

D2

Q2 Q1

Q2 Q0

Q1 Q0
01

00 00

1 0

11

0 1

10

11

10

Q0

D1

Q2 Q1

Q2 Q0

Q1 Q0

01

00 10

1 1

01

0 0

10

11

10

Q0

D0

Q2 Q1

Q2 Q1

Q2 Q1

01

00 11

0 0

11

0 0

10

11

10

FIGURE 10.5
Karnaugh Maps for 3-bit Gray Code Counter

the present state is 010, the next state is not 011, as we would expect, but 110, which we
derive by examining the state diagram.

Why list the present states in binary order, rather than the same order as the output
sequence? By doing so, we can easily simplify the equations for the D inputs of the flip-
flops by using a series of Karnaugh maps. This is still possible, but harder to do, if we
list the present states in order of the output sequence.

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. This is not
necessary if we use D flip-flops, since Q follows D. The D inputs are the same as the
next state outputs. For JK or T flip-flops, we would follow the same procedure as for the
design of synchronous counters outlined in Chapter 9.

5. Simplify the Boolean expression for each synchronous input. Figure 10.5 shows three
Karnaugh maps, one for each D input of the circuit.

462

C
LK

IN
P

U
T

AND2

OR2

AND2 D
F

F

C
LR

N

P
R

N
Q

D

O
U

T
P

U
T

Q
1

O
U

T
P

U
T

Q
0

O
U

T
P

U
T

Q
2

AND2

OR2

AND2 D
F

F

C
LR

N

P
R

N
Q

D

AND2

OR2

AND2 D
F

F

C
LR

N

P
R

N
Q

D

Q
2

N
O

T

Q
1

N
O

T

Q
0

Q
2

Q
1

Q
0

N
O

T

FI
G

U
R

E
10

.6
L

og
ic

 D
ia

gr
am

 o
f

a
3-

bi
t G

ra
y

C
od

e
C

ou
nt

er

10.2 • State Machines with No Control Inputs 463

VHDL Design of State Machines

Enumerated type A user-defined type in VHDL in which all possible values of a
named identifier are listed in a type definition statement.

State machines can be defined in VHDL within a CASE statement. The VHDL code below
illustrates the principle, using the 3-bit Gray code counter as an example.

–– gray_ct1.vhd

–– 3-bit Gray code counter

–– (state machine with decoded outputs)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY gray_ct1 IS

PORT(

clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(2 downto 0));

END gray_ct1;

ARCHITECTURE a OF gray_ct1 IS

TYPE STATE_TYPE IS (s0, s1, s2, s3, s4, s5, s6, s7);

SIGNAL state: STATE_TYPE;

BEGIN

PROCESS (clk)

BEGIN

IF clk’EVENT AND clk = ‘1’ THEN

CASE state IS

WHEN s0 =>

state <= s1;

WHEN s1 =>

state <= s2;

WHEN s2 =>

state <= s3;

WHEN s3 =>

state <= s4;

WHEN s4 =>

state <= s5;

K E Y T E R M S

FIGURE 10.7
Simulation of a 3-bit Gray Code Counter (from Graphic Design File)

➥ gray_ct1.vhd

➥ gray_ct3.gof
gray_ct3.scf

464 C H A P T E R 1 0 • State Machine Design

WHEN s5 =>

state <= s6;

WHEN s6=>

state <= s7;

WHEN s7 =>

state <= s0;

END CASE;

END IF;

END PROCESS;

WITH state SELECT

q <= “000” WHEN s0,

“001” WHEN s1,

“011” WHEN s2,

“010” WHEN s3,

“110” WHEN s4,

“111” WHEN s5,

“101” WHEN s6,

“100” WHEN s7;

END a;

Recall that the format of a CASE statement is:

CASE __expression IS

WHEN__constant_value =>

__statement;

__statement;

WHEN__constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

The keyword expression in the CASE statement refers to a signal called state that we
define to represent the state variables within the machine. For each possible value of state,
we make an assignment indicating the next state of the machine. For example, the clause
(WHEN s0 => (state <= s1)); indicates a transition from state s0 to state s1. The ac-
tual output values of the counter are assigned in a selected signal assignment statement af-
ter the PROCESS statement.

Notice that the signal state can have one of eight different values, from s0 to s7. Un-
til now, we have seen signals with values such as ‘1’ (BIT or STD_LOGIC types),
“011” (BIT_VECTOR or STD_LOGIC_VECTOR types), or 7 (INTEGER types). The
signal state is of type STATE_TYPE, which is a user-defined enumerated type. An enu-
merated type is simply a list of all values a signal, variable, or port of that type is allowed
to have.

For example, we could define a type called DIRECTION with four values, with the
statement:

TYPE DIRECTION IS (up, down, left, right);

We could then define a signal called position of type DIRECTION:

SIGNAL position: DIRECTION:

An IF statement or other construct could then assign one of the four defined values of
type DIRECTION to the signal called position:

10.3 • State Machines with Control Inputs 465

IF (x=‘0’ and y=‘0’) THEN

position <= down;

ELSIF (x=‘0’ and y=‘1’) THEN

position <= left;

ELSIF (x=‘1’ and y=‘0’) THEN

position <= up;

ELSE

position <= right;

END IF;

Thus the named identifier position of type DIRECTION can take on only the four val-
ues specified in the enumerated type definition.

An alternative way to encode the 3-bit counter is to include output assignments within
the body of the CASE statement. Each case then has more than one statement, as indicated
in the following VHDL code.

-- gray_ct2.vhd

-- 3-bit Gray code counter

-- (outputs defined within states)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY gray_ct2 IS

PORT(

clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(2 downto 0));

END gray_ct2;

ARCHITECTURE a OF gray_ct2 IS

TYPE STATE_TYPE IS (s0, s1, s2, s3, s4, s5, s6, s7);

SIGNAL state: STATE_TYPE;

BEGIN

PROCESS (clk)

BEGIN

IF clk’EVENT AND clk = ‘1’ THEN

CASE state IS

WHEN s0 =>

state <= s1;

q <= “001”;

WHEN s1 =>

state <= s2;

q <= “011”;

WHEN s2 =>

state <= s3;

q <= “010”;

WHEN s3 =>

state <= s4;

q <= “110”;

WHEN s4 =>

state <= s5;

q <= “111”;

WHEN s5 =>

state <= s6;

q <= “101”;

WHEN s6 =>

state <= s7;

q <= “100”;

WHEN s7 =>

➥ gray_ct2.vhd

466 C H A P T E R 1 0 • State Machine Design

state <= s0;

q <= “000”;

END CASE;

END IF;

END PROCESS;

END a;

The above VHDL code is identical to that of the previous example, except for the way
the outputs are assigned.

❘❙❚ SECTION 10.2 REVIEW PROBLEM

10.2 Write the Boolean equations for the J and K inputs of the flip-flops in a 3-bit Gray
code counter based on JK flip-flops.

10.3 State Machines with Control Inputs

Control input A state machine input that directs the machine from state to state.

Conditional transition A transition between states of a state machine that occurs
only under specific conditions of one or more control inputs.

Unconditional transition A transition between states of a state machine that oc-
curs regardless of the status of any control inputs.

As an extension of the techniques used in the previous section, we will examine the design
of state machines that use control inputs, as well as the clock, to direct their operation.
Outputs of these state machines will not necessarily be the same as the states of the ma-
chine’s flip-flops. As a result, this type of state machine requires a more detailed state dia-
gram notation, such as that shown in Figure 10.8.

The state machine represented by the diagram in Figure 10.8 has two states, and thus

K E Y T E R M S

0
start

in1/out1, out2

1/00

X /01

0/10

continue
1

State name

State variable

Legend

Input value

Output value

Conditional
transition

Unconditional
transition

FIGURE 10.8
State Diagram Notation

requires only one state variable. Each state is represented by a bubble (circle) containing
the state name and the value of the state variable. For example, the bubble containing the

notation
start

0
indicates that the state called start corresponds to a state variable with a

value of 0. Each state must have a unique value for the state variable(s).
Transitions between states are marked with a combination of input and output values

10.3 • State Machines with Control Inputs 467

corresponding to the transition. The inputs and outputs are labeled in1, in2, . . . ,
inx/out1, out2, . . . ,outx. The inputs and outputs are sometimes simply indicated by the
value of each variable for each transition. In this case, a legend indicates which variable
corresponds to which position in the label.

For example, the legend in the state diagram of Figure 10.8 indicates that the inputs
and outputs are labeled in the order in1/out1, out2. Thus if the machine is in the start state
and the input in1 goes to 0, there is a transition to the state continue. During this transition,
out1 goes to 1 and out2 goes to 0. This is indicated by the notation 0/10 beside the transi-
tional arrow. This is called a conditional transition because the transition depends on the
state of in1. The other possibility from the start state is a no-change transition, with both
outputs at 0, if in1 � 1. This is shown as 1/00.

If the machine is in the state named continue, the notation X/01 indicates that the ma-
chine makes a transition back to the start state, regardless of the value of in1, and that
out1 � 0 and out2 � 1 upon this transition. Since the transition always happens, it is
called an unconditional transition.

What does this state machine do? We can determine its function by analyzing the state
diagram, as follows.

1. There are two states, called start and continue. The machine begins in the start state
and waits for a LOW input on in1. As long as in1 is HIGH, the machine waits and the
outputs out1 and out2 are both LOW.

2. When in1 goes LOW, the machine makes a transition to continue in one clock pulse.
Output out1 goes HIGH.

3. On the next clock pulse, the machine goes back to start. The output out2 goes HIGH
and out1 goes back LOW.

4. If in1 is HIGH, the machine waits for a new LOW on in1. Both outputs are LOW again.
If in1 is LOW, the cycle repeats.

In summary, the machine waits for a LOW input on in1, then generates a pulse of one
clock cycle duration on out1, then on out2. A timing diagram describing this operation is
shown in Figure 10.9.

CLK

in1

out1

out2

start start

continue

FIGURE 10.9
Ideal Operation of State Machine in Figure 10.8

Classical Design of State Machines with Control Inputs

We can use the classical design technique of the previous section to design a circuit that
implements the state diagram of Figure 10.8.

1. Define the problem. Implement a digital circuit that generates a pulse on each of two
outputs, as described above. For this implementation, let us use JK flip-flops for the
state logic. If we so chose, we could also use D or T flip-flops.

2. Draw a state diagram. The state diagram is shown in Figure 10.8.

468 C H A P T E R 1 0 • State Machine Design

3. Make a state table. The state table is shown in Table 10.3. The combination of present
state and input are listed in binary order, thus making Table 10.3 into a truth table for
the next state and output functions. Since there are two states, we require one state vari-
able, Q. The next state of Q, a function of the present state and the input in1, is deter-
mined by examining the state diagram. (Thus, if you are in state 0, the next state is 1 if
in1 � 0 and 0 if in1 � 1. If you are in state 1, the next state is always 0.)

4. Use flip-flop excitation tables to determine at what states the flip-flop synchronous in-
puts must be to make the circuit go from each present state to its next state. Table 10.4
shows the flip-flop excitation table for a JK flip-flop. The synchronous inputs are de-
rived from the present-to-next state transitions in Table 10.4 and entered into Table
10.3. (Refer to the synchronous counter design process in Chapter 9 for more detail
about using flip-flop excitation tables.)

5. Write the output values for each present state/input combination. These can be deter-
mined from the state diagram and are entered in the last two columns of Table 10.3.

6. Simplify the Boolean expression for each output and synchronous input. The following
equations represent the next state and output logic of the state machine:

J � Q� � �in1 � Q � �in1 � �in1

K � 1

out1 � Q� � �in1

out2 � Q � �in1 � Q � in1 � Q

7. Use the Boolean expressions found in step 6 to draw the required logic circuit.

Figure 10.10 shows the circuit of the state machine drawn as a MAX�PLUS II
Graphic Design File. Since out1 is a function of the control section and the memory sec-
tion of the machine, we can categorize the circuit as a Mealy machine. (All counter circuits
that we have previously examined have been Moore machines since their outputs are de-
rived solely from the flip-flop outputs of the circuit.)

Since the circuit is a Mealy machine, it is vulnerable to asynchronous changes of out-
put due to asynchronous input changes. This is shown in the simulation waveforms of Fig-
ure 10.11.

JKFF
NOT

CLRN

PRN
QJ

K

OUTPUT
out1

OUTPUT
out2in1 INPUT

VCC

clk INPUT

BAND2

FIGURE 10.10
Implementation of State Machine of Figure 10.8

Table 10.4 JK Flip-Flop
Excitation Table

Transition JK

0→0 0X
0→1 1X
1→0 X1
1→1 X0

Table 10.3 State Table for State Diagram in Figure 10.8

Present Next Sync.
State Input State Inputs Outputs

Q in1 Q JK out1 out2

0 0 1 1X 1 0
0 1 0 0X 0 0
1 0 0 X1 0 1
1 1 0 X1 0 1

➥ state_x2a.gdf
state_x2a.scf

The state variable is stored as the state of the JK flip-flop. This state is clocked through
a D flip-flop to generate out2 and combined with in1 to generate out1 via another flip-flop.
The simulation for this circuit, shown in Figure 10.13, indicates that the two outputs are
synchronous with the clock, but delayed by one clock cycle after the state change.

VHDL Implementation of State Machines with Control Inputs

The VHDL code for a state machine with one or more control inputs is similar to that for a
machine with no control inputs. The machine states are still defined using a CASE state-
ment, but a case representing a conditional transition will contain an IF statement.

10.3 • State Machines with Control Inputs 469

Ideally, out1 should not change until the first positive clock edge after in1 goes LOW.
However, since out1 is derived from a combinational output, it will change as soon as in1
goes LOW, after allowing for a short propagation delay. Also, since out2 is derived directly
from a flip-flop and out1 is derived from the same flip-flop via a gate, out1 stays HIGH for
a short time after out2 goes HIGH. (The extra time represents the propagation delay of the
gate.)

If output synchronization is a problem (and it may not be), it can be fixed by adding a
synchronizing D flip-flop to each output, as shown in Figure 10.12.

FIGURE 10.11
Simulation of State Machine Circuit of Figure 10.10

NOT
JKFF

CLRN

PRN
QJ

K

DFF

CLRN

PRN
QD

OUTPUT
BAND2

out1

OUTPUT
out2in1 INPUT

VCC

clk INPUT

DFF

CLRN

PRN
QD

FIGURE 10.12
State Machine with Synchronous Outputs

➥ state_x3a.gdf
state_x3a.scf

470 C H A P T E R 1 0 • State Machine Design

The VHDL code for the state machine implemented above is as follows.

-- state_x1.vhd

-- state machine example 1

-- Two states, one input, two outputs

-- Generates a pulse on one output, then the next

-- after receiving a LOW on the input

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY state_x1 IS

PORT(

clk, in1 : IN STD_LOGIC;

out1, out2 : OUT STD_LOGIC);

END state_x1;

ARCHITECTURE a OF state_x1 IS

TYPE PULSER IS (start, continue);

SIGNAL sequence: PULSER;

BEGIN

PROCESS (clk)

BEGIN

IF clk‘EVENT AND clk = ‘1’ THEN

CASE sequence IS

WHEN start =>

IF in1 = ‘1’ THEN

sequence <= start; -- no change if in1 � 1

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= continue; -- proceed if in1 � 0

out1 <= ‘1’; -- pulse on out1

out2 <= ‘0’;

END IF;

WHEN continue =>

sequence <= start;

out1 <= ‘0’;

out2 <= ‘1’; -- pulse on out2

END CASE;

END IF;

END PROCESS;

END a;

FIGURE 10.13
Simulation of the State Machine of Figure 10.12

➥ state_x1.vhd
state_x1.scf

10.3 • State Machines with Control Inputs 471

The transition from start is conditional, so the case for start contains an IF statement
that defines the possible state transitions and their associated output states. The transition
from continue is unconditional, so no IF statement is needed in the corresponding case.

Figure 10.14 shows the simulation for the VHDL design entity, state_x1.vhd. The val-
ues of the state variable, sequence, are also shown in the simulation. This gives us a ready
indication of the machine’s state (start or continue).

FIGURE 10.14
Simulation of the State Machine in VHDL Entity state_x1

FIGURE 10.15
Simulation of VHDL State Machine Showing a Repeated Output Cycle

Application

The design of the state machine is such that if the input in1 is held LOW beyond the
end of one pulse cycle, the cycle will repeat, as shown in the simulation of Figure 10.15.

❘❙❚ EXAMPLE 10.1 A state machine called a single-pulse generator operates as follows:

1. The circuit has two states: seek and find, an input called sync and an output called
pulse.

2. The state machine resets to the state seek. If sync � 1, the machine remains in seek and
the output, pulse, remains LOW.

3. When sync � 0, the machine makes a transition to find. In this transition, pulse goes
HIGH.

4. When the machine is in state find and sync � 0, the machine remains in find and pulse
goes LOW.

5. When the machine is in find and sync � 1, the machine goes back to seek and pulse re-
mains LOW.

Use classical state machine design techniques to design the circuit for the single-pulse
generator, using D flip-flops for the state logic. Use MAX�PLUS II to draw the state

472 C H A P T E R 1 0 • State Machine Design

The next-state and output equations are:

D � Q� � �sync � Q � �sync � �sync

pulse � Q� � �sync

Figure 10.17 shows the state machine circuit derived from the above Boolean equa-
tions. The simulation for this circuit is shown in Figure 10.18. The simulation shows that
the circuit generates one pulse when the input sync goes LOW, regardless of the length of
time that sync is LOW. The circuit could be used in conjunction with a debounced push-
button to produce exactly one pulse, regardless of how long the pushbutton was held down.
Figure 10.19 shows such a circuit.

DFF
NOT

CLRN

PRN
QD

OUTPUT
PULSE

NOT

SYNC INPUT

CLK INPUT

AND2

FIGURE 10.17
Example 10.1
Single-pulse Generator

Table 10.5 State Table for Single-Pulse Generator

Present State Input Next State Sync. Input Output

Q sync Q D pulse

0 0 1 1 1
0 1 0 0 0
1 0 1 1 0
1 1 0 0 0

1/0

1/0

0/1

0/0

sync/pulse

0
seek

find
1

FIGURE 10.16
Example 10.1
State Diagram for a Single-pulse
Generator

machine circuit. Create a simulation to verify the design operation. Briefly describe what
this state machine does.

Solution Figure 10.16 shows the state diagram derived from the description of the state
machine. The state table is shown in Table 10.5. Since Q follows D, the D input is the same
as the next state of Q.

➥ pulse1.gdf
pulse1.scf

10.3 • State Machines with Control Inputs 473

❘❙❚ EXAMPLE 10.2 The state machine of Example 10.1 is vulnerable to asynchronous input changes. How do
we know this from the circuit schematic and from the simulation waveform? Modify the
circuit to eliminate the asynchronous behavior and show the effect of the change on a sim-
ulation of the design. How does this change improve the design?

Solution The output, pulse, in the state machine of Figure 10.17 is derived from the
state flip-flop and the combinational logic of the circuit. The output can be affected by a
change that is purely combinational, thus making the output asynchronous. This is demon-
strated on the first pulse of the simulation in Figure 10.18, where pulse momentarily goes
HIGH between clock edges. Since no clock edge was present when either the input, sync,
changed or when pulse changed, the output pulse must be due entirely to changes in the
combinational part of the circuit.

The circuit output can be synchronized to the clock by adding an output flip-flop, as in
Figure 10.20. A simulation of this circuit is shown in Figure 10.21. With the synchronized
output, the output pulse is always the same width: one clock period. This gives a more pre-
dictable operation of the circuit.

FIGURE 10.18
Example 10.1
Simulation of a Single-pulse Generator (from GDF)

PULSE

SYNC

CLK

Single-pulse
generator

Vcc

Debouncer
N.O.

FIGURE 10.19
Example 10.1
Single-pulse Generator Used with a Debounced Pushbutton

DFF
NOT

CLRN

PRN
QD

OUTPUT
PULSE

NOT

SYNC INPUT

CLK INPUT

AND2
DFF

CLRN

PRN
QD

FIGURE 10.20
Example 10.2
Single-pulse Generator with Synchronous Output

474 C H A P T E R 1 0 • State Machine Design

❘❙❚ EXAMPLE 10.3 Write the VHDL code for a design entity that implements the single-pulse generator, as de-
scribed in Example 10.1. Create a simulation that verifies the operation of the design.

Solution The required VHDL code is given here in the design entity sngl_pls.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY sngl_pls IS

PORT(

clk, sync : IN STD_LOGIC;

pulse : OUT STD_LOGIC);

END sngl_pls;

ARCHITECTURE pulser OF sngl_pls IS

TYPE PULSE_STATE IS (seek, find);

SIGNAL status: PULSE_STATE;

BEGIN

PROCESS (clk, sync)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

CASE status IS

WHEN seek => IF (sync = ‘1’) THEN

status <= seek;

pulse <= ‘0’;

ELSE

status <= find;

pulse <= ‘1’;

END IF;

WHEN find => IF (sync = ‘1’) THEN

status <= seek;

pulse <= ‘0’;

ELSE

status <= find;

pulse <= ‘0’;

END IF;

END CASE;

END IF;

END PROCESS;

END pulser;

FIGURE 10.21
Example 10.2
Simulation of a Single-pulse Generator with Synchronous Output (from GDF)

➥ sngl_pls.vhd
sngl_pls.scf

➥ pulse1a.gdf
pulse1a.scf

10.4 • Switch Debouncer for a Normally Open Pushbutton Switch 475

The simulation of the VHDL design entity sngl_pls is shown in Figure 10.22 ❘❙❚

❘❙❚ SECTION 10.3 REVIEW PROBLEM

10.3 Briefly explain why the single-pulse circuit in Figure 10.20 has a flip-flop on its output.

10.4 Switch Debouncer for a Normally
Open Pushbutton Switch

Form A contact A normally open contact on a switch or relay.

Form B contact A normally closed contact on a switch or relay.

Form C contact A pair of contacts, one normally open and one normally closed,
that operate with a single action of a switch or relay.

A useful interface function is implemented by a digital circuit that removes the mechanical
bounce from a pushbutton switch. The easiest way to debounce a pushbutton switch is with
a NAND latch, as shown in Figure 10.23.

K E Y T E R M S

FIGURE 10.22
Example 10.3
Simulation of a Single-pulse Generator (VHDL)

Vcc

Vcc

Q
R

S
Q

FIGURE 10.23
NAND Latch as a Switch Debouncer

The latch eliminates switch bounce by setting or resetting on the first bounce of a
switch contact and ignoring further bounces. The limitation of this circuit is that the input
switch must have Form C contacts. That is, the switch has normally open, normally
closed, and common contacts. This is so that the switch resets the latch when pressed (i.e.,

www.electronictech.com

476 C H A P T E R 1 0 • State Machine Design

when the normally open contact closes) and sets the latch when released (normally closed
contact recloses). Each switch position activates an opposite latch function.

If the only available switch has a single set of contacts, such as the normally open
(Form A) pushbuttons on the Altera UP-1 Education Board, a different debouncer circuit
must be used. We will look at two solutions using VHDL: one based on an existing device
(the Motorola MC14490 Contact Bounce Eliminator) and another that implements a state
machine solution to the contact bounce problem.

Switch Debouncer Based on a 4-bit Shift Register

The circuit in Figure 10.24 is based on the same principle as the Motorola MC14490 Con-
tact Bounce Eliminator, adapted for use in an Altera CPLD, such as the EPM7128S or the
EPF10K20 on the Altera UP-1 Education Board.

FIGURE 10.25
Simulation of the Shift Register-Based Debouncer

Clock divider
CTR DIV 216

Q15CLOCK

D0 D1 D2

CLOCK

Shift in Shift out

Load

System clock
(25.175 MHZ)

Vcc

External
pushbutton

PBIN

SGR4

D3

PBOUT

FIGURE 10.24
Switch Debouncer Based on a 4-bit Shift Register

The heart of the debouncer circuit in Figure 10.24 is a 2-bit comparator (an Exclusive
NOR gate) and a 4-bit serial shift register, with active-HIGH synchronous LOAD. The
XNOR gate compares the shift register serial input and output. When the shift register in-
put and output are different, the input data are serially shifted through the register. When
input and output of the shift register are the same, the binary value at the serial output is
parallel-loaded back into all bits of the shift register.

Figure 10.25 shows the timing of the debouncer circuit with switch bounces on both
make and break phases of the switch contact. The line labeled 4-bit delay refers to the shift
register flip-flop outputs. Pushbutton input is pb_in, debounced output is pb_out and clk
is the UP-1 system clock, divided by 216. (Time values in Figure 10.25 are not to scale and
should be disregarded.)

10.4 • Switch Debouncer for a Normally Open Pushbutton Switch 477

Assume the shift register is initially filled with 0s. The pushbutton rest state is HIGH.
As shown in Figure 10.24, the pushbutton input value is inverted and applied to the shift
register input. Therefore, before the switch is pressed, both input and output of the shift
register are LOW. Since they are the same, the XNOR output is HIGH, which keeps the
shift register in LOAD mode and the LOW at pb_out is reloaded to the register on every
positive clock edge.

When the switch is pressed, it will bounce, as shown above the second, third, and
fourth clock pulses on Figure 10.25. Just before the second clock pulse, pb_in is LOW.
This makes the shift register input and output different, so a 1 is shifted in. (Recall that
pb_in is at the opposite logic level to the shift register input.) On the next clock pulse,
pb_in has bounced HIGH again. The shift register input and output are now the same, so
the output value, 0, is loaded in parallel to all flip-flops of the shift register. On the fifth
pulse, pb_in is stable at logic LOW. Since the shift register input is now HIGH and the out-
put is LOW, the HIGH is shifted through the register. We see this by 4-bit delay increasing
in value: 0, 1, 3, 7, F, which in binary is equivalent to 0000, 0001, 0011, 0111, 1111. At this
point, the input and output are now the same and the output value, 1, is parallel-loaded into
the register on each clock pulse.

A similar process occurs when the waveform goes back to the HIGH state. When the
input goes HIGH, a LOW is shifted into the shift register. If the input bounces back LOW,
the shift register is parallel-loaded with HIGHs and the process starts over. When pb_in is
stable at a HIGH level, a LOW is shifted through the register, resulting in the hexadecimal
sequence F, E, C, 8, 0, which is equivalent to the binary values 1111, 1110, 1100, 1000,
0000.

To produce an output change, the shift register input and output must remain different
for at least four clock pulses. This implies that the input is stable for that period of time. If
the input and output are the same, this could mean one of two things. Either the input is sta-
ble and the shift register flip-flops should be kept at a constant state or the input has
bounced back to its previous level and the shift register should be reinitialized. In either
case, the output value should be parallel loaded back into the shift register. Serial shifting
should only occur if there has been an input change.

The debouncer in Figure 10.24 is effective for removing bounce that lasts for no more
than 4 clock periods. Since switch bounce is typically about 10 ms in duration, the clock
should have a period of about 2.5 ms. At 25.175 MHz (a clock period of about 40 ns), the
Altera UP-1 system clock is much too fast.

If we divide the oscillator frequency by 65536 (� 216) using a 16-bit counter, we
obtain a clock waveform for the debouncer with a period of 2.6 ms. Four clock periods
(10.2 ms) are sufficient to take care of switch bounce.

We can use VHDL to synthesize the switch debouncer by instantiating a counter and
shift register from the Altera Library of Parameterized Modules and connecting them to-
gether with internal signals. The VHDL code is as follows.

-- debounce.vhd

-- Switch Debouncer for a Form A contact, based on a 4-bit shift

-- register. Function is similar to a Motorola MC14490 Contact

-- Bounce Eliminator.

-- Use modules from Library of Parameterized Modules (LPM):

-- LPM_SHIFTREG (Shift Register)

-- LPM_COUNTER (16-bit counter)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

➥ debounce.vhd
debounce.scf

478 C H A P T E R 1 0 • State Machine Design

ENTITY debounce IS

PORT(

clk : IN STD_LOGIC;

pb_in : IN STD_LOGIC;

pb_out : OUT STD_LOGIC);

END debounce;

ARCHITECTURE debouncer OF debounce IS

-- Internal signals required to interconnect counter and shift

register

SIGNAL srg_ser_out, srg_ser_in, srg_clk, srg_load : STD_LOGIC;

SIGNAL srg_data : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL ctr_q : STD_LOGIC_VECTOR (15 DOWNTO 0);

BEGIN

-- Instantiate 16-bit counter

clock_divider: lpm_counter

GENERIC MAP (LPM_WIDTH => 16)

PORT MAP (clock => clk,

q => ctr_q(15 DOWNTO 0));

-- Instantiate 4-bit shift register

four_bit_delay: lpm_shiftreg

GENERIC MAP (LPM_WIDTH => 4)

PORT MAP (shiftin => srg_ser_in,

clock => srg_clk,

load => srg_load,

data => srg_data(3 downto 0),

shiftout => srg_ser_out);

-- Shift register is clocked by counter output

-- (divides system clock by 2ˆ16)

srg_clk <= ctr_q(15);

-- Undebounced pushbutton input to shift register

srg_ser_in <= not pb_in;

-- Shift register is parallel-loaded with output data if

-- shift register input and output are the same.

-- If input and output are different,

-- data are serial-shifted.

srg_data(3) <= srg_ser_out;

srg_data(2) <= srg_ser_out;

srg_data(1) <= srg_ser_out;

srg_data(0) <= srg_ser_out;

pb_out <= srg_ser_out;

srg_load <= not((not pb_in) xor srg_ser_out);

END debouncer;

Figure 10.26 shows a fairly easy way to test the switch debouncer. The debouncer
output is used to clock an 8-bit counter whose outputs are decoded by two seven-segment
decoders. (The decoders are VHDL files developed in a similar way to the seven-segment
decoders in Chapter 5.)

Pin numbers are given for the EPM7128S CPLD on the Altera UP-1 circuit board.
Since the clock and seven segment displays are hardwired on the Altera board, the only ex-
ternal connections required for the circuit are wires for the two pushbutton inputs, reset
and pb_in.

479

2d
ig

it_
1@

68

2d
ig

it_
1@

79

2d
ig

it_
1@

58

2d
ig

it_
1@

60

2d
ig

it_
1@

61

2d
ig

it_
1@

63

2d
ig

it_
1@

64

2d
ig

it_
1@

83

2d
ig

it_
1@

51

2d
ig

it_
1@

52

2d
ig

it_
1@

65

2d
ig

it_
1@

67

2d
ig

it_
1@

69

2d
ig

it_
1@

70

2d
ig

it_
1@

73

2d
ig

it_
1@

74

2d
ig

it_
1@

76

2d
ig

it_
1@

75

2d
ig

it_
1@

77

dp
1

a1 b1 c1 d1 e1 f1 g1

a b c d e

d3 d2 d1 d0

q7 q6 q5 q4

f g

a2 b2 c2 d2 e2 f2 g2

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

re
se

t
IN

P
U

T
V

C
C

pb
_i

n
IN

P
U

T
V

C
C

cl
oc

k
IN

P
U

T
V

C
C

dp
2

O
U

T
P

U
T

S
E

V
_S

E
G

V a b c d e

d3 d2 d1 d0

q3 q2 q1 q0

f g

S
E

V
_S

E
G

VV
C

C

Q
[7

..0
]

cl
k

re
se

tC
O

U
N

T
_8

q[
7.

.0
]

pb
_o

ut
cl

k

pb
_i

nD
E

B
O

U
N

C
E

FI
G

U
R

E
10

.2
6

Te
st

 C
ir

cu
it

fo
r

a
Sw

itc
h

D
eb

ou
nc

er

480 C H A P T E R 1 0 • State Machine Design

If the debouncer is working properly, the seven-segment display should advance by
one each time pb_in is pressed. If the debouncer is not working, the display will change by
an unpredictable number with each switch press.

The component source files for the debouncer and test circuit components are supplied
on the CD accompanying this book in the folder drive:\Student Files\Chapter 10\. To use
these files, create a symbol for each one (File menu; Project; Set Project to Current File;
then File menu; Create Default Symbol) and draw the Graphic Design File of Figure 10.26.

Alternatively, you can instantiate each file as a component in a VHDL design entity
(all components are designed in VHDL) and connect them together with internal signals.

Behaviorally Designed Switch Debouncer

We can also design a switch debouncer by using a behavioral state machine description in
VHDL. In order to do so, we need to define the operation of the circuit with a state dia-
gram, as in Figure 10.27.

00/0
11/1

00/0
11/1

00/0
11/1

00/1
11/0

01/1
10/0

01/1
10/0

01/1
10/0

01/1
10/0

pb-in, pb-out/pb-out

00
s0

03
s3

02
s2

01
s1

FIGURE 10.27
State Diagram for a Behaviorally
Designed Switch Debouncer

➥ 2digit.gdf
count_8.vhd
sev_segv.vhd

Transitions between states are determined by comparing pb_in and pb_out. If they
are the same (00 or 11), the machine advances to the next state; if they are different (01 or
10), the machine reverts to the initial state, s0. At any point in the state diagram (including
state s3, the last state), the machine will reset if pb_in and pb_out are different, indicating
a bounce on the input.

If pb_in and pb_out are the same for four clock pulses, the input is deemed to be sta-
ble. Only at this point will the output change to its opposite state.

In the shift register–based debouncer, the circuit advanced to the next state if the
shift register input and output were different and reset if they were the same. This
might appear to be opposite to our behavioral description, but it is not if you look
carefully. The shift register debouncer circuit inverts pb_in before applying the sig-
nal to the serial input of the shift register. Therefore, viewed from the circuit input
and output terminals, rather than at the shift register input and output, the descrip-
tion is the same in both cases.

N O T E

10.4 • Switch Debouncer for a Normally Open Pushbutton Switch 481

The VHDL code corresponding to the behavioral description of the switch debouncer
is given next. The only output change is specified on the transition from state s3 to s0 when
pb_in � pb_out. Since no change is allowed at any other time, no other output state needs
to be specified.

-- dbc_behv.vhd

-- Behavioral definition of a switch debouncer

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY dbc_behv IS

PORT(

clk, pb_in : IN STD_LOGIC;

pb_out : BUFFER STD_LOGIC);

END dbc_behv;

ARCHITECTURE debounce of dbc_behv IS

TYPE sequence IS (s0, s1, s2, s3);

SIGNAL state: sequence;

BEGIN

PROCESS (clk, pb_in)

BEGIN

IF (clk‘EVENT and clk=‘1’) THEN

CASE state IS

WHEN s0=> IF (pb_in = pb_out) THEN

state <= s1;

ELSE

state <= s0;

END IF;

WHEN s1=> IF (pb_in = pb_out) THEN

state <= s2;

ELSE

state <= s0;

END IF;

WHEN S2=> IF (pb_in = pb_out) THEN

state <= s3;

ELSE

state <= s0;

END IF;

WHEN s3=> IF (pb_in = pb_out) THEN

state <= s0;

pb_out <= not pb_out;

ELSE

state <= s0;

END IF;

WHEN others => state <= s0;

END CASE;

END IF;

END PROCESS;

END debounce;

Figure 10.28 shows a simulation of the behaviorally-designed switch debouncer. State
s1 through s3 are of too short a duration to show properly on the simulation, so further de-
tails of the simulation are shown in Figures 10.29 and 10.30.

➥ dbc_behv.vhd
dbc_behv.scf

Note that the behaviorally designed switch debouncer does not have a built-in clock
divider. If we were to use the circuit on the Altera UP-1 board, we would need to include a
divide-by-216 counter to the circuit, as shown in Figure 10.31.

❘❙❚ SECTION 10.4 REVIEW PROBLEM

10.4 What is the fastest acceptable clock rate for the shift register portion of the debouncer
in Figure 10.24 if the pushbutton switch bounces for 15ms?

FIGURE 10.30
Simulation Detail (Behaviorally Designed Switch Debouncer)

482 C H A P T E R 1 0 • State Machine Design

FIGURE 10.29
Simulation Detail (Behaviorally Designed Switch Debouncer)

FIGURE 10.28
Simulation of a Behaviorally Designed Switch Debouncer

483

2d
ig

it@
68

2d
ig

it@
79

2d
ig

it@
58

2d
ig

it@
60

2d
ig

it@
61

2d
ig

it@
63

2d
ig

it@
64

2d
ig

it@
51

2d
ig

it@
52

2d
ig

it@
65

2d
ig

it@
67

2d
ig

it@
69

2d
ig

it@
70

2d
ig

it@
73

2d
ig

it@
74

2d
ig

it@
76

2d
ig

it@
75

2d
ig

it@
77

dp
1

a1 b1 c1 d1 e1 f1 g1

a b c d e

d3 d2 d1 d0

q7 q6 q5 q4

f g

a2 b2 c2 d2 e2 f2 g2

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

O
U

T
P

U
T

re
se

t
IN

P
U

T
V

C
C

pb
_i

n
IN

P
U

T
V

C
C

cl
kd

iv
15

2d
ig

it@
83

cl
oc

k
IN

P
U

T
V

C
C

dp
2

O
U

T
P

U
T

S
E

V
_S

E
G

V a b c d e

d3 d2 d1 d0

q3 q2 q1 q0

f g

S
E

V
_S

E
G

VV
C

C

Q
[7

..0
]

cl
k

re
se

tC
O

U
N

T
_8

q[
7.

.0
]

pb
_o

ut
cl

k

pb
_i

nD
B

C
_B

E
H

V

Q
[1

5.
.0

]
cl

k

C
O

U
N

T
_1

6
cl

kd
iv

[1
5.

.0
]

FI
G

U
R

E
10

.3
1

U
si

ng
 a

 B
eh

av
io

ra
lly

 D
es

ig
ne

d
D

eb
ou

nc
er

 w
ith

 a
 1

6-
bi

t C
lo

ck
 D

iv
id

er

484 C H A P T E R 1 0 • State Machine Design

10.5 Unused States in State Machines
In our study of counter circuits in Chapter 9, we found that when a counter modulus is not
equal to a power of two there were unused states in the counter’s sequence. For example, a
mod-10 counter has six unused states, as the counter requires four bits to express ten states
and the maximum number of 4-bit states is sixteen. The unused states (1010, 1011, 1100,
1101, 1110, and 1111) have to be accounted for in the design of a mod-10 counter.

The same is true of state machines whose number of states does not equal a power of
two. For instance, a machine with five states requires three state variables. There are up to
eight states available in a machine with three state variables, leaving three unused states.
Figure 10.32 shows the state diagram of such a machine.

Unused states can be dealt with in two ways: they can be treated as don’t care states,
or they can be assigned specific destinations in the state diagram. In the latter case, the
safest destination is the first state, in this case the state called start.

❘❙❚ EXAMPLE 10.4 Redraw the state diagram of Figure 10.32 to include the unused states of the machine’s
state variables. Set the unused states to have a destination state of start. Briefly describe
the intended operation of the state machine.

Solution Figure 10.33 shows the revised state diagram.

The machine begins in state start and waits for a HIGH on in1. The machine then
makes a transition to wait1 and stays there until in1 goes LOW again. The machine goes to
wait2 and stays there until in1 goes HIGH and then makes an unconditional transition to
pulse1 on the next clock pulse. Until this point, there is no change in either output.

The machine makes an unconditional transition to pulse2 and makes out1 go HIGH.
The next transition, also unconditional, is to start, when out1 goes LOW and out2 goes
HIGH. If in1 is LOW, the machine stays in start. Otherwise, the cycle continues as above.
In either case, out2 goes LOW again.

in1/out1, out2

X /01

X /10

1/00

0/00

1/00

0/00

1/00

0/00

wait1
001

pulse2
100

wait2
010

pulse1
011

000
start

FIGURE 10.32
State Diagram for a Two-pulse Generator

10.5 • Unused States in State Machines 485

Thus the machine waits for a HIGH-LOW-HIGH input sequence and generates a pulse
sequence on two outputs.

❘❙❚ EXAMPLE 10.5 Use classical state machine design techniques to implement the state machine described in
the modified state diagram of Figure 10.33. Draw the state machine as a Graphic Design
File in Max�PLUS II and create a simulation to verify its function.

Solution Table 10.6 shows the state table of the state machine represented by Figure
10.33.

Table 10.6 State Table for State Machine of
Figure 10.33

Present Next
State Input State Outputs

Q2Q1Q0 in1 Q2Q1Q0 out1 out2

000 0 000 0 0
000 1 001 0 0
001 0 010 0 0
001 1 001 0 0

010 0 010 0 0
010 1 011 0 0
011 0 100 1 0
011 1 100 1 0

100 0 000 0 1
100 1 000 0 1
101 0 000 0 0
101 1 000 0 0

110 0 000 0 0
110 1 000 0 0
111 0 000 0 0
111 1 000 0 0

in1/out1, out2

X /00

X /01

X /10

1/00

0/00

1/00

0/00

1/00

0/00

X /00

X /00110
unused2

111
unused3

101
unused1

wait1
001

pulse2
100

wait2
010

pulse1
011

000
start

FIGURE 10.33
Example 10.4
State Diagram for Two-pulse
Generator Showing Unused
States

486 C H A P T E R 1 0 • State Machine Design

Figure 10.34 shows the Karnaugh maps used to simplify the next-state equations for
the state variable flip-flops. The output equations can be simplified by inspection.

The next-state and output equations for the state machine are:

D2 � Q�2Q1Q0

D1 � Q�2Q1Q�0 � Q�2Q�1Q0�in1

D0 � Q�2Q�0in1 � Q�2Q�1in1

out1 � Q�2Q1Q0

out2 � Q2Q�1Q�0

Figure 10.35 shows the Graphic Design File schematic for the state machine. Figure
10.36 shows the MAX�PLUS II simulation waveforms.

We can monitor the state variables in the MAX�PLUS II simulation file by adding a
group of waveforms for the buried nodes q2, q1, and q0. These are shown on the simula-
tion as q[2..0].Q, meaning the Q outputs of the flip-flops named q2, q1, q0.

To add the buried nodes, select Enter Node from SNF from the Node menu in the
simulator window. In the dialog box shown in Figure 10.37, check the box that says All,
and click on List. Select the nodes q2.Q, q1.Q, and q0.Q from the Available Nodes and
Groups and transfer them to the Selected Nodes and Groups. ClickOK. Select the three
new waveforms and from the Node menu, select Group. Click OK in the resulting dialog
box.

Q0 in1

D2

Q2 Q1

01

00

10

0000

0 0 1 1

0000

0 0 0 0

110100

11

10

Q0 in1

D1

Q2 Q1

01

00

10

1000

1 1 0 0

0000

0 0 0 0

110100

11

10

Q0 in1

D0

Q2 Q1

01

00

10

0110

0 1 0 0

0000

0 0 0 0

110100

11

10

FIGURE 10.34
Example 10.5
K-Maps for Two-pulse Generator

487

D
F

F

C
LR

N

P
R

N
Q

D

in
1

IN
P

U
T

q 2

O
U

T
P

U
T

ou
t1

d 0
q 0

O
U

T
P

U
T

ou
t2

D
F

F

C
LR

N

P
R

N
Q

D

D
F

F

C
LR

N

P
R

N
Q

D

cl
k

IN
P

U
T

d 1
q 1

d 2
q 2

q 1
q 0

d 2

d 1 d 0

NOT

NOT

NOT

NOT

A
N

D
3

A
N

D
3

A
N

D
3

A
N

D
4

A
N

D
3

A
N

D
3

A
N

D
3

O
R

2

O
R

2

FI
G

U
R

E
10

.3
5

E
xa

m
pl

e
10

.5
Tw

o-
pu

ls
e

G
en

er
at

or

488 C H A P T E R 1 0 • State Machine Design

❘❙❚ EXAMPLE 10.6 Write the VHDL code required to implement the two-pulse generator described in Exam-
ples 10.4 and 10.5. Create a MAX�PLUS II simulation to verify the operation of the
design. Based on your examination of the simulations for the VHDL design and the GDF
design of the previous example, how do the two designs differ in their operation? What is
the reason for the difference?

Solution The VHDL code for the state machine in design entity two_pulse.vhd fol-
lows. The unused states are accounted for in the others clause.

-- two_pulse.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY two_pulse IS

PORT(

clk, in1 : IN STD_LOGIC;

output : OUT STD_LOGIC_VECTOR (1 to 2));

END two_pulse;

ARCHITECTURE a OF two_pulse IS

TYPE SEQUENCE IS (start, wait1, wait2, pulse1, pulse2);

SIGNAL pulse_state : SEQUENCE;

BEGIN

PROCESS(clk)

BEGIN

IF (clk‘EVENT and clk = ‘1’) THEN

CASE pulse_state IS

FIGURE 10.37
Adding Buried Nodes to a
Simulation

FIGURE 10.36
Example 10.5
Simulation of a Two-pulse
Generator (GDF)

10.6 • Unused States in State Machines 489

WHEN start =>

IF in1 = ‘0’ THEN

pulse_state <= start;

output <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= wait1;

output <= “00”;

END IF;

WHEN wait1 =>

IF in1 � ‘0’ THEN

pulse_state <= wait2;

output <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= wait1;

output <= “00”;

END IF;

WHEN wait2 =>

IF in1 = ‘0’ THEN

pulse_state <= wait2;

output <= “00”;

ELSIF in1 = ‘1’ THEN

pulse_state <= pulse1;

output <= “00”;

END IF;

WHEN pulse1 =>

pulse_state <= pulse2;

output <= “10”;

WHEN pulse2 =>

pulse_state <= start;

output <= “01”;

WHEN others =>

pulse_state <= start;

output <= “00”;

END CASE;

END IF;

END PROCESS;

END a;

Figure 10.38 shows the MAX�PLUS II simulation of the state machine.
If you closely examine the simulation waveforms in Figures 10.36 and 10.38, you will

note that the pulse outputs in Figure 10.38 (VHDL design) occur one clock cycle later than
they do in Figure 10.36 (graphical design). This is because the VHDL compiler has syn-
thesized each output with a D flip-flop, as we did for the single-pulse circuit in Figure

FIGURE 10.38
Example 10.6
Simulation of a Two-pulse
Generator (VHDL)

➥ two_pulse.vhd
two_pulse.scf
two_pulse.rpt

490 C H A P T E R 1 0 • State Machine Design

10.20, in order to ensure synchronous output operation.(We can verify this by examining
the EQUATIONS section of the project report file, two_pulse.rpt.) Since the outputs are
both derived entirely from flip-flop outputs, this synthesis step is not strictly necessary to
ensure that the outputs are synchronous with the clock. ❘❙❚

❘❙❚ SECTION 10.5 REVIEW PROBLEM

10.5 Is the state machine designed in Example 10.5 a Moore machine or a Mealy ma-
chine? Why?

10.6 Traffic Light Controller
A simple traffic light controller can be implemented by a state machine with a state dia-
gram such as the one shown in Figure 10.39.

The control scheme assumes control over a north-south road and an east-west road.
The north-south lights are controlled by outputs called nsr, nsy, and nsg (north-south red,
yellow, green). The east-west road is controlled by similar outputs called ewr, ewy, and
ewg. A LOW controller output turns on a light. Thus an output 011110 corresponds to the
north-south red and east-west green lights.

An input called TIMER controls the length of the two green-light cycles. When
TIMER � 1, a transition from s0 to s1 or from s2 to s3 is possible (s0 represents the EW
green; s2 the NS green). This transition accompanies a change from green to yellow on the
active road. The light on the other road stays red. An unconditional transition follows,
changing the yellow light to red on one road and the red light to green on the other.

The cycle can be set to any length by changing the signal on the TIMER input. (The
yellow light will always be on for one clock pulse in this design.) For ease of observation,
we will use a cycle of ten clock pulses. For either direction, the cycle consists of 4 clocks
GREEN, 1 clock YELLOW, 5 clocks RED. This cycle can be generated by the MSB of a
mod-5 counter, as shown in Figure 10.40. If we model the traffic controller using the Altera
UP-1 board, we require a clock divider to slow down the 25.175 MHz clock to a rate of
about 0.75 Hz, making it easy to observe the changes of lights. These blocks can all be in-
stantiated in VHDL, which will be left as part of an exercise in the lab manual accompany-
ing this book.

Q0

Q1
Q2

CLOCK

RESET
Q24

CLOCKCLOCK

RESET

RESET

CTR DIV 225

Clock divider

CTR DIV 5

Cycle timer*

NSR

NSY

NSG

EWR

EWY

EWG

CLOCK

RESET

Output controller

TIMER
North-south

lights

East-west
lights

*Cycle: Red for 5 clocks
Green for 4 clocks
Yellow for 1 clock

FIGURE 10.40
Traffic Control Demonstration
Circuit for the Altera UP-1
Board

00
s0

s1

0/
011110

Q/
110011

1/
101011

X/
011110

1/
011101

X/
110011

TIMER/
nsr,nsy,nsg,

ewr,ewy,ewg 01

s2
10

s3
11

FIGURE 10.39
State Diagram of a Traffic
Light Controller

Traffic Light Controller 491

FIGURE 10.42
Simulation of a Traffic Light Controller

FIGURE 10.41
Simulation of a Mod-5 Counter

Figure 10.41 shows the simulation of the mod-5 counter that generates the TIMER
control signal. The MSB goes HIGH for one clock period, then LOW for four. When ap-
plied to the TIMER input of the output controller, this signal directs the controller from
state to state.

Figure 10.42 shows a simulation of the mod-5 counter and output controller. The
north-south lights are red for five clock pulses (shown by 011 in the north_south wave-
form). At the same time, the east-west lights are green for four clock pulses (east_west �
110), followed by yellow for one clock pulse (east_west � 101). The cycle continues with
an east-west red and north-south green and yellow.

According to the state diagram, the yellow light should happen on the transition where
TIMER � 1. This corresponds to the point on the simulation waveforms where count � 4.

492 C H A P T E R 1 0 • State Machine Design

However, the yellow light does not come on until count � 0. This is because the
MAX�PLUS II VHDL compiler synthesizes the controller outputs with synchronous out-
puts (flip-flops). As a result, the output states are delayed by one clock cycle. Since the rel-
ative lengths of the cycle proportions are preserved, this does not affect the operation of the
controller.

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

1. A state machine is a synchronous sequential circuit with a
memory section (flip-flops) to hold the present state of the
machine and a control section (gates) to determine the ma-
chine’s next state.

2. The number of flip-flops in a state machine’s memory section
is the same as the number of state variables.

3. Two main types of state machine are the Moore machine and
the Mealy machine.

4. The outputs of a Moore machine are entirely dependent on
the states of the machine’s flip-flops. Output changes will al-
ways be synchronous with the system clock.

5. The outputs of a Mealy machine depend on the states of the
machine’s flip-flops and the gates in the control section. A
Mealy machine’s outputs can change asynchronously, rela-
tive to the system clock.

6. A state machine can be designed in a classical fashion using
the same method as in designing a synchronous counter, as
follows:

a. Define the problem and draw a state diagram.

b. Construct a table of present and next states.

c. Use flip-flop excitation tables to determine the flip-
flop inputs for each state transition.

d. Use Boolean algebra or K-maps to find the simplest
Boolean expression for flip-flop inputs (D, T, or JK) in
terms of outputs (Q).

e. Draw the logic diagram of the state machine.

7. The state names in a state machine can be named numeri-
cally (s0, s1, s2, . . .) or literally (start, idle, read, write), de-
pending on the machine function. State names are indepen-
dent of the values of the state variables.

8. A state machine can be defined in VHDL by using a CASE
statement within a PROCESS to define the progression of

states. The output values can be defined by a separate de-
coder construct or they can be assigned within each case of
the CASE statement.

9. The possible values of the state variables of a machine are
defined within an enumerated type definition. An enumerated
type is a list of possible values that a port, variable, or signal
of that type is allowed to have.

10. Notation for a state diagram includes a series of bubbles (cir-
cles) containing state names and values of state variables in

the form
state_name

state_variable(s)
.

11. The inputs and outputs of a state machine are labeled in1,
in2, . . . , inx/out1, out2, . . . ,outx.

12. Transitions between states can be conditional or uncondi-
tional. A conditional transition happens only under certain
conditions of a control input and is labeled with the relevant
input condition. An unconditional transition happens under
all conditions of input and is labeled with an X for each input
variable.

13. Conditional transitions in a VHDL state machine are de-
scribed by an IF statement within a particular case of the
CASE statement that describes the machine.

14. Mealy machine outputs are susceptible to asynchronous out-
put changes if a combinational input changes out of synchro-
nization with the clock. This can be remedied by clocking
each output through a separate synchronizing flip-flop.

15. A maximum of 2n states can be assigned to a state machine
that has n state variables. If the number of states is less than
2n, the unused states must be accounted for. Either they can
be treated as don’t care states, or they can be assigned a spe-
cific destination state, usually the reset state.

16. In a VHDL implementation of a state machine, any unused
states can be covered with an others clause in the CASE
statement that defines the machine.

S U M M A R Y

G L O S S A R Y

Conditional transition A transition between states of a state
machine that occurs only under specific conditions of one or
more control inputs.

Control input A state machine input that directs the operation
of the machine from state to state.

Enumerated type A user-defined type in VHDL in which all
possible values of a named identifier are listed in a type defini-
tion statement.

Form A contact A normally open contact on a switch or relay.

Form B contact A normally closed contact on a switch or
relay.

Form C contact A pair of contacts, one normally open and
one normally closed, that operate with a single action of a switch
or relay.

Mealy machine A state machine whose output is determined
by both the sequential logic and the combinational logic of the
machine.

Problems 493

State variables The variables held in the flip-flops of a state
machine that determine its present state.

Unconditional transition A transition between states of a
state machine that occurs regardless of the status of any control
inputs.

DFF

CLRN

PRN
QD

in1 INPUT

clk INPUT

XOR
XOR

DFF

CLRN

PRN
QD

OUTPUT
out1

OUTPUT
out0

FIGURE 10.44
Problem 10.2
State Machine Circuit

Moore machine A state machine whose output is determined
only by the sequential logic of the machine.

State machine A synchronous sequential circuit, consisting of
a sequential logic section and a combinational logic section,
whose outputs and internal flip-flops progress through a pre-
dictable sequence of states in response to a clock and other input
signals.

DFF

CLRN

PRN
XOR

QD
OUTPUT

PULSE

in1 INPUT

clk INPUT

AND2

FIGURE 10.43
Problem 10.1
State Machine Circuit

P R O B L E M S

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 10.1 State Machines

10.1 Is the state machine in Figure 10.43 a Moore machine or
a Mealy machine? Explain your answer.

10.2 Is the state machine in Figure 10.44 a Moore machine or
a Mealy machine? Explain your answer.

494 C H A P T E R 1 0 • State Machine Design

10.4 Use classical state machine design techniques to design a
counter whose output sequence is shown in Table 10.8.
(This is a divide-by-twelve counter in which the MSB
output has a duty cycle of 50%.) Draw the state diagram,
derive synchronous equations of the flip-flops, and draw
the circuit implementation in MAX�PLUS II and create
a simulation to verify the circuit’s function.

Section 10.3 State Machines with Control Inputs

10.7 Use classical state machine design techniques to find the
Boolean next state and output equations for the state ma-
chine represented by the state diagram in Figure 10.45.
Draw the state machine circuit as a Graphic Design File
in MAX�PLUS II. Create a simulation file to verify the
operation of the circuit. Briefly explain the intended func-
tion of the state machine.Table 10.7 4-bit Gray code sequence

Q3Q2Q1Q0

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

Table 10.8 Counter Sequence
for Problem 10.4

Q3Q2Q1Q0

0000
0001
0010
0011
0100
0101
1000
1001
1010
1011
1100
1101

10.5 Write the VHDL code required to implement a 4-bit Gray
code counter. Create a simulation in MAX�PLUS II to
verify the operation of the circuit.

10.6 Write the VHDL code required to implement a counter
with the sequence shown in Table 10.8. Create a simulation
in MAX�PLUS II to verify the operation of the circuit.

1/0,1

0/1,0

in1/out1, out2

0/0,0

1/0,0
X/0,0

X/0,0

s1
01

s2
10

00
s0

11
s3

FIGURE 10.45
Problem 10.7
State Diagram

10.8 Referring to the simulation for the state machine in Prob-
lem 10.7, briefly explain why it is susceptible to asyn-
chronous input changes. Modify the state machine circuit
to eliminate the asynchronous behavior of the outputs.
Create a MAX�PLUS II simulation to verify the func-
tion of the modified state machine.

10.9 Write the VHDL code required to implement the state
machine in Problem 10.7. Create a simulation to verify
the operation of the state machine.

10.10 A state machine is used to control an analog-to-digital
converter, as shown in the block diagram of Figure 10.46.

sc

oego

eoc

go

reset reset

sc

oe

eoc

clk

Controller
Analog-to-digital

converter

FIGURE 10.46
Problem 10.10
Analog-to-Digital Converter and Controller

The controller has four states, defined by state variables
Q1 and Q0 as follows: idle (00), start (01), waiting (11),
and read (10). There are two outputs: sc (Start Conver-
sion; active-HIGH) and oe (Output Enable; active LOW).
There are four inputs: clock, go (active-LOW) eoc (End
of Conversion), and asynchronous reset (active LOW).
The machine operates as follows:

Section 10.2 State Machines with No Control Inputs

10.3 A 4-bit Gray code sequence is shown in Table 10.7. Use
classical design methods to design a counter with this se-
quence, using D flip-flops. Draw the resulting circuit dia-
gram in a MAX�PLUS II Graphic Design File. Create a
simulation to verify the circuit operation.

Problems 495

a. In the idle state, the outputs are: sc � 0, oe � 1. The
machine defaults to the idle state when the machine is
reset.

b. Upon detecting a 0 at the go input, the machine makes
a transition to the start state. In this transition, sc � 1,
oe � 1.

c. The machine makes an unconditional transition to the
waiting state; sc � 0, oe � 1. It remains in this state,
with no output change, until input eoc � 1.

d. When eoc � 1, the machine goes to the read state; sc
� 0, oe � 0.

e. The machine makes an unconditional transition to the
idle state; sc � 0, oe � 1.

Use classical state machine design techniques to de-
sign the controller. Draw the required circuit in
MAX�PLUS II and create a simulation to verify its oper-
ation. Is this machine vulnerable to asynchronous input
change?

10.11 Use VHDL to implement the controller circuit of Problem
10.10. Create a simulation to verify its operation.

10.12 Write a VHDL file for a state machine that selects a 3-bit
binary or Gray code count, depending on the state of an
input called gray. If gray � 1, count in Gray code.
Otherwise count in binary. Create a simulation file that
verifies the operation of the circuit, clearly showing the
full Gray code count, binary count, and reset function.

Section 10.4 Switch Debouncer for a Normally Open
Pushbutton Switch

10.13 Why is it not possible to debounce the pushbuttons on the
Altera UP-1 board using a NAND latch?

10.14 Refer to the switch debouncer circuit in Figure 10.24 (p.
476). For how many clock periods must the input of the
debouncer remain stable before the output can change?

10.15 What is the maximum switch bounce time that can be re-
moved by the circuit of Figure 10.24 if the clock at the
shift register is running at a rate of 480 Hz?

10.16 Briefly explain how the Exclusive NOR gate in the de-
bounce circuit of Figure 10.24 determines if switch
bounce has occurred.

10.17 Refer to the section on the behaviorally designed switch
debouncer in Section 10.4. For how many clock periods
must the input of the debouncer remain stable before the
output can change? What is the maximum switch bounce
time that can be removed by the circuit of Figure 10.24. if
the state machine clock is running at a rate of 480 Hz?

in1,in2/out1

X,X /0

X,X /0

X,1/0 1,X /0

0,X /1

X,0/1 X,X /0000
s0

s1
001

s2
011

s3
010

s4
110

FIGURE 10.47
Problem 10.18
State Diagram

CLK

in1

in2

out1

state s0 s1

FIGURE 10.48
Problem 10.18
Partial Timing Diagram

Section 10.5 Unused States in State Machines

10.18 Refer to the state diagram in Figure 10.47.

a. How many state variables are required to implement
this state machine? Why?

b. How many unused states are there for this state ma-
chine? List the unused states.

c. Complete the partial timing diagram shown in Figure
10.48 to illustrate one complete cycle of the state ma-
chine represented by the state diagram of Figure
10.47.

496 C H A P T E R 1 0 • State Machine Design

10.19 Write the VHDL code required to implement the state
machine described by the state diagram of Figure 10.47.
Create a simulation file to verify the operation of the
circuit.

10.20 Use classical state machine design techniques to design a
state machine described by the state diagram of Figure
10.49. Briefly describe the intended operation of the cir-
cuit. Create a MAX�PLUS II simulation to verify the
operation of the state machine design. Unused states may
be treated as don’t care states, but unspecified outputs
should always be assigned to 0.

10.22 Write the VHDL code for the state machine described in
Problem 10.20. Create a MAX�PLUS II simulation to
verify the function of the state machine.

10.23 A state machine is used to control an analog-to-digital
converter, as shown in the block diagram of Figure 10.46.
(The following description is a modified version of the
controller described in Problem 10.10.)

Five states are used: idle, start, waiting1, waiting2,
and read. There are two outputs: sc (Start Conversion;
active-HIGH) and oe (Output Enable; active HIGH).
There are four inputs: clock, reset, go, and eoc (End of
Conversion). The machine operates as follows:

a. In the idle state, the outputs are: sc � 0, oe � 0. The
machine defaults to the idle state when asynchro-
nously reset and remains there until go � 0.

b. When go � 0, the machine makes a transition to the
start state. In this transition, sc � 1, oe � 0.

c. The machine makes an unconditional transition to the
waiting1 state; sc � 0, oe � 0. It remains in this state,
with no output change, until input eoc � 0.

d. When eoc � 0, the machine goes to the waiting2
state; sc � 0, oe � 0. It remains in this state, with no
output change, until input eoc � 1.

e. The machine makes a transition to the read state when
eoc � 1, sc � 0, oe � 1.

f. The machine makes an unconditional transition to the
idle state; sc �, 0, oe � 0.

After reviewing the block diagram and the states just
listed,

a. Draw the state diagram of the controller.

b. How many state variables are required for the con-
troller described in this question?

10.24 Write the VHDL code for the state machine described in
Problem 10.23. Create a simulation file to verify the func-
tion of the design.

in1/out1,out2

X/0,0

X/1,1

1/0,0

0/1,0

1/0,0

X /0,1

0/0,0 000
s0

s1
001

s2
011

s3
010

s4
110

FIGURE 10.49
Problem 10.20
State Diagram

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 10.1

10.1 A Moore state machine has outputs that depend only on
the states of the flip-flops in the machine. A Mealy ma-
chine’s outputs depend on the states of its flip-flops as well
as the gates of the machine’s control section. This can re-
sult in asynchronous output changes in the Mealy machine
outputs.

Section 10.2

10.2

J2 � Q1Q�0

K2 � Q�1Q�0

J1 � Q�2Q0

K1 � Q2Q0

J0 � Q�2Q�1 � Q2Q1 � Q�2�����Q�1�
K0 � Q�2Q1 � Q2Q�1 � Q2 � Q1

Section 10.3

10.3 The output flip-flop synchronizes the output to the system
clock, yielding the following advantages: (1) the output is
always a known width of one clock cycle; and (2) the out-
put is not vulnerable to change due to asynchronous
changes of input.

Section 10.4

10.4 Tc � 3.75 ms; fc � 267 Hz

Section 10.5

10.5 Moore machine. The outputs are derived entirely from the
output states of the state machine and are not vulnerable to
asynchronous changes of input.

10.21 Determine the next state for each of the unused states of
the state machine designed in Problem 10.20. Use this
analysis to redraw the state diagram of Figure 10.49 so
that it properly includes the unused states. (There is more
than one right answer, depending on the result of the
Boolean simplification process used in Problem 10.20.)

497

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 11

Logic Gate Circuitry

O U T L I N E

11.1 Electrical
Characteristics of
Logic Gates

11.2 Propagation Delay

11.3 Fanout

11.4 Power Dissipation

11.5 Noise Margin

11.6 Interfacing TTL and
CMOS Gates

11.7 Internal Circuitry of
TTL Gates

11.8 Internal Circuitry of
CMOS Gates

11.9 TTL and CMOS
Variations

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Name the various logic families most commonly in use today and state
several advantages and disadvantages of each.

• Define propagation delay.

• Calculate propagation delay of simple circuits, using data sheets.

• Define fanout and calculate its value, using data sheets.

• Calculate power dissipation of TTL and CMOS circuits.

• Calculate noise margin of a logic gate from data sheets.

• Draw circuits that will interface various CMOS and TTL gates.

• Explain how a bipolar junction transistor can be used as a logic inverter.

• Describe the function of a TTL input transistor in all possible input states:
HIGH, LOW, and open-circuit.

• Explain the operation of a totem pole output.

• Illustrate how a totem pole output generates power line noise and describe
how to remedy this problem.

• Illustrate why totem pole outputs cannot be tied together.

• Explain the difference between open-collector and totem pole outputs of a
TTL gate.

• Illustrate the operation of TTL open-collector inverter, NAND, and NOR
gates.

• Write the Boolean expression of a wired-AND circuit.

• Design a circuit that uses an open-collector gate to drive a high-current
load.

• Calculate the value of a pull-up resistor at the output of an open-collector
gate.

• Explain the operation of a tristate gate and name several of its advantages.

• Design a circuit using a tristate bus driver to direct the flow of data from
one device to another.

• Describe the basic structure of a MOSFET and state its bias voltage
requirements.

• Draw the circuit of an CMOS inverter and show how it works.

498 C H A P T E R 1 1 • Logic Gate Circuitry

• Draw the circuits of CMOS NAND and NOR gates and explain the operation of each.

• Design a circuit using a CMOS transmission gate to enable and inhibit digital and ana-
log signals.

• Interpret TTL data sheets to distinguish between the various TTL families.

• Describe the use of the Schottky barrier diode in TTL gates.

• Calculate speed-power products from data sheets.

Our study of logic gates and flip-flops in previous chapters has concentrated on digital
logic and has largely ignored digital electronics. Digital logic devices are electronic

circuits with their own characteristic voltages and currents. No serious study of digital cir-
cuitry is complete without some examination of this topic.

It is particularly important to understand the inputs and outputs of logic devices as
electronic circuits. Knowing the input and output voltages and currents of these circuits is
essential, since gate loading, power dissipation, noise voltages, and interfacing between
logic families depend on them. The switching speed of device outputs is also fundamental
and may be a consideration when choosing the logic family for a circuit design.

Input and output voltages of logic devices are specified in manufacturers’ data sheets,
which allows us to take a “black box” approach initially.

Later in the chapter, we will examine some basic digital circuits at a transistor level,
since digital logic is based on transistor switching. Two major types of transistors, the bipo-
lar junction transistor and the metal-oxide-semiconductor field effect transistor (MOSFET),
form the basis of the major logic families in use today. Transistor-transistor logic (TTL) is
based on the bipolar transistor. Complementary MOS (CMOS) is based on the MOSFET.

We will briefly study the operating characteristics of both bipolar transistors and
MOSFETs and then see how these devices give rise to the electrical characteristics of sim-
ple logic gates.

11.1 Electrical Characteristics of Logic Gates

TTL Transistor-transistor logic. A logic family based on bipolar transistors.

CMOS Complementary metal-oxide semiconductor. A logic family based on
metal-oxide-semiconductor field effect transistors (MOSFETs).

ECL Emitter coupled logic. A high-speed logic family based on bipolar
transistors.

When we examine the electrical characteristics of logic circuits, we see them as practical,
rather than ideal devices. We look at properties such as switching speed, power dissipation,
noise immunity, and current-driving capability. There are several commonly available
logic families in use today, each having a unique set of electrical characteristics that differ-
entiates it from all the others. Each logic family gives superior performance in one or more
of its electrical properties.

CMOS consumes very little power, has excellent noise immunity, and can be used
with a wide range of power supply voltages.

TTL has a larger current-driving capability than CMOS. Its power consumption is
higher than that of CMOS, and its power supply requirements are more rigid.

ECL is fast, making it the choice for high-speed applications. It is inferior to CMOS
and TTL in terms of noise immunity and power consumption.

TTL and CMOS gates come in a wide range of subfamilies. Table 11.1 lists some of
the TTL and CMOS variations of the quadruple 2-input NAND gate. All gates listed have

K E Y T E R M S

11.1 • Electrical Characteristics of Logic Gates 499

the same logic function but different electrical characteristics. Other gates would be simi-
larly designated, with the last two or three digits indicating the gate function (e.g., a
quadruple 2-input NOR gate would be designated 74LS02, 74ALS02, 74F02, etc.).

We will examine four electrical characteristics of TTL and CMOS circuits: propaga-
tion delay, fanout, noise margin, and power dissipation. The first of these has to do with
speed of output response to a change of input. The last three have to do with input and out-
put voltages and currents. All four properties can be read directly from specifications given
in a manufacturer’s data sheet or derived from these specifications.

Figures 11.1 and 11.2 show how the input and output voltages and currents are defined
in a 74XX00 NAND gate. This designation can be generalized to any logic gate input or
output.

Table 11.1 Part Numbers for a Quad 2-input NAND Gate in Different
Logic Families

Part
Number Logic Family

TTL 74LS00 Low-power Schottky TTL
74ALS00 Advanced low-power Schottky TTL
74F00 Fast TTL

CMOS 74HC00 High-speed CMOS
74HCT00 High-speed CMOS (TTL-compatible inputs)
74LVX00 Low-voltage CMOS

H

H

VIH

L

�
VOL

�

L

L

VIL

H

�

�

VOH

�

�

�

�

FIGURE 11.1
Input/Output Voltage Parameters

H

H

IIH

L

IOL

L

L

IIL

H

IOH

FIGURE 11.2
Input/Output Current Parameters

The voltages and currents are designated with two subscripts, one that designates an
input or output and another that indicates the logic level. For example, VOL is the voltage at
the gate output when the output is in the logic LOW state. IIL is the input current when the
input is in the LOW state.

These voltages and currents are specified in manufacturers’ published data sheets,
which are usually available in print form in a data book or in an electronic format, such as
Portable Document Format (pdf) on a CD or internet site.

Figure 11.3 shows a data sheet for a 74LS00 NAND gate, which also shows parameter
values for a 54LS00 device. A 54-series device is manufactured to military specifications,
which require a high range of environmental operating conditions.A 74-series device is suit-
able for general or commercial use. We will limit ourselves to the 74-series devices.

The voltage and current parameters indicated in Figures 11.1 and 11.2 are all shown in
the 74LS00 data sheet. Some parameters are shown as typical values, as well as maximum or
minimum. Typical values should be considered “information only” as device manufacturers

500 C H A P T E R 1 1 • Logic Gate Circuitry

FIGURE 11.3
74LS00 Data (1 of 2) Reprinted with permission of Motorola.

QUAD 2-INPUT NAND GATE

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply Voltage 54
74

4.5
4.75

5.0
5.0

5.5
5.25

V

TA Operating Ambient Temperature Range 54
74

–55
0

25
25

125
70

°C

IOH Output Current — High 54, 74 –0.4 mA

IOL Output Current — Low 54
74

4.0
8.0

mA

SN54/74LS00

QUAD 2-INPUT NAND GATE

LOW POWER SCHOTTKY

J SUFFIX
CERAMIC

CASE 632-08

N SUFFIX
PLASTIC

CASE 646-06

14
1

14

1

ORDERING INFORMATION

SN54LSXXJ Ceramic
SN74LSXXN Plastic
SN74LSXXD SOIC

14
1

D SUFFIX
SOIC

CASE 751A-02

14 13

1 2 3 4 5 6

12 11 10 9

VCC

8

7

GND

• ESD > 3500 Volts

11.1 • Electrical Characteristics of Logic Gates 501

do not guarantee these values. An exception to this would be the supply voltage, VCC, whose
typical value is simply indicated as the average of maximum and minimum values.

Note that IIH and IIL are shown in Figure 11.2 as flowing in opposite directions, as are
IOH and IOL. On a data sheet, a current entering a gate is indicated as positive and a current
leaving the gate is shown as having a negative value. The reason for these current directions
will become apparent when we examine the internal circuits of the gates later in the chapter.

❘❙❚ EXAMPLE 11.1 What is the maximum value of VOL for a 74LS00 NAND gate when the output current is at
its maximum value?

Solution When the output is in the LOW state, the output current is given by IOL,
which has a maximum value of 8 mA. The output voltage, VOL, is specified for a value of
4 mA and for 8 mA. Since the output condition is specified for maximum IOL (8 mA),
then VOL � 0.5 V.

❘❙❚

FIGURE 11.3
74LS00 Data (2 of 2) Reprinted with permission of Motorola.

SN54/74LS00

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input HIGH Voltage 2.0 V
Guaranteed Input HIGH Voltage for
All Inputs

VIL Input LOW Voltage
54 0.7

V
Guaranteed Input LOW Voltage for

VIL Input LOW Voltage
74 0.8

V
g

All Inputs

VIK Input Clamp Diode Voltage –0.65 –1.5 V VCC = MIN, IIN = –18 mA

VOH Output HIGH Voltage
54 2.5 3.5 V VCC = MIN, IOH = MAX, VIN = VIHVOH Output HIGH Voltage
74 2.7 3.5 V

CC OH IN IH
or VIL per Truth Table

VOL Output LOW Voltage
54, 74 0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,

VIN = VIL or VIHVOL Output LOW Voltage
74 0.35 0.5 V IOL = 8.0 mA

VIN = VIL or VIH
per Truth Table

IIH Input HIGH Current
20 µA VCC = MAX, VIN = 2.7 V

IIH Input HIGH Current
0.1 mA VCC = MAX, VIN = 7.0 V

IIL Input LOW Current –0.4 mA VCC = MAX, VIN = 0.4 V

IOS Short Circuit Current (Note 1) –20 –100 mA VCC = MAX

ICC

Power Supply Current
Total, Output HIGH 1.6 mA VCC = MAXCC
Total, Output LOW 4.4

CC

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tPLH Turn-Off Delay, Input to Output 9.0 15 ns VCC = 5.0 V

tPHL Turn-On Delay, Input to Output 10 15 ns
CC

CL = 15 pF

502 C H A P T E R 1 1 • Logic Gate Circuitry

The 74XX00 NAND gate data is sufficient to represent any logic functions having
“normal” output current within its particular logic family. This data can be used for most
gate or flip-flop circuits within the family. Some specialized devices with higher-current
outputs (e.g., 74XX244 octal tristate buffers) have a different set of electrical characteris-
tics within their family.

In the following sections of the chapter, we will use a NAND gate from each of
three device families (74LS00, 74HC00A, and 74HCT00A) for illustrating the general
principles of the various electrical characteristics. Devices from other families will also
be used in examples and problems. Data sheets for the various devices are included in
Appendix C.

❘❙❚ SECTION 11.1 REVIEW PROBLEM

11.1 What are the maximum values of voltage and current we can expect at the output of
a 74LS00 NAND gate when both inputs are LOW?

11.2 Propagation Delay

tpHL Propagation delay when the device output is changing from HIGH to LOW.

tpLH Propagation delay when the device output is changing from LOW to HIGH.

Propagation delay occurs because the output of a logic gate or flip-flop cannot respond
instantaneously to changes at its input. There is a short delay, on the order of several
nanoseconds, between input change and output response. This is largely due to the charg-
ing and discharging of capacitances inherent in the switching transistors of the gate or flip-
flop.

Figure 11.4 shows propagation delay in two gates: a 74XX00 NAND gate and a
74XX08 AND gate. Each gate has an identical input waveform, a LOW-HIGH-LOW
pulse. After each input transition, the output changes after a short delay, tp.

K E Y T E R M S

FIGURE 11.4
Propagation Delay in NAND and AND Gates

Two delays are shown for each gate: tpLH and tpHL. The LH and HL subscripts show
the direction of change at the gate output; LH indicates that the output goes from LOW to
HIGH, and HL shows the output changing from HIGH to LOW.

Propagation delay is the time between input and output voltages passing through a
standard reference value. The reference voltage for standard TTL is 1.5 V. LSTTL and
CMOS have different reference voltages, as follows.

11.2 • Propagation Delay 503

Propagation Delay for Various Logic Families:

LSTTL: Time from 1.3 V at input to 1.3 V at output.
Other TTL: Time from 1.5 V at input to 1.5 V at output.
CMOS: Time from 50% of maximum input to 50% of maximum output.

❘❙❚ EXAMPLE 11.2 Use the data sheet in Figure 11.3, as well as those in Appendix C, to find the maximum
propagation delays for each of the following gates: 74LS00 (quadruple 2-input NAND),
74LS02 (quadruple 2-input NOR), 74LS08 (quadruple 2-input AND), and 74LS32
(quadruple 2-input OR).

Solution

N O T E

Table 11.2 Propagation Delays of 74LS Gates

74LS00 74LS02 74LS08 74LS32

tpLH 15 ns 15 ns 15 ns 22 ns
tpHL 15 ns 15 ns 20 ns 22 ns

Table 11.2 shows the variation of propagation delay among logic gates of the same
family (74LS TTL). Since each logic function has a different circuit, its propagation delay
will differ from those of gates with different functions.

❘❙❚ EXAMPLE 11.3 Use data sheets to find the maximum propagation delays for each of the following logic
gates: 74F00, 74AS00, 74ALS00, 74HC00, and 74HCT00.

Solution

Table 11.3 Propagation Delays of 74LS Gates

74F00* 74AS00 74ALS00 74HC00** 74HCT00***

tpLH 6 ns 4.5 ns 11 ns 15 ns 19 ns
tpHL 5.3 ns 4 ns 8 ns 15 ns 19 ns

*Temperature range (74F00): 0°C to 70°C.
**VCC � 4.5 V, temperature range (74HC00): �55°C to 25°C.
***VCC � 5 V, temperature range (74HCT00): �55°C to 25°C.

As indicated by the notes for Table 11.3, propagation delay (and other parameters)
vary with certain operating conditions, such as ambient temperature and power supply
voltage. Always make sure that the operating conditions are correctly specified when look-
ing up a data sheet parameter.

❘❙❚

All gates in Example 11.3 have the same logic function (2-input NAND), but differ-
ent propagation delay times. We might ask, “Why not always use the advanced Schottky
TTL gate (74AS00), since it is the fastest?” The main reason is that it has the highest
power dissipation of the gates shown. We wouldn’t know this without looking
up other specs on the data sheet. (We will learn how to do this later in the chapter.) Thus,
it is important to make design decisions based on complete information, not just one
parameter.

504 C H A P T E R 1 1 • Logic Gate Circuitry

Propagation Delay in Logic Circuits

A circuit consisting of two or more gates or flip-flops has a propagation delay that is the
sum of delays in the input-to-output path. Delays in gates that do not affect the circuit
output are disregarded. Figure 11.5 shows how propagation delay works in a simple logic
circuit consisting of a 74HC08 AND gate and a 74HC32 OR gate. Changes at inputs A and
B must propagate through both gates to affect the output. The total delay in such a case is
the sum of tp1 and tp2. A change at input C must pass only through gate 2. The circuit delay
resulting from this change is only tp2.

FIGURE 11.5
Propagation Delays in a Logic Gate Circuit

The timing diagram in Figure 11.5 shows the changes at inputs A, B, and C and the re-
sulting transitions at all gate outputs.

Assume VCC � 4.5 V and temperature range is �55°C to 25°C.

1. When A goes LOW, AB, the output of gate 1, also goes LOW after a maximum delay of
tpHL � 15 ns. This makes Y go LOW after a further delay of up to tpHL � 15 ns. Total
delay: tp � tpHL1 � tpHL2 � 15 ns � 15 ns � 30 ns, max.

2. The HIGH-to-LOW transition at input B has no effect, since there is no difference be-
tween 0 � 1 and 0 � 0. AB is already LOW.

3. The LOW-to-HIGH transition at input C makes Y go HIGH after a maximum delay of
tpLH2 � 15 ns.

❘❙❚ SECTION 11.2 REVIEW PROBLEM

11.2 Assume the gates in Figure 11.5 are replaced by a 74LS08 AND gate and a 74LS32
OR gate. Repeat the calculations of for the propagation delays if the waveforms of
Figure 11.5 are applied to the circuit. The data sheets for the 74LS08 and 74LS32 are
found in Appendix C.

11.3 • Fanout 505

11.3 Fanout

Fanout The number of load gates that a logic gate output is capable of driving
without possible logic errors.

Driving gate A gate whose output supplies current to the inputs of other gates.

Load gate A gate whose input current is supplied by the output of another gate.

Sourcing A terminal on a gate or flip-flop is sourcing current when the current
flows out of the terminal.

Sinking A terminal on a gate or flip-flop is sinking current when the current flows
into the terminal.

IOL Current measured at a device output when the output is LOW.

IOH Current measured at a device output when the output is HIGH.

IIL Current measured at a device input when the input is LOW.

IIH Current measured at a device input when the input is HIGH.

We have assumed that logic gates are able to drive any number of other logic gates. Since
gates are electrical devices with finite current-driving capabilities, this is obviously not the
case. The number of gates (“loads”) a logic gate can drive is referred to as its fanout.

Fanout is simply an application of Kirchhoff’s current law: The algebraic sum of
currents at a node must be zero. Thus, the fanout of a logic gate is limited by:
a. The maximum current its output can supply safely in a given logic state (IOH or

IOL), and
b. The current requirements of the load to which it is connected (IIH or IIL).

Figure 11.6 shows the fanout of an AND gate when its output is in the HIGH and
LOW states. The AND gate, or driving gate, supplies current to the inputs of the other four
gates, which are called the load gates.

Each load gate requires a fixed amount of input current, depending on which state it is
in. The sum of these input currents equals the current supplied by the driving gate. The

N O T E

K E Y T E R M S

FIGURE 11.6
Driving Gates and Load Gates

506 C H A P T E R 1 1 • Logic Gate Circuitry

fanout is determined by the amount of current the driving gate can supply without damag-
ing its output circuit.

The input and output currents of a gate are established by its internal circuitry. These
values are usually the same for two gates in the same family, since the input and output cir-
cuitry of a gate is common to all members of the family. Exceptions may occur when the
output of a particular gate, such as the 74XX244 octal three-state buffer, has additional out-
put buffering or an input of a gate such as a 74LS86 Exclusive OR is equivalent to more
than one input load.

❘❙❚ EXAMPLE 11.4 The gates in Figure 11.7a and b are 74LS00 NAND gates. Determine the output current of
the driving gate in each figure.

H

H
IOL

L

IIL

L

L

IOH

H

IIH

a. Low output on driving gate

b. High output on driving gate

FIGURE 11.7
Example 11.4
Output Current due to One
Load Gate

Solution From the 74LS00 data sheet, IIL � �0.4 mA and IIH � 20 �A. (There are two
values of IIH given in the data sheet. Choose the one for the condition VIN � 2.7 V, which
is the minimum output voltage of a driving gate in the HIGH state (VOH). The other value
is not appropriate since a gate will never have a 7 V output, as specified in the condition, if
its supply voltage is 5 V.)

Since the driving gate is driving one load, its output current is the same as the input
current of the load gate. Therefore, the driving gate output currents are given by IOL � 0.4
mA (positive, since it is entering the driving gate output) and IOH � �20 �A (negative,
since it is leaving the driving gate output).

❘❙❚ EXAMPLE 11.5 Determine the output current of the driving gate in each of Figures 11.8a and b if the gates
are all 74LS00 NAND gates.

H

H

IOL

L

IIL

IIL

a. Low output on driving gate

L

L

IOH

H

IIH

IIH

b. High output on driving gate

FIGURE 11.8
Example 11.5
Output Current due to Two Load
Gates

11.3 • Fanout 507

Solution Since there are two identical load gates in the circuits of Figure 11.8, the dri-
ving gate output current will be twice the load gate input current.

IOL � 2 � 0.4 mA � 0.8 mA.

IOH � 2 � (�20 �A) � �40 �A.
❘❙❚

Figure 11.9 shows the extension of the circuits in Figures 11.7 and 11.8, where the
number of load gates is the maximum that can be driven by the driving gate. This is the
condition used to calculate fanout.

H

H

IOL

L 1

2

nL

IIL

IIL

IIL

a. Low output on driving gate

b. High output on driving gate

L

L

IOH

H 1

2

nH

IIH

IIH

IIH

FIGURE 11.9
Output Current to Fanout Calculation

If the load gates each represent the same load, then by Kirchhoff’s current law (KCL):

IOL� IIL1 � IIL2 � … IILnL � nL IIL

and IOH � IIH1 � IIH2 � … � IIHnH � nH IIH

The fanout of the driving gate in the LOW and HIGH states can be calculated as:

nL �
IOL

IIL

and nH �
IOH

IIH

By convention, current entering a gate (IIH, IOL) is denoted as positive, and current leav-
ing a gate (IIL, IOH) is denoted as negative. When current is leaving a gate, we say the gate is
sourcing current. When current is entering a gate, we say the gate is sinking current.

Note that the output of a gate does not always source current, nor does an input always
sink current. The current direction changes for the HIGH and LOW states at the same ter-
minal. The reason for this will become apparent when we study the circuitry of logic gate
inputs and outputs.

508 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ EXAMPLE 11.6 How many 74LS00 inputs can a 74LS00 NAND gate drive? (that is, what is the fanout of
a 74LS00 NAND gate?)

Solution We must consider the following cases:

a. When the output of the driving gate is LOW

b. When the output of the driving gate is HIGH

Output LOW:

IOL � 8 mA (sinking)

IIL � �0.4 mA (sourcing)

nL � 8 mA/0.4 mA � 20

Output HIGH:

IOH � �0.4 mA (sourcing)

IIH � 20 �A (sinking)

nH � 0.4 mA/20 �A � 20

Since nL � nH, fanout is 20.
We disregard the negative sign in our calculations, since the input current of the load

gate and output current of the driving gate are actually in the same direction. For example,
even though IOH is leaving the driving gate (negative), IIH is entering the load gates (posi-
tive). These currents flow in the same direction. If we include the minus sign in our calcu-
lation, we get a negative value of fanout, which is meaningless.

❘❙❚

The fanout in both HIGH and LOW states is the same in this case, but that is not al-
ways so. If the values of HIGH- and LOW-state fanout are different, the smallest value
must be used. For example, if a gate can drive four loads in the HIGH state or eight in the
LOW state, the fanout of the driving gate is four loads. If we attempt to drive eight loads,
we can’t guarantee enough driving current to supply all loads in both states.

If a gate from one logic family is used to drive gates from another logic family, we
must use the output parameters (IOL, IOH) for the driving gate and the input parameters (IIL,
IIH) for the load gates.

❘❙❚ EXAMPLE 11.7 Calculate the maximum number of Schottky TTL loads (74SXX series) that a 74LS86
XOR gate can drive.

Solution

Driving gate: 74LS86 IOH � �0.4 mA,
IOL � 8 mA

Load gates: 74SXX IIH � 50 �A,
IIL � �2 mA

Output LOW:

IOL � 8 mA (sinking)

IIL � �2 mA (sourcing)

nL � 8 mA/2 mA � 4

Output HIGH:

IOH � �0.4 mA (sourcing)

IIH � 50 �A (sinking)

nH � 0.4 mA/50 �A � 8

Since nL � nH, fanout � nL � 4.
❘❙❚

11.3 • Fanout 509

What happens if we load a gate output beyond its rated fanout? Adding more load
gates will do this by increasing the value of IOL beyond its maximum rating. If enough load
is added, the output of the driving gate might be destroyed by the heat generated by the ex-
cess current. More likely, the performance of the driving gate will be degraded.

Figure 11.10 shows the relationship between output voltage and current for a 74LS00
and a 74F00 NAND gate. Figure 11.10a shows that the output voltage (LOW state) in-
creases with increasing sink current. Figure 11.10b indicates a decrease in HIGH state out-
put voltage with an increase of source current.

www.electronictech.com

a. Output low characteristic

0.5

0

1

20 40 600

IOL, OUTPUT CURRENT (mA)

b. Output high characteristic

LS00

F00

TA = 25°C
VCC = 4.5 V

V

,
O

L
O

U
TP

U
T

 V
O

LT
AG

E
(V

O
LT

S)

0

4

3

2

1

–50 –100 –150

IOH, OUTPUT CURRENT (mA)

LS00 F00

TA = 25°C
VCC = 5.5 V

V

,
O

H
 O

U
TP

U
T

 V
O

LT
AG

E
(V

O
LT

S)

FIGURE 11.10
Output Characteristics of 74LS00 and 74F00 Gate. Reprinted with permission of Motorola

In other words, a greater load in either state takes the output voltage further away from
its nominal value. This has an effect on other performance factors, such as noise margin,
which we will examine in a later section of the chapter.

The output voltage of a logic gate is defined in a datasheet for a particular value of
output current.

We will examine the fanout of CMOS devices in a later section on interfacing between
CMOS and TTL.

N O T E

510 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.3 REVIEW PROBLEM

11.3 The input and output currents IOH, IOL, IIH, and IIL of a TTL device may be classified
as source currents or sink currents. List each input or output current as a source or
sink current.

14.4 Power Dissipation

Power dissipation The electrical energy used by a logic circuit in a specified pe-
riod of time. Abbreviation: PD

VCC TTL or high-speed CMOS supply voltage.

ICC Total TTL or high-speed CMOS supply current.

ICCH TTL supply current with all outputs HIGH.

ICCL TTL supply current with all outputs LOW.

IT When referring to CMOS supply current, the sum of static and dynamic supply
currents.

CPD Internal capacitance of a high-speed CMOS device used to calculate its
power dissipation.

Electronic logic gates require a certain amount of electrical energy to operate. The measure
of the energy used over time is called power dissipation. Each of the different families of
logic has a characteristic range of values for the power it consumes.

For TTL and CMOS, the power dissipation is calculated as follows:

TTL: PD � VCC ICC

High-Speed CMOS: PD � VCC IT (IT � quiescent � dynamic supply
current)

Figure 11.11 shows the supply voltage and current in a 74XX00 NAND gate.

K E Y T E R M S

Vcc

Icc

Icc

FIGURE 11.11
Power Supply Voltage and
Current in a 74XX00
NAND gate.

The main difference between the two families is the calculation of supply current.
The supply current in a TTL device is different when its outputs are HIGH than when

they are LOW. Thus, supply current, ICC, and therefore power dissipation, depends on the
states of the device outputs. If the outputs are switching, ICC is proportional to output duty
cycle.

In a CMOS device, very little power is consumed when the device outputs are static.
Much more current is drawn from the supply when the outputs switch from one state to an-
other. Thus, the power dissipation of a device depends on the switching frequency of its
outputs.

11.4 • Power Dissipation 511

Power Dissipation in TTL Devices

Two values are given for supply current in a TTL data sheet. ICCL is the current drawn from
the power supply when all gate outputs are LOW. ICCH is the current drawn from the sup-
ply when all outputs are HIGH. If the gate outputs are not all at the same level, the supply
current is the sum of currents given by:

ICC � �
n

n
H
� ICCH � �

n

n
L
� ICCL

where

n is the total number of gates in the package
nH is the number of gates whose output is HIGH
nL is the number of gates whose output is LOW

The power dissipation of a TTL chip also depends on the duty cycle of the gate out-
puts. That is, it depends on the fraction of time that the chip’s outputs are HIGH.

If we assume that, on average, the outputs of a chip are switching with a duty cycle of
50%, the supply current can be calculated as follows:

ICC � (ICCH � ICCL)/2

If the output duty cycle is other than 50%, the supply current is given by:

ICC � DC ICCH � (1 � DC) ICCL

where DC � duty cycle.

❘❙❚ EXAMPLE 11.8 Figure 11.12 shows a circuit constructed from the gates in a 74XX00 quadruple 2-input
NAND gate package. Use the data sheet shown in Figure 11.3 to determine the maximum
power dissipation of the circuit if the input is DCBA � 1001 and the gates are 74LS00
NANDs. Refer to the data sheets in Appendix C and repeat the calculation for 74ALS00
and 74AS00 gates.

FIGURE 11.12
Power Dissipation of
74XX00 NAND

Solution

Gate 1: �AB � 1

Gate 2: �CD � 1

Gate 3: AB � CD � 0

Gate 4: �A�B�����C�D� � 1

Since three outputs are HIGH and one is LOW, the supply current is given by:

ICC � �
n

n
H
� ICCH � �

n

n
L
� ICCL

� �
3
4

� ICCH � �
1
4

� ICCL

512 C H A P T E R 1 1 • Logic Gate Circuitry

Maximum supply current for each device is:

74LS00: ICC � 0.75(1.6 mA) � 0.25(4.4 mA) � 2.3 mA

74ALS00: ICC � 0.75(0.85 mA) � 0.25(3 mA) � 1.3875 mA

74AS00: ICC � 0.75(3.2 mA) � 0.25(17.4 mA) � 6.75 mA

Maximum power dissipation for each device is:

74LS00: PD � VCC ICC � (5 V)(2.3 mA) � 11.5 mW

74ALS00: PD � VCC ICC � (5V)(1.3875 mA) � 6.94 mW

74AS00: PD � VCC ICC � (5V)(6.75 mA) � 33.75 mW

(1 mW � 1 milliwatt � 10�3 W.)

❘❙❚ EXAMPLE 11.9 Find the maximum power dissipation of the circuit in Figure 11.12 if the gates are 74LS00
and the gate outputs are switching with an average duty cycle of 30%.

Solution

ICC � 0.3 ICCH � 0.7 ICCL

ICC � 0.3(1.6 mA) � 0.7(4.4 mA)
� 3.56 mA

PD � VCC ICC � (5 V)(3.56 mA) � 17.8 mW
❘❙❚

Power Dissipation in High-Speed CMOS Devices

CMOS gates draw the most power when their outputs are switching from one logic state to
the other. When the outputs are static (not switching), the large internal impedances of the
gate limit the supply current. A change of state requires the charging and discharging of in-
ternal gate capacitances, resulting in a greater demand on the power supply current. Thus,
the faster a CMOS gate switches, the more current, and hence more power, it requires.

CMOS supply current has two components: a quiescent current that flows when the
gate is in a steady state and a dynamic component that depends on frequency. For relatively
high frequencies (about 1 MHz and up), the quiescent component is small compared to the
dynamic component and can be neglected.

The quiescent current is usually specified for an entire chip package, regardless of the
number of gates. It is given by ICC VCC. For a 74HC00A NAND gate, ICC � 1 �A at room
temperature for a supply voltage of VCC � 6.0 V. The dynamic component calculation ac-
counts for internal and load capacitance and is given, per gate, by:

(CL � CPD) V2
CC f

where CL is the gate load capacitance
CPD is the gate internal capacitance
VCC is the supply voltage
f is the switching frequency of the gate output

❘❙❚ EXAMPLE 11.10 The circuit in Figure 11.12 is constructed from 74HC00A high-speed CMOS NAND gates.
Calculate the power dissipation of the circuit:

a. When the gate inputs are steady at the state DCBA � 1010

b. When the outputs are switching at an average frequency of 10 kHz

c. When the outputs are switching at an average frequency of 1 MHz

Supply voltage is 5 V. Temperature range is 25°C to �55°C.

11.4 • Power Dissipation 513

Solution Refer to the 74HC00A data sheet in Appendix C.

a. PD � VCC ICC � (5 V)(1 �A) � 5 �W. This is the quiescent power dissipation of the
circuit.

b. The 74HC00A data sheet indicates that each gate has a maximum input capacitance, Cin

of 10 pF. Assume that this value represents the load capacitance of gates 1, 2, and 3 of
the circuit in Figure 11.12. Further assume that gate 4 has a load capacitance of 0. The
total power dissipation of the circuit is given by:

PD � 3(22 pF � 10 pF)(5 V)2 (0.01 MHz)

� (22 pF)(5 V)2 (0.01 MHz) � 5 �W

� 3(8 �W) � 5.5 �W � 5 �W

� 34.5 �W

c. For f � 1 MHz, total power dissipation is given by:

PD � 3(22 pF � 10 pF)(5 V)2 (1 MHz)

� (22 pF)(5 V)2 (1 MHz) � 5 �W

� 3(800 �W) � 550 �W � 5 �W

� 2955 �W � 2.95 mW

❘❙❚ EXAMPLE 11.11 The circuit in Figure 11.12 is constructed using a 74LS00 quad 2-in NAND gate and again
with a 74HC00 quad 2-in NAND. Both circuits have identical waveforms applied to their
inputs that make all gate outputs switch with a duty cycle of 50%. Calculate the frequency
at which the power dissipation of the 74HC00 circuit exceeds that of the 74LS00 circuit.

Assume VCC � 5 V and temperature � 25°C for both circuits.

Solution The power dissipation of the LSTTL circuit is:

PD � VCC ICC � (VCC) (ICCH � ICCL)/2 � (5V) (1.6 mA � 4.4 mA)/2

� (5 V) (3.0 mA) � 15 mW

Neglect the quiescent current of the high-speed CMOS circuit.

Per gate: PD � (CL � CPD)VCC
2 f

CPD � 22 pF per gate
CL � 10 pF for 3 gates and 0 pF for 1 gate

Total: PD � (3(10pF � 22 pF) � 22 pF)(5 V)2f
� (3(32 pF) � 22 pF) (25 V2) f
� (96 pF � 22 pF) (25 V2) f � (118 pF) (25 V2) f

For PD � 15 mW:

f � �
(118

1
p
5
F
m
)(

W
25V2)
� � 5.08MHz

The power dissipation of the 74HC00 circuit exceeds that of the 74LS00 circuit at 5.08
MHz.

❘❙❚

The power saving in a high-speed CMOS circuit generally results from the fact that
most device outputs are not switching at any given time. The power dissipation of a
TTL circuit is independent of frequency and therefore draws some power at all
times. This is not the case for CMOS, which draws the majority of its power when
switching.

N O T E

514 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.4 REVIEW PROBLEM

11.4 Why does CMOS power dissipation increase with frequency?

11.5 Noise Margin

Noise Unwanted electrical signal, often resulting from electromagnetic radiation.

Noise margin A measure of the ability of a logic circuit to tolerate noise.

VIH Voltage level required to make the input of a logic circuit HIGH.

VIL Voltage level required to make the input of a logic circuit LOW.

VOH Voltage measured at a device output when the output is HIGH.

VOL Voltage measured at a device output when the output is LOW.

Electrical circuits are susceptible to noise, or unwanted electrical signals. Such signals
are often induced by electromagnetic fields of motors, fluorescent lighting, high-
frequency electronic circuits, and cosmic rays. They can cause erroneous operation of a
digital circuit. Since it is impossible to eliminate all noise from a circuit, it is desirable
to build a certain amount of tolerance, or noise margin, into digital devices used in the
circuit.

In all circuits studied so far, we have assumed that logic HIGH is �5 volts and logic
LOW is 0 volts in devices with a 5-volt supply. In practice, there is a certain amount of
tolerance on both the logic HIGH and LOW voltages; for TTL devices, a HIGH at a de-
vice input is anything above about �2 volts, and a LOW is any voltage below about �0.8
volts. Due to internal voltage drops, the HIGH output of a TTL gate is typically about
�3.5 volts.

Figure 11.13 shows one inverter driving another. In Figure 11.13a, the output of the
first inverter and the input of the second have the same logic threshold. That is, the input
of the second gate recognizes any voltage above 2.7 volts as HIGH (VIH � 2.7 V) and
any voltage below 0.5 volts as LOW (VIL � 0.5 V). The output of the first inverter pro-
duces at least 2.7 volts when HIGH (VOH � 2.7 V) and no more than 0.5 volts as LOW
(VOL � 0.5 V).

If there is noise on the line connecting the two gates, it will likely cause the voltage of
the second gate input to penetrate into the forbidden region between logic HIGH and LOW
levels. This is shown on the graph of the waveform in Figure 11.13a. When the voltage en-
ters the forbidden region, the gate will not operate reliably. Its output may switch states
when it is not supposed to.

Figure 11.13b shows the same circuit with different logic thresholds at input and out-
put. The output of the first inverter is guaranteed to be at least 2.7 volts when HIGH (VOH �
2.7 V) and no more than 0.5 volts when LOW (VOL � 0.5 V). The second gate recognizes
any input voltage greater than 2 volts as a HIGH (VIH � 2 V) and any input voltage less
than 0.8 volts (VIL � 0.8 V) a LOW.

The difference between logic thresholds allows for a small noise voltage, equal to or
less than the difference, to be superimposed on the desired signal. It will not cause the in-
put voltage of the second inverter to penetrate the forbidden region. This ensures reliable
operation even in the presence of some noise.

For the 74LS04 inverter, the HIGH-state and LOW-state noise margins, VNH and
VNL, are:

VNH � VOH � VIH � 2.7 V � 2.0 V � 0.7 V

VNL � VIL � VOL � 0.8 V � 0.5 V � 0.3 V

A device with these values of VIH and VIL is deemed to be TTL compatible.

K E Y T E R M S

11.5 • Noise Margin 515

❘❙❚ EXAMPLE 11.12 Use the 74HC00A data sheet in Appendix C to calculate the noise margins for this gate.
Assume VCC � 4.5 V, ambient temperature (TA) is 25°C, and the driving gate is fully
loaded (IOUT � 	4 mA).

Solution

VNH � VOH � VIH � 3.98 V � 3.15 V � 0.63 V

VNL � VIL � VOL � 1.35 V � 0.26 V � 1.09 V
❘❙❚

FORBIDDEN

LOW

HIGH

GATE 1 OUTPUT
5 V

VOH � 2.7 V

VOL � 0.5 V

0 V

FORBIDDEN

LOW

HIGH

GATE 2 INPUT
5 V

A, volts

VIH � 2.7 V
V0H�

 VIH

V0L
� VIL

VIL � 0.5 V

0 V
t

FORBIDDEN

LOW

HIGH

GATE 1 OUTPUT
5 V

VOH � 2.7 V

VOL � 0.5 V

0 V

FORBIDDEN

LOW

HIGH

GATE 2 INPUT

a. Zero noise margin

b. Nonzero noise margin

5 V
A, volts

VIH � 2.0 V

V0H

VNH

VNH

VIH

V0L

 VILVIL � 0.8V

0 V
t

Noise pushes VIH, VIL
into forbidden region

Noise within specs for VIH, VIL

A 1 2

A A

FIGURE 11.13
Noise Margins

516 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.5 REVIEW PROBLEM

11.5 Calculate the noise margins of a 74HCT00A NAND gate from the data sheet in Ap-
pendix C. VCC � 4.5 V, TA � 25°C, IOUT � 	4 mA

11.6 Interfacing TTL and CMOS Gates

TTL Compatible Able to be driven directly by a TTL output. Usually implies
voltage compatibility with TTL.

Interfacing different logic families is just an extension of the fanout and noise margin prob-
lems; you have to know what the load gates of a circuit require and what the driving gates can
supply. In practice, this means you must know the specified values of input and output volt-
ages and currents for the gates in question. Table 11.4, which is derived from the manufac-
turers’data sheets included inAppendix C, gives an overview of input and output parameters
for a variety of TTL and CMOS families. Ambient temperature is assumed to be 25°C.

K E Y T E R M

Table 11.4 TTL and CMOS Input and Output Parameters

Low-Voltage
TTL High-Speed CMOS CMOS

74LS 74F 74AS 74ALS 74HC 74HCT 74VHC 74VHCT 74LVX 74LCX

VCC (V) 5.0 5.0 5.5 5.5 4.5 4.5 4.5 4.5 3.0 3.0
VOH (V) 2.7 2.7 3.0 3.0 3.98 3.98 3.94 3.94 2.58 2.2
VOL (V) 0.5 0.5 0.5 0.5 0.26 0.26 0.36 0.36 0.36 0.55
VIH (V) 2.0 2.0 2.0 2.0 3.15 2.0 3.15 2.0 2.0 2.0
VIL (V) 0.8 0.8 0.8 0.8 1.35 0.8 1.35 0.8 0.8 0.8
IOH (mA) �0.4 �1.0 �2.0 �0.4 �4.0 �4.0 �8.0 �8.0 �4.0 �24.0
IOL (mA) 8.0 20.0 20.0 8.0 4.0 4.0 8.0 8.0 4.0 24.0
IIH (mA) 0.02 0.1 0.02 0.02 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
IIL (mA) �0.4 �0.6 �0.5 �0.1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 11.4 is useful for comparison of logic families, but it is not a substitute for read-
ing data sheets, as it gives parameters only under a restricted set of conditions. We can,
however, make some observations based on the data in Table 11.4.

1. Input currents in a CMOS gate are very low, due to its high input impedance. As a result
fanout is generally not a problem with CMOS loads. Interface problems to CMOS loads
have to do with input voltage, not current.

2. CMOS devices, such as 74HCT, that have the same values of VIH and VIL as the TTL
families in Table 11.4, are considered to be TTL compatible, since they can be driven
directly by TTL drivers.

3. LSTTL is usually regarded as the benchmark for measuring TTL loading of a CMOS
circuit. For example, a data sheet will claim that a device can drive 10 LSTTL loads.
This claim depends on the values of IOH and IOL for the driving gate, which are not
listed directly in CMOS data sheets, except as absolute maximum ratings. The values in
Table 11.4 are the values of current for which the output voltages, VOH and VOL, are de-
fined. (Recall from the section on fanout in this chapter that increasing output current
causes output voltages to migrate away from their nominal values, thus reducing device
noise margins.)

Let us examine four interfacing problems: high-speed CMOS driving 74LS, 74LS dri-
ving 74HC, 74LS driving 74HCT, and 74LS driving low-voltage CMOS.

11.6 • Interfacing TTL and CMOS Gates 517

High-Speed CMOS driving 74LS

To design an interface between any two logic families, we must examine the output volt-
ages and currents of the driving gate and the input voltages and currents of the load gates.

Assume a 74HC00 NAND gate drives one or more 74LS00 NAND gates. From the
74HC00 data sheet, we determine that VOH � 3.98 V and VOL � 0.26 V for VCC � 4.5 V.
The 74LS00 requires at least 2.0 V at its input in the HIGH state and no more than 0.8 V in
the LOW state. The 74HC00 therefore satisfies the input voltage requirement of the
74LS00.

For the defined output voltages, the 74HC00 gate can source or sink 4 mA. The fanout
for the circuit is therefore calculated as follows:

nH � �
I

I
O

IH

H
� � �

2

4

0

m

�

A

A
� � 200

nL � �
I

I
O

IL

L
� � �

4

0

m

.4A

A
� � 10

n � 10

Therefore a 74HC00 NAND can drive a 74LS00 directly, with a fanout of 10.

74LS Driving 74HC

As mentioned earlier, CMOS has a very small input current and therefore does not present
a fanout problem to a 74LS driving gate. However, we must also examine the interface for
voltage compatibility.

From data sheets, we see that a 74LS00 gate is guaranteed to provide at least 2.7 V in
the HIGH state and no more than 0.5 V in the LOW state. A 74HC00 gate will recognize
anything less than 1.35 V as a logic LOW and anything more than 3.15 V as a logic HIGH.
The 74LS00 meets the LOW-state criterion, but it cannot guarantee sufficient output volt-
age in the HIGH state.

In order to properly drive a 74HC input with a 74LS output, we must provide a pull-up
resistor to ensure sufficient HIGH-state voltage at the 74HC input. The circuit is illustrated
in Figure 11.14. The pull-up resistor should be between 1 k� and 10 k�.

Vcc

Rp

GND

74LS00
74HC00

FIGURE 11.14
LSTTL driving 74HC CMOS

74LS Driving 74HCT

74HCT inputs are designed to be compatible with TTL outputs. As with 74HC devices, in-
put currents are sufficiently low that fanout is not a problem with the 74LS-to-74HCT in-
terface. 74HCT input voltages are the same as those for TTL (VIH � 2.0 V and VIL � 0.8 V).
Therefore, 74HCT inputs can be driven directly by LSTTL outputs.

74LS Driving Low-voltage CMOS

CMOS families with supply voltages less than 5 V are rapidly becoming popular in new
applications. Two of the reasons for their increasing prominence are reduced power dissi-
pation (inversely proportional to the square of the supply voltage) and smaller feature size

518 C H A P T E R 1 1 • Logic Gate Circuitry

(i.e., size of the internal transistors) that allows more efficient packaging and faster opera-
tion. Low-voltage logic is particularly popular for battery-powered applications such as
laptop computing or cell phones. Low voltage families typically operate at VCC � 3.3 V or
2.5 V. Newer devices are available for VCC � 1.8 V or 1.65 V.

Low-voltage CMOS families such as 74LVX or 74LCX can interface directly with
TTL outputs if they are operated with a 3.0 V to 3.3 V power supply. These families are not
really suitable for driving 5-volt TTL, as their noise margins are too small when they use a
3.0 V supply voltage.

If we wish to use a 74LS device to drive a 74HC device operating at a power supply
voltage of less than 4.5 V, we can use a 74HC4049 or 74HC4050 buffer to translate the
TTL logic level down to an appropriate value. The 74HC4049 is a package of six inverting
buffers. The 74HC4050 has six noninverting buffers. These buffers can tolerate up to 15 V
on their inputs. Their output voltages are determined by the value of their supply voltage.

Figure 11.15 shows an LSTTL-to-74HC interface circuit with a 74HC4050 buffer.
Note that the interface buffer has the same power supply voltage as the load gate. Both
sides of the interface are referenced to the same ground.

GND
74LS00 74HC4050 74HC00

� 5 V � 3 V

FIGURE 11.15
74LS-to-74HC Interface Using a 74HC4050 Buffer

❘❙❚ SECTION 11.6 REVIEW PROBLEM

11.6 A 74LS00 driving gate is to be interfaced to a 74HC00 load using a 74HC4050 non-
inverting buffer. The 74HC00 has a power supply voltage of 2.5 V. What supply volt-
age should the 74HC4050 buffer have? Why?

11.7 Internal Circuitry of TTL Gates

Cutoff mode The operating mode of a bipolar transistor when there is no collec-
tor current flowing and the path from collector to emitter is effectively an open cir-
cuit. In a digital application, a transistor in cutoff mode is considered OFF.

Saturation mode The operating mode of a bipolar transistor when an increase in
base current will not cause a further increase in the collector current and the path
from collector to emitter is very nearly (but not quite) a short circuit. This is the ON
state of a transistor in a digital circuit.

TTL has been around for a long time. The first transistor-transistor logic ICs were developed
by Texas Instruments around 1965. Since then, there have been many improvements in the
speed and power consumption of these devices, but the basic logic principles remain largely
unchanged. Even though they are seldom used in modern designs, it makes sense to examine
the internal circuitry of standard TTL gates such as the 7400 NAND, 7402 NOR, and 7404
inverter because the internal logic concepts are similar to the more advanced types of TTL.

The most important parts of the circuit, as far as a designer or technician is concerned,
are the input and output circuits, because they are the only parts of the chip to which we
have access. It is to these points that we interface other circuits and where we make diag-

K E Y T E R M S

11.7 • Internal Circuitry of TTL Gates 519

nostic measurements. A basic understanding of the inputs and outputs of logic gate cir-
cuitry is helpful when we design or troubleshoot a digital circuit.

Bipolar Transistors as Logic Devices

The basic element of a TTL device is the bipolar junction transistor, illustrated in Figure
11.16. This is not the place to give a detailed analysis of the operation of a bipolar transis-
tor, but a simplified summary of operating modes will be useful.

The bipolar transistor is a current amplifier having three terminals called the collector,
emitter, and base. Current flowing into the base controls the amount of current flowing
from the collector to the emitter. If base current is below a certain threshold, the transis-
tor is in cutoff mode and no current flows in the collector. In this state, the base-emitter
voltage is less than 0.6 V and the collector-emitter path acts like an open circuit. We can
treat the collector-emitter path as an open switch, as shown in the lefthand diagram in
Figure 11.17.

FIGURE 11.16
Currents and Voltages in an NPN
Bipolar Transistor

FIGURE 11.17
NPN Bipolar Transistor as a Switch

Table 11.5 Bipolar Transistor Characteristics

Cutoff Active Saturation

IC 0 � bIB �bIB

VCE Open cct.
0.8 V 0.2 V–0.5 V
VBE �0.6 V 0.6 V–0.7 V �0.7 V

If the base current increases, the transistor enters the “active region,” where the col-
lector current is proportional to the base current by a current gain factor, b. This is the lin-
ear, or amplification, region of operation, used by analog amplifiers.

If the base current increases still further, collector current reaches a maximum value
and will no longer increase with base current. This is called the saturation mode of the
transistor. The saturated value of collector current, ICS, is determined by (1) the resistance
in the collector-emitter current path, (2) the voltage drop across the collector and emitter,
VCE, and (3) the collector supply voltage, VCC. Base-emitter voltage is about 0.7 V and will
not increase significantly with increasing base current. The voltage between collector and
emitter is in the range from 0.2 V to 0.5 V. In this mode, we can treat the transistor as a
closed switch, as shown in the righthand diagram of Figure 11.17.

Table 11.5 summarizes the voltages and currents in the cutoff, active, and saturation
regions.

520 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ EXAMPLE 11.13 Figure 11.18 shows an NPN bipolar transistor connected in a common-emitter configura-
tion. With the right choice of input voltages, this circuit acts as a digital inverter.

FIGURE 11.18
Example 11.13
Transistor as Inverter

FIGURE 11.19
Example 11.13
Voltage and Current Analysis of Inverter

Analyze the circuit to show that it acts as an inverter if a logic HIGH is defined as
�3 V and a logic LOW is defined as �0.5 V. Assume that b � 100, and assume that
VBE � 0.7 V and VCE � 0.2 V in saturation.

Solution We will analyze the circuit with two input voltages: 3 V (logic HIGH) and 0.5
V (logic LOW). These two conditions are shown in Figure 11.19.

High input. We must prove that VI � 3 V is sufficient to saturate the transistor. Let us as-
sume that this is true and find out if calculations confirm our assumption.

Figure 11.19a shows the circuit with VI � 3 V. By Kirchhoff’s voltage law (KVL):

VI � IBRB � VBE, or

IB � (VI � VBE)/RB

If we assume that IB is sufficient to saturate the transistor, then:

IB � (3 V � 0.7 V)/22 k�

� 105 �A

bIB � (100)(105 �A) � 10.5 mA

Collector current won’t increase beyond its saturated value, even if base current in-
creases. Therefore, if the transistor is saturated, bIB will be larger than the current actually
flowing in the collector-emitter path.

In saturation, the collector current can be calculated by KVL:

VCC � IC RC � VCE, or

IC � (VCC � VCE)/RC

IC � (5 V � 0.2 V)/470 �

� 10.2 mA

Since bIB
 IC, the transistor is saturated. Thus, an input voltage of 3 V will produce
sufficient base current to saturate the transistor. The output is given by VO � VCE � 0.2 V,
which is within the defined range of a logic LOW.

LOW input. Figure 11.19b shows the circuit with VI � 0.5 V. By KVL:

VI � IB RB � VBE

VBE � 0.5 V � IB RB

Since VBE must be �0.6 V, the transistor is in cutoff mode. Thus, in the collector circuit:

VCC � IC RC � VCE

5 V � (0)(470 �) � VCE

VO � VCE � 5 V (logic HIGH)

Table 11.6 summarizes the operation of the circuit as an inverter.

11.7 • Internal Circuitry of TTL Gates 521

Table 11.6 Input and Output of Single-Transistor
Inverter

Input Output

VI Logic Level VO Logic Level

0.5 V LOW 5 V HIGH
3 V HIGH 0.2 V LOW

TTL Open-Collector Inverter and NAND Gate

Open-collector output A TTL output where the collector of the LOW-state out-
put transistor is brought out directly to the output pin. There is no built-in HIGH-
state output circuitry, which allows two or more open-collector outputs to be con-
nected without possible damage.

The TTL gates (7405, 7401, 7404, 7400, and 7402) used in the following sections
to illustrate TTL circuit principles are no longer in general use. They are from the
original (“standard”) TTL family, which has been superceded by faster and more
efficient devices. However, the standard TTL devices are easier to understand than
devices from the newer TTL subfamilies, since their circuit structure is simpler. The
operating principles are similar in both the standard and newer families, so we will
use the standard devices to illustrate the general principles of TTL operation.

Figure 11.20 shows the circuit of the simplest TTL gate: a 7405 inverter with open-collector
outputs. This circuit performs the same function as the single-transistor inverter we exam-
ined in Example 11.13. These circuits differ most obviously in their input circuitry. The
inverter circuit in Example 11.13 has a resistor as its input; the 7405 inverter has a transistor,

N O T E

K E Y T E R M

522 C H A P T E R 1 1 • Logic Gate Circuitry

Q1, as its input. The input transistor allows faster switching of input states. This configura-
tion is common to all standard TTL gates and will be examined in detail later in this section.

The logic function of the 7405 is performed by transistors Q2 and Q3. Output transis-
tor Q3 is switched ON and OFF by current flowing in the collector-emitter path of Q2.
When Q3 is ON, Y is LOW.

However, when Q3 is OFF, Y is floating. There is a high impedance between Y and
ground, so the output is not LOW. But there is no connection to VCC to make the output
HIGH. In this condition, Y is neither HIGH nor LOW.

To enable the output to produce a HIGH state, we need to add an external pull-up re-
sistor. The value of this resistor depends on the current sinking capability of Q3, specified
in the data sheet as IOL. We will do such calculations in a later example.

TTL Inputs

Transistor Q1 and diode D1 make up the input circuit of the TTL inverter of Figure 11.20.
The diode protects the input against small negative voltages. If the input goes more nega-
tive than about �0.7 V, the diode will conduct, effectively short-circuiting the input to
ground plus one diode drop. This clamps the input to �0.7 V. D1 has no logic function.

Q1 can be treated as two back-to-back diodes, as shown in Figure 11.21. Figure 11.22
shows how the input responds to logic HIGH and LOW voltages.

LOW Input. When a TTL input is made LOW, the base-emitter junction of Q1 acts as a
forward-biased diode, creating a current path from VCC to ground via the input pin. This

FIGURE 11.20
Open-Collector Inverter (7405)

11.7 • Internal Circuitry of TTL Gates 523

current makes up the majority of current IIL, which has a maximum value of 1.6 mA in
standard TTL (0.4mA in LSTTL).

At the moment the input is made LOW, the transistor action of Q1 transports charge
away from the base of Q2, pulling it LOW and keeping it in cutoff mode. This current dies
out when the base charge of Q2 has been depleted, shortly after the LOW is applied to the
input pin. The diode formed by the base-collector junction of Q1 does not carry sufficient
current to turn on Q2, since the base-emitter path is of much lower impedance.

HIGH Input. A HIGH at a TTL input reverse-biases the base-emitter junction of Q1.
Only a small leakage current, IIH, flows. The maximum value of IIH is 40 �A for standard
TTL (20 �A for LSTTL).

Since the low-impedance current path to the input pin has not been established, cur-
rent flows to the base of Q2 via the forward-biased base-collector junction of Q1. This cur-
rent is sufficient to saturate Q2.

Open (Floating) TTL Input. An open-circuit TTL input acts as a logic HIGH, as illus-
trated by Figure 11.23. A TTL input relies on a logic LOW to establish a low-impedance
current path from VCC to the input pin. If the input is open, this LOW is not present and
current flows in the base-collector junction of the transistor, by default. This is the same
current that flows under the HIGH-input condition.

This HIGH is not stable; it can be converted to logic LOW by induced noise at the in-
put pin. To avoid this uncertainty, an unused input should always be wired to a logic HIGH
or LOW state.

FIGURE 11.21
Diode Equivalent of TTL Input
Transistor

FIGURE 11.22
HIGH and LOW Inputs at a
TTL Gate

524 C H A P T E R 1 1 • Logic Gate Circuitry

TTL Open-Collector Inverter

Figure 11.24 shows the operation of the 7405 open-collector inverter.

FIGURE 11.23
LOW, HIGH, and Open
TTL Inputs

FIGURE 11.24
7405 Operation

LOW Input. As was described above, a LOW input establishes a low-impedance path to
ground, which draws current through the base-emitter junction of Q1. This action also pre-
vents base current from flowing in transistor Q2, causing it to be in cutoff mode and mak-
ing IC2 � 0.

Since IB3 is derived from IC2, IB3 � 0 and Q3 is cut off, making a high-impedance path
between the collector and emitter of Q3. As was the case with the single-transistor inverter
in Example 11.13, when IC3 � 0, then VO � VCE � VCC. (Since no current flows through
the pull-up resistor, the voltage must be the same at both ends.) Output Y is HIGH.

HIGH Input. When input A is HIGH, the base-emitter junction of Q1 does not have suf-
ficient voltage across it to be forward-biased. Current flows through the base-collector
junction of Q1, saturating Q2.

Since Q2 is ON, current flows to the Q2 emitter and splits through the 1-k� resistor
and the base of Q3. The output transistor, Q3, turns ON, establishing a low-impedance cur-
rent path from output Y to ground. Current is limited by the external pull-up resistor, which
must be chosen to keep IOL at or under its rated value of 16 mA. VCE3 is about 0.2 V to 0.4
V. Output Y is LOW.

TTL Open-Collector NAND

Figure 11.25 shows one gate of a 7401 quadruple 2-input NAND gate with open-collector
outputs. The circuit is the same as that of the 7405 inverter, except that the input transistor
has a second emitter. Multiple-emitter transistors of this type are common in TTL circuits
and can be modeled by the diode equivalent in Figure 11.25b. Figure 11.26 shows the re-
sponse of the multiple-emitter input transistor to various combinations of logic levels.

11.7 • Internal Circuitry of TTL Gates 525

If both inputs are LOW, the NAND acts exactly the same as the 7405 inverter with a
LOW input. (A low-impedance path is created through a base-emitter junction.) Output Y
is HIGH, provided an external pull-up resistor is connected to output. A partial truth table
for this condition is:

FIGURE 11.25
TTL NAND with Open Collector Output

FIGURE 11.26
Input Response of Multiple-Emitter Transistor

A B Y

0 0 1

If one input is LOW, the input acts the same as the inverter with a LOW input. The low-
impedance current path through the one grounded emitter prevents sufficient base-
collector current from flowing to forward-bias that junction. Output Y is HIGH if a pull-up
resistor is connected to the output. A partial truth table is as follows:

A B Y

0 1 1
1 0 1

526 C H A P T E R 1 1 • Logic Gate Circuitry

If both inputs are HIGH, the NAND circuit acts like the 7405 when its input is HIGH.
(There is no base-emitter current path. A collector-emitter path is established by default.)
Output Y is LOW. This condition can be represented by:

A B Y

1 1 0

A B Y

0 0 1
0 1 1
1 0 1
1 1 0

Combining all these conditions, we get the standard NAND truth table:

If one or more emitters of a TTL multiple-emitter input transistor is LOW, the input
is a LOW equivalent. All emitters must be HIGH to make the transistor input a
HIGH equivalent.

These statements lead to the familiar NAND-gate descriptive sentences, illustrated by
the gate symbols in Figure 11.27.

a. At least one input LOW makes the output HIGH.

b. Both inputs HIGH make the output LOW.

N O T E

FIGURE 11.27
DeMorgan Equivalent Forms of a NAND Gate

❘❙❚ SECTION 11.7A REVIEW PROBLEM

11.7 What are the two main functions of the pull-up resistor on the output of an open-
collector gate?

Open-Collector Applications

Wired-AND A connection where open-collector outputs of logic gates are wired
together. The logical effect is the ANDing of connected functions.

A more common TTL output than the open collector is the totem pole output, which we
will study later in this chapter. The totem pole output has its own internal pull-up circuit for
HIGH outputs.

K E Y T E R M

11.7 • Internal Circuitry of TTL Gates 527

Gates with totem pole outputs cannot be used in all digital circuits. For example, open-
collector gates are required when several outputs must be tied together, a connection called
wired-AND. Totem pole outputs would be damaged by such a connection, since there is
the possibility of conflict between an output HIGH and LOW state.

Open-collector outputs can also be used for applications requiring high current drive
and for interfacing to circuits having supply voltages other than TTL levels.

A special symbol defined by IEEE/ANSI Standard 91-1984, an underlined square di-
amond, is shown in Figure 11.28. This symbol is added to a logic gate symbol to indicate
that it has an open-collector output. Other symbols, such as a star (*), a dot (●), or the ini-
tials OC are also used.

Wired-AND

A wired-AND connection combines the outputs of the connected gates in an AND
function.

N O T E

FIGURE 11.28
Open-Collector Symbols Shown
for a NAND Gate (e.g., 7401)

FIGURE 11.29
Three Inverters in a Wired-AND
Connection

Figure 11.29 shows three open-collector inverters connected in a wired-AND configura-
tion. The output transistors of the inverters are shown in Figure 11.30, with different
possible ON and OFF states. The only way output Y can remain HIGH is if all the tran-
sistors are in their OFF states, as in Figure 11.30c. This can happen only if the outputs
of the inverters are all HIGH. This is the same as saying the outputs are ANDed to-
gether at Y.

The Boolean expression for Y is:

Y � �A � �B � �C
� A � B � C

By DeMorgan’s theorem, the wired-AND connection of inverter outputs is equivalent
to a NOR function. Because of this DeMorgan equivalence, the connection is sometimes
called “wired-OR.”

Figure 11.31 shows three NAND gates in a wired-AND connection. Since the output
functions are ANDed, the Boolean expression for Y is:

Y � �AB � �CD � �EF

� AB � CD � EF

528 C H A P T E R 1 1 • Logic Gate Circuitry

The resulting function is called AND-OR-INVERT. Normally this requires at least
two types of logic gate—AND and NOR. The wired-AND configuration can synthesize
any size of AND-OR-INVERT network using only NAND gates.

The wired-AND function is sometimes shown as an AND symbol around a soldered
connection, as shown in Figure 11.31b.

FIGURE 11.30
Output Transistors of Open-
Collector Inverters in a Wired-
AND Connection

11.7 • Internal Circuitry of TTL Gates 529

High-Current Driver

Standard TTL outputs have higher current ratings in the LOW state than in the HIGH state.
Thus, open-collector outputs are useful for driving loads that need more current than a stan-
dard TTL output can provide in the HIGH state. There are special TTL gates with higher rat-
ings of IOL to allow even larger loads to be driven. Typical loads would be LEDs, incandes-
cent lamps, and relay coils, all of which require currents in the tens of milliamperes.

❘❙❚ EXAMPLE 11.14 A 74LS07 hex buffer/driver contains six noninverting buffers whose outputs are open-
collector, rated for IOLmax � 40 mA and VOHmax � 30 V. That is, even though there is no
internal circuit to provide a logic HIGH at the output, the output transistor can withstand a
voltage of up to 30 V without damage.

Figure 11.32 shows a 74LS07 buffer driving an incandescent lamp rated at 24 V, with a
resistance of 690 �. Calculate the current that flows when the lamp is illuminated. What
logic level at A turns the lamp on? Could the lamp be driven by a 74LS05 inverter? Why or
why not?

Solution From the 74LS07 data sheet in Appendix C, we see that VOL � 0.4 V for
IOL � 16 mA and VOL � 0.7 V for IOL � 40 mA. Assume the latter value.

By KVL: 24 V � (IOL)(690 �) � VOL � 0

Thus, IOL � (24 V � 0.7 V)/690 � � 33.8 mA

Since the buffer is noninverting, and current flows when the output of the 74LS07
sinks current to ground (LOW), the lamp is on when A is LOW.

A 74LS05 open-collector inverter would not be a suitable driver for the circuit for two
reasons: its output is only designed to withstand 5.5 V and it can only sink a maximum of
8 mA.

❘❙❚

Value of External Pull-up Resistor

The value of the pull-up resistor required by an open-collector circuit is calculated using
manufacturer’s specifications and the basic principles of circuit theory: Kirchhoff’s voltage
and current laws (KVL and KCL) and Ohm’s law.

Figure 11.33 shows the circuit model for calculating the value of Rext. It accounts for
the current requirements of the loads, the LOW-state output voltage, and current-sinking
capacity of the open-collector gate.

FIGURE 11.31
NAND Gates in Wired-AND Connection

A Y

74LS07

690

� 24 VVcc � 5 V

FIGURE 11.32
Example 11.14
74LS07 High-Current Driver

530 C H A P T E R 1 1 • Logic Gate Circuitry

The main rule in resistor selection is to keep the sum of currents into the open-col-
lector output to less than the maximum rated value of IOL.

IOL � IR � nIIL

IR � (VCC � VOL/Rext

❘❙❚ EXAMPLE 11.15 Calculate the minimum value of the pull-up resistor for a 74LS05 inverter if the circuit dri-
ves ten 74LS00 NAND gate inputs.

Solution

From 74LS00 specs: IIL � 0.4 mA
For 10 gates: nIIL � 10IIL � 4 mA
From 74LS05 specs: IOL � 8 mA

IR � IOL � nIIL

� 8 mA � 4 mA

� 4 mA

For IOL � 8 mA, VOL � 0.5 V

Rext � (VCC � VOL)/IR

� (5 V � 0.5 V)/4 mA

� 4.5 V/4 mA � 1.125 k�

Use a 1.2-k� or 1.5-k� standard value resistor.
❘❙❚

❘❙❚ SECTION 11.7B REVIEW PROBLEM

11.8 Calculate the minimum value of pull-up resistor required for a 74LS05 inverter if it
drives one input of a 74LS00 NAND gate. What is the minimum standard value of
this resistor?

N O T E

FIGURE 11.33
Circuit Model for Pull-up Resistor Calculation

11.7 • Internal Circuitry of TTL Gates 531

Totem Pole Outputs

Totem pole output A type of TTL output with a HIGH and a LOW output tran-
sistor, only one of which is active at any time.

Phase splitter A transistor in a TTL circuit that ensures that the LOW- and
HIGH-state output transistors of a totem pole output are always in opposite phase
(i.e., one ON, one OFF).

Figure 11.34 shows one gate of a 7400 quadruple 2-input NAND with totem pole outputs.
The circuit is the same as that for a 7401 open-collector NAND except for a transistor, re-
sistor, and diode, which make up the HIGH-state output circuitry of the NAND gate.

K E Y T E R M S

FIGURE 11.34
NAND Gate With Totem Pole Output

The totem pole output, shown in Figure 11.34b, has separate transistors to switch the
output to the HIGH state (Q4) and the LOW state (Q3). These transistors are switched by
Q2, the phase splitter. Only one of them is ON at a time; the currents IOH and IOL never
flow simultaneously.

The portion of the circuit consisting of Q4, D3, and the 130-� resistor replaces the ex-
ternal pull-up resistor required by the open-collector TTL output. Since the HIGH state is
switched by its own transistor, we say that the circuit has an active pull-up.

The main advantage of the totem pole output over the open collector is that it can
change states faster. The external pull-up resistance needed in an open-collector circuit
slows down the output switching by contributing to the RC time constant of the output. The
HIGH-state transistor circuit, with its relatively low output impedance, reduces this time
constant and thus improves switching speed.

532 C H A P T E R 1 1 • Logic Gate Circuitry

Figure 11.35 shows the operation of the 7400 NAND gate for HIGH and LOW input
conditions.

HIGH Input. When both inputs are HIGH, there is no low-impedance base-emitter cur-
rent path in Q1. The base-collector junction of Q1 acts as a forward-biased diode. Base cur-
rent flows in Q2, saturating the transistor. Sufficient current flows to Q3 to saturate it. Y is
connected to ground, via the collector-emitter path of Q3. The output is LOW.

LOW Input. Figure 11.35b shows input B of a 7400 NAND gate pulled LOW. The cir-
cuit operates the same way if A or both A and B are LOW.

In this condition, a low-impedance path to ground is established through one of the
base-emitter junctions of Q1. This pulls the base of Q2 LOW, causing it to be in cutoff

FIGURE 11.35
NAND Gate Operation

11.7 • Internal Circuitry of TTL Gates 533

mode. No current flows through the collector-emitter path of Q2, so no base current flows
in Q3; it is also cut off.

Current flows through the 1.6-k� resistor to the base of Q4, turning it ON. This con-
nects the output, via Q4, D3, and the 130-� resistor, to VCC. The output is HIGH.

Q4 will not turn ON when Q3 is ON. We can find out why by calculating VBE4 � VD3.
For Q4 to conduct, two pn junctions (D3 and the base-emitter junction of Q4) must be for-
ward-biased. Thus, (VBE4 � VD3) must be greater than 0.6 V � 0.6 V � 1.2 V.

VBE4 � VD3 � VB4 � VCE3

We can calculate VB4 by adding up voltage drops, as follows:

VB4 � VCE2 � VBE3 � 0.2 V � 0.7 V � 0.9 V

Q3 is saturated, thus:

VCE3 � 0.2 V

The difference between these voltages is:

VB4 � VCE3 � 0.9 V � 0.2 V � 0.7 V

This is insufficient to forward-bias BE4 and D3. Q4 stays OFF.

Without D3 in the circuit,

VBE4 � (VCE2 � VBE3) � VCE3

� (0.2 V � 0.7 V) � 0.2 V

� 0.7 V

This is sufficient to saturate Q4, even when Q3 is ON. The diode is therefore nec-
essary to keep Q4 OFF when Q3 is ON.

Switching Noise

Storage time Time required to transport stored charge away from the base region
of a bipolar transistor before it can turn off.

A totem pole output is an inherently noisy circuit. Noise is generated on the supply voltage
line when the output switches from LOW to HIGH.

When the output is in a steady HIGH or LOW state, Q3 and Q4 are always in opposite
phase. The design of the totem pole output is such that when Q3 is ON, it is saturated, but
when Q4 is ON, it operates in the transistor’s active, or linear, region.

A saturated transistor takes longer to shut off than an unsaturated one due to storage
time, the time required to transport stored charge away from the base region of the transis-
tor. Thus, Q3 takes longer to turn off than Q4.

When a totem pole output is LOW, Q3 is ON and Q4 is OFF. When the output changes
state, Q4 turns ON before Q3 can turn OFF, due to the storage time of Q3. For a few
nanoseconds, both transistors are ON. This condition momentarily shorts VCC to ground,
causing a surge of supply current, as shown in Figure 11.36.

The inductance of the power line produces a corresponding spike proportional to the
instantaneous rate of change of the supply current (v � L di/dt, where L is the power line
inductance and di/dt is the instantaneous rate of change of supply current).

These spikes on the supply voltage line can cause real problems, especially in syn-
chronous circuits. They often cause erroneous switching that is nearly impossible to trou-
bleshoot. The best cure for such problems is prevention.

K E Y T E R M

N O T E

534 C H A P T E R 1 1 • Logic Gate Circuitry

Figure 11.37 shows the addition of a decoupling capacitor to a totem pole output to
eliminate switching spikes. A low-inductance capacitor of about 0.1 �F is placed between
the VCC and ground pins of the chip to be decoupled. This capacitor offsets the power line
inductance and acts as a low-impedance path to ground for high-frequency noise (i.e.,
spikes). Since a capacitor is an open circuit for low frequencies, the normal DC supply
voltage is not shorted out.

FIGURE 11.36
Spikes on Power Line During LOW-to-HIGH Transition of Totem Pole Output

FIGURE 11.37
Decoupling the Power Supply

11.7 • Internal Circuitry of TTL Gates 535

It is important that the capacitor be placed physically close to the decoupled chip.
Inductance of the power line accumulates with distance, and if the capacitor is far
away from the chip (say, at the end of the circuit board), the decoupling effect of
the capacitor is lost.

N O T E

FIGURE 11.38
Placement of Decoupling Capacitor (Low-Frequency Designs)

It is not necessary to decouple every chip on a circuit board for designs operating at
relatively low frequencies (�1 MHz). In such cases, one capacitor for every two ICs is
enough. The capacitor should be connected between VCC and ground of the same chip, as
shown in Figure 11.38.

For high-frequency designs, use one capacitor per IC, as shown in Figure 11.39. Con-
nect directly to power and ground traces on a printed circuit board, as close as possible to
the chip being decoupled.

Connection of Totem Pole Outputs

Totem pole outputs must never be connected together. As shown in Figure 11.40, the prob-
lem occurs when two connected outputs are in opposite states.

The active pull-up consisting of Q4, D3, and the 130-� resistor is designed to supply
current to about 10 TTL inputs, each having a large input impedance. It will not withstand
the current that flows when the output is forced to ground through the LOW output transis-
tor of another gate.

Under this condition about 30 to 55 mA will flow through Q4A and Q3B. This exceeds
the ratings of the outputs in both the HIGH and LOW state and will cause damage to the
outputs over time. The outputs will probably withstand this sort of abuse for several min-
utes, but eventually will be damaged.

FIGURE 11.39
Placement of Decoupling
Capacitors (High-Frequency
Designs)

536 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.7C REVIEW PROBLEM

11.9 A totem pole output is likely to be damaged when shorted to ground. Why?

Tristate Gates

Tristate output An output having three possible states: logic HIGH and LOW,
and a high-impedance state, in which the output acts as an open circuit.

Figure 11.41 shows the circuits of two TTL inverters with tristate outputs. In addition to the
usual binary states of HIGH and LOW, the output of the tristate inverter can also be in a
“high-impedance” (Hi-Z) state. This state occurs when both Q3 and Q4 are OFF. The electri-
cal effect is to produce an open circuit at the output, which is neither HIGH nor LOW.

The output of a tristate gate combines advantages of a totem pole output and an open-
collector output. Like the totem pole output, it has an active pull-up with lower output im-
pedance and faster switching than an open collector. Like the open collector, we can con-
nect several outputs together, provided only one output is active at a time.

Input G, the “gating” or “enable” input, controls the gate. When G is active, the gate
acts as an ordinary inverter. When inactive, the gate is in the high-impedance state. Table
11.6 summarizes the operation of the tristate inverters in Figure 11.41.

The tristate inverter in Figure 11.41a is enabled by a HIGH at the G input. The circuit
is the same as a 7400 NAND gate with two exceptions: (1) an extra diode goes from the
base of Q4 to G, and (2) G connects directly to one of the emitters of Q1.

When G � 0, Q1 acts as though there was a LOW at a NAND gate input. In a 7400
NAND circuit, this causes Q2 and Q3 to be in cutoff mode.

Due to the opposite states of the emitter and collector in Q2, Q4 would normally be
ON. Instead, the LOW at G pulls the base of Q4 LOW through the extra diode. Thus, both
Q3 and Q4 are OFF.

When G � 1, the G emitter of Q1 acts like a HIGH NAND input. By the enable/
inhibit rules of a NAND gate, Y � �A. The additional diode prevents the HIGH at G from
activating Q4.

The circuit in Figure 11.41b works the same way, except for the opposite sense of the
activating input. This opposite active level is achieved by using an open-collector inverter,
consisting of Q5, Q6, and Q7, at input �G.

K E Y T E R M

FIGURE 11.40
Totem Poles Connected Together

11.7 • Internal Circuitry of TTL Gates 537

FIGURE 11.41
Tristate Inverters

Table 11.6 Truth Tables of Tristate
Inverters

G A Y �G A Y

0 0 Hi-Z 0 0 1
0 1 Hi-Z 0 1 0
1 0 1 1 0 Hi-Z
1 1 0 1 1 Hi-Z

538 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.7D REVIEW PROBLEM

11.10 Why is the diode from the base of Q4 necessary in the tristate inverters in Figure
11.41?

Other Basic TTL Gates

Other TTL gates are similar to the NAND and inverter gates we have already examined. A
significant variation is the OR/NOR circuit, which has a different input configuration than
the AND/NAND/inverter type gates.

7402 NOR Gate

Figure 11.42 shows one gate of a 7402 quadruple 2-input NOR gate package. The differ-
ence between this gate and the 7400 NAND gate is the structure of the inputs. The NOR
gate does not use the multiple-emitter transistor, but rather an individual transistor (Q1 or
Q2) for each input. There are two phase splitters (Q3 and Q4), which are paralleled, emitter-
to-emitter and collector-to-collector.

FIGURE 11.42
7402 NOR Gate Circuit

If either Q3 or Q4 is enabled by a HIGH at its corresponding input, it will turn on Q5,
making the output LOW.

If both gate inputs are LOW, both Q3 and Q4 are in cutoff mode, and so is Q5. The out-
put is HIGH through Q6.

Table 11.7 shows the truth table and the states of the transistors for this gate. It is not
strictly correct to refer to Q1 and Q2 as being ON or OFF, since there is current flowing in
these transistors regardless of whether the inputs are HIGH or LOW. Let us define the ON

11.8 • Internal Circuitry of MOS Gates 539

state of an input transistor as the condition where the base-emitter junction is conducting
(LOW input). If the base-collector junction conducts, we will consider the transistor OFF
(HIGH input).

7408 AND Gate and 7432 OR Gate

It may not be obvious why we would choose to study NAND and NOR gates before AND
and OR. After all, AND and OR are the more basic logic functions.

Electrically, it works the other way around. The simplest TTL circuit is the NAND/in-
verter, followed by the NOR. AND and OR gates are more complex since they are based on
the NAND and NOR and require an extra inverter stage.

Table 11.7 7402 NOR Function and Truth Table

A B Q1 Q2 Q3 Q4 Q5 Q6 Y

0 0 ON ON OFF OFF OFF ON 1
0 1 ON OFF OFF ON ON OFF 0
1 0 OFF ON ON OFF ON OFF 0
1 1 OFF OFF ON ON ON OFF 0

FIGURE 11.43
7408 AND Gate

Figure 11.43 shows the circuit of a 7408 AND gate, and Figure 11.44 shows a 7432
TTL OR gate circuit. Each of these gates is like its NAND/NOR counterpart, except for an
additional inverter, implemented by Q3 in the AND gate and Q5 in the OR gate.

Tables 11.8 and 11.9 show the transistor function and truth table for each gate. In
keeping with the convention established for the NOR function table, an input transistor
with a conducting base-emitter junction is considered ON.

540 C H A P T E R 1 1 • Logic Gate Circuitry

❘❙❚ SECTION 11.7E REVIEW PROBLEM

11.11 Why are noninverting gates more complex than inverting gates?

11.8 Internal Circuitry of MOS Gates

MOSFET Metal-oxide-semiconductor field effect transistor. A MOSFET has
three terminals—gate, source, and drain—which are analogous to the base, emitter,
and collector of a bipolar junction transistor.

K E Y T E R M S

FIGURE 11.44
7432 OR Gate

Table 11.9 7432 OR Function and Truth Table

A B Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Y

0 0 ON ON OFF OFF OFF ON ON OFF 0
0 1 ON OFF OFF ON ON OFF OFF ON 1
1 0 OFF ON ON OFF ON OFF OFF ON 1
1 1 OFF OFF ON ON ON OFF OFF ON 1

Table 11.8 7408 AND Function and Truth Table

A B Q1 Q2 Q3 Q4 Q5 Q6 Y

0 0 ON OFF OFF ON ON OFF 0
0 1 ON OFF OFF ON ON OFF 0
1 0 ON OFF OFF ON ON OFF 0
1 1 OFF ON ON OFF OFF ON 1

11.8 • Internal Circuitry of MOS Gates 541

Enhancement-mode MOSFET A MOSFET that creates a conduction path (a
channel) between its drain and source terminals when the voltage between gate and
source exceeds a specified threshold level.

Substrate The foundation of n- or p-type silicon on which an integrated circuit is
built.

n-channel enhancement-mode MOSFET A MOSFET built on a p-type sub-
strate with n-type drain and source regions. An n-type channel is created in the p-
substrate during conduction.

p-channel enhancement-mode MOSFET A MOSFET built on an n-type sub-
strate with p-type drain and source regions. During conduction, a p-type channel is
created in the n-substrate.

CMOS A logic family based on the switching of n- and p-channel (“complemen-
tary”) enhancement-mode MOSFETs.

All the logic circuits we have examined so far have been based on the switching of bipolar
junction transistors. Another major logic family, CMOS, is based on the switching of
metal-oxide-semiconductor field effect transistors, or MOSFETS.

There are two major types of MOSFETs, called depletion-mode and enhancement-
mode MOSFETs. We will concentrate on the enhancement-mode devices, as they are the
type used in the manufacture of digital ICs. Details of the differences between depletion-
and enhancement-mode transistors can be found in any good textbook on electronic devices.

MOSFETs can be categorized in another way: as n-channel and p-channel devices,
much as bipolar transistors are classified as NPN or PNP.

CMOS logic is constructed from both n- and p-channel MOSFETs. CMOS (“Comple-
mentary MOS”) refers to the opposite, or complementary, operation of n- and p-channel
transistors.

MOSFET Structure

Figure 11.45 shows the structure and symbol of an n-channel enhancement-mode MOS-
FET in an integrated circuit. The device is built on a substrate of p-type silicon, which has
a deficiency of electrons in its structure. The drain and source regions are “wells” of n-type
silicon, which has an excess of electrons. The drain and source are roughly equivalent to
the emitter and collector of a bipolar transistor.

FIGURE 11.45
n-Channel MOSFET

The substrate is shown as a terminal with an arrow. The arrow points in for an n-
channel device and out for a p-channel device. In nearly all cases, the substrate is shorted
to the source terminal. (Some exceptions to this general rule will be examined when we
look at circuits of CMOS gates.)

542 C H A P T E R 1 1 • Logic Gate Circuitry

The gate terminal is similar to the base of a bipolar transistor in that it controls the flow
of current between the drain and source. The difference is that a MOSFET uses gate volt-
age to control drain current, whereas a bipolar transistor uses base current to control col-
lector current.

The gate consists of an insulating layer of silicon dioxide (SiO2) and a layer of metal
over the substrate between the drain and source. This gate structure is what gives the MOS-
FET its name (metal-oxide-semiconductor field effect transistor).

The oxide layer of the gate structure is subject to damage if excessive voltage
(greater than about 100 V) is applied. This especially includes static electricity, or
electrostatic discharge (ESD). There are standard precautions for working with
MOS devices that should be followed carefully.

Most important are ensuring that MOS devices are stored in antistatic or con-
ducting material, that work surfaces are not likely to generate static, that unused in-
puts are not left open or floating, that you avoid touching the pins of a MOS device,
and that if you must handle a MOS IC, you discharge any static on your person be-
fore touching it.

A conductive wrist strap with a high series resistance to ground (about 1 M�)
is often worn to reduce static. The high resistance protects the operator from shock
injury in the event of a short circuit.

A list of handling precautions is included in Appendix D.

❘❙❚ SECTION 11.8A REVIEW PROBLEM

11.12 Why are MOSFET circuits particularly susceptible to static damage?

Bias Requirement for MOS Transistors

Ohmic region The MOSFET equivalent of saturation. When a MOSFET is bi-
ased ON, it acts like a relatively low resistance, or “ohmically.”

n-type inversion layer The conducting layer formed between drain and source
when an enhancement-mode n-channel MOSFET is biased ON. Also referred to as
the channel.

Threshold voltage VGS(Th) The minimum voltage between gate and source of a
MOSFET for the formation of the conducting inversion layer (channel).

When we studied the operation of TTL gate circuits, we discovered that, for the most part, the
bipolar transistors in the gates operated either in the saturation or the cutoff regions. In MOS-
type gates, we make use of two similar operating regions in the constituent MOSFETs:

1. The cutoff region is the same as that for a bipolar transistor. Under this condition, there
is a very high impedance between the drain and source terminals of the MOSFET.

2. The ohmic region is analogous to the saturation region of a bipolar transistor. In this
state, there is a relatively low resistance between the MOSFET’s drain and source.

The MOSFET switches between cutoff and ohmic regions when the voltage between
gate and source, VGS, is less than or greater than a value called the threshold voltage.
The abbreviation for this voltage is VGS(Th); its value is between 1 and 5 volts, typically 1.5V.

Figure 11.46 shows an n-channel MOSFET operating in the cutoff region. The gate-
source voltage, VGS is less than VGS(Th). There is no conduction between the drain and
source. The resistance, RDS(OFF), between drain and source is very large, typically in the
thousands of megohms.

K E Y T E R M S

N O T E

11.8 • Internal Circuitry of MOS Gates 543

When the value of VGS increases and exceeds the threshold voltage, the MOSFET en-
ters the ohmic region. A conduction channel, called the n-type inversion layer, is created
in the p-substrate of the transistor, as shown in Figure 11.47. This layer is like an artifi-
cially created region of n-type silicon, which allows conduction between the drain and
source, provided there is sufficient potential difference between them.

FIGURE 11.46
n-Channel MOSFET in Cutoff
Region

FIGURE 11.47
Channel Formation in an n-Channel MOSFET

Figure 11.48 shows a MOSFET operating in the ohmic region. RDS(ON), the equivalent
resistance of a MOSFET in the ohmic region, is typically around 500 � to 2 k�. The drain-
source current, IDS, is determined by Ohm’s law: IDS � VCC/RDS(ON).

FIGURE 11.48
n-Channel MOSFET in Ohmic
Region

544 C H A P T E R 1 1 • Logic Gate Circuitry

The operation of a p-channel MOSFET is similar, but with polarities reversed. If
VGS(Th) is � 1.5 V for an n-channel device, an equivalent p-channel MOSFET has a thresh-
old voltage of �1.5 V. VGS
 �1.5 V turns ON an n-channel transistor; VGS � �1.5 V
turns ON a p-channel device.

Figure 11.49 summarizes the bias requirements for n- and p-channel enhancement-
mode MOSFETs.

FIGURE 11.49
Bias Requirements of n- and p-Channel MOSFETs

CMOS Inverter

Figure 11.50 shows the circuit of a CMOS inverter, which consists of one n-channel and
one p-channel MOSFET.

Recall the bias conditions of the two transistors:

n-channel: threshold voltage, VGS(Th) � �1.5V

ON when VGS
 VGS(Th) (e.g., VGS � VCC)

OFF when VGS � VGS(Th) (e.g., VGS � 0 V)

p-channel: threshold voltage, VGS(Th) � �1.5 V

ON when VGS � VGS(Th) (e.g., VGS � �VCC)

OFF when VGS
 VGS(Th) (e.g., VGS � 0 V)

11.8 • Internal Circuitry of MOS Gates 545

The operation of the CMOS inverter, and any other CMOS gate, depends on arranging
the bias conditions of each complementary pair of transistors so that they are always in op-
posite states. Whenever Q1 is ON, Q2 is OFF, and vice versa. Figure 11.51 shows how this
is accomplished.

Assume that a LOW input is at ground potential and that a HIGH input is equal to VCC.

FIGURE 11.50
CMOS Inverter

FIGURE 11.51
Operation of CMOS Inverter

When input A is LOW, the gate voltage of Q2 is the same as its source voltage; VGS2 �
0 and Q2 is OFF. This places a high-impedance path between output Y and ground. At the
same time, the gate voltage of Q1 is 0 V and its source voltage is VCC; VGS1 � VG1 � VS1 �
0 � VCC � �VCC. (The p-channel transistor, Q1, is drawn “upside down” to make the
complementary pair symmetrical.) Q1 is ON, forming a low-impedance path from VDD to
the output Y. Output Y is HIGH.

When input A is HIGH, the gate-source voltage of the n-channel transistor is VCC,
causing Q2 to turn ON. The gate of Q1 is also at VCC. Since the source of the p-channel

546 C H A P T E R 1 1 • Logic Gate Circuitry

transistor is at VCC, VGS1 � VG1 � VS1 � VCC � VCC � 0 V; Q1 is OFF. This combination
creates a high impedance between VCC and output Y and a low-impedance path from out-
put Y to ground, as shown in Figure 15.51b. Output Y is LOW.

CMOS NAND/NOR Gates

CMOS NAND and NOR gates are constructed from complementary pairs of MOSFETs.
Each MOSFET pair has an n-channel transistor that is turned ON by a HIGH input and a
p-channel transistor that is turned ON by a LOW input. The n-channel devices switch the
output to ground; the p-channel ones switch the output to VCC. NAND and NOR functions
are generated by arranging the MOSFET drain-source paths in series (AND) and parallel
(OR) configurations.

In Figure 11.52, we see the DeMorgan equivalent forms of a NAND gate. Each form
illustrates an aspect of NAND operation that can be described with a brief sentence and im-
plemented by a MOSFET circuit. The combination of forms describes the complete opera-
tion of the device.

Figure 11.52a states that both NAND inputs must be HIGH to make the output LOW.
A logic HIGH activates an n-channel MOSFET. The gate output is switched to ground by
an n-channel MOSFET. Thus, the drain-source paths of two n-channel transistors must be
connected in series to make the output LOW under the stated conditions.

Figure 11.52b shows that the NAND output is HIGH if either input is LOW. A p-
channel transistor will turn ON when its gate is LOW and will switch a HIGH to the out-
put. A parallel combination of p-channel MOSFETs will satisfy these conditions.

FIGURE 11.52
NAND Functions of MOSFETs

The stated conditions are combined in the CMOS NAND circuit shown in Figure
11.53. Transistors Q1 and Q4 form a complementary pair, as do Q2 and Q3. When A and B
are both HIGH, Q1 and Q2 are both OFF, cutting off the connection between VCC and out-
put Y. Q3 and Q4 are both ON, supplying a low-impedance path from output Y to ground,
making the output LOW. This is shown in the partial truth table in Table 11.10.

When A is LOW and B is HIGH, Q1 is ON. This creates a path from VCC to output
Y. At the same time, Q4 is OFF. This cuts the Y-to-ground path through the n-channel

11.8 • Internal Circuitry of MOS Gates 547

MOSFETs; the series path from output to ground is broken. One parallel path from VCC to
output has been established. Output Y is HIGH.

The remaining input combinations also make the output HIGH, as shown in Table
11.11. They do so by breaking the n-channel path from output to ground and enabling one
or both p-channel paths from VCC to output.

Each MOSFET in a logic circuit must have its own independent substrate bias. This
ensures that the transistor will operate as expected when a logic HIGH or LOW is applied
to its gate.

Normally, the substrate of a MOSFET is shorted to its source terminal. If a MOSFET
source terminal is isolated from VCC or ground, the substrate must be biased separately. For
example, in the NAND gate in Figure 11.53, the substrate of Q3 connects directly to
ground.

NOR gates are similar to NANDs in construction. Figure 11.54 shows the DeMorgan
equivalent forms of the NOR function and the MOSFET implementations of each aspect of
the gate operation.

Table 11.10 Partial CMOS NAND Function and
Truth Table

A B Q1 Q2 Q3 Q4 Y

1 1 OFF OFF ON ON 0

FIGURE 11.53
CMOS NAND Gate

Table 11.11 Partial CMOS NAND Function
and Truth Table

A B Q1 Q2 Q3 Q4 Y

0 0 ON ON OFF OFF 1
0 1 ON OFF ON OFF 1
1 0 OFF ON OFF ON 1

FIGURE 11.54
NOR Functions of MOSFETs

548 C H A P T E R 1 1 • Logic Gate Circuitry

When either input is HIGH, the output is LOW. This function is implemented by two
parallel n-channel MOSFETs. Both inputs must be LOW to make the output HIGH, which
implies a series connection of two p-channel transistors. The complete NOR gate circuit is
shown in Figure 11.55. (Note that the substrate of Q2 is connected directly to VCC to ensure
that it has its own bias voltage.)

FIGURE 11.55
CMOS NOR Gate

Table 11.12 Partial CMOS NOR Function
and Truth Table

A B Q1 Q2 Q4 Q4 Y

0 0 ON ON OFF OFF 1

Table 11.13 Partial CMOS NOR Function
and Truth Table

A B Q1 Q2 Q3 Q4 Y

0 1 ON OFF ON OFF 0
1 0 OFF ON OFF ON 0
1 1 OFF OFF ON ON 0

As was the case with the NAND circuit, transistors Q1 and Q4 form a complementary
MOSFET pair. Transistors Q2 and Q3 form the second pair.

When both inputs are LOW, both p-channel transistors are ON. This creates a low-
impedance path from VCC to output Y. The n-channel transistors, Q3 and Q4, are both OFF.
This isolates the output from ground. Output Y is HIGH. Table 11.12 shows the MOSFET
states under this condition.

If either input is HIGH, one or both of the p-channel transistors will turn OFF. This ac-
tion breaks the path from VCC to output Y. The complementary n-channel transistor will
turn ON. This creates a low-impedance path from output Y to ground. Output Y is LOW.
Table 11.13 summarizes the possible input conditions and MOSFET states when the NOR
output is LOW.

11.8 • Internal Circuitry of MOS Gates 549

CMOS AND and OR Gates

Figures 11.56 and 11.57 show the circuits of CMOS AND and OR gates. The AND gate is
the same as the NAND circuit, except for the output inverter section constructed from Q5

and Q6. The OR gate is the same as the NOR with an output inverter section.

❘❙❚ SECTION 11.8B REVIEW PROBLEM

11.13 Why is the source of a p-channel MOSFET connected to VCC in a CMOS gate?

CMOS Transmission Gate

Figure 11.58 shows the circuit of a CMOS transmission gate. A CMOS transmission gate,
or analog switch, conducts in both directions. This makes it possible to enable or inhibit

FIGURE 11.56
CMOS AND Gate

FIGURE 11.57
CMOS OR Gate

550 C H A P T E R 1 1 • Logic Gate Circuitry

time-varying analog signals having both positive and negative values. Conduction takes
place between the input and output terminals through MOSFETs Q1 and Q2. Positive cur-
rent (left to right in the diagram) flows through Q2, and negative current (right to left) flows
through Q1. Two inverters, consisting of the Q3/Q4 and Q5/Q6 pairs of MOSFETs, control
the ON/OFF state of the circuit.

When CONTROL � 1, the inverters bias both Q1 and Q2 ON, allowing them to con-
duct. When CONTROL � 0, the circuit inhibits conduction between input and output.

The substrate terminal of Q1 is connected, not to the source terminal of that transistor,
but directly to VCC thus providing the correct bias to Q1 in the ON state.

A particular device with this function is the 74HC4066 quad analog switch, whose cir-
cuit symbol is shown in Figure 11.59. When the CONTROL input is HIGH, analog and dig-
ital signals can pass between the bidirectional input terminals.

FIGURE 11.58
CMOS Transmission Gate

FIGURE 11.59
One of Four Analog Switches From 74HC4066

❘❙❚ EXAMPLE 11.16 Figure 11.60 shows a circuit where the analog switches in a 74HC4066 package are used
to control the selection and muting of two pairs of speakers in a stereophonic audio system.
Briefly explain the circuit operation.

Solution The audio signal to each speaker is passed or blocked by a CMOS transmis-
sion gate. The speakers are paired into A and B groups. Each pair has a left and a right
channel speaker. The same logic gate controls both speakers of each group.

The Select A switch enables the A speakers when it is open (logic HIGH). The Select
B switch enables the B speakers when it is open. The Mute Toggle flip-flop mutes (dis-
ables) both sets of speakers when Q is LOW. This action inhibits both AND gates, making
all transmission gate CONTROL inputs LOW. The mute function toggles ON and OFF
with each push of the Mute ON/OFF switch.

11.9 • TTL and CMOS Variations 551

❘❙❚

11.9 TTL and CMOS Variations
Standard (74NN) TTL and CMOS represented the two main standards of logic design for
many years, and their influence is still visible in other, more advanced types of logic. The
changes that have been made in newer logic families are not fundamental changes in the
working concepts, but improvements to the specifications, particularly switching speed
and power dissipation.

FIGURE 11.60
Example 11.16
74HC4066 Analog Switches as Audio Selectors

552 C H A P T E R 1 1 • Logic Gate Circuitry

TTL Logic Families

Schottky barrier diode A specialized diode with a forward drop of about
�0.4 V.

Schottky transistor A bipolar transistor with a Schottky diode across its base-
collector junction, which prevents the transistor from going into deep saturation.

Schottky TTL A series of unsaturated TTL logic families based on Schottky
transistors. Schottky TTL switches faster than standard TTL due to decreased stor-
age time in its transistors.

Speed-power product A measure of a logic circuit’s efficiency, calculated by
multiplying its propagation delay by its power dissipation. Unit: picojoule (pJ)

Probably the most important development in TTL technology was the introduction, in the
early 1970s, of the Schottky barrier diode into circuit designs. This made possible the first
family of nonsaturated bipolar logic, with its resultant improvement in switching speed.

Figure 11.61 shows a bipolar transistor with a Schottky diode connected across its
base and collector and the equivalent circuit symbol of this combination. We call this con-
figuration a Schottky transistor and logic devices using such transistors Schottky TTL.

K E Y T E R M S

FIGURE 11.61
Schottky Transistor

FIGURE 11.62
ON-State Operating Voltages of
Bipolar Transistors

Normally the base-collector junction of a saturated bipolar transistor has a drop of
about 0.5 volts, as shown in Figure 11.62. The Schottky diode clamps this junction voltage
to about 0.4 volts. This keeps the transistor out of deep saturation in its ON state. The base
region of the Schottky-clamped transistor holds less charge than does a standard bipolar
transistor. Its storage time, the time required to dissipate base charge upon turn-off, is sub-
stantially reduced. The transistor can switch faster with the Schottky diode than without.

Figure 11.63 shows the circuits of the 74S00 Schottky and 74LS00 low-power Schot-
tky NAND gates. Compare these circuits to each other and to the 7400 standard TTL
NAND gate in Figure 11.33.

11.9 • TTL and CMOS Variations 553

FIGURE 11.63
Schottky TTL Circuits

In the 74S00 circuit, Q1 acts as the input and Q2 as the phase splitter, as in the 7400
gate. The HIGH output circuit consists of Q3 and Q4 connected as a modified Darlington
pair. When Q2 is OFF (at least one input is LOW), enough base current flows in Q3 to turn
it on. Collector-emitter current in Q3 turns on Q4, making the output HIGH.

When Q2 is ON (both inputs are HIGH), the base of Q3 is pulled LOW, turning it OFF.
Sufficient current flows in the base of Q5 to turn it ON. The resultant current through Q5

554 C H A P T E R 1 1 • Logic Gate Circuitry

will turn on Q6, making the output LOW. A similar analysis can be made for the 74LS00
gate.

One difference between the 74S00 and 74LS00 circuits is the size of the resistors; the
LS device has larger resistors. Less current flows in the gate circuit. This reduces power
dissipation of the chip. The larger resistor values also slow down the switching times of the
various transistors by increasing the RC time constants of the circuit elements.

Speed-Power Product

One measure of logic circuit efficiency is its speed-power product, calculated by multi-
plying switching speed and power dissipation, usually expressed in picojoules (pJ). (The
joule is the SI unit of energy. Power is the rate of energy used per unit time.) A major goal
of logic circuit design is the reduction of a device’s speed-power product.

Table 11.14 shows the propagation delay, supply current, and speed-power product for
a NAND gate in six TTL families: standard TTL (7400), Schottky (74S00), low-power
Schottky (74LS00), fast TTL (74F00), advanced Schottky (74AS00), and advanced low-
power Schottky (74ALS00).

Table 11.14 TTL Speed and Power Specifications

7400 74LS00 74S00 74F00 74ALS00 74AS00

tpLH (max) 22 ns 15 ns 4.5 ns 6 ns 11 ns 4.5 ns
tpHL (max) 15 ns 15 ns 5 ns 5.3 ns 8 ns 4 ns

ICCH/4 (max) 2 mA 0.4 mA 4 mA 0.7 mA 0.21 mA 0.8 mA
ICCL/4 (max) 5.5 mA 1.1 mA 9 mA 2.6 mA 0.75 mA 4.35 mA

Speed-power product 605 pJ 82.5 pJ 225 pJ 78.0 pJ 41.25 pJ 97.9 pJ
(per gate)

The speed-power product shown is the worst-case value. This is calculated by multi-
plying the largest value of ICC/4 by the slowest switching speed by 5 volts for each family.
We use ICC/4 because ICC is specified per chip (four gates).

A faster switching speed results in an overall increase in speed-power product, other
factors being equal. For example, the speed-power product of either advanced Schottky
family is lower than that of the LS and S families. However, the ALS series (the slower ad-
vanced Schottky family) has a lower speed-power product than the AS series.

The smaller resistors used to speed up output switching imply a proportional drop in
propagation delay (higher speed) but an increased supply current. Power dissipation in-
creases in proportion to the square of the supply current, thus offsetting the effect of the in-
creased switching speed.

CMOS Logic Families

The CMOS gates we have looked at in this chapter are simpler than most gates actually in
use. There are two main families of CMOS devices: metal-gate CMOS, and silicon-gate, or
high-speed, CMOS.

Metal-Gate CMOS

There are two main variations on this type of circuit, designated B-series and UB-series
CMOS. Most CMOS gates are B-series; UB-series is available in a limited number of
inverting-type gates, such as inverters and 2-, 3-, and 4-input NAND and NOR gates. Fig-
ure 11.64 shows the difference in the two configurations.

Figure 11.64b shows one gate from a 4011UB quadruple 2-input NAND package. Its
circuit is the same as the NAND configuration examined in Section 11.8. Power supply
voltages in metal-gate CMOS are designated VDD (power) and VSS (ground). High-speed,
or silicon-gate, CMOS uses the same power supply designations as TTL: VCC and ground.

11.9 • TTL and CMOS Variations 555

The B-series configuration of this circuit has two additional inverter outputs in cascade
with the NAND logic. (The same gate becomes anAND when we add a third output inverter.)
The inverter configuration is actually an amplifier; extra inverter stages provide additional
gain and increase noise margin by allowing the circuit to accept smaller input signals.

CMOS gates are sometimes used in analog applications, such as oscillators. The UB-
series gates, with their lower gain, are more desirable for such applications. Due to its low
switching speed, metal-gate CMOS is rarely used in new designs.

High-Speed CMOS

High-speed (silicon-gate) CMOS A CMOS logic family with a smaller device
structure and thus higher speed than standard (metal-gate) CMOS.

Metal-gate CMOS has been considered a nearly ideal family for logic designs, with its high
noise immunity, low power consumption, and flexible power supply requirements. Unfor-
tunately, its propagation delay times, typically 10 to 20 times greater than those of equiva-
lent TTL devices, are just not fast enough for use in modern microprocessor-based systems.

High-speed CMOS was developed to address the problem of switching speed, while
striving to keep the other advantages of CMOS. This is achieved by using MOSFETs with
a polysilicon material for the gate, rather than metal, as in standard CMOS. Because of ad-
vantages gained in this manufacturing process, each transistor is physically smaller and has
a lower gate capacitance than metal-gate MOSFETs. Both these factors contribute to a
lower propagation delay for the logic gate circuit.

Several subfamilies of high-speed CMOS are available for various logic and linear ap-
plications, designated by the labels 74HCNN, 74HC4NNN, 74HCTNN, and 74HCUNN.

The 74HCNN series duplicates equivalent LSTTL functions in packages having iden-
tical pinouts to LSTTL. The 74HC4NNN replaces CMOS functions pin for pin. Both these
series have CMOS-equivalent input and output levels, within the power supply limits (2.0
V to 6.0 V) of high-speed CMOS.

K E Y T E R M

FIGURE 11.64
Metal-Gate CMOS Circuits

556 C H A P T E R 1 1 • Logic Gate Circuitry

The 74HCTNN devices are designed to be directly compatible with LSTTL devices,
and thus have LSTTL-equivalent inputs and CMOS-equivalent outputs.

74HCUNN devices have no output buffers, like the 4000 UB-series standard CMOS
devices. The 74HCU devices are used, as are the 4000UB devices, for linear applications
such as oscillators and multivibrators.

Table 11.15 shows the relative performance of the various CMOS families. As in TTL,
the 2-input NAND gate is used as the standard, except for the HCU family, where this gate
is not available. The quiescent speed-power product of all CMOS families is much smaller
than that of any TTL family. The high-speed CMOS families have propagation delays
comparable to those of LSTTL.

The power dissipation of a CMOS device increases directly with frequency. The
speed-power product also goes up with higher frequencies.

Table 11.15 shows CMOS speed-power product for a switching speed of 1 MHz. At
these speeds, B-series CMOS has no advantage over the common TTL families in terms of
its efficiency. It still has the edge on TTL with respect to noise immunity and power supply
flexibility.

❘❙❚ SECTION 11.9 REVIEW PROBLEM

11.14 Assuming that power dissipation of a 74HC00A NAND gate is directly proportional
to its switching frequency, what is the speed-power product of the gate at 2 MHz, 5
MHz, and 10 MHz?

Table 11.15 CMOS Speed and Power Specifications

Advanced High-Speed
Metal-Gate CMOS High-Speed CMOS CMOS Low-Voltage CMOS

4011B 4011UB 74HC00A 74HCT00A 74HCU04 74VHC00 74VHCT00 74LVX00 74LCX00

tpLH, tpHL 250 ns 180 ns 15 ns 19 ns 14 ns 5.5 ns 6.9 ns 6.2 ns 5.2 ns

IDD or ICC 0.25 �A 0.25�A 0.25 �A 0.25 �A 0.17 �A 0.5 �A 0.5 �A 0.5 �A 0.25 �A

VDD or VCC 5.0 V 5.0 V 4.5 V 4.5 V 4.5 V 4.5 V 4.5 V 3.3 V 3.3 V

PD (1 MHz) 1.5 mW 1.5 mW 446 �W 304 �W 303 �W 385 �W 385 �W 208 �W 272 �W

Speed-power 0.31 pJ 0.23 pJ 0.017 pJ 0.021 pJ 0.011 pJ 0.012 pJ 0.015 pJ 0.010 pJ 0.043 pJ
product
(quiescent)

Speed-power 375 pJ 270 pJ 6.68 pJ 5.77 pJ 4.25 pJ 2.12 pJ 2.65 pJ 1.29 pJ 1.42 pJ
product
(1 MHz)

S U M M A R Y

1. TTL (transistor-transistor logic) and CMOS (complementary
metal-oxide semiconductor) are two major logic families in
use today. TTL is constructed from bipolar junction transis-
tors. CMOS is made from metal-oxide-semiconductor field
effect transistors (MOSFETs).

2. The main CMOS advantages include low power consump-
tion, high noise immunity, and a flexibility in choosing a
power supply voltage.

3. The main advantages of TTL include relatively high switch-
ing speed and an ability to drive loads with relatively high
current requirements.

4. TTL and high-speed CMOS logic families are alphabetically
designated by a part number having the form 74XXNN,
where XX is the family and NN is a numeric logic function
designator. (For example, 74HC00 and 74LS00 have the
same logic function, but are from different logic families.)

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

Devices from earlier CMOS families are designated by a part
number of the form 4NNNB or 4NNNUB.

5. Devices of the same logic family generally have the same
electrical characteristics.

6. Data such as input/output voltages and currents are specified
in manufacturers’ datasheets. Only the maximum or mini-
mum values of these parameters should be used as design in-
formation. “Typical” values should be regarded as “informa-
tion only.”

7. The time required for an a logic circuit output to change as a
result of an input change is called propagation delay.

8. Propagation delay is specified as tpLH when an output
changes from LOW to HIGH and tpHL when the output goes
from HIGH to LOW.

9. Propagation delay in a circuit is the sum of all delays in the
slowest input-to-output path. Gates whose outputs do not
change are ignored in the calculation.

10. Fanout is the maximum number of device inputs that can be
driven by the output of a logic device.

11. The actual value of output current in a driving gate is the sum
of all load currents, which are the input currents of the load
gates. For n loads,

IOL � IIL1 � IIL2 � … � IILnL � nL IIL

and IOH � IIH1 � IIH2 � … � IIHnH � nHIIH

12. The fanout of the driving gate in the LOW and HIGH states
can be calculated as:

nL � �
I

I
O

IL

L
�

and nH � �
I

I
O

IH

H
�

13. If the fanout is unequal for LOW and HIGH states, the
smaller value must be used.

14. If the fanout of a gate is exceeded, the output voltage of the
driving gate will drop if the output is HIGH and rise if
the output is LOW. This move away from the nominal value
degrades the general performance of the driving gate.

15. Power supply current (ICC), and therefore power dissipa-
tion (PD), of a TTL device depends on the number of out-
puts in the device that are HIGH or LOW. PD � VCC ICC �

VCC ��
n

n
H
� ICCH � �

n

n
L
� ICCL� for a device with n outputs, nH of

which are HIGH and nL of which are LOW.
16. CMOS devices draw most current from the power supply

when its outputs are switching and very little when they are
static. Power dissipation of a high-speed CMOS device with
n outputs has a static and a dynamic component, given by:

PD � (CL � CPD)V2
CC f � �

VCC

n

ICC
�

At high frequencies (�1 MHz), the quiescent current
can be neglected.

17. Noise margin is a measure of the noise voltage that can be
tolerated by a logic device input. In the HIGH state, it is
given by VNH � VOH � VIH. In the LOW state, it is given by
VNL � VIL � VOL. CMOS devices generally have higher
noise margins than TTL.

18. When interfacing two devices from different logic families,
the driving gate must satisfy the voltage and current require-
ments of the load gates.

19. Input current in a CMOS gate is very low, due to its high in-
put impedance. Thus, fanout is generally not a problem with
CMOS loads.

20. CMOS devices that have the same values of VIH and VIL as
TTL are considered to be TTL compatible, since they can be
driven directly by TTL drivers.

21. A 74HC or 74HCT device can drive 10 LSTTL loads di-
rectly. To calculate fanout, we use the output currents for
which the driving gate output voltages are defined.

22. A 74LS device can drive one or more 74HC devices, pro-
vided each 74HC input has a pull-up resistor (about 1 k� to
10 k�) to supply sufficient voltage in the HIGH state.

23. A 74LS device can drive one or more 74HCT inputs directly.
24. Low-voltage CMOS (e.g., 74LVX or 74LCX) can be driven

directly by a TTL device if the CMOS device is operated
with a 3.3 V power supply. Noise margins are too small for a
low-voltage CMOS driver to drive TTL loads.

25. 74HC or 74HCT gates can be operated at a low value of VCC

(e.g., 3 volts) and interfaced to a higher-voltage driver by an
inverting or noninverting buffer, such as the 74HC4049 or
74HC4050. The interface buffer can tolerate relatively high
input voltages (up to 15 V) and, if it shares the same supply
voltage as the load gate, can provide correct input voltages to
the load.

26. A bipolar transistor with a grounded emitter acts as an in-
verter or a digital switch. A HIGH at the base causes the tran-
sistor to conduct, pulling the collector to near-ground poten-
tial. If there is a pull-up resistor on the collector, there will be
a HIGH state at the collector when the base is LOW.

27. The simplest TTL input is a transistor with its base con-
nected to VCC through a resistor. It can be treated as two
diodes, back-to-back.

28. A TTL LOW input forward-biases the base-emitter junction
of the input transistor, supplying a path to ground for input
current.

29. A TTL HIGH input reverse-biases the base-emitter junction
of the input transistor and forward-biases its base-collector
junction. Input current in the HIGH state is restricted to re-
verse leakage current through the base-emitter junction.

30. An open TTL input is equivalent to a HIGH, as it provides no
path to ground.

31. Some types of TTL gates, such as NAND, have multiple-
emitter input transistors. Any one input LOW acts as a LOW
for the whole circuit.

32. Other TTL gates, such as NOR, have separate transistors for
each input. Any HIGH input acts as a HIGH for the whole
circuit.

33. An open-collector output has one output transistor that
switches on a path to ground (logic LOW) when it is turned
on. There is no separate internal circuit for a HIGH output.
This must be provided by an external pull-up resistor.

34. Open-collector outputs can be used to parallel outputs
(wired-AND), drive high-current loads, or interface to a cir-
cuit with a different power supply voltage than the driving
gate.

35. A totem pole output has a transistor that switches on for a
LOW output and another that switches on for a HIGH output.
These output transistors are always in opposite states, except
briefly during times when the output is changing states.

36. Totem pole outputs generate noise spikes on the power line
of a circuit when they switch between logic states. These

Summary 557

558 C H A P T E R 1 1 • Logic Gate Circuitry

spikes can be amplified by inductance of the power line. De-
coupling capacitors placed close to each device help mini-
mize this problem.

37. TTL outputs should never be connected together, as they can
be damaged when the outputs are in opposite states. (Too
much output current flows.) The logic level under such con-
ditions is not certain.

38. Gates with tristate outputs can generate logic LOW, logic
HIGH, or high-impedance states. A high-impedance state is
like an open circuit or electrical disconnection of the gate
output from the circuit. In this state, both HIGH- and LOW-
state output transistors are off.

39. The operation of a tristate output is controlled by the state of
a control input. In one control state, the output is either
HIGH or LOW. In the opposite control state, the output is in
the high-impedance state.

40. CMOS (complementary MOS) devices are based on n-
channel and p-channel MOSFETs (metal-oxide-semiconduc-
tor field effect transistors).

41. A MOSFET consists of a silicon substrate of a particular
type of silicon (e.g., p-type), embedded with wells of the op-
posite type (e.g., n-type) that form the drain and source re-
gions of the MOSFET. A gate electrode can bias the substrate
to create a conduction channel between drain and source.

42. An n-channel enhancement mode MOSFET is biased on
when its gate voltage exceeds its source voltage by a given
amount called the threshold voltage.

43. A p-channel enhancement mode MOSFET is biased on when
its gate voltage is less than its source voltage by a given
amount called the threshold voltage.

44. An n-channel and p-channel MOSFET can be connected in
such a way that one of the pair of MOSFETs is always on
and one is always off. This connection is called a comple-
mentary pair and forms the basis for CMOS logic.

45. Logic functions, such as NAND and NOR, can be imple-
mented with a complementary pair of MOSFETs for each in-
put, with the MOSFETs in series or parallel to VCC or
ground, as required.

46. Many TTL families have been designed to incorporate
Schottky barrier diodes, which limit the saturation of their
transistors, allowing faster internal and output switching
speeds.

47. Metal-gate CMOS has been superceded by high-speed
(silicon-gate) CMOS, which has a smaller MOSFET size, re-
sulting in faster switching and lower gate capacitance.

48. Speed-power product is a measure of the energy used by a
gate. More advanced logic families have smaller values of
speed-power product.

G L O S S A R Y

CMOS Complementary metal-oxide semiconductor. A logic
family based on the switching of n- and p-channel metal-oxide-
semiconductor field effect transistors (MOSFETs).

Cutoff mode The operating mode of a transistor when there is
no collector or drain current flowing and the path from collector
to emitter or drain to source is effectively an open circuit

Driving gate A gate whose output supplies current to the in-
puts of other gates.

ECL Emitter coupled logic. A high-speed logic family based
on bipolar transistors.

Enhancement-mode MOSFET A MOSFET which creates a
conduction path (a channel) between its drain and source termi-
nals when the voltage between gate and source exceeds a speci-
fied threshold level.

Fanout The number of gate inputs that a gate output is capable
of driving without possible logic errors.

Floating An undefined logic state, neither HIGH nor LOW.

High-speed (silicon-gate) CMOS A CMOS logic family with
a smaller device structure and thus higher speed than standard
(metal-gate) CMOS.

ICC Total supply current in a TTL or high-speed CMOS de-
vice.

ICCH TTL supply current with all outputs HIGH.

ICCL TTL supply current with all outputs LOW.

IDD CMOS supply current under static (nonswitching) condi-
tions.

IIH Current measured at a device input when the input is
HIGH.

IIL Current measured at a device input when the input is LOW.

IOH Current measured at a device output when the output is
HIGH.

IOL Current measured at a device output when the output is
LOW.

IT When referring to CMOS supply current, the sum of static
and dynamic supply currents.

Load gate A gate whose input current is supplied by the out-
put of another gate.

MOSFET Metal-oxide-semiconductor field effect transistor.
A MOSFET has three terminals—gate, source, and drain—
which are analogous to the base, emitter, and collector of a
bipolar junction transistor.

n-channel enhancement-mode MOSFET A MOSFET built
on a p-type substrate with n-type drain and source regions. An
n-type channel is created in the p-substrate during conduction.

Noise Unwanted electrical signal, often resulting from elec-
tromagnetic radiation.

Noise margin A measure of the ability of a logic circuit to
tolerate noise.

n-type inversion layer The conducting layer formed between
drain and source when an enhancement-mode n-channel MOS-
FET is biased ON. Also referred to as the channel.

Ohmic region The MOSFET equivalent of saturation. When
a MOSFET is biased ON, it acts like a relatively low resistance,
or “ohmically.”

Open-collector output A TTL output where the collector of
the LOW-state output transistor is brought out directly to the
output pin. There is no built-in HIGH-state output circuitry
which allows two or more open collector outputs to be con-
nected without possible damage.

Glossary 559

p-channel enhancement-mode MOSFET A MOSFET
built on an n-type substrate with p-type drain and source regions.
During conduction, a p-type channel is created in the
n-substrate.

Phase splitter A transistor in a TTL circuit which ensures that
the LOW- and HIGH-state output transistors of a totem pole out-
put are always in opposite phase (i.e., one ON, one OFF).

Power dissipation The electrical energy used by a logic cir-
cuit in a specified period of time. Abbreviation: PD

Propagation delay The time required for the output of a digi-
tal circuit to change states after a change at one or more of its
inputs.

Saturation mode The operating mode of a bipolar transistor
when an increase in base current will not cause a further in-
crease in the collector current and the path from collector to
emitter is very nearly (but not quite) a short circuit. This is the
ON state of a transistor in a digital circuit.

Schottky barrier diode A specialized diode with a forward
drop of about �0.4 V.

Schottky transistor A bipolar transistor with a Schottky diode
across its base-collector junction, which prevents the transistor
from going into deep saturation.

Schottky TTL A series of unsaturated TTL logic families
based on Schottky transistors. Schottky TTL switches faster than
standard TTL due to decreased storage time in its transistors.

Sinking A terminal on a gate or flip-flop is sinking current
when the current flows into the terminal.

Sourcing A terminal on a gate or flip-flop is sourcing current
when the current flows out of the terminal.

Speed-power product A measure of a logic circuit’s effi-
ciency, calculated by multiplying its propagation delay by its
power dissipation. Unit: picojoule (pJ)

Storage time Time required to transport stored charge away
from the base region of a bipolar transistor before it can turn off.

Substrate The foundation of n- or p-type silicon on which an
integrated circuit is built.

Threshold voltage, VGS(Th) The minimum voltage between
gate and source of a MOSFET for the formation of the conduct-
ing inversion layer (channel).

Totem pole output A type of TTL output with a HIGH and a
LOW output transistor, only one of which is active at any time.

tpHL Propagation delay when the device output is changing
from HIGH to LOW.

tpLH Propagation delay when the device output is changing
from LOW to HIGH.

Tristate output An output having three possible states: logic
HIGH, logic LOW, and a high-impedance state, in which the
output acts as an open circuit.

TTL Transistor-transistor logic. A logic family based on bipo-
lar transistors.

TTL Compatible Able to be driven directly by a TTL output.
Usually implies voltage compatibility with TTL.

VCC Supply voltage for TTL and high-speed CMOS devices.

VDD Metal-gate CMOS supply voltage.

VIH Voltage level required to make the input of a logic circuit
HIGH.

VIL Voltage level required to make the input of a logic circuit
LOW.

VOH Voltage measured at a device output when the output is
HIGH.

VOL Voltage measured at a device output when the output is
LOW.

Wired-AND A connection where open-collector outputs of
logic gates are wired together. The logical effect is the ANDing
of connected functions.

P R O B L E M S

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 11.1 Electrical Characteristics of Logic Gates

11.1 Briefly list the advantages and disadvantages of TTL,
CMOS, and ECL logic gates.

Section 11.2 Propagation Delay

11.2 Explain how propagation delay is measured in TTL de-
vices and CMOS devices. How do these measurements
differ?

11.3 Figure 11.65 shows the input and output waveforms of a
logic gate. Use the graph to calculate tpHL and tpLH.

11.4 The inputs of the logic circuit in Figure 11.66 are in state
1 in the following table. The inputs change to state 2, then
to state 3.

A B C
State 1 1 0 1
State 2 0 0 1
State 3 0 0 0

a. Draw a timing diagram that uses the above changes of
input state to illustrate the effect of propagation delay
in the circuit.

b. Calculate the maximum time it takes for the output
to change when the inputs change from state 1 to
state 2.

c. Calculate the maximum time it takes for the output
to change when the inputs change from state 2 to
state 3.

560 C H A P T E R 1 1 • Logic Gate Circuitry

11.5 Repeat Problem 11.4 , parts b and c, for a 74HC00
NAND and a 74HC02 NOR gate.

Section 11.3 Fanout

11.6 Calculate the maximum number of low-power Schottky
TTL loads (74LSNN series) that a 74S86 XOR gate can
drive.

11.7 What is the maximum number of 74S32 OR gates that a
74LS00 NAND gate can drive?

11.8 What is the maximum number of 74LS00 NAND gates
that a 74S32 OR gate can drive?

11.9 An LSTTL gate is driving seven LSTTL gate inputs, each
equivalent to the load presented by a 74LS00 NAND in-
put. Calculate the source and sink currents required from
the driving gate.

11.10 Calculate the current values for the circuits shown in Fig-
ure 11.67. For each circuit, state the logic level at the out-
put of gate 1.

FIGURE 11.65
Problem 11.3
Waveforms

FIGURE 11.66
Problems 11.4 and 11.5
Logic Circuit

I1

3

I2

I3

I4

I5

I6

2
1

4

5

6

I1

3

I2

I3

I4

I5

I6

2
1

4

5

6

NAND: 74LS00
NOR : 74LS02
XOR : 74LS86A

FIGURE 11.67
Problem 11.10
Current Calculations

Problems 561

Section 11.4 Power Dissipation

11.11 The circuit in Figure 11.68 is constructed from the
gates of a 74LS08 AND device. Calculate the power
dissipation of the circuit for the following input logic
levels:

A B C D E
a. 0 0 0 0 0
b. 1 1 0 1 1
c. 1 1 1 1 0
d. 1 1 1 1 1

Calculate the maximum total power dissipation of the
circuit when its input state is ABCDE � 01100. Include
all unused gates. (Connect unused gate inputs so that they
will dissipate the least amount of power.)

11.15 a. Calculate the no-load power dissipation of a single
gate at 1 MHz for a 74HC00A quad 2-input
NAND gate (VCC � 5 V). (Neglect quiescent
current.)

b. Calculate the percent change in power dissipation if
the gate in part a of this question is operated with a
new value of VCC � 3.3 V. (f � 1 MHz)

Section 11.5 Noise Margin

11.16 Calculate the maximum noise margins, in both HIGH and
LOW states, of:

a. A 74S00 NAND gate

b. A 74LS00 NAND gate

c. A 74AS00 NAND gate

d. A 74ALS00 NAND gate

e. A 74HC00 NAND gate (VCC � 5 V)

f. A 74HCT00 NAND gate (VCC � 5 V)

Section 11.6 Interfacing TTL and CMOS Gates

11.17 Why can an LSTTL gate drive a 74HCT gate directly, but
not a 74HC? Show calculations.

11.18 Draw a circuit that allows an LSTTL gate to drive a
74HC gate. Explain briefly how it works.

11.19 How many LSTTL loads (e.g., 74LS00) can a 74HC00A
NAND gate drive? Use data sheet parameters to
support your answer. Assume VCC � 4.5 V. Show all
calculations.

Section 11.7 Internal Circuitry of TTL Gates

11.20 In what logic state is an open TTL input? Why?

11.21 Briefly describe the operation of the TTL open-collector
inverter shown in Figure 11.20. What is the purpose of
the diode?

11.22 Briefly explain the operation of a multiple-emitter input
transistor used in a TTL NAND gate. Describe how the
transistor responds to various combinations of HIGH and
LOW inputs.

11.23 Draw a wired-AND circuit consisting of three open-
collector NAND gates and an output pull-up resistor. The
gate inputs are as follows:

Gate 1: Inputs A, B
Gate 2: Inputs C, D
Gate 3: Inputs E, F

Write the Boolean function of the circuit output.

11.24 Calculate the minimum value of the pull-up resistor if the
circuit drawn in Problem 11.23 is to drive a logic gate
having input current IIL � 0.8 mA and the NAND gates
can sink 12 mA in the LOW output state. (Assume that
VOL � 0.4 V.)

FIGURE 11.68
Problems 11.11 to 11.13
Logic Circuit

11.12 The gate outputs in Figure 11.68 are switching at an aver-
age frequency of 100 kHz, with an average duty cycle of
60%. Calculate the power dissipation if the gates are all
74S08 AND gates.

11.13 The gates in Figure 11.68 are 74HC08A high-speed
CMOS gates.

a. Calculate the power dissipation of the circuit if the in-
put state is ABCDE � 010101. (VCC � 4.5 V, TA �
25°C)

b. Calculate the circuit power dissipation if the outputs
are switching at a frequency of 10 kHz, 50% duty
cycle.

c. Repeat part b for a frequency of 2 MHz.

11.14 The circuit in Figure 11.69 consists of two 74LS00
NAND gates (gates 4 and 5) and three 74LS02 NOR
gates (gates 1, 2, and 3). When this circuit is actually
built, there will be two unused NAND gates and one un-
used NOR gate in the device packages.

FIGURE 11.69
Problem 11.14
Logic Circuit

562 C H A P T E R 1 1 • Logic Gate Circuitry

11.25 Draw a circuit consisting only of open-collector gates
whose Boolean expression is the product-of-sums
expression

(A � B)(C � D)(E � F)(G � H).

11.26 Is an open-collector TTL output likely to be damaged if
shorted to ground? Why or why not?

11.27 Is an open-collector TTL output likely to be damaged if
shorted to VCC? Why or why not?

11.28 Draw the totem pole output of a standard TTL gate.

11.29 Refer to the TTL NAND gate in Figure 11.34.

a. Why are Q3 and Q4 never on at the same time
(ideally)?

b. How does switching noise originate in a totem pole
output? How can the problem be controlled?

11.30 Explain briefly why two totem pole outputs should not be
connected together.

11.31 Two LED driver circuits are shown in Figure 11.70.
For each circuit, calculate the current flowing when
the LED is ON. Calculate the ratio between the LED
ON current and IOL or IOH of the inverter, whichever
is appropriate for each circuit. State which is the
best connection for LED driving and explain
why.

Section 11.8 Internal Circuitry of CMOS Gates

11.33 State several precautions that should be taken to prevent
electrostatic damage to MOSFET circuits.

11.34 a. Draw the circuit symbols for an n-channel and a p-
channel enhancement-mode MOSFET.

b. Describe the required bias conditions for each type of
MOSFET in the cutoff and ohmic regions.

c. State the approximate channel resistance for a MOS-
FET in the cutoff and ohmic regions.

11.35 Draw the circuit diagram of a CMOS AND gate.
Derive the truth table of the gate by analyzing the
operation of all the transistors under all possible input
conditions.

11.36 Repeat Problem 11.35 for a CMOS OR gate.

11.37 Figure 11.72 shows a circuit that can switch two
analog signals to an automotive speedometer/tachometer.
Each sensor produces an analog voltage proportional
to its measured quantity. Briefly explain how these
analog signals are switched to the display output
circuitry.

Section 11.9 TTL and CMOS Variations

11.38 Briefly explain how a Schottky barrier diode can improve
the performance of a transistor in a TTL circuit.

11.39 Is the speed-power product of a TTL gate affected by the
switching frequency of its output? Explain.

11.40 Use data sheets to calculate the speed-power products of
the following gates:

a. 74LS00

b. 74S00

c. 74ALS00

d. 74AS00

e. 74HC00A (quiescent and 10 MHz)

f. 74HCT00A (quiescent and 10 MHz)

g. 74F00

330

Vf � 2 V

�

�

74LS04

Vcc

330

Vf � 2 V

�

�

74LS04

� �

FIGURE 11.70
Problem 11.31
LED drivers

LAMP
690

� 24 V

FIGURE 11.71
Problem 11.32
Lamp Driver

11.32 Calculate the current flowing when the lamp in Figure
11.71 is illuminated. Choose one of the following devices
as a suitable driver: 74LS04, 74LS05 74LS06, 74LS16.
Explain your choice. (Data sheets for these devices are
found in Appendix C.)

Answers to Section Review Problems 563

Section 11.1

11.1 VOH � 2.7 V min. (We cannot expect typical values for
VOH.) IOH � �0.4 mA (The negative sign indicates that
the current is leaving the gate. See Figure 11.2.)

Section 11.2

11.2 tpHL1 � tpHL2 � 20 ns � 22 ns � 42 ns; tpLH2 � 22 ns

Section 11.3

11.3 Source currents: IOH, IIL; sink currents: IOL, IIH

Section 11.4

11.4 CMOS draws very little current when its outputs are not
switching. Since the majority of current is drawn when the
outputs switch, the more often the outputs switch, the more
current is drawn from the supply. This is the same as say-
ing that power dissipation increases with frequency.

Section 11.5

11.5 VNH � 1.98 V, VNL � 0.66 V

Section 11.6

11.6 2.5 V. The interface buffer and load should have the same
supply voltage so that the output voltage of the buffer and
input voltage of the load are compatible.

Section 11.7a

11.7 a. Provision of logic HIGH when output transistor is OFF
b. Limitation of IOL when output transistor is ON

Section 11.7b

11.8 Rext � 592 �. Minimum standard value: 680 �

Section 11.7c

11.9 When the output is HIGH, current flows to ground through
a low-impedance path, causing IOH to exceed its rating.

FIGURE 11.72
Problem 11.37
Speedometer/Tachometer Switching Circuit

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

11.41 Briefly explain the differences among the following high-
speed CMOS logic families: 74HCNN, 74HC4NNN,
74HCTNN, and 74HCUNN.

11.42 Assume that the power dissipation of a metal-gate or
high-speed CMOS gate increases in proportion to the
switching frequency of its output. Calculate the speed-

power product of the following gates at 2 MHz, 5 MHz,
and 10 MHz:

a. 4011B

b. 74HCT04

c. 74HCU04

564 C H A P T E R 1 1 • Logic Gate Circuitry

Section 11.7d

11.10 The diode allows the base of Q4 to be pulled LOW through
G, but will not allow a HIGH at G to turn it on. This keeps
both output transistors OFF in the high-impedance state
and allows them to be in opposite states when the output is
enabled.

Section 11.7e

11.11 Noninverting gates are actually double-inverting gates.
They require an extra transistor stage to cancel the inver-
sion introduced by NAND or NOR transistor logic.

Section 11.8a

11.12 The thin oxide layer in the gate region can be damaged by
overvoltage, such as that caused by electrostatic dis-

charge. If the oxide layer is damaged, it may no longer in-
sulate the gate terminal from the MOSFET substrate,
which causes the transistor to malfunction.

Section 11.8b

11.13 It allows complementary operation with an n-channel
MOSFET. Specifically, a gate voltage of 0 V turns OFF
an n-channel device having a grounded source. The same
voltage turns ON the p-channel device whose source is
tied to VCC. It does so by making the p-channel gate-
source voltage more negative than the required threshold.

Section 11.9

11.14 13.36 pJ, 33.4 pJ, and 66.8 pJ.

565

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 12

Interfacing Analog
and Digital Circuits

O U T L I N E

12.1 Analog and Digital
Signals

12.2 Digital-to-Analog
Conversion

12.3 Analog-to-Digital
Conversion

12.4 Data Acquisition

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Define the terms “analog” and “digital” and give examples of each.

• Explain the sampling of an analog signal and the effects of sampling fre-
quency and quantization on the quality of the converted digital signal.

• Draw the block diagram of a generic digital-to-analog converter (DAC) and
circuits of a weighted resistor DAC and an R-2R ladder DAC.

• Calculate analog output voltages of a DAC, given a reference voltage and a
digital input code.

• Configure an MC1408 integrated circuit DAC for unipolar and bipolar out-
put, and calculate output voltage from known component values, reference
voltage, and digital inputs.

• Describe important performance specifications of a digital-to-analog
converter.

• Draw the circuit for a flash analog-to-digital converter (ADC) and briefly
explain its operation.

• Define “quantization error” and describe its effect on the output of an ADC.

• Explain the basis of the successive approximation ADC, draw its block dia-
gram, and briefly describe its operation.

• Describe the operation of an integrator with constant input voltage.

• Draw the block diagram of a dual slope (integrating) ADC and briefly ex-
plain its operation.

• Explain the necessity of a sample and hold circuit in an ADC and its
operation.

• State the Nyquist sampling theorem and do simple calculations of maxi-
mum analog frequencies that can be accurately sampled by an ADC
system.

• Describe the phenomenon of aliasing and explain how it arises and how it
can be remedied.

• Interface an ADC0808 analog-to-digital converter to a CPLD-based state
machine.

• Design a 4-channel data acquisition system, including an ADC0808 analog-
to-digital converter and a CPLD-based state machine.

566 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Electronic circuits and signals can be divided into two main categories: analog and dig-
ital. Analog signals can vary continuously throughout a defined range. Digital signals

take on specific values only, each usually described by a binary number.
Many phenomena in the world around us are analog in nature. Sound, light, heat, po-

sition, velocity, acceleration, time, weight, and volume are all analog quantities. Each of
these can be represented by a voltage or current in an electronic circuit. This voltage or cur-
rent is a copy, or analog, of the sound, velocity, or whatever.

We can also represent these physical properties digitally, that is, as a series of num-
bers, each describing an aspect of the property, such as its magnitude at a particular time.
To translate between the physical world and a digital circuit, we must be able to convert
analog signals to digital and vice versa.

We will begin by examining some of the factors involved in the conversion between
analog and digital signals, including sampling rate, resolution, range, and quantization.

We will then examine circuits for converting digital signals to analog, since these have
a fairly standard form. Analog-to-digital conversion has no standard method. We will study
several of the most popular: simultaneous (flash) conversion, successive approximation,
and dual slope (integrating) conversion.

12.1 Analog and Digital Signals

Continuous Smoothly connected. An unbroken series of consecutive values with
no instantaneous changes.

Discrete Separated into distinct segments or pieces. A series of discontinuous
values.

Analog A way of representing some physical quantity, such as temperature or ve-
locity, by a proportional continuous voltage or current. An analog voltage or current
can have any value within a defined range.

Digital A way of representing a physical quantity by a series of binary numbers.
A digital representation can have only specific discrete values.

Analog-to-digital converter A circuit that converts an analog signal at its input
to a digital code. (Also called an A-to-D converter, A/D converter, or ADC.)

Digital-to-analog converter A circuit that converts a digital code at its input to
an analog voltage or current. (Also called a D-to-A converter, D/A converter, or
DAC.)

Electronic circuits are tools to measure and change our environment. Measurement instru-
ments tell us about the physical properties of objects around us. They answer questions
such as “How hot is this water?”, “How fast is this car going?”, and “How many electrons
are flowing past this point per second?” These data can correspond to voltages and currents
in electronic instruments.

If the internal voltage of an instrument is directly proportional to the quantity being
measured, with no breaks in the proportional function, we say that it is an analog voltage.
Like the property being measured, the voltage can vary continuously throughout a defined
range.

For example, sound waves are continuous movements in the air. We can plot these
movements mathematically as a sum of sine waves of various frequencies. The patterns of
magnetic domains on an audio tape are analogous to the sound waves that produce them
and electromagnetically represent the same mathematical functions. When the tape is
played, the playback head produces a voltage that is also proportional to the original sound
waves. This analog audio voltage can be any value between the maximum and minimum
voltages of the audio system amplifier.

K E Y T E R M S

12.1 • Analog and Digital Signals 567

If an instrument represents a measured quantity as a series of binary numbers, the rep-
resentation is digital. Since the binary numbers in a circuit necessarily have a fixed num-
ber of bits, the instrument can represent the measured quantities only as having specific
discrete values.

A compact disc stores a record of sound waves as a series of binary numbers. Each
number represents the amplitude of the sound at a particular time. These numbers are de-
coded and translated into analog sound waves upon playback. The values of the stored
numbers (the encoded sound information) are limited by the number of bits in each stored
digital “word.”

The main advantage of a digital representation is that it is not subject to the same dis-
tortions as an analog signal. Nonideal properties of analog circuits, such as stray induc-
tance and capacitance, amplification limits, and unwanted phase shifts, all degrade an ana-
log signal. Storage techniques, such as magnetic tape, can also introduce distortion due to
the nonlinearity of the recording medium.

Digital signals, on the other hand, do not depend on the shape of a waveform to pre-
serve the encoded information. All that is required is to maintain the integrity of the logic
HIGHs and LOWs of the digital signal. Digital information can be easily moved around in
a circuit and stored in a latch or on some magnetic or optical medium. When the informa-
tion is required in analog form, the analog quantity is reproduced as a new copy every time
it is needed. Each copy is as good as any previous one. Distortions are not introduced be-
tween copy generations, as is the case with analog copying techniques, unless the con-
stituent bits themselves are changed.

Digital circuits give us a good way of measuring and evaluating the physical world,
with many advantages over analog methods. However, most properties of the physical
world are analog. How do we bridge the gap?

We can make these translations with two classes of circuits. An analog-to-digital con-
verter accepts an analog voltage or current at its input and produces a corresponding digi-
tal code. A digital-to-analog converter generates a unique analog voltage or current for
every combination of bits at its inputs.

Sampling an Analog Voltage

Sample An instantaneous measurement of an analog voltage, taken at regular
intervals.

Sampling frequency The number of samples taken per unit time of an analog
signal.

Quantization The number of bits used to represent an analog voltage as a digital
number.

Resolution The difference in analog voltage corresponding to two adjacent digi-
tal codes. Analog step size.

Before we examine actual D/A and A/D converter circuits, we need to look at some of
the theoretical issues behind the conversion process. We will look at the concept of
sampling an analog signal and discover how the sampling frequency affects the accuracy
of the digital representation. We will also examine quantization, or the number of bits in
the digital representation of the analog sample, and its effect on the quality of a digital sig-
nal.

Figure 12.1 shows a circuit that converts an analog signal (a sine pulse) to a series of
4-bit digital codes, then back to an analog output. The analog input and output voltages are
shown on the two graphs.

There are two main reasons why the output is not a very good copy of the input. First,
the number of bits in the digital representation is too low. Second, the input signal is not

K E Y T E R M S

568 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

sampled frequently enough. To help us understand the effect of each of these factors, let us
examine the conversion process in more detail.

The analog input signal varies between 0 and 8 volts. This is evenly divided into 16
ranges, each corresponding to a 4-bit digital code (0000 to 1111). We say that the signal is
quantized into 4 bits. The resolution, or analog step size, for a 4-bit quantization is 8 V/16
steps � 0.5 V/step. Table 12.1 shows the codes for each analog range.

FIGURE 12.1
Analog Input and Output Signals

Table 12.1 4-bit Digital Codes
for 0 to 8 V Analog Range

Analog Voltage Digital Code

0.00–0.25 0000
0.25–0.75 0001
0.75–1.25 0010
1.25–1.75 0011
1.75–2.25 0100
2.25–2.75 0101
2.75–3.25 0110
3.25–3.75 0111
3.75–4.25 1000
4.25–4.75 1001
4.75–5.25 1010
5.25–5.75 1011
5.75–6.25 1100
6.25–6.75 1101
6.75–7.25 1110
7.25–8.00 1111

12.1 • Analog and Digital Signals 569

The analog input is sampled and converted at the beginning of each time division on
the graph. The 4-bit digital code does not change until the next conversion, 1 ms later.
This is the same as saying that the system has a sampling frequency of 1 kHz (f � 1/T �
1/(1 ms) � 1 kHz).

Table 12.2 shows the digital codes for samples taken from t � 0 to t � 18 ms. The ana-
log voltages in Table 12.2 are calculated by the formula

Vanalog � 8 V sin (t � (10°/ms))

For example at t � 2 ms, Vanalog � 8 V sin (2 ms � (10°/ms)) � 8 V sin (20°) � 2.736 V.
The calculated analog values are compared to the voltage ranges in Table 12.1 and as-

signed the appropriate code. The value 2.736 V is between 2.25 V and 2.75 V and therefore
is assigned the 4-bit value of 0101.

Table 12.2 4-bit Codes for a Sampled Analog Signal

Time (ms) Analog Amplitude (volts) Digital Code

0 0.000 0000
1 1.389 0011
2 2.736 0101
3 4.000 1000
4 5.142 1010
5 6.128 1100
6 6.928 1110
7 7.518 1111
8 7.878 1111
9 8.000 1111

10 7.878 1111
11 7.518 1111
12 6.928 1110
13 6.128 1100
14 5.142 1010
15 4.000 1000
16 2.736 0101
17 1.389 0011
18 0.000 0000

Table 12.3 8-bit Codes for a Sampled Analog Signal

Time (ms) Analog Amplitude (volts) Digital Code

0 0.000 00000000
1 1.389 00101100
2 2.736 01011100
3 4.000 10000000
4 5.142 10100101
5 6.128 11000010
6 6.928 11011110
7 7.518 11110001
8 7.878 11111100
9 8.000 11111111

10 7.878 11111100
11 7.518 11110001
12 6.928 11011110
13 6.128 11000010
14 5.142 10100101
15 4.000 10000000
16 2.736 01011100
17 1.389 00101100
18 0.000 00000000

The digital-to-analog converter in Figure 12.1 continuously converts the digital codes
to their analog equivalents. Each code produces an analog voltage whose value is the mid-
point of the range corresponding to that code.

For this particular analog waveform, the A/D converter introduces the greatest inaccu-
racy at the peak of the waveform, where the magnitude of the input voltage changes the
least per unit time. There is not sufficient difference between the values of successive ana-
log samples to map them into unique codes. As a result, the output waveform flattens out at
the top.

This is the consequence of using a 4-bit quantization, which allows only 16 differ-
ent analog ranges in the signal. By using more bits, we could divide the analog signal
into a greater number of smaller ranges, allowing more accurate conversion of a signal
having small changes in amplitude. For example, an 8-bit code would give us 256 steps
(a resolution of 8 V/256 � 31.25 mV). This would yield the code assignments shown
in Table 12.3. Note that for an 8-bit code, there is a unique value for every sampled
voltage.

Figure 12.2 shows how different levels of quantization affect the accuracy of a digital
representation of an analog signal. The analog input is a sine wave, converted to digital

570 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

codes and back to analog, as in Figure 12.1. The graphs show the analog input and three
analog outputs, each of which has been sampled 28 times per cycle, but with different
quantizations. The corresponding digital codes range from a maximum negative value of n
0s to a maximum positive value of n 1s for an n-bit quantization (e.g., for a 4-bit quantiza-
tion, maximum negative � 0000, maximum positive � 1111).

The first output signal has an infinite number of bits in its quantization. Even the
smallest analog change between samples has a unique code. This ideal case is not attain-
able, since a digital circuit always has a finite number of bits. We can see from the codes in
Table 12.3 that an 8-bit quantization is sufficient to give unique codes for this waveform.
An infinite quantization implies that the resolution is small enough that each sampled volt-
age can be represented, not only by a unique code, but as its exact value rather than a point
within a range.

The 4-bit and 3-bit quantizations in the next two graphs show progressively worse rep-
resentation of the original signal, especially at the peaks. The change in analog voltage is
too small for each sample to have a unique code at these low quantizations.

Figure 12.3 shows how the digital representation of a signal can be improved by
increasing its sampling frequency. It shows an analog signal and three analog wave-
forms resulting from an analog-digital-analog conversion. All waveforms have infinite
quantization, but different numbers of samples in the analog-to-digital conversion. As
the number of samples decreases, the output waveform becomes a poorer copy of the
input.

In general, the sampling frequency affects the horizontal resolution of the digitized
waveform and the quantization affects the vertical resolution.

FIGURE 12.2
Effect of Quantization

12.2 • Digital-to-Analog Conversion 571

❘❙❚ SECTION 12.1 REVIEW PROBLEM

12.1 An analog signal has a range of 0 to 24 mV. The range is divided into 32 equal steps
for conversion to a series of digital codes. How many bits are in the resultant digital
codes? What is the resolution of the A/D converter?

12.2 Digital-to-Analog Conversion

Full scale The maximum analog reference voltage or current of a digital-to-
analog converter.

Figure 12.4 shows the block diagram of a generalized digital-to-analog converter. Each
digital input switches a proportionally weighted current on or off, with the current for the
MSB being the largest. The second MSB produces a current half as large. The current gen-
erated by the third MSB is one quarter of the MSB current, and so on.

These currents all sum at the operational amplifier’s (op amp’s) inverting input. The
total analog current for an n-bit circuit is given by:

Ia �
bn�12n�1 � � � � � b222 � b121 � b020

Iref
2n

The bit values b0, b1, . . . bn can be only 0 or 1. The function of each bit is to include
or exclude a term from the general expression.

K E Y T E R M

FIGURE 12.3
Effect of Sampling Frequency

572 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

The op amp acts as a current-to-voltage converter. The analysis, illustrated in Figure
12.4b, is the same as for an inverting op amp circuit with a constant input current.

The input impedance of the op amp is the impedance between its inverting (�) and
noninverting (�) terminals. This value is very large, on the order of 2 M�. If this is large
compared to other circuit resistances, we can neglect the op amp input current, Iin.

This implies that the voltage drop across the input terminals is very small; the invert-
ing and noninverting terminals are at approximately the same voltage. Since the noninvert-
ing input is grounded, we can say that the inverting input is “virtually grounded.”

Current IF flows in the feedback loop, through resistor RF. Since Ia � Iin � IF � 0 and
Iin � 0, then IF � Ia. By Ohm’s law, the voltage across RF is given by VF � Ia RF. The feed-
back resistor is connected to the output at one end and to virtual ground at the other. The op
amp output voltage is measured with respect to ground. The two voltages are effectively in
parallel. Thus, the output voltage is the same as the voltage across the feedback resistor,
with a polarity opposite to VF, calculated above.

Va � �VF � �Ia RF

� Iref RF

The range of analog output voltage is set by choosing the appropriate value of RF.

❘❙❚ EXAMPLE 12.1 Write the expression for analog current, Ia, of a 4-bit D/A converter. Calculate values of Ia

for input codes b3b2b1b0 � 0000, 0001, 1000, 1010, and 1111, if Iref � 1 mA.

Solution The analog current of a 4-bit converter is:

Ia �
b3 2

3 � b2 2
2 � b1 21 � b0 2

0

24 Iref

�bn�12n�1 � � � � � b2 2
2 � b1 2

1 � b0 2
0

�����
2n

FIGURE 12.4
Analysis of a Generalized
Digital-to-Analog Converter

12.2 • Digital-to-Analog Conversion 573

�
8b3 � 4b2 � 2b1 � b0 (1 mA)

16

b3b2b1b0 � 0000, Ia �
(0 � 0 � 0 � 0)(1 mA)

� 0
16

b3b2b1b0 � 0001, Ia �
(0 � 0 � 0 � 1)(1 mA)

�
1 mA

� 62.5 �A
16 16

b3b2b1b0 � 1000, Ia �
(8 � 0 � 0 � 0)(1 mA)

�
8

(1 mA) � 0.5 mA
16 16

b3b2b1b0 � 1010, Ia �
(8 � 0 � 2 � 0)(1 mA)

�
10

(1 mA) � 0.625 mA
16 16

b3b2b1b0 � 1111, Ia �
(8 � 4 � 2 � 1)(1 mA)

�
15

(1 mA) � 0.9375 mA
16 16

❘❙❚

Example 12.1 suggests an easy way to calculate D/A analog current. Ia is a fraction of
the reference current Iref. The denominator of the fraction is 2n for an n-bit converter. The
numerator is the decimal equivalent of the binary input. For example, for input b3b2b1b0 �
0111, Ia � (7/16)(Iref).

Note that when b3b2b1b0 � 1111, the analog current is not the full value of Iref, but
15/16 of it. This is one least significant bit less than full scale.

This is true for any D/A converter, regardless of the number of bits. The maximum
analog current for a 5-bit converter is 31/32 of full scale. In an 8-bit converter, Ia cannot ex-
ceed 255/256 of full scale. This is because the analog value 0 has its own code. An n-bit
converter has 2n input codes, ranging from 0 to 2n � 1.

The difference between the full scale (FS) of a digital-to-analog converter and its maxi-
mum output is the resolution of the converter. Since the resolution is the smallest change in
output, equivalent to a change in the least significant bit, we can define the maximum output as
FS � 1 LSB. (As an example, in the case of an 8-bit converter FS � 1 LSB � 255/256 Iref.)

❘❙❚ SECTION 12.2A REVIEW PROBLEM

12.2 Calculate the range of analog voltage of a 4-bit D/A converter having values of
Iref � 1 mA and RF � 10 k�. Repeat the calculation for an 8-bit D/A converter.

Weighted Resistor D/A Converter

Figure 12.5 shows the circuit of a 4-bit weighted resistor D/A converter. The heart of this
circuit is a parallel network of binary-weighted resistors. The MSB has a resistor value of
R. Successive branches have resistor values that double with each bit: 2R, 4R, and 8R. The
branch currents decrease by halves with each descending bit value.

FIGURE 12.5
Weighted Resistor D-to-A
Converter

574 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

The bit inputs, b3, b2, b1, and b0, are either 0 V or Vref. When the corresponding bits are
HIGH, the branch currents are:

I3 � Vref/R

I2 � Vref/2R

I1 � Vref/4R

I0 � Vref/8R

The sum of branch currents gives us the analog current Ia.

We can calculate the analog voltage by Ohm’s law:

V2 � �Ia RF � �Ia (R/2)

� � ��
b

1
3
� � �

b

2
2
� � �

b

4
1
� � �

b

8
0
�� �

V

R
ref
� �

R

2
�

� � ��
b

1
3
� � �

b

2
2
� � �

b

4
1
� � �

b

8
0
�� �

V

2
ref
�

� � ��
b

2
3
� � �

b

4
2
� � �

b

8
1
� � �

1

b

6
0
�� Vref

The choice of RF � R/2 makes the analog output a binary fraction of Vref.

❘❙❚ EXAMPLE 12.2 Calculate the analog voltage of a weighted resistor D/A converter when the binary inputs
have the following values: b3b2b1b0 � 0000, 1000, 1111. Vref � 5 V.

Solution

b3b2b1b0 � 0000

Va � � ��
0
2

� � �
0
4

� � �
0
8

� � �
1
0
6
�� Vref � 0

b3b2b1b0 � 1000

Va � � ��
1
2

� � �
0
4

� � �
0
8

� � �
1
0
6
�� Vref � ��

1
2

� (5 V) � �2.5 V

b3b2b1b0 � 1111

Va � � ��
1
2

� � �
1
4

� � �
1
8

� � �
1
1
6
�� Vref � ��

1
1
5
6
� (5 V) � �4.69 V

❘❙❚

The weighted resistor DAC is seldom used in practice. One reason is the wide range of
resistor values required for a large number of bits. Another reason is the difficulty in ob-
taining resistors whose values are sufficiently precise.

A 4-bit converter needs a range of resistors from R to 8R. If R � 1 k�, then 8R � 8
k�. An 8-bit DAC must have a range from 1 k� to 128 k�. Standard value resistors are
specified to two significant figures; there is no standard 128-k� resistor. We would need to
use relatively expensive precision resistors for any value having more than two significant
figures.

I
b V

R

b V

R

b V

R

b V

R

b b b b V

R

a = + + +

= + + +





3 2 1 0

3 2 1 0

2 4 8

1 2 4 8

 ref ref ref ref

ref

12.2 • Digital-to-Analog Conversion 575

Another DAC circuit, the R-2R ladder, is more commonly used. It requires only two
values of resistance for any number of bits.

❘❙❚ SECTION 12.2B REVIEW PROBLEM

12.3 The resistor for the MSB of a 12-bit weighted resistor D/A converter is 1 k�. What is
the resistor value for the LSB?

R-2R Ladder D/A Converter

Figure 12.6 shows the circuit of an R-2R ladder D/A converter. Like the weighted resistor
DAC, this circuit produces an analog current that is the sum of binary-weighted currents.
An operational amplifier converts the current to a proportional voltage.

FIGURE 12.6
R-2R Ladder DAC

The circuit requires an operational amplifier with a high slew rate. Slew rate is the rate
at which the output changes after a step change at the input. If a standard op amp (e.g.,
741C) is used, the circuit will not accurately reproduce changes introduced by large
changes in the digital input.

The method of generating the analog current for an R-2R ladder DAC is a little
less obvious than for the weighted resistor DAC. As the name implies, the resistor net-
work is a ladder that has two values of resistance, one of which is twice the other. This
circuit is expandable to any number of bits simply by adding one resistor of each value
for each bit.

The analog output is a function of the digital input and the value of the op amp feed-
back resistor. If logic HIGH � Vref, logic LOW � 0 V, and RF � R, the analog output is
given by:

Va � � ��
b

2
3
� � �

b

4
2
� � �

b

8
1
� � �

1

b

6
0
�� Vref

One way to analyze this circuit is to replace the R-2R ladder with its Thévenin equiv-
alent circuit and treat the circuit as an inverting amplifier. Figure 12.7 shows the equivalent
circuit for the input code b3b2b1b0 � 1000.

Figure 12.8a shows the equivalent circuit of the R-2R ladder when b3b2b1b0 � 1000.
All LOW bits are grounded, and the HIGH bit connects to Vref. We can reduce the network
to two resistors by using series and parallel combinations.

The two resistors at the far left of the ladder are in parallel: 2R � 2R � R. This equiva-
lent resistance is in series with another: R � R � 2R. The new resistance is in parallel with
yet another: 2R � 2R � R. We continue this process until we get the simplified circuit
shown in Figure 12.8b.

576 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Next, we find the Thévenin equivalent of the simplified circuit. To find ETh, calculate
the terminal voltage of the circuit, using voltage division.

ETh � �
2R

2
�

R
2R

� Vref � Vref /2

RTh is the resistance of the circuit, as measured from the terminals, with the voltage
source short-circuited. Its value is that of the two resistors in parallel: RTh � 2R � 2R � R.

FIGURE 12.7
Equivalent Circuit for
b3b2b1b0 � 1000

FIGURE 12.8
R-2R Circuit Analysis for
b3b2b1b0 � 1000

12.2 • Digital-to-Analog Conversion 577

The value of the Thévenin resistance of the R-2R ladder will always be R, regard-
less of the digital input code. This is because we short-circuit any voltage sources
when we make this calculation, which grounds the corresponding bit resistors. The
other resistors are already grounded by logic LOWs. We reduce the circuit to a sin-
gle resistor, R, by parallel and series combinations of R and 2R. Figure 12.9 shows
the equivalent circuit.

FIGURE 12.9
Equivalent Circuit for Calculating RTh

On the other hand, the value of ETh will be different for each different binary
input. It will be the sum of binary fractions of the full-scale output voltage, as pre-
viously calculated for the generic DAC.

Similar analysis of the R-2R ladder shows that when b3b2b1b0 � 0100, Va � �Vref/4,
when b3b2b1b0 � 0010, Va � �Vref/8, and when b3b2b1b0 � 0001, Va � �Vref/16.

If two or more bits in the R-2R ladder are active, each bit acts as a separate voltage
source. Analysis becomes much more complicated if we try to solve the network as we did
for one active bit.

There is no need to go through a tedious circuit analysis to find the corresponding ana-
log voltage. We can simplify the process greatly by applying the Superposition theorem.
This theorem states that the effect of two or more sources in a network can be determined
by calculating the effect of each source separately and adding the results.

The Superposition theorem suggests a generalized equivalent circuit of the R-2R lad-
der DAC. This is shown in Figure 12.10. A Thévenin equivalent source and resistance
corresponds to each bit. The source and resistance are switched in and out of the circuit,
depending on whether or not the corresponding bit is active.

N O T E

FIGURE 12.10
Equivalent Circuit of R-2R DAC

578 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

This model is easily expanded. The source for the most significant bit always has the
value Vref/2. Each source is half the value of the preceding bit. Thus, for a 5-bit circuit, the
source for the least significant bit has a value of Vref/32. An 8-bit circuit has an LSB equiv-
alent source of Vref/256.

❘❙❚ EXAMPLE 12.3 A 4-bit DAC based on an R-2R ladder has a reference voltage of 10 volts. Calculate the
analog output voltage, Va, for the following input codes:

a. 0000

b. 1000

c. 0100

d. 1100

Solution

a. Va � �(0/16) Vref � 0 V

b. Va � �(8/16) Vref � �(1/2) Vref � �5 V

c. Va � �(4/16) Vref � �(1/4) Vref � �2.5 V

d. Va � �(12/16) Vref � �(3/4) Vref � �7.5 V

❘❙❚ EXAMPLE 12.4 Calculate the output voltage of an 8-bit DAC based on an R-2R ladder for the following in-
put codes. What general conclusion can be drawn about each code when compared to the
solutions in Example 12.3?

a. 00000000

b. 10000000

c. 01000000

d. 11000000

Solution

a. Va � �(0/256) Vref � 0 V

b. Va � �(128/256) Vref � �(1/2) Vref � �5 V

c. Va � �(64/256) Vref � �(1/4) Vref � �2.5 V

d. Va � �(192/256) Vref � �(3/4) Vref � �7.5 V

In general, a DAC input code consisting of 1 followed by all 0s generates an output
value of 1⁄2 full scale. A code of 01 followed by all 0s yields an output of 1⁄4 full scale. An
output of 11 followed by all 0s generates an output of 3⁄4 full scale.

❘❙❚

❘❙❚ SECTION 12.2C REVIEW PROBLEM

12.4 Calculate Va for an 8-bit R-2R ladder DAC when the input code is 10100001. As-
sume that Vref is 10 V.

MC1408 Integrated Circuit D/A Converter

Multiplying DAC A DAC whose output changes linearly with a change in DAC
reference voltage.

K E Y T E R M

12.2 • Digital-to-Analog Conversion 579

A common and inexpensive DAC is the MC1408 8-bit multiplying digital-to-analog con-
verter. This device also goes by the designation DAC0808. A logic symbol for this DAC is
shown in Figure 12.11.

FIGURE 12.11
MC1408 DAC

The output current, Io, flows into pin 4. Io is a binary fraction of the current flowing
into pin 14, as specified by the states of the digital inputs. Other inputs select the range of
output voltage and allow for phase compensation.

Figure 12.12 shows the MC1408 in a simple D/A configuration. R14 and R15 are ap-
proximately equal. Pin 14 is approximately at ground potential. This implies:

1. That the DAC reference current can be calculated using only Vref (�) and R14 (Iref �
Vref (�)/R14)

2. That R15 is not strictly necessary in the circuit. (It is used primarily to stabilize the cir-
cuit against temperature drift.)

The reference voltage must be set up so that current flows into pin 14 and out of pin 15.
Thus, Vref (�) must be positive with respect to Vref (�). (It is permissible to ground pin 14
if pin 15 is at a negative voltage.)

Io is given by:

Since the output is proportional to Vref (�), we refer to the MC1408 as a multiplying
DAC.

Io should not exceed 2 mA. We calculate the output voltage by Ohm’s law: Vo �
�Io RL. The output voltage is negative because current flows from ground into pin 4.

The open pin on the Range input allows the output voltage dropped across RL to
range from �0.4 V to �5.0 V without damaging the output circuit of the DAC. If the
Range input is grounded, the output can range from �0.4 to �0.55 V. The lower volt-
age range allows the output to switch about four times faster than it can in the higher
range.

I
b b b b b b b b V

Ro = + + + + + + +





+7 6 5 4 3 2 1 0

142 4 8 16 32 64 128 256
ref ()

580 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

❘❙❚ EXAMPLE 12.5 The DAC circuit in Figure 12.12 has the following component values: R14 � R15 �
5.6 k�; RL � 3.3 k�. Vref (�) is �8 V, and Vref (�) is grounded.

Calculate the value of Vo for each of the following input codes: b7b6b5b4b3b2b1b0 �
00000000, 00000001, 10000000, 10100000, 11111111.

What is the resolution of this DAC?

Solution First, calculate the value of Iref.

Iref � Vref (�)/R14

� �8 V/5.6 k� � 1.43 mA

Calculate the output current by using the binary fraction for each code. Multiply �Io

by RL to get the output voltage.

b7b6b5b4b3b2b1b0 � 00000000

Io � 0, Vo � 0

b7b6b5b4b3b2b1b0 � 00000001

Io � (1/256) (1.43 mA) � 5.58 �A

Vo � �(5.58 �A)(3.3 k�) � �18.4 mV

b7b6b5b4b3b2b1b0 � 10000000

Io � (1/2) (1.43 mA) � 714 �A

Vo � �(714 �A)(3.3 k�) � �2.36 V

FIGURE 12.12
MC1408 Configured for
Unbuffered Analog Output

12.2 • Digital-to-Analog Conversion 581

b7b6b5b4b3b2b1b0 � 10100000

Io � � (1/2 � 1/8)(1.43 mA) � (5/8)(1.43 mA) � 893 �A

Vo � �(893 �A)(3.3 k�) � �2.95 V

b7b6b5b4b3b2b1b0 � 11111111

Io � (255/256) (1.43 mA) � 1.42 mA

Vo � �(1.42 mA)(3.3 k�) � �4.70 V

Resolution is the same as the output resulting from the LSB: 18.4 mV/step
❘❙❚

❘❙❚ SECTION 12.2D REVIEW PROBLEM

12.5 The output voltage range of an MC1408 DAC can be limited by grounding the Range
pin. Why would we choose to do this?

Op Amp Buffering of MC1408

The MC1408 DAC will not drive much of a load on its own, particularly when the Range
input is grounded. We can use an operational amplifier to increase the output voltage and
current. This allows us to select the lower voltage range for faster switching while retain-
ing the ability to drive a reasonable load. The output voltage is limited only by the op amp
supply voltages. We use a 34071 high slew rate op amp for fast switching.

Figure 12.13 shows such a circuit. The 0.1-�F capacitor decouples the �5-V supply.
(The manufacturer actually recommends that the �5-V logic supply not be used as a refer-
ence voltage. It doesn’t matter for a demonstration circuit, but may introduce noise that is
unacceptable in a commercial design.) The 75-pF capacitor is for phase compensation.

Vref(�)

Range

Ground

Comp

b3

b6

b7
(5)

R15

b5

b4

b2

b1

b0

VCC VEE

�12 V

�12 V

�12 V

75 pF
�5 V

Vref(�)

0.1 �F

R14B
5 k�

RFB
10 k�

RFA
4.7 k�

R14A
2.7 k�

1 k�

Vref � � 5 V

I0

I0
I0

Va

MC1408

MSB

LSB

�

�

�

�

(6)

(8)

(7)

(9)

(10)

(11)

(12)

(15)

(2)

(1)

(4)(14)

(13)

(16)

(3)

Va
�

�

FIGURE 12.13
DAC With Op Amp Buffering

582 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Va is positive because the voltage drop across RF is positive with respect to the virtual
ground at the op amp (�) input. This feedback voltage is in parallel with (i.e., the same as)
the output voltage, since both are measured from output to ground.

We can develop the formula for the analog voltage, Va, in three stages:

1. Calculate the reference current:

Iref � Vref(�)/R14

2. Determine the binary-weighted fraction of reference current to get DAC output current:

3. Use Ohm’s law to calculate the op amp output voltage:

The resistor values in the above formulae are the total resistances for the correspond-
ing part of the circuit. That is, R14 � R14A � R14B and RF � RFA � RFB. These both con-
sist of a fixed and a variable resistor, which has two advantages: (a) The reference current
and output voltage can be independently adjusted within a specified range by the variable
resistors. (b) The resistances defining the reference and feedback currents cannot go below
a specified minimum value, determined by the fixed resistance, ensuring that excessive
current does not flow into the reference input or the DAC output terminal.

Va can, in theory, be any positive value less than the op amp positive supply (�12 V in
this case). Any attempt to exceed this voltage makes the op amp saturate. The actual max-
imum value, if not the same as the op amp’s saturation voltage, depends on the values of RF

and R14.

❘❙❚ EXAMPLE 12.6 Describe a step-by-step procedure that calibrates the DAC circuit in Figure 12.13 so that it
has a reference current of 1 mA and a full-scale analog output voltage of 10 V, using only
a series of measurements of the analog output voltage. When the procedure is complete,
what are the resistance values in the circuit? What is the range of the DAC?

Solution Since the maximum output of the DAC is 1 LSB less than full scale, we must
indirectly measure the full scale value. We can do so by setting the digital input code to
10000000, which exactly represents the half-scale value of output current, and making ap-
propriate adjustments.

Set the variable feedback resistor to zero so that the output voltage is due only to the
fixed feedback resistor and the feedback current. Measure the output voltage of the circuit
and adjust R14B so that Va � 2.35 volts. Ohm’s law tells us that this sets the feedback cur-
rent to IF � 2.35 V/4.7 k� � 0.5 mA. Since the digital code is set for half scale, Iref � 2 IF

� 1 mA.
Adjust RFB so that the half-scale output voltage is 5.00 V.
After adjustment, R14 � 2.7 k� � 2.3 k� � 5 k� and RF � 4.7 k� � 4.3 k� � 10

k�. In both cases the variable resistors were selected so that their final values are about
half-way through their respective ranges.

The range of the DAC is 0 V to 9.961 V.

(FS � 1 LSB � 10 V � (10 V/256) � 9.961 V)

V I R
R

R
Vo F

F
a ref

digital code

256
= = 









14

I
b b b b b b b b

I

b b b b b b b b V

R

V

R

o = + + + + + + +





= + + + + + + +





= 











7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

14

2 4 8 16 32 64 128 256

2 4 8 16 32 64 128 256

ref

ref

14

refdigital code

256

12.2 • Digital-to-Analog Conversion 583

❘❙❚ EXAMPLE 12.7 Figure 12.14 shows the circuit of an analog ramp (sawtooth) generator built from an
MC1408 DAC, an op amp, and an 8-bit synchronous counter. (A ramp generator has nu-
merous analog applications, such as sweep generation in an oscilloscope and frequency
sweep in a spectrum analyzer.)

CTR DIV 256

Q3

Q6

Q7

Q5

Q4

Q2

Q1

Q0

CLK

Vref(�)

Range

Ground

b3

b6

b7

b5

b4

b2

b1

b0

VCC VEE

�12 V�5 V

Vref(�)

0.1 �F
5 k�

10 k� 4.7 k�
2.7 k�

Vref � � 5 V

I0

Va

MC1408

�

�

�
�

75 pF

FIGURE 12.14
Example 16.5
DAC Ramp Generator

Briefly explain the operation of the circuit and sketch the output waveform. Calculate
the step size between analog outputs resulting from adjacent codes. Assume that the DAC
is set for �6-V output when the input code is 10000000.

Calculate the output sawtooth frequency when the clock is running at 1 MHz.

Solution The 8-bit counter cycles from 00000000 to 11111111 and repeats continu-
ously. This is a total of 256 states.

The DAC output is 0 V for an input code of 00000000 and (12 V � 1 LSB) for a
code of 11111111. We know this because a code of 10000000 always gives an output
voltage of half the full-scale value (6 V � 12 V/2), and the maximum code gives an
output that is one step less than the full-scale voltage. The step size is 12 V/256 steps �
46.9 mV/step. The DAC output advances linearly from 0 to (12 V � 1 LSB) in 256
clock cycles.

Figure 12.15 shows the analog output plotted against the number of input clock cycles.
The ramp looks smooth at the scale shown. A section enlarged 32 times shows the analog
steps resulting from eight clock pulses.

One complete cycle of the sawtooth waveform requires 256 clock pulses. Thus, if
fCLK � 1 MHz, fo � 1 MHz/256 � 3.9 kHz.

(Note that if we do not use a high slew rate op amp, the sawtooth waveform will not
have vertical sides.)

584 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

❘❙❚

Bipolar Operation of MC1408

Many analog signals are bipolar, that is, they have both positive and negative values. We
can configure the MC1408 to produce a bipolar output voltage. Such a circuit is shown in
Figure 12.16.

We can model the bipolar DAC as shown in Figure 12.16b. The amplitude of the
constant-current sink, Io, is set by Vref (�), R14, and the binary value of the digital inputs.
Is is determined by Ohm’s law: Is � Vref (�)/R4.

The output voltage is set by the value of IF:

Va � IF RF � IF (RFA � RFB)

By Kirchhoff’s current law:

Is � IF � Io � 0

or

IF � Io � Is

Thus, output voltage is given by:

Va � (Io � Is)RF � Io RF � Is RF

� ��
b

2
7
� � �

b

4
6
� � �

b

8
5
� � �

1

b

6
4
� � �

3

b

2
3
� � �

6

b

4
2
� � �

1

b

2
1

8
� � �

2

b

5
0

6
�� �

R

R

1

F

4
� Vref � �

R

R
F

4
� Vref

� ��digit

2

a

5

l

6

code
����

R

R

1

F

4
�� Vref � �

R

R
F

4
� Vref

How do we understand the circuit operation from this mathematical analysis?

FIGURE 12.15
Example 12.7
Sawtooth Waveform Output of Circuit in Figure 12.14

12.2 • Digital-to-Analog Conversion 585

The current sink, Io, is a variable element. The voltage source, Vref (�), remains con-
stant. To satisfy Kirchhoff’s current law, the feedback current, IF, must vary to the same de-
gree as Io. Depending on the value of Io with respect to Is, IF can be positive or negative.

We can get some intuitive understanding of the circuit operation by examining several
cases of the equation Va.

FIGURE 12.16
MC1408 as a Bipolar D/A Converter

586 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Case 1: Io � 0. This corresponds to the digital input b7b6b5b4b3b2b1b0 � 00000000. The
output voltage is:

This is the maximum negative output voltage.

Case 2: 0 � Io � Is. The term (Io � Is) is negative, so output voltage is also a negative
value.

Case 3: Io � Is. The output is given by:

Va � (Io � Is)RF � 0

The digital code for this case could be any value, depending on the setting of R14. To set the
zero-crossing to half-scale, set the digital input to 10000000 and adjust R14 for 0 V.

Case 4: Io 	 Is. Since the term (Io � Is) is positive, output voltage is positive. The largest
value of Io (and thus the maximum positive output voltage) corresponds to the input code
b7b6b5b4b3b2b1b0 � 11111111.

The magnitude of the maximum positive output voltage of this particular circuit is 2
LSB less than the magnitude of the maximum negative voltage. Specifically, Va �
(127/128)(RF/R4)(Vref) if R4 � 2R14.

To summarize:

Input Code Output Voltage

00000000 Maximum negative*
10000000 0 V**
11111111 Maximum positive

*As adjusted by RFB

**As adjusted by R14B

Negative Range:

00000000 to 01111111 (128 codes)

Positive Range:

10000001 to 11111111 (127 codes)

Zero:

00000000 (001 code)

256 codes

❘❙❚ EXAMPLE 12.8 Calculate the values to which R14 and RF must be set to make the output of the bipolar
DAC in Figure 12.16 range from �12 V to (�12 V � 2 LSB). Describe the procedure you
would use to set the circuit output as specified.

Confirm that the calculated resistor settings generate the correct values of maximum
and minimum output.

Solution Set R14 so that the DAC circuit has an output of 0 V when input code is
b7b6b5b4b3b2b1b0 � 10000000. We can calculate the value of R14 as follows:

R

R
V

R

R
VF F

2
0

14 4
ref ref− =

V I I R I R
R

R
Va o s F s F

F= − = − = −() ref
4

12.2 • Digital-to-Analog Conversion 587

The first term is set by the value of the input code. Solving for R14, we get:

To set the maximum negative value, set the input code to 00000000 and adjust RFB for
�12 V. RFB � RF � RFA. Solve the following equation for RF:

� �
R

R
F

4
� Vref � �12 V

� �
10

R

k
F

� (5 V) � �12 V

RF � (12 V)(10 k
)/5 V � 24 k

RFB � 24 k
 � 18 k
 � 6 k

Settings

R14 � R4/2 � 5 k� for zero-crossing at half-scale.

RF � 24 k� for output of �12 V.

Check Output Range

For b7b6b5b4b3b2b1b0 � 00000000:

Va � ��
R
0

14
� � �

R
1

4
�� RF Vref � ��

(24
1
k
0

k
)

(5 V)
� � �12 V

For b7b6b5b4b3b2b1b0 � 11111111:

Va � ��25
2
6
5
R
5

14
� � �

R
1

4
�� RF Vref

� ��(256
2
)(
5
5
5

k
)
� � �

10
1
k

�� (24 k
)(5 V) � 11.906 V

(Note: 12 V � 2 LSB � 12 V � (12 V/128) � 12 V � 94 mV � 11.906 V.)

❘❙❚ SECTION 12.2E REVIEW PROBLEM

12.6 Why is the actual maximum value of an 8-bit DAC less than its reference (i.e., its ap-
parent maximum) voltage?

DAC Performance Specifications

A number of factors affect the performance of a digital-to-analog converter. The major fac-
tors are briefly described below.

1

2

1
0

1

2

1
0

1

2

1

2

2 10

14 4

14 4

14 4

14 4

14 4

R R
R V

R R

R R

R R

R R

F−








 =

− =

=

=
= =

 k /2 = 5 k

ref

/ Ω Ω

588 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Monotonicity. The output of a DAC is monotonic if the magnitude of the output voltage
increases every time the input code increases. Figure 12.17 shows the output of a DAC that
increases monotonically and the output of a DAC that does not.

We show the output response of a DAC as a series of data points joined by a straight-
line approximation. One input code produces one voltage, so there is no value that corre-
sponds to anything in between codes, but the straight-line approximation allows us to see a
trend over the whole range of input codes.

Absolute accuracy. This is a measure of DAC output voltage with respect to its expected
value.

Relative accuracy. Relative accuracy is a more frequently used measurement than ab-
solute accuracy. It measures the deviation of the actual from the ideal output voltage as a
fraction of the full-scale voltage. The MC1408 DAC has a relative accuracy of ��

1
2

� LSB �
�0.195% of full scale.

Settling time. The time required for the outputs to switch and settle to within ��
1
2

� LSB
when the input code switches from all 0s to all 1s. The MC1408 has a settling time of 300
ns for 8-bit accuracy, limiting its output switching frequency to 1/300 ns � 3.33 MHz. De-
pending on the value of R4, the output resistor, the settling time of the MC1408 may in-
crease to as much as 1.2 �s when the Range input is open.

Gain error. Gain error primarily affects the high end of the output voltage range. If the
gain of a DAC is too high, the output saturates before reaching the maximum output code.
Figure 12.18 shows the effect of gain error in a 3-bit DAC. In the high gain response, the
last two input codes (110 and 111) produce the same output voltage.

FIGURE 12.17
DAC Monotonicity

0

1/8 FS

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Digital
code

a. Ideal DAC response (monotonically increasing)

1/4 FS

3/8 FS

1/2 FS

5/8 FS

3/4 FS

7/8 FS

FS

Analog output

Straight-line
approximation

0

1/8 FS

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Digital
code

b. Nonmonotonically increasing

1/4 FS

3/8 FS

1/2 FS

5/8 FS

3/4 FS

7/8 FS

FS

Analog output

Output decreases
for increasing input

12.2 • Digital-to-Analog Conversion 589

Linearity error. This error is present when the analog output does not follow a straight-
line increase with increasing digital input codes. Figure 12.19 shows this error. A linearity
error of more than ��

1
2

� LSB can result in a nonmonotonic output. For example, in Figure
12.17b, the transition from 010 to 011 should result in an output change of �1 LSB. In-
stead, it results in a change of ��

1
2

� LSB. This is an error of �1�
1
2

� LSB, resulting in a non-
monotonic output.

In Figure 12.19, the code for 011 has a linearity error of ��
1
2

� LSB and the adjacent code
(100) has a linearity error of ��

1
2

� LSB, yielding a flat output for the two codes. This makes
it impossible to distinguish the value of input code for that analog output value.

0

1/8 FS

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Digital
code

1/4 FS

3/8 FS

1/2 FS

5/8 FS

3/4 FS

7/8 FS

FS

Analog output

Gain too high

"Normal" gain

Saturated output
for high codes

Gain too low
(max. code does
not reach (FS � 1 LSB))

FIGURE 12.18
DAC Gain Errors

0

1/8 FS

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Digital
code

1/4 FS

3/8 FS

1/2 FS

5/8 FS

3/4 FS

7/8 FS

FS

Analog output

Nonlinear
response

Linear
response

� 1/2 LSB

� 1/2 LSB

FIGURE 12.19
DAC Linearity Error

590 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Differential nonlinearity. This specification measures the difference between actual and
expected step size of a DAC when the input code is changed by 1 LSB. An actual step that
is smaller than the expected step can result in a nonmonotonic output.

Offset error. This error occurs when the analog output of a positive-value DAC is not
0 V when the input code is all 0s. Figure 12.20 shows the effect of offset error.

❘❙❚ EXAMPLE 12.9 An 8-bit DAC has an output range of 0 to (�8 volts � 1 LSB). The hexadecimal value of
the input is symbolized by x.

a. What is the value of 1 LSB?

b. Assuming an ideal DAC, what would the output be for a binary input x � C0H?

c. If the DAC has an input of x � 00H and the output voltage is 0.008 V, calculate the off-
set error (OE) of the DAC in LSB and as a percentage of the full scale (FS). Assume no
other errors.

d. If the DAC has an input of x � FFH and the output voltage is 7.98 V, calculate the gain
error (GE) of the DAC in LSB and as a percentage of the full scale (FS). Assume no
other errors.

e. If the DAC output is 4 V for an input x � 80H and the output is 0.015 V for an input of
x � 00H, calculate the linearity error (LE) and offset error (OE) of the DAC in LSB and
as a percentage of the full scale (FS).

Solution

a. 1 LSB � FS/2n � 8 V/28 � 8 V/256 � 31.25 mV

b. C0H � 19210

Va � (code/256) 8 V � (192/256) 8 V � 6 V

alternatively: C0H � 11000000, which corresponds to �
3
4

� FS � 6 V

c. When x � 00H, Va should be 0 V. Therefore, OE � 8 mV.

OE[LSB] � 8 mV/31.25 mV � 0.256 LSB

OE[%FS] � (8 mV/8 V) � 100% FS � 0.1% FS

0

1/8 FS

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

Digital
code

1/4 FS

3/8 FS

1/2 FS

5/8 FS

3/4 FS

7/8 FS

FS

Analog output

Ideal response

Offset
error

Response with
offset error

FIGURE 12.20
DAC Offset Error

12.3 • Analog-to-Digital Conversion 591

d. When x � FFH, Va should be (255/256) 8 V � 7.969 V. GE � 7.98 V � 7.96875 V �
11.25 mV.

GE[LSB] � 11.25 mV/31.25 mV � 0.36 LSB

GE[%FS] � (11.25 mV/8 V) � 100% FS � 0.14% FS

e. Without accounting for other possible errors, the output value for an input of 80H ap-
pears to be correct. However, we find an offset error of 0.015 V that must be subtracted
out of all measured values in the DAC output.

Adjusted value at 80H � 4 V � 0.015 V � 3.985 V. This error is exactly balanced by
the offset error, so both have the same value.

LE[LSB] � OE[LSB] � 15 mV/31.25 mV � 0.48 LSB

LE[%FS] � OE[%FS] � (15 mV/8 V) � 100% FS � 0.188% FS
❘❙❚

12.3 Analog-to-Digital Conversion
We saw in an earlier section of this chapter that all digital-to-analog converters can be de-
scribed by a generic form. This is not true of analog-to-digital converters. There are many
circuits for converting analog signals to digital codes, each with its own advantages. We
will look at several of the most popular.

Flash A/D Converter

Flash converter (or simultaneous converter) An analog-to-digital converter that
uses comparators and a priority encoder to produce a digital code.

Priority encoder An encoder that will produce a binary output corresponding to
the subscript of the highest-priority active input. This is usually defined as the input
with the largest subscript.

Figure 12.21 shows the circuit for a 3-bit flash analog-to-digital converter. The circuit
consists of a resistive voltage divider, seven analog comparators, a priority encoder, and
an output latch array.

The voltage divider has a total resistance of 8R. The resistors are selected to produce
seven equally spaced reference voltages (Vref/16, 3Vref/16, 5Vref/16, . . . 15Vref/16; each is
separated by Vref/8). Each reference voltage is fed to the inverting input of a comparator.

A comparator output goes HIGH if the voltage at its noninverting (�) input is higher
than the voltage at its inverting (�) input. If the (�) input voltage is greater than the (�)
input voltage, the comparator output is LOW.

The analog voltage, Va, is applied to the noninverting inputs of all comparators simul-
taneously. Thus, if the analog voltage exceeds the reference voltage of a particular com-
parator, that comparator switches its output to the HIGH state.

For most analog input values, more than one comparator will have a HIGH output. For
example, the reference voltage of comparator 3 is (5Vref/16). Comparator 4 has a reference
voltage of (7Vref/16). If the analog voltage is in the range (5Vref/16) � Va � (7Vref/16),
comparators 3, 2, and 1 all have HIGH outputs and comparators 4, 5, 6, and 7 all have
LOW outputs.

The priority encoder recognizes that input D3 is the highest-priority active input and
produces the digital code 011 at its outputs. The output latches store this value when the
CLK input is pulsed.

K E Y T E R M S

592 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

We can regularly sample an analog signal by applying a pulse waveform to the CLK
input of the latch circuit. The sampling frequency is the same as the clock frequency.

The D0 input of the priority encoder is grounded, rather than connected to a compara-
tor output. No comparator is needed for this input; if Va � (Vref/16), all comparator outputs
are LOW and the resulting digital code is 000.

Figure 12.22 shows the transfer characteristic of the flash ADC with a reference voltage
of 8 V. The digital steps are centered on the analog voltages that are whole-number fractions
(1/8, 1/4, 3/8, . . . 7/8) of the reference voltage. The transitions are midway between these
points. This is why the resistor for the least significant bit is R/2, rather than R.

FIGURE 12.21
Flash Converter (ADC)

FIGURE 12.22
Transfer Characteristic of Flash
ADC

12.3 • Analog-to-Digital Conversion 593

The general form of this circuit has 2n � 1 comparators for an n-bit output. For exam-
ple, an 8-bit flash converter has 28 � 1 � 255 comparators. For any large number of bits,
the circuit becomes overly complex.

The main advantage of this circuit is its speed. Since the analog input is compared to the
threshold values of all possible input codes at one time, conversion occurs in one clock cycle.

Successive Approximation A/D Converter

Successive approximation register A state machine used to generate a sequence
of closer and closer binary approximations to an analog signal.

Quantization error Inaccuracy introduced into a digital signal by the inability of
a fixed number of bits to represent the exact value of an analog signal.

Probably the most widely used type of analog-to-digital converter is the successive ap-
proximation ADC. The idea behind this type of converter is a technique a computer pro-
grammer would call “binary search.”

The analog voltage to be converted is a number within a defined range. The search
technique works by narrowing down progressively smaller binary fractions of the known
range of numbers.

Suppose we know that the analog voltage is a number between 0 and 255, inclusive.
We can find the binary value of any randomly chosen number in this range in no more than
eight guesses, or approximations, since 28 � 256. Each approximation adds one more bit
to the estimated digital value.

The first approximation determines which half of the range the number is in. The sec-
ond test finds which quarter of the range, the third test which eighth, the fourth test which
sixteenth, and so on until we run out of bits.

❘❙❚ EXAMPLE 12.10 Use a binary search technique to find the value of a number in the range 0 to 255. (The
number is 44.)

Solution

1. The number must be in the upper or lower half of the range. Cut the range in half:

0–127, 128–125.

Is x
 128? No. 0 � x � 128.

2. Cut the remaining range in half: 0–63, 64–127.

Is x
 64? No. 0 � x � 64.

3. Cut the remaining range in half: 0–31, 32–63.

Is x
 32? Yes. 32 � x � 64.

4. Cut the remaining range in half: 32–47, 48–63.

Is x
 48? No. 32 � x � 48.

5. Cut the remaining range in half: 32–39, 40–47.

Is x
 40? Yes. 40 � x � 48.

6. Cut the remaining range in half: 40–43, 44–47.

Is x
 44? Yes. 44 � x � 48.

7. Cut the remaining range in half: 44–45, 46–47.

Is x
 46? No. 44 � x � 46.

8. Cut the remaining range in half: 44–45.

Is x
 45? No. x � 44.
❘❙❚

K E Y T E R M S

594 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

The test criteria for each step in Example 12.10 are phrased so that the answer is al-
ways yes or no. (For example, x
 64? can only be answered yes or no.) Assume that a 1
means yes and a 0 means no. The tests in Example 12.10 give the following sequence of re-
sults: 00101100. The decimal equivalent of this binary number is 44, our original value.

A successive approximation ADC such as the one shown in Figure 12.23 applies a
similar technique. The circuit has three main components: an analog comparator, a digital-
to-analog converter, and a state machine called a successive approximation register
(SAR). The SAR is an 8-bit register whose bits can be set and cleared individually,
according to a specific control sequence and the logic value at the output of the analog
comparator.

When a pulse activates the Start Conversion input, bit Q7 of the SAR is set. This
makes the SAR output 10000000. The DAC converts the SAR output to an analog equiva-
lent. When only the MSB is set, this is one half the reference voltage of the DAC.

The DAC output voltage is compared to an analog input voltage. (In effect, the SAR
asks, “Is this approximation greater or less than the actual analog voltage?”)

If Vanalog 	 VDAC, the comparator output is HIGH and the MSB remains set. Other-
wise, the comparator output is LOW and the MSB is cleared. The process is repeated for
all bits.

After all bits have been set or cleared, the End of Conversion (EOC) output changes
state. This can be used to load the final digital value into an 8-bit latch.

❘❙❚ EXAMPLE 12.11
An 8-bit successive approximation ADC has an analog input voltage of 9.5 V. Describe the
steps the circuit performs to generate an 8-bit digital equivalent value if the DAC in the cir-
cuit has a reference voltage of 12 V.

Solution Figure 12.24 shows the steps the converter performs to generate the 8-bit dig-
ital equivalent of 9.5 V. The conversion process is also summarized in Table 12.4.

FIGURE 12.23
Successive Approximation ADC

12.3 • Analog-to-Digital Conversion 595

FIGURE 12.24
Example 12.11
Successive Approximation A/D Conversion

Table 12.4 8-Bit Successive Approximation Conversion

Accumulated Digital
Bit New Digital Value Analog Equivalent Vanalog
 VDAC? Comparator Output Value

Q7 10000000 6 V Yes 1 10000000
Q6 11000000 9 V Yes 1 11000000
Q5 11100000 10.5 V No 0 11000000
Q4 11010000 9.75 V No 0 11000000
Q3 11001000 9.375 V Yes 1 11001000
Q2 11001100 9.5625 V No 0 11001000
Q1 11001010 9.46875 V Yes 1 11001010
Q0 11001011 9.515625 V No 0 11001010

596 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

The following steps occur for each bit:

1. The bit is set.

2. The digital output is converted to an analog voltage and compared to the actual analog
input.

3. If the analog voltage is greater than the DAC output voltage, the bit remains set. Other-
wise it is cleared.

❘❙❚

There is no exact 8-bit binary value for the analog voltage specified in Example 12.11
(9.5 V). The final answer is within 13 mV, out of 12 V, which is pretty close but not exact.
This difference is called quantization error. The maximum value of quantization error is
��

1
2

� LSB for any ADC, except on the lowest step, where the error is ��
1
2

�, �0 LSB, and on
the highest step, where the error is �1, ��

1
2

� LSB.
As more bits are added to the accumulated digital value, the analog equivalent of the

approximation acquires more decimal places of accuracy. Note that once the analog value
extends beyond the decimal point, the last decimal digit is always 5.

An advantage of a successive approximation ADC is that the conversion time is al-
ways the same, regardless of the analog input voltage. This is not true with all types of ana-
log-to-digital converters. The constant conversion time allows the output to be synchro-
nized so that it can be read at known intervals.

The conversion time can be as few as (n � 1) clock pulses for an n-bit device, if a bit
is set by a clock edge and cleared asynchronously or by the opposite clock edge. Some
SARs require four or more clock pulses per bit.

Dual Slope A/D Converter

Integrator A circuit whose output is the accumulated sum of all previous input
values. The integrator’s output changes linearly with time when the input voltage is
constant.

Dual slope ADC Also called an integrating ADC. An analog-to-digital converter
based on an integrator. The name derives from the fact that during the conversion
process the integrator output changes linearly over time, with two different slopes.

A dual slope analog-to-digital converter is based on an integrator circuit, such as the
one shown in Figure 12.25. The circuit output is proportional to the integral of the input

K E Y T E R M S

FIGURE 12.25
Integrator

12.3 • Analog-to-Digital Conversion 597

voltage as a function of time. Integration with respect to time is the summing of instanta-
neous values of a function over a specified period of time. In other words, the output of an
integrator is the accumulated total of all previous values of input voltage.

We can analyze the circuit without calculus under special conditions, such as when the
input voltage is constant. An integrator is similar to an inverting amplifier and can be ana-
lyzed using similar techniques. Since the input impedance of the op amp is large, there is
very little current flowing into its (�) terminal. Ohm’s law thus implies that there is very
little voltage difference between the (�) and (�) terminals. Since they are at almost the
same potential and the (�) terminal is grounded, we can say that the (�) terminal is “vir-
tually grounded.”

If the input voltage is constant, a DC current, I, flows in R. Since R is connected to the
positive terminal of the input voltage source at one end and virtual ground at the other, the
entire source voltage drops across the resistor. By Ohm’s law,

I � Vin/R

Since the op amp input impedance is large, most current flows into the capacitor,
causing it to charge over time. The current direction defines a polarity for Vc, the capacitor
voltage.

The op amp output voltage is measured with respect to ground. The capacitor is
connected from the op amp output to virtual ground. Therefore, the output voltage,
Vo, is dropped across the capacitor. Notice that the polarities defined for Vo and Vc are
opposite:

Vo � �Vc

The capacitor voltage is determined by the stored charge, Q, and the value of capaci-
tance, C:

Vc � Q/C

The current I is the amount of charge flowing past a given point in a fixed time:

I � Q/t

Thus,

Vc � It/C

and

Vo � �It/C

Substitute the expression for I into this equation to get

Vo � �(t/RC)Vin

The output of an integrator with a constant input changes linearly with time, with a slope

equal to ��
R

V

C
in
�.

This equation describes the change in output voltage due to a constant input. When the
input goes to 0 V, the capacitor holds its charge (ideally forever; in practice until it leaks
away through circuit impedances) and maintains the output voltage at its final value. If a
new input voltage is applied, we can use the integrator equation to calculate the change in
output, which must then be added to the previous value.

❘❙❚ EXAMPLE 12.12 The integrator circuit of Figure 12.25 has the following component values:

C � 0.025 �F, R � 10 k�

Sketch the graph of the output voltage if the waveform shown in the graph of Figure
12.26a is applied to the integrator input. The integrator output is originally at 0 V.

598 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Solution We must examine the graph in two sections:

1. From 0 to 3 ms

2. From 3 to 9 ms

A different constant input voltage is applied for each section of the graph.

0 to 3 ms:

The output at 3 ms is given by:

slope � �
R

V

C
in
� � ��

(0.025�

1

F

V

)(10 k
)
�

� �4 V/ms

Vo(3 ms) � vo(0) � (t/RC) Vin

� 0V � [(3 ms)(�4 V/ms)]

� �12 V

The output changes at a rate of �4 V/ms for 3 ms.

3 to 9 ms:

The output at 9 ms is given by:

slope � �
R

V

C
in
� � ��

(0.02

(

5

�

�

0

F

.5

)(1

V

0

)

k
)
�

� �2 V/ms

FIGURE 12.26
Example 12.12
Integrator Operation

12.3 • Analog-to-Digital Conversion 599

Vo (9 ms) � vo(3 ms) � (t/RC) Vin

� �12 V � [(6 ms)(� 2 V/ms)]

� �12 V � (�12 V)

� 0 V

The output changes at a rate of �2 V/ms for 6 ms. This cancels the effect of the origi-
nal input. ❘❙❚

Figure 12.27 shows the block diagram of an 8-bit dual slope analog-to-digital con-
verter. Integrator output voltages for several input values are shown in Figure 12.28. As-
sume that the integrator has the same R and C values as in Figure 12.25.

FIGURE 12.27
Dual Slope ADC

FIGURE 12.28
Integrator Outputs for Various
Input Voltages

600 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

1. Before conversion starts, an auto-zero circuit sets the comparator output to 0 V by ap-
plying a compensating voltage to the comparator.

2. The input analog voltage causes the integrator output to increase in magnitude, as
shown in the left half of Figure 12.28. As soon as this integrator voltage is nonzero, the
comparator enables a counter via the control logic.

3. When the counter overflows (i.e., recycles to 00000000), the integrator input is
switched from the analog input to �Vref.

4. The reference voltage causes the integrator output to move toward 0 V at a known
rate, as shown in the right half of Figure 12.28. During this rezeroing time, the
counter continues to clock. When the integrator output voltage reaches 0 V, the com-
parator disables the counter. The digital equivalent of the analog voltage is now con-
tained in the counter.

The reason this works is that in the initial integrating phase, the integrator output op-
erates for a known time, producing a final output proportional to the input voltage. In the
second phase, the output moves toward zero at a known rate, reaching zero in a time pro-
portional to the final voltage of the first phase.

For example, assume that the components of the integrator and the clock rate of the
counter are such that a 1-V input corresponds to the full-scale digital output (FS). The
integrator output reaches a value of �12 V in 3 ms. The time required to rezero the in-
tegrator is the same as the initial integrating phase, 3 ms. The counter completes one
cycle in the integrating phase and another cycle in the rezeroing phase, so that its final
value is 00000000. (Note that this is the result obtained when 1 LSB is added to
11111111.)

If the input voltage is 0.25 volts, the integrator output is �3 V after 3 ms (one counter
cycle). Since the integrator always rezeros at the same rate (4 V/ms), the rezeroing time is
0.75 ms, or one fourth of a counter cycle (since 12 V/4 � 3 V). The counter has time to
reach state 01000000 or �

1
4

� FS.
If we attempt to measure a voltage beyond that corresponding to full scale, the inte-

grator output cannot rezero within the second counter cycle. Usually, an output pin on the
ADC activates to show this condition. Some digital multimeters that use dual slope ADCs
show an overvoltage or out-of-range condition by blanking the display, except for a lead-
ing digit 1.

One advantage of a dual slope ADC is its accuracy. One particular dual slope ADC is
accurate to within �0.05% � 1 count. This accuracy is balanced against a relatively slow
conversion time, in the milliseconds, compared to microseconds for a successive approxi-
mation ADC and nanoseconds for a flash converter.

Another advantage is the ability of the integrator to reject noise. If we assume that
noise voltage is random, then it will be positive about half the time and negative about half
the time. Over time it should average out to zero.

As was alluded to above, a common application of this device is as a voltmeter circuit,
where speed is less important than accuracy.

❘❙❚ SECTION 12.3 REVIEW PROBLEMS

12.7 Suppose that the dual slope ADC described above (same component values) has an
input voltage of 0.375 V (3/8 full scale).

a. What is the slope of the integrator voltage during the integrating phase?

b. What is its slope during the rezeroing phase?

c. How much time elapses during the rezeroing phase?

d. What digital code is contained in the output latch after the conversion is
complete?

12.3 • Analog-to-Digital Conversion 601

Sample and Hold Circuit

Sample and hold circuit A circuit that samples an analog signal at periodic inter-
vals and holds the sampled value long enough for an ADC to convert it to a digital
code.

For the sake of analysis, we have been assuming that the analog input voltage of any ana-
log-to-digital converter is constant. This is an actual requirement. Most of these circuits
will not produce a correct digital code if the analog voltage at the input changes during
conversion time.

Unfortunately, most analog signals are not constant. Usually, we want to sample these
signals at periodic intervals and generate a series of digital codes that tells us something
about the way the input signal is changing over time. A circuit called a sample and hold
circuit must be used to bridge the gap between a changing analog signal and a requirement
for a constant ADC input voltage.

Figure 12.29 shows a basic sample and hold circuit. The voltage followers act as
buffers with high input and low output impedances. The transmission gate is enabled
during the sampling period, during which it charges the hold capacitor to the current
value of the analog signal. During the hold period, the capacitor retains its charge,
thus preserving the sampled analog voltage. The high input impedance of the second
voltage follower prevents the capacitor from discharging significantly during the hold
period.

K E Y T E R M

FIGURE 12.29
Sample and Hold Circuit

FIGURE 12.30
Sample and Hold Output

Figure 12.30 shows how a sample and hold circuit produces a steady series of constant
analog voltages for an ADC input. Since these sampled values have yet to be converted to
digital codes, they can take on any value within the analog range; they are not yet limited
by the number of bits in the quantization.

602 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Ideally, a sample and hold circuit should charge quickly in sample mode and discharge
slowly in hold mode. These characteristics are facilitated by the low output impedance and
high input impedance of the voltage follower circuits.

Zo

vanalog vc

�

�

vc

�

�

Zi

b. Hold phasea. Sampling phase

FIGURE 12.31
Equivalent Circuits for Sample-and-Hold Circuit

Figure 12.31 shows the equivalent circuits of the sample and hold modes of the
circuit in Figure 12.29. In sample mode, the capacitor charges through the output im-
pedance, Zo, of the first voltage follower. Since this is a very small value (about 75 �
10�5 �), the capacitor will charge quickly. In the hold mode, the capacitor discharges
slowly through the very high input impedance of the second voltage follower (about
2 � 1011 �).

The input and output impedances of the voltage follower are significantly different
from the open-loop op amp values. This is because, in the voltage follower configu-
ration, the input impedance is divided by the open loop gain (about 75 �/100,000)
and the output impedance is multiplied by the open loop gain (about 2 M� �
100,000).

A variation of the sample and hold circuit is the track and hold circuit. The dif-
ference is not so much in the circuit as in the way it is operated. A sample and hold
circuit is restricted by the charging speed of its hold capacitor. If there is a large
change in signal level between samples, the hold capacitor may not be able to keep
up with the change. A track and hold circuit samples the analog signal continuously,
minimizing charging delays of the hold capacitor. When the analog signal needs to be
converted, the track and hold circuit reverts to hold mode by closing the analog trans-
mission gate. Many high-speed ADCs have a track and hold circuit as an integral part
of the device.

Sampling Frequency and Aliasing

Nyquist sampling theorem A theorem from information theory that states that,
in order to preserve all information in a signal, it must be sampled at a rate of twice
the highest-frequency component of the signal. (fs
 2fmax)

Aliasing A phenomenon that produces an unwanted low-frequency component in
a sampled analog signal due to a sampling frequency that is too slow relative to the
sampled analog signal.

Anti-aliasing filter A low-pass filter with a corner frequency of twice the maxi-
mum frequency of a sampled signal, used to prevent aliasing in an ADC.

K E Y T E R M S

N O T E

12.3 • Analog-to-Digital Conversion 603

In the first section of this chapter, we saw that the sampling frequency of an ADC has a
great effect on the quality of the digital representation of an analog signal. We may ask,
what is the minimum value of the sampling frequency for any particular analog signal and
what happens if this criterion is not met?

A theorem in information theory, called the Nyquist sampling theorem, states that a
periodic signal must be sampled at least twice a cycle to preserve all its information. In
practice, this means that the sampling frequency of a particular system must be twice the
maximum frequency of any signal to be sampled by the system. (These frequencies might
also include harmonics of a signal that add to the basic signal to give it its characteristic
shape.) This can be expressed mathematically as fs
 2fmax for a sampling frequency fs and
a maximum-frequency component of fmax.

For example, the sampling frequency for compact disc audio is 44.1 kHz, which al-
lows signals of up to 22.05 kHz to be sampled accurately. This fits in nicely with the sta-
tistical range of human hearing: 20 Hz–20 kHz. (People who have listened to any amount
of rock music in their youth can probably only get up to 12 kHz.) Telephone-quality sig-
nals are sampled at 8 kHz, yielding a maximum frequency of 4 kHz, which is a bit more
than the classical telephone-line bandwidth of 300 Hz–3300 Hz.

A sampling frequency of an ADC system that does not meet the criterion required by
the Nyquist sampling theorem results in aliasing, a phenomenon that generates a false low-
frequency component of the digital sample.

To get an idea of how aliasing works, let us examine a sine wave with a period of 12 �s
(f � 83.3 kHz), shown in Figure 12.32. If we sampled the signal every 1 �s, we would
capture the values listed in Table 12.5.

t

v

Actual signal
Implied signal (alias)

Sampling pulses

2 39943 5 6 7 8 10 14 3837362928 3534333018 20 2211 12 13 15 16 262524 3117 19 21 23 32271 40

, �s

FIGURE 12.32
Effect of Sampling Too Slowly

The points in Table 12.5 can be used to accurately reconstruct the original sine wave.
(The reconstructed output would need to be filtered to eliminate introduced high-frequency
components, but the fundamental frequency would be correct.)

Suppose now that we sample the same sine wave at less than twice a cycle. Table 12.6
shows the samples captured by a series of sampling pulses that are spaced by 13 �s. The
first four samples in the table are shown by vertical lines in Figure 12.32.

The samples in Table 12.6 have exactly the same amplitude as those taken in Table
12.5. However, the samples are spaced at 13 �s intervals, rather than 1 �s. For example,
the sample at 13 �s measures the sine wave amplitude at 390°, which is the same as 30° of

604 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

the second cycle. If these samples were used to reconstruct a sine wave, it would have a pe-
riod of 156 �s, rather than 12 �s. This false low-frequency component is shown by the bro-
ken line connecting the first four samples in Figure 12.32, which represent measurements,
not in a single cycle, but in four cycles of the original analog signal. Figure 12.33 shows
one complete cycle of the alias frequency as a broken line and thirteen cycles of the sam-
pled signal as a solid line.

Aliasing can be prevented by filtering the analog input to an ADC with an anti-
aliasing filter, as shown in Figure 12.34.

The anti-aliasing filter is a low-pass filter with the corner frequency set to 2 fmax. Fre-
quencies less than 2 fmax are allowed to pass to the analog input of the ADC. Frequencies
greater than 2 fmax are attenuated. In this way, the ADC never converts any signal with a
frequency greater than 2 fmax and thus an alias frequency cannot develop.

Table 12.6 Sampled Values of an 83.3 kHz
Sine Wave (13 �s Sampling)

Time (�s) Degrees Fraction of Peak

0 0° 0.000
13 390° 0.500
26 780° 0.866
39 1170° 1.000
52 1560° 0.866
65 1950° 0.500
78 2340° 0.000
91 2730° �0.500

104 3120° �0.866
117 3510° �1.000
130 3900° �0.866
143 4290° �0.500
156 4680° 0.000

t

v
Analog signal

Alias frequency

FIGURE 12.33
Aliasing

Table 12.5 Sampled Values of an 83.3 kHz
Sine Wave (1 �s Sampling)

Time (�s) Degrees Fraction of Peak

0 0° 0.000
1 30° 0.500
2 60° 0.866
3 90° 1.000
4 120° 0.866
5 150° 0.500
6 180° 0.000
7 210° �0.500
8 240° �0.866
9 270° �1.000

10 300° �0.866
11 330° �0.500
12 360° 0.000

12.4 • Data Acquisition 605

12.4 Data Acquisition

Data acquisition network A circuit that gathers and digitizes data from several
analog sources.

CPLD Interface for an ADC

Figure 12.35 shows the symbol for an ADC0808 analog-to-digital converter. This succes-
sive approximation ADC can form the basis of a data acquisition network, a system that
can convert analog information from up to eight channels and store the converted values in
a series of output latches.

K E Y T E R M

ADC

START
CLK

Digital
outputs

Anti-aliasing
filter

Analog
signal
source

fc � 2

fs

f
max

FIGURE 12.34
Anti-aliasing Filtering

ADC0808

D3

D6

D7

D5

D4

EOC

D2

D1

D0

ADD A

IN1

IN0

IN7

ALE

ADD B

ADD C

START

CLOCK

OE

8-bit
digital output

8 mutiplexed
analog inputs

Address latch
enable

Start
conversion

Output enable

Analog channel
select

End-of-conversion

FIGURE 12.35
ADC0808 Analog-to-Digital Converter

www.electronictech.com

TheADC0808 has a built-in 8-channel analog multiplexer with inputs IN0 through IN7,
which are selected by the states of three address inputs, ADD C, ADD B, and ADD A, where
ADD C is the most significant bit. Before an analog input can be converted, its address must
be stored in an internal address latch by a high-going pulse on ALE (Address Latch Enable).

606 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

The conversion process starts with a high-going pulse on the START input. (START
and ALE can be tied together.) End-of-conversion is indicated by the EOC output. The con-
version process is driven by the CLOCK input. After conversion is complete, the digital
output can be read by making OE (Output Enable) HIGH. When OE is not active, the dig-
ital outputs are in the high-impedance state.

CLOCK

START/ALE

EOC

OUTPUT ENABLE

FIGURE 12.36
Timing Diagram for an ADC0808

Figure 12.36 shows a timing diagram relating the various control signals of the
ADC0808. Figure 12.37 is an excerpt from the ADC0808 data sheet that shows relevant
timing information. The ADC is reset on the rising edge of START. After START/ALE goes
LOW, the ADC makes EOC go LOW within 8 clock cycles � 2 �s. EOC stays LOW until
conversion is complete. The simplest way to operate the ADC on a stand-alone basis is to
tie the EOC line to the START/ALE line so that the ADC starts as soon as EOC goes HIGH
and the ADC continuously updates the value of the digital output.

We can design a state machine that controls the ADC and stores output values in an oc-
tal latch automatically. Figure 12.38 shows such a circuit. The controller is a state machine
that will accept a LOW pulse from a pushbutton switch labeled go, perform one analog-to-
digital conversion from one of eight analog channels and store the resulting 8-bit digital
value in an octal latch. The analog channel is manually selected by DIP switches at the ad-
dress select inputs. The entire state machine and latch portion of the circuit is contained in
one CPLD, such as the Altera EPM7128SLC84-7 on the Altera UP-1 circuit board.

Figure 12.39 shows the state diagram of the controller, with two synchronous inputs
called go and eoc. The asynchronous reset, which sets the machine to the idle state, is not
shown on the state diagram. Outputs are sc (start conversion), oe (output enable), and en
(latch enable). The states are as follows:

• idle—Wait for go � 0 (switch pressed). All outputs are LOW.

• start—Wait for go � 1 (switch released). Transition to wait1 makes sc � 1
(START/ALE pulse). Other outputs are LOW.

• wait1—Wait for eoc � 0. (Wait for conversion to start. EOC is LOW during, but not be-
fore, conversion. Do not test for eoc � 1 until after conversion.) All outputs LOW.

• wait2—Wait for eoc � 1. (Conversion complete.) When complete, transition to read. At
that time, oe � 1, en � 1.

• read—Enable ADC output (oe � 1) and make latch transparent (en � 1).

• store—Keep ADC output enabled, put latch in store mode (en � 0). ADC digital output
is now stored in the output latch.

Figure 12.40 shows a simulation of the controller. Both the latch and controller can be
implemented as VHDL design entities and instantiated as components in the top level of a
VHDL hierarchy. This and later VHDL examples will be saved as exercises for the lab
manual accompanying this book. The VHDL files are available to instructors in the Online
Companion to this book.

We should note that if the controller/latch circuit is to be implemented on the Altera

12.4 • Data Acquisition 607

Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, 4.75≤VCC≤5.25V,
–40 C≤ TA≤ +85° C unless otherwise noted

Symbol Parameter Conditions Min Typ Max Units

DATA OUTPUTS AND EOC (INTERRUPT)

VOUT(1) Logical ™“1” Output Voltage VCC = 4.75V
IOUT = –360 �A
IOUT = –10 �A

2.4
4.5

V(min)
V(min)

VOUT(0) Logical ™“0” Output Voltage IO=1.6 mA 0.45 V

VOUT(0) Logical ™“0” Output Voltage EOC IO=1.2 mA 0.45 V

IOUT TRI-STATE Output Current VO=5V 3 �A

VO=0 –3 �A

Electrical Characteristics
Timing Specifications VCC=VREF(+)=5V, VREF(˛) =GND, tr=tf=20 ns and TA=25°C unless otherwise noted.

Symbol Parameter Conditions MIn Typ Max Units

tWS Minimum Start Pulse Width (Figure 5) 100 200 ns

tWALE Minimum ALE Pulse Width (Figure 5) 100 200 ns

ts Minimum Address Set-Up Time (Figure 5) 2

tH Minimum Address Hold Time (Figure 5) 2 n

tD Analog MUX Delay Time RS=0Ω (Figure 5) 1 2.5 �s

From ALE

tH1, tH0 OE Control to Q Logic State CL=50 pF, RL=10k (Figure 8) 125

25 50 ns

25 50 ns

250 ns

t1H, t0H OE Control to Hi-Z CL=10 pF, RL=10k (Figure 8) 125 250 ns

tc Conversion Time fc=640 kHz, (Figure 5) (Note 7) 90 100 116 �s

fc Clock Frequency 10 640 1280 kHz

tEOC EOC Delay Time (Figure 5) 0 8+2 �S Clock

Periods

CIN Input Capacitance At Control Inputs 10 15 pF

COUT TRI-STATE Output At TRI-STATE Outputs 10 15 pF

Capacitance

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to GND, unless othewise specified.

Note 3: A zener diode exists, internally, from VCC to GND and has a typical breakdown voltage of 7 VDC.

Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater
than the VCCn supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog VIN does not exceed the supply voltage by more
than 100 mV, the output code will be correct. To achieve an absolute 0VDC to 5VDC input voltage range will therefore require a minimum supply voltage of 4.900 VDC
over temperature variations, initial tolerance and loading.

Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. How-
ever, if an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5V to 4.5V full-scale) the reference voltages
can be adjusted to achieve this. See Figure 13.

Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little
temperature dependence (Figure 6). See paragraph 4.0.

Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.

Note 8: Human body model, 100 pF discharged through a 1.5 kΩ resistor.

A
D

C
08

08
/A

D
C

08
09

www.national.com 4

FIGURE 12.37
Extract from ADC0808 Datasheet (Reprinted with permission of National Semiconductor)

608 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

UP-1 board, we must also include a clock divider circuit. The Altera UP-1 board has an on-
board oscillator that runs at 25.175 MHz. The clock rate, as defined by the ADC0808 data
sheet, must be in the range 10kHz � fc � 1280 kHz.

A 5-bit counter can serve as a divide-by-32 circuit (25 � 32), as shown in Figure
12.41. If the UP-1 oscillator is applied to the counter clock, the Q4 output frequency is
given by 25.175 MHz/32 � 786.7 kHz, which is within the required range for the ADC
clock. Q4 should then be used to clock the state machine, as well as any other synchronous
circuitry used in conjunction with the ADC0808.

We can make a few minor changes to the ADC interface in Figure 12.38 to make it run
as a continuous-conversion circuit. First, we eliminate the go input and associated push-
button. Second, we change the state diagram to eliminate the idle state, as shown in Figure
12.42. With no pushbutton to press and then release, we eliminate two wait transitions
(previously associated with the idle and start states) from the state diagram. Otherwise,
the circuit and controller remain the same. A simulation of the modified controller is shown
in Figure 12.43.

ADC0808Analog sources

Channel
select

LATCH

D3

D6

D7

D5

D4

D2

D1

D0

D3

D6

D7

D5

D4

SC

OE

CLOCK

GO

CLOCK

GO

D2

D1

D0

VCC

VCC

START

CLOCK

ALE

OE

CONTROLLER

ADD A

IN 1

IN 0

IN 7

ADD B

ADD C

ENEOC

Q3

Q6

Q7

Q5

Q4

Q2

Q1

Q0

Q3

Q6

Q7

Q5

Q4

EN

EOC

Q2

Q1

Q0

RESET

CPLD

RESET

RESET

VCC

FIGURE 12.38
ADC Interface with One Output Channel and Manual Input Channel Selection

12.4 • Data Acquisition 609

go,eoc/sc,oe,en

X X /000

X X /010

X1/011 X0/000

X0/000

1X/100

0X/000

1X/000

0X/000

X1/000

startstore

wait 1
read

Idle

wait 2

FIGURE 12.39
State Diagram for an ADC
Controller

FIGURE 12.40
Simulation of State Machine
ADC Controller

CTR DIV 32

25.175 MHZ

786.7 KHZ

Q0

Q3

Q4

clock

Q2

Q1

FIGURE 12.41
5-Bit Counter as Divide-by-32 Clock Divider

610 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

❘❙❚ EXAMPLE 12.13 From the ADC0808 data sheet extract in Figure 12.37, determine the number of clock cy-
cles required for the conversion of an analog signal.

Solution For a clock frequency of 640 kHz, typical conversion time is given as 100 �s.

640 � 103 clock cycles
� (100 � 10�6 seconds) � 64 clock cycles

second

❘❙❚ EXAMPLE 12.14 Calculate the highest-frequency analog input that can be accurately converted by an
ADC0808 controlled by a state machine represented by the state diagram of Figure 12.42
if the system clock frequency is 787 kHz.

Solution One conversion cycle, Ts, requires 64 clock cycles for the ADC and an
overhead of 13 clocks �2 �s for the state machine for a total of 77 clock cycles �2
�s. (Start to wait1 requires one clock cycle. An additional 8 cycles �2 �s are needed
before eoc goes LOW. According to Note 7 in Figure 12.37, the ADC conversion is
complete one clock cycle before EOC goes HIGH. From this point back to start is 4
clocks.)

eoc/sc,oe,en

X /000

X /010

1/011

0/000

X/100

1/000

0/000

wait 1store

wait 2read

start

FIGURE 12.42
State Diagram for Continuous-
Convert ADC Controller

FIGURE 12.43
Simulation of Continuous-
Conversion ADC Controller

12.4 • Data Acquisition 611

According to the Nyquist sampling theorem, the maximum-frequency component of
the sampled analog signal is fmax � fs/2 � 10.02 kHz/2 � 5.01 kHz. This is of the same or-
der of magnitude as a telephone-quality audio signal.

❘❙❚

CPLD-Based Data Acquisition Network

Figure 12.44 shows a data acquisition system that continuously converts and stores data
from four analog channels. All the circuitry within the broken line is contained within a
single CPLD, such as the Altera EPM7128SLC84. The operation is similar to the system in

T

f
T

s

s
s

=
×

× ×

= =
×

=

−

−

1

787 10
77

1 1

99 8 10
10 02

3
6

6

 clock cycles/second
 clock cycles + 2 s = 99.8 10 seconds

 s
 kHz

µ

.
.

RESET

ADC0808Analog sources

D[7..0]

SC

OE

RESET

CLK
CLK

CLK

ALE/START

CONTROLLER

ADD A

IN1

IN0

IN2

IN3

IN4

IN5

IN6

IN7

OE

ADD B

ADD C

EOC

LATCH_EN

CNT_EN

EOC

CNT_EN

RESET

CLK

CTR DIV 4

Q0

Q1 CPLD

VCC

DECODER

EN

D[7..0]

RESET

Q[7..0] Q0[7..0]

Q1[7..0]

Q2[7..0]

Q3[7..0]

Octal latch

EN

D[7..0]

RESET

Q[7..0]

Octal latch

EN

D[7..0]

RESET

Q[7..0]

Octal latch

EN

D[7..0]

RESET

Q[7..0]

Octal latchEN

D1

D0

Y1

Y0

Y2

Y3

FIGURE 12.44
4-Channel Data Acquisition System

612 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

Figure 12.38, except that with multiple latches in the circuit, a counter and decoder are re-
quired to keep track of the selected channel.

The controller, whose state diagram is shown in Figure 12.45, generates the same con-
trol signals for the ADC as the system in Figure 12.38. When the conversion is complete
and the controller detects a LOW on its eoc input, it reads the ADC output and transfers the
contents to the selected 8-bit latch. The latch is selected, via the decoder, by the value of
the counter (e.g., Q1Q0 � 11 selects analog input channel 3, decoder output Y3, and latch
3). The selected latch input is enabled (i.e., made transparent) by the controller during the
transition from wait2 to read. At all other times all decoder outputs are LOW, disabling all
latches, thus placing them in store mode. After the ADC data have been stored, the con-
troller sets cnt_en HIGH, which allows the counter to be incremented on the next clock
pulse. The next channel is now ready for a convert-and-store cycle. After all channels have
been sampled, converted, and stored, the cycle begins again at channel 0 and continues in-
definitely.

eoc/sc,oe,cnt_en, latch_en

X /0000

X /0010

X /0100 1/0101

0/0000

X/1000

1/0000

0/0000

wait 1incr

wait 2
store

start

read

FIGURE 12.45
State Diagram for 4-channel Data Acquistion System

Figure 12.46 shows a simulation of the controller, counter, and decoder for the data
acquisition system of Figure 12.44. During the read-and-store part of the cycle, only
one of the latch enables, y0 to y3, is active when oe is active. The number of the active
latch enable is the same as the counter value on the second last waveform. The last line
in the simulation (controller|outputs3.Q) is the cnt_en line from the controller to the
counter. The counter is incremented on the first positive edge of the clock after this line
goes HIGH. This point is indicated by the cursor line on the transition from channel 1
to channel 2.

The circuit in Figure 12.44 could be expanded to convert all eight analog channels
from the ADC, but the chosen CPLD (EPM7128SLC84) does not have enough I/O pins.
Eight 8-bit latch outputs require 64 pins; the CPLD only has 60 user I/Os. An 8-channel
system could be implemented if it used eight external latches, such as eight 74HC373 oc-
tal latches, or internal latches on a different CPLD. Note that the CPLD has enough logic
cells to implement the system, just not enough I/O pins. The identical device in a differ-
ent package (EPM7128SQC100; 100-pin quad flat-pack) can accommodate the entire
system.

For an 8-channel system, the counter would need to be expanded to 3 bits and the de-
coder to a 3-line-to-8-line device.

Summary 613

FIGURE 12.46
Simulation of 4-channel Data Acquisition System

❘❙❚ SECTION 12.4 REVIEW PROBLEM

12.8 Calculate the highest-frequency component of an analog signal that can be accurately
converted by the 4-channel data acquisition system in Figure 12.44. Assume the sys-
tem clock is running at 787 kHz.

S U M M A R Y

01. An analog system can represent a physical property (e.g.,
temperature, pressure, or velocity) by a proportional volt-
age or current. The mathematical function describing the
analog voltage or current is continuous throughout a de-
fined range.

02. A digital system can represent a physical property by a series
of binary numbers of a fixed bit size.

03. Digital representations of data are not subject to the same
distortions as analog representations. They are also easier to
store and reproduce than analog.

04. The quality of a digital representation depends on the sam-
pling frequency and quantization (number of bits) of the sys-
tem that converts an analog input to a digital output.

05. The resolution of a system is a function of the number of bits
in its digital representation. A greater number of bits implies
that the sampled analog input can be broken up into more,
smaller segments, allowing each segment to more closely ap-
proximate the original input value.

06. A digital-to-analog converter (DAC) uses electronic switches
to sum binary-weighted currents to a total analog output cur-
rent. Analog current can be calculated by:

Ia � Iref

or, more simply:

for an n-bit DAC, where bn�1bn�2
… b2b1b0 is the digital

input code,
Ia is the analog output current,

and
Iref is the DAC reference (full

scale) current.

07. The maximum output of a DAC is full scale (FS) minus
the value represented by a change in the least significant
bit of the input (FS � 1 LSB). For example, for a 4-bit
converter (1 LSB � 1/16 FS), the maximum output is (FS
� 1/16 FS) � 15/16 FS. For an 8-bit converter (1 LSB �
1/256 FS), the maximum output is (FS � 1/256 FS) �
255/256 FS.

I Ia n= digital code
ref2

bn�12n�1 � bn�2 2n�2 � . . . � b222 � b121 � b020

������

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

614 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

08. A weighted-resistor DAC derives its binary-weighted cur-
rents from binary-weighted resistors connected to the refer-
ence voltage supply.

09. An R-2R ladder DAC derives its binary weighted currents
from a resistor ladder network that consists of resistors of
two values only, one of which is twice the other. The R-2R
ladder is more common than the weighted resistor DAC.

10. A DAC input code consisting of a 1 followed by all 0s repre-
sents an output of �

1
2

� FS, regardless of the number of bits in
the DAC input. A code of 01 followed by all 0s represents an
output of �

1
4

� FS. A code of 11 followed by all 0s is �
3
4

� FS.
11. The MC1408 DAC is an example of a monolithic (single-

chip) DAC. Output current at pin 4 is a binary-weighted frac-
tion of the reference current at pin 14:

12. If the output of an MC1408 DAC is buffered by an nonin-
verting op amp with a feedback resistance of RF, the output
voltage is given by:

13. An 8-bit DAC can be used as a ramp generator by connecting
an 8-bit binary counter to the digital inputs.

14. An MC1408 DAC can be configured for bipolar output by
connecting a pull-up resistor (R4) from the output (pin 4) to
the reference voltage supply. Output is given by:

15. A DAC is monotonic if every increase in binary input results
in an increase in analog output.

16. DAC errors include: offset error (nonzero output for zero in-
put code), gain error (output falling above or below FS �
1LSB for maximum input code due to an incorrect slope),
linearity error (deviation from straight-line approximation
between codes), and differential nonlinearity (deviation of
step sizes from ideal of one step per LSB).

17. DAC linearity error of greater than ��
1
2

� LSB can result in a
nonmonotonic output.

18. Several popular types of analog-to-digital converters (ADC)
are flash or simultaneous, successive approximation, and
dual slope or integrating.

19. AflashADCconsistsofavoltagedividerwith thesamenumber
ofstepsasoutputcodes, a setofcomparators (oneforeveryout-
put code), and a priority encoder.All comparators whose refer-
ence input is less than the analog input will fire, the priority en-
coder will detect the highest-value active comparator, and
generate the corresponding output code. A flash ADC is fast,
but requires 2n comparators for an n-bit output code.

20. An ADC transfer characteristic is set up so that all codes are
1 LSB wide, except for the first and last codes. The code for
0 is �

1
2

� LSB wide and the maximum code is 1�
1
2

� LSB wide. This
offset places the nominal analog value of the code in the cen-
ter of the code’s range of analog input values.

21. A successive approximation ADC consists of a state machine
called a successive approximation register (SAR) whose bits

V I R I R
R

R
V

R

R
Va o F s F

F F= − = 











−digital code

256 14
ref

4
ref

V I R
R

R
Va o F

F= = 











digital code

256 14
ref

I
V

Ro = 











digital code

256
ref

14

can be set and cleared individually in a specific sequence, a
digital-to-analog converter, and an analog comparator.

22. A successive approximation ADC sets each bit of the SAR in
turn as an approximation of the required digital code. For
each bit, the approximation is converted back to analog form
and compared with the incoming analog value. If the con-
verted value is less than the actual analog value, the bit re-
mains set and the next bit is tried. If the converted value is
greater than the actual analog input, the bit is cleared and the
next bit is tried.

23. A dual slope ADC consists of an integrator, comparator,
counter, and control logic. The integrator output changes
with a slope of �Vin/RC for a constant input. This ADC al-
lows the integrator to charge for the time required for the
counter to complete one full cycle (known time). At that
time, the integrator input is switched to a reference voltage of
opposite polarity. The reference voltage discharges the inte-
grator at a known rate. The time required to do this is stored
in the counter and represents the fraction of full scale analog
voltage applied to the converter.

24. A sample and hold circuit may be required to hold the input
value of an ADC constant for the conversion time of the
ADC. It samples an analog signal at periodic intervals and
holds the sampled value in a capacitor until the next sample
is taken. A track and hold circuit performs a similar function,
but allows the capacitor to charge and discharge along with
the changing analog signal, holding its value only during the
conversion time of the ADC.

25. In order to preserve the information in an analog signal, it
must be sampled at a frequency of at least twice the maxi-
mum-frequency component of the signal (fs
 fmax). This cri-
terion is called the Nyquist sampling theorem.

26. If the Nyquist sampling theorem is violated, an alias fre-
quency, or false low-frequency component, will be added to
the digital representation of the analog signal.

27. Alias frequencies can be eliminated with an anti-aliasing fil-
ter, a low-pass filter used to pass only frequencies less than
2fs to the input of an ADC. This input frequency range auto-
matically satisfies the Nyquist criterion at the ADC input.

28. An ADC0808 successive approximation ADC contains an
8-channel analog MUX and can be used as the basis for an
8-channel data acquisition system.

29. The conversion sequence for the ADC0808 is as follows:

a. an analog input channel is selected by setting the
appropriate address on lines ADD C, ADD B, and
ADD A.

b. ALE and START are pulsed HIGH.

c. EOC (end-of-conversion) goes LOW no later than 8
clock cycles �2 �s after START.

d. EOC goes HIGH when conversion is complete.

e. OE (output enable) is set HIGH to read converted
output.

This sequence can be controlled by a CPLD-based state
machine.

30. A data acquisition system based on an ADC0808 requires an
octal latch for each analog channel, a state-machine con-
troller, and a counter/decoder circuit to select the active ana-
log channel and latch.

Problems 615

G L O S S A R Y

Aliasing A phenomenon that produces an unwanted low-
frequency component in a sampled analog signal due to a sam-
pling frequency that is too slow relative to the sampled analog
signal.

Anti-aliasing filter An low-pass filter with a corner frequency
of twice the maximum frequency of a sampled signal, used to
prevent aliasing in an ADC.

Analog A way of representing some physical quantity, such as
temperature or velocity, by a proportional continuous voltage or
current. An analog voltage or current can have any value within
a defined range.

Analog-to-digital converter A circuit that converts an analog
signal at its input to a digital code. (Also called an A-to-D con-
verter, A/D converter, or ADC.)

Continuous Smoothly connected. An unbroken series of con-
secutive values with no instantaneous changes.

Data acquisition network A circuit that gathers and digitizes
data from several analog sources.

Digital A way of representing a physical quantity by a series
of binary numbers. A digital representation can have only spe-
cific discrete values.

Digital-to-analog converter A circuit that converts a digital
code at its input to an analog voltage or current. (Also called a
D-to-A converter, D/A converter, or DAC.)

Discrete Separated into distinct segments or pieces. A series of
discontinuous values.

Dual slope ADC Also called an integrating ADC. An analog-
to-digital converter based on an integrator. The name derives
from the fact that during the conversion process the integrator
output changes linearly over time, with two different slopes.

Flash converter (or simultaneous converter) An analog-to-
digital converter that uses comparators and a priority encoder to
produce a digital code.

Full scale The maximum analog reference voltage or current
of a digital-to-analog converter.

Integrator A circuit whose output is the accumulated sum of
all previous input values. The integrator’s output changes lin-
early with time when the input voltage is constant.

Multiplying DAC A DAC whose output changes linearly with
a change in DAC reference voltage.

Nyquist sampling theorem A theorem from information the-
ory that states that, in order to preserve all information in a sig-
nal, it must be sampled at a rate of twice the highest-frequency
component of the signal. (fs
 2fmax)

Priority encoder An encoder that will produce a binary output
corresponding to the subscript of the highest-priority active
input. This is usually defined as the input with the largest
subscript.

Quantization The number of bits used to represent an analog
voltage as a digital number.

Quantization error Inaccuracy introduced into a digital signal
by the inability of a fixed number of bits to represent the exact
value of an analog signal.

Resolution The difference in analog voltage corresponding to
two adjacent digital codes. Analog step size.

Sample An instantaneous measurement of an analog voltage,
taken at regular intervals.

Sample and hold circuit A circuit that samples an analog sig-
nal at periodic intervals and holds the sampled value long
enough for an ADC to convert it to a digital code.

Sampling frequency The number of samples taken per unit
time of an analog signal.

Successive approximation register A state machine used to
generate a sequence of closer and closer binary approximations
to an analog signal.

P R O B L E M S

Problem numbers set in color indicate more difficult problems:
those with underlines indicate most difficult problems.

Section 12.1 Analog and Digital Signals

12.1 An analog signal with a range of 0 to 12 V is converted to a
series of 3-bit digital codes. Make a table similar to Table
12.1 showing the analog range for each digital code.

12.2 Sketch the positive half of a sine wave with a peak volt-
age of 12 V. Assume that this signal will be quantized ac-
cording to the table constructed in Problem 12.1. Write
the digital codes for the points 0, T/8, T/4, 3T/8, . . . , T
where T is the period of the half sine wave.

12.3 Repeat Problems 12.1 and 12.2 for a 4-bit quantization.

12.4 Write the 3-bit and 4-bit digital codes for the points 0,
T/16, T/8, 3T/16, . . . , T for the half sine wave described
in Problem 12.2.

12.5 An analog-to-digital converter divides the range of an ana-
log signal into 64 equal parts. The analog input has a

range of 0 to 500 mV. How many bits are there in the
resultant digital codes? What is the resolution of the A/D
converter?

12.6 Repeat Problem 12.5 if the analog range is divided into
256 equal parts.

12.7 The analog range of a signal is divided into m equal parts,
yielding a digital quantization of n bits. If the range is di-
vided into 2m parts, how many bits are in the equivalent
digital codes? (That is, how many extra bits do we get for
each doubling of the number of codes?)

Section 12.2 Digital-to-Analog Conversion

12.8 a. Calculate the analog output voltage, Va, for a 4-bit
DAC when the input code is 1010.

b. Calculate Va for an 8-bit DAC when the input code is
10100000.

c. Compare the results of parts a and b. What can you
conclude from this comparison?

616 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

12.9 a. Calculate the analog output voltage, Va, for a 4-bit
DAC when the input code is 1100.

b. Calculate Va for an 8-bit DAC when the input code is
11001000.

c. Compare the results of parts a and b. What can you
conclude from this comparison? How does this differ
from the comparison made in Problem 12.8?

12.10 Refer to the generalized D/A converter in Figure 12.4.
For Iref � 500 �A and RF � 22 k�, calculate the range of
analog output voltage, Va, if the DAC is a 4-bit circuit.
Repeat the calculation for an 8-bit DAC.

12.11 The resistor for the MSB of a 16-bit weighted resistor
D/A converter is 1 k�. List the resistor values for all bits.
What component problem do we encounter when we try
to build this circuit?

12.12 Draw the circuit for an 8-bit R-2R ladder DAC.

12.13 Calculate the value of Va of an R-2R ladder DAC when
digital inputs are as follows. Vref � 12 V.

DCBA

a. 1111

b. 1011

c. 0110

d. 0011

12.14 An MC1408 DAC is configured as shown in Figure
12.12. R14 � R15 � 6.8 k�, Vref(�) � �12 V, Vref(�) �
ground, and RL � 2.2 k�. Calculate the output voltage,
Va, for the following digital input codes: 00000000,
00000001, 10000000, 10101010, 11100010, 11111111.

12.15 Calculate the resolution of the DAC in Problem 12.14.

12.16 Refer to the op amp-buffered DAC in Figure 12.13. As-
sume the resistor values are changed as follows: R14A �
270 �, R14B � 2 k� (max), RFA � 1.2 k�, RFB � 5 k�
(max). Describe a step-by-step procedure that calibrates
the DAC so that it has a reference current of 4 mA and a
full scale analog output voltage of 12 volts, using only a
series of measurements of the analog output voltage.
When the procedure is complete, what are the resistance
values in the circuit? What is the range of the DAC?

12.17 The resistor networks shown in the DAC circuit of Figure
12.13 allow us to set our input reference current and out-
put gain to values within a specified range. Using the val-
ues shown in Figure 12.13, fill in Table 12.7 for the cases
when Va is at minimum and maximum, and when the po-
tentiometers are at their midpoint values. Assume the
DAC input is set to 1111 1111. Show all calculations.

Table 12.7 DAC Output Range

R14 (�) RF(�) Iref (mA) Io(mA) Va(V)

Minimum Va

Maximum Va

Pots at midpoint

12.18 The waveform in Figure 12.47 is observed at the output
of the DAC ramp generator of Figure 12.14. (Compare
this to the proper waveform, found in Figure 12.15.)
What is likely to be the problem with the circuit? Can it
be easily fixed? How?

12.19 The waveform in Figure 12.48 is observed at the output
of the DAC ramp generator in Figure 12.14. What is
likely to be the problem with the circuit?

FIGURE 12.47
Problem 12.18
Waveform

FIGURE 12.48
Problem 12.19
Waveform

Problems 617

12.20 Refer to the bipolar DAC circuit in Figure 12.16. De-
scribe how you would adjust the output for a range of
�10 V to (�10 V � 2 LSB). Include values of variable
components. Calculate the resolution of this circuit.

12.21 A 3-bit DAC has a reference voltage of 12 V and a trans-
fer characteristic summarized in Table 12.8. Plot the data
on a graph similar to those in Figures 12.18 through
12.20. From the data in Table 12.8, determine the offset
error, gain error, and linearity error of the DAC, both in %
of full scale and as a fraction of an LSB.

12.23 A 3-bit DAC has a reference voltage of 4 V and a transfer
characteristic summarized in Table 12.10. Plot the data on
a graph. From the data in the Table 12.10, determine the
offset error, gain error, and linearity error of the DAC,
both in % of full scale and as a fraction of an LSB.

Table 12.11 Table for Problem 16.23

New Digital Analog vanalog
 Comparator Accumulated
Bit Value Equivalent vDAC? Output Digital Value

Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

Table 12.10 DAC Transfer Characteristic
for Problem 12.23

Digital Code Analog Output (volts)

000 0.000
001 0.500
010 1.025
011 1.525
100 1.985
101 2.675
110 3.000
111 3.500

Section 12.3 Analog-to-Digital Conversion

12.24 How many comparators are needed to construct an 8-bit
flash converter? Sketch the circuit of this converter. (It is
only necessary to show a few of the comparators and in-
dicate how many there are.)

12.25 Briefly explain the operation of a flash ADC. What is the
purpose of the priority encoder? Explain how the latch
can be used to synchronize the output to a particular sam-
pling frequency.

12.26 Why do we choose a value of R/2 for the LSB resistor of
a flash ADC?

12.27 An 8-bit successive approximation ADC has a reference
voltage of �16 V. Describe the conversion sequence for
the case where the analog input is 4.75 V. Summarize the
steps in Table 12.11. (Refer to Example 12.11.)

12.28 What is displayed on the seven-segment display in Figure
12.49 when vanalog � 5.25 V? Assume that the reference
voltage is 12 V and that the display can show hex digits.

12.29 Describe the operation of each part of the successive ap-
proximation ADC shown in Figure 12.49 when the analog
input changes from 5.25 V to 8.0 V. What is the new
number displayed on the seven-segment display?

Table 12.8 DAC Transfer Characteristic
for Problem 12.21

Digital Code Analog Output (volts)

000 0.5
001 2.0
010 3.5
011 5.0
100 6.5
101 8.0
110 9.5
111 11.0

12.22 A 3-bit DAC has a reference voltage of 8 V and a transfer
characteristic summarized in Table 12.9. Plot the data on
a graph. From the data in Table 12.9, determine the offset
error, gain error, linearity error, and differential nonlin-
earity of the DAC, both in % of full scale and as a frac-
tion of an LSB.

Table 12.9 DAC Transfer Characteristic
for Problem 12.22

Digital Code Analog Output (volts)

000 0.000
001 1.036
010 2.071
011 3.107
100 4.143
101 5.179
110 6.214
111 7.250

618 C H A P T E R 1 2 • Interfacing Analog and Digital Circuits

12.30 a. An 8-bit successive approximation ADC has a refer-
ence voltage of 12 V. Calculate the resolution of this
ADC.

b. The analog input voltage to the ADC in part a is 8 V.
Can this input voltage be represented exactly? What
digital code represents the closest value to 8 V? What
exact analog value does this represent? Calculate the
percent error of this conversion.

12.31 What is the maximum quantization error of an ADC, rela-
tive to a fraction of 1 LSB?

12.32 An 8-bit dual slope analog-to-digital converter has a ref-
erence voltage of 16 V. The integrator component values
are: R � 80 k�, C � 0.1 �F. The analog input voltage
is 14 V.

Calculate the slope of the integrator voltage during:

a. the integrating phase, and

b. the rezeroing phase.

c. How much time elapses during the rezeroing phase?
(Assume that (1) the integrating and rezeroing

time are equal if the integrator output is at full scale,
and (2) the reference voltage will rezero the integrator
from full scale in exactly one counter cycle.)

d. Sketch the integrator output waveform.

e. What digital code is contained in the output latch after
the conversion is complete?

12.33 Repeat Problem 12.32 if the analog input voltage is 3 V.

12.34 Repeat Problem 12.32 if the analog input voltage is 18 V.

12.35 make a sketch of a basic sample and hold circuit and
briefly explain its operation.

12.36 Explain why a sample and hold circuit may be needed at
the input of an analog-to-digital converter.

12.37 What is the highest-frequency component of an analog
signal that can be accurately represented digitally if it is
sampled at a rate of 100 kHz?

12.38 Calculate the minimum sampling frequency required to
preserve all information when sampling a sine wave with
a frequency of 130 kHz.

12.39 Suppose a sine wave with a period of 4.8 �s is sampled
every 5.2 �s. What alias frequency will result? (Hint: see
Figure 12.33.)

12.40 Calculate the corner frequency of an anti-aliasing filter for
an ADC with a sampling frequency of 8 kHz. What type of
filter (low-pass, high-pass, bandpass, etc.) is required?

Section 12.4 Data Acquisition

12.41 Refer to the data acquisition system in Figure 12.38.
Write a VHDL file to implement the continuous-convert
version of the ADC controller, as represented in the state
diagram of Figure 12.42. Create a simulation in
MAX�PLUS II to verify the operation of the controller.

12.42 Use the state machine controller from Problem 12.41 and an
octal latch as components in a VHDL hierarchy that repre-
sents the ADC interface of Figure 12.38. Create a simula-
tion in MAX�PLUS II to verify the operation of the design.

12.43 The data acquisition system in Figure 12.38 is designed
with the controller from Problem 12.41. (The controller
state diagram is shown in Figure 12.42.) Assume the con-
troller and latch are interfaced with a different ADC that
has a conversion time of 16 �s, which is equivalent to 64
clock cycles. Calculate the highest-frequency component
that can be accurately converted with this system for a
clock rate of 787 kHz.

12.44 Repeat Problem 12.43 for a 4-channel data acquisition
system, assuming the same conversion rate for the ADC
and the controller state diagram of Figure 12.45.

FIGURE 12.49
Problem 12.28
Successive Approximation
ADC and Seven-Segment
Display

Answers 619

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 12.1

12.1 5 bits (25 � 32). Resolution � 24 mV/32 steps � 0.75
mV/step.

Section 12.2a

12.2 4-bit: Ia � 0 to (15/16)(1 mA) � 0 to 0.9375 mA; Va �
�IaRF � 0 to �9.375 V 8-bit: Ia � 0 to (255/256)(1 mA) � 0 to
0.9961 mA; Va � 0 to �9.961 V

Section 12.2b

12.3 2.048 M�.

Section 12.2c

12.4 Va � (10 V/2) � (10 V/8) � (10 V/256) � 6.29 V

or Va � (161/256)10 V � 6.29 V

Section 12.2d

12.5 The maximum switching speed is higher if we choose the
lower range of output voltage.

Section 12.2e

12.6 The output 0 V requires its own code. This leaves 255, not
256, codes for the remaining output values. The maximum value
of a positive-only output is 255/256 of the reference voltage. A
bipolar DAC ranges from �128/128 to �127/128 of the refer-
ence voltage.

Section 12.3

12.7 a. �1.5 V/ms; b. � 4 V/ms; c. 1.125 ms;
d. 01100000.

Section 12.4

12.8 1.26 kHz

621

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

❙❚❘❙❚

C H A P T E R 13

Memory Devices and Systems

O U T L I N E

13.1 Basic Memory
Concepts

13.2 Random Access
Read/Write Memory
(RAM)

13.3 Read Only Memory
(ROM)

13.4 Sequential Memory:
FIFO and LIFO

13.5 Dynamic RAM
Modules

13.6 Memory Systems

C H A P T E R O B J E C T I V E S

Upon successful completion of this chapter, you will be able to:

• Describe basic memory concepts of address and data.

• Understand how latches and flip-flops act as simple memory devices and
sketch simple memory systems based on these devices.

• Distinguish between random access read/write memory (RAM) and read
only memory (ROM).

• Describe the uses of tristate logic in data bussing.

• Sketch the circuits of static and dynamic RAM cells.

• Sketch a block diagram of a static or dynamic RAM chip.

• Describe various types of ROM cells and arrays: mask-programmed, UV
erasable, and electrically erasable.

• Use various types of ROM in simple applications, such as digital function
generation.

• Describe the basic configuration of flash memory.

• Describe the basic configuration and operation of two types of sequential
memory: first-in-first-out (FIFO) and last-in-first-out (LIFO).

• Describe how dynamic RAM is configured into high capacity memory
modules.

• Sketch a basic memory system, consisting of several memory devices, an
address and a data bus, and address decoding circuitry.

• Represent the location of various memory device addresses on a system
memory map.

• Recognize and eliminate conditions leading to bus contention in a memory
system.

• Expand memory capacity by parallel bussing and CPLD-based decoding.

622 C H A P T E R 1 3 • Memory Devices and Systems

In recent years, memory has become one of the most important topics in digital electron-
ics. This is tied closely to the increasing prominence of cheap and readily available mi-

croprocessor chips. The simplest memory is a device we are already familiar with: the D
flip-flop. This device stores a single bit of information as long as necessary. This simple
concept is at the heart of all memory devices.

The other basic concept of memory is the organization of stored data. Bits are stored
in locations specified by an “address,” a unique number which tells a digital system how to
find data that have been previously stored. (By analogy, think of your street address: a
unique way to find you and anyone you live with.)

Some memory can be written to and read from in random order; this is called random
access read/write memory (RAM). Other memory can be read only: read only memory
(ROM). Yet another type of memory, sequential memory, can be read or written only in a
specific sequence. There are several variations on all these basic classes.

Memory devices are usually part of a larger system, including a microprocessor, pe-
ripheral devices, and a system of tristate busses. If dynamic RAM is used in such a system,
it is often in a memory module of some type. The capacity of a single memory chip is usu-
ally less than the memory capacity of the microprocessor system in which it is used. In or-
der to use the full system capacity, it is necessary to use a method of memory address de-
coding to select a particular RAM device for a specified portion of system memory.

13.1 Basic Memory Concepts

Memory A device for storing digital data in such a way that they can be recalled
for later use in a digital system.

Data Binary digits (0s and 1s) that contain some kind of information. The digital
contents of a memory device.

Address A number, represented by the binary states of a group of inputs or out-
puts, uniquely defining the location of data stored in a memory device.

Write Store data in a memory device.

Read Retrieve data from a memory device.

Byte A group of 8 bits.

Nibble Half a byte; 4 bits.

Address and Data

A memory is a digital device or circuit that can store one or more bits of data. The sim-
plest memory device, a D-type latch, shown in Figure 13.1, can store 1 bit. A 0 or 1 is
stored in the latch and remains there until changed.

A simple extension of the single D-type latch is an array of latches, shown in Fig-
ure 13.2, that can store 8 bits (1 byte) of data. Figure 13.3 shows this octal latch used as a
component in a MAX�PLUS II graphic file and configured as an 8-bit memory.

When the WRITEn line goes LOW, then HIGH, data at the DATA_IN are stored in the
eight latches. Data are available at the DATA_OUT pins when READ is HIGH. Note that al-
though the READ and WRITEn inputs are separate in this design, their functions would of-
ten be implemented as opposite logic levels of the same pin.

Figure 13.4 shows a simulation of the 8-bit memory. The LOW pulses on WRITEn
write the data, shown as two hexadecimal digits on the DATA_IN line, into the latches. To
read the values stored in the eight latches, we set READ HIGH. In between read states, all
DATA_OUT lines are in the high-impedance state, indicated by the notation ZZ.

K E Y T E R M S

➥ octal_latch.gdf
1x8mem.gdf

➥ 1x8mem.scf

13.1 • Basic Memory Concepts 623

FIGURE 13.1
D-Type Latch D1

INPUT OUTPUT
Q1

LATCH TRI

ENA

QD

D2
INPUT OUTPUT

Q2

LATCH TRI

ENA

QD

D3
INPUT OUTPUT

Q3

LATCH TRI

ENA

QD

D4
INPUT OUTPUT

Q4

LATCH TRI

ENA

QD

D5
INPUT OUTPUT

Q5

LATCH TRI

ENA

QD

D6
INPUT OUTPUT

Q6

LATCH TRI

ENA

QD

D7
INPUT

NOT

Gn
INPUT

OUTPUT
Q7

LATCH TRI

ENA

QD

D0
INPUT

OE
INPUT

OUTPUT
Q0

LATCH TRI

ENA

QD

FIGURE13.2
Octal Latch

624 C H A P T E R 1 3 • Memory Devices and Systems

Figure 13.5 shows an expanded version of the octal latch memory circuit. Four octal
latches are configured to make a 4 � 8-bit memory that can store and recall four separate
8-bit words. The octal latches are based on 8-bit latches instantiated in VHDL from the Al-
tera Library of Parameterized Modules (LPM). The remaining components of Figure 13.5
are behaviorally-designed VHDL components.

The 8-bit input data are applied to the inputs of all four octal latches simultaneously.
Data are written to a particular latch when a 2-bit address and a LOW on WRITEn cause
an output of a 2-line-to-4-line decoder to enable the selected latch. For example, when
ADDR[1..0] � 01 AND WRITEn � 0, decoder output Y1 goes HIGH, activating the
ENABLE input on latch 1. The values at DATA_IN[7..0] are transferred to latch 1 and
stored there when WRITEn goes HIGH.

The latch outputs are applied to the data inputs of an octal 4-to-1 multiplexer. Recall
that this circuit will direct one of four 8-bit inputs to an 8-bit output. The selected set of in-
puts correspond to the binary value at the MUX select inputs, which is the same as the ad-
dress applied to the decoder in the write phase. The MUX output is directed to the
DATA_OUT lines by an octal tristate bus driver, which is enabled by the READ line. To
read the contents of latch 1, we set the address to 01, as before, and make the READ line
HIGH. If READ is LOW, the DATA_OUT lines are in the high-impedance state.

Figure 13.6 shows a simulation of the 4 � 8-bit memory. The address inputs change in
a continuous binary sequence. For each address, a write pulse loads 8-bit data into the se-
lected latch. After all four latches have been loaded, the latches are read in a rotating
sequence. To read any new data from the memory, we would first have to write the new
data into one or more of the latch locations.

octal_latch

D4

D1

D0

D2

D3

D5

D6

D7

Q4

Q1

Q0

Q2

Q3

Q5

Q6

Q7

OE

Gn

READ
INPUT

DATA_IN0
INPUT

DATA_IN1
INPUT

DATA_IN2
INPUT

DATA_IN3
INPUT

DATA_IN4
INPUT

DATA_IN5
INPUT

DATA_IN6
INPUT

DATA_IN7
INPUT

WRITEn
INPUT

OUTPUT
DATA_OUT0

OUTPUT
DATA_OUT1

OUTPUT
DATA_OUT2

OUTPUT
DATA_OUT3

OUTPUT
DATA_OUT4

OUTPUT
DATA_OUT5

OUTPUT
DATA_OUT6

OUTPUT
DATA_OUT7

FIGURE13.3
Octal Latch as 8-bit Memory

FIGURE 13.4
Simulation of 8-bit Memory

➥ 4x8reg.scf

➥ 4x8reg.gdf
ltch8lpm.vhd
dcdr2to4.vhd
oct4tol.vhd

ad
dr

[1
..0

]

IN
P

U
T

w
rit

e_
n

IN
P

U
T

O
U

T
P

U
T

d[
1.

.0
]

y[
3.

.0
]

D
C

D
R

2T
O

4

da
ta

_i
n[

7
..0

]
IN

P
U

T

8
8

LT
C

H
8L

P
M

d_
in

[7
..0

]
q_

ou
t[

7
..0

]

en
ab

le
y0

LT
C

H
8L

P
M

d_
in

[7
..0

]
q_

ou
t[

7
..0

]

en
ab

le

O
C

T
4T

O
1

tr
i_

bu
s8

da
ta

_o
ut

[7
..0

]

s[
1.

.0
]

ad
dr

[1
..0

]

y[
7

..0
]

d0
[7

..0
]

d1
[7

..0
]

d2
[7

..0
]

d3
[7

..0
]

y1

LT
C

H
8L

P
M

d_
in

[7
..0

]
q_

ou
t[

7
..0

]

en
ab

le
y2

LT
C

H
8L

P
M

d_
in

[7
..0

]
q_

ou
t[

7
..0

]

en
ab

le

d[
1.

.0
]

ng

y3

IN
P

U
T

re
ad

FI
G

U
R

E
13

.5
4

�
8-

bi
t M

em
or

y
fr

om
 O

ct
al

 L
at

ch
es

625

626 C H A P T E R 1 3 • Memory Devices and Systems

RAM and ROM

Random access memory (RAM) A type of memory device where data can be
accessed in any order, that is, randomly. The term usually refers to random access
read/write memory.

Read only memory (ROM) A type of memory where data are permanently
stored and can only be read, not written.

The memory circuit in Figure 13.5 is one type of random access memory, or RAM. Data
can be stored in or retrieved from any address at any time. The data can be accessed ran-
domly, without the need to follow a sequence of addresses, as would be necessary in a se-
quential storage device such as magnetic tape.

RAM has come to mean random access read/write memory, memory that can have its
data changed by a write operation, as well as have its data read. The data in another type of
memory, called read only memory, or ROM, can also be accessed randomly, although it
cannot be changed, or at least not changed as easily as RAM; there is no write function;
hence the name “read only.” Even though both types of memory are random access, we
generally do not include ROM in this category.

Memory Capacity

b Bit.

B Byte.

K 1024 (� 210). Analogous to the metric prefix “k” (kilo-).

M 1,048,576 (� 220). Analogous to the metric prefix “M” (mega-).

The capacity of a memory device is specified by the address and data sizes. The circuit
shown in Figure 13.5 has a capacity of 4 � 8 bits (“four-by-eight”). This tells us that the
memory can store 32 bits, organized in groups of 8 bits at 4 different locations.

For large memories, with capacities of thousands or millions of bits, we use the short-
hand designations K or M as prefixes for large binary numbers. The prefix K is analogous
to, but not the same as, the metric prefix k (kilo). The metric kilo (lowercase k) indicates a
multiplier of 103 � 1000; the binary prefix K (uppercase) indicates a multiplier of 210 �
1024. Thus, one kilobit (Kb) is 1024 bits.

K E Y T E R M S

K E Y T E R M S

FIGURE 13.6
Simulation of 4 � 8 Memory

13.1 • Basic Memory Concepts 627

Similarly, the binary prefix M is analogous to the metric prefix M (mega). Both, un-
fortunately, are represented by uppercase M. The metric prefix represents a multiplier of
106 � 1,000,000; the binary prefix M represents a value of 220 � 1,048,576. One megabit
(Mb) is 1,048,576 bits. The next extension of this system is the multiplier G (� 230), which
is analogous to the metric prefix G (giga; 109).

There is a move afoot to untangle all the inconsistencies in this notation and develop
separate units for binary and metric applications, but to date, such new notation is not very
widely used.

❘❙❚ EXAMPLE 13.1 A small microcontroller system (i.e., a stand-alone microcomputer system designed for a
particular control application) has a memory with a capacity of 64 Kb, organized as 8K �
8. What is the total memory capacity of the system in bits? What is the memory capacity in
bytes?

Solution The total number of bits in the system memory is:

8K � 8 � 8 � 8 � 1K � 64 Kb � 64 � 1024 bits � 65,536 bits

The number of bytes in system memory is:

64 Kb
� 8 KB

8b/B

Usually, the range of numbers spanning 1K is expressed as the 1024 numbers from 010

to 102310 (00000000002 to 11111111112). This is the full range of numbers that can be ex-
pressed by 10 bits. In hexadecimal, the range of numbers spanning 1K is from 000H to
3FFH. The range of numbers in 1M is given as the full hexadecimal range of 20-bit num-
bers: 00000H to FFFFFH.

❘❙❚

The range of numbers spanning 8K can be written in 13 bits (8 � 1K � 23 � 210 �
213). The addresses in an 8K � 8 memory range from 0000000000000 to 1111111111111,
or 0000 to 1FFF in hexadecimal. Thus, a memory device that is organized as 8K � 8 has
13 address lines and 8 data lines.

Figure 13.7 shows the address and data lines of an 8K � 8 memory and a map of its
contents. The addresses progress in binary order, but the contents of any location are the

FIGURE 13.7
Address and Data in an 8K � 8 Memory

628 C H A P T E R 1 3 • Memory Devices and Systems

last data stored there. Since there is no way to predict what those data are, they are essen-
tially random. For example, in Figure 13.7, the byte at address 00000000001002 (0004H)
is 011101112 (77H). (One can readily see the advantage of using hexadecimal notation.)

❘❙❚ EXAMPLE 13.2 How many address lines are needed to access all addressable locations in a memory that is
organized as 64K � 4? How many data lines are required?

Solution Address lines: 2n � 64K

64K � 64 � 1K � 26 � 210 � 216

n � 16 address lines

Data lines: There are 4 data bits for each addressable location. Thus, the memory requires
4 data lines.

❘❙❚

Control Signals

Two memory devices are shown in Figure 13.8. The device in Figure 13.8a is a 1K � 4
random access read/write memory (RAM). Figure 13.8b shows 8K � 8 erasable program-
mable read only memory (EPROM). The address lines are designated by A and the data
lines by DQ. The dual notation DQ indicates that these lines are used for both input (D)
and output (Q) data, using the conventional designations of D-type latches. The input and
output data are prevented from interfering with one another by a pair of opposite-direction
tristate buffers on each input/output pin. One buffer goes to a memory cell input; the other
comes from the memory cell output. The tristate outputs on the devices in Figure 13.8 al-
low the outputs to be electrically isolated from a system data bus that would connect sev-
eral such devices to a microprocessor.

FIGURE 13.8
Address, Data, and Control Signals

13.1 • Basic Memory Concepts 629

In addition to the address and data lines, most memory devices, including those in Fig-
ure 13.8, have one or more of the following control signal inputs. (Different manufacturers
use different notation, so several alternate designations for each function are listed.)

�E (or �CE or �CS). �Enable (or �Chip �Enable or �Chip �Select). The memory is enabled when
this line is pulled LOW. If this line is HIGH, the memory cannot be written to or read from.

�W (or �WE or R/�W). �Write (or �Write �Enable or Read/�Write). This input is used to select
the read or write function when data input and output are on the same lines. When HIGH,
this line selects the read (output) function if the chip is selected. When LOW, the write (in-
put) function is selected.

�G (or �OE). �Gate (or �Output �Enable). Some memory chips have a separate control to en-
able their tristate output buffers. When this line is LOW, the output buffers are enabled
and the memory can be read. If this line is HIGH, the output buffers are in the high-
impedance state. The chip select performs this function in devices without output en-
able pins.

The electrical functions of these control signals are illustrated in Figure 13.9.

FIGURE 13.9
Memory Control Signals

630 C H A P T E R 1 3 • Memory Devices and Systems

13.2 Random Access Read/Write Memory (RAM)

Volatile A memory is volatile if its stored data are lost when electrical power is lost.

Static RAM A random access memory that can retain data indefinitely as long as
electrical power is available to the chip.

Dynamic RAM A random access memory that cannot retain data for more than a
few milliseconds without being “refreshed.”

RAM cell The smallest storage unit of a RAM, capable of storing 1 bit.

Random access read/write memory (RAM) is used for temporary storage of large blocks of
data. An important characteristic of RAM is that it is volatile. It can retain its stored data
only as long as power is applied to the memory. When power is lost, so are the data. There
are two main RAM configurations: static (SRAM) and dynamic (DRAM).

Static RAM (SRAM) consists of arrays of memory cells that are essentially flip-flops.
Data can be stored in a static RAM cell and left there indefinitely, as long as power is avail-
able to the RAM.

A dynamic RAM cell stores a bit as the charged or discharged state of a small capac-
itor. Since the capacitor can hold its charge for only a few milliseconds, the charge must be
restored (“refreshed”) regularly. This makes a dynamic RAM (DRAM) system more com-
plicated than SRAM, as it introduces a requirement for memory refresh circuitry.

DRAMs have the advantage of large memory capacity over SRAMs. At the time of
this writing, the largest SRAMs have a capacity of about 4 Mb, whereas the largest
DRAMs have a capacity of 256 Mb. DRAM modules, that is, groups of DRAM chips on a
small circuit board, have capacities of up to 1 GB. These figures are constantly increasing
and are never up to date for very long. (The most famous estimate of the growth rate of
semiconductor memory capacity, Moore’s law, estimates that it doubles every 18 months.
My casual observation is that this is accurate to within an order of magnitude.)

Static RAM Cells

The typical static RAM cell consists of at least two transistors that are cross-coupled in a
flip-flop arrangement. Other parts of the cell include pull-up circuitry that can be active
(transistor switches) or passive (resistors) and some decoding/switching logic. Figure
13.10 shows an SRAM cell in three technologies: bipolar, NMOS, and CMOS.

Each of these cells can store 1 bit of data, a 0 or a 1, as the state of one of the transis-
tors in the cell. The data are available in true or complement form, as the BIT and �BIT out-
puts of the flip-flop.

All types of SRAM cells operate in more or less the same way. We will analyze the op-
eration of the NMOS cell (Figure 13.10b) and then compare it to the other types.

Transistors Q1 and Q2 are permanently biased ON, making them into pull-up resistors.
Channel width and length are chosen to give a resistance of about 1 k�. These NMOS load
transistors are considered passive pull-ups, as they do not switch on and off.

A bit is stored as VDS3, the drain voltage of Q3 with respect to its source. If this voltage
is HIGH, the gate of Q4 is HIGH with respect to its source and Q4 is biased ON. This com-
pletes a conduction path from the drain of Q4 to its source, making VDS4 logic LOW. This
LOW is fed back to the gate of Q3, turning it OFF. There is no conduction path between the
drain and source of Q3, so VDS3 � VDD or logic HIGH. The cell is storing a 1.

This bit can be read by making the ROW SELECT line HIGH. This turns Q5 and Q6

ON, which puts the data onto the BIT and �BIT lines where it can be read by other circuitry
inside the RAM chip.

To change the cell contents to a 0, we make the BIT line LOW and the ROW SELECT
line HIGH. The ROW SELECT line gives access to the cell by turning on Q5 and Q6, com-

K E Y T E R M S

13.2 • Random Access Read/Write Memory (RAM) 631

pleting the conduction path between the BIT lines and the flip-flop inputs. The LOW on the
BIT line pulls the gate of Q4 LOW, turning it OFF. This breaks the conduction path from Q4

drain to source and makes VDS4 � VDD, a logic HIGH. This HIGH is applied to the gate of
Q3, turning it ON. A conduction path is established between Q3 drain and source, pulling
the drain of Q3 LOW. The cell now stores a logic 0.

The contents of an SRAM cell must be changed by introducing a LOW on the BIT
or the �BIT line. The data cannot be changed by pulling an input HIGH without
pulling the opposite input LOW. If a MOSFET gate is at the LOW state, a HIGH
applied to that gate will be pulled down by the LOW level already existing there
and will not cause the cell to change state.

N O T E

FIGURE 13.10
SRAM Cells

632 C H A P T E R 1 3 • Memory Devices and Systems

The CMOS cell (Figure 13.10c) functions in the same way, except for the actions of
Q1 and Q2. Q1 and Q3 are a complementary pair, as are transistors Q2 and Q4. For each of
these pairs, when the p-channel transistor is ON, the n-channel is OFF, and vice versa. This
arrangement is more energy efficient than the NMOS cell, since there is not the constant
current drain associated with the load transistors. Power is consumed primarily during
switching between states.

The main design goal of new memory technology is to increase speed and capacity
while reducing power consumption and chip area. The NMOS cell has the advantage of
being constructed from only one type of component. This makes it possible to manufacture
more cells in the same chip area than can be done in either the CMOS or bipolar technolo-
gies. NMOS chips, however, are slower than bipolar. New advances in high-speed CMOS
technologies have made possible CMOS memories that are as dense or denser than NMOS
and faster. Because of this, NMOS will probably decline in importance over time.

Bipolar SRAMs can be either TTL, as shown in Figure 13.10a, or ECL, which is not
shown. Of the two bipolar technologies, ECL is the faster. Historically, all bipolar SRAMs
have had the advantage of speed over NMOS and CMOS chips. New CMOS devices how-
ever, have exceeded the speeds of TTL.

The bipolar SRAM cell is the least suitable for high-density memory. Both bipolar
transistors and resistors are large components compared to a MOSFET. Thus, the bipolar
cell is inherently larger than the CMOS or NMOS cell. Bipolar memories historically have
been used when a small amount of high-speed memory is required.

The operation of the bipolar SRAM cell is similar to that of the MOSFET cells. In the
quiescent state, the ROW SELECT line is LOW. In either the Read or the Write mode, the
ROW SELECT line is HIGH. To change the data in the cell, pull one of the emitters LOW.
When the emitter of Q1 goes LOW, the cell contents become 0. When the emitter of Q2 is
pulled LOW, the cell contents are 1.

Static RAM Cell Arrays

Word-organized A memory is word-organized if one address accesses one word
of data.

Word Data accessed at one addressable location.

Word length Number of bits in a word.

Static RAM cell arrays are arranged in a square or rectangular format, accessible by groups
in rows and columns. Each column corresponds to a complementary pair of BIT lines and
each row to a ROW SELECT line, as shown in Figure 13.11.

The column lines have MOSFETs configured as pull-up resistors at one end and a cir-
cuit called a sense amplifier at the other. The sense amp is a large RAM cell that amplifies
the charge of an active storage cell on the same BIT line. Having a larger RAM cell as a
sense amp allows the storage cells to be smaller, since each individual cell need not carry
the charge required for a logic level output.

Figure 13.12 shows the block diagram of a 4 megabit (Mb) SRAM array, including
blocks for address decoding and output circuitry. The RAM cells are arrayed in a pattern of
512 rows and 8192 columns for efficient packaging. When a particular address is applied
to address lines A18 . . . A0, the row and column decoders select an SRAM cell in the mem-
ory array for a read or write by activating the associated sense amps for the column and the
row select line for the cell.

The columns are further subdivided into groups of eight, so that one column address
selects eight bits (one byte) for a read or write operation. Thus, there are 512 separate row
addresses (9 bits) and 1024 separate column addresses (10 bits) for every unique group of
8 data bits, requiring a total of 19 address lines and 8 data lines. The capacity of the SRAM
can be written as 512 � 1024 � 8.

K E Y T E R M S

13.2 • Random Access Read/Write Memory (RAM) 633

FIGURE 13.11
SRAM Cell Array

DQ4

DQ1

DQ0

I/O
circuts

DQ2

DQ3

DQ5

DQ6

DQ7

A1

A0

A2

A16

A17

A18

CS

OE

WE

Row
decoder

Column decoder

Memory array
(512 x 1024 x 8)

Address
buffer

FIGURE 13.12
Block Diagram of a 4Mb (512
KB) SRAM

634 C H A P T E R 1 3 • Memory Devices and Systems

Since one address reads or writes 8 cells, we say that the SRAM in Figure 13.12 is
word-organized and that the word length of the SRAM is 8 bits. Other popular word
lengths for various memory arrays are 4, 16, 32, and 64 bits.

❘❙❚ SECTION 13.2A REVIEW PROBLEM

13.1 If an SRAM array is organized as 512 � 512 � 16, how many address and data lines
are required? How does the bit capacity of this SRAM compare to that of Figure
13.12?

Dynamic RAM Cells

Refresh cycle The process that periodically recharges the storage capacitors in a
dynamic RAM.

A dynamic RAM (DRAM) cell consists of a capacitor and a pass transistor, as shown in
Figure 13.13. A bit is stored in the cell as the charged or discharged state of the capacitor.
The bit location is read from or written to by activating the cell MOSFET via the Word Se-
lect line, thus connecting the capacitor to the BIT line.

K E Y T E R M

FIGURE 13.13
Dynamic RAM Cell

The major disadvantage of dynamic RAM is that the capacitor will eventually dis-
charge by internal leakage current and must be recharged periodically to maintain integrity
of the stored data. The recharging of the DRAM cell capacitors, known as refreshing the
memory, must be done every 8 to 64 ms, depending on the device.

The refresh cycle adds an extra level of complication to the DRAM hardware and also
to the timing of the read and write cycles, since the memory might have to be refreshed be-
tween read and write tasks. DRAM timing cycles are much more complicated than the
equivalent SRAM cycles.

This inconvenience is offset by the high bit densities of DRAM, which are possible
due to the simplicity of the DRAM cell. Up to 256 megabits of data can be stored on a sin-
gle chip.

13.2 • Random Access Read/Write Memory (RAM) 635

DRAM Cell Arrays

Bit-organized A memory is bit-organized if one address accesses one bit of data.

Address multiplexing A technique of addressing storage cells in a dynamic
RAM that sequentially uses the same inputs for the row address and column ad-
dress of the cell.

R�A�S� Row address strobe. A signal used to latch the row address into the decod-
ing circuitry of a dynamic RAM with multiplexed addressing.

C�A�S� Column address strobe. A signal used to latch the column address into the
decoding circuitry of a dynamic RAM with multiplexed addressing.

Dynamic RAM is sometimes bit-organized rather than word-organized. That is, one ad-
dress will access one bit rather than one word of data. A bit-organized DRAM with a large
capacity requires more address lines than a static RAM (e.g., 4 Mb � 1 DRAM requires 22
address lines (222 � 4,194,304 � 4M) and 1 data line to access all cells).

In order to save pins on the IC package, a system of address multiplexing is used to
specify the address of each cell. Each cell has a row address and a column address, which
use the same input pins. Two negative-edge signals called row address strobe (�RAS) and
column address strobe (�CAS) latch the row and column addresses into the DRAM’s de-
coding circuitry. Figure 13.14 shows a simplified block diagram of the row and column ad-
dressing circuitry of a 1 Mb � 1 dynamic RAM.

Figure 13.15 shows the relative timing of the address inputs of a dynamic RAM. The
first part of the address is applied to the address pins and latched into the row address buffers

K E Y T E R M S

FIGURE 13.14
Row and Column Decoding in a
1M � 1 Dynamic RAM

RAS

CAS

ADDRESS Row address Column address

FIGURE 13.15
DRAM Address Latch Signals

636 C H A P T E R 1 3 • Memory Devices and Systems

when �RAS goes LOW. The second part of the address is then applied to the address pins and
latched into the column address buffers by the �CAS signal. This allows a 20-bit address to be
implemented with 12 pins: 10 address and 2 control lines. Adding another address line effec-
tively adds 2 bits to the address, allowing access to 4 times the number of cells.

The memory cell array in Figure 13.14 is rectangular, not square. One of the Row Ad-
dress lines is connected internally to the Column Address decoder, resulting in a 512-row-
by-2048-column memory array.

One advantage to the rectangular format shown is that it cuts the memory refresh time
in half, since all the cells are refreshed by accessing the rows in sequence. Fewer rows
means a faster refresh cycle. All cells in a row are also refreshed by normal read and write
operations.

❘❙❚ SECTION 13.2B REVIEW PROBLEMS

13.2 How many address and data lines are required for the following sizes of dynamic
RAM, assuming that each memory cell array is organized in a square format, with
common Row and Column Address pins?

a. 1M � 1

b. 1M � 4

c. 4M � 1

13.3 Read Only Memory (ROM)

Hardware The electronic circuit of a digital or computer system.

Software Programming instructions required to make hardware perform specified
tasks.

Firmware Software instructions permanently stored in ROM.

The main advantage of read only memory (ROM) over random access read/write memory
(RAM) is that ROM is nonvolatile. It will retain data even when electrical power is lost to
the ROM chip. The disadvantage of this is that stored data are difficult or impossible to
change.

ROM is used for storing data required for tasks that never or rarely change, such as
software instructions for a bootstrap loader in a personal computer or microcontroller.
(The bootstrap loader—a term derived from the whimsical idea of pulling oneself up by
one’s bootstraps, that is, starting from nothing—is the software that gives the personal
computer its minimum startup information. Generally, it contains the instructions needed
to read a magnetic disk containing further operating instructions. This task is always the
same for any given machine and is needed every time the machine is turned on, thus mak-
ing it the ideal candidate for ROM storage.)

Software instructions stored in ROM are called firmware.

Mask-Programmed ROM

Mask-programmed ROM A type of read only memory (ROM) where the stored
data are permanently encoded into the memory device during the manufacturing
process.

K E Y T E R M

K E Y T E R M S

13.3 • Read Only Memory (ROM) 637

The most permanent form of read only memory is the mask-programmed ROM, where
the stored data are manufactured into the memory chip. Due to the inflexibility of this
type of ROM and the relatively high cost of development, it is used only for well-
developed high-volume applications. However, even though development cost of a mask-
programmed ROM is high, volume production is cheaper than for some other types of ROM.

Examples of applications suitable to mask-programmed ROM include:

• Bootstrap loaders and BIOS (basic input/output system) for PCs.

• Character generators (decoders that convert ASCII codes into alphanumeric characters
on a CRT display)

• Function lookup tables (tables corresponding to binary values of trigonometric, expo-
nential, or other functions)

• Special software instructions that must be permanently stored and never changed
(firmware)

Figure 13.16 shows a ROM based on a matrix of MOSFETs. Each cell is manufac-
tured with a MOSFET and its gate and source connections. LOWs are programmed by
making a connection between the drain of the cell’s MOSFET and the corresponding Bit

FIGURE 13.16
Mask-Programmed ROM

638 C H A P T E R 1 3 • Memory Devices and Systems

line. When the appropriate Row Select goes HIGH, the MOSFET turns ON, providing a
path to ground from the selected Bit line. Cells programmed HIGH have no connection be-
tween the MOSFET drain and the Bit line, which thus cannot be pulled LOW when the cell
is selected.

These connections can be made by a custom overlay of connections (a mask) on top of
the standard-cell layer. The standard-cell-plus-custom-overlay format is cheaper to manu-
facture than custom cells for each bit, even if many of the MOSFETs are never used.

EPROM

EPROM Erasable programmable read only memory. A type of ROM that can be
programmed (“burned”) by the user and erased later, if necessary, by exposing the
chip to ultraviolet radiation.

FAMOS FET Floating-gate avalanche MOSFET. A MOSFET with a second,
“floating” gate in which charge can be trapped to change the MOSFET’s gate-
source threshold voltage.

Mask-programmed ROM is useful because of its nonvolatility, but it is hard to pro-
gram and impossible to erase. Erasable programmable read only memory (EPROM)
combines the nonvolatility of ROM with the ability to change the internal data if necessary.

This erasability is particularly useful in the development of a ROM-based system.
Anyone who has built a complex circuit or written a computer program knows that there is
no such thing as getting it right the first time. Modifications can be made easily and
cheaply to data stored in an EPROM. Later, when the design is complete, a mask ROM
version can be prepared for mass production. Alternatively, if the design will be produced
in small numbers, the ROM data can be stored in EPROMs, saving the cost of preparing a
mask-programmed ROM.

The basis of the EPROM memory cell is the FAMOS FET, whose circuit symbol
is shown in Figure 13.17. FAMOS stands for floating-gate avalanche metal-oxide-
semiconductor. (“Avalanche” refers to electron behavior in a semiconductor under certain
bias conditions.) This is a MOSFET with a second, or floating, gate that is insulated from
the first by a thin oxide layer.

The floating gate has no electrical contact with either the first gate or the source and
drain terminals. As is the case in a standard MOSFET, conduction between drain and

K E Y T E R M S

FIGURE 13.17
FAMOS FET

source terminals is effected by the voltage of the gate terminal with respect to the source.
If this voltage is above a certain threshold level, the transistor will turn ON, allowing cur-
rent to flow between drain and source.

In the unprogrammed state the FAMOS transistor’s threshold voltage is low enough
for the transistor to be turned ON by a 5-V read signal on the Row Select line. During the

13.3 • Read Only Memory (ROM) 639

programming operation, a relatively high voltage pulse (about 12 V to 25 V, depending on
the device) on the Row Select line drives high-energy electrons into the floating gate and
traps them there. This raises the threshold voltage of the programmed cell to a level where
the cell won’t turn ON when selected by a 5-V read.

The EPROM cells are configured so that an unprogrammed location contains a logic
HIGH and the programming signal forces it LOW.

To erase an EPROM, the die (i.e., the silicon chip itself) must be exposed for about 20
to 45 minutes to high-intensity ultraviolet light of a specified wavelength (2537 angstroms)
at a distance of 2.5 cm (1 inch). The high-energy photons that make up the UV radiation re-
lease the electrons trapped in the floating gate and restore the cell threshold voltages to
their unprogrammed levels.

EPROMS are manufactured with a quartz window over the die to allow the UV radia-
tion in. Since both sunlight and fluorescent light contain UV light of the right wavelength
to erase the EPROM over time (several days to several years, depending on the intensity of
the source), the quartz window should be covered by an opaque label after the EPROM has
been programmed.

EPROM Application: Digital Function Generator

An EPROM can be used as the central component of a digital function generator. Other
components in the system include a clock generator, a counter, a digital-to-analog con-
verter, and an output op amp buffer. The portion of the circuit including the last three of
these components is shown in Figure 13.18.

The generator can produce the usual analog waveforms—sine, square, triangle, saw-
tooth—and any other waveforms that you wish to store in the EPROM. A single cycle of

27C64 EPROM

O3

O6

O7

O5

O4

O2

O1

O0

Vref(�)

Range

Ground

b3

b6

b7

b5

b4

b2

b1

b0

A3

A6

A7

A5

A4

A2

A1

A0

A11

A10

OE

CE

A9

A8

VCC VEE

�12 v�5 v

Vref(�)

0.1 �F
5 k�

RFB RFA

10 k�10 k�

1 k�

18 k�

2.7 k�
R14B

R15

R14A

� 5 v

I0

Vo

MC1408
DAC

CTR DIV 256

Q3

Q6

Q7

Q5

Q4

Q2

Q1

Q0

CLK

�

�
� �

75 pF

Function select

�5 v �5 v

�5 v

(15)

(4)(14)

FIGURE 13.18
Digital Function Generator

640 C H A P T E R 1 3 • Memory Devices and Systems

each waveform is stored as 256 consecutive 8-bit numbers. For example, the data for one
cycle of the sine waveform are stored at addresses 0000H to FFFFH, as shown in hex form
in Table 13.1. (FF is maximum positive, 80 is zero, and 00 is maximum negative.) The
square wave data are stored at addresses 0100 to 01FF, also shown in Table 13.1. The data
for other functions, stored in subsequent 256-byte blocks, are not shown. A full list of the
function data and an ANSI C program to generate an EPROM record file (Intel format) are
included in Appendix E.

The counter and EPROM can also be implemented in a CPLD. Alternatively, a VHDL-
designed state machine can replace the counter and EPROM, except for the sine function.

Table 13.1 EPROM Sine and Square Wave Data

SINE

Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 80 83 86 89 8C 8F 92 95 98 9C 9F A2 A5 A8 AB AE
0010 B0 B3 B6 B9 BC BF C1 C4 C7 C9 CC CE D1 D3 D5 D8
0020 DA DC DE E0 E2 E4 E6 E8 EA EC ED EF F0 F2 F3 F5
0030 F6 F7 F8 F9 FA FB FC FC FD FE FE FF FF FF FF FF
0040 FF FF FF FF FF FF FE FE FD FC FC FB FA F9 F8 F7
0050 F6 F5 F3 F2 F0 EF ED EC EA E8 E6 E4 E2 E0 DE DC
0060 DA D8 D5 D3 D1 CE CC C9 C7 C4 C1 BF BC B9 B6 B3
0070 B0 AE AB A8 A5 A2 9F 9C 98 95 92 8F 8C 89 86 83
0080 7F 7C 79 76 73 70 6D 6A 67 63 60 5D 5A 57 54 51
0090 4F 4C 49 46 43 40 3E 3B 38 36 33 31 2E 2C 2A 27
00A0 25 23 21 1F 1D 1B 19 17 15 13 12 10 0F 0D 0C 0A
00B0 09 08 07 06 05 04 03 03 02 01 01 00 00 00 00 00
00C0 00 00 00 00 00 00 01 01 02 03 03 04 05 06 07 08
00D0 09 0A 0C 0D 0F 10 12 13 15 17 19 1B 1D 1F 21 23
00E0 25 27 2A 2C 2E 31 33 36 38 3B 3E 40 43 46 49 4C
00F0 4F 51 54 57 5A 5D 60 63 67 6A 6D 70 73 76 79 7C

SQUARE

Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0140 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0160 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0170 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

13.3 • Read Only Memory (ROM) 641

These configurations are designed and built as exercises in the lab manual that accompa-
nies this book.

The most significant bits of the EPROM address select the waveform function by se-
lecting a block of 256 address. The 8 least significant bits of the EPROM address are con-
nected to an 8-bit (mod-256) counter, which continuously cycles through the 256 selected
addresses. A 27C64 EPROM (8K � 8) has 13 address lines. After the eight lower lines are
accounted for, the remaining five lines can be used to select up to 32 digital functions. With
the two binary Function Select switches, we can potentially select 4 functions.

For example, to select the Sine function, inputs A9 and A8, which comprise the most
significant digit of the EPROM address, are set to 00. Thus, the 8-bit counter cycles
through addresses 0000–00FF, the location of the sine data. The Square Wave function is
selected by setting A9 and A8 to 01, thus selecting the address block 0100–01FF. Other
functions can be similarly selected.

The data at each address are sent to the D/A converter (MC1408), which, in combina-
tion with the op amp, is configured to produce a bipolar (both positive and negative) out-
put. (We use a high slew rate op amp so that the generated square waves will have vertical
sides.) The circuit generates a continuous waveform by retracing the data points in one
256-byte section of the EPROM over and over.

The DAC/op amp combination produces a maximum negative voltage for a hex input
of 00, a 0 V output for an input of 80, and a maximum positive voltage for an input of FF.
(You might wish to refer to the section Bipolar Operation of MC1408 in Chapter 12 for de-
tails of the DAC operation.)

You can see from the Sine function data in Table 13.1 that 8 bits are not sufficient to
represent each of the 256 steps of a digital sine function as a unique number. The peaks of
the waveform are changing too slowly to be represented accurately by an 8-bit quantiza-
tion, and as a result, the top of the sine wave is flat for several clock pulses. (Mathemati-
cally, a sine function is tangential to a horizontal line at its peak. However, since tangen-
tial means touching at one point, the flat top is a distortion.) A unique number for each of
256 steps of a sine function needs at least 13 bits,1 but this requires additional bits on the
D/A converter input, and therefore a different DAC and an expanded memory word length.

The output frequency of the function generator is 1/256 of the clock rate. Given
that the settling time of the MC1408 DAC is about 300ns, the maximum clock rate of
the circuit is 1/300 ns � 3.33 MHz. At this rate, the output frequency is 3.33 MHz/256 �
13 kHz.

EEPROM

EEPROM (or E2PROM) Electrically erasable programmable read only memory.
A type of read only memory that can be field-programmed and selectively erased
while still in a circuit.

As was discussed in the previous section, EPROMs have the useful property of being
erasable. The problem is that they must be removed from the circuit for erasure, and bits

K E Y T E R M

1Bits required:
● 360°/256 steps � 1.40625°/step.
● Sine function changes most slowly at peak, so calculate A sin(90° � 1.40625°) to find smallest amplitude

change.
● The smallest power-of-2 amplitude, A, for which A sin(90°) � A sin(90° � 1.40625°) � 1 is 4096.
● The amplitude range �4096 � A � 4095 can be represented by a 13-bit number.

642 C H A P T E R 1 3 • Memory Devices and Systems

cannot be selectively erased; the whole memory cell array is erased as a unit.
Electrically erasable programmable read only memory (EEPROM or E2PROM)

provides the advantages of EPROM along with the additional benefit of allowing erasure
of selected bits while the chip is in the circuit; it combines the read/write properties of
RAM with the nonvolatility of ROM. EEPROM is useful for storage of data that need to be
changed occasionally, but that must be retained when power is lost to the EEPROM chip.
One example is the memory circuit in an electronically tuned car radio that stores the chan-
nel numbers of local stations.

Like the UV-erasable EPROM, the memory cell of the EEPROM is based on the
FAMOS transistor. Unlike the EPROM, the FAMOS FET is coupled with a standard MOS-
FET, as shown in Figure 13.19.

The FAMOS FET is programmed in the same way as UV-erasable EPROM: a pro-
gramming voltage pulse (VPP) drives high-energy electrons into the floating gate of the

FIGURE 13.19
EEPROM Cell

FAMOS transistor, where they remain trapped and change the threshold voltage of the
transistor. The cell is read by keeping the programming line at 5 V and making the cell’s
Row Select line HIGH. The FAMOS transistor will or will not turn on, depending on its
programmed state.

The FAMOS transistors used in EPROM and EEPROM differ in one important re-
spect. The EEPROM transistor is manufactured with a very thin oxide layer between the
drain and the upper (nonfloating) gate. This construction allows trapped electrons in the
floating gate to be forced out electrically, thus erasing the cell contents.

Given the obvious advantages of EEPROM, why doesn’t it replace all other types of
memory? There are several reasons:

1. EEPROM has a much slower access time than RAM and is thus not good for high-speed
applications.

2. The currently available EEPROMs have significantly smaller bit capacities than com-
mercially available RAM (especially dynamic RAM) and EPROM.

3. EEPROM has a fixed number of write/erase cycles, typically 100,000. After that, new
data cannot be programmed into the device.

13.3 • Read Only Memory (ROM) 643

Flash Memory

Flash memory A nonvolatile type of memory that can be programmed and
erased in sectors, rather than byte-at-a-time.

Sector A segment of flash memory that forms the smallest amount that can be
erased and reprogrammed at one time.

Boot block A sector in a flash memory reserved for primary firmware.

Top boot block A boot block sector in a flash memory placed at the highest ad-
dress in the memory.

Bottom boot block A boot block sector in flash memory paced at the lowest ad-
dress in the memory.

A popular variation on EEPROM is flash memory. This type of nonvolatile memory gen-
erally has a larger byte capacity (e.g., 8 Mb) than EEPROM devices and thus can be used
to store fairly large amounts of firmware, such as the BIOS (basic input/output system)
of a PC.

A flash memory is divided into sectors, groups of bytes that are programmed and
erased at one time. One sector is designated as the boot block, which is either the sector
with the highest (top boot block) or lowest (bottom boot block) address. The primary
firmware is usually stored in the boot block, with the idea that the system using the flash
memory is configured to look there first for firmware instructions. The boot block can also
be protected from unauthorized erasure or modification (e.g., by a virus), thus adding a se-
curity feature to the device.

Figure 13.20 shows the arrangement of sectors of a 512K � 8-bit (4 Mb) flash mem-
ory with a bottom boot block architecture. The range of addresses are shown alongside the
blocks. For example, sector S0 (the boot block) has a 16 KB address range of 00000H to
03FFFH. Sector S1 has an 8 KB address range from 04000H to 05FFFH. The first 64 KB
of the memory are divided into one 16 KB, two 8 KB, and one 32 KB sectors. The remain-
der of the memory is divided into equal 64 KB sectors. Note that even though the boot
block is drawn at the top of Figure 13.20, it is a bottom boot block because it is the sector
with the lowest address.

A flash memory with a top boot block would have the same proportions given over to
its sectors, but mirror-image to the diagram in Figure 13.20. That is, S10 (boot block)
would be a 16 KB sector from 7C000H to 7FFFFH. The other sectors would be identical to
the bottom boot block architecture, but in reverse order.

As with other EEPROM devices, a flash memory can be erased and reprogrammed
while installed in a circuit. The memory cells in a flash device have a limited number of
program/erase cycles, like other EEPROMs. The sector architecture of the flash memory
makes it faster to erase and program than other EEPROM-based memories which must
erase or program bytes one at a time. This same characteristic makes it unsuitable for use
as system RAM, which must be able to program single bytes.

❘❙❚ SECTION 13.3 REVIEW PROBLEM

13.3 A flash memory has a capacity of 8 Mb, organized as 1M � 8-bit. List the address
range for the 32 KB boot block sector of the memory if the device has a bottom boot
block architecture and if it has a top boot block architecture.

K E Y T E R M S

644 C H A P T E R 1 3 • Memory Devices and Systems

00000H

04000H
06000H
08000H

100000H

20000H

30000H

40000H

50000H

60000H

70000H

7FFFFH

S0 (Boot block)

S1
S2

S3

S4

S5

S6

S7

S8

S9

S10

16 KB

8 KB
8 KB

32 KB

64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

64 KB

FIGURE 13.20
Sectors in a 512K � 8b Flash Memory (Bottom Boot Block)

13.4 • Sequential Memory: FIFO and LIFO 645

13.4 Sequential Memory: FIFO and LIFO

Sequential memory Memory in which the stored data cannot be read or written
in random order, but must be addressed in a specific sequence.

FIFO First-in first-out. A sequential memory in which the stored data can be read
only in the order in which it was written.

Queue A FIFO memory.

LIFO Last-in first-out. A sequential memory in which the last data written are the
first data read.

Stack A LIFO memory.

The RAM and ROM devices we have examined up until now have all been random access
devices. That is, any data could be read from or written to any sequence of addresses in any
order. There is another class of memory in which the data must be accessed in a particular
order. Such devices are called sequential memory.

There are two main ways of organizing a sequential memory—as a queue or as a
stack. Figure 13.21 shows the arrangement of data in each of these types of memory.

A queue is a first-in first-out (FIFO) memory, meaning that the data can be read only
in the same order they are written, much as railway cars always come out of a tunnel in the
same order they go in.

One common use for FIFO memory is to connect two devices that have different data
rates. For instance, a computer can send data to a printer much faster than the printer can
use it. To keep the computer from either waiting for the printer to print everything or peri-
odically interrupting the computer’s operation to continue the print task, data can be sent in
a burst to a FIFO, where the printer can read them as needed. The only proviso is that there

K E Y T E R M S

FIGURE 13.21
Sequential Memory

646 C H A P T E R 1 3 • Memory Devices and Systems

must be some logic signal to the computer telling it when the queue is full and not to send
more data and another signal to the printer letting it know that there are some data to read
from the queue.

The last-in-first-out (LIFO), or stack, memory configuration, also shown in Figure
13.21, is not available as a special chip, but rather is a way of organizing RAM in a mem-
ory system.

The term “stack” is analogous to the idea of a spring-loaded stack of plates in a cafe-
teria line. When you put a bunch of plates on the stack, they settle into the recessed storage
area. When a plate is removed, the stack springs back slightly and brings the second plate
to the top level. (The other plates, of course, all move up a notch.) The top plate is the only
one available for removal from the stack, and plates are always removed in reverse order
from that in which they were loaded.

Figure 13.21b shows how data are transferred to and from a LIFO memory. A block of
addresses in a RAM is designated as a stack, and one or two bytes of data in the RAM store
a number called the stack pointer, which is the current address of the top of the stack.

In Figure 13.21, the value of the stack pointer changes with every change of data in the
stack, pointing to the last-in data in every case. When data are removed from the stack, the
stack pointer is used to locate the data that must be read first. After the read, the stack
pointer is modified to point to the next-out data. Some stack configurations have the stack
pointer painting to the next empty location on the stack.

The most common application for LIFO memory is in a computer system. If a pro-
gram is interrupted during its execution by a demand from the program or some piece of
hardware that needs attention, the status of various registers within the computer are stored
on a stack and the computer can pay attention to the new demand, which will certainly
change its operating state. After the interrupting task is finished, the original operating state
of the computer can be taken from the top of the stack and reloaded into the appropriate
registers, and the program can resume where it left off.

❘❙❚ SECTION 13.4 REVIEW PROBLEM

13.4 State the main difference between a stack and a queue.

13.5 Dynamic RAM Modules

Memory module A small circuit board containing several dynamic RAM chips.

Single in-line memory module (SIMM) A memory module with DRAMs and
connector pins on one side of the board only.

Dual in-line memory module (DIMM) A memory module with DRAMs and
connector pins on both sides of the board.

Dynamic RAM chips are often combined on a small circuit board to make a memory
module. This is because the data bus widths of systems requiring the DRAMs are not al-
ways the same as the DRAMs themselves. For example, Figure 13.22 shows how four 64M
� 8 DRAMs are combined to make a 64M � 32 memory module. The block diagram of
the module is shown in Figure 13.22, and the mechanical outline is shown in Figure
13.23. The data input/output lines are separate from one another so that there are 32 data
I/Os (DQ). The address lines (ADDR[12..0]) for the module are parallel on all chips. With
address multiplexing, this 13-bit address bus yields a 26-bit address, giving a 64M address
range. Chip selects (CS) for all devices are connected together so that selecting the module
selects all chips on the module.

This particular memory module is configured as a single in-line memory module
(SIMM), which has the DRAM chips and pin connections on one side of the board only. A

K E Y T E R M S

13.5 • Dynamic RAM Modules 647

dual in-line memory module (DIMM) has the DRAMs mounted on both sides of the cir-
cuit board and pin connections on both sides of the board as well.

❘❙❚ SECTION 13.5 REVIEW PROBLEM

13.5 A SIMM has a capacity of 16M � 32. How many 16M � 8 DRAMs are required to
make this SIMM? How many address lines does the SIMM require? How should the
DRAMs be connected?

CAS
CS

64M � 8

RAS

DQ[0..7]

CAS
CS

64M � 8

RAS

DQ[8..15]

CAS
CS

64M � 8

RAS

DQ[16..23]

CAS
CS

64M � 8

RAS

DQ[24..32]

Addres bus
ADDR [12..0]

FIGURE 13.22
SIMM Block Diagram

1 72

FIGURE 13.23
SIMM Layout

648 C H A P T E R 1 3 • Memory Devices and Systems

13.6 Memory Systems

Address decoder A circuit enabling a particular memory device to be selected by
the address bus of a larger memory system.

Address space A block of addresses in a memory system.

Bus contention The condition that results when two or more devices try to send
data to a bus at the same time. Bus contention can damage the output buffers of the
devices involved.

Memory map A diagram showing the total address space of a memory system
and the placement of various memory devices within that space.

In the section on memory modules, we saw how multiple memory devices can be com-
bined to make a system that has the same number of addressable locations as the individ-
ual devices making up the system, but with a wider data bus. We can also create memory
systems where the data I/O width of the system is the same as the individual chips, but
where the system has more addressable locations than any chip within the system.

In such a system, the data I/O and control lines from the individual memory chips
are connected in parallel, as are the lower bits of an address bus connecting the chips.
However, it is important that only one memory device be enabled at any given time, in or-
der to avoid bus contention, the condition that results when more than one output at-
tempts to drive a common bus line. To avoid bus contention, one or more additional ad-
dress lines must be decoded by an address decoder that allows only one chip to be
selected at a time.

Figure 13.24 shows two 32K � 8 SRAMs connected to make a 64K � 8 memory sys-
tem. A single 32K � 8 SRAM, as shown in Figure 13.24a, requires 15 address lines, 8 data
lines, a write enable (WE), and chip select (CS) line. To make a 64K � 8 SRAM system,
all of these lines are connected in parallel, except the CS lines. In order to enable only one
at a time, we use one more address line, A15, and enable the top SRAM when A15 � 0 and
the bottom SRAM when A15 � 1.

The address range of one 32K � 8 SRAM is given by the range of states of the address
lines A[14..0]:

Lowest single-chip address: 000 0000 0000 0000 � 0000H
Highest single-chip address: 111 1111 1111 1111 � 7FFFH

The address range of the whole system must also account for the A15 bit:

Lowest system address: 0000 0000 0000 0000 � 0000H
Highest system address: 1111 1111 1111 1111 � FFFFH

Within the context of the system, each individual SRAM chip has a range of ad-
dresses, depending on the state of A15. Assume SRAM0 is selected when A15 � 0 and
SRAM1 is selected when A15 � 1.

Lowest SRAM0 address: 0000 0000 0000 0000 � 0000H
Highest SRAM0 address: 0111 1111 1111 1111 � 7FFFH
Lowest SRAM1 address: 1000 0000 0000 0000 � 8000H
Highest SRAM1 address: 1111 1111 1111 1111 � FFFFH

Figure 13.25 shows a memory map of the 64K � 8 SRAM system, indicating the
range of addresses for each device in the system. The total range of addresses in the system
is called the address space.

K E Y T E R M S

www.electronictech.com

13.6 • Memory Systems 649

DQ[7..0]

A[14..0]A[14..0]

WE
CS

DQ[7..0]

32 K � 8 SRAM

a. Single 32 K � 8 SRAM

A[14..0]

A[14...0]

DQ[7..0]

WE
CS0

DQ[7..0]

32 K � 8 SRAM

A[14..0]

WE
CS1

DQ[7..0]

32 K � 8 SRAM

A15

WE

b. Two 32 K � 8 SRAMS connected to
make 64 K � 8 SRAM system

FIGURE 13.24
Expanding Memory Space

SRAM1

SRAM0

0000H

8000H

FFFFH

FIGURE 13.25
Memory Map

650 C H A P T E R 1 3 • Memory Devices and Systems

❘❙❚ EXAMPLE 13.3 Figure 13.26 shows a memory map for a system with an address space of 64K (16 address
lines). Two 16K � 8 blocks of SRAM are located at start addresses of 0000H and 8000H,
respectively. Sketch a memory system that implements the memory map of Figure 13.26.

Solution A 16K address block requires 14 address lines, since

16K � 16 � 1024 � 24 � 210 � 214

The entire 64K address space requires 16 address lines, since

64K � 64 � 1024 � 26 � 210 � 216

The highest address in a block is the start address plus the block size.

16K block size: 11 1111 1111 1111 � 3FFFH
SRAM0: Lowest address: 0000 0000 0000 0000 � 0000H

Highest address: 0011 1111 1111 1111 � 3FFFH
SRAM2: Lowest Address: 1000 0000 0000 0000 � 8000H

Highest Address: 1011 1111 1111 1111 � BFFFH

A15A14 � 00 for the entire range of the SRAM0 block. A15A14 � 10 for the entire
SRAM2 range. These can be decoded by the gates shown in Figure 13.27.

SRAM1

SRAM2

0000H

4000H

8000H

C000H

FFFFH

FIGURE 13.26
Memory Map Showing Non-
contiguous Decoded Blocks.

A[13..0]A[13..0]

DQ[7..0]

WE
CS0

DQ[7..0]

16 K � 8
SRAM0

A[13..0]

WE
CS1

DQ[7..0]

16 K � 8
SRAM2

WE

A14

A15

FIGURE 13.27
Example 13.3
32K � 8 SRAM with non-continguous blocks.

❘❙❚

Address Decoding with n-line-to-m-line Decoders

Figure 13.28 shows a 64K memory system with four 16K chips: one EPROM at 0000H
and three SRAMs at 4000H, 8000H, and C000H, respectively. In this circuit, the address
decoding is done by a 2-line-to-4-line decoder, which can be an off-the-shelf MSI decoder,
such as a 74HC139 decoder or a PLD-based design.

Table 13.2 shows the address ranges decoded by each decoder output. The first two ad-
dress bits are the same throughout any given address range. Figure 13.29 shows the mem-
ory map for the system.

13.6 • Memory Systems 651

A[13..0]A[13..0]

DQ[7..0]

OE
CS0

DQ[7..0]

EPROM
16 K � 8

A[13..0]

WE
CS1

DQ[7..0]

SRAM
16 K � 8

A[13..0]

WE
CS2

DQ[7..0]

SRAM
16 K � 8

A[13..0]

WE
CS3

DQ[7..0]

S0

S1

EN

SRAM
16 K � 8

2 - to - 4
Decoder

OE

WE

Y0

Y1

Y2

Y3

A15

A14

MemEN

FIGURE 13.28
64K Memory System

Table 13.2 Address Decoding for Figure 13.28

Active
Decoder

A15 A14 Output Device Address Range

0 0 Y0 EPROM 0000 0000 0000 0000 � 0000H
0011 1111 1111 1111 �

3FFFH
0 1 Y1 SRAM1 0100 0000 0000 0000 � 4000H

0111 1111 1111 1111 �
7FFFH
1 0 Y2 SRAM2 1000 0000 0000 0000 � 8000H

1011 1111 1111 1111 �

652 C H A P T E R 1 3 • Memory Devices and Systems

SRAM3

EPROM

SRAM1

SRAM2

0000

4000

8000

C000

FFFF

FIGURE 13.29
Memory Map for Figure 13.28

❘❙❚ SECTION 13.6 REVIEW PROBLEM

13.6 Calculate the number of 128K memory blocks will fit into a 1M address space. Write
the start addresses for the blocks.

S U M M A R Y

01. A memory is a device that can accept data and store them for
later recall.

02. Data are located in a memory by an address, a binary number
at a set of address inputs that uniquely locates the block of
data.

03. The operation that stores data in a memory is called the write
function. The operation that recalls the stored data is the read
function. These functions are controlled by functions such as
write enable (�WE), chip select (�CS), and output enable (�OE).

04. RAM is random access memory. RAM can be written to and
read from in any order of addresses. RAM is volatile. That is,
it loses its data when power is removed from the device.

05. ROM is read only memory. Original ROM devices could not
be written to at all, except at the time of manufacture. Mod-
ern variations can also be written to, but not as easily as
RAM. ROM is nonvolatile; it retains its data when power is
removed from the device.

06. Memory capacity is given as m � n for m addressable loca-
tions and an n-bit data bus. For example, a 64K � 8 memory
has 65,536 addressable locations, each with 8-bit data.

07. Large blocks of memory are designated with the binary
prefixes K (210 � 1024), M (220 � 1,048,576), and G
(230 � 1,073,741,824).

08. RAM can be divided into two major classes: static RAM
(SRAM) and dynamic RAM (DRAM). SRAM retains its
data as long as power is applied to the device. DRAM re-
quires its data to be refreshed periodically.

09. Typically DRAM capacity is larger than SRAM because
DRAM cells are smaller than SRAM cells. An SRAM cell is
essentially a flip-flop consisting of several transistors. A
DRAM cell has only one transistor and a capacitor.

10. RAM cells are arranged in rectangular arrays for efficient
packaging. Internal circuitry locates each cell at the intersec-
tion of a row and column within the array.

11. For packaging efficiency, DRAM addresses are often multi-
plexed so that the device receives half its address as a row ad-
dress, latched in to the device by a �RAS (row address strobe)
signal and the second half as a column address, latched in by
a �CAS (column address strobe) signal.

12. Read only memory (ROM) is used where it is important to
retain data after power is removed.

13. Mask-programmed ROM is programmed at the time of man-
ufacture. Programming is done by making a custom overlay
of connections onto a standard cell array. Data cannot be
changed. This is suitable for mature designs in high-volume
production.

14. Erasable programmable read only memory (EPROM) can be
programmed by the user and erased by exposure to ultravio-
let light of a specified frequency and intensity. An EPROM
must be removed from its circuit for erasing and reprogram-
ming.

15. Electrically erasable read only memory (EEPROM or
E2PROM) can be programmed and erased in-circuit. It is
nonvolatile, but unsuitable for use as system RAM due to

❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚❘❙❚

Glossary 653

G L O S S A R Y

Address A number, represented by the binary states of a group
of inputs or outputs, uniquely defining the location of data stored
in a memory device.

Address decoder A circuit enabling a particular memory
device to be selected by the address bus of a larger memory
system.

Address multiplexing A technique of addressing storage cells
in a dynamic RAM which sequentially uses the same inputs for
row address and column address of the cell.

Address Space A block of addresses in a memory system.

b Bit.

B Byte.

Bit-organized A memory is bit-organized if one address ac-
cesses one bit of data.

Boot block A sector in a flash memory reserved for primary
firmware.

Bottom boot block A boot block sector in flash memory
paced at the lowest address in the memory.

Bus A group of parallel conductors carrying related logic sig-
nals, such as multi-bit data or addresses.

Bus contention The condition that results when two or more
devices try to send data to a bus at the same time. Bus con-
tention can damage the output buffers of the devices involved.

Byte A group of 8 bits.

�CAS Column address strobe. A signal used to latch the column
address into the decoding circuitry of a dynamic RAM with mul-
tiplexed addressing.

Data Binary digits (0s and 1s) which contain some kind of in-
formation. In the context of memory, the digital contents of a
memory device.

Dual in-line memory module (DIMM) A memory module
with DRAMs and connector pins on both sides of the board.

Dynamic RAM A random access memory which cannot re-
tain data for more than a few (e.g., 64) milliseconds without be-
ing “refreshed.”

EEPROM (or E2PROM) Electrically erasable programmable
read only memory. A type of read only memory that can be
field-programmed and selectively erased while still in a circuit.

EPROM Erasable programmable read only memory. A type of
ROM that can be programmed (“burned”) by the user and erased
later, if necessary, by exposing the chip to ultraviolet radiation.

FAMOS FET Floating-gate avalanche. MOSFET. A MOSFET
with a second, “floating” gate in which charge can be trapped to
change the MOSFET’s gate-source threshold voltage. A FAMOS
transistor is the memory element in an EPROM cell.

FIFO First-in first-out. A sequential memory in which the
stored data can only be read in the order in which it was
written.

Firmware Software instructions permanently stored in ROM.

Flash memory A nonvolatile type of memory that can be pro-
grammed and erased in sectors, rather than byte-at-a-time.

Hardware The electronic circuit of a digital or computer
system.

I/O Input/output.

K 1024 (�210) Analogous to the metric prefix “k” (kilo).

LIFO Last-In first-out. A sequential memory in which the last
data written is the first data read.

M 1,048,576 (�220) Analogous to the metric prefix “M”
(mega).

Mask-programmed ROM A type of read only memory
(ROM) where the stored data are permanently encoded into the
memory device during the manufacturing process.

Memory A device for storing digital data in such a way that it
can be recalled for later use in a digital system.

Memory map A diagram showing the total address space of a
memory system and the placement of various memory devices
within that space.

Memory module A small circuit board containing several dy-
namic RAM chips.

Nibble Half a byte; 4 bits.

PROM Programmable read only memory. A type of ROM
whose data need not be manufactured into the chip, but can be
programmed by the user.

Queue A FIFO memory.

RAM cell The smallest storage unit of a RAM, capable of
storing one bit.

its long programming/erase times and finite number of
program/erase cycles.

16. Flash memory is a type of EEPROM that is organized into
sectors that are erased all at once. This is faster than other
EEPROM, which must be erased byte-by-byte.

17. Flash memory is often configured with one sector as a boot
block, where primary firmware is stored. A bottom boot
block architecture has the boot block at the lowest chip ad-
dress. A top boot block architecture has the boot block at the
highest chip address.

18. Sequential memory must have its data accessed in sequence.
Two major classes are first-in first-out (FIFO) and last-in

first-out (LIFO). FIFO is also called a queue and LIFO is
called a stack.

19. Dynamic RAM chips are often configured as memory mod-
ules, small circuit boards with multiple DRAMs. The mod-
ules usually have the same number of address locations as
the individual chips on the module, but a wider data bus.

20. Memory systems can be configured to have the same data
width as individual memory devices comprising the system,
but with more addressable locations than any chip in the sys-
tem. The additional addresses require additional system ad-
dress lines, which are decoded to enable one chip at a time
within the system.

654 C H A P T E R 1 3 • Memory Devices and Systems

Random access memory (RAM) A type of memory device
where data at any address can be accessed in any order, that is,
randomly. The term usually refers to random access read/write
memory.

�RAS Row address strobe. A signal used to latch the row ad-
dress into the decoding circuitry of a dynamic RAM with multi-
plexed addressing.

Read Retrieve data from a memory device.

Read only memory (ROM) A type of memory where data is
permanently stored and can only be read, not written.

Refresh cycle The process which periodically recharges the
storage capacitors in a dynamic RAM.

Sector A segment of flash memory that forms the smallest
amount that can be erased and reprogrammed at one time.

Sequential memory Memory in which the stored data cannot
be read or written in random order, but must be addressed in a
specific sequence.

Single in-line memory module (SIMM) A memory module
with DRAMs and connector pins on one side of the board only.

Software Programming instructions required to make hard-
ware perform specified tasks.

Stack A LIFO memory.

Static RAM A random access memory which can retain data
indefinitely as long as electrical power is available to the chip.

Top boot block A boot block sector in a flash memory placed
at the highest address in the memory.

Volatile A memory is volatile if its stored data is lost when
electrical power is lost.

Word Data accessed at one addressable location.

Word length Number of bits in a word.

Word-organized A memory is word-organized if one address
accesses one word of data.

Write Store data in a memory device.

P R O B L E M S

Section 13.2 Basic Memory Concepts

13.1 How many address lines are necessary to make an 8 � 8
memory similar to the 4 � 8 memory in Figure 13.5?
How many address lines are necessary to make a
16 � 8 memory?

13.2 Briefly explain the difference between RAM and ROM.

13.3 Calculate the number of address lines and data lines
needed to access all stored data in each of the following
sizes of memory:

a. 64K � 8

b. 128K � 16

c. 128K � 32

d. 256K � 16

Calculate the total bit capacity of each memory.

13.4 Explain the difference between the chip enable (�E) and
the output enable (�G) control functions in a RAM.

13.5 Refer to Figure 13.9. Briefly explain the operation of the
�W, �E, and �G functions of the RAM shown.

Section 13.2 Random Access Read/Write Memory
(RAM)

13.6 Draw the circuit for an NMOS static RAM cell. Label
one output BIT and the other �BIT.

13.7 Refer to the NMOS static RAM cell drawn in Problem
13.6. Assume that BIT � 1. Describe the operation re-
quired to change BIT to 0.

13.8 Describe the main difference between a CMOS and an
NMOS static RAM cell.

13.9 Explain how a particular RAM cell is selected from a
group of many cells.

13.10 How many address lines are required to access all ele-
ments in a 1M � 1 dynamic RAM with address multi-
plexing?

13.11 What is the capacity of an address-multiplexed DRAM
with one more address line than the DRAM referred to in
Problem 13.10? With two more address lines?

13.12 How many address lines are required to access all ele-
ments in a 256M � 16 DRAM with address multi-

plexing?

Section 13.3 Read Only Memory (ROM)

13.13 Briefly list some of the differences between mask-
programmed ROM, UV-erasable EPROM, EEPROM, and
flash memory.

13.14 Briefly describe the programming and erasing process of
a UV-EPROM.

13.15 Briefly explain the difference between flash memory and
other EEPROM. What is the advantage of each configura-
tion?

13.16 A flash memory has a capacity of 8 Mb, organized as
512K � 16-bit. List the address range for the 16 KB boot
block sector of the memory if the device has a bottom
boot block architecture and if it has a top boot block
architecture.

13.17 Briefly state why EEPROM is not suitable for use as sys-
tem RAM.

13.18 Briefly state why flash memory is unsuitable for use as
system RAM.

Section 13.4 Sequential Memory

13.19 State one possible application for a FIFO and for a LIFO
memory.

Section 13.5 Memory Modules

13.20 A SIMM has a capacity of 32M � 64. How many 32M �
8 DRAMs are required to make this SIMM? How many
address lines does the SIMM require? How should the
DRAMs be connected?

Answers to Section Review Problems 655

Section 13.6 Memory Systems

13.21 A microcontroller system with a 16-bit address bus is
connected to a 4K � 8 RAM chip and an 8K � 8 RAM
chip. The 8K address begins at 6000H. The 4K address
block starts at 2000H.

Calculate the end address for each block and show ad-
dress blocks for both memory chips on a 64K memory
map.

13.22 Draw the memory system of Problem 13.21.

13.23 A microcontroller system with a 16-bit address bus has
the following memory assignments:

Memory Size Start Address
RAM0 16K 4000H
RAM1 8K 8000H
RAM2 8K A000H

Show the blocks on a 64Kmemory map.

13.24 Draw the memory system described in Problem 13.23.

13.25 The memory map of a microcontroller system with a 16-
bit address bus is shown in Figure 13.30. Make a table of
start and end addresses for each of the blocks shown. In-
dicate the size of each block.

13.26 Sketch the memory system described in Problem 13.25.

13.27 How many 16M � 32 DIMMs are required to make a
256M � 32 memory system? Make a table showing the
start and end addresses of each block.

Section 13.4

13.4 A stack is a last-in first-out (LIFO) memory and a queue is
a first-in first-out (FIFO) memory.

Section 13.5

13.5 Four DRAMs. 12 address lines. Address and control lines
are in parallel with all DRAMs. Data I/O lines are separate.

Section 13.6

13.6 Eight blocks. Start addresses: 00000H, 20000H, 40000H,
60000H, 80000H, A0000H, C0000H, E0000H.

SRAM3

EPROM

SRAM1

SRAM2

0000H

4000H

8000H

C000H

E000H

FFFFH

FIGURE 13.30
Problem 13.25

A N S W E R S T O S E C T I O N R E V I E W P R O B L E M S

Section 13.2a

13.1 18 address lines, 16 data lines; capacity � 4Mb, same as
Figure 3.12

Section 13.2b

13.2 a. 10 address, 1 data; b. 10 address, 4 data;
c. 11 address, 1 data.

Section 13.3

13.3 Bottom boot block: 00000H to 07FFFH; top boot block:
F8000H to FFFFFH.

657

❘❙❚A P P E N D I X A

Altera UP-1 User Guide
Current versions of the Altera UP-1 board are shipped with version 9.23 of MAX�PLUS II software. See the file
SE_READ.txt on the accompanying CD for installation instructions.

658 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 659

660 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 661

662 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 663

664 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 665

666 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 667

668 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 669

670 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 671

672 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 673

674 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 675

676 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 677

678 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 679

680 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 681

682 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 683

684 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 685

686 A P P E N D I X A • Altera UP-1 User Guide

A P P E N D I X A • Altera UP-1 User Guide 687

688 A P P E N D I X A • Altera UP-1 User Guide

689

❘❙❚A P P E N D I X B

VHDL Language Reference

1. VHDL Basics

1.1. Valid Names

1.2. Comments

1.3. Entity and Architecture

1.4. Ports

1.5. Signals and Variables

1.6. Type

1.6.1. STD_LOGIC

1.6.2. Enumerated Type

1.7. Libraries and Packages

1.1 Valid Names
A valid name in VHDL consists of a letter followed by any number of letters or numbers,
without spaces. VHDL is not case sensitive. An underscore may be used within a name, but
may not begin or end the name. Two consecutive underscores are not permitted.

❘❙❚ EXAMPLES Valid names: decode4
just_in_time
What_4

Invalid names: 4decode (begins with a digit)
in__time (two consecutive underscores)
_What_4 (begins with underscore)
my design (space inside name)
your_words? (special character ? not allowed) ❘❙❚

1.2 Comments
A comment is explanatory text that is ignored by the VHDL compiler. It is indicated by
two consecutive hyphens.

❘❙❚ EXAMPLE —— This is a comment. ❘❙❚

690 A P P E N D I X B • VHDL Language Reference

1.3 Entity and Architecture
All VHDL files require an entity declaration and an architecture body. The entity declara-
tion indicates the input and output ports of the design. The architecture body details the in-
ternal relationship between inputs and outputs. The VHDL file name must be the same as
the entity name.

Syntax:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY __entity_name IS

GENERIC(define parameters);

PORT(define inputs and outputs);

END __entity_name;

ARCHITECTURE a OF __entity_name IS

SIGNAL and COMPONENT declarations;

BEGIN

statements;

END a;

❘❙❚ EXAMPLES: ——Majority vote circuit (majority.vhd)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY majority IS

PORT(

a, b, c: IN STD_LOGIC;

y : OUT STD_LOGIC);

END majority;

ARCHITECTURE a OF majority IS

BEGIN

y <= (a and b) or (b and c) or (a and c);

END a;

—— 2-line-to-4-line decoder with active-HIGH outputs (decoder.vhd)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decoder IS

PORT(

d : IN STD_LOGIC_VECTOR (1 downto 0);

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decoder;

ARCHITECTURE a OF decoder IS

BEGIN

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

END a; ❘❙❚

A P P E N D I X B • VHDL Language Reference 691

1.4 Ports
A port in VHDL is a connection from a VHDL design entity to the outside world. The
direction or directions in which a port may operate is called its mode. A VHDL port
may have one of four modes: IN (input only), OUT (output only), INOUT (bidirec-
tional), and BUFFER (output, with feedback from the output back into the design en-
tity). The mode of a port is declared in the port statement of an entity declaration or
component declaration.

❘❙❚ EXAMPLES: ENTITY mux IS

PORT(

s1, s0 : IN STD_LOGIC;

y0, y1, y2, y3 : OUT STD_LOGIC);

END mux;

ENTITY srg8 IS

PORT(

clock, reset : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR (7 downto 0));

END srg8; ❘❙❚

1.5 Signals and Variables
A signal is like an internal wire connecting two or more points inside an architecture body.
It is declared before the BEGIN statement of an architecture body and is global to the ar-
chitecture. Its value is assigned with the �� operator.

A variable is an piece of working memory, local to a specific process. It is declared be-
fore the BEGIN statement of a process and is assigned using the :� operator.

❘❙❚ EXAMPLE: ARCHITECTURE a OF design4 IS

SIGNAL connect : STD_LOGIC_VECTOR (7 downto 0);

BEGIN

PROCESS check IS

VARIABLE count : INTEGER RANGE 0 TO 255;

BEGIN

IF (clock’EVENT and clock = ‘1’) THEN

count := count + 1; —— Variable assignment statement

END IF;

END PROCESS;

connect <= a and b; —— Signal assignment statement

END a; ❘❙❚

1.6 Type
The type of a port, signal, or variable determines the values it can have. For example, a sig-
nal of type BIT can only have values ‘0’ and ‘1’. A signal of type INTEGER can have any

692 A P P E N D I X B • VHDL Language Reference

1.6.1 STD_LOGIC

The STD_LOGIC (standard logic) type, also called IEEE Std.1164 Multi-Valued Logic,
gives a broader range of output values than just ‘0’ and ‘1’. Any port, signal, or variable of
type STD_LOGIC or STD_LOGIC_VECTOR can have any of the following values.

‘U’, —— Uninitialized

‘X’, —— Forcing Unknown

‘0’, —— Forcing 0

‘1’, —— Forcing 1

‘Z’, —— High Impedance

‘W’, —— Weak Unknown

‘L’, —— Weak 0

‘H’, —— Weak 1

‘-’, —— Don’t care

“Forcing” levels are deemed to be the equivalent of a gate output. “Weak” levels are
specified by a pull-up or pull-down resistor. The ‘Z’ state is used as the high-impedance
state of a tristate buffer.

The majority of applications can be handled by ‘X’, ‘0’, ‘1’, and ‘Z’ values.
To use STD_LOGIC in a VHDL file, you must include the following reference to the

VHDL library called ieee and the std_logic_1164 package before the entity declaration.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

1.6.2 Enumerated Type

An enumerated type is a user-defined type that lists all possible values for a port, signal, or
variable. One use of an enumerated type is to list the states of a state machine.

❘❙❚ EXAMPLE: TYPE STATE_TYPE IS (idle, start, pulse, read);

SIGNAL state: STATE_TYPE; ❘❙❚

1.7 Libraries and Packages
A library is a collection of previously compiled VHDL constructs that can be used in a de-
sign entity. A package is an uncompiled collection of VHDL constructs that can be used in
multiple design entities. Library names must be included at the beginning of a VHDL file,
before the entity declaration, to use certain types or functions. The most obvious is the li-
brary ieee, which in the package std_logic_1164, defines the STD_LOGIC (standard logic)

Type Values How written

BIT ‘0’, ‘1’ Single quotes
STD_LOGIC ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, Single quotes
(see Section 1.6.1) ‘L’, ‘H’, ‘-‘
INTEGER Integer values No quotes
BIT_VECTOR Multiple instances of ‘0’ and ‘1’ Double quotes (e.g., “00101”)
STD_LOGIC_VECTOR Multiple instances of ‘U’, ‘X’, Double quotes (e.g., “11ZZ00”)

‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-‘

integer value, up to the limits of the bit size of the particular computer system for which the
VHDL compiler is designed. Some common types are:

A P P E N D I X B • VHDL Language Reference 693

type.

Syntax:

LIBRARY __ library_name;

USE __library_name.__package_name.ALL;

❘❙❚ EXAMPLES: LIBRARY ieee;

USE ieee.std_logic_1164.ALL; —— Defines STD_LOGIC type

USE ieee.std_logic_arith.ALL; —— Defines arithmetic functions

LIBRARY lpm; —— Component declarations for the

USE lpm.lpm_components.ALL; —— Library of Parameterized Modules

LIBRARY altera; —— Component declarations for

USE altera.maxplus2.ALL; —— MAX+PLUS II primitives
❘❙❚

2. Concurrent Structures

2.1. Concurrent Signal Assignment Statement

2.2. Selected Signal Assignment Statement

2.3. Conditional Signal Assignment Statements

2.4. Components

2.4.1. Component Declaration

2.4.2. Component Instantiation

2.4.3. Generic Clause

2.5. Generate Statement

2.6. Process Statement

A concurrent structure in VHDL acts as a separate component. A change applied to multi-
ple concurrent structures acts on all affected structures at the same time. This is similar to
a signal applied to multiple components in a circuit; a change in the signal will operate on
all the components simultaneously.

2.1 Concurrent Signal Assignment Statement
A concurrent signal assignment statement assigns a port or signal the value of a Boolean
expression or constant. This statement is useful for encoding a Boolean equation. Since the
operators and, or, not, and xor have equal precedence in VHDL, the order of precedence
must be made explicit by parentheses.

Syntax:

__signal <= __expression;

❘❙❚ EXAMPLES: sum <= (a xor b) xor c;

c_out <= ((a xor b) and c_in) or (a and b); ❘❙❚

2.2 Selected Signal Assignment Statement
A selected signal assignment statement assigns one of several alternative values to a port or

694 A P P E N D I X B • VHDL Language Reference

signal, based on the value of a selecting signal. It can be used to implement a truth table or
a selecting circuit like a multiplexer.

Syntax:

label: WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

❘❙❚ EXAMPLES: —— decoder implemented as a truth table (2 inputs, 4 outputs)

—— d has been defined as STD_LOGIC_VECTOR (1 downto 0)

—— y has been defined as STD_LOGIC_VECTOR (3 downto 0)

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

—— multiplexer

—— input signal assigned to y, depending on states of s1, s0

M: WITH s SELECT

y <= d0 WHEN “00”,

d1 WHEN “01”,

d2 WHEN “10”,

d3 WHEN “11”; ❘❙❚

2.3 Conditional Signal Assignment Statement
A conditional signal assignment statement assigns a value to a port or signal based on a se-
ries of linked conditions. The basic structure assigns a value if the first condition is true. If
not, another value is assigned if a second condition is true, and so on, until a default condi-
tion is reached. This is an ideal structure for a priority encoder.

Syntax:

__label:

__signal <= __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

❘❙❚ EXAMPLE: —— priority encoder

—— q defined as INTEGER RANGE 0 TO 7

—— d defined as STD_LOGIC_VECTOR (7 downto 0)

encoder:

q <= 7 WHEN d(7)=‘1’ ELSE

6 WHEN d(6)=‘1’ ELSE

5 WHEN d(5)=‘1’ ELSE

4 WHEN d(4)=‘1’ ELSE

3 WHEN d(3)=‘1’ ELSE

2 WHEN d(2)=‘1’ ELSE

1 WHEN d(1)=‘1’ ELSE

0;

A P P E N D I X B • VHDL Language Reference 695

❘❙❚

2.4 Components
A VHDL file can use another VHDL file as a component. The general form of a design en-
tity using components is:

ENTITY entity_name IS

PORT (input and output definitions);

END entity_name;

ARCHITECTURE arch_name OF entity_name IS

component declaration(s);

signal declaration(s);

BEGIN

Component instantiation(s);

Other statements;

END arch_name;

2.4.1 Component Declaration

A component declaration is similar in form to an entity declaration, in that it includes
the required ports and parameters of the component. The difference is that it refers to a
design described in a separate VHDL file. The ports and parameters in the component
declaration may be a subset of those in the component file, but they must have the same
names.

Syntax:

COMPONENT __component_name

GENERIC(__parameter_name : string := __default_value;

__parameter_name : integer := __default_value);

PORT(

__input name, __input_name : IN STD_LOGIC;

__bidir name, __bidir_name : INOUT STD_LOGIC;

__output name, __output_name : OUT STD_LOGIC);

END COMPONENT;

❘❙❚ EXAMPLE: ARCHITECTURE adder OF add4pa IS

COMPONENT full_add

PORT(

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

SIGNAL c : BIT_VECTOR (3 downto 1);

BEGIN

statements

END adder; ❘❙❚

2.4.2 Component Instantiation

Each instance of a component requires a component instantiation statement. Ports can be

696 A P P E N D I X B • VHDL Language Reference

assigned explicitly with the �� operator, or implicitly by inserting the user port name in
the position of the corresponding port name within the component declaration.

Syntax:

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value ,

__parameter_name => __parameter_value)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

❘❙❚ EXAMPLES: —— Four Component Instantiation Statements

—— Explicit port assignments

adder1: full_add

PORT MAP (a => a(1),

b => b(1),

c_in => c0,

c_out => c(1),

sum => sum(1));

adder2: full_add

PORT MAP (a => a(2),

b => b(2),

c_in => c(1),

c_out => c(2),

sum => sum(2));

adder3: full_add

PORT MAP (a => a(3),

b => b(3),

c_in => c(2),

c_out => c(3),

sum => sum(3));

adder4: full_add

PORT MAP (a => a(4),

b => b(4),

c_in => c(3),

c_out => c4,

sum => sum (4));

—— Four component instantiations

—— Implicit port assignments

adder1: full_add PORT MAP (a(1), b(1), c0, c(1), sum(1));

adder2: full_add PORT MAP (a(2), b(2), c(1), c(2), sum(2));

adder3: full_add PORT MAP (a(3), b(3), c(2), c(3), sum(3));

adder4: full_add PORT MAP (a(4), b(4), c(3), c4, sum(4)); ❘❙❚

2.4.3 Generic Clause

A generic clause allows a component to be designed with one or more unspecified proper-
ties (“parameters”) that are specified when the component is instantiated. A parameter
specified in a generic clause must be given a default value with the :� operator.

Syntax:

—— parameters defined in entity declaration of component file

ENTITY entity_name IS

GENERIC(__parameter_name : type := __default_value;

A P P E N D I X B • VHDL Language Reference 697

__parameter_name : type := __default_value);

PORT (port declarations);

END entity name;

—— Component declaration in top-level file also has generic clause.

—— Default values of parameters not specified.

COMPONENT component_name IS

GENERIC(__parameter_name : type;

__parameter_name : type);

PORT (port declarations);

END COMPONENT;

—— Parameters specified in generic map in component instantiation

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value,

__parameter_name => __parameter_value)

PORT MAP (port instantiations);

❘❙❚ EXAMPLE: —— Component: behaviorally defined shift register

—— with default width of 4.

ENTITY srt_bhv IS

GENERIC (width : POSITIVE := 4);

PORT(

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END srt_bhv;

ARCHITECTURE right_shift of srt_bhv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT and clk = ‘1’) THEN

q(width-1 downto 0) <= serial in & q(width-1 downto 1);

END IF;

END PROCESS;

END right_shift;

—— srt8_bhv.vhd

—— 8-bit shift register that instantiates srt_bhv

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt8_bhv IS

PORT(

data_in, clock : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(7 downto 0));

END srt8_bhv;

ARCHITECTURE right shift of srt8_bhv IS

—— component declaration

COMPONENT srt_bhv

GENERIC (width : POSITIVE);

PORT(

serial_in, clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(7 downto 0));

698 A P P E N D I X B • VHDL Language Reference

END COMPONENT;

(example continues)

BEGIN

—— component instantiation

Shift_right_8: srt_bhv

GENERIC MAP (width=> 8)

PORT MAP (serial_in => data_in,

clk => clock,

q => qo);

END right_shift; ❘❙❚

2.5 Generate Statement
A generate statement is used to create multiple instances of a particular hardware structure. It
relies on the value of one or more index variables to create the required number of repetitions.

Syntax:

__generate_label:

FOR __index_variable IN __range GENERATE

__statement;

__statement;

END GENERATE;

❘❙❚ EXAMPLES: —— Instantiate four full adders

adders:

FOR i IN 1 to 4 GENERATE

adder: full_add PORT MAP (a(i), b(i), c(i-1), c(i), sum(i));

END GENERATE;

—— Instantiate four latches from MAX+PLUS II primitives

—— Requires the statements LIBRARY altera; and

—— USE altera.maxplus.ALL;

latch4:

FOR i IN 3 downto 0 GENERATE

latch_primitive: latch

PORT MAP (d => d_in(i), ena => enable, q => q_out (i));

END GENERATE; ❘❙❚

2.6 Process Statement
A process is a concurrent statement, but the statements inside the process are sequential.
For example, a process can define a flip-flop, a separate component whose ports are af-
fected concurrently, but the inside of the flip-flop acts sequentially. A process executes all
statements inside it when there is a change of a signal in its sensitivity list. The process la-
bel is optional.

Syntax:

__process_label:

PROCESS (sensitivity list)

variable declarations

BEGIN

sequential statements

A P P E N D I X B • VHDL Language Reference 699

END PROCESS __process_label;

❘❙❚ EXAMPLE: —— D latch

PROCESS (en)

BEGIN

IF (en = ‘1’) THEN

q <= d;

END IF;

END PROCESS; ❘❙❚

3. Sequential Structures

3.1. If Statement

3.1.1. Evaluating Clock Functions

3.2. Case Statement

A sequential structure in VHDL is one in which the order of statements affects the opera-
tion of the circuit. It can be used to implement combinational circuits, but is primarily used
to implement sequential circuits such as latches, counters, shift registers, and state ma-
chines. Sequential statements must be contained within a process.

3.1 If Statement
An IF statement executes one or more statements if a Boolean condition is satisfied.

Syntax:

IF __expression THEN

__statement;

__statement;

ELSIF __expression THEN

__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

❘❙❚ EXAMPLE: PROCESS (reset, load, clock)

VARIABLE count INTEGER RANGE 0 TO 255;

BEGIN

IF (reset = ‘0’) THEN

q <= 0;

ELSIF (reset = ‘1’ and load = ‘0’) THEN

q <= p;

ELSIF (clock’EVENT and clock = ‘1’) THEN

count := count + 1;

q <= count;

END IF;

700 A P P E N D I X B • VHDL Language Reference

END PROCESS; ❘❙❚

3.1.1 Evaluating Clock Functions

As implied in previous examples, the state of a system clock can be checked with an IF
statement using the predefined attribute called EVENT. The clause clock’EVENT (“clock
tick EVENT”) is true if there has been activity on the signal called clock. Thus
(clock’EVENT and clock � ‘1’) is true just after a positive edge on clock.

3.2 Case Statement
A case statement is used to execute one of several sets of statements, based on the evalua-
tion of a signal.

Syntax:

CASE __expression IS

WHEN __constant_value =>

__statement;

__statement;

WHEN __constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

❘❙❚ EXAMPLES: —— Case evaluates 2-bit value of s and assigns

—— 4-bit values of x and y accordingly

—— Default case (others) required if using STD_LOGIC

CASE s IS

WHEN “00” =>

y <= “0001”;

x <= “1110”;

WHEN “01” =>

y <= “0010”;

x <= “1101”;

WHEN “10” =>

y <= “0100”;

x <= “1011”;

WHEN “11” =>

y <= “1000”;

x <= “0111”;

WHEN others =>

y <= “0000”;

A P P E N D I X B • VHDL Language Reference 701

x <= “1111”;

END CASE;

—— This case evaluates the state variable “sequence”

—— that can have two possible values: “start” and “continue”

—— Values of out1 and out2 are also assigned for each case.

CASE sequence IS

WHEN start =>

IF in1 = ‘1’ THEN

sequence <= start;

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= continue;

out1 <= ‘1’;

out2 <= ‘0’;

END IF;

WHEN continue =>

sequence <= start;

out1 <= ‘0’;

out2 <= ‘1’;

END CASE; ❘❙❚

❘❙❚A P P E N D I X C

Manufacturers’ Data Sheets
Data Sheet List

Device Description Source/File Name Pages

74LS00 Quad 2-input NAND Gate Motorola/sn74ls00rev6.pdf 703
74LS02 Quad 2-input NOR Gate Motorola/sn74ls02rev5.pdf 705
74LS04 Hex Inverter Motorola/sn74ls04rev6.pdf 707
74LS05 Hex Inverter (Open Collector) Motorola/sn74ls05rev6.pdf 709

74LS06/16 Hex Inverting Buffer (Open Collector) Texas Instruments/sdls020a.pdf 711
75LS07 Hex Noninverting Buffer (Open Collector) Texas Instruments/sdls021a.pdf 714

74LS08 Quad 2-input AND Gate Motorola/sn74ls08rev6.pdf 717
74LS32 Quard 2-input OR Gate Motorola/sn74ls32rev6.pdf 719
74LS86 Quard 2-input XOR Gate Motorola/sn74ls86rev6.pdf 721

74F00 Quad 2-input NAND Gate Texas Instruments/sdfs035a.pdf 723
74AS/ALS00 Quad 2-input NAND Gate Texas Instruments/sdas187a.pdf 726

74HC00 Quad 2-input NAND Gate Motorola/mc74hc00arev7a.pdf 731
74HCT00 Quad 2-input NAND Gate (TTL Input Levels) Motorola/mc74hct00arev6.pdf 735
74VHC00 Quad 2-input NAND Gate Motorola/mc74vhc00arev0.pdf 738
74VHCT00 Quad 2-input NAND Gate (TTL Input Levels) Motorola/mc74vhct00arev0.pdf 741
74HCU04 Hex Inverter (Unbuffered) Motorola/mc74hcu04arev1.pdf 744
74HC4049/4050 Hex Buffer Motorola/mc74hc4049rev6.pdf 749
74LVX00 Quad 2-input NAND Gate Motorola/mc74lvx00rev0b.pdf 753
74LCX00 Quad 2-input NAND Gate Motorola/mc74lcx00rev1.pdf 756
MC14XXXB 4000B-series CMOS Gates Motorola/mc14001brev3.pdf 759

A P P E N D I X C • Manufacturers’ Data Sheets 703

704 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 705

706 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 707

14 13 12 11 10 9

1 2 3 4 5 6

VCC

8

7

GND

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply Voltage 4.75 5.0 5.25 V

TA Operating Ambient
Temperature Range

0 25 70 5C

IOH Output Current ± High ±0.4 mA

IOL Output Current ± Low 8.0 mA

LOW
POWER

SCHOTTKY

SOIC
D SUFFIX

CASE 751A

http://onsemi.com

PLASTIC
N SUFFIX
CASE 646

14

1

14

1

Device Package Shipping

ORDERING INFORMATION

SN74LS04N 14 Pin DIP 2000 Units/Box

SN74LS04D 14 Pin 2500/Tape & Reel

708 A P P E N D I X C • Manufacturers’ Data Sheets

SN74LS04

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input HIGH Voltage 2.0 V
Guaranteed Input HIGH Voltage for

All Inputs

VIL Input LOW Voltage
0.8

V
Guaranteed Input LOW Voltage for

All Inputs

VIK Input Clamp Diode Voltage ±0.65 ±1.5 V VCC = MIN, IIN = ± 18 mA

VOH Output HIGH Voltage
2.7 3.5 V VCC = MIN, IOH = MAX, VIN = VIH

or VIL per Truth Table

VOL Output LOW Voltage
0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,

VIN = VIL or VIHVOL Out ut LOW Voltage
0.35 0.5 V IOL = 8.0 mA

VIN = VIL or VIH
per Truth Table

IIH Input HIGH Current
20 µA VCC = MAX, VIN = 2.7 V

IIH In ut HIGH Current
0.1 mA VCC = MAX, VIN = 7.0 V

IIL Input LOW Current ±0.4 mA VCC = MAX, VIN = 0.4 V

IOS Short Circuit Current (Note 1) ±20 ±100 mA VCC = MAX

Power Supply Current

ICC Total, Output HIGH 2.4 mA VCC = MAX

Total, Output LOW 6.6

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 255C)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tPLH Turn±Off Delay, Input to Output 9.0 15 ns VCC = 5.0 V

tPHL Turn±On Delay, Input to Output 10 15 ns
CC

CL = 15 pF

A P P E N D I X C • Manufacturers’ Data Sheets 709

710 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 711

712 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 713

714 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 715

716 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 717

718 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 719

720 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 721

722 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 723

724 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 725

726 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 727

728 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 729

730 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 731

732 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 733

734 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 735

736 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 737

738 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 739

740 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 741

742 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 743

744 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 745

746 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 747

748 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 749

750 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 751

752 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 753

754 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 755

756 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 757

758 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 759

760 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 761

762 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 763

764 A P P E N D I X C • Manufacturers’ Data Sheets

A P P E N D I X C • Manufacturers’ Data Sheets 765

❘❙❚A P P E N D I X D

Handling Precautions for CMOS

766

A P P E N D I X D • Handling Precautions for CMOS 767

❘❙❚A P P E N D I X E

EPROM Data For A Digital
Function Generator

Included in Appendix E:
E.1 A complete set of EPROM data for the EPROM-based digital function generator

described in Section 13.4. The file can be used to program a standard EPROM or as an ini-
tialization file for an LPM_ROM component in MAX�PLUS II. (LPM_ROM can only be
used with the FLEX 10K device on the Altera UP-1 board.)

E.2 A program written in ANSI C to generate an EPROM record file (Intel format).
E.3 A copy of the generated record file.

E.1 EPROM Data
00 is the maximum negative voltage of a waveform, FF is maximum positive, and 80 is the
zero-crossing point.

SINE
Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 80 83 86 89 8C 8F 92 95 98 9C 9F A2 A5 A8 AB AE
0010 B0 B3 B6 B9 BC BF C1 C4 C7 C9 CC CE D1 D3 D5 D8
0020 DA DC DE E0 E2 E4 E6 E8 EA EC ED EF F0 F2 F3 F5
0030 F6 F7 F8 F9 FA FB FC FC FD FE FE FF FF FF FF FF
0040 FF FF FF FF FF FF FE FE FD FC FC FB FA F9 F8 F7
0050 F6 F5 F3 F2 F0 EF ED EC EA E8 E6 E4 E2 E0 DE DC
0060 DA D8 D5 D3 D1 CE CC C9 C7 C4 C1 BF BC B9 B6 B3
0070 B0 AE AB A8 A5 A2 9F 9C 98 95 92 8F 8C 89 86 83
0080 7F 7C 79 76 73 70 6D 6A 67 63 60 5D 5A 57 54 51
0090 4F 4C 49 46 43 40 3E 3B 38 36 33 31 2E 2C 2A 27
00A0 25 23 21 1F 1D 1B 19 17 15 13 12 10 0F 0D 0C 0A
00B0 09 08 07 06 05 04 03 03 02 01 01 00 00 00 00 00
00C0 00 00 00 00 00 00 01 01 02 03 03 04 05 06 07 08
00D0 09 0A 0C 0D 0F 10 12 13 15 17 19 1B 1D 1F 21 23
00E0 25 27 2A 2C 2E 31 33 36 38 3B 3E 40 43 46 49 4C
00F0 4F 51 54 57 5A 5D 60 63 67 6A 6D 70 73 76 79 7C

768

A P P E N D I X E • EPROM Data for a Digitial Function Generator 769

SQUARE
Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0100 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0120 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0130 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0140 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0160 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0170 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

TRIANGLE
Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0200 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E
0210 A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE
0220 C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DC DE
0230 E0 E2 E4 E6 E8 EA EC F0 F2 F4 F6 F8 FA FC FE
0240 FE FC FA F8 F6 F4 F2 F0 EE EC EA E8 E6 E4 E2 E0
0250 DE DC DA D8 D6 D4 D2 D0 CE CC CA C8 C6 C4 C2 C0
0260 BE BC BA B8 B6 B4 B2 B0 AE AC AA A8 A6 A4 A2 A0
0270 9E 9C 9A 98 96 94 92 90 8E 8C 8A 88 86 84 82 80
0280 7E 7C 7A 78 76 74 72 70 6E 6C 6A 68 66 64 62 60
0290 5E 5C 5A 58 56 54 52 50 4E 4C 4A 48 46 44 42 40
02A0 3E 3C 3A 38 36 34 32 30 2E 2C 2A 28 26 24 22 20
02B0 1E 1C 1A 18 16 14 12 10 0E 0C 0A 08 06 04 02 00
02C0 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E 20
02D0 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E 40
02E0 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E 60
02F0 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E 80

SAWTOOTH

Base Byte Addresses
Address 0 1 2 3 4 5 6 7 8 9 A B C D E F

0300 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
0310 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
0320 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
0330 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
0340 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0350 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
0360 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
0370 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
0380 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
0390 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
03A0 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
03B0 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
03C0 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
03D0 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
03E0 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
03F0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FD FF

770 A P P E N D I X E • EPROM Data for a Digital Function Generator

E.2 C Program
This program is also on the accompanying CD in the file

\Student_Files\EPROM\EPROM.C.

/* Hex File Generator

* Written by: Ronan Capina and Robert Dueck

*

* This program is to create a hex file in a specific EPROM record format.

* The EPROM is addressed in blocks of 256 bytes (8 address lines) by an 8 bit

* counter to create a digital image of one of several waveform outputs.

* Two additional address bits select one of four output functions.

* When the EPROM data are run through a D/A Converter, they create an

* analog waveform running at the frequency of the counter divided by 256.

* The waveforms are sine, square, triangle, and sawtooth.

* The record format is as follows. (Spaces are inserted only for clarity.

* The actual record must have NO spaces.)

*

* : 10 0080 00 AF5F67F0602703E0322CFA92007780C3 61

*

* (:Record Length = 10hex = 16dec)

* (Address = 0080hex; location in EPROM of first data byte in record)

* (Record type = 00 = data)

* (16 data bytes = 32 hex digits)

* (Checksum; Record Length + Address High byte + Address Low byte

* + Record type + data bytes + Checksum = 00, after discarding carry)

*

* An END record is also required, having a similar format, except that

* Record Type = 01 = END and there are no data bytes. Checksum is still

* required.

* eg. :00000001FF

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <conio.h>

void Sawtooth(int);

void triangle(int);

void Square(int);

int AddrByte(int Addr);

int Chksum(int sum);

void sine(int);

char *HexString(int value);

char *Hex = HULL;

int Ampl;

const double Pi = 3.141592654;

int main(void)

{

FILE *fp;

int Fcn =1, Linenum, sum, Byte, Addr = 0;

char Record[256];

clrscr();

A P P E N D I X E • EPROM Data for a Digitial Function Generator 771

/* Hex file is written to c:\eprom\eprom.hex

* To change the file name, modify the following line to:

* if (!(fp = fopen(“c:\\YourDirectoryName\\YourFile.hex”, “w+t”)))

{

*/

if (!(fp = fopen(“c:\\eprom\\eprom.hex”, “w+t”))) {

printf(“Error opening output file.\r\n”);

exit(1);

} else

printf(“File opened successfully. \r\n”);

while (Fcn != 5) { /* Create records for 4 functions */

/* Each function has 16 lines of data */

for (Linenum = 1; Linenum <= 16; Linenum++) {

/* Create record and address information */

if (Addr < 16)

sprintf(Record, “:10000%x”, Addr);

else

if (Addr < 256)

sprintf(Record, “:1000%x”, Addr);

else

sprintf(Record, “:100%x”, Addr);

strcat(Record, “00”);

/* Accumulate sum for calculating checksum */

sum = 16 + AddrByte(Addr);

/* Calculate byte values for selected function */

for (Byte = 1; Byte <= 16; Byte++) {

if (Fcn == 1)

sine(Addr % 256);

else if (Fcn == 2)

Square(Addr % 256);

else if (Fcn == 3)

triangle(Addr % 256);

else

Sawtooth(Addr % 256);

/* Append calculated byte value (amplitude) to the record

and update checksum accumulator */

strcat (Record, HexString(Ampl));

sum = sum + Ampl;

Addr++;

}

strcat (Record, HexStrIng(Chksum(sum)));

fprintf(fp, “%s\r\n”, Record);

}

Fcn++;

}

fprintf(fp, “:00000001FF\r\n”);

fclose(fp);

return(0);

}

772 A P P E N D I X E • EPROM Data for a Digital Function Generator

int AddrByte(int Addr)

{

if (Addr < 256)

return Addr;

else

return (((int)(Addr / 256)) + (Addr % 256));

}

int Chksum(int sum)

{

int IntRem = sum % 256;

if (IntRem == 0)

return 0;

else

return (256 - IntRem);

}

char *HexString(int value)

{

if (value < 16) {

sprintf(Hex, “0%x”, value);

return Hex;

} else if (value > 255)

return “FF”;

else {

sprintf(Hex, “%x”, value);

return Hex;

}

}

void Sawtooth(int Addr)

{

Ampl = Addr;

return;

}

void sine(int Addr)

{

double angle = ((((float)Addr) * 2 * Pi) / 256);

Ampl = ((int)((sin(angle) * 128) + 128));

if (Ampl > 255)

Ampl = 255;

return;

}

void Square(int Addr)

{

if (Addr < 128)

Ampl = 255;

else

Ampl = 0;

return;

}

A P P E N D I X E • EPROM Data for a Digitial Function Generator 773

void triangle(int Addr)

{

if (Addr < 64)

Ampl = 128 + (2 * Addr);

else if ((Addr >= 64) && (Addr < 192))

Ampl = 256 - 2 * (Addr - 63);

else

Ampl = 2 * (Addr - 191);

return;

}

E.3 Resultant Record File
:10000000808386898C8F9295989C9FA2A5A8ABAE81
:10001000B0B3B6B9BCBFC1C4C7C9CCCED1D3D5D893
:10002000DADCDEE0E2E4E6E8EAECEDEFF0F2F3F54C
:10003000F6F7F8F9FAFBFCFCFDFEFEFFFFFFFFFF01
:10004000FFFFFFFFFFFFFEFEFDFCFCFBFAF9F8F7E8
:10005000F6F5F3F2F0EFEDECEAE8E6E4E2E0DEDC00
:10006000DAD8D5D3D1CECCC9C7C4C1BFBCB9B6B319
:10007000B0AEABA8A5A29F9C9895928F8C898683E1
:100080007F7C797673706D6A6763605D5A575451EF
:100090004F4C494643403E3B383633312E2C2A27BD
:1000A0002523211F1D1B1917151312100F0D0C0AE4
:1000B000090807060504030302010100000000000F
:1000C0000000000000000101020303040506070808
:1000D000090A0C0D0F1012131517191B1D1F2123D0
:1000E00025272A2C2E313336383B3E404346494C97
:1000F0004F5154575A5D6063676A6D707376797CAF
:10010000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10011000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF
:10012000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFDF
:10013000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCF
:10014000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBF
:10015000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFAF
:10016000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF9F
:10017000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8F
:10018000000000000000000000000000000000006F
:10019000000000000000000000000000000000005F
:1001A000000000000000000000000000000000004F
:1001B000000000000000000000000000000000003F
:1001C000000000000000000000000000000000002F
:1001D000000000000000000000000000000000001F
:1001E000000000000000000000000000000000000F
:1001F00000000000000000000000000000000000FF
:1002000080828486888A8C8E90929496989A9C9EFE
:10021000A0A2A4A6A8AAACAEB0B2B4B6B8BABCBEEE
:10022000C0C2C4C6C8CACCCED0D2D4D6D8DADCDEDE
:10023000E0E2E4E6E8EAECEEF0F2F4F6F8FAFCFECE
:10024000FEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0BE
:10025000DEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0AE
:10026000BEBCBAB8B6B4B2B0AEACAAA8A6A4A2A09E
:100270009E9C9A98969492908E8C8A88868482808E
:100280007E7C7A78767472706E6C6A68666462607E

774 A P P E N D I X E • EPROM Data for a Digital Function Generator

:100290005E5C5A58565452504E4C4A48464442406E
:1002A0003E3C3A38363432302E2C2A28262422205E
:1002B0001E1C1A18161412100E0C0A08060402004E
:1002C000020406080A0C0E10121416181A1C1E201E
:1002D000222426282A2C2E30323436383A3C3E400E
:1002E000424446484A4C4E50525456585A5C5E60FE
:1002F000626466686A6C6E70727476787A7C7E80EE
:10030000000102030405060708090A0B0C0D0E0F75
:10031000101112131415161718191A1B1C1D1E1F65
:10032000202122232425262728292A2B2C2D2E2F55
:10033000303132333435363738393A3B3C3D3E3F45
:10034000404142434445464748494A4B4C4D4E4F35
:10035000505152535455565758595A5B5C5D5E5F25
:10036000606162636465666768696A6B6C6D6E6F15
:10037000707172737475767778797A7B7C7D7E7F05
:10038000808182838485868788898A8B8C8D8E8FF5
:10039000909192939495969798999A9B9C9D9E9FE5
:1003A000A0A1A2A3A4A5A6A7A8A9AAABACADAEAFD5
:1003B000B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBFC5
:1003C000C0C1C2C3C4C5C6C7C8C9CACBCCCDCECFB5
:1003D000D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDFA5
:1003E000E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF95
:1003F000F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF85
:00000001FF

775

Answers toSelectedOdd-NumberedProblems

Chapter 1

1.1 Analog quantities:

a. Water temperature at the beach;

b. weight of a bucket of sand;

e. height of a wave;
Digital quantities:

c. grains of sand in a bucket;

d. waves hitting the beach in one hour;

f. people in a square mile.
Generally, any quantity that can be expressed as “the
number of. . .” is digital.

1.3 a. 4; b. 8; c. 25;

d. 6; e. 21; f. 29;

g. 59; h. 93; i. 33;

j. 185

1.5 101, 110, 111, 1000

1.7 16

1.9 a. 0.625; b. 0.375; c. 0.8125

1.11 1/3

1.13 a. 0.11;

b. 0.101;

c. 0.0011;

d. 0.101�0�0�1�;

e. 1.11;

f. 11.111�1�0�0�;

g. 1000011.1101011100001. . . (nonrepeating)

1.15 9F7, 9F8, 9F9, 9FA, 9FB, 9FC, 9FD, 9FE, 9FF, A00,
A01, A02, A03

1.17 a. 2C5; b. 761; c. FFF;

d. 1000; e. 2790; f. 7D00;

g. 8000

1.19 a. 5E86; b. B6A; c. C5B;

d. 6BC4; e. 15785; f. 198B7;

g. 28000

1.21 Periodic: b., c., e. Each of these waveforms repeats
itself in a fixed period of time. (Note that waveform
b. may not immediately appear to be periodic. However,
if we count the sequence of short pulse, short space,
medium pulse, medium space, short pulse, long space, we
will find that each repetition of this sequence takes the
same time.)

Aperiodic: a., d. Neither of these waveforms
repeats in a fixed period of time. Waveform a. has
three equally-spaced pulses of equal width, but this
pattern does not repeat in the time shown. Waveform
d. has pulses of equal duration, spaced at increasing
(i.e. unequal) intervals.

1.23 From the graph in Figure 1.14, read the times correspond-
ing to the 10%, 50%, and 90% values of the pulse on both
leading and trailing edges.

Leading edge: 10%: 5 µs Trailing edge: 90%: 40 µs

50%: 7.5 µs 50%: 45 µs

90%: 10 µs 10%: 50 µs

Pulse width: 50% of leading edge to 50% of trailing
edge.

tw � 45 µs � 7.5 µs � 37.5 µs

Rise time: 10% of rising edge to 90% of rising edge.

tr � 10 µs � 5 µs � 5 µs

Fall time: 90% of falling edge to 10% of falling edge.

tf � 50 µs � 40 µs � 10 µs

Chapter 2

2.1 See Figure ANS2.1.

A

a. Distinctive Shape b. Rectangular Outline

A

1

Y � A
Y � A

FIGURE ANS2.1

776 Answers to Selected Odd-Numbered Problems

2.5 N is HIGH if J OR K OR L OR M IS HIGH. See Table
ANS2.5.

2.13 See Figure ANS2.13.2.3 See Figure ANS2.3.

Table ANS2.5 4-input OR
Truth Table

J K L M N

0 0 0 0 0
0 0 0 1 1 *
0 0 1 0 1 *
0 0 1 1 1 *
0 1 0 0 1 *
0 1 0 1 1 *
0 1 1 0 1 *
0 1 1 1 1 *
1 0 0 0 1 *
1 0 0 1 1 *
1 0 1 0 1 *
1 0 1 1 1 *
1 1 0 0 1 *
1 1 0 1 1 *
1 1 1 0 1 *
1 1 1 1 1 *

Table ANS2.15 4-input
NOR Truth Table

A B C D Y

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

B

A

C

D

FIGURE ANS2.7

2.7 The switches must be connected in parallel. See Figure
ANS2.7.

470 �

+5V

FIGURE ANS2.13

2.15 a. Output Y is LOW when A OR B OR C OR D are
HIGH. The truth table is shown in Table ANS2.15.

a. Distinctive Shape

b. Rectangular Outline

Y

A
B
C
D

� 1

Y � A � B � C � D

A
B
C
D

FIGURE ANS2.15

b. Y � A�����B�����C�����D�
c. See Figure ANS2.15

a. Distinctive Shape

b. Rectangular Outline

A
B
C

A
B
C

Y � A � B � C

Y � A � B � C

�1

FIGURE ANS2.3

2.9 Active LOW. When the switch is pressed, it generates a
logic LOW.

2.11 The anode must be at a higher voltage than the cathode
by a specified amount.

2.17 Output Y is LOW if inputs A AND B AND C AND D
AND E are all HIGH.

Answers to Selected Odd-Numbered Problems 777

2.19 Required gate is a 2-input AND.

2.21 XNOR.

2.23 Output is HIGH if an odd number of inputs is HIGH.

A

B

AND

OR

NAND

NOR

XOR

XNOR

FIGURE ANS2.27

A

B

Y

FIGURE ANS2.29

2.29 See Figure ANS2.29.

2.31 A HIGH is required to enable the AND gate. This allows
the lamp to flash.

2.33 No. An XOR gate has no inhibit state. The lamp always
flashes.

Chapter 3

3.1 a. Y � ABC;

b. X � PQ � RS;

c. M � HJKL;

d. A � W � X � Y � Z;

e. Y � (A � B)(C � D);

f. Y � (�A�����B�)�(�C�����D�)�;
g. Y � (A� � B�)(C� � D�);

h. X � P� Q� � R� S�;

i. X � P� Q� � R� S�

2.25 a. and c. The attributes of shape, input level, and output
level are all different between these two symbols.

2.27 See Figure ANS2.27.

2.35 Transistor-Transistor Logic (TTL) and Complementary
Metal-Oxide-Semiconductor (CMOS). Typically, TTL
can drive higher-current loads. CMOS has more flexible
power supply requirements and uses less power.

2.37 Low power Schottky TTL: 74LS02; CMOS: 4001B;
High-speed CMOS: 74HC02. NANDs and NORs are dif-
ferentiated by the last two digits in their part numbers.

a.

X

T

U

V

W

i.

Y

A

B

C

e.

Y

A

B

C

h.

Y

A

B

C

j.

Y

A

B

C
D

f.

Y

A

B

C

FIGURE ANS3.3

778 Answers to Selected Odd-Numbered Problems

Y

D3 D2 D1

D3D2D1

D0

D3D1D0

D3D2D0

D2D1D0

FIGURE ANS3.5

3.3 See Figure ANS3.3.

Boolean expressions:

a. X � T� � U� � V � W�;

e. Y � AB�AC;

f. Y�(A�B)(A�C);

h. Y � A� B� � B� C� � A C;

i. Y � (A � B) � (B � C) � (A� � C�) � 1;

j. Y � (A � B � C � D)ABC� � ABC�
3.5 Y � D�3D2D1D0 � D3D�2D1D0 � D3D2D�1D0 �

D3D2D1D�0 for a circuit that indicates that exactly three
inputs are HIGH. If at least three inputs are HIGH, the
equation simplifies to Y � D2D1D0 � D3D1D0 �
D3D2D0 � D3D2D1. The latter circuit is shown in Figure
ANS3.5.

3.7 e. Y � (A� � C�) � B� C�;

f. Y � AB�C � C;

g. (A�BD)(B � C�) � A� C�;

h. Y � (A�B)(A�C)(BC);

i. Y � (A � B�) � (A� C)(BC)
All of the above equations could be simplified further
with Boolean algebra.

Answers to Selected Odd-Numbered Problems 779

i.

3.9 a. T U V W X

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

A B C Y

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

A B C Y

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

j.

3.11 SOP: Y � A� B� C� � A� B� C � A� B C� � A� B C

POS: Y � (A� � B � C)(A� � B � C�)(A� � B� � C)
(A� � B� � C�)

See Figure ANS3.11

A B C D Y

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

Y (SOP)

Y (POS)

CBA

FIGURE ANS3.11

h.

780 Answers to Selected Odd-Numbered Problems

3.15 Y � (A � B)(A� � B�) See Figure ANS3.15.

3.29 Y � A� B� C� D � A B� C� D� � BC

3.31 Y � A� B� C� � A B C� � A� B� D � A D�
See Figure ANS3.31.

3.33 Y � A� B � CD See Figure ANS3.33.

CD
AB

ABC

ABC ABD

AD

01

00

10

0111

0 0 0 0

1011

1 0 0 1

110100

11

10

FIGURE ANS3.31

CD
AB

AB

CD

01

00

10

0100

1 1 1 1

0100

0 0 1 0

110100

11

10

FIGURE ANS3.33

CD
AB BC

AD

01

00

10

1100

0 0 0 0

XXXX

0 1 X X

110100

11

10

FIGURE ANS3.35

CBA

Y

FIGURE ANS3.13

3.13 SOP: Y � A� B� C � A� B C� � A B� C � A B C� � A B C

POS: Y � (A � B � C)(A � B� � C�)(A� � B � C)

See Figure ANS3.13

3.35 Y � AD � B�C See Figure ANS3.35.

3.37 Y � AB� C� D� � A�D � CD. See Figure ANS3.37.

A B

Y �(A � B)(A � B)

FIGURE ANS3.15

3.17 Y � (A � B � C)D� � AD� � BD� � CD�
3.19 a. Y � AB � C; b. Y � C;

c. J � K; d. S � 0;

e. S � T; f. Y � B C� D� � A B� F � C� F

3.21 a. Y � A� � B�;

b. Y � C D � C� D� � A B;

c. K � M�N � ML

3.23 SOP: Y � A� C� � B C�; POS: Y � (A� � B)C�
3.25 Y � AD � BC�
3.27 Y � A�D � C�D � BCD�

Answers to Selected Odd-Numbered Problems 781

CD
AB

AD

CD

ABCD

01

00

10

0110

0 1 1 0

0100

1 0 1 0

110100

11

10

FIGURE ANS3.37.

CD
AB

ABCD

AB

BD

01

00

10

0000

1 1 1 1

1001

0 1 0 0

110100

11

10

FIGURE ANS3.39

CD
AB

D

01

00

10

0110

0 1 1 0

0110

0 1 1 0

110100

11

10

FIGURE ANS3.41

CD
AB

01

00

10

0000

0 0 1 0

0111

1 1 1 1

110100

11

10 AB

BCD

AC

FIGURE ANS3.43

CD
AB

01

00

10

0001

1 1 0 0

1100

0 0 1 1

110100

11

10

(A � C)

(A � C)

(A � B � D)

a. K-map

b. Circuit

Y

A

B

C

D

FIGURE ANS3.45

3.39 Y � AB� C�D � A�B � BD�. See Figure ANS3.39.

3.41 Y � D. See Figure ANS3.41.

3.43 Y � AC� � AB� � BCD. See Figure ANS3.43.

3.45 Y � (A� � C)(A � C�)(A � B � D�). See Figure

ANS3.45.

782 Answers to Selected Odd-Numbered Problems

3.47 E4 � D4D�2 � D3D1 � D3D2

E3 � D�3D2 � D�3D1 � D3D�2D�1

E2 � D�2D�1 � D2 D1

E1 � D�1

See Figure ANS3.47.

Chapter 4

4.1 Advantages of programmable logic: User is not restricted
to standard digital functions from a device manufacturer;
only required functions need be implemented; package
count can be reduced; design can be reprogrammed or re-
configured without changing the circuit board.

4.3 PAL (Programmable Array Logic); GAL (Generic Array
Logic); EPLD (Erasable Programmable Logic Device);
FPGA (Field-Programmable Gate Array)

4.5 A design file in MAX�PLUS II is a single file with de-
scriptive information, such as a schematic or text in a hard-
ware description language. A project is a collection of files
associated with a design entered in MAX�PLUS II.

4.7 Primitives—Basic functional blocks, such as logic gates,
used in PLD design files.

Instance—A single copy of a component in a PLD
design file.

4.9 The gdf for the 4-channel demultiplexer circuit is shown
in Figure ANS4.9.

4.11 The gdf for the half adder is shown in Figure ANS4.11a.
The default symbol for the half adder is shown in Figure
ANS4.11b.

4.13 The gdf for the full adder (hierarchical design) is shown
in Figure ANS4.13

4.15 AHDL—Altera Hardware Description Language

VHDL—VHSIC Hardware Description Language

VHSIC—Very High Speed Integrated Circuit

4.17 The two minimum VHDL structures are an entity decla-
ration and an architecture body. The entity describes
the input and output terminals of the design. The architec-
ture defines the relationship between the inputs, outputs,
and internal signals of the design.

4.19 A VHDL port of mode OUT can be used as an output
only. A port of mode BUFFER is an output that can also
be fed back into the design entity for use by other func-
tions within the entity.

D2 D1

E4

D4 D3

01

00

10

0000

0 1 1 1

XXXX

1 1 X X

110100

11

10

D2 D1

E2

D4 D3

01

00

10

0101

1 0 1 0

XXXX

1 0 X X

110100

11

10

D2 D1

E3

D4 D3

01

00

10

1110

1 0 0 0

XXXX

0 1 X X

110100

11

10

D2 D1

E1

D4 D3

01

00

10

1001

1 0 0 1

XXXX

1 0 X X

110100

11

10

E4

E3

E2

E1

D1D2D3D4

FIGURE ANS3.47

Answers to Selected Odd-Numbered Problems 783

NOT

AND3

Y0
OUTPUT

AND3

Y2
OUTPUT

AND3

Y3
OUTPUT

D
INPUT
VCC

VCC

VCC

S1
INPUT

S0
INPUT

22

23

24

25

14

19

20

21NOT

8

7

AND3

Y1
OUTPUT

AND2

SUM
OUTPUT

XOR

CARRY

halfadd

B INPUT
VCC

VCCA INPUT

1

2

A

B

a. Half Adder Circuit

b. Symbol

SUM

CARRY

A

B

1

FIGURE ANS4.9

FIGURE ANS4.11

B
INPUT
VCC

A
INPUT
VCC

halfadd

CARRY_IN
INPUT
VCC

A
SUM

CARRY

A

B

11

halfadd

SUM

CARRY

A

OR2

10

B

12

SUM
OUTPUT

B
CARRY_OUT

OUTPUT

FIGURE ANS4.13

784 Answers to Selected Odd-Numbered Problems

4.21 —— mux4.vhd
—— 4-to-1 multiplexer
—— Directs one of four input signals (d0 to d3) to output,
—— depending on status of select bits (s1, s0).

—— STD_LOGIC types
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

—— Define inputs and outputs
ENTITY mux4 IS
PORT(d0, d1, d2, d3 : IN STD_LOGIC; —— data inputs

s: IN STD_LOGIC_VECTOR (1 downto 0); —— select inputs
y: OUT STD_LOGIC);

END mux4;

—— Define i/o relationship
ARCHITECTURE mux4to1 OF mux4 IS
BEGIN

—— Choose a signal assignment for y
—— based on binary value of d
—— Default case: output LOW
WITH s SELECT

y <= d0 WHEN “00”,
d1 WHEN “01”,
d2 WHEN “10”,
d3 WHEN “11”,
‘0’ WHEN others;

END mux4to1;

4.23 —— dmux4.vhd
—— 4-channel demultiplexer
—— Directs input to one of four outputs,
—— depending on state of select inputs (s1, s0)

—— Standard VHDL models
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

—— Define inputs and outputs
ENTITY dmux4 IS

PORT(
d, s1, s0 : IN STD_LOGIC;
y0, y1, y2, y3 : OUT STD_LOGIC);

END dmux4;

—— Define i/o relationship
ARCHITECTURE four_ch_dmux OF dmux4 IS
BEGIN

—— Concurrent Signal Assignment
y0 <= (not s1) and (not s0) and d;
y1 <= (not s1) and (s0) and d;
y2 <= (s1) and (not s0) and d;
y3 <= (s1) and (s0) and d;

END four_ch_dmux;

4.25 —— half add.vhd
—— Half Adder
—— Adds two bits, A and B and produces SUM and CARRY outputs

—— Standard VHDL models

Answers to Selected Odd-Numbered Problems 785

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

—— Define inputs and outputs
ENTITY half_add IS

PORT(
a, b : IN STD_LOGIC;
sum, carry : OUT STD_LOGIC);

END half_add;

—— Define relationship between A, B and SUM, CARRY
ARCHITECTURE half_adder OF half_add IS
BEGIN

—— Concurrent Signal Assignment
sum <= a xor b;
carry <= a and b;

END half_adder;

AND3

N
O

T

N
O

T

N
O

T

AND3

AND3

AND3

Y0
OUTPUT

Y1
OUTPUT

Y2
OUTPUT

Y3
OUTPUT

D1
INPUT

D0
INPUT

G
INPUT

4.27 The gdf for the full adder with VHDL half adder compo-
nents is the same as Figure ANS4.13.

Chapter 5

5.1 1100, 0001, 1111; Y � D3D2D�1D�0; Y � D�3D�2D�1D0;
Y � D3D2D1D0

5.3 See Figure ANS5.3.

FIGURE ANS5.3

786 Answers to Selected Odd-Numbered Problems

5.5 a 32; b. 64; c. 256; m � 2n.

5.7 A selected signal assignment assigns an output value
based on alternative input values. Each choice is indepen-
dent of the others. A conditional signal assignment evalu-
ates one input choice and assigns a value to an output if
true. Otherwise, a second choice is evaluated, then a
third, and so on. Low-priority choices are assigned only if

higher-priority alternatives are false. This linked condi-
tional structure tends to generate a more “serial” hard-
ware, as opposed to the more “parallel” structure of the
selected signal assignment. The selected signal assign-
ment is preferable because it is generally results in a bet-
ter use of chip resources and is more efficient.

5.9 See Figures ANS5.9a and ANS5.9c.

FIGURE ANS5.9C

FIGURE ANS5.9A

Answers to Selected Odd-Numbered Problems 787

5.11 See Figure ANS5.11.

5.13 a � D�3D�2D�1D0 � D�3D2D�1D�0 � D3D�2D1D0 �
D3D2D�1D0

b � D�3D2D�1D0 � D3D2D1 � D3D2D�0 � D3D1D0 �
D2D1D�0

c � D�3D�2D1D�0 � D3D2D�1D�0 � D3D2D1

d � D�3D�2D�1D0 � D�3D2D�1D�0 � D3D�2D1D�0 � D2D1D0

e � D�3D0 � D�3D2D�1 � D�2D�1D0

f � D�3D�2D0 � D�3D�2D1 � D�3D1D0 � D3D2D�1D0

g � D�3D�2D�1 � D�3D2D1D0 � D3D2D�1D�0

5.17 a. 1000; b. 1001; c. 1001

5.19 See Figures ANS5.19a and b.

5.21 See Figure ANS5.21.

FIGURE ANS5.11

Truth Table for an
8-to-1 MUX

S2 S1 S0 Y

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

Truth Table for a 16-to-1 MUX

S3 S2 S1 S0 Y

0 0 0 0 D0

0 0 0 1 D1

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

1 0 0 0 D8

1 0 0 1 D9

1 0 1 0 D10

1 0 1 1 D11

1 1 0 0 D12

1 1 0 1 D13

1 1 1 0 D14

1 1 1 1 D15

788 Answers to Selected Odd-Numbered Problems

D8
INPUT

D9
INPUT

D7
INPUT

D6
INPUT

D5
INPUT

D3
INPUT

D4
INPUT

N
O

T

AND3

AND3

AND3

AND3

Q2OUTPUT

Q3OUTPUT

Q1OUTPUT

Q0OUTPUT

AND6

AND6

AND3

AND3

AND3

D2
INPUT

D1
INPUT

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

AND4

AND6

AND2

AND3

VCC

OR4

OR4

OR6

GND

FIGURE ANS5.19A

Answers to Selected Odd-Numbered Problems 789

FIGURE ANS5.19B

FIGURE ANS5.21

790 Answers to Selected Odd-Numbered Problems

5.27 —— quad8to1.vhd

—— Eight-channel 4-bit multiplexer

—— One of eight sets four inputs

—— (d03..d00), (d13..d10), (d23..d20), (d33..d30),

—— (d43..d40), (d53..d50), (d63..d60), (d73..d70)

—— is directed to an output (y), based on the status of three

—— select inputs (s2, s1, s0).

ENTITY quad8to1 IS

PORT(

s : IN INTEGER RANGE 0 to 7;

d0 : IN BIT_VECTOR (3 downto 0);

d1 : IN BIT_VECTOR (3 downto 0);

d2 : IN BIT_VECTOR (3 downto 0);

d3 : IN BIT_VECTOR (3 downto 0);

d4 : IN BIT_VECTOR (3 downto 0);

d5 : IN BIT_VECTOR (3 downto 0);

d6 : IN BIT_VECTOR (3 downto 0);

d7 : IN BIT_VECTOR (3 downto 0);

y : OUT BIT_VECTOR (3 downto 0));

END quad8to1;

D0

D1

D2

D3

D4

D5

D6

D7

a. 8-to-1

b. 16-to-1

S2 S1 S0

Y

D0

D1

D2

D3

D4

D5

D6

D7
Y

D8

D9

D10

D11

D12

D13

D14

D15

S3 S2 S1 S0

FIGURE ANS5.23

5.23 See Figure ANS5.23

See page 787 for Truth Tables.

5.25 Y � S�2S�1S�0D0 � S�2S�1S0D1 � S�2S1S�0D2 � S�2S1S0D3 �

S2S�1S�0D4 � S2S�1S0D5 � S2S1S�0D6 � S2S1S0D7

� 1� � 0� � 1� � D0 � 1� � 0� � 1 � D1 � 1� � 0 � 1� � D2

� 1� � 0 � 1 � D3 � 1 � 0� � 1� � D4 � 1 � 0� � 1 � D5

� 1 � 0 � 1� � D6 � 1 � 0 � 1 � D7

� 0 � D0 � 0 � D1 � 0 � D2 � 0 � D3 � �D4 � 1 � D5

� 0 � D6 � 0 � D7

� D5

Answers to Selected Odd-Numbered Problems 791

ARCHITECTURE mux8 OF quad8to1 IS

BEGIN

—— Selected Signal Assignment

MUX4: WITH s SELECT

y <= d0 WHEN 0,

d1 WHEN 1,

d2 WHEN 2,

d3 WHEN 3,

d4 WHEN 4,

d5 WHEN 5,

d6 WHEN 6,

d7 WHEN 7;

END mux8;

FIGURE ANS5.27

The simulation of this circuit is shown in Figure ANS5.27.

5.29 —— oct4to1.vhd

—— Four-channel 8-bit multiplexer

—— One of four sets eight inputs

—— (d07..d00), (d17..d10), (d27..d20), or (d37..d30)

—— is directed to a an output (y), based on the status of two

—— select inputs (s1, s0).

ENTITY oct4to1 IS

PORT(

s : IN INTEGER RANGE 0 to 3;

d0 : IN BIT_VECTOR (7 downto 0);

d1 : IN BIT_VECTOR (7 downto 0);

d2 : IN BIT_VECTOR (7 downto 0);

d3 : IN BIT_VECTOR (7 downto 0);

y : OUT BIT_VECTOR (7 downto 0));

792 Answers to Selected Odd-Numbered Problems

END oct4to1;

ARCHITECTURE mux4 OF oct4to1 IS

BEGIN

—— Selected Signal Assignment

MUX8: WITH s SELECT

y <= d0 WHEN 0,

d1 WHEN 1,

d2 WHEN 2,

d3 WHEN 3;

END mux4;

The simulation is shown in Figure ANS5.29.

5.31 ENTITY mux_8ch IS

PORT(

sel : IN BIT_VECTOR (2 downto 0);

d : IN BIT_VECTOR (7 downto 0);

y : OUT BIT);

END mux_8ch;

ARCHITECTURE a OF mux_8ch IS

BEGIN

—— Selected Signal Assignment

MUX8: WITH sel SELECT

y <= d(0) WHEN “000”,

d(1) WHEN “001”,

d(2) WHEN “010”,

d(3) WHEN “011”,

d(4) WHEN “100”,

d(5) WHEN “101”,

d(6) WHEN “110”,

FIGURE ANS5.29

d(7) WHEN

“111”;

END a;

An 8-to-1 MUX can be easily extended to a 16-bit device
by adding one select input, eight data inputs, and eight

Answers to Selected Odd-Numbered Problems 793

N
O

T

N
O

T

S2
INPUT

S1
INPUT

S0
INPUT

DATA
INPUT

N
O

T

AND4

Y0
OUTPUT

AND4

Y6
OUTPUT

AND4

Y5
OUTPUT

AND4

Y4
OUTPUT

AND4

Y3
OUTPUT

AND4

Y2
OUTPUT

AND4

Y1
OUTPUT

AND4

Y7
OUTPUT

FIGURE ANS5.37A

794 Answers to Selected Odd-Numbered Problems

X0

X1

X2

X3

Y0

Y1

Y2

Y3

74HC4052

X

CTR DIV 4

Y

S0S1

Q1

CLOCK

Q0

Telephone
System

Transmit
channels

Receive
channels

FIGURE ANS5.37B

FIGURE ANS5.41

5.39 An analog switch can transmit a range of positive and
negative voltages, not just 0V and 5V.

5.41 See Figure ANS5.41

5.43 See Figure ANS5.43. The glitch in the simulation is
caused by propagation delay.

5.45 AEQB � (A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)(A�2�����B�2�)

(A�1�����B�1�)(A�0�����B�0�)

AGTB � A5B�5 � A4B�4(A�5�����B�5�) �

A3B�3(A�5�����B�5�)(A�4�����B�4�)

� A2B�2(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)

� A1B�1(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)

(A�2�����B�2�)

� A0B�0(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)

(A�2�����B�2�)(A�1�����B�1�)

ALTB � A�5B5 � A�4B4(A�5�����B�5�) � A�3B3

(A�5�����B�5�)(A�4�����B�4�)

� A�2B2(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)

� A�1B1(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)

lines to the selected signal assignment statement.

5.35 00110011; 00001111

5.37 See Figure ANS5.37.

Answers to Selected Odd-Numbered Problems 795

(A�2�����B�2�)

� A�0B0(A�5�����B�5�)(A�4�����B�4�)(A�3�����B�3�)
(A�2�����B�2�)(A�1�����B�1�)

5.47 —— cmp4x6.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY cmp4x6 IS

PORT(

N
O

T

N
O

T

N
O

T

A3
INPUT

B3
INPUT

A2
INPUT

B2
INPUT

B1
INPUT

A1
INPUT

N
O

T

AND4

AND6

OR4

VCC

AND3

AND2

XNOR

XNOR

XNOR

A_LT_BOUTPUT

A0
INPUT

B0
INPUT

FIGURE ANS5.43

796 Answers to Selected Odd-Numbered Problems

a, b : IN INTEGER RANGE 0 TO 15;

altb, aleb, aeqb, aneb, ageb, agtb : OUT STD_LOGIC);

END cmp4x6;

ARCHITECTURE a OF cmp4x6 IS

SIGNAL compare : STD_LOGIC_VECTOR (5 downto 0);

BEGIN

PROCESS (a,b)

BEGIN

IF a<b THEN

compare <= “001011”;

ELSIF a=b THEN

compare <= “100101”;

ELSIF a>b THEN

compare <= “111000”;

ELSE

compare <= “111111”;

END IF;

altb <= compare (5); —— a is less than b

aleb <= compare (4); —— a is less than or equal to b

aeqb <= compare (3); —— a equals b

aneb <= compare (2); —— a is not equal to b

A
INPUT

B
INPUT

C
INPUT

D
INPUT

OUTPUT

XOR

XOR

XOR
XOR

XOR
XOR

nEVEN_ODD
INPUT

E
INPUT

P_send
INPUT

P_check

FIGURE ANS5.53

ageb <= compare (1); —

— a is greater than or equal to b

agtb <= compare (0); —

— a is greater than b

END PROCESS;

END a;
5.49 a. 1111100; five 1s: PE � 1; PO � 0;

b. 1010110; four 1s; PE � 0; PO � 1;

c. 0001101; three 1s; PE � 1; PO � 0

5.51 a. ABCDEFGHP � 110101100; P� � 1; Error in bit D.

b. ABCDEFGHP � 110001101; P� � 1; Error in
parity bit.

c. ABCDEFGHP � 110001100; P� � 0; Data received

Answers to Selected Odd-Numbered Problems 797

correctly.

d. ABCDEFGHP � 110010100; P� � 0; Errors in bits
E and F
undetected

5.53 See Figure ANS5.53.

Chapter 6

6.1 a. 11111; b. 100000; c. 11110;
d. 101010; e. 101100; f. 1100100

6.3

True 1’s 2’s
Decimal Magnitude Complement Complement

a. �110 11101110 10010001 10010010
b. 67 01000011 01000011 01000011
c. �54 10110110 11001001 11001010
d. �93 11011101 10100010 10100011
e. 0 00000000 00000000 00000000
f. �1 10000001 11111110 11111111
g. 127 01111111 01111111 01111111
h. �127 11111111 10000000 10000001

6.5 Largest: 011111112 � �12710;
smallest: 100000002 � �12810

6.7 Overflow in an 8-bit signed addition results if the sum is
outside the range �128 � sum � � 127. The sums in
parts a. and f. do not generate an overflow. The sums in
parts b., c., d., and e. do.

c. B1A;

d. FFF;

e. 2A7F

6.11

6.15 The sequence of codes yields the following text:

6.21 A fast carry circuit is “flatter”, but “wider” than a ripple
carry circuit. There are more gate levels for an input
change to propagate through in a ripple carry circuit. The
ripple carry is thus slower. The limitation on a fast carry
circuit is its width, both in the number of gates and on the
number of inputs on the gates. Both factors increase with
adder bit size.

6.23 A carry is generated if the MSB of either A or B is HIGH
AND the second bit of either A or B is HIGH AND the
third bits of both A and B are HIGH.

6.25 To generate all possible combinations of input for an
8-bit adder requires 216�65,536 combinations. (A simu-
lation with one change every 40 ns would have an end
time of 2.62144 ms.)

6.27 See Figure ANS6.27

The transition from the sum FFF�000�FFF to
FFF�001�000 (plus a carry) is given in the following
table:

Time Sum (Hex) Sum (Binary) From a1 to:

0 FFF 1111 1111 1111

8421 BCD Excess-3

0111 0000 1001 1010 0011 1100
0001 1000 1000 1001 0100 1011 1011 1100
0010 0011 1001 0101 0101 0110 1100 1000
0001 0010 0101 1001 0100 0101 1000 1100
0011 1001 0111 0010 0110 1100 1010 0101
0111 0111 0011 0000 1010 1010 0110 0011

Decimal True Binary

709 1011000101
1889 11101100001
2395 100101011011
1259 10011101011
3972 111110000100
7730 1111000110010

57 41 52 4E 49 4E 47 21 20 54 68 69 73 20

W A R N I N G ! SP T h i s SP

63 6F 6D 6D 61 6E 64 20 65 72 61 73 65 73

c o m m a n d SP e r a s e s

20 36 34 30 4D 20 6F 66 20 6D 65 6D 6F 72 79 2E

SP 6 4 0 M SP o f SP m e m o r y .

FIGURE ANS6.27

b. 120;

6.9 a. 3D;

798 Answers to Selected Odd-Numbered Problems

7.5 ns FFC 1111 1111 1100 sum1, sum2
12.5 ns FC0 1111 1100 0000 sum3-sum6
17.5 ns F00 1111 0000 0000 sum7, sum8
22.5 ns E00 1110 0000 0000 sum9
26.5 ns C00 1100 0000 0000 sum10

FULL_ADD

sum1
OUTPUT

c1
OUTPUT

a

b

c_in

sum

c_outa1
INPUT

b1
INPUT

c0
INPUT

FULL_ADD

sum2
OUTPUT

c2
OUTPUT

a

b

c_in

sum

c_outa2
INPUT

b2
INPUT

FULL_ADD

sum3
OUTPUT

c3
OUTPUT

a

b

c_in

sum

c_outa3
INPUT

b3
INPUT

FULL_ADD

sum4
OUTPUT

c4
OUTPUT

a

b

c_in

sum

c_outa4
INPUT

b4
INPUT

FIGURE ANS6.29B

FIGURE ANS6.29A
A1

INPUT

A2
INPUT

A3
INPUT

A4
INPUT

SUB
INPUT

B1
INPUT

B2
INPUT

B3
INPUT

B4
INPUT

a1

b1

c1

a2

b2

a3

b3

a4

b4

c1

sum1

c2

sum2

c3

sum3

c4

sum4

add4

OUTPUT

OUTPUT

OUTPUT
SUM1

SUM2

SUM3

C4
OUTPUT

SUM4
OUTPUT

XOR

XOR

XOR

XOR

31.5 ns 000 0000 0000 0000 sum11, sum12

6.29 The 4-bit parallel adder/subtractor is shown in Figure
ANS6.29a. The component add4, a parallel binary adder,
is shown in Figure ANS6.29b.

SUB � 1: Input carry is forced HIGH, automatically

Answers to Selected Odd-Numbered Problems 799

A1
INPUT

A2
INPUT

A3
INPUT

A4
INPUT

SUB
INPUT

B1
INPUT

B2
INPUT

B3
INPUT

B4
INPUT

A1

A2

A3

A4

SUB

B1

B2

B3

B4

SUM1
OUTPUT

addsub4

overflow

SUM2
OUTPUT

SUM3
OUTPUT

C4
OUTPUT

SUM4

S1

S2

S4

C4

S4
OUTPUT

V
OUTPUT

SA

SB

S_SUM

V

SA
INPUT

SB
INPUT

NOT

NOT

S_SUM
INPUT

OUTPUT

AND3

AND3

OR2

V

NOT

FIGURE ANS6.31

adding 1 to the output sum; the XOR gates act as inverters, making the inputs to the adder equal to the one’s complement of B;
the output is A � (one’s complement of B) � 1 � A � B

SUB � 0: Input carry is forced LOW, adding 0 to the output sum; the XOR gates act as noninverting buffers, making the in-
puts to the adder equal the true binary value of B; the output is A � B � 0 � A � B.

6.31 See Figure ANS6.31.

6.33 —— addsubv1.vhd

—— 4-bit parallel adder with overflow detection,
—— using a generate statement and components
—— overflow: SOP network

ENTITY addsubv1 IS

PORT(

sub : IN BIT;

a, b : IN BIT_VECTOR(4 downto 1);

c4, v : OUT BIT;

sum : BUFFER BIT_VECTOR(4 downto 1));

END addsubv1;

ARCHITECTURE adder OF addsubv1 IS
—— Component declaration

COMPONENT full_add

PORT(

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

800 Answers to Selected Odd-Numbered Problems

END COMPONENT;
—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (4 downto 0);

SIGNAL b_comp : BIT_VECTOR (4 downto 1);

BEGIN
—— Carry input depends on add or subtract (sub=1 for subtract)

c(0) <= sub;

adders:

FOR I IN 1 to 4 GENERATE
—— invert b for subtract function (b(i) xor 1)
—— do not invert b for add function (b(i) xor 0)

b_comp(i) <= b(i) xor sub;

adder: full_add PORT MAP (a(i), b_comp(i), c(i-1), c(i), sum(i));

END GENERATE;

c4 <= c(4);

v <= (a(4) and b(4) and (not sum(4)))

or ((not a(4)) and (not b(4)) and sum(4));

END adder;

—— addsubv2.vhd

—— 4-bit parallel adder with overflow detection,

—— using a generate statement and components

—— overflow: xor gate

ENTITY addsubv2 IS

PORT(

sub : IN BIT;

a, b : IN BIT_VECTOR(4 downto 1);

c4, v : OUT BIT;

sum : OUT BIT_VECTOR(4 downto 1));

END addsubv2;

ARCHITECTURE adder OF addsubv2 IS

—— Component declaration

COMPONENT full_add

PORT(

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

—— Define a signal for internal carry bits

SIGNAL c : BIT_VECTOR (4 downto 0);

SIGNAL b_comp : BIT_VECTOR (4 downto 1);

BEGIN

—— Carry input depends on add or subtract (sub=1 for subtract)

c(0) <= sub;

adders:

FOR i IN 1 to 4 GENERATE

—— invert b for subtract function (b(i) xor 1)

—— do not invert b for add function (b(i) xor 0)

b_comp(i) <= b(i) xor sub;

adder: full_add PORT MAP (a(i), b_comp(i), c(i-1), c(i), sum(i));

END GENERATE;

c4 <= c(4);

v <= c(4) xor c(3);

END adder;

Answers to Selected Odd-Numbered Problems 801

6.35 1999; 31⁄2 digits

6.37 1 followed by n 9s.

6.39 See Figure 6.26 in text.

6.41 —— add4bcd.vhd
—— 4-bit bcd adder

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY add4bcd IS

PORT(

c0 : IN STD_LOGIC:

a_bcd, b_bcd : IN STD_LOGIC_VECTOR(4 down to 1);

sum_bcd : OUT STD_LOGIC_VECTOR(5 downto 1));

END add4bcd;

ARCHITECTURE adder OF add4bcd IS
—— Component declaration

COMPONENT add4gen

PORT(

c0 : IN STD_LOGIC;

a, b : IN STD_LOGIC_VECTOR(4 downto 1);

c4 : OUT STD_LOGIC;

sum : OUT STD_LOGIC_VECTOR(4 downto 1));

END COMPONENT;

COMPONENT bin2bcd

PORT(

bin : IN STD_LOGIC_VECTOR(5 downto 1);

bcd : OUT STD_LOGIC_VECTOR(5 downto 1);

END COMPONENT;
—— Define a signal for internal carry bits

SIGNAL connect : STD_LOGIC_VECTOR (5 downto 1);

BEGIN

adder: add4gen PORT MAP

(c0, a_bcd, b_bcd, connect(5),

connect (4 downto

1));

converter: bin2bcd PORT

FIGURE ANS7.1

FIGURE ANS7.3

802 Answers to Selected Odd-Numbered Problems

MAP (connect, sum_bcd);

S (or S)

R (or R)

Q

Q

NAND waveforms

S (or S)

R (or R)

Q

Q

NOR waveforms

FIGURE ANS7.9

S
Q

R
Q

FIGURE ANS7.5

S

R

Q

Q

FIGURE ANS7.7

END adder;
6.43 The circuit will be like Figure 6.27 in the text, minus the

thousands digit. It will generate a 31⁄2 digit output.

Chapter 7

7.1 See Figure ANS7.1.

7.3 See Figure ANS7.3.

7.5 See Figure ANS7.5.

S� R�

0 0 Latch tries to set and reset at
the same time. Forbidden state.

0 1 Set input active. Q � 1.
1 0 Reset input active. Q � 0.
1 1 Neither set nor reset active.

No change.

7.7 See Figure ANS7.7.

7.9 See Figure ANS7.9.

Answers to Selected Odd-Numbered Problems 803

S

R

Q

Q

i.

S

R

Q

Q

ii.

S

R

Q

Q

iii.

FIGURE ANS7.11

FIGURE ANS7.13

804 Answers to Selected Odd-Numbered Problems

7.11 a. See Figure ANS7.11.

b. i. R is last input active. Latch resets; ii. S is last in

FIGURE ANS7.17

FIGURE ANS7.15

Answers to Selected Odd-Numbered Problems 805

FIGURE ANS7.19

EN/CLK

D

Q1

Q2

FIGURE ANS7.21

7.19 —— ltch8prm.vhd

—— D latch with active-HIGH level-sensitive enable

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY ltch8prm IS

PORT(d_in : IN STD_LOGIC_VECTOR(7 downto 0);

enable : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR(7 downto 0));

END ltch8prm;

ARCHITECTURE a OF ltch8prm IS

BEGIN

—— Instantiate a latch from a MAX�PLUS II primitive

latch8:

FOR i IN 7 downto 0 GENERATE

latch_primitive: latch

PORT MAP (d => d_in(i), ena => enable, q => q_out(i));

END GENERATE;

END a;

See Figure ANS7.19.

7.21 See Figure ANS7.21.

806 Answers to Selected Odd-Numbered Problems

7.23 See Figure ANS7.23.

7.25 See Figure ANS7.25.

FIGURE ANS7.23

FIGURE ANS7.25

7.27 —— dff12lpm.vhd

—— 12-BIT D flip-flop

—— Uses a flip-flop component from the Library of Parameterized Modules (LPM)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY dff12lpm IS

PORT(d_in : IN STD_LOGIC_VECTOR(11 downto 0);

clk : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR(11 downto 0));

END dff12lpm;

ARCHITECTURE a OF dff12lpm IS

BEGIN

—— Instantiate flip-flop from an LPM component

dff12: lpm_ff

GENERIC MAP (LPM_WIDTH => 12)

PORT MAP (data => d_in,

clock => clk,

q => q_out);

END a;

Answers to Selected Odd-Numbered Problems 807

7.29 See Figure ANS7.29.

7.31 See Figure ANS7.31. The circuit generates the following
repeating pattern: 111, 110, 101, 100, 011, 010, 001, 000.
This is a 3-bit binary down-count sequence.

0

1

2

CLK

J

Q

Q

K

PRE

CLR

FIGURE ANS7.31

FIGURE 7.35

FIGURE ANS7.29

7.33 The circuit generates a 4-bit binary sequence from 0000
to 1111, then repeats indefinitely.

7.35 See Figure 7.35.

808 Answers to Selected Odd-Numbered Problems

7.37 See Figure 7.37

7.39 Similarity: an asynchronous circuit and an asynchronous
input cause outputs to change out of synchronization with
a system clock. Difference: an asynchronous circuit may

be clocked, but at different times throughout the circuit;
an asynchronous input is independent of the clock func-
tion altogether.

RESET
OUTPUT

q3

AND3AND2

OUTPUT
q2

OUTPUT

INPUT

q1
OUTPUT

q0

clock
INPUT

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

VCC

CLRN

PRN
QJ

K

FIGURE 7.37

7.41 —— d121pmcl.vhd

—— 4-BIT D latch with active-HIGH level-sensitive enable

—— Uses a latch component from the Library of Parameterized Modules

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY d12lpmcl IS

PORT(d_in : IN STD_LOGIC_VECTOR(11 downto 0);

clk, set, reset : IN STD_LOGIC;

q_out : OUT STD_LOGIC_VECTOR(11 downto 0));

END d12lpmcl;

ARCHITECTURE a OF d12lpmcl IS

SIGNAL clrn : STD_LOGIC;

SIGNAL prn : STD_LOGIC;

Answers to Selected Odd-Numbered Problems 809

BEGIN

—— Instantiate flip-flop from an LPM component

dff12: lpm_ff

GENERIC MAP (LPM_WIDTH => 12)

PORT MAP (data => d_in,

clock => clk,

aclr => clrn,

aset => prn,

q => q_out);

—— Make set and reset active-LOW

clrn <= not reset;

prn <= not set;

END a;

CLK

T

Q

FIGURE ANS7.43

FIGURE ANS7.41

7.43 See Figure ANS7.43.

7.45 —— syn4tprm.vhd

—— 4-bit sync counter (TFF primitives)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY altera;

USE altera.maxplus2.ALL;

ENTITY syn4tprm IS

PORT (clock, reset : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(3 downto 0));

END syn4tprm;

810 Answers to Selected Odd-Numbered Problems

ARCHITECTURE a OF syn4tprm IS

—— Declare component only with ports actually used

COMPONENT TFF

PORT (t : IN STD_LOGIC;

clk : IN STD_LOGIC;

clrn: IN STD_LOGIC;

q : OUT STD_LOGIC);

END COMPONENT;

SIGNAL q_int : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL t_int : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

—— Instantiate 4 T flip-flops.

ff0: tff

PORT MAP (t_int(0), clock, reset, q_int(0));

ff1: tff

PORT MAP (t_int(1), clock, reset, q_int(1));

ff2: tff

PORT MAP (t_int(2), clock, reset, q_int(2));

ff3: tff

PORT MAP (t_int(3), clock, reset, q(3));

—— Connect flip-flops internally

t_int(0) <= ‘1’;

t_int(1) <= q_int(0);

t_int(2) <= q_int(0) and q_int(1);

t_int(3) <= q_int(0) and q_int(1) and q_int(2);

q(0) <= q_int(0);

q(1) <= q_int(1);

q(2) <= q_int(2);

END a;

7.47 tsu � 20 ns, th � 0

7.49 clock pulse width: tw � 12 ns; setup time: tsu � 10 ns;
hold time: th � 5 ns

Chapter 8

8.1 See Figure 8.2.

8.7 a. 4; b. 6; c. 8

8.9 A global architecture cell configures all macrocells in the
PLD. A local architecture cell works only on the macro-
cell of which it is a part.

8.11 Registered/active LOW; registered/active HIGH; combi-
natorial/active LOW; combinatorial/active HIGH

8.13 No. Global clock only.

8.15 Global. These functions operate simultaneously on all
macrocells.

8.17 a. 32;

b. 64;

c. 128;

d. 160

8.19 n/16 LogicArray Blocks for n macrocells. (e.g. 128/16 � 8
LABs for an EPM7128S)

8.21 Macrocells without pin connections can be used for inter-
nal logic.

8.23 A MAX7000S macrocell can be reset from a global clear
pin (GCLRn) or locally from a product term.

8.25 5 dedicated product terms; by using terms from shared
logic expanders and parallel logic expanders; 5 dedicated,
up to 15 from parallel logic expanders; up to 16 from
shared logic expanders.

8.27 A sum-of-products network constructs Boolean expres-
sions by switching signals into an OR-gate output via a
programmable matrix of AND gates. A look-up table net-
work stores the output values of the network in a small
memory whose storage locations are selected by combi-
nations of the input signals.

8.29 A carry chain allows for efficient fast-carry implementa-
tion of adders, comparators, and other circuits whose in-
puts become wider with higher-order bits.

8.31 2048

Answers to Selected Odd-Numbered Problems 811

Chapter 9

9.1 See Figure ANS9.1. The 12-bit counter recycles to 0 after
4096 cars have entered the parking lot. The last car
causes all bits to go LOW. The negative edge on the MSB
clocks a flip flop whose output enables the LOT FULL

sign. Every car out of the gate resets the flip-flop and
turns off the sign.

A better circuit would have the exit gate make the
counter output decrease by 1 with every vehicle exiting.

9.3 See Figure ANS9.3.

CLK

Q0

Q1

Q2

Recycle

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

FIGURE ANS9.1

FIGURE ANS9.3

FIGURE ANS9.5

9.5 a. See Figure ANS9.5
b. i. 0100;

ii. 0110;

iii. 0011

812 Answers to Selected Odd-Numbered Problems

9.7 Figure ANS9.7 shows the timing diagram of a mod-10
counter.

9.13 J0 � K0 � 1
J1 � K1 � Q0

J2 � K2 � Q1Q0

J3 � K3 � Q2Q1Q0

J4 � K4 � Q3Q2Q1Q0

J5 � K5 � Q4Q3Q2Q1Q0

J6 � K6 � Q5Q4Q3Q2Q1Q0

J7 � K7 � Q6Q5Q4Q3Q2Q1Q0

9.15 a. J3 � Q2Q1Q0

K3 � Q1Q0

J2 � Q�3Q1Q0

K2 � Q1Q0

J1 � Q0

K1 � Q0

J0 � 1
K0 � 1

b. 1011, 0000, 0001

9.19 See Figure ANS9.19

Q3 Q2 Q1 Q0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

CLK

Q0

Q1

Q2

Q3

Recycle

FIGURE ANS9.7

FIGURE ANS9.11

OUTPUT
q3

AND3AND2

OUTPUT
q2

OUTPUT
q1

OUTPUT
q0

clock
INPUT

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

CLRN

PRN
QJ

K

JKFF

VCC

CLRN

PRN
QJ

K

9.9 Q0: 24 kHz; Q1: 12 kHz; Q2: 6 kHz; Q3: 3 kHz

9.11 See Figure ANS9.11

AND2

AND3

OR2

OR3

AND2

AND2

AND3

AND2

AND3

OR2

DFF

NOT

CLRN

PRN
QD

DFF

NOT

CLRN

PRN
QD

DFF

NOT

CLRN

PRN
QD

DFF

NOT

CLRN

PRN
QD

CLOCK
INPUT

OUTPUT
Q0

OUTPUT
Q1

OUTPUT
Q2

OUTPUT
Q3

FIGURE ANS9.19

0000

0001

0010

0011

0100 1100

1011 1010

0101

0110

0111

1000

1110

1111

1001

1101

814 Answers to Selected Odd-Numbered Problems

FIGURE ANS9.23B

9.21 Boolean equations:

D3 � Q�3Q2 � Q3Q�2

D2 � Q1Q0

D1 � Q�1Q0 � Q1Q�0

D0 � Q�2Q�0

9.23 See Figure ANS9.23a for a simulation of the clear func-
tion and Figure ANS9.23b for the recycle point of the
counter.

9.25 See Figure 9.22 in the text. Asynchronous load transfers
data directly to the flip-flops of a counter as soon as the
load input is asserted; it does not wait for a clock edge.
Synchronous load waits for an active clock edge to load a
value into the counter flip-flops.

9.27 Figure ANS9.27 shows the part of the simulation where
the value 1AH is synchronously loaded into the counter.

9.29 See Figure ANS9.29

9.31 D0 � Q�0

D1 � Q0DIR � Q�0D�I�R�
D2 � Q1Q0DIR � Q�1Q�0D�I�R�
D3 � Q2Q1Q0DIR � Q�2Q�1Q�0D�I�R�
The right-hand product term of each equation represents
the down-count logic, which is enabled whenever DIR �
0. The left-hand product term is the up-count logic, en-
abled when DIR � 1. D0 is always the opposite of Q0, re-
gardless of whether the count is up or down.

FIGURE ANS9.23A

Answers to Selected Odd-Numbered Problems 815

FIGURE ANS 9.29

FIGURE ANS9.27

816 Answers to Selected Odd-Numbered Problems

RESET
INPUT

DIR
INPUT

CLOCK
INPUT

LOAD
INPUT

P[3..0]
P[3..0]INPUT

VCC

COUNT

sl_count

LOAD

P Q

CLOCK

RESET

COUNT

sl_count

LOAD

P Q

CLOCK

RESET

COUNT

sl_count

LOAD

P Q

CLOCK

RESET

COUNT

sl_count

LOAD

P Q

CLOCK

RESET

P0

P1

P2

P3

OUTPUT
Q0

OUTPUT
Q1

OUTPUT
Q2

OUTPUT
Q3

AND4

OR2
AND2

OR2
AND2

OR2
AND2

AND2

BAND4

AND3

BAND3

AND2

BAND2

COUNT_ENA
INPUT

FIGURE ANS9.33A

9.33 The circuit is shown in Figure ANS9.33a. The counter
module sl_count is shown is Figure 9.25 in the text. The
simulation is shown in Figure ANS9.33b.

Answers to Selected Odd-Numbered Problems 817

FIGURE ANS9.33B

9.35 —— ct_mod24

—— Presettable counter with synchronous clear and load

—— and a modulus of 24

ENTITY ct_mod24 IS

PORT(

clk : IN BIT;

clear, direction : IN BIT;

q : OUT INTEGER RANGE 0 TO 23);

END ct_mod24;

ARCHITECTURE a OF ct_mod24 IS

BEGIN

PROCESS (clk)

VARIABLE cnt : INTEGER RANGE 0 TO 23;

BEGIN

IF (clk‘EVENT AND clk � ‘1’) THEN

IF (clear = ‘0’) THEN —— Synchronous clear

cnt := 0;

ELSIF (direction = ‘0’) THEN

IF cnt = 0 THEN

cnt := 23;

ELSE

cnt := cnt - 1;

END IF;

ELSIF (direction = ‘1’) THEN

IF cnt = 23 THEN

cnt := 0;

ELSE

cnt := cnt + 1;

END IF;

END IF;

END IF;

q <= cnt;

END PROCESS;

END a;

See Figure ANS9.35 for simulation.

818 Answers to Selected Odd-Numbered Problems

9.37 —— sst1_lpm.vhd

—— 12-bit LPM counter with sst1 and aclr (Chapter problem)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY sst1_lpm IS

PORT(

clk : IN STD_LOGIC;

clear, set : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR (11 downto 0));

END sst1_lpm;

ARCHITECTURE a OF sst1_lpm IS

BEGIN

counter1: lpm_counter

GENERIC MAP (LPM_WIDTH => 12)

PORT MAP (clock => clk,

sset => set,

aclr => clear,

q => q);

END a;

FIGURE ANS9.37

FIGURE ANS9.35

The counter in this problem sets to all 1s (1111 1111
1111 � FFFH), rather than 0111 1111 1111 (� 7FFH).
See Figure ANS9.37 for the simulation of the counter
in problem 9.37.

Answers to Selected Odd-Numbered Problems 819

9.39 —— lpm8term

—— 8-bit presettable counter with synchronous clear and load,

—— count enable, a directional control port,

—— and terminal count decoding

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY lpm8term IS

PORT(

clk, count_ena : IN STD_LOGIC;

clear, load, direction : IN STD_LOGIC;

p : IN STD_LOGIC_VECTOR(7 downto 0);

max_min : OUT STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(7 downto 0));

END lpm8term;

ARCHITECTURE a OF lpm8term IS

SIGNAL cnt : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

counter1: lpm_counter

GENERIC MAP (LPM_WIDTH => 8)

PORT MAP (clock => clk,

updown => direction,

cnt_en => count_ena,

data => p,

sload => load,

sclr => clear,

q => cnt);

q <= cnt;

PROCESS (clk, cnt)

BEGIN

—— Terminal count decoder

IF (cnt = “00000000” and direction = ‘0’) THEN

max_min <= ‘1’;

ELSIF (cnt = “11111111” and direction = ‘1’) THEN

max_min <= ‘1’;

ELSE

max_min <= ‘0’;

END IF;

END PROCESS;

END a;

820 Answers to Selected Odd-Numbered Problems

9.41 See Figure ANS9.41.

9.43 001111, 000000, 000000, 110000

9.45 See Figure ANS9.45. The serial output is the same as the
serial input, only delayed by eight clock pulses and syn-
chronized to the positive edge of the clock.

9.47 See Figure ANS9.47.

CLK

SERIAL IN

SERIAL OUT

FIGURE ANS9.45

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

Data In

Clock

Q3

Q2

Q1

Q0

FIGURE ANS9.41

FI
G

U
R

E
A

N
S9

.4
7

821

822 Answers to Selected Odd-Numbered Problems

9.51 —— Left-shift register of generic width

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY slt_bhv IS

GENERIC (width : POSITIVE);

PORT(

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END slt_bhv;

ARCHITECTURE left_shift of slt_bhv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk‘EVENT and clk � ‘1’) THEN

q(width-1 downto 0) <= q(width-2 downto 0) & serial_in;

END IF;

END PROCESS;

END left_shift;

—— 32-bit left-shift register

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY slt32_bhv IS

PORT(

data_in, clock : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(31 downto 0));

END slt32_bhv;

ARCHITECTURE left_shift of slt32_bhv IS

COMPONENT slt_bhv

GENERIC (width : POSITIVE);

PORT(

serial_in, clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(31 downto 0));

END COMPONENT;

BEGIN

Shift_left_32: slt_bhv

GENERIC MAP (width=> 32)

PORT MAP (serial_in => data_in,

clk => clock,

q => qo);

END left_shift;

Figure ANS9.51 shows a partial simulation of the shift
register.

Answers to Selected Odd-Numbered Problems 823

9.53 The generic component has a default width of 8 bits. The
instantiated component has an assigned width of 16 bits.
The generic map in the instantiated component overrides
the default parameter.

FIGURE ANS9.51

9.55 —— srg10lpm.vhd

—— 10-bit serial shift register (shift right)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY lpm;

USE lpm.lpm_components.ALL;

ENTITY srg10lpm IS

PORT(

clk : IN STD_LOGIC;

serial_in : IN STD_LOGIC;

sync_set : IN STD_LOGIC;

serial_out : OUT STD_LOGIC);

END srg101pm;

ARCHITECTURE lpm-shift of srg10lpm IS

COMPONENT lpm_shiftreg

GENERIC(LPM_WIDTH: POSITIVE; LPM_SVALUE: STRING);

PORT(

clock, shiftin : IN STD_LOGIC;

sset : IN STD_LOGIC;

shiftout : OUT STD_LOGIC);

END COMPONENT;

BEGIN

Shift_10: lpm_shifreg

GENERIC MAP (LPM_WIDTH=> 10, LPM_SVALUE => “960”)

PORT MAP (clk, serial_in, sync_set, serial_out);

END lpm_shift;

824 Answers to Selected Odd-Numbered Problems

The parameter LPM_SVALUE is set to 960, the decimal
equivalent of H”3C0”. Figure ANS9.55 shows the simu-
lation of the shift register.

9.57

CLOCK

OUTPUT
Q1

OUTPUT

INPUT

Q0

OUTPUT
Q2

OUTPUT
Q3

RESET
INPUT

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

NOTNOT

FIGURE ANS9.59

Q4 Q3 Q2 Q1 Q0

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

All gates used in the decoder of Figure 9.84 remain un-
changed except those decoding the MSB/LSB pairs
(Q3Q0 and Q�3Q�0). Change these to decode Q4Q0 and

Q�4Q�0. Add two new gates to decode Q4Q�3 (2nd state) and
Q�4Q3 (7th state).

9.59 See Figure ANS9.59

FIGURE ANS9.55

Chapter 10

10.1 Mealy machine. The output is fed by combinational, as
well as sequential, logic.

10.3 D3 � Q2Q�1Q�0 � Q3Q1 � Q3Q0

D2 � Q�3Q1Q�0 � Q2Q�1 � Q2Q0

D1 � Q�3Q�2Q0 � Q3Q2Q0 � Q1Q�0

D0 � Q�3Q�2Q�1 � Q3Q2Q�1 � Q�3Q2Q1 � Q3Q�2Q1

See Figure ANS10.3.

Answers to Selected Odd-Numbered Problems 825

q0q1q2q3

AND3

AND2

AND2

AND3

AND2

AND2

AND3

AND2

AND3

AND3

AND3

AND3

AND3

N
O

T

N
O

T

N
O

T

N
O

T

OR3

OR3

OR3

OR4

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

DFF

clk

CLRN

PRN
QD

OUTPUT
q3

q3

OUTPUT
q2

q2

OUTPUT
q1

q1

OUTPUT

INPUT

q0
q0

FIGURE ANS10.3

826 Answers to Selected Odd-Numbered Problems

10.5 J2 � Q1Q�0

K2 � Q�1Q0

J1 � Q�2Q0

K1 � Q2Q0

J0 � Q�2Q�1 � Q2Q1

K0 � Q�2Q1 � Q2Q�1

See Figure ANS10.5

10.7 D1 � Q�1Q0in1

D0 � Q�1i�n�1�
out1 � Q�1Q�0i�n�1�
out2 � Q�1QQ0in1

q0q1q2

AND2

AND2

AND2

AND2

AND2

N
O

T

N
O

T

N
O

T

j2

k2

j1

j0

k1

k0

AND2

OR2

AND2

AND2

OR2

JKFF

JKFF

JKFF

j2

j1

k2
CLRN

PRN
QJ

K

CLRN

PRN
QJ

CLRN

PRN
QJ

CLK

OUTPUT
q2

q2

OUTPUT
q1

q1

OUTPUT
q0

q0

INPUT

k1
K

j0

k0
K

FIGURE ANS10.5

See Figure ANS10.7. The circuit generates a HIGH
pulse on out1 when in1 goes LOW and a HIGH pulse on
out2 when the input goes back HIGH.

Answers to Selected Odd-Numbered Problems 827

DFF

CLRN

PRN
QD

DFF

CLRN

PRN
QD

clk
INPUT

q0

q1

q1 q0

N
O

T

N
O

T

N
O

T

AND3

AND3

AND2

AND3

in1
INPUT

OUTPUT
out1

OUTPUT
out2

FIGURE ANS10.7

828 Answers to Selected Odd-Numbered Problems

10.9 —— prob10_9.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY prob10_9 IS

PORT(

clk, in1 : IN STD_LOGIC;

out1, out2 : OUT STD_LOGIC);

END prob10_9;

ARCHITECTURE a OF prob10_9 IS

TYPE PULSER IS (s0, s1, s2, s3);

SIGNAL sequence: PULSER;

BEGIN

PROCESS (clk)

BEGIN

IF clk‘EVENT AND clk = ‘1’ THEN

CASE sequence IS

WHEN s0 =>

IF in1 = ‘1’ THEN

sequence <= s0; —— no change if in1 = 1

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= s1; —— proceed if in1 = 0

out1 <= ‘1’; —— pulse on out1

out2 <= ‘0’;

END IF;

WHEN s1 =>

IF in1 = ‘0’ THEN

sequence <= s1; —— outputs LOW

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= s2;

out1 <= ‘0’;

out2 <= ‘1’; —— pulse on out2

END IF;

WHEN s2 =>

sequence <= s0;

out1 <= ‘0’;

out2 <= ‘0’;

WHEN others =>

sequence <= s0;

out1 <= ‘0’;

out2 <= ‘0’;

END CASE;

END IF;

END PROCESS;

END a;

See Figure ANS10.9.

Answers to Selected Odd-Numbered Problems 829

10.11 LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY prob10_11 IS

PORT(

clk, go, reset, eoc : IN STD_LOGIC;

sc, oe : OUT STD_LOGIC);

END prob10_11;

ARCHITECTURE a OF prob10_11 IS

TYPE ADC IS (idle, start, waiting, read);

SIGNAL state: ADC;

SIGNAL outputs: STD_LOGIC_VECTOR(1 downto 0);

BEGIN

sc <= outputs(1);

oe <= outputs(0);

PROCESS (clk)

BEGIN

IF clk‘EVENT AND clk = ‘1’ THEN

IF reset = ‘0’ THEN

state <= idle;

outputs <= “01”;

ELSE

CASE state IS

WHEN idle =>

IF go = ‘0’ THEN

state <= idle;

outputs <= “01”;

ELSIF go = ‘1’ THEN

state <= start;

outputs <= “11”;

END IF;

WHEN start =>

state <= waiting;

outputs <= “01”;

WHEN waiting =>

IF eoc = ‘0’ THEN

state <= waiting;

outputs <= “01”;

ELSIF eoc = ‘1’ THEN

state <= read;

outputs <= “00”;

END IF;

FIGURE ANS10.9

830 Answers to Selected Odd-Numbered Problems

WHEN read =>

state <= idle;

outputs <= “01”;

END CASE;

END IF;

END IF;

END PROCESS;

END a;

See Figure ANS 10.11.

FIGURE ANS10.11

10.13 A NAND latch can only debounce a switch with a nor-
mally open and a normally closed contact: one to set and
the other to reset the latch. The pushbutton on the Altera
UP-1 board has only a normally open contact.

10.15 8.33 ms

10.17 Four clock periods. 8.33 ms

10.19 —— prob10_19.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY prob10_19 IS

PORT(

clk, in1, in2 : IN STD_LOGIC;

out1 : OUT STD_LOGIC);

END prob10_19;

ARCHITECTURE a OF prob10_19 IS

TYPE STATE_TYPE IS (s0, s1, s2, s3, s4);

SIGNAL state: STATE_TYPE;

Answers to Selected Odd-Numbered Problems 831

BEGIN

PROCESS (clk)

BEGIN

IF clk‘EVENT AND clk = ‘1’ THEN

CASE state IS

WHEN s0 =>

state <= s1;

out1 <= ‘0’;

WHEN s1 =>

IF in1 = ‘1’ THEN

state <= s1;

out1 <= ‘0’;

ELSIF in1 = ‘0’ THEN

state <= s2;

out1 <= ‘1’;

END IF;

WHEN s2 =>

state <= s3;

out1 <= ‘0’;

WHEN s3 =>

state <= s4;

out1 <= ‘0’;

WHEN s4 =>

IF in2 = ‘1’ THEN

state <= s4;

out1 <= ‘0’;

ELSIF in2 = ‘0’ THEN

state <= s0;

out1 <= ‘1’;

END IF;

END CASE;

END IF;

END PROCESS;

END a;

See Figure ANS10.19

FIGURE ANS10.19

832 Answers to Selected Odd-Numbered Problems

10.23 See Figure ANS10.23.

Chapter 11

11.1 TTL: advantages—relatively high speed, high current
driving capability; disadvantages—high power consump-
tion, rigid power supply requirements. CMOS: advan-
tages—low power consumption, high noise immunity,
flexible power supply requirements; disadvantages—
low output current ECL: advantages—high speed;
disadvantages—high susceptibility to noise, high power
consumption.

11.3 tpHL � 12 ns, tpLH � 10 ns

11.5 Transition from state 1 to state 2: tp � tpLH02 � tpHL00 �
16 ns � 15 ns � 31 ns. Transition from state 2 to state 3:
tp � tpLH00 � 15 ns (Assume VCC � 4.5 volts; T � 25°C
to �55°C)

11.7 Driving gate (74LS00): IOL � 8 mA; IOH � �0.4 mA

Load gate (74S32): IIL � �2 mA; IIH � 20 �A

nL � IOL/IIL � 8 mA/2 mA � 4

nH � IOH/IIH � 0.4 mA/0.02 mA � 20

n � nL � 4

11.9 Source: IOH � �0.14 mA; sink: IOL � 2.8 mA

11.11 a. 44 mW;

b. 39 mW;

c. 29 mW;

d. 20 mW

go,eoc/sc,oe

X X /00

X 1 /01

X0/00

XX/00

0X/10

1X/00

X1/00X0/00

startread

waiting1waiting2

idle

FIGURE ANS10.23

11.13 a. 4.5 �W;

b. 28.3 �W;

c. 4.46 mW

11.15 a. 550 �W;

b. �56.4%

11.17 The outputs of a 74LS00 gates are guaranteed to produce
output voltages of VOH � 2.7 V and VOL � 0.8 V. The in-
puts of a 74HCT series gate are voltage compatible with
LSTTL outputs since VIH � 2 V and VIL � 0.5V. This is
not the case for 74HC series gates, where VIH � 3.15V
and VIL � 1.35V. The 74LS gate is not guaranteed to
drive the 74HC gate in the HIGH state.

11.19 10 loads, since the 74HC output voltages are defined for
an output current of 	4mA.

11.21 HIGH input: The base-emitter junction of transistor Q1 is
reverse-biased. Current flows, by default, through the
base-collector junction of Q1, supplying base current to
Q2, saturating it. This in turn, saturates Q3, making its
collector LOW.

LOW input: Current has a path to ground via the
base-emitter junction of Q1. This transports charge away
from the base region of Q2, making it cutoff. Since Q2 is
cutoff, no base current flows in Q3. If an external pull-up
resistor is connected to the collector of Q3, the output will
be HIGH. Otherwise, it is floating.

11.23 See Figure 11.31 in text. Y � A�B� � C�D� � E�F� �
A�B�����C�D�����E�F�

11.27 Yes. When the output transistor saturates (output LOW),
there will be a direct connection from the output to VCC.
Since there is relatively little resistance in the current
path, the current will likely exceed the rated output cur-
rent, IOL.

11.29 a. Q3 and Q4 are never on at the same time because the
phase splitter, Q2, keeps them in opposite states. The
voltage in the circuit is divided such that when Q2 is
on, it pulls the base of Q4 into the cutoff region for
that transistor. At the same time, Q3 is supplied with
base current and thus saturated. When Q2 is off, there
is no base current in Q3, making it cutoff. The base
voltage at Q4 is now such that it is on.

b. Switching noise originates in a totem pole output be-
cause the HIGH output transistor, Q4, can switch on
faster than the LOW output transistor, Q3, can switch
off. For a brief time, both transistors are on, causing a
supply current spike. This can be counteracted by con-
necting a small capacitor between the supply voltage,
VCC, and ground.

11.31 7.58 mA, 95% of IOL; 2.12 mA, 530% of IOH The first
circuit is more suitable, as it can drive a higher current to
the LED and still remain within the output specification
of the inverter.

11.33 Store MOS devices in antistatic or conducting material.
Work only on an antistatic work surface and wear a conduc-
tive wrist strap. Connect all unused device inputs to power
or ground. Do not touch the pins of the MOS device.

Answers to Selected Odd-Numbered Problems 833

11.35 See Figure 11.56 in text.

A B Q1 Q2 Q3 Q4 Q5 Q6 Y

0 0 ON ON OFF OFF OFF ON 0
0 1 OFF ON OFF ON OFF ON 0
1 0 ON OFF ON OFF OFF ON 0
1 1 OFF OFF ON ON ON ONN 1

11.37 The state of flip-flop output Q selects which signal is
switched to the data converter/display driver by enabling
one of the CMOS transmission gates. When Q�1, the
wheel rotation sensor is selected. Q�0 selects the engine
rotation sensor.

11.39 No. TTL power dissipation, and therefore the speed-
power product, depends on the logic states of the device
outputs, not on frequency.

11.41 74HCNN: pin replacement for TTL device; CMOS-com-
patible inputs; TTL-compatible outputs. 74HC4NNN:
pin replacement for CMOS device; CMOS-compatible
inputs; TTL-compatible outputs. 74HCTNN: pin re-
placement for TTL device; TTL-compatible inputs;
TTL-compatible outputs. 74HCUNN: unbuffered CMOS
outputs.

Chapter 12

12.1

12.5 6 bits, since 64 � 26. Resolution � 500 mV/64 � 7.8125
mV.

12.7 n�1 (One extra bit for each doubling of the number of
codes.)

12.9 a. Va � (code/24) Vref � (12/16) Vref � 0.75 Vref;

b. Va � (code/28) Vref � (200/256) Vref � 0.78125 Vref;

c. A 4-bit and 8-bit quantization of the same analog volt-
age are the same in the first four bits. The additional
bit in the lower 4 bits adds an extra voltage to the ana-
log output.

12.11 From most to least significant bits: 1 k�, 2 k�, 4 k�,
8 k�, 16 k�, 32 k�, 64 k�, 128 k�, 256 k�, 512 k�,
1024 k�, 2048 k�, 4096 k�, 8192 k�, 16,384 k�,
32,768 k�. All resistors greater than 64 k� are specified
to three or more significant figures. These values, which
are necessary to maintain conversion accuracy, are not
available as commercial components.

12.13 a. Va � (15/16)
 12 V � 11.25 V

b. Va � (11/16)
 12 V � 8.25 V

c. Va � (6/16)
 12 V � 4.8 V

d. Va � (3/16)
 12 V � 2.25 V

12.15 Resolution � (1/256)(2.2 k�
 12V)/6.8 k� � 15.16 mV

12.19 There are only 16 steps in the waveform and they reach to
15/16 of the reference value. Therefore, the four least sig-
nificant bits are stuck at logic LOW.

12.21 Offset error (OE) � 0.5 V; OE � 0.333 LSB; OE �
4.167% FS. Gain error � 0; Linearity error � 0

12.23 Linearity error (LE) � 0.175 V; LE � 0.35 LSB; LE �
4.375%. Gain error � 0; Offset error � 0

12.25 The priority encoder converts the highest active compara-
tor voltage to a digital code. The enable input of the latch
can be pulsed with a waveform having the same fre-
quency as the sampling frequency.

Analog Voltage Code

0 � 0.75 000
0.75 � 2.25 001
2.25 � 3.75 010
3.75 � 5.25 011
5.25 � 6.75 100
6.75 � 8.25 101
8.25 � 9.75 110
9.75 � 12.00 111

Analog Voltage Code

0.000 � 0.375 0000
0.375 � 1.125 0001
1.125 � 1.875 0010
1.875 � 2.625 0011
2.625 � 3.375 0100
3.375 � 4.125 0101
4.125 � 4.875 0110
4.875 � 5.625 0111
5.625 � 6.375 1000
6.375 � 7.125 1001
7.125 � 7.875 1010
7.875 � 8.625 1011
8.625 � 9.375 1100
9.375 � 10.125 1101

10.125 � 10.875 1110
10.875 � 12.000 1111

Fraction Sine Digital
of T Voltage Code

0 0 V 0000
T/8 4.59 V 0110
T/4 8.48 V 1011

3T/8 11.09 V 1111
T/2 12.00 V 1111

5T/8 11.09 V 1111
3T/4 8.48 V 1011
7T/8 4.59 V 0110

T 0 V 0000

12.3

834 Answers to Selected Odd-Numbered Problems

12.27

12.29 (8 V/12 V)
 16 � 10.667. Since the SAR method of
A/D conversion truncates a result, the new code value
will be 1010. The new hex digit is A.

12.31 	1⁄2 LSB

12.33 a. Integrating phase: The slope for a Full Scale input is
given by:

�(vin)/RC � �16 V/(80 k�)(0.1 �F) � �2 V/ms.

Since the slope is proportional to the input voltage, the
slope for a 3 V input is:

(3/16)
 (�2 V/ms) � �0.375 V/ms

b. Rezeroing phase: At �2 V/ms, the integrator would
take 8 seconds to rezero from Full Scale. This is al-
ways the slope when the circuit rezeros.

c. It would take (3/16)
 (8 s) � 1.5 s to rezero for an
input of 3 V.

d. The integrator waveform is similar to that for the input
of 1/4 Full Scale shown in Figure 12.28 in the text.

e. Code � (3/16)
 256 � 4810 � 001100002.

12.35 See Figure 12.29 in text.

12.37 200 kHz

12.39 The sampling frequency is 13/12 times the period of the

Analog
New Digital Equivalent Comparator Accumulated

Bit Value from DAC Vanalog � VDAC Output Digital Value

Q7 10000000 8 V No 0 00000000
Q6 01000000 4 V Yes 1 01000000
Q5 01100000 6 V No 0 01000000
Q4 01010000 5 V No 0 01000000
Q3 01001000 4.5 V Yes 1 01001000
Q2 01001100 4.75 V Yes 1 01001100
Q1 01001110 4.875 V No 0 01001100
Q0 01001101 4.8125 V No 0 01001100

sampled analog waveform. This is 1-1/12 periods, or 30
degrees greater than the sampled waveform. Thus one full
cycle of the alias frequency is 5.2 �s
 12 � 62.4 �s.
The alias frequency is approximately 16 kHz.

12.41 —— adc_cont.vhd

—— State machine interface to ADC0808

—— Continuous conversion, single latch,

—— analog channel selected externally

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY adc_cont IS

PORT(

clock, reset, eoc : IN STD_LOGIC;

sc, oe, en : OUT STD_LOGIC);

END adc_cont;

ARCHITECTURE adc OF adc_cont IS

Answers to Selected Odd-Numbered Problems 835

TYPE state_type IS (start, wait1, wait2, read, store);

SIGNAL state: state_type;

SIGNAL outputs: STD_LOGIC_VECTOR (1 to 3);

BEGIN

PROCESS (clock, reset)

BEGIN

IF (reset = ‘0’) THEN

state <= start;

outputs <= “000”;

ELSIF (clock‘EVENT and clock = ‘1’) THEN

CASE state IS

WHEN start =>

state <= wait1;

outputs <= “100”;

WHEN wait1 =>

IF (eoc = ‘1’) THEN

state <= wait1;

outputs <= “000”;

ELSIF (eoc = ‘0’) THEN

state <= wait2;

outputs <= “000”;

END IF;

WHEN wait2 =>

IF (eoc = ‘0’) THEN

state <= wait2;

outputs <= “000”;

ELSIF (eoc = ‘1’) THEN

state <= read;

outputs <= “011”;

END IF;

WHEN read =>

state <= store;

outputs <= “010”;

WHEN store =>

state <= start;

outputs <= “000”;

END CASE;

END IF;

sc <= outputs(1);

oe <= outputs(2);

en <= outputs(3);

END PROCESS;

END adc;

See Figure ANS12.41.

12.43 23.5 kHz

FIGURE ANS12.41

836 Answers to Selected Odd-Numbered Problems

Chapter 13

13.1 The number of address lines is n for 2n memory loca-
tions. Thus, an 8
 8 memory requires 3 address lines
(23 � 8). A 16
 8 memory requires 4 address lines
(24 � 16).

13.3 a. 64K � 26
 210 � 216; 16 address lines, 8 data lines

b. 128K � 27
 210 � 217; 17 address lines, 16 data
lines

c. 128K � 27
 210 � 217; 17 address lines, 32 data
lines

d. 256K � 28
 210 � 218; 18 address lines, 16 data
lines

13.5 The inputs W� (Write), G� (Gate), and E� (Enable) control
the flow of data into or out of the RAM shown by en-
abling or disabling the two tristate buffers on each pin.
There is an output (read) buffer and an input (write)
buffer for each pin.

The read buffers are enabled when W� � 1, E� � 0,
and G� � 0. The write buffers are enabled when W� � 0
and E� � 0. G� is not required for the write buffer. Thus W�
controls the direction of the data (read or write), E� en-
ables the tristate buffers in either direction, and G� enables
the output buffers only.

13.7 To change the cell contents to a 0, we make the BIT line
LOW and the ROW SELECT line HIGH. The ROW SE-
LECT line gives access to the cell by turning on Q5 and
Q6, completing the conduction path between the BIT
lines and the flip flop inputs. The LOW on the BIT line
pulls the gate of Q4 LOW, turning it OFF. This breaks the
conduction path from Q4 drain to source and makes VDS4

� VDD, a logic HIGH. This HIGH is applied to the gate
of Q3, turning it ON. A conduction path is established be-
tween Q3 drain and source, pulling the drain of Q3 LOW.
The cell now stores a logic 0.

13.9 A selected RAM cell is at the junction of an active ROW
line and an active COLUMN line in a rectangular matrix
of cells.

13.11 The DRAM in Problem 13.10 has 10 multiplexed
ROW/COLUMN address lines. Adding one more line
makes 11 lines, each of which are used for a ROW ad-
dress and also a column address. This make a total of 22
lines, giving an address capacity of 222 � 4M locations.
Adding another address line gives 12 multiplexed lines,
each used for ROW and COLUMN, giving a total of
224 � 16M locations.

13.13 The primary difference between the different types
of ROM is how easy each type is to program and
erase.

Mask-programmed ROM has the data manufac-
tured into the device, making it difficult to program and
impossible to erase. It is relatively cheap to mass-produce
and is useful for storing unchanging data that must al-
ways be retained, including after power failure. An exam-
ple is the “boot ROM” in a personal computer that con-
tains data for minimal start-up instructions.

UV-erasable EPROM is fairly expensive because of
the specialized packaging it requires. It is user-program-

mable and can be easily erased by exposure to ultraviolet
light when removed from the circuit. It is useful for unfin-
ished designs, since stored data can be changed as devel-
opment of a product proceeds.

EEPROM can be used for applications which re-
quire data to be stored after power is removed from a de-
vice, but which require periodic in-circuit changes of
data. One example might be an EEPROM which stores
the numbers of several local channels in a digitally-pro-
grammed car radio.

13.15 Unlike EEPROM, flash memory is organized into sectors
that can be erased all at one time. One sector, called the
boot block, can be protected against unauthorized erasure
or modification, thus adding a level of security to the
memory.

13.17 EEPROM has slower access time and smaller bit capacity
than RAM. It also has a finite number of program/erase
cycles.

13.19 FIFO: buffer for serial data transmission; LIFO: memory
stack in a microcomputer

13.21 4K � 212. Range � 0000 0000 0000 to 1111 1111 1111
(000H to FFFH); End address � Start � Maximum �
2000H � FFFH � 2FFFH.

8K � 213. Range � 0 0000 0000 0000 to 1 1111 1111
1111 (0000H to 1FFFH);

End � Start � Maximum � 6000H � 1FFFH � 7FFFH

See Figure ANS13.21.

13.23 See Figure ANS13.23

4 K

0000H

2000H

2FFFH

7FFFH

6000H

FFFFH

8 K

FIGURE ANS13.21

Answers to Selected Odd-Numbered Problems 837

13.25

Device Start Address End Address Size

EPROM 0000H 3FFFH 16K
SRAM1 4000H 7FFFH 16K
SRAM2 8000H BFFFH 16K
SRAM3 E000H FFFFH 8K

Device Start Address End Address

0 0000000H 0FFFFFFH
1 1000000H 1FFFFFFH
2 2000000H 2FFFFFFH
3 3000000H 3FFFFFFH
4 4000000H 4FFFFFFH
5 5000000H 5FFFFFFH
6 6000000H 6FFFFFFH
7 7000000H 7FFFFFFH
8 8000000H 8FFFFFFH
9 9000000H 9FFFFFFH

10 A000000H AFFFFFFH
11 B000000H BFFFFFFH
12 C000000H CFFFFFFH
13 D000000H DFFFFFFH
14 E000000H EFFFFFFH
15 F000000H FFFFFFFH

RAM0

RAM1

0000H

4000H

8000H

BFFFH

A000H

FFFFH

RAM2

FIGURE ANS13.23

13.27 16 DIMMs

	Digital Design with CPLD Applications & VHDL
	Ch1 Basic Principles of Digital Systems
	Ch2 Logic Functions & Gates
	Ch3 Boolean Algebra & Combinational Logic
	Ch4 Introduction to PLDs & MAX PLUS II
	Ch5 Combinational Logic Functions
	Ch6 Digital Arithmetic & Arithmetic Circuits
	Ch7 Introduction to Sequential Logic
	Ch8 Introduction to Programmable Logic Architectures
	Ch9 Counters & Shift Registers
	Ch10 State Machine Design
	Ch11 Logic Gate Circuitry
	Ch12 Interfacing Analog & Digital Circuits
	Ch13 Memory Devices & Systems
	AppA Altera UP-1 User Guide
	AppB VHDL Language Reference
	AppC Manufacturers' Data Sheets
	AppD Handling Precautions for CMOS
	AppE EPROM Data for Digital Function Generator
	Answers to Selected Odd-Numbered Problems

