

Fundamentals of Digital Logic With VHDL Design teaches the basic design techniques for logic circuits. I t
emphasizes the synthesis of circuits and explains how circuits are implemented in real chips. Fundamental
concepts are illustrated by using small examples, which are easy to understand. Then, a modular approach is
used to show how larger circuits are designed. VHDL is used to demonstrate how the basic building blocks
and larger systems are defined in a hardware description language, producing designs that can be implemented
with modern CAD tools.

Use of VHDL is well integrated into the book to enable the student to quickly become involved in real
designs. The book can be used with any CAD system for design and implementation of logic circuits. To
make it easy for the user to obtain modern CAD tools, the book includes a CD-ROM that contains Altera's
Quartus I1 CAD software. This software provides automatic mapping of designs written in VHDL into Field
Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs). The user will be
able to:

Enter a design into the CAD system

Compile the design into a selected device

Simulate the functionality and timing of the resulting circuit

Implement the designs in actual devices (using the school's laboratory facilities).

VHDL is a complex language, so it is introduced gradually in the book. Each VHDL feature is presented
as it becomes pertinent for the circuits being discussed. To teach the student to use the Quartus I1 software,
the book includes three tutorials. A discussion of the complete CAD flow is also given.

DIGITAL LOGIC WITH VHDL DESIGN

SECOND EDITION

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering

University of Toronto

Higher Education

Boston Burr Ridge, IL Dubuque, IA Madison, W1 New York San Francisco St. Louis
Bangkok Bogota Caracas KualaLumpur Lisbon London Madrid MexicoCity
Milan Montreal NewDelhi Santiago Seoul Singapore Sydney Taipei Toronto

FUNDAMENTALS OF DIGITAL LOGIC WITH VHDL DESIGN, SECOND EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright 0 2005,2000 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.,
including, but not limited to, in any network or other electronic storage or transmission, or broadcast for
distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

ISBN 0-07-246085-7

Publisher: Elizabeth A. Jones
Senior Sponsoring Editor: Carlise Paulson
Developmental Editor: Melinda D. Bilecki
Marketing Manager: Dawn R. Bercier
Senior Project Manager: K i r ~ J. Brimeyer
Production Supervisor: Kara Kudronowicz
Media Technology Producer: Eric A. Weber
Senior Coordinator of Freelance Design: Michelle D. Whitaker
Cover Designer: Rokusek Design
(USE) Cover Image: Rakus~k Design
Senior Photo Research Coordinator: Lori Hancock
Supplement Producer: Brenda A. Ernzen
Compositor: Techsetters, Inc.
Typeface: 10/12 Times Roman
Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Control Number: 2004 107780

To Susan and Anne

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now an Associate Professor in the Department of Electrical & Computer Engineering.
He is also a Senior Director of Software Development at the Altera Toronto Technology
Center.

His research interests include field-programmable VLSI technology and computer ar-
chitecture. He won the Canadian Natural Sciences and Engineering Research Council's
1992 Doctoral Prize for the best Ph.D. thesis in Canada.

He has won four awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital LDgic with Verilog Design and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963-1965 he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the University
of Toronto, where he is now a Professor in the Departments of Electrical & Computer Engi-
neering and Computer Science. During the 1978-79 academic year, he was a Senior Visitor
at the University of Cambridge, England, and during 1984-85 he was at the University of
Paris, 6. From 1995 to 2000 he served as Chair of the Division of Engineering Science at
the University of Toronto. He is also involved in research and development at the Altera
Toronto Technology Center.

His current research interests include computer architecture, field-programmable VLSI
technology, and multiple-valued logic systems.

He is a coauthor of four other books: Computer Organization, 5th ed.; Fundamentals
of Digital Logic with Verilog Design; Microcomputer Structures; and Field-Programmable
Gate Arrays. In 1990, he received the Wighton Fellowship for "innovative and distinctive
contributions to undergraduate laboratory instruction." In 2004, he received the Faculty
Teaching Award from the Faculty of Applied Science and Engineering at the University of
Toronto.

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

McGraw-Hill Series in Electrical and Computer Engineering

Senior Consulting Editor
Stephen W. Director, University of Michigan, Ann Arbor

Circ,uits and Svstems
Co~~~rnunications and Signal Processing
Computer Engineering
Control Theory and Robotics
Elecfromagnetics
Electronics and VLSI Circuits
Introductory
Power
Antennos, Microwaves, and Radar

Previous Consulting Editors

Ronald N. Bracewell, Colin Cherry, James E Gibbons, Willis W Harman, Hubert Hef ie l ;
Edcvord W Herold, John G Linvill, Simon Ramo, RonaldA. Rohrer; Anthony E. Siegman,
Charles Susskind, Frederick E. Terman, John G Truxal, Ernst Webe4 and John R. Wi~innery

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of
computer-aided design (CAD) tools. The purpose of our book is to provide the desirable
balance between teaching the basic concepts and practical application through CAD tools.
To facilitate the learning process, the necessary CAD software is included as an integral
part of the book package.

The main goals of the book are (I) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY AND CAD SUPPORT

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book's design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs,) and field-programmable gate arrays (FPGAs).

Our CAD support is based on Altera Quartus 11 software. Quartus I1 provides automatic
mapping of a design into Allera CPLDs and FPGAs, which are among the most widely
used PLDs in the industry. The features of Quartus 11 that are particularly attractive for our
purposes are:

It is a commercial product. The version included with the book supports all major
features of the product. Students will be able to easily enter a design into the CAD

system, compile the design into a selected device (the choice of device can be changed
at any time and the design retargeted to a different device), simulate the functionality
and detailed timing of the resulting circuit, and if laboratory facilities are provided at
the student's school, implement the designs in actual devices.

It provides for design entry using both hardware description languages (HDLs) and
schematic capture. In the book, we emphasize the HDL-based design because it is the
most efficient design method to use in practice. We describe in detail the IEEE Standard
VHDL language and use it extensively in examples. TheCAD system incIuded with the
book has a VHDL compiler, which allows the student to automatically create circuits
from the VHDL code and implement these circuits in real chips.

It can automatically target a design to various types of devices. This feature allows us
to illustrate the ways in which the architecture of the target device affects a designer's
circuit.

It can be used on most types of popular computers. The version of Quartus I1 provided
with the book runs on computers using Microsoft windows NT, 2000, or XP. However,
through Altera's university program the software is also available for other machines,
such as SUN or HP workstations.

A Quartus I1 CD-ROM is included with each copy of the book. Use of the software
is fully integrated into the book so that students can try, firsthand, all design examples. To
teach the students how to use this software, the book includes three, progressively advanced,
hands-on tutorials.

Chapter 1 provides a general introduction to the process of designing digital systems. It
discusses the key steps in the design process and explains how CAD tools can be used to
automate many of the required tasks.

Chapter 2 introduces the basic aspects of logic circuits. It shows how Boolean algebra
is used to represent such circuits. It also gives the reader a first glimpse at VHDL, as an
example of a hardware description language that may be used to specify the logic circuits.

The electronic aspects of digital circuits are presented in Chapter 3. This chapter shows
how the basic gates are built using transistors and presents various factors that affect circuit
performance. The emphasis is on the latest technologies, with particular focus on CMOS
technology and programmable logic devices.

Chapter 4 deals with the synthesis of combinational circuits. It covers all aspects of
the synthesis process, starting with an initial design and performing the optimization steps
needed to generate a desired final circuit. It shows how CAD tools are used for this purpose.

Chapter 5 concentrates on circuits that perform arithmetic operations. It begins with
a discussion of how numbers are represented in digital systems and then shows how such
numbers can be manipulated using logic circuits. This chapter illustrates how VHDL can
be used to specify the desired functionality and how CAD tools provide a mechanism for
developing the required circuits. We chose to introduce the number representations at this
point, rather than in the very beginning of the book, to make the discussion more mean-

ingful and interesting, because we can immediately provide examples of how numerical
information may be processed by actual circuits.

Chapter 6 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many VHDL constructs, giving the reader an opportunity to
discover more advanced features of VHDL.

Storage elements are introduced in Chapter 7. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. VHDL-specified designs of
these structures are included. The chapter also shows how larger systems, such as a simple
processor, may be designed.

Chapter 8 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they should be
studied because they provide an excellent vehicle for gaining a deeper understanding of
the operation of digital circuits in general. They illustrate the consequences of propagation
delays and race conditions that may be inherent in the structure of a circuit.

Chapter 10 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete VHDL code for these circuits is presented.

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Chapter 12 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

Appendix A provides a complete summary of VHDL features. Although use of VHDL
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing VHDL code.

Appendices B, C, and D contain a sequence of tutorials on the Quartus I1 CAD tools.
This material is suitable for self-study; it shows the student in a step-by-step manner how
to use the CAD software provided with the book.

Appendix E gives detailed information about the devices used in illustrative examples.

All the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter, course. This is possible only if the instructor does not spend too much time teaching
the intricacies of VHDL and CAD tools. To make this approach possible, we organized
the VHDL material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor

may spend only 2 to 3 lecture hours on VHDL, concentrating mostly on the specification
of sequential circuits. The VHDL examples given in the book are largely self-explanatory,
and students can understand them easily. Moreover, the instructor need not teach how to
use the CAD tools, because the Quartus I1 tutorials in Appendices B, C, and D are suitable
for self-study.

The book is also suitable for a course in logic design that does not include exposure to
VHDL. However, some knowledge of VHDL, even at a rudimentary level, is beneficial to
the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

A natural starting point for formal lectures is Chapter 2. The material in Chapter 1 is
a general introduction that serves as a motivation for why logic circuits are important and
interesting; students can read and understand this material easily.

The following material should be covered in lectures:

Chapter 2-all sections.

Chapter 3-sections 3.1 to 3.7. Also, it is useful to cover sections 3.8 and 3.9 if the
students have some basic knowledge of electrical circuits.

Chapter 4--sections 4.1 to 4.7 and section 4.12.

Chapter 5-sections 5.1 to 5.5.

Chapter 6-all sections.

Chapter 7-all sections.

Chapter 8-sections 8.1 to 8.9.

If time permits, it would also be very useful to cover sections 9.1 to 9.3 and section 9.6 in
Chapter 9, as well as one or two examples in Chapter 10.

One-Quarter Course

In a one-quarter course the following material can be covered:

Chapter 2-all sections.

Chapter 3-sections 3.1 to 3.3.

Chapter 4--sections 4.1 to 4.5 and section 4.12.

Chapter 5-sections 5. I to 5.3 and section 5.5.

Chapter C a l l sections.

Chapter 7-sections 7.1 to 7.10 and section 7.13.

Chapter 8-Sections 8.1 to 8.5.

The material in Chapters 2 and 4 introduces Boolean algebra, combinational logic circuits,
and basic minimization techniques. Chapter 2 provides initial exposure to these topics using

only AND, OR, NOT, NAND, and NOR gates. Then Chapter 3 discusses the implementation
technology details, before proceeding with the synthesis techniques and other types of gates
in Chapter 4. The material in Chapter 4 is appreciated better if students understand the
technological reasons for the existence of NAND, NOR, and XOR gates, and the various
programmable logic devices.

An instructor who favors a more traditional approach may cover Chapters 2 and 4 in
succession. To understand the use of NAND, NOR, and XOR gates, it is necessary only
that the instructor provide a functional definition of these gates.

VHDL

VHDL is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary to
introduce the entire VHDLlanguage. In the book we present the important VHDL constructs
that are useful for the design and synthesis of logic circuits. Many other language constructs,
such as those that have meaning only when using the language for simulation purposes,
are omitted. The VHDL material is introduced gradually, with more advanced features
being presented only at points where their use can be demonstrated in the design of relevant
circuits.

The book includes more than 150 examples of VHDL code. These examples illustrate
how VHDL is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

The book can be used for a course that does not include laboratory exercises, in which case
students can get useful practical experience by simulating the operation of their designed
circuits by using the CAD tools provided with the book. If there is an accompanying labora-
tory, then a number of design examples in the book are suitable for laboratory experiments.
Additional experiments are available on the authors' website.

We wish to express our thanks to the people who have helped during the preparation of the
book. Kelly Chan helped with the technical preparation of the manuscript. Dan Vranesic
produced a substantial amount of artwork. He and Deshanand Singh also helped with
the preparation of the solutions manual. Tom Czajkowski helped in checking the an-
swers to some problems. The reviewers, William Barnes, New Jersey Institute of Technol-
ogy; Thomas Bradicich, North Carolina State University; James Clark, McGill University;
Stephen DeWeerth, Georgia Institute of Technology; Clay Gloster, Jr., North Carolina State
University (Raleigh); Carl Hamacher, Queen's University; Vincent Heuring, University
of Colorado; Yu Hen Hu, University of Wisconsin; Wei-Ming Lin, University of Texas
(Austin); Wayne Loucks, University of Waterloo; Chris Myers, University of Utah; Vojin
Oklobdzija, University of California (Davis); James Palmer, Rochester Institute of Tech-
nology: Gandhi Puvvada, University of Southern California; Teodoro Robles, Milwaukee
SchooI of Engineering; Tatyana Roziner, Boston University; Rob Rutenbar, Carnegie Mel-
lon University; Eric Schwartz, University of Florida; Wen-Tsong Shiue, Oregon State
University; Charles Silio, Jr., University of Maryland; Scott Smith, University of Missouri
(Rolla); Arun Somani, Iowa State University; Bernard Svihel, University of Texas (Ar-
lington); and Zelj ko Zilic, McGill University provided constructive criticism and made
numerous suggestions for improvements.

We are grateful to the Altera Corporation for providing the Quartus I1 system, espe-
cially to Chris Balough, Misha Burich, Joe Hanson, Mike Phipps, and Tim Southgate.
The support of McGraw-Hill people has been exemplary. We truly appreciate the help
of Dawn Bercier, Melinda Bilecki, Kay Brimeyer, Michaela Graham, Betsy Jones, Kara
Kudronowicz, Carlise Paulson, Eric Weber, and Michelle Whitaker.

Stephen Brown and Zvonko Vranesic

C h a p t e r 1

1.1 Digital Hardware 2
1.1.1 Standard Chips 4
1.1.2 Programmable Logic Devices 4
1.1.3 Custom-Designed Chips 5

1.2 The Design Process 6
1.3 Design of Digital Hardware 8

1.3.1 Basic Design Loop 8
1.3.2 Structure of a Computer 9
1.3.3 Design of a Digital Hardware Unit 12

1.4 Logic Circuit Design in This Book 16
1.5 Theory and Practice 16

References 17

C h a p t e r 2

2.1 Variables and Functions 20
2.2 Inversion 23
2.3 Truth Tables 24
2.4 Logic Gates and Networks 25

2.4.1 Analysis of a Logic Network 27
2.5 Boolean Algebra 29

2.5.1 The Venn Diagram 33
2.5.2 Notation and Terminology 35
2.5.3 Precedence of Operations 37

2.6 Synthesis Using AND, OR, and NOT
Gates 37
2.6.1 Sum-of-Products and Product-of-Sums

Forms 39
2.7 NAND and NOR Logic Networks 45
2.8 Design Examples 50

2.8.1 Three-Way Light Control 50
2.8.2 Multiplexer Circuit 5 1

2.9 Introduction to CAD Tools 54
2.9.1 Design Entry 54
2.9.2 Synthesis 56
2.9.3 Functional Simulation 57

2.9.4 Physical Design 57
2.9.5 Timing Simulation 57
2.9.6 Chip Configuration 58

2.10 Introduction to VHDL 58
2.10& 1 Representation of Digital Signals in

VHDL 60
2.10.2 Writing Simple VHDL Code 60
2.10.3 How Not to Write VHDL Code 62

2.1 1 Concluding Remarks 63
2.12 Examples of Solved Problems 64

Problems 67
References 72

C h a p t e r 3

Transistor Switches 75
NMOS Logic Gates 78
CMOS Logic Gates 81
3.3.1 Speed of Logic Gate Circuits 87
Negative Logic System 87
Standard Chips 9 1
3.5.1 7400-Series Standard Chips 91
Programmable Logic Devices 94
3.6.1 Programmable Logic Array (PLA) 94
3.6.2 Programmable Array Logic (PAL) 97
3.6.3 Programming of PLAs and PALS 99
3.6.4 Complex Programmable Logic Devices

(CPLDs) 101
3.6.5 Field-Programmable Gate Arrays 105
3.6.6 Using CAD Tools to Implement

Circuits in CPLDs and FPGAs 110
3.6.7 Application of CPLDs and FPGAs 110
Custom Chips, Standard Cells, and Gate
Arrays 110
Practical Aspects 1 14
3.8.1 MOSFET Fabrication and Behavior 114
3.8.2 MOSFET On-Resistance 117
3.8.3 Voltage Levels in Logic Gates 1 18
3.8.4 Noise Margin 119
3.8.5 Dynamic Operation of Logic Gates 121

xiv

3.8.6 Power Dissipation in Logic Gates 124
3.8.7 Passing 1 s and 0s Through Transistor

Switches 126
3.8.8 Fan-in and Fan-out in Logic Gates 128

3.9 Transmission Gates 134
3.9.1 Exclusive-OR Gates 135
3.9.2 Multiplexer Circuit 136

3.10 Implementation Details for SPLDs, CPLDs,
andFPGAs 136
3.10.1 Implementation in FPGAs 142

3.1 1 Concluding Remarks 145
3.12 Examples of Solved Problems 145

Problems 153
References 162

C h a p t e r 4

4.1 Karnaugh Map 164
4.2 Strategy for Minimization 172

4.2.1 Terminology 173
4.2.2 Minimization Procedure 175

4.3 Minimization of Product-of-Sums Forms 178
4.4 Incompletely Specified Functions 180
4.5 Multiple-Output Circuits 182
4.6 MultilevelSynthesis 185

4.6.1 Factoring 186
4.6.2 Functional Decomposition 190
4.6.3 Multilevel NAND and NOR

Circuits 195
4.7 Analysis of Multilevel Circuits 196
4.8 Cubical Representation 203

4.8.1 Cubes and Hypercubes 203
4.9 A Tabular Method for Minimization 207

4.9.1 Generation of Prime Implicants 208
4.9.2 Determination of a Minimum Cover 209
4.9.3 SurnmaryoftheTabularMethod 215

4.10 A Cubical Technique for Minimization 2 16
4.10.1 Determination of Essential Prime

Implicants 2 18
4.10.2 Complete Procedure for Finding a

Minimal Cover 220
4.11 Practical Considerations 223
4.12 Examples of Circuits Synthesized from

VHDLCode 224

4-13 Concluding Remarks 228
4.14 Examples of Solved Problems 229

Problems 237
References 242

C h a p t e r 5

NUMBER REPRESENTATION AND
ARITHMETIC CIRCUITS 245

5.1 Positional Number Representation 246
5.1.1 Unsigned Integers 246
5.1.2 Conversion between Decimal and

Binary Systems 247
5.1.3 Octal and Hexadecimal

Representations 248
5.2 Addition of Unsigned Numbers 250

5.2.1 Decomposed Full-Adder 254
5.2.2 Ripple-Carry Adder 255
5.2.3 Design Example 256

5.3 Signed Numbers 256
5.3.1 Negative Numbers 256
5.3.2 Addition and Subtraction 260
5.3.3 Adder and Subtractor Unit 264
5.3.4 Radix-Complement Schemes 265
5.3.5 Arithmetic Overflow 269
5.3.6 Performance Issues 270

5.4 Fast Adders 271
5.4.1 Carry-Lookahead Adder 27 1

5.5 Design of Arithmetic Circuits Using CAD
Tools 278
5.5.1 Design of Arithmetic Circuits Using

Schematic Capture 278
5.5.2 Design of Arithmetic Circuits Using

VHDL 281
5.5.3 Representation of Numbers in VHDL

Code 284
5.5.4 Arithmetic Assignment Statements

5.6 Multiplication 289
5.6.1 Array Multiplier for Unsigned

Numbers 291
5.6.2 Multiplication of Signed Numbers

5.7 Other Number Representations 293
5.7.1 Fixed-Point Numbers 293
5.7.2 Floating-Point Numbers 295
5.7.3 Binary-Coded Decimal

Representation 297

xvi CONTENTS

5.8 ASCII Character Code 301 7.4 Master-Slave and Edge-Triggered D
5.9 Examples of Solved Problems 304 Flip-Flops 389

Problems 3 10 7.4.1 Master-Slave D Flip-Flop 389

References 3 14 7.4.2 Edge-Triggered D Flip-Flop 389
7.4.3 D Flip-Flops with Clear and Preset 393

C h a p t e r 6 7.5 T Flip-flop 394
COMBINATIONAL-CIRCUIT* 7.5.1 Configurable Flip-Flops 397
BUILDING BLOCKS 315 7.6 JK Flip-Flop 397

6.1 Multiplexers 3 16 7.7 Summary of Terminology 398

6.1.1 Synthesiq of Logic Functions Using 7.8 Registers 399
Multiplexers 32 1 7.8.1 Shift Register 399

6.1.2 Multiplexer Synthesis Using Shannon's 7.8.2 Parallel- Access Shift Register 400
Expansion 324 7.9 Counters 400

6.2 Decoders 329 7.9.1 Asynchronous Counters 401
6.2.1 Demultiplexers 333 7.9.2 Synchronou< Counters 404

6.3 Encoders 335 7.9.3 Counters with Parallel Load 408
6.3.1 Binary Encoders 335 7.10 Reset Synchronization 408
6.3.2 Priority Encoders 336

6.4 Code Converters 337 7.1 1 Other Types of Counters 41 2

6.5 Arithmetic Comparison Circuits 338
7.1 1.1 BCD Counter 412

6.6 VHDL for Combinational Circuits 339
7.11.2 Ring Counter 4 13

6.6.1 Assignment Stalcments 339 7.11.3 Johnson Counter 415

6.6.2 Selected Signal Assignment 340 7.11.4 Remarks on Counter Design 415
6.6.2 Selected Signal Assignment 340 7.12 Using Storage Elements with CAD Tools 416
6.6.3 Conditional Signal Assignment 344 7.12.1 Including Storage Elements in
6.64 Generate Statements 348 Schematic5 416
6.6.5 Concurrent and Sequential Assignment 7.12.2 Using VHDL Constructs for Storage

Statements 350 Elements 417
6.6.6 Process Statement 350 7.13 Using Registers and Counters with CAD
6.6.7 Case Statement 356 Tools 423
6.6.8 VHDL Operators 359 7.13.1 Including Registers and Counters in

6.7 Concluding Remarks 363 Schematics 423
6.8 Examples of Solved Problems 364 7.13.2 Register? and Counters in VHDL

Problems 372 Code 426
References 377 7.13.3 Using VHDL Sequential Statements for

Registers and Counters 427
C h a p t e r 7 7.14 Design Examples 435
FLIP-FLOPS, REGISTERS, 7.14.1 Bus Structure 435
COUNTERS, AND A SIMPLE 7.14.2 Simple Processor 449
PROCESSOR 379 7.14.3 Reaction Timer 460

7.14.4 Register Transfer Level (RTL) Code 466
7.1 Basic Latch 381
7.2 Gated SR Latch 383 7.15 Concluding Remarks 466

7.2.1 Gated SR Latch with NAND Gates 385 7.16 of 467
7.3 Gated D Latch 386 Problems 471

7.3.1 Effects of Propagation Delays 388 References 477

C h a p t e r 8

SYNCHRONOUS SEQUENTIAL
CIRCUITS 479

Basic Design Steps 481
8.1.1 State Diagram 481
8.1.2 State Table 483
8.1.3 State Assignment 483
8.1.4 Choice of Flip-Flops and Derivation of

Next-State and Output Expressions 485
8.1.5 Timing Diagram 486
8.1.6 Summary of Design Steps 488
State-Assignment Problem 491
8.2.1 One-Hot Encoding 494
Mealy State Model 496
Design of Finite State Machines Using CAD
Tools 501
8.4.1 VHDL Code for Moore-Type FSMs 502
8.4.2 Synthesis of VHDL Code 504
8.4.3 Simulating and Testing the Circuit 506
8.4.4 An Alternative Style of VHDL Code 507
8.4.5 Summary of Design Steps When Using

CAD Tools 507
8.4.6 Specifying the State Assignment in

VHDLCode 509
8.4.7 Specification of Mealy FSMs Using

VHDL 511
Serial Adder Example 5 13
8.5.1 Mealy-Type FSM for Serial Adder 5 14
8.5.2 Moore-Type FSM for Serial Adder 516
8.5.3 VHDL Code for the Serial Adder 5 18
State Minimization 522
8.6.1 Partitioning Minimization

Procedure 524
8.6.2 Incompletely Specified FSMs 53 1
Design of a Counter Using the Sequential
Circuit Approach 533
8.7.1 State Diagram and State Table for a

Modulo-8 Counter 533
8.7.2 State Assignment 534
8.7.3 Implementation Using D-Type

Flip-Flops 535
8.7.4 Implementation Using JK-Type

Flip-Flops 536
8.7.5 Example-A Different Counter 54 1

FSM as an Arbiter Circuit 543
8.8.1 Implementation of the Arbiter

Circuit 547

8.8.2 Minimizing the Output Delays for an
FSM 550

8.8.3 Summary 551

8.9 Analysis of Synchronous Sequential
Circuits 551

8.10 Algorithmic State Machine (ASM)
Charts 555

8.11 Formal Model for Sequential Circuits 559
8.12 Concluding Remarks 560
8.13 Examples of Solved Problems 56 1

Problems 570
References 574

C h a p t e r 9

Asynchronous Behavior 578
Analysis of Asynchronous Circuits 582
Synthesis of Asynchronous Circuits 590
State Reduction 603
State Assignment 6 18
9.5.1 Transition Diagram 621
9.5.2 Exploiting Unspecified Next-State

Entries 624
9.5.3 State Assignment Using Additional

State Variables 628
9.5.4 One-Hot State Assignment 633
Hazards 634
9.6.1 Static Hazards 635
9.6.2 Dynamic Hazards 639
9.6.3 Significance of Hazards 640
A Complete Design Example 642
9.7.1 The Vending-Machine Controller 642

Concluding Remarks 647
Examples of Solved Problems 649
Problems 657
References 66 1

C h a p t e r 10

10.1 Building Block Circuits 664
10.1.1 Flip-Flops and Registers with Enable

Inputs 664

xviii CONTENTS

10.1.2 Shift Registers with Enable Inputs 666
10.1.3 Static Random Access Memory

(SRAM) 668
10.1.4 SRAM Blocks in PLDs 673 .

10.2 Design Examples 673
10.2.1 A Bit-Counting Circuit 673
10.2.2 ASM Chart Implied Timing

Information 675
10.2.3 Shift-and-Add Multiplier 677
10.2.4 Divider 686
10.2.5 Arithmetic Mean 696
10.2.6 Sort Operation 702

10.3 Clock Synchronization 7 13
10.3.1 Clock Skew 713
10.3.2 Flip-Flop Timing Parameters 7 14
10.3.3 Asynchronous Inputs to Flip-Flops 7 17
10.3.4 Switch Debouncing 7 18

10.4 Concluding Remarks 7 18
Problems 720
References 724

C h a p t e r 1 1

TESTING OF LOGIC CIRCUITS 725

11.1 Fault Model 726
11.1.1 Stuck-at Model 726
11.1.2 Single and Multiple Faults 727
11.1.3 CMOS Circuits 727

11.2 Complexity of a Test Set 727
11.3 Path Sensitizing 729

11.3.1 Detection of a Specific Fault 73 1
11.4 Circuits with Tree Structure 733
11.5 Random Tests 734
11.6 Testing of Sequential Circuits 737

11.6.1 Design for Testability 737
11.7 Built-in Self-Test 741

1 1.7.1 Built-in Logic Block Observer 745
11.7.2 Signature Analysis 747
11.7.3 Boundary Scan 748

1 1.8 Printed Circuit Boards 748
11.8.1 Testing of PCBs 750
11.8.2 Instrumentation 751

11.9 Concluding Remarks 752
Problems 752
References 755

C h a p t e r 12

12.1 Synthesis 758
12.1.1 Netlist Generation 758
12.1.2 Gate Optimization 758
12.1.3 Technology Mapping 760

12.2 Physical Design 764
12.2.1 Placement 767
12.2.2 Routing 768
12.2.3 Static Timing Analysis 769

12.3 Concluding Remarks 77 1
References 77 1

A p p e n d i x A

VHDL REFERENCE 773

A.l Documentation in VHDL Code 774
A.2 Data Objects 774

A.2.1 Data Object Names 774
A.2.2 Data Object Values and Numbers 774
A.2.3 SIGNAL Data Objects 775
A.2.4 BIT and BIT-VECTOR Types 775
A.2.5 STD-LOGIC and

STD-LOGIC-VECTOR Types 776
A.2.6 STD-ULOGIC Type 776
A.2.7 SIGNED and UNSIGNED Types 777
A.2.8 INTEGER Type 778
A.2.9 BOOLEAN Type 778
A.2.10 ENUMERATION Type 778
A.2.11 CONSTANT Data Objects 779
A.2.12 VARIABLE Data Objects 779
A.2.13 Type Conversion 779
A.2.14 Arrays 780

A.3 Operators 781
A.4 VHDLDesign Entity 781

A.4.1 ENTITY Declaration 782
A.4.2 Architecture 782

A.5 Package 784
A.6 Using Subcircuits 785

A.6.1 Declaring a COMPONENT in a
Package 787

A.7 Concurrent Assignment Statements 788
A.7.1 Simple Signal Assignment 789
A.7.2 Assigning Signal Values Using

OTHERS 790

CONTENTS xix

A.7.3 Selected Signal Assignment 791
A.7.4 Conditional Signal Assignment 792
A.7.5 GENERATE Statement 793

~~8 Defining an Entity with GENERICS 793
~ , 9 Sequential Assignment Statements 794

A.9.1 PROCESS Statement 794
A.9.2 IF Statement 796
A.9.3 CASE Statement 796
A.9.4 Loop Statements 797
A.9.5 Using a Process for a Combinational

Circuit 797
A.9.6 Statement Ordering 799
A-9.7 Using a VARIABLE in a PROCESS 800

A. I0 Sequential Circuits 805
A.10.1 A Gated D Latch 805
A. 10.2 D Flip-Flop 806
A. 10.3 Using a WAIT UNTIL Statement 807
A. 10.4 A Flip-Flop with Asynchronous

Reset 808
A. 10.5 Synchronous Reset 808
A. 10.6 Registers 808
A. 10.7 Shift Registers 81 1
A.10.8 Counters 813
A. 10.9 Using Subcircuits with GENERIC

. . -

Parameters 8 13
A. 10.10 A Moore-Type Finite State Machine 816
A. 10.11 A Mealy-Type Finite State Machine 818

A. 11 Common Errors in VHDL Code 82 1
A. 12 Concluding Remarks 824

References 825

A p p e n d i x B

TUTORIAL 1 --USING QUARTUS 11
CAD SOFTWARE 827

B.1 Introduction 827
B. I . 1 Getting Started 828

B.2 Starting a New Project 830
B.3 Design Entry Using Schematic Capture 832

B.3.1 Using the Block Editor 832
B.3.2 Synthesizing a Circuit from the

Schematic 840
B.3.3 Simulating the Designed Circuit 842

B.4 Design Entry Using VHDL 846
B.4.1 Create Another Project 848
B.4.2 Using the Text Editor 848
B.4.3 Synthesizing a Circuit from the VHDL

Code 850
B.4.4 Performing Functional Simulation 850

B.4.5 Using Quartus I1 to Debug VHDL
Code 850

B.5 Mixing Design-Entry Methods 85 1
B.5.1 Using Schematic Entry at the Top

Level 851

B.5.2 Using VHDL at the Top Level 854

B.6 Quartus II Windows 856
B.7 Concluding Remarks 858

A p p e n d i x C

TUTORIAL 2 -IMPLEMENTING
CIRCUITS IN ALTERA DEVICES 859

C. 1 Implementing a Circuit in a MAX 7000
CPLD 859

C. 1.1 Selecting a Chip 860

C.1.2 Compiling the Project 861

C.1.3 Performing Timing Simulation 862

C. 1.4 Using the Floorplan Editor 863

C.2 Implementing a Circuit in a Cyclone
FPGA 864

C.3 Implementing an Adder using Quartus I1 866
(2.3.1 The Ripple-Carry Adder Code 867

C.3.2 Simulating the Circuit 868

C.3.3 Timing Simulation 87 1

C.3.4 Implementation in a CPLD Chip 874

C.4 Using an LPM Module 876

C.5 Design of a Finite State Machine 88 1
C.5.1 Implementation in a CPLD 882

(2.5.2 Implementation in an FPGA 886

C.6 Concluding Remarks 887

A p p e n d i x D

TUTORIAL 3 -PHYSICAL
IMPLEMENTATION IN A PLD 889

D. 1 Malung Pin Assignments 889
D. 1.1 Examining Pin Assignments with the

Floorplan Editor 892

D.1.2 Recompiling the Project with Pin
Assignments 892

D. 1.3 Changing Pin Assignments by using the
Floorplan Editor 894

D.2 Downloading a Circuit into a Device 895

D.3 Concluding Remarks 897

a p p e n d i x E

COMMERCIAL DEVICES 899

E.1 Simple PLDs 899
E. 1.1 The 22V 10 PAL Device 899

E.2 Complex PLDs 901
E.2. I Altera MAX 7000 902

E.3 Field-Programmable Gate Arrays 904
E.3.1 Altera FLEX 10K 904
E.3.2 Xilinx XC4000 907
E.3.3 Altera APEX 20K 909
E.3.4 Altera Stratix 909

E.3.5 Altera Cyclone 91 1
E.3.6 Altera Stratix I1 911
E.3.7 Xilinx Virtex 912
E.3.8 Xilinx Virtex-11 and Virtex-I1 Pro 912
E.3.9 Xilinx Spartan-3 91 3

E.4 Transistor-Transistor Logic 9 14
E.4.1 TTL Circuit Families 914
References 9 16

c h a p t e r

In this chapter you will be introduced to:

a Digital hardware components

a An overview of integrated circuit technology

a The design process for digital hardware

This book is about logic circuits-the circuits from which computers are built. Proper understanding of
logic circuits is vital for today's electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly used products, such as
digital watches, various household appliances, CD players, and electronic games, as well as in large systems,
such as the equipment for telephone and television networks.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived from
elementary ones. We cover the classical theory used in the design of logic circuits in great depth because it
provides the reader with an intuitive understanding of the nature of such circuits. But throughout the book we
also illustrate the modern way of designing logic circuits, using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called VHDL. Design with VHDL is first introduced in Chapter 2, and usage of VHDL and CAD tools is an
integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. With modern
technology it is possible to fabricate chips that contain tens of millions of transistors, as in the case of computer
processors. The basic building blocks for such circuits are easy to understand, but there is nothing simple
about a circuit that contains tens of millions of transistors. The complexity that comes with the large size of
logic circuits can be handled successfully only by using highly organized design techniques. We introduce
these techniques in this chapter, but first we briefly describe the hardware technology used to build logic
circuits.

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital l-zurdware. The reason that the name digital
is used will become clear later in the book-it derives from the way in which information
is represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
four decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single
chip. In the beginning these circuits had only a few transistors, but as the technology
improved they became larger. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today's standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers. About 30 years ago Gordon Moore, chairman of Intel
Corporation, observed that integrated circuit technology was progressing at an astounding
rate, doubling the number of transistors that could be placed on a chip every 1.5 to 2 years.
This phenomenon, informally known as Moore's law, continues to the present day. Thus in
the early 1990s microprocessors could be manufactured with a few million transistors, and

C H A P T E R 1 DESIGN CONCEPTS

reduce steadily to about 35 nm by the year 20 12. The size of a transistor determines how
many transistors can be placed in a given amount of chip area, with the current maximurn
being about 30 million transistors per cm2. This number is expected to grow to 100 million
transistors by the year 2012. The largest chip size is expected to be about 1300 mrn' at that
time; thus chips with up to 1.3 billion transistors will be possible! There is no doubt that
this technology will have a huge impact on all aspects of people's lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or, more likely, designing circuits that involve a number of
chips placed on aprinted circuit board (PCB). Frequently, some of the logic circuits can be
realized in existing chips that are readily available. This situation simplifies the design task
and shortens the time needed to develop the final product. Before we discuss the design
process in more detail, we should introduce the different types of integrated circuit chips
that may be used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from very simple ones with low func-
tionality to extremely complex chips. For example, a digital hardware product may require
a microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For most digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

Numerous chips are available that realize some commonly used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry that can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured

.i

Figure 1.2 A field-programmable gate array chip (courtesy of
Altera Corp.).

in many different ways. The designer can implement whatever functions are needed for
a particular application by choosing an appropriate configuration of the switches. The
switches are programmed by the end user, rather than when the chip is manufactured. Such
chips are known as programmuble logic devices (PLDs). We will introduce them in Chap-
ter 3.

i Most types of PLDs can be programmed multiple times. This capability is advantageous
because a designer who is developing a prototype of a product can program a PLD toperform
some function, but later, when the prototype hardware is being tested, can make corrections
by reprogramming the PLD. Reprogramming might be necessary, for instance, if a designed
function is not quite as intended or if new functions are needed that were not contemplated
in the original design.

PLDs are available in a wide range of sizes, They can be used to realize much larger
logic circuits than a typical standard chip can realize. Because of their size and the fact that
they can be tailored to meet the requirements of a specific application, PLDs are widely used
today. One of the most sophisticated types of PLD is known as afield-programmable gate
array (FPGA). FPGAs that contain more than 500 million transistors are now available
[2, 31. A photograph of an FPGA chip is shown in Figure 1.2. The chip consists of
a large number of small logic circuit elements, which can be connected together using
the programmable switches. The logic circuit elements are arranged in a regular two-
dimensional structure.

PLDs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, PLDs also have a drawback in that the programmable
Switches consume valuable chip area and limit the speed of operation of implemented cir-
cuits. Thus in some cases PLDs may not meet the desired performance or cost objectives.

In such situations it is possible to design a chip from scratch; namely, the logic circuitry
that must be included on the chip is designed first and then an appropriate technology is
chosen to implement the chip. Finally, the chip is manufactured by a company that has the
fabrication ficilities. This approach is known as custom or semi-custom design, and such
chips are called custom or semi-custom chips. Such chips are intended for use in specific
applications and are sometimes called applicutin~t-speciJic integrated circuits (ASIC's).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if a PLD
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

The availability of computer-based tools has greatly influenced the design process in a wide
variety of design environments. For example, designing an automobile is similar in the
general approach to designing a furnace or a computer. Certain steps in the development
cycle must be performed if the final product is to meet the specified objectives. We will
start by introducing a typical development cycle in the most general terms. Then we wilI
focus on the particular aspects that pertain to the design of logic circuits.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product's overall
structure-it requires considerable design experience and intuition.

Required product

Define specifications

Initial design

Simulation Redesign

Prototype implementation Make corrections

Finished product c
Figure 1.3 he development process.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system's structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above, When the prototype passes all the tests, then the product is deemed
to be successfully designed and i t can go into production.

Our previous discussion of the development process is relevant in a most general way. The
steps outlined in Figure 1.3 are fully applicable in the development of digital hardware.
Before we discuss the complete sequence of steps in this development environment, we
should emphasize the iterative nature of the design process.

Any design process comprises a basic sequence of tasks that are performed in various
situations. This sequence is presented in Figure 1.4. Assuming that we have an initial
concept about what should be achieved in the design process, the first step is to generate
an initial design. This step often requires a lot of manual effort because most designs have
some specific goals that can be reached only through the designer's knowledge, skill, and
intuition. The next step is the simulation of the design at hand. There exist excellent CAD
tools to assist in this step. To carry out the simulation successfully, it is necessary to have
adequate input conditions that can be applied to the design that is being simulated and later
to the final product that has to be tested. Applying these input conditions, the simulator
tries to verify that the designed product will perform as required under the original product
specifications. If the simulation reveals some errors, then the design must be changed to
overcome the problems. The redesigned version is again simulated to determine whether
the errors have disappeared. This loop is repeated until the simulation indicates a successful
design. A prudent designer expends considerable effort to remedy errors during simulation

Design concept D
Initial design 1

Successful design h
Figure 1.4 The basic design loop.

because errors are typically much harder to fix if they are discovered late in the design
process. Even so, some errors may not be detected during simulation, in which case they
have to be dealt with in later stages of the development cycle.

TO understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1 . 5 ~ . The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB,
called the motherboard. As indicated on the bottom of Figure 1.5a. the motherboard holds
several integrated circuit chips, and it provides slots for connecting other PCBs, such as
audio, video, and network boards.

1 Figure 1.5b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a

C H A P T L R 1 DESIGN CONCEPTS

- - - - - - - -
* Computer - - - - .

. .
Power supply . ,

\

t ,
I

\

t I

I
1

I 1

I 1

I
I

I - ' - 1

I I

1 I

I I

L I

I I

\ I

\ /

I . I I

Printed circuit boards ,'

- - _ - a _ - - - - _ - - - - . .
Integrated circuits, , - ' .
connectors, and , ' .

8

components ,' 8
8 \

I
.

8 8

I
\

\

r \

I \

I 1

I \

I I

I I

I L

1 I

I I

Motherboard

5%-

Figure 1.5 A digital hardware system (Part a).

Subcircuits 1
in a chip -

Transistor circuit

.
' Logic gates

Transistor
. - - - " + +

on a chip
C .

Figure 1 .S A digital hardware system (Part b).

C H A P T E R 1 DESIGN CONCEPTS

logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.5b-the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

As shown in Figure 1.5, digital hardware products usually involve one or more PCBs that
contain many chips and other components. Development of such products starts with the
definition of the overall structure. Then the required integrated circuit chips are selected,
and the PCBs that house and connect the chips together are designed. If the selected chips
include PLDs or custom chips, then these chips must be designed before the PCB-level
design is undertaken. Since the complexity of circuits implemented on individual chips
and on the circuit boards is usually very high, it is essential to make use of good CAD tools.

A photograph of a PCB is given in Figure 1.6. The PCB is a part of a large computer
system designed at the University of Toronto. This computer, called NUMAchinc [4,5], is
a multi~~rucessor, which means that i t contains many processors that can be used together
to work on a particular task. The PCB in the figure contains one processor chip and various
memory and support chips. Complex logic circuits are needed to form the interface between
the processor and the rest of the system. A number of PLDs are used to implement these
logic circuits.

To illustrate the complete development cycle in more detail, we will consider the steps
needed to produce a digital hardware unit that can be implemented on a PCB. This hardware
could be viewed as a very complex logic circuit that performs the functions defined by the
product specifications. Figure 1.7 shows the design Row, assuming that we have a design
concept that defines the expected behavior and characteristics of this large circuit.

An orderly way of dealing with the complexity involved is to partition the circuit into
smaller blocks and then to design each block separately. Breaking down a large task into
more manageable smaller parts is known as the divide-and-conquer approach. The design
of each block follows the procedure outlined in Figure 1.4. The circuitry in each block is
defined, and the chips needed to implement it are chosen. The operation of this circuitry is
simulated, and any necessary corrections are made.

Having successfully designed all blocks, the interconnection between the blocks must
be defined, which effectively combines these blocks into a single large circuit. Now it
is necessary to simulate this complete circuit and correct any errors. Depending on the
errors encountered, it may be necessary to go back to the previous steps as indicated by the
paths A, B, and C in the flowchart. Some errors may be caused by incorrect connections
between the blocks, in which case these connections have to be redefined, following path C.

C H A P T E R 1 DESIGN CONCEPTS

Design concept e
Partition

Design one block Design one block

Define interconnection between blocks c
Functional simulation of complete system i I

Correct?

Physical mapping i
Timing simulation n

Implementation

Figure 1.7 Design flow for logic circuits.

indicated that all functions will be performed correctly, then the CAD tools
used in the physical design step will ensure that the required functional behavior will not
be corrupted by placing the chips on the board and wiring them together to realize the
final circuit. However, even though the functional behavior may be correct, the realized
circuit may operate more slowly than desired and thus lead to inadequate performance, This
condition occurs because the physical wiring on the PCB involves metal traces that present
resistance and capacitance to electrical signals and thus may have a significant impact on the
speed of operation. To distinguish between simulation that considers only the functionality
of the circuit and simulation that also considers timing behavior, it is customary to use
the terms functional simulation and timing simulation. A timing simulation may reveal
potential performance problems, which can then be corrected by using the CAD tools to
make changes in the physical design of the PCB.

Having completed the design process, the designed circuit is ready for physical im-
~lementation. The steps needed to implement a prototype board are indicated in Figure
1.8. A first version of the board is built and tested. Most minor errors that are detected can
usually be corrected by making changes directly on the prototype board. This may involve
changes in wiring or perhaps reprogramming some PLDs. Larger problems require a more
substantial redesign. Depending on the nature of the problem, the designer may have to
return to any of the points A, B, C, or D in the design process of Figure 1.7.

Implementation 0
Build prototype B
31 11 Modify prototype

Yes

f
Finished PCB Go to A, B, C, or D in Figure 1.6

Figure 1.8 ~orn~ le t ion of PCB development.

We have described the development process where the final circuit is itnplemented
using many chips on a PCB. The material presented in this book is directly applicable to
this type of design problem. However, for practical reasons the design examples that appear
in the book are relatively small and can be realized in a single integrated circuit, either a
custom-designed chip or a PLD. All the steps in Figure 1.7 are relevant in this case as well,
with the understanding that the circuit blocks to be designed are on a smaller scale.

In this book we use PLDs extensively to illustrate many aspects of logic circuit design.
We selected this technology because it is widely used in real digital hardware products
and because the chips are user programmable. PLD technology is particularly well suited
for educational purposes because many readers have access to facilities for programming
PLDs, which enables the reader to actually implement the sample circuits. To illustrate
practical design issues, in this book we use two types of PLDs-they are the two types
of devices that are widely used in digital hardware products today. One type is known as
complex prograrnrnable logic devices (CPLDs) and the other as field-programmable gate
arrays (FPGAs). These chips are introduced in Chapter 3.

To gain practical experience and a deeper understanding of logic circuits, we advise the
reader to implement the examples in this book using CAD tools. Most of the major vendors
of CAD systems provide their tools through university programs for educational use. Some
examples are Altera, Cadence, Mentor Graphics, Synopsys, Synplicity, and Xilinx. The
CAD systems offered by any of these companies can be used equally well with this book.
For those who do not already have access to CAD tools, we include Altera's Quartus I1 CAD
system on a CD-ROM. This state-of-the-art software supports all phases of the design cycle
and is powerful and easy to use. The software is easily installed on a persona1 computer,
and we provide a sequence of complete step-by-step tutorials in Appendices B, C, and D to
illustrate the use of CAD tools in concert with the book.

For educational purposes, some PLD manufacturers provide laboratory development
printed circuit boards that include one or more PLD chips and an interface to a personal
computer. Once a logic circuit has been designed using the CAD tools, the circuit can be
downloaded into a PLD on the board. Inputs can then be applied to the PLD by way of
simple switches, and the generated outputs can be examined. These laboratory boards are
described on the World Wide Web pages of the PLD suppliers.

Modem design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!

Numerous manual design techniques have been developed to deal with Iogic circuits.
Boolean algebra, which we wiIl introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of "theory" was developed,
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
Made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today's designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic task5 of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today's CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked-again, this implies
that the designer must be familiar with the underlying theory. We discuss the classical logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

On a final note, there is another good reason to learn some logic circuit theory even if it
were not required for CAD tools. Simply put, it is interesting and intellectually challenging.
In the modern world filled with sophisticated automatic machinery, it is tempting to rely on
tools as a substitute for thinking. However, in logic circuit design, as in any type of design
process, computer-based tools are not a substitute for human intuition and innovation.
Computer-based tools can produce good digital hardware designs only when employed by
a designer who thoroughly understands the nature of logic circuits.

1. Semiconductor Industry Association, "National Technology Roadmap for Semi-
conductors,'' http://www.semichips.org/

2. Altera Corporation, "Stratix I1 Field Programmable Gate Arrays,"
http://www.altera.com

3. Xilinx Corporation, "Virtex-I1 Pro Field Programmable Gate Arrays,"
http://www.xilinx.com

4. S . Brown, N. Manjikian, 2. Vranesic, S. Caranci, A. Grbic, R. Grindley, M. Gusat,
K. Loveless, Z. Zilic, and S. Srbljic, "Experience in Designing a Large-Scale
Multiprocessor Using Field-Programmable Devices and Advanced CAD Tools," 33rd
IEEE Design Automation Conference, Las Vegas, June 1996.

5 , A. Grbic, S. Brown, S. Caranci, R. Grindley, M. Gusat, G. Lemieux, K. Loveless,
N. Manjikian, S. Srbljic, M. Stumrn, Z. Vranesic, and Z. Zilic, "The Design and
Implementation of the NUMAchine Multiprocessor," IEEE Design Automation
Conference, San Francisco, June 1998.

c h a p t e r

In this chapter you will be introduced to:

Logic functions and circuits

Boolean algebra for dealing with logic functions

Logic gates and synthesis of simple circuits

CAD tools and the VHDL hardware description language

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binarj logic circuits there are only two
values, 0 and 1 . In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

1 2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switcll that has two states. If a given switch is controlled by an input
variablex, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2. In . We will use the graphical symbol in Figure 2.16 to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2 . 2 ~ . A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when

(a) Two states of a switch

(b) Symbol for a switch

Figure 2.1 A binary switch.

Battery Light

(a) Simple connection to a battery

Power Light
supply L - -

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

x = 1. In this example the input that causes changes in the behavior of the circuit is the
switch control x, The output is defined as the'state (or condition) of the light, which we
will denote by the letter L. If the light is on, we will say that L = 1. If the the light is off,
we will say that L = 0. Using this convention, we can describe the state of the light as a
function of the input variable x. Since L = 1 if x = 1 and L = 0 if x = 0, we can say that

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic fu~zction and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2 . 2 ~ .

Consider now the possibility of using two switches to control the state of the light. Let
XI and xz be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection. the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(xIr x*) = X I ' X2

where L = l i f x l = 1andx2= I ,

L = 0 otherwise.

Power
supply

Light +-T-'?n
(a) The logical AND function (series connection)

Power 1
supply T Light n

(b) The logical OR function (parallel connection)

Figure 2.3 Two basic functions.

The "a" symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either xl or x2 switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, ~ 2) = X1 + x2
where L = l i f x l = 1 o r x 2 = 1 0 r i f x ~ = X Z = 1,

L= Oifxl =x2 =O.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the output L(xl, x2) is a logic function with
. input variables x, and x2. The AND and OR functions are two of the most important logic

functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

The light is on if x3 = I and, at the same time, at least one of the xl or xz inputs is equal
to 1.

*

Power
supply

Figure 2.4 A series-parallel connection.

SO far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from.flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 i f x = 0,

L = O i f x = 1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements

R

Power
supply Light

-

Figure 2.5 An inverting circuit.

are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or the exclamation mark (!) or the tilde character (-1 or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

- x = = !X = -X = NOT x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

then the complement off is

This expression yields the logic value 1 only when neither xl nor x2 is equal to 1, that is,
when xl = xz = 0. Again, the following notations are equivalent:

xl + X2 = (XI + ~ 2) ' = !(x, 4- x2) = "(x~ + x2) = NOT (xl + x2)

We have introduced the three most basic logic operations-AND, OR, and complement-by
relating them to simple circuits built with switches. This approach gives these operations a
certain "physical meaning." The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the heavy
vertical line) give all four possible combinations of logic values that the variables xl and x2
can have. The next column defines the AND operation for each combination of values of xl
and x2, and the last column defines the OR operation. Because we will frequently need to
refer to "combinations of logic values7' applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

AND OR

Figure 2.6 A truth table for the AND and OR operations.

vT
2.4 LOGIC GATES AND NETWORKS

Figure 2.7 Three-input AND and OR operations.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However. they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in Figure
2.7, which defines three-input AND and OR functions. For four input variables the truth
table has 16 rows, and so on. In general, for pz input variables the truth table has 2" rows.

The AND and OR operations can be extended to n variables. An AND function
of variables XI, x2, . . . , x, has the value 1 only if all n variables are equal to 1. An OR
function of variables XI, x2, . . . , x, has the value 1 if at least one, or more, of the variables
is equal to I .

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
augmented to accommodate a greater number of inputs. Weawill show how logic gates are
built using transistors in Chapter 3.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce

(a) AND gates

(b) OR gates

(c) NOT gate

Figure 2.8 The basic gates.

Figure 2.9 The function from Figure 2.4.

the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terns interchangeably.

a

2.4 LOGIC GATES AND NETWORKS

Adesigner of digital systems is faced with two basic issues. For an existing logic network, it
,,st be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is

straightforward and much simpler than the synthesis process,
Figure 2 . 1 0 ~ shows a simple network consisting of three gates. To determine its

functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making xl = xz = 0. This forces the output of the NOT gate
to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = I if xl = x* = 0. If we let
x, = 0 and x2 = 1 , then no change in the value off will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x l = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value off will be 0.
Finally, let xl = xa = I . Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2. lob.

Timing Diagram
We have determined the behavior of the network in Figure 2.1 Oa by considering the four

possible valuations of the inputs xl and x2. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (xl , x2) = (0, 0)
followed by (0, 1), (1, O), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10~. The time runs
from left to right, and each input valuation is held for some fixed period. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2 . 1 0 ~ shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs xl and x:! change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.

Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
'hem throughout the book,

(a) Network that implements f = + xl . x2

(b) Truth table

1
0 I I - Time

(c) Timing diagram

(d) Network that implements g = i1 + x2

Figure 2.1 0 An example of logic networks.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the output g changes in exactly the same way as f does in part (a) of the figure.
Therefore, g (x l , x2) = f (xl , xz), which indicates that the two networks are functionally

muivalent; the output behavior of both networks is represented by the truth table in Figure

2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? Many techniques exist for synthesizing logic
functions. We will discuss the main approaches in Chapter 4. For now, we should note that
some manipulation is needed to transform the more complex network in Figure 2.10a into
the network in Figure 2 . I Od. Since f (xl , xz) = Fl + .XI . x2 and g(xl , x2) = X1 + x2, there
must exist some rules that can be used to show the equivalence

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In the next section we will discuss a mathematical
approach for dealing with logic functions, which provides the basis for modern design
techniques.

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [I I . Subsequently, this scheme and its further refinements
became known as Boolean algebra. Tt was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra B involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

la.

16.

2a.
2b.
3a.
3b.
4a.

4b.

o * o = o
1 + 1 = 1
1 . 1 = 1

o + o = o
0 . 1 = 1 . 0 = 0

1 + 0 = 0 + 1 = 1
I f x = O , t h e n Z = 1

I fx = 1, thenx = 0

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a variable in B, then the following theorems hold:

5a. x S O = O

5b. x + l = l

6a. x - l = x

6b. x + O = x

7a. x - x = x

7b. x + x = x

8a. x . x = O

8b. x + F = 1
-

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true
according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to ref ect the important principle of dual@. Given a logic expression, its dual is
obtained by replacing all + operators with . operators, and vice versa, and by replacing
all 0s with Is, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader will
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to asproperties. They are known by the names indicated below.
If x, y, and z are the variables in B, then the following properties hold:

10a. x - y = y S x Commutative

lob. x + y = y + x

lla. x . (y . z) = (x . y) - z Associative

lib. x + (y + z) = (x+y) + z
12a. x . (y + z) = x - y + x . z Distributive

12b. x + y - z = (x + y) - (x + z)

13a. x + x - y = x Absorption m

30

--
LHS RHS

Figure 2.1 1 Proof of DeMorgan's theorem in 1 5a.

Combining

DeMorgan S theorem

17a. x . y + y - z + F - z = x - y + x . z Consensus

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.11 illustrates how perfect induction can be
used to prove DeMorgan's theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington's basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

let us Let us prove the validity of the logic equation Exan

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (xl + x3) - XI + (XI + ~ 3) .X3

Applying the distributive property again yields

LHS = xl - E l + ~ 3 -21 + x l .T3 +x3 .T3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms xl . TI
and x 3 . Xj are both equal to 0. Therefore,

From 6b it follows that

LHS = ~3 . xl + X I . Z3

Finally, using the commutative property, 10a and lob, this becomes

LHS = X I -F3 +F l S X ~

which is the same as the right-hand side of the initial equation.

e 2.2 consider the logic equation

The left-hand side can be manipulated as follows

LHS = x l . x3 + xl . x 3 + F2 . Z3 + E2 . x 3 using lob

=XI (X 3 + x 3) + X 2 . (2 3 + ~ 3) using 12a

= X I . 1 + X 2 - 1 using 8b

= X I $ 5 2 using 6a

The right-hand side can be manipulated as

RHS = xl . X 2 + X l - (X;! + z2) using 1%

. G + x l - 1 using 8b

= E l -X;! +XI using 6a

=XI + X I 3 using lob

= X I +% using 16a

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

As a result of manipulation, we have found a much simpler expression

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function. .

~xamples 2.1 and 2.2 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view,
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E = {2 ,4 ,6 , 8, lo}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E = { 1, 3 ,5 ,7 ,9) .

Since in Boolean algebra there are only two values (elements) in the universe, B =
(0. I}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.12. The universe B
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = I , while the area outside the circle corresponds to x = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by
shading the area where the value of the expression is equal to 1. Part (4 indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1 , namely, the AND of x and
Y , as shown in part (e). Since this common area consists of the intersecting portions of x
and v, the AND operation is often referred to formally as the intersection of x and y. Part
(f) illustrates the OR operation, where x + y represents the total area within both circles,
namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the product term x - y, which is represented by the intersection of the
area for x with that for L. Part (h) gives a three-variable example; the expression x y + z
1s the union of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in section 2.5. Figure 2.13
gives the construction of the left and right sides of the identity that defines the property

(a) Constant 1 (b) Constant 0

(c) Variable x (dl x

(9) x . Y (h) x - y + z

Figure 2.1 2 The Venn diagram representation.

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z . Part (c) gives the
diagram for x - (y + z) , the intersection of shaded areas in parts (a) and (0). The right-hand
side is constructed in parts (d), (e) , and (f). Parts (d) and (e) describe the terms x y and
x . z , respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x . y + x . z , as seen in part (f) . Since the shaded areas in parts (c) and (f)
are identical, it follows that the distributive property is valid.

As another example, consider the identity

(e) x . z

(4 x . (Y + 2) (f) x - y + x , z

Figure 2.1 3 Verification of the distributive property x (y + z) = x . y + x z .

which is illustrated in Figure 2.14. Notice that this identity states that the term y z is fully
covered by the terms x y and T z; therefore, this term can be omitted.

The reader should use the Venn diagram to prove some other identities. It is particularly
instructive to prove the validity of DeMorgan's theorem in this way.

Boolean algebra is based on the AND and OR operations. We have adopted the symbols
and + to denote these operations. These are also the standard symbols for the familiar

arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to I
in Boolean algebra as defined by theorem 76 in section 2.5.

When dealing with digital circuits, most of the time the + symbol obviously represents
the OR operation, However, when the task involves the design of logic circuits that perfom

35

arithmetic operations, some confusion may develop about the use of the + symbol. To avoid
such confusion, an alternative set of symbols exists for the AND and OR operations. It is
quite common to use the /\ symbol to denote the AND operation, and the v symbol for the
OR operation. Thus, instead of xl . xz, we can write xl A x2, and instead of xl + xz, we can
write xl v x2,

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
xl +x2 is the logical sum of x l and x2, and xl . x2 is the logical product of xl and xz. Instead

3@f saying "logical product" and "logical sum," it is customary to say simply "product" and

f 2.6 SYNTHESIS USING AND, OR, AND NOT GATES

Thus we say that the expression

Xl SF2 .X3 +XI ' X 4 +x2 X3 a x 4

is a sum of three product terms, whereas the expression

(6 + x 3) (X I +X3), G2 +X3 + x 4)

is a product of three sum terms.

Using the three basic operations-AND, OR, and NOT-it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

it is first necessary to generate the complements of x l and x2. Then the product terms xl . x;!
and Fl . X2 are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

Finally, to simplify the appearance of logic expressions, it is customary to omit the
operator when there is no ambiguity. Therefore, the preceding expression can be written as

We will use this style throughout the book.

2.6 SYNTHESIS USING AND, OR, AND NOT GATES

Amed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
xi and x2. Assume that x l and x2 represent the states of two switches, either of which may
be open (0) or closed (1). The function of the circuit is to continuously monitor the state
of the switches and to produce an output logic value 1 whenever the switches (xl , x 2) are
in states (0, O), (0, I) , or (1 , 1). If the state of the switches is (1, O), the output should be
0. Another way of stating the required functional behavior of this circuit is that the output
must be equal to 0 if the switch xl is closed and x2 is open; otherwise, the output must be
1. We can express the required behavior using a truth table, as shown in Figure 2.15.

A possible procedure for designing a logic circuit that implements the truth table is to
create a product term that has a value of 1 for each valuation for which the output function 1 f has to he 1 Then we can take a logical sum of these product terms to realimf . @us

Figure 2.1 5 A function to be synthesized.

begin with the fourth row of the truth table, which corresponds to xl = xz = I . The product
term that is equal to 1 for this valuation is xl . xz, which is just the AND of xl and xz. Next
consider the first row of the table, for which xl = x2 = 0. For this valuation the value 1 is
produced by the product term Fl - Zz. Similarly, the second row leads to the term x2.
Thus f may be realized as

The logic network that corresponds to this expression is shown in Figure 2 . 1 6 ~ .
Although this network implements f correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and
properties from section 2.5. According to theorem 7b, we can replicate any term in a logical

(a) Canonical sum-of-products

(b) Minimal-cost realization

Figure 2.16 Two implementations of the function in Figure 2.15.
0

I
2.6 SYNTHESIS USING AND, OR, AND NOT GATES

sum expression. Replicating the third product term, the above expression becomes

Using the commutative property 10b to interchange the second and third product terms
gives

Now the distributive property 12a allows us to write

Applying theorem 86 we get

Finally, theorem 6a leads to

The network described by this expression is given in Figure 2.16b. Obviously, the cost of
this network is much less than the cost of the network in part ((I) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables,
and it is formed such that if the input variable xi is equal to 1 in the given row, then xi is
entered in the term; if x i = 0, then Ti is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we "synthesized" the networks in Figure 2.16 from the truth table in Figure 2.15.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

Having introduced the synthesis process by means of a very simple example, we will now
present it in more formal terms using the terminology that is encountered in the technical
literature. We will also show how the principle of duality, which was introduced in section
2 .5 . applies broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the rninterm is formed by
including x, if xi = 1 and by including Xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.17. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. (The reader who is already
familiar with the binary number representation will realize that the row numbers chosen are
just the numbers represented by the bit patterns of variables XI, xz, and x3; we will discuss
number representation in Chapter 5.) The figure shows all minterms for the three-variable
table. For example, in the first row tit: variables have the values xl = x2 = x3 = 0, which
leads to the minterm X1F2X3. In the second row x l = xz = 0 and x3 = 1, which gives
the minterm X1X2x7, and so on. To be able to refer to the individual mintenns easily, it
is convenient to identify each minterm by an index that corresponds to the row numbers
shown in the figure. We will use the notation mi to denote the minterm for row number i.

- - -
Thus rno = ~ 1 ~ 2 x 3 , ml = X1XZx3, and so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm is ANDed with the value off for the corresponding valuation of input variables.
- -

For example, the two-variable minterrns are mo = ~ 1 x 2 , ml = Tlx2, rnz = xlF2, and
rn3 = ~ 1 x 2 . The function in Figure 2.15 can be represented as

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and

40 . Figure 2.1 7 ~hree-variable rninterms and rnaxterms.

Maxterm

M O = X ~ + X ~ + X ~
M I = x , + x 2 + T 3
M 2 = x l + Y 2 + x 3
M 3 = x l + Y 2 + T 3
M 4 = X 1 + x 2 + x 3
M5 = TI + x 2 + T 3
M 6 = S F ~ + T 2 + x 3
M7 = T I +F2 + T 3

Minterm

- - -
r n o = x l x 2 ~ 3

- -
r n l = x l x 2 x 3
rn2=Tlx2T3
m 3 = F l x 2 ~ 3 - -
m 4 = x l x 2 x 3
m5 = ~ 1 x 2 ~ 3

m g = x l x 2 T 3
m7 = ~ 1 x 2 ~ 3

Row
number

0
1
2
3
4
5
6
7

xl x2 x j

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

t 2.6 SYNTHESIS USING AND, OR, AND NOT GATES

unique, but it is not necessarily the lowest-cost implementation of f . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be of the surn-of-

(SOP) form. If each product term is a minterm, then the expression is called a con-
o n i c ~ l sum-of-products for the function f . As we have seen in the example of Figure 2.16,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x l , x*, x3), specified by the
truth table in Figure 2.18. TO synthesize this function, we have to include the minterms ml,
m4, ms, and m6. Copying these rninterms from Figure 2.17 leads to the following canonical
sum-of-products expression for f

This expression can be manipulated as follows

This is the minimum-cost sum-of-products expression for f . It describes the circuit shown
in Figure 2 . 1 9 ~ . A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2 . 1 9 ~ is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterrns, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.18 can be specified

Figure 2.1 8 A three-variable function.

Row
Inlmber

0
1
2
3
4
5
6
7

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f(x1,x2.x3)

0
1
0
0
1
1
1
0

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Figure 2.1 9 Two realizations of the function in Figure 2.18.

or even more simply as

The 1 sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Maxterms
. The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterrns, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.17. We will refer to a maxterm Mj by the same row
number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complementJ can be rep-

resented by a sum of mintems for which7 = 1, which are the rows where f = 0. For

2.6 SYNTHESIS USING AND, OR, AND NOT GATES

,,ample, for the function in Figure 2.15

~f we complement this expression using DeMorgan7s theorem, the result is

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f . The key point here is that

where M2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.18. The complement of

this function can be represented as

Then f can be expressed as

This expression represents f as a product of maxtems.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
lob and the associative property 11 b from section 2.5, this expression can be written as

Then, using the combining property 146, the expression reduces to

The corresponding network is given in Figure 2.19b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2 . 1 9 ~ ~
the reader should not assume that the cost of a network derived in the sum-of-products form

will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

or more simply

The I7 sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with circuits of a different structure, which usually implies a
difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss the most important techniques for finding minimum-cost
implementations in Chapter 4.

e 2.3 Consider the function

f (x1, x2, xs) = C m(2,3,4,6,7)

The canonical SOP expression for the function is derived using mintems

This expression can be simplified using the identities in section 2.5 as follows

e 2.4 Consider again the function in Example 2.3. Instead of using the minterms, we can specify
this function as a product of maxterms for which f = 0, namely

Then, the canonical POS expression is derived as

2.7 NAND AND NOR LOGIC NETWORKS

A simplified POS expression can be derived as

f = ((~ 1 +x2) + ~ 3) ((~ 1 + ~ 2) +X3)(~1 + (~ 2 +x3))(xl + (xz +x'3))

= ((~ 1 ~ 2) + x3~3)(~1~1 + (x2 + z3))
= (~ 1 + ~ 2) tx2 + 23)

Note that by using the distributive property 12b, this expression leads to

f = x2 + ~ 1 ? 3

which is the same as the expression derived in Example 2.3.

Suppose that a four-variable function is defined by

f (~ 1 . ~ 2 , ~ 3 , ~ 4) = E m (3 , 7 , 9 , 1 2 , 13, 14, 15)

The canonical SOP expression for this function is

f = X l X 2 ~ 3 ~ 4 + F l x 2 ~ 3 ~ 4 + ~ 1 z 2 5 3 ~ 4 + X I X ~ F ~ ? ~ + x1x2X3x4 + X I X ~ X ~ F ~ + XlX2X3X4
A simpler SOP expression can be obtained as follows

2.7 NAND AND NOR LOGIC NETWORKS I
We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as
we will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan's theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 15a is interpreted in part (a) of the figure. It specifies that a
NAND of variables xl and xz is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates

(a) NAND gates

(b) NOR gates

Figure 2.20 NAND and NOR gates.

Figure 2.2 1 DeMorganfs

(a) x1x2 = Xl f X2

- -
(b) XI + X2 = X I X ~

theorem in terms of logic gates.

I
!

2.7 NAND AND NOR LOGIC NETWORKS

as bubbles, which denote inversion of the logic value at that point. The other half of
pMorgan's theorem, identity 15b, appears in part (6) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-product~ or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.21~2, the
OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.21b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

-., --

Figure 2.22 Using NAND gates to implement a sum-of-products.

Figure 2.23 Using NOR gates to implement a product-of-sums.

~le 2.6 Let us implement the function

using NOR gates only. In Example 2.4 we showed that the function can be represented by
the POS expression

An OR-AND circuit that corresponds to this expression is shown in Figure 2 . 2 4 ~ . Using
the same structure of the circuit, a NOR-gate version is given in Figure 2.24b. Note that x3
is inverted by a NOR gate that has its inputs tied together.

ble 2.7. Let us now implement the function

using NAND gates only. In Example 2.3 we derived the SOP expression

which is realized using the circuit in Figure 2.25a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x2 passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
replace the OR gate with a NAND gate, this signal would be inverted which would result
in a wrong output value, Since xz must either not be inverted, or it can be inverted twice,

48

2.7 NAND AND NOR LOGIC NETWORKS

(a) POS implementation

(b) NOR implementation

Figure 2.24 NOR-gate realization of the function in Example 2.4.

(a) SOP implementation

(b) NAND implementation

Figure 2.25 NAND-gate realization of the function in Example 2.3.

we can pass it through two NAND gates as depicted in Figure 2.25b. Observe that for this
circuit the output f is

f = X2 .x1X3

Applying DeMorgan's theorem, this expression becomes

f = X2 + ~1x3

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let xl , x2, and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. Iff (x l , xz, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.26.
The canonical sum-of-products expression for the specified function is

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.27a.

Figure 2.26 Truth table for the three-way light
control.

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

The resulting circuit is depicted in Figure 2.273. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
xl and xz. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of 0s and 1 s are applied on each of the inputs xl and xz. We want to design a
circuit that produces an output that has the same value as either xl or x2, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: xl,
X 2 , and s. Assume that the output of the circuit will be the same as the value of input xl if
s = 0, and it will be the same as X* if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2 . 2 8 ~ . From the truth table, we derive the canonical sum of products

.f (s, XI, x2) = E 1 X 2 + Sx1x2 + sX1x2 + SXlX2

(a) Sum-of-products realization

(b) Product-of-sums realization

Figure 2.27 Implementation of h e function in Figure 2.26.

Using the distributive property, this expression can be written as

f = 2xr (Z2 + ~ 2) + S(FI + X I) X ~

Applying theorem 8b yields

Finally, theorem 6a gives

(a) Truth table

(b) Circuit (c) Graphical symbol

(d) More compact truth-table representation

Figure 2.28 lrnpIementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.28b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
66

multiplexes" input signals onto a single output.
I
I

C H A P T E R 2 INTRODUCTION TO LOGIC LIRCUITS

In this example we derived a multiplexer with two data inputs, which is referred to
as a "2-to-1 multiplexer." A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2 . 2 8 ~ . The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement 'y = xi if s = 0, and f = xz if s = 1" can be presented in a
more compact form of a truth table, as indicated in Figure 2.28d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in section 2.7. In Chapter 3 we will show other possibilities for constructing multiplexers.
In Chapter 6 we will discuss the use of multiplexers in considerable detail.

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with the CAD tool support provided with this book as soon as possible.
We have reached a point where an introduction to these tools is useful. The next section
presents some basic concepts that are needed to use these tools. We will also introduce, in
section 2.10, a special language for describing logic circuits, called VHDL. This language
is used to describe the circuits as an input to the CAD tools, which then proceed to derive
a suitable implementation.

2.9 INTRODUCTION TO CAD TOOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-
signer could use this approach manually for small circuits. However, logic circuits found
in complex systems, such as today's computers, cannot be designed manually-they are
designed using sophisticated CAD tools that automatically implement the synthesis tech-
niques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, synthesis and optimization, simulation, and physical design. We will introduce some
of these tools in this section and will provide additional discussion in later chapters.

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe two design entry methods: using schematic
capture and writing source code in a hardware description language.

ISL
Nota
CAD

2.9 INTRODUCTION TO CAD TOOLS

Schematic Capture
A logic circuit can be defined by drawing logic gates and interconnecting them with

wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
too]. The word schematic refers to a diagram of a circuit in which circuit elements, such
,, logic gates, are depicted as graphical symbols and connections between circuit elements
are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user's schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network,

Any subcircuits that have been previously created can be represented as graphical
symbols and included in the schematic. In practice it is common for a CAD system user to
create a circuit that includes within it other smaller circuits. This methodology is known
as hierarchical design and provides a good way of dealing with the complexities of large
circuits.

The schematic-capture facility is described in detail in Appendix B. It is simple to use,
but becomes awkward when large circuits are involved. A better method for dealing with
large circuits is to write source code using a hardware description language to represent the
circuit.

Hardware Description Languages
A hardware description Language (HDL) is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement cir-
cuits only in the technology provided by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
t u t ~ of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: VHDL (Very High Speed Integrated Circuit Hardware
Descrzption Language) and Vcrilog HDL. Both languages are in widespread use in the
industry. We use VHDL in this book, but a Verilog version of the book is also available
from the same publisher [4]. Although the two languages differ in many ways, the choice
of using one or the other when studying logic circuits is not particularly important, because
both offer similar features. Concepts illustrated in this book using VHDL can be directly
applied when using Verilog.

In comparison to performing schematic capture, using VHDLoffers a number of advan-
tages. Because it is supported by most organizations that offer digital hardware technology,
VHDL provides designportability. A circuit specified in VHDL can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having

to change the VHDL specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing VHDL code. Signals in the circuit
can be represented as variables in the source code, and logic functions are expressed by
assigning values to these variables. VHDL source code is plain text, which makes it easy
for the designer to include within the code documentation that explains how the circuit
works, This feature, coupled with the fact that VHDL is widely used, encourages sharing
and reuse of VHDL-described circuits. This allows faster development of new products in
cases where existing VHDL code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, VHDL
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in VHDL code. VHDL has been
used to define circuits such as microprocessors with millions of transistors.

VHDL design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using VHDL.
We will introduce VHDL in section 2.10.

Synthesis is the process of generating a logic circuit from an initial specification that may
be given in the form of a schematic diagram or code written in a hardware description
language. Synthesis CAD tools generate efficient implementations of circuits from such
specifications,

The process of translating, or compiling, VHDL code into a network of logic gates is
part of synthesis. The output is a set of logic expressions that describe the logic functions
needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced by
the synthesis tools are not likely to be in an optimal form because they reflect the designer's
input to the CAD tools. It is impossible for a designer to manually produce optimal results
for large circuits. So, one of the important tasks of the synthesis tools is to manipulate the
user's design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. In section 2.6
we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We will discuss implementation technologies in Chapter
3 and return to the issue of optimization goals in Chapter 4.

The perfomance of a synthesized circuit can be assessed by physically constructing the
circuit and testing it. But, its behavior can also be evaluated by means of simulation.

2.9 INTRODUCTION TO CAD TOOLS

A circuit represented in the form of logic expressions can be simulated to verify that it
will function as expected. The tool that performs this task is called a functional simulator.
l t uses the logic expressions (often referred to as equations) generated during synthesis,
and assumes that these expressions will be implemented with perfect gates through which
signals propagate instantaneously. The simulator requires the user to specify valuations
of the circuit's inputs that should be applied during simulation. For each valuation, the

evaluates the outputs produced by the expressions. The results of simulation are
usually provided in the form of a timing diagram which the user can examine to verify
bat the circuit operates as required. The functional simulation is discussed in detail in
Appendix B.

2.9.4 PHYSICAL DESIGN

After logic synthesis the next step in the design flow is to determine exactly how to imple-
ment the circuit on a given chip. This step is often calledphysical design. As we will see
in Chapter 3, there are several different technologies that may be used to implement logic
circuits. The physical design tools map a circuit specified in the form of logic expressions
into a realization that makes use of the resources available on the target chip. They deter-
mine the placement of specific logic elements, which are not necessarily simple gates of
the type we have encountered so far. They also determine the wiring connections that have
to be made between these elements to implement the desired circuit.

2.9.5 TIMING SIMULATION

Logic gates and other logic elements are implemented with electronic circuits, as we will
discuss in Chapter 3. An electronic circuit cannot perform its function instantaneously.
When the values of inputs to the circuit change, it takes a certain amount of time before a
corresponding change occurs at the output. This is called apropagation deEaj? of the circuit.
The propagation delay consists of two kinds of delays. Each logic element needs some time
to generate a valid output signal whenever there are changes in the values of its inputs. In
addition to this delay, there is a delay caused by signals that must propagate through wires
that connect various logic elements. The combined effect is that real circuits exhibit delays,
which has a significant impact on their speed of operation.

A timing simulator evaluates the expected delays of a designed logic circuit. Its results
can be used to determine if the generated circuit meets the timing requirements of the
Specification for the design. If the requirements are not met, the designer can ask the
physical design tools to try again by indicating specific timing constraints that have to be
met. If this does not succeed, then the designer has to try different optimizations in the
Synthesis step, or else improve the initial design that is presented to the synthesis tools.

Having ascertained that the designed circuit meets all requirements of the specification,
the circuit is implemented on an actual chip. This step is called chip configurution or
programming.

The CAD tools discussed in this section are the essential parts of a CAD system. The
complete design flow that we discussed is illustrated in Figure 2.29. This has been just a
brief introductory discussion. A full presentation of the CAD tools is given in Chapter 12.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
In Appendices B to D, we provide step-by-step tutorials that illustrate how to use the Quartus
I1 CAD system, which is included with this book. We strongly encourage the reader to work
through the hands-on material in these appendices. Because the tutorials use VHDL for
design entry, we provide an introduction to VHDL in the following section.

2.1 0 INTRODUCTION TO VHDL

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. VHDL was developed as a part of that effort.
VHDL has become the industry standard language for describing digital circuits, largely
because it is an official IEEE standard. The original standard for VHDL was adopted in
1987 and called IEEE 1076. A revised standard was adopted in 1 993 and called IEEE 1 164.

VHDL was originally intended to serve two main purposes. First, it was used as a
documentation language for describing the structure of complex digital circuits. As an
official IEEE standard, VHDL provided a common way of documenting circuits designed
by numerous designers. Second, VHDL provided features for modeling the behavior of a
digital circuit, which allowed its use as input to software programs that were then used to
simulate the circuit's operation.

In recent years, in addition to its use for documentation and simulation, VHDL has
also become popular for use in design entry in CAD systems. The CAD tools are used to
synthesize the VHDL code into a hardware implementation of the described circuit. In this
book our main use of VHDL will be for synthesis.

VHDL is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of VHDL that are actually
used in the examples in the book. The material presented should be sufficient to allow the
reader to design a wide range of circuits. The reader who wishes to learn the complete
VHDL language can refer to one of the specialized texts [5-I 01.

VHDL is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the VHDL features
covered in the book. The reader will find it convenient to refer to that material from time to

*

Design conception c

Functional simulation n

4
DESIGN ENTRY

Schematic capture

Timing simulation *

Synthesis

Yes 1

4

Chip configuration

I

Figure 2.29 A typical CAD system.

time. In the remainder of this chapter, we discuss the most basic concepts needed to write
simple VHDL code.

2,lo.l REPRESENTATION OF DIGITAL SIGNALS IN VHDL

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in section 2.9.1. One
efficient way is to write this description in the form of VHDL source code. The VHDL
compiler translates this code into a logic circuit. Each logic signal in the circuit is represented
in VHDL code as a data object. Just as the variables declared in any high-level programming
language have associated types, such as integers or characters, data objects in VHDL can be
of various types. The original VHDL standard, IEEE 1076, includes a data type called BIT.
An object of this type is well suited for representing digital signals because BIT objects can
have only two values, 0 and 1. In this chapter all signals in our examples will be of type
BIT. Other data types are introduced in section 4.12 and are listed in Appendix A.

2.10,2 WRITING SIMPLE VHDL CODE

We will use an example to illustrate how to write simple VHDL source code. Consider the
logic circuit in Figure 2.30. If we wish to write VHDL code to represent this circuit, the
first step is to declare the input and output signals. This is done using a construct called
an etztity. An appropriate entity for this example appears in Figure 2.31. An entity must

Figure 2.30 A simple logic function.

ENTITY examplel IS
PORT (x l , x2, x3 : IN BIT ;

f : OUT BIT) ;
END examplel ;

Figure 2.31 VHDL entity declaration for the circuit in Figure 2.3t

2.10 INTRODUCTION TO VHDL

be assigned a name; we have chosen the name example1 for this first example. The input
and output signals for the entity are called its ports, and they are identified by the keyword
PORT, This name derives from the electrical jargon in which the word port refers to an
input or output connection to an electronic circuit. Each port has an associated mode that
specifies whether it is an input (IN) to the entity or an output (OUT) from the entity. Each
port represents a signal, hence it has an associated type. The entity examplel has four ports
in total. The first three, XI, x2, and x3, are input signals of type BIT. The port named f is an

of type BIT.
In Figure 2.3 1 we have used simple signal names x l , x2, x3, and f for the entity's ports,

Similar to most computer programming languages, VHDL has rules that specify which
characters are allowed in signal names. A simple guideline is that signal names can include
any letter or number. as well as the underscore character '-'. There are two caveats: a
signal name must begin with a letter, and a signal name cannot be a VHDL keyword.

An entity specifies the input and output signals for a circuit, but it does not give any
details as to what the circuit represents. The circuit's functionality must be specified with
a VHDL construct called an architecture. An architecture for our example appears in
Figure 2.32. It must be given a name, and we have chosen the name LogicFunc. Although
the name can be any text string, it is sensible to assign a name that is meaningful to the
designer. In this case we have chosen the name h g i c F u n c because the architecture specifies
the functionality of the design using a logic expression. VHDL has built-in support for the
following Boolean operators: AND, OR, NOT, NAND, NOR, XOR. and XNOR. (So far we
have introduced AND, OR, NOT, NAND, and NOR operators; the others will be presented
in Chapter 3.) Following the BEGIN keyword, our architecture specifies, using the VHDL
signal assignment operator <=, that output f should be assigned the result of the logic
expression on the right-hand side of the operator. Because VHDL does not assume any
precedence of logic operators, parentheses are used in the expression. One might expect
that an assignment statement such as

would have implied parentheses

f <= (xl AND x2) OR ((NOT x2) AND x3)

But for VHDL code this assumption is not true. In fact, without the parentheses the VHDL
compiler would produce a compile-time error for this expression.

Complete VHDL code for our example is given in Figure 2.33. This example has
illustrated that a VHDL source code file has two main sections: an entity and an architecture.

ARCHITECTURE LogicFunc OF example 1 IS
BEGIN

f p= (xl AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.32 VHDL architecture for the entity in Figure 2.31 .

ENTITY example1 IS
PORT (x l , x2, x3 : IN BIT ;

f : OUT BIT) ;
END example 1 ;

ARCHITECTURE LagicFunc OF example 1 IS
BEGIN

f <= (x 1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Figure 2.33 Complete VHDL code for the circuit in Figure 2.30.

ENTITY example2 IS
PORT(x l ,x2 ,x3 ,x4 : I N BIT;

f-9 g : OUT BIT) ;
END example2 ;

ARCHITECTURE LogicFunc OF example2 IS
BEGIN

f <= (xl AND x3) OR (NOT x3 AND x2) ;
g <= (NOT x3 OR x 1) AND (NOT x3 OR x4) ;

END LogicFunc ;

Figure 2.34 VHDL code for a four-input function.

A simple analogy for what each section represents is that the entity is equivalent to a symbol
in a schematic diagram and the architecture specifies the logic circuitry inside the symbol.

A second example of VHDL code is given in Figure 2.34. This circuit has four input
signals, called x l , x2, x3, and x4, and two output signals, named f and g. A logic expression
is assigned to each output. A logic circuit produced by the VHDL compiler for this example
is shown in Figure 2.35.

The preceding two examples indicate that one way to assign a value to a signal in
VHDL code is by means of a logic expression. In VHDL terminology a logic expression
is called a simple assignment statement. We will see later that VHDL also supports several
other types of assignment statements and many other features that are useful for describing
circuits that are much more complex.

2*10,3 How NOT TO WRITE VHDL CODE

When learning how to use VHDL or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete VHDL

m

Figure 2.35 Logic circuit for the code in Figure 2.34.

code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the VHDL code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete VHDL code is written for a particular design, the reader is encouraged
to analyze the resulting circuit synthesized by the CAD tools. Much can be learned about
VHDL, logic circuits, and logic synthesis through this process.

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. This book is accompanied by the Quartus I1
software, which is a CAD tool provided by Altera Corporation. We introduced a few basic
features of this tool and urge the reader to start using tl~is software as soon as possible.

Our discussion so far has been quite elementar1 We will deal with both the logic
circuits and the CAD tools in much more depth in t c chapters that follow. But first, in
Chapter 3 we will examine the most important e lec~ onic technologies used to conshuct
logic circuits. This material will give the reader an ap! reciation of practical constraints that
a designer of logic circuits must face.

This section presents some typical problems that the reader may encounter, and shows how a

such problems can be solved.

lple 2.8 Problem: Determine if the following equation is valid

E l i 3 f x 2 X 3 + XI?^ = z 1 ~ 2 + X l X 3 f X 2 5 3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for each
side and see if the truth tables are the same. An algebraic approach is to derive a canonical
sum-of-product form for each expression.

Using the fact that x + 2 = 1 (Theorem 8b), we can manipulate the left-hand side as
follows:

L H S = Z l Z 3 + x2X3 + x 1 Z 2

= x l (x 2 + X 2) Z 3 + ((x + 1) ~ 2 ~ 3 + xlX2(~3 + F3)

= Xlx2i3 + X1&53 + XlX2.X3 3 1 x 2 ~ 3 + X I & X ~ + ~ 1 x 2 2 3
. .

These product terms represent the minterms 2 , 0 , 7 , 3 , 5 , and 4, respectively.
For the right-hand side we have

RHS = Flx2 + ~ 1 x 3 + Z2F3
= X1x2(.X3 + x 3) + x l (x 2 + %) x 3 + (~ 1 +?1)%23

= X1x2x3 + XIx2X3 + X l X 2 X 3 + ~ 1 x 2 ~ 3 + x 1 X 2 X 3 + X l X 2 X 3

These product terms represent the rninterms 3, 2, 7, 5, 4, and 0, respectively. Since both
expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by m(0, 2, 3 , 4 , 5 , 7) ,

nple 2.9 Problem: Design the minimum-cost product-of-sums expression for the function
f (X I , x 2 , xs, x 4) = z m (0 . 2 , 4 , 5 , 6 , 7 , 8 , 10, 12. 14, 15) .

Solution: The function is defined in terms of its minterms. To find a POS expression we
should start with the definition in terms of maxtems, which is f = flM (1,3,9, 11, 13).
Thus,

we can rewrite the product of the first two ~naxterms as

- (xl + x2 + .X4 + x3) (xI + ~2 + Xq + %) using commutative property lob MI .M3 -
= XI + x2 + Xq + ~ 3 x 3 using distributive property 12b

- - X I +x*+ . r4+0 using theorem 8a

= XI + xz + X4 using theorem 6b

similarly, M9 - M11 = Tr + x2 + F4. NOW, we can use MI1 again, according to property 7a,
to derive Mll . M13 = X1 + x3 + X4. Hence

Applying 12b again, we get the final answer

Problem: A circuit that controls a given digital system has three inputs: X I , x2, and x3. It Exa
has to recognize three different conditions:

Condition A is true if x3 is true and either xl is true or x2 is false

Condition B is true if xl is true and either x2 or x 3 is false

Condition C is true if x2 is true and either xl is true or XJ is false

1 The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and 0 for false, we can express the three conditions as follows:

Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These
product terms can be determined as:

Therefore, f can be written as

ale 2.1 1 Problem: Solve the problem in Example 2.10 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.10 are shown in parts
a to c of Figure 2.36. Since the function-f has to be true when two or more of A, B, and C
are true, then the Venn diagram for f is formed by identifying the common shaded areas in
the Venn diagrams for A, B, and C . Any area that is shaded in two or more of these diagrams
is also shaded in f , as shown in Figure 2.36d. This diagram corresponds to the function

(a) Function A (b) Function B

(c) Function C (d) Function f

Figure 2.36 The Venn diagrams for Example 2.1 1.

*

-
problem: Derive the simplest sum-of-products expression for the function

f = x2T3x4 + XlX3X4 + x1T2x4
Solution: Applying the consensus property 17a to the first two terms yields

f = x2X3x4 + XI X3X4 + X2X4X1Xq + X] F2x4
= x2X3x4 + XlX3X4 + X1X2Xq + x1X2x4

NOW, using the combining property 14a for the last two terms gives

f = x2X3x4 + XlX3X4 + X1X4
Finally, using the absorption property 13a produces

f = ~ 2 z 3 ~ 4 + X1X4

Problem: Derive the simplest product-of-sums expression for the function Exa rr

x1 + X2 + ~j)(El + 22 + X4)(% + ~3 + ~ 4) f = (-

Solution: Applying the consensus property 17b to the first two terms yields

f = (zl + ~ 2 +x3)(Z1 +52 f &)@I + ~ 3 + X * l f + ~ 3 + ~ 4)

= (TI +x2 +x~)(?I +?2 +%)(?I +x3 + + 4) 6 1 +x3 +x4)

Now, using the combining property 14b for the last two terms gives

f = (F1 +X2 +~3)Gl +% +%)(+I +x3)

Finally, using the absorption property 13b on the first and last terms produces

f = (?I +z2 +%)(XI +x3)

Answers to problems marked by an asterisk are given at the back of the book.

2. 1 Use algebraic manipulation to prove that x + yz = (x + y) , (x + 2) . Note that
distributive rule, as stated in identity 12b in section 2.5.

2.2 Use algebraic manipulation to prove that (x + y) (x + 7) = x.

2.3 Use algebraic manipulation to prove that xy + yz + Fz = xy + Zz. Note that
consensus property 17a in section 2.5.

2.4 Use the Venn diagram to prove the identity in problem 1.

Use the Venn diagram to prove DeMorgan'~ theorem, as given in expressions 1% and 15b ;
in section 2.5.

Use the Venn diagram to prove that

(XI +X2 +x3) - (XI +x2 +X3) = x1 +x2

Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent same function.
(a) zIx3 + x1x2X3 + Z1x2 + ~ 1 x 2 = X 2 ~ 3 + ~ 1 X 3 + ~ 2 X 3 + X I ~ 2 x 3
(b) x1X3 + X2X3 + z2E3 = (XI + 2 2 + X~)(XI + X2 + z3)(y1 + X2 + F3)

(C) (x ~ $ x3)(?1 f z2 + ?3)(Zl + ~ 2) = (~ 1 + ~ 2) (~ 2 + ~3)(?1 + X3)
Draw a timing diagram for the circuit in Figure 2 . 1 9 ~ . Show the waveforms that can be
observed on all wires in the circuit.

Repeat problem 2.8 for the circuit in Figure 2.19b.

Use algebraic manipulation to show that for three input variables X I , x2, and x3

Use algebraic manipulation to show that for three input variables xl , x2, and x3

nM(o, 1,2,3,4,5,6) = Xlx2X3

Use algebraic manipulation to find the minimum sum-of-products expression for the func- - - -
tion f = X1X3 + x1Z2 + X I X ~ X ~ + ~ 1 x 2 ~ 3 .

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1X2X3 + ~ 1 ~ 2 x 4 + x1jS2x3X4.
Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tionf = (xi +xg +x4) (xi +% +x3) - (XI +X2 +X 3 +xq). 4
Use algebraic manipulation to find the minimum product-of-sums expression for the func- *
tion f = (xi + x2 + ~ 3) . (XI + 22 + x3) . (XI + X;! + ~ 3) . (XI + ~2 + X3).
(a) Show the location of all mintems in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x1%x3 + 4
xlxz + X1x3. Use the Venn diagram to find the minimal sum-of-products form off. 9

Represent the function in Figure 2.18 in the form of a Venn diagram and find its minimal
sum-of-products form.

. I
Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: the Venn diagram
must be able to represent all 16 minterrns of the four variables.)

Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms mo. ml, and mz. Show the location of the other minterms in the diagram.
Represent the function f = X1Z2x3Z4 + ~ 1 ~ 2 x 3 ~ 4 + X1x2 on this diagram.

(a) (b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

Figure P2.2 A four-variable Venn diagram.

* 2.20 Design the simplest sum-of-products circuit that implements the function f (x l , x2, xs) =
m(3, 4, 6, 7).

2.2 1 Design the simplest sum-of-products circuit that implements the function f (x 1 7 x2, xs)
C m u , 394,671.

2.22 Design the simplest product-of-sums circuit that implements the function f (x l , x2, x 3)
nM (0,2,5) .

* 2.23 Design the simplest product-of-sums expression for the function f (x l , x2, x3) = IIM (0, 1
577) .

2.24 Derive the simplest sum-of-products expression for the function f (x l , x2, xs, y) =
~ 1 x 3 2 4 + x2F3x4 + x ~ X ~ ~ ~ .

2.25 Derive the simplest sum-of-products expression for the function f (x l , xz, x3, y, xs) =
X 1 X 3 X 5 + X1X31C4 + X1x4x5 + xIX2X3x5. (Hint: Use the consensus property 17a.)

2.26 Derive the simplest product-of-sums expression for the function .f (X I , X Z , X ~ , X ~)

(Fl + X3 + Xq)(F2 + X 3 + x4)(x1 + X 2 + X3). (Hint: Use the consensus property 17b.)

2.27 Derive the simplest product-of-sums expression for the function f (xl, x2, x3, x4, x5) =
6 2 + X3 + XS) (xi + F3 + X ~) (X I + x2 + x5)(xi + Xq + Xg). (Hint: Use the consensus
property 1 7 b .)

*2.28 Design the simplest circuit that has three inputs, xl, xz, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.29 Design the simplest circuit that has three inputs, xl , xz, and x3, which produces an output
value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,
the output has to be 0.

2.30 Design the simplest circuit that has four inputs, XI, x2, x3, and xq, which produces an output
value of 1 whenever three or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.3 1 For the timing diagram in Figure P2.3, synthesize the function f (xl, x2, x3) in the simplest
sum-of-products form.

- Time

Figure P2.3 A timing diagram representing a logic function.

*2,32 For the timing diagram in Figure P2.3, synthesize the function f (xl , xz, x3) in the simplest
product-of-sums form.

*2.33 For the timing diagram in Figure P2.4, synthesize the function f (xl , xi, x3) in the simplest
sum-of-products form.

2.34 For the timing diagram in Figure P2.4, synthesize the function f (xl, x2, x3) in the simplest
product-of-sums form.

2.35 Design a circuit with output f and inputs xl, xo, yl, and v n . Let X = xlxo be a number,
where the four possible values of X, namely, 00,01, 10, and 1 1, represent the four numbers
0, 1,2, and 3, respectively. (We discuss representation of numbers in Chapter 5.) Similarly,
let Y = ylyo represent another number with the same four possible values. The output f
should be 1 if the numbers represented by X and Yare equal. Otherwise, f should be 0.
(a) Show the truth table for-f.
(b) Synthesize the simplest possible product-of-sums expression forf.

- Time

Figure P2.4 A timing diagram representing a logic function.

Repeat problem 2.35 for the case where f should be 1 only if X 2 Y.
(a) Show the truth table forb
(b) Show the canonical sum-of-products expression for$
(c) Show the simplest possible sum-of-products expression forf

Implement the function in Figure 2.26 using only NAND gates.

Implement the function in Figure 2.26 using only NOR gates.

Implement the circuit in Figure 2.35 using NAND and NOR gates.

Design the simplest circuit that implements the function f (xl, x2, xs) = m (3 , 4 , 6 ,
using NAND gates.

Design the simplest circuit that implements the function f (xl, x2, x3) = rn(l ,3 ,4,6,
using NAND gates.

Repeat problem 2.40 using NOR gates.

Repeat problem 2.41 using NOR gates.

(a) Use a schematic capture tod to draw schematics for the following functions

(b) Use functional simulation to prove thatfl =fi.
(a) Use a schematic capture tool to draw schematics for the following functions

(b) Use functional simulation to prove that fi = f2.

Write VHDL code to implement the function f (xl, xz, x3) = m(0, 1, 3 ,4 ,5 ,6)

2.47 (a) Write VHDL code to describe the following functions

fl = x1X3 +x2X3 +x3& + X I X ~ + X I &

2 - (xl +Xg) (xl +x* +El) ' (~ 2 +X3 +El) f -
(b) Use functional simulation to prove that fi = f 2 .

2.48 Consider the following VHDL assignment statements
h

i

f 1 <= ((xl AND x3) OR (NOT x l AND NOT x3)) OR ((x2 AND x4) OR I

(NOT x2 AND NOT x4)) ;
f2 <= (x l AND x2 AND NOT x3 AND NOT x4) OR (NOT x l AND NOT x2 AND x3 AND x4)

OR (x l AND NOT x2 AND NOT x3 AND x4) OR
(NOT x l AND x2 AND x3 AND NOT x4) ; 4 ")

$

(a) Write complete VHDL code to implement f l and f2.
(b) Use functional simulation to prove that f 1 =f2.

1. G. Boole, An Investigation of the Laws of Thought, 1854, reprinted by Dover
Publications, New York, 1954. 4

2. C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," Transactions
ofAIEE 57 (1938), pp. 713-723.

, +

3. E. V. Huntington, "Sets of Independent Postulates for the Algebra of Logic,"
Transactions of the American Mathematical Society 5 (1904), pp. 288-309. 2

4. S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design,
(McGraw-Hill: New York, 2003).

V; 3 a
5. Z. Navabi, VHDL-Analysis and Modeling of Digital Systems, 2nd ed. ,?

(McGraw-Hill: New York, 1998). 4
*I

6 . D. L. Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).
4

5
r! 7. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hal I : Englewood Cliffs, NJ, 1998). ,h 4

8. K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA, x
1 996). "*$

9, A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, 1997).

10. D. J. Smith, HDL Chip Design, (Doone Publications: Madison, AL, 1996). f
\S
:J

c h a p t e r

In this chapter you will be introduced to:

r How transistors operate and form simple switches

r Integrated circuit technology

r CMOS logic gates

r Field-programmable gate arrays and other programmable logic devices

r Basic characteristics of electronic circuits

74

In section 1.2 we said that logic circuits are implemented using transistors and that a number of different
technologies exist. We now explore technology issues in more detail.

Let us first consider how logic variables can be physically represented as signals in electronic circuits.
Our discussion will be restricted to binary variables, which can take on only the values O and 1. In a circuit
these values can be represented either as levels of voltage or current. Both alternatives are used in different
technologies. We will focus on the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a threshold voltage;
any voltage below the threshold represents one logic value, and voltages above the threshold correspond to
the other logic value. It is an artl:trary choice as to which log~c value is associated with the low and high
voltage levels. Usually, logic C; 15 represented by the low voltage levels and logic 1 by the high voltages.
This is known as apositive lol.:;r system. The opposite choice, in which the low voltage Ievels are used to
represent logic 1 and the high,:i. voiiages are used for logic 0 is known as a negative logic system. In this
book we use only the positive rc,;:jc qystem, but negative logic is discussed briefly in section 3.4.

Using the positive logic s>$t :m, the logic values 0 and 1 are referred to simply as "low" and "high."
To implement the threshold-voi! .lj concept, a range of low and high voltage levels is defined, as shown in
Figure 3.1. The figure gives thi ilinimum voltage, called Vss, and the maximum voltage, called Vm, that
can exist in the circuit. We will assume that Vss is 0 volts, corresponding to electrical ground, denoted Gnd.
The voltage VDD represents the power supply voltage. The most common levels for Vm are between 5 volts
and 1 volt. In this chapter we will mostly use the value Vm = 5 V. Figure 3.1 indicates that voltages in the
range Gnd to Vo,,,, represent logic value 0. The name V0.- means the maximum voltage level that a logic
circuit must recognize as low. Similarly, the range from V1 .,,,, to VDD corresponds to logic value I, and V1 ,,,,
is the minimum voltage level that a logic circuit must interpret as high. The exact Ievels of VO,max and V1,,,,

Voltage f
Logic value 1

Figure 3.1 Representation of logic values by voltage levels.

depend on the particular technology used; a typical example might set Vo,- to 40 percent of Vm and V,,,,
to 60 percent of VDD. The range of voltages between V0,,,,,, and Vl,min is undefined. Logic signals do not
nomally assume voltages in this range except in transition from one logic value to the other. We will discuss
the voltage levels used in logic circuits in more depth in section 3.8.3.

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [I] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure 3.2a shows a switch controlled by a logic signal, x. When
x is low, the switch is open, and when x is high, the switch is closed. The most popular type
of transistor for implementing a simple switch is the metal oxide semiconductorfifield-effect . .

trunsistor (MOSFET). There are two different types of MOSFETs, known as n-channel,
abbreviated NMOS, and p-channel, denoted PMOS.

x = "jaw" x = "high"

(a) A simple switch controlled by the input x

Gate

Source

I Substrate (Body)

>
(b) NMOS transistor

(c) Simplified symbol for an NMOS transistor

Figure 3.2 NMOS transistor as a switch.

Figure 3.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also
called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure 3.2c, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.

A detailed explanation of how the transistor operates will be presented in section 3.8.1.
For now it is sufficient to know that it is controlled by the voltage VG at the gate terminal.
If VG is low, then there is no connection between the source and drain, and we say that
the transistor is turned 08. If VG is high, then the transistor is turned on and acts as a
closed switch that connects the source and drain terminals. In section 3.8.2 we show how
to calculate the resistance between the source and drain terminals when the transistor is
turned on, but for now assume that the resistance is 0 52.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure 3.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure 3.36.
In logic circuits the substrate of the PMOS transistor is always connected to Vm, leading

(a) A switch with the opposite behavior of Figure 3.2a

Gate

I
Drain

Substrate (Body)

(b) PMOS transistor

(c) Simplified symbol for an PMOS transistor

Figure 3.3 PMOS transistor as a switch. -

to the simplified symbol in Figure 3 . 3 ~ . If VG is high, then the PMOS transistor is turned
off and acts like an open switch. When VG is low, the transistor is turned on and acts as a

switch that connects the source and drain. In the PMOS transistor the source is the
node with the higher voltage.

Figure 3.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
p l i e d down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up to
vm. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to Vm. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs
in considerable detail in section 3.8.

Closed switch Open switch
when VG = VDD when VG = 0 V

(a) NMOS transistor

VD V D = vm
Open switch Closed switch
when VG = VDD when VG= OV

(b) PMOS transistor

Figure 3.4 NMOS and PMOS transistors in logic circuits.

C H A P T E R 3 IMPLEMENTATION 'IECHNOLOGY

--

3.2 NMOS LOGIC GATES

The first schemes for building logic gates with MOSFETs became popular in the 1970~
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier
to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementaty MOS, or CMOS.

In the circuit in Figure 3.5a, when V, = 0 V, the NMOS transistor is turned off. No
current flows through the resistor R, and V' = 5 V. On the other hand, when V, = 5 V, the
transistor is turned on and pulls Vf to a low voltage level. The exact voltage level of Vf
in this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vf is about 0.2 V (see section 3.8.3). If Vf is viewed as a function of V,, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = F. Figure 3.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled VDD and the

(a) Circuit diagram (b) Simplified circuit diagram

1 - -
(c) Graphical symbols

Figure 3.5 A NOT gate built using NMOS technology.

3.2 NMOS LOGIC GATES

to the negative power-supply terminal is indicated by the Gnd symbol. We will
this simplified style of circuit diagram throughout this chapter.
The purpose of the resistor in the NOT gate circuit is to limit the amount of current that

flows when V, = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in section 3.8.3. In subsequent diagrams
, dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure 3.5~ presents the graphical symbols for a NOT gate. The left symbol shows the
input, output, power, and ground terminals, and the right symbol is simplified to show only
the input and output terminals. In practice only the simplified symbol is used. Another
name often used for the NOT gate is inverter. We use both names interchangeably in this
book.

In section 2.1 we saw that a series connection of switches corresponds to the logic AND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure 3.6a. If V,, = V' = 5 V,

(a) Circuit (b) Truth table

(c) Graphical symbols

Figure 3.6 NMOS realization of a NAND gate.

both transistors will be on and Vf will be close to 0 V. But if either V,, or Vxp is 0, then no
current will flow through the series-connected transistors and Vf will be pulled up to 5 V.
The resulting truth table fbr f , provided in terms of logic values, is given in Figure 3.6b.
The realized function is the complement of the AND function, called the NAND function,
for NOT-AND. The circuit realizes a NAND gate. Its graphical symbols are shown in Fig-
ure 3 . 6 ~ .

The parallel connection of NMOS transistors is given in Figure 3.7a. Here, if either
V', = 5 V or VA2 = 5 V, then V f will be close to 0 V. Only if both V,, and V,? are 0 will Vf
be pulled up to 5 V. A corresponding truth table is given in Figure 3.7b. It shows that the
circuit realizes the complement of the OR function, called the NOR function, for NOT-OR,
The graphical symbols for the NOR gate appear in Figure 3 . 7 ~ .

In addition to the NAND and NOR gates just described, the reader would naturally
be interested in the AND and OR gates that were used extensively in the previous chapter.
Figure 3.8 indicates how an AND gate is built in NMOS technology by following a NAND
gate with an inverter. Node A realizes the NAND of inputs xl and xz, and f represents the
AND function. In a similar fashion an OR gate is realized as a NOR gate followed by an
inverter, as depicted in Figure 3.9.

(a) Circuit (b) Truth table

-
(c) Graphical symbols

Figure 3.7 NMOS realization of a NOR gate.

3.3 CMOS LOGIC GATES

(a) Circuit (b) Truth table

(c) Graphical symbols

Figure 3.8 NMOS realization of an AND gate.

3.3 CMOS LOGIC GATES

So far we have considered how to implement logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in section 3.8 that CMOS technology offers some attractive
Practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit
that involves NMOS transistors as the pull-down network (PDN). Then the structure of the

- - A -

(a) Circuit (b) Truth table

-

(c) Graphical symbols

Figure 3.9 NMOS realization of an OR gate.

circuits in Figures 3.5 through 3.9 can be characterized by the block diagram in Figure
3.10. The concept of CMOS circuits is based on replacing the pull-up device with apull-rip
network (PUN) that is built using PMOS transistors, such that the functions realized by the
PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure 3.11. For any given valuation of
the input signals, either the PDN pulls Vf down to Gnd or the PUN pulls Vf up to Vm. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure 3-12. When
V, = 0 V, transistor Tz is off and transistor TI is on. This makes Vf = 5 V, and since T2 is
off, no current flows through the transistors. When V, = 5 V, T2 is on and TI is off. Thus
Vf = 0 V, and no current flows because TI is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated

3.3 CMOS LOGIC GATES

Figure 3.1 0 Structure of an NMOS circuit.

vx,

v m
X n

Pull-up network
(PUN)

Pull-down network
(f DN)

I I (PDN) I Pull-down network

I

Figure 3.1 1 Structure of a CMOS circuit.

under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in section 3.8.

Figure 3.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure 3.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure

off on

(a) Circuit (b) Truth table and transistor states

Figure 3.1 2 CMOS realization of a NOT gate.

(a) Circuit (b) Truth table and transistor states

0 0
0 1
1 0
1 1

Figure 3.13 CMOS realization of a NAND gate.

specifies the state of each of the four transistors for each logic valuation of inputs xl and
x2. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow from Vm to Gnd.

The circuit in Figure 3.13 can be derived from the logic expression that defines the
NAND operation, f = m. This expression specifies the conditions for which f = 1;

on on off off
on off off on
off on on off

off off on on

1
1
1
0

3.3 CMOS LOGIC GATES

hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable xi turns on a transistor if
xi = 0. From DeMorgan's law, we have

~ h ~ s f = 1 when either input xl or x2 has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f, which is

Since f = 1 when both xl and xz are 1, it follows that the PDN must have two NMOS
transistors connected in series.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

- -
f = XI + X2 = XlX2

Since f = 1 only if both xl and x2 have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizes f = xl + xz, has two NMOS
transistors in parallel, leading to the circuit shown in Figure 3.14.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure 3.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

(a) Circuit (b) Truth table and transistor states

Figure 3.1 4 CMOS realization of a NOR gate.

f

I
0
0
0

X1 X2

0 0
0 1
1 0
1 1

T l T 2 T 3 T 4

on on off off
on off off on
off on on off
off off on on

Figure 3.1 5 CMOS realization of an AND gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

, I bnsider the function

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled by x l in parallel with a series combination of
PMOS transistors controlled by x2 and x3. For the PDN we have

- - 7 = PI f X2X3 = X ~ (X * + ~ 3)

This expression gives the PDN that has an NMOS transistor controlled by xl in series with
a parallel combination of NMOS transistors controlled by x2 and x3. The circuit is shown
-in Figure 3.16.

.2 bnsider the function

f = x1 + (F2 +T3)T4

Then

f = XI (~ 2 x 3 + ~ 4)

These expressions lead directly to the circuit in Figare 3.17.

Figure 3.16 The circuit for Example 3.1 .

The circuits in Figures 3.16 and 3.17 show that it is possible to implement fairly complex
logic functions using combinations of series and parallel connections of transistors (acting
as switches), withorit implementing each series or parallel connection as a complete AND
(using the structure introduced in Figure 3.15) or OR gate.

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in section 3.8.

At the beginning of this chapter, we said that logic values are represented as two distinct
ranges of voltage levels. We are ushg the convention that the higher voltage levels represent

87

Figure 3.17 The circuit for Example 3.2. -

logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this
section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMOS circuit in Figure 3.13, which is reproduced in Figure
3 . 1 8 ~ . Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is Vm. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values such that L = 0 and H = 1, or L = 1 and H = 0.

Figure 3.19a illustrates the positive logic interpretation in which L = 0 and H = 1.
As we already know from the discussions of Figure 3.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure 3.19b. Here
negative logic is used so that L = 1 and H = 0. The truth table

(a) Circuit (b) Voltage levels

Figure 3.18 Voltage levels in the circuit in Figure 3.13.

(a) Positive logic truth table and gate symbol

(b) Negative logic truth table and gate symbol

Figure 3.19 Interpretation of the circuit in Figure 3.18.

(a) Voltage levels

C H A P T E R 3 IMPLEMENTATION TECHNOLOGY

represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure 3.18b.
Figure 3.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate's terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure 3.15. Its truth table, in terms
of voltage levels, is given in Figure 3.20a. Using the positive logic system, this circuit
represents an AND gate, as indicated in Figure 3.20h. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure 3.20~.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We will not consider the negative logic system further in this book.

(b) Positive logic

(c) Negative logic

Figure 3.20 Interpretation of the circuit in Figure 3.1 5.
4

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some
detail.

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure 3.2 1. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip's external connections are called pins or leads. Two pins are used
to connect to Vm and Gnd, and other pins provide connections to the NOT gates. Many
7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3-71. Diagrams of some of the chips are also included in several textbooks,
such as [8-121.

(a) Dual-inline package

(b) Structure of 7404 chip

Figure 3.2 1 A 7400-series chip.

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufac-
turers works to the designer's advantage because it tends to lower the price of chips and
ensures that parts are always readily available. For each specific 7400-series chip, several
variants are built with different technologies. For instance, the part called 74LS00 is built
with a technology called transistor-transistor logic (TTL), which is described in Appendix
E, whereas the 74HC00 is fabricated using CMOS technology. In general, the most popular
chips used today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the function f = ~ 1 x 2 + X2x3, which is shown in the form of a logic diagram
in Figure 2.30. A NOT gate is required to produce Zz, as well as 2 two-input AND gates
and a two-input OR gate. Figure 3.22 shows three 7400-series chips that can be used to
implement the function. We assume that the three input signals XI , xz, and x3 are produced
as outputs by some other circuitry that can be connected by wires to the three chips. Notice
that power and ground connections are included for all three chips. This example makes
use of only a portion of the gates available on the three chips, hence the remaining gates
can be used to realize other functions.

X1

X3

Figure 3.22 An implementation off = ~ 1 x 2 + %x3.
m

Because of their low logic capacity, the standard chips are seldom used in practice
today, with one exception. Many modern products include standard chips that contain
buffers Buffers are logic gates that are usually used to improve the speed of circuits. An
example of a buffer chip is depicted in Figure 3.23. It is the 74244 chip, which comprises
eight tri-state buffers. We describe how tri-state buffers work in section 3.8.8. Rather than
showing how the buffers are arranged inside the chip package, as we did for the NOT gates
in Figure 3.21, we show only the pin numbers of the package pins that are connected to the

I buffers. The package has 20 pins, and they are numbered in the same manner as shown for
I Figure 3.21 ; Gnd and Vm connections are provided on pins 10 and 20, respectively. Many
I I other buffer chips also exist. For example, the 162244 chip has 16 tri-state buffers. It is

part of a family of devices that are similar to the 7400-series chips but with twice as many
gates in each chip. These chips are available in multiple types of packages, with the most
ppular being a small-outline integrated circuit (SOIC) package. An SOIC package has a
similar shape to a DIP, but the SOIC is considerably smaller in physical size.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series
chips, comprise only a few logic gates. The technology used to produce these chips is
referred to as small-scale integration (SSI). Chips that include slightly more logic circuitry,
typically about 10 to 100 gates, represent medium-scale integrrrtion (MSI). Until the mid-
1980s chips that were too large to qualify as MSI were classified as large-scale integration
(LSI) . In recent years the concept of classifying circuits according to their size has become
of little practical use. Most integrated circuits today contain many thousands or millions
of transistors. Regardless of their exact size, these large chips are said to be made with
v e y large scale integration (VLSI) technology. The trend in digital hardware products is
to integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

Figure 3.23 The 74244 buffer chip.

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
progrurnmable logic devices (PLDs).

A PLD is a general-purpose chip for implementing logic circuitry. It contains a col-
lection of logic circuit elements that can be customized in different ways, A PLD can be
viewed as a "black box" that contains logic gates and programmable switches, as illustrated
in Figure 3.24. The programmable switches allow the logic gates inside the PLD to be
connected together to implement whatever logic circuit is needed.

3.6.1 PROGRAMMABLE LOGIC ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure 3.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA
comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA's inputs x, , . . . , x, pass through a set of buffers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array,
The AND plane produces a set of product terms P I , . . - , Pk. Each of these terms can be
configured to implement any AND function of X I , . . . , x,. The product terms serve as the
inputs to an OR plane, which produces the outputs fl, . . - , f,. Each output can be config-

Inputs
(logic variables)

___f e

5. - Logic gates
and - programmable -

switches

-
- C

(logic functions)

Figure 3.24 Programmable logic device as ohlack box.

94

Input buffers
and

inverters

m * .

t -
P1

C

AND plane OR plane

f l fm

Figure 3.25 General structure of a PIA.

ured to realize any sum of P I , . . . , Pk and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure 3.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several
methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in section 3.10.

In Figure 3.26 the AND gate that produces P I is shown connected to the inputs XI and
- -

X2. Hence PI = x1x2. Similarly, PI1 = xIX3, P3 = ~ ~ ~ 2 x 3 , and P4 = ~ 1 x 3 . Programmable
connections also exist for the OR plane. Output fi is connected to product terms Pi,
P2, and Pi. It therefore realizes the function fl = ~ 1 x 2 + x l b + FlFzx3. Similarly, output
f2 = * I X Z +X1XZx3 + x I x 3 . Although Figure 3.26 depicts the PLA programmed to implement
'he functions described above, by programming the AND and OR planes differently, each
of the outputs f i and f2 could implement various functions of XI, x2, and x3. The only

on the functions that can be implemented is the size of the AND plane because it
Produces only four product terms. Commercially available PLAs come in larger sizes than
We have shown here. Typical parameters are 16 inputs, 32 product terms, and eight outputs.

f l f2

Figure 3.26 Gate-level diagram of o PLA...

Although Figure 3.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure 3.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X. can be made. Figure 3.27 shows the
programmable connections needed to implement the product terms in Figure 3.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.
The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
fi and f2 from Figure 3.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR

Figure 3.27 Customary schematic for the PLA in Figure 3.26.

gates are fixed, rather than programmable. In section 3.10 we will show that both fixed and
programmable PLAs can be created with similar structures.

3.6.2 PROGRAMMABLE ARRAY LOGIC (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard 10

fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as aprogrammable array
logic (PAL) device. Because they are simpler to manufacture, and thus less expensive than

-. PLAs, and offer better performance, PALS have become popular in practical applications.
An example of a PAL with three inputs, four product terms, and two outputs is given

in Figure 3.28. The product terms P I and Pz are hardwired to one OR gate, and P3 and P4
are hardwired to the other OR gate. The PAL is shown programmed to realize the two logic

- - functionsf, = x1xzi3 + E I ~ Z ~ 3 and fz = xlx2 + ~ ~ ~ 2 x 3 . In comparison to the PLA in Figure

I 3-27, the PAL offers less flexibility; the PLA allows up to four product terms per OR gate,

AND plane

Figure 3.28 An example of a PAL.

- -
t
s

whereas the OR gates in the PAL have only two inputs. To compensate for the reduced
flexibility, PALS are manufactured in a range of sizes, with various numbers of inputs and
outputs, and different numbers of inputs to the OR gates. An example of a commercial PAL
is given in Appendix E.

So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to
the output pins of the chip. In many PALS extra circuitry is added at the output of each OR
gate to provide additional flexibility. It is customary to use the term macrocell to refer to
the OR gate combined with the extra circuitry. An example of the flexibility that may be 4
provided in a macrocell is given in Figure 3.29. The symbol 1abeled.flip-flop represents a -F
memory element. It stores the value produced by the OR gate output at a particular point
in time and can hold that value indefinitely. The flip-flop is controlled by the signal called
clock. When clock makes a transition from logic value 0 to 1, the flip-flop stores the value
at its D input at that time and this value appears at the flip-flop's Q output. Flip-flops are
used for implementing many types of logic circuits, as we will show in Chapter 7.

In section 2.8.2 we discussed a 2-to-1 multiplexer circuit. It has two data inputs, a
select input, and one output. The select input is used to choose one of the data inputs as
the multiplexer's output. In Figure 3.29 a 2-to- 1 multiplexer selects as an output from the
PAL either the OR-gate output or the flip-flop output. The multiplexer's select line can be
programmed to be either 0 or 1. Figure 3.29 shows another logic gate, called a tri-state
buffer, connected between the multiplexer and the PAL output. We discuss tri-state buffers -

Select
I Enable

-
TO AND plane

*

Figure 3.29 Extra circuitry added to OR-gate outputs from Figure 3.28.

in section 3.8.8. Finally, the multiplexer's output is "fed back" to the AND plane in the
PAL. This feedback connection allows the logic function produced by the multiplexer to be
used internally in the PAL, which allows the implementation of circuits that have multiple
stages, or levels, of logic gates.

A number of companies manufacture PLAs or PALS, or other, similar types of simple
PLDs (SPLDs). Apartial list of companies, and the types of SPLDs that they manufacture, is
given in Appendix E. An interested reader can examine the information that these companies
provide on their products, which is available on the World Wide Web (WWW). The WWW
locator for each company is given in Table E. 1 in Appendix E.

1 3.6.3 PROGRAMMING OF PLAs AND PALS

In Figures 3.27 and 3.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in section 3.10. Users' circuits are implemented in the devices by conJiguring,
or programming, these switches. Commercial chips contain a few thousand ~rogrammable
switches; hence it is not feasible for a user of these chips to specify manually the desired
Programing state of each switch. Instead, CAD systems are employed for this purpose. We
introduced CAD tools in Chapter 2 and described methods for design entry and simulation

" of circuits. For CAD systems that support targeting of circuits to PLDs, the tools have the
capability to automatically produce the necessary information for programming each of the
Switches in the device. A computer system that runs the CAD tools is connected by a cable
'0 a dedicatedprogramming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming Jile or fuse map, that specifies the
State that each switch in the PLD should have, to realize correctly the designed circuit. The

PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit then places the chip into a special programming
mode and configures each switch individually. A photograph of a programming unit is
shown in Figure 3.30. Several adaptors are shown beside the main unit; each adaptor is
used for a specific type of chip package.

The programming procedure may take a few minutes to complete. Usually, the pro-
gramming unit can automatically "read back" the state of each switch after programming,
to verify that the chip has been programmed correctly. A detailed discussion of the process
involved in using CAD tools to target designed circuits to programmable chips is given in
Appendices B, C , and D.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure 3.3 1. Although PLAs and PALs are
available in the DIP packages shown in Figure 3.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure 3.31. On all four of its sides, the PLCC package has pins that "wrap around" the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Instead of relying on a programming unit to configure a chip, it would be advantageous
a

to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-systenz programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described

- ss

Figure 3.30 A PLD programming unit (courtesy of Data 10 Corp,),

below. :,
%

Figure 3.3 1 A PLCC package with socket.

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
a com/~lex progmmrnuble logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure
3-32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled I/O block, which is attached
to a number of the chip's input and output pins.

Figure 3.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-pate output
is connected to another type of logic gate that we have not yet introduced. It is called an
E x c l u \ i v e - ~ ~ (XOR) gate. We discuss XOR gates in section 3.9.1 . The behavior of an
XOR gate is the same as for an OR gate except that if both of the inputs are 1 , the XOR gate

l" block block

l C: ?? - -
I * * * In.terionnection ji;: I * * * [I I

8-11 - block block -
r - -

Figure 3.32 Structure of a complex programmable logic device (CPLD).

produces a 0. One input to the XOR gate in Figure 3.33 can be programmably connected
to 1 or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR
gate has no effect. The macrocell also includes a flip-flop, a multiplexer, and a tri-state
buffer. As we mentioned in the discussion for Figure 3.29, the flip-flop is used to store the
output value produced by the OR gate. Each tri-state buffer (see section 3.8.8) is connected
to a pin on the CPLD package. The tri-state buffer acts as a switch that allows each pin to
be used either as an output from the CPLD or as an input. To use a pin as an output, the
corresponding tri-state buffer is enabled, acting as a switch that is turned on. If the pin is
to be used as an input, then the tri-state buffer is disabled, acting as a switch that is turned
off. In this case an external source can drive a signal onto the pin, which can be connected 4
to other macrocells using the interconnection wiring. Gs

J

The interconnection wiring contains programmable switches that are used to connect '
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses, but not to all of them. Extensive research has been done to decide
how many switches should be provided for connections between the wires, The number
of switches is chosen to provide sufficient flexibility for typical circuits without wasting
many switches in practice. One detail to note is that when a pin is used as an input, the
macrocell associated with that pin cannot be used and is therefore wasted. Some CPLDs
include additional connections between the macrocells and the interconnection wiring that
avoids wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure 3.31. Figure 3 . 3 4 ~ shows another type of package used to house CPLD
chips, called a quadflatpack (QFP). Like a PLCC package, the QFP package has pins on all

PAL-like block (details not shown)

8# \# \# \#
\ /- #- #-

\0
\

\/
/\

\d
\

\#
\

\#
\

\#
/ \

a

0 . .

\/ \d </ \d
#\ fk I\ 4%

\&
/\
\/

I\
\#

I\
\0

#\
\#

/\
k/

\# w \ # w \/ w w \# v
#\ I\

\ # w \8 \ #

T " T " T " "

PAL-like block

Figure 3.33 A section of the CPLD in Figure 3.32.

four- sides, but whereas the PLCC's pins wrap around the edges of the package, the QFP's
pins extend outward from the package, with a downward-curving shape. The QFP's pins
are much thinner than those on a PLCC, which means that the package can support a larger
numbel- of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
'0 fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in section 3.10. Programming of the switches may be accomplished

the same technique described in section 3.6.3, in which the chip is placed into a special-
Purpose programming unit. However, this programming method is rather inconvenient for
large CPLDs for two reasons. First, large CPLDs may have more than 200 pins on the chip

(a) CPLD in a Quad Flat Pack (QFP) package

Printed
circuit board /

(b) JTAG programming

Figure 3.34 CPLD and programming.

package, and these pins are often fragile and easily bent. Second, to be programmed in a
programming unit, a socket is required to hold the chip. Sockets for large QFP packages
are very expensive; they sometimes cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
IEEE and is usually called a JTAGport. It uses four wires to transfer information between
the computer and the device being programmed. The term JTAG stands for Joint Test Action
Group. Figure 3.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used often. while SPLDs are
becoming less common. Anumber of companies offer competing CPLDs. Appendix E lists.

*

3.6 PROGRAMMABLE LOGIC DEVICES

in Table E.2, the names of the major companies involved and shows the companies" WWW
locarors. The reader is encouraged to examine the product information that each company
provides on its Web pages. An example of a popular commercial CPLD is described in
detail in Appendix E.

3.6.5 FIELD-PROGRAMMABLE GATE ARRAYS

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for im-
plementation of a wide range of logic circuits. Except for CPLDs, these devices are rather
small and are suitable only for relatively simple applications. Even for CPLDs, only mod-
erately large logic circuits can be accommodated in a single chip. For cost and performance
reasons, it is prudent to implement a desired logic circuit using as few chips as possible, so
the amount of circuitry on a given chip and its functional capability are important. One way
to quantify a circuit's size is to assume that the circuit is to be built using only simple logic
gates and then estimate how many of these gates are needed. A commonly used measure is
the total number of two-input NAND gates that would be needed to build the circuit; this
measure is often called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a
large CPLD that has 500 macrocells can implement circuits of up to about 10,000 equivalent
gates.

By modem standards, a logic circuit with 10,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
Ajield-programmable gate array (FPGA) is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs
and CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide
logic blocks for implementation of the required functions. The general structure of an FPGA
is illustrated in Figure 3.35~. It contains three main types of resources: logic blocks, 110
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic blocks are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and vertical routing channels between rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic blocks to be interconnected in many ways. Figure 3 . 3 5 ~ shows two locations for
Programmable switches; the blue boxes adjacent to logic blocks hold switches that connect
the logic block input and output terminals to the interconnection wires, and the blue boxes
that are diagonally between logic blocks connect one interconnection wire to another (such

-. as a vertical wire to a horizontal wire). Programmable connections also exist between the
VO blocks and the interconnection wires. The actual number of programmable switches
and wires in an FPGA varies in commercially available chips.

FPGAs can be used to implement logic circuits of more than a million equivalent
gates in size. Some examples of commercial FPGA products, from Altera and Xilinx, are
described in Appendix E. FPGA chips are available in a variety of packages, including the

Logic block [71 Interconnection switches

I V O block I

(a) General structure of an FPGA

(b) Pin grid array (PGA) package (bottom view)

Figure 3.35 A field-programmable gate array (FPGA).

PLCC and QFP packages described earlier. Figure 3.35b depicts another type of package,
called a pin grid array (PGA). A PGA package may have up to a few hundred pins in
total, which extend straight outward from the bottom of the package, in a grid pattern. Yet
another packaging technology that has emerged is known as the bull grid array (BGA).
The BGA is similar to the PGA except that the pins are small round balls, instead of posts.

The advantage of BGA packages is that the pins are very small; hence more pins can be
provided on a relatively small package.

Each logic block in an FPGA typically has a small number of inputs and outputs. A
variety of FPGA products are on the market, featuring different types of logic blocks. The
most commonly used logic block is a l v o k ~ ~ p table (LUT), which contains storage cells that

used to implement a small logic function. Each cell is capable of holding a single logic
value, either 0 or 1. The stored value is produced as the output of the storage cell. LUTs
of sizes may be created, where the size is defined by the number of inputs. Figure
3.360 shows the structure of a small LUT. It has two inputs, xl and xz, and one output, f .
~t is capable of implementing any logic function of two variables. Because a two-variable
truth table has four rows, this LUT has four storage cells. One cell corresponds to the output
value in each row of the truth table. The input variables xl and x2 are used as the select inputs
of three multiplexers, which, depending on the valuation of xl and X*, select the content of
one of the four storage cells as the output of the LUT. We introduced multiplexers in section
2.8.2 and will discuss storage cells in Chapter 10.

To see how a logic function can be realized in the two-input LUT, consider the truth
table in Figure 3.366. The function fi from this table can be stored in the LUT as illustrated in

- -
(a) Circuit for a two-input LUT (b) f = ~ 1 x 2 +x1x2

X2

(c) Storage cell contents in the LUT

Figure 3.36 A two-input lookup table (LUT).

C H A P

Figure

T E R

3 . 3 6 ~ .

3 IMPLEMENTATION TECHNOLOGY

The arrangement of muItiplexers in the I
When xl = x2 = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table for ~ 1 x 2 = 00. Similarly, for all valuations of xl and x2, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output. Providing access to the contents of storage
cells is only one way in which multiplexers can be used to implement logic functions. A
detailed presentation of the applications of multiplexers is given in Chapter 6.

Figure 3.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have either four or
five inputs, which require 16 and 32 storage cells, respectively. In Figure 3.29 we showed
that PALS usually have extra circuitry included with their AND-OR gates. The same is true
for FPGAs, which usually have extra circuitry, besides a LUT, in each logic block. Figure
3.38 shows how a flip-flop may be included in an FPGA logic block. As discussed for

3

Figure 3.37 A three-input LUT.

Select

Out

Figure 3.38 Inclusion of a flip-flop ingan FPGA logic block.
108

~ i ~ u r e 3.29, the flip-flop is used to store the value of its D input under control of its clock
i n p u t Examples of logic blocks in commercial FPGAs are presented in Appendix E.

For a logic circuit to be realized in a n FPGA, each logic function in the circuit must be

small to A t within a single logic block. In practice, a user's circuit is automatically
translated into the required form by using CAD tools (see Chapter 12). When a circuit
is implemented in an FPGA, the logic blocks are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic blocks. FPGAs are configured by using the ISP method, which we explained
in 3.6.4. The storage cells in the LUTs in an FPGA are volatile, which means that
they lose their stored contents whenever the power supply for the chip is turned off. Hence
the FPGA has to be programmed every time power is applied. Often a small memory
chip that holds its data permanently, called a programmable read-only memory (PROM),
is included on the circuit board that houses the FPGA. The storage cells in the FPGA are
loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
3.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic blocks and wiring switches in
a section of the FPGA. Programmable wiring switches are indicated by an X. Each switch
shown in blue is turned on and makes a connection between a horizontal and vertical wire.

Figure 3.39 A section of a FPGA.

C H A P T E R 3 IMPLEMENTATION ' ~ C H N O L O G Y

The switches shown in black are turned off. We describe how the switches are implemented
by using transistors in section 3.10.1. The truth tables programmed into the logic blocks i n
the top row of the FPGA correspond to the functions</; = ~ 1 x 2 and f2 = X2x3. The logic
block in the bottom right of the figure is programmed to produce f = f i + f2 = ~ 1 x 2 + Z2x3.

3.6.6 USING CAD TOOLS TO IMPLEMENT CIRCUITS IN CPLDs
AND FPGAs

In section 2.9 we suggested the reader should work through Tutorial I , in Appendix B,
to gain some experience using real CAD tools. Tutorial 1 covers the steps of design
entry and functional simulation. Now that we have discussed some of the details of the
implementation of circuits in chips, the reader may wish to experiment further with the
CAD tools. In Tutorials 2 and 3 (Appendices C and D) we show how circuits designed with
CAD tools can be implemented in CPLD and FPGA chips.

3.6.7 APPLICATIONS OF CPLDs AND FPGAs

CPLDs and FPGAs are used today in many diverse applications, such as consumer products
like DVD players and high-end television sets, controller circuits for automobile factories
and test equipment, Internet routers and high-speed network switches, and computer equip-
ment like large tape and disk storage systems.

In a given design situation a CPLD may be chosen when the needed circuit is not very
large, or when the device has to perform its function immediately upon application of power
to the circuit. FPGAs are not a good choice for this latter case because, as we mentioned
before, they are configured by volatile storage elements that lose their stored contents when
the power is turned off. This property results in a delay before the FPGA chip can perform
its function when turned on.

FPGAs are suitable for implementation of circuits over a large range of size, from
about 1000 to more than a miIlion equivalent logic gates. In addition to size a designer
will consider other criteria. such as the needed speed of operation of a circuit, power
dissipation constraints, and the cost of the chips. When FPGAs do not meet one or more of
the requirements, the user may choose to create a custom-manufactured chip as describe
below.

The key factor that limits the size of a circuit that can be accommodated in a PLD is the
existence of programmable switches. Although these switches provide the important benefit
of user programmability, they consume a significant amount of space on the chip, which
leads to increased cost. They also result in a reduction in the speed of operation of circuits,
and an increase in power consumption. In this section we will introduce some integrated
circuit technologies that do not contain programmable switches. -

1 1 0

1 3.7 CUSTOM CHIPS, STANDARD CELLS, AND GATE ARRAYS

TO provide the largest number of logic gates, highest circuit speed, or lowest power, a
so-called custom chip can be manufactured. Whereas a PLD is prefabricated, containing
logic gates and programmable switches that are programmed to realize a user's circuit, a
,,,tom chip is created from scratch. The designer of a custom chip has complete flexibility

decide the size of the chip, the number of transistors the chip contains, the placement of
each transistor on the chip, and the way the transistors are connected together. The process
of defining exactly where on the chip each transistor and wire is situated is called chip
lalaut. For a custom chip the designer may create any layout that is desired. A custom chip
requires a large amount of design effort and is therefore expensive. Consequently, such
,-hips are produced only when standard parts like WGAs do not meet the requirements. To
justify the expense of a custom chip, the product being designed must be expected to sell in
suHicient quantities to recoup the cost. Two examples of products that are usually realized
with custom chips are microprocessors and memory chips.

In situations where the chip designer does not need complete flexibility for the layout
of each individual transistor in a custom chip, some of the design effort can be avoided
by using a technology known as standard c ~ l l s . Chips made using thic technology are
often called uppIi(.cition-speci3c integrared circuits (ASICs). This technology is illustrated
in Figure 3.40, which depicts a small portion of a chip. The rows of logic gates may be
connected by wires that are created in the routing channels between the rows of gates. In
general, many types of logic gates may be used in such a chip. The available gates are
prebuilt and are stored in a library that can be accessed by the des~gner. In Figure 3.40 the
wires are drawn in two colors. This scheme is used because metal wires can be created
on integrated circuits in multiple layers, which makes it possible for two wires to cross
one another without creating a short circuit. The blue wires represent one layer of metal
wires. and the black wires are a different layer. Each blue square represents a hard-wired
connection (called a via) between a wire on one layer and a wire on the other layer. In
current technology it is possible to have eight or more layers of metal wiring. Some of the

Figure 3.40 A section of two rows in a standard-cell chip.

metal layers can be placed on top of the transistors in the logic gates, resulting in a more
efficient chip layout.

Like a custom chip, a standard-cell chip is created from scratch according to a user'$
specifications. The circuitry shown in Figure 3.40 implements the two logic functions
that we realized in a PLA in Figure 3.26, namely, f i = ~ 1 x 2 + xlT3 + FlT2x3 and f2 =
x1x2 + X1F2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The 110 blocks around the
periphery connect to the pins of the chip package, which is usually a QFP, PGA, or BGA
package.

Another technology, similar to standard cells, is the gate-array technology. In a gate
m a y parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user's circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user's circuit. This process results in a silicon wafer (see
Figure 1.1) of partially finished chips, called the gate-array template. Later the template is
modified, usually by fabricating wires that connect the transistors together, to create a user's
circuit in each finished chip. The gate-array approach provides cost savings in comparison
to the custom-chip approach because the gate-array manufacturer can amortize the cost of
chip fabrication over a large number of template wafers, all of which are identical. Many
variants of gate-array technology exist. Some have relatively large logic cells, while others
are configurable at the level of a single transistor.

An example of a gate-array template is given in Figure 3.4 1. The gate array contains a
two-dimensional array of logic cells. The chip's general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
3.40, metal wires can be created on a chip in multiple layers. This approach is known as the
sea-of-gates technology. Figure 3.42 depicts a small section of a gate array that has been
customized to implement the logic function f = x2X3 + ~ 1 x 3 . AS we showed in section 2.7,
it is easy to verify that this circuit with only NAND gates is equivalent to the AND-OR
form of the circuit.

Figure 3.4 1 A s e a - ~ f - ~ a t e s gate array.

Figure 3.42 The logic f~nct ionf~ = -X3 +x1x3 in the gate array of Figure 3.41.

So far in this chapter, we have described the basic operation of logic gate circuits and given
examples of commercial chips. In this section we provide more detailed information on
several aspects of digital circuits. We describe how transistors are fabricated in silicon and
give a detailed explanation of how transistors operate. We discuss the robustness of logic
circuits and discuss the important issues of signal propagation delays and power dissipation
in logic gates.

3.8.1 MOSFET FABRICATION AND BEHAVIOR

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers.
A silicon wafer (see Figure 1.1) is usually 6, 8, or 12 inches in diameter and is somewhat
similar in appearance to an audio compact disc (CD). Many integrated circuit chips are
fabricated on one wafer, and the wafer is then cut to provide the individual chips.

Silicon is an electrical sernicorrductor, which means that it can be manipulated such
that it sometimes conducts electrical current and at other times does not. A transistor is
fabricated by creating areas in the 5ilicon substrate that have an excess of either positive
or negative electrical charge. Negatively charged areas are called type n, and positively
charged areas are type p. Figure 3.43 illustrates the structure of an NMOS transistor. It has
type n silicon for both the source and drain terminals, and type p for the substrate terminal.
Metal wiring is used to make electrical connections to the source and drain terminals.

When MOSFETs were invented. the gate terminal was made of metal. Now a material
known as polysilicnn is used. Like metal, polysilicon is a conductor, but polysilicon is
preferable to metal because the former has properties that allow MOSFETs to be fabricated
with extremely small dimensions. The gate is electrically isolated from the rest of the
transistor by a layer of silicon dioxide (SO2), which is a type of glass that acts as an electrical
insulator between the gate terminal and the substrate of the transistor. The transistor's
operation is governed by electrical fields caused by voltages applied to its terminals, as
discussed below.

In Figure 3.43 the voltage levels applied at the source, gate, and drain terminals are
labeled Vs, VG, and VD, respectively. Consider first the situation depicted in Figure 3 . 4 3 ~ in
which both the source and gate are connected to Gnd (Vs = VG = 0 V). The type n source
and type n drain are isolated from one another by the typep substrate. In electrical terms two
diodes exist between the source and drain. One diode is formed by thep-n junction between
the substrate and source, and the other diode is formed by the p-n junction between the
substrate and drain. These back-to-back diodes represent a very high resistance (about 1012
S2 [I]) between the drain and source that prevents current flow. We say that the transistor
is turned o f S , or cut off, in this state.

Next consider the effect of increasing the voltage at the gate terminal with respect to
the voltage at the source. Let VGS represent the gate-to-source voltage. If VGS is greater
than a certain minimum positive voltage, called the threshold voltage V T , then the transistor
changes from an open switch to a closed switch, as explained below. The exact level of VT
depends on many factors, but it is typically about 0.2 Vm.

114

7 SIO?

Drain (type n)

(a) When VGS = 0 V, the transistor is off

- - Channel (n-type)

(b) When VGS = 5 V, the transistor is on

Figure 3.43 physical structure of an NMOS transistor.

The transistor's state when VGs > VT is illustrated in Figure 3.43b. The gate terminal
-. is connected to Vm, resulting in VGs = 5 V. The positive voltage on the gate attracts free

electrons that exist in the type n source terminal, as well as in other areas of the transistor,
toward the gate. Because the electrons cannot pass through the layer of glass under the
gate, they gather in the region of the substrate between the source and drain, which is called

channel. This concentration of electrons inverts the silicon in the area of the channel
from type p to type n, which effectively connects the source and the drain. The size of
fie channel is determined by the length and width of the gate. The channel length L is the
dimension of the gate between the source and drain, and the channel width W is the other

dimension. The channel can also be thought of as having a depth, which is dependent on
the applied voltages at the source, gate, and drain.

No current can flow through the gate node of the transistor, because of the layer of
glass that insulates the gate from the substrate. A current ID may flow from the drain node
to the source. For a fixed value of VGS > V T , the value of ID depends on the voltage
applied across the channel VDs. If Vm = 0 V, then no current flows. As Vm is increased,
In increases approximately linearly with the applied Vm, as long as VD is sufficiently small
to provide at least VT volts across the drain end of the channel, that is Vm > VT. In this
range of voltages, namely, 0 < Vm < (VGS - V T) , the transistor is said to operate in the
triode region, also called the linear region. The relationship between voltage and current
is approximated by the equation

(VGS - V T) V ~ - -Vm
L 2

C3.11

The symbol kk is called the process transconductance parameter. It is a constant that
depends on the technology being used and has the units A/v'.

As VD is increased, the current flow through the transistor increases, as given by equa-
tion 3. l , but only to a certain point. When Vm = VGS - VT, the current reaches its maximum
value. For larger values of Vm, the transistor is no longer operating in the triode region.
Since the current is at its saturated (maximum) value, we say that the transistor is in the I
saturation region. The current is now independent of VDs and is given by the expression

I ,w 2
ID = -k -(VGS - V T)

2 '"
Figure 3.44 shows the shape of the current-voltage relationship in the NMOS transistor

for a fixed value of VGS > V T , The figure indicates the point at which the transistor leaves
the triode region and enters the saturation region, which occurs at VDs = VGS - VT.

1, '

-
0 v,, - V T

'DS
.)

Figure 3.44 The current-voltage relationship in the NMOS transistor.

Triode I Saturation
-I * C

I
I
I
I
I
I
I L

-

~ s s u r n e the values k; = 60 p ~ / ~ 2 , W / L = 2.0 pm/0.5 prn, Vs = 0 V, VG = 5 V, and
vT = 1 V. If VD = 2.5 V, the current in the transistor is given by equation 3.1 as ID = 1.7
d, ~f VD = 5 V, the saturation current is calculated using equation 3.2 as ID ;r 2 mA.

l'he PMOS Transistor
The behavior of PMOS transistors is the same as for NMOS except that all voltages and

currents are reversed. The source terminal of the PMOS transistor is the terminal with the
higher voltage level (recall that for an NMOS transistor the source terminal is the one with
the lower voltage level), and the threshold voltage required to turn the transistor on has a
negative value. PMOS transistors have the same physical construction as NMOS transistors
except that wherever the NMOS transistor has type n silicon, the PMOS transistor has type
p, and vice versa. For a PMOS transistor the equivalent of Figure 3.43a is to connect
both the source and gate nodes to Vm, in which case the transistor is turned off. To turn
the PMOS transistor on, equivalent to Figure 3.43b, we would set the gate node to Gnd,
resulting in VGS = -5 V.

Because the channel is type p silicon, instead of type n, the physical mechanism for
current conduction in PMOS transistors is different from that in NMOS transistors. A
detailed discussion of this issue is beyond the scope of this book, but one implication has to
be mentioned. Equations 3.1 and 3.2 use the parameter k:. The corresponding parameter
for a PMOS transistor is k;, but current Rows more readily in type n silicon than in type p.
with the result that in a typical technology k;, 0.4 x k,:. For a PMOS transistor to have
current capacity equal to that of an NMOS transistor, we must use W / L of about two to
three times larger in the PMOS transistor. In logic gates the sizes of NMOS and PMOS
transistors are usually chosen to account for this factor.

3.8.2 MOSFET ON-RESISTANCE

In section 3.1 we considered MOSFETs as ideal switches that have infinite resistance when
turned off and zero resistance when on. The actual resistance in the channel when the
transistor is turned on, referred to as the on-resistance, is given by V a s / b . Using equation
3.1 we can calculate the on-resistance in the triode region, as shown in Example 3.4.

Consider a CMOS inverter in which the input voltage V, is equal to 5 V. The NMOS transistor
is turned on, and the output voltage Vf is close to 0 V. Hence Vm for the NMOS transistor
is cloqe to zero and the transistor is operating in the triode region. In the curve in Figure
3.44, the transistor is operating at a point very close to the origin. Although the value of
V~~ is small, it is not exactly zero. In the next section we explain that VDY ~ o u l d typically
be about 0.1 mV. Hence the current ID is not exactly zero; it is defined by equation 3.1. In
this equation we can ignore the term involving V& because Vm is small. In this case the

117 ,

(a) NMOS NOT gate (b) V, = 5 V

Figure 3.45 Voltage levels in the NMOS inverter.

on-resistance is approximated by

Assuming the values k; = 60 @A/v', W / L = 2.0 pm/0.5 pm, VGS = 5 V, and Vr = 1 V,
we get Rm % 1 kQ.

3.8.3 VOLTAGE LEVELS IN LOGIC GATES

In Figure 3.1 we showed that the logic values are represented by a range of voltage levels.
We should now consider the issue of voltage levels more carefully. I

The high and low voltage levels in a logic family are characterized by the operation '
of its basic inverter. Figure 3.4% reproduces the circuit in Figure 3.5 for an inverter built
with NMOS technology. When Vx = 0 V, the NMOS transistor is turned off. No current

. flows; hence Vf = 5 V. When V, = Vm, the NMOS transistor is turned on. To calculate
the value of Vf, we can represent the NMOS transistor by a resistor with the value Rm, as
illustrated in Figure 3.456. Then Vf is given by the voltage divider

i

3-5 Assume that R = 25 k n . Using the result from Example 3.4, Rm = 1 kC2, which gives
Vf = 0.2 v.

* 1

C
3.8 PRACTICAL ASPECTS

AS indicated in Figure 3.45b, a current I,,,, flows through the NMOS inverter under the
static condjtion V, = VDD. This current is given by

= Vj /RDs = 0.2 V/1 kR = 0.2 mA

This current has important implications, which we discuss in section 3.8.6,
In modern NMOS circuitc;, the pull-up device R is implemented using a PMOS transis-

tor such circuits are referred to as pseudo-NMOS circuits. They are fully compatible with
CMOS circuits; hence a single chip may contain both CMOS and pseudo-NMOS gates.
JZxamp]e 3.13 shows the circuit for a pseudo-NMOS inverter and discusses how to calculate
its output voltage levels.

The CMOS Inverter
It is customary to use the symbols Vm and VOL to characterize the voltage levels in

a logic circuit. The meaning of VoH is the voltage produced when the output is high.
Similarly. VOL refers to the voltage produced when the output is low. As discussed above,
in tho NMOS inverter VOH = Vm and V O ~ is about 0.2 V.

Consider again the CMOS inverter in Figure 3 . 12~ . Its output-input voltage relationship
is summarized by the voltage transfer characteristic shown in Figure 3.46. The curve gives
the steady-state value of Vf for each value of V,. When V, = 0 V, the NMOS transistor
is off. No current flows; hence Vj = VOH = VDD. When V, = Vm, the PMOS transistor
is off, no current flows, and V f = VOL = 0 V. For completeness we should mention that
even when a transistor i \ turned off, a small current, called the leakage current, may flow
through it. This current has a slight effect on VOH and VOL. For example, a typical value of
VoL is 0.1 mV, rather than 0 V [I] .

Figure 3.46 includes labels at the points where the output voltage begins to change from
high to low, and vice versa. The voltage VIL represents the point where the output voltage
is high and the slope of the curve equals - 1 . This voltage level is defined as the maximum
input voltage level that the inverter will interpret as low, hence producing a high output.
Similarly, the voltage VIH. which is the other point on the curve where the slope equals - 1,
is the minimum input voltage level that the inverter will interpret as high, hence producing
a low output. The parameters V m , VUL, VIL, and V[H are important for quantifying the
r*bu\tness of a logic family, as discussed below.

li

Consider the two NOT gates shown in Figure 3.47a. Let us refer to the gates on the left
- and right as N , and N?, respectively. Electronic circuits are constantly subjected to random

Penurbations, called noise, which can alter the output voltage levels produced by the gate
N i It is essential that this noise not cause the gate N2 to misinterpret a low logic value as
a high one, or vice versa. Consider the case where N I produces its low voltage level VDL.
The Presence of noise may alter the voltage level, but as long as it remains less than VIL,
It will be interpreted correctly by N2. The ability to tolerate noise without affecting the

v,, = 0 v

Slope = -1

I
I
I
I
I
I
I
I
I

I
1
I

4

Figure 3.46 The voltage transfer characteristic for the CMOS inverter.

correct operation of the circuit is known as noise rnurgin- For the low output voltage, we
define the low noise rrzargin as

NML = VIL - VOL.

A similar situation exists when N 1 produces its high output voltage VOH. Any existing
noise in the circuit may alter the voltage level, but it will be interpreted correctly by N2 as
long as the voltage is greater than VIH. The high noise margin is defined as

NMH = VOH - VIH

,6 For a given technology the voltage transfer characteristic of the basic inverter determines the
levels V m , VoL, VIL, and VIH- For CMOS we showed in Figure 3.46 that VOH = Vm and
VOL = 0 V. By finding the two points where the slope of the voltage transfer characteristic - 1 is equal to - I , it can be shown [I] that VrL = (3VDD + 2VT) and vIH z $(5vDD - 2VT)
For the typical value VT = 0.2 Vm, this gives

Hence the available noise margin depends on the power supply voltage level. For Vm = 5
V, the noise margin is 2.1 V, and for Vm = 3.3 V, the noise margin is 1.4 V.

In Figure 3.47~2 the node between the two gates is labeled A. Because of the way in which
transistors are constructed in silicon, N2 has the effect of contributing to a capacitive load at

A. Figure 3.43 shows that transistors are constructed by using several layers of different
rnatcrials. Wherever two types of material meet or overlap inside the transistor, a capacitor
may be effectively created. This capacitance is called parasitic, or stray, capacitance
because it results as an undesired side effect of transistor fabrication. In Figure 3-47 we
are interested in the capacitance that exists at node A. A number of parasitic capacitors are
attached to this node, some caused by N1 and others caused by &. One significant parasitic
capacitor exists between the input of inverter N2 and ground. The value of this capacitor
depends on the sizes of the transistors in N2. Each transistor contributes a gate capacitance,
C, = W x L x C,,.,. The parameter C,,, called the oxide capacitance, is a constant for
the technology being used and has the units fFlPm2. Additional capacitance is caused by
the transistors in N1 and by the metal wiring that is attached to node A. It is possible to

(a) A NOT gate driving another NOT gate

(b) The capacitive load at node A

Figure 3.47 Parasitic capacitance in integrated circuits.

represent all of the parasitic capacitance by a single equivalent capacitance between node
A and ground [2]. In Figure 3.476 this equivalent capacitance is labeled C .

The existence of stray capacitance has a negative effect on the speed of operation of
logic circuits. Voltage across a capacitor cannot change instantaneously. The time needed to
charge or discharge a capacitor depends on the size of the capacitance C and on the amount
of current through the capacitor. In the circuit of Figure 3.47b, when the PMOS transistor in
N1 is turned on, the capacitor is charged to Vm; it is discharged when the NMOS transistor
is turned on. In each case the current flow ID through the involved transistor and the value
of C determine the rate of charging and discharging the capacitor.

Chapter 2 introduced the concept of a timing diagram, and Figure 2.10 shows a timing
diagram in which waveforms have perfectly vertical edges in transition from one logic level
to the other. In real circuits, waveforms do not have this "ideal" shape, but instead have
the appearance of those in Figure 3.48. The figure gives a waveform for the input V, in
Figure 3.473 and shows the resulting waveform at node A. We assume that V, is initially at
the voltage level Vm and then makes a transition to 0. Once V, reaches a sufficiently low
voltage, N1 begins to drive voltage VA toward V m . Because of the parasitic capacitance,
V' cannot change instantaneously and a waveform with the shape indicated in the figure
results. The time needed for VA to change from low to high is called the rise time, t , , which
is defined as the time elapsed from when VA is at 10 percent of VLID until it reaches 90
percent of VDD. Figure 3.48 also defines the total amount of time needed for the change at
V, to cause a change in VA. This interval is called the propagc~tiort delay, often written t,,
of the inverter. It is the time from when V, reaches 50 percent of Vm until VA reaches the
same level.

v x

Gnd

VDD

VA

Gnd

Figure

122

3.48 Voltage waveforms for logic gates.

After remaining at 0 V for some time, V, then changes back to Vm, causing N 1 to
discha14ge C to Gnd. In this case the transition time at node A pertains to a change from
high to low, which is referred to as the fall time, +, from 90 percent of VI)D to 10 percent
of vao. AS indicated in the figure, there is a corresponding propagation delay for the new
change in V, to affect Va. In a given logic gate, the relative sizes of the PMOS and NMOS
uansistors are usually chosen such that t, and 9 have about the same value.

Equations 3.1 and 3.2 specify the amount of current flow through an NMOS transistor.
Given the value of C in Figure 3.47, it is possible to calculate the propagation delay for a
change in Va from high to low. For simplicity, assume that V , is initially 0 V; hence the
PMOS transistor is turned on, and VA = 5 V. Then V, changes to VDD at time 0, causing
the PMOS transistor to turn off and the NMOS to turn on. The propagation delay is then
the time required to discharge C through the NMOS transistor to the voltage VDD/2, When
V , first changes to VDD, VA = 5 V; hence the NMOS transistor will have Vm = Vm and
will be in the saturation region. The current ID is given by equation 3.2. Once VA drops
below Vm - V r , the NMOS transistor will enter the triode region where ID is given by
equation 3.1. For our purposes, we can approximate the current flow as VA changes from
Vm to Vm/2 by finding the average of the values given by equation 3.2 with Vm = VDD
and equation 3.1 with VDs = VDD/2. Using the basic expression for the time needed to
charge a capacitor (see Example 3.1 1), we have

CAV CVm/2
t p = - - -

10 ID

I Substituting for the average value of ID as discussed above, yields [I]

This expression specifies that the speed of the circuit depends both on the value of C and
on the dimensions of the transistor. The delay can be reduced by making C smaIler or by
making the ratio W / L larger. The expression shows the propagation time when the output
changes from a high level to a low level. The low-to-high propagation time is given by the
same expression but using k; and W / L of the PMOS transistor.

In logic circuits, L is usually set to the minimum value that is permitted according to the
specifications of the fabrication technology used. The value of W is chosen depending on
the amount of current flow, hence propagation delay, that is desired. Figure 3.49 illustrates
two sizes of transistors. Part (n) depicts a minimum-size transistor, which would be used
in a circuit wherever capacitive loading is small or where speed of operation is not critical.
Figure 3.496 shows a larger transistor, which has the same length as the transistor in part
(a) but a larger width. There is a trade-off involved in choosing transistor sizes, because
a larger transistor takes more space on a chip than a smaller one. Also, increasing W not
Only increases the amount of current flow in the transistor but also results in an increase
in the parasitic capacitance (recall that the capacitance C, between the gate terminal and
ground is proportional to W x L), which tends to offset some of the expected improvement
ln performance. In logic circuits large transistors are used where high capacitive loads must
be driven and where signal propagation delays must be minimized.

(a) Small transistor (b) Larger transistor

figure 3.49 Transistor sizes.

1.7 In the circuit in Figure 3.47, assume that C = 70 fF and that W / L = 2.0 pm/0.5 pm. Also,
k; = 60 ~ , L A / v ~ and VDD = 5 V. Using equation 3.4, the high-to-low propagation delay of
the inverter is t, 0.1 ns.

4

3.8.6 POWER DISSIPATION IN LOGIC GATES

In an electronic circuit it is important to consider the amount of electrical power consumed
-

by the transistors. Integrated circuit technology allows fabrication of millions of transistors
on a single chip; hence the amount of power used by an individual transistor must be small.
Power dissipation is an important consideration in all applications of logic circuits, but it
is crucial in situations that involve battery-operated equipment, such as portable computers
and the like.

Consider again the NMOS inverter in Figure 3.45. When V, = 0, no current flows and
hence no power is used. But when V , = 5 V, power is consumed because of the current
I,,,. The power consumed in the steady state is given by Ps = IstatVD13. In Example 3.5
we calculated I,,, = 0.2 mA. The power consumed is then Ps = 0.2 mA x 5 V = 1.0 mW.
If we assume that a chip contains, say, the equivalent of 10,000 inverters, then the total
power consumption is 10 W! Because of this large power consumption, NMOS-style gates
are used only in special-purpose applications, which we discuss in section 3.8.8,

To distinguish between power consumed during steady-state conditions and power
consumed when signals are changing, it is customary to define two types of power. Static
power is dissipated by the current that flows in the steady state, and dynanzic power is
consumed when the current flows because of changes in signal levels. NMOS circuits
consume static power as well as dynamic power, while CMOS circuits consume only
dynamic power. 4

Consider the CMOS inverter presented in Figure 3 . 12~ . When the input V, is low, no
current flows because the NMOS transistor is off. When V' is high, the PMOS transistor is

1 3.8 PRACTICAL ASPECTS

and again no current flows. Hence no current flows in a CMOS circuit under steady-state
Current does flow in CMOS circuits, however, for a short time when signals

change from one voltage level to another.
Figure 3.50a depicts the following situation. Assume that V, has been at 0 V for some

time; hence Vf = 5 V. Now let V, change to 5 V. The NMOS transistor turns on, and it

P V/ toward Gnd. Because of the parasitic capacitance C at node f , voltage Vf does not
change instantaneously, and current ID flows through the NMOS transistor for a short time
while the capacitor is being discharged. A similar situation occurs when V' changes from

1 5 v to 0, as illustrated in Figure 3-50b. Here the capacitor C initially has 0 volts across it
and i c then charged to 5 V by the PMOS transistor. Current flows from the power supply
through the PMOS transistor while the capacitor is being charged.

The voltage transfer characteristic for the CMOS inverter, shown in Figure 3.46, indi-
cates that a range of input voltage V, exists for which both transistors in the inverter are
turned on. Within this voltage range, \pecifically VT < V , -= (Vm - V T) , current flows
from Vm to Gnd through both transistors. This current is often referred to as the shart-
circuit current in the gate. In comparison to the amount of current used to (dis)charge the
capacitor C , the short-circuit current is negligible in most cases.

The power used by a single CMOS inverter is extremely small. Consider again the
situation in Figure 3.50a when V' = Vm. The amount of energy stored in the capacitor is
equal to C V & / ~ (see Example 3.12). When the capacitor is dixharged to 0 V, this stored
energy 1s dissipated in the NMOS transistor. Similarly, for the situation in Figure 3.50b, the
energ! CV&/Z is dissipated in the PMOS transistor when C is charged up to VDD. Thus for
each cycle in which the inverter charges and discharges C , the amount of energy dissipated
is equal to CV&,. Since power is defined as energy used per unit time, the power dissi-
pated in the inverter is the product of the energy used in one dischargelcharge cycle times the

(a) Current flow when input V, (b) Current flow when input V,
changes from 0 V to 5 V changes from 5 V to 0 V

Figure 3.50 Dynamic current Row in CMOS circuits.

number of such cycles per second, f . Hence the dynamic power consumed is

PD = f CV&

In practice, the total amount of dynamic power used in CMOS circuits is significantly lower
than the total power needed in other technologies, such as NMOS. For this reason, virtually
all large integrated circuits fabricated today are based on CMOS technology.

-

,8 For a CMOS inverter, assume that C = 70 fF and f = 100 MHz. The dynamic power
consumed by the gate is PD = 175 pW. If we assume that a chip contains the equivalent of
10,000 inverters and that, on average, 20percent of the gates change values at any given time,
then the total amount of dynamic power used in the chip is PD = 0.2 x 10,000 x 0.175 p W =
0.35 mW.

In Figure 3.4 we showed that NMOS transistors are used as pull-down devices and PMOS
transistors are used as pull-up devices. We now consider using the transistors in the opposite
way, that is, using an NMOS transistor to drive an output high and using a PMOS transistor
to drive an output low.

Figure 3.5 l a illustrates the case of an NMOS transistor for which both the gate terminal
and one side of the switch are driven to Vm. Let us assume initially that both VG and node
A are at 0 V, and we then change VG to 5 V. Node A is the transistor's source terminal
because it has the lowest voltage. Since VGS = Vm, the transistor is turned on and drives
node A toward VDD. When the voltage at node A rises, VGS decreases until the point when
VCib5 is no longer greater than VT. At this point the transistor turns off. Thus in the steady
state VA = VDD - VT, which means that an NMOS transistor can only partially pass a high
voltage signal.

(a) NMOS transistor (b) PMOS transistor

Figure 3.51 NMOS and PMOS transistors used in the opposite way
from Figure 3.4.

A ~imilar situation occurs when a PMOS transistor is used to pass a low voltage level,
,, depicted in Figure 3.5 1 b. Here assume that initially both VG and node B are at 5 V. Then
we Vc to 0 V so that the transistor turns on and drives the source node (node B)
toward 0 V. When node B is decreased to V T , the transistor turns off; hence the steady-state
voltage is equal to V T .

In section 3.1 we said that for an NMOS transistor the substrate (body) terminal is
connected to Gnd and for a PMOS transistor the substrate is connected to Vm. The voltage
between the source and substrate terminals, Vss, which is called the srrbstrate bias voltuge,
is normally equal to 0 V in a logic circuit. But in Figure 3.5 1 both the NMOS and PMOS --

transistors have VSB = Vim. The bias voltage has the effect of increasing the threshold
voltage in the transistor VT by a factor of about 1.5 or higher [2, 11. This issue is known as
the body efSect.

Consider the logic gate shown in Figure 3.52. In this circuit the Vm and Gnd con-
nectjon~ are reversed from the way in which they were used in previously discussed cir-
cuits. When both Vx, and V,, are high, then Vf is pulled up to the high output voltage,
vm = Vm - 1.5Vr. If V m = 5 V and VT = 1 V, then Vm = 3.5 V. When either V,, or
VX2 is low. then Vf is pulled down to the low output voltage, Vor = 1 .5VT, or about 1.5 V.
As shown by the truth table in the figure, the circuit represents an AND gate. In comparison
to the normal AND gate shown in Figure 3.15, the circuit in Figure 3.52 appears to be better
because it requires fewer transistors. But a drawback of this circuit is that it offers a lower
noise margin because of the poor levels of VOH and VOL.

Another important weakness of the circuit in Figure 3.52 is that it causes static power
dissipation, unlike a normal CMOS AND gate. Assume that the output of such an AND gate
drives the input of a CMOS inverter. When Vf = 3.5 V, the NMOS transistor in the inverter
is turned on and the inverter output has a low voltage level. But the PMOS transistor in

(a) An AND gate circuit (b) Truth tabie and voltage levels

Logic
value

X1 X2

0 0
0 1
1 0
1 1

Figure 3.52 A poor implementation of a CMOS AND gate.

Voltage

vf

1.5 V
1.5 V
1.5 V
3.5 v

Logic
value

f

0
0
0
1

the inverter is not turned off, because its gate-to-source voltage is -1.5 V, which is larger
than VT. Static current flows from Vm to Gnd through the inverter. A similar situation
occurs when the AND gate produces the low output Vf = 1.5 V. Here the PMOS transistor
in the inverter is turned on, but the NMOS transistor is not turned off. The AND gate

implementation in Figure 3.52 is not used in practice.

The fan-in of a logic gate is defined as the number of inputs to the gate. Depending on how
a logic gate is constructed, it may be impractical to increase the number of inputs beyond
a small number. For example, consider the NMOS NAND gate in Figure 3.53, which
has k inputs. We wish to consider the effect of k on the propagation delay t, through the
gate. Assume that all k NMOS transistors have the same width W and length L. Because
the transistors are connected in series, we can consider them to be equivalent to one long
transistor with length k x L and width W. Using equation 3.4 (which can be applied to both

*
4
a$

VDD %

4 1 vf

vX, 4 -
vx.4

-
I

v x k i (
- -

Figure 3.53 High fan-in NMOS NAND gate.
m

Here C: is the equivalent capacitance at the output of the gate, including the parasitic
contributed by each of the k transistors. The performance of the gate can be

impro\lcd somewhat by increasing W for each NMOS transistor. But this change further
increases C and comes at the expense of chip area. Another drawback of the circuit is that
each NMOS transistor has the effect of increasing VU, hence reducing the noise margin. It
is practical to build NAND gates in this manner only if the fan-in is small.

As another example of fan-in, Figure 3.54 shows an NMOS k-input NOR gate. In this
case the k NMOS transistors connected in parallel can be viewed as one large transistor
with width k x W and length L. According to equation 3.4, the propagation delay should
be decreased by the factor k. However, the parallel-connected transis tors increase the load
capacitance C at the gate's output and, more importantly, it is extremely unlikely that all of
the transistors would be turned on when V' is changing from a high to low level. It is thus
practical to build high fan-in NOR gates in NMOS technology. We should note, however,
that in an NMOS gate the low-to-high propagation delay may be slower than the high-to-
low delay as a result of the current-limiting effect of the pull-up device (see Examples 3.13
and 3.14).

High fan-in CMOS logic gates always require either k NMOS or k PMOS transistors
in series and are therefore never practical. In CMOS the only reasonable way to construct
a high fan-in gate is to use two or more lower fan-in gates. For example, one way to realize
a six-input AND gate is as 2 three-input AND gates that connect to a two-input AND gate.
It is possible to build a six-input CMOS AND gate using fewer transistors than needed with
this approach, but we leave this as an exercise for the reader (see problem 3.4).

-

Figure 3.54 High fan-in NMOS NOR gate.

To inputs of
n other inverters

Fan-ou t
Figure 3.48 illustrated timing delays for one NOT gate driving another. In real circuits

each logic gate may be required to drive several others. The number of other gates that a
specific gate drives is called its-fan-out. An example of fan-out is depicted in Figure 3 . 5 ~ ~ ,
which shows an inverter N I that drives the inputs of n other inverters. Each of the other
inverters contributes to the total capacitive loading on node f . In part (b) of the figure,
the n inverters are represented by one large capacitor C,. For simplicity, assume that each
inverter contributes a capacitance C and that C,, = n x C . Equation 3.4 shows that the
propagation delay increases in direct proportion to n.

4)

X
f "

1

I

(a) Inverter that drives n other inverters

vf - TO input\ of
X -

n other inverters

.+ cn

- -

(b) Equivalent circuit for timing purposes

3

0 Time

(c) Propagation times for different values of n

Figure 3.55 he effect of fan-opt on propagation delay.

Figure 3 . 5 5 ~ illustrates how n affects the propagation delay. It assumes that a change
from logic value 1 to 0 on signal x occurs at time 0. One curve represents the case where

n = 1, and the other curve corresponds to n = 4. Using the parameters from Example 3.7,
when n = 1, we have tp = 0.1 ns. Then for n = 4, tp 0.4 ns. It is possible to reduce t,
by increasing the W / L ratios of the transistors in N I .

Buffers
In circuits in which a logic gate has to drive a large capacitive load, buffers are often

used to improve performance. A buffer is a logic gate with one input, x, and one output,

f, which produces f = x. The simplest implementation of a buffer uses two inverters, as
shown in Figure 3.56a. Buffers can be created with different amounts of drive capability,
depending on the sizes of the transistors (see Figure 3.49). In general, because they are
used for driving higher-than-normal capacitive loads, buffers have transistors that are larger
than those in typical logic gates. The graphical symbol for a noninverting buffer is given
in Figure 3.56b.

Another type of buffer is the inverting buffer. It produces the same output as an inverter,
f = x, but is built with relatively large transistors. The graphical symbol for the inverting
buffer is the same as for the NOT gate; an inverting buffer is just a NOT gate that is capable
of driving large capacitive loads. In Figure 3.55 for large values of n an inverting buffer
could be used for the inverter labeled N 1 .

In addition to their use for improving the speed performance of circuits, buffers are
also used when high current flow is needed to drive external devices. Buffers can handle

(a) Implementation of a buffer

(b) Graphical symbol

Figure 3.56 A noninverting buffer.

C H A P T E R 3 IMPLEMENTATION TECHNOLOGY

relatively large amounts of current flow because they are built with large transistors. A
common example of this use of buffers is to control a light-emitting diode (LED). We
describe an example of this application of buffers in section 7.14.3.

In general, fan-out, capacitive loading, and current flow are important issues that the
designer of a digital circuit must consider carefully. In practice, the decision as to whether
or not buffers are needed in a circuit is made with the aid of CAD tools. I

Tri-state Buffers
In section 3.6.2 we mentioned that a type of buffer called a tri-state buffer is included

4
in some standard chips and in PLDs. A tri-state buffer has one input, x, one output, f , and a
control input, called enable, e. The graphical symbol for a tri-state buffer is given in Figure
3 . 5 7 ~ . The enable input is used to determine whether or not the tri-state buffer produces
an output signal, as illustrated in Figure 3.576. When e = 0, the buffer is completely
disconnected from the output f . When e = 1 , the buffer drives the value of x onto f ,

causing f = x. This behavior is described in truth-table form in part (c) of the figure. For
the two rows of the table where e = 0, the output is denoted by the logic value 2, which
is called the high-impedance state. The name tri-state derives from the fact that there are
two normal states for a logic signal, 0 and 1, and Z represents a third state that produces no
output signal. Figure 3.57d shows a possible implementation of the tri-state buffer. 1 Figure 3.58 shows several types of tri-state buffers. The buffer in part (b) has the same
behavior as the buffer in part (a) , except that when e = 1, it produces f = T. Part (c) of
the figure gives a tri-state buffer for which the enable signal has the opposite behavior; that
is, when e = 0, f = x, and when e = 1, f = 2. The term often used to describe this type

(a) A tri-state buffer (b) Equivalent circuit

(c) Truth table (d) Implementation -
Figure 3.57 Tri-state buffer.

132

Figure 3.58 Four types of tri-state buffers.

behavior is to say that the enable is active low. The buffer in Figure 3.58d also features
an active-low enable, and i t producesf = F when e = 0.

As a small example of how tri-state buffers can be used, consider the circuit in Figure
3.59. In this circuit the output f is equal to either xl or x2, depending on the value of s.
When s = 0, f = XI, and when s = I , f = x*. Circuits of this kind. which choose one of the
inputs and reproduce the signal on this input at the output terminal, are called multiplexer
circuits. A circuit that implements the multiplexer using AND and OR gates is shown in
Figure 2.26. We will present another way of building multiplexer circuits in section 3.9.2
and wil I discuss them in detail in Chapter 6.

In the circuit of Figure 3.59, the outputs of the tri-state buffers are wired together. This
connection is possible because the control input s is connected so that one of the two buffers
is guaranteed to be in the high-impedance state. The xl buffer is active only when s = 0,
and the xl buffer is active only when s = 1 . It would be disastrous to allow both buffers
to be active at the same time. Doing so would create a short circuit between VDD and Gnd
as soon as the two buffers produce different values. For example, assume that xl = 1 and
X2 = 0. The xl buffer produces the output Vm, and the xz buffer produces Gnd. A short
circuit is formed between Vm and Gnd, through the transistors in the tri-state buffers. The
amount of current that flows through such a short circuit is usually sufficient to destroy the
circuit.

Figure 3.59 An application of tri-state buffers.

133 .

C H A P T E R 3 IMPLEMENTATION TECHNOLOGY

The kind of wired connection used for the tri-state buffers is not possible with ordinary
logic gates, because their outputs are always active; hence a short circuit would cccur. As
we already know, for normal logic circuits the equivalent result of the wired connection is
achieved by using an OR gate to combine signals, as is done in the sum-of-products form,

3.9 TRANSMISSION GATES

In section 3.8.7 we showed that an NMOS transistor passes 0 well and 1 poorly, while a
PMOS transistor passes 1 well and 0 poorly. It is possible to combine an NMOS and a
PMOS transistor into a single switch that is capable of driving its output terminal either to
a low or high voltage equally well. Figure 3.60a gives the circuit for a transmission gate.
As indicated in parts (b) and (c) of the figure, it acts as a switch that connects x to f . Switch
control is provided by the select input s and its complement s. The switch is turned on by
setting V, = 5 V and VT = 0. When V, is 0, the NMOS transistor will be turned on (because
VGs = Vr - V' = 5 V) and V' will be 0. On the other hand, when V, is 5 V, then the PMOS
transistor will be on (VGS = VF - Vx = -5 V) and Vf will be 5 V. A graphical symbol for
the transmission gate is given in Figure 3.60d.

Transmission gates can be used in a variety of applications. We will show next how
they lead to efficient implementations of Exclusive OR (XOR) logic gates and multiplexer
circuits.

(a) Circuit (b) Truth table

(c) Equivalent circuit (d) Graphical symbol

-
Figure 3.60 A transmission gate.

so far we have encountered AND, OR, NOT, NAND, and NOR gates as the basic elements
from ~ h i c h logic circuits can be constructed. There is another basic element that is very
useful in practice, particularly for building circuits that perform arithmetic operations, as

see in Chapter 5. This element realizes the Exclusive-OR function defined in Figure
3 . 4 j n The truth table for this function is similar to the OR function except that f = 0 when
both inputs are 1 . Because of this similarity, the function is called Exclusive-OR, which is
commonly abbreviated as XOR. The graphical symbol for a gate that implements XOR is
given in past (b) of the figure.

(a) Truth table (b) Graphical symbol

(c) Sum-of-products implementation

(d) CMOS implementation

Figure 3.61 Exclusive-OR gate.

Figure 3.62 A 2-10-1 multiplexer built using transmission
gates.

The XOR operation is usually denoted with the @ symbol. It can be realized in the
sum-of-products form as

XI e3 X2 = X1x2 + x1T2

which leads to the circuit in Figure 3 . 6 1 ~ . We know from section 3.3 that each AND and OR
gate requires six transistors, while a NOT gate needs two transistors. Hence 22 transistors
are required to implement this circuit in CMOS technology. It is possible to greatly reduce
the number of transistors needed by making use of transmission gates. Figure 3.61d gives
a circuit for an XOR gate that uses two transmission gates and two inverters. The output f
is set to the value of x2 when xl = 0 by the top transmission gate. The bottom transmission
gate sets f to X2 when xl = 1. The reader can verify that this circuit properly implements
the XOR function. We show how such circuits are derived in Chapter 6.

In Figure 3.59 we showed how a multiplexer can be constructed with tri-state buffers. A
similar structure can be used to realize a multiplexer with transmission gates, as indicated
in Figure 3.62. The select input s is used to choose whether the output f should have the
value of input x l or x2. If s = 0, thenf = XI; if s = 1, thenf = xz.

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs,
AND FPGAs

We introduced PLDs in section 3.6. In the chip diagrams shown in that section, the pro-
grammable switches are represented using the symbol X. We now show how these switches
are implemented using transistors.

In commercial SPLDs two main technologies are used to manufacture the programmable
switches. The oldest technology is based on using metal-alloy fuses as programmable links.
In this technology the PLAs and PALS are rnanufaetured so that each pair of horizontal and

136

3.10 IMPLEMENTATION DETAILS FOR SPLDs, CPLDs, AND FPGAs

,,liical wires that cross is connected by a small metal fuse. When the chip is programmed,
for every connection that is not wanted in the circuit being implemented, the associated
fuse is melted. The programming process is not reversible, because the melted fuses are
destroyed. We will not elaborate on this technology, because it has mostly been replaced
by a newer, better method.

In currently produced PLAs and PALS, programmable switches are implemented using
a type of programmable transistor. Because CPLDs comprise PAL-li ke blocks, the

used in SPLDs is also applicable to CPLDs. We will illustrate the main ideas
by first describing PLAs. For a PLA to be useful for implementing a wide range of logic
functions, it should support both functions of only a few variables and functions of many
variables. In section 3.8.8 we discussed the issue of fan-in of logic gates. We showed that
when [he fan-in is high, the best type of gate to use is the NMOS NOR gate, Hence PLAs
are usually based on this type of gate.

As a small example of PLA implementation, consider the circuit in Figure 3.63. The
horizontal wire labeled S1 is the output of an NMOS NOR gate with the inputs x2 and
3. Thus & = ~2 + T3. Similarly, S2 and S3 are the outputs of NOR gates that produce

x1 X2 X3

II I

- *-. - . - NOR plane

vm

I

I

- -

NOR plane fl f2

Figure 3.63 An example of a NOR-NOR Pm.

S2 = xl + x3 and S3 = xl + Y2 + x3. The three NOR gates that produce SI, S2, and S3
are arranged in a regular structure that is efficient to create on an integrated circuit. This
structure is called a NOR plane. The NOR plane is extended to larger sizes by adding
columns for additional inputs and adding rows for more NOR gates.

The signals S1 , S2, and S3 serve as inputs to a second NOR plane. This NOR plane is
turned 90 degrees clockwise with respect to the first NOR plane to make the diagram easier
to draw. The NOR gate that produces the output,f~ has the inputs S1 and Sz. Thus

fl =s1 +S*=(x2+xi)+(x1+x3)

Using DeMorgan's theorem, this expression is equivalent to the product-of-sums expression
- -

fl = s1s2 = (x2 +%)(XI + x3)

Similarly, the NOR gate with output f2 has inputs S1 and S3. Therefore,

f 2 = S1 +s3 = (x2 + X 3) + (x, +X2 + x 3)

which is equivalent to

The style of PLA illustrated in Figure 3.63 is called a NOR-NOR PLA. Alternative
implementations also exist, but because of its simplicity, the NOR-NOR style is the most
popular choice. The reader should note that the PLA in Figure 3.63 is not programmable-
with the transistors connected as shown, it realizes only the two specific logic functions f i
and f2. But the NOR-NOR structure can be used in a programmable version of the PLA, as
explained below.

Strictly speaking, the term PLA should be used only for the fixed type of PLA de-
picted in Figure 3.63. The proper technical term for a programmable type of PLA is
Jield-programmable logic array (FPLA). However, it is common usage to omit the F. Fig-
ure 3 . 6 4 ~ shows a programmable version of a NOR plane. It has n inputs, X I , . . . , x,,
and k outputs, S1, . . . , S k . At each crossing point of a horizontal and vertical wire there
exists a programmable switch. The switch comprises two transistors connected in series, an
NMOS transistor and an electrically erasable programma bEe read-only memory (EEPROM)
transistor.

The programmable switch is based on the behavior of the EEPROM transistor. Elec-
tronics textbooks, such as [I , 21, give detailed explanations of how EEPROM transistors
operate. Here we will provide only a brief description. A programmable switch is depicted
in Figure 3.64b, and the structure of the EEPROM transistor is given in Figure 3 .64~. The
EEPROM transistor has the same general appearance as the NMOS transistor (see Figure
3.43) with one major difference. The EEPROM transistor has two gates: the normal gate
that an NMOS transistor has and a secondfloating gare. The floating gate is so named be-
cause it is surrounded by insulating glass and is not connected to any part of the transistor.
When the transistor is in the original unprogrammed state, the floating gate has no effect
on the transistor's operation and it works as a normal NMOS transistor. During normal use
of the PLA, the voltage on the floating gate V, is set to Vm by circuitry not shown in the
figure, and the EEPROM transistor is turned on.

Programming of the EEPROM transistor is ~ccomplished by turning on the transistor
with a higher-than-normal voltage level (typically, V , = 12 V), which causes a large amount

4 3.1 0 IMPLEMENTATION DETAILS FOR SPLDS, CPLDS, AND FPGAs

(a) Programmable NOR-plane

(b) A programmable switch (c) EEPROM transistor

Figure 3.W Using EEPROM transistors to create a programmable NOR plane.

of current to flow through the transistor's channel. Figure 3 . 6 4 ~ shows that a part of the
floating gate extends downward so that it is very close to the top surface of the channel.
Ahigh current flowing through the channel causes an effect, known as Fowler-Nordheim
tunneling, in which some of the electrons in the channel "tunnel" through the insulating
glass at its thinnest point and become trapped under the floating gate. After the programming

C H A P T E

process is
When the

completed,
voltage V,

IMPLEMENTATION 1ECHNOLOGY

the trapped electrons repel other electrons from entering the channel,
= 5 V is applied to the EEPROM transistor, which would normally

cause it to turn on, the trapped electrons keep the transistor turned off. Hence in the NOR
plane in Figure 3.64a, programming is used to "disconnect" inputs from the NOR gates.
For the inputs that should be connected to each NOR gate, the corresponding EEPROM

I
transistors are left in the unprogrammed state.

Once an EEPROM transistor is programmed, it retains the programmed state perma-
nently. However, the programming process can be reversed. This step is called erasing,

I
and it is done using voltages that are of the opposite polarity to those used for programming.
In this case, the applied voltage causes the electrons that are trapped under the floating gate
to tunnel back to the channel. The EEPROM transistor returns to its original state and again
acts like a normal NMOS transistor.

For completeness, we should also mention another technology that is similar to EEP-
ROM, called erasable PROM (EPROM). This type of transistor, which was actually created
as the predecessor of EEPROM, is programmed in a similar fashion to EEPROM. However,
erasing is done differently: to erase an EPROM transistor. i t must be exposed to light energy
of specific wavelengths. To facilitate this process, chips based on EPROM technology are
housed in packages with a clear glass window through which the chip is visible. To erase
a chip, it is placed under an ultraviolet light source for several minutes. Because erasure
of EPROM transistors is more awkward than the electrical process used to erase EEPROM
transistors, EPROM technology has essentially been replaced by EEf ROM technology in
practice.

A cornpIete NOR-NOR PLA using EEPROM technology, with four inputs, six sum
terms in the first NOR plane, and two outputs, is depicted in Figure 3.65. Each pro-
grammable switch that is programmed to the off state is shown as X in black, and each
switch that is left unprogrammed is shown in blue. With the programming states shown in
the figure, the PLA realizes the logic functions f = (x l + x 3) (xl + Z2) (X l + x2 + Z3) and

f2 = (~ 1 + X3)(X, + ~ 2) (~ 1 + X 2) .

Rather than implementing logic functions in product-of-sums form, a PLA can also
be used to realize the sum-of-products form. For sum-of-products we need to implement
AND gates in the first NOR plane of the PLA. If we first complement the inputs to the
NOR plane, then according to DeMorgan's theorem, this is equivalent to creating an AND
plane. We can generate the complements at no cost in the PLA because each input is already
provided in both true and complemented forms. An example that illustrates implementation
of the sum-of-products form is given in Figure 3.66. The outputs from the first NOR plane
are labeled P I , . . . , Pf, to reflect our interpretation of them as product terms. The signal

- -
P I is programmed to realize +h = ~ 1 x 2 . Similarly, P2 = xIX3, P3 = x1x2x3, and
P4 = % X 2 X 3 . Having generated the desired product terms, we now need to OR them. This
operation can be accomplished by complementing the outputs of the second NOR plane.
Figure 3.66 includes NOT gates for this purpose. The states indicated for the programmable
switches in the OR plane (the second NOR plane) in the figure yield the following outputs:

- -
fi = P1 + PZ + P3 = ~ 1 x 2 + XI& + X 1 x 2 X 3 , andf2 = P I + P4 = XIX? + x ~ x ~ x ~ .

The concepts described above for PLAs can also be used in PALS. Figure 3.67 shows a
PAL with four inputs and two outputs. Let us assume that the first NOR plane is programmed
to realize product terms in the manner described above. Notice in the figure that the product

3.1 0 IMPLEMENTATION DETAILS FOR SPLDs, CPLDS, AND FPGAs

Figure 3.65 Programmable version of the NOR-NOR PLA.

X 1 "2 "3 X4 NOR plane

vm
!

terms are hardwired in groups of three to OR gates that produce the outputs of the PAL.
AS we illustrated in Figure 3.29, the PAL may also contain extra circuitry between the OR
gates and the output pins, which is not shown in Figure 3.67. The PAL is programmed
to realize the same logic functions, fl and ,f2, that were generated in the PLA in Figure
3-66. Observe that the product term xlxz is implemented twice in the PAL, on both Pl and
P4. Duplication is necessary because in a PAL product terms cannot be shared by multiple
outputs, as they can be in a PLA. Another detail to observe in Figure 3.67 is that although
the function fi requires only two product terms, each OR gate is hardwired to three product
terms. The extra product term P6 must be set to logic value 0, so that it has no effect. This
is accomplished by programming P6 SO that it produces the product of an input and that

complement, which always results in 0. In the figure, P6 = xlXl = 0, but any other
could also be used for this purpose.

The PAL-like blocks contained in CPLDs are usually implemented using the techniques
discussed in this section. In a typical CPLD, the AND plane is built using NMOS NOR
gates, with appropriate complementing of the inputs. The OR plane is hardwired as it is in

\8
F\

u

\/
\

*A
#\

T*

>C

v \/

r>. \# \0

f\

\0 \I/
#\

\A
#\

\0
#\

s4
4

\

\& \/
/\

\ 1'1' I I -
NOR plane

4- f -
\F \0

0\
\0
0\

\/
0N

\0
0\

\/ s5
0\

NOR plane

vm
I 1
DD

4

u

\I
4\

\/ \M
/\ 0\

\0 \/
4\

\# \/
#\

\0 I d
#\

NOR plane

Figure 3.66 A NOR-NOR PLA used for sum-of-~roducts. -

a PAL, rather than being fully programmable as in a PLA. However, some flexibility exists
in the number of product terms that feed each OR gate. This flexibility is accomplished by I
using a programmable circuit that can allocate the product terms to whichever OR gates
the user desires. An example of this type of flexibility, provided in a commercial CPLD, is
given in Appendix E.

P
3 d

i:

3.10.1 IMPLEMENTATION IN FPGAs k g 4
FPGAs do not use EEPROM technology to implement the programmable switches. ~nstead,

..

the programming information is stored in memory cells, called static random access memo0
(SRAM) cells. The operation of this type of storage cell is described in detail in section
10.1.3. For now it is sufficient to know that each cell can store either a logic 0 or 1, and it
provides this stored value as an output. An SRbM cell is used for each truth-table value I

NOR plane

Figure 3.67 PAL to implement the functions in Figure 3.66.

stored in a LUT. SRAM cells are also used to configure the interconnection wires in an
FPGA.

Figure 3.68 depicts a small section of the FPGA from Figure 3.39. The logic block
shown produces the output-fi, which is driven onto the horizontal wire drawn in blue. This
wire can be connected to some of the vertical wires that it crosses, using programmable

(to other wires)

Figure 3.68 Pass-transistor switches in FPGAs.

-
X1

0

O f l 0
1 - v--{%

SRAM

-

3
SRAM

C H A P T E R 3 4 IMPLEMENTATION TECHNOLOGY

switches. Each switch is implemented using an NMOS transistor, with its gate terminal
controlled by an SRAM cell. Such a switch is known as a pass-transistor switch. If a
0 is stored in an SRAM cell, then the associated NMOS transistor is turned off. But if
a 1 is stored in the SRAM cell, as shown for the switch drawn in blue, then the NMOS
transistor is turned on. This switch forms a connection between the two wires attached to its
source and drain terminals. The number of switches that are provided in the FPGA depends
on the specific chip architecture. In some FPGAs some of the switches are implemented
using tri-state buffers, instead of pass transistors. Examples of commercial FPGA chips are
presented in Appendix E.

In section 3.8.7 we showed that an NMOS transistor can only partially pass a high logic
value. Hence in Figure 3.68 if Vf , is a high voltage level, then VA is only partially high. Using
the values from section 3.8.7, if V', = 5 V, then VA = 3.5 V. As we explained in section
3.8.7, this degraded voltage level has the result of causing static power to be consumed
(see Example 3.15). One solution to this problem [I] is illustrated in Figure 3.69. We
assume that the signal VA passes through another pass-transistor switch before reaching its
destination at another logic block. The signal VB has the same value as VA because the
threshold voltage drop occurs only when passing through the first pass-transistor switch.
To restore the level of VR, it is buffered with an inverter. A PMOS transistor is connected
between the input of the inverter and Vm, and that transistor is controlled by the inverter's
output. The PMOS transistor has no effect on the inverter's output voltage level when
VB = 0 V. But when VB = 3.5 V, then the inverter output is low, which turns on the PMOS
transistor. This transistor quickly restores VB to the proper level of VDD, thus preventing
current from flowing in the steady state. Instead of using this pull-up transistor solution,
another possible approach is to alter the threshold voltage of the PMOS transistor (during
the integrated circuit manufacturing process) in the inverter in Figure 3.69, such that the
magnitude of its threshold voltage is large enough to keep the transistor turned off when -.
Vs = 3.5 V. In commercial FPGAs both of these solutions are used in different chips. 4(

An alternative to using a single NMOS transistor is to use a transmission gate, de-
scribed in section 3.9, for each switch. While this solves the voltage-level problem, it has
two drawbacks. First, having both an NMOS and PMOS transistor in the switch increases the

Figure 3.69 Restoring a high voltage level.

C

0

SRAM
C

VA

vB
- - - - To logic block

loading on the interconnection wires, which increases the propagation delays
and power consumption. Second, the transmission gate takes more chip area than does a
,ingle NMOS transistor. For these reasons, commercial FPGA chips do not cun.ently use
transmission-gate switches.

we have described the most important concepts that are needed to understand how logic
gates are built using transistors. Our discussions of transistor fabrication, voltage levels,
propagation delays, power dissipation, and the like are meant to give the reader an appre-
ciation of the practical issues that have to be considered when designing and using logic
circuits.

We have introduced several types of integrated circuit chips. Each type of chip is
appropriate for specific types of applications. The standard chips, such as the 7400 series,
contain only a few simple gates and are rarely used today. Exceptions to this are the buffer
chips, which are employed in digital circuits that must drive large capacitive loads at high
speeds. The various types of PLDs are widely used in many types of applications. Simple
PLDs, like PLAs and PALS, are appropriate for implementation of small logic circuits.
The SPLDs offer low cost and high speed. CPLDs can be used for the same applications
as SPLDs, but CPLDs are also well suited for implementation of larger circuits. up to
about IO.OOO to 20,000 gates. Many of the applications that can be targeted to CPLDs can
alter-natively be realized with FPGAs. Which of these two types of chips are used in a
specific design situation depends on many factors. Following the trend of putting as much
circuitry as possible into a single chip, CPLDs and FPGAs are much more widely used than
SPLDs. Most digital designs created in the industry today contain some type of PLD.

The gate-array, standard-cell, and custom-chip technologies are used in cases where
PLDs are not appropriate. Typical applications are those that entail very large circuits,
require extremely high speed-of-operation, need low power consumption, and where the
designed product is expected to sell in large volume.

The next chapter examines the issue of optimization of logic functions. Some of the
techniques discussed are appropriate for use in the synthesis of logic circuits regardless
of what type of technology is used for implementation. Other techniques are suitable
for synthesizing circuits so that they can be implemented in chips with specific types of
resources. We will show that when synthesizing a logic function to create a circuit, the

methods used depend, at least in part, on which type of chip is being used.

3.1 2 EXAMPLES OF SOLVED PROBLEMS
This section presents some typical problems that the reader may encounter, and shows how

problems can be solved.

C H A P T E R 3 IMPLEMENTATION lECHNOLOGY

X5

Figure 3.70 The AOI cell for Example 3.9.

-
Problem: We introduced standard cell technology in section 3.7. In this technology, circuits
are built by interconnecting building-block cells that implement simple functions, like basic
logic gates, A commonly used type of standard cell are the and-or-invert (AOI) cells, which
can be efficiently built as CMOS complex gates. Consider the AOI cell shown in Figure
3.70. This cell implements the function f = xlxz + ~3x4 + xg. Derive the CMOS complex
gate that implements this cell.

Solution: Applying Demorgan's theorem in two steps gives
- - -

f = X1X2 . x3x4 - X5

= (El +%). (F3 +X4) 'Xg

Since all input variables are complemented in this expression, we can directly derive
the pull-up network as having parallel-connected PMOS transistors controlled by xl and
X Z , in series with parallel-connected transistors controlled by x3 and x4, in series with a
transistor controlled by x5 . This circuit, along with the corresponding pull-down network,
is shown in Figure 3.7 1.

I Problem: For the CMOS complex gate in Figure 3.7 1, determine the sizes of transistors
that should be used such that the speed performance of this gate is similar to that of an
inverter.

Solution: Recall from section 3.8.5 that a transistor with length L and width W has a drive
strength proportional to the ratio W / L . Also recall that when transistors are connected in
parallel their widths are effectively added, leading to an increase in drive strength. Similarly,
when transistors are connected in series, their lengths are added, leading to a decrease in
drive strength. Let us assume that all NMOS and PMOS transistors have the same length,
L, = L, = L. For the pull-down network in Figure 3.71, the worst-case path involves just
a single NMOS transistor. Thus, we can make the length, L,, of each NMOS transistor the
same size as in the inverter. For the pull-up network, the worst-case path involves three
transistors in series. Since, as we said in section 3.8.1, PMOS transistors have about half the
drive strength of NMOS transistors, we should make the effective size of the three PMOS
transistors in series about twice that of an NMOS transistor. Therefore, ,

L p = L , x 3 x 2 = 6 L , .

Figure 3.71 Circuit for Example 3.9.

Problem: In section 3.8.5, we said that the time needed to charge a capacitor is given by E;

CAV
tP = -

I
Derive this expression.

Solution: As we stated in section 3.8.5, the voltage across a capacitor cannot change
instantaneously. In Figure 3.50n, as Vf is charged from 0 volts toward VDD, the voltage
changes according to the equation

In this expression, the independent variable t is time, and i (t) represents the instantaneous
cunent flow through the capacitor at time t . Differentiating both sides of this expression

with respect to time, and rearranging gives

For the case where I is constant, we have

Therefore,

1.1 2 Problem: In our discussion of Figure 3.50a, in section 3.8.6, we said that a capacitor, C ,
that has been charged to the voltage V' = Vm, stores an amount of energy equal to CV,$/Z,
Derive this expression.

Solution: As shown in Example 3.11, the current flow through a charging capacitor, C , is
related to the rate of change of voltage across the capacitor, according to

The instantaneous power dissipated in the capacitor is

P = i (t) x Vf

Since energy is defined as the power used over a time period, we can calculate the energy,
Ec, stored in the capacitor as Vf changes from 0 to Vm by integrating the instantaneous
power over time, as follows

32

4 = 1 i(r)vf dl

0

Substituting the above expression for i (t) gives
CO

d Vf E ~ = J c Z V l d t

0

1- 1 3 Problem: In the original NMOS technology, the pull-up device was an n-channel MOSFET*
But most integrated circuits fabricated today use CMOS technology. Hence it is convenient
to implement the pull-up resistor using a PMOS transistor, as shown in Figure 3.72. Such

148 h

Figure 3.72 The pseudo-NMOS inverter.

a circuit is referred to as a pseudo-NMOS circuit. The pull-up device is called a "weak"
PMOS transistor because it has a small W / L ratio.

When V, = Vm, Vf has a low value. The NMOS transistor is operating in the triode
region, while the PMOS transistor limits the current flow because it is operating in the
saturation region. The current through the NMOS and PMOS transistors has to be equal
and is given by equations 3.1 and 3.2. Show that the low-output voltage, V' = Vm is given
by

where k, and k,, called the gain factors, depend on the sizes of the PMOS and NMOS
transistors, respectively. They are defined by k, = kLWp/Lp and k,, = k; W,/L..

Solution: For simplicity we will assume that the magnitude of the threshold voltages for
both the NMOS and PMOS transistors are equal, so that

The PMOS transistor is operating in the saturation region, so the current flowing through it
is given by

j

Similarly, the NMOS transistor is operating in the triode region, and its current flow is
defined by

Since there is only one path for current to flow, we can equate the currents flowing through
the NMOS and PMOS transistors and solve for the voltage Vf .

This quadratic equation can be solved using the standard formula, with the parameters

which gives

Only one of these two solutions is valid, because we started with the assumption that the
NMOS transistor is in the triode region while the PMOS is in the saturation region. Thus

3- 1 4 Problem: For the circuit in Figure 3.72, assume the values kh = 60 p ~ / ~ Z , k; = 0.4 k;,
W./L, = 2.0 fim/0.5 pm, W,/L, = 0.5 pm/0.5 Im, Vm = 5 V, and VT = 1 V. When
V, = VDD, calculate the following:
(a) The static current, I,,,, .
(b) The on-resistance of the NMOS transistor.
(4 VOL.
(d) The static power dissipated in the inverter.
(e) The on-resistance of the PMOS transistor.

(0 Assume that the inverter is used to drive a capacitive load of 70 fE Using quation
the low-to-high and high-to-low propagation delays.

solution: (a) The PMOS transistor is saturated, therefore

(b) Using equation 3.3,

(c) Using the expression derived in Example 3.13 we have

(f The low-to-high propagation delay is

The high-to-low propagation delay is

1 5 Problem: In Figure 3.69 we showed a solution to the static power dissipation problem when
NMOS pass transistors are used. Assume that the PMOS pull-up transistor is removed
from this circuit. Assume the parameters k; = 60 / 1 ~ / ~ 2 , k; = 0.5 x k;, W,,/Ln =
2.0 pm/0.5 pm, W,/L, = 4.0 prn/0.5 pm, Vm = 5 V, and VT = 1 V. For VB = 3.5 V,
calculate the following:
(a) The static current I,,, .
(b) The voltage Vf at the output of the inverter.
(c) The static power dissipation in the inverter.
(d) If a chip contains 250,000 inverters used in this manner, find the total static power
dissipation.

Solution: (a) If we assume that the PMOS transistor is operating in the saturation region,
then the current flow through the inverter is defined by I

(b) Since the static current, I,,,, flowing through the PMOS transistor also flows through
the NMOS transistor, then assuming that the NMOS transistor is operating in the triode I

Solving this quadratic equation yields Vf = 0.05 V. Note that the output voltage
satisfies the assumption that the PMOS transistor is operating in the saturation region while
the NMOS transistor is operating in the triode region.
(c) The static power dissipated in the inverter is

Ps = I,,, x VDD = 30 PA x 5 V = 150 pW

(d) The static power dissipated by 250,000 inverters is

* 250,000 x Ps = 37.5 W

Answers to problems marked by an asterisk are given at the back of the book.

3.1 Consider the circuit shown in Figure P3.1.
(a) Show the truth table for the logic function f.
(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are
needed?

Figure P3.1 A sum-of-products CMOS circuit.

3.2 (a) Show that the circuit in Figure P3.2 is functionally equivalent to the circuit in Figure
P3.1.
(b) How many transistors are needed to build this CMOS circuit?

.h

Figure P3.2 A CMOS circuit built with multiplexers.

3.3 (a) Show that the circuit in Figure P3.3 is functionally equivalent to the circuit in Figure
P3.2.
(b) How many transistors are needed to build this CMOS circuit if each XOR gate is
implemented using the circuit in Figure 3.61d?

- 153

Figure P3.3 Circuit for problem 3.3.

*3.4 In Section 3.8.8 we said that a six-input CMOS AND gate can be constructed usin!
three-input AND gates and a two-input AND gate. This approach requires 22 transi
Show how you can use only CMOS NAND and NOR gates to build the six-input
gate, and calculate the number of transistors needed. (Hint: use DeMorgan's theoren

3.5 Repeat problem 3.4 for an eight-input CMOS OR gate.

3.6 (a) Give the truth table for the CMOS circuit in Figure P3.4.
(b) Derive a canonical sum-of-products expression for the truth table from part (a).
many transistors are needed to build a circuit representing the canonical form if only t
OR, and NOT gates are used?

Figure P3.4 A three-input CMOS circuit.

3.7 (a) Give the truth table for the CMOS circuit in Figure P3.5.
(b) Derive the simplest sum-of-products expression for the truth table in part (a).
many transistors q e needed to build the sum-of-products circuit using CMOS AND
and NOT gates?

Figure P3.5 A four-input CMOS circuit,

* 3.8 Figure P3.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS
transistors.

Figure P3.6 The PDN in a CMOS circuit.

Figure P3.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS
transistors.

I : V.,

Figure P3.7 The PUN in a CMOS circuit.

Derive a CMOS complex gate for the logic function f (xl, xz, x3, x4) = C m(0, 1,2,4,5,
6, 8,9, 10).

Derive a CMOS complex gate for the logic function f (xl, xz, xj, x4) = C m(0, 1, 2,4,6,
8, 10, 12, 14).

Derive a CMOS complex gate for the logic function f = xy + xz. Use as few transistors as
possible (Hint: consider?).

Derive a CMOS complex gate for the logic function f = xy + xz + yz. Use as few transis-
tors as possible (Hint: consider f).
For an NMOS transistor, assume that k: = 20 @A/V~, W / L = 2.5 pm10.5 pm, VGs =
5 V, and VT = 1 V. Calculate
(a) ID when Vm = 5 V
(b) ID when Vm = 0.2 V

For a PMOS transistor, assume that k; = 10 ~ A / v ~ , W / L = 2.5 ym/0.5 pm, VGs =
-5 V, and VT = - 1 V. Calculate
(a) ID when Vm = -5 V
(b) ID when VDs = -0.2 V

For an NMOS transistor, assume that k; = 20 ,YA/v', W / L = 5.0 pm/0.5 pm, VGs =
5 V, and VT = 1 V. For small Vm, calculate Rm.

For an NMOS transistor, assume that kf: = 40 ,uA/v*, W / L = 3.5 prn/0.35 pm, VGs
3.3 V, and Vr = 0.66 V. For small Vm, calculate Rm. .

3.1 8 For a PMOS transistor, assume that ki = 10 ,XA/V~, W / L = 5.0 pm/0.5 pm, VGs =
-5 V, and VT = -1 V. For Vm = -4.8 V, calculate RE.

3.19 For a PMOS transistor, assume that k; = 16 ,uA/v?, W / L = 3.5 pm/0.35 pm, VGs =
-3.3 V, and VT = -0.66 V. For VDs = -3.2 V, calculate RDs.

In Example 3.13 we showed how to calculate voltage levels in a pseudo-NMOS inverter.
Figure P3.8 depicts a pseudo-PMOS inverter. In this technology, a weak NMOS transistor
is used to implement a pull-down resistor.

When V, = 0, Vf has a high value. The PMOS transistor is operating in the triode
region, while the NMOS transistor limits the current flow, because it is operating in the
saturation region. The current through the PMOS and NMOS transistors has to be the same
and is given by equations 3.1 and 3.2. Find an expression for the high-output voltage,
V' = Vm, in terms of VDD, V T , kp, and k,, where kp and k,, are gain factors as defined in
Example 3.1 3.

Figure P3.8 The pseudo-PMOS inverter.

For the circuit in Figure P3.8, assume the values k; = 60 C I ~ / ~ 2 , k; = 0.4kA, W,/L, =
0.5 pm/0.5 pm, Wp/Lp = 4.0 pm/0.5 pm, VDD = 5 V and VT = 1 V. When V , = 0,
calculate the following:
(a) The static current, I,,,
(b) The on-resistance of the PMOS transistor
(c) VOH
(d) The static power dissipated in the inverter
(e) The on-resistance of the NMOS transistor
(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using equation 3.4,
calculate the low-to-high and high-to-low propagation delays,

Repeat problem 3.21 assuming that the size of the NMOS transistor is changed to W,/L, ,
4.0 pm/0.5 pm. 4
Example 3.13 (see Figure 3.72) shows that in the pseudo-NMOS technology the pull-up
device is implemented using a PMOS transistor. Repeat this problem for a NAND gat,
built with pseudo-NMOS technology. Assume that both of the NMOS transistors in the
gate have the same parameters, as given in Example 3.14.

Repeat problem 3.23 for a pseudo-NMOS NOR gate. 4
(a) For VIH = 4 V, VOW = 4.5 V, VIL = 1 V, VOL = 0.3 V, and Vm = 5 V, calculate the
noise margins NMH and NML.
(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage dmp
across each transistor is 0.1 V, what is VOL? What is the corresponding NML using the other
parameters from part (a).

Under steady-state conditions, for an n-input CMOS NAND gate, what are the voltage
levels of Vm and VOH? Explain.

For a CMOS inverter, assume that the load capacitance is C = 150 fF and Vm = 5 V.
The inverter is cycled through the low and high voltage levels at an average rate off =
75 MHz.
(a) Calculate the dynamic power dissipated in the inverter. 4
(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic
power dissipated if 20 percent of the gates change values at any given time.

Repeat problem 3.27 for C = 120 fE VDD = 3.3 V, and f = 125 MHz.
2 1 In a CMOS inverter, assume that k; = 20 FA/V , k, = 0.4 x k;, W,,/L, = 5.0 pm10.5 pm, '

W,,/L, = 5.0 pm/0.5 ,urn, and VDD = 5 V. The inverter drives a load capacitance of
150 fE
(a) Find the high-to-low propagation delay. 1
(b) Find the low-to-high low propagation delay.
(c) What should be the dimensions of the PMOS transistor such that the low-to-high and
high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor's size
on the load capacitance of the inverter.

2 f Repeat problem 3.29 for the parameters k; = 40 kA/V , k, = 0.4 x kk, W,/L, = W,/L, =
3.5 pm/0.35 pm, and Vm = 3.3 V.

In a CMOS inverter, assume that WJL,, = 2 and W,/L, = 4. For a CMOS NAND gate,
calculate the required WLratios of the NMOS and PMOS transistors such that the available
current in the gate to drive the output both low and high is equal to that in the inverter.

Repeat problem 3.3 1 for a CMOS NOR gate.

Repeat problem 3.3 1 for the CMOS complex gate in Figure 3.16. The transistor sizes
should be chosen such that in the worst case the available current is at least as large as in
the inverter.

Repeat problem 3.31 for the CMOS complex gate in Figure 3.17.

In Figure 3.69 we showed a solution to the static power dissipation problem when NMOS
pass transistors are used. Assume that the PMOS pull-up transistor is removed from this
circuit. Assume the parameters k; = 60 C L ~ / ~ 2 , ki = 0.4 x k:, Wn/L,, = 1.0 pm/0.25 pm,
Wp/Lp = 2.0 pm/0.25 pm, Vm = 2.5 V, and VT = 0.6 V. For VB = 1.6 V, calculate the
following:
(a) the static current, I,,,
(b) the voltage, Vf, at the output of the inverter
(c) the static power dissipation in the inverter

dissipation.

I
(d) If a chip contains 500,000 inverters used in this manner, find the total static power

'/
Using the style of drawing in Figure 3.66, draw a picture of a PLAprogramrned to implement
fi (XI, X Z , x3) = m(1,2,4,7) . The PLA should have the inputs xl, . . . , x3; the product
terms PI, . . . , P4; and the outputsfi and f 2 .

Using the style of drawing in Figure 3.66, draw a picture of a PLAprogramrned to implement
f l (xl , x2, x3) = rn(O,3,5,6). The PLA should have the inputs xl , . . . , x3; the product
terns PI, . . . , P4; and the outputsfi and fi.

Show how the function5 from problem 3.36 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implement f i . The PLA should
have the inputs XI, . . . , x3; the sum terms S1, . . . , S4; and the outputs f l and fi.

Show how the function fi from problem 3.37 can be realized in a PLA of the type shown in
Figure 3.65. Draw a picture of such a PLA programmed to implementf,. The PLA should
have the inputs xl , . . . , x3; the sum terms S! , . . . , S4; and the outputs fl and f2.

Repeat problem 3.38 using the style of PLA drawing shown in Figure 3.63.

Repeat problem 3.39 using the style of PLA drawing shown in Figure 3.63.

Given that fl is implemented as described in problem 3.36, list all of the other possible logic
functions that can be realized using output f2 in the PLA.

Given that fl is implemented as described in problem 3.37, list all of the other possible logic
functions that can be realized using output f2 in the PLA.

Consider the function f (xl, x2, x3) = x l i 2 + ~ 1 x 3 + x2E3. Show a circuit using 5 two-input
lookup-tables (LUTs) to implement this expression. As shown in Figure 3.39, give the truth
table implemented in each LUT. You do not need to show the wires in the FPGA.

Consider the function f (xl, xz, x3) = m(2, 3,4 ,6 ,7) . Show how it can be realized using
two two-input LUTs. As shown in Figure 3.39, give the truth table implemented in each
LUT. You do not need to show the wires in the FPGA.

Given the functionf = ~ ~ ~ 2 x 4 + x2x3X4 + XlX2X3, a straightforward implementation in an
FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3
three-input LUTs. Label the output of each LUT with an expression representing the logic
function that it implements.

c H A P T E R 3 IMPLEMENTATION r l k ~ ~ ~ ~ ~ ~ ~ ~

For f in problem 3.46, show a circuit of two-input LUTs that realizes the function. You are
to use exactly seven two-input LUTs. Label the output of each LUT with an expression
representing the logic function that it implements.

Figure 3.39 shows an FPGA programmed to implement a function. The figure shows one
pin used for functionf, and several pins that are unused. Without changing the programming
of any switch that is turned on in the FPGA in the figure, list 10 other logic functions, in
addition tof, that can be implemented on the unused pins.

Assume that a gate array contains the type of logic cell depicted in Figure P3.9. The inputs
in1, . . . , in7 can be connected to either 1 or 0, or to any logic signal.
(a) Show how the logic cell can be used to realize f = ~ 1 x 2 + x3.
(b) Show how the logic cell can be used to realize f = ~1x3 + ~2x3.

in1 in2 in3

out

in4 in5 in6 in 7

Figure P3.9 A gate-array logic cell.

3.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The
inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show
how the following logic functions can be realized in the gate array. (Hint: use DeMorgan's I
theorem.) -
(a)f = ~ 1 x 2 +x3
(b) f = XlX2X4 + ~2x334 + y1

3.5 1 Write VHDL code to represent the function

(a) Use your CAD tools to implement f in some type of chip, such as a CPLD. Show the
logic expression generated for f by the tools. Use timing simulation to determine the time
needed for a change in inputs X I , xz, or x3 to propagate to the outputf.
(b) Repeat part (a) using a different chip, such as an FPGA for implementation of the circuits

3.52 Repeat problem 3.5 1 for the function

f = (~ 1 + X 2 + Xq) ' (F2 + X3 + Xq) ' 6 1 + X3 + Xq) - (?I + F3 + Xq)
3.53 Repeat problem 3.51 for the function

3.54 What logic gate is realized by the circuit in Figure P3.10? Does this circuit suffer from any
major drawbacks?

I
Y f

Figure P3.10 Circuit for problem 3.54.

*3.55 What logic gate is realized by the circuit in Figure P3.1 I ? Does this circuit suffer from any
major drawbacks'?

Figure P3.11 Circuit for problem 3.55.

I REFERENCES

1. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. (Oxford University
Press: New York, 2003).

2. J. M. Rabaey, Digital Integrated Circuits, (Prentice-Hall: Englewood Cliffs, NJ,
1996).

3. Texas Instruments, Logic Products Selection Guide and Databook CD-ROM, 1997.

4. National Semiconductor, VHCNHCT Advanced CMOS Logic Databook, 1993.

5. Motorola, CMOS Logic Databook, 1996.

6. Toshiba America Electronic Components, TC74VHCNHCT Series CMOS Logic
Databook, 1994.

7. Integrated Devices Technology, High Performance Logic Databook, 1994.

8. J. F. Wakerly, Digital Design Principles and Practices 3rd ed. (Prentice-Hall:
Englewood Cliffs, NJ, 1999).

9. M. M, Mano, Digital Design 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002).

10. R. H. Katz, Contemporaly Logic Design (Benjamin/Curnmings: Redwood City, CA,
1994).

11. J. F! Hayes, Introduction to h g i c Design (Addison-Wesley: Reading, MA, 1993).
4!

12. D. D. Gajski, Principles ofDigital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

c h a p t e r

In this chapter you will learn about:

Synthesis of logic functions

Analysis of logic circuits

Techniques for deriving minimum-cost implementations of logic functions

a Graphical representation of logic functions in the form of Karnaugh maps

0 Cubical representation of logic functions

Use of CAD tools and VHDL to implement logic functions

Jn Chapter 2 we showed that algebraic manipulation can be used to find the lowest-cost implementations of

logic functions. The purpose of that chapter was to introduce the basic concepts in the synthesis process
The reader is probably convinced that it is easy to derive a straightforward realization of a logic function in
a canonical form, but it is not at all obvious how to choose and apply the theorems and properties of section
2.5 to find a minimum-cost circuit. Indeed, the algebraic manipulation is rather tedious and quite impractical
for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does
not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is essential to

know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. As a first step we will discuss a graphical approach, known as
the Karnaugh map, which provides a neat way to manually derive minimum-cost implementations of simple
logic functions. Although it is not suitable for implementation in CAD tools, it illustrates a number of key
concepts. We will show how both two-level and multilevel circuits can be designed. Then we will describe a
cubical representation for logic functions, which is suitable for use in CAD tools. We will also continue our
discussion of the VHDL language.

In section 2.6 we saw that the key to finding a minimum-cost expression for a given logic
function is to reduce the number of product (or sum) terms needed in the expression, by
applying the combining property 14a (or 14b) as judiciously as possible. The Karnaugh map
approach provides a systematic way of performing this optimization. To understand how it
works, it is useful to review the algebraic approach from Chapter 2. Consider the function
f in Figure 4.1, The canonical sum-of-products expression for f consists of minterrns rno,
m2, m4, m5, and mg, SO that

f = X1X2X3 + X1x2F3 + x ~ ? ~ X ~ + xIX2x3 $ X I X ~ X ~

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both rno and m2 include Fl and Xj, but they differ in the value of x2 because ma
includes Z2 while m2 includes x2. Thus 1

Figure 4.1 The function f (x l , x2, x3) = m(O, 2,4,5,6) .

Hence mo and mz can be replaced by the single product term FIFs. Similarly, m4 and m6

differ only in the value of xz and can be combined using

x1&F3 + x ~ x ~ X ~ = (X 2 + xz)X3
= X I . 1 -z3
= x1X3

Now the two newly generated terms, FIE3 and x l f 3, can be combined further as

Z1X3 + x1Z3 = (XI + xI)%

= 1 - F 3
-

= X3

These optimization steps indicate that we can replace the four minterms mo, m2, m4, and
m6 with the single product term F3. In other words, the minterrns mo, m2, m ~ , and rn6 are
all included in the term xi. The remaining minterm in f is ms. It can be combined with m4,

which gives

x1X2Z3 + x1X2x3 = xl;C;!

Recall that theorem 7b in section 2.5 indicates that

m4 = m4 + m4
which means that we can use the minterm m4 twice-to combine with minterrns mo, m2,

and % to yield the term Pj as explained above and also to combine with ms to yield the
term x xz .

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = I are covered by the minimum-cost expression

-
f = X3 + x1Z2

f

1
0
1
0
1
1
1
0

Row
number

0
1
2
3
4
5
6
7

XI x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 0
1 1 1

The expression has the product term % because f = 1 when x3 = 0 regardless of the values
of x l and xz. The four minterrns mo, m2, m4, and m6 represent all possible mintems for
which xs = 0; they include all four valuations, 00, 01, 10, and 11 , of variables xl and x2,
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly
from the truth table in Figure 4.1, but it is obvious if we write the corresponding valuations
grouped together:

In a similar way, if we look at rn4 and m5 as a group of two

it is clear that when xl = 1 and x2 = 0, then f = 1 regardless of the value of x3.
The preceding discussion suggests that it would be advantageous to devise a method

that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 4.2. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterrn. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x l , and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from section 2.5. Minterrns in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

(a) Truth table (b) Karnaugh map

Figure 4.2 Location of two-variable minterms.

m e Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 4.3. It corresponds to

the function f of Figure 2.15. The value off for each valuation of the variables xl and x2
is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause f
to be equal to 1 when the input variables have the values that correspond to either of these
cells. To indicate this fact, we have circled the cell entries in the map. Rather than using
the combining property formally, we can derive the product term intuitively. Both of the
cells are identified by xz = 1, but x l = 0 for the left cell and xl = 1 for the right cell.
Thus if x2 = 1, then f = I regardless of whether xl is equal to 0 or 1. The product term
representing the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by xl = 0.
Therefore, they lead to the product term Fl . Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terrns that produce a value of 1 for all cases where

Figure 4.3 The function of ~ / ~ u r e 2.15.

f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been Covered
by the product term XI, only one cell (top left) remains. Although it could be covered by
the term TIE2, it is better to combine the two cells in the left column to produce the product
term because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side

by side. Figure 4.4 shows the map and indicates the locations of minterrns in it. In this
case each valuation of xl and x:, identifies a column in the map, while the value of q
distinguishes the two rows. To ensure that minterms in the adjacent cells in the map can
always be combined into a single product term, the adjacent cells must differ in the value of
only one variable. Thus the columns are identified by the sequence of (x l , x2) values of 00,
01, 11, and 10, rather than the more obvious 00,O 1, 10, and 11. This makes the second and
third columns different only in variable x l . Also, the first and the fourth columns differ only
in variable x,, which means that these columns can be considered as being adjacent. The
reader may find it useful to visualize the map as a rectangle folded into a cylinder where
the left and the right edges in Figure 4.4b are made to touch. (A sequence of codes, or
valuations, where consecutive codes differ in one variable only is known as the Gray code.
This code is used for a variety of purposes, some of which will be encountered later in the
book.)

Figure 4 . 5 ~ represents the function of Figure 2.18 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1 s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1 s in the top row,
which are represented by the term xl&. The second term is &x3, which covers the 1 s in
the bottom row. Hence the function is implemented as

f = x1X3 + X2x3

which describes the circuit obtained in Figure 2 .19~ .

(a) Truth table

(b) Karnaugh map

I

Figure 4.4 ~ocation of three-variable minterrns.

I I

(a) The function of Figure 2.18

(b) The function of Figure 4.1

Figure 4.5 Examples of three-variable Karnaugh maps.

In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
of a group of four adjacent cells using a single product term is illustrated in Figure 4.56,
using the function from Figure 4.1. The four cells in the top row correspond to the (x l , x2, x3)
valuations 000,010,110, and 100. As we discussed before, this indicates that if x3 = 0, then
f = 1 for all four possible valuations of x l and x2, which means that the only requirement
is that x3 = 0. Therefore, the product term Z3 represents these four cells. The remaining 1,
corresponding to minterm rns , is best covered by the term xlEz, obtained by combining the
two cells in the right-most column. The complete realization off is

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial
case where f = I for all valuations of input variables; in other words, f is equal to the con-
stant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, i t appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns in a
three-variable map. Figure 4.6 shows the structure of the four-variable map and the location

169

X* = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1 for th
two middle rows.

Figure 4.7 gives four examples of four-variable functions. The function ,fi has a group

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

1
A

00 01 1 1 10

of four Is in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1-they
are represented by the product term X2x3. This leaves the two Is in the second row to
be covered, which can be accomplished with the term xIX3x4. Hence the minimum-cost I
irpplementation of the function is

t

The function f2 includes a group of eight Is that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1 s were implemented separately,
the result would be the product term xIX3a. Implementing these 1 s as a part of a group of
four Is, as shown in the figure, gives the less expensive product term ~1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four Is, which may be implemented
by the product term X2%. This case is depicted by the function f3. In addition to this group
of Is, there are four other 1s that must be covered to implement f 3 . This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f4 provides an example where there is some choice.
The groups of four 1 s in the top-left and bottom-right corners of the map are realized by the
terms YrZ3 andxlx3, respectively. This leaves the two Is that correspond to the term xlxz?3.
But these two Is can be realized more economically by treating them as a part of a group

Y

1 x 4

X2

Figure 4.6 A four-variable Karnaugh map.

of minterms. We have included in this figure another frequently used way of designating
the rows and columns. As shown in blue, it is sufficient to indicate the rows and columns
for which a given variable is equal to 1. Thus X I = 1 for the two right-most columns,

rn12

rn13

"15

*14

m 5

m7

*6

00

01

x3- I

11

10

of four 1s. They can be included in two different groups of four, as shown in the figure.
.

1 70

rn8

m9

m10

mo

rnl

m3

rn2

Figure 4.7 Examples of four-variable Kornaugh maps.

One choice leads to the product term ~1x2, and the other leads to x2X3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x2X3 does not imply an increased cost in comparison
with xlx?, because this complement must be generated anyway to produce the term XlT3,

which is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and xs = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 4.8. For the logic function
given in this example, t w o groups of four 1 s appear in the same place in both four-variable

hence their realization does not depend on the value of xs. The same is true for the
ho groups of two 1 s in the second row. The 1 in the top-right comer appears only in the

Figure 4.8 A five-variable Karnaugh map.

right map, where xs = 1; it is a part of the group of two 1s realized by the term xI%X3x5.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from
the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideainvolved in the minimization process.

For the examples in the preceding section, we used an intuitive approach to decide how the Is
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of I. Each group
of 1 s has to comprise cells that can be represented by a single product term. The larger
the group of 1 s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable, ~nstead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are

4.2 STRATEGY FOR MINIMIZATION

in CAD tools. TO illustrate the main ideas, we will use Karnaugh maps. Later,
in section 4.8, we will describe a different way of representing logic functions, which is
used in CAD tools.

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
TO facilitate the presentation of the results. certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal
A given product term consists of some number of variables, each of which may appear

either in uncornplemented or complemented forrn. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product terrnxlF2x3
has three literals, and the term X 1 ~ 3 X 4 ~ 6 has four literals.

Implicant

A product term that indicates the input valuation(s) for which a given function is equal
to 1 is called an implicant of the function. The most basic irnplicants are the minterms,
which we introduced in section 2.6.1, For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 4.9. There are 11 possibleimplicants for
this function. This includes the five minterms: XIX2X3, XIX2x3, E1~2X3, X1x2x3, and ~ 1 x 2 ~ 3 .

Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, ZlX2 (mu and in 1), FlZ3 (mo and m2), Elx3 (m I and m3), Xlx2 (m2 and ma),
and X ~ X J (m3 and m7). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal xl.

Figure 4.9 ~hree-variable function f (x l , x2, x3) =
C m (0 , 1,2 ,3 ,7) .

C H A P t E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Prime Implicant
An implicant is called aprime implicant if it cannot be combined into another irnplican

that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid imp1 icant.

In Figure 4.9 there are two prime implicants: Zl and ~ 2 x 3 . It is not possible to delete
a literal in either of them. Doing so for f would make it disappear. For ~ 2 x 3 , deleting
a literal would leave either x2 or x3. But x2 is not an implicant because it includes the
valuation (x, , ~ 2 , x3) = 1 10 for which f = 0, and x3 is not an implicant because it includes
(xl , XZ, x3) = 101 for which f = 0.

Cover
A collection of implicants that account for all valuations for which a given function is

equal to I is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterrns for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 4.9 a cover
consisting of minterms leads to the expression

f = X1X2X3 + X1%x3 +X1x2X3 + X1x2x3 + ~ 1 ~ 2 x 3

Another valid cover is given by the expression

f = F I X 2 + XIx2 + ~ 2 x 3

The cover comprising the prime implicants is

f = 51 + ~ 2 ~ 3

While all of these expressions represent the function f correctly, the cover consisting of I
&me implicants leads to the lowest-cost implementation.
\

Cost
In Chapter 2 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thu
the expression

f = x1X2 + x3Xq

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = X I & +x3(% + x g)

is implemented using two AND gates, two OR gates, and one NOT gate to complement I
(x1F2 + x3), with nine inputs. Hence the total cost is 14. -

4.2 STRATEGY FOR MINIMIZATION

We have seen that it is possible to implement a given logic function with various circuits.

These may have different structures and different costs. When designing a logic
,ircuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
lacger the circuit, the more important the cost issue becomes. In this section we will assume
that the lrlain objective is to obtain a minimum-cost circuit.

Having said that cost is the primary concern, we should note that other optimization
criteria may be more appropriate in some cases. For instance, in Chapter 3 we described
several types of programmable-logic devices (PLDs) that have a predefined basic structure
and can be programmed to realize a variety of different circuits. For such devices the main

is to design a particular circuit so that it will fit into the target device. Whether or
not this circuit has the minimum cost is not important if it can be realized successfully on the
device. A CAD tool intended for design with a specific device in mind will automatically

optimizations that are suitable for that device. We will show in section 4.6 that the
way in which a circuit should be optimized may be different for different types of devices.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime irnplicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called an
esserztialprirne irn/7licant, In the example in Figure 4.9, both prime implicants are essential.
The term is the only prime implicant that covers the minterm rn7, and,Yl is the only
one that covers the minterrns mo, ml, and mz. Notice that the mintenn 1723 is covered by
both of these prime implicants. The minimum-cost realization of the function is

We will now present several examples in which there is a choice as to which prime
implican ts to include in the final cover. Consider the four-variable function in Figure 4.1 0.
There al-e five prime implicants: f 1x3, x2x3, x3&, XIx2x4, and x2X3x4. The essential ones
(highlighted in blue) are F2x3 (because of ml I), x3T4 (because of m14). andxzxzx4 (because of
4 3) . They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except m7. It is clear that m-, can be covered by either Elxl or ilxzx4.
Because F,x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

Qnerate all prime implicants for the given function f.
*. Find the set of essential prime implicants.

C H A P T E R

Figure 4.10 Four-variable function f (x,. x4) =
C m (2 , 3 , 5 , 6 , 7 , 1 0 , 1 1 . 13, 14).

3. If the set of essential prime implicants covers all valuations for which f = 1 , then
this set is the desired cover o f f . Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the tirne) has to be used. One such

ach is to arbitrarily select one nonessential prime implicant and include it in the cover
then determine the rest of the cover. Next, another cover is determined assuming that

implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 4.1 1. Of the six prime
implicants, only E3% is essential. Consider next x1x24 and assume first that it will be

Figure 4.1 1 The function f (x,, . . . , xa) =
x m (0 , 4 , 8, 10, 11 , 12, 13, 15).

4.2 STRATEGY FOR MINIMIZATION

included in the cover. Then the remaining three minterms, mlo, mil, and mls, will require
more prime implicants to be included in the cover. A possible implementation is

The second posgbility is that xlxzE3 is not included in the cover. Then x1x2x4 becomes
because there is no other way of covering ml3. Because x1x2x4 also covers

only ln," and mil remain to be covered, which can be achieved with x l h x 3 . Therefore, the
implementation is

Clearly. this implementation is a better choice.
sometimes there may not be any essential prime implicants at all. An example is given

in Figure 4.12. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

The other includes the prime implicants indicated in blue, which yields

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in sections 4.9 and 4.10.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.

Figure 4.1 2 The function f (x l , . . . , a) =
Cr?z(O,2,4,5, 10, 11, 13, 15).

Now that we know how to find the minimum-cost sum-of-products (SOP) implementatioos
of functions, we can use the same techniques and the principle of duality to obtain minimurn,
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 4.13 depicts the same function as Figure 4.9 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (F1 + ~ 2) (2 1 +x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 4.9, which requires only one OR gate and one AND gate.

The function from Figure 4.10 is reproduced in Figure 4.14. The maxterms for which
f = 0 can be covered as shown, leading to the expression

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
xl to xq are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 4.10, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 4.11 and 4.12 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f . Another

~ 3)

way of obtaini

Figure 4.14 POS minimization of f (x l , xa) =
l7M (0, 1,4, 8.9, 12, 15).

the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan's - theorem to this expression to obtain the simplest POS

realization because f = 7. For example, the simplest SOP implementation off in Figure
4.13 is

Complementing this expression using DeMorgan's theorem yields

which is the same result as obtained above.
Using this approach for the function in Figure 4.14 gives

Complementing this expression produces

which matches the previously derived implementation. '

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that xl and x2 control two interlocked switches such that both switchs
cannot be closed at the same time. Thus the only three possible states of the ?witches
are that both switches are open or that one switch is open and the other switch is closed,
Namely, the input valuations (xl , x2) = 00, 0 1, and 10 are possible, but 1 1 is guaranteed
not to occur. Then we say that (xl , x2) = 11 is a don 't-care cortdition, meaning that a circuit
with and x2 as inputs can be designed by ignoring this condition. A function that has
don' t-care condi tion(s) is said to be incompletely specified.

Don't-care conditions, or don 't-cares for short, can be used lo advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 4.15 illustrates this idea. The required
function has a value of 1 for mintems r n 2 , m4, m5, m6, and mlo. Assuming the above-
mentioned interlocked switches, the xl and x2 inputs will never be equal to 1 at the same
time; hence the minterms mlz, ml3, ml4, and rn15 can all be used as don't-cares. The don'

"3

'2'3

x3x4

(a) SOP implementation

X3 00 01 1 1 10
(x2 + x3)

(x, + x4)

(b) POS implementation

Figure 4.1 5 Two implementations of the function f (x, , . . . , x4)
~ m (2 , 4 . 5 , 6 , 10) + D(12, 13, 14, 15) .

,are, are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

where D is the set of don't-cares.
Part (a) of the figure indicates the best sum-of-products implementation. To form

the largest possible groups of is, thus generating the lowest-cost prime irnplicants, it is
to assume that the don't-cares D I 2 , DI3, and DI4 (corresponding to rninterms

m12. mil, and m14) have the value of 1 while DiS has the value of 0. Then there are only
wo prime implicants, which provide a complete cover off . The resulting implementation

is

part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don't cares. The result is

The freedom in choosing the value of don't-cares leads to greatly simplified realizations. If
we were to naively exclude the don't-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

and the POS expression would be

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don't-cares.

Although don't-care values can be assigned arbitrarily, an arbitrary assignment may
not lead ro a minimum-cost implementation of a given function. If there are k don't-cares,
then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don't-cares Dl2, 013, and Dl4 to be equal to I and
Dl5 equal to 0 for both the SOP and POS implementations. Thus the derived expressions

the same function, which could also be specified as m (2 , 4 , 5 , 6 , 10, 12, 13, 14).
Assigning the same values to the don't-cares for both SOP and POS implementations is not

a good choice. Sometimes it may be advantageous to give a particular don't-care
the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
In such cases the optimal SOP and POS expressions will represent different functions,
but these functions will differ only for the valuations that correspond to these don't-cares.

4.24 in section 4. I4 illustrates this possibility.
Using interlocked switches to illustrate how don't-care conditions can occur in a real

may seem to be somewhat contrived. However, 'in Chapters 6, 8, and 9 we will
encounter many examples of don't-cares that occur in the course of practical design of
d'gital circuits.

181

lire obtained as shown in parts (,a) and (b) of the figure. This results in the expressions

The cost of fi is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
implement them need not be duplicated. The combined circuit is shown in Figure 4.1 6c.
1 t ~ cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f l

andf2 and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

Figure 4.17 shows two functions to be implemented by a single circuit. Minimum-cost E
realizations of the individual functions J; and f4 are obtained from parts (a) and (b) of the
figure.

f3 = Flx4 + X2x4 + z 1 ~ 2 ~ 3

f4 = XI x 4 + F 2 x 4 + z 1 ~ 2 ~ 3 X 4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
fi and fi using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 4 .17~ shows the best
choice of implicants, which yields the realization

f3 = X l X 2 x 4 + 5 1 ~ 2 ~ 3 x 4 + x 1 x 4

f4 = X I x 2 x 4 + X 1 x 2 x 3 X 4 + 2 2 x 4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 4.17d. It has the cost of six gates and 17 inputs, for a total of 23.
-,

In Example 4.1 we sought the best SOP implementation for the functions fi and f2 in E
Figure 4.16. We will now consider the POS implementation of the same functions. The
minimurn-cost POS expressions for f i and f 2 are

(a) Optimal realization of f, (b) Optimal realization of f4

(c) Optimal realization of f, and f, together

(d) Combined circuit for f, and f

Figure 4.1 7 Another example of multiple-output synthesis.

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 4.16, it is apparent that there is
no sum term (covering the cells where fi = fi = 0) that can be profitably used in realizing
both f, and f 2 . Thus the best choice is to implement each function separately, according to
the pecedirlg expressions. Each function requires three OR gates, one AND gate, and 1 I
inputs Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 4.1.

Consider now the POS realization of the functions fi and f4 in Figure 4.17, The minimum- I
cost POS expressions for f3 and f4 are

f3 = (x3 + x4)(~2 +~4)(x1 + x4)(z1 + ~ 2)

f4 = (~ 3 + x4)(~2 + x4)(% + ~ 4) (~ 1 + 52 + i4)
The first three sum terms are the same in both f3 and ,f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one Cinput
AND gate are needed for f4. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 4.2.

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 4.16 and 4.17, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

the preceding sections our objective was to find a minimum-cost sum-of-products or
Product-of-sums realization of a given logic function. Logic circuits of this type have twVo

levels (stages) of gates. In the sum-of-products form, the first level comprises AND gates
that are connected to a second-level OR gate, In the product-of-sums form, the first-level OR
gates feed the second-level AND gate. We have assumed that both true and complemented
versions of the input variables are available so that NOT gates are not needed to complement
the variables.

Atwo-level realization is usually efficient for functions of a few variables. However, as
the of inputs increases, a two-level circuit may rksult in fan-in problems. Whether

C H A P 1 E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

(from interconnection wires)

x1 x2 x3 x4 x5 X6 x7 unused

Part of a PAL-like block

I I

I

.
Figure 4.1 8 Implementation in a CPLD.

or not this is an issue depends on the type of technology that is used to implement the circuit.
For example, consider the following function:

f (x~, . . . , x7) = ~ 1 x 3 2 6 f X ~ X ~ X ~ F ~ + X2X3X7 + X 2 a X 5 X 7

This is a minimum-cost SOP expression. Now consider implementing f in two types of
PLDs: a CPLD and an FPGA. Figure 4.18 shows a part of one of the PAL-like blocks from
Figure 3.33. The figure indicates in blue the circuitry used to realize the function f . Clearly,
the SOP form of the function is well suited to the chip architecture of the CPLD.

Next, consider implementing f in an FPGA. For this example we will use the FPGA
shown in Figure 3.39, which contains two-input LUTs. Since the SOP expression for f
requires three- and four-input AND operations and a four-input OR, it cannot be directly
implemented in this FPGA. The problem is that the fan-in required to implement the function
is too high for our target chip architecture.

To solve the fan-in problem, f must be expressed in a form that has more than two levels
of logic operations. Such a form is called a multilevel logic expression. There are several
different approaches for synthesis of multilevel circuits. We will discuss two important
techniques known as factoring andfinctional decomposition.

4,6.1 FACTORING ,F

The distributive property in section 2.5 allows us to factor the preceding expression for f
as follows

f = x 1 X6 (~ 3 + ~ 4 x 5 f ~ 2 x 7 (~ 3 + ~ 4 x 5)

= (~ 1 % + ~ 2 ~ 7) (~ 3 f ~ 4 x 5) .

~t3t3t3t3~e!t3t3t3t3t3~t3~t3eD--

3t3t3e-w~ :: ::

1 l 1 1 1 1 1 1 i 1 1 1 1 1

J H ~ S H H ~ ~ H H ~ ~ ~ ~ H H H ~ ~ H H ~ & ~

. . .

)eet)t3t)c+~t3~-
e t 3 t) ~ ~ ~ e D -

Figure 4.19 Implementation in an FPGA.

The corresponding circuit has a maximum fan-in of two; hence it can be realized using
two-input LUTs. Figure 4.19 gives a possible implementation using the FPGA from Figure
3.39. Note that a two-variable function that has to be realized by each LUT is indicated in
the box that represents the LUT.

Fan-in Problem

In the preceding example, the fan-in restrictions were caused by the fixed structure
of the FPGA, where each LUT has only two inputs. However, even when the target chip
architecture is not fixed, the fan-in may still be an issue. To illustrate this situation, let us _ consider the implementation of a circuit in a custom chip. Recall that custom chips usually
contain a large number of gates. If the chip is fabricated using CMOS technology, then
there will be fan-in limitations as discussed in section 3.8.8. In this technology the number
of inputs to a logic gate should be small. For instance, we may wish to limit the number

I !
inputs to an AND gate to be less than five. Under this restriction, if a logic expression

includes a seven-input product term, we would have to use 2 four-input AND gates, as
indicated in Figure 4.20. -

Factoring can be used to deal with the fan-in problem. Suppose again that the available
gates have a maximum fan-in of four and that we want to realize the function

7 inputs

Figure 4.20 Using four-input AND gates to realize o
seven-input product term.

Figure 4.2 1 A factored circuit.

This is a minimal sum-of-products expression. Using the approach of Figure 4.20, we will
need four AND gates and one OR gate to implement this expression. A better solution is to
factor the expression as follows

Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 4.21.

.5 In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs: XI, x2, X3t

and ~ 4 . An output, f i , must have the value 1 if at least one of the inputs xl and x2 is equal
to 1 and both x3 and x4 are equal to 1 ; it must also be 1 if xl = x2 = 0 and either x3 or $4

is 1. In all other cases fl = 0. A different output, f 2 , is to be equal to 1 in all cases except
when both xl and x 2 are equal to 0 or when both xs and x4 are equal to 0.

.i

4.6 MULTILEVEL SYNTHESIS

Figure 4.22 Circuit for Example 4.5.

From this specification, the function f , can be expressed as

f i = (xl + x2)~3~4 + 2 1 2 2 (~ 3 +x4)

This expression can be simplified to

f i = X 3 X 4 + X, 52 (x3 + ~ 4)

which the reader can verify by using a Karnaugh map.
The second function, f2, is most easily defined in terms of its complement, such that

- - f2 = ZIT2 + x3xq

Then using DeMorgan's theorem gives

f2 = (x1 + ~ 2) (~ 3 + x4)

which is the minimum-cost expression for f2; the cost increases significantly if the SOP
form is used.

Because our objective is to design the lowest-cost combined circuit that implements fi

and f2, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that
1 1 % = -1-1 + J2, the sum term (x l + xz) can also be shared if we express fi in the form

I?

fi =X3X4 + X I + . ~ 2 (~ 3 f ~ 4)

Then the combined circuit, shown in Figure 4.22, comprises three OR gates, three AND
gates3 one NOT gate, and 13 inputs, for a total of 20.
-

Impact on Wiring Complexity
The space on integrated circuit chips is occupied by the circuitry that implements logic

gates and by the wires needed to make connections among the gates. The amount of space

189

C H A P T C R 4 UPTIMIZED lMPLEMENTATION OF LOGIC FUNCTIONS

needed for wiring is a substantial portion of the chip area. Therefore, it is useful to keep
the wiring complexity as low as possible.

In a logic expression each literal corresponds to a wire in the circuit that carries the
desired logic signal. Since factoring usually reduces the number of literals, it provides a
powerful mechanism for reducing the wiring complexity in a logic circuit. In the synthesis
process the CAD tools consider many different issues, including the cost of the circuit, th,
fan-in, and the wiring complexity.

4.6.2 FUNCTIONAL DECOMPOSITION

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to
their two-level equivalents even if fan-in is not a problem. In some cases the multilevel
circuits may reduce the cost of implementation. On the other hand, they usually imply
longer propagation delays, because they use multiple stages of logic gates. We will explore
these issues by means of illustrative examples.

Complexity of a logic circuit, in terms of wiring and logic gates, can often be reduced by
decomposing a two-level circuit into subcircuits, where one or more subcircuits implement
functions that may be used in several places to construct the final circuit. To achieve this
objective, a two-level logic expression is replaced by two or more new expressions, which
are then combined to define a multilevel circuit. We can illustrate this idea by a simple
example.

5 Consider the minimum-cost sum-of-products expression

, f = X,x2x3 + ~ 1 X 2 ~ 3 + XlX2X4 + X1X2x4

and assume that the inputs xl to x4 are available only in their true form. Then the expression
defines a circuit that has four AND gates, one OR gate, two NOT gates, and 18 inputs
(wires) to all gates. The fan-in is three for the AND gates and four for the OR gate. The
reader should observe that in this case we have included the cost of NOT gates needed to
complement xl and x2, rather than assume that both tme and complemented versions of all
input variables are available, as we had done before. 4

Factoring x3 from the first two terms and x4 from the last two terms, this expression
becomes

Now let g(xl, x2) = Xlx2 + x1E2 and observe that

Then f can be written as

which leads to the circuit shown in Figure 4.23. This circuit requires an additional OR gate
a NOT gate to invert the value of g. But it needs only 15 inputs. Moreover, the largest

fan-in has been reduced to two. The cost of this circuit is lower than the cost of its two-level
equivalent. The trade-off is an increased propagation delay because the circuit has three
more levels of logic.

In this example the subfunction g is a function of variables xl and x2. The subfunction
is used as an input to the rest of the circuit that completes the realization of the required
function f . Let h denote the function of this part of the circuit, which depends on only three
inputs: g, x3, and x4. Then the decomposed realization off can be expressed algebraically
as

The structure of this decomposition can be described in block-diagram fom as shown in
Figure 4.24.

Figure 4.23 Logic circuit for Example 4.6.

Figure 4.24 The structure of decomposition in Example 4.6.
191

While not evident from our first example, functional decomposition can lead to great
reductions in the complexity and cost of circuits. The reader will get a good indication of
this benefit from the next example.

- - _4

7 Figure 4.25a defines a five-variable function f in the form of a Karnaugh map. In searching
for a good decomposition for this function, it is necessary to first identify the variables that
will be used as inputs to a subfunction. We can get a useful clue from the patterns of Is in
the map. Note that there are only two distinct patterns in the rows of the map. The second
and fourth rows have one pattern, highlighted in blue, while the first and second rows have
the other pattern. Once we specify which row each pattern is in, then the pattern itself

00 01 11 10 00 01 11 10

00 00

01 0 1 1 1 1 1

11 11

10 10 1 1 1 1

x, = 0

(a) Karnaugh map for the function f

X1 3 g

X2

X5

X3

X4

(b) Circuit obtained using decomposition

Figure 4.25 Decomposition for Example 4.7. -

only on the variables that define columns in each row, namely, X I , x2, and x5. Let
, ,,bfunction g(x1, x2, xs) represent the pattern in rows 2 and 4. This subfunction is just

because the pattern has a 1 wherever any of these variables is equal to 1. To specify
the location of rows where the pattern g occurs, we use the variables x3 and x4. The
terms z3x4 and x3E4 identify the second and fourth rows, respectively. Thus the expression
63x4 + x&) + g represents the part off that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows I and 3. This pattern has a 1
only in the cell where XI = xz = xs = 0, which corresponds to the term ?IF&. But we can
make a useful observation that this term is just a complement of g. The location of rows 1
and 3 is identified by terms X3F4 and ~3x4 , respectively. Thus the expression (X3X4 +x3x4) . g
represents f in rows 1 and 3.

We can make one other useful observation. The expressions (Z3x4 + x3Z4) and (X3% +
X 3 ~ 4) are complements of each other, as shown in Example 4.6. Therefore, if we let
k(x3 , x4) = 23x4 + ~ 3 2 4 , the complete decomposition off can be stated as

where

The resulting circuit is given in Figure 4.25b. It requires a total of 11 gates and 19 inputs.
The largest fan-in is three.

For comparison, a minimum-cost sum-of-products expression for f is

The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs. The fan-in for the output OR gate is eight.
Obviously, functional decomposition results in a much simpler implementation of this
function.

In both of the preceding examples, the decomposition is such that a decomposed sub-
function depends on some primary input variables, whereas the remainder of the imple-
mentation depends on the rest of the variables. Such decompositions are called disjoint
deco~~positions in the technical literature. It is possible to have a non-disjoint decompnsi-
'ion, where the variables of the subfunction are also used in realizing the remainder of the
circuit. The following example illustrates this possibility.

 exclusive-^^ (XOR) is a very useful function. In section 3.9.1 we showed how it can be
nali~ed using a special circuit, It can also be realized using AND and OR gates as shown

(a) Sum-of-products implementation

(b) NAND gate implementation

(c) Optimal NAND gate implementation

Figure 4.26 Implementation of XOR.

in Figure 4 .26~ . In section 2.7 we explained how any AND-OR circuit can be realized as
a NAND-NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol f represent the NAND operation so that
xl f- x2 = m. A sum-of-products expression for the XOR function is

From the discussion in section 2.7, this expression can be written in terms of NAND

operations as

Xl d3 x2 = (X I T 2 2) T (F1 ? x2)

This expression requires five NAND gates, and it is implemented by the circuit in Figure
4.260. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together-

TO find a decomposition, we can manipulate the tenn (xl ? X 2) as follows:

(xl T X 2) = (x1X2) = (XI (Xi +X2)) = (xi T (xi + 22))

we can perform a similar manipulation for (Fl .f x2) to generate

Xl 63 x2 = (x1 lr (El + XZ)) T ((51 + 52) -r x2)
DeMorgan's theorem states that X I + Fz = xl T x2; hence we can write

Now we have a decomposition

The corresponding circuit, which requires only four NAND gates, is given in Figure 4 .26~ .

Practical Issues

Functional decomposition is a powerful technique for reducing the complexity of cir-
cuits. It can also be used to implement general logic functions in circuits that have built-in
constraints. For example, in programmable logic devices (PLDs) that were introduced in
Chapter 3 it is necessary to "fit" a desired logic circuit into logic blocks that are available
on these devices. The available blocks are a target for decomposed subfunctions that may
be used to realize larger functions.

A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [2-51. Modem CAD tools use the

of decomposition extensively.

4b6*3 MULTILEVEL NAND AND NOR CIRCUITS

In section 2.7 we showed that two-level circuits considting of AND and OR gates can be
converted into circuits that can be realized with NAND and NOR gates, using the

gate arrangement. In particular, an AND-OR (sum-of-products) circuit can be realized
195

as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-
NOR circuit. The same conversion approach can be used for multilevel circuits. We will
illustrate this approach by an example. 4

-
4.9 Figure 4.27a gives a four-level circuit consisting of AND and OR gates. Let us first derive

a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
inverting its inputs. This is just an application of DeMorgan's theorem, as illustrated in
Figure 2.21,~. Figure 4.27b shows the necessary inversions in blue. Note that an inversionis
applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputs XI, xs, xb, and x7 and at the output f . They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 4 . 2 7 ~ .

A similar approach can be used to convert the circuit in Figure 4 . 2 7 ~ into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.2 16. Using thjs
approach, the inversions needed for our sample circuit are shown in blue in Figure 4.28a.
Then each gate becomes a NOR gate. The three inversions at inputs x2, x3, and x4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 4.286.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.

/'

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
circuit. The analysis task is more complicated for multilevel circuits because it is difficult to

write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessW
to evaluate the subfunctions realized by the logic gates. .

(a) Circuit with AND and OR gates

'7

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 4.27 Conversion to NAND-gate circuit.

X7 -
(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

Figure 4.28 Conversion to a NOR-gate circuit.

10 ~igure 4.29 replicates the circuit from Figure 4.27~. To determine the function f irnple-
mented by this circuit, we can consider the functionality at internal points that are the outputs
of various gates. These points are labeled PI to P5 in the figure. The functions realized at
these points are

Figure 4.29 Circuit for Example 4.10.

Then f can be evaluated as

f = P3P5
= (~ 1 f ~ 2 x 3) (x4 (~ 5 + xfj) + ~ 7)

Applying the distributive property to eliminate the parentheses gives

Note that the expression represents a circuit comprising six AND gates, one OR gate, and
25 inputs, The cost of this two-level circuit is higher than the cost of the circuit in Figure
4.29, but Lhe circuit has lower propagation delay.

h.1 Example 4.7 we derived the circuit in Figure 4.25b. In addition to AND gates and OR 1
gates. the circuit has some NOT gates. It is reproduced in Figure 4.30, and the internal
points are labeled from P I to Plo as shown. The following subfunctions occur

Figure 4.30 Circuit for Example 4.1 1 .

We can derive f by tracing the circuit from the output towards the inputs as follows

This is the same expression as stated in Example 4.7.

Circuits based on NAND and NOR gates are sIightly more difficult to analyze because each
gate involves an inversion. Figure 4.3 la depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 4.9. Bubbles that denote inversions
can be moved, according to DeMorgan's theorem, as indicated in Figure 4.31b. Then the
circuit can be converted into the circuit in part (c) ef the figure, which consists of AND and a

X3

X5
f

(a) NAND-gate circuit

(b) Moving bubbles to convert to ANDs and ORs

(c) Circuit with AND and OR gates

Figure 4.31 Circuit for Example 4.1 2.

OR gates. Observe that in the converted circuit, the inputs q and x5 are complemented.
From this circuit the function f is determined as

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates
to determine its functionality. We can use the approach from Examples 4.10 and 4.11 to

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

derive f as follows. Let PI, P2, and P3 label the internal points as shown in Figure 4 . 3 1 ~
Then

- -

The circuit in Figure 4.32 consists of NAND and NOR gates. It can be analyzed as follows. I

Fig lure 4.32 Circuit for Example 4.13.

Note that in deriving the second to the last line, we used property 16a in section 2.5 to -

simplify ~ 2 x 3 f 2 3 into X? + %.
Analysis of circuits is much simpler than synthesis. With a little practice one can

develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and
with multiple levels. In a modem design environment, logic circuits are synthesized using
CAD tools, rather than by hand. The concepts that we have discussed in this chapter are
quite general; they are representative of the strategies implemented in CAD algorithms.
As we have said before, the Karnaugh map scheme for representing logic functions is not
appropriate for use in CAD tools. In the next section we discuss an alternative representation
of logic functions, which is suitable for use in CAD algorithms.

The Karnaugh map is an excellent vehicle for illustrating concepts, and it is even useful for
manual design if the functions have only a few variables. To deal with larger functions it is
necessary to have techniques that are algebraic, rather than graphical, which can be applied
to functions of any number of variables.

Many algebraic optimization techniques have been developed. We will not pursue these
technique\ in great detail, but we will attempt to provide the reader with an appreciation
of the tasks involved. This helps in gaining an understanding of what the CAD tools can
do and what results can be expected from them. The approaches that we will present make
Use of a cubical representation of logic functions.

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Kamaugh maps. Another
possibility is to map a function of n variables onto an n-dimensional cube.

c H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 4.33. The four corners in the cube are

called vertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variable x,, and
vertical coordinate to x2. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 0 1 is the top-left comer, where xl = 0 and xz = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.

We will map a function onto the cube by indicating with blue circles those vertices for

which f = 1. In Figure 4.33 f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notation f = 101, 10, 11). The function f is also shown in
the form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example, f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1 x. It is customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence l x
means that x l = I , while x2 can be either 0 or 1 . Similarly, vertices 01 and 11 are joined
by the edge labeled x l , indicating that xl can be either 0 or I , but x2 = 1. The reader must
not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
xl and xz refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from section 2.5. The edge l x is the logical sum of vertices 10 and 11. It
essentially defines the term XI, which is the sum of mintems xlE2 and ~1x2. The property
14a indicates that

Therefore, finding edges for which f = 1 is equivalent to applying the combining property. 1
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1,

The edges lx and x I define fully the function in Figure 4.33; hence we can represen
the function as f = { lx , x l). This corresponds to the logic expression

f =x1 +x2

which is also obvious from the truth table in the figure.

Figure 4.33 Representation of f (XI, x2) = m (l , 2 , 3) .

110

xxo

1x0
00 1

000 xoo 100

Figure 4.34 Representation of f (x,. xz, x3) = C m (O , 2 , 4 , 5 , 6) .

Three-Dimensional Cube
Figure 4.34 illustrates a three-dimensional cube. The XI , x2, and a coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.
The function f mapped onto the cube is the function from Figure 4.1, which was used in
Figure 4.56. There are five vertices for which f = 1, namely, 000, 010. 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, xO0. 0x0, x 10, 1 xO,
and lox. Because the vertices 000, 010, 100, and 1 I0 include all valuations of xl and xz,
when xz is 0, they can be specified by the term xxO. This term means that f = 1 if x3 = 0,
regardless of the values of XI and x*. Notice that xxO represents the front side of the cube,
which is shaded in blue.

From the preceding discussion it is evident that the function f can be represented in
several ways. Some of the possibilities are

= (0x0, I xo, I01 }

= {XOO, x10, 101)

In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the least-expensive circuit is obtained iff = {xxO, 1 Ox}, which is
equivalent to the logic expression

This is the expression that we derived using the Karnaugh map in Figure 4.56.

Four-Dimensional Cube

Graphical images of two- and three-dimensional* cubes are easy to draw. A four-
dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their

corners connected. The simplest way to visualize a four-dimensional cube is to have one
cube placed inside the other cube, as depicted in Figure 4.35. We have assumed that ther,,
x~ and -r3 coordinates are the same as in Figure 4.34, while x4 = 0 defines the outer cube
and x4 = 1 defines the inner cube. Figure 4.35 indicates how the function f 3 of Figure 4.7
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for which f 3 = 1. Again, all edges that connect
these vertices are highlighted in blue.

There are two groups of four adjacent vertices for which f 3 = 1 that can be represented
as planes. The group comprising 0000, 00 10, 1000, and 10 10 is represented by ~0x0. The
group 00 10, 001 1, 01 10, and 01 1 1 is represented by 0x1 x. These planes are shaded in the
figure. The function f3 can be represented in several ways, for example

f3 = {OOOO, 0010,0011,0210,0111, 1000, 1010, 1111)

= {ooxo,1oxo,ox1o,Oxll, x l l l)

= {XOXO, Oxlx, x l l l)

Since each x indicates that the corresponding variable can be ignored, because it can be
either 0 or I , the simplest circuit is obtained i f f = (~ 0 x 0 , Oxlx, x l l l), which is equivalent

we derived the same expression in Figure 4.7.

n-~imensional Cube
A function that has n variables can be mapped onto an n-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it
is not difficult to extend the ideas introduced above to a general n-variable case. Because
,isuaj interpretation is not possible and because we normally use the word cube only for

, structure, many people use the word hypercube to refer to structures
more than three dimensions. We will continue to use the word cube in our discussion.

~t is convenient to refer to a cube as being of a certain size that reflects the number of
vefiices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example. the cube 1 xO I consists of vertices 100 1 and 1 101. A cube that has
two X'S consists of four vertices, and so on. A cube that has k x's consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to 12 other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1 ; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 4.34 and 4.35, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. Next, we will
discuss minimization techniques that use the cubical representation of functions.

Cubical representation of logic functions is well suited for implementation of minimization
algorithms that can be programmed and run efficiently on computers. Such algorithms
are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished. In this section
W e will describe a relatively simple tabular method, which illustrates the main concepts
and indicates some of the problems that arise.

A tabular approach for minimization was proposed in the 1950s by Willard Quine [61
and Edward McCluskey [7]. It became popular under the name Quine-McCluskey method.
While it is not efficient enough to be used in modem CAD tools, it is a simple method that

the key issues. We will present it using the cubical notation discussed in sec-
tion 4.8.

C H A P T

4.9.1

As mentioned in section 4.8, the prime implicants of a given logic function f are the larges
possible k-cubes for which f = 1. For incompletely specified functions, which include
a set of don't-care vertices, the prime implicants are the largest k-cubes for which either
f = 1 or f is unspecified.

Assume that the initial specification off is given in terms of minterms for which f = 1
Also, let the don't-cares be specified as minterms. This allows us to create a list of vertices
for which either f = 1 or it is a don't-care condition. We can compare these vertices in
pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to
combine these new cubes into still larger cubes and continue the process until we find the
prime implicants.

The basis of the method is the combining property of Boolean algebra

XiXj + xiZj = Xi

which we used in section 4.8 to develop the cubical representation. If we have two cubes
that are identical in all variables (coordinates) except one, for which one cube has the value
0 and the other has 1, then these cubes can be combined into a larger cube. For example,
consider f (x l , . . . ,x4) = (1000, 1001, 1010, 1011). The cubes 1000 and 1001 differ only
in variable x4; they can be combined into a new cube 100x. Similarly, 101 0 and 101 1 can be
combined into 101x. Then we can combine l0Ox and lOlx into a larger cube lOxx, which
means that the function can be expressed simply as f = xlT2.

Figure 4.36 shows how we can generate y the prime implicants for the function, f , in
Figure 4.11, The function is defined as

f(xl ,..., 10,11,12,13,15)

There are no don't-care conditions. Since larger cubes can be generated only from the
minterms that differ in just one variable, we can reduce the number of pairwise comparisons

placing the minterms into groups such that the cubes in each group have the

List 1 List 2 List 3

same number

Figure 4.36 Generation of prime implicants for he function in Figure

m

4.9 A TABULAR METHOD FOR MINIMIZATION

of Is, and sort the groups by the number of Is. Thus, it will be necessary to compare each
in a given group only with all cubes in the immediately preceding group. In Figure

36, the minterms are ordered in this way in list 1. (Note that we indicated the decimal
of the rninterms as well, to facilitate our discussion.) The mintenns, which are

also called 0-cubes as explained in section 4.8, can be combined into 1 -cubes shown in list 2.

T~ Je the entries easily understood we indicated the minterms that are combined to form
each l-wbe. Next, we check if the 0-cubes are included in the 1-cubes and place a check
mark beside each cube that is included. We now generate 2-cubes from the 1-cubes in list
2 The ~ n l y 2-cube that can be generated is xxOO, which is placed in list 3. Again, the check
marks are placed against the 1-cubes that are included in the Zcube. Since there exists just
,, 2-cube, there can be no 3-cubes for this function. The cubes in each list without a check

are the prime implicants o f f . Therefore, the set, P, of prime implicants is

Having generated the set of all prime implicants, it is necessary to choose a minimum-cost
subset that covers all minterms for which f = 1. As a simple measure we will assume that
the cost is directly proportional to the number of inputs to all gates, which means to the
number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct aprime implicantcover table in which there
is a row for each prime implicant and a column for each mintenn that must be covered.
Then we place check marks to indicate the minterms covered by each prime implicant.
Figure 4 . 3 7 ~ shows the table for the prime implicants derived in Figure 4.36. If there is a
single check mark in some column of the cover table. then the prime implicant that covers
the minterm of this column is essential and it must be included in the final cover. Such
is the case with p6, which is the only prime implicant that covers minterms 0 and 4. The
next step is to remove the row(s) corresponding to the essential prime implicants and the
colurnn(s) covered by them. Hence we remove pc and columns 0,4, 8, and 12, which leads
to the table in Figure 4.37b.

Now, we can use the concept of row dominance to reduce the cover table. Observe
that I?, covers only minterm 10 while pr covers both 10 and 11. We say that p.; dominates
P I . Since the cost of p2 is the same as the cost of p l , it is prudent to choose pr rather than
P I 9 so we will remove p~ from the table. Similarly, p~ dominates p3, hence we will remove
P3 from the table. Thus, we obtain the table in Figure 4 . 3 7 ~ . This table indicates that we
must choose p* to cover minterm 10 and ps to cover minterm 13, which also takes care of

mintenns 11 and 15, Therefore, the final cover is

(a) Initial prime implicant cover table

Prime
implicant

P I = 1 0 x 0

P 2 = l O l x

P 3 = l l o x

P q = l x 1 1

P s = l l x l

P g = x x O O

Minterm
0 4 8 10 1 1 12 13 15

d d

4 d

d d

4 d

4 d

d 4 d d

(b) After the removal of essential prime implicants

Prime
implicant

P1

P2

P3

P4

P 5

Minterm
10 1 1 13 15

d

4 vl

d

vl d
-. d 4

(c) After the removal of dominated rows

Figure 4.37 Selection of a cover for the function in Figure 4.1 1.

Prime
implicant

P2

P4

p 5

which means that the minimum-cost implementation of the function is

Mintem
10 1 1 13 15

4 vl

d 4

4 4

This is the same expression as the one derived in section 4.2.2.
In this example we used the concept of row dominance to reduce the cover table.

removed the dominated rows because they cover fewer minterms and the cost of their pr

implicant~ is the same as the cost of the prime implicants of the dominating rows. However,
a domillated row should not be removed if the cost of its prime implicant is less than the

of the dominating row's prime implicant. An example of this situation can be found in - -
p b l e m 4.25.

The tabular method can be used with don't-care conditions as illustrated in the following

example.

/

 he don't-care minterms are included in the initial list in the same way as the mintems for
which f = 1 . Consider the function

we encourage the reader to derive a Karnaugh map for this function as an aid in visual-
izing the derivation that follows. Figure 4.38 depicts the generation of prime implicants,
producing the result

P = {00x0,0x10, Ollx, xoox, xxo1, lxOx, x lx l)

The initial prime implicant cover table is shown in Figure 4.39a. The don't-care
minterms are not included in the table because they do not have to be covered. There are no
essential prime implicants. Examining this table, we see that column 8 has check marks in
the same rows as column 9. Moreover, column 9 has an additional check mark in row p5.
Hence column 9 dominates column 8. We refer to this as the concept of column dominance.
When one column dominates another, we can remove the dominating column, which is

List 1 List 2 List 3

Figure 4.38 Generation of prime implicants for the function in Example 4.1 4.

0,l
0,2
0,8

1,5
2,6
1,9
8,9
8,12

5,7
6,7

5,13
9,13
12,13

7,15
13,15

o o o x
0 0 x 0
x 0 0 0

O x 0 1
0 x 1 0
x 0 0 1
1 0 0 x
1 x 0 0

0 1 x 1
0 1 1 x
x 1 0 1
1 x 0 1
1 1 0 x

x 1 1 1
1 1 x 1 ,

A P T E R 4

h-

Prime Mintem
implicant 0 2 5 6 7 8 9 1 3

P 1 = O O x O d d

P 2 = O x l O d I/

p 3 = o 1 1 x d d

P ~ = x O O X d d d

P s = x x O l d I/ d

p g = l x O x d d d

p 7 = x 1 x I d d d

(a) Initial prime implicant cover table

Prime Minterm
implicant 0 2 5 6 7 8

P 1 = 0 0 x O d d

P 2 = 0 x 1 0 d v'

P 3 = 0 1 1 x ,'

p 4 = x O O x d J~ d P 5 = x x 0 1

p g = l x O x d

p 7 = x l x l d d

(b) After the removal of columns 9 and 13

Prime Min term
implicant 0 2 5 6 7 8

PI d d

P2 d d

P3 d v'

P4 d d

p7 4 d

Prime Minterm
implicant 2 6

P 1 d

P2 d 4

P3 d

(c) After the

Figure 4.39

rem
(d) After includir

oval of rows pg and P6 in the cover

Selection of a cover for the function in Example 4.14.
I

column 9 in this case. Note that this is in contrast to rows where we remove dominated
(rather than dominating) rows. The reason is that when we choose a prime implicant to
,,,,, the minterm that corresponds to the dominated column, this prime implicant will
also cover the minterm corresponding to the dominating column. In our example, choosing
,itherp4 or P6 covers both minterms 8 and 9. Similarly, column 13 dominates column 5,
hence column 13 can be deleted.

After removing columns 9 and 13, we obtain the reduced table in Figure 4.39b. In
this table row pr dominates p6 and row p7 dominates ps. This means that pi and p, can be
renloved, giving the table in Figure 4.39~. Now, pj and p7 are essential to cover minterms 8
and 5 , respectively. Thus, the table in Figure 4.39d is obtained, from which it is obvious that
pz covers the remaining minterms 2 and 6. Note that rowpz dominates both rowspl andpz.

The final cover is

C = (p2- ~ 4 3 ~ 7 1

= (0x10, xoox, x l x l)

and the function is implemented as

In Figures 4.37 and 4.39, we used the concept of row and column dominance to reduce
the cover table. This is not always possible, as illustrated in the following example.

Consider the function

The prime implicants for this function are

P = {OOxx, xoxo, xOlx, xx l l , lx lx)

The initial prime implicant cover table is shown in Figure4.40a. There are no essential prime
implicants. Also, there are no dominant rows or columns. Moreover, all prime implicants
have the same cost because each of them is implemented with two literals. Thus, the table
does not provide any clues that can be used to select a minimum-cost cover.

A .good practical approach is to use the concept of branching, which was introduced
ln section 4.2.2. We can choose any prime implicant, say ps, and first choose to include
this prime implicant in the final cover. Then we can determine the rest of the final cover in
the usual way and compute its cost. Next we try the other possibility by excluding p i from
the final cover and determine the resulting cost. We compare the costs and choose the less

alternative.
Figure 4.40b gives the cover table that is left if p3 is included in the final cover. The

hble does not include minterms 3 and 10 because they Hre covered byps. The table indicates

Prime
implicant

p , = o o x x

p z = x O x O

p 3 = x O l x

P q = x x 1 1

p g = l x l x

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTLONS

(a) Initial prime implicant cover table

(b) After including p2 in fFi~cover

i

(c) After excluding p2 from the cover

Figure 4.40 Selection of a cover for the function in
Example 4.1 5.

that a complete cover must include either pl or pz to cover minterm 0 and either p4 or ps t
cover minterm 15. Therefore, a complete cover can be

c = (P l , ~ 3 9 ~ 4 1

The alternative of excluding p3 leads to the cover table in Figure 4.40~. Here, we see that
a minimum-cost cover requires only two prime implicants. One possibility is to choose PI

Mintem
0 3 10 15 -
4 4

d d

4 d

4 4

d d

Prime
impIicant

P1

p2

P4

P5

Minterm
0 15

d

4

d

4

Prime
implicant

P1

p2

P4

P5

Minterm
0 3 10 15

4 4

d 4

d d

d 4

4.9 A TABULAR METHOD FOR MINIMIZATION

and ps - The other possibility is to choosep;! and p4. Hence a minimum-cost cover is just

Cmin = (PI PSI
= (OOxx, lxlx)

The function is realized as

4.9.3 SUMMARY OF THE TABULAR METHOD

The tabular method can be summarized as follows:

1 . Starting with a list of cubes that represent the minterms where f = 1 or a don't-care
condition, generate the prime implicants by successive pairwise comparisons of the
cubes.

2. Derive a cover table which indicates the rninterms where f = 1 that are covered by
each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table
by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row's prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of
the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the
prime implicants. It also shows a simple approach for dealing with the covering problem,
to find a minimum-cost cover. The method has some practical limitations. In practice,
functions are seldom defined in the form of minterms. They are usually given either in the
form of algebraic expressions or as sets of cubes, The need to start the minimization process
with a list of rninterms means that the expressions or sets have to be expanded into this
form. This list may be very large. As larger cubes are generated, there will be numerous

performed and the computation will be slow. Using the cover table to select
the optimal set of prime irnplicants is also cornputationally intensive when large functions
are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it
takes to generate the optimal covers. While most of these techniques are beyond the scope
of this book. we will briefly discuss one possible approach in the next section. A reader who

to use the CAD tools, but is not interested in the details of automated minimization,
may skip this section without loss of continuity.

4.1 0 A CUBICAL TECHNIQUE FOR MINIMIZATION

Assume that the initial specification of a function f is given in terms of implicants that arenot
necessarily either minterms or prime implicants. Then it is convenient to define an operation
that will generate other implicants that are not given explicitly in the initial specification
but which will eventually lead to the prime implicants o f f . One such possibility is known
as the *-product operation, which is usually pronounced the "star-product" operation. we
will refer to it simply as the *-operurion.

*-Operation 4
The *-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. Let A = A lAz . - A, and B = Bl Bz - . B, be
two cubes that are implicants of an n-variable function. Thus each coordinate Ai and B,
is specified as having the value 0, 1, or x. There are two distinct steps in the *-operation,
First, the *-operation is evaluated for each pair A, and B,, in coordinates i = 1,2, . , , , n,
according to the table in Figure 4.41. Then based on the results of using the table, a set of
rules is applied to determine the overall result of the *-operation. The table in Figure 4.41
defines the coordinate *-operation, A , * Bi. It specifies the result ofA, * B, for each possible
combination of values of A, and 3,. This result is the intersection (i.e., the common part)
of A and B in this coordinate. Note that when A, and B, have the opposite values (0 and 1,
or vice versa), the result of the coordinate *-operation is indicated by the symbol @. We say
that the intersection of Ai and B, is empty. Using the table, the complete *-operation for A
and B is defined as follows:

C = A * B, such that
i

I. C = g, $ A i * Bi = oformore than one i.

2. Otherwise, Ci = Ai * B, when Ai * Bi # @, and C, = x for the coordinate where
Ai . t ~ Bi = P),

Forexample, IetA = (0x0) and B = {I l l} . T h e n A I *BI = O * 1 = @ , A 2 * & = X * 1 = 1,
andA3 * B 3 = O* 1 = 0. Because the result is @ in two coordinates, it follows from condition
1 that A JF B = @. In other words, these two cubes cannot be combined into another
because they differ in two coordinates.

As another example, considerA = (11x1 and B = {lox}. In this case A 1 * B I = 1
1 , Az * B2 = 1 * 0 = 0, and A, * B3 = x * x = X. According to condition 2 above, CI = 1 7

Figure 4.4 1 The coordinate *-operation

0

x

O $ O

1 1 1 1

O l x

, x and C3 = X, which gives C = A * B = {lxx). A larger 2-cube is created from two C2-
l-cubes that differ in one coordinate only.

The result of the *-operation may be a smaller cube than the two cubes involved in the
ConsiderA = (1x1) and B = {llx}. Then C = A * B = (111). Notice that c

is included in both A and B, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

AS a final example, considerA - (x10) and B - (0x1). Then C = A * B = {olx}. ~ 1 1
three of these cubes are the same size, but C is not included in either A or B. Hence C has

be ~onsidered in the search for prime implicants. The reader may find it helpful to draw
, Kamaugh map to see how cube C is related to cubes A and B.

Using the *-Operation to Find Prime Implicants
The essence of the *-operation is to find new cubes from pairs of existing cubes. In

P articular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a functi0n.f is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the cover C' o f f . Let c' and CJ be any two cubes in
ck. Then apply the *-operation to all pairs of cubes in ck; let G ~ + ~ be the set of newly
generated cubes. Hence

G k + l - i - c * cj for all c', cIE ck
Now a new cover for f may be formed by using the cubes in ck and G'+'. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

ck+' = ck U G ~ + ' - redundant cubes

where U denotes the logical union of two sets, and the minus sign (-) denotes the removal
of elements of a set. If ck+l # ck, then a new cover c"+' is generated using the same
process. If c"+' = c', then the cubes in the cover are the prime implicants o f f . For an
n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. Cube A = AIA2 . . . A n should be removed if it is included in some cube B =
BIB, . - B,, which is the case if Ai = Bi or Bi = x for every coordinate i.

Consider the function f (xl, xz, x ~) of Figure 4.9. Assume that f is initially specified as a set
vertices that correspond to the minterms, rno, ml, rnl, m3, and m7. Hence let the initial

'Over be c0 = (000, 001, 010, 01 1, 11 1 }. Using the *-operation to generate a new set of
cubes, we obtain G I = {oox, 0x0, Ox 1, Olx, x 1 1 }. Then c1 = C* U G' - redundant cubes.
Observe that each cube in CO is included in one of the cubes in GI; therefore, all cubes in
C0 are redundant. Thus c1 = G l .

The next step is to apply the *-operation to the cubes in c l , which yields G~ = (000,
ool. Oxx, Ox 1, 010, 01x, 01 1) . Note that all of these' cubes are included in the cube Oxx;

therefore, all but Oxx are redundant. Now it is easy to see that

c2 = c1 U G~ -redundant terms

= { x l l , Oxx)

since all cubes of C' , except x 11, are redundant because they are covered by Oxx.
Applying the *-operation to c2 yields G~ = (01 1) and

c3 = c2 U G~ - redundant terms

= { x l l , Oxx)

Since c3 = c 2 , the conclusion is that the prime irnplicants off are the cubes { x l l , Oxx},
which represent the product terms ~2x3 and TI. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 4.9.

Observe that the derivation of prime implicants in this example is similar to the tabular
method explained in section 4.9 because the starting point was a function, f , given as a set
of minterms.

7 As another example, consider the four-variable function of Figure 4.10. Assume that this
function is initially specified as the cover CO = (0101, 1101, 11 10, 01 lx , xOlx}. Then
successive applications of the *-operation and removing&e redundant terms gives

I
c1 = {xOlx, x101,Olxl, x110,1x1'0, Oxlx)

c2 = {xOlx, x101,0lxl, Oxlx, xxlO}

c3 = ~2

Therefore, the prime implicants are X2x3, x2Z3x4, X1x2x4, X1x3, and x3X4.

From a cover that consists of all prime implicants, it is necessary to extract a minimal
cover. As we saw in section 4.2.2, all essential prime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that is not covered by another cube. One such
operation is called the #-operation (pronounced the "sharp operation"), which is defined
follows.

#-Operation
Again, let A = AIAz .A . and B = BIB2 - .Bn be two cubes (implicants) of an

n-variable function. The sharp operation A#B leaves as a result "that part of A that is
not covered by B." Similar to the *-operation, the #-operation has two steps: Ai#Bi is
evaluated for each coordinate i, and then a set of rules is applied to determine the overall

Figure 4.42 The coordinate #-operation.

result. The sharp operation for each coordinate is defined in Figure 4.42. After this operation
is prforrned for all pairs (Ai, Bi), the complete #-operation is defined as follows:

C = A#B, such that

1 , c=Ai fAi#Bi = oforsomei.

2. C = @ if Ai#Bi = E for all i. -
3. Otherwise, C = U i (A I , Az, . . . ? B;, . . . , A,) , where the union is for all i for which

A, = x and Bi # X.

The first condition corresponds to the case where cubes A and B do not intersect at all;
A and B differ in the value of at least one variable, which means that no part of A

is covered by B. For example, let A = Ox1 and B = l l x . The coordinate #-products are
Al#B, = 8, A2#B2 = 0, and A3#B3 = 8. Then from rule 1 it follows that 0x1 # I l x =
0x1. The second condition reflects the case where A is fully covered by B. For example,
0x1 # Oxx = g . The third condition is for the case where only a part of A is covered by
B. In this case the #-operation generates one or more cubes. Specifically, it generates one
cube for each coordinate i that is x in Ai , but is not x in Bi. Each cube generated is identical
to A, except that Ai is replaced by Bi. For example, Oxx # 0 1x = OOx, and Oxx # 010 =
{OOx, ox 1 1.

We will now show how the #-operation can be used to find the essential prime impli-
Cants. Let P be the set of all prime implicants of a given function f. ~ e t p ' denote one prime
implicant in the set P and let DC denote the don't-care vertices for f . (We use superscripts
to refer to different prime implicants in this section because we are using subscripts to refer
to coordinate positions in cubes.) Then pi is an essential prime implicant if and only if

This means that pi is essential if there exists at least one vertex for which f = 1 that is
covered by pi, but not by any other prime implicant. The #-operation is also performed with
the set of don't-care cubes because vertices in that correspond to don't-care conditions
are not essential to cover. The meaning of pi # (P -pi) is that the #-operation is applied

3 4 to each prime implicant in P. For example, consider P = (pl, pZ, p , p and
DC = { d l , d 2 } . To check whether p3 is essential, we evaluate

If the result of this expression is not 0, then p3 is essential.

- -
B In Example 4.16 we determined that the cubes x l l and Oxx are the prime implicants of

the function f in Figure 4.9. We can discover whether each of these prime implicants is
essential as follows

x l l #Oxx= 111 # @

oxx # x l l = {OOx, 0x0) # (d

The cube x l l is essential because it is the only prime implicant that covers the vertex 111,
for which f = 1. The prime implicant Oxx is essential because it is the only one that covers
the vertices 000,001, and 010. This can be seen in the Karnaugh map in Figure 4.9.

-
9 In Example 4.17 we found that the prime implicants of the function in Figure 4.10 are P =

(xOlx, x101,01xl, Ox 1 x, xx10). Because this function has no don't-cares, we compute

xOlx # (P - x0lx) = 1011 # pr

This is computed in the following steps: xOlx # xlO1 = xO lx, then xOlx # Olx 1 = xOlx,
then xOlx # Oxlx = 101x, and finally iO1x # xxlO = 101 1. Similarly, we obtain

xlOl # (P - x101) = 1101 $

01x1 # (P - 01x1) = $4

Oxlx # (P - Ox1 x) = fJ

xxlO#(P-xxlO)= 1110 3 # @

Therefore, the essential prime implicants are xOlx, xlO1, and xxlO because they are the
only ones that cover the vertices 101 1, 1101, and 11 10, respectively. This is obvious from
the Karnaugh map in Figure 4.10.

When checking whether a cube A is essential, the #-operation with one of the cubes in
P - A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes in P - A. d

Having introduced the *- and #-operations, we can now outline a complete procedure for
finding a minimal cover for any n-variable function. Assume that the function f is specified
in terms of vertices for which f = 1; these vertices are often referred to as the ON-set of
the function. Also, assume that the don't-care conditions are specified as a DC-set. Then
the initial cover for f is a union of the ON and DC sets.

Prime implicants o f f can be generated using the *-operation, as explained in section
4.10. Then the #-operation can be used to find the essential prime implicants as presented
in section 4.10.1. If the essential prirne implicants cover the entire ON-set, then they fom
the minimum-cost cover for f . Otherwise, it is necessary to include other prime implicants
until all vertices in the ON-set are covered.

a

4.1 0 A CUBICAL TECHNIQUE FOR MINIMIZATION

A nonessential prime implicant pi should be deleted if there exists a less-expensive

prime implicant p' that covers all vertices of the ON-set that are covered by pi. If the
nonessential prime implicants have the same cost, then a possible heuristic ap-

P'
oath is to arbitrarily select one of them, include it in the cover, and determine the rest of

the cover. Then an alternative cover is generated by excluding this prime irnplicant, and *, lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as the branching heuristic, in sections 4.2.2 and 4.9.2.

The preceding discussion can be summarized in the form of the following minimization
p o c e d ~ r e

1. ~ e t CO = ON U DC be the initial cover of function f and its don't-care conditions.

2. Find all prime implicants of CO using the *-operation; let P be this set of prime
implioants.

3. Find the essential prime implicants using the #-operation. A prime implicant pi is
essential if pi # (P - p i) # DC # 0. If the essential prime irnplicants cover all
vertices of the ON-set, then these implicants form the minimum-cost cover.

4, Delete any nonessential /I' that is more expensive (i.e., a smaller cube) than some
other prime implicant p' if pi # DC # p' = 0.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

TO illustrate the minimization procedure, we will use the function

To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 4.43.

Figure 4.43 The function for Example 4.20.

Instead off being specified in terms of minterms, let us assume that f is given as the
following SOP expression

Also, we will assume that don't-cares are specified using the expression

DC = x1x2XqX5 + X 1 ~ 2 X 3 ~ 4 X 5 + X 1 X 2 ~ 3 % ~ 5

Thus, the ON-set expressed as cubes is

ON = (0x000, 11010,00001,011x1, 101x1, l x l l l , x0100)

and the don't-care set is

DC = {11x00,01010,00101)

The initial cover C O consists of the ON-set and the DC-set:

c0 = {oxooo, 11010,00001,011x1, 101x1, 1x111, x0100,11x00,01010, 00101}

Using the *-operation, the subsequent covers obtained are

c1 = {oxooo, 011x1,101x1,1x111, x0100,11x00, oooox, 00x00, x1000,010x0,110x0,

x1010,00x01, x l l l l , 0x101, lOlOx, xo101, 1x100,0010x}

c2 = {oxooo,ollxl , 101x1, 1x11 1, 11x00, x l l l l , 0 x ~ 1 x 1 0 0 , xOlOx, ooxox, xlOxO}

Therefore, P = c2.
Using the #-operation, we find that there are two essential prime implicants: OOxOx

(because it is the only one that covers the vertex 0000 1) and x 10x0 (because it is the only one
that covers the vertex 11010). The minterms off covered by these two prime implicants
are m(0, 1 ,4 , 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1 x 100, the prime implicant xO lox becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, xOlOx
has to be included in the final cover. It covers m(20,21).

There remains to find prime implicants to cover m(13, 15, 23, 3 1). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x1 11. Thus the final cover is

Cmini,,, = {OOxOx, xlOx0, xOlOx, 011x1, l x l l l)

The corresponding sum-of-products expression is

f = XI%% + x2X3X5 + 2 2 ~ 3 % f X1x2x3x5 + XlX3XqX5
Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check the
validity of our solution by finding the optimal realization from the Kamaugh map in Fig-
ure 4.43. -

i The pulpose of the preceding section was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some

The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

1fthe goal of minimization is relaxed so that it is not imperative to find a minimum-cost
then it is possible to derive heuristic techniques that produce good results

in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the *-operation to find the
prime implicants, Espresso uses an implicant-expansion technique. (See problem 4.30 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [19], while simplified outlines can be found in [3, 121.

The University of California at Berkeley also provides two software programs that
can be used for design of multilevel circuits, called MIS 1201 and SIS [21]. They allow a
user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
and decomposition to all or part of a circuit. S1S also includes the Espresso algorithm for
two-level minimization of functions, as well as many other optimization techniques.

Numerous commercial CAD systems are on the market. Four companies whose prod-
ucts are widely used are Cadence Design Systems, Mentor Graphics, Synopsys, and Syn-
plicity. Information on their products is available on the World Wide Web. Each company
provides logic synthesis software that can be used to target various types of chips, such as
PLDs, gate arrays, standard cells, and custom chips. Because there are many possible ways
to synthesize a given circuit, as we saw in the previous sections, each commercial product
uses a proprietary logic optimization strategy based on heuristics.

To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry: technology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most

the techniques presented in this chapter are of this type. The second term, technology - - refers to techniques that are used to ensure that the circuit produced by logic
can be realized using the logic resources available in the target chip. A good

of technology mapping is the transformation from a circuit in the form of logic
'perations such as AND and OR into a circuit that consists of only NAND operations. This
'ype of technology mapping is done when targeting a circuit to a gate array that contains
Only NAND gates. Another example is the translation from logic operations to lookup

which is done when targeting a design to an FPGA.
12 discusses the CAD tools in detail. It presents a typical design flow that a

designer may use to implement a digital system.

Section 2.10 shows how simple VHDL programs can be written to describe logic functions
This section introduces additional features of VHDL and provides further examples of

circuits designed using VHDL code.
Recall that a logic signal is represented in VHDL as a data object, and each data object

has an associated type. In the examples in section 2.10, all data objects have the type BIT
which means that they can assume only the values 0 and 1. To give more flexibility, VHDL
provides another data type called STD-LOGIC. Signals represented using this type can have
several different values.

As its name implies, STD-LOGIC is meant to serve as the standard data type for
representation of logic signals. An example using the STD-LOGIC type is given in Figure
4.44. The logic expression for f corresponds to the truth table in Figure 4.1; it describesf
in the canonical fom, which consists of mintems. To use the STD-LOGIC type, VHDL
code must include the two lines given at the beginning of the figure. These statements serve
as directives to the VHDL compiler. They are needed because the original VHDL standard,
IEEE 1076, did not include the STDLOGIC type. The way that the new type was added
to the language, in the IEEE 1164 standard, was to provide the definition of STD-LOGIC
as a set of files that can be included with VHDL code when compiled. The set of files is
called a library. The purpose of the first line in Figure 4.4 to declare that the code will
make use of the IEEE library.

LIBRARY ieee ;
USE ieee.std_logic-1164.all ;

ENTITY func 1 IS
PORT (x l , x2, x3 : IN STDLOGIC ;

f : OUT STDLOGIC) ;
END func 1 ;

ARCHITECTURE LogicFunc OF func I IS
BEGIN

f <= (NOT xl AND NOT x2 AND NOT x3) OR
(NOT xl AND x2 AND NOT x3) OR
(xl AND NOT x2 AND NOT x3) OR
(xl AND NOT x2 AND x3) OR
(xl AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4-44 The VHDL code for the function in Figure 4.1.

4.1 2 EXAMPLES OF CIRCUITS SYNTHESIZED FROM VHDL CODE

In vHDL there are two main aspects to the definition of a new data type. First, the set
of values that a data object of the new type can assume must be specified. For STD-LOGIC,
there are a number of legal values, but the ones that are the most important for describing
logic functions are 0, I , Z, and -. We introduced the logic value Z, which represents
the high-impedance state, in section 3.8.8. The - logic value represents the don't-care

which we labeled as d in section 4.4. The second requirement is that all legal
,,,, in vHDL code of the new data type must be specified. For example, it is necessary to

that the type STD-LOGIC is legal for use with Boolean operatorr.
In the IEEE library one of the files defines the STD-LOGIC data type itself and specifies

some basic legal uses, such as for Boolean operations. In Figure 4.44 the second line of
tells the VHDL compiler to use the definitions in this file when compiling the code.

The file encapsulates the definition of STD-LOGIC in what is known as a package. The
is named std-logic4 164. It is possible to instruct the VHDL compiler to use only

a subset of the package, but the normal use is to specify the word all to indicate that the
entire package is of interest, as we have done in the figure.

For the exampIes of VHDL code given in this book, we will almost always use only
the type STD-LOGIC. Besides simplifying the code, using just one data type has another
benefit. VHDL is a strongly type-checked language. This means that the VHDL compiler
carefully checks all data object assignment statements to ensure that the type of the data
object on the left side of the assignment statement ir exactly the same as the type of the data
object on the right side. Even if two data objects seem compatible from an intuitive point
of view, such as an object of type BIT and one of type STD-LOGIC, the VHDL compiler
will not allow one to be assigned to the other. Many synthesis tools provide conversion
utilities to convert from one type to another, but we will avoid this issue by using only the
STD-LOGIC data type in most cases. In the remainder of this section, a few examples of
VHDL code are presented. We show the results of synthesizing the code for implementation
in two different types of chips, a CPLD and an FPGA.

We compiled the VHDL code in Figure 4.44 for implementation in a CPLD, and the CAD
tools produced the expression

which is the minimal sum-of-products form that we derived using the Kmaugh map in
Figure 4.56. Figure 4.45 shows how this expression may be implemented in a CPLD. The
switches that are programmed to be closed are shown in blue. The gates used to implement
f are also highlighted in blue. Observe that only the top two AND gates are used in this
case. The bottom three AND gates have no effect because each is connected to both the

-

'me and colnplemented versions of an unused input, which causes the output of the AND
gate to be 0.

Figure 4.46 gives the results of synthesizing the VHDL code in Figure 4.44 into an
FPGA. We assume that the compiler generates the same sum-of-products form as above.
Because the logic cells in the chip are four-input lookup tables, only a single logic cell is
needed for this function. The figure shows that the Variables X I , x2, and x, are connected

(from interconnection wires)

X1 X2 X3 unused

i

Part of a PAL-like block
0 . .

f

. . .

Figure 4.45 Implementation of the VHDL code in Figure 4.44.

C

i , i , i , i , f

d o 0 0 1
-

'1 d O O l 0
-

'2
d o l o 1

-
i3

d o l l 0
d l 0 0 1 -

I4
d l 0 1 1
d l 1 0 1
d l 1 1 0

LUT

Figure 4.46 The VHDL code in Figure 4.44 implemented in a La

to the LUT inputs called i2 , i3. and i4. Input il is not used because the function requires
only three inputs. The truth table in the LUT indicates that the unused input is treated as
a don't-care. Thus only half of the rows in the table are shown, since the other half is
identical. The unused LUT input is shown connected to 0 in the figure, but it could just as
well be connected to 1.

It is interesting to consider the benefits provided by the optimizations used in 10glc

synthesis. For the implementation in the CPLD, the function was simplified from be

4.1 2 EXAMPLES OF CIRCUITS SYNTHESIZED FROM VHDL CODE

original five product terms in the canonical form to just two product terms. However, both
the optimized and nonoptimiwd forms fit into a single macrocell in the chip, and thus they
have the same cost (the macrocell in Figure 4.45 has five product terms). Similarly, for
the FPGA it does not matter whether the function is minimized, because it fits in a single
LUT. The reason is that our example circuit is very small. For large circuits it is essential

perfom the optimization. Examples 4.22 and 4.23 illustrate logic functions for which
the cost of implementation is reduced when optimized.

The VHDL code in Figure 4.47 corresponds to the function fi in Figure 4.7. Since there are
six product terms in the canonical form. two macrocells of the type in Figure 4.45 would
be needed. When synthesized by the CAD tools, the resulting expression might be

which is the same as the expression derived in Figure 4.7. Because the optimized expression
has only two product terms, it can be realized using just one macrocell and hence results in
a lower cost.

When fi is synthesized for implementation in an FPGA, the expression generated may
be the same as for the CPLD. Since the function has only four inputs, it needs just one LUT.

LIBRARY ieee ;
USE ieee.stdlogic~l164.all ;

ENTITY func2 IS
PORT (X I , x2, x3, x4 : IN STDLOGIC ;

f : OUT STDLOGIC) ;
END func2 ;

ARCHITECTURE LogicFunc OF func2 IS
BEGIN

f <= (NOT x l AND NOT x2 AND x3 AND NOT x4) OR
(NOT x l AND NOT x2 AND x3 AND x4) OR
(XI AND NOT x2 AND NOT x3 AND x4) OR
(x1 AND NOT x2 AND x3 AND NOT x4) OR
(xl AND NOT x2 AND x3 AND x4) OR
(xl AND x2 AND NOT x3 AND x4) ;

END LogicFunc ;

Figure 4.47 The VHDL code for fi in Figure 4.7.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY func3 IS
PORT (x l , x2, x3, x4, x5, x6, x7 : IN STD-LOGIC ;

f : OUT STDLOGIC) ;
END func3 ;

ARCHITECTURE LogicFunc OF func3 IS
BEGIN

f <= (xl AND x3 AND NOT x6) OR
(xl AND x4 AND x5 AND NOT x6) OR
(x2 AND x3 AND x7) OR
(x2 AND x4 AND x5 AND x7) ;

END LogicFunc ;

Figure 4.48 The VHDL code for the function of section 4.7.

.23 In section 4.6 we used a seven-variable logic function as a motivation for multilevel syi
thesis. This function is given in the VHDL code in Figure 4.48. The logic expression
in minimal sum-of-products form. When it is synthesized for implementation in a CPLl
no optimizations are performed by the CAD tools. The function requires one macroce
This function is more interesting when we consider its implementation in an FPGA wi
four-input LUTs. Because there are seven inputs, more than one LUT is required. If tf
function is implemented directly as given in the VHDL code, then five LUTs are neede
as depicted in Figure 4 .49~ . Rather than showing the truth table programmed in each LU
we show the logic function that is implemented at the LUT output, But, if the function
synthesized as

f = (~ 1 % + ~ 2 ~ 7) (~ 3 + ~ 4 x 5)

which is the expression we derived by using factoring in section 4.6, then f can be imp1
mented using only two LUTs as illustrated in Figure 4.49h. One LUT produces the ter
S = xl&, + ~2x7. The other LUT implements the four-input function f = Sx3 + SX&.

This chapter has attempted to provide the reader with an understanding of various aspec
of synthesis for logic functions. Now that the reader is comfortable with the fundament
concepts, we can examine digital circuits of a more sophisticated nature. The next chapt
describes circuits that perform arithmetic operations, which are a key part of computers.

(a) Sum-of-products realization

(b) Factored realization

Figure 4.49 Implementation of the VHDL code in Figure 4.48.

This section presents some typical problems that the reader may encounter, and shows how
problems can be solved.

-

Determine the minimum-cost SOP and POS expressions for the function
c x l , ~ , ~ 3 , ,) = m(4, 6, 8, 10, 11, 12, 15) + D(3 ,5 ,7 ,9) .

The function can be represented in the form of a Karnaugh map as shown in
Figure 4.500. Note that the location of minterrns in the map is as indicated in Figure 4.6. 229

(a) Determination of the SOP expression

(b) Determination of the POS expression

Figure 4.50 Karnaugh maps for Example 4.24.

4
To find the minimum-cost SOP expression, it is necessary to find the prime implicants that
cover all 1s in the map. The don't-cares may be used as desired. Minterm rns is covered
only by the prime implicant Tlx2, hence this prime implicant is essential and it must be
included in the final expression. Similarly, the prime implicants xlZz and x3x4 are essential
because they are the only ones that cover rnlo and mls, respectively. These three prime
implicants cover all minterrns for which f = 1 except m ~ z . This minterm can be covered
in two ways, by choosing either xI-X3X4 or x2X3Xq. Since both of these prime irnplicants
have the same cost, we can choose either of them. Choosing the former, the desired SOP
expression is

f = T1x2 + ~ 1 X 2 + X3X4 + x1;C3i'$

These prime implicants are encircled in the map.

The desired POS expression can be found as indicated in Figure 4.506. In this case,
we have to find the sum terms that cover all 0s in the function. Note that we have written

Os in the map to emphasize this fact. The term (xl + x2) is essential to cover the
Os in squares 0 and 2, which correspond to maxterrns Mo and M2. The terms (xi + x4) and
(y, + 2. + 2, + .r4) must be used to cover the 0s in squares 13 and 14, respectively. Since
these three sum terms cover all 0s in the map, the POS expression is

The chosen sum terms are encircled in the map.
Observe the use of don't-cares in this example. To get a minimum-cost SOP expression

we assumed that all four don't-cares have the value 1. But, the minimum-cost POS expres-
sion becomes possible only if we assume that don't-cares 3 , 5 , and 9 have the value 0 while
fie don't-care 7 has the value 1. This means that the resulting SOP and POS expressions are
not identical in terms of the functions they represent. They cover identically all valuations
for which f is specified as I or 0, but they differ in the valuations 3, 5, and 9. Of course,
this difference does not matter, because the don't-care valuations will never be applied as
inputs to the implemented circuits.

-

Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the
function

assuming that there are also don't-cares defined as D = z(9, 12, 14).

Solution: The Karnaugh map that represents this function is shown in Figure 4.5 la . The
map is derived by placing 1 s that correspond to each product term in the expression used
to specify f . The term T,T3T4 corresponds to minterms 0 and 4. The term ~3x4 represents
the third row in the map, comprising minterms 3 ,7 , 11, and 15. The term YlZzx4 specifies
minterms I and 3. The fourth product term represents the minterm 13. The map also
includes the three don't-care conditions.

To find the desired SOP expression, we must find the least-expensive set of prime
implicants that covers all 1s in the map. The term ~ 3 x 4 is a prime implicant which must
be included because i t is the only prime implicant that covers the minterm 7; it also covers
minterms 3, 11, and 15. Mintem 4 can be covered with either xlx3Z4 or x2x*4. Both of
these terms have the same cost; we will choose Tixi% because it also covers the minterm 0.
Mintem 1 may be covered with either x,r2x3 or %n4; we should choose the latter because
Its is lower. This leaves only the minterm 13 to be covered, which can be done with

either xix4 or x l x z at equal costs. Choosing xlx4, the minimum-cost SOP expression is

Figure 4.5 1 h shows how we can find the POS expression. The sum term (i3 + x4)
'Overs the 0s in the bottom row. To cover the 0 in square 8 we must include (FI + x4). The

--2--4

Determination of the SOP expression

(b) Determination of the POS expression I
Figure 4.5 1 ~arnaugh maps for Example 4.25.

remaining 0, in square 5, must be covered with (xl +& +x3 +&). Thus, the minimum-cost
POS expression is

!6 Problem: Use the tabular method of section 4.9 to derive a minimum-cost SOP expression
for the function

assuming that there are also don't-cares defined as D = C(9, 12, 14).

solution: The tabular method requires that we start with the function defined in the form
ofminterms. AS found in Figure 4.5ia, the function f can also be represented as

me eleven 0-cubes are placed in list I in Figure 4.52.
NOW, perfom a painvise comparison of all 0-cubes to determine the 1-cubes shown

in list 2, which are obtained by combining pairs of 0-cubes. Note that all 0-cubes are
included in the 1-cubes, as indicated by the checkmarks in list 1. Next, perform a pairwise

of all 1-cubes to obtain the 2-cubes in list 3. Some of these 2-cubes can be
generated in multiple ways, but it is not useful to list a Zcube more than once (for example,
x ~ x 1 in list 3 can be obtained by combining from list 2 the cubes 1,3 and 9,11 or by using
the cubes 1,9 and 3,ll). Note that all but three I-cubes are included in the 2-cubes. It is not
possible to generate any 3-cubes, hence all terms that are not included in some other term
(the unchecked terms in list 2 and all terms in list 3) are the prime implicants o f f . The set
of prime implicants is

P = {OOOx, 0x00, x100, xOxl, xx l l , lxxl, l lxx)

To find the minimum-cost cover for f , construct the table in Figure 4.53a which shows
all prime irl~plicants and the minterms that must be covered, namely those for which f = 1.
Acheckmark is placed to indicate that a minterm is covered by a particular prime irnplicant.
Since rninterm 7 is covered only by p ~ , this prime implicant must be included in the final

List 1 List 2 List 3

d 0,l
0,4

1,3
1,9

4,12

3,7
3,11
9,11

9,13
12,13
12,14

7,15
11,15
13,15
14,15

4.52 Generation of prime implicantr for the function in Example 4.26.

- --

O O O x
0 x 0 0

O O x 1
x 0 0 1
x 1 0 0

0 x 1 1
x 0 1 1
1 0 x 1

1 x 0 1
1 1 0 x

1 1 x 0

x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x

Prime
implicant

P 1 = 0 O O x

P 2 = O x O O

P 3 = x 1 0 0

p q = x O x l

P 5 = x x 1 1

p g = l x x l

p 7 = 1 1 x x

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

(a) Initial prime implicant cover table

I

(b) After the removal of rows ~ 3 , p5 and P,, and columns 3,7, 1 1 and 13

Figure 4.53 Selection of a cover for the function in Example 4.26.

cover. Observe that row p2 dominates row p3, hence the latter can be removed. Similarly,
row ph dominates row p7. Removing rows p5, p3, and p7, as well as columns 3,7, 11, and
15 (which are covered by p5) , leads to the reduced table in Figure 4.536. In this table, p2
and pb are essential. They cover minterrns 0, 4, and 13. Thus, it remains only to cover
minterm 1. which can be done by choosing either pl or pj . Since p4 has a lower cost, it
should be chosen. Therefore, the final cover is

c = (p27 ~ 4 , ~ 5 , ~ 6)

= (0x00, xOx1, xx l l , lxx l]

and the function is implemented as

f = T1X3%4 +F2x4 +X'3Xq + X1x4

Minterm
0 1 3 4 7 1 1 1 3 1 5

d d

d L/

4

d 4 d

d d L/ d

d d d

d d

Prime
implicant

P 1 = 0 0 0 x

P 2 = O x O O

P 4 = x O x 1

P s = l x x l

Minterm
0 1 4 1 3

4 d

4 d
,

4

d i i

\

Y
problem: Use the *-product operation to find all prime implicants of the function 1

- -
f (x1, . . . , x4) = XlX3X4 + X3X4 + XlX2X4 + x1x2X3x4

that there are also don't-cares defined as D = x(9, 12, 14).

~ ~ l ~ t i o n : The ON-set for this function is

ON = (0x00, xx11,00x1, 1101)

The initial cover, consisting of the ON-set and the don't-cares, is

Using the *-operation, the subsequent covers obtained are

c' = (0x00, xxl l , 00x1, ooox, x100, l lxl ,10x1, I l l x , xoo1, 1x01, IlOx, 11x0)

c2 = (0x00, xx l l , ooox, x100, xOxl, lxxl , l lxx)

c3 = ~2

Therefore, the set of all prime implicants is
- - - -

P = { X I X ~ X ~ , X3X4, XlX2X3, X2X3X4, &x4, XlX4, xlx*}

Problem: Find the minimum-cost implementation for the function

f (xl, . . . , x4) = X1X3X4 + X3X4 + X l X 2 ~ 4 + x1x2X3x4

assuming that there are also don't-cares defined as D = x(9, 12, 14).

Solution: This is the same function used in Examples 4.25 through 4.27. In those examples,
we found that the minimum-cost SOP implementation is

f = X3x4 TIT3& + X2x4 + XlX4

which requires four AND gates, one OR gate, and 13 inputs to the gates, for a total cost I .fig.
The minimum-cost POS implementation is

. -

f = (T3 +x4)(E, + X ~) (X I + X 2 + X 3 +Xq)

which requires three OR gates, one AND gate, and 11 inputs to the gates, for a total cost
L

of 15.
We can also consider a multilevel realization for the function. Applying the factoring

to the above SOP expression yields

f = (XI + F2 + x3)~4 + z1?3?4
This requires two AND gates, two OR gates, and 10 inputs to the gates, for
a Iota1 cost of 14. Compared to the SOP and POS implementations, this has the lowest cost

-L

in terms of gates and inputs, but it results in a slower circuit because there are three levels of

L

1 gates through which the signals must propagate. Of course, if this function is implementd
in an FPGA, then only one LUT is needed.

7

4.29 Problem: In several commercial FPGAs the logic blocks are four-input LUTs. Two such
LUTs, connected as shown in Figure 4.54, can be used to implement functions of seven
variables by using the decomposition

f (~ l r . * - , ~ 7) =f[g(xl, . - . , ~ 4) , ~ 5 , ~ 6 , ~ 7 1

It is easy to see that functions such as f = X ~ X ~ X ~ X ~ X ~ X ~ X T and f = xl + x2 + x3 + x4 +.
x5 + xh + X, can be implemented in this form. Show that there exist other seven-variabie
functions that cannot be implemented with 2 four-input LUTs.

Solution: The truth table for a seven-variable function can be arranged as depicted in Figure
4.55. There are z7 = 128 rninterrns. Each valuation of the variables XI, x2, x3, andx4 selects
one of the 16 columns in the truth table, while each valuation of xg, xb, and x7 selects one
of 8 rows. Since we have to use the circuit in Figure 4.54, the truth table for f can also be
defined in terms of the subfunction g . In this case, it is g that selects one of the 16 columns
in the truth table, instead of xl , xz, ~ 3 , and x4. Since g can have only two possible values,
0 and 1, we can have only two columns in the truth table. This is possible if there exist
only two distinct patterns of 1 sknd 0s in the 16 columns in Figure 4.54. Therefore, only a
relatively small subset of seven-variable functions can be realized with just two LUTs. 4

Figure 4.54 Circuit for Example 4.29.

Figure 4.55 A possible format for truth tables of seven-variable
functions.

Answers to problems marked by an asterisk are given at the back of the book.

'4.1 Find the minimum-cost SOPandPOS forms for the function f (x l , x2, x3) = m(l,2,3,5) .
* 4.2 Repeat problem 4.1 for the function f (xl, x*, x3) = m(1,4,7) + D(2.5).

4.3 Repeat problem 4.1 for the function f (xl, . . . , x.4) = IIM (0, 1 , 2, 4, 5, 7, 8, 9, 10, 12,
14, 15).

4.4 Repeat problem 4.1 for the function f (xl, . . . ,x4) = m(0, 2, 8, 9, 10, 15) + D(1, 3,
61 7).

'--. * 4.5 Repeat problem 4.1 for the function f (xl , . . . , xs) = IIM (1, 4, 6, 7, 9, 12,15, 17, 20, 21,
22,23, 28, 31).

4.6 Repeat problem 4.1 for the function f (xl , . . . , xs) = Ern(0, 1,3,4,6,8,9, 11, 13, 14, 16,
19,20,21,22, 24, 25) + D(5,7, 12, 15, 17,231.

4.7 Repeat problem 4.1 for the function f (XI, . . . , xs) = m(1,4 , 6, 7, 9, 10, 12, 15, 17, 19,
20,23,25,26,27, 28, 30,31) + D(8, 16,21,22).

4.8 Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

* 4m9 A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called amajority function, Design a minimum-cost SOPcircuit that implements
this majority function.

4* Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

*4.1 1 Prove or show a counter-example for the statement: If a function f has a unique minimu,.
cost SOP expression, then it also has a unique minimum-cost POS expression.

*4.12 A circuit with two outputs has to implement the following functions

f (x 1 , . . . , a) = x m (0 , 2 , 4 , 6 , 7 , 9) + D (1 0 , 1 1)

Design the minimum-cost circuit and compare its cost with combined costs of two circuils
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

4.1 3 Repeat problem 4.12 for the following functions

*4.14 Implement the logic circuit in Figure 4.23 using NAND gates only.

*4,15 Implement the logic circuit in Figure 4.23 using NOR gates only.

4.16 Implement the logic circuit in Figure 4.25 using NAND gates only.

4.1 7 Implement the logic circuit i Figure 4.25 using NOR gates only. 1
*4.18 Consider the function f = k3xs + X1x2x4 + xlqT4 + xIx3X4 + XIx3x4 + X I X ~ X ~ + X I Z ~ X ~ .

Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

4.19 Derive a minimum-cost circuit that implements the function f (x l , . . . , q) = C m(4,7,8,
1 1) + D(12, 15).

4.20 Find the simplest realization of the function f (x l , . . . , y) = m(0, 3 , 2 , 7 , 9 , 10,13,14),
assuming that the logic gates have a maximum fan-in of two.

*4.21 Find the minimum-cost circuit for the function f (x l , . . . , xa) = C m(O,4, 8, 13, 14,15).
Assume that the input variables are available in uncornplemented form only. (Hint: use
functional decomposition.)

4.22 Use functional decomposition to find the best implementation of the function f (x l , .
x5) = x m (1 , 2 , 7 , 9 , 10, 18, 19,25, 31) +D(O, 15.20,26). How does your implemenfa-
tion compare with the lowest-cost SOP implementation? Give the costs.

'4.23 Use the tabular method discussed in section 4.9 to find a minimum cost SOP realizationfof
the function

f (x i , ..., ~ q) = z m (O , 2 , 4 , 5 , 7 , 8 , 9 , 15)

Repeat problem 4.23 for the function

4.25 Repeat problem 4.23 for the function

4.26 Show that the following distributive-like rules are valid

4.27 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) = C m(O,2,4,5,7, 8,9, 15).

4.28 Repeat problem 4.27 for the function f (xl , . . . , xs) = Z1Z3x5 + x1x2X3 + x2x3jS4xS +
- -

x1X2.X3x4 + x1x2x3x4Xg + X1x2x4Z5 + X1X3XqXg

4.29 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (xl, . . . , x4) defined by the ON-set ON = (00x0,
100x, x010, 11 11) and the don't-care set DC = {OOxl, Ollx) .

4.30 In section 4.10.1 we showed how the *-product operation can be used to find the prime
implicants of a given function f . Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An irnplicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices

\
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
implicants. Figure P4.1 illustrates the expansion of the implicant X1x2x3 of the function in
Figure 4.9, which is also used in Example 4.16. Note from Figure 4.9 that

Figure P4.1 Expansion of implicant X,x2x3.

In Figure P4.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices from f . From the graph it is clear that the largest
valid implicants that arise from this expansion are ~2x3 and Zl; they are prime implicants
o f f .

Expand the other four implicants given in the initial cover in Example 4.1 4 to find all
prime implicants o f f . What is the relative complexity of this procedure compared to the
*-product technique?

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

Repeat problem 4.30 for the function in Example 4.17. Expand the implicants given in fi
initial cover C'.

Consider the logic expressions

f = xlZ2Z5 + X1X2XqX5 + ~ 1 ~ 2 ~ 4 ~ 5 + F1X2x3F4 + x l Z 2 ~ 3 ~ 5 + %X3~4% + x ~ x ~ x ~ x ~ E ~
- - - -

g = X2x3& + X2X3F4X5 + x1x3x4Eg + x ~ X ~ X & + x1x3x4x5 + xlx2X3x5 + ~ 1 ~ 2 z 3 x q ~ g

Prove or disprove that f = g.

Consider the circuit in Figure P4.2, which implements functions f and g. What is the costo
this circuit, assuming that the input variables are available in both true and complemented
Redesign the circuit to implement the same functions, but at as low a cost as possible. What
is the cost of your circuit?

X1

X3

X 4

X1

"3

X4 / -

1
- f
X2

x3 J-
1

X2 1 f
-
"3 1
-
X4

-

X 2

X4

X 3
-

1
-
X4

1

X 4

Figure P4.2 Circuit for problem 4.33.

PROBLEMS 24 1

4.34 Repeat problem 4.33 for the circuit in Figure P4.3. Use only NAND gates in your circuit.

Figure P4.3 Circuit for problem 4.34.

4-35 Write VHDL code to implement the circuit in Figure 4.256.

4.36 Write VHDL code to implement the circuit in Figure 4 . 2 7 ~ .

4.37 Write VHDL code to implement the circuit in Figure 4.286.

4.38 Write VHDL code to implement the function f (XI, . . . , x.) = m(O, 1,2,4,5,7,8,9, 11,
12, 14, 15).

4*39 Write VHDL code to implement the function f (x l , . . . , x4) = rn(l,4,7, 14, 15) +
D(0,5,9).

C H A P T E R 4 OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS

4.40 Write VHDL code to implement the function f (xl, . . . , x4) = lTM (6, 8,9, 12, 13).

4.41 Write VHDL code to implement the function f (x l , . . . , x4) = l l M (3, 11, 14) + D (o , ~
10, 12),

1

I REFERENCES

1. M. Karnaugh, "A Map Method for Synthesis of Combinatorial Logic Circuits,"
Transactions of AIEE, Communications and Electronics 72, part 1, November 1953,
pp. 593-599.

2. R. L. Ashenhurst, "The Decomposition of Switching Functions," Proc. of the
Symposium on the Theory of Switching, 1957, Vol. 29 of Annals of Computation 1
Laboratory (Harvard University: Cambridge, MA, 1959), pp. 74-1 16.

3. F. J. Hill and G. R. Peterson, Computer Aided Lugical Design with Emphasis on Vm,
4th ed. (Wiley : New York, 1993).

4. T. Sasao, Logic Synthesis and Optimization (Kluwer: Boston, MA, 1993).

5. S. Devadas, A. Gosh, and K. Keutzer, Logic Synthesis (MCG~- ill: New York,
1994).

6. W. V. Quine, "The Problem of Simplifying Truth Functions," Amer. Math. Monthly
59 (1952), pp. 521-53 1.

7. E. J. McCluskey Jr., "Minimization of Boolean Functions," Bell System Tech.
Journal, November 1956, pp. 14 17-1444.

8. E. J. McCluskey, Logic Design Principles (Prentice-Hall: Englewood Cliffs, NJ,
1986).

9. J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. (Prentice-Hall:
Englewood Cliffs, NJ, 1999).

10. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, f 993).

11. C. H. Roth Jr., Fundamentals of Logic Design, 4th ed. (West: St. Paul, MN, 1993).

12. R. H. Katz, Contemporary Logic Design (BenjaminICummings: Redwood City, CAY
1994).

13. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995).

14, J. P. Daniels, Digital Design from Zero to One (Wiley: New York, 1996).

15. P. K. Lala, Practical Digital b g i c Design and Testing (Prentice-Hall: ~ n ~ l e w o o d
Cliffs, NJ, 1996).

16. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, MA, 1997).

17. M. M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2001).
"

JJ. D. ~ a j s k i , Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,

1997)+
19 R, K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,

u g i c Minimization Algot-irhms for VLSI Synthesis (Kluwer: Boston, MA,] 984).

20 R, K. Brayton, R- Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, "MIS: A

1 ~ ~ l t i ~ l e - L e v e l Logic Synthesis Optimization System," IEEE Transaclions on
cOmputer-A ided Design, CAD-6, November 1 987, pp. 1 062-8 1.

21. E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

I
p. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, "SIS: A System for

~ sequential Circuit Synthesis," Technical Report UCB/ERL M92141, Electronics
Research Laboratory, Department of Electrical Engineering and Computer Science,
university of California, Berkeley, 1992,

22. G. De Micheli, Synthesis and Optimization of Digital Circuits (McGraw-Hill: New
York, 1994).

23. N. Sherwani, Algorithms for VLSI Physical Design Automation (Kluwer: Boston,
MA, 1995).

24. 33. Preas and M. Lorenzetti, Physical Design Automtion of VLSI Systems
(BenjaminlCurnrnings: Redwood City, CA, 1988).

c h a p t e r

In this chapter you will learn about:

a Representation of numbers in computers

Circuits used to perform arithmetic operations

Performance issues in large circuits

Use of VHDL to specify arithmetic circuits

In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how number,
can be added, subtracted, and multiplied. We will also show how to write VHDLcode to describe the arithmetic
circuits. These circuits provide an excellent platform for illustrating the power and versatility of VHDL i,
specifying complex logic-circuit assemblies. The concepts involved in the design of the arithmetic circuit,
are easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are represented
in digital systems. In the previous chapters we dealt with logic variables in a general way, using variables lo

represent either the states of switches or some general conditions. Now we will use the variables to represent
numbers. Several variables are needed to specify a number, with each variable corresponding to one digit of

the number.

*4l

- 4
When dealing with numbers and arithmetic operations, it is convenient to use standard
symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we
use the minus (-) symbol. In previous chapters we used the + symbol to represent the
logical OR operation and - to denote the deletion of an element from a set. Even though
we will now use the same symbols for two different purposes, the meaning of each symbol
will usually be clear from the context of the discussion. In cases where there may be some
ambiguity, the meaning will be stated explicitly.

5.1.1 UNSIGNED INTEGERS

The simplest numbers to consider are the integers. We will begin by considering positive
integers and then expand the discussion to include negative integers. Numbers that are
positive only are called unsigned, and numbers that can also be negative are called signed.
Representation of numbers that include a radix point (real numbers) is discussed later in
the chapter.

In the familiar decimal system, a number consists of digits that have 10 possible values,
from 0 to 9, and each digit represents a multiple of a power of 10. For example, the numb[
8547 represents 8 x 10' + 5 x 1 o2 + 4 x 10' + 7 x lo0. We do not normally write the
powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

This is referred to as the positional number representation.
Because the digits have 10 possible values and each digit is weighted as a power

10, we say that decimal numbers are base- 10, or radix- 10 numbers. Decimal numbers
familiar, convenient, and easy to understand. However, in digital circuits it is not practicg

*

C

to ,,, digits that can assume 10 values. In digital systems we use the binary, or base-2,
, t,m in which digits can be 0 or 1. Each binary digit is called a bit. In the binary number

s j the same positional number representation is used so that

,,presents an integer that has the value

For example, the binary number 1101 represents the value

Because a particular digit pattern has different meanings for different radices, we will
indicate the radix as a subscript when there is potential for confusion. Thus to specify that
1 10 1 is a base-2 number, we will write (1 10 1) 2 . Evaluating the preceding expression for V
gives V = 8 + 4 + 1 = 13. Hence

Note that the range of integers that can be represented by a binary number depends on the
number of bits used. For example, with four bits the largest number is (1 11 = (1 5) lo.

An example of a larger number is. (1 0 1 101 1 = (1 83) In general, using n bits allows
representation of integers in the range 0 to 2" - 1.

In a binary number the right-most bit is usually referred to as the least-sign@cant bit
(LSB). The left-most bit of an unsigned integer, which has the highest power of 2 associated
with it, is called the most-signijicant bit (MSB). In digital systems it is often convenient to
consider several bits together as a group. A group of four bits is called a nibble, and a group
of eight bits is called a byte,

A binary number is converted into a decimal number simply by applying Equation 5.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number
is not quite as straightforward. The conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = dx-1 dido,
with a value V, is to be converted into a binary number B = b,-1 - . - b2b1 bo. Thus

V = bnPl x 2"-' + . + b2 x 22 + bl x 2l + bo
If we divide V by 2, the result is

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS I
The quotient of this integer division is bn-1 x + + 62 x 2 + 61, and the remainda
is bo. If the remainder is 0, then bo = 0; if it is 1, then bo = 1. Observe that the quotient
is just another binary number, which comprises n - 1 bits, rather than n bits. Dividing $s
number by 2 yields the remainder bl . The new quotient is

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotieni
becomes 0. Figure 5.1 illustrates the conversion process, using the example (857)10 ,
(1 10101 1001)2. Note that the least-significant bit (LSB) is generated first and the most.
significant bit (MSB) is generated last.

5.1.3 OCTAL AND HEXADECIMAL REPRESENTATIONS

The positional number representation can be used for any radix. If the radix is r, then fie
number

has the value

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful-8 and 16. Numbers represented with

Convert (857) 10

LSB
Remainder

1
0
0
1
1
0
1
0
1
1 MSB

Result is (1 10101 1001)2

Figure 5.1 Conversion from decimal to binary.

radix 8 are called octal numbers, while radix- 16 numbers are called hexadecimal numbers.
lo octal representation the digit values range from 0 to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first 10 are denoted
the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 5.1

g
iVes the first 18 integers in these number systems.

Table 5.1 Numbers in different systems.

Decimal Binary

00000
m 1
00010
0001 1
00 1 00
00101
001 10
00111
0 1000
01001
01010
0101 1
01 100
01 101
01110
01111
ioooo
10001
10010

Octal Hexadecimal

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number
by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 10 101 10101 1 1 is converted as

which means that (10101 10101 1 I), = (5327),. If the number of bits is not a multiple of
then we add 0s to the left of the most-significant bit. For example, (101 1101 112 =

(2731s because

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit is represented using four bits. For example, a 16-bil
number is represented using four hex digits, as in

because

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex nutnbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers-unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

Binary addition is performed in the same way as decimal addition except that the values of
individual digits can be only 0 or 1. The addition of 2 one-bit numbers en'tails four possible
combinations, as indicated in Figure 5 . 2 ~ . Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, C . The addition
operation is defined in the form of a tmth table in part (b) of the figure. The sum bit s is the
XOR function, which was introduced in section 3.9.1. The carry c is the AND function of
inputs x and y . A circuit realization of these functions is shown in Figure 5.2c. This circuit.
which implements the addition of only two bits, is called a half-adder.

A more interesting case is when larger numbers that have multiple bits are involved-
Then it is still necessary to add each pair of bits, but for each bit position i, the
operation may include a carry-in from bit position i - 1.
250

(a) The four possible cases

(b) Truth table

(c) Circuit (d) Graphical symbol

Figure 5.2 Half-adder.

Figure 5.3 presents an example of the addition operation. The two operands are X =
(01 1 1 1)2 = (15) and Y = (0 1010)2 = (10) lo. Note that five bits are used to represent X
"d yd using five bits, it is possible to represent integers in the range from 0 to 31; hence
the sum S = X + Y = (2 5) ,, can also be denoted as a five-bit integer. Note also the labeling
of individual hits, such that x = x4x3xzxlxo and Y = y4y3y2y1y0- The figure shows the

1 I I 0 - Generated carries
- .

S = S4S3S2S1S0 1 1 0 0 1 (25 ,,
Figure 5.3 An example of addition.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS 4
carries generated during the addition process. For example, a carry of 0 is generated when
xo and yo are added, a carry of 1 is produced when xl and y l are added, and so on.

In Chapters 2 and 4 we designed logic circuits by first specifying their behavior in the
form of a truth table. This approach is impractical in designing an adder circuit that can add
the five-bit numbers in Figure 5.3. The required truth table would have 10 input variables, 5
for each number X and Y. It would have 21° = 1024 rows! A better approach is to conside,
the addition of each pair of bits, xi and yi, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for Figure
5.2. For each other bit position i, the addition involves bits Xi and yi, and a carry-in ci. The
sum and carry-out functions of variables xi, yi, and q are specified in the truth table in Figure
5 . 4 ~ . The sum bit, s;, is the modulo-2 sum of xi, yi, and ci. The carry-out, ci+l, is equal to

I if the sum of xi , yi , and ci is equal to either 2 or 3. Karnaugh maps for these functions
are shown in part (b) of the figure. For the carry-out function the optimal sum-of-products
realization is

Ci+l = xjyi + xici + yjci

For the s, function a sum-of-products realization is
- - - -

Si = ZiyiZi + XiyiCi + XiyiCi -I- XiYiCj

A more attractive way of implementing this function is by using the XOR gates, as explained I
below.

Use of XOR Gates
The XOR function of two variables is defined as xl e x 2 = Elxz +xlxz. The preceding

expression for the sum bit can be manipulated into a form that uses only XOR operations I
as follows

- -
Si = (Ziyi + xiyi)ci + (xiyi xjJ'i)ci

= (xi @ J'i)ci -I- (xi CD yi)ci

= (xi @ yi) €B Ci

The XOR operation is associative; hence we can write

Si = Xi @ yi @ Ci

Therefore, a single three-input XOR pate can be used to realize s i .
The XOR pate generates as an output a modulo-2 sum of its inputs. The output is equal

to 1 if an odd number of inputs have the value 1, and it is equal to 0 otherwise. For this
reason the XOR is sometimes referred to as the odd function. Observe that the XOR has nQ
minterms that can be combined into a larger product term, as evident from the checkerboard
pattern for function si in the map in Figure 5.4b. The logic circuit implementing the ~ t h
table in Figure 5 . 4 ~ is given in Figure 5 . 4 ~ . This circuit is known as a full-udder.

Another interesting feature of XOR gates is that a two-input XOR gate can be thought
of as using one input as a control signal that determines whether the true or cornplernente d

value of the other input will be passed through the gate as the output value. This is clear
from the definition of XOR, where xi @ y, = Fy + +?. Consider I to be the control input ...

(a) Truth table

(b) Karnaugh maps

(c) Circuit

&equal to the complement of y . In the derivation above, we used algebraic manipulation
'0 derive si = (xi yi) q. We could have obtained the same expression immediately

making the following observation. In the top half of the truth table in Figure 5.4a, ci
lS equal to 0, and the sum function si is the XOR of xi and yi. In the bottom half of the
table3 Ci is equal to 1, while q is the complemented version of its top half. This observation

253

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS l l
leads directly to our expression using 2 two-input XOR operations. We will encounter an
i q o r t a n t example of using XOR gates to pass true or complemented signals under the
control of another signal in section 5.3.3.

In the preceding discussion we encountered the complement of the XOR operation
which we denoted as m. This operation is used so commonly that it is given the distinct
name XNOR. A special symbol, 0, is often used to denote the XNOR operation, namely

The XNOR is sometimes also referred to as the coincidence operation because it produces
the output of 1 when its inputs coincide in value; that is, they are both 0 or both 1.

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit of the type
discussed in section 4.6.2. The circuit is given in Figure 5.5. It uses two half-adders to
form a full-adder. The reader should verify the functional correctness of this circuit.

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position i, then this cany is

(a) Block diagram

(b) Detailed diagram

Figure 5.5 A decomposed implementation of the full-odder circuit.

*

added to the operands in position i i- 1. The same arrangement can be used in a logic circuit

that addition. For each bit position we can use a full-adder circuit, connected as
in Figure 5.6. Note that to be consistent with the customary way of writing numbers,

the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before

fie sum, S, is valid. Each full-adder introduces a certain delay before its si and s+
are valid. Let this delay be denoted as At. Thus the carry-out from the first stage,

,, , arrives at the second stage At after the application of the xo and yo inputs. The carry-out
from the second stage, c 2 , arrives at the third stage with a 2Ar delay, and so on. The signal

en- 1 is valid after a delay of (n - l)At, which means that the complete sum is available
after a delay of n A t . Because of the way the carry signals "ripple" through the f ~ l l - ~ d d ~ ~

the circuit in Figure 5.6 is called a ripple-carry udder.
The delay incurred to produce the final sum and carry-out in a ripple-carry adder

depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n-bit adders. We will discuss a technique for building high-speed adders
in section 5.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 5.6 we included ~ , (1 in the diagram so that
the ripple-carry adder can also be used for subtraction of numbers, as we will see in sec-
tion 5.3.

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = a7as a, a0 denote the number and P = pgpg - - - plpo denote the product P = 3A.
Note that 10 bits are needed to represent the product.

MSB position LSB position

Figure 5.6 ~n n-bit ripple-carry adder.

C H A P T E R NUMBER REPRESENTATION AND ARITHMET~C CIRCUITS

A simple approach to design the required circuit is to use two ripple-carry adders lo

add three copies of the number A, as illustrated in Figure 5.7~. The symbol that denotes
each adder is a commonly used graphical symbol for adders. The letters xi, yi , si, and

Ci
indicate the meaning of the inputs and outputs according to Figure 5.6. The first adder
produces A + A = 2A. Its result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 2A + A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because g
yi inputs have to be driven only by the eight bits of A, the ninth input y8 is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A + A , we can
observe that 2A can be generated by shifting the bits of A one bit-position to the left, which
gives the bit pattern a7a6asa4a3azalao0. According to equation 5.1, this pattern is equal
to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in Figure
5.7b. This is essentially the same circuit as the second adder in part (a) of the figure. Note
that the input xo is connected to a constant 0. Note also that in the second adder in pan
the value of xo is always 0, even though it is driven by the least-significant bit, so, of the
sum of the first adder. Because xo = yo = a0 in the first adder, the sum bit so will be 0,
whether a0 is 0 or 1.

In the decimal system the sign of a number is indicated by a + or - symbol to the left
of the most-significant digit. In the binary system the sign of a number is denoted by the
left-most bit. For a positive number the left-most bit is equal to 0, and for a negative number
it is equal to 1. Therefore, in signed numbers the left-most bit represents the sign, and the
remaining n - 1 bits represent the magnitude, as illustrated in Figure 5.8. It is important to
note the difference in the location of the most-significant bit (MSB). In unsigned numbers
all bits represent the magnitude of a number; hence all n bits are signijcant in defining the
magnitude. Therefore, the MSB is the left-most bit, bn-l. In signed numbers there are n - 1
significant bits, and the MSB is in bit position bnP2.

5.3.1 NEGATIVE NUMBERS

Positive numbers are represented using the positional number representation as explaine d
in the previous section. Negative numbers can be represented in three different wayS:
sign-and-magnitude, 1 's complement, and 2's complement. -

(a) Naive approach

(b) Efficient design

Figure 5.7 Circuit that multiplies an eight-bit unsigned number by 3.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

\ v 1

t Magnitude

MSB -
(a) Unsigned number

b n - 1 ' n - 2 b 1 b~

Sign I Magnitude

0 denotes + I

1 denotes - MSB

(b) Signed number

Figure 5.8 Formats for representation of integers.

Sign-and-Magnitude Representation
In the familiar decimal representation, the magnitude of both positive and negative

numbers is expressed in the same way. The sign symbol distinguishes a number as being
positive or negative. This scheme is called the sign-and-magtzitude number representation*
The same scheme can be used with binary numbers in which case the sign bit is 0 or 1
for positive or negative numbers, respectively. For example, if we use four-bit numbers,
then +5 = 0 10 1 and -5 = 1 10 1 . Because of its similarity to decimal sign-and-magnitude
numbers, this representation is easy to understand. However, as we will see shortly, this
representation is not well suited for use in computers. More suitable representations are
based on complementary systems, explained below.

1's Complement Representation
4

In a complementary number system, the negative numbers are defined according to a
subtraction operation involving positive numbers. We will consider two schemes for binU
numbers: the 1's complement and the 2's complement. In the I 's cornplernent scheme, a
n-bit negative number, K , is obtained by subtracting its equivalent positive number, P, from
2" - 1; that is, K = (2" - 1) - P . For example, if n = 4, then K = (z4 - 1) - P "
(1 5) 1 0 - P = (1111)2-P. Ifweconvert+5toanegative,weget-5 = 1111-0101 = 101~-

Similarly, +3 = 00 1 1 and -3 = 11 11 - 00 1 1 = 1 100. Clearly, the 1 ' s complement can be
simply by complementing each bit of the number, including the sign bit, While 1 ' s

numbers are easy to derive, they have some drawbacks when used in arithmetic

ope
as we will see in the next section.

2 3 Complement Representation
In the 2's complement scheme, a negative number, K, is obtained by subtracting its

~osit ive number, P , from 2"; namely, K = 2" - P. Using our four-bit example,
-5 = 10000 - 0101 = 1011, and -3 = 10000 - 0011 = 1101. Finding 2's complements
in this manner requires pelforming a subtraction operation that involves borrows. However,
we can observe that if Ki is the 1's complement of P and K2 is the 2's complement of p,

then

~t follows that K2 = K1 + 1. Thus a simpler way of finding a 2's complement,of a number
is to add 1 to its 1's complement because finding a 1's complement is trivial. This is how
2's complement numbers are obtained in logic circuits that perform arithmetic operations.

The reader will need to develop an ability to find 2's complement numbers quickly.
There is a simple rule that can be used for this purpose.

Rule for Finding 2's Complements Given a signed number, B = bn-l bn-2 - - br bo, its
2's complement, K = k,-l k,,-2 - - - k iko , can be found by examining the bits of B from right
to left and taking the following action: copy all bits of B that are 0 and the first bit that is
1; then simply complement the rest of the bits.

For example, if B = 01 10, then we copy ko = bo = 0 and kl = bl = 1, and comple- -
merit the rest so that k2 = b2 = 0 and k3 = 5, = I . Hence K = 1 0 1 0. As another example,
if 3 = 10 1 1 0 1 00, then K = 0 1 00 1 100. We leave the proof of this rule as an exercise for
the reader.

Table 5.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-
number representations that we have considered. Note that for both sign-and-magnitude
representation and for 1's complement representation there are two patterns that represent
the value zero. For 2's complement there is only one such pattern. Also, observe that the
'm@e of numbers that can be represented with four bits in 2's complement form is -8 to
f 7' while in the other two representations it is -7 to +7.

Using 2's-complement representation, an n-bit number B = bn- 1 bn-2 - bi bo repre-
sents the value

'bus the largest negative number, 100. . .00, has the value -2"-'. The largest positive
number3 011 . . . 11, has the value 2"-I - 1-

c A P T € R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

"able 5.2 Interpretation of four-bit signed integers.
*I
$i Sign and
% b 3 b z b l b o magnitude l'scomplernent 2'scornplement

0111 +7 +7 +7

To assess the suitability of different number representations, it is necessary to investigate
their use in arithmetic operations-particularly in addition and subtraction. We can illustrate
the good and bad aspects of each representation by considering very small numbers. We will
use four-bit numbers, consisting of a sign bit and three significant bits, Thus the numbers
have to be small enough so that the magnitude of their sum can be expressed in three bits,
which means that the sum cannot exceed the value 7.

Addition of positive numbers is the same for all three number representations. It is
actually the same as the addition of unsigned numbers discussed in section 5.2. But there
are significant differences when negative numbers are involved. The difficulties that ar ise
become apparent if we consider operands with different combinations of signs.

Sign-and-Magnitude Addition
If both operands have the same sign, then the addition of sign-and-magnitude numbers

is simple. The magnitudes are added, and the resulting sum is given the sign of the operand&
However, if the operands have opposite signs, the task becomes more complicated. Then
it is necessary to subtract the smaller number from the larger one. This means that logic
circuits that compare and subtract numbers are also needed. We will see shortly that it
is possible to perform subtraction without the need for this circuitry. For this reason, the
sign-and-magnitude representation is not used in computers.

m

1's Complement Addition
An obvious advantage of the 1's complement representation is that a negative number

is generated simply by complementing all bits of the corresponding positive number. Figure
what happens when two numbers are added. There are four cases to consider

in of different combinations of signs. As seen in the top half of the figure, the
omputation of 5 + 2 = 7 and (- 5) + 2 = (-3) is straightforward; a simple addition of

the gives the correct result. Such is not the case with the other two possibilities.
computing 5 + (-2) = 3 produces the bit vector 10010. Because we are dealing with
four-bit numbers, there is a carry-out from the sign-bit position. Also, the four bits of the
result the number 2 rather than 3, which is a wrong result. Interestingly, if we
take the carry-out from the sign-bit position and add it to the result in the least-significant
bit ~~a i t ion , the new result is the correct sum of 3. This correction is indicated in blue in
the figure. A similar situation arises when adding (-5) + (-2) = (-7). After the initial
&ition the result is wrong because the four bits of the sum are 01 11, which represents +7
rather than -7. But again, there is a carry-out from the sign-bit position, which can be used
to correct the result by adding it in the LSB position, as shown in Figure 5.9.

The conclusion from these examples is that the addition of 1's complement numbers
may or may not be simple. In some cases a correction is needed, which amounts to an extra
addition that must be performed. Consequently, the time needed to add two 1's complement
numbers may be twice as long as the time needed.to add two unsigned numbers.

2's Complement Addition
Consider the same combinations of numbers as used in the 1's complement example.

Figure 5.10 indicates how the addition is performed using 2's complement numbers. Adding
5 + 2 = 7 and (-5) + 2 = (-3) is straightforward. The computation 5 + (-2) = 3
generates the correct four bits of the result, namely 0011. There is a carry-out from the
sign-bit position, which we can simply ignore. The fourth case is (-5) + (-2) = (-7).
Again, the four bits of the result, 1001, give the correct sum (-7). In this case also, the
carry-out from the sign-bit position can be ignored.

Figure 5.9 Examples of 1's complement addition.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

ignore ignore

Figure 5.10 Examples of 2's complement addition.

As illustrated by these examples, the addition of 2's complement numbers is very
simple. When the numbers are added, the result is always correct. If there is a carry-out
from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,
regardless of the signs of the operands. It can be performed by an adder circuit, such as
the one shown in Figure 5.6. Hence the 2's complement notation is highly suitable for
the implementation of addition operations. We will now consider its use in subtraction
operations.

,'
2's Complement Subtraction
The easiest way of performing subtraction is to negate the subtrahend and add it to

the minuend. This is done by finding the 2's complement of the subtrahend and then
performing the addition. Figure 5.11 illustrates the process. The operation 5 - (+2) = 3
involves finding the 2's complement of +2, which is 11 10. When this number is added to
0101, the result is 001 1 = (+3) and a carry-out from the sign-bit position occurs, which is
ignored. A similar situation arises for (-5) - (+2) = (-7). In the remaining two cases
there is no carry-out, and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 5.10
and 5-11, we can place all possible four-bit patterns on a modulo- 16 circle given in Figure
5.12. If these bit patterns represented unsigned integers, they would be numbers 0 to 15. If
they represent 2's-complement integers, then the numbers range from -8 to +7, as shown
The addition operation is done by stepping in the clockwise direction by the magnitude of
the number to be added. For example, -5 + 2 is determined by starting at 101 1 (= -5)
and moving clockwise two steps, giving the result 1 10 1 (= -3) . Subtraction is prformed
by stepping in the counterclockwise direction. For example, -5 - (+2) is determined by
starting at 1011 and moving counterclockwise two steps, which gives 1001 (= -7).

The key conclusion of this section is that the subtraction operation can be realized as
the addition operation, using a 2's complement of the subtrahend, regardless of the signs of

*

ignore

ignore

Figure 5.1 1 Examples of 2's complement subtraction.

Figure 5.1 2 Graphical interpretation of four-bit 2's complement
numbers.

the two operands. Therefore, it should be possible to use the same adder circuit to perform
both addition and subtraction.

The only difference between performing addition and subtraction is that for subtraction it
is necessary to use the 2's complement of one operand. Let X and Y be the two Operands,
such that Y serves as the subtrahend in subtraction. From section 5.3.1 we know that a
2's complement can be obtained by adding 1 to the 1's complement of Y. Adding 1 in the
least-significant bit position can be accomplished simply by setting the carry-in bit co to 1.
A 1's complement of a number is obtained by complementing each of its bits. This could be
done with NOT gates, but we need a more flexible circuit where we can use the true value
of Y for addition and its complement for subtraction.

In section 5.2 we explained that two-input XOR gates can be used to choose between
true and complemented versions of an input value, under the control of the other input. This
idea can be applied in the design of the addedsubtractor unit as follows. Assume that there
exists a control signal that chooses whether addition or subtraction is to be performed. Let -
this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To
indicate this fact, we placed a bar over Add. This is a commonly used convention, where
a bar over a name means that the action specified by the name is to be taken if the control
signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, -
with the other input connected to Add/Sub. The outputs of the XOR gates represent Y if - -
Add/Sub = 0, and they represent the 1's complement of Y if Add/Sub = I. This leads
to the circuit in Figure 5.13. The main part of the circuit is an n-bit adder, which can be
implemented using the ripple-cany structure of Figure 5.6. Note that the control signal

1 1 So

Figure 5.13 Adder/subtractor unit. -

adsub is also connected to the carry-in co. This makes co = 1 when subtraction is to be
thus adding the 1 that is needed to form the 2's complement of Y . When the

operation is performed, we will have ci = 0.
The combined adder/subtractor unit is a good example of an important concept in the

design of logic circuits. It is useful to design circuits to be as flexible as possible and to
common portions of circuits for as many tasks as possible. This approach minimizes

the of gates needed to implement such circuits, and it reduces the wiring complexity
,bstantiall~.

The idea of performing a subtraction operation by addition of a complement of the sub-
trahend is not restricted to binary numbers. We can gain some insight into the workings
of the 2's complement scheme by considering its counterpart in the decimal number sys-
tem. Consider the subtraction of two-digit decimal numbers. Computing a result such as
74 - 33 = 4 1 is simple because each digit of the subtrahend is smaller than the correspond-
ing digit of the minuend; therefore, no borrow is needed in the computation. But computing
74 - 36 = 38 is not as simple because a borrow is needed in subtracting the least-significant
digit. If a borrow occurs, the computation becomes more complicated.

Suppose that we restructure the required computation as follows

Now two subtractions are needed. Subtracting 36 from 100 still involves borrows. But
noting that 100 = 99 + 1, these borrows can be avoided by writing

The subtraction in parentheses does not require borrows; it is performed by subtracting each
digit of the subtrahend from 9. We can see a direct correlation between this expression and
the one used for 2's complement, as reflected in the circuit in Figure 5.13. The operation
(99 - 36) is analogous to complementing the subtrahend Y to find its 1's complement,
which is the same as subtracting each bit from 1. Using decimal numbers, we find the 9's
complement of the subtrahend by subtracting each digit from 9. In Figure 5.13 we add
'he carry-in of I to form the 2's complement of Y. In our decimal example we perfom
(99- 36) + 1 = 64. Here 64 is the 10's complement of 36. For an n-digit decimal number,

its 10's complefnent, Klo, is defined as Klo = 10" - N, while its 9's complement, Kg, is
K9 = (10" - 1) - N .

Thus the required subtraction (74 - 36) can be performed by addition of the 10's
of the subtrahend. as in

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

The subtraction 138 - I00 is trivial because it means that the leading digit in 138 is sim
ply

deleted. This is analogous to ignoring the carry-out from the circuit in Figure 5.13,
discussed for the subtraction examples in Figure 5.1 1.

Suppose that A and B are n-digit decimal numbers. Using the above 10's-complemenc I
approach, B can be subtracted from A as follows:

A - B = A + (l O n - B) - lon

If A > - B, then the operation A + (11)" - B) produces a carry-out of 1 . This carry is equiva.
lent to 10"; hence it can be simply ignored. I

But if A < B, then the operation A + (lon - B) produces a carry-out of 0. Let the result
obtained be M y so that

We can rewrite this as

The left side of this equation is the 10's complement of (B - A) . The 10's complement of
a positive number represents a negative number that has the same magnitude. Hence M
correctly represents the negative value obtained from the computation A - B when A < B.
This concept is illustrated in the examples that follow.

When dealing with binary signed numbers we use 0 in the left-most bit position to denote
a positive number and 1 to denote a negative number. If we wanted to build hardware that
operates on signed decimal numbers, we could use a similar approach. Let 0 in the left-most
digit position denote a positive number and let 9 denote a negative number. Note that 9 is
the 9's complement of 0 in the decimal system, just as 1 is the 1's complement of 0 in the
binary system.

Thus, using three-digit signed numbers, A = 045 and B = 027 are positive numbers
with magnitudes 45 and 27, respectively. The number B can be subtracted from A as follows

This gives the correct answer of + 18.
*

Next consider the case where the minuend has lower value than the subtrahend. This
is illustrated by the computation

B - A = 0 2 7 - 0 4 5

= 027 + 1000 - 1000 - 045

= 027 + (999 - 045) + 1 - 1000

= 027 + 954 + 1 - 1000

= 982 - 1000

From this expression it appears that we still need to perform the subtraction 982 - 1000.
as seen in Example 5.1, this can be rewritten as

982= lOOO+B-A

= 1000- (A - B)

Therefore, 982 is the negative number that results when forming the 10's complement of
(A - B) . From the previous computation we know that (A - B) = 018, which denotes +18.
n u s the signed number 982 is the 10's complement representation of - 18, which is the
required result.

Let C = 955 and D = 973; hence the values of C and D are -45 and -27, respectively.
The number D can be subtracted from C as follows

The number 982 is the 10's complement representation of -18, which is the correct result.
Consider now the case D - A, where D = 973 and A = 045:

The result 928 is the 10's complement representation of -72.
These examples illustrate that signed numbers can be subtracted without using a sub-

traction operation that involves borrows. The only subtraction needed is in forming the '" of the subtrahend, in which case each digit is simply subtracted from 9.

C H A P T E R 5 NUMBER PRESENTATION AND ARITHMETIC CIRCUITS

Thus a circuit that forms the 9's complement, combined with a normal adder circuit, will
suffice for both addition and subtraction of decimal signed numbers. A key point is that th
hardware needs to deal only with n digits if n-digit numbers are used. Any carry that m
be generated from the left-most digit position is simply ignored.

a!

The concept of subtracting a number by adding its radix-complement is general. 1f
the radix is r, then the r's complement, K,, of an n-digit number, N , is determined as
K, = r" - N. The (r - 1)'s complement, K , - I , is defined as = (F - 1) - N ; it
is computed simply by subtracting each digit of N from the value (r - I). The (r - llYs
complement is referred to as the diminished-radix con@ernent. Circuits for forming fie
(r - 1)'s complements are simpler than those for general subtraction that involves borrows,
The circuits are particularly simple in the binary case, where the 1's complement requires
just inverting each bit.

In Figure 5.11 we illustrated the subtraction operation on binary numbers given in 2's-
complement representation. Consider the computation (+5) - (+2) = (+3) , using the
approach discussed above. Each number is represented by a four-bit pattern. The value 2'
is represented as 10000. Then

Because 5 > 2, there is a carry from the fourth bit position. It represents the value z4,
denoted by the pattern 10000.

Consider now the computation (+2) - (+5) = (-3), which gives

0010 - 0101 = 0010 + (10000 - 0101) - 10000

= 0010+ (1111 - 0101) + 1 - I0000

= 0010 + 1010 + 1 - 10000

= 1101 - 10000

Because 2 c 5 , there is no carry from the fourth bit position. The answer, 1101, is the
2's-complement representation of -3. Note that

1101 = 10000 + 0010 - 0101

= 10000 - (0101 - 0010)

= 10000 - 0011 .
indicating that 11 01 is the 2's complement of 001 1 (+3).

268

iinally the case where the subtrahend is a negative number. The computation

(t 5 i - (-2) = (+7) is done as follows

mile 5 > (-2). the pattern 1 1 10 is greater than the pattern 0101 when the patterns are
ueated as unsigned numbers. Therefore, there is no carry from the fourth bit position. The
answer 01 11 is the 2's complement representation of +7. Note that

and 1001 represents -7.

The result of addition or subtraction is supposed to fit within the significant bits used to
represent the numbers. If n bits are used to represent signed numbers, then the result must
be in the range -2"-' to 2n-1 - 1. If the result does not fit in this range, then we say that
arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit,
it is important to be able to detect the occurrence of overflow.

Figure 5.14 presents the four cases where 2's-complement numbers with magnitudes
of7 and 2 are added. Because we are using four-bit numbers, there are three significant bits,
2 When the numbers have opposite signs, there is no overflow. But if both numbers
have the same sign, the magnitude of the result is 9, which cannot be represented with just

Figure 5.14 Examples for determination of overflow.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS T

three significant bits; therefore, overflow occurs. The key to determining whether overflou
occurs is the carry-out from the MSB position, called c, in the figure, and from the sign-bi,
position, called c4, The figure indicates that overflow occurs when these cam-outs havf
different values, and a correct sum is produced when they have the same value. Indeed, thi!
is true in general for both addition and subtraction of 2's-complement numbers. As a
check of this statement, consider the examples in Figure 5.10 where the numbers are smal
enough so that overflow does not occur in any case. In the top two examples in the figure
there is a cany-out of 0 from both sign and MSB positions. In the bottom two example,
there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 5.10
and 5.14, the occurrence of overflow is detected by

Overflow = c3C4 + C3c4

For n-bit numbers we have

Overflow = c,-1 @ c,

Thus the circuit in Figure 5.13 can be modified to include overflow checking with the
addition of one XOR gate.

When buying a digital system, such as a computer, the buyer pays particular attention to
the performance that the system is expected to provide and to the cost of acquiring the
system. Superior performance usually comes at a higher cost. However, a large increase in
performance can often be achieved at a modest increase in cost. A commonly used indicator
of the value of a system is its price/per$ormance ratio.

The addition and subtraction of numbers are fundamental operations that are performed
frequently in the course of a computation. The speed with which these operations are
performed has a strong impact on the overall performance of a computer. In light of this,
let us take a closer look at the speed of the adder/subtractor unit in Figure 5.13. We are
interested in the largest delay from the time the operands X and Y are presented as inputs'
until the time all bits of the sum S and the final carry-out, c,, are valid. Most of this delay
is caused by the n-bit adder circuit. Assume that the adder is implemented using the ripple-
carry structure in Figure 5.6 and that each full-adder stage is the circuit in Figure 5 .4~. The
delay for the carry-out signal in this circuit, At, is equal to two gate delays. From section
5.2.2 we know that the final result of the addition will be valid after a delay of nAt, which
is equal to 2n gate delays. In addition to the delay in the ripple-carry path, there is alsoa
delay in the XOR gates that feed either the true or complemented value of Y to the adder
inputs. If this delay is equal to one gate delay, then the total delay of the circuit in Figon
5.13 is 2n + 1 gate delays. For a large n, say n = 32 or n = 64, the delay would lead to

unacceptably poor performance. Therefore, it is important to find faster circuits to perform
addition.

The speed of any circuit is limited by the longest delay along the paths through@
circuit. In the case of the circuit in Figure 5.13, the longest delay is along the path fam

the ?'I
input, through the XOR gate and through the carry circuit of each adder stage. The

aest delay is often referred to as the critical-path delay, and the path that causes this
10%
delay is called the critical porh.

The of a large digital system is dependent on the speed of circuits that form
its functional units. Obviously, better performance can be achieved using faster
circuits. This can be accomplished by using superior (usually newer) technology in which
the delays in basic gates are reduced. But it can also be accomplished by changing the overall
structure of a functional unit, which may lead to even more impressive improvement. ~n
his section we will discuss an alternative for implementation of an n-bit adder, which
substantially reduces the time needed to add numbers.

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1 . If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 5.4b the carry-out function for stage i can be realized as

If we factor this expression as

then it can be written as

ci+l = gi + pici

where

The function gi is equal to I when both inputs xi and y i are equal to 1, regardless of the value
O f t h e incorning carry to this stage, q, Since in this case stage i is guaranteed to generate
a ca"Y-out, g is called the generate function. The function pi is equal to 1 when at least
One of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carny-in of 1 is propagated through stage i ; hence pi is called the propagate
function.

Expanding the expression 5.3 in terms of stage i - 1 gives

ci+ 1 = gi f pi(gi-1 +pi-lci-1)

The same expansion for other stages, ending with stage 0, gives

This expression represents a two-level AND-OR circuit in which c,+l is evaluated vq
quickly. An adder based on this expression is called a carv-lookahead adder.

To appreciate the physical meaning of expression 5.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple.
c m y adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 5.15 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 5.3. Each stage is essentially the circuit from Figure 5 . 4 ~ except that an extra

Figure 5.15 A ripple-carry adder based on expression 5.3.
I

is used (which produces the pi signal), instead of an AND gate because we factored
OR c
the s

u m - o f - p r ~ d ~ ~ t ~ expression for ci+l.

slow speed of the ripple-carry adder is caused by the long path along which a c a w

sign al must propagate. In Figure 5.15 the critical path is from inputs xo and yo to the output
It passes through five gates, as highlighted in blue. The path in other stages of an n-bit

cz,
is the same as in stage 1. Therefore, the total delay along the critical path is 2n + 1 .

Figure 5.16 gives the first two stages of the carry-lookahead adder, using expression
5 4 to implement the carry-out functions. Thus

C l = go + poco

C2 = 91 + p1go + p1poco

1 So

Figure 5.1 6 The first two stages of a carry-lookahead adder.

C H A P T E R NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

The critical path for producing the cz signal is highlighted in blue. In this circuit, c2 is
produced just as quickly as e l , after a total of three gate delays. Extending the circuit
n bits, the final carry-out signal c, would also be produced after only three gate delays
because expression 5.4 is just a large two-level (AND-OR) circuit.

The total delay in the n-bit carry-lookahead adder is four gate delays. The values of
all gi and pi signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n-bit carry-lookahead adder increases rapidly as n becomes larger
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that bits b7-0 are block 0, bits bls-s are block 1 , bits bZ3-l6 are block 2, and
bits b31-24 are block 3. Then we can implement each block as an eight-bit caITy-lookahead
adder. The carry-out signals from the four blocks are c.8, cl6, c ~ 4 , and C 3 2 - Now we have two
possibilities. We can connect the four blocks as four stages in a ripple-carry adder, Thus
while carry-lookahead is used within each block, the carries ripple between the blocks. This
circuit is illustrated in Figure 5.17.

Instead of using a ripple-carry approach between blocks, a faster circuit can be designed
in which a second-level carry-lookahead is performed to produce quickly the carry signals
between blocks. The structure of this "hierarchical carry-lookahead adder" is shown in
Figure 5.18. Each block in the top row includes an eight-bit carry-lookahead adder, based
on generate signals, g i , and propagate signals, pi, for each stage in the block. as discussed
before. However, instead of producing a carry-out signal from the most-significant bit of
the block, each block produces generate and propagate signals for the entire block. Let
G, and P, denote these signals for each block j . Now Gj and P, can be used as inputs to
a second-level carry-lookahead circuit, at the bottom of Figure 5.18, which evaluates all
carries between blocks. We can derive the block generate and propagate signals for block
0 by examining the expression for cg

Block , -!
Figure 5.1 7 A hierarchical carry-lookahead adder with ripple-carv between blocks.

Figure 5.1 8 A hierarchical carry-lookahead adder.

The last term in this expression specifies that, if all eight propagate functions are 1, then
the carry-in co is propagated through the entire block. Hence

The rest of the terms in the expression for c8 represent all other cases when the block
produces a carry-out. Thus

GO = 9 7 + P7g6 + P7y6g5 + ' ' ' + P7P6P5P4P3!32Pl g0

The expression for cg in the hierarchical adder is given by

For block 1 the expressions for GI and PI have the same form as for Go and Po except that
each subscript i is replaced by i + 8. The expressions for G2, P2, G3, and P3 are derived in

same way. The expression for the carry-out of block 1, c16, is

C16 = G1 +
= GI + PlGo + Pipoco

the expressions for cz4 and c3-2 are

~ 2 4 = G2 + P2G1 + PzPi GO + P 2 f ' i P o ~ o

~ 3 2 = G3 + P3G2 + P3P2G1 + P ~ P ~ P I G o + P ~ P ~ P I P o c o

Using this scheme, it takes two more gate delays to produce the carry signals cg, c16, and
cz4 than the time needed to generate the Gj and Pj functions. Therefore, since Gj and p

J require three gate delays, cg, c16, and c24 are available after five gate delays. The time
needed to add two 32-bit numbers involves these five gate delays plus two more to produce
the internal carries in blocks 1, 2, and 3, plus one more gate delay (XOR) to generate e s h
sum bit. This gives a total of eight gate delays.

In section 5.3.5 we determined that it takes 2n + 1 gate delays to add two numbers
using a ripple-carry adder. For 32-bit numbers this implies 65 gate delays. It is clear that
the carry-lookahead adder offers a large performance improvement. The trade-off is much
greater complexity of the required circuit.

Technology Considerations .%
The preceding delay analysis assumes that gates with any number of inputs can be used,

We know from Chapters 3 and 4 that the technology used to implement the gates limits the
fan-in to a rather small number of inputs. Therefore the reality of fan-in constraints must
be taken into account. To illustrate this problem, consider the expressions for the first eight
carries:

Suppose that the maximum fan-in of the gates is four inputs. Then it is impossible to
implement all of these expressions with a two-level AND-OR circuit. The biggest problem
is cs, where one of the AND gates requires nine inputs; moreover, the OR gate also requires
nine inputs. To meet the fan-in constraint, we can rewrite the expression for cg as 4

To implement this expression we need 11 AND gates and three OR gates. The propagation
delay in generating cs consists of one gate delay to develop all gi and pi, two gate delays
to produce the sum-of-products terms in parentheses, one gate delay to form the product
term in square brackets, and one delay for the final ORing of terms. Hence cs is valid after
five gate delays, rather than the three gates delays that would be needed without the fan-in
constraint. 4

Because fan-in limitations reduce the speed of the carry-lookahead adder, some devices
that are characterized by low fan-in include dedicated circuitry for implementation of fast
adders. Examples of such devices include FPGAs whose logic blocks are based on IookuP
tables.

Before we leave the topic of the carry-lookahead adder, we should consider an altema-
tive implementation of the structure in Figure 5.16. The same functionality can be achieved
by using the circuit in Figure 5.19. In this case stage 0 is implemented using the circuit of .

1

Figure 5.1 9 An alternative design for a carry-lookahead adder.

Figure 5.5 in which 2 two-input XOR gates are used to generate the sum bit, rather than
having 1 three-input XOR gate. The output of the first XOR gate can also serve as the
Propagate signal 170. Thus the corresponding OR gate in Figure 5.16 is not needed. Stage

constructed using the same approach.
The circuits in Figures 5.16 and 5.19 require the same number of gates. But is one of
better in some way? The answer must be sought by considering the specific aspects of

'he technology that is used to implement the circuits. If a CPLD or an FPGAis used, such as
those in Figures 3.33 and 3.39, then it does not matter which circuit is chosen. A three-input

function can be realized by one macrocell in the CPLD, using the sum-of-products

c H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

expression

Sj = xiLiZi + ZiyiFi + x i y i C i + XjyiCi

because the macrocell allows for implementation of four product terms.
In the FPGA any three-input function can be implemented in a single logic cell; hence

it is easy to realize a three-input XOR. However, suppose that we want to build a carry.
lookahead adder on a custom chip. If the XOR gate is constructed using the approach
discussed in section 3.9.1, then a three-input XOR would actually be implemented using 2
two-input XOR gates, as we have done for the sum bits in Figure 5.19. Therefore, if the
first XOR gate realizes the function xi @ yi, which is also the propagate function pi, &hen it
is obvious that the alternative in Figure 5.19 is more attractive. The important point of ttus
discussion is that optimization of logic circuits may depend on the target technology.
CAD tools take this fact into account.

The caq-lookahead adder is a well-known concept. There exist standard chips that
implement a portion of the carry-lookahead circuitry. They are called carTy-lookahead
generators. CAD tools often include predesigned subcircuits for adders, which designers
can use to design larger units.

- -

1 5.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS
-

In this section we show how the arithmetic circuits can be designed by using CAD tools.
Two different design methods are discussed: using schematic capture and using VHDL
code.

An obvious way to design an arithmetic circuit via schematic capture is to draw a schematic
that contains the necessary logic gates. For example, to create an n-bit adder, we could first
draw a schematic that represents a full-adder. Then an rz-bit ripple-carry adder could be
created by drawing a higher-level schematic that connects together n instances of the full-
adder. A hierarchical schematic created in this manner would look like the circuit shown in
Figure 5.6. We could also use this methodology to create an adder/subtractor circuit, such
as the circuit depicted in Figure 5.1 3.

The main problem with this approach is that it is cumbersome, especially when the
number of bits is large. This problem is even more apparent if we consider creating a
schematic for a cany-lookahead adder. As shown in section 5.4.1, the carry circuitly
each stage of the carry-lookahead adder becomes increasingly more complex. Hence it is
necessary to draw a separate schematic for each stage of the adder. A better approach for

creating arithmetic circuits via schematic capture is to use predefined subcircuits.
We mentioned in section 2.9.1 that schematic capture tools provide a library of graphicd

symbols that represent basic logic gates. These gates are used to create schematics
relatively simple circuits. In addition to basic gates, most schematic capture tools also

I

provide a library of commonly used circuits, such as adders. Each circuit is provided as a
module that can be imported into a schematic and used as part of a larger circuit. In some
CAD systems the modules are referred to as i~~acrofrmctions, or megafunctions.

There are two main types of rnacrofunctions: technology dependent and technology
independent A technology-dependent macmfunction is designed to suit a specific type
of chip For example, in section 5.4.1 we described an expression for a carry-lookahead
adder that was designed to meet a fan-in constraint of four-input gates. A macrofunction
that implements this expression would be technology specific. A technology-independent
,,,,,.,+ofrrnc-[ion can be implemented in any type of chip. A macrofunction for an adder
that represents different circuits for different types of chips is a technology-independent
macro function.

A !good example of a library of macrofunctions is the Libmry of Parameterized Modules
(LPM] that is included as part of the Quartus I1 CAD system. Each module in the library is

independent. Also, each module is parameterized, which means that it can be
used in a variety of ways. For example, the LPM library includes an n-bit adder module,
named l p n ~ ~ ~ l d d - ~ ~ b .

A schematic illustrating the lpm-add-sub module's capability is given in Figure 5.20.
 he module has several associated parameters, which are configured by using the CAD
tools. The two most important parameters for the purposes of our discussion are named
LPM - WIDTH and LPM-REPRESENTATION. The LPM-WIDTH parameter specifies the
number of bits, n, in the adder. The LPM-REPRESENTATION parameter specifies whether
signed or unsigned integers are used. This affects only the part of the module that determines
when arithmetic overflow occurs. For the schematic shown, LPM-WIDTH = 16, and
signed numbers are used. The module can perform addition or subtraction, determined by

Overflow

Carryout

I >

1 >

I

I

I

Figure 5.20 Schematic using on LPM adder/subtractor module.

LPM-ADD-SUB

add-sub

cin

dataa[15..0]

>
>- datab[l5..0]

overflow
4 >

tout
I >

1

the input add-sub. Thus the module represents an adderlsubtractor circuit, such as the oil,

shown in Figure 5.13.
The numbers to be added by the lpm-add-sub module are connected to the terminah

called dataa [15..0] and dutab [15..0]. The square brackets in these names mean that fiq

represent multibit numbers. In the schematic, we connected duma and datab to the 16-bil
input signals X [15..0] and Y [15..0]. The meaning of the syntax X [15..01 is that the signal
X represents 16 bits, named X [151, X [1 41, . . . , X [0] . The 1pm-adddd~u b module produces
the sum on the terminal called resulr [l5..0], which we connected to the output S[15..01
Figure 5.20 also shows that the LPM supports a carry-in input, as well as the carry-out and
overflow outputs.

To assess the effectiveness of the LPM, we configured the lpm-add-sub module to
realize just a 16-bit adder that computes the sum, carry-out, and overflow outputs; this
means that the add - sub and cin signals are not needed. We used CAD tools to implement
this circuit in an FPGA chip, and simulated its performance. The resulting timing diagram
is shown in Figure 5.21, which is a screen capture of the timing simulator. The values of
the 16-bit signals X, Y, and S are shown in the simulation output as hexadecimal numbers,
At the beginning of the simulation, both X and Y are set to 0000. After 50 ns, Y is changed
to 0001 which causes S to change to 0001. The next change in the inputs occurs at 150 ns,
when X changes to 3FFF. To produce the new sum, which is 4000, the adder must wait for
its carry signals to ripple from the first stage to the last stage. This is seen in the simulation
output as a sequence of rapid changes in the value of S, eventually settling at the correct
sum. Observe that the simulator's reference line, the heavy vertical line in the figure, shows
that the correct sum is produced 160.93 ns from the start of the simulation. Because the
change in inputs happened at 150 ns, the adder takes 160.93 - 150 = 10.93 ns to compute
the sum. At 250 ns, X changes to 7FFF, which causes the sum to be 8000. This sum is
too large for a positive 16-bit signed number; hence Ovefluw is set to 1 to indicate the
arithmetic overflow.

Master Time 0ar: b0.93 pointer: 84.4 ns Interval. -76 53 ns Start. End.

Figure 5.21 Simulation results for the LPM adder.

*

5.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS

5.5.2 DESIGN OF ARITHMETIC CIRCUITS USING VHDL

We said in section 5.5.1 that an obvious way to create an n-bit adder is to draw a hierarchical
,,hematic that contains n full-adders. This approach can also be followed by using VHDL,
by first creating a VHDL entity for a full-adder and then creating a higher-level entity that

four instances of the full-adder. As a first attempt at designing arithmetic circuits by
,sing VHDL, we will show how to write the hierarchical code for a ripple-carry adder.

The complete code for a full-adder entity is given in Figure 5.22. It has the inputs Cin,
and and produces the outputs s and Cow. The sum, s, and carry-out, Cout, are described

3

by logic equations.
we now need to create a separate VHDL entity for the ripple-carry adder, which uses

thefullodd entity as a subcircuit. One method of doing so is shown in Figure 5.23. It
the code for a four-bit ripple-caw adder entity, named adder4. One of the four-bit

to be added is represented by the four signals x 3 , x2, X I , xo, and the other number
is represented by y3, y2,y1, yo- The sum is represented by s3, s2, sl , so.

Ob\erve that the architecture body has the name Structure. We chose this name because
the style of code in which a circuit is described in a hierarchical fashion, by connecting
together subcircuits, is usually called the structural style. In previous examples of VHDL
code, all signals that were used were declared as ports in the entity declaration. As shown in
Figure 5.23, signals can also be declared preceding the BEGIN keyword in the architecture
body. The three signals declared, called cl, cr, and c3, are used as carry-out signals from
the first three stages of the adder. The next statement is called a component declaration
statement. It uses syntax similar to that in an entity declaration. This statement allows the
fulladd entity to be used as a component (subcircuit) in the architecture body.

The four-bit adder in Figure 5.23 is described using four instantiation statements. Each
statement begins with an instance name, which can be any legal VHDL name, followed by
the colon character. The names must be unique. The least-significant stage in the adder is
named stage0, and the most-significant stage is stage3. The colon is followed by the name of

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY fulladd IS
PORT (Cin, x, y : IN STD-LOGIC ;

s, Cout : OUT STDLOGIC) ;
END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS
BEGIN

s <= x XOR y XOR Cin ;
Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ;

END LogicFunc ;

Figure 5.22 VHDL code for the full-adder.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

LIBRARY ieee ;
USE ieee.std1ogic-l164,all ;

ENTITY adder4 IS
PORT (Cin : IN STDLOGIC ;

x3, x2, x 1, xO : IN STDLOGIC ;
y3, y2, y 1, yo : IN STDLOGIC ;
s3, s2, s 1 , SO : OUT STD-LOGIC ;
Cou t : OUT STDLOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS
SIGNAL c l , c2, c3 : STDLOGIC ;
COMPONENT fulladd

PORT (Cin, x, y : IN STDLOGIC ;
s, Cout : OUT STDLOGIC) ;

END COMPONENT ;
BEGIN

stage0: fulladd PORT MAP (Cin, xO, yo, SO, c l) ;
stagel: fulladd PORT MAP (cl , x l , yl, s l , c2) ;
stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;
stage3 : fulladd PORT MAP (

Cin => c3, Cout => Cout, x => x3, y => y3, s => s3) ;
END Structure ;

Figure 5.23 VHDL code for a four-bit adder.

the component,fulladd, and then the keyword PORT MAP. The signal names in the added
entity that are to be connected to each input and output port on the,fidladd component are
then listed. Observe that in the first three instantiation statements, the signals are listed in
the same order as in the fulladd COMPONENT declaration statement, namely, the order
Cin, x, y, s, Cout. It is also possible to list the signal names in other orders by specifying
explicitly which signal is to be connected to which port on the component. An example of
this style is shown for the stage3 instance. This style of component instantiation is known as
named association in the VHDL jargon, whereas the style used for the other three instances
is called positional association. Note that for the stage3 instance, the signal name Gout
is used as both the name of the component port and the name of the signal in the added
entity. This does not cause a problem for the VHDL compiler, because the component pod
name is always the one on the left side of the => characters.

The signal names associated with each instance of the fulladd component implicitlY
specify how the full-adders are connected together. For example, the carry-out of the stageu
instance is connected to the carry-in of the stagrl instance. When the code in Figure 5-23
is analyzed by the VHDL compiler, it automatically searches for the code to use for the

5.5 DESIGN OF AR~THMSTIC CIRCUITS USING CAD TOOLS

furr
odd ~ ~ m p o n e n t , given in Figure 5.22. The synthesized circuit has the same structure as

shown in Figure 5.6.

Alternative Style of Code
In Figure 5.23 a component declaration statement for the fulladd entity is included

in the architecture. An alternative approach is to place the component declaration
in a VHDL package. In general, a package allows VHDL constructs to be defined

in one source code file and then used in other source code files. Two examples of constructs
that are often placed in a package are data type declarations and component declarations.

we have already seen an example of using a package for a data type. In Chapter 4
we introduced the package named std-logic-1164, which defines the STD-LOGIC signal
type. Recall that to access this package, VHDL code must include the statements

LIBRARY ieee ;

USE ieee.std~logic~l164.all ;

These statements appear in Figures 5.22 and 5.23 because the STD-LOGIC type is used in
the code. The first statement provides access to the library named ieee. As we discussed
in ~ection 4.12, the library represents the location, or directory, in the computer file system
where the std-logic-I164 package is stored.

The code in Figure 5.24 defines the package named fulladdqackage. This code can
be stored in a separate VHDL source code file, or it can be included in the same source
code file used to store the code for the fulladd entity, shown in Figure 5.22. The VHDL
syntax requires that the package declaration have its own LIBRARY and USE clauses;
hence they are included in the code. Inside the package the fulladd entity is declared as a
COMPONENT. When this code is compiled, the f ~ ~ l l a d d ~ a c k a g e package is created and
stored in the working directory where the code is stored.

Any VHDL entity can then use the fulladd component as a subcircuit by making use
ofthe fulladdgackage package. The package is accessed using the two statements

LIBRARY work;

USE work.fulladd-package.al1 ;

LIBRARY ieee ;
USE ieee.stdJogic-l164.all ;

PACKAGE fulladd-package IS
COMPONENT fulIadd

PORT (Cin, x, y : IN STDLOGIC ;
s, Cout : OUT STDLOGIC) ;

END COMPONENT ;
END fulladd-package ;

Figure 5.24 Declaration of a ~ a c k a ~ e .

LIBRARY ieee ;
USE ieee.std_logic-1164.all ;
USE work.fulladd-package.al1 ;

ENTITY adder4 IS
PORT (Cin : IN STDLOGIC ;

x3, x2, x l , xO : IN STD-LOGIC ;
y3, y2, y 1 , yo : IN STD-LOGIC ;
s3, s2, s l , SO : OUT STDLOGIC ;
Cout : OUT STD-LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS
SIGNAL c 1, c2, c3 : STDLOGIC ;

BEGIN
stage0: fulladd PORT MAP (Cin, xO, yo, SO, c l) ;
stagel: fulladd PORT MAP (c l , x l , y l , s l , c2) ;
stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;
stage3: fulladd PORT MAP (

Cin => c3, Cout => Cout, x => x3, y => y3, s => s3) ;
END Structure ;

Figure 5.25 A different way of specifying a four-bit odder.

The library named work represents the working directory where the VHDL code that defines
the package is stored. This statement is actually not necessary, because the VHDL compiler
always has access to the working directory.

Figure 5.25 shows how the code in Figure 5.23 can be rewritten to make use of the
fnlluddgackage. The code is the same as that in Figure 5.23 with two exceptions: the extra
USE clause is added, and the component declaration statement is deleted in the architecture.
The circuits synthesized from the two versions of the code are identical.

In Figures 5.23 and 5.25, each of the four-bit inputs and the four-bit output of the adder
is represented using single-bit signals. A more convenient style of code is to use multibit
signals to represent the numbers.

5 - 5 3 REPRESENTATION OF NUMBERS IN VHDL CODE

Just as a number is represented in a logic circuit as signals on multiple wires, a number IS
represented in VHDL code as a multibit SIGNAL data object. An example of a rnultiblt
signal is

SIGNAL C : STD-LOGIC-VECTOR (1 TO 3) ;

The STD-LOGIC-VECTOR data type represents a linear array of STD-LOGIC data
objects. In VHDLjargon the STD-LOGIC-VECTOR is said to be a subtype of STD-LOG~~'
There exists a similar subtype, called BIT-VECTOR, corresponding to the BIT type that

284

5.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS

was IJ sed in section 2.10.2. The preceding SIGNAL declaration defines C as a three-bit
S T ~ + ~ O G I C signal. It can be used in VHDL code as a three-bit quantity simply by using

name C, or else each individual bit can be referred to separately using the names C(1),

C(2)l a nd C(3). The syntax 1 TO 3 in the declaration statement specifies that the most-
bit in C is called C(1) and the least-significant bit is called C(3). A three-bit

,ignal value can be assigned to C as follows:

The three-bit value is denoted using double quotes, instead of the single quotes used for
values, as in ' 1 ' or '0'. The assignment statement results in C(1) = 1, C(2) = 0,

and ~ (3) = 0. The numbering of the bits in the signal C, with the highest index used for
least-significant bit, is a natural way of representing signaIs that are simply grouped

together for convenience but do not represent a number. For example, this numbering
scheme would be an appropriate way of declaring the three carry signals named c , , cz, and
Q in Figure 5.25. However, when a multibit signal is used to represent a binary number,
it makes more sense to number the bits in the opposite way, with the highest index used
for the most-significant bit. For this purpose VHDL provides a second way to declare a
multibi t signal

SIGNAL X : STD-LOGIC-VECTOR (3 DOWNTO 0) ;

This statement defines X as a four-bit STD-LOGIC-VECTOR signal. The syntax 3
DOWNTO 0 specifies that the most-significant bit inX is called X(3) and the least-significant
bit is X (0) . This scheme is a more natural way of numbering the bits if X is to be used in
VHDL code to represent a binary number because the index of each bit corresponds to its
position in the number. The assignment statement

results in X(3) = 1, X(2) = 1, X(1) = 0, and X (0) = 0.
Figure 5.26 illustrates how the code in Figure 5.25 can be written to use rnultibit signals.

The data inputs are the four-bit signals X and Y , and the sum output is the four-bit signal
S. The intermediate carry signals are declared in the architecture as the three-bit signal C.

Using hierarchical VHDL code to define large arithmetic circuits can be cumbersome.
For this reason, arithmetic circuits are usually implemented in VHDL in a different way,
using arithmetic assignment statements and multibit signals.

If the following signals are defined

SIGNAL X, Y, S : STDLOGIC-VECTOR (15 DOWNTO 0) ;

fien the arithmetic assignment statement

represents a 16-bit adder.
In addition to the + operator, which is used for addition, VHDL provides other arith-

metic operators. They are listed in Table A. 1, in Appendix A. The complete VHDL code that

285

LIBRARY ieee ;
USE ieee.stdlogic-l164.all ;
USE work. fulladd-package-all ;

ENTITY adder4 IS
PORT (Cin : STDLOGIC ;

X, Y : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;
S : OUT STDLOGIC-VECTOR(3 DOWNTO 0) ;
Cout : OUT STDLOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS
SIGNAL C : STDLOGIC-VECTOR(1 TO 3) ;

BEGIN
stage0: fulladd PORT MAP (Cin, X(O), Y(O), S(O), C(1)) ;
stagel: fulladd PORT MAP (C(l), X(l), Y(l), S(1), C(2)) ;
stage2: fulladd PORT MAP (C(2), X(2), Y(2), S(2), C(3)) ;
stage3: fulladd PORT MAP (C(3), X(3), Y(3), S(3), Cout) ;

END Structure ;

Figure 5.26 A four-bit adder defined using multibit signals.

includes the preceding statement is given in Figure 5.27. The std_Eogic_ll64 package does
not specify that STD-LOGIC signals can be used with arithmetic operators. The second
package included in the code, named std-logic-signed, allows the signals to be used in this
way. When the code in the figure is translated by the VHDL compiler, it generates an adder
circuit to implement the + operator. When using the Quartus I1 CAD system, the adder used
by the compiler is actually the Zpm-add-sub module shown in Figure 5.20, The compiler
automatically sets the parameters for the module so that it represents a 16-bit adder.

LIBRARY ieee ;
USE ieee.stdlogic-1164,all ;
USE ieee.std-logic-signed.al1 ;

ENTITY adder 16 IS
PORT (X, Y : IN STDLOGIC-VECTOR(I5 DOWNTO 0) ;

S : OUT STDLOGIC-VECTOR(l5 DOWNTO 0)) ;
END adder 1 6 ; F

ARCHITECTURE Behavior OF adder 16 IS
BEGIN

s < = x + y ;
END Behavior ;

286
Figure 5.27 VHDL code for a 16-bit adder.

I 5.5 DESIGN OF ARITHMETIC CIRCUITS USING CAD TOOLS

1 LIBRARY ieee ;
I USE ieee.std-logic-l164.all ;

USE ieee.std_logic-signed.al1 ;

ENTITY adder 16 IS
PORT (Cin : IN STDLOGIC ;

x, y : IN STDLOGIC-VECTOR(l5 DOWNTO 0) ;
S : OUT STDLOGIC-VECTOR(l5 DOWNTO 0) ;
Cout, Overflow : OUT STDLOGIC) ;

END adder 1 6 ;

ARCHITECTURE Behavior OF adder 16 IS
SIGNAL Sum : STDLOGIC-VECTOR(16 DOWNTO 0) ;

BEGIN
Sum <= ('07& X) + Y + Cin ;
S <= Sum(l5 DOWNTO 0) ;
Cout <= Sum(] 6) ;
Overflow < = Sum(l6) XOR X(15) XOR Y(15) XOR Sum(l5) ;

END Behavior ;

I Figure 5.28 The 16-bit adder from Figure 5.27 with carry and overflow signals.

The code in Figure 5.27 does not include carry-in or carry-out signals. Also, it does
not provide the arithmetic overflow signal. One way in which these signals can be added is
given in Figure 5.28. The 17-bit signal named Sum is defined in the architecture. The extra
bit, Slim(16), is used for the carry-out from bit-position 15 in the adder. The statement used
to assign the sum of X, Y, and the carry-in, Cin, to the Sum signal uses an unusual syntax.
The meaning of the term in parentheses, namely ('0' & X), is that a 0 is concatenated to the
16-bit signal X to create a 17-bit signal. In VHDL the & operator is called the concutenate
operator. The reader should not confuse this meaning with the more traditional meaning
of & in other hardware description languages in which it is the logical AND operator. The
reason that the concatenate operator is needed in Figure 5.28 is that VHDL requires at least
Om of the operands of an arithmetic expression to have the same number of bits as the
r e ~ l t . Because Sum is a 17-bit operand, then at least one of X or Y must be modified to
become a 17-bit number.

Another detail to observe from the figure is the statement

Tnis statement assigns the lower 16 bits of Sum to the output sum S. The next statement
the carry-out from the addition, Sum(lb), to the carry-out signal, Cout. The ex-

Pression for arithmetic overflow was defined in section 5.3.5 as c.- 1 @ c,. In our case, c.
Coms~onds to Sum(l6), but there is no direct way of accessing c.- 1, which is the carny-out
from bit-position 14. The reader should verify that the expression x(Is)@Y(~ 5)@Surn(15)
'Orrespond s to c, - .

We said that the VHDL compiler can generate an adder circuit to implement the +
Operator, and that the Quartus II system actually uses the Zpm-add-sub module for this.

287

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

For completeness, we should also mention that the lpm-a&sub module can be directl
9

instantiated in VHDL code, in a similar way that thefulladd component was instantiated in
Figure 5.23. An example is given in section A.6, in Appendix A.

The code in Figure 5.28 uses the package std-logic-signed to allow the STD-LOGI~
signals to be used with arithmetic operators. The std-logic-signed package actually uses
another package, which is named std-logic-arith. This package defines two data types
called SIGNED and UNSIGNED, for use in arithmetic circuits that deal with signed o;
unsigned numbers. These data types are the same as the STD-LOGIC-VECTOR type;
each one is an array of STD - LOGIC signals. The code in Figure 5.28 can be written
directly use the std-logicprith package as shown in Figure 5.29. The multibit signals x
Y , S , and Sum have the type SIGNED. The code is otherwise identical to that in Figure 5.2*
and results in the same circuit.

It is an arbitrary choice whether to use the std-logicsigned package and STD-LOGIC -
VECTOR signals, as in Figure 5.28, or the std-logic-arith package and SIGNED signals, as
in Figure 5.29. For use with unsigned numbers, there are also two options. We can use fie
std - logic - unsigned package with STD-LOGIC-VECTOR signals or the srd_!ngic-ar~h
package with UNSIGNED signals. For our example code in Figures 5.28 and 5.29, the
same circuit would be generated whether we assume signed or unsigned numbers. But for
unsigned numbers we should not produce a separate Overflow output, because the carry-out
represents the arithmetic overflow for unsigned numbers.

Before leaving our discussion of arithmetic statements in VHDL, we should mention
another signal data type that can be used for arithmetic. The following statement defines

. - - - -

LIBRARY ieee ;
USE ieee.std.logic-1164.all ;
USE ieee.stdlogic-arith.al1 ;

ENTITY adder 16 IS
PORT (Cin : IN STDLOGIC;

x , y : IN SIGNED(15 DOWNTO 0) ;
S : OUT SIGNED(15 DOWNTO 0) ;
Cout, Overflow : OUT STDLOGIC) ;

END adder16 ;

ARCHITECTURE Behavior OF adder1 6 IS
SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN
Sum <= ('0' & X) + Y + Cin ;
S <= Sum(l5 DOWNTO 0) ;
Cout <= Sum(l6);
Overflow <= Sum(l6) XOR X(15) XOR Y(15) XOR Sum(l5) ;

END Behavior ; rg

Figure 5.29 Use of the arithmetic package.

ENTITY adder 16 IS
PORT (X, Y : IN INTEGER RANGE -32768 TO 32767 ;

S : OUT INTEGER RANGE -32768 TO 32767) ;
END adder1 6 ;

ARCHITECTURE Behavior OF adder 16 IS
BEGIN

S < = x + y ;
END Behavior ;

Figure 5.30 The 16-bit adder from Figure 5.27 using INTEGER signals.

he signal X as an INTEGER

SIGNAL X : INTEGER RANGE -32768 TO 32767 ;

For an INTEGER data object, the number of bits is not specified explicitly. Instead, the
range of numbers to be represented is specified. For a 16-bit signed integer, the range of

numbers is -32768 to 32767. An example of using the INTEGER data type
incode corresponding to Figure 5.27 is shown in Figure 5.30. No LIBRARY or USE clause
appears in the code, because the INTEGER type is predefined in standard VHDL. Although
the code in the figure is straightforward, it is more difficult to modify this code to include
carry signals and the overflow output shown in Figures 5.28 and 5.29. The method that we
used, in which the bits from the signal Sum are used to define the carry-out and arithmetic
overflow signals, cannot be used for INTEGER objects.

Before we discuss the general issue of multiplication, we should note that a binary number,
B, can be multiplied by 2 simply by adding a zero to the right of its least-significant bit. This
effectively moves all bits of B to the left, and we say that B is shifed left by one bit position.
Thusif B = bn-lbn-Z...blbO, then 2 x B = bn-lbn-2..blbo0. (We havealreadyused
'his fact in section 5 2.3 .) Similarly, a number is multiplied by 2k by shifting it left by k bit
Positions. This is true for both unsigned and signed numbers.

We should also consider what happens if a binary number is shifted right by k bit
positions. According to the positional number representation, this action divides the number
by 2' - For unsigned numbers the shifting amounts to adding k zeros to the left of the most-
'lgnificant bit. For example, if B is an unsigned number, then B + 2 = Ob,-] b,-z - - . b2b I .

Note that bit bo is lost when shifting to the right, For signed numbers it is necessary to
Preserve the sign. This is done by shifting the bits to the right and filling from the left with the
""lue of the sign bit. Hence if B is a signed number, then B + 2 = b.-1 b.-I b,-z . . bzbl.
For instance, if B = O11OOO = (24)10, then B i 2 = 001100 = (12)10 and B + 4 =
oooilo = Similarly, if B = 101000 = -(24)lo, then B i 2 = 110100 = -(12)10

and B -+ 4 = 11 10 10 = - (6) The reader should also observe that the smaller the positik
number, the more 0 s there are to the left of the first 1, while for a negative number there at
more 1s to the left of the first 0.

Now we can turn our attention to the general task of multiplication. Two binary numben
can be multiplied using the same method as we use for decimal numbers. We will focus
discussion on multiplication of unsigned numbers. Figure 5 . 3 1 ~ shows how multiplication
is manually, using four-bit numbers. Each multiplier bit is examined from right
to left. If a bit is equal to 1, an appropriately shifted version of the multiplicand is added
to form a partial prvduct. If the multiplier bit is equal to 0, then nothing is added. ~ h ,
sum of all shifted versions of the multiplicand is the desired product. Note that the producr
occupies eight bits.

The same scheme can be used to design a multiplier circuit. We will stay with four-bit
numbers to keep the discussion simple. Let the multiplicand, multiplier, and product be
denoted as M = rn3mzm,rng, Q = q3q2q1qoI and P = P7PnPsP@3PzPiPo3 respectively.
One simple way of implementing the multiplication scheme is to use a sequential approach,
where an eight-bit adder is used to compute partial products. As a first step, the bit qo is

Multiplicand M (14) 1 1 1 0
Multiplier Q (1 1) x 1 0 1 1

Product P (154) 1 0 0 1 1 0 1 0

(a) Multiplication by hand

Multiplicand M (1 1) 1 1 1 0
Multiplier Q (14) x l o l l

Partial product 0 1 1 1 0
+ 1 1 1 0 ,

Partial product 1 1 0 1 0 1
+ 0 0 0 0 1

Partial product 2
+ 1 1 1 0

Product P (154) 1 0 0 1 1 0 1 0

(b) Multiplication for implementation in hardware

Figure 5.31 Multiplication of unsigned numbers.

.

exam ined. If qo = 1, then M is added to the initial partial product, which is initialized to

O* If qo = 0, then 0 is added to the partial product. Next ql is examined. If q i = 1, then
the value 2 x M is added to the partial product. The value 2 x M is created simply by
Shihing M one bit position to the left. Similarly, 4 x M is added to the partial product if
- 1, and 8 x M is added if q 3 = 1. We will show in Chapter 10 how such a circuit may

92 -
be implemented-

This sequential approach leads to a relatively slow circuit, primarily because a single
,ight-bit adder is used to perfom all additions needed to generate the partial products and
the final ~roduct . A much faster circuit can be obtained if multiple adders are used to

the partial products.

5.6.1 ARRAY MULTIPLIER FOR UNSIGNED NUMBERS

Figure 5.3 I b indicates how multiplication may be performed by using multiple adders. In
each step a four-bit adder is used to compute the new partial product. Note that as the

progresses, the least-significant bits are not affected by subsequent additions;
hence they can be passed directly to the final product, as indicated by blue mows. Of
course, these bits are a part of the partial products as well.

A fast multiplier circuit can be designed using an array structure that is similar to
the organization in Figure 5.31b. Consider a 4 x 4 example, where the multiplicand and
multiplier are M = rn3m2rnlrno and Q = q 3 q 2 q l q0, respectively. The partial product 0,
PPO = pp03 pp02 ppO~ ppOo, can be generated using the AND of qo with each bit of M .
Thus

Partial product 1, P P l , is generated using the AND of ql with M and adding it to PPO as
follows

PPO: 0 ~ ~ 0 3 ~ ~ 0 2 PPOI PPOO
+ m3ql m2ql mlql m09 1 0

Similarly, partial product 2, PP2, is generated using the AND of q z with M and adding to
P P l , and SO on.

A circuit that implements the preceding operations is arranged in an array, as shown in
Figure 5 . 3 2 ~ . There are two types of blocks in the array. Part (6) of the figure shows the

of the blocks in the top row, and part (c) shows the block used in the second and
lhlrd rows. Observe that the shifted versions of the multiplicand are provided by routing
Ihe mk signals diagonally from one block to another. The full-adder included in each block
Implements il ripple-caV adder to generate each partial product. It is possible to design
even faster mu1 tipliers by using other types of adders [1 I.

C H A P T E R

(a) Structure of the circuit

0
Bit of PPi m k

(b) A block in the top row (c) A block in the bottom two rows

Figure 5.32 A 4 x 4 multiplier circuit.

5.6.2 MULTIPLICATION OF SIGNED NUMBERS

Multiplication of unsigned numbers illustrates the main issues involved in the design ''
multiplier circuits. Multiplication of signed numbers is somewhat more complex.

If the multiplier operand is positive, if is possible to use essentially the same scheme'
for unsigned numbers. For each bit of the multiplier operand that is equal to 1, a

292

shifted of the multiplicand must be added to the partial product. The multiplicand
be either positive or negative.

can Since shifted versions of the multiplicand are added to the partial products, it is impor-

tant ensure that the numbers involved are represented correctly. For example, if the two
right-most bits of the multiplier are both equal to 1, then the first addition must produce the
afiial product PP 1 = M + 2 M , where M is the multiplicand. If M = mn- ~ r n , , - ~ . . . mlmo,
P then pp 1 = mn- 1 m,-2 . - - mlmo + m,- 1 m,-2 . . . nzl moo. The adder that performs this ad-

dit ion circuitry that adds two operands of equal length. Since shifting the mul-
tiplicand to the left, to generate 2M, results in one of the operands having n + l bits, the
,quired addition has to be performed using the second operand, M, represented also as an
(, + 1)-bit number. An n-bit signed number is represented as an (n + 1)-bit number by

the sign bit as the new left-most bit. Thus M = rn,-lm,-z.. . mlmo is repre-
sented using (n + 1) bits as M = m,-1 m,- 1 m,,-;! . ml ma. The value of a positive number
does not change if 0's are appended as the most-significant bits; the value of a negative

does not change if 1's are appended as the most-significant bits. Such replication
of the sign bit is called sign extension.

When a shifted version of the multiplicand is added to a partial product, overflow has
to be avoided. Hence the new partial product must be larger by one extra bit. Figure
5 . 3 3 ~ illustrates the process of multiplying two positive numbers. The sign-extended bits
are shown in blue. Part (b) of the figure involves a negative multiplicand. Note that the
resulting product has 2n bits in both cases.

For a negative multiplier operand, it is possible to convert both the multiplier and the
multiplicand into their 2's complements because this will not change the value of the result.
Then the scheme for a positive multiplier can be used.

We have presented a relatively simple scheme for multiplication of signed numbers.
There exist other techniques that are more efficient but also more complex. We will not
pursue these techniques, but an interested reader may consult reference [1 1.

We have discussed circuits that perform addition, subtraction, and multiplication. An-
other arithmetic operation that is needed in computer systems is division. Circuits that
perform division are more complex; we will present an example in Chapter 10. Various
techniques for performing division are usually discussed in books on the subject of computer
organization, and can be found in references [I , 21.

In the previous sections we dealt with binary integers represented in the positional number
'Presentation. Other types of numbers are also used in digital systems. In this section we

discuss briefly three other types: fixed-point, floating-point, and binary-coded decimal
numbers.

Afued-point number consists of integer and fraction parts. It can be written in the posi-
t'onal number representation as

293
1

C H A P f E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Multiplicand M (+14) 0 1 1 1 0
a Multiplier Q (+I 1) x 0 1 0 1 1

Partial product 0

Parti a1 product 1

PartiaI product 2

Partial product 3

Product P (+ 1 54) 0 0 1 0 0 1 1 0 1 0

(a) Positive multiplicand

Multiplicand M (- 14)
Multiplier Q (+I 1)

Partial product 0 1 1 1 0 0 1 0
+ 1 1 0 0 1 0 L

Partial product 1 1 1 0 1 0 1 1
+ 0 0 0 0 0 0

Partial product 2 l l l O I O l
+ 1 1 0 0 1 0

Partial product 3 1 1 0 1 1 0 0
+ 0 0 0 0 0 0 ~

Product P (- 154)
I , ,

1 1 0 1 1 0 0 1 1 0

(b) Negative multiplicand

Figure 5.33 Multiplication of signed numbers.

The value of the number is

The position of the radix point is assumed to be fixed; hence the name fixed-point numbe"
If the radix point is not shown, then it is assumed to be to the right of the least-significafl'
digit, which means that the number is an integer.

Logic circuits that deal with fixed-point numbers are essentially the same as those used
for integers. We will not discuss them separately.

Fixed-point numbers have a range that is limited by the significant digits used to represent
the number. For example, if we use eight digits and a sign to represent decimal integers,
then the range of values that can be represented is 0 to k99999999. If eight digits are
used to represent a fraction, then the representable range is 0.00000001 to +0.99999999.
In scientific applications it is often necessary to deal with numbers that are very large or

small. Instead of using the fixed-point representation, which would require many
significant digits, it is better to use the floating-point representation in which numbers are

by a mantissa comprising the significant digits and an exponent of the radix R.
The format is

The numbers are often normalized, such that the radix point is placed to the right of the first
nonzero digit. as in 5.234 x 1 oJ3 or 6.3 1 x lom2&.

Binary floating-point representation has been standardized by the Institute of Electrical
and Electronic Engineers (IEEE) [3]. Two sizes of formats are specified in this standard-
a singk-prrcision 32-bit format and a double-precision 64-bit format. Both formats are
illustrated in Figure 5.34.

% 32 bits -
/

Sign l-' v

0 denotes + 8-bit 23 bits of mantissa
excess- 127 1 denotes - exponent

(a) Single precision

4 64 bits

I 1 -bit excess- 1023
exponent

52 bits of mantissa

(c) Double precision

5.34 IEEE standard floating-point formats.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

Single-Precision Floating-Point Format
Figure 5 . 3 4 ~ depicts the single-precision format. The left-most bit is the sign bit4

for positive and 1 for negative numbers. There is an &bit exponent field, E, and a 23-bil
mantissa field, M . The exponent is with respect to the radix 2. Because it is necessary
be able to represent both very large and very small numbers, the exponent can be either
positive or negative. Instead of simply using an 8-bit signed number as the exponent, which
would allow exponent values in the range - 128 to 127, the IEEE standard specifies the
exponent in the excess-127 format. In this format the value 127 is added to the value of the
actual exponent so that

Exponent = E - 127

In this way E becomes a positive integer. This format is convenient for adding and subtract-
ing floating-point numbers because the first step in these operations involves comparing fie
exponents to determine whether the mantissas must be appropriately shifted to add/subtract
the significant bits, The range of E is 0 to 255. The extreme values of E = 0 and E = 255
are taken to denote the exact zero and infinity, respectively. Therefore, the normal range of
the exponent is -126 to 127, which is represented by the values of E from 1 to 254.

The mantissa is represented using 23 bits. The IEEE standard calls for a normalized
mantissa, which means that the most-significant bit is always equal to 1. Thus i t is not
necessary to include this bit explicitly in the mantissa field. Therefore, if M is the bit vector
in the mantissa field, the actual value of the mantissa is 1 .M, which gives a 24-bit mantissa.
Consequently, the floating-point format in Figure 5.340 represents the number

Value = f 1.M x 2 E-127

The size of the mantissa field allows the representation of numbers that have the precision
of about seven decimal digits. The exponent field range of 2-126 to 2127 corresponds to
about 10~" .

Double-Precision Floating-Point Format
Figure 5.34b shows the double-precision format, which uses 64 bits. Both the exponent

and mantissa fields are larger. This format allows greater range and precision of numbers.
The exponent field has 1 1 bits, and it specifies the exponent in the excess-1023 format,
where

Exponent = E - 1023

The range of E is 0 to 2047, but again the values E = 0 and E = 2047 are used to indicate
the exact 0 and infinity, respectively. Thus the normal range of the exponent is - 1022 to
1023, which is represented by the values of E from 1 to 2046.

The mantissa field has 52 bits. Since the mantissa is assumed to be normalized, its
actual value is again 1 . M . Therefore, the value of a floating-point number is

Value = f 1.M x 2 E- 1023

This format allows representation of numbers that have the precision of about 16 decimal
f 308 digits and the range of approximately 10 .

*

296

Arithmetic operations using floating-point operands are significantly more complex
signed integer operations. Because this is a rather specialized domain, we will not

elaborate on the design of logic circuits that can perform such operations. For a more

cornp lete discussion of floating-point operations, the reader may consult references [I , 21.

I I,, digital systems it is possible to represent decimal numbers simply by encoding each digit
I in binary form. This is called the binary-coded-decimd (BCDJ representation. Because
i lhere are 10 digits to encode, it is necessary to use four bits per digit. Each digit is encoded

1 by the binary pattern that represents its unsigned value, as shown in Table 5.3. Note that
only 10 of the 16 available patterns are used in BCD, which means that the remaining 6

P atterns should not occur in logic circuits that operate on BCD operands; these patterns
are usually treated as don't-care conditions in the design process. BCD representation was

in some early computers as well as in many handheld calculators. Its main virtue is
that it provides a format that is convenient when numerical information is to be displayed
on a simple digit-oriented display. Its drawbacks are complexity of circuits that perform
arithmetic operations and the fact that six of the possible code patterns are wasted,

Even though the importance of BCD representation has diminished, it is still encoun-
tered. To give the reader an indication of the complexity of the required circuits, we will
consider BCD addition in some detail.

BCD Addition
The addition of two BCD digits is complicated by the fact that the sum may exceed

9, in which case a correction will have to be made. Let X = XJX~XIXO and Y = y3yzylyo
represent the two BCD digits and let S = ssszslso be the desired sum digit, S = X + Y.
Obviously, if X + Y 5 9, then the addition is the same as the addition of 2 four-bit unsigned

* h 7

Table 5.3 Binary-coded
decimal digits.

Decimal digit BCD code

S
C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

binary numbers. But, if X + Y > 9, then the result requires two BCD digits. Moreove,,
the four-bit sum obtained from the four-bit adder may be incorrect.

There are two cases where some correction has to be made: when the sum is greate,
than 9 but no carry-out is generated using four bits, and when the sum is greater than 15 ,,
that a carry-out is generated using four bits. Figure 5.35 illustrates these cases. In the first
case the four-bit addition yields 7 + 5 = 12 = Z. TO obtain a correct BCD result, we must
generate S = 2 and a carry-out of 1. The necessary correction is apparent from the fael
that the four-bit addition is a modulo- 16 scheme, whereas decimal addition is a modulo-lo
scheme. Therefore, a correct decimal digit can be generated by adding 6 to the result of
four-bit addition whenever this result exceeds 9. Thus we can arrange the computation a,
follows

If Z 5 9, then S = Z and carry-out = 0

if Z > 9, then X = Z + 6 and carry-out = 1

The second example in Figure 5.35 shows what happens when X + Y > 15. In this case the
four least-significant bits of Z represent the digit I , which is wrong. But a carry is generated,
which corresponds to the value 16, that must be taken into account. Again adding 6 to the
intermediate sum Z provides the necessary correction.

Figure 5.36 gives a block diagram of a one-digit BCD adder that is based on this
scheme. The block that detects whether Z > 9 produces an output signal, Adjust, which
controls the multiplexer that provides the correction when needed. A second four-bit adder
generates the corrected sum bits. If Adjust = 0, then S = Z + 0; if Adjust = 1, then
S = Z + 6 andcarry-out = 1 .

carry- 1 0 1 1 1
V
S = 7

Figure 5.35 Addition of BCD digits.

Figure 5.36 Block diagram for a one-digit BCD adder.

An implementation of this block diagram, using VHDL code, is shown in Figure 5.37.
Inputs X and Y are defined as four-bit numbers. The sum output, S, is defined as a five-bit
number, which allows for the carry-out to appear in bit S4, while the sum is produced in
bits The intermediate sum Z is also defined as a five-bit number. Recall from the
discussion in section 5.5.4 that VHDL requires at least one of the operands of an arithmetic
operation to have the same number of bits as in the result. This requirement explains why
we have concatenated a 0 to input X in the expression Z <= ('0' & X) + Y.

The statement

Adjust <= ' 1' WHEN Z > 9 ELSE '0' ;

Uses a type of VHDL signal assignment statement that we have not seen before. It is called a
selected signal assignment and is used to assign one of multiple values to a signal, based on
Some criterion. In this case the criterion is the condition Z > 9. If this condition is satisfied?
'he statement assigns 1 to Adjust; otherwise, it assigns 0 to Adjust. Other examples of the
Selected signal assignment are given in Chapter 6.

We should also note that we have included the Adjust signal in the VHDL code only to
be consistent with Figure 5.36, We could just as easily have eliminated the Adjust signal
and written the expression as

LIBRARY ieee ;
USE ieee.std1ogic-l164.all ;
USE ieee-std-logic-unsigned.al1 ;

ENTITY BCD IS
P

PORT (X, Y : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;
S : OUT STDLOGIC-VECTOR(4 DOWNTO 0)) ;

END BCD ;

ARCHITECTURE Behavior OF BCD IS
SIGNAL Z : STD-LOGIC-VECTOR(4 DOWNTO 0) ;
SIGNAL Adjust : STDLOGIC ;

BEGIN
Z < = (' O ' & X) + Y ;
Adjust <- ' 1 ' WHEN Z > 9 ELSE '0' ;
S <= Z WHEN (Adjust = '0') ELSE Z + 6 ;

END Behavior ;

Figure 5.37 VHDL code for a one-digit BCD adder.

To verify the functional correctness of the code, we performed a functional simulation, An
example of the obtained results is given in Figure 5.38.

If we wish to derive a circuit to implement the block diagram in Figure 5.36 by hand,
instead of by using VHDL, then the following approach can be used. To define the Adjust
function, we can observe that the intermediate sum will exceed 9 if the carry-out from the
four-bit adder is equal to 1, or if z.3 = 1 and either 22 or zl (or both) are equal to 1. Hence
the logic expression for this function is

Adjust = Carry-out + z3(z2 + 21)

Instead of implementing another complete four-bit adder to perform the correction, we can
use a simpler circuit because the addition of constant 6 does not require the full capability
of a four-bit adder. Note that the least-significant bit of the sum, so, is not affected at all;
hence so = zo. A two-bit adder may be used to develop bits s2 and sl . Bit s3 is the same as

Figure 5.38 Functional simulation of the VHDL code in Figure 5.37.

5.8 ASCII CHARACTER CODE

X 3 X2 X1 Xo Y3 Y2 Y1 Yo

1 1 1 1 1 1 1 1
Four-bit adder -

z3 22 z1 = 0

(1

t t

4)

11

C ;..I
Two-bit adder

1

Figure 5.39 Circuit for a one-digit BCD adder.

23 if the carry-out from the two-bit adder is 0, and it is equal to f3 if this carry-out is equal
to 1. A complete circuit that implements this scheme is shown in Figure 5.39. Using the
one-digit BCD adder as a basic block, it is possible to build larger BCD adders in the same
way as a binary full-adder is used to build larger ripple-carry binary adders.

Subtraction of BCD numbers can be handled with the radix-complement approach. Just
as we use 2's complement representation to deal with negative binary numbers, we can use
lo's complement representation to deal with decimal numbers. We leave the development
of such a scheme as an exercise for the reader (see problem 5.19).

5.8 ASCII CHARACTER CODE

, The most code for representing infomation in digital systems is used for both letters
i
I and numbers, as well as for some control characters. It is known as the ASCII code, which

S'ands for the American Standard Code for Information Interchange. The code specified by
this standard is presented in Table 5.4.

Table 5.4 The seven-bit ASCII code.

Bit I
positions Bit positions 654

000 00 1 010 01 1 100 101 32 10 110 11 1

0000 NUL DLE SPACE 0 @ P P

0001 SOH DC 1 ! 1 A Q a

STX DC2 2 B R b r .I

ETX DC3 # 3 C S c s

EOT DC4 $ 4 D T d t

ENQ NAK %, 5 E U e u

0110 I ACK SYN & 6 F V f v

BEL ET3 7 G W g w

BS CAN 8 H X h x

HT EM 1 9 I Y i Y

10 10 I LF SUB * J Z J z

VT ESC + , K [k I
1100 lo l l 1 FF FS < L \ 1 I

1111 SI U S / ? 0 - o DEL

NUL Nullfldle SI Shift in

SOH

STX

ETX

EOT

ENQ

ACQ

BEL

BS

HT

LF

VT

FF

Start of header

Start of text

End of text

End of transmission

Enquiry

Acknowledgement

Audible signal

Back space

Horizontal tab

Line feed

Vertical tab

Form feed

DLE

DC 1 -DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

Data link escape

Device control

Negative acknowledgement

Synchronous idle

End of transmitted block

Cancel (error in data)

End of medium

Special sequence

Escape

File separator

Group separator

Record separator

CR Carriage return US Unit separator

SO Shift out DEL Deletendle

Bit positions of code format = 6 1 5 1 4 1 3 1 2 1 1 I 0

5.8 ASCII CHARACTER CODE

The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of the
characters are decimal digits 0 to 9. Note that the high-order bits have the same pattern,

bgb5b4 = 01 1 , for all 10 digits. Each digit is identified by the low-order four bits, b3-o,
,,ing the binary patterns for these digits. Capital and lowercase letters are encoded in a

that makes sorting of textual information easy. The codes for A to Z are in ascending
sequence, which means that the task of sorting letters (or words) is accomplished

by a arithmetic comparison of the codes that represent the letters.
Characters that are either letters of the alphabet or numbers are referred to as alphanu-

char;lcters. In addition to these characters, the ASCII code includes punctuation
marks such as ! and ?; commonly used symbols such as & and %; and a collection of
,,,yo1 characters. The control characters are those needed in computer systems to handle
and transfer data among various devices. For example, the carriage return character, which
is abbreviated as CR in the table, indicates that the carriage, or cursor position, of an output
device, say, printer or display, should return to the left-most column.

The ASCII code is used to encode information that is handled as text. It is not convenient
for representation of numbers that are used as operands in arithmetic operations. For this
purpose. i t is best to convert ASCII-encoded numbers into a binary representation that we
discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more
natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-
encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this
bit to indicate the parity of the other seven bits, which means showing whether the number
of 1s in the seven-bit code is even or odd.

Parity
The concept of parity is widely used in digital systems for error-checking purposes.

When digital information is transmitted from one point to another, perhaps by long wires, it
is possible for some bits to become corrupted during the transmission process. For example,
the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose
value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism
can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.
Two kinds of parity can be used. For even parity the p bit is given the value such that the
total number of 1s in the n + I transmitted bits (comprising the n-bit data and the parity
bitp) is even. For oddparie the y bit is given the value that makes the total number of 1s
odd- The sender generates ;he p bit based on the n-bit data item that is to be transmitted.
The receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,
fora four-bit data item consisting of bits xjx2xlx0, the even parity bit can be generated as

At the receiving end the checking is done using

If = 0, then the received item shows the correct parity. If c = 1, then an error has
occumed- Note that observing c = 0 is not a guarantee that the received item is correct.

If two or any even number of bits have their values inverted during the transmission, fie
parity of the data item will not be changed; hence the error will not be detected. But if an
odd number of bits are corrupted, then the error will be detected.

The attractiveness of parity checking lies in its simplicity. There exist other more
sophisticated schemes that provide more reliable error-checking mechanisms [4]. We ,ill
discuss parity circuits again in section 9.3.

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

-

Problem: Convert the decimal number 14959 into a hexadecimal number.

Solution: An integer is converted into the hexadecimal representation by successive divi-
sions by 16, such that in each step the remainder is a hex digit. To see why this is true,
consider a four-digit number H = h3h2hl hO. Its value is

If we divide this by 16, we obtain

Thus, the remainder gives ho. Figure 5.40 shows the steps needed to perform the conversion
(14959)10 = (3A6F),,j.

Convert (14959) lo

Remainder Hex digit
14959 t 16 = 934 15 F LSB

934 + 16 = 58 6 6
58t16 = 3 10 A
3t16 = 0 3 3 MSB

Result is (3A6F) 16

Figure 5.40 Conversion from decimal to hexadecimal.

.L

problem: Convert the decimal fraction 0.8254 into binary representation.

solution: AS indicated in section 5.7.1, a binary fraction is represented as the bit pattern
= o.bVl b-2 . b-, and its value is

/ ~ ~ l t i p l y i n g this expression by 2 gives

Here, the leftmost term is the first bit to the right of the radix point. The remaining terms
i constitute another binary fraction which can be manipulated in the same way. Therefore,
1 lo convert a decimal fraction into a binary fraction, we multiply the decimal number by

2 and set the computed bit to 0 if the product is less than 1, and set it to 1 if the product
is greater than or equal to 1. We repeat this calculation until a sufficient number of bits
are obtained to meet the desired accuracy. Note that it may not be possible to represent a
decimal fraction with a binary fraction that has exactly the same value. Figure 5.41 shows

Convert (0.8254)

I

0.8254 x 2 = 1.6508 I 1 MSB

I

0.6512 x 2 = 1.3024 I 1 LSB

Figure 5.41 Conversion of fractions from decimal to binary.

-
Problem: Convert the decimal fixed point number 2 14.45 into a binary fixed point numbe,

Solution: For the integer part perform successive division by 2 as illustrated in Figure
5.1. For the fractional part perform successive multiplication by 2 as described in
ple 5.8. The complete computation is presented in Figure 5.42, producing (214,45),, ,
(1 10101 10.01 11001 . . J 2 .

-
Problem: In computer computations it is often necessary to compare numbers. Two four-bil
signed numbers, X = xsx2xlxo and Y = Y3yzylJ'o, can be compared by using the subtractar
circuit in Figure 5.43, which performs the operation X - Y . The three outputs denote the
following:

Z = 1 if the result is 0; otherwise Z = 0

N = 1 if the result is negative; otherwise N = 0

V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how 2, N, and V can be used to determine the cases X = Y, X < Y, X 5 Y, X > y,
andX Y.

Solution: Consider first the case X < Y, where the following possibilities may arise:

If X and Y have the same sign there will be no overflow, hence V = 0. Then for both
positive and negative X and Y the difference will be negative (N = 1).

If X is negative and Y is positive, the difference will be negative (N = 1) if there is
no overflow (V = 0); but the result will be positive (N = 0) if there is overflow (V = I).

Therefore, if X < Y then N @ V = 1.
The case X = Y is detected by Z = 1. Then, X 5 Y is detected by Z + (N @ V) = 1.

The last two cases are just simple inverses: X > Y if Z + (N @ V) = 1 and X 2 Y if
N @ V = l .

Problem: Write VHDL code to specify the circuit in Figure 5.43.

Solution: We can specify the circuit using the structural approach presented in Figure 5.26,
as indicated in Figure 5.44. The four full-adders are defined in a package in Figure 5.24.

This approach becomes awkward when large circuits are involved, as would be the case
if the comparator had 32-bit operands. An alternative is to use a behavioral specification,
as shown in Figure 5.45, which is based on the scheme given in Figure 5.28. Note that we
specified directly that Y should be subtracted from X, so that we don't have to complement
Y explicitly. Since the VHDL compiler will implement the circuit using a library modules
we have to specify the overflow signal, V, in terms of the S bits only, because the interstage
carry signals are not accessible as explained in the discussion of Figure 5.28.

I

Convert (2 14.45)10

1 1 - = o + -
2 2
I 1 IMSB

I

0.45 x 2 = 0.90 I ;. OMSB

1

0.80 x 2 = 1.60 I - 1 LSB

Figure 5.42 Conversion of fixed point numbers from decimal to
binary.

C4 C3 C2 1
FA c= FA FA - FA

L L

S 3 I S 2 I So
- -

P v I

N Z
(overflow) (negative) (zero)

Figure 5.43 A comparator circuit.

LIBRARY ieee ;
USE icee.std~logic~l164.all ;
USE work.fulladd-package.al1 ;

ENTITY comparator IS
PORT (X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ;

V, N, Z : OUT STD-LOGIC) ;
END comparator ;

ARCHITECTURE Structure OF cornparat or IS
SIGNAL S : STDLOGIC-VECTOR(3 DOWNTO 0) ;
SIGNAL C : STDLOGIC-VECTOR(1 TO 4) ;

BEGIN
stage0: fulladd PORT MAP (' 1'' X(O), NOT Y(O), S(O), C(l)) ;
stage1 : fulladd PORT MAP (C(1), X(l), NOT Y (1) ' S(1), C(2)) ;
stage2: fulladd PORT MAP (C(2), X(2), NOT Y(2), S(2), C(3)) ;
stage3: fulladd PORT MAP (C(3), X(3), NOT Y(3), S(3), C(4)) ;
V <= C(4) XOR C(3) ;
N <= S(3) ;
Z <= ' 1 ' WHEN S(3 DOWNTO 0) = "0000" ELSE '0';

END Structure ;

Figure 5.44 Structural VHDL code for the comparator circuit.

*

LIBRARY ieee ;
USE ieee.std-logic-l 164.all ;
USE ieee.std-logic-signed-all ;

ENTITY comparator IS
PORT (X, Y : TN STD-LOGTC-VECTOR(3 DOWNTO 0) ;

V,N, Z : OUT STD-LOGIC) ;
END comparator ;

ARCHITECTURE Behavior OF comparator IS
SIGNAL S : STDLOGIC-VECTOR(4 DOWNTO 0) ;

BEGIN
S <= ('0' & X) + Y ;
V <= S(4) XOR X(3) XOR Y(3) XOR S(3) ;
N <= S(3) ;
Z <= ' 1 ' WHEN S(3 DOWNTO 0) = 0 ELSE '0 ' ;

END Behavior ;

Figure 5.45 Behavioral VHDL code for the comparator circuit.

Problem: Figure 5.32 depicts a four-bit multiplier circuit. Each row consists of four full- I
adder (FA) blocks connected in a ripple-carry configuration. The delay caused by the carry
signals rippling through the rows has a significant impact on the time needed to generate
the output product. In an attempt to speed up the circuit, we may use the arrangement in
Figure 5.46. Here, the carries in a given row are "saved" and included in the next row
at the correct bit position. Then, in the first row the full-adders can be used to add three
properly shifted bits of the multiplicand as selected by the multiplier bits. For example, in
bit position 2 the three inputs are rnzqo, rnl ql , and rnoqz. In the last row it is still necessary
to use the ripple-carry adder. A circuit that consists of an array of full-adders connected in
this manner is called a carry-save adder array.

What is the total delay of the circuit in Figure 5.46 compared to that of the circuit in
Figure 5.32?

Solution: In the circuit in Figure 5.32a the longest path is through the rightmost two full-
adders in the top row, followed by the two rightmost FAs in the second row, and then
through all four FAs in the bottom row. Hence this delay is eight times the delay through a
full-addel- block. In addition, there is the AND-gate delay needed to form the inputs to the

FA in the top row. These combined delays are the critical delay, which determines the
'Peed of the multiplier circuit.

In the circuit in Figure 5.46, the longest path is through the rightmost FAs in the first and rows, followed by all four FAs in the bottom row. Therefore, the critical delay
IS six times the delay through a full-adder block plus the AND-gate delay needed to form
the to the first FA in the top row.

Figure 5.46 Multiplier carry-save orray.

Answers to problems marked by an asterisk are given at the back of the book.
* 5.1 Determine the decimal values of the following unsigned numbers:

(a) (01 1101 11
(b) (1011100111)2
(4 (375 118
(d) (A25F) 16

(e) (FOF0) 16

* 5.2 Determine the decimal values of the following 1's complement numbers:
(a) 0111011110
(b) 10111001 11
(c) 1111111~10

* 5.3 Determine the decimal values of the following 2's complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110

* 5.4 Convert the decimal numbers 73, 1906, -95, and - 1630 into signed 12-bit numbers in the
following representations:
(a) Sign and magnitude
(b) 1's complement - (c) 2's complement

5.5 Perform the following operations involving eight-bit 2's complement numbers and indicate :i
whether arithmetic overflow occurs. Check your answers by converting to decimal sign-
and-magnitude representation.

5.6 Prove that the XOR operation is associative, which means that xi @ (yi @ z i) = (xi @yi) @ zi . 0

5.7 Show that the circuit in Figure 5.5 implements the full-adder specified in Figure 5 . 4 ~ .

5.8 Prove the validity of the simple rule for finding the 2's complement of a number, which lj
was presented in section 5.3. Recall that the rule states that scanning a number from right i{
to left, all 0s and the first 1 are copied; then all remaining bits are complemented.

5.9 Prove the validity of the expression Overflow = c, @ c,-I for addition of n-bit signed fl
numbers.

5.1 0 In section 5.5.4 we stated that a carry-out signal, ck, from bit position k - 1 of an adder h
circuit can be generated as c k = xk @ yk @ sk, where xk and yk are inputs and sk is the sum
bit. Verify the correctness of this statement.

*5.1 1 Consider the circuit in Figure P5.1. Can this circuit be used as one stage in a carry-ripple)]
adder? Discuss the pros and cons.

*5.12 Determine the number of gates needed to implement an n-bit carry-lookahead adder, as-
suming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs. t

*5.13 Determine the number of gates needed to implement an eight-bit carry-lookahead adder14
assuming that the maximum fan-in for the gates is four.

5.1 4 In Figure 5.1 8 we presented the structure of a hierarchical carry-lookahead adder. Show 11

the complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.

5.15 What is the critical delay path in the multiplier in Figure 5.32? What is the delay along this t
path in terms of the number of gates?

5.16 (a) Write a VHDL entity to describe the circuit block in Figure 5.32b. Use the CAD tools3
to synthesize a circuit from the code and verify its functional correctness.
(b) Write a VHDL entity to describe the circuit block in Figure 5.32~. Use the CAD tools3
to synthesize a circuit from the code and verify its functional correctness.
(c) Write a VHDL entity to describe the 4 x 4 multiplier shown in Figure 5 . 3 2 ~ . Your5
code should be hierarchical and should use the subcircuits designed in parts (a) and (b). (
Synthesize a circuit from the code and verify its functional correctness.

* 5- 1 7 Consider the VHDL code in Figure P5.2. Given the relationship between the signals IN and 2

OUT, what is the functionality of the circuit described by the code? Comment on whethert
or not this code represents a good style to use for the functionality that it represents.

C H A P T E R 5 NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

' i + I

Figure PS. 1 Circuit for problem 5.1 1 .

Design a circuit that generates the 9's complement of a BCD digit. Note that the 9's
complement of d is 9 - d.

Derive a scheme for performing subtraction using BCD operands. Show a block diagram
for the subtractor circuit.
Hint: Subtraction can be performed easily if the operands are in the 10's complement (radix
complement) representation. In this representation the sign digit is 0 for a positive n u m h
and 9 for a negative number.

Write complete VHDL code for the circuit that you derived in problem 5.19.

Suppose that we want to determine how many of the bits in a three-bit unsigned number
are equal to 1. Design the simplest circuit that can accomplish this task.

Repeat problem 5.21 for a six-bit unsigned number.

Repeat problem 5.2 1 for an eight-bit unsigned number.

Show a graphical interpretation of three-digit decimal numbers, similar to Figure 5.12. The
left-most digit is 0 for positive numbers and 9 for negative numbers. Verify the validityd
your answer by trying a few examples of addition and subtraction.

In a ternary number system there are three digits: 0, 1, and 2. Figure P5.3 defines a ternfl
half-adder. Design a circuit that implements this half-adder using binary-encoded signals'
such that two bits are used for each ternary digit. Let A = a 1 no, B = bl bo, and Sum
note that Carry is just a binary signal. Use the following encoding: 00 = (O),, 01
and 10 = (2)3. Minimize the cost of the circuit.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY problem IS
PORT (Input : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

Output : OUT STDLOGIC-VECTOR(3 DOWNTO 0)) ;
END problem ;

ARCHITECTURE LogicFunc OF problem IS
BEGIN

WITH Input SELECT
Output < = "000 1 " WHEN "0 10 1 ",

"00 1 0- WHEN "0 1 I o",
"0011" WHEN"O111",
"0010" WHEN "1001",
"0 1 00" WHEN - 1 o I ov,
"01 10" WHEN "101 l",
"001 1" WHEN "1 101",
"01 10" WHEN "1 110",
"1001" WHEN "1 1 ll",
"0000" WHEN OTHERS ;

END LogicFunc ;

Figure P5.2 The code for problem 5.17.

Figure P5.3 Ternary half-adder.

Sum
-

0

1

2

1

2

0

2

0

1
J

A B

0 0

0 1

0 2

1 0

1 1

1 2

2 0

2 1

2 2

Carry

0

0

0

0

0

1

0

1

1

In this chapter you will learn about:

Commonly used combinational subcircuits

Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

a Circuits used for encoding. decoding, and code-conversion purposes

a Key VHDL constructs used to define combinational circuits

Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of th ese
blocks and gives examples of their use. The chapter also includes a major section on VHDL, which describes
several key features of the language.

Multiplexers were introduced briefly in Chapters 2 and 3. A multiplexer circuit has a
number of data inputs, one or more select inputs, and one output. It passes the signal value
on one of the data inputs to the output. The data input is selected by the values of the selea
inputs. Figure 6.1 shows a 2-to- 1 multiplexer. Part (u) gives the symbol commonly used,
The select input, s, chooses as the output of the multiplexer either input ulo or wl. fie
multiplexer's functionality can be described in the form of a truth table as shown in part (b)
of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexeT,
and part (d) illustrates how it can be constructed with transmission gates.

Figure 6 . 2 ~ depicts a larger multiplexer with four data inputs, wo. . . . , w3, and ouo
select inputs, s, and so. As shown in the truth table in part (b) of the figure, the two-bit
number represented by sl so selects one of the data inputs as the output of the multiplexer,

(a) Graphical symbol (b) Truth table

(c) Sum-of-products circuit

Figure 6.1 A 2-to-1 multiplexer.

(d) Circuit with transmission gaws

(a) Graphical symbol (b) Truth table

(c) Circuit

Figure 6.2 A 4-to- 1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 6 .2~ . It
realizes the multiplexer function

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
wo, . . . , w,-l, requires log2n 1 select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-10-1 multiplexer can be built using three
2-to-l multiplexers as illustrated in Figure 6.3. If the 4-to-1 multiplexer is implemented
using transmission gates, then the structure in this figure is always used. Figure 6.4 shows
how a 16-to-1 multiplexer is constructed with five 4-to-1 multiplexers.

C H A P T E R 6

Figure 6.3 Using 2-to-1
multiplexer.

Figure 6.4 A 1 6-to- . 1 multiplexer.

to build a 440-1

/

6.5 shows a circuit that has two inputs, xl and x2, and two outputs, y , and y2. As Er
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be

to either of its outputs, under the control of another input, s. A circuit that has

n inpu ts and k outputs, whose sole function is to provide a capability to connect any input
~utput , is usually referred to as an [I x k crossbar switch. Crossbars of various sizes

,,, be ~reiited, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2x2 crossbar.

Figure 6.5b shows how the 2 x 2 crossbar can be implemented using 2-to-1 rnuItiplexers. -
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar
,, 10 !., and xr to Y Z . while if s = 1, the crossbar connects xl to yz and xl to yl . Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

- -

We introduced field-programmable gate array (FPGA) chips in section 3.6.5. Figure 3.39 EI
depicts a small FPGA that is programmed to implement a particular circuit. The logic blocks
in the FPGA have two inputs, and there are four tracks in each routing channel. Each of the
prograrnrnable switches that connects a logic block input or output to an interconnection
wire is shown as an X. A small part of Figure 3.39 is reproduced in Figure 6 . 6 ~ . For clarity,

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

Figure 6.5 A practical application of multiplexers.

(a) Part of the FPGA in Figure 3.39

1
f -

* * * i2

Storage

(b) Implementation using pass transistors

(c) Implementation using multiplexers

Figure 6.6 Implementing programmable switches in an FPGA.

the figure shows only a single logic block and the interconnection wires and switches
with its input terminals.

One way in which the programmable switches can be implemented is illustrated in
~i~~~~ 6.4b. Each X in part (a) of the ngure is realized using an NMOS transistor controlled
by a storage cell. This type of programmable switch was also shown in Figure 3.68. We
described storage cells briefly in section 3.6.5 and will discuss them in more detail in section
10.1. ~ a c h cell stores a single logic value, either 0 or 1 , and provides this value as the output
of the cell. Each storage cell is built by using several transistors. Thus the eight cells shown
in the figure use a significant amount of chip area.

The number of storage cells needed can be reduced by using multiplexers, as shown
in Figure 6.6~. Each logic block input is fed by a 4-to- 1 multiplexer, with the select inputs
controlled by storage cells. This approach requires only four storage cells, instead of eight.
In commercial FPGAs the multiplexer-based approach is usually adopted.

Multiplexers are useful in many practical applications, such as those described above. They
can also be used in a more general way to synthesize logic functions. Consider the example
in Figure 6.7a. The truth table defines the function f = wl $ w2. This function can be
implemented by a 4-to-1 multiplexer in which the values off in each row of the truth table
are connected as constants to the multiplexer data inputs. The multiplexer select inputs are
driven by i v , and w2. Thus for each valuation of rcl wz, the output f is equal to the function
value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 6.7b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
WI in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value off for each value of wl. When wl = 0, f has the same
value as input w2, and when wl = 1, f has the value of E2. The circuit that implements
this truth table is given in Figure 6 . 7 ~ . This procedure can be applied to synthesize a circuit
that implements any logic function.

Figure 6 . 8 ~ gives the truth table for the three-input majority function, and it shows how the E
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the thee inputs may be chosen as the multiplexer select inputs. We have chosen wl and
w 2 for this purpose, resulting in the circuit in Figure 6.8b.

(a) Implementation using a 4-to-1 multiplexer

(b) Modified truth table

(c) Circuit

Figure 6.7 Synthesis of a logic function using mutiplexers.

1.4 Figure 6 . 9 ~ indicates how the function f = wl $ wz 8 w3 can be implemented using 2-to-1
multiplexers. When wl = 0, f is equal to the XOR of w-, and w3, and when wl = 1, f is the
XNOR of w2 and w,. The left multiplexer in the circuit produces w2 $ w3, using the result
from Figure 6.7, and the right multiplexer uses the value of wl to select either w2 @ w, or its
complement. Note that we could have derived this circuit directly by writing the function
asf = (wz 43 ~ 3) a3 W1.

Figure 6.10 gives an implementation of the three-input XOR function using a 4-t0-l
multiplexer. Choosing w l and w2 for the select inputs results in the circuit shown.

(a) Modified truth table

(b) Circuit

Figure 6.8 Implementation of the three-input rnaiority function
using a 4-to-1 mu~tiplexer.

(a) Truth table (b) Circuit

Figure 6.9 Three-input XOR implemented with 2-to-1 multiplexers.

(a) Truth table (b) Circuit

Figure 6.10 Three-input XOR implemented with a 4-to-1 muItiplexer.

Figures 6.8 through 6.10 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 6.8 using a 2-to-1 multiplexer
in this way. Figure 6.1 1 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If wl = 0, then f = W2W3, and if wl = 1, then
f = w2 + wj. Using wl as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 6.11 b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 6.1 la is expressed in sum-of-products form as

It can be manipulated into

f = El (~ 2 ~ 3) + W I (z 2 ~ 3 + ~ 2 z 3 + ~ 2 ~ 3)

which corresponds to the circuit in Figure 6.1 113.
Multiplexer implementations of logic functions require that a given function be decorfl-

posed in terms of the variables that are used as the select inputs. This can be accomplishe d

by means of a theorem proposed by Claude Shannon [I].
s

(a) Truth table

(b) Circuit

Figure 6.1 1 The three-input majority function implemented using a
2-to- 1 multiplexer.

Shannon's Expansion Theorem

Any Boolean function f (wl , . . . , w , ~) can be written in the form

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see problem 6.9).

TO illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

Expanding this function in terms of wl gives

which is the expression that we derived above.

For the three-input XOR function, we have

f = Wl@ W2 a3 W3

which gives the circuit in Figure 6.9b.
In Shannon's expansion the temf (0. w2. . . . , wn) is called the cofactur of f with respect

to El ; it is denoted in shorthand notation as f~,. Similarly, the term f (1 , w2, , . . , W,) is
called the cofactor off with respect to wl , written f,, . Hence we can write

In general, if the expansion is done with respect to variable Wi, then fwi denotes
f(w1 r - - - , ~ , - l71,wi+l3. . . ,wn)and

The complexity of the logic expression may vary, depending on which variable, wi, is used,
as illustrated in Example 6.5.

5.5 For the function f = El w3 + ~ ~ i T - 3 , decomposition using wl gives

Using w2 instead of wl produces

f = W2fKJz + ~ 2 f W 2

Finally, using w3 gives

The results generated using wl and w* have the same cost, but the expression produced
using ws has a lower cost. In practice, the CAD tools that perform decompositions of this
type try a number of alternatives and choose the one that produces the best result.

Shannon's expansion can be done in terms of more than one variable. For example,
expanding a function in terms of wl and w2 gives

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If %an-
non's expansion is done in terms of all n variables, then the result is the canonical sum-of.
products form, which was defined in section 2.6.1. .

(a) Using a 2-to-1 multiplexer

(b) Using a 4-to-1 multiplexer

Figure 6.1 2 The circuits synthesized in Example 6.6.

Assume that we wish to implement the function Ex

using a 2-to-1 multiplexer and any other necessary gates. Shannon's expansion using wl
gives

The corresponding circuit is shown in Figure 6.12a. Assume now that we wish to use a
4-t0-I multiplexer instead. Further decomposition using w 2 gives

The circuit is shown in Figure 6.12b.

consider the three-input majority function

f = WlW2 + WlW3 +W2W3

Figure 6.1 3 The circuit synthesized in Example 6.7.

We wish to implement this function using only 2-to-1 multiplexers. Shannon's expansion
using wl yields

-
f = w l (~ 2 ~ 3) + ~ 1 (~ 2 +W3 + ~ 2 ~ 3)

-
= w l (w 2 ~ 3) f W I (~ 2 + ~ 3)

Let g = W Z W ~ and h = w2 + w3. Expansion of both g and h using w 2 gives

&' = E 2 (0) f w2 (~ 3)

h = z2(~3) + ~ 2 (1)

The corresponding circuit is shown in Figure 6.13. It is equivalent to the 4-to- 1 multiplexer
circuit derived using a truth table in Figure 6.8.

.8 In section 3.6.5 we said that most FPGAs use lookup tables for their logic blocks, Assume
that an FPGA exists in which each logic block is a three-input lookup table (3-LUT).
Because it stores a truth table, a 3-LUT can realize any logic function of three variables.
Using Shannon's expansion, any four-variable function can be realized with at most three
3-LUTs. Consider the function

Expansion in terms of wl produces

A circuit with three 3-LUTs that implements this expression is shown in Figure 6.14.
Decomposition of the function using wa, instead of wl , gives

(a) Using three 3-LUTs

(b) Using two 3-LUTs

Figure 6.14 Circuits synthesized in Example 6.8.

Observe = fw; hence only two 3-LUTs are needed, as illustrated in Figure 6.14b.

The LUT on the right implements the two-variable function EdE, + wzfii,.
Since it is possible to implement any logic function using multiplexers, general-purpose

chips exist that contain multiplexers as their basic logic resources. Both Actel Corporation
[21 and QuickLogic Corporation [3] offer FPGAs in which the logic block comprises an ar-
rangement of multiplexers. Texas Instruments offers gate array chips that have multiplexer-
based logic blocks [4].

Decoder circuits are used to decode encoded information. A binary decoder, depicted in
Figure 6.15, is a logic circuit with n inputs and 2" outputs. Only one output is asserted
at a time, and each output comesponds to one valuation of the inputs. The decoder also
has an enable input, En, that is used to disable the outputs; if En = 0, then none of the
decoder outputs is asserted. If En = 1, the valuation of w.-l . . - u.1 wo determines which of
the is asserted. An n-bit binary code in which exactly one of the bits is set to 1 at a

inputs i
Enable

I

Figure 6.1 5 An n-to-2'' binary decoder.

time is referred to as one-hot encoded, meaning that the single bit that is set to 1 is deemed
to be "hot." The outputs of a binary decoder are one-hot encoded.

A 2-to-4 decoder is given in Figure 6.16. The two data inputs are wl and wo. They
represent a two-bit number that causes the decoder to assert one of the outputs yo, . . . , Y3,
Although a decoder can be designed to have either active-high or active-low outputs, in

(a) Truth table (b) Graphical symbol 8 f'

1 0 0
1 0 1
1 1 0
1 1 1
o x x

a

Figure 6.1 6 A 2-to-4 decoder.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Figure 6.17 A 3-to-8 decoder using two 2-to-4 decoders.

Figure 6.16 active-high outputs are assumed. Setting the inputs wl ulcl to 00,Ol. 10, or 11
causes the output yo, yl, y?, or y3 to be set to 1, respectively. A graphical symbol for the
decoder is given in part (6) of the figure, and a logic circuit is shown in part (c) .

Larger decoders can be built using the sum-of-products structure in Figure 6.16c, or
else they can be constructed from smaller decoders. Figure 6.17 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The input drives the enable inputs of the two decoders.
The top decoder is enabled if wl = 0, and the bottom decoder is enabled if w2 = 1. This
concept c;lrl be applied for decoders of any size. Figure 6.18 shows how five 2-to-4 decoders
can be used to construct a 4-to- 16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

--

Decoders are useful for many practical purposes. In Figure 6.21. we showed the sum-of- E l
products implementation of the 4-10- 1 multiplexer, which requires AND gates to distinguish
the four different valuations of the select inputs sl and so. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 6.19. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

In Figure 3.59 we showed how a ?-to- 1 multiplexer can be constructed using two tri-state EXC
buffers. This concept can be applied to any size of multiplexer, with the addition of a
decoder. An example is shown in Figure 6.20. The decoder enables one of the tri-state
buffers for each valuation of the select lines, and that tri-state buffer drives the output, f ,
'lth the $elected data input. We have now seen that multiplexers can be implemented in
Various ways. The choice of whether to employ the sum-of-products form, transmission
gates, Or hi-state buffers depends on the resources available in the chip being used. For
IMtance, most FPGAs thilt use lookup tables for their logic blocks do not contain tri-state

331

Figure 6.20 A 4-to-1 multiplexer built using a decoder and tri-state
buffers.

buffers. Hence multiplexers must be implemented in the sum-of-products form using the
lookup tables (see Example 6.30).

We showed in section 6.1 that a multiplexer has one output, n data inputs, and [login 1
select inputs. The purpose of the multiplexer circuit is to rnu l t i l~ l~x the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example. the 2-to-4 decoder in Figure 6.16 can be used as a 1-to-4 demultiplexer. In this
case the E ~ I input serves as the data input for the demultiplexer, and the vo to y3 outputs
are the data outputs. The valuation of wl wo determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 6.16~. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of wl wo-
When En = I , the valuation of w, wo sets the appropriate output to 1.

general, an n-to-2': decoder circuit can be used as a 1 -to+ demultiplexer. However, in
Practice decoder circuits are used much more often as decoders rather than as demultiplexers.
In applications the decoder's En input is not actually needed; hence it can be omitted.
In this case the decoder always asserts one of its data outputs, yo, . . . , yp-1, according to
Ihe valuation of the d a b inputs, wnPl . . . wo. Example 6.11 uses a decoder that does not
have the Err input.

\

6.1 1 One of the most important applications of decoders is in memory blocks, which are used
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of
memory block is called a read-only memory (ROM). A ROM consists of a collection of

storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figm
6.21 shows an example of a ROM block. The storage cells are arranged in rows wifi
cells per row. Thus each row stores n bits of information. The location of each row in ge
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2" - 1. The information stored in the rows
be accessed by asserting the select lines, Sel" to Selzm-I. As shown in the figure, a decoder
with m inputs and 2"' outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the RON
dn-1, ... , do, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.

Address

Data d,- dn- 2

Figure 6.21 A 2?'' x n read-only memory (ROM) block.

\

6.1 1 One of the most important applications of decoders is in memory blocks, which are used
store information. Such memory blocks are included in digital systems, such as computers,
where there is a need to store large amounts of information electronically. One type of

memory block is called a rend-only memory (ROM). A ROM consists of a collection
storage cells, where each cell permanently stores a single logic value, either 0 or 1. Figure
6.21 shows an example of a ROM block. The storage cells are arranged in T7 rows with
cells per row. Thus each row stores n bits of information. The location of each row in the
ROM is identified by its address. In the figure the row at the top of the ROM has address
0, and the row at the bottom has address 2" - 1. The information stored in the rows can
be accessed by asserting the select lines, Selo to Selzm-l. As shown in the figure, a decoder
with m inputs and 2" outputs is used to generate the signals on the select lines. Since
the inputs to the decoder choose the particular address (row) selected, they are called the
address lines. The information stored in the row appears on the data outputs of the ROM
d,-, , . . . , do, which are called the data lines. Figure 6.21 shows that each data line has
an associated tri-state buffer that is enabled by the ROM input named Read. To access, or
read, data from the ROM, the address of the desired row is placed on the address lines and
Read is set to 1.

Address

Figure

Data d , - d. - 2

A 2" x n read-only memory (ROM) block.

Many different types of memory blocks exist. In a ROM the stored infomation can
be read out of the storage cells, but it cannot be changed (see problem 6.32). Another

tY Pe
of ROM allows information to be both read out of the storage cells and stored, or

wriueri into them. Reading its contents is the normal operation, whereas writing requires

a spe ,ial ~rocedure. Such a memory block is called a programmable ROM (PROM). The
in a PROM are usually implemented using EEPROM transistors. We discussed

p p ~ () M transistors in section 3.10 to show how they are used in PLDs. Other types of
blocks are discussed in section 10.1.

An performs the opposite function of a decoder. It encodes given information into
a more compact form.

A binary encoder encodes information from 2" inputs into an n-bit code, as indicated in
Figure 6.22. Exactly one of the input signals should have a value of I , and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 6 . 2 3 ~ . Observe that the output yo is 1 when either
input wl or w3 is 1, and output yl is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 6.236. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don't-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

inputs
n

outputs

Figure 6.22 A 2"-to-n binary encoder.

(a) Truth table

(b) Circuit

Figure 6.23 A 4-to-2 binary encoder.

Another useful class of encoders is based on the priority of input signals. In a priorig
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 6.24. It assumes that wo has the lowest priority and w3 the highest. The
outputs yl and yo represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is providedto
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is setto

Figure 6.24 Truth table for a 440-2 prioriiy encodec

I I$

all inputs are equal to 0. The outputs yl and yo are not meaningful in this case, and
hence the iirst row of the truth table can be treated as a don't-care condition for y , and yo.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input ws is 1 , then the outputs are set to

- 1 I . Because w3 has the highest priority level, the values of inputs w2, wl, and wo y1Yo -
do not matter To reflect the fact that their values are irrelevant, w ~ , w l , and wo are denoted

by the x in the truth table. The second-last row in the truth table stipulates that if
,Z = 1, then the outputs are set to ylyo = 10, but only if WJ = 0. Similarly, input wl
causes the outputs to be set to ylyo = 01 only if both wi and w2 are 0. Input wo produces
he outputs ylyo = 00 only if wo is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 4. However, a more convenient way to derive the circuit is to define
, set of intermediate signals, io, . . . , ii, based on the observations above. Each signal, it,
is equal to 1 only if the input with the same index, w i , represents the highest-priority input
that is set to 1. The logic expressions for io, . . . , iS are

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 6.23, namely

yo = il + i3

y1 = i2 + i3
The output z is given by

The Purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder perfoms the opposite conversion. There are many other possible types of code
cOnV'flers. One common example is a BCD-to-7-segment decoder, which converts one
b!ar~-coded decimal (BCD) digit into information suitable for driving a digit-oriented
dlsplay. As illustrated in Figure 6.25a' the circuit converts the BCD digit into seven signals
that are used to drive the segments in the display. Each segment is a small light-emitting

(,LED), which glows when driven by an electrical signal, The segments are labeled
from a to g in the figure. The truth table for the BCD-to-7-segment decoder is given in
'lgure 6.25c. For each valuation of the inputs w3, . . . , wo, the seven outputs are set to

(a) Code converter (b) 7-segment display

(c) Truth table

Figure 6.25 A BCD-to-7-segment display code converter.

J
display the appropriate BCD digit. Note that the last 6 rows of a complete 16-row truth
table are not shown. They represent don't-care conditions because they are not legal BCD
codes and will never occur in a circuit that deals with BCD data. A circuit that implements
the truth table can be derived using the synthesis techniques discussed in Chapter 4. Finally.
we should note that although the word decoder is traditionally used for this circuit, a more
appropriate term is code convener. The term decoder is more appropriate for circuits that
produce one-hot encoded outputs.

Chapter 5 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a compnraror. This section considers be

6.6 VHDL FOR COMBINATIONAL CIRCUITS

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY mux2tol IS
PORT (wO, w l , s : IN STD-LOGIC ;

f : OUT STDLOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to 1 IS
BEGIN

WITH s SELECT
f <= wO WHEN 'O' ,

w 1 WHEN OTHERS ;
END Behavior ;

Figure 6.27 VHDL code for a 2-to- 1 multiplexer.

Since it has the STD-LOGIC type, discussed in section 4.12, s can take the values 0, I ,
Z, -, and others. The keyword OTHERS provides a convenient way of accounting for all
logic values that are not explicitly listed in a WHEN clause.

-

A4-to-1 multiplexer is described by the entity named mux4to1, shown in Figure 6.28. The Exa
two select inputs, which are called sl and so in Figure 6.2, are represented by the two-bit
STD-LOGIC-VECTOR signal s. The selected signal assignment sets,f to the value of one
of the inputs wo, . . . , w3, depending on the valuation of s. Compiling the code results in
the circuit shown in Figure 6 . 2 ~ . At the end of Figure 6.28, the mux4tol entity is defined
as a component in the package named mux4toIgackage. We showed in section 5.5.2 that
the component declaration allows the entity to be used as a subcircuit in other VHDL code.

figure 6.4 showed how a 16-to-! multiplexer is built using five 4-to-1 multiplexers. Figure Exa
6.29 Present\ VHDL code for this circuit, using the nur4fol component. The lines of code
are numbered so that we can easily refer to them. The rnux4tolgncknge is included in the
code, because it provides the component declaration for mux4tol.

The dat;t inputs to the muxl6tol entity are the 16-bit signal named w, and the select
''puts are thc four-bit signal named s. In the VHDL code signal names are needed for the
'.'-"puts of thc four 440- 1 multiplexers on the left of Figure 6.4. Line 11 defines a four-bit
"gnal named m for this purpose, and lines 13 to 16 instantiate the four multiplexen. For in-
Stance, line 13 corresponds to the multiplexer at the top left of Figure 6.4. Its first four ports,
Yhlch Correspond to wo, , . , , w3 in Figure 6.28, are driven by the signals ~ (0 1 , . . . , ~ (3) -

C H A

AltB

Figure 6.26 A four-bit comparator circuit.

assignment statements, which are called selected signal assignments, conditional signal
assignments, generate statements, if-then-else statements, and case statements.

A selected signal assignment allows a signal to be assigned one of several values, basedon
a selection criterion. Figure 6.27 shows how it can be used to describe a 240-1 multiplexer*
The entity, named nlu2tol, has the inputs wo, wl, and s, and the output f . The selected
signal assignment begins with the keyword WITH, which specifies that s is to be usedfor
the selection criterion. The two WHEN clauses state that f is assigned the value of wo when
s = 0; otherwise, f is assigned the value of *.I. The WHEN clause that selects i v l usesthe
word OTHERS, instead of the value 1. This is required because the VHDL syntax specifies
that a WHEN clause must be included for every possible value of the selection signal ''

6.6 VHDL FOR COMBINATIONAL CIRCULTS

LIBRARY ieee ;
USE ieeestd-logic-l164.all ;

ENTITY mux2tol IS
PORT (wO, w l , s : IN STD-LOGIC ;

f : OUT STDLOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to 1 IS
BEGIN

WITH s SELECT
f <= wO WHEN 'O',

w 1 WHEN OTHERS ;
END Behavior ;

Figure 6.27 VHDL code for a 240- 1 multiplexer.

Since it has the STD-LOGIC type, discussed in section 4.12, s can take the values 0, 1 ,
Z, -, and others. The keyword OTHERS provides a convenient way of accounting for all
logic values that are not explicitly listed in a WHEN clause.

A 4-to-1 multiplexer is described by the entity named mux4to1, shown in Figure 6.28. The EXC
two select inputs, which are called sl and so in Figure 6.2, are represented by the two-bit
STD-LOGIC-VECTOR signal s. The selected signal assignment sets,f to the value of one
of the inputs wo, . . . , w3, depending on the valuation of s. Compiling the code results in
the circuit shown in Figure 6 . 2 ~ . At the end of Figure 6.28, the mux4tol entity is defined
as a component in the package named mux4ro lqackage. We showed in section 5.5.2 that
the component declaration allows the entity to be used as a subcircuit in other VHDL code.

Figure 6.4 showed how a 16-to-1 multiplexer is built using five 4-to-1 multiplexers. Figure Exc
6+29 PresenIh VHDL code for this circuit, using the rnux4tol component. The lines of code
are numbered so that we can easily refer to them. The mux4tol~nckage is included in the

because it provides the component declaration for rnux4tol.

,
The data inputs to the rnurl6101 entity are the 16-bit signal named w, and the select

'npputs are thc four-bit signal named s. In the VHDL code signal names are needed for the
'.''puts of the four 4-to- 1 multiplexers on the left of Figure 6.4. Line 11 defines a four-bit
''gna1 named m for this purpose, and lines 13 to 16 instantiate the four multiplexers. For in-
S"nce, line 13 corresponds to the multiplexer at the top left of Figure 6.4. Its first four ports,

Correspond to wo, . . . , ws in Figure 6.28, are driven by the signals w(O), . . . , ~ (3) .

LIBRARY ieee ;
USE ieee-stdlogic-l164.all ;

ENTITY mux4to 1 IS
PORT (wO, wl , w2, w3 : IN STDLOGIC ;

s : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;
f : OUT STDLOGIC) ;

END mux4tol ;

ARCHITECTURE Behavior OF mux4to 1 IS
BEGIN

WITH s SELECT
f <= wO WHEN "00,

w l WHEN "Ol",
w2 WHEN ?710",
w3 WHEN OTHERS ;

END Behavior ;

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;
PACKAGE mux4to 1 -package IS

COMPONENT mux4to 1
PORT (wO, w 1, w2, w3 : IN STDLOGIC ;

s : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;
f : OUT STDLOGIC) ;

END COMPONENT ;
END mux4to 1 -package ;

Figure 6.28 VHDL code for a 4-to-1 multiplexer.

The syntax s(1 DOWNTO 0) is used to attach the signals s(1) and s(0) to the two-bit s pod
of the ~zux4toI component. The m(O) signal is connected to the multiplexer's output port.

Line 17 instantiates the multiplexer on the right of Figure 6.4. The signals ma, . . . , fl?

are connected to its data inputs, and bits s(3) and s(2), which are specified by the syntax
s(3 DOWNTO 21, are attached to the select inputs. The output p ~ n generates the rnurl6lol
output f . Compiling the code results in the multiplexer function

6.1 4 The selected signal assignments can also be used to describe other types of circuits. Fipn
6.30 shows how a selected signal assignment can be used to describe the truth table for a
2-to-4 binary decoder. The entity is called dec2to4. The data inputs are the two-bit si&

1 LIBRARY ieee ;
2 USE ieee-std-logic-1 l64.all ;
3 LIBRARY work ;
4 USE work.mux4to 1 -package.all ;

5 ENTITY rnuxl6to 1 IS
6 PORT (w : IN STDLOGIC-VECTOR(0 TO 15) ;
7 s : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ;
8 f : OUT STDLOGIC) ;
9 ENDmuxl6tol ;

ARCHITECTURE Structure OF mux 16to 1 IS
SIGNAL rn : STDLOGIC-VECTOR(0 TO 3) ;

BEGIN
Mux 1 : mux4to 1 PORT MAP

(N O) , W(I) , w(2), w(3), s(l DOWNTO 0), m(0)) ;
Mux2: rnux4to 1 PORT MAP

(~ (4 1 , w(5), w(6), w(7), s(1 DOWNTO 0), m(1)) ;
Mux3: mux4to 1 PORT MAP

(w(8). w(9), W(I O), w(1 I), s(1 DOWNTO 0), m(2)) ;
Mux4: mux4to 1 PORT MAP

(w(12), w(13), w(14), w(15), s(l DOWNTO 0), m(3)) ;
Mux5: mux4to 1 PORT MAP

(m(O>, m(l>, m(2), m(3), s(3 DOWNTO 21, f) ;
END Structure ;

Figure 6.29 Hierarchical code for a 1 6-to-1 multiplexer.

named kv, and the enable input is En. The four outputs are represented by the four-bit sig-
nal y .

In the truth table for the decoder in Figure 6.16~7, the inputs are listed in the order
En wlwo. To represent these three signals, the VHDL code defines the three-bit signal
"meed Enw. The statement Enw <= En & w uses the VHDL concatenate operator, which
Was discussed in section 5.5.4, to combine the En and w signals into the Enw signal. Hence
Enw(2) = En, Enw(1) = wl, and Enw(0) = wo. The Enw signal is used as the selection
''gnal in the selected signal assignment statement. It describes the truth table in Figure
6-16a. In the first four WHEN clauses, En = 1, and the decoder outputs have the same

as in the first four rows of the truth table. The last WHEN clause uses the OTH-
ERS keyword and sets the decoder outputs to 0000, because it represents the cases where
En = 0,

LIBRARY ieee ;
USE ieee.std1ogic-l164.all ;

ENTITY dec2to4 IS
PORT (w : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;

En : IN STDLOGIC ;
y : OUT STDLOGIC-VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STD-LOGIC-VECTOR(2 DOWNTO 0) ;

BEGIN
E n w < = E n & w ;
WITH Enw SELECT

y <= "1000" WHEN "100",
"0100 WHEN "101",
"0010 WHEN ?' 1 lo",
"0001" WHEN "1 1 I",
"0000" WHEN OTHERS ;

END Behavior ;

Figure 6.30 VHDL code for o 2-to-4 binary decoder.

Similar to the selected signal assignment, a conditional signal assignment allows a signal
to be set to one of several values. Figure 6.31 shows a modified version of the 240-1

multiplexer entity from Figure 6.27. It uses a conditional signal assignment to specify that
f is assigned the value of wo when s = 0, or else f is assigned the value of w , . Compiling

LIBRARY ieee ;
USE ieee.stdlogic-ll64.all ;

ENTITY mux2tol IS
PORT (wO, w l , s : IN STDLOGIC ;

f : OUT STDLOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to 1 IS
BEGIN

f c=wOWHENs='O'ELSE wl ;
END Behavior ;

Figure 6.3 1 Specifisation of a 2-10-1 multiplexer using a
conditional signal assignment.

6.6 VHDL FOR COMBINATIONAL CIRCUITS

the generates the same circuit as the code in Figure 6.27. In this small example the

con ditional signal assignment has only one WHEN clause. A more complex example, which
better illustrates the features of the conditional signal assignment, is given in Example 6.15.

6.24 gives the truth table for a 4-to-2 priority encoder. VHDL code that describes Ex
lhis truth table is shown in Figure 6.32. The inputs to the encoder are represented by the
four-bit jignal named w. The encoder has the outputs y, which is a two-bit signal, and z .

The conditional signal assignment specifies that y is assigned the value 11 when input

w (3) = 1. If this condition is true, then the other WHEN clauses that follow the ELSE
keyword do not affect the value o f f . Hence the values of w(2) , w(l), and w(0) do not
matter, which implements the desired priority scheme. The second WHEN clause states
that when w(2) = 1, then y is assigned the value 10. This can occur only if w(3) = 0.
Each successive WHEN clause can affect y only if none of the conditions associated with
the preceding WHEN clauses are true. Figure 6.32 includes a second conditional signal
assignment for the output z. It states that when all four inputs are 0, z is assigned the value
0; else : is assigned the value 1.

The priority level associated with each WHEN clause in the conditional signal assign-
ment is a key difference from the selected signal assignment, which has no such priority
scheme. It is possible to describe the priority encoder using a selected signal assignment,
but the code is more awkward. One possibility is shown by the architecture in Figure 6.33.
The first WHEN clause sets y to 00 when wo is the only input that is 1. The next two clauses
state that y should be 01 when 1.03 = w2 = 0 and wl = 1. The next four clauses specify that
y should be 10 if w3 = 0 and w2 = 1. Finally, the last WHEN clause states that y should be
1 for all other input valuations, which includes all valuations for which ws is I . Note that

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY priority IS
PORT (w : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ;

y : OUT STD-LOGIC-VECTOR(1 DOWNTO 0) ;
z : OUT STDLOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

y <= "1 1" WHEN w(3) = ' 1' ELSE
"10" WHEN w(2) = '1' ELSE
"01" WHEN w(1) = '1' ELSE
" ~ " ;

z <= '0' WHEN w = "0000" ELSE ' 1' ;
END Behavior ;

Figure 6.32 VHDL code for a ~ r i o r i ~ encoder.

LIBRARY ieee ;
USE ieee.stdlogic- 1 164.all ;

ENTITY priority IS
PORT (w : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

y : OUT STDLOGIC-VECTOR(1 DOWNTO 0) ;
z : OUT STDLOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

WITH w SELECT
y <= "00" WHEN "0001",

-0 1" WHEN 7100 1 ow,
"01" WHEN "001 1 ",
"10" WHEN "0100",
"10" WHEN "0101",
" 1 0 WHEN "01 1 0 ,
"lo" WHEN "01 1 l",
"1 1" WHEN OTHERS ;

WITH w SELECT
z <= '0' WHEN "OOOO",

' 1' WHEN OTHERS ;
END Behavior ;

Figure 6.33 Less efficient code for a priority encoder.

the OTHERS clause includes the input valuation 0000. This pattern results in t = 0, and
the value of y does not matter in this case.

6 We derived the circuit for a comparator in Figure 6.26. Figure 6.34 shows how this circuit
can be described with VHDL code. Each of the three conditional signal assignments deter.
mines the value of one of the comparator outputs. The package named stdLlogic-~nslgned
is included in the code because it specifies that STD-LOGIC-VECTOR signals, namely
A and B, can be used as unsigned binary numbers with VHDL relational operators
relational operators provide a convenient way of specifying the desired functionalitY+

The circuit generated from the code in Figure 6.34 is similar, but not identical, to the
circuit in Figure 6.26. The VHDL compiler instantiates a predefined module to implement
each of the comparison operations. In Quanus I1 the modules that are instantiated are
the LPM library, which was introduced in section 5.5.

6.6 VHDL FOR COMBINATIONAL CIRCUITS

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;
USE ieee.std10gic-unsigned.al1 ;

ENTITY compare IS
PORT (A , B : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STDLOGIC) ;

END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <= '1' WHEN A = B ELSE '0' ;
AgtB <= '1' WHEN A > B ELSE '0' ;
Alt3 <= '1' WHEN A < B ELSE '0' ;

END Behavior ;

Figure 6.34 VHDL code for a four-bit comparator.

Instead of using the std-logic-unsigned library, another way to specify that the gener-
ated circuit should use unsigned numbers is to include the library named std-logic-arith.
In this case the signals A and B should be defined with the type UNSIGNED, rather than
STD-LOGIC-VECTOR. If we want the circuit to work with signed numbers, signals A and
B should be defined with the type SIGNED. This code is given in Figure 6.35,

LIBRARY ieee ;
USE ieee.stdlogic-l164.all ;
USE ieee.std-logic-arith-all ;

ENTITY compare IS
PORT (A, B : IN SIGNED(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD-LOGIC) ;
END compare ;

ARCHITECTURE Behavior OF compare IS
BEGIN

AeqB <= ' 1 ' WHEN A = B ELSE '0' ;
AgtB <= ' 1 ' WHEN A > B ELSE '0' ;
AltB <= ' 1' WHEN A < B ELSE '0' ;

END Behavior ;

Figure 6.35 The code from Figure 6.34 for signed numbers.

Figure 6.29 gives VHDL code for a 1 &to-1 multiplexer using five instances of a 4-t
0- 1

multiplexer subcircuit. The regular structure of the code suggests that it could be written
a more compact form using a loop. VHDL provides a feature called the FOR GENERAQ
statement for describing regularly structured hierarchical code.

Figure 6.36 shows the code from Figure 6.29 rewritten using a FOR GENERA^^
statement. The generate statement must have a label, so we have used the label GI in
the code. The loop instantiates four copies of the mux4tol component, using the lo

OP
index i in the range from 0 to 3. The variable i is not explicitly declared in the code; it is
automatically defined as a local variable whose scope is limited to the FOR GENERATE
statement. The first loop iteration corresponds to the instantiation statement labeled Mu]
in Figure 6.29. The * operator represents multiplication; hence for the first loop iteration
the VHDL compiler translates the signal names w (4 * i), w (4 * i + I), w (4 * i + 2), and
w(4 * i + 3) into signal names w(O), w(l), w(2), and w(3). The loop iterations for i = 1,
i = 2, and i = 3 correspond to the statements labeled Mux2, Mux3, and Mux4 in Figure
6.29. The statement labeled Mux5 in Figure 6.29 does not fit within the loop, so it is included
as a separate statement in Figure 6.36. The circuit generated from the code in Figure 6.36
is identical to the circuit produced by using the code in Figure 6.29.

LIBRARY ieee ;
USE ieee.std-logic-1 l64.all ;
USE work.mux4tol -package.all ;

ENTITY mux l6to 1 IS
PORT (w : IN STDLOGIC-VECTOR(0 TO 15) ;

s : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;
f : OUT STDLOGIC) ;

END mux l6tol ;

ARCHITECTURE Structure OF mux l6t0 1 IS
SIGNAL m : STDLOGIC-VECTOR(0 TO 3) ;

BEGIN
G 1 : FOR i IN 0 TO 3 GENERATE

Muxes: rnux4to 1 PORT MAP (
w(4*i), w(4*i+l), w(4*i+2), w(4*i+3), s(l DOWNTO 0), m(i)) ;

END GENERATE ;
Mux5: mux4tol PORT MAP (m(O), m(l), m(2), m(3), s(3 DOWNTO 2). f) ;

END Structure ;

Figure 6.36 Code for a 16-(0-1 multiplexer using o generate statement.
I

6.4 VHDL FOR COMBINATIONAL CIRCUITS

/

In to the FOR GENERATE statement, VHDL provides another type of generate Ex
,+,rement called IF GENERATE. Figure 6.37 illustrates the use of both types of generate
>I-'-

The code shown is a hierarchical description of the 4-to-16 decoder given in

Figur e 6.18, using five instances of the dec2to4 component defined in Figure 6.30. The
inputs are the four-bit signal w, the enable is En, and the outputs are the 16-bit

signal ?'.
~ ~ l i o w i n g the component declaration for the dec2to4 subcircuit, the architecture defines

the signal m, which represents the outputs of the 2-to-4 decoder on the left of Figure
6 18, The five copies of the dec2to4 component are instantiated by the FOR GENERATE
statement. In each iteration of the loop. the statement labeled Dec-ri instantiates a dec2t04
component that corresponds to one of the 2-to-4 decoders on the right side of Figure 6-18,
ne first loop iteration generates the dec2to4 component with data inputs wl and wo, enable
input rno, and outputs Y O . y l , y2, y3. The other loop iterations also use data inputs wl wo, but
Use different bits of rn and y .

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last
loop iteration, for which the condition i = 3 is true. This component represents the 2-to-4
decoder on the left of Figure 6.18. It has the two-bit data inputs w3 and w2, the enable En, and

LIBRARY ieee ;
USE ieee.std-logic-1164.all ;

ENTITY dec4to 16 IS
PORT (w : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

En : IN STDLOGIC ;

y : OUT STDLOGIC-VECTOR(0 TO 15)) ;
END dec4to 16 ;

ARCHITECTURE Structure OF dec4to16 IS
COMPONENT dec2to4

PORT (w : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;
En : IN STDLOGIC ;
y : OUT STDLOGIC-VECTOR(OTO3));

END COMPONENT ;
SIGNAL m : STDLOGIC-VECTOR(0 TO 3) ;

BEGIN
GI: FOR i IN 0 TO 3 GENERATE

D e c i : dec2to4 PORT MAP (w(l DOWNTO O), m(i), y(4*i TO 4*i+3) 1;
G2: IF i=3 GENERATE

Decleft: dec2to4 PORT MAP (w(i DOWNTO i-1), En, m) ;
END GENERATE ;

END GENERATE ;
END Structure ;

6.37 Hierarchical code for o 4-to- 16 binary decoder.

the outputs rno, ml , ml , and mi. Note that instead of using the IF GENERATE statemenl
we could have instantiated this component outside the FOR GENERATE statement. \y,
have written the code as shown simply to give an example of the IF GENERATE statemeor,

The generate statements in Figures 6.36 and 6.37 are used to instantiate components,
Another use of generate statements is to generate a set of logic equations. An example of
this use will be given in Figure 7.73.

6.6.5 CONCURRENT AND SEQUENTIAL ASSIGNMENT STATEMENT^

We have introduced several types of assignment statements: simple assignment statements,
which involve logic or arithmetic expressions, selected assignment statements, and condi.
tional assignment statements. All of these statements share the property that the order in
which they appear in VHDL code does not affect the meaning of the code. Because of this
property, these statements are called the concurrent assignment statements.

VHDL also provides a second category of statements, called sequential assignmen!
statements, for which the ordering of the statements may affect the meaning of the code,
We will discuss two types of sequential assignment statements, called if-then-else statements
and case statements. VHDL requires that the sequential assignment statements be placed
inside another type of statement, called a process statement.

Figures 6.27 and 6.31 show two ways of describing a 2-to-1 multiplexer, using the selected
and conditional signal assignments. The same circuit can also be described using an if-then-
else statement, but this statement must be placed inside a process statement. Figure 6.38
shows such code. The process statement, or simply process, begins with the PROCESS
keyword, followed by a parenthesized list of signals, called the sensitivih list. For a
combinational circuit like the multiplexer, the sensitivity list includes all input signals that
are used inside the process. The procesr statement is translated by the VHDL compiler into
logic equations. In the figure the process consists of the single if-thea-else statement that
describes the multiplexer function. Thus the sensitivity list comprises the data inputs,
and w l , and the select input s.

In general. there can be a number of statements inside a process. These
considered as follows. Using VHDL jargon, we say that when there is a change in the value
of any signal in the process's sensitivity list, then the process become, active. Once active-
the statements inside the process are evaluated in 5equential order. Any assignments madr
to signals inside the process are not visible outside the process until all of the statementsin
the process have been evaluated. If there are multiple assignments to the same signal, "'y
the last one has any visible effect. This is illustrated in Example 6.18.

6.6 VHDL FOR COMBINATIONAL CIRCUITS

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY mux2to 1 IS
PORT (wO, w 1, s : IN STD-LOGIC ;

f : OUT STDLOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN

PROCESS (wO, w 1, s)
BEGIN

IF s = '0' THEN
f < = w O ;

ELSE
f < = w l ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.38 A 2-to-1 multiplexer specified using the if-then-else
statement.

fie code in Figure 6.39 is equivalent to the code in Figure 6.38. The first statement in the EX(
process assign\ the value of wo to f . This provides a default value for f but the assignment
does not actually take place until the end of the process. In VfIDL jargon we say that
the assignment is scheduled to occur after all of the statements in the process have been
evaluated. If another assignment to f takes place while the process is active, the default
assignment will be overridden. The second statement in the process assigns the value of
tof if the value of s is equal to 1. If this condition is true, then the default assignment is
Overridden. Thus if s = 0, then f = wo, and if s = 1, then f = wl, which defines the 2-to- 1
multiplexer. Compiling this code results in the same circuit as for Figures 6.27,6.31, and
6.38. namely, f = :w0 + s w l .

The process statement in Figure 6.39 illustrates that the ordering of the statements in
a Process can affect the meaning of the code. Consider reversing the order of the two
Statements so that the if-then-else statement is evaluated first. If s = 1, f is assigned
Ihe value of w,. This assignment is scheduled and does not take place until the end of
Ihe proce\~. However, the statement f c= wo is evaluated last. It overrides the first
assignment, and f is assigned the value of i v o regardless of the value of s. Hence instead
Of describing a multiplexer, when the statements inside the process are reversed, the code
represents the trivial circuitf = wo.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY mux2to 1 IS
PORT (wO, wl, s : IN STDLOGIC ;

f : OUT STD-LOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN

PROCESS (wO, w 1, s)
BEGIN

f < = w O ;
IF s = '1' THEN

f < = w l ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.39 ~lternative c o d e br the 2-to-1 multiplexer using on
if-then-else statement.

19 ~ i g u r e 6.40 gives an example that contains both a concurrent assignment statement and a
process statement. It describes a priority encoder and is equivalent to the code in Figure
6.32. The process describes the desired priority scheme using an if-then-else statement. It
specifies that if the input w3 is 1, then the output is set toy = 1 I . This assignment does not
depend on the values of inputs w2, wl, or wo; hence their values do not matter. The other
clauses in the if-then-else statement are evaluated only if w3 = 0. The first ELSIF clause
states that if W* is 1, then y = 10. If wz = 0, then the next ELSIF clause results in y = 01
if wl = 1. If w3 = w2 = W I = 0, then the ELSE clause results in y = 00, This assignment
is done whether or not wo is 1; Figure 6.24 indicates that y can be set to any pattern when
w = 0000 because z will be set to 0 in this case.

The priority encoder's output z must be set to 1 whenever at least one of the data
inputs is 1. This output is defined by the conditional assignment statement at the end of
Figure 6.40. The VHDL syntax does not allow a conditional assignment statement (or
a selected assignment statement) to appear inside a process. An alternative would be to

specify the value of z by using an if-then-else statement inside the process. The reason that
we have written the code as given in the figure is to illustrate that concurrent assignment
statements can be used in conjunction with process statements. The process statement
serves the purpose of separating the sequential statements from the concurrent statemenns
Note that the ordering of the process statement and the conditional assignment stateme*'
does not matter. VHDL stipulates that while the statements inside a process are sequentid
statements, the process statement itself is a concurrent statement.

6.6 VHDL FOR COMBINATIONAL CIRCUITS

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY priority IS
PORT (w : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

y : OUT STDLOGIC-VECTOR(1 DOWNTO 0) ;
z : OUT STDLOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS (w)
BEGIN

IF w(3) = ' 1 ' THEN
y <= "1 I" ;

ELSIF w(2) =' 1 ' THEN
y <= "10" ;

ELSIF W(i) = 1 ' THEN
y <= "O]" .

ELSE
y <= "00" ;

END IF ;
END PROCESS ;
z <= 'O ' W H E N w ="0000 ELSE '1' ;

END Behavior ;

Figure 6.40 A priority encoder specified using the if-then-else statement.

Figure 6.41 shows an alternative style of code for the priority encoder, using if-then-else Ex
statements. The first statement in the process provides the default value of 00 for yiyo.
The second statement overrides this if w1 is I , and sets ylyo to 01. Similarly, the third and
fomh statements ovenide the previous ones if wz or ws are I , and set y 1 yo to 10 and 1 I,
respectively. These four statements are equivalent to the single if-then-else statement in
Figure 6.40 that describes the priority scheme. The value of z is specified using a default

statement, followed by an if-then-else statement that overrides the default if
= 0000. Although the examples in Figures 6.40 and 6.41 are equivalent, the meaning of

the Code in Figure 6.40 is probably easier to understand.

Figure 6.34 specifies a four-bit comparator that produces the three outputs AeqB, AgtB, and EX
Figure 6.42 shows how such specification can be written using if-then-else statements.

For one-bit numbers are used for the inputs A and 8, and only the code for the

LIBRARY ieee ;
USE ieee.std1ogic-l164,all ;

ENTITY priority IS
PORT (w : IN STDLLOGIC-VECTOR(3 DOWNTO 0) ;

y : OUT STDLOGIC-VECTOR(1 DOWNTO 0) ;
z : OUT STDLOGIC) ;

END priority ;

ARCHITECTURE Behavior OF priority IS
BEGIN

PROCESS (w)
BEGIN

y < = "00" ;
IF w(1) = '1' THEN y <= "01" ; END IF ;
IFw(2) = '1' THENy < = " l o ; ENDIF;
IF w(3) = '1' THEN y <= "1 1" ; END IF ;

z < = ' I ' ;
IF w = "0000" THEN z <= '0' ; END IF ;

END PROCESS ;
END Behavior ;

Figure 6.4 1 Alternative code for the priority encoder.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY cornparel IS
PORT (A, £3 : IN STD-LOGIC ;

AeqB : OUT STDLOGIC) ;
END compare 1 ;

ARCHITECTURE Behavior OF cornparel IS
BEGIN

PROCESS (A, B)
BEGIN

AeqB <= '0' ;
IF A = B THEN

AeqB <= '1' ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.42 Code for a one-bit equality comparator.

6.6 VHDL FOR COMBINATIONAL CIRCUITS

LIBRARY ieee ;
USE ieee.std_logic-l164.all ;

ENTITY implied IS
PORT (A, B : IN STDLOGIC ;

AeqB : OUT STDLOGIC) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS (A, B)
BEGIN

IF A = B THEN
AeqB <= '1' ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.43 An example of code that results in implied memory.

AeqB output is shown. The process assigns the default value of 0 to AeqB and then the
if-then-else statement changes AeqB to 1 if A and B are equal. It is instructive to consider
the effect on the semantics of the code if the default assignment statement is removed, as
illustrated in Figure 6.43.

With only the if-then-else statement, the code does not specify what value AeqB should
have if the condition A = B is not true. The VHDL semantics stipulate that in cases where
the code does not specify the value of a signal, the signal should retain its current value.
For the code in Figure 6.43, once A and B are equal, resulting in AeqB = 1, then AeqB will
remain set to 1 indefinitely, even if A and B are no longer equal. In the VHDL jargon, the
AeqB output is said to have implied memory because the circuit synthesized from the code
will "remember," or store the value AeqB = 1. Figure 6.44 shows the circuit synthesized
from the code. The XOR gate produces a 1 whenA and B are equal, and the OR gate ensures
thatAe@ remains set to 1 indefinitely.

The implied memory that results from the code in Figure 6.43 is not useful, because
lt genemtes a comparator circuit that does not function correctly. However, we will show

AeqB

Figure 6.44 The circuit generated from t h code in Figure 6.43.

355

in Chapter 7 that the semantics of implied memory are useful for other types of circuit$
which have the capability to store logic signal values in memory elements.

A case statement is similar to a selected signal assignment in that the case statement ha,,
selection signal and includes WHEN clauses for various valuations of this selection signal
Figure 6.45 shows how the case statement can be used as yet another way of describing
the 240-1 multiplexer circuit. The case statement begins with the CASE keyword, which
specifies that s is to be used as the selection signal. The first WHEN clause specifies,
following the => symbol, the statements that should be evaluated when s = 0. In this
example the only statement evaluated when s = 0 is f <= wo. The case statement must
include a WHEN clause for all possible valuations of the selection signal. Hence the second
WHEN clause, which contains f < = wl , uses the OTHERS keyword.

-

!2 Figure 6.30 gives the code for a 2-to-4 decoder. A different way of describing this circuit,
using sequential assignment statements, is shown in Figure 6.46. The process first uses an
if-then-else statement to check the value of the decoder enable signal En. If En = 1, the

LIBRARY ieee ;
USE ieee.stdlogic-1164.all ;

ENTITY mux2tol IS
PORT (wO, w 1, s : IN STDLOGIC ;

f : OUT STDLOGIC) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN

PROCESS (wO, w 1, s)
BEGIN

CASE s IS
WHEN '0, =>

f < = w O ;
WHEN OTHERS =>

f c = w l ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.45 A case statement that represents CI 2-to-1 multiplexe'

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY dec2to4 IS
PORT (w : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;

En : IN STDLOGIC ;
y : OUT STDLOGIC-VECTOR(0 TO 3)) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
BEGIN

PROCESS (w, En)
BEGIN

IF En = ' I ' THEN
CASE w IS

WHEN "00" =>
y <= "1000 ;

WHEN "01" =>
y <= "0100" ;

WHEN "10" =>
y <= "0010" ;

WHEN OTHERS =>
y <= 9'ooo 1" ;

END CASE ;
ELSE

y <= "0000" ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 6.46 A process statement that describes a 2-to-4 binary decoder.

case statement sets the output y to the appropriate value based on the input w. The case
statement represents the first four rows of the truth table in Figure 6.16a. If En = 0, the
ELSE clause sets y to 0000, as specified in the bottom row of the truth table.

!other example of a case statement is given in Figure 6.47. The entity is named seg7, and E:
ltTePresents the BCD-to-7-segment decoder in Figure 6.25. The BCD input is represented
bythefour-bit signal named bed, and the seven outputs are the seven-bit signal named leds.
The case statement is formatted so that it resembles the truth table in Figure 6.25~. Note
'hat there is a comment to the right of the case statement, which labels the seven outputs

C H A P T E R 6 COMBINATIONAL-CIRCUIT BUILDING BLOCKS

LIBRARY ieee ;
USE ieee.std-logic-1164.all ;

ENTITY seg7 IS
PORT (bcd : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

leds : OUT STDLOGIC-VECTOR(1 TO 7)) ;
END seg7 ;

ARCHITECTURE Behavior OF seg7 IS
BEGIN

PROCESS (bcd)
BEGIN

CASE bcd IS - - abcdef g
WHEN"00007' =>leds <=" l l l l l lO" ;
WHEN"0001" =>leds <="0110000";
WHEN"0010" =>leds<="1101101";
WHEN"0011" =~~eds<="1111001" ;
WHEN "0100 => leds <= "01 1001 1" ;
WHEN "0101" => leds <= "101 101 1" ;
WHEN"Oll0" =>leds ~="1011111";
WHEN"0111" =>leds~="1110000";
WHEN "1000" => leds <= "1 11 11 11" ;
WHEN "1001" => leds <= "1 11001 1" ;
WHEN OTHERS => leds <= "- - - - - - - t? , .

END CASE ;
END PROCESS ;

END Behavior ;

Figure 6.47 Code that represents a BCD-to-7-segment decoder.

with the letters from a to g. These labels indicate to the reader the correlation between the
seven-bit leds signal in the VHDL code and the seven segments in Figure 6.25b. The final
WHEN clause in the case statement sets all seven bits of leds to -. Recall that - is used
in VHDL to denote a don't-care condition. This clause represents the don't-care conditions
discussed for Figure 6.25, which are the cases where the bcd input does not represent a
valid BCD digit.

-

,24 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. In section 3.5 we discussed a family of standard chips called
the 7400-series chips. We said that some of these chips contain basic logic gates, and others
provide commonly used logic circuits. One example of an ALU is the standard chip called
the 7438 1. Table 6.1 specifies the functionality of this chip. It has 2 four-bit data inpurs4
named A and B; a three-bit select input s; and a four-bit output F. As the table showst

a

WHEN " 10" => - - define signals asserted in time step T2
CASE I IS

WHEN " 10" => - - Add
Rout c= Y ;Gin <= '1' ;

WHEN "1 1" => - - Sub
Rout <= Y ; AddSub <= ' 1 ' ; Gin <= '1' ;

WHEN OTHERS => - - Load, Move
END CASE ;

WHEN OTHERS => - - define signals asserted in time step T3
CASE I IS

WHEN "00" => - - Load
WHEN "0 1" => - - Move
WHEN OTHERS => - - Add, Sub

Gout <= ' 1 ' ; Rin <= X ; Done <= '1' ;
END CASE ;

END CASE ;
END PROCESS ;
reg0: regn PORT MAP (BusWires, Rin(O), Clock, RO) ;
reg 1: regn PORT MAP (BusWires. Rin(1), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
regA: regn PORT MAP (BusWires, Ain, Clock, A) ;
alu: WITH AddSub SELECT

Sum <= A + BusWires WHEN 'O',
A - Buswises WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;
Sel <= Rout & Gout & Extern ;
WITH Sel SELECT

BusWires <= RO WHEN "1 00000,
R 1 WHEN "0 1 0000",
R2 WHEN "00 1 0 0 0 ,
R3 WHEN "000 1 OO",
G WHEN "0000 lo",
Data WHEN OTHERS ;

END Behavior ;

Figure 7.74 Alternative code for the processor (Part b).

next positive clock edge. The next operation loads 55 into register R1, and the subsequent
Operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
R?. = 00. This operation is "Add RI ,RO." In the following clock cycle, the contents of
R I (5 5) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of RO (2A) being placed on the bus. The addes/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After

LIBRARY ieee ;
USE ieee.std-logic-1164.all ;
USE ieee.stdlogic-unsigned,all ;

ENTITY alu IS
PORT (s : IN STDLOGIC-VECTOR(2 DOWNTO 0) ;

A, B : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;
F : OUT STDLOGIC-VECTOR(3 DOWNTO 0)) ;

END alu ;

ARCHITECTURE Behavior OF alu IS
BEGIN

PROCESS (s, A, B)
BEGIN

CASE s IS
WHEN "000" =>

F < = "0000" ;
WHEN "001" ->

F < = B - A ;
WHEN "010" =>

F < = A - B ;
WHEN "01 1" =>

F < = A + B ;
WHEN "100 =>

F < = A X O R B ;
WHEN "101" =>

F < = A O R B ;
WHEN " 1 10" =>

F < = A A N D B ;
WHEN OTHERS =>

F < = " l l l l W ;
END CASE ;

END PROCESS ;
END Behavior ;

Figure 6.48 Code that represents the functionality of the 74381 ALU chip.

produces the result c2 = &, cl = iil, and co = &, where ai and ci are the bits of the vecton
A and C.

The statement

C <= AAND B;

generates c2 = a2 . b2, CI = a1 . bl . and co = oo . bo. The other operators lead to simila'
evaluations.

*

6.6 VHDL FOR COMBINATIONAL CIRCUITS

Figure 6.49 Timing simulation for the code in Figure 6.48.

Table 6.2 VHDL operators (used for synthesis).

Relational Operators

. The relational operators are used to compare expressions. The result of the comparison
IS or FALSE. The expressions that are compared must be of the same type. For

if A = 01 1 and B = 010 then A > B evaluates to TRUE, and B /= "010"
to FALSE.

Operation performed

AND
OR
Not AND
Not OR
XOR
Not XOR
NOT

Equality
Inequality
Greater than
Less than
Greater than or equal to
Less than or equal to

Addition
Subtraction
Multiplication
Division

Concatenation

Shift left logical
Shift right logical
Shift left arithmetic
Shift right arithmetic
Rotate left
Rotate right

Operator category

Logical

Relational

Operator symbol

AND
OR

NAND
NOR
XOR

XNOR
NOT

- -

/=
>
<

>=
<=

Arithmetic

Concatenation

Shift and Rotate

+
-
*
/
&

SLL
SRL
SLA
SRA
ROL
ROR

Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 5. They perform

standard arithmetic operations. Thus

C < = A + B;

puts the three-bit sum of A plus B into C , while

C < = A - B ;

puts the difference of A and B into C. The operation

C <= -A;

places the 2's complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the VHDL
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

defines the six-bit vector D = a2al aob2bl bo. Similarly, the concatenation

produces the eight-bit vector E = 1 1 la2atao00.

Shift and Rotate Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B <=A SLL 1;

results in b2 = ar, bl = ao, and bo = 0. Similarly,

yields b2 = bl = 0 and bo = a*.
The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift

right, SRA, performs the sign extension by replicating the sign bit into the positions left
vacant after shifting. Hence

gives b2 = a2, b1 = az, and bo = al.

An operand can also be rotated, in which case the bits shifted out from one end are
placed into the vacated positions at the other end. For example,

B < = A R O R 2 ;

produces b2 = a I , b = ao, and bo = a2.
I

operator Precedence
Operators in different categories have different precedence. Operators in the same

have the same precedence, and are evaluated from left to right in a given expression.
~,)od practice to use parentheses to indicate the desired order of operations in the Jt is a L

To illustrate this point, consider the statement

S < = A + B + C + D ;

which defines the addition of four vector operands. The VHDL compiler will synthesize
, circuit as if the expression was written in the form ((A + B) + C) + D, which gives a
oscade of three adders so that the final sum will be available after a propagation delay
hrough three adders. By writing the statement as

s <= (A + B) + (C + D);

the synthesized circuit will still have three adders, but since the sums A + B and C + D are
in parallel, the final sum will be available after a propagation delay through only

two adders.
Table 6.2 groups the operators informally according to their functionality. It shows only

those operators that are used to synthesize logic circuits. The VHDL Standard specifies
additio~~al operators, which are useful for simulation and documentation purposes. All
operators are grouped into different classes, with a defined precedence ordering between
classes. We discuss this issue in Appendix A, section A.3.

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in Chapters 7 and 10. To describe the
building block circuits efficiently, several VHDL constructs have been introduced. In many
cases a given circuit can be described in various ways, using different constructs. A circuit
that can be described using a selected signal assignment can also be described using a case
statement. Circuit5 that fit well with conditional signal assignments are also well-suited to
if-then-else statements. In general, there are no clear rules that dictate when one type of
assignment statement should be preferred over another. With experience the user develops
a sense for which types of statements work well in a particular design situation. Personal
Preference also influences how the code is written.

VHDL is not a programming language, and VHDL code should not be written as if it
were a computer program. The concurrent and sequential assignment statements discussed
In this chapter can be used to create large, complex circuits. A good way to design such
circuits is to construct them using well-defined modules, in the manner that we illustrated
forthe multiplexers, decoders, encoders, and so on. Additional examples using the VHDL

introduced in this chapter are given in Chapters 7 and 8. In Chapter 10 we
Provide a number of examples of using VHDL code to describe larger digital systems. For
more information on VHDL, the reader can consult more specialized books [5-lo].

In the next chapter we introduce logic circuits that include the ability to store logic
Signal values in memory elements.

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

6.25 Problem: Implement the functionf (wl, wz, w3) = m(O. 1, 3 ,4 ,6 ,7) by using a 3-t0.8
binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function
These outputs are then combined in the OR gate, giving the circuit in Figure 6.50.

6.26 Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 6.51. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don't
care cases. From the truth table it is seen that the desired circuit is defined by the equations

~ple 6.27 Problem: Implement the function

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w 1, w2, w3, and cv4 are available.

Figure 6.50 Circuit for Example 6.25.

Figure 6.5 1 Truth table for an 8-to-3 binary encoder.

Solution: Since variables wl and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon's expansion with respect to these
two variables. The expansion gives

We can use a NOR gate to implement F2K5 = w2 + w5. We also need an AND gate and
an OR gate. The complete circuit is presented in Figure 6.52.

Figure 6.52 Circuit for Example 6.27.

Figure 6.53 Binary to Gray code coversion.

-
6.28 Problem: In Chapter 4 we pointed out that the rows and columns of a Karnaugh map

are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 6.53 depicts the conversion between three-bit binary and Gray codes,
Design a circuit that can convert a binary code into a Gray according the figure.

Solution: From the figure it folIows that

g2 = b2

gl = blb2 + bl b2

! 6.29 Problem: In section 6.1.2 we showed that any logic function can be decomposed using
Shannon's expansion theorem. For a four-variable function, f (wl, . . . , w4), the expansion
with respect to wl is

f (~ 1 , 7 ~ 4) =Elf${ + wd,, i
A circuit that implements this expression is given in Figure 6.54~.
(a) If the decomposition yields .f%, = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (u) for the case where f,, = 3 . i
Solution: The desired circuits are shown in parts (b) and (c) of Figure 6.54.

/

? 6.30 Problem: In several commercial FPGAs the logic blocks are 4-LUTs. What is the minimum
number of 4-LUTs needed to construct a 4-to- 1 multiplexer with select inputs $1 and so
data inputs w3, w2, W I , and wo?

*

(a) Shannon's expansion of the function f.

(b) Solution for part a

(c) Solution for part b

Figure 6.54 Circuits for Example 6.29.

Solution: A straightforward attempt is to use directly the expression that defines the 4-to- 1
multiplexer

-
Letg = slSowo +Slsowl and h = slSowz + ~ 1 ~ 0 ~ 3 , so that f = g + h. This decomposition
leads to the circuit in Figure 6.55~1, which requires three LUTs.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a huperior implementation. Figure 6.55b shows how it is possible to implement

multiplexer with just two LUTs, based on the following observation. The truth table in
''gure 6.2b indicates that when sl = 0 the output must be either wo or wl, as determined
by the value of so. This can be generated by the first LUT. The second LUT must make the
choice between w2 and ws when sl = 1. But, the choice can be made only by knowing the

of $0. Since it is impossible to have five inputs in the LUT, more information has to

-

LUT .

--
0-

0-
LUT

-

LUT h

-

(a) Using three LUTs

(b) Using two LUTs

Figure 6.55 Circuits for Example 6.30.

be passed from the first to the second LUT. Observe that when sl = 1 the output f will be
equal to either wz or wn, in which case it is not necessary to know the values of wo and wl.
Hence, in this case we can pass on the value of so through the first LUT, rather than wo 0'
w l . This can be done by making the function of this LUT

k
-

Then, the second LUT performs the function

f = q k f slEw3 +slkw4

LUT

/

e 6.31 Problem: In digital systems it is often necessary to have circuits that can shift the bits of

a vector by one or more bit positions to the left or right. Design a circuit that can shins

w2

W 3

LUT

Figure 6.56 A shifter circuit.

four-bit vector W = w3wzwl wo one bit position to the right when a control signal Shift is
qua] to 1. Let the outputs of the circuit be a four-bit vector Y = y3yzylyo and a signal k ,

that if Shift = 1 then Y3 = 0, y2 = w, y1 = WL yo = w1, and k = wo. If Shjjjj = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to- 1 multiplexers as shown
in Figure 6.56. The Shift signal is used as the select input to each multiplexer.

Problem: The shifter circuit in Example 6.3 1 shifts the bits of an input vector by one bit Exc
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifier. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals sl and so.

Solution: The required action is given in Figure 6 .57~. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 6.576. The control signals sl and
so are used as the select inputs to the multiplexers.

Problem: Write VHDL code that represents the circuit in Figure 6.19. Use the decZto4 Ex4
in Figure 6.30 as a subcircuit i n your code.

Solution: The code is shown in Figure 6.58. Note that the dec2to4 entity can be included
In the same file as we have done in the figure, but it can also be in a separate file in the
Project directoly.

(a) Truth table

(b) Circuit

Figure 6.57 A barrel shiher circuit.

14 Problem: Write VHDL code that represents the shifter circuit in Figure 6.56.

Solution: There are two possible approaches: structural and behavioral. A structural
description is given in Figure 6.59. The IF construct is used to define the desired shifting of
individual bits. A typical VHDL compiler will implement this code with 2-to- 1 multiplexers
as depicted in Figure 6.56.

A behavioral specification is given in Figure 6.60. It makes use of the shift operator
SRL. Since the shift and rotate operators are supported in the ieee.nu~lzeri~std.aZl librar!..
this library must be included in the code. Note that the vectors w and y are defined to be of
UNSIGNED type.

35 Problem: Write VHDL code that defines the barrel shifter in Figure 6.57. *O
Solution: The easiest way to specify the barrel shifter is by using the VHDL rotate operator'
The complete code is presented in Figure 6.61.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY mux4tol IS
PORT (s : IN STDLOGIC-VECTOR(1 DOWNTO 0) ;

w : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;
f : OUT STDLOGIC) ;

END mux4to 1 ;

ARCHITECTURE Structure OF mux4tol IS
COMPONENT dec2to4

PORT (w : IN STDLOGTC-VECTOR(1 DOWNTO 0) ;
En : IN STD-LOGIC ;
y : OUT STDLOGIC-VECTOR(0 TO 3));

END COMPONENT;
SIGNAL High : STDLOGIC ;
SIGNAL y : STDLOGIC-VECTOR(3 DOWNTO 0) ;

BEGIN
decoder: dec2to4 PORT MAP (s, ' 1 ', y) ;
f <= (w(0) AND y(0)) OR (w(1) AND y(1)) OR

(~ (2) AND ~ (2)) OR w(3) AND y(3)) ;
END Structure ;

LIBRARY ieee ;
USE ieeestdlogic-11 H a l l ;

ENTITY dec2to4 IS
PORT (w : IN STDLOGTCYECTOR(1 DOWNTO 0) ;

En : IN STDLOGIC :

y : OUT STDLOGIC-VECTOR(0 TO 3)) ;
END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS
SIGNAL Enw : STDLOGIC-VECTOR(2 DOWNTO 0) ;

BEGIN
Enw < = E n & w ;
WITH Enw SELECT

y <= "1000" WHEN"100,
"Ol00" WHEN "101",
"00 10" WHEN " 1 1 0 ,
"0001" WHEN "ll l" ,
"0000" WHEN OTHERS ;

END Behavior ;

Figure 6.58 VHDL code for ~xample 6.38.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY shifter IS
PORT (W : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

Shift : IN STD-LOGIC ;

Y : OUT STDLOGIC-VECTOR(3 DOWNTO 0) ;
k : OUT STDLOGIC) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift = ' 1 ' THEN
y(3) <= '0' ;
y(2 DOWNTO 0) <= w(3 DOWNTO 1) ;
k <= w(0) ;

ELSE
y < = w ;
k <= '0' ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 6.59 Structural VHDL code that specifies the shiher circuit in
Figure 6.56.

Answers to problems marked by an asterisk are given at the back of the book.

6.1 Show how the function f (wl , w l , w3) = C m(O, 2,3 ,4 ,5 ,7) can be implemented using3
3-to-8 binary decoder and an OR gate.

6.2 Show how the function f (wl . w2, w3) = m (l , 2 , 3, 5,6) can be implemented using a
3-to-8 binary decoder and an OR gate.

* 6.3 Consider the function f = FIE3 + w2E3 + i7[w2. Use the truth table to derive a circuitfor
f that uses a 2-to- 1 multiplexer.

6.4 Repeat problem 6.3 for the function f = wzw3 + wlw2.

* 6.5 For the function f (w , w2, ws) = m (O , 2 , 3 , 6) , use Shannon's expansion to derive
implementation using a 2-to-1 multiplexer and any other necessary gates.

6.6 Repeat problem 6.5 for the function f (w l , w2, w3) = C rn(O,4,6,7).

LIBRARY ieee ;
USE ieee.stdlogic-l164.all ;
USE ieee. numeric-std.al1 ;

ENTITY shifter IS
PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

Shift : IN STD-LOGIC ;

Y : OUT UNSIGNED(3 DOWNTO 0) ;
k : OUT STDLOGIC) ;

END shifter ;

ARCHITECTURE Behavior OF shifter IS
BEGIN

PROCESS (Shift, w)
BEGIN

IF Shift = " 1 " THEN
y < = w S R L l ;
k <= w(0) ;

ELSE
y < = w ;
k <= 7'0".

7

END IF ; - -. - END PROCESS ;
END Behavior ;

Figure 6.60 Behavioral VHDL code that specifies the shifter circuit in
Figure 6.56.

6.7 Consider the function f = iVz +El Kq +wl wr . Show how repeated application of Shannon's
expansion can be used to derive the minterms o f f .

6.8 Repeat problem 6.7 for f = wz + E1iG3. J

6.9 Prove Shannon's expansion theorem presented in section 6.1.2.
* 6.10 Section 6.1.2 shows Shannon's expansion in sum-of-products form. Using the principle of

duality, derive the equivalent expression in product-of-sums form.

6.1 1 Consider the function f = FIEz + tj2iG3 + w, wzws Give a circuit that implements f using
the minimal number of two-input LUTs. Show the truth table implemented inside each
LUT.

I: 6.1 2 For the function in problem 6.1 1, the cost of the minimal sum-of-products expression is 14,
which includes four gates and 10 inputs to the gates. Use Shannon's expansion to derive a
multilevel circuit that has a lower cost and give the cost of your circuit.

6.1 3 Consider the function f (w , , w2, w3, w4) = m(0, 1 , 3, 6, 8,9, 14, 15). Derive an imple-
mentation using the minimum possible number of three-input LUTs.

LIBRARY ieee ;
USE ieee.stdlogic-1164.all ;
USE ieee.numeric-std.all ;

ENTITY barrel IS
PORT (w : IN UNSIGNED(3 DOWNTO 0) ;

s : IN UNSIGNED(1 DOWNTO 0)) ;
y : OUT UNSIGNED(3 DOWNTO 0)) ;

END barrel ;

ARCHITECTURE Behavior OF barrel IS
BEGIN

PROCESS (s, w)
BEGIN

CASE s IS
WHEN "00" =>

y < = w ;
WHEN "01" =>

y < = w R O R l ;
WHEN "10" =>

y < = w R O R 2 ;

------- ,- -- . ---- & . . -. -- * - WHEN OTHERS = >
y < = w R O R 3 ;

END CASE ;
END PROCESS ;

END Behavior ;

Figure 6.61 VHDL code that specifies the barrel shifter circuit in
Figure 6.57.

* 6.14 Give two examples of logic functions with five inputs, w l , . . . , ws, that can be redlei
using 2 four-input LUTs.

6.1 5 For the function, f , in Example 6.27 perform Shannon's expansion with respect to variables
W I and w2, rather than w 1 and wq. HOW does the resulting circuit compare with the circul'
in Figure 6.52?

6.16 Actel Corporation manufactures an FPGA family called Act 1, which has the rnul t i~~e~~'
based logic block illustrated in Figure P6.1. Show how the function f = w2Z3 + wlw?'
-
w2 w3 can be implemented using only one Act 1 logic block.

6.1 7 Show how the function f = wlF3 + RI w3 + w2G3 + wl& can be realized using Act 1 logic

blocks. Note that there are no NOT gates in the chip; hence complements of signals have
to be generated using the multiplexers in the logic block.

*

Figure P6.1 The Actel Act 1 logic block.

Consider the VHDL code in Figure P6.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

Write VHDL code that represents the function in problem 6.1, using one selected signal
assignment.

Write VHDL code that represents the function in problem 6.2, using one selected signal
assignment.

Using a selected signal assignment, write VHDL code for a 4-to-2 binary encoder.

Using a conditional signal assignment, write VHDL code for an 8-to-3 binary encoder.

Derive the circuit for an 8-to-3 priority encoder.

Using a conditional signal assignment, write VHDL code for an 8-to-3 priority encoder.

Repeat problem 6.24, using an if-then-else statement.

Create a VHDL entity named @to# that represents a 2-to-4 binary decoder using an if-
then-else statement. Create a second entity named h3to8 that represents the 3-to-8 binary
decoder in Figure 6.17, using two instances of the $?to4 entity.

Create a VHDL entity named h6tu64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 6.18, in which the 6-to-64 decoder is built using five instances
of the h3to8 decoder created in problem 6.26.

Write VHDL code for a BCD-to-7-segment code converter, using a selected signal assign-
ment.

Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 6.25.

LIBRARY ieee ;
USE ieee.stdlogic-l164.all ;

ENTITY problem IS
PORT (w : IN STDLOGICYECTOR(1 DOWNTO 0) ;

En : IN STDLOGIC ;
yo, y 1, y2, y3 : OUT STDLOGIC) ;

END problem ;

ARCHITECTURE Behavior OF problem IS
BEGIN

PROCESS (w, En)
BEGIN

yo <= 70' ; y i <= '07 ; y2 <= 30' ; ~3 <= 90' ;
IF En = ' I ' THEN

IF w = "00" THEN yo <= '1' ;
ELSIF w = "01" THEN y l <= '1' ;
ELSIF w = "10 THEN y2 <= '1' ;
ELSEy3 <= '1 ' ;
END IF ;

END IF ;
END PROCESS ;

END Behavior ;

Figure P6.2 Code for problem 6.1 8.

6.30 Derive minimal sum-of-products expressions for the outputs d, e , f , and g of the 7-segment
display in Figure 6.25. I

6.3 1 Design a shifter circuit, similar to the one in Figure 6.56, which can shift a four-bit input
vector, W = w,wlwl wo, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Lefr is equal to 1. When Righf
= Lefr = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

6.32 Figure 6.21 shows a block diagram of a ROM. A circuit that implements a small ROM, wiL
four rows and four columns, is depicted in Figure P6.3. Each X in the figure representsa
switch that determines whether the ROM produces a 1 or 0 when that location is read.
(a) Show how a switch (X) can be realized using a single NMOS transistor.
(b) Draw the complete 4x4 ROM circuit, using your switches from part (a) . TheR OM
should be programmed to store the bits 0101 in row 0 (the top row), 1010 in row 1, llooin
row 2, and 001 1 in row 3 (the bottom row).
(c) Show how each (X) can be implemented as a programmable switch (as op~osedLa
providing either a 1 or 0 permanently), using an EEPROM cell as shown in Figure 3-61'
Briefly describe how the storage cell is used. -

d3 d2 dl do

Figure P6.3 A 4 x 4 ROM circuit.

6.33 Show the complete circuit for a ROM using the storage cells designed in Part (a) of problem
6.33 that realizes the logic functions

C. E. Shannon, "Symbolic Analysis of Relay and Switching Circuits," Transactions
AIEE 57 (1938), pp. 7 13-723.

2 . Actel Corporation, "MX FPGA Data Sheet," http://www.actel.com.

3 0 QuickLogic Corporation, "pASIC 3 FPGA Data Sheet," http://wwwquicklogic-cob.
*.

4. R. Landers, S. Mahant-Shetti, and C. Lemonds, "A Multiplexer-Based Architecture
for High-Density, Low Power Gate Arrays," IEEE Journal of Solid-State Circuits 30,
no. 4 (April 1995).

5. 2. Navabi, VHDhAnalys i s and Modeling of Digital Systems, 2nd ed.
(McGraw-Hill: New York, 1998).

6. J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998).

7. D, L. Perry, VHDL, 3rd ed. (McGraw-Hill: New York, 1998).

8. K. Skahill, VHDL for Programmable Logic (Addison-Wesley: Menlo Park, CA,
1996).

9. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing c , :
Boston, 1997).

10. D. J. Smith, HDL Chip Design (Doone Publications: Madison, AL, 1996).

In this chapter you will learn about:

Logic circuits that can store information

Flip-flops, which store a single bit

Registers, which store multiple bits

Shift registers, which shift the contents of the register

a Counters of various types

VHDL constructs used to implement storage elements

Design of small subsystems

380 C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE]PROCESSO~ 1
In previous chapters we considered combinational circuits where the value of each output depends sole] on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values o f ~ t

outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. s
circuits include storage elements that store the values of logic signals. The contents of the storage elem

'Jch
ents

are said to represent the state of the circuit. When the circuit's inputs change values, the new input va14
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit change,
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are refened
to as sequer~rial circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we
to control an alarm system, as shown in Figure 7.1. The alarm mechanism responds to the - - -
control input On/Off. It is turned on when On/Off = 1, and it is off when On/Off = 0. ~ h ,
desired operation is that the alarm turns on when the sensor generates a positive voltagD
signal. Set, in response to some undesirable event. Once the alarm is triggered, it mus[
remain active even if the sensor output goes back to zero. The alarm is turned off manuallv
by means of a Reser input. The circuit requires a memory element to remember that the

alarm has to be active until the Reset signal arrives.
Figure 7.2 gives a rudimentary memory element, consisting of a loop that has two

inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely. We say that the circuit is in the state defined by these values. If we assume
that A = 1, then B = 0, and the circuit will remain in this second state indefinitely. Thus

--- - the circuit has two possible states. This circuit is not useful, because it lacks some practical
means for changing its state.

A more useful circuit is shown in Figure 7.3. It includes a mechanism for changing
the state of the circuit in Figure 7.2, using two transmission gates of the type discussed in
section 3.9. One transmission gate, TG1, is used to connect the Duta input terminal to p~t

Sensor EIzpl element d n / : & F 1
Reset -

Figure 7.1 Control of an alarm system.

L I

Figure 7.2 A simple memory element.

~ o a d

Data Output

Figure 7.3 A controlled memory element.

A in the circuit. The second, TG2, is used as a switch in the feedback loop that maintains the
state of the circuit. The transmission gates are controlled by the Load signal. If Load = 1,
then TG1 is on and the point A will have the same value as the Data input. Since the value
pesently stored at Output may not be the same value as Data, the feedback loop is broken
by having TG2 turned off when Load = 1. When h a d changes to zero, then TGl turns
off and TG2 turns on. The feedback path is closed and the memory element will retain its
state as long as Load = 0. This memory element cannot be applied directly to the system
in Figure 7.1, but it is useful for many other applications, as we will see later.

Instead of using the transmission gates, we can construct a similar circuit using ordinary
logic gates. Figure 7.4 presents a memory element built with NOR gates. Its inputs, Set
and Reset, provide the means for changing the state, Q, of the circuit. A more usual way
of drawing this circuit is given in Figure 7.5a, where the two NOR gates are said to be
connected in cross-coupled style. The circuit is referred to as a basic latch. Its behavior is
described by the table in Figure 7.5b. When both inputs, R and S , are equal to 0 the latch
maintains its existing state. Thls state may be either Q, = 0 and Qb = 1, or Q,, = 1 and
Qb = 0, which is indicated in the table by stating that the Q, and Qb outputs have values

--'

Reset I

Figure 7.4 A memory element with NOR gates.

Qa Qb

0/1 1/0 (no change)

0 1

1 0

(a) Circuit (b) Characteristic table

t l *2 f 3 [4 *5 t6 *7 *8 f9 * lo

- Time

(c) Timing diagram

Figure 7.5 A basic latch built with NOR gates.

and l/O, respectively. Observe that Q, and Q, are complements of each other in this
case. When R = 0 and S = 1, the latch is set into a state where Q, = 1 and Qb = 0. When

= 1 and S = 0, the latch is reset into a state where Q,, = 0 and Qh = 1. The fourth
possibility is to have R = S = 1. In this case both Q, and Qb will be 0. The table in Figure
7.5b resembles a truth table. However, since it does not represent a combinational circuit
in which the values of the outputs are determined solely by the current values of the inputs,
it is often called a characteristic table rather than a truth table.

Figure 7 . 5 ~ gives a timing diagram for the latch, assuming that the propagation delay
through the NOR gates is negligible. Of course, in a real circuit the changes in the w ~ a v e f o ~ ~
would be delayed according to the propagation delays of the gates. We assume that initially
Q, = 0 and Q, = 1. The state of the latch remains unchanged until time r2 , when
becomes equal to 1, causing Qb to change to 0, which in turn causes Q, to change to I -

=

The causality 'elationship is indicated by the arrows in the diagram. When S goes to 0 at
there is no change in the state because both S and R are then equal to 0. At t4 we have

t 3 ? I , which causes Q, to go to 0, which in turn causes Q,, to go to 1 . At ts both S and R
R = ual to 1 , which forces both Q,, and Q, to be equal to 0. As soon as S returns to 0, at
are eq

becomes equal to 1 again. At r* we have S = 1 and R = 0, which causes Q, = 0
tf,. Q l J 1. An interesting situation occurs at t lo . From t g to t lo we have Q,, = Q, = 0
and Q, -
because R = s = I . Now if both R and S change to 0 at tlo. both Qa and Qh will go to 1.

both Q,, and Q , equal to 1 will immediately force Q, = Qh = 0. There will gut h a v k
be an between Q, = Qb = 0 and = Q , = 1 . If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
[here will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don't know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillation^ discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5n can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set - signal to the S input and Reset to the R input. The Q,,
output provides the desired On/OfS signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Q, becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Q, = 1 ; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

In section 7.1 we saw that the basic SR latch can serve as a useful memory &ment. It
remembers its state when both the S and R inputs are 0. It changes its state in response
'0 changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don't
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system

function as described above. In the disabled mode, changing the Set input from 0 to
I wouldnOt cause the alarm to turn on. The latch in Figure 7.5u cannot provide the desired
Operation. But the latch circuit can be modified to respond to the input signals S and R only
when = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7 . 6 ~ . It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S' and R' inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its

R

Clk

S

1
Clk

0

Clk S R

O x x

1 0 0

1 0 1

1 1 0

1 1 1

Q(t) (no change)

Q(t) (no change)

0

1

X

(a) Circuit (b) Characteristic table

- Time

(c) Timing diagram

(d) Graphical symbol

Figure 7.6 Gated SR latch.

existing state as long as Clk = 0. When Clk changes to 1, the Sf and R' signals will be the
same as the S and R signals, respectively. Therefore, in this mode the latch will behave
we described in section 7.1. Note that we have used the name Clk for the control signal that
allows the latch to be set or reset, rather than call it the Enable signa]. The reason is that
such circuits are often used in digital systems where it is desirable to allow the changes

384

the states of memory elements to occur only at well-defined time intervals, as if they were
c,trolled by a clock. The control signal that defines these time intervals is usually called

the signal. The name Clk is meant to reflect this nature of the signal.
circuits of this type, which use a control signal, are called gated latches. Because our

set and reset capability, it is called a gated SR latch. Figure 7.6b describes
its behavior. It defines the state of the Q output at time t + 1, namely, Q(r + l) , as a function
of the inputs S , R, and Clk. When Clk = 0, the latch will remain in the state it is in at time
r that is, Q(t) , regardless of the values of inputs S and R. This is indicated by specifying

9

s = and R = x, where x means that the signal value can be either 0 or 1 . (Recall that we
used this notation in Chapter 4.) When CZk = 1, the circuit behaves as the basic

latch in Figure 7.5. It is set by S = 1 and reset by R = 1. The last row of the table, where
s = R = 1, shows that the state Q(t + 1) is undefined because we don't know whether it
,ill be 0 or 1. This corresponds to the situation described in section 7.1 in conjunction with
the timing diagram in Figure 7.5 at time t ~ o . At this time both S and R inputs go from 1
to 0, which causes the oscillatory behavior that we discussed. If S = R = 1, this situation
will occur as soon as Clk goes from 1 to 0. To ensure a meaningful operation of the gated
SR latch, it is essential to avoid the possibility of having both the S and R inputs equal to 1
when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 7 . 6 ~ . It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement a, rather than Q, and Q, as in Figure 7.5. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is
given in Figure 7.6d.

7.2.1 GATED SR LATCH WITH NAND GATES

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated
SR latch as depicted in Figure 7.7. The behavior of this circuit is described by the table
in Figure 7.66. Note that in this circuit, the clock is gated by NAND gates, rather than by

S

Clk

R

Figure 7.7 Gated SR latch with NAND gates.

AND gates. Note also that the S and R inputs are reversed in comparison with the circuit in
Figure 7.6a. The circuit with NAND gates requires fewer transistors than the circuit with
AND gates. We will use the circuit in Figure 7.7, in preference to the circuit in Figure 7 Q

.

In section 7.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 7.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. ~t has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D lcrtch.

To motivate the need for a gated D latch, consider the adderlsubtractor unit discussed
in Chapter 5 (Figure 5.13). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adderlsubtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply "stores
the bit." We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value 1:
otherwise, the latch would remain in the 0 state. This would work fine if all sum bits are 0 at
the start of the addition operation and, after some propagation delay through the adder, some
of these bits become equal to 1 to give the desired sum. Unfortunately, the propagation
delays that exist in the adder circuit cause a big problem in this arrangement. Suppose that
we use a ripple-carry adder. When the X and Y inputs are applied to the adder, the sum
outputs may alternate between 0 and 1 a number of times as the carries ripple through the
circuit. This situation was illustrated in the timing diagram in Figure 5.21. The problem is
that if we connect a sum bit to the S input of a latch, then if the sum bit is temporarily a 1
and then settles to 0 in the final result, the latch will remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum4
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This
an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

Figure 7.8a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input, D. For convenience

have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then s = 1 and R = 0, which forces the latch into the state Q = 1 . If D = 0, then S = 0
and R = I , which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

~t is important to observe that in this circuit it is impossible to have the troublesome
situation where S = R = I. In the gated D latch, the output Q merely tracks the value of
the input D while Clk = I. As soon as Clk goes to 0, the state of the latch is frozen until the
,,,t time the clock signal goes to 1. Therefore, the gated D latch stores the value of the D

D
S -

I

(Data)
Q

Clk 4)

-

R Q

(a) Circuit

Clk D I Q(r + 1)

Clk Q ZE
(b) Characteristic table (c) Graphical sym boi

- Time

(d) Timing diagram

Clk

Figure 7.8 Gated D latch.

I
I I

I I I
I D

Q

I

i
I

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR

(a) Circuit

Clock

Master Slave

Q = Qs

(b) Timing diagram

(c) Graphical symbol

Figure 7.10 Master-slave D flip-flop.

D

Clock T -

the clock. A different circuit that accomplishes the same task is presented in Figure T a l l a
It requires only six NAND gates and, hence, fewer transistors. The operation of the circuit
is as follows. When Clock = 0, the outputs of gates 2 and 3 are high. Thus P l = P2
which maintains the output latch, comprising gates 5 and 6, in its present state. At the same
time, the signal P3 is equal to D, and P4 is equal to its complement B. When Clock changes

D Q

Clk a
D Q

Clk Q

Q s
Q 1

-
Q

Qm

-

Clock

Clock

(a) Circuit

(b) Graphical symbol

Figure 7.1 1 A positive-edge-triggered D flip-flop.

to 1, the following changes take place. The values of P3 and P4 are transmitted through
gates 2 and 3 to cause p1 = D and P2 = D, which sets Q = D and a = D. To operate
reliably, P3 and P4 must be stable when Clock changes from 0 to 1. Hence the setup time
of the flip-flop is equal to the delay from the D input through gates 4 and 1 to P3. The hold
time is given by the delay through gate 3 because once P2 is stable, the changes in D no
longer matter.

For proper operation it is necessary to show that, after Clock changes to I , any further
changes in D will not affect the output latch as long as Clock = 1. We have to consider two
cases- Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
F e p the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
''Put. The second case is if D = 1 at the positive edge of the clock. Then P 1 = 0, which

the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
'he flip-flop ignores changes in the D input while Clock = 1.

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR P !

Figure 7.11 b gives a graphical symbol for this flip-flop. The clock input indicates that
the positive edge of the clock is the active edge. A similar circuit, constructed with NOR
gates, can be used as a negative-edge-triggered flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements
Figure 7.12 shows three different types of storage elements that are driven by the same

data and clock inputs. The first element is a gated D latch, which is level sensitive. The
second one is a positive-edge-triggered D flip-flop, and the third one is a n e g a t i ~ e - ~ d ~ ~ -
triggered D flip-flop. To accentuate the differences between these storage elements, the

Clock

(b) Timing diagram
I

Figure 7.12 Comparison of level-sensitive and edge-triggered D storage elernenh
392

D input changes its values more than once during each half of the clock cycle. Observe
that the gated D latch follows the D input as long as the clock is high. The positive-edge-

flip-flop responds only to the value of D when the clock changes from 0 to 1. The
L

n,gative-edge-triggered flip-flop responds only to the value of D when the clock changes

from 1 to 0.

fZ]ipflops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit's
inputs but also on the particular state that the circuit is in at that time. We will discuss
, general form of such circuits in Chapter 8. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in section 7.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
nun.lber. It is also important to be able to force the counter into a known initial state (count).
Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 7.10 and 7.11 as follows.

Figure 7.13a shows an implementation of the circuit in Figure 7.10a using NAND
gates, The master stage is just the gated D latch of Figure 7.8a. Instead of using another
latch of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 7.7. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on the Clear
input will force the flip-flop into the state Q = 0. If Clear = I . then this input will have no
effect on the NAND gates. Similarly, Preset = 0 forces the flip-flop into the state Q = 1,
while Preset = 1 has no effect. To denote that the Clear and Preset inputs are active when
their value is 0, we placed an overbar on the names in the figure. We should note that the
circuit that uses this flip-flop should not try to force both Clear and Preset to 0 at the same
time. A graphical symbol for this flip-flop is shown in Figure 7.13b.

A similar modification can be done on the edge-triggered flip-flop of Figure 7. l l a , as
indicated in Figure 7 . 1 4 ~ ~ . Again, both Clear and Preset inputs are active low. They do not
disturb the flip-flop when they are equal to 1.

In the circuits in Figures 7 . 1 3 ~ and 7.14a, the effect of a low signal on either the Clear
Or Preset input is immediate. For example, if Clear = 0 then the flip-flop goes into the state
Q = 0 immediately, regardless of the value of the clock signal. In such a circuit, where the

signal is used to clear a flip-flop without regard to the clock signal, we say that the
''p-flo~ has an asynchronous clear. In practice, it is often preferable to clear the flip-flops
On [he active edge of the clock. Such synchronous clear can be accomplished as shown
In Figure 7.15. The flip-flop operates normally when the Clear input is equal to 1. But if
' lear goes to 0, then on the next positive edge of the clock the flip-flop will be cleared to
O. We will examine the clearing of flip-flops in more detail in section 7.10.

393

C W A P E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR V

Preset P

1 1 Clear -

(a) Circuit

Preset -1

Clear 1

(b) Graphical symbol

Figure 7.13 Master-slave D flip-flop with Clear and Preset.

The D flip-flop is a versatile storage element that can be used for many purposes. BY
including some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 7 .1Q
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make the
input signal D equal to either the value of Q or 0 under the control of the signal that is
labeled T. On each positive edge of the clock, the flip-flop may change its state Q(t)- Lf
T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t) . But if
T = 1, then D = 0 and the new state will be Q(t + 1) = Q (r) . Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.

.a

Preset

Clock

Clear

(a) Circuit

Preset -,

Figure 7.14

Clear 2

(b) Graphical symbol

Positive-edge-triggered D flip-flop with Clear and Preset.

The operation of the circuit is specified in the form of a characteristic table in Figure
7.16b. Any circuit that implements this table is called a Tflip-flop. The name T Rip-flop
derives from the behavior of the circuit. which "toggles" its state when T = 1 . The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
In section 7.9.

T

Clock

Clear

D

Figure 7.1 5 Synchronous reset for a D flip-flop.

(b) Characteristic table

(a) Circuit

(c) Graphical symbol

Clock

T

Q

(d) Timing diagram

Figure 7.1 6 T flip-flop.

For some circuits one type of flip-flop may lead to a more efficient implementation than a
different type of flip-flop. In general purpose chips like PLDs, the flip-flops that are provided

are s *rnetirnes confrgurable, which means that a flip-flop circuit can be configured to be
either D, T, or some other type. For example, in some PLDs the flip-flops can be configured
as either D or T types (see problems 7.6 and 7.8).

Another interesting circuit can be derived from Figure 7.16a. Instead of using a single
control input, T , we can use two inputs, J and K, as indicated in Figure 7.17~. For this
circuit the input D is defined as

Clock

I

Q

(a) Circuit

(b) Characteristic table

Figure 7.17 JK flip-flop.

(c) Graphical symbol

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR

? 1
A corresponding characteristic table is given in Figure 7.176. The circuit is called a J~

f l ip- jbp. It combines the behaviors of SR and T flip-flops in a useful way. It behaves as
the SR flip-flop, where J = S and K = R, for all input values except J = K = I . For the
latter case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like
the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms larch andflip-jop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.

A flip-flop is a storage element based on the gated latch principle, which can have its
output state changed only on the edge of the controlling clock signal. We
two types:

Edge-triggered flip-flop is affected only by the input values present when the
active edge of the clock occurs.

Master-slave flip-flop is built with two gated latches. The master stage is active
during half of the clock cycle, and the slave stage is active during the other
The output value of the Rip-flop changes on the edge of the clock that activates
the transfer into the slave stage. Master-slave flip-flops can be edge-triggered Or

level sensitive. If the master stage is a gated D latch, then it behaves as an
edge-triggered flip-flop. If the master stage is a gated SR latch, then the flip-flop
is level sensitive (see problem 7.19). .-

Aflip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
such as an n-bit number, we refer to these flip-flops as a register. A common

clock is for each flip-flop in a register, and each flip-flop operates as described in the
previous sections. The term register is merely a convenience for referring to n-bit stmctures

of flip-flops-

In section 5.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that

the ability to shift its contents is called a ship register.
Figure 7 . 1 8 ~ shows a four-bit shift register that is used to shift its contents one bit-

position to the right. The data bits are loaded into the shift register in a serial fashion using

Clock

(a) Circuit

(b) A sample sequence

Out

7.1 8 A simple shift register.

C H A P T l R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR I& f

the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 7.1 86, which
shows what happens when the signal values at In during eight consecutive clock cycles ae
1, 0, 1, 1, 1, 0,0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register, it is necessary to use either edge-triggered or m a ~ t e r - ~ l ~ , , ~
flip-flops. The level-sensitive gated latches are not suitable, because a change in the value
of in would propagate through more than one latch during the time when the clock is equal
to 1.

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift regjster
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.

Figure 7.19 shows a four-bit shift register that allows the parallel access. Instead of
using the normal shift register connection, the D input of each flip-flop is connected to
two different sources. One source is the preceding flip-flop, which is needed for the shift-
register operation. The other source is the external input that corresponds to the bit that is
to be loaded into the flip-flop as a part of the parallel-load operation. The control signal
Sh~PlLoad is used to select the mode of operation. If Shiftlhad = 0, then the circuit
operates as a shift register. If ShiftlLoad = 1, then the parallel input data are loaded into

-

the register. In both cases the action takes place on the positive edge of the clock.
In Figure 7.19 we have chosen to label the flip-flops outputs as Q3, . . . , QO because

shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q, during consecutive clock cycles while the
contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 7.19 can perform both of these functions.

In Chapter 5 we dealt with circuits that perform arithmetic operations. We showed how
addedsubtractor circuits can be designed, either using a simple cascaded (ripple-cam)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In We

want to design circuits that can increment or decrement a count by 1. Counter circuits Ne
400

Parallel output

Serial - > v
,,put Shiftnoad

Clock
Parallel input

Figure 7.19 parallel-access shift register.

used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the addedsubtractor circuits discussed in Chap-
ter 5 and the registers discussed in section 7.8. However, since we only need to change the
CoMents of a counter by 1 , it is not necessary to use such elaborate circuits. Instead, we
Can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

The simplest counter circuits can be biilt using T flip-flops because the toggle feature is
mturally suited for the implementation of the counting operation.

UP-counter with T Flip-Flops
Figure 7 . 2 0 ~ gives a three-bit counter capable of counting from 0 to 7. The clock inputs

Of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each

401

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR 7 %

Clock

Qo Q 1

(a) Circuit

Clock

Qo

Q r

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

Figure 7.20 A three-bit up-counter.

positive edge of its clock. We are assuming that the purpose of this circuit is to count the -
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the 0 output of the preceding flip-flop. Therefore, they toggle their state
whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the signal.

Figure 7.206 shows a timing diagram for the counter. The value of Q, toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q,, the value of Q, changes shortly after the negative edge of the Qo signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q, signal. If we
look at the values Q,Q,Q, as the count, then the timing diagram indicates that the counting
sequence is 0, 1,2,3,4,5,6,7,0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

The counter in Figure 7.20a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count = 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
402

in the timing diagram in Figure 7.20b, this change requires the toggling of the states of
all three flip-flops. The change in Qo is observed only after a propagation delay from the
positive edge of Clock- The Q, and Q2 flip-flops have not yet changed; hence for a brief
6me the count is QZQIQO = 010. The change in Q, appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q, occurs after a third delay,

point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 5.6. The circuit
in Figure 7 . 2 0 ~ is an asynchronous counter, or a ripple counter.

~~\ \ -n -Counter with T Flip-Flops
A slight modification of the circuit in Figure 7 . 2 0 ~ is presented in Figure 7.2 la . The

only difference is that in Figure 7.210 the clock inputs of the second and third flip-flops are
dive* by the Q outputs of the preceding stages, rather than by the outputs. The timing
diagram, given in Figure 7.21b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
3, 2 , 1 , 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 7.20a and 7.21~2 to
fonn a counter that can count either up or down. Such a counter is called an up/down-

1

Clock

Qo Q1

(a) Circuit

Clock
-

Qo

Q 1

QZ

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

I R ~ u r e 7.21 A three-bit down-counter.

T
C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSO~

counter. We leave the derivation of this counter as an exercise for the reader (prob.
lem 7.16).

The asynchronous counters in Figures 7 . 2 0 ~ and 7 . 2 1 ~ are simple, but not very fast. ~ f ,

counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired perfomance
requirements. We can build a faster counter by clocking all flip-flops at the same time
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 7.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of

the table, it is apparent that bit Qo changes on each clock cycle. Bit Q, changes only when
Qo = I . Bit Q2 changes only when both Q1 and Qo are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1 . Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

Table 7.1 Derivation of the synchronous
up-counter.

changes

Q2 changes

Clock cycle

0
1
2
3
4
5
6
7

8

Q2 Q1 QO

1 0 1
1 1 0
1 1 1
0 0 0

An example of a four-bit counter based on these expressions is given in Figure 7.22a.
Instead of using AND gates of increased size for each stage, which may lead to fan-in

P
,,blems, we use a factored arrangement, as shown in the figure. This arrangement does

not slow down the response of the counter, because all flip-flops change their states after a

prop% ,tion delay from the positive edge of the clock. Note that a change in the value of
Qo

,y have to propagate through several AND gates to reach the flip-flops in the higher
stages of the counter, which requires a certain amount of time. This time must not exceed

the ~er iod. Actually, it must be less than the clock period minus the setup time for
the flip-flops.

Figure 7.226 gives a timing diagram. It shows that the circuit behaves as a modulo-16
,p-counter. Because all changes take place with the same delay after the active edge of the
clock signal, the circuit is called a synchronous counter.

1

Clock

(a) Circuit

Clock

Qo

Q 1

Q2

Q3

C o u n t 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 0 1

(b) Timing diagram

Figure 7.22 A four-bit synchronous up-counter,

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR 7

1 1 Clear 1 - -

Enable -
Clock -o-

Figure 7.23 Inclusion of ~nable and Clear capability.

Enable and Clear Capability
The counters in Figures 7.20 through 7.22 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, SO that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 7.23. The circuit is the counter of Figure 7.22, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in section 7.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear control input.

U U U

* -
I

v Y

T Q

-

> Q

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK
flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present
a formal method for deriving such circuits in Chapter 8. Here we will present a circuit
structure that meets the requirements but will leave the derivation for Chapter 8. Figure
7.24 gives a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1,
and so on. The count is indicated by the flip-flop outputs Q3Q2QIQo. If we assume that
Enable = 1, then the D inputs of the flip-flops are defined by the expressions

t
I I t - - T Q - --T Q - Q -

- -

Q Q
-
Q

For a larger counter the ith stage is defined by

oi = Q i @ Q j - 1 Qi-2 . . . Ql Qo

We will show how to derive these equations in Chapter 8.

Enable

Clock

Output

carry

Figure 7.24 A four-bit counter with D Hip-flops.

We have included the Enable control signal so that the counter counts the clock pulses
Only if Enable = 1. In effect, the above equations are modified to implement the circuit in
the figure as follows

Do = Qo @Enable

D, = Q, @ Qo . Enable

D2 = Q2 C0 Q1 . Qo - Enable

D3 = Q3 C0 Q2 Q1 ' QO ' Enable

The Operation of the counter is based on our observation for Table 7.1 that the state of the
in stage i changes only if all preceding flip-flops are in the state Q = 1. This

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR t

makes the output of the AND gate that feeds stage i equal to 1, which causes the output
the XOR gate connected to Di to be equal to a. Otherwise, the output of the XOR gate
provides D; = Qi, and the flip-flop remains in the same state. This resembles the
propagation in a ciuTy-lookahead adder circuit (see section 5.4); hence the ANBgate ,-hain
can be thought of as the carry chain. Even though the circuit is only a four-bit counter, we
have included an extra AND that produces the "output carry." This signal makes it easy to

concatenate two such four-bit counters to create an eight-bit counter.
Finally, the reader should note that the counter in Figure 7.24 is essentially the same

as the circuit in Figure 7.23. We showed in Figure 7.160 that a T flip-flop can be formed
from a D flip-flop by providing the extra gating that gives

Thus in each stage in Figure 7.24, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

7.9.3 COUNTERS WITH PARALLEL LOAD

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 7.23. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 7.24 can be modified to provide the parallel-load capability as
shown in Figure 7.25. A two-input multiplexer is inserted before each D input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1Do, is
loaded into the counter when Load = 1.

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the countto
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2" counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1 ,2 ,3 ,4 ,5 ,0 , 1, and so on.

Load

Clock

Figure 7.25 A counter with porallel-load capability.

Output
carry

The most straightforward approach is to recognize when the count reaches 5 and th en
reset the counter. An AND gate can be used to detect the occurrence of the count of S ,

~ c t u ~ l y , it is sufficient to ascertain that Q2 = QO = 1, which is true only for 5 in
desired counting sequence. A circuit based on this approach is given in Figure 7 . 2 ~ -
uses a three-bit synchronous counter of the type depicted in Figure 7.25. The parallel.load
feature of the counter is used to reset its contents when the count reaches 5. The reset1

I
lng

action takes place at the positive clock edge after the count has reached 5 . It involves
loading DzDIDo = 000 into the flip-flops. As seen in the timing diagram in Figure 7.26b
the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock,
say that this type of counter has a synchronous reset.

1

1 Enable

0 Do *
Qo -

0 "1 Q 1 .
0 D2 Q 2 - - -

Load

Clock

rlnrk

(a) Circuit

Clock - I I I I I I
Qo I I 1 I I I I
Q1 1 I

I

I
I

Q2 --
Count 0 1 2 3 4 5 0

1

(b) Timing diagram

Figure 7.26 A modulo-6 counter with synchronous reset.

consider now the possibility of using the clear feature of individual flip-flops, rather
the parallel-l~ad approach. The circuit in Figure 7 . 2 7 ~ illustrates one possibility. It

uses the counter structure of Figure 7 .22~ . Since the clear inputs are active when low, a
NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a

PO
tenlial problem. The timing diagram for this circuit is given in Figure 7.27b. It shows a

difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
be NAND gate has detected the count of 5 . This time depends on the gate delays in the
circuit, but not on the clock. Therefore, signal values QZQl QO = 10 1 are maintained for a
time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Cuurrt = 5 would not be seen by the
rest of the system. To solve this problem, we could try to use a modulo-7 counter instead,

Clock

(a) Circuit

Clock

42

1 2 3 4 5 0
Count 0

(b) Timing diagram

7.27 A modulo-6 counter with asynchronous reset.

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR "If

assuming that the system would ignore the short pulse that denotes the count of 6. This is
not a good way of designing circuits, because undesirable pulses often cause unforeseen
difficulties in practice. The approach employed in Figure 7.27a is said to use asynchronous
reset.

The timing diagrams in Figures 7.266 and 7.27b suggest that synchronous reset is a

better choice than asynchronous reset. The same observation is true if the natural counta l''g
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

7.1 1.1 BCD COUNTER

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
section 7.10. A two-digit BCD counter is presented in Figure 7.28. It consists of two
modulo- 10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 7.25. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
stage is equal to I when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at

the next positive edge of the clock signal. Whenever the count in stage 0, BCDo, reaches 9
it is necessary to enable the second stage so that it will be incnmented when the next clock
pulse arrives. This is accomplished by keeping the Enable signal for BC& low at all times
except when BCDo = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high. VHDL code for a two-digit BCD counter is given in Figure 7.77.

In any digital system there is usually one or more clock signals used to drive all
synchronous circuitry. In the preceding counter, as well as in all counters pesented in the
previous figures, we have assumed that the objective is to count the number of clock pulses+
Of course, these counters can be used to count the number of pulses in any signal that may
be used in place of the clock signal.

Clock

Clear

Figure 7.28 A two-digit BCD counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.

- In all cases the count is a binary number. Using such counters, if an action is to be taken
as a resuIt of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 7.26 through 7.28.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be Constructed from a simple shift register, as indicated in Figure 7 . 2 9 ~ . The Q output
Of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through

ring at successive clock cycles. For example, in e four-bit structure, the possible codes

- -
1

0

0

0

Enable

Do Qo

Dl Q1

J'2 Q2

0 D3 Q3

Load

Clock

-

4

4)

- -
1

0

0

0

Enable

Do Qo
Dl Q1

* 2 Q2

(a) An n-bit ring counter

Qo Q 1

Clock

Start

Start - 1

n

A

(b) A four-bit ring counter

Figure 7.29 Ring counter.

A 4

b

QoQIQnQ3 will be 1000,0100,0010, and 0001. As we said in section 6.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code*

The circuit in Figure 7 . 2 9 ~ is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
all changes in the value of the Start signal occur s%ortly after an active clock edge so that

4

d

the flip-flop timing parameters are not violated.
414

I

- Clock Q1 Qo

Two-bit up-counter
-

i'lear

b

Clock : + D Q

-

Q

-

-
- D

-

t
1

Q

-

Q

i
0 . .

-

D

-

Q

Q -

~h~ circuit in Figure 7 . 2 9 ~ can be used to build a ring counter with any number of

bits, ~ o r the specific case of n = 4, part (b) of the figure shows how a ring counter

can
be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the

counter is reset to 00. After Start changes back to 0, the counter increments its value in the

norm way. The 2-to-4 decoder, described in section 6.2, changes the counter output into
a ,ne-hot code. For the count values 00, 0 1, 10, 1 1, 00, and so on, the decoder produces

Q ~ Q I QzQ3
= 1000,0100,001 0,000 I , 1000, and so on. This circuit structure can be used

for larger ring counters, as long as the number of bits is a power of two. We will give
an example of a larger circuit that uses the ring counter in Figure 7.29b as a subcircuit in
section 7.14.

~n interesting variation of the ring counter is obtained if, instead of the Q output, we take
thea output of the last stage and feed it back to the first stage, as shown in Figure 7.30. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1 1 10, 1 1 1 1, 01 1 1, 001 1, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 8 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

Reset .

Clock .

Figure 7.30 Johnson counter.

This section shows how circuits with storage elements can be designed using either schematic ~
capture or VHDL code.

7,12,1 INCLUDING STORAGE ELEMENTS IN SCHEMATICS

One way to create a circuit is to draw a schematic that builds latches and flip-flop from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 7.31 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in section 7.2. In some chips,
such as a CPLD, the AND-OR circuit depicted in Figure 7.32 may be preferable. This circuit
is functionally equivalent to the cross-coupled version in section 7.2. The sum-of-products
circuit is used because it is more suitable for implementation in a CPLD macrocell. One

L

Dda Latch
Clack

Flpflop

Figure 7.31 Three iypes of storage elements in a schematic.

Clock Data a
- Latch

Figure 7.32 Gated D latch generated by CAD tools.

of this circuit should be mentioned. From the functional point of view, it appears
that the circuit can be simplified by removing the AND gate with the inputs Data and Latch.
Without this gate, the top AND gate sets the value stored in the latch when the clock is 1 ,
and the bottom AND gate maintains the stored value when the clock is 0. But without this
gate, the circuit has a timing problem known as a static hazard. A detailed explanation of
hazards will be given in section 9.6.

The circuit in Figure 7.31 can be implemented in a CPLD as shown in Figure 7.33.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as
either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 7.3 1 .

The results of a timing simulation for the implementation in Figure 7.33 are given in
Figure 7.34. The h t c h signal, which is the output of the gated D latch, implemented as
indicated in Figure 7.32, follows the Data input whenever the Cluck signal is 1. Because
of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the FlipJlop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, t,,.

'-- I

r

7.1 2.2 USING VHDL CONSTRUCTS FOR STORAGE ELEMENTS

In section 6.6 we described a number of VHDL assignment statements. The IF and CASE
Statements were introduced as two types of sequential assignment statements. In this section
we show how these statements can be used to describe storage elements.

Figure 6.43, which is repeated in Figure 7.35, gives an example of VHDL code that
has implied memory. Because the code does not specify what value the AeqB signal should
have when the condition for the IF statement is not satisfied, the semantics specify that in

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR F

(Other macrocells not shown)

Figure 7.33 Implementation of the schematic in Figure 7.31 in a CPLD.

Figure 7.34 Timing simulation for the storage elements in Figure 7.31.

LIBRARY ieee ;
USE ieee.stdlogic-l164,all ;

ENTITY implied IS
PORT (A, B : IN STDLOGIC ;

AeqB : OUT STDLOGIC) ;
END implied ;

ARCHITECTURE Behavior OF implied IS
BEGIN

PROCESS (A, B)
BEGIN

E A = BTHEN
AeqB <= ' 1 ' ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.35 The code from Figure 6.43, illustrating implied
memory.

this case AeqB should retain i h current value. The implied memory is the key concept used
for describing sequential circuit elements, which we will illustrate using several examples.

'ODE FOR A GATED D LATCH The code in Figure 7.36 defines an entity named larch,
which has the inputs D and Clk and the output Q. The process uses an if-then-else statement
'O define the value of the Q output. When Clk = 1, Q takes the value of D. For the case
when Clk is not 1, the code does not specify what value Q should have. Hence Q will retain
Its current value in this case, and the code describes a gated D latch. The process sensitivity

41 9

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE ~ O C E S S O R F

LIBRARY ieee ;
USE ieee.std_logic-l164.all ;

ENTITY latch IS
PORT (D, Clk : IN STDLOGIC ;

Q : OUT STD-LOGIC) ;
END latch ;

ARCHITECTURE Behavior OF latch IS
BEGIN

PROCESS (D, Clk)
BEGIN

IF Clk = '1' THEN
Q < = D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.36 Code for a goted D latch.

list includes both Clk and D because these signals can cause a change in the value of the Q I
output. I
CODE FOR A D FLIP-FLOP Figure 7.37 defines an entity namedflipflop, which is apositive-
edge-triggered D flip-flop. The code is identical to Figure 7.36 with two exceptions. First,
the process sensitivity list contains only the clock signal because it is the only signal that can
cause a change in the Q output. Second, the if-then-else statement uses a different condition
from the one used in the latch. The syntax Clock'EVENT uses a VHDL construct called
an attribute. An attribute refers to a property of an object, such as a signal. In this case the
'EVENT attribute refers to any change in the Clock signal. Combining the Clock'EVENT
condition with the condition Clock = 1 means that "the value of the Clock signal has just
changed, and the value is now equal to 1 ." Hence the condition refers to a positive clock
edge. Because the Q output changes only as a result of a positive clock edge, the code
describes a positive-edge-triggered D flip-flop.

ALTERNATIVE CODE FOR A D FLIP-FLOP The process in Figure 7.38 uses a different
syntax from that in Figure 7.37 to describe a D flip-flop. It uses the statement WAIT UNTIL
C l o c k ' E v E N ~ AND Clock = ' 1'. This statement has the same effect as the IF statement
in Figure 7.37. A process that uses a WAIT UNTIL statement is a special case because
the sensitivity list is omitted. The WAIT UNTIL construct implies that the sensitivity list
includes only the clock signal. In our use of VHDL, which is for synthesis of circuits. a
process can use a WAIT UNTIL statement only if this is the first statement in the process.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY flipflop IS
PORT (D, Clock : IN STDLOGIC ;

Q : OUT STD-LOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock'EVENT AND Clock = ' 1' THEN
Q < = D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.37 Code for a D flip-flop.

LIBRARY ieee;
USE ieee.std-logic-ll64.all;

ENTITY flipflop IS
PORT (D, Clock : IN STD-LOGIC ;

Q : OUT STDLOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS

,I BEGIN
PROCESS
BEGIN -

WAIT UNTIL Clock'EVENT AND Clock = ' 1' ;
Q < = D ;

END PROCESS ;
END Behavior ;

Figure 7.38 Equivalent code to Figure 7.37, using a WAIT UNTIL
statement.

Actual] y, the attribute 'EVENT is redundant in the WAIT UNTIL statement. we can
write simply

WAIT UNTIL Clock = ' 1';

which also implies that the action occurs when the Clock signal becomes equal to 1, namely,
at the edge when the signal changes from 0 to 1. However, CAD synthesis tools require
the inclusion of the 'EVENT attribute, which is the reason why we use this style in the book

In general, whenever it is desired to include in VHDL code flip-flops that are clocked
by the positive clock edge, the condition Clock' EVENT AND Clock ' 1 ' is used. when
this condition appears in an IF statement, any signals that are assigned values inside the
IF statement are implemented as the outputs of flip-flops. When the condition is used
in a WAIT UNTIL statement, any signal that is assigned a value in the entire process is
implemented as the output of a flip-flop.

The differences in using the IF and WAIT UNTIL statements are discussed in more
detail in Appendix A, section A. 10.3.

ASYNCHRONOUS CLEAR Figure 7.39 gives a process that is simiIar to the one in Figure
7.37. It describes a D flip-flop with an asynchronous active-low reset (clear) input. When
Resetn, the reset input, is equal to 0, the flip-flop's Q output is set to 0.

LIBRARY ieee ;
USE ieee.std1ogic-l164.all ;

ENTITY flipflop IS
PORT (D, Resetn, Clock : LN STDLOGIC ;

Q : OUT STDLOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= '0' ;

ELSIF Clock'EVENT AND Clock = ' 1' THEN
Q < = D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.39 D flip-flop with asynchronous reset.

I 7.13 USING REGISTERS AND COUNTERS WITH CAD TOOLS

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY flipflop IS
PORT (D, Resetn, Clock : IN STDLOGIC ;

Q : OUT STDLOGIC) ;
END flipflop ;

ARCHITECTURE Behavior OF flipflop IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock' EVENT AND Clock = ' 1 ' ;
IF Resetn = '0' THEN

Q <= '0' ;
ELSE

Q < = D ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.40 D flip-flop with synchronous reset.

-.

SYNCHRONOUS CLEAR Figure 7.40 shows how a D flip-flop with a synchronous reset Er
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. The code generates the circuit in Figure 7.15, which has an AND gate
connected to the flip-flop's D input.

Figure A . 3 3 ~ in Appendix A shows how the same circuit is specified by using an IF
statement instead of WAIT UNTIL.

7.1 3 USING REGISTERS AND COUNTERS WITH CAD TOOLS I
In this section we show how registers and counters can be included in circuits designed
with the aid of CAD tools. Examples are given using both schematic capture and VHDL
code.

In section 5.5.1 we explained that a CAD system usually includes libraries of prebuilt
Sub~ircuits. We introduced the library of parameterized modules (LPM) and used the

Figure 7.41 The /pm_ff flip-flop module.

adder/subtractor module, lpm-add-sub, as an example. The LPM includes subcircuits that
have modules that constitute flip-flops, registers, counters, and many other useful circuits.
Figure 7.41 shows a symbol that represents the lpm f f module. This module is a register
with one or more positive-edge-triggered flip-flops that can be of either D or T type. The
module has parameters that allow the number of flip-flops and flip-flop type to be chosen.
In this case we chose to have four D flip-flops. The tutorial in Appendix C explains how
the configuration of the module is done.

The D inputs to the four flip-flops, called data on the graphical symbol, are connected
to the four-bit input signal Data[3..0]. The module's asynchronous active-high reset (clear)
input, aclr, is shown in the schematic. The flip-flop outputs, q, are attached to the output
symbol labeled Q[3..0].

In section 7.3 we said that a useful application of D flip-flops is to hold the results of an
arithmetic computation, such as the output from an adder circuit. An example is given in
Figure 7.42, which uses two LPM modules, lpm-add_sub and Zpm. ff. The Ipm-add-sub
module was described in section 5.5.1. Its parameters, which are not shown in Figure 7.42,
are set to configure the module as a four-bit adder circuit. The adder's four-bit data input
dataa is driven by the Data[3..0] input signal. The sum bits, result, are connected to the
data inputs of the Epm f f , which is configured as a four-bit D register with asynchronous
clear. The register generates the output of the circuit, Q[3..0], which appears on the left
side of the schematic. This signal is fed back to the datab input of the adder. The sum bits
from the adder are also provided as an output of the circuit, Sum[3..0], for ease of reference
in the discussion that follows. If the register is first cleared to 0000, then the circuit can be
used to add the binary numbers on the Data[3..0] input to a sum that is being accumulated
in the register, if a new number is applied to the input during each clock cycle. A circuit
that performs this function is referred to as an accumulator circuit.

We synthesized a circuit from the schematic and implemented the four-bit adder using
the carry-lookahead structure. A timing simulation for the circuit appears in Figure 7.43*
After resetting the circuit, the Data input is set to 0001. The adder produces the sum

.I

0 QI3.4
Data[3..0] I I

Ctock D

Reset

L

OFF
dataf3..0]

q[3. .a]
)clock

L -
5i:

7.13 USING REGISTERS AND COUNTERS WITH CAD TOOLS

Figure 7.42 An adder with registered feedback.

Figure 7.43 Timing simulation of the circuit from Figure 7.42.

0000 + 0001 = 0001, which is then clocked into the register at the 60 ns point in time.
After the t,,, delay, Q[3..0] becomes 0001, and this causes the adder to produce the new sum
000 1 + 0001 = 0010. The time needed to generate the new sum is determined by the speed
ofthe adder circuit, which produces the sum after 12.5 ns in this case. The new sum does
not appear at the Q output until after the next positive clock edge, at 100 ns. The adder then
Produces 001 1 as the next sum. When Sum changes from 00 10 to 00 11, some oscillations
appear in the timing diagram, caused by the propagation of carry signals through the adder
circuit. These oscillations are not seen at the Q output, because Sum is stable by the time the
next positive clock edge occurs. Moving forward to the 180 ns point in time, Sum = 0100,
and this value is clocked into the register. The adder produces the new sum 0101. Then at
200 ns Data is changed to 0010, which causes the sum to change to 0100 + 0010 = 01 10.

At the next positive clock edge, Q is set to 01 10; the value Sum = 0101 that was present
temporarily in the circuit is not observed at the Q output. The circuit continues to add 0 0 1 ~
to the Q output at each successive positive clock edge.

Having simulated the behavior of the circuit, we should consider whether or not we
can conclude with some certainty that the circuit works properly. Ideally, it is prudent to
test all possible combinations of a circuit's inputs before declaring that it works as desired
However, in practice such testing is often not feasible because of the number of input
combinations that exist. For the circuit in Figure 7.42, we could verify that a correct sum
is produced by the adder, and we could also check that each of the four flip-flops in the
register properly stores either 0 or 1. We will discuss issues associated with the testing of
circuits in Chapter 1 1.

For the circuit in Figure 7.42 to work properly, the following timing constraints must
be met. When the register is clocked by a positive clock edge, a change of signal value
at the register's output must propagate through the feedback path to the datab input of the
adder. The adder then produces a new sum, which must propagate to the data input of the
register. For the chip used to implement the circuit, the total delay incurred is 14 ns. The
delay can be broken down as follows: It takes 2 ns from when the register is clocked until
a change in its output reaches the datab input of the adder. The adder produces a new sum
in 8 ns, and it takes 4 ns for the sum to propagate to the register's data input. In Figure 7.43
the clock period is 40 ns. Hence after the new sum arrives at the data input of the register,
there remain 40 - 14 = 26 ns until the next positive clock edge occurs. The data input
must be stable for the amount of the setup time, t,,, = 3 ns, before the clock edge. Hence
we have 26 - 3 = 23 ns to spare. The clock period can be decreased by as much as 23 ns,
and the circuit will still work. But if the clock period is less than 40 - 23 = 17 ns, then
the circuit will not function properly. Of course, if a different chip were used to implement
the circuit, then different timing results would be produced. CAD systems provide tools
that can automatically determine the minimum allowable clock period for which a circuit
will work correctly, The tutorial in Appendix C shows how this is done using the tools that
accompany the book.

7.1 3.2 REGISTERS AND COUNTERS IN VHDL CODE

The predefined subcircuits in the LPM library can be instantiated in VHDL code. Figure
7.44 instantiates the lpm-shiftreg module, which is an n-bit shift register. The module's
parameters are set using the GENEFUC MAP construct, as shown. The GENERIC MAP
construct is similar to the PORT MAP construct that is used to assign signal names to the
ports of a subcircuit. GENERIC MAP is used to assign values to the parameters of the
subcircuit. The number of flip-flops in the shift register is set to 4 using the parameter
LPM-WIDTH => 4. The module can be configured to shift either left or right. The
parameter LPM-DIRECTION => RIGHT sets the shift direction to be from the left to

the right. The code uses the module's asynchronous active-high clear input, aclr, and the
active-high parallel-load input, load, which allows the shift register to be loaded with the
parallel data on the module's data input. When shifting takes place, the value on the shifrin
input is shifted into the left-most flip-flop and the bit shifted out appears on the right-most

7.13 USING REGISTERS AND COUNTERS WITH CAD TOOLS

LIBRARY ieee ;
USE ieee.std-logic-l l @.all ;
LIBRARY Ipm ;
USE Ipm.~pm_components.all ;

ENTITY shift IS
PORT (Clock : IN STD- LOGIC ;

Reset : IN STD-LOGIC ;
Shiftin, Load : IN STD-LOGIC ;
R : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ;
Q : OUT STD-LOGIC-VECTOR(3 DOWNTO 0)) ;

END shift ;

ARCHITECTURE Structure OF shift IS
BEGIN

instance: lpm-shiftreg
GENERIC MAP (LPM-WIDTH => 4, LPMDIRECTION => "RIGHT")
PORT MAP (data => R, clock => Clock, aclr => Reset,

load => Load, shiftin => Shiftin, q => Q) ;
END Structure ;

Figure 7.44 Instantiation of the lpm-shiftreg module.

bit of the q parallel output. The code uses the named association, described in section 5.5.2,
to connect the input and output signals of the shift entity to the ports of the module. For
example, the R input signal is connected to the module's data port. When translated into a
circuit, the Ipm-shiftreg has the structure shown in Figure 7.19.

Predefined modules also exist for various types of counters, which are commonly
needed in logic circuits. An example is the lpm-counter module, which is a variable-width
counter with parallel-load inputs.

7.1 3.3 USING VHDL SEQUENTIAL STATEMENTS FOR REGISTERS AND

COUNTERS

Rather than instantiating predefined subcircuits for registers, shift registers, counters, and
the like, the circuits can be described in VHDL using sequential statements. Figure 7.39
gives code for a D flip-flop. A straightforward way to describe an n-bit register is to write
hierarchical code that includes n instances of the D flip-flop subcircuit. A simpler approach
IS shown in Figure 7.45. It uses the same code as in Figure 7.39 except that the D input
and Q Output are defined as multibit signals. The code represents an eight-bit register with
asynchronous clear.

C H A p T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSO~

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY reg8 IS
PORT (D : IN STD-LOGIC-VECTOR(7 DOWNTO 0) ;

Resetn, Clock : IN STD-LOGIC ;

Q : OUT STD-LOGIC-VECTOR(7 DOWNTO 0)) ;
END reg8 ;

ARCHTTECTURE Behavior OF reg8 IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= "00000000" ;

ELSIF Clock'EVENT AND Clock = ' 1 ' THEN
Q < = D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.45 Code for an eight-bit register with asynchronous clear.

7.6 AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits,
it is advantageous to define a register entity for which the number of flip-flops can be
easily changed. Figure 7.46 shows how the code in Figure 7.45 can be extended to include
a parameter that sets the number of flip-flops. The parameter is an integer, N, which is
defined using the VHDL construct called GENERIC. The value of N is set to 16 using the
:= assignment operator. By changing this parameter, the code can represent a register of
any size. If the register is declared as a component, then it can be used as a subcircuit in
other code. That code can either use the default value of the GENERIC parameter or else
specify a different parameter using the GENERIC MAP construct. An example showing
how GENERIC MAP is used is shown in Figure 7.44.

The D and Q signals in Figure 7.46 are defined in terms of N. The statement that resets
a11 the bits of Q to 0 uses the odd-looking syntax Q <= (OTHERS => '0'). For the default
value of N = 16, this statement is equivalent to the statement Q c= "00000000000000~~"~
The (OTHERS = > ' 0 ') syntax results in a '0' digit being assigned to each bit of Q, regardless
of how many bits Q has. It allows the code to be used for any value of N , rather than only
for N = 16.

7-7 A FOUR-BIT SHIFT REGISTER Assume that we wish to write VHDL code that represents
the four-bit shift register in Figure 7.19. One approach is to write hierarchical code bat
uses four subcircuits. Each subcircuit consists of a D flip-flop with a 240-1 rnu1tip1exer
connected to the D input. Figure 7.47 defines the entity named m u d f , which represents
this subcircuit. The two data inputs are named and D l , and they are selected using the

7.13 USING REGISTERS AND COUNTERS WITH CAD TOOLS

LIBRARY ieee ;
USE ieee.stdlogic-l164.all ;

ENTITY regn IS
GENERIC (N : INTEGER := 16) ;
PORT (D : IN STllLOGIC-VECTOR(N- 1 DOWNTO 0) ;

Resetn, Clock : IN STD-LOGIC ;
Q : OUT STD-LOGIC-VECTOR(N- 1 DOWNTO 0)) ;

END ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= (OTHERS => '0') ;

ELSIF Clock'EVENT AND Clock = ' 1 ' THEN
Q - c = D ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.46 Code for an n-bit register with asynchronous clear.

LIBRARY ieee ;
USE ieee.std_logic-l164,all ;

ENTITY muxdff IS
PORT (DO, Dl , Sel, Clock : IN STD-LOGIC ;

Q : OUT STDLOGIC) ;
END muxdff; ::

ARCHITECTURE Behavior OF muxdff IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock' EVENT AND Clock = ' 1' ;
IF Sel = '0' THEN

Q < = D O ;
ELSE

Q <= Dl ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.47 Code for a D flip-flop with a 2-10-1 multiplexer on the D
input.

C H A P t E. 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR g 7

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY shift4 IS
PORT (R : IN STDLOGIC-VECTOR(3 DOWNTO 0) ;

L, w, Clock : IN STD-LOGIC ;
Q : BUFFER STDLOGIC-VECTOR(3 DOWNTO 0)) ;

END shift4 ;

ARCHITECTURE Structure OF shift4 IS
COMPONENT muxdff

PORT (DO. Dl, Sel, Clock : IN STDLOGIC ;
Q : OUT STDLOGIC) ;

END COMPONENT ;
BEGIN

Stage3: muxdff PORT MAP (w, R(3), L, Clock, Q(3)) ;
Stage2: muxdff PORT MAP (Q(3), R(2), L, Clock, Q(2)) ;
Stage1 : muxdff PORT MAP (Q(2), R(1), L, Clock, Q(l)) ;
StageO: muxdff PORT MAP (Q(1), R(O), L, Clock, Q(0)) ;

END Structure ;

Figure 7.48 Hierarchical code for a four-bit shih register.

Sel input. The process statement specifies that on the positive clock edge if Sel = 0, then
Q is assigned the value of Do; otherwise, Q is assigned the value of D l .

Figure 7.48 defines the four-bit shift register. The statement labeled Stage3 instantiates
the left-most flip-flop, which has the output Q3, and the statement labeled StageO instantiates
the right-most flip-flop, Qo. When L = 1, it is loaded in parallel from the R input, and when
L = 0, shifting takes place in the left to right direction. Serial data is shifted into the
most-significant bit, Q3, from the w input.

'-8 ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 7.49. The lines of code are numbered for ease
of reference. Instead of using subcircuits, the shift register is described using sequential
statements. Due to the WAIT UNTIL statement in line 13, any signal that is assigned a
value inside the process has to be implemented as the output of a flip-flop. Lines 14 and
15 specify the parallel loading of the shift register when L = 1. The ELSE clause in lines
16 to 20 specifies the shifting operation. Line 17 shifts the value of Q , into the flip-flop
with the output Qo. Lines 18 and 19 shift the values of Q2 and Q3 into the flip-flops with
the outputs Q, and Q2, respectively. Finally, line 20 shifts the value of into the left-most
flip-flop, which has the output Q3. Note that the process semantics, described in section
6.6-6, stipulate that the four assignments in lines 17 to 20 are scheduled to occur only after
all of the statements in the process have been evaluated. Hence all four flip-flops change
their values at the same time, as required in the ahift register. The code generates the same
shift-register circuit as the code in Figure 7.48.

7.1 3 USING REGISTERS AND COUNTERS WITH CAD TOOLS

1 LIBRARY ieee ;
2 USE ieee.std-logic-l164.all ;

3 ENTITY shift4 IS

4 PORT (R : IN STllLOGTC-VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD-LOGIC ;
6 L , w : IN STD-LOGIC ;
7 Q : BUFFER STD-LOGIC-VECTOR(3 DOWNTO 0)) ;
g END shift4 ;

ARCHITECTURE Behavior OF shift4 IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock'EVENT AND Clock = ' 1' ;
IF L = '1' THEN

Q < = R ;
ELSE

Q(0) <= Q(1) ;
Q(1) <= Q(2);
Q(2) <= Q(3) ;
Q(3) <= w ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.49 Alternative code for a shift register.

It is instructive to consider the effect of reversing the ordering of lines 17 through 20
in Figure 7.49, as indicated in Figure 7.50. In this case the first shift operation specified
in the code, in line 17, shifts the value of w into the left-most flip-flop with the output Q3.

Due to the semantics of the process statement, the assignment to Q, does not take effect
until all of the subsequent statements inside the process are evaluated. Hence line 18 shifts
the present value of Q,, before it is changed as a result of line 17, into the flip-flop with the
Output QZ. Similarly, lines 19 and 20 shift the present values of Q2 and Q, into the flip-flops
With the outputs QI and Q,, respectively. The code produces the same circuit as it did with
the ordering of the statements in Figure 7.49.

N-mSHICl R E O I m R Figure 7.5 1 shows code that can be used to represent shift registers
Of size. The GENERIC parameter N, which has the default value 8 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 7.49 with two exceptions.

R and Q are defined in terms of N. Second, the ELSE clause that describes the shifting
Operation is generalized to work for any number of flip-flops.

1 LIBRARY ieee ;
2 USE ieee-std-logic-l164.alI ;

3 ENTITY shift4 IS
4 PORT (R : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ;
5 Clock : IN STD-LOGIC ;
6 L, w : IN STD-LOGIC ;
7 Q : BUFFER STD-LOGIC-VECTOR(3 DOWNTO 0)) ;
8 END shift4 ;

ARCHITECTURE Behavior OF shift4 IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock'EVENT AND Clock = '1' ;
IF L = '1' THEN

Q <= R ;
ELSE

Q(3) <= w ;
Q(2) <= Q(3) ;
Q(1) <= Q(2);
Q(0) <= Q(1) ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.50 Code that reverses the ordering of statements in Figure 7.49.

Lines 18 to 20 specify the shifting operation for the right-most N - 1 flip-flops, which
have the outputs QNm2 to Qo. The construct used is called a FOR LOOP. It is similar to the
FOR GENERATE statement, introduced in section 6.6.4, which is used to generate a set of
concurrent statements. The FOR LOOP is used to generate a set of sequential statements.
The first loop iteration shifts the present value of Q, into the flip-flop with the output Qo.
The next loop iteration shifts Q2 into the flip-flop with the output Q , , and so on, with the
final iteration shifting Q N l into the flip-flop with the output Q,-,. Line 21 completes the
shift operation by shifting the value of the serial input w into the left-most flip-flop with the
output QN - 1.

10 UP-COUNTER Figure 7.52 shows the code for a four-bit up-counter that has a reset input!
Resetn, and an enable input, E. In the architecture body the flip-flops in the counterge
represented by the signal named Count. The process statement specifies an asynchronous
reset of Count if Resetn = 0. The ELSIF clause specifies that on the positive clock edge.
if E = 1, the count is incrernented. If E = 0, the code explicitly assigns Count <= Count'

7.1 3 USING REGISTERS AND COUNTERS WI'hI CABTOOLS

I LIBRARY ieee ;
2 USE ieee.std-logic-1164.all ;

ENTITY shiftn IS
GENERIC (N : INTEGER : = 8) ;

1

4
5 PORT (R : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ;

6 Clock : IN STD-LOGIC ;

7 L, w : IN STD-LOGIC ;

8 Q : BUFFER STD-LOGIC-VECTOR(N- I DOWNTO 0)) ;
9 END shiftn ;

ARCHITECTURE Behavior OF shiftn IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock'EVENT AND Clock = ' 1' ;
IF L = '1 ' THEN

Q < = R ;
ELSE

Genbits: FOR i IN 0 TO N-2 LOOP
Q(i> <= Q(i + 1) ;

END LOOP ;
Q(N-1) <= w ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.51 Code for an n-bit left-to-right shift register.

This statement is not required to correctly describe the counter, because of the implied
memory semantics, but i t may be included for clarity. The Q outputs are assigned the value
of Count at the end of the code. The code produces the circuit shown in Figure 7.23 if the
VHDL compiler opts to use T flip-flops, and it generates the circuit in Figure 7.24 (with the
"Set input added) if the compiler chooses D flip-flops.

U S I N ~ INTEGER SIGNAW IN A COUNTER Counters are often defined in VHDL using Ex4
INTEGER type, which was introduced in section 5.5.4. The code in Figure 7.53 defines

an UPcounter that has a parallel-load input in addition to a reset input. The parallel data,
R y as Well as the counter's output, Q, are defined using the INTEGER type. Since they
have range from 0 to 15, both of these signals represent four-bit quantities. In Figure

7'52 the signal Count is defined to represent the flip-flops in the counter. This signal is not

LIBRARY ieee ;
USE ieee.std_logic-ll64.all ;
USE ieee.std1ogic-unsigned.al1 ;

ENTITY upcount IS
PORT (Clock, Resetn, E : IN STD-LOGIC ;

Q : OUT STD-LOGIC-VECTOR (3 DOWNTO 0)) .
END upcount ;

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD-LOGIC-VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS (Clock, Resetn)
BEGIN

IF Resetn = '0' THEN
Count <= "0000" ;

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN
IF E = ' I ' THEN

Count <= Count + 1 ;
ELSE

Count <= Count ;
END IF ;

END IF ;
END PROCESS ;
Q <= Count ;

END Behavior ;

Figure 7.52 Code for a four-bit up-counter.

needed if the Q outputs have the BUFFER mode, as shown in Figure 7.53. The if-then-else
statement at the beginning of the process includes the same asynchronous reset as in Figure
7.53. The ELSIF clause specifies that on the positive clock edge, if L = 1 , the flip-flops in
the counter are loaded in parallel from the R inputs. If L = 0, the count is incremented.

7.1 2 DOWN-COUNTER Figure 7.54 shows the code for a down-counter named downcnt. TO
make it easy to change the starting count, i t is defined as a GENERIC parameter named
VZodulus. On the positive clock edge, if L = 1, the counter is loaded with the value
VZodulus- 1 , and if L = 0, the count is decremented. The counter also includes an enable
input, E. Setting E = 1 allows the count to be decremented when an active clock edge
occurs.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY upcount IS
PORT (R : IN INTEGER RANGE 0 TO 15 ;

Clock, Resetn, L : IN STD-LOGIC ;
Q : BUFFER INTEGER RANGE 0 TO 15) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

PROCESS (Clock, Resetn)
BEGIN

IF Resetn = '0' THEN
Q < = O ;

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN
IF L = '1 ' THEN

Q < = R ;
ELSE

Q < = Q + l ;
END IF;

END IF;
END PROCESS;

END Behavior;

Figure 7.53 A four-bit counter with load, using INTEGER signals.

This section presents two examples of digital systems that make use of some of the building
blocks described in this chapter and in Chapter 6.

7.14.1 Bus STRUCTURE

Digital systems often contain a set of registers used to store data. Figure 7.55 gives an
example of a system that has k n-bit registers, R1 to Rk. Each register is connected to a

set of n wires, which are used to transfer data into and out of the registers. This
set of wires is usually called a bus. In addition to registers, in a real system other

of circuit blocks would be connected to the bus. The figure shows how n bits of data
can be placed on the bus from another circuit block, using the control input Extern. The
data stored in any of the registers can be transferred via the bus to a different register or to
another circuit block that is connected to the bus.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;

ENTITY downcnt IS
GENERIC (modulus : INTEGER : = 8) ;
PORT (Clock, L, E : IN STD-LOGIC ;

Q : OUT INTEGER RANGE 0 TO modulus- 1) ;
END downcnt ;

ARCHITECTURE Behavior OF downcnt IS
SIGNAL Count : INTEGER RANGE 0 TO modulus- 1 ;

BEGIN
PROCESS
BEGIN

WAIT UNTIL (Clock'EVENT AND Clock = ' 1 ') ;
IF L = '1' THEN

Count < = modulus- 1 ;
ELSE

IF E = '1' THEN
Count <= Count- 1 ;

END IF ;
END IF ;

END PROCESS;
Q <= Count ;

END Behavior ;

Figure 7.54 Code for a down-counter.

It is essential to ensure that only one circuit block attempts to place data onto the bus
wires at any given time. In Figure 7.55 each register is connected to the bus through an n-bit
tri-state buffer. A control circuit is used to ensure that only one of the tri-state buffer enable
inputs, RI, , , , . . . , Rk,,,, is asserted at a given time. The control circuit also produces the
signals R lin, . . . , Rkin, which control when data is loaded into each register. In general, the
control circuit could perform a number of functions, such as transferring the data stored in
one register into another register and the like. Figure 7.55 shows an input signal named
Function that instructs the control circuit to perform a particular task. The control circuit is
synchronized by a clock input, which is the same clock signal that controls the k registers.

Figure 7.56 provides a more detailed view of how the registers from Figure 7.55 can
be connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the
same scheme can be used for larger registers. For register R1, two tri-state buffers enabled
by Rl,,, are used to connect each flip-flop output to a wire in the bus. The D input On
each flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in.

If R l , , = 0. the flip-flops are loaded from their Q outputs; hence the stored data does
not change. But if Rlin = 1 , data is loaded into the flip-flops from the bus. instead of
using multiplexers on the flip-flop inputs, one muld attempt to connect the D inPu ts on

1 Data

Bus

Figure 7.55 A digital system with k registers.

V

the flip-flops directly to the bus. Then it is necessary to control the clock inputs on all
flip-flops to ensure that they are clocked only when new data should be loaded into the
register. This approach is not good because it may happen that different flip-flops will be
clocked at slightly different times, leading to a problem known as clock skew. A detailed
discussion of the issues related to the clocking of flip-flops is provided in section 10.3.

The system in Figure 7.55 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
the bus. As a simple example, consider a system that has three registen, R l , R2, and R3.
Each register is connected to the bus as indicated in Figure 7.56. We will design a control
circuit that performs a single function-it swaps the contents of registers R 1 and R2, using
R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
the contents of R2 are transferred into R3. Then the contents of R 1 are transferred into

R2* Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. Note that we say that the contents of one register, Ri, are "transferred" into another
register, Rj- This jargon is commonly used to indicate that the new contents of Rj will be
a of the contents of R, . The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of R, are "copied into R,.

Lb
-

L l
-

L 77
-

Rk
--C

-77 -
R2

--C

77

I I
- >

R I

1 1 ,
. . I I

Rkout

>
Control circuit

Function

R2out ' k i n

. .
Rlin Rlout ''in

L

Using a Shift Register for Control
There are many ways to design a suitable control circuit for the swap operation. One

P
,,,ibility is to use the left-to-right shift register shown in Figure 7.57. Assume that the

,,t input is used to clear the flip-flops to 0. Hence the control signals Rlin, Rlou,, and so
,, are not asserted, becau\e the shift register outputs have the value 0. The serial input w

has the value 0. We assume that changes in the value of w are synchronized to
occur shortly after the active clock edge. This assumption is reasonable because w would
normally be generated as the output of some circuit that is controlled by the same clock
signal. When the desired swap should be performed, w is set to 1 for one clock cycle, and

I
then w returns to 0. After the next active clock edge, the output of the left-most flip-flop
becomes equal to 1, which asserts both R2,,, and R3,,. The contents of register R2 are
placed onto the bus wires and are loaded into register R3 on the next active clock edge,
This clock edge also shifts the contents of the shift register, resulting in R I,,, = R&, = I ,
Note that since w is now 0, the first flip-flop is cleared, causing R2,,, = R3,, = 0. The
content5 of R l are now on the bus and are loaded into R2 on the next clock edge. After this

edge the shift register contains 001 and thus asserts R3,,,, and Rlin . The contents of
R3 are now on the bus and are loaded into R1 on the next clock edge.

Using the control circuit in Figure 7.57, when w changes to 1 the swap operation does
I

not begin until after the next active clock edge. We can modify the control circuit so that
it starts the swap operation in the same clock cycle in which w changes to 1. One possible
approach is illustrated in Figure 7.58. The reset signal is used to set the shift-register
contents to 100, by presetting the left-most flip-flop to 1 and clearing the other two flip-
flops. As long as w = 0, the output control signals are not asserted. When w changes to 1,
the signals R2,,, and R3,, are Immediately asserted and the contents of R2 are placed onto
the bus. The next active clock edge loads this data into R3 and also shifts the shift register
contents to 010. Since the signal Rl,, is now asserted, the contents of R1 appear on the
bus. The next clock edge loads this data into R2 and changes the shift register contents to
001. The contents of R3 are now on the bus; this data is loaded into R l at the next clock
edge, which also changes the shift register contents to 100. We assume that w had the value
1 for only one clock cycle; hence the output control signals are not asserted at this point.

Reset 1 1

Figure 7.57 A shift-register control circuit.

Figure 7.59 A modified version of the circuit in Figure 7.58.

C H A P T E R f FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR

R2,Ut R3in Rlout 1 i,,

It may not be obvious to the reader how to design a circuit such as the one in Figure 7%
because we have presented the design in an ad hoc fashion. In section 8.3 we will show
how this circuit can be designed using a more formal approach.

The circuit in Figure 7.58 assumes that a preset input is available on the left-most
flip-flop. If the flip-f op has only a clear input, then we can use the equivalent circuit
shown in Figure 7.59. In this circuit we use the Q output of the left-most flip-flop and also
complement the input to this flip-flop by using a NOR gate instead of an OR gate.

*

Reset -
W

n
I

D P Q + - ~) =
-

Clock a
7

--

PI
-

D Q
-

3 Q
V

-

a

-\

U

-

Figure 7.58 A modified control circuit.

- 1 3

-
, Q

Q--o

Using a Multiplexer to Implement a Bus
In Figure 7.55 we used tri-state buffers to control access to the bus. An alternative

aPP
roach is to use multiplexers, as depicted in Figure 7.60. The outputs of each register

iue connected to a multiplexer. This multiplexer's output is connected to the inputs of the
thus realizing the bus. The multiplexer select inputs determine which register's

contents appear on the bus. Although the figure shows just one multiplexer symbol, we
actually need one multiplexer for each bit in the registers. For example, assume that
*ere are 4 eight-bit registers, R1 to R4, plus the externally-supplied eight-bit Data. To
interconnect them, we need eight 5-to-1 multiplexers. In Figure 7.57 we used a shift
register to implement the control circuit. A similar approach can be used with multiplexers.
The signals that control when data is loaded into a register, like Rlin, can still be connected
directly to the shift-register outputs. However, instead of using control signals like RlOu, , place the contents of a register onto the bus, we have to generate the select inputs for the

One way to do so is to connect the shift-register outputs to an encoder circuit
that produces the select inputs for the multiplexer. We discussed encoder circuits in sec-
tion 6.3.

The tri-state buffer and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as most PLDs, do not contain a sufficient number
of tri-state buffers to realize even moderately large buses. In such chips the multiplexer-
based approach is the only practical alternative. In practice, circuits are designed with CAD
tools. If the designer describes the circuit using tri-state buffers, but there are not enough
such buffers in the target device, then the CAD tools automatically produce an equivalent
circuit that uses multiplexers.

Bus

LL

\7
b t7

R 1 ,,-
R1

I

I
Data

J

7.60 Using multiplexerr to implement a bus.

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE P R O C E S S O ~ 7

VHDL Code
This section presents VHDL code for our circuit example that swaps the contents of

two registers, We first give the code for the style of circuit in Figure 7.55 that uses tri+
state buffers t o implement the bus and then give the code for the style of circuit in Figure
7.60 that uses multiplexers. The code is written in a hierarchical fashion. using subcircuits
for the registers, tri-state buffers, and the shift register. Figure 7.6 1 gives the code
an n-bit register of the type in Figure 7.56. The number of bits in the register is set b Y
the generic parameter N , which has the default value of 8. The process that describes lh,
register specifies that if the input Rin = 1, then the flip-flops are loaded from the n-bit input
R, Otherwise, the flip-flops retain their presently stored values. The circuit synthesized
from this code has a 2-to- 1 multiplexer controlled by Rin connected to the D input on each
flip-flop, as depicted in Figure 7.56.

Figure 7.62 gives the code for a subcircuit that represents n tri-state buffers, each
enabled by the input E. The number of buffers is set by the generic parameter N , The
inputs to the buffers are the n-bit signal X , and the outputs are the n-bit signal F. The
architecture uses the syntax (OTHERS = > '2 ') to specify that the output of each buffer is
set to the value Z if E = 0; otherwise, the output is set to F = X .

Figure 7.63 provides the code for a shift register that can be used to implement the
control circuit in Figure 7.57. The number of flip-flops is set by the generic parameter K ,
which has the default value of 4. The shift register has an active-low asynchronous reset
input. The shift operation is defined with a FOR LOOP in the style used in Example 7.9.

LIBRARY ieee ;
USE ieee.std_logic-l164.all ;

ENTITY regn IS
GENERIC (N : INTEGER : = 8) ;
PORT (R : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ;

Rin, Clock : IN STD-LOGIC ;
Q : OUT STD-LOGIC-VECTOR(N- 1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS
BEGIN

WAIT UNTIL Clock7EVENT AND Clock = ' 1 ' ;
IF Rin = '1' THEN

Q < = R ;
END IF ;

END PROCESS ;
END Behavior ;

Figure 7.61 Code for an n-bit register of the type in Figure 7.56.
.)

of
ri-
re
its
or

3Y

he
'Ut

ed
ch

c h
he
he
is

he
K ,
;et

LIBRARY ieee ;
USE ieee-std-logic-l164.all ;

ENTITY trin IS
GENERIC (N : INTEGER := 8) ;
PORT (X : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ;

E : IN STD-LOGIC ;
F : OUT STD-LOGIC-VECTOR(N- 1 DOWNTO 0)) ;

END trin ;

ARCHITECTURE Behavior OF trin IS
BEGIN

F <= (OTHERS => '2') WHEN E = '0' ELSE X ;
END Behavior ;

Figure 7.62 Code for an n-bit tri-state buffer.

LIBRARY ieee ;
USE ieee.std~logic~l164.all ;

ENTITY shiftr IS - - left-to-right shift register with async reset
GENERIC (K : INTEGER := 4) ;
PORT (Resetn, Clock, w : IN STD-LOGIC ;

Q : BUFFER STD-LOGIC-VECTOR(1 TO K)) ;
END shiftr ;

ARCHITECTURE Behavior OF shiftr IS
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN
Q <= (OTHERS => '0') ;

ELSIF Clock'EVENT AND Clock = ' 1' THEN
Genbits: FOR i IN K DOWNTO 2 LOOP

Q(i) <= Q(i-1) ;
END LOOP ;
Q(l) <= w ;

END IF ;
END PROCESS ;

END Behavior ;

Figure 7.63 Code for the shift register in Figure 7.57.

k
C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSO~

To use the entities in Figures 7.61 through 7.63 as subcircuits, we have to provide
component declarations for each one. For convenience, we placed these declarations inside
a single package, named components, which is shown in Figure 7.64. This package is
in the code given in Figure 7.65. It represents the digital system in Figure 7.55 witl,
eight-bit registers, R1, R2, and R3.

The circuit in Figure 7.55 includes tri-state buffers that are used to place n bits of
externally supplied data on the bus. In the code in Figure 7.65, these buffers are instantiated
in the statement labeled tri-ext. Each of the eight buffers is enabled by the input signal
Ertern, and the data inputs on the buffers are attached to the eight-bit signal Data. when
Ertern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The Buswires port represents the circuit's output. This port has the modi:

INOUT, which is required because Buswires is connected to the outputs of tri-state buffers
and these buffers are connected to the inputs of the registers.

We assume that a three-bit control signal named RinExt exists, which is used to allow
the externally supplied data to be loaded from the bus into registers R1, R2, or R3. The

LIBRARY ieee ;
USE ieee.stdJogic-l164.all ;

PACKAGE components IS

COMPONENT regn - - register
GENERIC (N : INTEGER := 8) ;
PORT (R : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ;

Rin, Clock : IN STD-LOGIC ;
Q : OUT STD-LOGIC-VECTOR(N- 1 DOWNTO 0)) ;

END COMPONENT ;

COMPONENT shiftr - - left-to-right shift register with async reset
GENERIC (K : INTEGER := 4) ;
PORT (Resetn, Clock, w : IN STD-LOGIC ;

Q : BUFFER STD-LOGIC-VECTOR(1 TO K)) ;
END component ;

COMPONENT trin - - tri-state buffers
GENERIC (N : INTEGER := 8) ;
PORT (X : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ;

E : IN STD-LOGIC ;
F : OUT STD-LOGIC-VECTOR(N- 1 DOWNTO 0)) ;

END COMPONENT ;

END components ;

Figure 7.64 Package and component declarations.

LIBRARY ieee ;
USE ieee.std-logic-l164.all ;
USE work.components.all ;

ENTITY swap IS
PORT (Data : IN STD-LOGIC-VECTOR(7 DOWNTO 0) ;

Resetn, w : IN STD-LOGIC ;
Clock, Extern : IN STD-LOGIC :
RinExt : IN STD-LOGTC-VECTOR(1 TO 3) ;
BusWires : INOUT STD-LOGIC-VECTOR(? DOWNTO 0)) ;

END swap ;

ARCHITECTURE Behavior OF swap IS
SIGNAL Rin, Rout, Q : STD-LOGIC-VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD-LOGIC-VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K => 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <= RinExt(1) OR Q(3) ;
Rin(2) <= RinExt(2) OR Q(2) ;
Rin(3) <= RinExt(3) OR Q(1) ;
Rout(1) <= Q(2) ; Rout(2) <= Q(l) ; Rout(3) <= Q(3) ;

hi-ext: trin PORT MAP (Data, Extern, BusWires) ;
reg 1: regn PORT MAP (BusWires, Rin(1), Clock. R 1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
tri1: trin PORT MAP (R1, Rout(l), BusWires) ;
tri2: trin PORT MAP (R2, Rout(2), BusWires) ;
tri3: trin PORT MAP (R3, Rout(3), BusWires) ;

END Behavior ;

Figure 7.65 A digital system like the one in Figure 7.55.

RinExt input is not shown in Figure 7.55, to keep the figure simple, but it would be generated
by the same external circuit block that produces Exrern and Data. When RinExl(1) = 1 ,
the data on the bus is loaded into register R1; when RinExt(2) = 1, the data is loaded into
m; and when R i n E ~ (3) = 1, the data is loaded into R3.

In Figure 7.65 the three-bit shift register is instantiated in the statement labeled control.
The outputs of the shift register are the three-bit signal Q. The next three statements connect
9 '0 the control signals that determine when data is loaded into each register, which are
represented by the three-bit signal Rin. The signals Rin(l) , Rin(2), and Rin(3) in the
'Ode correspond to the signals Rl;,!, R26,, and R3* in Figure 7.55. As specified in Figure
7.57, the left-most shift-register output, Q(l), controls when data is loaded into register R3.

E H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR f 7

Similarly, Q(2) controls register R2, and Q (3) controls R1. Each bit in Rin is ORed with the
corresponding bit in RinExt so that externally supplied data can be stored in the registers
as discussed above. The code also connects the shift-register outputs to the enable inputs,
called Rout, on the tri-state buffers that connect the registers to the bus. Figure 7.57 shows
that Q(l) is used to put the contents of R2 onto the bus: hence Rout(2) is assigned the value
of Q(1 1. Similarly, ~ o u t (1) is assigned the value of Q(2), and Rout(3) is assigned the value
of Q(3) . The remaining statements in the code instantiate the registers and tri-state buffers
in the system.

VHDL Code Using Multiplexers
Figure 7.66 shows how the code in Figure 7.65 can be modified to use multiplexers

instead of tri-state buffers. Using the circuit structure shown in Figure 7.60, the bus is
implemented using eight 4-to- I multiplexers. Three of the data inputs on each 4-to-l
multiplexer are connected to one bit from registers R1, R2, and R3. The fourth data input is
connected to one bit of the Duta input signal to allow externally supplied data to be written

-

into the registers. When the shift register's contents are 000, the multiplexers select Data
to be placed on the bus. This data is loaded into the register selected by RinExt. It is loaded
into R1 if RinExt(1) = 1, R2 if RinExt(2) = 1, and R3 if RinExt(3) = 1.

The Rout signal in Figure 7.65, which is used as the enable inputs on the tri-state buffers
connected to the bus, is not needed for the multiplexer implementation. Instead, we have
to provide the select inputs on the multiplexers. In the architecture body in Figure 7.66,
the shift-register outputs are called Q. These signals are used to generate the Rirz control
signals for the registers in the same way as shown in Figure 7.65. We said in the discussion
concerning Figure 7.60 that an encoder is needed between the shift-register outputs and the
multiplexer select inputs, A suitable encoder is described in the selected signal assignment
labeled encoder. It produces the multiplexer select inputs, which are named S . It sets
S = 00 when the shift register contains 000, S = 10 when the shift register contains 100,
and so on, as given in the code. The multiplexers are described by the selected signal
assignment labeled muses. This statement places the value of Data onto the bus (Bus Wires)
if S = 00, the contents of register R I if S = 0 1, and so on. Using this scheme, when the
swap operation is not active, the multiplexers place the bits from the Data input on the bus.

In Figure 7.66 we use two selected signal assignments, one to describe an encoder and
the other to describe the bus multiplexers. A simpler approach is to use a single selected
signal assignment as shown in Figure 7.67. The statement labeled ,,luxes specifies directly
which signal should appear on Buswires for each pattern of the shift-register outputs. The
circuit synthesized from this statement is similar to an 8-to-1 multiplexer with the three
select inputs connected to the shift-register outputs. However, only half of the multiplexer
circuit is actually generated by the synthesis tools because there are only four data inputs.
The circuit generated from the code in Figure 7.67 is the same as the one generated from
the code in Figure 7.66.

Figure 7.68 gives an example of a timing simulation for a circuit synthesized from the
code in Figure 7.67. In the first half of the simulation, the circuit is reset, and the contents
of registers R1 and R2 are initialized. The hex value 55 is loaded into R1, and the value AA
is loaded into R2. The clock edge at 275 ns, marked by the vertical reference line in Figure
7.68, loads the value w = 1 into the shift register. The contents of R2 (AA) then appearon

LIBRARY ieee ;
USE ieee.std_logic-l164.all ;
USE work.components.all ;
ENTITY swapmux IS

PORT (Data : IN STD- LOGIC-VECTOR(7 DOWNTO 0) ;
Resetn, w : IN STD-LOGIC ;
Clock : IN STD- LOGIC ;
RinExt : I N STD- LOGIC-VECTOR(1 TO 3) ;
BusWires : BUFFER STD-LOGIC-VECTOR(7 DOWNTO 0)) ;

END swapmux ;

ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD-LOGIC-VECTOR(1 TO 3) ;
SIGNAL S : STD-LOGIC-VECTOR(1 DOWNTO 0) ;
SIGNAL R 1 , R2, R3 : STD-LOGIC-VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K => 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <= RinExt(1) OR Q(3) ;
Rin(2) <= RinExt(2) OR Q(2) ;
Rin(3) <= RinExt(3) OR Q(l) ;

regl: regn PORT MAP (BusWires, Rin(l), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
encoder:
WITH Q SELECT

S <= "00" WHEN "OOO",
"10" WHEN "100",
"01" WHEN "01 O",
" 1 1" WHEN OTHERS;

muxes: - -eight 4-to- 1 multiplexers
WITH S SELECT

BusWires <= Data WHEN "OO",
R1 WHEN "01 ",
R2 WHEN " 1 O",
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.66 Using multiplexers to implement a bus.

ARCHITECTURE Behavior OF swapmux IS
SIGNAL Rin, Q : STD-LOGIC-VECTOR(1 TO 3) ;
SIGNAL R1, R2, R3 : STD-LOGIC-VECTOR(7 DOWNTO 0) ;

BEGIN
control: shiftr GENERIC MAP (K => 3)

PORT MAP (Resetn, Clock, w, Q) ;
Rin(1) <= RinExt(1) OR Q(3) ;
Rin(2) < = RinExt(2) OR Q(2) ;
Rin(3) <= RinExt(3) OR Q(l) ;

reg 1: regn PORT MAP (BusWires, Rin(l), Clock, R 1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;

rnuxes:
WITH Q SELECT

BusWires <= Data WHEN "OOO",
R2 WHEN " 1 00",
R1 m N "OlO",
R3 WHEN OTHERS ;

END Behavior ;

Figure 7.67 A simplified version of the architecture in Figure 7.66.

Figure 7.68 Timing simulation for the VHDL code in Figure 7.67.

*

the bus and are loaded into R3 by the clock edge at 325 ns. Following this clock edge, the
ontents of the shift register are 010, and the data stored in R1 (55) is on the bus. The clock

edge at 375 ns loads this data into R2 and changes the shift register to 001. The contents
of ~3 (AA) now appear on the bus and are loaded into R1 by the clock edge at 425 ns, The

register is now in state 000, and the swap is completed.

A second of a digital system like the one in Figure 7.55 is shown in Figure 7.69.
has four n-bit registers, RO, . . . , R3, that are connected to the bus using tri-state buffers.

~ ~ ~ ~ ~ a l data can be loaded into the registers from the n-bit Data input, which is connected
the bus using tri-state buffers enabled by the Extern control signal. The system also

includes an addedsubtractor module. One of its data inputs is provided by an n-bit register,
A, thar is attached to the bus, while the other data input, B, is directly connected to the bus.
~f the Addsub signal has the value 0, the module generates the sum A + B; if AddSub = I,
the module generates the difference A - B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2's complement of B, as
discussed in section 5.3. The register G stores the output produced by the adder/subtractor.
 he A and G registers are controlled by the signals A ,,,. G,,, and G ,,,,.

The system in Figure 7.69 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.2. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
the Load operation the meaning of Rx t Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be RO to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle) to
be completed. The Add and Sub operations require three steps, as follows: In the first step
the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Rv are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

A digital system that performs the types of operations listed in Table 7.2 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w

to 1 . and the control circuit asserts the Done output when the operation is completed.
In Figure 7.55 we used a shift register to implement the control circuit. It is possible

'O use a similar design for the system in Figure 7.69. To illustrate a different approach.
we base the design of the control circuit on a counter. This circuit has to generate the
required control signals in each step of each operation. Since the longest operations (Add
and Sub) need three steps (clock cycles), a two-bit counter can be used. Figure 7.70 shows
a twoh i t up-counter connected to a 2-to-4 decoder. Decoders are discussed in section
6.2. The decoder is enabled at all times by setting its enable (En) input permanently to the

$ Table 7.2 Operations

t in the
processor.

Operation

Clock

Function Performed

Load Rx, Data

Move Rx, Ry

Add Rr , Ry

Sub Rx, Ry

Clear

Rx c Data

fi +- [RY]

Rx + Cfi1-i- [RY]

Jh -+ [fil - [R Y ~

Figure 7.70 A part of the control circuit for the processor.

Yo Y1 Y2 -"3

value 1. Each of the decoder outputs represents a step in an operation. When no operation
is currently being performed, the count value is 00; hence the To output of the decoder is
asserted. In the first step of an operation, the count value is 01, and T1 is asserted. During the
second and third steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps To to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.71 shows that the
Operation is specified with six bits, which form the Function input. The two left-most bits,

= f ~ h , are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes fi fo = 00,01, 10, and 11, respectively. The inputs
RrlRxo are a binary number that identifies the Rx operand, while RylRyo identifies the Ry
Operand. The Function inputs are stored in a six-bit Function Register when the FRi, signal
is asserted.

Figure 7.71 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , &, and Ry inputs. We will see shortly that these decoders are included

A b t
1

L

> Q1 Qo
Up-counter

Reset

Function

Figure 7.71 The function register and decoders.

PI

as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.70 and 7.7 1 form a part of the control circuit. Using the input
w and the signals To, . . . , T3, lo, . . . ? 13, XO, . . . , X3, and Yo, . . . , Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain,
Gout, AddSub, ROin, . . . , R3i,, and ROO,,, . . . , R3,,,. The control circuit also has to generate
the Clear and FRi, signals used in Figures 7.70 and 7.7 1.

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long as w = 0 and no operation is being executed. Also?
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate
logic expression is

Clear = i-7 To + Done

I

The FRi, signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

b t

The rest of the outputs from the control circuit depend on the specific step being
in each operation. The values that have to be generated for each signal are shown in Table
7.3. Each row in the table corresponds to a specific operation, and each column represents

L t
1 1

Clock
FR,, -

b t
1

>
Function Register

t r t t r t

I able 7.3 Control signals asserted in each operation/tirne step.

(Load): lo

1 (Move): II

(Add): I2

(Sub): I3

me time step. The Exrem signal is asserted only in the first step of the b u d operation.
Therefore, the logic expression that implements this signal is

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

T3

Gour Rin = X
Done

Gour , Rrn = X 7
Done

TI

Extem, Ri, = X ,
Done

Ri, = X , Rout = Y ,
Done

Rout = X Ain

A

Rout = X , Ain

Done = (Io + I1)T1 + (12 + 13)T3

T2

Rout = Y , Gzn 7

AddSub = 0

Rout = Y Gin.
AddSub = 1

The A;,, Gi,, , and Go,, signals are asserted in the Add and Sub operations. Ain is asserted in
step TI, Gin is asserted in T2, and Go,, is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (12 + 1 3) T1

Gin = (12 + 13 IT2

Go,, = (12 + 1 3) 573

AddSub = I3

The values of RO,,, . . . , R3i, are determined using either the Xo, . . . , X3 signals or the
Yo, - - . , Y3 signals. In Table 7.3 these actions are indicated by writing either Rjn = X or
Rit~ = Y . The meaning of Rin = X is that ROi,, = Xo, RIin = XI, and so on. Similarly, the
values of RO,,, . . . , R3,,, are specified using either Rout = X or R,,,, = Y .

We will develop the expressions for ROi, and ROO,* by examining Table 7.3 and then
show how to derive the expressions for the other register control signals. The table shows
that RO, is set to the value of Xo in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

c H A p E R 7 FLOP^, REGISTERS, COUNTERS, AND A SIMP- PROCESSOR y

Similarly, ROO., is set to the value of Yo in the first step of Move. It is set to Xo in Ule
first step of Add and Sub and to Yo in the second step of these operations, which gives

The expressions for R l in and Rl,, are the same as those for RO., and ROO., except that
and Y I are used in place of Xo and Yo. The expressions for RZin, R2,,, R3in, and R3,, are
derived in the same way.

The circuits shown in Figures 7.70 and 7.7 1, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.69.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modem microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
11-21.

VHDL Code
In this section we give two different styles of VHDL code for describing the system

in Figure 7.69. The first style uses tri-state buffers to represent the bus, and it gives h e
logic expressions shown above for the outputs of the control circuit. The second style of
code uses multiplexers to represent the bus, and it uses CASE statements that correspond
to Table 7.3 to describe the outputs of the control circuit.

VHDL code for an up-counter is shown in Figure 7.52. A modified version of this
counter, named upcount, is shown in the code in Figure 7.72. It has a synchronous reset
input, which is active high. In Figure 7.64 we defined the package named conzponents,
which provides component declarations for a number of subcircuits. In the VHDL code for
the processor, we will use the regn and trin components listed in Figure 7.64, but not the
shiftr component. We created a new package called subccts for use with the processor. The
code is not shown here, but it includes component declarations for regn (Figure 7.61), trin
(Figure 7.62), upcaunt, and dec2to4 (Figure 6.30).

Complete code for the processor is given in Figure 7.73. In the architecture body, the
statements labeled counter and decrinstantiate the subcircuits in Figure 7.70. Note that we
have assumed that the circuit has an active-high reset input, Reset, which is used to initialize
the counter to 00. The statement Func <= F & Rx & Ry uses the concatenate operator to
create the six-bit signaI Func, which represents the inputs to the Function Register in Figure
7.71. The next statement instantiates the Function Register with the data inputs Func and
the outputs FuncReg. The statements labeled decI, decX, and decY instantiate the decoders
in Figure 7.71. Following these statements the previously derived logic expressions for
the outputs of the control circuit are given. For ROin, . . . , R3i,l and ROO,,, . . . , R30uty a
GENERATE statement is used to produce the expressions.

At the end of the code, the tri-state buffers and registers in the processor are instantiated,
and the addedsubtractor module is described using a selected signal assignment.

Using Multiplexers and CASE Statements
We showed in Figure 7.60 that a bus can be implemented using multiplexers, rather than

tri-state buffers. VHDL code that describes the processor using this approach is shown in
*

LIBRARY ieee ;
USE ieee.std1ogic-l164.all ;
USE ieee-std-logic-~nsigned.~ll ;

ENTITY upcount IS
PORT (Clear, Clock : IN STD-LOGIC ;

Q : BUFFER STILLOGIC-VECTOR(1 DOWNTO 0)) ;

END upcount ;

ARCHITECTURE Behavior OF upcount IS
BEGIN

upcount: PROCESS (Clock)
BEGIN

IF (Clock'EVENT AND Clock = ' 1 ') THEN
IF Clear = ' 1 ' THEN

Q <= 9YJ-J,9 ;
ELSE

Q < = Q + , I ~ ;
END IF ;

END IF;
END PROCESS;

END Behavior ; .-.*- - -. ..
Figure 7.72 Code for a two-bit up-counter with synchronous reset.

Figure 7.74. The same entity declaration given in Figure 7.73 can be used and is not shown
in Figure 7.74. The code illustrates a different way of describing the control circuit in the
processor. It does not give logic expressions for the signals Extern, Done, and so on, as we
did in Figure 7.73. Instead, CASE statements are used to represent the information shown
in Table 7.3. These statements are provided inside the process labeled controlsignals. Each
control signal is first assigned the value 0, as a default. This is required because the CASE
statements specify the values of the control signals only when they should be asserted, as
we did in Table 7.3. As explained for Figure 7.35, when the value of a signal is cot specified,
the signal retains its current value. This implied memory results in a feedback connection
in the synthesized circuit. We avoid this problem by providing the default value of 0 for
each of the control signals involved in the CASE statements.

In Figure 7.73 the statements labeled decT and decl are used to decode the Count
signal and the stored values of the F input, respectively. The decT decoder has the outputs
T o - . . . T3, and decl produces lo, . . . , 13. In Figure 7.74 these two decoders are not used,
because they do not serve a useful purpose in this code. Instead, the signals T and I are
defined as two-bit signals, which are used in the CASE statements. The code sets T to the

of Count, while I is set to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F.

LIBRARY ieee ;
USE ieee.std-logic-l 164.aII ;
USE ieee.std-logic-signed.al1 ;
USE work.subccts.al1 ;

ENTITY proc IS
PORT (Data : IN STD-LOGIC-VECTOR(7 DOWNTO 0) ;

Reset, w : IN STD-LOGIC ;
Clock : I N STILLOGIC ;
F,Rx,Ry : IN STD-LOGIC-VECTOR(1 DOWNTO 0) ;
Done : BUFFER STD_LOGIC ;
Buswires : INOUT STD-LOGIC-VECTOR(7 DOWNTO 0)) ;

END proc ;

ARCHITECTURE Behavior OF proc IS
SIGNAL Rin, Rout : STD-LOGIC-VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD-LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD-LOGIC ;
SIGNAL Count, Zero : STD-LOGIC-VECTOR(1 DOWNTO 0) ;
SIGNAL T, I, X, Y : STD-LOGIC-VECTOR(0 TO 3) ;
SIGNAL RO, R 1 , R2, R3 : STD-LOGIC-VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD-LOGIC-VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg : STIlLOGIC-VECTOR(1 TO 6) ;

BEGIN
Zero <= "00" ; High <= ' 1 ' ;
Clear <= Reset OR Done OR (NOT w AND T(0)) ;
counter: upcount PORT MAP (Clear, Clock, Count) ;
decT: dec2to4 PORT MAP (Count, High, T);
Func <= F& Rx & Ry ;
FRin <= w AND T(O) ;
functionreg: regn GENERIC MAP (N => 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;
decI: dec2to4 PORT MAP (FuncReg(1 TO 2), High, I) ;
decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;
decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;
Extern <= I(0) AND T(1) ;
Done -= = ((I(0) OR I(1)) AND T(1)) OR ((I(2) OR I(3)) AND T(3)) ;
Ain <= (I(2) OR I(3)) AND T(I) ;
Gin <= (I(2) OR I(3)) AND T(2) ;
Gout <= (I(2) OR I(3)) AND T(3) ;
AddSub <= 1(3) ;

. . . continued in Part b.

Figure 7.73 Code for the processor (Part a] .

m

RegCntl:
FOR k IN 0 TO 3 GENERATE

Rin(k) <= ((I(0) OR I(1)) AND T(1) AND X(k)) OR
((I(2) OR I(3)) AND T(3) AND X(k)) ;

Rout(k) <= (T(1) AND T(1) AND Y(k)) OR
((I(2) OR I(3)) AND ((T(1) AND X(k)) OR (T(2) AND Y(k)))) ;

END GENERATE RegCntl ;
tri-extern: trin PORT MAP (Data, Extern, BusWires) ;
reg0: regn PORT MAP (BusWires, Rin(O), Clock, RO) ;
reg1 : regn PORT MAP (BusWires, Rin(1), Clock, R 1) ;
reg2: regn PORT MAP (BusWires, Rin(2), Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
trio: trin PORT MAP (RO, Rout(O), B uswires) ;
tril: trin PORT MAP (R1, Rout(l), BusWires) ;
tri2: trin PORT MAP (R2, Rout(2), BusWires) ;
tri3: trin PORT MAP (R3, Rout(3), BusWires) ;
regA: regn PORT MAP (BusWires, Ain, Clock, A) ;
alu :
WITH AddSub SELECT

Sum <= A + BusWires WHEN 'O' ,
A - BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;
triG: trin PORT MAP (G, Gout, BusWires) ;

END Behavior ;

figure 7.73 Code for the processor (Part b).

There are two nested levels of CASE statements. The first one enumerates the possible
values of T. For each WHEN clause in this CASE statement, which represents a column
in Table 7.3, there is a nested CASE statement that enumerates the four values of I. As
indicated by the comments in the code, the nested CASE statements correspond exactly to
the information given in Table 7.3.

At the end of Figure 7.74, the bus is described using a selected signal assignment. This
statement represents multiplexers that place the appropriate data onto BusWires, depending
on the values of R ,,,, G ,,,, and Exterrz.

The circuits synthesized from the code in Figures 7.73 and 7.74 are functionaIly equiv-
alent. The style of code in Figure 7.74 has the advantage that it does not require the manual
effort of analyzing Table 7.3 to generate the logic expressions for the control signals used

Figure 7.73. By using the style of code in Figure 7.74, these expressions are produced
automatically by the VHDL compiler as a result of analyzing the CASE statements. The

of code in Figure 7.74 is less prone to careless errors, Also, using this style of code it
be straightforward to provide additional capabilities in the processor, such as adding

Other operations.

ARCHITECTURE Behavior OF proc IS
SIGNAL X, Y, Rin, Rout : STD- LOGIC-VECTOR(0 TO 3) ;
SIGNAL Clear, High, AddSub : STD-LOGIC ;
SIGNAL Extern, Ain, Gin, Gout, FRin : STD-LOGIC ;
SIGNAL Count, Zero, T, I : STD-LOGIC-VECTOR(1 DOWNTO 0) ;
SIGNAL RO, R1, R2, R3 : STD-LOGIC-VECTOR(7 DOWNTO 0) ;
SIGNAL A, Sum, G : STD-LOGIC-VECTOR(7 DOWNTO 0) ;
SIGNAL Func, FuncReg, Sel : STD-LOGIC-VECTOR(1 TO 6) ;

BEGIN
Zero <= "OW ; High <= ' 1 ' ;
Clear <= Reset OR Done OR (NOT w AND NOT T(l) AND NOT T(0)) ;
counter: upcount PORT MAP (Clear, Clock, Count) ;
T <= Count ;
Func <= F & R x & R y ;
FRin < = w AND NOT T(l) AND NOT T(0) ;
functionreg: regn GENERIC MAP (N => 6)

PORT MAP (Func, FRin, Clock, FuncReg) ;
I < = FuncReg(1 TO 2) ;
decX: dec2to4 PORT MAP (FuncReg(3 TO 4), High, X) ;
decY: dec2to4 PORT MAP (FuncReg(5 TO 6), High, Y) ;

controlsignals: PROCESS (T, I, X, Y)
BEGIN

Extern <= '0' ; Done <= '0' ; Ain <= '0' ; Gin <= '0' ;
Gout <= '0' ; AddSub <= '0' ; Rin <= "0000" ; Rout <= "0000" ;
CASE T IS WHEN "00" => - - no signals asserted in time step TO

WHEN "01" => - - define signals asserted in time step T1
CASE I IS

WHEN "00" = > - - Load
Extern <= '1' ; Rin <= X ; Done <= '1' ;

WHEN "01" = > - - Move
Rout <= Y ; Rin <= X ; Done -c= '1' ;

WHEN OTHERS = > - - Add, Sub
j

Rout <= X ; Ain <= '1' ;
END CASE ;

. . . continued in Part b

Figure 7.74 Alternative code for the processor (Part a).

We synthesized a circuit to implement the code in Figure 7.74 in a chip. Figure 7.75
gives an example of the results of a timing simulation. Each clock cycle in which w =
in this timing diagram indicates the start of an operation. In the first such operation, at 250
ns in the simulation time, the values of both inputs F and Rr are 00. Hence the operation
corresponds to "Load R0,Data." The value of D m is 2A, which is loaded into RO on the

WHEN " 10" => - - define signals asserted in time step T2
CASE I IS

WHEN " 1 0 => - - Add
Rout <= Y ; Gin <= '1' ;

WHEN "1 1" => - - Sub
Rout <= Y ;Addsub <= ' 1 ' ;Gin <= '1 ';

WHEN OTHERS => - - Load, Move
END CASE ;

WHEN OTHERS => - - define signals asserted in time step T3
CASE I IS

WHEN "00" => - - Load
WHEN "01" => - - Move
WHEN OTHERS => - - Add, Sub

Gout <= ' I ' ; Rin <= X ; Done <= '1' ;
END CASE ;

END CASE ;
END PROCESS ;
reg0: regn PORT MAP (BusWires, Rin(O), Clock, RO) ;
regl: regn PORT MAP (BusWires. Rin(l), Clock, R1) ;
reg2: regn PORT MAP (BusWires, Rin(2)' Clock, R2) ;
reg3: regn PORT MAP (BusWires, Rin(3), Clock, R3) ;
regA: regn PORT MAP (BusWires, Ain, Clock, A) ;
alu: WITH AddSub SELECT

Sum <= A + BusWires WHEN '0',
A - BusWires WHEN OTHERS ;

regG: regn PORT MAP (Sum, Gin, Clock, G) ;
Sel <= Rout & Gout & Extern ;
WITH Sel SELECT

BusWires <= RO WHEN " 100000",
R 1 WHEN "0 1 0000",
R2 WHEN "00 1 OOO",
R3 WHEN "000 1 OW,
G WHEN "000010",
Data WHEN OTHERS ;

END Behavior ;

Figure 7.74 Alternative code for the processor (Part b).

next positive clock edge. The next operation loads 55 into register RI, and the subsequent
Operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
RY = 00. This operation is " A d d R l ,RO." In the following clock cycle, the contents of
R1 (5 5) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of RO (2A) being placed on the bus. The adderfsubtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR j "F

Figure 7.75 Timing rirnulofion for the VHDL code in Figure 7.74.

this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns ("Move R3,R17') copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns ("Sub R3,R2") subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F - 22 = 5D,

We showed in Chapter 3 that electronic devices operate at remarkably fast speeds, with the
typical delay through a logic gate being less than 1 ns. In this example we use a logic circuit
to measure the speed of a much slower type of device-a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly
possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a LOO Hz clock, which measures time at a resolution of 111OO of a

second. The reaction time can then be displayed using two digits that represent fractions

of a second from 00/100 to 99/100.
Digital systems often include high-frequency clock signals to control various subsys-

tems, ~n this case assume the existence of an input clock signal with the frequency 102.4
mz From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider+ A timing diagram for a four-bit counter is given in Figure 7.22. It shows that the
pastmsignificant bit output, Qo, of the counter is a periodic signal with half the frequency of
the input. Hence we can view Qo as dividing the clock frequency by two. Similarly,

Q, output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2'+l. In the case of Our 102.4 kHz clock signal, we can use , lo-bit counter, as shown in Figure 7.76a. The counter output cg has the required 100 Hz
frequency because 102400 Hz/ 1024 = 100 Hz.

me reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 7.766. Small blue arrows in the symbol
,present the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode. To
~ I I - I the LED on, the cathode has to be set to a lower voltage than the anode, which causes
a current to flow through the LED. If the voltages on its two terminals are equal, the LED
is off.

Figure 7.76b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But
if VLED = VDD? the cathode voltage is 0 V and the LED is on. The amount of current
that flows is limited by the value of the resistor RL. This current flows through the LED
and the NMOS transistor in the inverter. Since the current flows into the inverter, we
say that the inverter sinks the current. The maximum current that a logic gate can sink
without sustaining permanent damage is usually called Zo~, which stands for the "maxi-
mum current when the output is low." The value of RL is chosen such that the current
is less than IOL. AS an example assume that the inverter is implemented inside a PLD
device. The typical value of IOL, which would be specified in the data sheet for the PLD,
is about 12 rnA. For Vm = 5 V, this leads to RL % 450 S2 because 5 V/450 G! = 11
mA (there is actually a small voltage drop across the LED when it is turned on, but we
ignore this for simplicity). The amount of light emitted by the LED is proportional to
the current flow. If 11 mA is insufficient, then the inverter should be implemented in a
buffer chip, like those described in section 3.5, because buffers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 7.76c, with the inverter
fmm part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
fie top left of the diagram. The switch normally makes contact with the top terminals, as

in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
Connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
Pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously
4Set. The output of this flip-flop determines whether the LED is on or off, and it also
Provides the count enable input to a two-digit BCD counter. As discussed in section 7.11,
each digit in a BCD counter has four bits that take the values 0000 to 1001. Thus the

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR $

(a) Clock divider

* * .

< <

(b) LED circuit

Clock

"m

R

- ----- r - I-)
W

Converter Converter
4)

W 0 W 1 W 2 W 3 W 0 W 1 W 2 W 3

-0
-

D Q -I
b l i 4 A L i 4

1 1
-

C9
a - > Q

BCD, BCD,
E
> Two-digit BCD counter

Reset - Clear
J

b

1 0-bit counter

r

(c) Push-button switch, LED, and 7-segment displays

Figure 7-76 A reaction-timer circuit.

7.14 DESIGN EXAMPLES

counting sequence can be viewed as decimal numbers from 00 to 99. A circuit for the
B~~ counter is given in Figure 7.28. In Figure 7 . 7 6 ~ both the flip-flop and the counter are
clocked by the c9 output of the clock divider in part (a) of the figure. The intended use of *, ,,,tion-tirner circuit is to first depress the switch to turn off the LED and disable the

Then the Reset input is asserted to clear the contents of the counter to 00. The

input normally has the value 0, which keeps the Rip-flop cleared and prevents the count
value from changing. The reaction test is initiated by setting w = 1 for one c9 clock cycle.
~ f t ~ ~ the next positive edge of c9, the flip-flop output becomes a 1, which turns on the LED.
we assume that w returns to 0 after one clock cycle, but the flip-flop output remains at 1
because of the 2-to- 1 multiplexer connected to the D input. The counter is then incremented

every 1/100 of a second. Each digit in the counter is connected through a code converter to
,7-~~gment display, which we described in the discussion for Figure 6.25. When the user
depresses the switch, the flip-flop is cleared, which turns off the LED and stops the counter.
The two-digit display shows the elapsed time to the nearest 1/100 of a second from when
the LED was turned on until the user was able to respond by depressing the switch.

vHDL Code
TO describe the circuit in Figure 7 . 7 6 ~ using VHDL code, we can make use of subcircuits

for the BCD counter and the 7-segment code converter. The code for the latter subcircuit is
given in Figure 6.47 and is not repeated here. Code for the BCD counter, which represents
the circuit in Figure 7.28, is shown in Figure 7.77. The two-digit BCD output is represented
by the 2 four-bit signals BCD 1 and BCDO. The Clear input is used to provide a synchronous
reset for both digits in the counter. If E = 1, the count value is incremented on the positive
clock edge, and if E = 0, the count value is unchanged. Each digit can take the values from
0000 to 100 I.

Figure 7.78 gives the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit I and Digit 0.

In Figlrre 7.56 we showed how a register, R, can be designed with a control signal R i n .
If R;, = 1 data is loaded into the register on the active clock edge and if Rin = 0, the stored
contents of the register are not changed. The flip-flop in Figure 7.76 is used in the same
way. If I.V = 1 , the flip-flop is loaded with the value 1, but if w = 0 the stored value in the
flip-flop is not changed. This circuit is described by the process 1abeledPipjIop in Figure
7.78, which also includes a synchronous reset input. We have chosen to use a synchronous
reset because the flip-flop output is connected to the enable input E on the BCD counter.
As we know from the discussion in section 7.3, it is important that all signals connected to

meet the required setup and hold times. The push-button switch can be pressed at
time and is not synchronized to the c9 clock signal. By using a synchronous reset for
flip-flop in Figure 7.76, we avoid possible timing problems in the counter.
The flip-flop output is called LED, which is inverted to produce the LEDn signal that

the LED. In the device used to implement the circuit, LEDn would be generated by
a buffer that is connected to an output pin on the chip package. If a PLD is used, this buffer
has the associated value of IoL = 12 mA that we mentioned earlier. At the end of Figure
7'787 the BCD counter and 7-segment code converters are instantiated as subcircuits.

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSOR %

LIBRARY ieee ;
USE ieee.std_logic-l164.alI :
USE ieee.std_logic-unsigned.al1 ;

ENTITY BCDcount IS
PORT (Clock : IN STD-LOGIC ;

Clear, E : IN STD-LOGIC ;
BCD 1, BCDO : BUFFER STD-LOGIC-VECTOR(3 DOWNTO 0)) ;

END BCDcount ;

ARCHITECTURE Behavior OF BCDcount IS
BEGIN

PROCESS (Clock)
BEGIN

IF Clock'EVENT AND Clock = ' 1 ' THEN
IF Clear = ' 1 ' THEN

BCDl < = "0000 ; BCDO < = "0000" ;
ELSIF E = ' 1 ' THEN

IF BCDO = " 100 1 " THEN
BCDO <= "0000" ;
IF B C D ~ = 7'100199 THEN

BCDl <= "0000";
ELSE

BCDl <= BCDl + '1' ;
END IF ;

ELSE
BCDO <= BCDO f ' 1 ' ;

END IF ;
END IF ;

END IF;
END PROCESS;

END Behavior ;

Figure 7.77 Code for the two-digit BCD counter in Figure 7.28.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
7.79- Initially, Plrshn is set to 0 to simulate depressing the switch to off the LED, and
then Pushn returns to 1. Also, Reset is asserted to clear the counter. When w changes to 1.
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person's reaction time is
about 0.18 seconds. In human terms this duration is a very s h o ~ time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions
operations in 0.1 8 seconds ! .

The causality relationship is indicated by the arrows in the diagram. When S goes to 0 at
13, there is no change in the state because both S and R are then equal to 0. At t4 we have

R = 1, which causes Q, to go to 0, which in turn causes Qb to go to 1. At t5 both S and R
are qua1 to 1, which forces both Q,, and Qb to be equal to 0. As soon as S returns to 0, at
&, Q~ becomes equal to 1 again. At t g we have S = 1 and R = 0, which causes Qb = 0
and Q~ = 1. An interesting situation occurs at t lo. From t g to t l o we have Q,, = Q, = 0
because R = S = 1. Now if both R and S change to 0 at f l o , both Q, and Q, will go to 1.
B U ~ having both Q, and Qb equal to 1 will immediately force Q,, = Qb = 0. There will
be an oscillation between Q, = Q1, = 0 and Q, = Qb = 1 . If the delays through the two
NOR gates are exactly the same, the oscillation will continue indefinitely. In a real circuit
tfier.e will invariably be some difference in the delays through these gates, and the latch will
eventually settle into one of its two stable states, but we don't know which state it will be.
This uncertainty is indicated in the waveforms by dashed lines.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in detail in Chapter 9.

The latch in Figure 7.5a can perform the functions needed for the memory element in
Figure 7.1, by connecting the Set - signal to the S input and Reset to the R input. The Q,
output provides the desired On/OfS signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alann is off. When the sensor generates the logic value 1, the
latch is set and Q, becomes equal to 1. This turns on the alann mechanism. If the sensor
output returns to 0, the latch retains its state where Q, = 1; hence the alarm remains turned
on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
malung the Reset input equal to 1.

In section 7.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don't
know when the latch may change its state.

In the alarm system of Figure 7.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on, The latch in Figure 7 . 5 ~ cannot provide the desired
Operation. But the latch circuit can be modified to respond to the input signals S and R only
When Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 7.6a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the Sf and R' inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain its

Figure 7.79 Simulation of the reaction-timer circuit.

7.1 4.4 REGISTER TRANSFER LEVEL (RTL) CODE

At this point, we have introduced most of the VHDLconstructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing IF-THEN-ELSE statements, CASE
statements, FOR loops, and so on. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
style of code. Instead, we present VHDL code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

In this chapter we have presented circuits that serve as basic storage elements in digid
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3-111. We
have illustrated how circuits with flip-flops can be described using VHDL code.
information on VHDL can be found in [12-171. In the next chapter a more formal mefhod
for designing circuits with flip-flops will be presented. .

This section presents some typical problems that the reader may encounter, and shows how
problems can be solved.

problem: Consider the circuit in Figure 7 . 8 0 ~ . Assume that the input C is driven by a EX
quare wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms
,[points A and B. Assume that the propagation delay through each gate is A seconds.

solution: The timing diagram is shown in Figure 7.80b.

-

problem: Determine the functional behavior of the circuit in Figure 7.81. Assume that Ea
input w is driven by a square wave signal.

Solution: When both flip-flops are cleared, their outputs are Qo = Q1 = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated

(a) Circuit

(b) Timing diagram

Figure 7.80 Circuit for Example 7.1 3.

Clear

Figure 7.81 Circuit for Example 7.1 4.

FFO FF 1

Figure 7.82 Summary of the behavior of the circuit in Figure 7.81.

Clear
tl
t2

f3

t4

in Figure 7.82. Note that the figure shows the state of the signals after the changes caused
by the rising edge of a pulse have taken place.

In consecutive time intervals the values of QI Qo are 00, 01, 10, 00, 01, and so on.
Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the
circuit is a modulo-3 counter.

-
1

1 5 Problem: Figure 7.70 shows a circuit that generates four timing control signals To, TI, h,
and T3. Design a circuit that generates six such signals, To to T5.

-
J Q -

>
-

K Q
J

Qo

1

1 1 0
1 1
0 1 0 0 1
1 1 0 0 1
1 1

Solution: The scheme of Figure 7.70 can be extended by using a modulo-6 counter, given
in Figure 7.26, and a decoder that produces the six timing signals. A simpler alternative is
possible by using a Johnson counter. Using three D-type flip-flops in a structure depicted
in Figure 7.30, we can generate six patterns of bits QoQ, Q, as shown in Figure 7.83. Then,
using only six more two-input AND gates, as shown in the figure, we can obtain the desired
signals. Note that the patterns QoQi Q2 equal to 0 10 and 101 cannot occur in the Johnson
counter, so these cases are treated as don't care conditions.

u

0 1 0
1 1 1 0

1
0

1 1 1 0

J Q -
>

-

K Q
0

Q1

- -

Figure 7.83 Timing signals for Example 7.15.

problem: Design a circuit that can be used to control a vending machine. The circuit has ~m
five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited
in the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q,
D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on
the line Coin. The circuit is reset by using the Resetn signal (active low). When at least
30 cents has been deposited, the circuit activates its output, Z. No change is given if the

Controlsignal
--

To = QoQ2

TI = Q O ~ I

T2 = ~ i Q 2

T3 = QoQ2

T4 = QOQI
-

T5 = QiQ2

Clockcycle

o
1

2

3

4

5

amount exceeds 30 cents.
Design the required circuit by using the following components: a six-bit adder, a six-bit

register, and any number of AND, OR, and NOT gates.

Qo Q1 Q2

o o o
1 o o
I 1 o
1 1 1

0 1 1

o o 1

Solution: Figure 7.84 gives a possible circuit. The value of each coin is represented by a
corresponding five-bit number. It is added to the current total, which is held in register S.
The required output is

z = Sg + S4S3S2Sl
_ I

The register is clocked by the negative edge of the Coin signal. This allows for a propagation
delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a
more structured approach.

Problem: Write VHDL code to implement the circuit in Figure 7.84.

Solution: Figure 7.85 gives the desired code.

Exc

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE P R O C E S ~ ~ pi

w

-
T

w

Adder

v
Coin

Register S
Resetn --c

.- -

Figure 7.84 Circuit for Example 7.16.

LIBRARY ieee ;
USE ieee.stblogic~l164.all ;
USE ieee.stblogic-signed.al1 ;

ENTITY vend IS
PORT (N, D, Q, Resetn, Coin : IN STD-LOGIC ;

Z : OUT STD-LOGIC) ;
END vend ;

ARCHITECTURE Behavior OF vend IS
SIGNAL X: STD-LOGIC-VECTOR(4 DOWNTO 0) ;
SIGNAL S: STD-LOGIC-VECTOR(5 DOWNTO 0) ;

BEGIN
X(0) <= N O R Q ;
X(1) <= D ;
X(2) <= N ;
X(3) <= D O R Q ;
X(4) <= Q ;
PROCESS (Resetn, Coin)
BEGIN

IF Resetn = '0' THEN
S <= "000000" ;

ELSIF Coin'EVENT AND Coin = '0' THEN - -

S <= ('0' & X) + S ;
END IF ;

END PROCESS ;
Z <= S(5) OR (S(4) AND S(3) AND S(2) AND S(1)) ;

END Behavior ;

Figure 7.85 Code for Example 7.1 7. L

Answers to problems marked by an asterisk are given at the back of the book.

7.1 Consider the timing diagram in Figure P7.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 7.12, draw waveforms for the Q,, Qb, and Q, signals.

7.2 Can the circuit in Figure 7.3 be modified to implement an SR latch? Explain your answer.

7.3 Figure 7.5 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its characteristic table and show its timing diagram.

* 7.4 Show a circuit that implements the gated SR latch using NAND gates only.

C H A C l l l 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESS^^

Figure P7.1 Timing diagram for Problem 7.1 .

Clock

7.5 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate ~ O - M H ,
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

*7.6 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

1

7.7 The gated SR latch in Figure 7.6a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 causes the latch to be set to

1. Design a set-dominant gated SR latch and show the circuit.

7.8 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

*7.9 Consider the circuit in Figure P7.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

D I

Figure P7.2 Circuit for Problem 7.9.

i

1 I 1

Write VHDL code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

Write VHDL code that represents a JK flip-flop. Use behavioral code, rather than structural
code.

Synthesize a circuit for the code written for problem 7.1 1 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

Write VHDL code for a universal shift register with n bits.

Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in section 7.9.3.

Design a three-bit up/down counter using T flip-flops. It should include a control input
called own. If ow own = 0, then the circuit should behave as an up-counter. If -
Up/Down = 1 , then the circuit should behave as a down-counter.

Repeat problem 7.16 using D flip-flops.

The circuit in Figure P7-3 looks like a counter. What is the sequence that this circuit counts
in?

Clock

Figure P7.3 The circuit for Problem 7.1 8.

Consider the circuit in Figure P7.4. How does this circuit compare with the circuit in Figure
7.17? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

Construct a NOR-gate circuit, similar to the one in Figure 7.11a, which implements a
negative-edge-triggered D flip-flop.

Write behavioral VHDL code that represents a 24-bit up/down-counter with parallel load
and asynchronous reset.

Modify the VHDL code in Figure 7.52 by adding a parameter that sets the number of
flip-flops in the counter.

473

C H A P T E R 7 . FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE PROCESSO~ P

Figure P7.4 Circuit for Problem 7.19

-

Write behavioral VHDL code that represents a modulo- 12 up-counter with synchronous
reset.

-

For the flip-flops in the counter in Figure 7.25, assume that t,, = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

Write hierarchical code (structural) for the circuit in Figure 7.28. Use the counter in Fig-
ure 7.25 as a subcircuit.

s Q
Clk

-

Write VHDL code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

Write behavioral VHDL code in the style shown in Figure 7.5 1 that represents aring counter.
Your code should have a parameter N that sets the number of flip-flops in the counter.

-

s Q

Clk
-

R Q

Write behavioral VHDL code that describes the functionality of the circuit shown in Fig-
ure 7.42.

-

- -

R Q r

Figure 7.65 gives VHDL code for a digital system that swaps the contents of two registers.
R1 and R2, using register R3 for temporary storage. Create an equivalent schematic using
your CAD tools for this system. Synthesize a circuit for this schematic and perform a timing
simulation.

Repeat problem 7.29 using the control circuit in Figure 7.59.

Modify the code in Figure 7.67 to use the control circuit in Figure 7.59. synthesize the
code for implementation in a chip and perform a timing simulation.

In section 7.14.2 we designed a processor that performs the operations listed in Table 'm3'

Design a modified circuit that performs an additional operation Swap Rx, Ry. This operauon
swaps the contents of registers Rx and Ry. Use three bits ,h fifa to represent the inputF
shown in Figure 7.7 1 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap

operation. Show logic expressions for the outputs of the control circuit, as was done
in

section 7.14.2.

7.33 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P7.5. The output of each inverter is a periodic signal with a
certain period.
(a) Assume that all the inverters are identical; hence they all have the same delay, called
tp. Let the output of one of the inverters be named f . Give an equation that expresses the
period of the signal f in terms of n and t,.

Figure P7.5 A ring oscillator.

(b) For this part you are to design a circuit that can be used to experimentally measure the
delay t, through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Fig-
ure P7.6. The length of time for which Interval has the value 1 is known, Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and lnterval signals and the
signal f from part (a) to experimentally measure t,. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

Reset

Interval

I 100 ns @

Figure P7.6 Timing of signals for Problem 7.3 1

A circuit for a gated D latch is shown in Figure P7.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of
the circuit is described by the timing diagram in Figure P7.8. When a pulse is received
on the Start input, the circuit produces pulses on the f and g outputs as shown in the
timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

C H A P T E R 7 FLIP-FLOPS, REGISTERS, COUNTERS, AND A SIMPLE ~ O C E S S O ~

D - -
Q

Clock 4 1

-
Q

Clock 1
0

1
0

1
A 0

1
0

Figure P7.7 Circuit and timing diagram for Problem 7.32.

Clock 1
0

i / / I
1

Start
0

Figure P7.8 Timing diagram for Problem 7.33.

V. C. ~amacher, Z. G. Vranesic, and S. G Zaky, Computer Organization, 5th ed.,
(~ ~ ~ r a w - H i l l : New York, 2002).

D. A. Patterson and J. L. Hennessy, Computer Organization and Design-The
~~~dware/SofhYare Interface, 2nd ed., (Morgan Kaufmann: San Francisco, Ca,, 
1998). 

3, D. D. Gajski, Principles ofDigital Design, (Prentice-Hall: Upper Saddle River, N.J., 
1997). 

4. M. M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, N.J., 2002). 

5 .  J. p. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996). 

6. V. P, Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuiz 
Analysis and Design, (Prentice-Hall: Englewood Cliffs, N.J., 1995). 

7. R. H. Katz, Contemporary Logic Design, (Benjamin/Cummings: Redwood City, Ca., 
1994). 

8. J. P. Hayes, Introduction to Logic Design, (Addison-Wesley: Reading, Ma., 1993). 

9. C. H. Roth Jr., Fundamentals of Logic Desigrz, 4th ed., (West: St. Paul, Mn., 1993). 

10. J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. (Prentice-Hall: 
Englewood Cliffs, N.J., 1999). 

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, N. J., 
1986). 

12. Institute of Electrical and Electronics Engineers, " 1076- 1993 IEEE Standard VHDL 
Language Reference Manual," 1993. 

13. D. L. Perry, VHDL, 3rd ed., (McGraw-Hill: New York, 1998). 

14. 2. Navabi, VHDGAnalysis and Modeling of Digital Systems, 2nd ed. 
(McGraw-Hill: New York, 1998). 

15. J.  Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, N.J., 1998). A 

16. K. Skahill, VHDL for Programmable Logic, (Addison-Wesley: Menlo Park, Ca., 
1 996). 

17. A. Dewey, Analysis and Design of Digital System with VHDL, (PWS Publishing CO.: 
Boston, Ma., 1997). 



In this chapter you will learn about: 

Design techniques for circuits that use flip-flops 
a The concept of states and their implementation with flip-flops 

a Synchronous control by using a clock signal 
Sequential behavior of digital circuits 

A complete procedure for designing synchronous sequential circuits 
VHDL specification of sequential circuits 
The concept of finite state machines 



In preceding chapters we considered combinational logic circuits in which outputs are determined fully by 
the present values of inputs. We also discussed how simple storage elements can be implemented in the form 
of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inpub 
at any given time; the inputs cause changes in the state. 

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior ' 
of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases 
a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronorrr 
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequenliai 
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications. 
they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9. 

3 

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. ~h~ 
general structure of such a circuit is shown in Figure 8.1. The circuit has a set of primary inputs, W ,  
produces a set of outputs, 2. The values of the outputs of the flip-flops are referred to as the state, Q, of 

the circuit. Under control of the clock signal, the flip-flop outputs change their state as determined by the 
combinational logic that feeds the inputs of these flip-flops. Thus the circuit moves from one state to another, 
To ensure that only one transition from one state to another takes place during one clock cycle, the flipflops 
have to be of the edge-triggered type. They can be triggered either by the positive (0 to 1 transition) or by 
the negative (1 to 0 transition) edge of the clock. We will use the term active clock edge to refer to the clock 
edge that causes the change in state. 

The combinational logic that provides the input signals to the flip-flops derives its inputs from two sources: 
the primary inputs, W, and the present (current) outputs of the flip-flops, Q. Thus changes in state depend on 
both the present state and the values of the primary inputs. 

Figure 8.1 indicates that the outputs of the sequential circuit are generated by another combinational 
circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs. 
Although the outputs always depend on the present state, they do not necessarily have to depend directly on 
the primary inputs. Thus the connection shown in blue in the figure may or may not exist. To distinguish 
between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on 
the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary 
inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated 
the behavior of such circuits in the 1950s. 

Sequential circuits are also called finite state machines (FSMs), which is a more formal name that is often 
found in technical literature. The name derives from the fact that the functional behavior of these circuits can 
be represented using a finite number of states. In this chapter we will often use the ternfinite state machine, 
or simply machine, when referring to sequential circuits. 

Combinational 
circuit 

Combinational 

Clock I I 
. 
Figure 8.1 The general form of a sequential circuit. 



we will introduce the techniques for designing sequential circuits by means of a simple 
Suppose that we wish to design a circuit that meets the following specification: 

1. The circuit has one input, w, and one output, r. 

2. changes in the circuit occur on the positive edge of a clock signal, 
 he output z is equal to 1 if during two immediately preceding clock cycles the input 
, was equal to 1. Otherwise, the value of z is equal to 0. 

~ h ~ ~ ,  the circuit detects if two or more consecutive 1s occur on its input w. Circuits that 
detect the occurrence of a particular pattern on its input(s) are referred to as sequence 
detectors. 

From this specification it is apparent that the output z cannot depend solely on the 
present value of w. TO illustrate this, consider the sequence of values of the w and z signals 
during 1 1  clock cycles, as shown in Figure 8.2. The values of w are assumed arbitrail y; 
the values of z correspond to our specification. These sequences of input and output values 
indicate that for a given input value the output may be either 0 or 1 .  For example, w = 0 
during clock cycles t 2  and t s ,  but z = 0 during t 2  and z = 1 during ts.  Similarly, w = 1 
during tl and t g ,  but z = 0 during tl and z = 1 during t g .  This means that z is not determined 
only by the present value of w ,  so there must exist different states in the circuit that determine 
the value of z .  

The first step in designing a finite state machine is to determine how many states are needed 
and which transitions are possible from one state to another. There is no set procedure for 
this task. The designer must think carefully about what the machine has to accomplish. A 
good way to begin is to select one particular state as a starting state; this is the state that the 
circuit should enter when power is first turned on or when a reset signal is applied. For our 
example let us assume that the starting state is called state A. As long as the input w is 0, 
the circuit need not do anything, and so each active clock edge should result in the circuit 
remaining in state A.  When w becomes equal to 1 ,  the machine should recognize this, and 
move to a different state, which we will call state B. This transition takes place on the next 

clock edge after w has become equal to 1. In state B, as in state A, the circuit should 
the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock 

cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move 
back 10 state A. However, if w = 1 when in state B, the circuit should change to a third 
"ate, called C ,  and it should then generate an output z = 1. The circuit should remain in 

Figure 8.2 Sequences of input and output signals. 



state C as long as w = 1 and should continue to maintain z = 1. When w becomes 0, 
machine should move back to state A. Since the preceding description handles all possibk 
values of input w that the machine can encounter in its various states, we can conclude fiat 
three states are needed to implement the desired machine. 

Now that we have determined in an informal way the possible transitions between states, 
we will describe a more formal procedure that can be used to design the correspond. Ing 
sequential circuit. Behavior of a sequential circuit can be described in several different 
ways. The conceptually simplest method is to use a pictorial representation in the fOm 
of a state diagram, which is a graph that depicts states of the circuit as nodes (circles) 
and transitions between states as directed arcs. The state diagram in Figure 8.3 defines 
the behavior that corresponds to our specification. States A, B, and C appear as nodes in 
the diagram. Node A represents the starting state, and it is also the state that the circuit 
will reach after an input w = 0 is applied. In this state the output z should be 0, which 
is indicated as A/z=O in the node. The circuit should remain in state A as long as w = 0, 
which is indicated by an arc with a label w = 0 that originates and terminates at this node, 
The first occurrence of w = 1 (following the condition w = 0) is recorded by moving 
from state A to state B. This transition is indicated on the graph by an arc originating  at^ 
and terminating at B. The label w = 1 on this arc denotes the input value that causes the 
transition. In state B the output remains at 0, which is indicated as B/z=O in the node. 

When the circuit is in state B, it will change to state C if w is still equal to 1 at the 
next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during 
subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if 
w becomes O when the circuit is either in state B or in state C, the next active clock edge 
will cause a transition to state A to take place. 

In the diagram we indicated that the Reset input is used to force the circuit into state 
A, which is possible regardless of what state the circuit happens to be in. We could treat 

Reset 

I 

w = l  

Figure 8.3 State dipgram of a simple sequential circuit. 



~ ~ ~ ~ t a s  just another input to the circuit, and show a transition from each state to the starting 
state A ~ n d e r  control of the input Reset. This would complicate the diagram unnecessarily. 
slates in a finite state machine are implemented using flip-flops. Since flip-flops usually 
have reset capability, as discussed in Chapter 7, we can assume that the Reset input is used 
to clear all flip-flops to 0 by using this capability. We will indicate this as shown in Figure 
8.3 to keep the diagrams as simple as possible. 

Although the state diagram provides a description of the behavior of a sequential circuit 
ba t  is easy to understand, to proceed with the implementation of the circuit, it is convenient 
t, translate the information contained in the state diagram into a tabular form. Figure 8.4 
shows the state table for our sequential circuit. The table indicates all transitions from 
each present state to the next state for different values of the input signal. Note that the 
wtput z is specified with respect to the present state, namely, the state that the circuit is 
in at present time. Note also that we did not include the Reset input; instead, we made an 
implicit assumption that the first state in the table is the starting state. 

We now show the design steps that will produce the final circuit. To explain the basic 
design concepts, we first go through a traditional process of manually performing each 
design step. This is followed by a discussion of automated design techniques that use 
modem computer aided design (CAD) tools. 

The state table in Figure 8.4 defines the three states in terms of letters A, B, and C. When 
implemented in a logic circuit, each state is represented by a particular valuation (combi- 
nation of values) of state variables. Each state variable may be implemented in the form of 
a flip-flop. Since three states have to be realized, it is sufficient to use two state variables. 
Let these variables be yl and y2. 

Now we can adapt the general block diagram in Figure 8.1 to our example as shown in 
Figure 8.5, to indicate the structure of the circuit that implements the required finite state 
machine. Two flip-flops represent the state variables. In the figure we have not specified 
fie type of flip-flops to be used; this issue is addressed in the next subsection. From the 

Figure 8.4 State table for the sequential circuit in Figure 8.3. 

483 

output 
z 

0 
0 
1 

Present 
state 

A 
B 
C 

Next state 

, = 0 , = 1 

A B 
A C 
A C 



Clock 

Figure 8.5 A pnerol sequential circuit with input w, output z ,  and two state flip-flops. 

specification in Figures 8.3 and 8.4, the output z is determined only by the present state of 
the circuit. Thus the block diagram in Figure 8.5 shows that z is a function of only yl  and 
y2; our design is of Moore type. We need to design a combinational circuit that uses yl and 
y2 as input signals and generates a correct output signal z for all possible valuations of these 
inputs. 

The signals yl and yz are also fed back to the combinational circuit that determines 
the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are 
two signals, Y1 and Y2, which are used to set the state of the flip-flops. Each active edge 
of the clock will cause the flip-flops to change their state to the values of Yl and Y2 at that 
time. Therefore, Yi and Y2 are called the next-state variables, and y, and yz are called the 
present-state variables. We need to design a combinational circuit with inputs w,  y l ,  and 
yz ,  such that for all valuations of these inputs the outputs Y1 and Y2 will cause the machine 
to move to the next state that satisfies our specification. The next step in the design process 
is to create a truth table that defines this circuit, as well as the circuit that generates z. 

To produce the desired truth table, we assign a specific valuation of variables yl andy? 
to each state. One possible assignment is given in Figure 8.6, where the states A, B, and C 
are represented by y2yl = 00.01, and 10, respectively. The fourth valuation, y2y1 = 11' is 
not needed in this case. 

The type of table given in Figure 8.6 is usually called a state-assigned table. This table 
can serve directly as a truth table for the output z with the inputs yl and yz .  ~lthough 
the next-state functions YI and Y2 the table does not have the appearance of a normal truth 
table, because there are two separate columns in the table for each value of w ,  it is obvious 
that the table includes all of the information that defines the next-state functions in terns 
of valuations of inputs w, yl,  and y2. 



Figure 8.6 State-assigned table for the sequential circuit in 
Figure 8.4. 

8.1.4 CHOICE OF FLIP-FLOPS AND DERIVATION OF NEXT-STATE 
AND OUTPUT EXPRESSIONS 

Output 

z 

0 
0 
1 
d 

Present 
state 

Y2Y1 

00 
01 
10 
11 

From the state-assigned table in Figure 8.6, we can derive the logic expressions for the 
next-state and output functions. But first we have to decide on the type of flip-flops that 
wifl  be used in the circuit. The most straightforward choice is to use D-type flip-flops, 
because in this case the values of Y1 and Y2 are simply clocked into the flip-flops to become 
the new values of yl and y2. In other words, if the inputs to the flip-flops are called Dl 
and D2, then these signals are the same as Y1 and Y2. Note that the diagram in Figure 8.5 
corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as 
JK type, the relationship between the next-state variable and inputs to a flip-flop is not as 
straightforward; we will consider this situation in section 8.7. 

The required logic expressions can be derived as shown in Figure 8.7. We use Karnaugh 
maps to make it easy for the reader to verify the validity of the expressions. Recall that 
in Figure 8.6 we needed only three of the four possible binary valuations to represent the 
states. The fourth valuation, y2y1 = 11, should never occur in the circuit because the circuit 
is constrained to move only within states A, B, and C; therefore, we may choose to treat 
this valuation as a don't-care condition. The resulting don't-care squares in the Karnaugh 
maps are denoted by d's. Using the don't cares to simplify the expressions, we obtain 

Next state 

w = 0 w = 1 

y2y1 y2y1 

00 01 
00 10 
00 10 
dd dd 

If we do not use don't cares, then the resulting expressions are slightly more complex; they 
are shown in the gray-shaded area of Figure 8.7. 

Since Dl = Y, and D, = Y2, the logic circuit that corresponds to the preceding 
is implemented as shown in Figure 8.8. Observe that a clock signal is included, 

and the circuit is provided with an active-low reset capability. Connecting the clear input on 
flip-flops to an external Resetn signal, as shown in the figure, provides a simple means 



h 

O O d O  

Ignoring don't cares Using don't cares 

Figure 8.7 Derivation of logic expressions for the sequential circuit in Figure 8.6. 

for forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit, 
then both flip-flops will be cleared to 0, placing the FSM into the state yzyl = 00. 

TO understand fully the operation of the circuit in Figure 8.8, let us consider its timing 
diagram presented in Figure 8.9. The diagram depicts the signal waveforms that correspond 
to the sequences of values in Figure 8.2. 

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur 
shortly after the positive edge of the clock. The amount of delay from the clock edge depends 
on the propagation delays through the flip-flops. Note that the input signal w is aIso shown 
to change slightly after the active edge of the clock. This is a good assumption because in 
a typical digital system an input such as w would be just an output of another circuit that is 
synchronized by the same clock. We discuss the synchronization of input signals with the 
clock signal in section 10.3. 

A key point to observe is that even though w changes slightly after the active clock 
edge, and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change 
in the circuit will occur until the beginning of &he next clock cycle when the positive edge 



Clock 

Resetn 

Figure 8.8 Final implementation of he sequential circuit in Figure 8.7. 



causes the flip-flops to change their state. Thus the value of w must be equal to 1 for 
clock cycles if the circuit is to reach state C and generate the output z = 1. 

We can summarize the steps involved in designing a synchronous sequential circuit ,, 
follows: 

1. Obtain the specification of the desired circuit. 

2. Derive the states for the machine by first selecting a starting state. Then, given the 
specification of the circuit, consider all valuations of the inputs to the circuit and 
create new states as needed for the machine to respond to these inputs. To keep track 
of the states as they are visited, create a state diagram. When completed, the state 
diagram shows all states in the machine and gives the conditions under which the 
circuit moves from one state to another. 

3. Create a state table from the state diagram. Alternatively, it may be convenient to 
directly create the state table in step 2, rather than first creating a state diagram. 

4. In our sequential circuit example, there were only three states; hence it was a simple 
matter to create the state table that does not contain more states than necessary. 
However, in practice it is common to deal with circuits that have a large number of 
states. In such cases it is unlikely that the first attempt at deriving a state table will 
produce optimal results. Almost certainly we will have more states than is really 
necessary. This can be corrected by a procedure that minimizes the number of states. 
We will discuss the process of state minimization in section 8.6. 

5 .  Decide on the number of state variables needed to represent all states and perform the 
state assignment. There are many different state assignments possible for a given 
sequential circuit. Some assignments may be better than others. In the preceding 
example we used what seemed to be a natural state assignment. We will return to this 
example in section 8.2 and show that a different assignment may lead to a simpler 
circuit. 

6. Choose the type of flip-flops to be used in the circuit. Derive the next-state logic 
expressions to control the inputs to all flip-flops and then derive logic expressions for 
the outputs of the circuit. So far we have used only D-type flip-flops. We will 
consider other types of flip-flops in section 8.7. 

7. Implement the circuit as indicated by the logic expressions. 

I We have illustrated the design steps using a very simple sequential circuit. From the reader's 
point of view, a circuit that detects that an input signal was high for two consecutive clock 
pulses may not have much practical significance. We will now consider an example that is 
closely tied to practical application. 

Section 7.14 introduced the concept of a bus and showed the connections that have 
to be made to allow the contents of a register to be transferred into another register. The - 



in Figure 7.55 shows how tri-state buffers can be used to place the contents of a 
'egister onto the bus and how the data on the bus can be loaded into a register. 

Figu 
,, 7.57 shows how a control mechanism that swaps the contents of registers R1 and R2 

can be realized using a shift register. We will now design the desired control mechanism, 
the finite state machine approach. 

The contents of registers R1 and R2 can be swapped using register R3 as a temporary 
st,rage location as follows: The contents of R2 are first loaded into R3, using the control 

RZor = 1 and R3in = 1. Then the contents of R1 are transferred into R2, using 

R l o u t  = 1 and R2,,, = 1. Finally, the contents of R3 (which are the previous contents of 
~ 2 )  are transferred into R1, using R3,,,, = 1 and R 1 in = 1. Since this step completes the 
required swap, we will indicate that the task is completed by setting the signal Done = 1. 
Assume that the swapping is performed in response to a pulse on an input signal called W ,  

which has a duration of one clock cycle. Figure 8.10 indicates the external signals involved 
in the desired control circuit. Figure 8.11 gives a state diagram for a sequential circuit that 
perates the output control signals in the required sequence. Note that to keep the diagram 

we have indicated the output signals only when they are equal to 1, In all other 
cases the output signals are equal to 0. 

In the starting state, A, no transfer is indicated, and all output signals are 0. The circuit 
remains in this state until a request to swap arrives in the form of w changing to I .  In state 
B the signals required to transfer the contents of R2 into R3 are asserted. The next active 
clock edge places these contents into R3. It also causes the circuit to change to state C, 
regardless of whether w is equal to 0 or 1. In this state the signals for transferring R1 into R2 
are asserted. The transfer takes place at the next active clock edge, and the circuit changes 
to state D regardless of the value of w.  The final transfer, from R3 to R 1, is performed on 
the clock edge that leaves state D, which also causes the circuit to return to state A. 

Figure 8.12 presents the same information in a state table. Since there are four states, it 
is necessary to use two state variables, yz and yl. A straightforward state assignment where 
the states A, 8, C ,  and D are assigned the valuations y2y1 = 00,01, 10, and 11, respectively, 
leads to the state-assigned table in Figure 8.13. Using this assignment and D-type flip-flops, 

W 

Clock 

l o u t  

R l in  

R 2 o u t  

' ' i n  

R 3 0 u t  

R3 in 

Done 

- 
___) 

Figure 8.10 Signals needed in Example 8.1 . 

i 

C 

Control 
circuit 

- 
C 

C 

b 

C 



W 

Clock 

Figure 8.1 5 Final implementation of the sequential circuit in Figure 8.1 3. 

Figure 8.1 6 Improved state assignment for the circuit 
in Figure 8.4. 

Present 
state 

Y2Y1 

00 
01 
11 
10 

implement the circuit using D-type flip-flops. the next-state and output expressions derived 
from the figure will be 

Next state 

w = 0  w = 1 

Y2Yl Y2Yl 

00 01 
00 1 1  
00 1 1  
dd dd 

Output 

z 

0 
0 
1 
d 



W 

Clock 

Resetn 

Figure 8.1 7 Final circuit for the improved state assignment in Figure 8.16. 

These expressions define the circuit shown in Figure 8.17. Comparing this circuit with the 
one in Figure 8.8, we see that the cost of the new circuit is lower because it requires fewer 
gates. 

In general, circuits are much larger than our example, and different state assignments 
can have a substantial effect on the cost of the final implementation. While highly desirable, 
it is often impossible to find the best state assignment for a large circuit. The exhaustive 
approach of trying all possible state assignments is not practical because the number of 
available state assignments is huge. CAD tools usually perform the state assignment using 
heuristic techniques. These techniques are usually proprietary, and their details are seldom 
published. 

InFigure 8.13 we used a straightforward state assignment for the sequential circuit in Figure 
8.12. Consider now the effect of interchanging the valuations assigned to states C and D, 
as shown in Figure 8.1 8. Then the next-state expressions are 

Yl = +y1Y2 

y2 = Y1 

as derived in Figure 8.19. The output expressions are 

Rl,,, = R2in = Y1Y2 

Rl in = R3,,,t = Done = Y1y2 
- 

R2,ut = R3iy1 = Y 1Y2 

These expressions lead to a slightly s/rrnpler circuit than the one given in Figure 8.15. 



- A/No transfer - Reset 

( D/R3,,, = 1, R l i ,  = 1, Done = 1 ) 

Figure 8.1 1 State diagram for Example 8.1 . 

Figure 8.1 2 State table for Example 8.1. 

Present 
state 

A 
B 
C 
D 

Figure 8.1 3 State-assigned table for the sequential circuit in Figure 8.12. 

Next state 

w = 0 w = 1 

A B 
C C 
D D 
A A 

Outputs 

Rl,,, R l j ,  RZOut R2in R30ut R3in Done 

0 0 0 0  0 0 0 
0 0 1 0 0 1 0 
1 0 0 1 0 0  0 
0 1 0 0 1 0 1 

Outputs 

Rlout  R l i ,  R20ut R2in R30ut R3in Done 

0 0 0 0 0  0 0 
0 0 1 0 0 1 0 
1 0 0 1 0 0 0 
0 1 0 0 1 0 1 

Present 
state 

Y2Y 1 

0 0 
0  1 
10 
1 1  

Next state 

, = 0 , = 1 

Y2Y1 Y2Yl 

0 0 0  1 
10  I 0  
1 1  1 1  
0 0 0 0 



Figure 8.14 Derivation of next-state expressions for the sequential 
circuit in Figure 8.1 3. 

the next-state expressions can be derived as shown in Figure 8.14. They are 

The output control signals are derived as 

Rim, = R2in = 7 1 ~ 2  

R l i ,  = R3,,, = Done = y1y2 

R2our = R3irl = ~ 1 L 2  

These expressions lead to the circuit in Figure 8.15. This circuit appears more complex 
than the shift register in Figure 7.57, but it has only two flip-flops, rather than three. 

Having introduced the basic concepts involved in the design of sequential circuits, we should 
some details where alternative choices are possible. In section 8.1.6 we suggested 

that some state assignments may be better than others. To illustrate this we can reconsider 
example in Figure 8.4. We already know that the state assignment in Figure 8.6 leads 

a simple-looking circuit in Figure 8.8. But can the FSM of Figure 8.4 be implemented 
with an even simpler circuit by using a different state assignment? 

figure 8.16 gives one possible alternative. In this case we represent the states A, B, 
P"d C with the valuations yzyl = 00, 01, and 11, respectively. The remaining valuation, 
y2Y1 = 10, is not needed, and we wi treat it as a don't-care condition. If we again choose to 

493 



- 

Figure 8.18 Improved state assignment for the sequential circuit in Figure 8.12. 

Present 
state 

Y2Y 1 

0 0 
0 1 
1 1  
10  

Figure 8.19 Derivation of next-state expressions for the sequential 
circuit in Figure 8.1 8. 

Another interesting possibility is to use as many state variables as there are states in a 
sequential circuit. In this method, for each state all but one of the state variables are equal 
to 0. The variable whose value is 1 is deemed to be "hot." The approach is known as the 
one-hot encoding method. 

Figure 8.20 shows how one-hot state assignment can be applied to the sequential cjrcul' 

of Figure 8.4. Because there are three states, it is necessary to use three state variables The 
chosen assignment is to represent the states A, B, and C using the valuations y3y2~1 Oo1+ 
010, and 100, respectively. The remaining five valuations of the state variables are not used' 

Next state 

, = 0 = 1 

Y2Y1 Y2Y1 -- 
0 0 0 1 
1 1  1 1  
10 1 0  
0 0 0 0 

- 
Outputs 

1 

Rlout Rlin R2out R2in R3out R3in Done 
0 0 0 0 0 0 0 
0 0 1 0 0 1 0 
1 0 0 1 0 0 0 
0 1 0 0 1 0 1 



Figure 8.20 One-hot state assignment for the sequential circuit 
in Figure 8.4. 

Thehey can be treated as don't cares in the derivation of the next-state and output expressions. 
Using this assignment, the resulting expressions are 

Output 
z 

0 
0  
1 

Present 
state 

Y3Y2Y1 

0 0  1  
0  1 0  
1 0 0  

These expressions are not simpler than those obtained using the state assignment in Figure 
8.16. Although in this case the one-hot assignment is not advantageous, there are many 
cases where this approach is attractive. 

Next state 

, = 0  = 1 

Y3Y2YI Y3Y2Y1 

0 0  1 0  1 0  
0 0  1  1 0 0  
0 0 1  1 0 0  

The one-hot state assignment can be applied to the sequential circuit of Figure 8.12 as EJ 
indicated in Figure 8.21. Four state variables are needed, and the states A, B, C ,  and D are 
encoded as y4y3y2yl = 000 1,  00 10, 0 100, and 1000, respective1 y. Treating the remaining 

Present Next state 
state Outputs 

Figure 8.2 1 One-hot state assignment for the sequential circuit in Figure 8.12. 



12 valuations of the state variables as don't cares, the next-state expressions are 

It is instructive to note that we can derive these expressions simply by inspecting the state 
diagram in Figure 8.11. Flip-flop yl should be set to 1 if the FSM is in state A and w = 0, ,, 
if the FSM is in state D; hence Yl = Eyl + y4. Flip-flop yz should be set to 1 if the present 
state is A and w = 1 : hence Y2 = wyl. Flip-flops y3 and y4 should be set to 1 if the FSM is 
presently in state B or C, respectively; hence Y3 = y2 and Y4 = y3. 

The output expressions are just the outputs of the flip-flops, such that 

R 1 ,,, = R2i, = y3 

R li, = R3,,[ = Done = y4 

These expressions are simpler than those derived in Example 8.2, but four flip-flops are 
needed, rather than two. 

An important feature of the one-hot state assignment is that it often leads to simpler 
output expressions than do assignments with the minimal number of state variables. Simpler 
output expressions may lead to a faster circuit. For instance, if the outputs of the sequential 
circuit are just the outputs of the flip-flops, as is the case in our example, then these output 
signals are valid as soon as the flip-flops change their states. If more complex output 
expressions are involved. then the propagation delay through the gates that implement 
these expressions must be taken into account. We will consider this issue in section 8.8.2. 

The examples considered to this point show that there are many ways to implement a 
given finite state machine as a sequential circuit. Each implementation is likely to have a 
different cost and different timing characteristics. In the next section we introduce another 
way of modeling FSMs that leads to even more possibilities. 

Our introductory examples were sequential circuits in which each state had specific values 
of the output signals associated with it. As we explained at the beginning of the chapter3 
such finite state machines are said to be of Moore type. We will now explore the concept 
of Mealy-type machines in which the output values are generated based on both the state 

of the circuit and the present values of its inputs. This provides additional flexibility in the 
design of sequential circuits. We will introduce the Mealy-type machines, using a slightly 
altered version of a previous example. 

The essence of the first sequential circuit in section 8.1 is to generate an output z ' 
whenever a second occurrence of the input w = 1 is detected in consecutive clock cycles. 
The specification requires that the output z be equal to 1 in the clock cycle that follows 



detection of the second occurrence of w = 1. Suppose now that we eliminate this 
latter requirement and specify instead that the output z should be equal to 1 in the same 
clock cycle when the second occurrence of w = 1 is detected. Then a suitable input-output 

seq "ence may be as shown in Figure 8.22. To see how we can realize the behavior given in 
table, we begin by selecting a starting state, A. As long as w = 0, the machine should 

in state A, producing an output z = 0. When w = 1, the machine has to move to , ,,, state, 3, to record the fact that an input of 1 has occurred. If w remains equal to 1 
when the machine is in state B, which happens if w = 1 for at least two consecutive clock 
cycles, the machine should remain in state B and produce an output z = 1. As soon as w 
becomes 0, z should immediately become 0 and the machine should move back to state 
A at the next active edge of the clock. Thus the behavior specified in Figure 8.22 can be 
achieved with a two-state machine, which has a state diagram shown in Figure 8.23. Only 
two staies are needed because we have allowed the output value to depend on the present 
value of the input as well as the present state of the machine. The diagram indicates that if 
the machine is in state A, it will remain in state A if ht = 0 and the output will be O. This is 
indicated by an arc with the label w = O/z = 0. When w becomes I ,  the output stays at 0 
until the machine moves to state B at the next active clock edge. This is denoted by the arc 
from A to B with the label w = l /z  = 0. In state B the output will be 1 if = 1, and the 
machine will remain in state B,  as indicated by the label w = 1 / z  = 1 on the corresponding 
arc. However, if w = 0 in state B. then the output will be 0 and a transition to state A 
will take place at the next active clock edge. A key point to understand is that during the 
present clock cycle the output value corresponds to the label on the arc emanating from the 
present-state node. 

We can implement the FSM in Figure 8.23, using the same design steps as in section 
8.1. The state table is shown in Figure 8.24. The table shows that the output c depends 

on the present value of input w and not just on the present state. Figure 8.25 gives the 

Figure 8.22 Sequences of input and output signals. 

Reset 

Figure 8.23 State diagram of an FSM that realizes the task in Figure 8.22. 



Figure 8.24 State table for the FSM in Figure 8.23. 

Present 
state 

A 
B 

Figure 8.25 State-assigned table for the FSM in Figure 8.24. 

Next state 

,=O w = l  

A B 
A B 

state-assigned table. Because there are only two states, it is sufficient to use a single state 
variable, y.  Assuming that y is realized as a D-type flip-flop, the required next-state and 
output expressions are 

Output z 

w = O  w = l  

0 0 
0 1 

Output 

* = O  w = l  

z Z 

0 0 
0 1 

Present 
state 

Y 

0 
1 

The resulting circuit is presented in Figure 8.26 along with a timing diagram. The timing 
diagram corresponds to the input-output sequences in Figure 8.22. 

The greater flexibility of Mealy-type FSMs often leads to simpler circuit realizations. 
This certainly seems to be the case in  our examples that produced the circuits in Figures 
8.8, 8.17, and 8.26, assuming that the design requirement is only to detect two consecutive 
occurrences of input w being equal to I .  We should note, however, that the circuit in Figure 
8.26 is not the same in terms of output behavior as the circuits in Figures 8.8 and 8.17. The 
difference is a shift of one clock cycle in the output signal in Figure 8.266. If we wanted to 
produce exactly the same output behavior using the Mealy approach, we could modify the 
circuit in Figure 8 . 2 6 ~  by adding another flip-flop as shown in Figure 8.27. This flip-flop 
merely delays the output signal, 2, by one clock cycle with respect to z ,  as indicated in the 
timing diagram. By making this change, we effectively turn the Mealy-type circuit into 
a Moore-type circuit with output Z. Note that the circuit in Figure 8.27 is he 
same as the circuit in Figure 8.17. 

Next state 

, = O  w = l  

Y Y 

0 1 
0 1 

e 8.4 In Example 8.1 we considered the control circuitneeded to swap the contents of two registers' 
implemented as a Moore-type finite state machine. The same task can be achieved using a 

498 



z - 

w - D Q 
Y 

Clock > Q 

Resetn 

(a) Circuit 

1 
Clock 

0 

1 
W 

0 

1 

0 

z 
1 
0 I I I I 

I 1 

(b) Timing diagram 

Figure 8.26 Implementation of FSM in Figure 8.25. 

Mealy-type FSM, as indicated in Figure 8.28. State A still serves as the reset state. But as 
soon as w changes from 0 to 1, the output control signals R2,,,,, and R3;,, are asserted. They 
remain asserted until the beginning of the next clock cycle, when the circuit will leave state 
A and change to B. In state B the outputs Rl,,, and R2, ,  are asserted for both w = 0 and 
w = 1. Finally, in state C the swap is completed by asserting R3,,,,, and R l i n .  

The Mealy-type realization of the control circuit requires three states. This does not 
necessarily imply a simpler circuit because two flip-flops are still needed to implement 
the state variables. The most important difference in comparison with the Moore-type 
realization is the timing of output signals. A circuit that implements the FSM in Figure 
8-28 generates the output control signals one clock cycle sooner than the circuits derived 
ln Examples 8.1 and 8.2. 

Note also that using the FSM in Figure 8.28, the entire process of swapping the contents 
O f R 1  and R2 takes three clock cycles, starting and finishing in state A. Using the Moore-type 
FSM in Example 8.1, the swapping process involves four clock cycles before the circuit 

to state A. 
Suppose that we wish to implement this FSM using one-hot encoding. Then three 

Rip-flo~s are needed, and the and C may be assigned the valuations y3y2y1 = 

010, and 100, the state diagram in Figure 8.28, we can derive 
499 



Clock 

Resetn 

(a) Circuit 

to * 1 *2 t3  l 4  t 5  t6  *7 ?a 29 t10 
1 

Clock 
0 

(b) Timing diagram 

Figure 8.27 Circuit that implements the specification in Figure 8.2. 

the next-state equations by inspection. The input to flip-flop yl should have the value 1 if 
- the FSM is in state A and w = 0 or if the FSM is in state C ;  hence Y1 = wyl +y3. Flip-flop 

Y2 should be set to 1 if the FSM is in state A and w = I ;  hence y2 = wyl. Flip-flopy3 
should be set to 1 if the present state is B; hence Y3 = y2.  The derivation of the output 
expressions, which we leave as an exercise for the reader, can also be done by inspection. 
The corresponding circuit is shown in Figure 7.58, in section 7.14, where it was derived 
using an ad hoc approach. 

The preceding discussion deals with the basic principles involved in the design 
sequential circuits. Although i t  is essential to understand these principles, the manua1 
approach used in the examples is difficult and tedious when large circuits are involved we 
will now show how CAD tools are used to greatly simplify the design task. 



8.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 

w = o  

--c Reset 

Figure 8.28 Stote diagram lor Example 8.4. 

8.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS I 
Sophisticated CAD tools are available for finite state machine design, and we introduce 
them in this section. A rudimentary way of using CAD tools for FSM design could be 
as follows: The designer employs the manual techniques described previously to derive a 
circuit that contains flip-flops and logic gates from a state diagram. This circuit is entered 
into the CAD system by drawing a schematic diagram or by writing structural hardware 
description language (HDL) code. The designer then uses the CAD system to simulate the 
behavior of the circuit and uses the CAD tools to automatically implement the circuit in a 
chip, such as a PLD. 

It is tedious to manually synthesize a circuit from a state diagram. Since CAD tools 
are meant to obviate this type of task, more attractive ways of utilizing CAD tools for FSM 
design have been developed. A better approach is to directly enter the state diagram into the 
CAD system and perform the entire synthesis process automatically. CAD tools support 
this approach in two main ways. One method is to allow the designer to draw the state 
dfagram using a graphical tool similar to the schematic capture tool. The designer draws 
'lrcles to represent states and arcs to represent state transitions and indicates the outputs 

the machine should generate. Another and more popular approach is to use an HDL to 
write code that represents the state diagram, as described below. 

Many HDLs provide constructs that allow the designer to represent a state diagram. 
To show how this is done, we will provide VHDL code that represents the simple machine 
designed manually as the first exa section 8.1. Then we will use the CAD tools to 

a circuit that in a chip. 
501 



8.4.1 VHDL CODE FOK MOORE-WPE FSMS 
J 

VHDL does not define a standard way of describing a finite state machine. Hence while 
adhering to the required VHDL syntax, there is more than one way to describe a given 
FSM. An example of VHDL code for the FSM of Figure 8.3 is given in Figure 8.29. F ~ ,  
the convenience of discussion, the lines of code are numbered on the left side. Lines 1 
6 declare an entity named simple, which has input ports Clock, Resetn, and w, and output 
port z. In line 7 we have used the name Behavior for the architecture body, but of course 
any valid VHDL name could be used instead. 

3 

Line 8 introduces the TYPE keyword, which is a feature of VHDL that we have not 
used previously. The TYPE keyword allows us to create a user-defined signal type. ~h~ - ~- 

new signal type is named State-type, and the code specifies that a signal of this type can 
have three possible values: A, B, or C. Line 9 defines a signal named y that is of the 
State - type type. They signal is used in the architecture body to represent the outputs of the 
flip-flops that implement the states in the FSM. The code does not specify the number of bits 
represented by y. Instead, it specifies that y can have the three symbolic values A, B, and C, 
This means that we have not specified the number of state flip-flops that should be used for 
the FSM. As we will see below, the VHDL compiler automatically chooses an appropriate 
number of state flip-flops when synthesizing a circuit to implement the machine. It also 
chooses the state assignment for states A, B, and C .  Some CAD systems, such as Quartus 
11, assume that the first state listed in the TYPE statement (line 8) is the reset state for the 
machine. The state assignment that has all flip-flop outputs equal to 0 is used for this state, 
Later in this section, we will show how it is possible to manually specify the state encoding 
in the VHDL code if so desired. 

Having defined a signal to represent the state flip-flops, the next step is to specify the - 

transitions between states. Figure 8.29 gives one way to describe the state diagram. It is 
represented by the process in lines 11 to 37. The PROCESS statement describes the finite 
state machine as a sequential circuit. It is based on the approach we used to describe an 
edge-triggered D flip-flop in section 7.12.2. The signals used by the process are Clock, 
Resetrz, w, a n d ,  and the only signal modified by the process is y. The input signals that 
can cause the process to change y are Clock and Resetn; hence these signals appear in the 
sensitivity list. Note that u! is not included in the sensitivity list because a change in the 
value of w cannot affect y until a change occurs in the Cluck signal. 

Lines 13 and 14 specify that the machine should enter state A, the reset state, if Resetn 
= 0. Since the condition for the IF statement does not depend on the clock signal, the reset 
is asynchronous, which is why Resetn is included in the sensitivity list in line 11. 

When the reset signal is not asserted, the ELSIF statement in line 15 specifies that the 
circuit waits for the positive edge of the clock signal. Observe that the ELSIF condition 
is the same as the condition that we used to describe a positive-edge-triggered D flip-flop 
in Figure 7.39. The behavior of y is defined by the CASE statement in lines 16 to 35. 
corresponds to the state diagram in Figure 8.3. Since the CASE statement is inside lhe 

ELSlF condition, any change in y can take place only as a result of a positive clock edge- 
In other words, the ELSIF condition implies that y must be implemented as the output '' 
one or more flip-flops. Each WHEN clause in the CASE statement represents one state 
of the machine. For example, the WHEN clause in lines 17 to 22 describes the 



1 LIBRARY ieee ; 
2 USE ieee.std-logic-1164.all ; 

3 ENTITY simple IS 
4 PORT ( Clock, Resetn, w : IN STD-LOGIC ; 
5 z : OUT STD-LOGIC ) ; 
6 END simple ; 

ARCHITECTURE Behavior OF simple IS 
TYPE State-type IS (A, B, C) ; 
SIGNAL y : State-type ; 

BEGTN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y < = A ;  

ELSTF (Clock'EVENT AND Clock = ' 1') THEN 
CASE y IS 

WHEN A => 
IF w = '0' THEN 

y < = A ;  
ELSE 

y < = B ;  
END IF ; 

WHEN B => 
IF w = '0' THEN 

y <= A ;  
ELSE 

y < = C ;  
END IF ; 

WHEN C => 
IF w = '0' THEN 

y <= A ;  
ELSE 

y < = c ;  
END IF ; 

END CASE ; 
END IF ; 

END PROCESS ; 
z <= ' l ' W H E N y =  CELSE'O' ; 

END Behavior ; 

Figure 8.29 VHDL code for the FSM in Figure 8.3. 



behavior when it is in state A. According to the IF statement beginning in line 18, when 
FSM is in state A, if w = 0, the machine should remain in State& but if rv = 1 ,  the machine 
should change to state B. The WHEN clauses in the CASE statement correspond exactly 
the state diagram in Figure 8.3. 

The final part of the state machine description appears in line 38. It specifies that if the 
machine is in state C, then the output z should be 1; otherwise, z should be 0. 

8.4.2 SYNTHESIS OF VHDL CODE 

To give an example of the circuit produced by a synthesis tool, we synthesised the code 
in Figure 8.29 for implementation in a CPLD. The synthesis resulted in two flip-flops 
with inputs Y1 and Yz ,  and outputs yl and yz. The next-state expressions generated by the 
synthesis tool are 

The output expression is 

These expressions correspond to the case in Figure 8.7 when the unus;ed state pattern 
y2y1 = 11 is treated as don't-cares in the Karnaugh maps for YI , Y2,  and z. 

Figure 8.30 depicts a part of the FSM circuit implemented in a CPLD. To keep the 
figure simple, only the logic resources used for the two macrocells that implement y l ,  y2, 
and z are shown. The parts of the macrocells used for the circuit are highlighted in blue. 

The w input to the circuit is shown connected to one of the interconnection wires in 
the CPLD. The source node in the chip that generates 11, is not shown. It could be either an 
input pin, or else w might be the output of another macrocell, assuming that the CPLD may 
contain other circuitry that is connected to our FSM. The Clock signal is assigned to a pin 
on the chip that is dedicated for use by clock signals. From this dedicated pin a global wire 
distributes the clock signal to all of the flip-flops in the chip. The global wire diaibutes 
the clock signal to the flip-flops such that the difference in the arrival time, or clock skew, 
of the clock signal at each flip-flop is minimized. The concept of clock skew is discussed 
in section 10.3. A global wire is also used for the reset signal. 

The top macrocell in Figure 8.30 produces the state variable y l .  The other macrocell 
generates y2. For signal the top rnacrocell produces the required product term, as shown 
The other product-term wires in the macrocell are not shown in the figure, but each is set 
to 0 so that it does not affect the OR gate. The output of the OR gate passes through the 
XOR gate whose other input is 0. Although the XOR gate has no impact on this circuit's 
behavior, except to cause a small propagation delay, it is a part of the macrocell and canoot 
be avoided when implementing our circuit. The output of the XOR gate drives the flip-flop 
that represents ~ 1 .  The multiplexer select input i\ set to 1 so that the signal yl is 
through to the tri-state buffer. Similar to the XOR gate, this buffer is not needed in ou 
circuit, but since it is present in the rnacrocell i t  must be used; hence its output enable contro1 
signal is set to 1. The signal is connected to the interconnection wires in the CPLD - 



8.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 

Figure 8.30 Implementation of the FSM of Figure 8.3 in a CPLD. 

fed back to the rnacrocells. Observe that although yl is not an output of the circuit, it uses 
a signal path that is attached to one of the chip's pins. Therefore, this pin cannot be used 
for an). other purpose. The implementation of y? is similar to that for y l ,  except that two 
Product terms are involved. The signal y2 is connected to the pin labeled z ,  which realizes 
Ihe required output signal. 
, Figure 8.31 illustrates how the circuit might be assigned to the pins on a small CPLD 
ln a 44-pin PLCC package. The figure is drawn with a part of the top of the chip package 
Cut away, revealing a conceptual view of the two rnacrocells from Figure 8.30, which are 
Indicated in blue. Our simple circuit uses only a small portion of the device. 



EPM 

Figure 8.31 The circuit from Figure 8.30 in a small CPLD. 

The behavior of the circuit implemented in the CPLD chip can be tested using timing 
simulation, as depicted in Figure 8.32. The figure gives the waveforms that correspond to 
the timing diagram in Figure 8.9, assuming that a 100 ns clock period is used. The Resetrr 
signal is set to 0 at the beginning of the simulation and then set to 1. The circuit produces 
the output z = 1 for one clock cycle after w has been equal to 1 for two successive clock 
cycles. When w is 1 for three clock cycles, z becomes 1 for two clock cycles, as it should 
be. We show the changes in state by using the letters A, B ,  and C for readability purposes. 
(The simulator included with the book actually shows the corresponding binary codes for 
the states.) 

Figure 8.32 Simulation results for the circuit in Figure 8.30. 



8.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 

~ ~ v i n g  examined the simulation output, we should consider the question of whether 

we ca n c ~ ~ ~ c l u d e  that the circuit functions correctly and satisfies all requirements. For our 
example it is not difficult to answer this question because the circuit has only one 

inp ~t and its behavior is straightforward. It is easy to see that the circuit works properly, 
 ever, in general it is difficult to ascertain with a high degree of confidence whether a 

seq 
uentjal circuit will work properly for all possible input sequences, because a very large 

of input patterns may be possible. For large finite state machines, the designer must 
carefully about patterns of inputs that may be used in simulation for testing purposes. 

8.4.4 AN ALTERNATIVE STYLE OF VHDL CODE 

We mentioned earlier in this section that VHDL does not specify a standard way for writing 
code that represents a finite state machine. The code given in Figure 8.29 is only one 
possibility. A second example of code for our simple machine is given in Figure 8.33. Only 
the architecture body is shown because the entity declaration is the same as in Figure 8-29. 

signals are used to represent the state of the machine. The signal named ygresent 
conespond~ to the present state, and y-ncJst corresponds to the next state. In terms of the 

used in section 8.1.3, y j r e s e n t  is the same as y, and y-next is Y. We cannot use 
y to denote the present state and Y for the next state in the code, because VHDL does not 
distinguish between lower- and uppercase letters. Both the ygresent  and y-next signals 
are of the State-type type. 

The machine is specified by two separate processes. The first process describes the 
state table as a combinational circuit. It uses a CASE statement to give the value of y-next 
for each value of ygresent  and w. The code can be related to the general form of FSMs 
in Figure 8.5. The process corresponds to the combinational circuit on the left side of the 
figure. 

The second process introduces flip-flops into the circuit. It stipulates that after each 
positive clock edge the ygresent  signal should take the value of the y-next signal. The 
process also specifies that ygresent  should take the value A when Resetn = 0, which 
provides the asynchronous reset. 

We have shown two styles of VHDL code for our FSM example. The circuit produced 
by the VHDL compiler for each version of the code is likely to be somewhat different 
because, as the reader is well aware by this point, there are many ways to implement a 

logic function. However, the circuits produced from the two versions of the code 
provide identical functionality. 

In section 8.1.6 we summarized the design steps needed to derive sequential circuits man- 
uaflJ'. We have now seen that CAD tools can automatically perform much of the work. 

it is important to realize that the CAD tools have not replaced all manual steps. 
With reference to the list given in section 8.1.6, the first two steps, in which the machine 
'Pecification is obtained and a state diagram is derived, still have to be done manually. 
Given the state diagram informatio the CAD tools then automatically perform 
the tasks needed to generdte a gates and flip-flops. In addition to the 

507 



ARCHITECTURE Behavior OF simple IS 
TYPE State-type IS (A, B, C )  ; 
SIGNAL y-present, y-next : State-type ; 

BEGIN 
PROCESS ( w, y-present ) 
BEGIN 

CASE y-present IS 
WHEN A => 

IF w = '0' THEN 
y-next <= A ; 

ELSE 
y-next <= B ; 

END IF ; 
WHEN B => 

IF w = '0' THEN 
y-next <= A ; 

ELSE 
y-next <= C ; 

END IF ; 
WHEN C => 

IF w = '0' THEN 
y-next <= A ; 

ELSE 
y-next <= C ; 

END IF ; 
END CASE ; 

END PROCESS ; 

PROCESS (Clock, Resetn) 
BEGIN 

IF Resetn = '0' THEN 
y-present <= A ; 

ELSIF (Clock' EVENT AND Clock = ' 1 ' ) THEN 
y-present <= y-next ; 

END IF ; 
END PROCESS ; 

z <= ' 1' WHEN y-present = C ELSE '0' ; 
END Behavior ; 

Figure 8.33 Alternative style of VHDL code for he FSM in Figure 8.3- 



8.4 DESIGN OF FINITE STATE MACHINES USING CAD TOOLS 

design given in section 8.1.6, we should add the testing and simulation stage. We will 
defer detailed discussion of this issue until Chapter 11. 

8.4.6 SPECIFYING THE STATE ASSIGNMENT IN VHDL CODE 

In section 8.2 we saw that the state assignment may have an impact on the complexity of 
designed circuit. An obvious objective of the state-assignment process is to minimize 
cost of implementation. The cost function that should be optimized may be simply the 

number of gates and flip-flops. But it could also be based on other considerations that may 

be of the structure of PLD chips used to implement the design. For example, 
the CAD hoftware may try to find state encodings that minimize the total number of AND 
terms needed in the resulting circuit when the target chip is a CPLD. 

In VHDL code it is possible to specify the state assignment that should be used, but 
there is no standardized way of doing so. Hence while adhering to VHDL syntax, each 
CAD system permits a slightly different method of specifying the state assignment. The 
Quaflus I1 system recommends that state assignment be done by using the attribute feature 
of VHDL. An attribute refers to some type of information about an object in VHDL code. 
~ 1 1  signals automatically have a number of associated predeJined attributes. An example is 
the EVENT attribute that we use to specify a clock edge, as in Clock'EVENT. 

In addition to the predefined attributes, it is possible to create a user-defined attribute. 
The user-defined attribute can be used to associate some desired type of information with 
an object in VHDL code. In Quartus I1 manual state assignment can be done by creating a 
user-defined attribute associated with the State-type type. This is illustrated in Figure 8.34, 
which shows the first few lines of the architecture from Figure 8.33 with the addition of a 
user-defined attribute. We first define the new attribute called ENUM-ENCODING, which 
has the type STRING. The next line associates ENUM-ENCODING with the State-type 
type and specifies that the attribute has the value "00 01 11". When translating the VHDL 
code, the Quartus IT compiler uses the value of ENUM-ENCODING to make the state 
assignment A = 00, B = 0 1 , and C = 1 1 . 

The ENUM-ENCODING attribute is specific to Quartus 11. Hence we may not be able 
to use this method of state assignment in other CAD systems. A different way of giving the 
state assignment, which will work with any CAD system, is shown in Figure 8.35, Instead 

ARCHITECTURE Behavior OF simple IS 
TYPE State-TYPE IS (A, B, C) ; 
ATTRIBUTE ENUMENCODING : STRING ; 
ATTRIBUTE ENUMENCODING OF State-type : TYPE IS "00 0 1 1 1" ; 
SIGNAL y-present, y-next : State-type ; 

BEGIN 

Figure 8.34 A user-defined attribute for manual state assignment. 
\ 



LIBRARY ieee ; 
USE ieee.std-logic-1164.all ; 

ENTITY simple IS 
PORT ( Clock, Resetn, w : STDLOGIC ; 

z : OUT STDLOGIC ) ; 
END simple ; 

ARCHITECTURE Behavior OF simple IS 
SIGNAL y-present, y-next : STD-LOGIC-VECTOR(1 DOWNTO 0); 
CONSTANT A : STD-LOGIC-VECTOR(1 DOWNTO 0) := "00" ; 
CONSTANT B : STD-LOGIC-VECTOR(1 DOWNTO 0) := "0 1" ; 
CONSTANT C : STD-LOGIC-VECTOR(1 DOWNTO 0) := "1 1" ; 

BEGIN 
PROCESS ( w, y-present ) 
BEGIN 

CASE y- present IS 
WHEN A => 

IF w = '0' THEN y-next -c = A ; 
ELSE y-next <= B ; 
END IF ; 

WHEN B => 
IF w = '0' THEN y-next <= A ; 
ELSE y-next < = C ; 
END IF ; 

WHEN C => 
IF w = '0' THEN y-next <= A ; 
ELSE y-next <= C ; 
END IF ; 

WHEN OTHERS => 
y-next <= A ; 

END CASE ; 
END PROCESS ; 
PROCESS ( Clock, Resetn ) 
BEGIN 

IF Resetn = '0' THEN 
y-present <= A ; 

ELSIF (Clock' EVENT AND Clock = ' 1 ' ) THEN 
y-present <= y-next ; 

END IF ; 
END PROCESS ; 
z <= ' 1' WHEN y-present = C ELSE '0' ; 

END Behavior ; 

Figure 8.35 Using constants for manual state assignment. 
* 



8.4 DESIGN OF FINZTE STATE MACHINES USING CAD TOOLS 

of using [he State-type type as in previous examples, y-present and y-next are defined as 

two- bit sTDLOGIC-VECTOR signals. Each of the symbolic names for the three states, 

A, B- and C, are defined as constants, with the value of each constant corresponding to 
desired encoding. Note that the syntax for assigning a value to a constant uses the := 

assign merit operator, rather than the < = operator that is used for signals. When the code is 
translated, the VHDL compiler replaces the symbolic names A, B, and C with their assigned 

values. 
The CASE statement that defines the state diagram is identical to that in Figure 8.33 
one exception. VHDL requires that the CASE statement for y-present include a 

WHEN clause for all possible values of y-present. In Figure 8.33 y-presri~t can have only 
the three values A, B,  and C because it has the State-type type. But since y-present is a 
STD-LOGIC-VECTOR signal in Figure 8.35, we must provide a WHEN OTHERS clause, 
,, shown. In practice, the machine should never enter the unused state, which corresponds 
toy + prpsrtlr = 10. AS we said earlier, there is a slight possibility that this could occur due 
to erroneous behavior of the circuit. As a pragmatic choice, we have specified that the FSM 

change back to the reset state if such an error occurs. 

8.4.7 SPECIFICATION OF MEALY FSMS USING VHDL 

A Mealy -type FSM can be specified in a similar manner as a Moore-type FSM. Figure 8.36 
gives complete VHDL code for the FSM in Figure 8.23. The state transitions are described 
in the same way as in our original VHDL example in Figure 8.29. The signal y represents 
the state flip-flops, and State-type specifies that y can have the values A and B. Compared 
to the code in Figure 8.29, the major difference in the case of a Mealy-type FSM is the way 
in which the code for the output is written, In Figure 8.36 the output z is defined using 
a CASE statement. It states that when the FSM is in state A, z should be 0, but when in  
state B, z should take the value of w, This CASE statement properly describes the logic 
needed for z,  but it may not be obvious why we have used a second CASE statement in 
the code, rather than specify the value of z inside the CASE statement that defines the state 
transitions. The reason is that the CASE statement for the state transitions is nested inside 
the IF statement that waits for a clock edge to occur. Hence if we placed the code for z 
inside this CASE statement, then the value of z could change only as a result of a clock 
edge. This does not meet the requirements of the Mealy-type FSM, because the value of z 
must depend not only on the state of the machine but also on the input rv. 

Implementing the FSM specified in Figure 8.36 in a CPLD chip yields the same equa- 
tions as we derived manually in section 8.3. Simulation results for the synthesized circuit 

in Figure 8.37. The input waveform for w is the same as the one we used for the 
Moore-type machine in Figure 8.32. Our Mealy-type machine behaves correctly, with z 
becoming 1 just after the start of the second consecutive clock cycle in which w is 1. 

In the sinlulation results we have given in this section, all changes in the input w occur 
Immediately following a positive clock edge. This is based on the assumption stated in 
Section 8- 1.5 that in a real circuit w would be synchronized with respect to the clock that 
CO.ntrO1s the FSM. In Figure 8.38 we illustrate a problem that may arise if w does not meet 
''ls specification. In this case we have assumed that the changes in w take place at the 



LIBRARY ieee ; 
USE ieee.stdlogic~l164.all ; 

ENTITY mealy IS 
PORT ( Clock, Resetn, w : IN STD-LOGIC ; 

z : OUT STD-LOGIC ) ; 
END mealy ; 

ARCHITECTURE Behavior OF mealy IS 
TYPE State-type IS (A, B) ; 
SIGNAL y : State-type ; 

BEGIN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y < = A ;  

ELSIF (Clock' EVENT AND Clock = ' 1 ' ) THEN 
CASE y IS 

WHEN A => 
I F w = ' O ' T H E N y < = A ;  
ELSE y <= B ; 
END IF ; 

WHEN B => 
I F w = ' O ' T H E N y < = A ;  
ELSE y <= B ; 
END IF ; 

END CASE ; 
END IF ; 

END PROCESS ; 

PROCESS ( y, w ) 
BEGIN 

CASE y IS 
WHEN A => 

z <= '0' ; 
WHEN B => 

z < = w ;  
END CASE ; 

END PROCESS ; 
END Behavior ; 

Figure 8.36 VHDL code for the Mealy machine of Figure 8.23. 



Figure 8.37 Simulation results for the Mealy machine. 

Figure 8.38 Potential problem with asynchronous inputs to a Mealy FSM. 

negative edge of the clock, rather than at the positive edge when the FSM changes its state. 
The first pulse on the w input is 100 ns long. This should not cause the output z to become 
equal to I .  But the circuit does not behave in this manner. After the signal w becomes 
equal to 1, the first positive edge of the clock causes the FSM to change from state A to 
state B. As soon as the circuit reaches the state B, the w input is still equal to I for another 
50 ns, which causes z to go to 1 ,  When w returns to 0, the z signal does likewise. Thus an 
erroneous 50-ns pulse is generated on the output z. 

We should pursue the consequences of this problem a little further. If z is used to drive 
another circuit that is not controlled by the same clock, then the extraneous pulse is likely 
'0 cause big problems. But if z is used as an input to a circuit (perhaps another FSM) that 
l"0ntrolled by the same clock, then the 50-ns pulse will be ignored by this circuit if z = 0 
before the next positive edge of the clock (accounting for the setup time). 

we will now present another simple example that illustrates the complete design process. 
In Chapter 5 we discussed the adqtion of binary numbers in detail. We explained several 



schemes that can be used to add two n-bit numbers in parallel, ranging from cq-r ipp le  
to cq - lookahead  adders. In these schemes the speed of the adder unit is an impon ant 
design parameter. Fast adders are more complex and thus more expensive. If speed is ,,[ 
of great importance, then a cost-effective option is to use a serial adder, in which bits a, 
added a pair at a time. 

8.5.1 MEALY-TYPE FSM FOR SERIAL ADDER 

Let A = a,- a,-2 - - . a0 and B = 6,- I b,-z - - - bo be two unsigned numbers that have to 
added to produce Sum = s,-ls,_2 - - - so. Our task is to design a circuit that will perfom 
serial addition, dealing with a pair of bits in one clock cycle. The process starts by adding 
bits a0 and bo. In the next clock cycle, bits a ,  and bl are added, including a possible 
carry from the bit-position 0, and so on. Figure 8.39 shows a block diagram of a possible 
implementation. It includes three shift registers that are used to hold A, B, and Sum as the 
computation proceeds. Assuming that the input shift registers have parallel-load capability, 
as depicted in Figure 7.19, the addition task begins by loading the values of A and B into 
these registers. Then in each clock cycle, a pair of bits is added by the adder FSM, and 
at the end of the cycle the resulting sum bit is shifted into the Sum register. We will use 
positive-edge-triggered flip-flops in which case all changes take place soon after the positive 
edge of the clock, depending on the propagation delays within the various flip-flops. At this 
time the contents of all three shift registers are shifted to the right; this shifts the existing 
sum bit into Sum, and it presents the next pair of input bits ai and bi to the adder FSM. 

Now we are ready to design the required FSM, This cannot be a combinational circuit 
because different actions will have to be taken, depending on the value of the carry from the 
previous bit position. Hence two states are needed: let G and H denote the states where the 
carry-in values are 0 and 1, respectively. Figure 8.40 gives a suitable state diagram, defined 
as a Mealy model. The output value, s, depends on both the state and the present value of 
the inputs a and b. Each transition is labeled using the notation abls,  which indicates the 
value of s for a given valuation c l b .  In state G the input valuation 00 will produce s = 0. 
and the FSM will remain in the same state. For input valuations 01 and 10, the output will 
be s = 1, and the FSM will remain in G. But for 11, s = 0 is generated, and the machine 

- 1 Adder 

Shift register -rqTl+ 
S 

Shift register 

I B 

Clock 1 
Figure 8.39 Block diagram for the serial adder. 



G: carry-in = 0 
H: carry-in = 1 

Figure 8.40 State diagram for the serial adder FSM. 

moves to state H .  In state H valuations 01 and 10 cause s = 0, while 1 I causes s = 1. In 
all three of these cases, the machine remains in H .  However, when the valuation 00 occurs, 
the output of 1 is produced and a change into state G takes place. 

The corresponding state table is presented in Figure 8.41. A single flip-flop is needed 
to represent the two states. The state assignment can be done as indicated in Figure 8.42. 
This assignment leads to the following next-state and output equations 

Figure 8.41 State table for the serial adder FSM. 

Present 
State 

G 
H 

Figure 8.42 S te-assigned table for Figure 8.41 . L 

Next state 

ab = 00 01 10 11  

G G G H O 1 1 O  
G H H H l O O l  

Present 
state 

Y 

0 
1 

Output s 

00 01 10 1 1  

Next state 

ab = 00 01 10 1 1  

Y 

0 0 0 1 0 1 1 0  
0 

- 

Output 

00 01 10 1 1  

S 

1 1 1 1 0 0 1  



Figure 8.43 Circuit for the adder FSM in Figure 8.39. 

_C - 

Comparing these expressions with those for the full-adder in section 5.2, it is obvious that 
y is the car-y-in, Y is the carry-out, and s is the sun1 of the full-adder. Therefore, the adder 
FSM box in Figure 8.39 consists of the circuit shown in Figure 8.43. The flip-flop can be 
cleared by the Reset signal at the start of the addition operation. 

The serial adder is a simple circuit that can be used to add numbers of any length. The 
structure in Figure 8.39 is limited in length only by the size of the shift registers. 

- 
Full 

adder Y 
D Q 

Y 
cb[iarl)'-out 

8.5.2 MOORE-TYPE FSM FOR SERIAL ADDER 

Clock > Q 

Reset 

In the preceding example we saw that a Mealy-type FSM nicely meets the requirement 
for implementing the serial adder. Now we will try to achieve the same objective using a 
Moore-type FSM. A good starting point is the state diagram in Figure 8.40. In a Moore-type 
FSM, the output must depend only on the state of the machine. Since in both states, G and 
H, it is possible to produce two different outputs depending on the valuations of the inputs 
a and b, a Moore-type FSM will need more than two states. We can derive a suitable state 
diagram by splitting both G and H into two states. Instead of G, we will use Go and GI to 
denote the fact that the carry is 0 and that the sum is either 0 or 1, respectively. Similarly, 
instead of H, we will use Ho and H I .  Then the information in Figure 8.40 can be mapped 
into the Moore-type state diagram in Figure 8.44 in a straightforward manner. 

The corresponding state table is given in Figure 8.45 and the state-assigned table in 
Figure 8.46. The next-state and output expressions are 

The expressions for Yl and Y2 correspond to the sum and carry-out expressions in the 
full-adder circuit. The FSM is implemented as shown in Figure 8.47. It is interesting 
observe that this circuit is very similar to the circuit in Figure 8.43. The only difference Is 

that in the Mwre-type circuit, the output signal, s, is passed through an extra flip-flop and 
thus delayed by one clock cycle with respect to the Mealy-type sequential circuit. Ileca1' 



Reset 

Figure 8.44 State diagram for the Moore-type serial adder FSM. 

Figure 8.45 State table for the Moore-type serial adder FSM. 

Output 

s 

0 

1 
0 
1 

Present 
State 

Go 
G1 

Ho 
H1 

Figure 8.46 State-assigned table for Figure 8.45. 

\ 

Next state 

ab = 00 01 10 11 

Go GI G1 Ho 
Go G1 G I  Ho 
G1 Ho Ho H1 
G1 Ho Ho H1 

Present 
state 

3'2 Y 1 

0 0 
0  1 
1 0  
1 1  

Next state 

ab = 00 01 10 11 

y2 Yl 

0 0  0 1  0 1  1 0  
0 0  0 1  0 1  1 0  
0 1  1 0  1 0  1 1  
0 1  1 0  1 0  1 1  

Output 

s 

0 
1 
0  
1  



Figure 8.47 Circuit for the Moore-type serial adder FSM. 

that we observed the same difference in our previous example, as depicted in Figures 8.26 
and 8,27. 

A key difference between the Mealy and Moore types of FSMs is that in the former a 
change in inputs reflects itself immediately in the outputs, while in the latter the outputs do 
not change until the change in inputs forces the machine into a new state, which takes place 
one clock cycle later. We encourage the reader to draw the timing diagrams for the circuits 
in Figures 8.43 and 8.47, which will exemplify further this key difference between the two 
types of FSMs. 

i 

- - 

8.5.3 VHDL CODE FOR THE SERIAL ADDER 

Full 
adder 

Sum bit y 1 

Carry-out - 

The serial adder can be described in VHDL by writing code for the shift registers and the 
adder FSM. We will first design the shift register and then use it as a subcircuit in the serial 
adder. 

Clock - - 

- Reset - 

Shift Register Subcircuit 
Figure 7.5 1 gives VHDLcode for an n-bit shift register. In the serial adder it is beneficial 

to have the ability to prevent the shift register contents from changing when an active clock 
edge occurs. Figure 8.48 gives the code for a shift register named shiftme, which has an 
enable input, E.  When E = 1, the shift register behaves in the same way as the one in 
Figure 7.5 1. Setting E = 0 prevents the contents of the shift register from changing. The 
E input is usually called the enable input. It is useful for many types of circuits, as we will 
see in Chapter 10. 

D Q 

- > Q 

Y 1 --- 

y2 
- 
D Q 

- 

> Q 

Y2 



LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 

- - left-to-right shift register with parallel load and enable 
ENTITY shiftrne IS 

GENERIC ( N : INTEGER := 4 ) ; 
PORT ( R : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ; 

L, E, w : IN STD-LOGIC ; 
Clock : IN STD-LOGIC ; 
Q : BUFFER STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ) ; 

END shiftrne ; 

ARCHITECTURE Behavior OF shiftrne IS 
BEGIN 

PROCESS 
BEGIN 

WAIT UNTIL Clock7 EVENT AND Clock = ' 1 ' ; 
IF E = ' 1 ' THEN 

IF L = ' 1 '  THEN 
Q < = R :  

ELSE 
Genbits: FOR i IN OTO N-2 LOOP 

Qti) <= Q(i+l); 
END LOOP ; 
Q(N-1) <= w ; 

END IF ; 
END IF ; 

END PROCESS ; 
END Behavior ; 

Figure 8.48 Code for a left-to-right shift register with an enable input. 

Complete Code 
The code for the serial adder is shown in Figure 8.49. It instantiates three shift registers 

the inputs A and B and the output Sum. The shift registers are loaded with parallel data 
when the circuit is reset. The state diagram for the adder FSM is described by a single 
process, using the style of code in Figure 8.29. In addition to the components of the serial 
adder shown in Figure 8.39, the VHDL code includes a down-counter to determine when 
Ihe adder should be halted because all n bits of the required sum are present in the output 
shift register. When the circuit is reset, the counter is loaded with the number of bits in the 
Trial adder, n.  The counter counts down to 0, and then stops and disables further changes 
In the output shift register. 



1 LIBRARY ieee ; 
2 USE ieee.std-logic-l164.all ; 

3 ENTITY serial IS 
4 GENERIC ( length : INTEGER := 8 ) ; 
5 PORT ( Clock : IN STD-LOGIC ; 
6 Reset : IN STD-LOGTC ; 
7 A, B : IN STD-LOGIC-VECTOR(1ength- 1 DOWNTO 0) ; 
8 Sum : BUFFER STD-LOGIC-VECTOR(1ength- 1 DOWNTO 0) ); 
9 END serial ; 

10 ARCHITECTURE Behavior OF serial IS 
11 COMPONENT shiftrne 
12 GENERIC ( N : INTEGER := 4 ) ; 
13 PORT( R : IN STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ; 
14 L, E, w : IN STD-LOGIC ; 
15 Clock : IN STD-LOGIC ; 
16 Q : BUFFER STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ) ; 
17 END COMPONENT ; 

18 SIGNAL QA, QB, Null-in : STD-LOGIC-VECTOR(1ength- 1 DOWNTO 0) ; 
19 SIGNAL s, Low, High, Run : STD-LOGIC ; 
20 SIGNAL Count : INTEGER RANGE 0 TO length ; 
21 TYPE State-type IS (G, H) ; 
22 SIGNAL y : State-type ; - 

... continued in Part h 

Figure 8.49 VHDL code for the serial adder (Part a) .  

The lines of code in Figure 8.49 are numbered on the left for reference. The GENERIC 
parameter length sets the number of bits in the serial adder. Since the value of length is 
equal to 8, the code represents a serial adder for eight-bit numbers. By changing the value 
of length, the same code can be used to synthesize a serial adder circuit for any number of 
bits. 

Lines 18 to 22 define several signals used in the code. The signals QA and QB cone- 
spond to the parallel outputs of the shift registers with inputs A and B in  Figure 8.39. The 
signal named s represents the output of the adder FSM. The other signals will be described 
along with the lines of code where they are used. 

In Figure 8.39 the shift registers for inputs A and B do not use a serial input or an 
enable input. However, the shiftrne component, which is used for all three shift registers, 
includes these ports and so signals must be connected to them. The enable input for the 
two shift registers can be connected to logic value 1. The value shifted into the serial input 
does not matter, so it can be connected to either 1 or 0. In lines 26 and 28, the enable input 



23 BEGIN 
24 Low <= '0' ; High <= '1' ; 

2 5 ShiftA: shiftrne GENERIC MAP (N => length) 

26 PORT MAP ( A, Reset, High, Low, Clock, QA ) ; 

27 ShiftB: shiftrne GENERIC MAP (N => length) 

2 8 PORT MAP ( B, Reset, High, Low, Clock, QB ) ; 

29 AdderFSM: PROCESS ( Reset, Clock ) 

30 BEGIN 
3 1 IF Reset = ' 1 ' THEN 
3 2 y < = G ;  
33 ELSIF Clock'EVENT AND Clock = ' 1 ' THEN 
34 CASE y IS 
35 WHEN G => 
36 IF QA(0) = '1' AND QB(0) = '1' THEN y <= H ; 
37 ELSE y <= G ; 
3 8 END IF ; 
39 WHEN H => 
40 IF  QA(0) = '0' AND QB(0) = '0' THEN y <= G ; 
4 1 ELSE y <= H ; 
42 END IF ; 
43 END CASE; 
14 END IF ; 
15 END PROCESS AdderFSM ; 

WITH y SELECT 
s < = QA(0) XOR QB(0) WHEN G, 

NOT ( QA(0) XOR QB(0) ) WHEN H ; 
Null-in <= (OTHERS => '0') ; 
ShiftSum: shiftrne GENERIC MAP ( N => length ) 

PORT MAP ( Nullin, Reset, Run, s, Clock, Sum ) ; 
Stop: PROCESS 
BEGIN 

WAIT UNTIL (Clock'EVENT AND Clock = ' 1') ; 
IF  Reset = ' 1 ' THEN 

Count <= length ; 
ELSIF Run = ' 1 ' THEN 

Count <= Count - 1 ; 
END IF ; 

END PROCESS ; 
Run <= '0' WHEN Count = 0 ELSE '1' ; - - stops counter and ShiftSum 

END Behavior ; 

Figure 8.49 VHDL code for the serial adder (Part b) .  



is connected to the signal named High, which is set to 1 ,  and the serial inputs are tied 
the signal Low, which is 0. These signals are needed because the VHDL syntax does 
allow the constants 0 or 1 to be attached to the ports of a component. The n parameter for 
each shift register is set to length using GENERIC MAP. If the GENERIC MAP were 
provided, then the default value of N = 4 given in the code in Figure 8.48 would be used. 
The shift registers are loaded in parallel by the Reset signal. We have chosen to use an 
active-high reset signal for the circuit. 

The adder FSM is specified i n  lines 29 to 45, which describes the state transitions in 
Figure 8.41. Lines 46 to 48 define the output, s, of the adder FSM. This statement results 
from observing in Figure 8.41 that when the FSM is in state G, the sum is s = a b, and 
when in state H, the sum is s = a @ b. 

The output shift register does not need a parallel data input. But because the shiStme 
component has this port, a signal must be connected to it. The signal named Null-in is used 
for this purpose. Line 49 sets N~cll-in, which is a STD-LOGIC-VECTOR signal, to all os. 
The number of bits in this signal is defined by the length constant. Hence we cannot use 
the normal VHDL syntax, namely, a string of 0 s  inside double quotes, to set all of its bits to 
0. A solution to this problem is to use the syntax (OTHERS => 'O'), which we explained 
in the discussion regarding Figure 7.46. The enable input for the shift register is named 
Run. It is derived from the outputs of the down-counter described in lines 52 to 60. When 
Reset = 1, Count is initialized to the value of length. Then as long as Run = 1, Count is 
decremented in each clock cycle. In line 61 Run is set to 0 when Count is equal to 0. Note 
that no quotes are used in the condition Coclnt = 0, because the 0 without quotes has the 
integer type. 

Synthesis and Simulation of the VHDL Code 
The results of synthesizing a circuit from the code in Figure 8.49 are illustrated in 

Figure 8.50a. The outputs of the counter are ORed to provide the Run signal, which 
enables clocking of both the output shift register and the counter. A sample of a timing 
simulation for the circuit is shown in Figure 8.506. The circuit is first reset, resulting in 
the values of A and B being loaded into the input shift registers, and the value of length (8) 
loaded into the down-counter. After each clock cycle one pair of bits of the input numbers 
is added by the adder FSM, and the sum bit is shifted into the output shift register. After 
eight clock cycles the output shift register contains the correct sum, and shifting is halted 
by the Run signal becoming equal to 0. 

Our introductory examples of finite state machines were so simple that it was easy to see 
that the number of states that we used was the minimum possible to perform the required 
function. When a designer has to design a more complex FSM, it is likely that the initial 
attempt will result in a machine that has more states than is actually required. ~ in i rn iz i~g  
the number of states is of interest because fewer flips-flops may be needed to represent the 
States and the complexity of the combinational circuit needed in the FSM may be reduced. - 



Clock 
Reset 

(a) Circuit 

f 

(b) Simulation Results 

Figure 8.50 synthesized serial adder. 
1 



If the number of states in an FSM can be reduced, then some states in the original 
design must be equivalent to other states in their contribution to the overall behavior oftb 

e 
FSM. We can express this more formally in the following definition. 

*) 
Definition 8.1 - Two states Si and S, are said to be equivalent if and only j f fo r  ev,, 

' I  possible input sequence, the same output sequence will be produced regardless of whethpr --. 
Si or Sj is the initial state. 

It is possible to define a minimization procedure that searches for any states that are equiv- 
alent. Such a procedure is very tedious to perform manually, but it can be automated for 
use in CAD tools. We will not pursue it here, because of its tediousness. However, to pro- 
vide some appreciation of the impact of state minimization, we will present an alternative 
approach, which is much more efficient but not quite as broad in scope. 

Instead of trying to show that some states in a given FSM are equivalent, it is often 
easier to show that some states are definitely not equivalent. This idea can be exploited to 

define a simple minimization procedure. 

Suppose that a state machine has a single input w. Then if the input signal w = 0 is applied 
to this machine in state Si and the result is that the machine moves to state S,, we will say 
that S, is a 0-successor of Si. Similarly, if w = 1 is applied in the state Si and it causes the 
machine to move to state S,, we will say that S,, is a 1-successor of Si. In general, we will 
refer to the successors of Si as its k-successors. When the FSM has only one input, k can 
be either 0 or 1 .  But if there are multiple inputs to the FSM, then k represents the set of all 
possible combinations (valuations) of the inputs. 

From Definition 8.1 it follows that if the states Si and Sj are equivalent, then their 
corresponding k-successors (for all k )  are also equivalent. Using this fact, we can formulate 
a minimization procedure that involves considering the states of the machine as a set and 
then breaking the set into partitions that comprise subsets that are definitely not equivalent. 

Definition 8.2 - A  partition consists of one or more blocks, where each block comprises 
a subset of stares that may be equivalent, but the states in a given block are dejnitely nor 
equivalent to the states in other blocks. 

Let US assume initially that all states are equivalent; this forms the initial partition, Pi, 
in which all states are in the same block. As the next step, we will form the partition 
P2 in which the set of states is partitioned into blocks such that the states in each block 
generate the same output values. Obviously, the states that generate different outputs cannot 
possibly be equivalent. Then we will continue to form new partitions by testing whether 
the k-successors of the states in each block are contained in one block. Those states whose 
k-successors are in different blocks cannot be in one block. ~ h u ~  new blocks are formed 
in each new partition. The process ends when a new partition is the same as the previous 
partition. Then all states in any one block are equivalent. To illustrate the 
consider Example 8.5. 



/ 
figure 8.5 1 shows a state table for a particular FSM. In an attempt to minimize the number Ex 

of let us apply the partitioning procedure. The initial partition contains all states in 
a single block 

PI  = (ABCDEFG) 

m, next ~artition separates the states that have different outputs (note that this FSM is of 
~~~~e type), which means that the states A, B, and D must be different from the states C ,  
E F , and G. Thus the new partition has two blocks

Pz = (ABD) (CEFG)

we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2 , we conclude that (ABD) should remain in one block of P 3 . Next consider the
block (CEFG). Tts 0-successors are (FFEF), respectively. They are in the same block in
p,, The 1 -successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C , E, and G. Hence

P3 = (ABD)(CEG) (F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3 . The 1 -successors are (CFG), which are not in the same block.
Since F is in a different block than C and G , it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P 3 . Therefore

Figure 8.5 1 State table for Example 8.5,

Present
state

A
B
C
D
E
F
G

Next state

, = 0 , = 1

B C
D F
F E
B G
F C
E D
F G

output
z

1
1
0
1
0
0
0

Figure 8.52 Minimized state table for Example 8.5.

Present
state

A
B
C
F

If we follow the same approach to check the 0- and 1-successors of the blocks (AD) and
(CEG), we find that

Since P5 = P4 and no new blocks are generated, it follows that states in each block are
equivalent. If the states in some block were not equivalent, then their k-successors would
have to be in different blocks. Therefore, states A and D are equivalent, and C , E , and G
are equivalent. Since each block can be represented by a single state, only four states are
needed to implement the FSM defined by the state table in Figure 8.5 1. If we let the symbol
A represent both the states A and D in the figure and the symbol C represent the states C,
E, and G, then the state table reduces to the state table in Figure 8.52.

The effect of the minimization is that we have found a solution that requires only two
flip-flops to realize the four states of the minimized state table, instead of needing three
flip-flops for the original design. The expectation is that the FSM with fewer states will be
simpler to implement, although this is not always the case.

The state minimization concept is based on the fact that two different FSMs may
exhibit identical behavior in terms of the outputs produced in response to all possible
inputs. Such machines are functionally equivalent, even though they are implemented with
circuits that may be vastly different. In general, it is not easy to determine whether or not
two arbitrary FSMs are equivalent. Our minimization procedure ensures that a simplified
FSM is functionally equivalent to the original one. We encourage the reader to get an
intuitive feeling that the FSMs in Figures 8.5 1 and 8.52 are indeed functionally equivalent
by implementing both machines and simulating their behavior using the CAD tools.

Next state

, = 0 w = 1

B C
A F
F C
C A

- -

.6 As another example of minimization, we will consider the design of a practical sequentia'
circuit that could be used in a vending machine. Suppose that a coin-operated vending
machine dispenses candy under the following conditions:

The machine accepts nickels and dimes.

Output
Z

1
1
0
0

It takes 15 cents for a piece of candy to be released from the machine.

If 20 cents is deposited, the machine will not return the change, but it will credit the
buyer with 5 cents and wait for the buyerfo make a second purchase.

signals in the vending machine are synchronized to the positive edge of a
named Clock. The exact frequency of the clock signal is not important for our

example, but we will assume a clock period of 100 ns. The vending machine's coin-receptor
mechanism generates two signals, sense^ and sensep, which are asserted when a dime or

, is detected. Because the coin receptor is a mechanical device and thus very slow
to an electronic circuit, inserting a coin causes sense^ or sense^ to be set to 1 for a

large number of clock cycles. We will assume that the coin receptor also generates two other
~a rned D and N. The D signal is set to I for one clock cycle after senseo becomes

I and N is set to 1 for one clock cycle after sense^ becomes 1 . The timing relationships
between Clock, sense^, sense^, D, and N are illustrated in Figure 8.53a. The hash marks
on the waveforms indicate that sense^ or serlse~ may be 1 for many clock cycles. Also,
there may be an arbitrarily long time between the insertion of two consecutive coins, Note
that since the coin receptor can accept only one coin at a time, it is not possible to have both
D and N set to 1 at once. Figure 8.53b illustrates how the N signal may be generated from
the senseN signal.

Clock

senseN

Clock

(a) Timing diagram

(b) Circuit that generates N

8.53 Signals for the ~endin~ynachine.

Figure 8.54 State diagram for Example 8.6.

Based on these assumptions, we can develop an initial state diagram in a fairly straight-
forward manner, as indicated in Figure 8.54. The inputs to the FSM are D and N, and the
starting state is Sl. As long as D = N = 0, the machine remains in state S1, which is - -
indicated by the arc labeled D . N = 1 . Inserting a dime leads to state S2, while inserting a
nickel leads to state S 3 . In both cases the deposited amount is less than 15 cents, which is
not sufficient to release the candy. This is indicated by the output, z , being equal to 0, as in
S 2 / 0 and S 3 / 0 . The machine will remain in state S2 or 53 until another coin is deposited
because D = N = 0. In state S2 a nickel will cause a transition to S4 and a dime to S5.
In both of these states, sufficient money is deposited to activate the output mechanism that
releases the candy; hence the state nodes have the labels S4/ 1 and S 5 / 1 . In S4 the deposited
amount is 15 cents, which means that on the next active clock edge the machine should

- -
return to the reset state S 1 . The condition D - N on the arc leaving S4 is paranteed to be
true because the machine remains in state S4 for only 100 ns, which is far too short a time
for a new coin to have been deposited.

The state S 5 denotes that an amount of 20 cents has been deposited. The candy
is released, and on the next dock edge the FSM makes a transition to state S3, which
represents a credit of 5 cents. A similar reasoning when the machine is in state S3 leadst0
states S6 through S9. This completes the state diagram for the desired FSM. A state table
version of the same information is given in Figure 8.55.

Note that the condition D = N = 1 is denoted as don't care in the table. Note
other don't cares in states S4, S5, S7, S8, and S9. They correspond to cases where there IS

Figure 8.55 State table for Example 8.6.

no need to check the D and N signals because the machine changes to another state in an
amount of time that is too short for a new coin to have been inserted.

Using the minimization procedure, we obtain the following partitions

Output
z

0

0
0
1
1
0
1
1
1

Present
state

S1
S2
53
S4
S5
S6
S7
S8
S9

The final partition has five blocks. Let S2 denote its equivalence to S 6 , let S 4 denote the
same with respect to S 7 and S 8 , and let S5 represent S9. This leads to the minimized
state table in Figure 8.56. The actual circuit that implements this table can be designed as
explained in the previous sections.

Next state

DN = 00 01 10 11

S1 S3 S2 -

S2 S4 55 -
S3 S6 S7 -

S1 - - -

S3 -
- -

S6 S8 S9 -
S1 - - -

S l - - -

53 - - -

Figure 8.56 state table for Example 8.6.

529

Output
z

0
0
0
1
1

Present
State

S1
S2
S 3
S 4
S5

Next state

DN = 00 01 10 11

S1 S3 S2 -
S2 S4 S5 -
S3 S2 S4 -
S1 - - -
53 - - -

In this example we used a straightforward approach to derive the original state dia-
gram, which we then minimized using the partitioning procedure. Figure 8-57 presents
the information in the state table of Figure 8.56 in the form of a state diagram. ~~~k~~~
at this diagram, the reader can probably see that it may have been quite feasible to derive
the optimized diagram directly, using the following reasoning. Suppose that the states
respond to the various amounts of money deposited. In particular, the states, S 1 , ~3 s2

' 5

S4, and S5 correspond to the amounts of 0, 5. 10, 15, and 20 cents, respectively. with
this interpretation of the states, it is not difficult to derive the transition arcs that define the
desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From section
8.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,
although they do not necessarily lead to simpler overall implementations. If we use the
Mealy model, we can eliminate states S4 and S5 in Figure 8.57. The result is shown in
Figure 8.58. This version requires only three states, but the output functions become more
complicated. The reader is encouraged to compare the complexity of implementations by
completing the design steps for the FSMs in Figures 8.57 and 8.58.

Figure 8.57 Minimized state diagram for Example 8.6.
I

Figure 8.58 Mealy-type FSM for Example 8.6.

8.6.2 INCOMPLETELY SPECIFIED FSMs

The partitioning scheme for minimization of states works well when all entries in the state
table are specified. Such is the case for the FSM defined in Figure 8.51. FSMs of this
type are said to be completely specijed. If one or more entries in the state table are not
specified, corresponding to don't-care conditions, then the FSM is said to be incompletely
spec$ed. An example of such an FSM is given in Figure 8.55. As seen in Example 8.6,
the partitioning scheme works well for this FSM also. But in general, the partitioning
scheme is less useful when incompletely specified FSMs are involved, as illustrated by
Example 8.7.

the FSM in Figure 8.59 which has four unspecified entries, because we have as- E l
Sumed that the input w = 1 will not occur when the machine is in states B or G . Accordingly,
'either a state transition nor an output value is specified for these two cases. An important
difference between this FSM and the one in Figure 8.55 is that some outputs in this FSM
are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the
Same way as for Moore-type FSMs illustrated in Examples 8.5 and 8.6. Two states are

Figure 8.59 incompletely specified state table for Example 8.7-

Present
state

A
B
C
D
E
F
G

considered equivalent, and are thus placed in the same block of a partition, if their outputs
are equal for all corresponding input valuations. TO perform the partitioning process, we
can assume that the unspecified outputs have a specific value. Not knowing whether these
values should be 0 or I , let us first assume that both unspecified outputs have a value of 0,
Then the first two partitions are

PI = (ABCDEFG)

P2 = (ABDG)(CEF)

Next state

, = O , = I

B C
D -
F E
B G
F C
E D
F -

Note that the states A, B, D, and G are in the same block because their outputs are equal to 0
for both w = 0 and n7 = 1. Also, the states C, E, and F are in one block because they have
the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing
the partitioning procedure gives the remaining partitions

Output z

, = O , = I

0 0
0 -

0 1
0 0
0 1
0 1
0 -

The result is an FSM that is specified by six states.
Next consider the alternative of assuming that both unspecified outputs in Figure 8.59

have a value of 1. This would lead to the partitions

P I = (ABCDEFG)

P2 = (AD) (BCEFG)

P3 = (AD)(B) (CEFG)

This solution involves four states. Evidently, the choice of values assigned to unspecified
outputs is of considerable importance.

*

8.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH

we will not pursue the issue of state minimization of incompletely specified FSMs any
further. As we already mentioned, it is possible to develop a minimization technique that

for equivalent states based directly on Definition 8.1. This approach is described
in many books on logic design [2,5-8, 12-1 41.

Finally, it is important to mention that reducing the number of states in a given FSM
,ill not necessarily lead to a simpler implementation. Interestingly, the effect of state
,,,ignment, discussed in section 8.2, may have a greater influence on the simplicity of

than does the state minimization. In a modem design environmrnr, the
designer relies on the CAD tools to implement state machines efficiently.

8.7 DESIGN OF A COUNTER USING THE SEQUENTIAL
CIRCUIT APPROACH

In this section we discuss the design of a counter circuit using the general approach for
designing sequential circuits. From Chapter 7 we already know that counters can be realized
as cascaded stages of flip-flops and some gating logic, where each stage divides the number
of incoming pulses by two. To keep our example simple, we choose a counter of small
size but also show how the design can be extended to larger sizes. The specification for the
counter is

a The counting sequence is 0, l , 2 , . . . ,6,7,0, 1, . . .
There exists an input signal w. The value of this signal is considered during each clock
cycle. If w = 0, the present count remains the same; if w = 1, the count is incremented.

The counter can be designed as a synchronous sequential circuit using the design
techniques introduced in the previous sections. We show first the classical manual approach
to designing the counter, which illustrates the basic concepts involved in the design process.
After that we show how the design task is accomplished using CAD tools, which is much
easier to do and indicates how the task would be tackled in practice.

Figure 8.60 gives a state diagram for the desired counter. There is a state associated with
each count, In the diagram state A corresponds to count 0, state B to count 1, and SO on. We

the transitions between the states needed to implement the counting sequence. Note
that the output signals are specified as depending only on the state of the counter at a given

which is the Moore model of sequential circuits.
The state diagram may be represented in the state-table form as shown in Figure 8.61.

Figure 8.60 State diagram for the counter.

Figure 8.61 State table for the counter.

Present
state

A
B
C
D
E
F
G
H

Three state variables are needed to represent the eight states, Let these variables, denoting
the present state, be called yz , y l , and yo. Let Y2, Y l , and Yo denote the corresponding
next-state functions. The most convenient (and simplest) state assignment is to encode
each state with the binary number that the counter should give as output in that state. The''
the required output signals will be the same as the signals that represent the state variables'
This leads to the state-assigned table in Figure 8.62.

The final step in the design is to choose the type of flip-flops and derive the expressions
that control the Rip-flop inputs. The most straightforward choice is to use D-type flip -flops*

Next state

, = 0 , = f

A B
B C
C D
D E
E F
F G
G H
H A

Output

0
1
2
3
4
5
6
7

Figure 8.62 State-assigned table for the counter.

We pursue this approach first. Then we show the alternative of using JK-type flip-flops.
In either case the flip-flops must be edge triggered to ensure that only one transition takes
place during a single clock cycle.

Count

222 120

000
00 1
010
01 1
100
101
110
111

Present
state

Y2Y1 YO

000
00 1
010
01 1
100
101
110
111

When using D-type flip-flops to realize the finite state machine, each next-state function,
Yi, is connected to the D input of the flip-flop that implements the state variable yi. The
next-state functions are derived from the information in Figure 8.62. Using Karnaugh maps
in Figure 8.63, we obtain the following implementation

Next state

w = O w = l

y2 y1 YO yz y1 yo

000 001
00 1 010
010 01 1
01 1 100
100 101
101 110
110 111
111 000

The resulting circuit is given in Figure 8.64. It is not obvious how to extend this circuit to
Implement a larger counter, because no clear pattern is discernible in the expressions for
'0. Dl, and D2. However, we can rewrite these expressions as follows

Figure 8.63 Karnaugh maps for D flip-flops for the counter,

D2 = G Y 2 + Yoy2 + Y 1 ~ 2 + W Y O Y ~ Y ~
= (w + y, + 7 1 1 ~ 2 + W Y O Y ~ L ~
= WYoY 1Y2 + WYOY 1%

= WY0Yl @ Y2

Then an obvious pattern emerges, which leads to the circuit in Figure 7.24.

JK-type flip-flops provide an attractive alternative. Using these flip-flops to implement Ihe

sequential circuit specified in Figure 8.62 requires derivation of J and K inputs for each
flip-flop. The following control is needed:

If a flip-flop in state 0 is to remain in state 0, then J = 0 and K = d (where d meaos
that K can be equal to either 0 or 1).

8-7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH

Clock

Resetn

Figure 8.64 Circuit diagram for the counter implemented with D flip-flops.

If a flip-flop in state 0 is to change to state 1, then J = 1 and K = d.

If a flip-flop in state 1 is to remain in state 1, then J = d and K = 0.

If a flip-flop in state 1 is to change to state 0, then J = d and K = 1. 4

Following these guidelines, we can create a truth table that specifies the required
values of the J and K inputs for the three flip-flops in our design. Figure 8.65
modified version of the state-assigned table in Figure 8.62. with the J and K input functions
included. To see how this table is derived, consider the first row in which the present stale
is y2~,yo = 000. If w = 0, then the next state is also Y2Yl Yo = 000. Thus the present
value of each flip-flop is 0, and it should remain 0. This implies the control J = 0 and
K = d for all three flip-flops. Continuing with the first row, if w = 1, the next state will be
Y2Y1 YO = 001. Thus flip-flops y2 and yl still remain at 0 and have the control J = 0 and
K = d . However, flip-flop yo must change from 0 to 1, which is accomplished with J = 1
and K = d. The rest of the table is derived in the same manner by considering each present
state y2ylyo and providing the necessary control signals to reach the new state Y2Y,yo,

A state-assigned table is essentially the state table in which each state is encoded using
the state variables. When D flip-flops are used to implement an FSM, the next-state entries
in the state-assigned table correspond directly to the signals that must be applied to the
D inputs. This is not the case if some other type of flip-flops is used. A table that gives
the state information in the form of the flip-flop inputs that must be "excited" to cause the
transitions to the next states is usually called an excitation tclble. The excitation table in
Figure 8.65 indicates how JK flip-flops can be used. In many books the term excitation
table is used even when D flip-flops are involved, in which case it is synonymous with the
state-assigned table.

Once the table in Figure 8.65 has been derived, it provides a truth table with inputs y2,
yl , yo, and w , and outputs J2, Kz , J 1 , K1, Jo, and KO. We can then derive expressions for

Flip-flop inputs
Present Count

state w=O w = l
Y2YlY0 222120

Y ~ Y I Y o J2Kz JiKi JOKO Y2YiYo J2K2 J I K ~ JOKO

000 000 Od Od Od 00 1 Od Od Id 000

00 1 00 1 Od Od d o 010 Od Id d l 001

010 010 Od d o Od 01 1 Od do Id 010

01 1 01 1 Od d o d o 100 Id d 1 d l 011

100 100 do Od Od I 0 1 d o Od Id 100

101 101 do Od d o 110 do Id dl lo1

I 1 0 110 do do Od I11 d o d o Id 11°

Figure 8.65 Excitation table for the counter with JK flip-flops.

8.7 DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH

\

d O O d

d O O d

/d I 1 d
\

,d 1 1 d, d

O d d O

O d d O

5 d d i

d

\

O f l

0 . 1

1

0 0 0 0

-',

1 , 1

0

\

O O d d

O O d d

\

d

d d d d

d d d d

O & O

Figure 8.66 Karnaqh mops for JK flip-flops in the counter.

d d

d

\

these outputs as shown in Figure 8.66. The resulting expressions are

Jo = KO = w

J1 = KI = wyo

- K2 = W Y O Y ~ 'k-

d

d

d d O O

d d O O

r
d d 1 O

d

d d d d

0 0 0 0

0 0 1 0

\

r7

d a d

1 , 0

Clack

Resetn

Figure 8.67 Circuit diagram using JK flip-flops.

This leads to the circuit shown in Figure 8.67. It is apparent that this design can be extended
easily to larger counters. The pattern J , = K, = u7yoyl - - . y,-, defines the circuit for each
stage in the counter. Note that the size of the AND gate that implements the product term
ynrl * . - y.-1 grows with successive stages. A circuit with a more regular structure can be
obtained by factoring out the previously needed terms as we progress through the stages of
the counter. This gives *

Using the factored form, the counter circuit can be realized as indicated in Figure 8.68. In
this circuit all stages (except the first) look the same. Note that this circuit has the same
structure as the circuit in Figure 7.23 because connecting the J and K inputs of a flipRoP
together turns the flip-flop into a T flip-flop.

Clock

Resetn

Figure 8.68 Factored-form implementation of the counter.

Having considered the design of an ordinary counter, we will now apply this knowl-
edge to design a slightly different counterlike circuit. Suppose that we wish to derive
a three-bit counter that counts the pulses on an input line, w. But instead of displaying the
count as 0, l , 2 , 3,4,5, 6 ,7 ,0 , 1, . . . , this counter must display the count in the sequence
0 ,4 ,2 ,6 , 1,5, 3,7,0,4, and so on. The count is to be represented directly by the flip-flop
values themselves, without using any extra gates. Namely, Count = Q2Q I Qo.

Since we wish to count the pulses on the input line w, it makes sense to use w as the
clock input to the flip-flops. Thus the counter circuit should always be enabled, and it
should change its state whenever the next pulse on the w line appears. The desired counter
Can be designed in a straightforward manner using the FSM approach. Figures 8.69 and
8.70 give the required state table and a suitable state assignment. Using D flip-flops, we
Obtain the next-state equations

8.8 FSM AS AN ARBITER CIRCUIT

Figure 8.71 Circuit for Figure 8,70.

A , B , C, . . . , H have the values 0, 1,2 , . . . ,7 . These values are the same as the values that
are associated with the normal three-bit up-counter.

8.8 FSM AS AN ARBITER CIRCUIT

In this section we present the design of an FSM that is slightly more complex than the
previous examples. The purpose of the machine is to control access by various devices
to a shared resource in a given system. Only one device can use the resource at a time.
Assume that all signals in the system can change values only on the positive edge of the

signal. Each device provides one input to the FSM, called a request, and the FSM
Produces a separate output for each device, called a gmnt. A device indicates its need to use
theresource by asserting its request signal. Whenever the shared resource is not already in

the FSM considers all requests that are active. Based on a priority scheme, it selects
One ofthe requesting devices and asserts its grant signal. When the device is finished using
the resource, it deasserts its request signal.
we will assume that there are three devices in the system, called device 1, device 2,
device 3. It is easy to see how the FSM can be extended to handle more devices. T'he

"quest signals are named rl , r2, the grant signals are called gl , gz, and g3. The
are assigned a priority device 1 has the highest priority, device 2 has

543

the next highest, and device 3 has the lowest priority. Thus if more than one request signal
is asserted when the FSM assigns a grant, the grant is given to the requesting device that
has the highest priority.

A state diagram for the desired FSM, designed as a Moore-type machine, is depicted
in Figure 8.72, Initially, on reset the machine is in the state called idle. No grant signals
are asserted, and the shared resource is not in use. There are three other states, called gnrl,
gnt2, and gnt3. Each of these states asserts the grant signal for one of the devices.

The FSM remains in the Idle state as long as all of the request signals are 0. In g,
state diagram the condition rlrzt-3 = 000 is indicated by the arc labeled 000. When
or more request signals become 1, the machine moves to one of the grant states, according
to the priority scheme. If rl is asserted, then device 1 will receive the grant because it has
the highest priority. This is indicated by the arc labeled lxx that leads to state gntl , which
sets gl = 1. The meaning of lxx is that the request signal r~ is 1, and the values of signals
Q and 3 are irrelevant because of the priority scheme. As before, we use the symbol
to indicate that the value of the corresponding variable can be either 0 or 1. The machine
stays in state gntl as long as rl is 1. When rl = 0, the arc labeled Oxx causes a change on
the next positive clock edge back to state i d k , and gl is deasserted. If other requests are
active at this time, then the FSM will change to a new grant state after the next clock edge.

Reset r\ 000

u xxl

Figure 8.72 State diagram for the arbiter.

The arc that causes a change to state gnt2 is labeled 01x. This label adheres to the
riorily &erne because it represents the condition that rz = 1, but rl = 0. Similarly, the

:ondition for entering state gnt3 is given as 00 1 , which indicates that the only request signal
,,,fled is 1-3 -

The state diagram is repeated in Figure 8.73. The only difference between this diagram
Figure 8.72 is the way in which the arcs are labeled. Figure 8.73 uses a simpler labeling

scheme that is more intuitive. For the condition that leads from state Idle to state gntl , the
uc is labeled as r l , instead of lxx. This label means that if rl = 1, the FSM changes to

gnt l , regardless of the other inputs. The arc with the label Fl rz that leads from state

!dle to ~ 1 2 represents the condition rl r2 = 01, while the value of is irrelevant. There is
,, scheme for labeling the arcs in state diagrams. Some designers prefer the

of Figure 8.72, while others prefer a style more similar to Figure 8.73.
Figure 8.74 gives the VHDL code for the machine. The three request and grant signals , specified as three-bit STD-LOGIC-VECTOR signals. The FSM is described using a

CASE statement in the style used for Figure 8.29. As shown in the WHEN clause for state
[dle, it is easy to describe the required priority scheme. The IF statement specifies that if
r , = 1, then the next state for the machine is gntl . If rl is not asserted, then the ELSIF

Reset f7 FIF2F3

Figure 8.73 Alternative style of state diagram for the orbiter.

LIBRARY ieee ;
USE ieee.std1ogic-l164.all ;

ENTITY arbiter IS
PORT (Clock, Resetn : IN STD-LOGIC ;

r : IN STD-LOGIC-VECTOR(1 TO 3) ;
g : OUT STD-LOGIC-VECTOR(1 TO 3)) ;

END arbiter ;

ARCHITECTURE Behavior OF arbiter IS
TYPE State-type IS (Idle, gntl, gnt2, gnt3) ;
SIGNAL y : State-type ;

BEGIN
PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN y <= Idle ;
ELSIF (Clock'EVENT AND Clock = ' 1') THEN

CASE y IS
WHEN Idle =>

IF r(1) = '1' THEN y <= gntl ;
ELSIF r(2) = ' 1 ' THEN y -= = gnt2 ;
ELSIF r(3) = ' 1 ' THEN y < = gnt3 ;
ELSE y <= Idle ;
END IF ;

WHEN gntl =>
IF r(1) = '1' THEN y <= gntl ;
ELSE y <= Idle ;
END IF ;

WHEN gnt2 =>
IF r(2) = '1' THEN y c= gnt2 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt3 =>
IF r(3) = '1' THEN y <= gnt3 ;
ELSE y <= Idle ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;
g(1) <= ' I ' WHEN y = gntl ELSE '0' ;
g(2) <= ' 1' WHEN y = gnt2 ELSE '0' ;
g(3) <= '1' WHEN y = gnt3 ELSE '0' ;

END Behavior ;

Figure 8.74 VHDL code for the arbiter. -

is evaluated, which stipulates that if rz = I , then the next state will be gnt2.
~~~h w~cessive ELSIF clause considers a lower-priority request signal only if all of the 
higher-priority request signals are not asserted. 

The WHEN clause for each grant state is straightforward. For state gntl it specifies ,, long as rl = 1, the next state remains gntl .  When rl = 0, the next state is Idle. The 
other grant states have the same structure. 

The code for the grant signals, gl, g ~ ,  and g3 is given at the end. It sets g l  to 1 when 
the machine is in state ~ n t l ,  and otherwise g~ is set to 0. Similarly, each of the other grant 
signals is I only in the appropriate grant state. 

 stead of the three conditional assignment statements used for 81, g2,  and g 3 ,  it may 
seem reasonable to substitute the process shown in Figure 8.75, which contains an IF 
statement. This code is incorrect, but the reason is not obvious. Recall from the discussion 
concerning Figure 6.43 that when using an IF statement, if there is no ELSE clause or 
default value for a signal, then that signal retains its value when the IF condition is not met. 
This is called implied memory. In Figure 8.75 the signal g l  is set to 1 when the FSM first 
enters state gntl,  and then gl will retain the value 1 no matter what state the FSM changes 
to. Similarly, the code for g2 and g_i is also incorrect. Tf we wish to write the code using 
an IF statement, then it  should be structured as shown in Figure 8.76. Each grant signal is 
assigned a default value of 0, which avoids the problem of implied memory. 

8.8.1 IMPLEMENTATION OF THE ARBITER CIRCUIT 

We will now consider the effects of implementing the arbiter in both a CPLD and an FPGA. 
Any differences between the two implementations are likely to be more pronounced if the 
complexity of the FSM is greater. Hence instead of directly using the code in Figure 8.74, 
we will implement a larger version of the arbiter that controls eight devices. The request 
signals are called r ,  , r2, . . . , rg, and the grant signals are gl, g2, . . . , g ~ .  It is easy to see 
how the code in Figure 8.74 is extended to allow eight requesting devices, so we will not 
show it here. 

PROCESS( y ) 
BEGIN 

IF y = gntl THEN g(1) <= '1' ; 
ELSIF y = gnt2 THEN g(2)  <= ' 1 ' ; 
ELSIF y = gnt3 THEN g(3) < = ' 1 ' ; 
END IF ; 

END PROCESS ; 
END Behavior ; 

Figure 8.75 Incorrect VHDL code for the grant signals. 



PROCESS( y ) 
BEGIN 

g(1) <= '0' ; 
g(2) <= '0' ; 
g(3) <= '0' ; 
IF y = gntl THEN g( l )  <= ' 1 '  ; 
ELSIF y = gnt2 THEN g(2) <= ' 1 ' ; 
ELSIF y = gnt3 THEN g(3) <= '1' ; 
END IF ; 

END PROCESS ; 
END Behavior ; 

Figure 8.76 Correct VHDL code for the grant signals. 

Implementation in a CPLD 
We first consider implementation of the arbiter in a CPLD. To represent the nine states 

in the FSM, the synthesis tool uses four flip-flops, called y4, y3, y2, and y l .  The reset state, 
Idle, is assigned the code ~ 4 ~ 3 ~ 2 ~ 1  = 0000. The other states are encoded as gntl = 0001, 
gnt2 = 00 10, gnt3 = 0100, gnt4 = 1000, gnt5 = 001 1, gnt6 = 0 10 1, gnt7 = 01 10, and 
gnt8 = 1001. 

It is not obvious why the synthesis tool selected this particular state assignment. The 
tool considers many different state assignments and selects one that minimizes the cost of 
the final circuit. For the CPLD implementation the synthesis tool attempts to choose the 
state assignment that results in the fewest product terms in the final circuit. 

To see the complexity of the circuit, we need to examine the logic expressions generated 
for both the grant signals and the inputs to the state flip-flops. The expression for each grant 
signal is a direct result of the encoding used for the state that produces the grant. For 
instance, state gnf8 is encoded as 100 1, resulting in gg = y4Y3&yI. 

The logic feeding the state flip-flops is more complex. For example, the expression 
derived by the tool for the input, Y4, to flip-flop y4 is 

Figure 8.77 gives a timing simulation for the CPLD implementation. For simplicity 
only the request signals rl ,  Q, and rg are displayed, along with the grant signals 81, 8:. 
and gs.  After the machine is reset at the beginning of the simulation, all three requests '1. 

r2. and rg are asserted. Although not shown in the timing diagram, all of the other request 
signals are set to 0. The machine first changes to state gntl and asserts gl .  After rl becomes 
0 the machine changes back to state Idle. On the next clock cycle a transition to state Pi2 
takes place and g2 is asserted. After r2 becomes 0 the machine changes back to 
and then to state gnt8 to assert gg. The simulation results indicate that the required p~orl ' )  
scheme is properly implemented by our VHDL code. 



Figure 8.77 Simulation resulh for the arbiter circuit. 

A more detailed display of a part of the simulation results appears in Figure 8.78, The 
waveforms are arranged such that only the signals Clock, gg, and y are visible during the 
time period when gg is asserted. The simulation results show that a propagation delay (about 
7 ns) is needed for the 8 8  signal to be produced after the machine changes to the gnt8 state. 
This delay corresponds to the time needed to generate the function g8 = y1YZY3y4. We will 
show in section 8.8.2 that it is possible to optimize the timing of the implemented circuit 
such that a grant signal is produced immediately when the machine enters the grant state. 

Implementation in an FPGA 
Next we consider implementing the arbiter FSM in an FPGA chip. Instead of using 

four flip-flops to represent the nine states in the FSM, the FPGA implementation generated 
by the synthesis tool has nine state flip-flops, called yg, v g ,  . . . , yl . The state assignment is 
Idle = OOO000000, gntl = 1 10000000, gnt2 = 101000000, gnt3 = 100 100000, gnt4 = 
100010000, gnd = 100001000, gnt6 = 100000100, gnt7 = 100000010, and gnt8 = 
l ~ O O O O 0 0  I .  This assignment is very similar to the one-hot encoding. The only difference 

Figure 8.78 Output delays in the arbiter circuit. 



is that the left-most flip-flop output, y g ,  is complemented. This is done to provide a 
simple 

reset mechanism. When all flip-flops are reset, they define the stare represented by all state 
variables being 0, which is the Idle state. 

In section 4.6 we discussed the issue of the limited fan-in of the logic gates provided 
in certain types of chips. We said that in such chips logic functions with a large number of 
inputs must be decomposed into smaller functions. For an FSM, this means that if the logic 
circuit that feeds each state flip-flop has many inputs, then several levels of gates may be 
needed. This increases the propagation delays in the circuit and results in a slower 
of operation. For the preceding CPLD implementation of the arbiter FSM, we showed the 
logic expression for the input to flip-flop y4. If that expression were implemented in ,, 
FPGA that has four-input lookup tables (LUTs) it would require a total of eight LUT~ in, 
circuit that has three of the LUTs connected in series. 

By contrast, the choice of nine state variables with the preceding state assignment 
results in a much simpler circuit. As an example, for the input to flip-flop ys, the synthesis 
tool produces Y8 = r1Y8 + r 1 5 .  Since it has only four inputs, this expression can be 
realized in a single four-input lookup table. The other eight next-state expressions are also 
relatively simple. To see the effect that the state assignment has on the speed of operation 
of the FSM, we compared two versions of the circuit implemented in an FPGA chip: one 
that has nine state flip-flops as shown above and another that has four flip-flops with the 
state assignment given earlier for the CPLD implementation. The results showed that when 
nine state variables are used, the arbiter FSM works correctly up to a maximum clock rate 
of 88.5 MHz, whereas when four state variables are used, the maximum clock rate is only 
54.1 MHz. Note that the speed of operation of the circuit depends on the specific target 
chip and can also vary based on the synthesis options selected in the CAD tools. 

We should also consider the complexity of the logic needed for the grant signals. These 
signals are trivial to generate when nine flip-flops are used. Each grant signal is the output 
of one of the flip-flops. For example, gg = y ~ .  

8.8.2 MINIMIZING THE OUTPUT DELAYS FOR AN FSM 

Figure 8.78 shows the propagation delay incurred to produce the grant signals when the 
arbiter circuit is implemented in a CPLD. Once the circuit changes to a grant state, the 
appropriate grant signal is asserted after a delay of about 7 ns. The delay is caused by 
the circuitry that generates the grant signal depending on the values of the state flip-flops. 
However, as we showed in the FPGA implementation, when one-hot encoding is used 
each grant signal is provided as the output of one of the state flip-flops. Hence no exm 
circuitry is needed to generate the output signals. Figure 8.79 shows a timing sirnvlatiofl 
when the arbiter circuit is implemented in a CPLD using one-hot encoding. There is very 
little delay from when the circuit enters a grant state until the grant signal is produced A 
small delay is incurred because of the time needed to propagate through the buffer that 
exists between the flip-flop output and the pin on the CPLD chip package, but this delay 
is only about 2 ns. This type of timing optimization is done in practice by designers 
sequential circuits, because design specifications often require that outputs be *roduced 
after the shortest possible delays. 



Figure 8.79 Output delays when using one-hot encoding. 

Our arbiter FSM is a practical circuit that is useful in many types of systems. An example 
is a computer system in which various devices in the system are connected by a bus. One 
aspect of the arbiter may have to be changed for use in such a system. Becauseof the 
priority scheme, it is possible that devices with high priority could prevent a lower-priority 
device from receiving a grant signal for an arbitrarily long time. This condition is often 
called starvation of the low-priority device. It is not difficult to modify the arbiter FSM to 
account for this issue (see problem 8.38). 

In addition to knowing how to design a synchronous sequential circuit, the designer has to 
be able to analyze the behavior of an existing circuit. The analysis task is much simpler 
than the synthesis task. In this section we will show how analysis may be performed. 

TO analyze a circuit, we simply reverse the steps of the synthesis process. The outputs 
of the flip-flops represent the present-state variables. Their inputs determine the next state 
that the circuit will enter. From this information we can construct the state-assigned table 
for the circuit. This table leads to a state table and the corresponding state diagram by 
giving a name to each state. The type of flip-flops used in the circuit is a factor, as we will 
See in the examples that follow. 

D - T y p ~  FLIP-FLOPS Figure 8.80 gives an FSM that has two D flip-flops. Let yl and):2 be I 
Ihe Present-state variables and YI and Yz the next-state variables. The next-state and output 

are 

Yl = wy, + wy2 

y2 = WYl + WY2 

z = Y1Y2 



Since there are two flip-flops, the FSM has four states. A good starting point in the analysis 
is to assume an initial state of the flip-flops such as y~ = y2 = 0. From the expressions 
for Y1 and YZ, we can derive the state-assigned table in Figure 8.81a. For example, in the 
first row of the table yl = y2 = 0. Then w = 0 causes Y1 = Y2 = 0, and w = 1 causes 
Yl = 1 and Y2 = 0. The output for this state is z = 0. The other rows are derived in the 
same manner. Labeling the states as A, B, C, and D yields the state table in Figure 8.81b. 
From this table it is apparent that following the reset condition the FSM produces the output 
z = 1 whenever three consecutive Is occur on the input w. Therefore, the FSM acts as a 
sequence detector for this pattern. 

JK-TYPE FLIP-FLOPS Now consider the circuit in Figure 8.82, which has two JK flip-flops. 
The expressions for the inputs to the flip-flops are 

A - 
- i 

y 1 

The output is given by z = ylyz. 
From these expressions we can derive the excitation table in Figure 8-83. Interpreting 

the entries in this table, we can construct the state-assigned table. For example, consider 
Yzyl = 00 and w = 0. Then, since Jz  = J 1  = 0 and Kz = K ,  = 1 ,  both flip-flops will 
remain in the 0 state; hence Yz = Yl = 0. If y2yl = 00 and w = 1, then jz = Kz = 0 and 

a 

W 

D Q 

- 

> Q 

Y1 

t 

- 

y2 

Clock 

Resetn - 

- D  Q 

- 

Figure 8.80 Circuit for Example 8.8. 

- > Q 

Y2 - - 



(a) State-assigned table 

I Present I Next state I Output I 

Output 

Z 

0 
0 
0 
1 

Present 
state 

Y2Y 1 

0 0 
0 1 
1 0  
1 1  

(b) State table 

Next State 

w = 0 w = 1 

Y2Y1 y2 y1 

0 0 0 1 
0 0 1 0  
0 0 1 1  
0 0 1 1  

Figure 8.8 1 Tables for the circuit in Figure 8.80. 

Y I 
- - J Q 

> 
- 

K Q 

4 
W - - 

Clock 

K ,  

4 - - 

U 

Resetn 

J'2 J 2  

- 

8.82 Circuit for Example 8.9. 

J Q 
> 

K2 

- 
K Q  

- - 



Figure 8.83 The excitation table for the circuit in Figure 8.82. 

Present 

state 

y2y1 

0  0 
0 1 
1 0  
1 1  

J1  = K1 = 1, which leaves the y2 flip-flop unchanged and sets the yl flip-flop to 1; hence 
Yz =OandY1 = 1.  Ifyfyl  = 01 andw = O ,  thenJ2 = J1 =OandK2 = K 1  = l ,which 
resets the yl  flip-flop and results in the state y2y1 = 00; hence Y2 = Y I  = 0. Similarly, 
if y2yl = 01 and w = 1, then J2 = 1 and K2 = 0 sets y2 to 1; hence Y2 = 1, while 
J 1  = K I  = 1 toggles y1; hence Y1 = 0. This leads to the state y2y1 = 10. Completing 
this process, we find that the resulting state-assigned table is the same as the one in Fig- 
ure 8.81a. The conclusion is that the circuits in Figures 8.80 and 8.82 implement the 
same FSM. 

! 8.10 MIXED FLIP-FLOPS There is no reason why one cannot use a mixture of flip-flop types 
in one circuit. Figure 8.84 shows a circuit with one D and one T flip-flop. The expressions 
for this circuit are 

Flip-flop inputs 

w = O  w = l  

JZKZ J I K I  J2Kz J1KI  

0 1 0 1 0 0 1 1  
0 1 0 1 1 0  1 1  
0 1 0 1 0 0 1 0  
0 1  0 1 1 0  1 0  

From these expressions we derive the excitation table in Figure 8.85. Since it is a T flip- 
flop, y2 changes its state only when T2 = 1. Thus if y2yl = 00 and w = 0, then because 
T2 = Dl = 0 the state of the circuit will not change. An example of where T2 = 1 is when 
yzyl = 01 and w = 1, which causes yr to change to 1; Dl = 0 makes yl = 0, hence Y2 = 1 
and YI = 0. The other cases where fi = 1 occur when w = 0 and yzyl = 10 or 11. In 
both of these cases Dl  = 0. Hence the T flip-flop changes its state from 1 to 0, while the D 
flip-flop is cleared, which means that the next state is Y2Y1 = 00. Completing this analysis 
we again obtain the state-assigned table in Figure 8.81a. Thus this circuit is yet another 
implementation of the FSM represented by the state table in Figure 8.8 1b. 

Output 

z 

0 
0 
0 
1 



8.1 0 ALGORITHMIC STATE MACHINE (ASM) CHARTS 

Figure 8.84 Circuit for Example 8.10. 

Figure 8.85 The excilation table for the circuit in Figure 8.84. 

8.1 0 ALGORITHMIC STATE MACHINE (ASM) CHARTS I 

Output 

Z 

0 

0 
0 
1 

Present 

state 

'*'' 
0 0 
0 1 
1 0  
1 1  

The state diagrams and tables used in this chapter are convenient for describing the behavior 
FSMs that have only a few inputs and outputs. For larger machines the designers often 

"Se a different form of representation, called the algorithmic state machine (ASM) chart. 
An ASM chart is a type of flowchart that can be used to represent the state transitions 

and generated outputs for an FSM. The three types of elements used in ASM charts are 
in Figure 8.86. 

Flip-flop inputs 

w = 0 w = 1 

T2DI T ~ D I  

0 0 0 1 
0 0 1 0  
1 0  0 1 
10  0 1 



State name I 
Output signals 

or actions 
(Moore type) 

(a) State box 

0 (False) 1 (True) 

(b) Decision box 

or actions (Mealy type) 

(c) Conditional output box 

Figure 8.86 Elements used in ASM charts. 

State box -A  rectangle represents a state of the FSM. It is equivalent to a node in the 
state diagram or a row in the state table. The name of the state is indicated outside the 
box in the top-left comer. The Moore-type outputs are listed inside the box. These are 
the outputs that depend only on the values of the state variables that define the state; 
we will refer to them simply as Moore outputs. It is customary to write only the name 
of the signal that has to be asserted. Thus it is sufficient to write z ,  rather than z = 1, to 
indicate that the output z must have the value 1 .  Also, it may be useful to indicate an 
action that must be taken; for example, Count t Courzt + 1 specifies that the contents 
of a counter have to be incremented by 1. Of course, this is just a simpIe way of say- 
ing that the control signal that causes the counter to be incrernented must be asserted. 
We will use this way of specifying actions in larger systems that are discussed in 
Chapter 10. 

Decision box - A diamond indicates that the stated condition expression is to be tested 
and the exit path is to be chosen accordingly. The condition expression consists of one 
or more inputs to the FSM. For example, w indicates that the decision is based on the 
value of the input w, whereas wl wz indicates that the true path is taken if wl = w2 = 1 
and the false path is taken otherwise. 

Conditional output box -An oval denotes the output signals that ate of Mealy typed 
These outputs depend on the values of the state variables and the inputs of the 
we will refer to these outputs simply as Mealy outputs. The condition that determines 
whether such outputs are generated is specified in a decision box. 

556 



8.10 ALGORITHMIC STATE MACHXNE (ASM) CHARTS 

Reset 

Figure 8.87 ASM chart for the FSM in Figure 8.3. 

8.87 gives the ASM chart that represents the FSM in Figure 8.3. The transitions 
between state boxes depend on the decisions made by testing the value of the input variable 
W. In each case if w = 0, the exit path from a decision box leads to state A. If w = 1, then 
a transition from A to B or from B to C takes place. If w = 1 in state C, then the FSM 

in that state. The chart specifies a Moore output z ,  which is asserted only in state C ,  
as indicated in the state box. In states A and B,  the value of z is 0 (not asserted), which is 
Implied by leaving the corresponding state boxes blank. 
. Figure 8.88 provides an example with Mealy outputs. This chart represents the FSM 
Iwigure 8.23. The output, z ,  is equal to 1 when the machine is in state B and w = 1. This 
IS indicated using the conditional output box. In all other cases the value of z is 0, which 
IS by not specifying z of state B for w = 0 and state A for w equal to 
Oar I .  



Reset 

r--+ 

Figure 8.89 gives the ASM chart for the arbiter FSM in Figure 8.73. The decision box 
drawn below the state box for ldle specifies that if rl = 1, then the FSM changes to state 
gntl .  In this state the FSM asserts the output signal g l .  The decision box to the right of 
the state box for gntI specifies that as long as r~ = I ,  the machine stays in state g n t l ,  and 
when rl = 0, it changes to state Idle. The decision box labeled r? that is drawn below the 
state box for ldle specifies that if rz = I,  then the FSM changes to state gnt2. This decision 
box can be reached only after first checking the value of rl and following the arrow that 
corresponds to rl = 0. Similarly, the decision box labeled r3 can be reached only if both ri 
and r2 have the value 0. Hence the ASM chart describes the required priority scheme for 
the arbiter. 

ASM charts are similar to traditional flowcharts. Unlike a traditional flowchart, the 
ASM chart includes timing information because it implicitly specifies that the FSM changes 
(flows) from one state to another only after each active clock edge. The examples of ASM 
charts presented here are quite simple. We have used them to introduce the ASM chart 
terminology by giving examples of state, decision, and conditional-output boxes. Another 
term sometimes applied to ASM charts is ASM block, which refers to a single state box and 
any decision and conditional-output boxes that the state box may be connected to. T ~ ~ A S  M 
charts can be used to describe complex circuits that include one or more finite state machines 
and other circuitry such as registers, shift registers, counters, adders, and multipliers. We 
will use ASM charts as an aid for designing more complex circuits in Chapter 10. 



8.1 1 FORMAL MODEL FOR SEQUENTIAL CIRCUITS 

Reset 

Figure 8.89 ASM chart for the arbiter FSM in Figure 8.73. 

- F 

Idle 

This chapter has presented the synchronous sequential circuits using a rather informal 
approach because this is the easiest way to grasp the concepts that are essential in designing 
Such circuits. The same topics can also be presented in a more formal manner, which has 
been the style adopted in many books that emphasize the switching theory aspects rather 
than the design using CAD tools. A formal model often gives a concise specification that 
IS difficult to match in a more descriptive presentation. In this section we will describe a 
formal model that represents a general class of sequential circuits, including those of the 
SYnchronou~ type. 

figure 8.90 represents a general sequential circuit. The circuit has W = (wl, ~ 2 ,  . . . , 
inputs, Z = {zl, zz, . . . , z,) o u e w d  = { y  y l ,  . . . , yt } present-state variables, and 

= ( y , ,  Y2,  . . . , Y k )  next-state variables. It can have up to 2' states, S = {Sl . S2, . . . , SF 1. 
are delay elements in the feedback paths for the state-variables which ensure that y 

\U'I1 take the values of Y after a time delay A.  In the case of synchronous sequential 
C'rcuits7 the delay elements are flip-flops, which change their state on the active edge of a 

559 

. 

T 1 - 
- 

0 gnt l V 1 

11-Q 0 - 
1 

1 + 0 

0 

1 

0 



W 1  

Inputs 

W n  

Present-s tate 
variables 

z1 

Outputs 

zm 

- 
___c 

Next-state 
variables 

+ 

+ 
Combinational 

circuit 

Figure 8.90 The general model for a sequential circuit. 

r r -  
L A -  Y 1 

clock signal. Thus the delay A is determined by the clock period. The clock period must 
be long enough to allow for the propagation delay in the combinational circuit, in addition 
to the setup and hold parameters of the flip-flops. 

Using the model in Figure 8.90, a synchronous sequential circuit, M,  can be defined 
formalIy as a quintuple 

where 

W,  2, and S are finite, nonernpty sets of inputs, outputs, and states, respectively. 

rp is the state transition function, such that S ( t  + 1) = cp[W ( t ) ,  S(t)], 

h is the output function, such that A ( t )  = h [ S ( t ) ]  for the Moore model and h( f )  = 
h [ W ( t ) ,  S ( t )  J for the Mealy model. 

This definition assumes that the time between t and t  + 1 is one clock cycle. 
We will see in the next chapter that the delay A need not be controlled by a clock. In 

asynchronous sequential circuits the delays are due solely to the propagation delays through 
various gates. 

The existence of closed loops and delays in a sequential circuit leads to a behavior that is 
characterized by the set of states that the circuit can reach. The present values of the inputs 
are not the sole determining factor in this behavigr, because a given valuation of inputsmay 
cause the circuit to behave differently in different states. 

560 



The ~ropagation delays through a sequential circuit must be taken into account. The 
techniques presented in this chapter are based on the assumption that all changes in 

the circuit are triggered by the active edge of a clock signal. Such circuits work correctly 
only if all internal signals are stable when the clock signal arrives. Thus the clock period 
,,,t be longer than the longest propagation delay in the circuit. 

synchronous sequential circuits are used extensively in practical designs. They are 
,,ppo~ed by the commonly used CAD tools. All textbooks on the design of logic circuits 
devote considerable space to synchronous sequential circuits. Some of the more notable 
references are [1-141. 

In the next chapter we will present a different class of sequential circuits, which do 
,,t use flip-flops to represent the states of the circuit and do not use clock pulses to trigger 

in the states. 

This section presents some typical problems that the reader may encounter, and shows how 
such problems can be solved. 

Problem: Design an FSM that has an input w and an output z .  The machine is a sequence EX 
detector that produces z = 1 when the previous two values of w were 00 or 11; otherwise 
z = 0. 

Solution: Section 8.1 presents the design of a sequence detector that detects the occurrence 
of consecutive 1 s. Using the same approach, the desired FSM can be specified using the 
state diagram in Figure 8.9 1 .  State C denotes the occurrence of two or more Os, and state 
E denotes two or more 1s. The corresponding state table is shown in Figure 8.92. 

We can try to reduce the number of states by using the partitioning minimization 
procedure in section 8.6, which gives the following partitions 

Pk = (ABCDE) 

P2 = (ABD) ( C E )  

P3 = (A)(B)(C)(D)(E) 
Since all five states are needed, we have to use three flip-flops. 

A straightforward state assignment leads to the state-assigned table in Figure 8.93. The 
'Odes Y3\.7vl __ -_ = 101, 110, 11 1 can be treated as don't-care conditions. Then the next-state 

are 

y1 = w&y3 + wY2& + wyly* + wyl& 
y2 9 Y l ~ 2  + wYz& 

y3 = WY3 + WYlY2 

The Output expression is 



Reset 

Figure 8.91 State diagram for Example 8.1 1 . 

Figure 8.92 State table for the FSM in Figure 8.91 . 

Present 
State 

A 
B 
C 
D 
E 

Figure 8.93 State-assigned table for the FSM in Figure 8.92. 
rl 

Next state 

, = O  

B D 
C D 
C D 
B E 
B E 

Present 
state 

Y3Y2Yl  

000 
00 1 
010 
01 1 
100 

output 
Z 

0 
0 
1 
0 
1 

Next state 

w = O  w = l  

y3 y2 y1 y3 y2 y1 

001 01 1 
010 01 1 
010 01 1 
00 1 100 
00 1 100 

Output 

z 

0 
0 
1 
0 
1 



Figure 8.94 An improved state assignment for the FSM in 
Figure 8.92. 

These expressions seem to be unnecessarily complex, suggesting that we may attempt to 
find a better state assignment. Observe that state A is reached only when the machine is 
reset by means of the Reset input. So, it may be advantageous to assign the four codes in 
which v~ = 1 to the states B, C, D, and E. The result is the state-assigned table in Figure 
8.94. From it, the next-state and output expressions are 

Output 

z 

0 
0 
1 
0 
1 

Present 
state 

Y3Y2Yl  

000 
100 
101 
110 
1 1 1  

This is a much better solution. 

Next state 

w = O  w = l  

y3y2y1 y3y2y1 

100 110 
101 110 
1 0 1  110 
100 1 1 1  
100 1 1 1  

Problem: Implement the sequence detector of Example 8.1 1 by using two FSMs. One E 
FSM detects the occurrence of consecutive 1 s, while the other detects consecutive 0s. 

Solution: A good realization of the FSM that detects consecutive 1s is given in Figures 
8.16 and 8.17. The next-state and output expressions are 

Zones = Y 2  

A similar FSM that detects consecutive 0s is defined in Figure 8.95. Its expressions are 



(a) State table 

Present 
State 

D 
E 
F 

(b) State-assigned table 

Next state 

w = 0 w = 1 

E D 
F D 
F D 

Present 
state 

Y4Y3 

00 
01 
I 1  
10 

Figure 8.95 FSM that detects a sequence of two zeros. 

Output 
Zzeros 

0 
0 
1 

The output of the combined circuit is 

Z = Zones + Zzeros 

Next state 

w = 0 w = 1 

y4 y3 y4y3 

01 00 
1 1  00 
11 00 
dd dd 

8.1 3 Problem: Derive a Mealy-type FSM that can act as a sequence detector described in 
ExarnpIe 8.11. 

Output 

Zzeros 

0 
0 
1 
d 

Solution: A state diagram for the desired FSM is depicted in Figure 8.96. The corresponding 
state table is presented in Figure 8.97. Two flip-flops are needed to implement this FSM. 
A state-assigned table is given in Figure 8.98, which leads to the next-state and output 
expressions 

Y2 = w 

z = wyly, + wy* 



Reset 

Figure 8.96 State diagram for Example 8.1 3. 

Figure 8.97 State table for the FSM in Figure 8.96. 

Present 
state 

A 
I3 
C 

Figure 8.98 State-assigned table for the FSM in Figure 8.97 

Next state 

, = O  w = l  

B C 
8 C 
B C 

Present 
state 

Y2Y1 

00 
01 
I 1  

Output z 

w = O  w = l  

0 0 
I 0 
0 1 

Next state 

, = O  w = l  

y2y1 y2y1 

01 11 
01 I 1  
01 1 1  

Output 

w = O  w = l  

z Z 

0 0 
1 0 
0 I 



Figure 8.99 Excitation table for the FSM in Figure 8.94 with JK flip-flops. 

- - 
nple 8.14 Problem: Implement the FSM in Figure 8.94 using JK-type flip-flops. 

Output 

Z 

0 
0 
1 
0 
1 

r 

Present 
state 

Y3Y2Y1 

000 
1 00 
101 
I10 
111 

Solution: Figure 8.99 shows the excitation table. It results in the following next-state and 
output expressions 

mple 8- 1 5 Problem: Write VHDL code to implement the FSM in Figure 8.91. 

Flip-flop inputs 

Solution: Using the style of code given in Figure 8-29, the required FSM can be specified 
as shown in Figure 8.100. 

mple 8.16 Problem: Write VHDL code to implement the FSM in Figure 8.96. 

. 

w = O  

Solution: Using the style of code given in Figure 8.36, the Mealy-type FSM can be specified 
as shown in Figure 8.101. 

w = 1  

Y3 Y2Y1 

100 
101 
101 
100 
100 

I 

Y3 Y2 YI 

110 
110 
110 
11 1 
111 

J3 K3 J2K2 J 1  K1 

Id Od O d  
d o  Od Id 
do Od d o  
do  d 1 Od 
d o  d 1 d 1 

J3 K3 J2K2 J1 K1 

Id Id Od 
do Id Od 
do Id d 1 
do do  Id 
d o  do d o  



LIBRARY ieee ; 
USE ieee.stcllogic-1 l64,all ; 

ENTITY sequence IS 
PORT ( Clock, Resetn, w : IN STD-LOGIC ; 

z : OUT STD-LOGIC ) ; 
END sequence ; 

ARCHITECTURE Behavior OF sequence IS 
TYPE State-type IS (A, B, C ,  D, E) ; 
SIGNAL y : State-type ; 

BEGIN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN y <= A ; 
ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN 

CASE y IS 
WHEN A => 

I F w =  'O'THENy<=B;  
ELSEy <= D ;  
END IF ; 

WHEN B => 
I F w = ' O ' T H E N y < = C ;  
ELSE y <= D ; 
END IF ; 

WHEN C => 
I F w =  'O'THENy<=C;  
ELSEy <= D ;  
END IF ; 

WHEN D => 
IFw = 'O'THENy <= B ;  
ELSE y <= E ; 
END IF ; 

WHEN E => 
I F w =  '0' THENy <= B ; 
ELSE y <= E ; 
END IF ; 

END CASE ; 
END TF ; 

END PROCESS ; 
z < = ' l ' W H E N ( y = C O R y = E ) E L S E ' O ' ;  

END Behavior - 
/ 
/ 

Figure 8.1 00 VHDL code for the FSM in Figure 8.91. 



LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY seqmealy IS 
PORT ( Clock, Resetn, w : IN STD-LOGIC ; 

z : OUT STD-LOGIC ) ; 
END seqmealy ; 

ARCHITECTURE Behavior OF seqmealy IS 
TYPE State-type IS (A, B, C )  ; 
SIGNAL y : State-type ; 

BEGIN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN y <= A ; 
ELSIF (Clock'EVENT AND Clock = ' 1') THEN 

CASE y IS 
WHEN A => 

I F w = ' O ' T H E N y < = B ;  
ELSE y <= C ; 
END IF ; 

WHEN B => 
IFw = '0' THENy <= B ;  
ELSEy <= C ;  
END IF ; 

WHEN C => 
I F w = ' O ' T H E N y < = B ;  
ELSE y <= C ; 
END IF ; 

END CASE ; 
END IF ; 

END PROCESS ; 

PROCESS ( y, w ) 
BEGIN 

CASE y IS 
WHEN A => 

z <= '0' ; 
WHEN B => 

z < = N O T w ;  
WHEN C => 

z < = w ;  
END CASE ; 

END PROCESS ; 
END Behavior ; 

I 

Figure 8-10 1 VHDL code for the FSM in Figure 8.96. 



- 
problem: In computer systems it is often desirable to transmit data serially, namely, one E x  
bit at a time, to save on the cost of interconnecting cables. This means that parallel data at ,,, end must be transmitted serially, and at the other end the received serial data has to be 

back into parallel form. Suppose that we wish to transmit ASCII characters in this 
manner. AS explained in section 5.8, the standard ASCII code uses seven bits to define each 

Usually, a character occupies one byte, in which case the eighth bit can either 
be set to 0 or it can be used to indicate the parity of the other bits to ensure a more reliable 
yansrnissi~n. 

parallel-to-serial conversion can be done by means of a shift register. Assume that a 
circuit accepts parallel data, = b7, b6, . . . , bo, representing ASCII characters. Assume 
also that bit b7 is set to 0. The circuit is supposed to generate a parity bit, p, and send 
it instead of b7 as a part of the serial transfer. Figure 8.102 gives a possible circuit. An 
FSM is used to generate the parity bit, which is included in the output stream by using a 
multiplexer. A three-bit counter is used to determine when the p bit is transmitted, which 
happens when the count reaches 7. Design the desired FSM. 

Solution: As the bits are shifted out of the shift register, the FSM examines the bits. and 
keeps track of whether there has been an even or odd number of Is. It sets p to 1 if there 
is odd parity. Hence, the FSM must have two states. Figure 8.103 presents the state table, 
the state-assigned table, and the resulting circuit. The next state expression is 

The output p is just equal to y. "-- 

Parallel input 

b7 b6 60 

Serial 
output 

. * *  

Load - 
W 

Shift register - - 
- 

2 

'o\ L 

-9 
- 

> Q 
7 

Reset 
I L -  

D 

- 

Q -  

FSM - P  
> 

L 

I 

- Co 

clock 

4 

SeE 

- 
Clear Counter 7 
I - C2 I 

Figure 8.1 02 Parallel-to-serial converter. 



I present I Next state I output I 

(a) State table 

state 

Seven 

Sodd 

(b) State-assigned table 

, = 0 , = 1 

Seven Sodd  

Sodd Seven 

Present 
state 

Y 

0 
1 

Reset 

P 

0 
1 

(c) Circuit 

Next state 

zu = O w = 1 

Y Y 

0 1 
1 0 

Figure 8.103 FSM for parity generation. 

Output 

P 

0 
1 

Answers to problems marked by an asterisk are given at the back of the book. 
* 8.1 An FSM is defined by the state-assigned table in Figure P8.1. Derive a circuit that re alizes 

this FSM using D flip-flops. 
* 8-2 Derive a circuit that realizes the FSM defined table in Figu re ~ 8 . 1  

using JK flip-flops. - 



Figure P8.1 State-assigned table for 8.1 and 8.2. 

8.3 Derive the state diagram for an FSM that has an input w and an  output z .  The machine has 
to generate z = 1 when the previous four values of w were 1001 or 1 1 1 1 ; otherwise, z = 0. 
Overlapping input patterns are allowed. An example of the desired behavior is 

Output 

z 

0 

0 

0 

1 

Present 

state 

Y2Y 1 

0 0 

0 1 

1 0  

1 1  

8.4 Write VHDL code for the FSM described in problem 8.3. 

Next state 

w = O  w = l  

y2y1 y2y1 

1 0  1 1  

0 1 0 0 

1 1  0 0 

1 0  0 1 

* 8.5 Derive a minimal state table for a single-input and single-output Moore-type FSM that 
produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. 
Overlapping sequences should be detected. 

* 8.6 Repeat problem 8.5 for a Mealy-type FSM. 

8-7 Derive the circuits that implement the state tables in Figures 8.51 and 8.52. What is the 
effect of state minimization on the cost of implementation? 

8-8 Derive the circuits that implement the state tables in Figures 8.55 and 8.56. Compare the 
costs of these circuits. 

8.9 A sequential circuit has two inputs, wl and w,, and an output, z .  Its function is to compare 
the input sequences on the two inputs. If wi = W* during any four consecutive clock cycles, 
the circuit produces z = 1; otherwise, z = 0. For example 

Derive a suitable circuit 1 
8. 1 0 Write VHDL code for the FSM described in problem 8.9. 



A given FSM has an input, w, and an output, z.  During four consecutive clock 
sequence of four values of the w signal is applied. Derive a state table for the FSM 

that produces z = 1 when it detects that either the sequence w : 0010 or w : 11 10 has been 
applied; otherwise, z = 0. After the fourth clock pulse, the machine has to be again in 
reset state, ready for the next sequence. Minimize the number of states needed. 

Derive a minimal state table for an FSM that acts as a three-bit parity generator. For every 
three bits that are observed on the input w during three consecutive clock cycles, the FSM 
generates the parity bit p = 1 if and only if the number of 1s in the three-bit sequence 
odd. 

Write VHDL code for the FSM described in problem 8.12. 

Draw timing diagrams for the circuits in Figures 8.43 and 8.47, assuming the same changes 
in a and b signals for both circuits. Account for propagation delays. 

Show a state table for the state-assigned table in Figure P8.1, using A, B, C,  D for the four 

rows in the table. Give a new state-assigned table using a one-hot encoding. For A use the 
code . - +  )l4y3 v2y = 0001. For states B, C ,  D use the codes 0010,0100, and 1000, respectively, 
Synthesize a circuit using D flip-flops. 

Show how the circuit derived in problem 8.15 can be modified such that the code y4y3y2~,  = 
0000 is used for the reset state, A,  and the other codes for stateB, C ,  D arechanged as needed, 
(Hint: you do not have to resynthesize the circuit!) 

In Figure 8.59 assume that the unspecified outputs in states B and G are 0 and 1, respectively. 
Derive the minimized state table for this FSM. 

In Figure 8.59 assume that the unspecified outputs in states B and G are 1 and 0, respectively. 
Derive the minimized state table for this FSM. 

Derive circuits that implement the FSMs defined in Figures 8.57 and 8.58. Can you draw 
any conclusions about the complexity of circuits that implement Moore and Mealy types 
of machines? 

Design a counter that counts pulses on line w and displays the count in the sequence 
0 ,2 ,  1 ,  3,0 ,  2, . . . . Use D flip-flops in your circuit. 

Repeat problem 8.20 using JK flip-flops. 

Repeat problem 8.20 using T flip-flops. 

Design a modulo-6 counter, which counts in the sequence 0, 1 , 2 , 3 , 4 , 5 , 0 ,  1 ,  - . . The 

counter counts the clock pulses if its enable input, w, is equal to 1. Use D flip-flops in You 
circuit. 

8.24 Repeat problem 8.23 using JK flip-flops. 

8.25 Repeat problem 8.23 using T flip-flops. 

8.26 Design a three-bit counterlike circuit controlled by the input w. If n: = 1, then the 
adds 2 to its contents, wrapping around if the count reaches 8 or 9. Thus if the p 

resent 

state is 8 or 9, then the next state becomes 0 or 1, respectively. If w = 0, then the 
c ~ ~ n t e f  

subtracts 1 from its contents, acting as a normal down-counter. Use D flip-flops i"Ouf 
circuit. 



8.27 Repeat problem 8.26 using JK flip-flops. 

8-28 Repeat problem 8.26 using T flip-flops. 

*8.29 Derive the state table for the circuit in Figure P8.2. What sequence of input values on wire 
w is detected by this circuit? 

Figure P8.2 Circuit for problem 8.29. 

Write VHDLcode for the FSM shown in Figure 8.57, using the style of code in Figure 8.29. 

Repeat problem 8.30, using the style of code in Figure 8.33. 

Write VHDL code for the FSM shown in Figure 8.58, using the style of code in Figure 8.29. 

Repeat problem 8.32, using the style of code in Figure 8.33. 

Write VHDL code for the FSM shown in Figure P8. 1. Use the method of state assignment 
shown in Figure 8.34. 

Repeat problem 8.34, using the method of state assignment shown in Figure 8-35. 

Represent the FSM in Figure 8.57 in form of an ASM chart. 

Represent the FSM in Figure 8.58 in form of an ASM chart. 

The arbiter FSM defined in section 8.8 (Figure 8.72) may cause device 3 to never get 
serviced if devices I and 2 continuously keep raising requests, so that in the Idle state it 
always happens that either device 1 or device 2 has an outstanding request. Modify the 



proposed FSM to ensure that device 3 will get serviced, such that if it raises a request, 
devices 1 and 2 will be serviced only once before the device 3 is granted its request, 

8-39 Write VHDL code for the FSM designed in problem 8.38. 

8.40 Consider a more general version of the task presented in Example 8.1. Assume that there 
are four n-bit registers connected to a bus in a processor. The contents of register R are 

. placed on the bus by asserting the control signal R,,,,. The data on the bus are loaded into 
register R on the active edge of the clock signal if the control signal Riff is asserted. A~~~~~ 
that three of the registers, called R l ,  R2, and R3, are used as normal registers. The founh 
register, called TEMP, is used for temporary storage in special cases. 
We want to realize an operation SWAP Ri,Rj, which swaps the contents of registers Ri and 
Rj.  This is accomplished by the following sequence of steps (each performed in one clock 
cycle) 

TEMP t [Rj 1 

Rj t [Ril 
Ri t [TEMP] 

Two input signals, wl and w2, are used to indicate that two registers have to be swapped as 
follows 

If w2wI = 01, then swap R1 and R2. 

If W Z W ~  = 10, then swap R1 and R3. 

If wzwl = 11, then swap R2 and R3. 

An input valuation that specifies a swap is present for three clock cycles. Design a circuit 
that generates the required control signals: R 1 ,,,, , R 1 in, R20ur, R2,,, , R3,,t, R3i,, TEMP,,II, 
and TEMP,,, . Derive the next-state and output expressions for this circuit, trying to minimize 
the cost. 

8.4 1 Write VHDL code to specify the circuit in Figure 8.102. 

8.42 Section 8.5 presents a design for the serial adder. Derive a similar circuit that functions as 
a serial subtractor which produces the difference of operands A and B. 
(Hint: use the rule for finding 2's complements, in section 5.3.1, to generate the 2's corn- 
plement of B.) 

8-43 Write VHDL code that defines the serial subtractor designed in problem 8.42. 

1. A. Dewey, Analysis and Design of Digital Systems with VHDL, (PWS publishing COs: 

1997). 

2. D. D. Gajski, Principles of Digital Design, (Prentice-Hall: Upper Saddle River, NJq 

1997). 



3. M, M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002). 

4 J. p. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996). 

5. V, p. Nelson, H- T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit 
Analysis and Design, (Prentice-Hall: Englewood Cliffs, NJ, 1995). 

6. R, H. Katz, Contemporary Logic Design, (Benjamin/Cummings: Redwood City, CA. 
1994). 

7. E J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on V m  
4th ed., (Wiley : New York, 1993). 

8. J. P. Hayes, Introduction to Logic Design, ( Addison-Wesley : Reading, MA, 1993). 

9. C. H. Roth Jr., Fundamentals of logic  Design, 4th ed., (West: St. Paul, MN, 1993). 

10. J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. (Prentice-Hall: 
Engelwood Cliffs, NJ, 1999). 

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, NJ, 
1986). 

12. T. L. Booth, Digital Networks and Computer Systems, (Wiley: New York, 1971). 

13. Z. Kohavi, Switching and Finite Automata Theory, (McGraw-Hill: New York, 1970). 

14. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines, 
(Prentice-Hall: Englewood Cliffs, NJ, 1966). 





-- 

c h a p t e r  

In this chapter you will learn about: 

a Sequential circuits that are not synchronized by a clock 

Analysis of asynchronous sequential circuits 

a Synthesis of asynchronous sequential circuits 

The concept of stable and unstable states 

Hazards that cause incorrect behavior of a circuit 



In the previous chapter we covered the design of synchronous sequential circuits in which the state vari able! 
are represented by flip-flops that are controlled by aclock. The clock is a periodic signal that consists ofpulvi 
Changes in ae can occur on the positive or negative edge of each clock pulse. Since they are controlled by 
pulses, synchronous sequential circuits are said to operate in pulse mode. In this chapter we present sequent la] 

circuits that do not operate in pulse mode and do not use flip-flops to represent state variables. These circu. Its 

are called asynchror~ous sequential circuits. 
In an asynchronous sequential circuit, changes in state are not triggered by clock pulses. Instead, changes 

in state are dependent on whether each of the inputs to the circuit has the logic level 0 or 1 at any given time 
To achieve reliable operation, the inputs to the circuit must change one at a time. Moreover, there munl 
be sufficient time between the changes in input signals to allow the circuit to reach a stnble state, which is 
achieved when all internal signals stop changing. A circuit that adheres to these constraints is said to operate 
in the findamental mode. 

To introduce asynchronous sequential circuits, we will reconsider the basic latch circuit in 
Figure 7.4. This Set-Reset (SR) latch is redrawn in Figure 9. la .  The feedback loop gives 
rise to the sequential nature of the circuit. It is an asynchronous circuit because changes in 

(a) Circuit with modeled gate delay 

(b) State-assigned table 

Present 

state 

Y 

0  

I 

Figure 9.1 Analysis of the SR latch. 

Next state 

S R = 0 0  01 10 11 

Y Y Y Y  

00 @ 
@ o @ o  



the value of the output, Q, occur without having to wait for a synchronizing clock pulse. In 
to a change in either the S (Set) or R (Reset) input, the value of Q will change after 

a short propagation time through the NOR gates. In Figure 9.1 n the combined propagation 
delay through the two NOR gates is represented by the box labeled A. Then, the NOR 

g 
ate symbols represent ideal gates with zero delay. Using the notation in Chapter 8, Q 

cornsponds to the present state of the circuit, represented by the present-state variable, y, 
The value of y is fed back through the circuit to generate the value of the next-state variable, 
y, which represents the next state of the circuit. After the A time delay, y takes the value 

y. Observe that we have drawn the circuit in a style that conforms to the general model 
for sequential circuits presented in Figure 8.90. 

analyzing the SR latch, we can derive a state-assigned table, as illustrated in Figure 
9.lb. When the present state is y = 0 and the inputs are S = R = 0, the circuit produces 
y = 0. Since y = Y,  the state of the circuit will not change. We say that the circuit is stable 
under these input conditions. Now assume that R changes to I whije S remains at 0. The 
circuit still generates Y = 0 and remains stable. Assume next that S changes to 1 and R 

at 1.  The value of Y is unchanged, and the circuit is stable. Then let R change to 0 
while S remains at 1.  This input valuation, SR = 10, causes the circuit to generate Y = 1. 
Since * # Y, the circuit is not stable. After the A time delay, the circuit changes to the new 
present state y = 1. Once this new state is reached, the value of Y remains equal to 1 as 
long as SR = 10. Hence the circuit is again stable. The analysis for the present state y = 1 
can be completed using similar reasoning. 

The concept of stable states is very important in the context of asynchronous sequential 
circuits. For a given valuation of inputs, if a circuit reaches a particular state and remains in 
this state, then the state is said to be stable. To clearly indicate the conditions under which 
the circuit is stable, it is customary to encircle the stable states in the table, as illustrated in 
Figure 9.16. 

From the state-assigned table, we can derive the state table in Figure 9 . 2 ~ ~ .  The state 
names A and B represent the present states y = 0 and y = I ,  respectively. Since the output 
Q depends only on the present state, the circuit is a Moore-type FSM. The state diagram 
that represents the behavior of this FSM is shown in Figure 9.2b. 

The preceding analysis shows that the behavior of an asynchronous sequential circuit 
can be represented as an FSM in a similar way as the synchronous sequential circuits in 
Chapter 8. Consider now performing the opposite task. That is, given the state table in 
Figure 9.20, we can synthesize an asynchronous circuit as follows: After performing the 
state assignment, we have the state-assigned table in Figure 9. lb. This table represents a 
'"th table for Y, with the inputs y, S ,  and R. Deriving a minimal product-of-sums expression 
yields 

If we were deriving a synchronous sequential circuit using the methods in Chapter 8, then 
Would be connected to the D input of a flip-flop and a clock signal would be used to 

the time when the changes in state take place. But since we are synthesizing an 
circuit, we do not insert a flip-flop in the feedback path. Instead, we create a 

'lrcuit that realizes the preceding expression using the necessary logic gates, and we feed 



(a) State table 

Present 
State 

A 

B 

(b) State diagram 

Figure 9.2 FSM model for the SR latch. 

Next state 

S R = 0 0  01 10 11 

@ @ B @  

B A A  

back the output signal as the presen t-state input y .  Implementation using NOR gates results 
in the circuit in Figure 9.la. This simple example suggests that asynchronous circuits and 
synchronous circuits can be synthesized using similar techniques. However, we will see 
shortly that for more complex asynchronous circuits, the design task is considerably more 
difficult. 

To further explore the nature of asynchronous circuits, it is interesting to consider how 
the behavior of the SR latch can be represented in the form of a Mealy model. As depicted 
in Figure 9.3, the outputs produced when the circuit is in a stable state are the same as 
in the Moore model, namely 0 in state A and 1 in state B. Consider now what happens 
when the state of the circuit changes. Suppose that the present state is A and that the input 
valuation SR changes from 00 to 10. As the state table specifies, the next state of the FSM 
is B .  When the circuit reaches state B, the output Q will be 1. But in the Mealy model. the 
output is supposed to be affected immediately by a change in the input signals. Thus while 
still in state A, the change in SR to 10 should result in Q = 1. We could have written a 
in the corresponding entry in the top row of the state table, but we have chosen to leave 
this entry unspecified instead. The reason is that since Q will change to 1 as soon as the 
circuit reaches state B, there is little to be gained in trying to make Q go to 1 a little sooner* 
Leaving the entry unspecified allows us to assign either 0 or 1 to it, which may make the 
circuit that implements the state table somewhat simpler. A similar reasoning leads to the 

Output 
Q 

0 

I 



(a) State table 

SWQ 

(b) State diagram 

Output, Q 

00 01 10 1 1  

0 - 0 

I - 1 - 

Present 
State 

A 

B 

Figure 9.3 Mealy representation of the SR latch. 

Next state 

SR=00 01 10 1 1  

@ @ o  
@ @ A  

conclusion that the two output entries where a change from B to A takes place can also be 
left unspecified. 

Using the state assignment y = 0 for A and y = 1 for B, the state-assigned table 
represents a truth table for both Y and Q. The minimal expression for Y is the same as for 
the Moore model. To derive an expression for Q, we need to set the unspecified entries to 
0 or 1. Assigning a 0 to the unspecified entry in the first row and 1 to the two unspecified 
entries in the second row produces Q = y and results in the circuit in Figure 9. la. 

Terminology 
In the preceding discussion we used the same terminology as in the previous chapter 

on synchronous sequential circuits. However, when dealing with asynchronous sequential 
circuits, it is customary to use two different terms. Instead of a "state table," it is more 
common to speak of a$ow table, which indicates how the changes in state flow as a result 
of the changes in the input signals. Instead of a "state-assigned table," it is usual to refer 
to a transition table or an excitation table. We will use the termsflow table and excitation 
table in this chapter. A Row table will define the state changes and outputs that must be 
generated. An excitation table will depict the transitions in terms of the state variables. The 
term excitation table derives from the fact that a change from a stable state is performed by 
''excitingw the next-state variables to start changing towards a new state. 



To gain familiarity with asynchronous circuits, it is useful to analyze a few examples, \y, 
will keep in mind the general model in Figure 8.90, assuming that the delays i n  the feedback 
paths are a representation of the propagation delays in the circuit- Then each gate symbol 
will represent an ideal gate with zero delay. 

9.1 GATED D WTCH In Chapters 7 and 8, we used the gated D latch as a key component in 
circuits that are controlled by a synchronizing clock. It is instructive to analyze this latch as 
an asynchronous circuit, where the clock is just one of the inputs. It is reasonable to assume 
that the signals on the D and clock inputs do not change at the same time, thus meeting the 
basic requirement of asynchronous circuits. 

Figure 9.4a shows the gated D latch drawn in the style of the model of Figure 8.90. This 
circuit was introduced in Figure 7.8 and discussed in section 7.3. The next-state expression 
for this circuit is 

The tern Dy in this expression is redundant and could be deleted without changing the logic 
function of Y. Hence the minimal expression is 

The reason that the circuit implements the redundant term D-y is that this term solves a race 
condition known as a hazard; we will discuss hazards in detail in section 9.6. 

Evaluating the expression for Y for all valuations of C ,  D, and y Ieads to the excitation 
table in Figure 9.4b. Note that the circuit changes its state only when C = 1 and D is 
different from the present state, y. In all other cases the circuit is stable. Using the symbols 
A and B to represent the states y = 0 and y = 1, we obtain the flow table and the state 
diagram shown in parts (c)  and (d). 

p.2 MASTER-SLAVE D FLIP-FLOP In Example 9.1 we analyzed the gated D latch as an asyn- 
chronous circuit. Actually, all practical circuits are asynchronous. However, if the circuit's 
behavior is tightly controlled by a clock signal, then simpler operating assumptions can 
be used, as we did in Chapter 8. Recall that in a synchronous sequential circuit all sig- 
nals change values in synchronization with the clock signal. Now we will analyze another 
synchronous circuit as if it were an asynchronous circuit. 

TWO gated D latches are used to implement the master-slave D flip-flop, as illustrated 
in Figure 7.10. This circuit is reproduced in Figure 9.5. We can analyze the circuit by 
treating it as a series connection of two gated D latches. Using the results from E X ~ P ' ~  
9.1, the simplified next-state expressions can be written as 



(a) Circuit 

Present Next state 

(b) Excitation table 

(c) Flow table 

(d) State diagram % 

i 
X 

Figure 9.4 The gated D latch. 

Q 

0 

Present 
state 

A 

B 

Next state 

C D = 0 0  01 10 11 

@ @ @  B 

@ @ ) A 0 1  



Master Slave 

Figure 9.5 Circuit for the master-slave D flip-flop. 

D 

C - - 

where the subscripts m and s refer to the master and slave stages of the flip-flop. These 
expressions lead to the excitation table in Figure 9 . 6 ~ .  Labeling the four states as S 1 through 
S4, we derive the flow table in Figure 9.6b. A state-diagram form of this information is 
given in Figure 9.7. 

Let us consider the behavior of this FSM in more detail. The state S I ,  whereymy, = 00, 
is stable for all input valuations except CD = 1 I .  When C = 1, the value of D is stored in 
the master stage; hence CD = 11 causes the flip-flop to change to S3, where ?I, = 1 and 
y, = 0. If the D input now changes back to 0, while the clock remains at 1, the flip-flop 
moves back to the state S1. The transitions between S1 and S3 indicate that if C = 1, 
the output of the master stage, Q, = y,, tracks the changes in the D input signal without 
affecting the slave stage. From S3 the circuit changes to S4 when the clock goes to 0. In S4 
both master and slave stages are set to 1 because the information from the master stage is 
transferred to the slave stage on the negative edge of the clock. Now the flip-flop remains 
in S4 until the clock goes to 1 and the D input changes to 0, which causes a change to S2.  
In S2 the master stage is cleared to 0, but the slave stage remains at I .  Again the flip-flop 
may change between S 2  and S4 because the master stage will track the changes in the D 
input signal while C = 1. From S 2  the circuit changes to S 1 when the clock goes low. 

In  Figures 9.6 and 9.7, we indicated that the flip-flop has only one output Q, which one 
sees when the circuit is viewed as a negative-edge-triggered flip-flop. From the observer's 
point of view, the flip-flop has only two states, 0 and 1. But internally, the flip-flop consists 
of the master and slave parts, which gives rise to the four states described above. 

We should also examine the basic assumption that the inputs must change one at a time. 
If the circuit is stable in state S2 ,  for which CD = 10, it is impossible to go from this state 
to S 1 under the influence of the input valuation CD = 01 because this simultaneous change 
in both inputs cannot occur. Thus in the second row of the Row table, instead of showing 
S2 changing to S 1 under CD = 0 1. this entry can be labeled as unspecified. The change 
from S2 to S1 can be caused only by CD changing from LO to 00. Similarly, if the circuit 
is in state S3, where CD = 11 ,  it cannot change to S4 by having CD = 00. This entry can 
also be left unspecified in the table. The resulting flow table is shown in Figure 9 . 6 ~ .  

If we reverse the analysis procedure and, using the state assignment in Figure 9mQ9 
synthesize logic expressions for Y, and Y,, we get 

D Q -  

Clk Q 

yrn 

- 

D Q  

Clk Q 

Y s  
Q 

Q 



(a) Excitation table 

Present Next state Output 

S 1 

Output 

Q 

0 

1 

0 

1 

Present 

state 

~ r n  Y S  

00 

0  1  

10 

1 1  

(b) Flow table 

Next state 

C D = O O  01 L O  1 1  

Ym Ys 

1 0  
m O O @ l l  

11 1 1  00 @ 
@ @ 0 1 @  

(c) Flow table with unspecified entries 

Figure 9.6 Excitation and flow tables for Example 9.2 .  

Output 

Q 

0 

1 

0 

1  

Present 
state 

S1 

S2 

S3 

S4 

Next state 

C D  = 00 01 1 0  1 1  

@ @ @ S 3  
S l  - @ S4 

- s 4  S1 0 
S 2  



Figure 9.7 State diagram for the master-slave D flip-flop. 

The terms v,D and .y,,y, in these expressions are redundant. As mentioned earlier, they are 
included in the circuit to avoid race conditions, which are discussed in section 9.6. 

9.3 Consider the circuit in Figure 9.8. It is represented by the following expressions 

The corresponding excitation and flow tables are given in Figure 9.9, 
Some transitions in the flow table will not occur in practice because of the assumption 

that both wl and w2 cannot change simultaneously. In state A the circuit is stable under the 
valuation W ~ W  I = 00. Its inputs cannot change to I 1 without passing through the valuations 
01 or 10, in which case the new state would be B or C ,  respectively. Thus the transition 
from A under W ~ W I  = 11 can be left unspecified. Similarly, if the circuit is stable in state 
B, in which case W Z W ~  = 01, it is impossible to force a change to state D by changing the 
inputs to w2 w1 = 10. This entry should also be unspecified. If the circuit is stable in state C 
under w2w1 = 11, it is not possible to go to A by changing the inputs directly to w2 wl = 00. 
However, the transition to A is possible by changing the inputs one at a time because the 
circuit remains stable in C for both w2wl = 01 and w2wl = 10. 

A different situation arises if the circuit is stable in state D under w2wl = 00. It may 
seem that the entry under W ~ W I  = I1 should be unspecified because this input change 
cannot be made from the stable state D. But suppose that the circuit is stable in state B 
under ~ 2 ~ 1  = 01. NOW let the inputs change to w2wl = 11. This causes a change to state 
D. The circuit indeed changes to D, but it is not stable in this state for this input condition. 
As soon as it arrives into state D, the circuit proceeds to change to state C as required by 
w2w1 = 11. It is then stable in state C as long as both inputs remain at I. The conclusion 
is that the entry that specifies the change from D to C under wzwl = 11 is meaningful 

9 



should not be omitted. The transition from the stable state B to the stable state C ,  which 
passes through state D, illustrates that it is not imperative that all transitions be directly from 
one stable state to another. A state through which a circuit passes en route from one stable 
state to another is called an unstable stcrte. Transitions that involve passing through an 
unstable state are not harmful as long as the unstable state does not generate an undesirable 
output signal. For example, if a transition is between two stable states for which the output 
signal should be 0, it would be unacceptable to pass through an unstable state that causes 
the output to be 1. Even though the circuit changes through the unstable state very quickly, 
the short glitch in the output signal is likely to be troublesome. This is not a problem in our 
example. When the circuit is stable in B, the output is z = 0. When the inputs change to 
W2w1 = 11, the transition to state D maintains the output at 0. It is only when the circuit 
finally changes into state C that z will change to 1. Therefore, the change from z = 0 to 
i = 1 occurs only once during the course of these transitions. 

A modified flow table, showing the unspecified transitions, is presented in Figure 9.10. 
The table indicates the behavior of the circuit in Figure 9.8 in terms of state transitions. If 
we don't know what the circuit is supposed to do, it may be difficult to discover the practical 
application for a given circuit. Fortunately, in practice the purpose of the circuit is known, 
and the analysis is done by the designer to ascertain that the circuit performs as desired. In 
Our example it is apparent that the circuit generates the output z = I in state C, which it 
reaches as a result of some input patterns that are detected using the other three states. The 

diagram derived from Figure 9.10 is shown in Figure 9.11. 
This diagram actually implements a control mechanism for a simple vending machine 
accepts two types of coins, say, dimes and nickels, and dispenses merchandise such as 



(a) Excitation table 

Present 

state 

Y2Y1 

00 

0  1 

10 

11 

(b) Flow table 

Figure 9.9 Excitation and flow tables for the circuit in Figure 9.8. 

Next state 

w2 wl = 00 01 10 1 I 

y2y1 y2y1 y2y1 y2 y1 

@ 01 10 11 

I 1  @ 1, 11 

0 0  
@ 10 10 10 

Present 
State 

A 

B 

C 

D 

Output 

z 

0 

0  

1 

0 

Figure 9.10 Modified Row table for Example 9.3. 

Next state 

w2w,=00  01 10 11 

@ B  C D 

D @ D  D 

A @ @ ) @  
@ C  C C 

Present 
State 

A 

B 

C 

D 

candy. If wl represents a nickel and w2 represents a dime, then a total of 10 cents must be 
deposited to get the FSM into state C where the candy is released. The coin mechanism 
accepts only one coin at a time, which means that W Z W ,  = 11 can never occur. ~ h e r e f o r ~ ,  
the transition discussed above, from B to C ,  through the unstable state D would not occur. 
Observe that both states B and D indicate that 5 cents has been deposited. State B indicates 

Output 
z 

0 

o 
1 

0  

Next state 

W 2 W l  = 00 01 10 11 

@ B  C - 

0 -  D 

A @ @ @  
@ C  C C 

Output 
z 

0 

0 

1 

0 



Figure 9.1 1 State diagram for Example 9.3. 

w2 = dime wl = nickel 

Present 
State 

Figure 9.1 2 Flow table for a simple vending machine. 

that a nickel is presently being sensed by the coin receptor, while D indicates that 5 cents 
has been deposited and the coin receptor is presently empty. In state D it is possible to 
deposit either a nickel or a dime, both leading to state C. No distinction is made between 
the two types of coins in state D; hence the machine would not give change if 15 cents 
is deposited. From state A a dime leads directly to state C .  Knowing that the condition 
wzwl = 11 will not occur allows the flow table to be specified as shown in Figure 9.12. If 
W e  were to synthesize the sum-of-products logic expressions for Y 1  and Y2,  using the state 
assignment in Figure 9.9a, we would end up with the circuit in Figure 9.8. 

Next state 

w * w l = 0 0  01 10 1 1  

Steps in the Analysis Process 

We have demonstrated the analysis process using illustrative examples. The required 
can be stated as follows: 

Output 
Z 

' A given circuit is interpreted in the form of the general model in Figure 8.90. That is, 
each feedback path is cut, and a delay element is inserted at the point where the cut 



is made. The input signal to the delay element represents a corresponding next-state 
variable, Yi, while the output signal is the present-state variable, yi. A cut can be made 
anywhere in a particular loop formed by the feedback connection, as long as there 
only one cut per (state variable) loop. Thus the number of cuts that should be made 
is the smallest number that results in there being no feedback anywhere in the cirsuit 
except from the output of a delay element. This minimal number of cuts is sometimes 
referred to as the cut set. Note that the analysis based on a cut made at one point in a 
given loop may not produce the same flow table as an analysis on a cut made at some 
other point in this loop. But both flow tables would reflect the same functional behavior 
in terms of the applied inputs and generated outputs. 

Next-state and output expressions are derived from the circuit. 
The excitation table corresponding to the next-state and output expressions is derived. 

A flow table is obtained, associating some (arbitrary) names with the particular encoded 
states. 

A corresponding state diagram is derived from the flow table if desired. 

Synthesis of asynchronous sequential circuits follows the same basic steps used to synthesize 
the synchronous circuits, which were discussed in Chapter 8. There are some differences 
due to the asynchronous nature, which make the asynchronous circuits more difficult to 
design. We will explain the differences by investigating a few design examples. The basic 
steps are 

P 

Devise a state diagram for an FSM that realizes the required functional behavior. 

Derive the flow table and reduce the number of states if possible. 

Perform the state assignment and derive the excitation table. 

Obtain the next-state and output expressions. 

Construct a circuit that implements these expressions. 

When devising a state diagram, or perhaps the flow table directly, it is essential to ensure 
that when the circuit is in a stable state, the correct output signals are generated. should it 
be necessary to pass through an unstable state, this state must not produce an undesirable 
output signal. 

Minimization of states is not straightforward. A minimization procedure is described 
in section 9.4. 

State assignment is not done with the sole purpose of reducing the cost ofthe final circuits 
In asynchronous circuits some state assignments may cause the circuit to be unreliable. We 
will explain this problem using the examples that follow. 



- 
5 ~ ~ I A L  PARITY GENERATOR Suppose that we want to design a circuit that has an input Ex4 

It' 
and an output Z, such that when pulses are applied to w, the output z is equal to 0 if the 

number of previously applied pulses is even and z is equal to 1 if the number of pulses is 
odd. Hence the circuit acts as a serial parity generator. 

Let A be the state that indicates that an even number of pulses has been received. Using 
[he Moore model, the output z will be equal to 0 when the circuit is in state A. As long 

as 1.1' = 0, the circuit should remain in A, which is specified by a transition arc that both 
and terminates in state A. Thus A is stable when w = 0. When the next pulse 

auives, the input w = 1 should cause the FSM to move to a new state, say, B, which 

P' educes the output z = 1. When the FSM reaches B, it must remain stable in this state as 
long as w = 1. This is specified by a transition arc that originates and terminates in B. The 
next input change occurs when w goes to 0. In response the FSM must change to a state 
where z = 1 and which corresponds to the fact that a complete pulse has been observed, 
namely. that w has changed from 1 to 0. Let this state be C; it must be stable under the input 
condition w = 0. The arrival of the next pulse makes w = 1, and the FSM must change 
to a state, D, that indicates that an even number of pulses has been observed and that the 
last pulse is still present. The state D is stable under $tv = 1, and it  causes the output to be 
z = 0. Finally, when w returns to 0 at the end of the pulse, the FSM returns to state A, which 
indicates an even number of pulses and w equal to 0 at the present time. The resulting state 
diagram is shown in Figure 9 . 1 3 ~ .  

A key point to understand is why it is necessary to have four states rather than just two, 
considering that we are merely trying to distinguish between the even and odd number of 
input pulses. States B and C cannot be combined into a single state even though they both 
indicate that an odd number of pulses has been observed. Suppose we had simply tried to  
use state B alone for this purpose. Then it would have been necessary to add an arc with a 
label 0 that originates and terminates in state B, which is fine. The problem is that without 
state C. there would have to be a transition from state B directly to D if the input is w = 1 
to respond to the next change in the input when a new pulse arrives. It would be impossible 
to have B both stable under 1.v = 1 and have a change to D effected for the same input 
condition. Similarly, we can show that the states A and D cannot be combined into a single 
state. 

Figure 9.13b gives the flow table that corresponds directly to the state diagram. In 
many cases the designer can derive a flow table directly. We are using the state diagram 
mostly because it provides a simpler visual picture of the effect of the transitions in an FSM. 

The next step is to assign values to the states in terms of the state variables. Since there 
are four states in our FSM, there have to be at least two state variables. Let these variables 
be FI and yz. As a first attempt at the state assignment, let the states A, B, C ,  and D be 
encoded as y2y1 = 00, 01, 10, and 11, respectively. This assignment leads to the excitation 
table in Figure 9 .14~ .  Unfortunately, it has a major Raw. The circuit that implements this 
'able is stable in  state D = 11 under the input condition w = 1. But consider what happens 
next if the input changes to w = 0. According to the excitation table, the circuit should 
change to state A = 00 and remain stable in this state. The problem is that in going from 
y23.'1 = 11 to y2y1 = 00 both state variables must change their values. This is unlikely 

occur at exactly the same time. In an asynchronous circuit the values of the next-state 
"ariables are determined by networks of logic gates with varying propagation delays. Thus 



(a) State diagram 

(6)  Flow table 

Figure 9.1 3 Parity-generating asynchronous FSM. 

we should expect that one state variable will change slightly before the other, which could 
put the circuit into a state where it may react to the input in an undesirable way, Suppose 
that yl changes first. Then the circuit goes from yzy = 1 1  to y2y1 = 10. AS soon as jt 
reaches this state, C, it will attempt to remain there if w = 0, which is a wrong outcome. On 
the other hand, suppose that y2 changes first. Then there will be a change from y2y1 = 11 
to y2y1 = 01, which corresponds to state B. Since w = 0, the circuit will now try to change 
to ~ 2 ~ 1  = 10. This again requires that both yl and y2 change; assuming that yl changes first 
in the transition from yzyl = 01, the circuit will find itself in the state yzyl = 00, which is 
the correct destination state, A. This discussion indicates that the required transition from 
D to A will be performed correctly if y2 changes before yl, but it will not work if yl changes 
before y2. The result depends on the outcome of the "race" to change between the signals 
Y1 andy2. 

The uncertainty caused by multiple changes in the state variables in response to 
input that should lead to a predictable change from one stable state to another has to be 
eliminated. The term race condition is used to refer to such unpredictable behavior. We 
will discuss this issue in detail in section 9.5. 



(a) Poor state assignment 

Present 
state Output 

Output 

z 

0 

1 

1 

0 

- 
Present 

state 

Y 2 Y  1 

00 

0 1 

10 

1 1  

(b) Good state assignment 

Figure 9.14 State assignment for Figure 9.1 3b. 

Race conditions can be eliminated by treating the present-state variables as if they were 
inputs to the circuit, meaning that only one state variable is allowed to change at a time. For 
our example the assignment A = 00, B = 01, C = 1 1 ,  and D = 10 achieves this objective. 
The resulting excitation table is presented in Figure 9.14b. The reader should verify that 
all transitions involve changing a singIe state variable. 

From Figure 9.14b the next-state and output expressions are 

Next state 

The last product term in the expressions for Y I  and Y2 is included to deal with possible 
hazards, which are discussed in section 9.6. The corresponding circuit is shown in Fig- 
ure 9.15. 

w = O  w = l  

y2 y1 

@ 0 1  

10 @ 
@ 11 

00 @ 



Figure 9.1 5 Circuit that implements the FSM in Figure 9.1 3b. 

It is interesting to consider how the serial parity generator could be implemented using 
a synchronous approach. All that is needed is a single flip-flop that changes its state with 
the arrival of each input pulse. The positive-edge-triggered D flip-flop in Figure 9.16 
accomplishes the task, assuming that the flip-flop is initially set to Q = 0. The logic 
complexity of the Rip-flop is exactly the same as the circuit in Figure 9.15. Indeed, if we 
use the preceding expressions for Y I  and Y2 and substitute C for w, D for 5, ynl for 1.1, and 
y, for y2, we end up with the excitation expressions shown for the master-slave D flip-flop in 
Example 9.2. The circuit in Figure 9.15 is actually a negative-edge-triggered master-slave 
flip-flop, with the complement of its Q output &) connected to its D input. The output z is 
connected to the output of the master stage of the flip-flop. 

Figure 9.16 Synchronous solution for €xornple 9.4. 



f 

M o ~ ~ ~ 0 - 4  COUNTER Chapters 7 and 8 described how counters can be implemented E x 4  

using flip-flops. Now we will synthesize a counter as an asynchronous sequential circuit. 
9.17 depicts a state diagram for a modulo-4 up-counter, which counts the number 

of pulses on an input line, w. The circuit must be able to react to all changes in the input 
thus it must take specific actions at both the positive and negative edges of each 

P 
ulse. Therefore, eight states are needed to deal with the edges in four consecutive pulses. 

The counter begins in state A and stays in this state as long as w = 0. When w changes 
- 

to 1, a transition to state B is made and the circuit remains stable in this state as long as 

w =  1.  When w goes back to 0, the circuit moves to state C and remains stable until w 
becomes 1 again, which causes a transition to state L), and so on. Using the Moore model, 
the states correspond to specific counts. There are two states for each particular count: the 
state that the FSM enters when w changes from 0 to 1 at the start of a pulse and the state that 
the FSM enters when w goes back to 0 at the end of the pulse. States B and C correspond 
to the count of 1, states D and E to 2, and states F and G to 3. States A and H represent the 
count of 0. 

Figure 9.18 shows the flow and excitation tables for the counter. The state assignment 
is chosen such that all transitions between states require changing the value of only one 
state variable to eliminate the possibility of race conditions. The output is encoded as a 
binary number, using variables z2 and : I .  From the excitation table the next-state and output 
expressions are 

Figure 9.17 State diagram for a modulo-4 counter. 



(a) Flow table 

Present 
state 

A 

B 

C 

D 

E 

F 

G 

H 

(b) Excitation table 

Mod-8 output 

23222 1 

000 

00 1 

010 

01 1 

100 

101 

110 

111 

Output 
z 

0 

1 

1 

2 

3 

3 

O 

Next state 

Output 

2221 

00 

01 

0 1 

10 

10 

11 

11 

Present 
state 

Y3Y2Y 1 

0 

00 1 

011 

010 

110 

111 

101 

(c) Output for counting 
the edges 

, = Q 

100 

Figure 9.18 Flow and excitation tables for a modulo-4 counter. 

, = 1 

Next state 

0 B 

C 0 
0 D 

E 0 
0 F 

0 
0 

A 0 

w = 0 w = l 

y3 y2 y1 

@ 001 

01, @ 
@ 010 

110 @ 
@ 111 

10, @ 
0 100 



.These expressions define the circuit that implements the required modulo-4 pulse counter. 
In the preceding derivation we designed a circuit that changes its state on every edge 

ofthe input signal w, requiring a total of eight states. Since the circuit is supposed to count 

the of complete pulses, which contain a rising and a falling edge, the output count 
hanges its value only in every second state. This FSM behaves like a synchronous :lCl c L 

sequential circuit in which the output count changes only as a result of w changing from 0 

to I -  
Suppose now that we want to count the number of times the signal w changes its value, 

that is, the number of its edges. The state transitions specified in Figures 9.17 and 9.18 
define an FSM that can operate as a modulo-8 counter for this purpose. We only need to 
specify a distinct output in each state, which can be done as shown in Figure 9 . 1 8 ~ .  The 
values of 2 3 Z 2 i l  indicate the counting sequence 0,  1, 2, . . . , 7 , 0 .  Using this specification 
of the output and the state assignment in Figure 9.1 8h, the resulting output expressions are 

A SIMPLE ARBITER In computer systems it is often useful to have some resource shared Exa 
by a number of different devices. Usually, the resource can be used by only one device at a 
time. When various devices need to use the resource, they have to request to do so. These 
requests are handled by an arbiter circuit. When there are two or more outstanding requests, 
the arbiter may use some priority scheme to choose one of them, as already discussed in 
section 8.8. 

We will now consider an example of a simple arbiter implemented as an asynchronous 
sequential circuit. To keep the example small, suppose that two devices are competing 
for the shared resource, as indicated in Figure 9 . 1 9 ~ .  Each device communicates with the 
arbiter by means of two signals-Request and Grant. When a device needs to use the shared 
resource, i t  raises its Request signal to 1. Then it waits until the arbiter responds with the 
Grant signal. 

Figure 9.19b illustrates a commonly used scheme for communication between two 
"tities in the asynchronous environment, known as handshake signaling. Two signals are 
U"d to provide the handshake. A device initiates the activity by raising a request, r = 1. 
When the shared resource is available, the arbiter responds by issuing a grant, g = 1. 
'hen the device receives the grant signal, it proceeds to use the requested shared resource. 

it completes its use of the resource, it drops its request by setting r = 0. When 
the arbiter sees that r = 0, it deactivates the grant signal, making g = 0. The arrows in 
the figure indicate the cause-effect relationships in this signaling scheme; a change in one 



(a) Arbitration structure 

Request 1 

Request (r) 

Grant (g)  

4 

Grant 1 
I 

(b) Handshake signaling 

Device 1 

Figure 9.19 Arbitration example. 

signal causes a change in the other signal. The time elapsed between the changes in the 
cause-effect signals depends on the specific implementation of the circuit. A key point is 
that there is no need for a synchronizing clock. 

A state diagram for our simple arbiter is given in Figure 9.20. There are two inputs, the 
request signals rl and r?, and two outputs, the grant signals gl  and g 2 ,  The diagram depicts 
the Moore model of the required FSM, where the arcs are labeled as r ~ r l  and the state 
outputs as g2g1. The quiescent state is A ,  where there are no requests. State B represents the 
situation in which Device 1 is given permission to use the resource, and state C denotes the 
same for Device 2. Thus B is stable if r2rl = 01, and C is stable if r2r1 = 10. TO confom 
to the rules of asynchronous circuit design, we will assume that the inputs rl and rz become 
activated one at a time. Hence, in state A it is impossible to have a change from rzrl = 00 
to r2f-l = 11. The situation where r2rl = 11 occurs only when a second request is raised 
before the device that has the grant signal completes its use of the shared resource, which 
can happen in states B and C. If the FSM is stable in either state B or C,  it will remain In 

this state if both rl and r2 go to 1 .  
The flow table is given in Figure 9.21a, and the excitation table is presented in Figure 

9.21b. It is impossible to choose a state assignment such that all changes between states 
A, B, and C involve a change in a single state variable only. In the chosen assignment 
the transitions to or from state A are handled properly, but the transitions between states 
B and C involve changes in the values of both state variables yl and y?. Suppose that the 
circuit is stable in state B under input valuation r2rl = 11. Now let the inputs change to 
r2r-l = 10. This should cause a change to state C ,  which means that the state variables must 

598 

Shared 
resource 

Arbiter 

Grant2 Device 2 
m 

Request2 
4 



Figure 9.20 State diagram for the arbiter. 

(a) Flow table 

Present 

A 

B 

C 

Figure 9.21 

Next state 

r2ry = 00 01 10 11 

B C - 

A C  

A B @ @  

Present 
state 

Y2Y 1 

00 

0 1 

10 

11  

(b) Excitation table 

Implementation of the arbiter. 

Output 
8281 

00 

01 

10 

Next state 

r2rl = 00 01 1 0  1 1  

y2 y1 

@ 01 10 - 

00 @ 10 @ 
00 01 

- 01 10 - 

Output 

gzg 1 

00 

01 

lo 

dd 



change from y2y1 = 0 1 to 10. If y~ changes faster than y2, then the circuit will find itself 
momentarily in state -y2y1 = 00, which leads to the desired final state because from state 
A there is a specified transition to C under the input valuation 10. But if y2 changes faster 
than 4.1, the circuit will reach the state y2yl = 11, which is not defined in the flow table. w 
make sure that even in this case the circuit will proceed to the required destination C ,  ,, 
can include the state ~ 2 ~ 1  = 11, labeled D, in the excitation table and specify the required 
transition as shown in the figure. A similar situation arises when the circuit is stable in c 
under r2rl = 11, and it has to change to B when r2 changes from 1 to 0. 

The output values for the extra state D are indicated as don't cares. Whenever a specific 
output is changing from 0 to 1 or from 1 to 0, exactly when this change takes place is not 
important if the correct value is produced when the circuit is in a stable state. The 
specification may lead to a simpler realization of the output functions. It is important to 
ensure that unspecified outputs will not result in a value that may cause erroneous behavior. 
From Figure 9,216 it is possible that during the short time when the circuit passes through 
the unstable state D the outputs become g2g1 = 11. This is harmless in our example because 
the device that has just finished using the shared resource will not try to use it again until its 
grant signal has returned to 0 to indicate the end of the handshake with the arbiter. Observe 
that if this condition occurs when changing from B to C ,  then gl remains 1 slightly longer 
and g2 becomes 1 slightly earlier. Similarly, if the transition is from C to B, then the change 
in gl from 0 to 1 happens slightly earlier and g2 changes to 0 slightly later. In both of these 
cases there is no glitch on either gl or g2. 

From the excitation table the following next-state and output expressions are derived 

Rewriting the first two expressions as 

produces the circuit in Figure 9.22. Observe that this circuit responds very quickly to the 
changes in the input signals. This behavior is in sharp contrast to the arbiter discussed in 
section 8.8 in which the synchronizing clock determines the minimum response time. 

The difficulty with the race condition that arises in state changes between B and C can 
be resolved in another way. We can simply prevent the circuit from reaching an unspecified 
state. Figure 9.23a shows a modified flow table in which transitions between states B and 
C are made via state A. If the circuit is stable in B and the input valuation changes from 
rzrl = 11 to 10, a change to A will occur first. As soon as the circuit reaches A,  which is not 
stable for the input valuation 10, it will proceed to the stable state C. The detour through 
the unstable state A is acceptable because in this state the output is g2gl = 00, which is 
consistent with the desired operation of the arbiter. The change from C to B is hadled 



Figure 9.22 The arbiter circuit. 

(a) Modified flow table 

Output 
8281 

00 

01 

10 

Present 
State 

A 

B 

C 

(b) Modified excitation table 

Next state 

q r l = O O  01 10 1 1  

@ B  C - 

A A  

A A @ @  

Present 

state 

Y2Y1 

00 

0 1 

10 

Figure 9.23 An alternative for avoiding a critical race in 
Figure 9.21 a. 

Next state 

r2rl = 00 01 10 1 1  

y2 y1 

@ 01 10 - 

0 0 0 0 @  

00 00 @ @ 

Output 

8281 

00 

01 

10 



using the same approach. From the modified excitation table in Figure 9.23b, the fo]lowillg 
next-state expressions are derived 

These expressions give rise to a circuit different from the one in Figure 9.22. However, 
both circuits implement the functionality required in the arbiter. 

Next we will attempt to design the same arbiter using the Mealy model specification 
From Figure 9.20 it is apparent that the states B and C are fundamentally different because 
for the input r2rl = 11 they must produce two different outputs. But state A is unique only 
to the extent that it generates the output g2g1 = 00 whenever rzrl = 00. This condition 
could be specified in both B and C if the Mealy model is used. Figure 9.24 gives a suitable 
state diagram. The flow and excitation tables are presented in Figure 9.25, which lead to 
the following expressions 

Despite needing a single state variable, this circuit requires more gates for implementation 
than does the Moore version in Figure 9.22. 

An important notion in the above examples is that it is necessary to pay careful attention 
to the state assignment, to avoid races in changing of the values of the state variables. Sec- 
tion 9.5 deals with this issue in more detail. 

We made the basic assumption that the request inputs to the arbiter FSM change their 
values one at a time, which allows the circuit to reach a stable state before the next change 
takes place. If the devices are totally independent, they can raise their requests at any time. 
Suppose that each device raises a request every few seconds. Since the arbiter circuit needs 
only a few nanoseconds to change from one stable state to another, it is quite unlikely that 
both devices will raise their requests so close to each other that the arbiter circuit will produce 
erroneous outputs. However, while the probability of an error caused by the simultaneous 
arrival of requests is extremely low, it is not zero. If this small possibility of an error cannot 
be tolerated, then it is possible to feed the request signals through a special circuit called 
the mutual exclusion (ME) element. This circuit has two inputs and two outputs. If both 
inputs are 0, then both outputs are 0. If only one input is 1, then the corresponding output 
is 1. If both inputs are 1, the circuit makes one output go to 1 and keeps the other at 0. 

Figure 9.24 Mealy model for the arbiter FSM. 



(a) Flow diagram 

Present 
State 

B 

C 

(b) Excitation table 

Next state 

rzrI = 00 01 10 11 

@) @ C 0 
@ B @ @ 

Present 

state 

Y 

0 

1 

Figure 9.25 Mealy model implementation of the arbiter FSM. 

Output g2 g 1 

00 01 10 11 

00 01 -0 01 

00 0- 10 10 

Using the ME element would change the design of the arbiter slightly; because the valuation 
r?r1 = I 1  would never occur, all entries in the corresponding column in Figure 9.21 would 
be don't cares. The ME element and the issue of simultaneous changes in input signals are 
discussed in detail in reference [6]. Finally, we should note that a similar problem arises 
in synchronous circuits in which one or more inputs are generated by a circuit that is not 
controlled by a common clock. We will deal with this issue in section 10.3.3 in Chapter 10. 

Next state 

r2r l=00 01 10 11 

Y 

@ 1 @ 
@ 0 (3-J 0 

In Chapter 8 we saw that reducing the number of states needed to realize the functionality 
of a given FSM usually leads to fewer state variables, which means that fewer flip-flops are 
required in the corresponding synchronous sequential circuit. In asynchronous sequential 
circuits it is also useful to try to reduce the number of states because this usually results in 
Simpler implementations. 

When designing an asynchronous FSM, the initial flow table is likely to have many 
ms~ecified (don't-care) entries, because the designer has to obey the restriction that only 
One input variable can change its value at a time. For example, suppose that we want to 
design the FSM for the simple vending machine considered in Example 9.3. Recall that 
the machine accepts nickels and dimes and dispenses candy when 10 cents is deposited; 
the machine does not give change if 15 cents is deposited. An initial state diagram for 

Output 

00 01 10 11 

g2g 1 

00 01 do 01 

00 Od 10 10 



this FSM can be derived in straightforward fashion by enumerating all possible sequences 
of depositing the coins to give a sum of at least 10 cents. Figure 9 . 2 6 ~  shows a possible 
diagram, defined as a Moore model. Starting in a reset state. A, the FSM remains in this 
state as long as no coin is deposited. This is denoted by an arc labeled 0 to indicate 
N = D = 0. Now let an arc with the label N denote that the coin-sensing mechanism ha, 

(a) Initial state diagram 

(b) Initial flow table 

Figure 9.26 Derivation of an FSM for the simple vending machine. 

Output 
Z 

0 

0 

1 

0 

1 

1 

Present 
State 

A 

B 

C 

D 

E 

F 

Next state 

DN = 00 01 10 11 

@ B  C - 

D O -  - 
A - 0 -  

@ E  F - 

A @ -  - 

A @ -  



detected a nickel and has generated a signal N = 1. Similarly, let D denote that a dime has 
been deposited. If N = 1, then the FSM has to move to a new state, say, B, and it must 

stable in this state as long as N has the value of 1. Since B corresponds to 5 cents 
being deposited, the output in this state has to be 0. If a dime is deposited in state A, then 
be FSM must move to a different state, say. C. The machine should stay in C as long as 

D = 1, and it should release the candy by generating the output of 1. These are the only 

P 
ossib]e transitions from state A, because it is impossible to insert two coins at the same 

time, which means that DN = 11 can be treated as a don't-care condition. Next, in state 
B there must be a return to the condition DN = 00 because the coin-sensing mechanism 
,ill detect the second coin some time after the first coin has cleared the mechanism. This 
behavior is consistent with the requirement that only one input variable can change at a 
time; hence it is not allowed to go from DN = 01 to DN = 10. The input DN = 10 
cannot occur in state B and should be treated as a don't care. The input DN = 00 takes 
the FSM to a new state, D, which indicates that 5 cents has been deposited and that there 
is no coin in the sensing mechanism. In state D it is possible to deposit either a nickel or 
a dime. If DN = 01, the machine moves to state E, which denotes that 10 cents has been 
deposited and generates the output of 1. If DN = 1 0. the machine moves to state F, which 
also generates the output of 1. Finally, when the FSM is in any of the states C ,  E, or F, the 
only possible input is DN = 00, which returns the machine to state A. 

The flow table for this FSM is given in Figure 9.266. It shows explicitly all don't-care 
entries. Such unspecified entries provide a certain amount of flexibility that can be exploited 
in reducing the number of states. Note that in each row of this table there is only one stable 
state. Such tables, where there is only one stable state for each row, are often referred to as 
primitive JEow tables. 

Several techniques have been developed for state reduction. In this section we will 
describe a two-step process. In the first step we will apply the partitioning procedure from 
section 8,6.1, assuming that the potentially equivalent rows in a flow table must produce 
the same outputs. As an additional constraint, for two rows to be potentially equivalent any 
unspecified entries must be in the same next-state columns. Thus combining the equivalent 
states into a single state will not remove the don't cares and the flexibility that they provide. 
In the second step, the rows are merged exploiting the unspecified entries. Two rows can be 
merged if they have no conflicting next-state entries. This means that their next-state entries 
for any given valuation of inputs are either the same, or one of them is unspecified, or both 
rows indicate a stable state. If the Moore model is used, then the two rows (states) must 
Produce the same outputs. If the Mealy model is used, then the two states must produce the 
Same outputs for any input valuations for which both states are stable. 

We will now show how the flow diagram in Figure 9.266 can be reduced to the optimized EJ 
in Figure 9.12. The first step in the state-reduction process is the partitioning procedure 

from section 8.6.1. States A and D are stable under the input valuation DN = 00, producing 
the output of 0; they also have the unspecified entries in the same position. States C and F 
are stable under DN = 10, generating = 1, and they have the same unspecified entries. 

B and E have the same unspecified entries, but when they are stable under DN = 01 
Ihe state B produces = 0 while E generates = 1; they are not equivalent. Therefore, the 



initial partition is 

The successors of A and D are (A, D) for DN = 00, ( B ,  E )  for 01, and (C, F )  for 10. Since 
the ( B ,  E) pair is not in the same block of PI,  it follows that A and D are not equivalent 
The successors of C and F are (A, A) for 00 and ( C ,  F )  for 10; each pair is in a single block. 
Thus the second partition is 

The successors of C and F in Pz are in the same block of P2,  which means that 

The conclusion is that rows C and F are equivalent. Combining them into a single row and 
changing all F s  into Cs gives the flow table in Figure 9.27. 

Next we can try to merge some rows in the flow table by exploiting the existence of 
unspecified entries. The only row that can be merged with others is C. It can be merged 
with either A or E, but not both. Merging C with A would mean that the new state has to 
generate z = 0 when it is stable under the input valuation 00 and has to produce z = 1 when 
stable under 10. This can be achieved only by using the Mealy model. The alternative is to 
merge C and E, in which case the new state is stable under DN = 01 and 10, producing the 
output of 1. This can be achieved with the Moore model. Merging C and E into a single 
state C and changing all Es into Cs yields the reduced flow table in Figure 9.12. Observe 
that when C and E are merged, the new row C must include all specifications in both rows 
C and E. Both rows specify A as the next state if DN = 00. Row E specifies a stable state 
for DN = 01; hence the new row (called C) must also specify a stable state for the same 
valuation. Similarly, row C specifies a stable state for DN = 10, which must be reflected 
in the new row. Therefore, the next-state entries in the new row are A, 0, and @for the 
input valuations 00,01, and 10, respectively. 

Present Next state Output 

State ! DN = 00 01 10 11 

Figure 9.27 First-step reduction of the FSM in Figure 9.26b. 



~ e r g i n g  Procedure 

In Example 9.7 it was easy to decide which rows should be merged because the only 

P ossibilitie~ are to merge row C with either A or E. We chose to merge C and E because 
this can be done preserving the Moore model, which is likely to lead to a simpler expression 
that the output Z.  

In ~eneral ,  there can be many possibilities for merging rows in larger flow tables. In 
such cases it is necessary to have a more structured procedure for making the choice. A 

procedure can be defined using the concept of compatibility of states. 

 finit it ion 9.1 - Two states (rows in aJlow tuble), Si and S,, are said to be compatible i f  
there ure no state conjicts for any input valuation. Thus for each input valuation, one of 
thefol/owing conditions must be true: 

. both Si and Sj have the same successor, or 

both S; and Sj are stable, or 

I the successor of Si or Sip or both, is unspecified. 

Moreovel; both Si and Sj must have the same output whenever specified. 

Consider the primitive flow table in Figure 9.28. Let us examine the compatibility be- 
tween different states, assuming that we would like to retain the Moore-type specification 
of outputs for this FSM. State A is compatible only with state H. State B is compatible 
with states F and G. State C is not compatible with any other state. State D is compatible 
with state E; so are state F with G and state G with H. In other words, the following com- 
patible pairs exist: (A ,  H ) ,  (3, F ) ,  ( B ,  G ) ,  (D ,  E), ( F ,  G), and (G, H). The compatibility 
relatioilship among various states can be represented conveniently in the form of a merger 
diagmm, as follows: 

Figure 9.28 A primitive flow table. 

Present 
State 

A  

B 

C 

D 

E 

F 

G 

H 

Next state 

w2wl = 00 01 10 11 

@ H  B - 

F - C  

- H - @ )  

A @ -  E 

- D  G O  

O D  - - 

- 0 -  
- 0 -  E 

Output 
z 

0 

0 

1 

1 

1 

0 

0 

0 



Each row of the flow table is represented as a point, labeled by the name of the row. 

A line is drawn connecting any two points that correspond to compatible states 

From the merger diagram the best merging possibility can be chosen, and the reduced fiOw 
table can be derived. 

Figure 9.29 gives the merger diagram for the primitive flow table in Figure 9.28. ~h~ 
diagram indicates that row A can be merged with H ,  but only if H is not merged with G 
because there is no line joining A and G. Row B can be merged with rows F and G. Since 
it is also possible to merge F  and G, it follows that 3, F ,  and G are pairwise compatible. 
Any set of rows that are pairwise compatible for all pairs in the set can be merged into a 
single state. Thus states B, F, and G can be merged into a single state, but only if states G 
and H are not merged. State C cannot be merged with any other state. States D and E can 
be merged. 

A prudent strategy is to merge the states so that the resulting flow table has as few states 
as possible. In our example the best choice is to merge the compatibles (A,  H), (B, F ,  G) ,  
and (D, E), which leads to the reduced flow table in Figure 9.30. When a new row is created 

Figure 9.29 Merger diagram for the flow toble in Figure 9.28, which 
preserves the Moore model. 

Figure 9.30 Reduced Moore-type flow table for the FSM in 
Figure 9.28. 

Output 
Z 

0  

0 

1 

1 

Present 

A 

B 

C 

D 

Next state 

WZwl=00 01 10 11 

@ @  B D 

@ D @ C  
- A - @  

A B  



by merging two or more rows, all entries in the new row have to be specified to cover the 
requirements of the constituent rows. Replacing rows A and H with a new row 

A requires making A stable for both W ~ W I  = 00 and 01, because the old A has to be stable 
for 00 and H has to be stable for 01. It also requires specifying B as the next-state for 

w ~ w 1  = 10 and E as the next state for wzwl = 11. Since the old state E becomes D, after 
merging D and E, the new row A must have the next-state entries 0, 0, 8, and D 
for the input valuations 00, 01, 10, and 11,  respectively. Replacing rows B, F, and G with 
, new row B requires making B stable for W ~ W I  = 00 and 10. The next-state entry for 
w2Wl = 01 has to be D to satisfy the requirement of the old state F. The next-state entry 
for wzwr = 11 has to be C ,  as dictated by the old state 3. Observe that the old state G 
imposes no requirements for transitions under w2wl = 01 and 1 1, because its corresponding 
next-state entries are unspecified. Row C remains the same as before except that the name 
of the next-state entry for wzwl = 01 has to be changed from H to A. Rows D and E are 
replaced by a new row D, using similar reasoning. Note that the flow table in Figure 9.30 
is still of Moore type. 

So far we considered merging only those rows that would allow us to retain the Moore- 
type specification of the FSM in Figure 9.28. If we are willing to change to the Mealy 
model, then other possibilities exist for merging. Figure 9.31 shows the complete merger 
diagram for the FSM of Figure 9.28. Black lines connect the compatible states that can 
be merged into a new state that has a Moore-type output; this corresponds to the merger 
diagram in Figure 9.29. Blue lines connect the states that can be merged only if Mealy-type 
outputs are used. 

In this case going to the Mealy model is unlikely to result in a simpler circuit. Although 
several merger possibilities exist, they all require at least four states in the reduced flow 
table, which is not any better than the solution obtained in Figure 9.30. For example, 
one possibility is to perform the merge based on the partition (A, H), (B, C, G) ( D ,  E )  

G F 

Figure 9.31 Complete merger diagram for Figure 9.28. 



(F). Another possibility is to use (A. C )  ( B ,  F )  (D. E )  (G,  H ) .  We will not pursue these 
possibilities and will discuss the issues involved in specifying the Mealy-type outputs 
Example 9.9. 

State Reduction Procedure 

We can summarize the steps needed to generate the reduced flow table from a primitive 
Aow table as follows: 

1. Use the partitioning procedure to eliminate the equivalent states in a primitive flow 
table. 

2.  Construct a merger diagram for the resulting flow table. 

3 .  Choose subsets of compatible states that can be merged, trying to minimize the 
number of subsets needed to cover all states. Each state must be included in only one 
of the chosen subsets. 

4. Derive the reduced flow table by merging the rows in chosen subsets. 

5 .  Repeat steps 2 to 4 to see whether further reductions are possible. 

Choosing an optimal subset of compatible states for merging can be a very complicated 
task because for large FSMs there may be many possibilities that should be investigated. A 
trial-and-error approach is a reasonable way to tackle this problem. 

- - - 

9.8 Consider the initial flow table in Figure 9.32. To apply the partitioning procedure, we 
identify state pairs (A, G) ,  (B, L), and (H, K) as being potentially equivalent rows, because 
both rows in each pair have the same outputs and their don't-care entries are in the same 
column. The remaining rows are distinct in this respect. Therefore, the first partition is 

Now the successors of (A,  G) are ( A .  G) for W ~ W I  = 00. (F, B) for 01, and (C, J) for 10. 
Since F and B, as well as C and J, are not in the same block, it follows that A and G are 
not equivalent. The successors of ( B ,  L) are (A ,  A ) ,  (B, L), and (H, K ) ,  respectively. All 
are in single blocks. The successors of (H. K) are (L, B), (E, E), and ( H .  K), which are all 
contained in single blocks. Therefore, the second partition is 

Repeating the successor test shows that the successors of (B, L) and (H, K )  are still in single 
blocks; hence 

Combining rows B and L under the name 3 and rows H and K under the name H leadst0 
the flow table in Figure 9.33. 

A merger diagram for this flow table is given in Figure 9.34. It indicates that rows 
and H should be merged into one row, which we will label as B. The merger diagram also 
suggests that rows D and E should be merged; we will call the new row D. The remaining 
rows present more than one choice for merging. Rows A and F can be merged, but in that 



Figure 9.32 Flow table for Example 9.8. 

Output 
z 

o 
1 

o 
1 

1 

0 

0 

1 

0 

1 

1 

Present 
State 

A 

B 

c 
D 

E 

F 

G 

H 

3 

K 

L 

Figure 9.33 Reduction obtained by using the partitioning 
procedure. 

Next state 

w2u l l=00  01 1 0  1 1  

O F  c - 

A @ -  H 

G - O D  
- F - @  

G - @ D  

-0- K 

@ B  J - 

- L E @  

G - 0 -  

- B E O  

A @ -  K 

Present 
State 

A 

B 

C 

D 

E 

F 

G 

H 

J 

Next state 

w2wl = 00 0 1  1 0  11  

@ F  C - 

A @ -  H 

G - @ D  

- F - @  
G - @ D  

-0- H 

@ B  J - 

- B E @  

G - 0 -  

Output 
Z 

0 

1 

0 

1 

1 

0 

0 

1 

0 



Figure 9.34 Merger diagram for Figure 9.33. 

case F and J cannot be merged. Rows C and J can be merged, or G and J can be merged, 
We will choose to merge the rows A and F into a new row called A and rows G and J into 
a new row G .  The merger choice is indicated in blue in the diagram. The resultant flow 
table is shown in Figure 9.35. To see whether this table offers any further opportunities 
for merging, we can construct the merger diagram in Figure 9.36. From this diagram it is 
apparent that rows C and G can be merged; let the new row be called C .  This leads to the 
flow table in Figure 9.37, which cannot be reduced any more. 

Figure 9.35 Reduction obtained from the merger diagram in 
Figure 9.34. 

Figure 9.36 Merger diograrn for Figure 9.35. 

Output 
z 

0 

1 

o 
1 

0 

Present 
State 

A 

B 

c 
D 

G 

Next state 

w 2 w l = 0 0  01 10 11 

@ @  C B 

A @ D @  
G - @ D  

G A @ @  
0.0- 



Figure 9.37 Reduced flow table for Example 9.8. 

- 

consider the flow table in Figure 9.38. Applying the partitioning procedure to this table Ea 

gives 

P1 = ( B J )  (CG) (Dl ( E l  (HI 

P2 = (A)  ( F K ) ( B J )  ( C )  (GI (Dl (E) (Hl  
P3 = PZ 

Output 
z 

0 

I 

o 
1 

Present 

A 

B 

c 
D 

Combining B and J  into a new state B, and F and K into F, gives the flow table in Fig- 
ure 9.39. 

Figure 9.40~  gives a merger diagram for this flow table, indicating the possibilities for 
merger if the Moore model of the FSM is to be preserved. In this case B and F can be 
merged, as well as C and H, resulting in a six-row flow table. 

Next state 

w 2 w , = 0 0  01 10 11 

@ @  C B 

A @ D @  

@ B O D  
C A @ @  

Figure 9.38 Flow table for Example 9.9. 

Output 
z 

0 

o 
1 

0 

1 

0 

1 

1 

o 
0 

Present 
State 

A 

B 

c 
D 

E 

F 

G 

H 

J 

K 

Next state 

w2wl =00 01 10 11 

@ G  E - 

K - @ D  

0 -  H 

- c  E @  

A - O D  

@ C  J - 

K O -  D 

- - E @  

F @ D  

@ C  B - 



Figure 9.39 Reduction resulting from the partitioning procedure. 

(a) Preserving the Moore model 

Output 
z 

0 

o 
1 

0 

1 

0 

1 

1 

Present 
State 

A 

B 

C 

D 

E 

F 

G 

H 

(b) Complete merger diagram 

Figure 9.40 Merger diagrams for Figure 9.39. 

Next state 

w 2 w l = 0 0  01 10 11 

@ G  E - 

F - D  

Fa- H 

- C  E @  

A - O D  
@ C  B - 

F @ -  D 

- - E @  



Next we should consider the merging possibilities if we are willing to change to the 
~ ~ a l ~  model. When going from the Moore model to the Mealy model, a stable state in 

Mealy model must generate the same output as it had in the Moore model. It is also 
important to ensure that transitions in the Mealy model will not produce undesirable glitches 
in the output signal. 

Figure 9.41 indicates how the FSM of Figure 9.39 can be represented in the Mealy 
fom. The next-state entries are unchanged. In Figure 9.41, for each stable state the output 
value mu5t be the same as for the corresponding row of the Moore-type table. For example, 
- = 0 !ithen the state A is stable under wzwl = 00. Also, z = 0 when the states B, D, and F 
are stable under w2wl = 10, 11, and 00, respectively. Similarly, z = 1 when C ,  E,  G, and 
H are stable under w2wl = 01, 10,01, and 1 I ,  respectively. If a transition from one stable 
state to another requires the output to change from 0 to 1, or from 1 to 0, then the exact 
time when the change takes place is not important, as we explained in section 9.1 when 
discusing Figure 9.3. For instance, suppose that the FSM is stable in A under w2wl = 00, 

z = 0. If the inputs then change to w2wl = 01, a transition to state G must be 
made. where z = 1. Since it is not essential that z becomes 1 before the circuit reaches 
the state G, the output entry in row A that corresponds to this transition can be treated as 
a don't care; therefore, it is left unspecified in the table. From the stable state A, it is also 
possible to change to E, which allows specifying another don't care because z changes from 
0 to 1 .  A different situation arises in row B. Suppose that the circuit is stable in 3 under 
W ~ W I  = 10 and that the inputs change to I I .  This has to cause a change to stable state D, 
and z must remain at O throughout the change in states. Hence the output in row B under 
W Z W I  = 11 is specified as 0. If it were left unspecified, to be used as a don't care, then it is 
possible that in the implementation of the circuit this don't care may be treated as a 1. This 
would cause a glitch in z ,  which would change 0 + 1 + 0 as the circuit moves from B to 
D when the inputs change from 10 to 11. The same situation occurs for the transition from 

Figure 9.41 The FSM of Figure 9.39 specified in the form of the 
Mealy model. 

Present 
State 

A 

B 

C 

D 

E 

F 

G 

H 

Next state 

wZwl=00 01 10 11 

@ G E - 0 -  

F - @ D  

F @ -  H 

- C  E @ -  

A @ D  

@ C B - 0 - 0 -  

F @ -  D 

- - E @ -  

Output z 

00 01 10 11 

- - 

o - o o 
- 1 - 1 

- - 0 

- - 1 -  

- 1 - - 

- 1 1  



Figure 9.42 Reduced flow table for Example 9.9. 

B to F when the inputs change from 10 to 00. We can use the same reasoning to determine 
other output entries in Figure 9.4 1. 

From Figure 9.41 we can derive the merger diagram in Figure 9.40b. The blue ]ines 
connect the rows that can be messed only by specifying the output in the Mealy style. The 
black lines connect the rows that can be merged even if the outputs are of Moore type; 
they correspond to the diagram in Figure 9.40a. Choosing the subsets of compatible states 
(A, H ) ,  ( B ,  G), (C, F ) ,  and (D, E), the FSM can be represented using only four states. 
Merging the states A and H into a new state A, states B and G into B,  states C and F into 
C ,  and D and E into D, we obtain the reduced flow table in Figure 9.42. Each entry in this 
table meets the requirements specified in the corresponding rows that were merged. 

Output z 

00 01 10 11 

- 1 1  

0 1 0  0 

L O  1 

- 1 0  

Present 
"ate 

A 

B 

c 
D 

9.1 0 AS another example consider the flow table in Figure 9.43. The partitioning procedure gives 

PI = (AF)(BEG) ( C )  (HI  

P2 = ( A F ) ( B E )  (G)(C)(D)(H) 

p3 = p2 

Next state 

w2wl = 00 01 10 11 

@ B  D @ O  

C @ @ D  

@ @ B A O  

A C @ @ -  

Figure 9.43 Flow table for Example 9.1 0. 

Present 
State 

A 

B 

c 
D 

E 

F 

G 

H 

Next state 

w2w1=00 01 10 11 

@ B  C - 

F @ -  H 

F @ H  

@ G  c - 

A @ -  H  

BE C - 

D o -  H 

- G C @  

Output 
2 

0 

0 

o 
1 

0 

0 

0 

1 



8ds lacing state F with A, and state E with B ,  results in the flow table in Figure 9.44. The 
,oflesponding merger diagram is presented in Figure 9.45. It is apparent that states A, 8, 

C can be merged and replaced with a new state A. Also D, G, and H can be merged 
into 3 new state D. The result is the reduced flow table in Figure 9.46, which has only two 
mws, Again we have used the Mealy model because the merged stable states D and H have 
- = 1 while G has z = 0. 

Figure 9.44 Reduction after the partitioning procedure. 

Figure 9.45 Merger diagram for Figure 9.44. 

Output 
z 

0 

0  

0 

1 

0  

1 

Present 
State 

A 

B 

C 

D 

G 

H 

Next state 

w2w1 = 00 01 10 1 1  

@ B  C - 

A @ -  H 

A - @ H  

@ G  C - 

D O -  H 

G C @  

Figure 9.46 Reduced flow diagram for Example 9.1 0. 

61 7 - 

Output z 

00 01 10 1 1  

0  0 0 - 

- 1 

Present 
State 

A  

D 

Next state 

w2wl=00 01 10 1 1  

@ @ @  D 
@ @ A @ l O  



The examples in section 9.3 illustrate that the state assignment task for asynchronous F S M ~  
is complex. The time needed to change the value of a state variable depends on the propa- 
gation delays in the circuit. Thus it is impossible to ensure that a change in the values oftwo 
or more variables will take place at exactly the same time. To achieve reliable operation of 
the circuit, the state variables should change their values one at a time in controlled fashion 
This is accomplished by designing the circuit such that a change from one state to another 
entails a change in  one state variable only. 

States in FSMs are encoded as bit strings that represent different valuations of the state 
variables. The number of bit positions in which two given bit strings differ is called the 
Hamming distance between the strings. For example, for bit strings 01 10 and 0100 the 
Hamming distance is 1, while for 0110 and 1101 it is 3. Using this terminology, an idea] 
state assignment has a Hamming distance of 1 for all transitions from one stable state to 
another. When the ideal state assignment is not possible, an alternative that makes use of 
unspecified states and/or transitions through unstable states must be sought. Sometimes it 
is necessary to increase the number of state variables to provide the needed flexibility. 

I. 1 1 Consider the parity-generating FSM in Figure 9.13. Two possible state assignments for this 
FSM are given in Figure 9.14. The transitions between states, as specified in Figure 9,13b, 
can be described in pictorial form as shown in Figure 9.47. Each row of the flow table is 
represented by a point. The four points needed to represent the rows are placed as vertices 
of a square. Each vertex has an associated code that represents a valuation of the state 
variables, yzyl .  The codes shown in the figure, with yzyl = 00 in the lower-left corner and 
so on, correspond to the coordinates of the two-dimensional cube presented in section 4.8. 
Figure 9.47a shows what happens if the state assignment in Figure 9 . 1 4 ~  is used; namely, 
ifA = 00, B = 01, C = 10, and D = 11. There is a transition from A to B if w = 1, which 
requires a change in yl  only. A transition from C to D occurs if w = 1, which also requires 
a change in y1 only. However, a transition from B to C caused by w = 0 involves a change 
in the values of both ~2 and y l .  Similarly, both state variables must change in going from 
D to A if w = 0. A change in both variables corresponds to a diagonal path in the diagram. 

Figure 9.47b shows the effect of the state assignment in Figure 9.14b, which reverses 
the valuations assigned to C and D. In this case all four transitions are along the edges 
of the two-dimensional cube, and they involve a change in only one of the state variables. 
This is the desirable state assignment. 

'01 2 The flow table for an arbiter FSM is given in Figure 9 . 2 1 ~ ~ .  Transitions for this FSM are 
shown in Figure 9.48a, using the state assignment A = 00, B = 01, and C = 10. In 
this case multiple transitions are possible between the states. For example, there are two 
transitions between A and 3: from B to A if r2t-1 = 00 and frornA to B if rzrl = 01. Again 
there is a diagonal path, corresponding to transitions between 3 and C, which should be 
avoided. A possible solution is to introduce a fourth state, D, as indicated in Figure 9.48b. 
Now the transitions between B and C can take place via the unstable state D. Thus instead 



(a) Corresponding to Figure 9.14a 

(b) Corresponding to Figure 9.14b 

Figure 9.47 Transitions in Figure 9.1 3. 

of going directly from B to C when r2rl = 10, the circuit will go first from B to D and then 
from D to C, 

Using the arrangement in Figure 9.48b requires modifying the flow table as shown 
in Figure 9.49. The state D is not stable for any input valuation. It cannot be reached if 
r2r1 = 00 or 11; hence these entries are left unspecified in the table. Also observe that we 
have specified the output g2g1 = 10 for state D, rather than leaving it unspecified. When 
a transition from one stable state to another takes place via an unstable state, the output of 
the unstable state must be the same as the output of one of the two stable states involved 
in the transition to ensure that a wrong output is not generated while passing through the 
unstable state. 

It is interesting to compare this flow table with the excitation table in Figure 9.21b, 
which is also based on using the extra state D. In Figure 9.216 the state D specifies the 

transitions should the circuit accidentally find itself in this state as a result of a 
'ace in changing the values of both state variables. In Figure 9.49 the state D is used in 
Orderly transitions, which are not susceptible to any race conditions. 



- A = 00 0 1 B = 01 

(a) Transitions in Figure 9.21a 

(b) Using the extra state D 

Figure 9.48 Transitions for the arbiter FSM in Figure 9.21. 

Figure 9.49 Modified flow table based on the transitions in 
Figure 9.48b. 

Output 
8281 

00 

01 

10 

10 

Present 

State 

A 

B 

C 

D 

Next state 

r2rl = 00 01 10 11 

@ B  C - 

A D  

A D O @  
- B C -  



A diagram that illustrates the transitions specified in a flow table is called a transifion dia- 

8 
mm In some books such diagrams are called state-crdjacency diagrams. These diagrams 

P 
a convenient aid in searching for a suitable state assignment. 

A good state assignment results if the transition diagram does not have any diagonal 

P 
aths. A general way of stating this requirement is to say that it must be possible to embed 

the diagram onto a k-dimensional cube, because in a cube a11 transitions between 
adjacent vertices involve the Hamming distance of 1. Ideally, a transition diagram for an 
FSM with n state variables can be embedded onto an n-dimensional cube, as is the case in 
the in Figures 9.47b and 9.488. If this is not possible, then i t  becomes necessary 

introduce additional state variables, as we will see in later examples. 
The diagrams in Figures 9.47 and 9.48 present all information pertinent to transitions 

between the states in the given FSMs. For larger FSMs such diagrams take on a cluttered 
appearance. A simpler form can be used instead, as described below. 

A transition diagram has to show the state transitions for each valuation of the input 
variables. The direction of a transition, for example from A to B or from B to A, is not 
important, because it is only necessary to ensure that all transitions involve the Hamming 
distance of 1. The transition diagram has to show the effect of individual transitions into 
each stable state, which may involve passing through unstable states. For a given row of a 
flow table, it is possible to have two or more stable-state entries for different input valuations. 
It is useful to identify the transitions leading into these stable states with distinct labels in a 
transition diagram. To give each stable-state entry a distinct label, we will denote the stable- 
state entries with numbers 1,2 ,3 ,  . . . . Thus if state A is stable for two input valuations, we 
will replace the label A with 1 for one input valuation and with 2 for the other valuation. 

Figure 9.50 shows a relabeled version of the flow table in Figure 9.21a. We have 
arbitrarily chosen to label @as 1 ,  the two appearances of @as 2 and 3, and the two 
appearances of @as 4 and 5. All entries in each next-state column are labeled using this 
scheme. The transitions identified by these labels are presented in Figure 9.5 1 a. The same 
information is given in Figure 9.4811. Actually, the diagram in Figure 9 . 4 8 ~  contains more 
lnfonnation because arrowheads show the direction of each transition. Note also that the 
edges in that diagram are labeled with input values r2t-1, whereas the edges in Figure 9.5 la  
are labeled with numerical stable-state labels as explained above. 

Figure 9.50 Relabeled flow table of Figure 9.21cr. 

Present 
State 

A 

B 

C 

Next state 

r2rl = 00 01 10 11 

0 2  4 - 

1 0 4 0  

1 2 0 0  

Output 
g2gl 

00 

01 

10 



(a) Transitions in Figure 9.50 

. .. 
-7 ~- (b) Complete transition diagram 

(c) Selected transition diagram 

Figure 9.5 1 Transition diagrams for Figure 9.50. 

Figure 9.50 indicates that the stable state 2, which is one instance of the stable state 
B, can be reached either from state A or from state C. There is a corresponding label 2 
the paths connecting the vertices in the diagram in Figure 9.51a. The difficulty from the 
state-assignment point of view is that the path from C to B is diagonal. In Example 9.12 
this problem was resolved by introducing a new state D. By examining the Row table 



Figure 9.50 more closely, we can see that the functional behavior of the required arbiter 
F ~ M  can be achieved if the transition from C to B takes place via state A. Namely, if the 
circuit i5 stable in C, then the input r2rl = 01 can cause the change to A, from which the 

immediately proceeds to state B. We can indicate the possibility of using this path 

by 
the label 2 on the edge that connects C and A in Figure 9.5 1 a. 

Asimilar situation exists for the transition from B to C, which is labeled 4. An alternative 

Pa 
th can be realized by causing the circuit to go from state B to state A if rg1 = 10 and 

hen immediately proceed to C. This can be indicated by placing the label 4 on the edge 
[hat connects B and A in Figure 9.5 1 a. 

A possibility of having an alternative path for a transition exists whenever two states 
have the same uncircled label in the relabeled flow diagram. In Figure 9.50 there is a 

such possibility if r2rl = 00, using the label 1. This possibility is not useful because 
changinc k from either B or C to A involves a change in only one state variable using the 
state assign~nent in Figure 9.5 1 a. Hence there would be no benefit in having a transition 
between B and C for this input valuation. 

To depict the possibility of having alternative paths, we will indicate in blue the cor- 
responding transitions on the diagram. Thus a complete transition diagram will show all 
direct transitions to stable states in black and possible indirect transitions through unstable 
states in blue. Figure 9.51b shows the complete transition diagram for the flow table in 
Figure 9.21~1. 

The transition diagram in Figure 9.516 cannot be embedded on the two-dimensional 
cube, because some transitions require a diagonal path. The blue label 1 on the path between 
B and C is of no concern, because it represents only an alternative path that does not have 
to be used. But the transitions between B and C Iabeled 2 and 4 are required. The diagram 
shows an alternative path, through A, having the labels 2 and 4. Therefore, the alternative 
path can be used, and the diagonal connection in the diagram can be eliminated. This leads 
to the transition diagram in Figure 9.5 lc, which can be embedded on the two-dimensional 
cube. The conclusion is that the state assignment A = 00, B = 01, and C = 10 is good, 
but the flow table must be modified to specify the transitions through alternative paths. 
The modified table is the same as the flow table designed earlier using an ad hoc approach, 
shown in Figure 9 . 2 3 ~ .  

As a final comment on this example, note the impact of alternative paths on the out- 
puts produced by the FSM. If r2rl = 01, then a change from a stable state C through 
unstable A to stable B generates the outputs g2gl = 10 + 00 + 0 1, rather than 10 + 0 1 
as specified in Figure 9.2 la .  For the arbiter FSM this presents no problem, as explained in 
Example 9.6. 

Procedure for Deriving Transition Diagrams 
The transition diagram is derived from a flow table as follows: 

a Derive the relabeled flow table as explained above. For a given input valuation, all 
transitions that lead to the same stable state are labeled with the same number. Tran- 
sitions through unstable states that eventually lead to a stable state are given the same 
number as the stable-state entry. 

a 
Represent each row of the flow table by a vertex. 



Join two vertices, Vi and 5, by an edge if they have the same number in any column 
of the relabeled flow table. 

For each column in which V, and V, have the same number, label the edge between 
V j  and V, with that number. We will use black labels for direct transitions to circled 
(stable) states and blue labels when the next-state entries for both V, and V, in the flow 
table are uncircled. 

Note that the fint  point says that in the relabeled flow table the transitions through unstable 
states are given the label of the stable state to which they lead for a given input valuation. 
For example, to derive a transition diagram starting from the flow table in Figure 9.23a, 
the table would be relabeled to give the table in Figure 9.50. The transition from stable A 
to stable B, when r2rl = 01, has the label 2. The same label is given to the transition from 
stable C to unstable A because this transition ultimately leads to stable 3. 

Unspecified entries in a flow table provide some flexibility in finding good state assignments. 
The following example presents a possible approach. The example also illustrates all steps 
in the derivation of a transition diagram. 

9-13 Consider the flow table in Figure 9.52a. This FSM has seven stable-state entries. Labeling 
these entries in order, from 1 to 7, results in the table in part (b)  of the figure. In this case. 
states I and 2 correspond to state A,  3 and 4 to state B, 5 and 6 to state C ,  and 7 to state 
D. In the column W Z W ~  = 00 there is a transition from C to A,  which is labeled I ,  and a 
transition from D to B, which is labeled 3, because 1 and 3 are the successor stable states 
in these transitions. Similarly, in column I1  there are transitions from B to C and from D 
to A, which are labeled 6 and 2, respectively. In column 01 there is a transition from A to 
B, which is labeled 4. State C is stable for this input valuation; it is labeled 5. There is no 
transition specified that leads to this stable state. The state can be reached only if C is stable 
under w2wl = 11, which is labeled 6, and then the inputs change to w2wl = 01. Note that 
the FSM remains stable in C if the inputs change from 11 to 01, or vice versa. Column 
10 illustrates how unstable states are treated. From the stable state A, a transition to the 
unstable state C is specified. As soon as the FSM reaches state C ,  it proceeds to change to 
the stable state D, which is labeled 7. Thus 7 is used as the label for the entire transition 
sequence from A to C to D. 

Taking rows A, B, C ,  and D as the four vertices, a first attempt at drawing the transition 
diagram is given in Figure 9.53a. The diagram shows transitions between all pairs of states, 
which seems to suggest that it is impossible to have a state assignment where all transitions 
are characterized by a Hamming distance of 1. If the state assignment A = 00, B = O1? 
C = 11, and D = 10 is used, then the diasonal transition between A and C, or B and D. 
requires both state variables to change their values. The diagonal path from B to D with 
the label 7 is not needed, because an alternative path from B to D exists under label 7 that 



(a) Flow table 

Output 
'2'1 

00 

0 1 

10 

11 

Present 
State 

A 

B 

c 
D 

(b) Relabeled flow table 

Next state 

wawl = 00 01 10 11 

@ B  c 
@ @  D C 

@ D O  
B A 

Figure 9.52 Flow tables for Example 9.1 3. 

Output 
22z1 

00 

01 

10 

1 1  

Present 
state 

A 

B 

C 

D 

passes either through state A or through state C. Unfortunately, the diagonal paths labeled 
I and 3 cannot be removed, because there are no alternative paths for these transitions. 

As the next attempt at finding a suitable state assignment, we will reverse the codes 
given to B and C ,  which yields the transition diagram in Figure 9.53b. Now the same 
argument about the alternative paths labeled 7 indicates that the diagonal from C to D can 
be omitted. Also, the label 7 on the diagonal between A and B can be omitted. However, this 
diagonal must remain because of the label 4 for which there is no alternative path betweenA 
and 3. Looking at the flow table in Figure 9.52b, we see an unspecified entry in the column 
W 2 W ~  = 01. This entry can be exploited by replacing it with the label 4, in which case the 
hansition graph would show the label 4 on the edges connecting A and D, as well as B and 
D. Thus the diagonal between A and B could be removed, producing the transition diagram 
"Figure 9 .53~.  This diagram can be embedded on a two-dimensional cube, which means 
fiat the state assignment A = 00, B = 1 1 ,  C = 0 1, and D = 10 can be used. 

For the transition diagram in Figure 9 . 5 3 ~  to be applicable, the flow table for the FSM 
must be modified as shown in Figure 9 .54~ .  The unspecified entry in Figure 9.52a now 
'Pecifies a transition to state B. According to Figure 9.53c, the change from state A to B 
Under input valuation wzwl = 01 must pass through state D; hence the corresponding entry 

Next state 

w2wl = 00 01 10 11 

0 4  7 0  

@ @  7 6 

1 0 7  
3 - 0 2  



A = 00 4, 7 B = 01 

(a) First transition diagram 

D = 10 3 , 7  B = 11 

A = 00 1, 7 C = 01 

(b) Second transition diagram 

D = 10 3 , 7 , 4  B = 11 

(c) Augmented transition diagram 

Figure 9.53 Transition diagrams for Figure 9.52. 

in the first row is modified to ensure that this will take place. Also, when w2wl = 10. the 
FSM must go to state D. If it happens to be in state C, then this change has to occur either 
via state A or state B. We have chosen the path via state B in Figure 9 . 5 4 ~ .  

The original flow table in Figure 9.52a is defined in the form of the Moore model. 
The modified flow table in Figure 9 . 5 4 ~  requires the use of the Mealy model because 
the previously described transitions through unstable states must produce correct outputs. 



(a) Modifled flow table 

Present 
"ate 

A 

B 

C 

D 

(b) Excitation table 

Next state 

w z w ,  = 00 01 10 1 1  

D D @ 
@ @  D C 

A @ B @ 
B B @ A 

Present 

state 

Y2Yl 

00 

11 

0 1 

10 

Figure 9.54 Realization of the FSM in Figure 9.52a. 

Output z 2 z  1 

00 0 1  10 1 1  

00 00 11 00 

01 01 11 01 

-0 1 0  1 -  10 

-1 0- 11 00 

Consider first the change from A if w2w1 = 01. While stable in state A, the circuit must 
produce the output ~221 = 00. Upon reaching the stable state B, the output must become 
01. The problem is that this transition requires a short visit to state D, which in the Moore 
model would produce z2z1 = 11. Thus a glitch would be generated on the output signal z2, 
which would undergo the change 0 + 1 + 0. To avoid this undesirable glitch, the output 
in state D must be z2 = 0 for this input valuation, which requires the use of the Mealy model 
as shown in the Figure 9.54~. Observe that while z2 must be 0 in D for w2wl = 01, zl  can 
be either 0 or 1 because it is changing from 0 in state A to 1 in state B. Therefore, zl can be 
left unspecified so that this case can be treated as a don't-care condition. A similar situation 
arises when the circuit changes from C to D via B if w2wl = 10. The output must change 
from 10 to 11, which means that ~2 must remain at 1 throughout this change, including the 

time in state B where the Moore model output would be 01. 
The modified flow table and the chosen state assignment lead to the excitation table in 

Figure 9.54b. From this table the next-state and output expressions are derived, as in the 
in section 9.3. 

Next state 

w2wl = 00 01 10 11 

y2 Yl 

@ 10 10 @ 
00 10 01 

00 @ 11 @ 
11 11 @ 00 

Output 

00 01 10 11 

z2z 1 

00 00 11 00 

01 01 11 01 

-0 10 1-  10 

-1 0- 11 00 



In Figure 9.52a there is an unspecified transition that can be exploited to find a suitable 
state assignment, as shown in section 9.5.2. In general, such flexibility may not exist 
may be impossible to find a race-free state assignment using log2n state variables for a flow 
table that has n rows. The problem can be solved by adding extra state variables. This cQ 
be done in three ways, as illustrated in the examples that follow. 

- 
1.1 4 USING EXTRA UNSTABLE STATES Consider the FSM specified by the flow table in Figure 

9 .55~.  The flow table is relabeled in part (b) of the figure. A corresponding transition 
diagram is depicted in Figure 9.56a. It indicates that there are transitions between all pairs 
of vertices (rows). No rearrangement of the existing vertices would allow mapping of the 
transition diagram onto a two-dimensional cube. 

Let us now introduce one more state variable so that we can look for a way to map the 
transition diagram onto a three-dimensional cube. With three state variables the assignment 
for state A can be a Hamming distance of 1 different from the assignments for B,  C, and 
D. For example, we could have A = 000, B = 001, C = 100, and D = 010. But it 

(a) Flow table 

Output 

Z 2 Z l  

00 

01 

lo 

11 

Present 
State 

A 

B 

c 
D 

(b) Relabeled flow table 

Figure 9.55 FSM for Example 9.14. 

Next state 

w2w1=00 01 10 11 

@ @  C B 

A D  

@ B O D  
C A @ 

Output 
Z2-71 

00 

01 

10 

11 

Present 
State 

A 

B 

C 

D 

Next state 

w*w,=00 01 10 1 1  

@ @  6 4 

1 0 7  

0 3 8  

5 2 0 0  



(a) Transition diagram 

D 5 , 8 G  538 C 

(b) Augmented transition diagram 

(c) Embedded transition diagram 

i Figure 9.56 Transition diagrams for Figure 9.55. 

1 

then be impossible to have the pairs ( B ,  C), (B, D), and ( C ,  D) within the Hamming 
distance of 1. The solution here is to in~ert  extra vertices in the transition paths, as shown in 
'lgure 9.566. Vertex E separates B from D. while vertices F and G break the paths (B .  C) 
and (C, D). The labels associated with the transitions are attached to both segments of a 
broken path. The resulting transition diagram can be embedded onto a three-dimensional 



cube as indicated in Figure 9.56c, where the black portion of the cube comprises the desired 
paths. Now the transition from B to D takes place via vertex E if w2 w 1 = 10 (label 7). TJ,, 
transition from C to B occurs via F if wzwl = 01 (label 3). The transition from c to 0 goes 
through G if wzwl = 11 (label 8), and the transition from D to C goes via G if w2w, = W) 

(label 5). Therefore, the flow table has to be modified as shown in Figure 9 . 5 7 ~ .  The three 
extra states are unstable because the circuit will not remain in these states for any valuation 

(a) Modified flow table 

Output 
2221 

00 

01 

10 

11  

- 1  

0 1 

1- 

Present 
State 

A 

B 

c 

D 

E 

F 

G 

(b) Excitation table 

Next state 

w ~ w l  = 00 01 10 1 1  

@ @  C B 

A E  

@ F O G  
G A 

- - D - 

- B -  - 

C - - D  

Figure 9.57 Modified tables for Example 9.1 4. 

Output 

z2z1 

00 

01 

10 

1 1  

-1 

01 

1-  

Present 

state 

Y3Y2Y1 

000 

00 1 

loo 

010 

01 1 

101 

110 

Next state 

wZwl = oo 01 10 1 1  

y3 y2 y1 

@ @ 1, ,l 

000 @ 011 @ 
@ 101 @ 110 

110 MX) @ @ 
- - 010 - 

- 001 - - 

100 - - 010 



the inputs. The circuit will merely pass through these states in the process of changing 
from one stable state to another. Observe that each of the states E, F, and G is needed 
I, facilitate the transitions caused by only one or two valuations of inputs. Thus it is not 

to specify the actions that might be caused by other input valuations, because 
situations will never occur in a properly functioning circuit. 

The outputs in Figure 9.57a can be specified using the Mealy model. It is essential 
,hat a proper output is generated when passing through unstable states, to avoid undesirable 

in the output signals. 
~f we assign the state variables as shown on the right of Figure 9.56c, the modified flow 

tab]e leads to the excitation table in Figure 9.57b. From this table, deriving the next-state 
and output expressions is a straightforward task. 

- 

USING PAIRS OF EQUIVALENT STATES Another approach is to increase the flexibility in Exar 
state assignment by introducing an equivalent new state for each existing state. Thus state 
A be replaced with two states A l and A2 such that the final circuit produces the same 
outputs forA 1 andA2 as it would for A.  Similarly, other states can be replaced by equivalent 
pairs of states. Figure 9.58 shows how a three-dimensional cube can be used to find a good 
state assignment for a four-row flow table. The four equivalent pairs are arranged so that the 
minimum Hamming distance of 1 exists between all pairs. For example, the pair (Bl,  32)  
has the Hamming distance of 1 with respect to A I (or A2) ,  C2, and 0 2 .  

The transition diagram in Figure 9.56a can be embedded onto the three-dimensional 
cube as shown in Figure 9.58. Since there is a choice of two vertices on the cube for each 
vertex in the transition diagram in Figure 9.56a, the embedded transition diagram does 
not involve any diagonal paths. Using this assignment of states, the flow table in Figure 
9.55~ has to be modified as presented in Figure 9 .59~ .  The entries in the table are made 
to allow each transition in the original flow table to be realized using a transition between 
the corresponding pairs of equivalent states. Both states in an equivalent pair are stable 
for the input valuations for which the original state is stable. Thus A1 and A2 are stable if 
W?WI = 00 or 01. B1 and 8 2  are stable if w2wl = 01 or 11, and so on. At any given time 
the FSM may be in either of the two equivalent states that represent an original state. Then 

Figure 9.58 Embedded transition diagram i f  two nodes per row 
are used. 



(a) Modified flow table 

Present 

Output 
Z 2 Z l  

00 

00 

01 

01 

10 

I1 

11 

1 1  

Present 
state 

A1 

A2 

B1 

B2 

C1 

C2 

D l  

D2 

(b) Excitation table 

Next state 

w 2 w 1 = 0 0  01 10 11 

@ @ C l  B l  

@) @ A1 B2 

A1 @ B2 @ 
A 2 @ D 2 @  

@ C2 @) D l  

@ B1 @ D2 

C1 A @ @ 
C2 Dl @ @  

Figure 9.59 Modified Row and excitation tables for ~ x a r n ~ l e  9.1 5. 



,change to another state must be possible from either of these states. For example, Figure 
9 55a specifies that the FSM must change from the stable state A to state B if the input is 
.,,, = 1 I .  The equivalent transition in the modified flow table is the change from state 
A ]  to R I  or from state A2 to B2. If the FSM is stable in A and the input changes from 00 

10, then a change to C is required. The equivalent transition in the modified flow table 
is from state A 1 to C1; if the FSM happens to be in state A2, it will first have to change to 
A ] .  The remaining entries in Figure 9.59a are derived using the same reasoning. 

The outputs are specified using the Moore model, because the only unstable states are 
those involved in changing from one member of the equivalent pair to another, and both 
members generate the same outputs. For instance, in the previously described transition 
from A to C ,  if the starting point is A2, it is necessary to go first to A I and then to C1. Even 
though A 1 is unstable for kt77W1 = 10, there is no problem because its output is the same as 
that of A2. Therefore, if the original flow table is defined using the Moore model, then the 
modified flow table can also be done using the Moore model. 

Using the assignment of the state variables in Figure 9.58 gives the excitation table in 
Figure 9.59b. 

The previously described schemes based on embedding the flow table in a cube may lead 
to an optimal state assignment, but they require a trial-and-error approach that becomes 
awkward for large machines. A straightforward, but more expensive, alternative is to use 
one-hot codes. If each row in the Aow table of an FSM is assigned a one-hot code, then 
race-free state transitions can be achieved by passing through unstable states that are at a 
Hamming distance of 1 from the two stable states involved in the transition. For example, 
suppose that state A is assigned the code 000 1 and state B the code 0010. Then a race-free 
transition from A to B can pass through an unstable state 00 11. Similarly, if C is assigned 
the code 0100, then a transition from A to C can be done via the unstable state 010 1 .  

Using this approach, the flow table in Figure 9.55a can be modified as illustrated in 
Figure 9.60. The four states, A, B ,  C, and D, are assigned one-hot codes. As seen in the 
figure, i t  is necessary to introduce six unstable states, E through J ,  to handle the necessary 
transitions. These unstable states have to be specified only for the specific transitions, 
whereas for other input valuations they may be treated as don't cares. 

The outputs can be specified using the Moore model. In some cases it does not matter 
when a particular output signal changes its value. For instance, state E is used to facilitate 
the transition from state A to C. Since z2zl = 00 in A and 10 in C, it is not important if z 2  

changes when passing through state E. 
While straightforward to implement, the one-hot encoding is expensive because it 

n state variables to implement an n-row flow table. Simplicity of design and the 
of implementation often provide a challenging trade-off in designing logic circuits! 



Figure 9.60 State assignment with one-hot encoding. 

In asynchronous sequential circuits it is important that undesirable glitches on signals should 
not occur. The designer must be aware of the possible sources of glitches and ensure that 
the transitions in a circuit will be glitch free. The glitches caused by the structure of a given 
circuit and propagation delays in the circuit are referred to as hazards. Two types of hazards 
are illustrated in Figure 9.61. 

A static hazard exists if a signal is supposed to remain at a particular logic value when 
an input variable changes its value, but instead the signal undergoes a momentary change 

Output 
2221 

00 

01 

10 

11 

-0 

0- 

-1 

0 1 

1- 

00 

(a) Static hazard 

Next state 

w2w,  = 00 01 10 11 

@ @  E F 

F G  

@ H @ I  

I J @ @  
C - - - 

A - - B 

D - - - 

- B - -  

C - - D 

- A - -  

State 
assignment 

0001 

0010 

0100 

1000 

0101 

001 1 

1010 

01 10 

1100 

1001 

(b) Dynamic hazard 

Present 
State 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

Figure 9.61 ~efinition of hazards. 



ill its required value. As shown in Figure 9.610, one type of static hazard is when the signal 
level 1 is supposed to remain at 1 but dips to 0 for a short time. Another type is when the 

iignal is supposed to remain at level 0 but rises momentarily to 1, thus producing a glitch. 
A different type of hazard may occur when a signal is supposed to change from I to 0 

or from 0 to 1.  If such a change involves a short oscillation before the signal settles into its 
,lew level, as illustrated in Figure 9.61b, then a dynamic hazard is said to exist. 

Figure 9.62~1 shows a circuit with a static hazard. Suppose that the circuit is in the state 
where xl = xz = x3 = 1, in which case f = 1. Now let xl change from 1 to 0, Then the 
circuit is supposed to maintain f = 1. But consider what happens when the propagation 
dela}s through the gates are taken into account. The change in xl will probably be observed 
at point p before it will be seen at point (I because the path from xl  to q has an extra gate 
(NOT) in it. Thus the signal at p will become 0 before the signal at q becomes equal to 1,  
For a short time both p and q will be 0, causing f to drop to 0 before it recovers back to 1. 
This gives rise to the signal depicted on the left side of Figure 9.61 a. 

The glitch on f can be prevented as follows. The circuit implements the function 

The corresponding Karnaugh map is given in Figure 9.62b. The two product terms realize 
the prime implicants encircled in black. The hazard explained above occurs when there is 
a transition from the prime implicant ~ 1 x 2  to the prime implicant Flx3. The hazard can be 
eliminated by including the third prime implicant, encircled in blue. (This is the consensus 
term, defined in Property 17a in section 2.5.) Then the function would be implemented as 

Now the change in xl from 1 to 0 would have no effect on the output f because the product 
term x2x3 would be equaI to 1 if x2 = x3 = 1, regardless of the value of XI. The resulting 
hazard-free circuit is depicted in Figure 9 . 62~ .  

A potential hazard exists wherever two adjacent 1s in a Karnaugh map are not covered 
by a single product term. Therefore, a technique for removing hazards is to find a cover 
ln which some product term includes each pair of adjacent 1s. Then, since a change in an 
1nPUt variable causes a transition between two adjacent Is, no glitch can occur because both 
1s are included in a product term. 

In asynchronous sequential circuits a hazard can cause the circuit to change to an 
incorrect stable state. Example 9.16 illustrates this situation. 

- - -- 

In Example 9.2 we analyzed the circuit that realizes a master-slave D flip-flop. From the Ex. 
excitation table in Figure 9.6a, one could attempt to synthesize a minimum-cost circuit that 
realizes the required functions, Y, and Y,. This would give 



(a) Circuit with a hazard 4 

(b) Karnaugh map 

(c) Hazard-free circuit 

Figure 9.62 An example of a static-hazard. 

The corresponding circuit is presented in Figure 9 . 6 3 ~ .  At first glance this circuit may seem 
more attractive than the Rip-flops discussed in Chapter 7 because it is less expensive The 
problem is that the circuit contains a static hazard. 



(a) Minimum-cost circuit 

(b) Karnaugh maps for Y, and Y, in Figure 9.6a 

(c) Hazard-free circuit 

Figure 9.63 Two-level implementation of master-slave D Rip-flop. 



Figure 9.63b shows the Karnaugh maps for the functions Y,  and Y,. The minimum.cost 
implementation is based on the prime implicants encircled in black. TO see how this circuit 
is affected by static hazards, assume that presently Ys = I and C = D = 1. The circuit 
generates Y,, = 1. Now let C change from 1 to 0. For the flip-flop to behave propedy 
ys must remain equal to I .  In Figure 9.63~1, when C changes to 0, both p and r becom; 
1. Due to the delay through the NOT gate, q may still be 1. causing the circuit to generate 
y, = Ys = 0. The feedback from Y,,, will maintain q = 1. Hence the circuit remains in an 
incorrect stable state with Y, = 0. 

To avoid the hazards, it is necessary to also include the terms encircled in blue, which 
gives rise to the expressions 

The resulting circuit, implemented with NAND gates, is shown in Figure 9 .63~.  
Note that we can obtain another NAND-gate implementation by rewriting the expres- 

sions for Y,,, and Ys as 

These expressions correspond exactly to the circuit in Figure 7.13. 

- p- 

17 From the previous examples, it seems that static hazards can be avoided by including all 
prime implicants in a sum-of-products circuit that realizes a given function. This is indeed 
true. But it is not always necessary to include all prime irnplicants. It is only necessary 
to include product terms that cover the adjacent pairs of 1s. There is no need to cover the 
don't-care vertices. 

Consider the function in Figure 9.64. Ahazard-free circuit that implements this function 
should include the encircled terms, which gives 

The prime irnplicant is not needed to prevent hazards, because it would account only 
for the two 1 s in the left-most column. These 1 s are already covered by i l x3 .  

- - 

18 static hazards can also occur in other types of circuits. Figure 9.65~1 depicts a product-of- 
sums circuit that contains a hazard. If xl = r, = 0 and x2 changes from 0 to I ,  henf  
should remain at 0. However, if the signal at p changes earlier than the signal at q, thenp 
and q will both be equal to 1 for a short time, causing a glitch 0 -+ 1 -+ 0 on f . 

In a POS circuit, it is the transitions between adjacent 0s that may lead to hazards Thus 
a of to design a hazard-free circuit, it is necessary to include sum terms that cover all pairs 



Figure 9.64 Function for Example 9.1 7 

adjacent 0s. In this example the term in blue in the Karnaugh map must be included, giving 

f = ( ~ 1  + ~ 2 ) @ 2  + X ~ ) ( J C I  +x3) 

The circuit is shown in Figure 9.65~. 

A dynamic hazard causes glitches on 0 + 1 or 1 + 0 transitions of an output signal. 
An example is given in Figure 9.66. Assuming that all NAND gates have equal delays, a 
timing diagram can be constructed as shown. The time elapsed between two vertical lines 
corresponds to a gate delay. The output f exhibits a glitch that should be avoided. 

It is interesting to consider the function implemented by this circuit, which is 

This is the minimum-cost sum-of-products expression for the function. If implemented in 
this form, the circuit would not have either a static or a dynamic hazard. 

A dynamic hazard is caused by the structure of the circuit, where there exist multiple 
Paths for a given signal change to propagate along. If the output signal changes its value 
three times, 0 + 1 -+ 0 -+ 1 in the example, then there must be at least three paths along 
which a change from a primary input can propagate. A circuit that has a dynamic hazard 
must also have a static hazard in some part of it. As seen in Figure 9.66b, there is a static 
hazard involving the signal on wire b. 

Dynamic hazards are encountered in multilevel circuits obtained using factoring or 
techniques, which were discussed in Chapter 4. Such hazards are neither 

to detect nor easy to deal with. The designer can avoid dynamic hazards simply by 
two-level circuits and ensuring that there are no static hazards. 



(a) Circuit with a hazard 

(b) Karnaugh map 

(c) Hazard-free circuit 

Figure 9.65 Static hazard in a POS circuit. 

A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect 
state and possibly become stable in that state. Therefore, the circuitry that generates the 
next-State variables must be hazard free. It is sufficient to eliminate hazards due to changes 
in the value of a single variable because the basic premise in an asynchronous sequential 



(a) Circuit 

(b) Timing diagram 

Figure 9.66 Circuit with a dynamic hazard. 

circuit is that the values of both the primary inputs and the state variables must change one 
at a time. 

In combinational circuits, discussed in Chapters 4 through 6, we did not worry about 
hazards, because the output of a circuit depends solely on the values of the inputs. In 

sequential circuits the input signals must be stable within the setup and hold 
times of flip-flops. It does not matter whether glitches occur outside the setup and hold 
times with respect to the clock signal. 



In the previous sections we examined the various design aspects of asynchronous sequential 
circuits. In this section we give a complete design example, which covers all necessary 
steps. 

The control mechanism of a vending machine is a good vehicle for illustrating a possible 
application of a digital circuit. We used it in the synchronous environment in Chapter 8. A 
small example of a vending machine served as an object of analysis in section 9.2. Now we 
will consider a vending-machine controller similar to the one in Example 8.6 to see how 
it can be implemented using an asynchronous sequential circuit. The specification for the 
controller is: 

It accepts nickels and dimes. 

A total of 15 cents is needed to release the candy from the machine. 

No change is given if 20 cents is deposited. 

Coins are deposited one at a time. The coin-sensing mechanism generates signals 
N = 1 and D = 1 when i t  sees a nickel or a dime, respectively. It is impossible to have 
N = D = 1 at the same time. Following the insertion of a coin for which the sum equals 
or exceeds 15 cents, the machine releases the candy and resets to the initial state. 

Figure 9.67 shows a state diagram for the required FSM. It is derived using a straight- 
forward approach in which all possible sequences of depositing nickels and dimes are 
enumerated in a treelike structure. To keep the diagram uncluttered, the labels D and N 
denote the input conditions DN = 10 and DN = 01, respectively. The condition DN = 00 
is labeled simply as 0. The candy is released in states E ,  H, and K, which are reached after 
15 cents has been deposited, and in states I and L, upon a deposit of 20 cents. 

The corresponding flow table is given in Figure 9.68. It can be reduced using the 
partitioning procedure as follows 

Using G to represent the equivalent states G and J,  F to represent F, I, and L, and H to 
represent H and K yields a partially reduced flow table in Figure 9.69. The merger diagram 
for this table is presented in Figure 9.70. It indicates that states C and E can be merged, as 
well as F and H. Thus the reduced flow table is obtained as shown in Figure 9 .71~ .  The 
same information is depicted in the form of a state diagram in Figure 9.72. 

Next a suitable state assignment must be found. The flow table is relabeled in Figure 
9.716 to associate a unique number with each stable state. Then the transition diagram 
in Figure 9 . 7 3 ~  is obtained. Since we wish to try to embed the diagram onto a three- 
dimensional cube, eight vertices are shown in the figure. The diagram shows two diagonal 



Figure 9.67 Initial state diagram for the vending-machine controller. 

transitions. The transition between D and G (label 7) does not matter, because it is only an 
alternative path. The transition from A to C (label 4) is required, and it can be realized via 
unused states as indicated in blue in Figure 9.730. Therefore, the transition diagram can be 
embedded onto a three-dimensional cube as shown. Using the state assignment from this 
figure, the excitation table in Figure 9.74 is derived. 

The Karnaugh maps for the next-state functions are given in Figure 9.75. From these 
maps the following hazard-free expressions are obtained 



c H A P E R 9 ASYNCHRONOUS SEQUENTIAL CIRCUITS 

Figure 9.68 Initial flow table for the vending-machine controller. 

Output 
z 

0 

0  

0 

0 

0 

1 

0 

1 

I 

Present 
state 

A 

B 

C 

D 

E 

F 

G 

H 

I 

Figure 9.69 First step in state minimization. 

Next state 

D N = 0 0  01 10 1 1  

@ B  C - 

- 

J - 0 -  
@ E  F - 

G O -  - 

A @ -  

O H  I - 

A @ -  - 

A - 0 -  

All product terms in these expressions are needed for a minimum-cost POS implementation 
except for y~ y2, which is included to prevent hazards in the expression for YI . The output 
expression is 

- - 
= YlY2Y3 

Output 
z 

0 

0 

0 

0 

0 

1 

o 
1 

Present 
state 

A 

B 

C 

D 

E 

F 

G 

H 

Next state 

D N = W  01 10 11 

@ B  C - 

D m -  - 

- 0 -  
B E  F - 

G O -  - 

A @ -  

@ H  F - 

A @ - - 



Figure 9.70 Merger diagram for Figure 9.69. 

(a) Minimized flow table 

Present 
State 

A 

B 

c 
D 

F 

G 

(b) Relabeled flow table 

Figure 9.71 Reduced flow tables. 

Next state 

DN = 00 01 10 1 1  

@ B  C - 

D @ -  - 

G O @ -  
C F - 

A @ @  - 

@ F  F - 

Present 
State 

A 

B 

C 

D 

F 

G 

Output 
z 

0 

o 
o 
0 

1 

0 

Next state 

D N = 0 0  01 10 1 1  

0 2  4 - 

5 0 -  - 

8 @ @  
0 3  7 - 

1 @ @  - 
@ 6  7 - 

Output 
z 

0 

0 

0 

0 

1 

0 



Figure 9.72 State diagram for the vending-machine controller. 

(a) Transition diagram (b) Embedded on the cube 

Figure 9.73 Determination of the state assignment. 



Figure 9.74 Excitation table based on the state assignment in 
Figure 9.738. 

-**--- - 

Asynchronous sequential circuits are more difficult to design than the synchronous sequen- 
tial circuits. The difficulties with race conditions present a problem that must be handled 
carefully. At the present time there is little CAD support for designing asynchronous cir- 
cuits. For these reasons, most designers resort to synchronous sequential circuits in practical 
applications. 

An important advantage of asynchronous circuits is their speed of operation. Since 
there is no clock involved, the speed of operation depends only on the propagation delays 
in the circuit. In an asynchronous system that comprises several circuits, some circuits may 
operate faster than others, thus potentially improving the overall performance of the system. 
In contrast, in synchronous systems the clock period has to be long enough to accommodate 
the slowest circuit, and it has a large effect on the performance. 

Asynchronous circuit techniques are also useful in designing systems that consist of 
two or more synchronous circuits that operate under the control of different clocks. The 
Signals exchanged between such circuits often appear to be asynchronous in nature. 

From the reader's point of view, it is useful to view asynchronous circuits as an excellent 
vehicle for gaining a deeper understanding of the operation of digital circuits in general. 
These circuits illustrate the consequences of propagation delays and race conditions that 

be inherent in the structure of a circuit. They also illustrate the concept of stability, 
demonstrated through the existence of stable and unstable states. For further discussion of 
asYnchronous sequential circuits, the reader may consult references [l-61. 

647 
-- 

Output 

z 

0 

0 

0 

0 

1 

0 

0 

0 

Present 
state 

Y3Y24'1 

000 

010 

1 1  1 

01 1 

00 1 

101 

100 

110 

Next state 

D N  = 00 01 10 1 1  

y3 y2 y1 

@ 010 1, - 

011 @ - 

101 @ @ - 

@ 1 1 1  001 - 

000 @ @ - 

@ 001 001 - 

- - 110 - 

- 1 1 1  - - 



Y3 = 0 

(a) Map for YI 

Y3 = 0 Y3 = 1 

(b) Map for Y2 

1 

(c) Map for Y3 

Figure 9.75 Karnaugh maps for the functions in Figure 9.74. 

1 1  

1 

d d d  

d d d l  

d 

I d 1  

1 



Figure 9.76 Circuit for Example 9.19. 

This section presents some typical problems that the reader may encounter, and shows how 
such problems can be solved. 

Problem: Derive a flow table that describes the behavior of the circuit in Figure 9.76. Exc 

Solution: Modelling the propagation delay in the gates of the circuit as shown in Figure 
9.8. the circuit in Figure 9.76 can be described by the following next-state and output 
expressions 

These expressions lead to the excitation table in Figure 9.77a. Assuming the state assign- 
ment A = 00, B = 0 1, C = 10, and D = 11, yields the flow table in Figure 9.77b. 



(a) Excitation table 

Next state 

Output 

z 

0 

0 

1 

1 

Present 
state 

Y2Y1 

00 

0 1 

1 0  

1 1  

(b) Flow table implemented by the circuit 

Next state 

w ~ w l  = 00 0 1 1 0  1 1  

Y2 YI Y2 Y1 Y2Yl y2 Y1 

@ 01 1 0  10 

1 1  @ 1 0  10 

00 1 1  @ @  

(c) Final flow table 

Figure 9.77 Excitation and flow tables for the circuit in Figure 9.76. 

Output 
z 

0 

0 

1 

1 

Present 

A 

B 

C 

D 

Next state 

w2wl = 00 01 1 0  1 1  

@ E l  C C 

D -  C 

A D @ @  
C 



Since in a given stable state, inputs to the circuit can only change one at a time, some 
in the flow table may be designated as unspecified. Such is the case when the 

circuit is stable in state B and input values are wzw, = 01. Now, both inputs cannot 
simultaneously, which means that the corresponding entry in the flow table should 

be designated as unspecified. However, a different situation arises when the circuit is stable 
in state A and input values are w2wl = 00. In this case, we cannot indicate the transition 
in column W ~ W I  = 11 as unspecified. The reason is that if the circuit is in stable state 3, 
it has to be able to change to state C when wz changes from 0 to 1. States B and C are 
implemented as y2y1 = 01 and y2yl = 10, respectively. Since both state variables must 
change their values, the route from 01 to LO will take place either via 11 or 00. depending on 
the delays in different paths in the circuit. If y2 changes first, the circuit will pass through 
unstable state D and then settle in the stable state C.  But, if wl changes first, the circuit 
has to pass through unstable state A before reaching state C. Hence, the transition to state 
c in the first row must be specified. This is an example of a safe race, where the circuit 
reaches the correct destination state regardless of propagation delays in different paths of 
the circuit. The final flow table is presented in Figure 9.77~.  

- 

Problem: Are there any hazards in the circuit in Figure 9.76? 

Solution: Figure 9.78 gives Karnaugh maps for the next-state expressions derived in Ex- 
ample 9.19. As seen from the maps, all prime implicants are included in the expression for 
Y1. But, the expression for Y2 includes only three of the four available prime implicants. 
There is a static hazard when ~ 2 ~ 2 ~ 1  = 01 1 and 1.tl1 changes from 0 to 1 (or 1 to 0). This 
hazard can be removed by adding the fourth prime implicant, y1y2, to the expression for Y2. 

Figure 9.78 Karnaugh maps for the circuit in Figure 9.76. 



Figure 9.79 Waveforms for Example 9.21. 

9.2 1 Problem: A circuit has an input w and an output z.  A sequence of pulses is applied on input 
w. The output has to replicate every second pulse, as illustrated in Figure 9.79. Design a 
suitable circuit. 

Solution: Figure 9.80 shows a possible state diagram and the corresponding flow table. 
Compare this with the FSM defined in Example 9.4 in Figure 9.13, which specifies a serial 
parity generator. The only difference is in the output signal. In our case, z = 1 only in 
state B. Therefore, the next-state expressions are the same as in Example 9.4. The output 
expression is 

(a) State diagram 

(b) Flow table 

Figure 9.80 State diagram and flow table for ~ x a r n ~ l e  9.21. 
& 

output 
Z 

o 

0 

Present 
State 

B 

D 

Next state 

, = 0 , = 1 

A B  

C @ l  

C O D  

A 0  



Figure 9.81 Flow table for Example 9.22. 

Problem: Consider the flow table in Figure 9.8 1 .  Reduce this flow table and find a state Ex1 
assignment that allows this FSM to be realized as simply as possible, preserving the Moore 
model. Derive an excitation table. 

Output 
7 .. 
0 

1 

o 
1 

0 

0 

0 

1 

Present 
State 

A 

B 

c 
D 

E 

F 

G 

H 

Solution: Using the partioning procedure on the flow table in Figure 9.8 1 gives 

Next state 

w2w1=00 01 10 I 1  

E C - 
- E H  

G @ F  

A -  B 

G O -  B 

- D C @  

B E  C - 

A @ B  

CornbiningA and G produces the flow table in Figure 9.82+ A merger diagram for this table 
is shown in Figure 9.83. Merging the states (A, E), (C, F), and (D, H) leads to the reduced 
flow table in Figure 9.84. To find a good state assignment, we relabel this flow table as 
indicated in Figure 9.85, and construct the transition diagram in Figure 9 .86~.  The only 
problem in this diagram is the transition from state D to state A, labeled as 1 .  Achange from 
D to A can be made via state C if we specify so in the flow table. Then, a direct transition 
from D to A is not neededdas depicted in Figure 9.86b. The resulting flow table and the 
corresponding excitation table are shown in Figure 9.87. 

Problem: Derive a hazard-free minimum-cost SOP implementation for the function Exc 

Solution: The Karnaugh map for the function is given in Figure 9.88. From it, the required 
is derived as 

The first three product terms cover all 1s in the map. The fourth term is needed to avoid 
having a hazard when ~ 2 - x ~ -  = 00 1 1 and xl changes from 0 to 1 (or 1 to 0). Thus, each 

- - - 

Palr of adjacent 1 s is covered by some prime irnplicant in the expression. 



Figure 9.82 Reduction after the partitioning procedure. 

Figure 9.83 Merger diagram for the flow table in Figure 9.82. 

Output 
2 

0 

1 

o 
1 

0 

0 

1 

Present 
state 

A  

B 

c 
D 

E 

F 

H 

Next state 

w2w1 = 00 01 10 11 

@ E  C - 

- E  H @  

A - @ F  

A @ -  B 

A @ -  B 

- D  C @  

- @ B  

Figure 9.84 Reduced Row table for the FSM in Figure 9.82. 

Output 
z 

0 

1 

0 

1 

Present 
state 

A 

B 

C 

D 

Next state 

WZWl  = 00 01 10 11 

@ @  C B 
- A D  

A D @ @  
A @ @ B  



Figure 9.85 Relabeled flow table of Figure 9.84. 

(a) Initial transition diagram 

Output 
z 

0 

1 

0 

1 

Present 
State 

A 

B 

C 

D 

(b) Augmented transition diagram 

Next state 

W * W l  = 00 01 10 11 

@ @  4 3 

- 2 7 0  

1 6  @ @  
1 @ @ 3  

Figure 9.86 Transition diagrams for Figure 9.85. 



(a) Final flow table 

Output 
z 

0 

I 

0 

1 

Present 
State 

A 

B 

C 

D 

-- 

(b) Excitation table 

Figure 9.87 Excitation and flow tables for Example 9.22 

Next state 

w2w1 = 00 01 10 11 

@ @  C B 
A D @  

A D @ @  
C @ @ B  

Present 

state 

Y2Y l  

00 

0 1 

10 

11 

XS = 0 

Figure 9.88 Karnaugh map for Example 9.23. 

Next state 

w2wl = 00 01 10 1 1  

y2y1 y2 y1 y2y1 y2y1 

@ @ 10 01 

- 00 
11 @ 

00 11 @ @  
10 @ @ 01 

Output 

Z 

0 

1 

0 

1 



rers to problems marked by an asterisk are given at the back of the book. 

*9,1 Derive a flow table that describes the behavior of the circuit in Figure P9.1. Compare your 
solution with the tables in Figure 9.21. Is there any similarity? 

9.2 Consider the circuit in Figure P9.2. Draw the waveforms for the signals C ,  z l ,  and zz. 
Assume that C is a square-wave clock signal and that each gate has a propagation delay 
A. Express the behavior of the circuit in the form of a flow table that would produce the 
desired signals. (Hint: use the Mealy model.) 

9.3 Derive the minimal flow table that specifies the same functional behavior as the flow table 
in Figure P9.3. 

9.4 Derive the minimal Moore-type flow table that specifies the same functional behavior as 
the flow table in Figure P9.4. 

Figure P9.1 Circuit for problem 9.1 . 

Figure P9.2 Circuit for problem 9.2. 



\ 

Figure P9.3 Flow table for problem 9.3. 

Present 
State 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 
--.. 

0 

P 

R 

S 

T 

U 

V 

9.5 Find a suitable state assignment using as few states as possible and derive the next-state 
and output expressions for the flow table in Figure 9.42. 

9.6 Find a suitable state assignment for the flow table in Figure 9.42, using pairs of equivalent 
states, as explained in Example 9.15. Derive the next-state and output expressions. 

Next state 

w * w , = 0 0  01 10 1 1  

@ B  C - 

D O -  - 
- 0 -  

E F - 

G O -  - 

M @ -  

OH I - 

I @ -  - 

A - 0 -  
OK L - 

A @ -  - 

A @ -  

N 0 - 

A @ -  - 

- 0 -  
R S - 

0 -  - 

A @ -  

@ U  V - 

A @ -  - 

A @ -  

9.7 Find a state assignment for the flow table in Figure 9.42, using one-hot encoding. Derive 
the next-state and output expressions. 

* 9.8 Implement the FSM specified in Figure 9.39, using the merger diagram in Figure 9-40a. 

Output 
z 

0 

o 
0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

0 

1 
-. 

1 

0 

0 

1 

0 

1 

1 



Figure P9.4 Flow table for problem 9.4. 
- 

9.9 Find a suitable state assignment for the FSM defined by the flow table in Figure P9.5. 
Derive the next-state and output expressions for the FSM using this state assignment. 

Output 
z 

0 

0 

o 
1 

o 
0 

o 
1 

o 

Present 
state 

A  

3 

c 
D 

E 

F 

G 

H 

J 

*9.10 Find a hazard-free minimum-cost implementation of the function 

M G C @  

Next state 

w 2 w , = 0 0  01 10 11 

@ B  C - 

K -  H 

F - O M  
@ E  J  - 

A @ -  M 

@ L  J  - 

D O -  H 

- G J @  

F @ H  

Figure P9.5 Flow table for problem 9.9. 

Output 
Z 

0 

0 

o 
1 

0 

0 

1 

Present 
state 

A  

B 

c 
D 

E 

F 

G 

Next state 

w Z w l = 0 0  01 10 11 

@ B  C - 

@ -  G 

F O G  
@ E  C - 

A @ -  G  

B E  C - 

- B C @  



Repeat problem 9.10 for the function 

Find a hazard-free minimum-cost POS implementation of the function 

Repeat problem 9.12 for the function 

Consider the circuit in Figure P9.6. Does this circuit exhibit any hazards? 

Design an original circuit that exhibits a dynamic hazard. 

A control mechanism for a vending machine accepts nickels and dimes. It dispenses mer- 
chandise when 20 cents is deposited; it does not give change if 25 cents i s  deposited. 
Design the FSM that implements the required control, using as few states as possible. Find 
a suitable state assignment and derive the next-state and output expressions. 

Design an asynchronous circuit that meets the following specifications. The circuit has two 
inputs: a clock input c and a control input w. The output, z, replicates the clock pulses when 
w = 1; otherwise, z = 0. The pulses appearing on ,- must be full pulses. Consequently, if 
c = 1 when ~ . t *  changes from 0 to 1, then the circuit will not produce a partial pulse on :, 
but will wait until the next clock pulse to generate z = 1. If c = 1 when w changes from 
1 to 0, then a full pulse must be generated; that is, z = 1 as long as c = 1. Figure P9.7 
illustrates the desired operation. 

Repeat problem 9.17 but with the following change in the specification. While w = I ,  the 
output z should have only one pulse; if several pulses occur on c ,  only the first one should 
be reproduced on z .  

E -  

Figure P9.6 Circuit for poblern 9.14. 



Figure P9.7 Waveforms for problem 9.1 7. 

9.19 Example 9.6 describes a simple arbiter for two devices contending for a shared resource. 
Design a similar arbiter for three devices that use a shared resource. In case of simultaneous 
requests, namely, if one device has been granted access to the shared resource and before it 
releases its request the other two devices make requests of their own, let the priority of the 
devices be Device 1 > Device 2 > Device 3. 

9.20 In the discussion of Example 9.6, we mentioned a possible use of the mutual exclusion 
element (ME) to prevent both request inputs to the FSM being equal to 1 at the same time. 
Design an arbiter circuit for this case. 

9.21 In Example 9.21 we designed a circuit that replicates every second pulse on input w as a 
pulse on output z. Design a similar circuit that replicates every third pulse. 

9.22 In Example 9.22 we merged states D and H to implement the FSM in Figure 9.82. An 
alternative was to merge states B and H. according to the merger diagram in Figure 9.83. 
Derive an implementation using this choice. Derive the resulting excitation table. 

1. K, J. Breeding, Digital Design Fundanzentals, (Prentice-Hall: Englewood Cliffs, NJ, 
1989). 

2. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI. 
4th ed., (Wiley: New York, 1993). 

3. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit 
Analysis and Design, (Prentice-HalbEnglewood Cliffs, NJ, 19951, 

4. N. L. Pappas, Digital Design, (West: St. Paul, MN, 1994). 

5 .  C. H. Roth Jr., Fundamentals of b g i c  Design, 4th ed., (West: St. Paul, MN, 1993). 

6. C. J.  Myers, Asynchronous Circuit Design, (Wiley: New York, 2001). 





c h a p t e r  

In this chapter you will learn about aspects of digital systemdesign, including 

Enable inputs for flip-flops, registers, and shift registers 

Static random access memory (SRAM) blocks 

Several system design examples using ASM charts 

Clock synchronization 

Clock skew 

Flip-flop timing at the chip level 



In the previous chapters we showed how to design many types of simple circuits, such as multiplexers, 
decoders, flip-flops, registers, and counters, which can be used as building blocks. In this chapter we prov. 
examples of more complex circuits that can be constructed using the building blocks as subcircuits S lde - Uch 
larger circuits form a digital systerrz. We show both the design of the circuits for these systems, and how they 
can be described using VHDL code. For practical reasons our examples of digital systems will not be large 
but the design techniques presented are applicable to systems of any size. After presenting several examples. 
we will discuss some practical issues, such as how to ensure reliable clocking of flip-flops in individual and 
multiple chips, how to deal with input signals that are not synchronized to the clock signal, and the like, 

A digital system consists of two main parts, called the datapath circuit and the control circuit. ~h~ 
datapath circuit is used to store and manipulate data and to transfer data from one part of the system 
another. Datapath circuits comprise building blocks such as registers, shift registers, counters, multiplexers 
decoders, adders, and so on. The control circuit controls the operation of the datapath circuit. In Chapter 
we referred to the control circuits as finite state machines. 

We will give several examples of digital systems and show how to design their datapath 
and control circuits. The examples use a number of the building block circuits that were 
presented in earlier chapters. Some building blocks used in this chapter are described below. 

In many applications that use D flip-flops, it is useful to be able to prevent the data stored 
in the flip-flop from changing when an active clock edge occurs. We showed in Figure 
7.56 how this capability can be provided by adding a multiplexer to the flip-flop. Figure 
1 0 . 1 ~  depicts the circuit. When E = 0, the flip-flop output cannot change, because the 
multiplexer connects Q to D. But if E = 1, then the multiplexer connects the R input to D. 
Instead of using the multiplexer shown in the figure, another way to implement the enable 
feature is to use a two-input AND gate that drives the flip-flop's clock input. One input to 
the AND gate is the clock signal, and the other input is E .  Then setting E = 0 preveats 
the clock signal from reaching the flip-flop's clock input. This method seems simpler than 
the multiplexer approach, but we will show in section 10.3 that it can cause problems in 
practical operation. We will prefer the multiplexer-based approach over gating the clock 
with an AND gate in this chapter. 

VHDL code for a D flip-flop with an asynchronous reset input and an enable input IS 
given in Figure I O.lb. We can extend the enable capability to registers with n bits by using 
n 240- 1 multiplexers controlled by E. The multiplexer for each flip-flop, i, selects either 
the external data bit, Ri, or the flip-flop's output, Qi. VHDL code for an n-bit registerwi' 
an asynchronous reset input and an enable input is given in Figure 10.2. 



(a) Circuit 

LIBRARY ieee ; 
USE ieee.std-logic-1164.all ; 

ENTITY rege IS 
PORT ( R, Resetn, E, Clock :IN STD-LOGIC ; 

Q :BUFFER STD-LOGIC ) ; 
END rege ; 

ARCHITECTURE Behavior OF rege IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q <= '0' ; 

ELSIF Clock' EVENT AND Clock = ' 1 ' THEN 
IF E = ' I ' THEN 

Q < = R ;  
ELSE 

Q < = Q ;  
END IF ; 

END IF ; 
END PROCESS ; 

END Behavior ; 

(b) VHDL code 

Figure 10.1 A flip-flop with an enable input. 



LIBRARY ieee ; 
USE ieee.std-logic-ll64.all ; 

ENTITY regne IS 
GENERIC ( N : INTEGER := 4 ) ; 
PORT ( R : IN STDLOGIC-VECTOR(N- 1 DOWNTO 0) ; 

Resetn : STDLOGIC ; 
E, Clock : EN STDLOGIC ; 
Q : OUT STDLOGIC-VECTOR(N- 1 DOWNTO 0) ) ; 

END regne ; 

ARCHITECTURE Behavior OF regne IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q < = (OTHERS => '0') ; 

ELSIF Clock'EVENT AND Clock = '1' THEN 
IF E = '1 '  THEN 

Q < = R ;  
END IF ; 

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure 10.2 VHDL code for an n-bit register with an enable input. 

10.1.2 SHIFT REGISTERS WITH ENABLE INPUTS 

It is useful to be able to inhibit the shifting operation in a shift register by using an enable 
input, E. We showed in Figure 7.19 that shift registers can be constructed with a parallel- 
load capability, which is implemented using a multiplexer. Figure 10.3 shows how the 
enable feature can be added by using an additional multiplexer. If the parallel-load control 
input, L, is 1, the flip-flops are loaded in parallel. But if L = 0, the additional multiplexer 
selects new data to be loaded into the flip-flops only if the enable E is 1. 

VHDL code that represents a right-to-left shifting version of the circuit in Figure 1 0 a 3  
is given in Figure 10.4. When L = 1, the register is loaded in parallel from the R input. 
When L = 0 and E = 1, the data in the shift register is shifted in a right-to-left direction. 

VHDL Components 
For the examples presented later in this chapter, several VHDL components will be 

used as subcircuits. For convenience, the component declarations for these subcircuit5 
are defined in the VHDL package named components, shown in Figure 10.5. The code 
for the regne entity is defined in Figure 10.2. The code for shiflne appears in Figure 



Figure 10.3 A shift register with parallel-load and enable 
control inputs. 



LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 

- - right-to-left shift register with parallel load and enable 
ENTITY shiftlne IS 

GENERIC ( N : INTEGER := 4 ) ; 
PORT( R : IN STDLOGIC-VECTOR(N - 1 DOWNTO 0) ; 

L, E, w : IN STD-LOGIC ; 
Clock : IN STDLOGIC ; 

Q : BUFFER STD-LOGIC-VECTOR(N - 1 DOWNTO 0) ; 
END shiftlne ; 

ARCHITECTURE Behavior OF shiftlne IS 
BEGIN 

PROCESS 
BEGIN 

WAIT UNTIL Clock'EVENT AND Clock = ' 1' ; 
IFL = ' I '  THEN 

Q < = R ;  
ELS IF E = ' 1 ' THEN 

Q(0) <= w ; 
Genbits: FOR i IN 1 TO N- 1 LOOP 

Q(i) < = Q(i - 1 )  ; 
END LOOP ; 

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure 10.4 Code for a right-to-left shift register with an enable input. 

The shifrrrle component represents an n-bit shift register with an enable input that shifts to 

the right. The code is shown in Figure 8.48. The code for the entities mrlr2to1, muxdfi 
and downcnt is given in Figures 6.27, 7.47, and 7.54, respectively. The upount  entity is 
the same as the one in Figure 7.53, with two differences. First, a GENERIC parameter is 
added, named modullr, which specifies that the count values are 0 to modulus-1. second, 
an enable input, E, is added that prevents the counter's outputs from changing when E = 0. 

10. I .3 STATIC RANDOM ACCESS MEMORY (SRAM) 

We have introduced several types of circuits that can be used to store data. Assume that 
we need to store a large number, m, of data items, each of which consists of n bits. One 
possibility is to use an n-bit register for each data item. We would need to design circuitq 
to control access to each register, both for loading (writing) data into it and for reading 
data out. 

668 



LIBRARY ieee ; 
USE ieee-std-logic-l164.A ; 

PACKAGE components IS 
- - 2-to-1 multiplexer 
COMPONENT mux2to 1 

PORT ( wO, wl : IN STDLOGIC ; 
s : IN STDLOGIC ; 
f : OUT STDLOGIC ); 

END COMPONENT ; 

- - D flip-flop with 2-to- I multiplexer connected to D 
COMPONENT muxdff 

PORT ( DO, Dl ,  Sel, E, Clock : IN STDLOGIC ; 
Q : OUT STDLOGIC ); 

END COMPONENT ; 

- - n-bit register with enable 
COMPONENT regne 

GENERIC ( N : INTEGER := 4 ) ; 
PORT ( R : IN STDLOGIC-VECTOR(N- 1 DOWNTO 0) ; 

Resetn : IN STDLOGIC ; 
E, Clock : IN STDLOGIC ; 
Q : OUT STDLOGIC-VECTOR(N- 1 DOWNTO 0) ) ; 

END COMPONENT ; 

- - n-bit right-to-left shift register with parallel load and enqble 
COMPONENT shiftlne 

GENERIC ( N : INTEGER := 4 ) ; 
PORT ( R : IN STDLOGIC-VECTOR(P~~ 1 DOWNTO O) ; 

L, E, w : IN STDLOGIC ; 
Clock : IN STDLOGIC ; 
Q : BUFFER STDLOGIC_VECTOR(N- 1 DOWNTO 0) ) ; 

END COMPONENT ; 

. . . continued in Part b 

Figure 10.5 Component declaration statements for budding blocks (Part a ] .  

When rn is large, it is awkward to use individual registers to store the data. A better 
approach is to make use of a static random access memory (SRAM) block. An SRAM block 
is a two-dimensional may of SRAM cells, where each cell can store one bit of information. 
If we need to store m items with n bits each, we can use an array of m x n SRAM cells. 
The dimensions of the SRAM array are called its aspect ratio. 

An SRAM cell is similar to the storage cell that was shown in Figure 7.3. Since an 
$RAM block may contain a large number of SRAM cells, each cell must take as little space 

669 



- - n-bit left-to-right shift register with parallel load and enable 
COMPONENT shiftrne 

GENERIC ( N : INTEGER := 4 ) : 
PORT ( R : IN STDLOGIC-VECTOR(N- 1 DOWNTO 0) ; 

L, E, w : IN STD-LOGIC ; 
Clock : IN STDLOGIC ; 
Q : BUFFER STD-LOGIC-VECTOR(N- 1 DOWNTO 0) ; 

END COMPONENT ; 

- - up-counter that counts from 0 to modulus - 1 
COMPONENT upcount 

GENERIC ( modulus : INTEGER := 8 ) ; 
PORT ( Resetn : IN STDLOGIC ; 
PORT ( Clock, E, L : IN STDLOGIC ; 

R : IN INTEGER RANGE 0 TO modulus - 1 ; 
Q : BUFFER INTEGER RANGE 0 TO modulus - 1 ) ; 

END COMPONENT ; 

- - down-counter that counts from modulus - 1 down to 0 
COMPONENT downcnt 

GENERIC ( modulus : INTEGER := 8 ) ; 
PORT (Clock, E, L : IN STDLOGIC ; 

Q : BUFFER INTEGER RANGE 0 TO modulus - 1 ) ; 
END COMPONENT ; 

END components ; 

Figure 10.5 Component declaration statements for building blocks (Part b). 

on an integrated circuit chip as possible. For this reason, the storage cell should use as 
few transistors as possible. One popular storage cell used in practice is depicted in Figure 
10.6. It operates as follows. To store data into the cell, the SeI input is set to 1, and the 
data value to be stored is placed on the Duta input. The SRAM cell may include a separate 
input for the complement of the data, indicated by the transistor shown in blue in the figure. 
For simplicity we assume that this transistor is not included in the cell. After waiting long 
enough for the data to propagate through the feedback path formed by the two NOT gates, 
Sel is changed to 0. The stored data then remains in the feedback loop indefinitely. A 
possible problem is that when Sel = 1, the value of Data may not be the same as the value 
being driven by the small NOT gate in the feedback path. Hence the transistor controlled by 
Sel may attempt to drive the stored data to one logic value while the output of the small NOT 
gate has the opposite logic value. To resolve this problem, the NOT gate in the feedback 
path is built using small (weak) transistors, so that its output can be overridden with new 
data. 

To read data stored in the cell, we simply set Set to 1. In this case the Data node would 
not be driven to any value by external circuitry, so that the SRAM cell can place the dored 



Sel 

I I - 
Data Data 

Figure 10.6 An SRAM cell. 

data on this node. The Data signal is passed through a buffer, not shown in the figure, and 
povided as an output of the SRAM block. 

An SRAM block contains an array of SRAM cells. Figure 10.7 shows an array with 
two rows of two cells each. In each column of the array, the Data nodes of the cells are 
connected together. Each row, i, has a separate select input, Seli, that is used to read or write 
the contents of the cells in that row. Larger arrays are formed by connecting more cells to 
$eli in each row and by adding more rows. The SRAM block must also contain circuitry 
that controls access to each row in the array. Figure 10.8 depicts a 2'" x n array of the type 
in Figure 10.7, which has a decoder that drives the Sel inputs in each row of the array. The 
inputs to the decoder are called Address inputs. This the notion that the 
location of a row in the array can be thought of as row. The decoder 

Figure 10.7 A 2 x 2 array of SRAM cells. 

Datal q a t a o  
\ 

1 
Selo 

I - " 

Sel, - 
I 

\ 

- 

1 



Data inputs { dn - I dn - 2  4 

Address 

Data outputs q n  - I q n  - 2  40 

Figure 10.8 A 2" x n SRAM block. 

- - 
a - 

has m Address inputs and produces 2'" select outputs. If the Write control input is 1, then 
the data bits on the inputs dn-1, . . . , do are stored in the cells of the row selected by the 
Address inputs. If the Read control input is 1, then the data stored in the row selected by 
the Address inputs appears on the outputs qn-l, . . . , q 0 .  In many practical applications the 
data inputs and data outputs are connected together, Thus the Wn'te and Read inputs must 
never have the value 1 at the same time. 

The design of memory blocks has been the subject of intensive research and develop- 
ment. We have described only the basic operation of one type of memory block. The reader 
can refer to books on computer organization for more information [ l ,  21. 

Read 4% r * * *  4 

8 u 
3 
4 
f 
9 
0 Y 

k 

Sell 

Sel, 

0 

* 
* 

S e 1 2 m  - 

4 . .  

* * *  

0 . 0  

. a .  



Some PLDs contain SRAM blocks that can be used as part of circuits implemented in the 
chips. One popular chip has a number of SRAM blocks, each of which contains 4096 SRAM 
cells. The SRAM blocks can be configured to provide different aspect ratios, depending on 
the needs of the design being implemented. Aspect ratios from 5 12 x 8 to 4096 x 1 can be 

using a single SRAM block, and multiple blocks can be combined to form larger 
arrays. To include SRAM blocks in a circuit, designers use prebuilt modules that 

are ~rovided in a library as part of the CAD tools, or they write VHDL code from which 
synthesis tools can infer memory blocks. 

We introduced algorithmic state machine (ASM) charts in section 8.10 and showed how 
they can be used to describe finite state machines. ASM charts can also be used to describe 
digital systems that include both datapath and control circuits. We will illustrate how the 
ASM charts can be used as an aid in designing digital systems by giving several examples. 

Suppose that we wish to count the number A, that have the value 1. 
Figure 10.9 shows pseudo-code for a algorithm, that can be 
used to perform the required task. It that can shift its 
contents in the left-to-right direction. The hnswer produced by the algorithm is stored in 
the variable named B. The algorithm termi when A does not contain any more Is, that 
is when A = 0. In each iteration of the if the least-significant bit (LSB) of A is 
1, then B is incremented by 1 ; A is shifted one bit to the right 
at the end of each loop iteration. 

Figure 10.10 gives an ASM chart that represents the algorithm in Figure 10.9. The state 
box for the starting state, S1, specifies that B is initialized to 0. We assume that an input 

B = O ;  
while A # 0 do 

if a* = 1 then 
B = B + l ;  

end if ; 
Right-shift A ; 

end while ; 

Figure 10.9 Pseudo-code for the bit counter. 



Reset 

Load A B t O  

A 

0 

Figure 10.1 0 ASM chart for the pseudo-code in Figure 10.9. 

signal, s, exists, which is used to indicate when the data to be processed has been loaded 
into A, so that the machine can start. The decision box labeled .Y stipulates that the machine 
remains in state S 1 as long as s = 0. The conditional output box with h a d A  written inside 
it indicates that A is loaded from external data inputs if s = 0 in state S 1. 

When s becomes 1, the machine changes to state S 2 .  The decision box below the state 
box for S2 checks whether A = 0. If so, the bit-counting operation is complete; hence the 
machine should change to state S3 .  If not, the FSM remains in state S2. The decision box 
at the bottom of the chart checks the value of ao. If a0 = I, B is incremented, which is 
indicated in the chart as B t B + 1. If a0 = 0, then B is not changed. In state S3. B 
contains the result, which is the number of bits in A that were 1. An output signal, Done. is 
set to 1 to indicate that the algorithm is finished; the FSM stays in S3 until s goes back to O. 



J~ 
8.10 we said that ASM charts are similar to traditional flowcharts, except that the 

ASM chart implies timing information. We can use the bit-counting example to illustrate 
this concept. Consider the ASM block for state S2, which is shaded in blue in Figure 10.10. 

a traditional flowchart. when state S2 is entered, the value of A would first be shifted to 
right. Then we would examine the value of A and ifA's LSB is 1, we would immediately 

add 1 to B. But, since the ASM chart represents a sequential circuit, changes in A and B, 
which represent the outputs of flip-flops, take place after the active clock edge. The same 

signal that controls changes in the state of the machine also controls changes in A 
and B. Hence in state S2, the decision box that tests whether A = 0, as well as the box 
that checks the value of a*, check the bits in A before they are shifted. If A = 0, then the 
FSM will change to state S3 on the next clock edge (this clock edge also shifts A, which 
has no effect because A is already 0 in this case.) On the other hand, if A # 0, then the 
FSM does not change to S3, but remains in S2. At the same time, A is still shifted, and B 
is incremented if a0 has the value 1. These timing issues are illustrated in Figure 10.14, 
which represents a simulation result for a circuit that implements the ASM chart. We show 
how the circuit is designed in the following discussion. 

Datapath Circuit 
By examining the ASM chart for the bit-counting circuit, we can infer the type of circuit 

elements needed to implement its datapath. We need a shift register that shifts left-to-right 
to implement A. It must have the parallel-load capability because of the conditional output 
box in state S1 that loads data into the w t e r .  An enable input is also required because 
shifting should occur only in for 3, and it needs a parallel-load 
capability to initialize the to rely on the counter's reset 
input to clear B to 0 in used in a digital system for 
only two purposes: to applied, or to recover from 
an error. The machine of s = 0; hence we should 
not assume that the 

The datapath circuit is depicted in Figure 10.1 1. The serial input to the shift register, w, 
is connected to 0, because it is not needed. The load and enable inputs on the shift register 
are driven by the signals LA and EA. The parallel input to the shift register is named Data, 
and its parallel output is A. An n-input NOR gate is used to test whetherA = 0. The output 
of this gate, 2, is 1 when A = 0. Note that the figure indicates the n-input NOR gate by 
showing a single input connection to the gate, with the label n attached to it. The counter 
has log2(n) bits, with parallel inputs connected to 0 and parallel outputs named 8. It also 
has a parallel load input LB and enable input EB control signals. 

Control Circuit 
For convenience we can draw a second ASM chart that represents only the FSM needed 

for the control circuit, a s  shown in Figure 10.12. The FSM has the inputs s, ao, and z and 
generates the outputs EA, LB, EB, and Done. In state S 1, LB is asserted, so that 0 is  loaded 
In Paallel into the counter. Note that for the control signals, like LB, instead of writing LB - - 1, we simply write LB to indicate that the signal is asserted. We assume that external 
Circuitry drives LA to 1 when valid data is present at the parallel inputs of the shift register, 



Data 

0 

LA 

EA 
Clock 

Figure 10.1 1 Datapath for the ASM chart in Figure 10.10. 

,/ n 
I 

so that the shift register contents are initialized before s changes to I .  In state S2,  EA is 
asserted to cause a shift operation, and the count enable for B is asserted only if a0 = 1. 

d0  l*g2n 

VHDL Code 
The bit-counting circuit can be described in VHDL code as shown in Figure 20.13. We 

have chosen to define A as an eight-bit STD-LOGIC-VECTOR signal and B as an integer 
signal. The ASM chart in Figure 10.12 can be directly translated into code that describes 
the required control circuit. The signal named y is used to represent the state flip-flops, and 
the process labeled FSM-trurzsitions, at the top of the architecture body, specifies the state 
transitions. The process labeled FSM-outputs specifies the generated outputs in each state. 
A default value is specified at the beginning of this process for all output signals, and then 
individual output values are specified in the case statement. 

The process labeled upcount defines the up-counter that implements B. The shift 
register for A is instantiated at the end of the code, and the z signal is defined using a 
conditional signal assignment. We implemented the code in Figure 10.13 in a chip and 
performed a timing simulation. Figure 10.14 gives the results of the simulation for A = 
001 1101 1. After the circuit is reset, the input signal LA is set to 1 ,  and the desired data3 
(3B)16. is placed on the Duta input. When s changes to 1, the next active clock e d p  causes 
the FSM to change to state S2.  In this state each active clock edge increments B if a0 is 
1, and shifts A. When A = 0, the next clock edge causes the FSM to change to state S3. 
where Done is set to 1 and B has the correct result, B = 5 .  To check more thoroughly lhat 
the circuit is designed correctly, we should try different values of input data. 

A - 

1- 

1: Counter 

w 

L 
Shift 

E 

A 

LB - 
EB - 
- 

0- log2n 

,, n 
l b  

I 



Reset 

Figure 1b. 1 2 ASM chart for the bit counter control circuit. 

We presented a circuit that multiplies two unsigned n-bit binary numbers in Figure 5.32. 
The circuit uses a two-dimensional array of identical subcircuits, each of which contains a 
full-adder and an AND gate. For large values of n, this approach may not be appropriate 
because of the large number of gates needed. Another approach is to use a shift register 
in combination with an adder to implement the traditional method of multiplication that is 
done by "hand." Figure 10.15a illustrates the manual process of multiplying two binary 
numbers. The product is formed by a series of addition operations. For each bit i in the 
multiplier that is 1, we add to the product the value of the multiplicand shifted to the left i 
times. This algorithm can be described in pseudo-code as shown in Figure 10.15b, where * is the multiplicand. B is the multiplier, and P is the product. 

An ASM chart that represents the algorithm in Figure 10.15b is given in Figure 3 0.16. 
We assume that an input s is used to control when the machine begins the multiplication 
process. As long as s is 0, the machine stays in state $1 and the data for A and B can be 
loaded from external inputs. In state S2 we test the value of the LSB of B, and if it is 1, we 



LIBRARY ieee ; 
USE ieee.std1ogic-1164.all ; 
LIBRARY work ; 
USE work,components.shiftrne ; 

ENTITY bitcount IS 
PORT( Clock, Resetn : IN STD-LOGIC ; 

LA, s : IN STD-LOGIC ; 
Data : IN STDLOGIC-VECTOR(7 DOWNTO 0) ; 
B : BUFFER INTEGER RANGE 0 to 8 ; 
Done : OUT STD-LOGIC ) ; 

END bitcount ; 

ARCHITECTURE Behavior OF bitcount IS 
TYPE State-type IS ( S 1, S2, S3 ) ; 
SIGNAL y : State-type ; 
SIGNAL A : STDLOGIC-VECTOR(7 DOWNTO 0) ; 
SIGNAL z, EA, LB, EB, low : STDLOGIC ; 

BEGIN 
FSM-transitions: PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y <= SI ; 

ELSIF (Clock'EVENT AND Clock = ' 1') THEN 
CASE y IS 

WHEN S1=> 
I F s =  'O'THENy<= S1 ; E L S E y < =  S2;ENDIF; 

WHEN S2 => 
I F z =  '0' THENy <= S2;ELSEy <= S3;ENDIF; 

WHEN S3 => 
IFs='l'THENy<=S3;ELSEyc=Sl;ENDIF; 

END CASE ; 
END IF ; 

END PROCESS ; 

. . . continued in Part b 

Figure 10.13 VHDL code for the bit-counting circuit (Part a). 

add A to P. Otherwise, P is not changed. The machine moves to state S3 when B contains 
0, because P has the final product in this case. For each clock cycle in which the machine 
is in state S2, we shift the value of A to the left, as specified in the pseudo-code in Figure 
10.156. We shift the contents of B to the right so that in each clock cycle bo can be used lo 

decide whether or not A should be added to P. 



FSM-outputs: PROCESS ( y, A(0) ) 
BEGIN 

EA <= '0' ; LB <= '0' ; EB <= '0' ; Done c= '0' ; 
CASE y IS 

WHEN S 1 = >  
LB <= 7 1 '  ; 

WHEN S2 => 
EA <= '1' ; 
IF A(0) = '1' THEN EB <= '1' ; ELSE EB c= '0' ; END IF ; 

WHEN S3 => 
Done <= '1' ; 

END CASE ; 
END PROCESS ; 

- - The datapath circuit is described below 
upcount: PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
B < = 0 ;  

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN 
IF LB = '1' THEN 

%= 0 ; 
ELSIF Eb - ' 1 ' THEN 

B < = B $ l ;  
I END IF ; 

END IF; 
END PROCESS; I 

low <= '0' ; 
ShiftA: shiftrne GENERIC MAP ( N => 8 ) 

PORT MAP ( Data, LA, EA, low, Clock, A ) ; 
z <= ' 1 ' WHEN A = "00000000" ELSE '0' ; 

END Behavior ; 

Figure 10.1 3 VHDL code for the bit-counting circuit (Part b). 

Datapath Circuit 
We can now define the datapath circuit. To implement A we need a right-to-left shift 

register that has 2n bits. A 2n-bit register is needed for P, and it must have an enable input 
because the assignment P c P + A  in state S2 is inside a conditional output box. A b-b i t  
adder is needed to produce P + A .  Note that P is loaded with O in state S I ,  and P is loaded 
fmm the output of the adder in state S2. We cannot assume that the reset input is used to 
clear P,  because the machine changes from state S 3  back to S 1 based on the s input, not the 



Figure 10.14 Simulation results for the bit-counting circuit. 

Decimal Binary 

13 1 1 0 1 Multiplicand 
x l l  x 1 0 1 1 Multiplier 

13 1 1 0 1  
131 1 I 0 1  1 

1 0 0 0  1 1  1 1  Product 

(a) Manual method 

P = O ;  
for i = 0 to n - 1 do 

if bi = 1 then 
P = P + A ;  

end if ; 
Left-shift A ; 

end for ; 

(b) Pseudo-code 

Figure 10.1 5 An algorithm for multiplication. 



10.2 DESIGN EXAMPLES 

Reset 

Figure 10.1 6 ASM chart for the multiplier. 

reset input. Hence a 2-to- 1 multiplexer is needed for each input to P, to select either 0 or 
the appropriate sum bit from the adder. An n-bit left-to-right shift register is needed for B, 
and an n-input NOR gate can be used to test whether B = 0. 

Figure 10.17 shows the datapath circuit and labels the control signals for the shift 
registers. The input data for the shift register that holds A is named DataA. Since the 
shift register has 2n bits, the most-significant n data inputs are connected to 0. A single 
multiplexer symbol is shown connected to the register that holds P. This symbol represents 
2n2-to- 1 multiplexers that are each controlled by the Psel signal. 

Control Circuit 
An ASM chart that represents only the control signals needed for the multiplier is given 

in Figure 10.1 8. In state S 1, Psel is set to 0 and EP is asserted, so that register P is cleared. 
When s = 0, parallel data can be loaded into shift registers A and B by an external circuit 
that Controls their parallel load inputs LA and LB. When s = 1, the machine changes to state 
$2, where Psel is set to 1 and shifting of A and B is enabled. If bo = 1, the enable for P 



LA 0 DataA LB DataB i 

Clock 

Figure 10.1 7 Datapath circuit for the multiplier. 

,, n ,, 

is asserted. The machine changes to state S3 when z = 1, and then remains in S3 and sets 
Done to the value 1 as long as s = 1. 

VHDL Code 
VHDL code for the multiplier is given in Figure 10.19. The number of bits in A and 

is set by the generic parameter N. Since some registers are 2n bits wide, a second generic 
parameter NN is defined to represent 2 x N. By changing the value of the generic parameters, 
the code can be used for numbers of any size. The processes labeled FSM - rransitions and 
FSM-outputs define the state transitions and generated outputs, respectively, in the control 

n 

I Y v 
,' n 

- 
EA- 
- 

L 

E Shift-left 
register 

A 

- 

EB - 
- 

L 

E Shift-right 
register 

B 

,* 

,, 

2n ,' n 

7 z 0 Sum 
0 

Psel 

,< 

DataP 

2n 

EP - E 
Register 

> 

,, 2n 

I )  1 



Reset 

Figure 10.1 8 ASM chart for the multiplier control circuit. 

- 
S 1 I 

Psel = 0, EP 

circuit. The parallel data input on the shift register A is 2N bits wide, but DataA is only N 
bits wide. The signal N-Zeros is used to generate n zero bits, and the signal Ain prepends 
these bits with DataA for loading into the shift register. The multiplexer needed for register 
P is defined using a FOR GENERATE statement that instantiates 2N 2-to-1 multiplexers. 
Figure 10.20 gives a simulation result for the circuit generated from the code, After the 
circuit is reset, LA and LB are set to 1, and the numbers to be multiplied are placed on 
the DataA and DataB inputs. After s is set to 1, the FSM (r) changes to state S2, where 
it remains until B = 0. For each clock cycle in state S 2 ,  A is shifted to the left, and B is 
shifted to the right. In three of the clock cycles in state S 2 ,  the contents of A are added to P,  
corresponding to the three bits in B that have the value 1. When B = 0, the FSM changes 
to state $3 and P contains the correct product, which is (64) l6 x (1 9) 16 = (9C4)16. The 
decimal equivalent of this result is 100 x 25 = 2500. 

1 0 

1 

I 1 
C 

I 

52 I 53 

\ 

Psel = 1, EA, EB Done 
I 

1 

1 - - 

0 



LIBRARY ieee ; 
USE ieee.std-logic-l 164.all ; 
USE ieee.std-logic_unsigned.all ; 
USE work.components.all ; 

ENTITY multiply IS 
GENERIC ( N : INTEGER := 8; NN : INTEGER := 16 ) ; 
PORT ( Clock : IN STD-LOGIC ; 

Resetn : IN STD-LOGIC ; 
LA, LB, s : IN STD- LOGIC ; 
DataA : IN STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
DataB : IN STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
P : BUFFER STD-LOGIC -VECTOR(NN- 1 DOWNTO 0) ; 
Done : OUT STD-LOGIC ) ; 

END multiply ; 

ARCHITECTURE Behavior OF multiply IS 
TYPE State-type IS ( S1, S2, S3 ) ; 
SIGNAL y : State-type ; 
SIGNAL Psel, z, EA, EB, EP, Zero : STILLOGIC ; 
SIGNAL B, N-Zeros : STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
SIGNAL A, Ain, DataP, Sum : STELLOGIC -VECTOR(NN- 1 DOWNTO 0) ; 

BEGIN 
FSM-transitions: PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y <= S 1 ;  

ELSIF (Clock'EVENT AND Clock = ' 1') THEN 
CASE y IS 

WHEN S1=> 
I F s =  '0' THENy <= S1 ; E L S E y  <= S2;ENDIF;  

WHEN S2 => 
I F z =  'O'THENy<= S2;ELSEy<= S3;ENDIF; 

WHEN S3 => 
IFs='l'THENy<=S3;ELSEyc=Sl;ENDIF; 

END CASE ; 
END IF ; 

END PROCESS ; 

. . . continued in Part b 

Figure 10.19 VHDL code for the multiplier circuit (Part a). 



FSM-outputs: PROCESS ( y, s, B(0) ) 
BEGIN 

EP <= '0' ; EA <= '0' ; EB <= '0' ; Done <= '0' ; Psel <= '0'; 
CASE y IS 

WHEN S 1 = >  
EP <= '1' ; 

WHEN S2 => 
EA <= ' I '  ; EB <= '1' ; Psel <= '1' ; 
IF B(0) = ' 1'  THEN EP <= ' 1' ; ELSE EP <= '0' ; END IF ; 

WHEN S3 => 
Done <= '1' ; 

END CASE ; 
END PROCESS ; 

- - Define the datapath circuit 
Zero <= '0' ; 
N-Zeros <= (OTHERS => '0' ) ; 
Ain <= N-Zeros & DataA ; 
ShiftA: shiftlne GENERIC MAP ( N => NN ) 

PORT MAP ( Ain, LA, EA, Zero, Clock, A ) ; 
iftrne ,,,, GENERIC , MAP ( N => N ) 

taB, LB, EB, Zero, Clock, B ) ; 
z <j= ' I' WHEN B = -Zeros ELSE '0' ; 
S U & < = A + P ;  
- - Define the 2n 2-to-1 mb~tiplexers for DataP 
GenMUX: FOR i IN 0 T#I NN-1 GENERATE 

Muxi: mux2tol PORT MAP ( Zero, Sum(i), Psel, DataP(i) ) ; 
END GENERATE; 
RegP: regne GENERIC MAP ( N => NN ) 

PORT MAP ( DataP, Resetn, EP, Clock, P ) ; 
END Behavior ; 

Figure 10.1 9 VHDL code for the multiplier circuit (Part b). 

The number of clock cycles that the circuit requires to generate the final product is 
determined by the left-most digit in B that is 1. It is possible to reduce the number of clock 
cycles needed by using more complex shift registers for A and B. If the two right-most bits 

are both 0, then both A and B could be shifted by two bit positions in one clock cycle. 
Similarly, if the three lowest digits in B are 0, then a three bit-position shift can be done, 
and so on. A shift register that can shift by multiple bit positions at once can be built using 
a ban-el .rhifter. We leave it as an exercise for the reader to modify the multiplier to make 

of a barrel shifter, 



Figure 10.20 Simulation results for the multiplier circuit. 

The preceding example implements the traditional method of performing multiplication by 
hand. In this example we will design a circuit that implements the traditional long-hand 
division. Figure 10.21a gives an example of long-hand division. The first step is to try to 
divide the divisor 9 into the first digit of the dividend 1, which does not work. Next, we try 
to divide 9 into 14, and determine that 1 is the first digit in the quotient. We perform the 
subtraction 14 - 9 = 5, bring down the last digit from the dividend to form 50, and then 
determine that the next digit in the quotient is 5. The remainder is 50 - 45 = 5, and the 
quotient is 15. Using binary numbers, as illustrated in Figure 10.21 b, involves the same 
process, with the simplification that each digit of the quotient can be only 0 or 1. 

Given two unsigned n-bit numbers A and B, we wish to design a circuit that produces 
two n-bit outputs Q and R, where Q is the quotient A / B  and R is the remainder. The 
procedure illustrated in Figure 10.216 can be implemented by shifting the digits in A to 
the left, one digit at a time, into a shift register R. After each shift operation, we compare 
R with B. If R > B, a 1 is placed in the appropriate bit position in the quotient and % is 
subtracted from R. Otherwise, a 0 bit is placed in the quotient. This algorithm is described 
using pseudo-code in Figure 10.2 1 c. The notation R ( J A  is used to represent a 2n-bit shift 
register formed using R as the left-most n bits and A as the right-most n bits. 

The pseudo-code for the multiplier in Figure 10.15b examines one digit bi, in each 
loop iteration. In the ASM chart in Figure 10.16, we shift B to the right so that bo always 
contains the digit needed. Similarly, in the long-division pseudo-code, each loop iteration 
results in setting a digit qi to either 1 or 0. A straightforward way to accomplish this is 



(a) An example using decimal numbers (b) Using binary numbers 

R = O ;  
fori = O t o n  - 1 do 

Left-shift R 11 A ; 
if R 2 B then 

else 
qj = o ;  

end if ; 
end for ; 

(c) Pseudo-code 

Figure 10.2 1 An algorithm for division. 

to shift 1 or 0 into the least-significant bit of Q in each loop iteration. An ASM chart that 
represents the divider circuit is shown in Figure 10.22. The signal C represents a counter 
that is initialized to n - 1 in the starting state S1. In state S2, both R and A are shifted to the 
left, and then in state S3, B is subtracted from R if R 2 B. The machine changes to state 
$4 when C = 0. 

Datapath Circuit 

We need n-bit shift registers that shift right to left for A, R, and Q. An n-bit register is 
needed for B, and a subtractor is needed to produce R - B. We can use an adder module in 
which the carry-in is set to 1 and R is complemented. The carry-out, c,,,, of this module 
has the value 1 if the condition R 3 B is true. Hence the carry-out can be connected to the 
Serial input of the shift register that holds Q, so that it is shifted into Q in state S3. Since R 
IS loaded with 0 in state S1 and from the outputs of the adder in state S 3 ,  a multiplexer is 

for the parallel data inputs on R. The datapath circuit is depicted in Figure 10.23. 



C H A P T E R 10 DIGITAL SYSTEM DESIGN 

Reset 

I I 
S 1 \ 

R t O , C + n - 1  
Load A 
Load B 

I 

0 1 

0 

1 

I Shift left RllA 

S4 53 

Done C t C - 1  

A - 
0 1 

Shift O Into Q 

L - - 

1 0 - 
v 

Figure 10.22 ASM chart for the divider. 

Note that the down-counter needed to implement C and the NOR gate that outputs a 1 when 
C = 0 are not shown in the figure. 

Control Circuit 
An ASM chart that shows only the control signals needed for the divider is given In 

Figure 10.24. In state S3 the value of c,., determines whether or not the sum output 
the adder is loaded into R. The shift enable on Q is asserted in state S3. We do not have 
to specify whether 1 or 0 is loaded into Q, because c,, is connected to Q's serial input 



Figure 10.23 Dat path circuit for the divider. 7' 

in the datapath circuit. We leave it as an exercise for the reader to write VHDL code that 
represents the ASM chart in Figure 10.24 and the datapath circuit in Figure 10.23. 

Enhancements to the Divider Circuit 
Using the ASM chart in Figure 10.24 causes the circuit to loop through states S 2  and 

S3 for 2n clock cycles. If these states can be merged into a single state, then the number of 
clock cycles needed can be reduced to n.  In state S3,  if c,,, = 1, we load the sum output 
(result of the subtraction) from the adder into R, and (assuming z = 0) change to state S 2 .  
In state S2 we then shift R (and A) to the left. To combine S 2  and S3 into a new state, called 
32, we need to be able to place the sum into the left-most bits of R while at the same time 
shifting the MSB of A into the LSB of R. This step can be accomplished by using a separate 
flip-flop for the LSB of R. Let the output of this flip-flop be called rro. It is initialized to 0 
when s = 0 in state S1. Otherwise, the flip-flop is loaded from the MSB of A. In state S 2 ,  
if c,,,, = 0, R is shifted left and rro is shifted into R. But if c,., = 1, R is loaded in parallel 

the sum outputs of the adder. 
Figure 10.25 illustrates how the division example from Figure 10.2 1 b can be performed 

using n clock cycles. The table in the figure shows the values of R, rm, A, and Q in each step 
Of the division. In the datapath circuit in Figure 10.23, we use a separate shift register for Q. 



Reset 

Figure 10.24 ASM chart for the divider control circuit. 

This register is not actually needed, because the digits in the quotient can be shifted into the 
least-significant bit of the register used for A. In Figure 10.25 the digits of Q that are shifted 
into A are shown in blue. The first row in the table represents loading of initial data into 
registers A (and B )  and clearing R and rro to 0. In the second row of the table, labeled clock 
cycle 0, the diagonal blue arrow shows that the left-most bit of A (1) is shifted into rro. The 
number in R lrro is now 000000001, which is smaller than B (1001). In clock cycle 1, rro is 
shifted into R, and the MSB of A is shifted into rro. Also, as shown in blue, a 0 is shifted into 
the LSB of Q (A) .  The number in Rl lrro is now 000000010, which is still smaller than B. 



Clock cycle 

Load A, B 
Shift left 
Shift left, Qo t 0 
Shift left, Qo +- 0 
Shift left, Qo t 0 
Shift left, Qo t- 0 
Subtract, Qo t- 1 
Subtract, Qo t 1 
Subtract, Qo t 1 
Subtract, Qo t I 

Figure 10.25 An example of division using n = 8 clock cycles. 

Hence, in clock cycle the same actions are performed as for clock cycle 1. These actions 
are also performed in cl ck cycles 3 and 4, at which point RI Irro = 0000 10001. Since this is 
larger than B, in clock ycle 5 the result of the subtraction 000010001 - 1001 = 00001000 
is loaded into R. The SB ofA (1)  is still shifted into rro, and a 1 is shifted into Q. In clock 
cycles 6, 7, and 8, t number in Rllrro is larger than B; hence in each of these cycles the 
result of the subtr 1 ction Rl lrro - B is loaded into R, and a 1 is loaded into Q. After clock 
cycle 8 the correct result, Q = 00001 11 I and R = 000001 01, is obtained. The bit rro is not 
a part of the final result. 

An ASM chart that shows the values of the required control signals for the enhanced 
divider is depicted in Figure 10.26. The signal ERO is used in conjunction with the flip-flop 
that has the output rro. When ERO = 0, the value 0 is loaded into the flip-flop. When ERO 
is set to 1, the MSB of shift registerA is loaded into the flip-flop. In state S 1, if s = 0, then 
LR is asserted to initialize R to 0. Registers A and B can be loaded with data from external 
Inputs. When s changes to 1, the machine makes a transition to state S2 and at the same 
time shifts RI lROl IA to the left. In state S2, if c,,, = 1, then R is loaded in parallel from 
the sum outputs of the adder. At the same time, ROJ )A is shifted left (rro is not shifted into 
R in this case). If c,,,, = 0, then RI IROI IA is shifted left. The ASM chart shows how the 
Parallel-load and enable inputs on the registers have to be controlled to achieve the desired 
operation. 

The datapath circuit for the enhanced divider is illustrated in Figure 10.27. As discussed 
for Figure 10.25, the digits of the quotient Q are shifted into register A. Note that one of 
the n-bit data inputs on the adder module is composed of the n - 1 least-significant bits in 
"gister R concatenated with bit rro on the right. 



Reset 

Figure 10.26 ASM chart for the enhanced divider control circuit. 

L 

S 1 1 

Rsel = 0, LC, ER 

0 1 

VHDL Code 
Figure 10.28 shows VHDL code that represents the enhanced divider. The generic 

parameter N sets the number of bits in the operands. The FSM-transitions and FSM-outputS 
processes describe the control circuit, as in the previous examples. The shift registers and 
counters in the datapath circuit are instantiated at the bottom of the code. The signal rro in 
Figure 10.28 is represented in the code by the signal RO. This signal is implemented as the 
output of the nzuxdff component; the code for this subcircuit is shown in Figure 7.48. Note 
that the adder that produces the Sum signal has one input defined as the concatenation 
R with RO. The multiplexer needed for the input to R is represented by the DutaR signa1. 
Instead of describing this multiplexer using a FOR GENERATE statement as in the previous 

692 examples, we have used the conditional signal assignment shown al the end of the code- 

S2 
- 

i 
I 

ER. ERO, EA. Rsel = 1 

0 1 

1 

S3 

Done 

i 

I 0 



LA DataA EB DataB 

Figure 10.27 Datapath circuit for the enhanced divider. 



LIBRARY ieee; 
USE ieee-std-logic-l164.all; 
USE ieee.stdlogic-unsigned.al1 ; 
USE work.components.al1 ; 

ENTITY divider IS 
GENERIC ( N : INTEGER := 8 ) ; 
PORT( Clock : IN STD-LOGIC ; 

Resetn : IN STD-LOGIC ; 
s, LA, EB : IN STD-LOGIC ; 
DataA : IN STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
DataB : IN STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
R, Q : BUFFER STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
Done : OUT STD-LOGIC ) ; 

END divider ; 

ARCHITECTURE Behavior OF divider IS 
TYPE State-type IS ( S 1, S2, S3 ) ; 
SIGNAL y : State-type ; 
SIGNAL Zero, Cout, z : STD-LOGIC ; 
SIGNAL EA, Rsel, LR, ER, ERO, LC, EC, RO : STD-LOGIC ; 
SIGNAL A, B, D a t a  : STD-LOGIC -VECTOR(N- 1 DOWNTO 0) ; 
SIGNAL Sum : STD-LOGIC -VECTOR(N DOWNTO 0) ; - - adder outputs 
SIGNAL Count : INTEGER RANGE 0 TO N- 1 ; 

BEGIN 
FSM-transitions: PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN y <= S1 ; 
ELSIF (Clock'EVENT AND Clock = ' 1') THEN 

CASE y IS 
WHEN S 1 = >  

I F s =  '0' THENy <= S1 ;ELSEy <= S2;ENDIF; 
WHEN S2 => 

I F z =  ' 07THENy<= S2 ;ELSEy<=  S 3 ; E N D F ;  
WHEN S3 => 

I F s =  'I9THENy<=S3;ELSEy<=S1;END1F; 
END CASE ; 

END IF ; 
END PROCESS ; 

. . . continued in Part b 

Figure 10.28 VHDL code for the divider circuit (Part a). 



FSM-outputs: PROCESS ( s, y, Cout, z ) 
BEGIN 

LR <= '03 ; ER <= '03 ; ERO <= '0' ; 
LC <= '0' ; EC <= '0' ; EA <= '0' ; Done <= '0' ; 
Rsel <= '0' ; 
CASE y IS 

WHEN S 1 = >  
LC <= ' I '  ;ER <= ' 1 '  ; 
IF s = '0' THEN 

LR <= '1'  ;EA < '0' ; ERO <= '0' ; 
ELSE 

LR < 0 ; EA <= '1'  ; ERO <= '1' ; 
END IF ; 

WHEN 52 => 
Rsel <= ' I '  ; ER <= ' I '  ; ERO <= '1' ; EA <= ' I '  ; 
IF Cout = '1' THEN LR <= '1' ; ELSE LR <= '0' ; END IF ; 
IF z = '0' THEN EC <= '1' ; ELSE EC <= '0' ; END IF ; 

WHEN S3 => 
one <= '1' ; 

ENDC E ;  
END PROCE S ; 
- - define the ". d tapath circuit 

EB<:gZp!ImERIc MAP ( N => N 
PORT AP ( DataB, Resetn, EB, Clock, B ) ; 

ShiftR: f iftlne GENERIC MAP ( N => N ) 
PORT MAP ( DataR, LR, ER, RO, Clock, R ) ; 

FF-RO: muxdff PORT MAP ( Zero, A(N- l), ERO, Clock, RO ) ; 
ShiftA: shiftlne GENERIC MAP ( N => N ) 

PORT MAP ( DataA, LA, EA, Cout, Clock, A ) ; 
Q < = A ;  
Counter: downcnt GENERIC MAP ( modulus => N ) 

PORT MAP ( Clock, EC, LC, Count ) ; 
z < = ' 1 ' WHEN Count = 0 ELSE '0' ; 

Sum<= R & R O + ( N O T B + l ) ;  
Cout <= Sum(N) ; 
DataR <= (OTHERS => '0') WHEN Rsel = '0' ELSE Sum ; 

END Behavior ; 

Figure 10.28 VHDL code for the divider circuit (Part b). 



A simulation result for the circuit produced from the code is given in Figure 10.29. T~~ 
data A = A6 and B = 8 is loaded, and then s is set to 1. The circuit changes to state S2 
and concurrently shifts R, RO, and A to the left. The output of the shift register that holds A 
is labeled Q in the simulation results because this shift register contains the quotient when 
the division operation is complete. On the first three active clock edges in state S 2 ,  the 
number represented by RIIRO is less than the number in B (8); hence RI IROI IA is shifted 
left on each clock edge, and 0 is shifted into Q. In the fourth consecutive clock cycle for 
which the FSM has been in state S2, the contents of R are ~ ~ ~ 0 0 1 0 1  = (5)10, and RO is 
0; hence R( I RO = 0000010 10 = (10) lo. On the next active clock edge, the output of the 
adder, which is 10 - 8 = 2, is loaded into R, and 1 is shifted into Q. After n clock cycles in 
state S2, the circuit changes to state 5'3, and the correct result, Q = 14 = (20)10 and R = 6, 
is obtained. 

Assume that k n-bit numbers are stored in a set of registers Ro, . . . , We wish to design 
a circuit that computes the mean M of the numbers in the registers. The pseudo-code for a 
suitable algorithm is shown in Figure 10.30a. Each iteration of the loop adds the contents 
of one of the registers, denoted Ri, to a Sum variable. After the sum is computed, M is 
obtained as Sunzlk. We assume that integer division is used, so a remainder R, not shown 
in the code, is produced as well. 

An ASM chart is given in Figure 10.30b. While the start input, s, is 0, the registers 
can be loaded from external inputs. When s becomes 1, the machine changes to state S2, 

Name. 125 Ons 250.0ns 375.0ns 500.0ns 625 Ons 

Figure 10.29 Simulation results for the divider circuit. 



Sum = 0  ; 
fori = k - 1 d o w n t o O d o  

Sum = Sum + Ri 
end for ; 
M=Sum-k; 

(a) Pseudo-code 

Reset 

S u m t 0 , C t k - 1  

Load registers 

\ I 

I S 2 

Sum c Sum + Ri 

I I 0 

0 

1 

I 
S  3 

M t Sum/k 

(b) ASM chart 

Figure 10.30 An algorithm for finding the mean of k numbers. 



where it remains while C # 0, and computes the summation (C is a counter that represents 
i in Figure 10.30a). When C = 0, the machine changes to state S3 and computes M - - 
Sum/k. From the previous example, we know that the division operation requires multiple 
clock cycles, but we have chosen not to indicate this in the ASM chart. After computing 
the division operation, state S4 is entered and Done is set to 1 .  

Datapath Circuit 
The datapath circuit for this task is more complex than in our previous examples, 

It is depicted in Figure 10.31. We need a register with an enable input to hold sum. 
For simplicity, assume that the sum can be represented in n bits without overflowing. A 
multiplexer is required on the data inputs on the Sum register, to select 0 in state S 1 and the 
sum outputs of an adder in state S2. The Sum register provides one of the data inputs to the 
adder. The other input has to be selected from the data outputs of one of the k registers. One 
way to select among the registers is to connect them to the data inputs of a k-to- 1 multiplexer 
that is connected to the adder. The select lines on the multiplexer can be controlled by the 
counter C. To compute the division operation, we can use the divider circuit designed in 
section 10.2.4. 

The circuit in Figure 10.31 is based on k = 4, but the same circuit structure can be 
used for larger values of k.  Note that the enable inputs on the registers Ro through R3 are 
connected to the outputs of a 2-to-4 decoder that has the two-bit input RAdd, which stands 
for "register address." The decoder enable input is driven by the ER signal. All registers 
are loaded from the same input lines, Data. Since k = 4, we could perform the division 
operation simply by shifting Sum two bits to the right, which can be done in one clock cycle 
with a shift register that shifts by two digits. To obtain a more general circuit that works 
for any vdue of k, we use the divider circuit designed in section 10.2.4. 

Control Circuit 
Figure 10.32 gives an ASM chart for the FSM needed to control the circuit in Figure 

10.31. While in state S 1 ,  data can be loaded into registers Ro, . . . , Rn-l .  But no control 
signals have to be asserted for this purpose, because the registers are loaded under control 
of the ER and RAdd inputs, as discussed above. When s = 1, the FSM changes to state 
S2, where it asserts the enable ES on the Sum register and allows C to decrement. When 
the counter reaches 0 ( z  = I ) ,  the machine enters state S 3 ,  where it asserts the LA and EB 
signals to load the Sum and k into the A and B inputs of the divider circuit, respectively. The 
FSM then enters state S4 and asserts the Div signal to start the division operation. When 
it is finished, the divider circuit sets zz = 1, and the FSM moves to state S5.  The mean M 
appears on the Q and R outputs of the divider circuit. The Div signal must still be asserted 
in state S5 to prevent the divider circuit from reinitializing its registers. Note that in the 
ASM chart in Figure 10.30b. only one state is shown for computing M = Sumlk, but in 
Figure 10.32, states $3 and $4 are used for this purpose. It is possible to combine states $3 
and S4, which we will leave as an exercise for the reader (problem 10.6). 

Alternative Datapath Circuits 
In Figure 10.31 registers Ro, . . . , Rk-l  are connected to the adder using a multiplexer3 

Another way to achieve the desired connection is to add tri-state buffers to the outputs of the 
k registers and to connect all tri-state buffers for a given bit position to the corresponding 



Data 

Clock 

W 1  W o  E',? 

2-to-4 

Yo  Y l  J'2 J'3 

n 
/ 

/ 

I 1' 
- I - E  - I - E  

Regihter Register Register - 
1 - 1 I 

\ 
0 

I I z 
S sel 

n 
EC E 

ES/F LC L Down-counter 
Register 

I)  - 

k El3 Sum 
t 

k-1 

,# n 
LA 

,- n 
I I 

,- n B EB A LA 

Div - 
> Divider 

Figure 10.3 1 Datapath circuit for the mean operation. 



Reset - = 
S 1 I 

LC, Ssel = 0, ES 

0 

Ssel = 1, ES 0 F 

A 
S5 

Div, Done 

4 
4 

Figure 10.32 ASM chart for the control circuit. 

input of the adder. The down-counter C can be used to enable each tri-state buffer at the 
proper time (when the FSM is in state S 2 ) ,  by connecting a 2-to-4 decoder to the outputs 
of the counter and using one output of the decoder to enable each tri-state buffer. We will 
show an example of using tri-states buffers in this manner in Figure 10.42. 

For large values of k, it is preferable to use an SRAM black with k rows and n columns. 
instead of using k registers. Predefined modules that represent SRAM blocks are usually 
provided by CAD tools. If the circuit being designed is to be implemented in a custom 
chip, then the CAD tools ensure that the desired SRAM block is included on the chip. 



Some PLDs include SRAM blocks that can be configured to implement various numbers of 
rows and columns. The CAD system that accompanies the book provides the Ipm-ram-dq 
module, which is a part of the LPM standard library. 

Figure 10.33 gives a schematic diagram for the arithmetic mean circuit, using the 
k = 16 and rl = 8. This schematic was created using the CAD tools that 
the book. Four of the graphical symbols in the schematic represent subcircuits 

described using VHDL code, namely downcnt, regne, divider, and meancntl. The code for 
the dillider subcircuit is shown in Figure 10.28. The meancntl subcircuit represents the 
FSM in Figure 10.32. The VHDL code for this FSM is not shown. The schematic also 
includes a multiplexer connected to the Sum register, an adder, and a NOR gate that detects 
when the counter C reaches 0. The outputs of the counter provide the address inputs to the 
sRAM block, called MReg. 

The SRAM block has 16 rows and eight columns. In Figure 10.3 1 a decoder controls 
the loading of data into each of the k registers. To read the data from the registers, the 
counter C is used. To keep the schematic in Figure 10.33 simple, we have included the 

I -  Done 

Figure 10.33 Schematic of the mean circuit with an SRAM block. 



counter to read data from the SRAM block, but we have ignored the issue of writing data 
into the SRAM block. It is possible to modify the meancntl code to allow the counter c to 
address the SRAM block for loading the initial data, but we will not pursue this issue here. 

For simulation purposes we can use a feature of the CAD system that allows initial 
data to be stored in the SRAM block. We chose to store 0 in Ro (row 0 of the SRAM blockl; 

and 15 in Rls .  The results of a timing simulation for the circuit implemented 1 inR1, . . .  , 
in an FPGA chip are shown in Figure 10.34. Only a pan of the simulation, from the poinl 
where C = 5, is shown in the figure. At this point the meancntl FSM is in state S2,  and 
h e  Sum is being accumulated. When C reaches 0, Sum has the correct value, which is 
0 + 1 + 2 + . . . + 15 = 120 = (78)16, The FSM changes to state S3 for one clock cycle 
and then remains in state S4 until the division operation is complete. The correct result, Q 

= 7 and R = 8, is obtained when the FSM changes to state S5 .  

Given a list of k unsigned n-bit numbers stored in a set of registers Ro, . . . , R k p l ,  we 
wish to design a circuit that can sort the list (contents of the registers) in ascending order. 
Pseudo-code for a simple sorting algorithm is shown in Figure 10.35. It is based on finding 
the smallest number in the sublist Ri,  . . . , Rk-l and moving that number into Ri,  for i = 
1, 2, . . . , k - 2. Each iteration of the outer loop places the number in Ri into A. Each 
iteration of the inner loop compares this number to the contents of another register R,. If 
the number in R, is smaller than A, the contents of Ki and Rj are swapped and A is changed 
to hold the new contents of R,. 

An ASM chart that represents the sorting algorithm is shown in Figure 10.36. In the 
initial state S 1, while s = 0 the registers are loaded from external data inputs and a counter 
Ci that represents I in the outer loop is cleared. When the machine changes to state S2, A is 
loaded with the contents of Ri. Also, Cj, which represents j in the inner loop, is initialized 

Figure 10.34 Simulation results for the mean circuit using SRAM. 



for i = 0 to k - 2 do 
A =  R i ;  
f o r j = i + l t o k -  l d o  

B = R j ;  
if B < A then 

R i = B ;  
R j = A ;  
A = R i ;  

end if ; 
end for ; 

end for ; 

Figure 10.35 Pseudo-code for the sort operation. 

to the v a l d  State S3 is used to initialize j to the value i + 1, and state S4 loads the 
value of RJ into B. n state S5, A and B are compared, and if B < A, the machine moves to 
state S6. States S6 a S7 swap the values of Ri and R,. State S8 loads A from Ri. Although 
this step is necessary nly for the case where B < A, the flow of control is simpler if this 
operation is perforrne in both cases. If CJ is not equal to k - 1, the machine changes from 
$8 to S4, thus remain'ng in the inner loop. If Cj = k - 1 and Ci is not equal to k - 2, then 
the machine stays i i he outer loop by changing to state S2. 

Datapath &uit 
There are many ways to implement a datapath circuit that meets the requirements of 

the ASM chart in Figure 10.36. One possibility is illustrated in Figures 10.37 and 10.38. 
Figure 10.37 shows how the registers Ro, . . . , Rx-I can be connected to registers A and B 
using 4-to-1 multiplexers. We assume the value k = 4 for simplicity. Registers A and B are 
connected to a comparator subcircuit and, through multiplexers, back to the inputs of the 
registers Ro, , , . , R k - , .  The registers can be loaded with initial (unsorted) data using the 
Dataln lines. The data is written (loaded) into each register by asserting the WrInit control 
signal and placing the address of the register on the RAdd input. The tri-state buffer driven 
by the Rd control signal is used to output the contents of the registers on the DataOut output. 

The signals Rino, . . . , Rink-l are controlled by the 2-to-4 decoder shown in Figure 
10.38. Tf Int = 1, the decoder is driven by one of the counters Ci or Cj. If Int = 0, then the 
decoder is driven by the external input KAdd. The signals zi and zj are set to I if Ci = k - 2 
and C, = k - I ,  respectively. An ASM chart that shows the control signals used in the 
datapath circuit is given in Figure 10.39. 

VHDL Code 
VHDL code for the sorting operation is presented in Figure 10.40. Instead of defining 

Separate signals called Ro, . . . , R3 for the register outputs, we have chosen to specify the 
registers as an array. This approach allows the registers to be referred to as R(i)  in a FOR 
GENERATE statement that instantiates each register. The array of registers is defined in 



Reset 

Figure 10.36 ASM chart for the sort operation. 



Figure 10.37 A part of the datapath circuit for the sort operation. 

two steps. First, a user-defined type, for which we have chosen the name RegArruy, is 
defined in the statement 

TYPE RegArmy IS ARRAY(3 DOWNTO 0) OF STD-LOGIC-VECTOR(N-1 DOIVNTO 0)  

This statement specifies that the type RegArray represents an array of four STD-LOGIC- 
VECTOR signals. The STD-LOGIC-VECTOR type is also defined as an array in the IEEE 
standard; it is an array of STD-LOGIC signals. The R signal is defined as an array with 
four elements of the RegArray type. 

The FSM that controls the sort operation is described in the same way as in previous 
examples, using the processes FSM_transitions and FSM-outputs. Following these pro- 



Clock 

Csel 

RAdd 

Int 

WrInit 

Wr 

0 

t2 2 

Rin, 

Rin 

Rinz 

Rin3 

2-to-4 decoder 

LI- 

EI - 
- 

Figure 10.38 A part of the datapath circuit for the sort operation. 

/ C 
L R 

E Counter 

Q 

cesses, the code instantiates the registers Ro to R3, as well as A and B. The counters Ci and 
Cj are instantiated by the two statements labeled Outerbop and InnerLoop, respectively. 
The multiplexers with the outputs CMux and IMux are specified using conditional signal 
assignments. The 4-to-1 multiplexer in Figure 10.37 is defined by the selected signal as- 
signment that specifies the value of the ABData signal for each value of 1Mu.a. The 2-10-4 
decoder in Figure 10.38 with the outputs Kino, . . . , Rin3 is defined by the process statement 
labeled RinDec. Finally, the zi and z, signals and the DnfaOut output are s,pecified using 
conditional signal assignments. 

We implemented the code in Figure 10.40 in an FPGA chip. Figure 10.41 gives an 
example of a simulation result. Part ( a )  of the figure shows the first half of the simulation, 
from 0 to 1.25 ps,  and part (b) shows the second half, from 1.25 p s  to 2.5 ps. After resetting 
the circuit, WrInit is set to 1 for four clock cycles, and unsorted data is written into the four 
registers using the Dataln and RAdd inputs. After s is changed to 1, the FSM changes 
state S2. States S 2  to S4 load A with the contents of Ro (3) and 3 with the contents of 

LJ-  

EJ - 
I 

L R 

E Counter 

Q 

- 

,, 

Cmux 

C i 

I t  

2 I 

= k - 2  
,4 

A -- - - 
2 .. 

I 

= k - 1  - 



Reset 

Figure 10.39 ASM chart for the control circuit. 

LI, Int = 0 

I 

0 

- 
S 2 

1 

I 

Int = 1, Csel = 0, Ain, LJ 

S 3 I 

EJ 

- - - 
,s4 r 

\ 

Bin, Csel = 1, Int = 1 

5 v 
I 

1 T 

S6 7 

1 
1 

Csel = 1, Int = 1, Wr, Aout 

0 S7 I 
- Csel = 0, Int = 1, Wr, Bout 

S 8 1 

Csel = 0, Int = 1, Ain 

S9 1 
0 

Done 

1 - 



LIBRARY ieee ; 
USE ieee.stdlogic-1164.all; 
USE work.components.al1 ; 

ENTITY sort IS 
GENERIC ( N : INTEGER := 4 ) ; 
PORT ( Clock, Resetn : IN STD-LOGIC ; 

s, WrInit, Rd : IN STD-LOGIC ; 
DataIn : IN STD-LOGIC YECTOR(N- 1 DOWNTO 0) 
RAdd : IN INTEGER RANGE 0 TO 3 ; 
DataOut : BUFFER STD-LOGIC -VECTOR(N - 1 DOWNTO 0) 
Done : BUFFER STD-LOGIC ) ; 

END sort ; 

ARCHITECTURE Behavior OF sort IS 
TYPE State-type IS ( S1, S2, S3, S4, S5, S6, S7, S8, S9 ) ; 
SIGNAL y : State-type ; 
SIGNAL Ci, Cj : INTEGER RANGE 0 TO 3 ; 
SIGNAL Rin : STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
TYPE RegArray IS 

ARRAY(3 DOWNTO 0) OF STD-LOGIC-VECTOR(N- 1 DOWNTO 0)  ; 
SIGNAL R : RegArray ; 
SIGNAL RData, ABMux : STD-LOGIC-VECTOR(N- I DOWNTO 0) ; 
SIGNAL Int, Csel, Wr, BltA : STD-LOGIC ; 
SIGNAL CMux, IMux : INTEGER RANGE 0 TO 3 ; 
SIGNAL Ain, Bin, Aout, Bout : STD-LOGIC ; 
SIGNAL LI, LJ, EI, EJ, zi, zj : STD-LOGIC ; 
SIGNAL Zero : INTEGER RANGE 3 DOWNTO 0 ; - - parallel data for Ci = 0 
SIGNAL A, B, ABData : STD-LOGIC-VECTOR(N-1 DOWNTO 0) ; 

BEGIN 
FSM-transitions: PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y <= S 1 ;  

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN 
CASE y IS 

WHEN S1=>  IF S = '0' THEN y <= S 1 ;  
ELSE y <= S2 ; END IF ; 

WHEN S2 => y <= S3 ; 
WHEN S3 => y <= S4 ; 
WHEN S4 => y <= S5 ; 

. . . continued in Part b 

Figure 10.40 VHDL code for the sort operation (Part a) .  



WHEN S5 => IF BltA = '1' THEN y <= S6 ; 
ELSE y <= S8 ; END IF ; 

WHEN S6 => y <= S7 ; 
WHEN S7 => y <= S 8 ;  
WHEN S8 => 

IF zj = '0' THEN y <= S4 ; 
ELSIF zi = '0' THEN y <= S2 ; 
ELSE y <= S9 ; 
END IF ; 

W H E N S 9 = > I F s =  '1'THENy <= S9;ELSEy <= Sl ;ENDIF;  
END CASE ; 

END IF ; 
END PROCESS ; 
- - define the outputs generated by the FSM 
Int <= '0' WHEN y = S1 ELSE '1' ; 
Done <= ' 1 ' WHEN y = S9 ELSE '0' ; 
FSM-outpnts: PROCESS ( y, zi, zj ) 
BEGIN 

<= '0' ; EI <= '0' ; EJ <= '0' ; Csel <= '0' ; 
<= '0' ; Bin <= '0' ; Aout <= '0' ; Bout <= '0' ; 

CASE y IS 
WHEN $ I  => LI <= '1' ; 
 WHEN;!^^ => Ain <= '1' ; LJ <= ' I '  ; 
WHE*~ s3 => EJ <= '1' ; 
w J & N S ~ = >  Bin <= '1' ;Csel <= '1' ; 
&HEN S5 => - - no outputs asserted in this state 
WHENS6=> Csel <= '1' ; Wr <= '1 '  ;Aout <= ' 1 '  ; 
WHENS7 => Wr <= '1' ;Bout <= ' 1 ' ;  
WHEN S8 => Ain <= '1' ; 

IF z j  = '0' THEN 
EJ <= ' I '  ; 

ELSE 
EJ <= '0' ; 
IF zi = '0' THEN 

EI <= '1' ; 
ELSE 

EI <= '0' ; 
END IF; 

END IF ; 
WHEN S9 => - - Done is assigned 1 by conditional signal assignment 

END CASE ; 
END PROCESS ; 

. . continued in Part c 

Figure 10.40 VHDL code for the sort operation (Part b). 



- - define the datapath circuit 
Zero <= 0 ; 
GenReg: FOR i IN 0 TO 3 GENERATE 

Reg: regne GENERIC MAP ( N => N ) 
PORT MAP ( RData, Resetn, Rin(i j, Clock, R(ij ) ; 

END GENERATE ; 
RegA: regne GENERIC MAP ( N => N ) 

PORT MAP ( ABData, Resetn, Ain, Clock, A ) ; 
RegB: regne GENERIC MAP ( N => N ) 

PORT MAP ( ABData, Resetn, Bin, Clock, B ) ; 
BltA <= '1' WHEN B < A ELSE '0' ; 
ABMux <= A WHEN Bout = '0' ELSE B ; 
RData <= ABMux WHEN WrInit = '0' ELSE DataIn ; 
OuterLoop: upcount GENERIC MAP ( modulus => 4 ) 

PORT MAP ( Resetn, Clock, EI, LI, Zero, Ci ) ; 
InnerLoop: upcount GENERIC MAP ( modulus => 4 ) 

PORT MAP ( Resetn, Clock, EJ, LJ, Ci, Cj ) ; 
CMux <= Ci WHEN Csel = '0' ELSE Cj ; 
IMux <= Cmux WHEN Int = ' 1' ELSE Radd ; 
WITH IMux Select 

ABData <= R(0) WHEN 0, 
R( l )  WHEN 1, 
R(2) WHEN 2, 
R(3) WHEN OTHERS ; 

RinDec: PROCESS ( WrInit, Wr, IMux ) 
BEGIN 

IF (WrInit OR Wr) = ' 1' THEN 
CASE IMux IS 

WHEN 0 => Rin <= "0001" ; 
WHEN 1 => Rin <= "00 10" ; 
WHEN 2 => Rin <= "0100; 
WHEN OTHERS => Rin < = " 1000'' ; 

END CASE ; 
ELSE Rin < = "0000" ; 
END IF ; 

END PROCESS ; 
Zi <= '1' WHEN Ci = 2 ELSE '0' ; 
Zj <= '1' WHEN Cj = 3 ELSE '0' ; 
DataOut <= (OTHERS => 'Z') WHEN Rd = '0' ELSE ABData ; 

END Behavior ; 

Figure 10.40 VHDL code for the sort operation (Part c). 



(a) Lbading the registers and starting the sort operation 

(a) Completing the sort operation and reading the registers 

Figure 10.41 Simulation results for the sort operation. 



R1 (2). State S5 compares B with A, and since B < A, the FSM uses states S6 and $7 to 
swap the contents of registers Ro and RI .  In state S 8 ,  A is reloaded from Ro, which no, 
contains 2. Since zj is not asserted, the FSM increments the counter Cj and changes back 
to state S4. Register B is now loaded with the contents of R2 (4), and the FSM changes to 
state S 5 .  Since B = 4 is not less than A = 2, the machine changes to S8 and then back 
S4. Register B is now loaded with the contents of R3 (I), which is then compared against 
A = 2 in state S5. The contents of Ro and R3 are swapped, and the machine changes to 88. 
At this point, the register contents are Ro = 1, R I  = 3, R: = 4, and R = 2. Since 2, = 1 
and zi = 0, the FSM performs the next iteration of the outer loop by changing to state ~ 2 ,  
Jumping forward in the simulation time, in Figure 10.41b the circuit reaches the state in 
which Ci = 2, C, = 3, and the FSM is in state S8. The FSM then changes to state S9 and 
sets Done to the value 1.  The correctly sorted data is read out of the registers by setting the 
signal Rd = 1 and using the RAdd inputs to select each of the registers. 

Alternative Datapath Circuits 
In Figure 10.37 we use multiplexers to connect the various registers in the datapath 

circuit. Another approach is to use tri-state buffers to interconnect the registers, as illustrated 
in Figure 10.42. As we said in section 7.14, the set of n common wires that connect the 
registers is called a bus. The circuit in Figure 10.42 has two buses, one that connects the 
outputs of registers Ro, . . . , R3 to the inputs of registers A and B and another that connects 
the outputs of A and B back to the inputs of Ro, . . . , When multiplexers provide the 
connection between registers, as shown in Figure 10.37, the term bus can still be used to 
refer to the connection between registers. 

The circuit in Figure 10.42 uses the circuit in Figure 10.38 with one modification. In 
Figure 10.38 the IMux signal is connected to a 2-to-4 decoder that generates Rho,  . . . , Rin3. 
If the circuit in Figure 10.42 is used, then a second decoder connected to IMux is required 
to generate the control signals Routo, . . . , R o ~ l t ~ .  The control circuit described in the ASM 
chart in Figure 10.39 can be used for the datapath circuit in Figure 10.42. 

We said in section 10.2.5 that for large values of k ,  it is better to use an SRAM block 
to store the data, instead of individual registers. The sorting circuit can be changed to make 
use of an SRAM block with k rows and n columns. In this case the datapath circuit is similar 
to the one in Figure 10.37, but does not require the 4-to-1 multiplexers, because the data 
outputs from the SRAM block are connected directly to registers A and B. We still need 
to use the circuit in Figure 10.38, except that the 2-to-4 decoder is not required. because 
the IMux signal is connected to the address inputs on the SRAM block. The write input on 
the SRAM block is driven by the OR gate with the inputs WrInit and Wr. VHDL code can 
be written for the sorting circuit, in which a component that represents the SRAM block is 
instantiated from a library of predefined modules, or VHDL code is provided such that a 
CAD tool can infer the need for a memory block. The code for the control circuit shown in 
Figure 10.40 does not have to be changed (see problem 10.11). 



DataIn 

A - - 
I 

Rino - E Rinl - E Rin, - E Rin3 - E 
> > > > 

4 L 

Routo RoutI Rout2 Routj 

n ,- n ,, n ,- n 
a 

Ain - E Bin - E 
> 

- 
Clock , - 

A #- n 
- O - 

Aout Rd 
< 

DataOut 

Bout BltA 

Figure 10.42 Using tri-state buffers in the datapath circuit. 

In the previous section we provided several examples of circuits that contain many flip-flops. 
In Chapter 9 we showed that to ensure proper operation of sequential circuits it is essential 
to give careful consideration to the timing aspects associated with the storage elements. 
This section discusses some of the timing aspects of synchronous sequential circuits. 

Figure 10.1 shows how an enable input can be used to prevent a flip-flop from changing its 
stored value when an active clock edge occurs. Another way to implement the clock enable 
feature is shown in Figure 10.43. The circuit uses an AND gate to force the clock input to 
have the value 0 when E = 0. This circuit is simpler than the one in Figure 10.1 but can 
cause problems in practice. Consider a sequential circuit that has many flip-flops, some of 
which have an enable input and others that do not. If the circuit in Figure 10.43 is used, 

71 3 



Clock 

E 

Data - 

Figure 10.43 Clock enable circuit. 

then the flip-flops without the enable input will observe changes in the clock signal slightly 
earlier than the flip-flops that have the enable input. This situation, in which the clock signal 
arrives at different times at different flip-flops, is known as clock .skew. Figure 10,43 shows 
only one possible source of clock skew. Similar problems arise in a chip in which the clock 
signal is distributed to different flip-flops by wires whose lengths vary appreciably. 

To understand the possible problems caused by clock skew, consider the datapath 
circuit for the bit-counting example in Figure 10.11. The shift register's LSB, aa, is used 
as a control signal that determines whether or not a counter is incremented. Assume that 
clock skew exists that causes the clock signal to arrive earlier at the shift-register flip-flops 
than at the counter. The clock skew may cause the shift register to be shifted before the 
value of a0 is used to cause the counter to increment. Therefore, the signal EB in Figure 
10.11 may fail to cause the counter to be incremented on the proper clock edge even if the 
value of a0 is 1. 

For proper operation of synchronous sequential circuits, it is essential to minimize the 
clock skew as much as possible. Chips that contain many flip-flops, such as PLDs, use 
carefully designed networks of wires to distribute the clock signal to the flip-flops. Figure 
10.44 gives an example of a clock-distribution network. Each node labeled~ff represents 
the clock input of a flip-flop; for clarity, the flip-flops are not shown. The buffer on the 
left of the figure produces the clock signal. This signal is distributed to the flip-flops such 
that the length of the wire between each flip-flop and the clock source is the same. Due to 
the appearance of sections of the wires, which resemble the letter H, the clock distribution 
network is known as an H tree. In PLDs the term global clock refers to the clock network. A 
PLD chip usually provides one or more global clocks that can be connected to all flip-flops. 
When designing a circuit to be implemented in such a chip, a good design practice is to 
connect all the flip-flops in the circuit to a single global clock. Connecting logic gates to 
the clock inputs of flip-flops, as discussed for the enable circuit in Figure 10.43, should be 
avoided. 

It is useful to be able to ensure that a sequential circuit is reset into a known state when 
power is first applied to the circuit. A good design practice is to connect the asynchrono*s 
reset (clear) inputs of all flip-flops to a wiring network that provides a low-skew reset signal. 
PLDs usually provide a global reset wiring network for this purpose. 

We discussed the timing parameters for storage elements in section 7.3.1. Data to be clocked 
into a flip-flop must be stable t,, before the active clock edge and must remain stable lh  

71 4 
after the clock edge. A change in the value of the output Q appears after the register delay, 



Clock +-I 

ff f f  

Figure 10.44 An H tree clock distribution network. 

t rd .  An output delay time, t , d ,  is required for the change in Q to propagate to an output pin 
on the chip. These timing parameters account for the behavior of an individual flip-flop 
without considering how the flip-flop is connected to other circuitry in an integrated circuit 
chip. 

Figure 10.45 depicts a flip-flop as part of an integrated circuit. Connections are shown 
from the flip-flop's clock, D, and Q terminals to pins on the chip package. There is an input 
buffer associated with each pin on the chip. Other circuitry may also be connected to the 
flip-flop; the shaded box represents a combinational circuit connected to D. The propagation 
delays between the pins on the chip package and the flip-flop are labeled in the figure as 
'Data, t ~ i ~ ~ k ,  and rod. 

In digital systems the output signals from one chip are used as the input signals to 
another chip. Often the flip-flops in all chips are driven by a common clock that has low 
skew. The signals must propagate from the Q outputs of flip-flops in one chip to the D 
Inputs of flip-flops in another chip. To ensure that all timing specifications are met, it is 
necessary to consider the output delays in one chip and the input delays in another. 

71 5 



Data 

Clock 

Chip package pin 

out 

Figure 10.45 A flip-flop in an integrated circuit chip. 
i 

The t,, delay determines how long it takes from when an active clock edge occurs at 
the clock pin on the chip package until a change in the output of a flipflop appears at an 
output pin on the chip. This delay consists of three main parts. The clock signal must first 
propagate from its input pin on the chip to the flip-flop's Clock input. This delay is labeled 
t,-lnck in Figure 10.45. After the register delay trd, the flip-flop produces a new output, which 
takes t,d to propagate to the output pin. An example of timing parameters taken from a 
commercial CPLD chip is tclock = 1.5 ns, trd = 1 ns, and r,,d = 2 ns. These parameters 
give the delay from the active clock edge to the change on the output pin as t,, = 4.5 ns. 

If chips are separated by a large distance, the propagation delays between them must 
be taken into consideration. But in most cases the distance between chips is small. and the 
propagation time of signals between the chips is negligible. Once a signal reaches the input 
pin on a chip, the relative values of t~ , ,  and tcrock (see Figure 10.45) must be considered. 
For example, in Figure 10.46 we assume that toata = 4.5 ns and tclock = 1.5 ns. The setup 
time for the flip-flops in the chip is specified as t,v, = 3 ns. In the figure the Data signal 
changes from low to high 3 ns before the positive clock edge, which should meet the setup 
requirements. The Data signal takes 4.5 ns to reach the flip-flop, whereas the Clock signal 

Clock 

- 1  1-311s 

Figure 10.46 Flip-flop timing in a chip. 



only 1.5 ns. The signal labeled A and the clock signal labeled B reach the flip-flop 
,t the same time. The setup time requirement is violated, and the flip-flop may become 

TO avoid this condition, it is necessary to increase the setup time as seen from 
the chip. 

The hold time for flip-flops is also affected by chip-level delays. The result is usually a 
reduction in the hold time, rather than an increase. For example, with the timing parameters 
inFig~1re 10.46 assume that the hold time is th = 2 ns. Assume that the signal at the Dlitu pin 
on the chip changes value at exactly the same time that an active edge occurs at the Clock 
pin, The change in the Clock signal will reach node B 4.5 - 1.5 = 3 ns before the change 
in Data reaches node A. Hence even though the external change in Data is coincident with 
he clock edge, the required hold time of 2 ns is not violated. 

For large circuits, ensuring that flip-flop timing parameters are properly adhered to is 
a challenge. Both the timing parameters of the flip-flops themselves and the relative delays 
incurred by the clock and data signals must be considered. CAD systems provide tools that 
can check the setup and hold times at all flip-flops automatically. This task is done using 
timing simulation, as well as special-purpose timing-analysis tools. 

In our examples of nchronous sequential circuits, we have assumed that changes in all 
input signals occur s 4 ortly after an active clock edge. The rationale for this assumption is 
that the inputs to on4 circuit are produced as the outputs of another circuit, and the same 
clock signal is use for both circuits. In practice, some of the inputs to a circuit may be 
generated async onously with respect to the clock signal. If these signals are connected 
to the D inpu /' of a flip-flop, then the setup or hold times may be violated. 

When a flip-flop's setup or hold times are violated, the flip-flop's output may assume a 
voltage level that does not correspond to either logic value 0 or 1 .  We say that the flip-flop is 
in a metastable state. The flip-flop eventually settles in one of the stable states, 0 or I ,  but the 
time required to recover from the metastable state is not predictable. A common approach 
for dealing with asynchronous inputs is illustrated in Figure 10.47. The asynchronous data 
input is connected to a two-bit shift register. The output of the first flip-flop, labeled A in 
the figure, will sometimes become metastable. But if the clock period is sufficiently long, 
then A will recover to a stable logic value before the next clock pulse occurs. Hence the 
output of the second flip-flop will not become metastable and can safely be connected to 

Data 
(asynchronous) 

Clock 

Data 
(synchronous) 

Figure 10.47 Asynchronous inputs. 



other pans of the circuit. The synchronization circuit introduces a delay of one clock cycle 
before the signal can be used by the rest of the circuit. 

Commercial chips, such as PLDs, specify the minimum allowable clock period that $, 
to be used for the circuit in Figure 10.47 to solve the metastability problem. In practice, it is 
not possible to guarantee that node A will always be stable before a clock edge occurs. ~ h ,  
data sheets specify a probability of node A being stable, as a function of the clock period 
We will not pursue this issue further; the interested reader can refer to references [lo, 111 
for a more detailed discussion. 

Inputs to a logic circuit are sometimes generated by mechanical switches. A problem with 
such switches is that they bounce away from their contact points when changed from one 
position to the other. Figure 10.48a shows a single-pole single-throw switch that provides 
an input to a logic circuit. If the switch is open, then the Data signal has the value 1 .  When 
the switch is thrown to the closed position, Data becomes 0, but the switch bounces for 
some time, causing Data to oscillate between 1 and 0. The bouncing typically persists for 
about I 0 ms, 

There is no simple way of dealing with the bouncing problem using the single-pole 
single-throw switch. If this type of switch must be used, then a possible solution is to use a 
circuit, such as a counter, to measure an appropriately long delay to wait for the bouncing 
to stop (see problem 10.23). 

A better approach for dealing with switch bouncing is depicted in Figure 10.48b. It 
uses a single-pole double-throw switch and a basic SR latch to generate an input to a logic 
circuit. When the switch is in the bottom position, the R input on the latch is 0 and Data 
= 0. When the switch is thrown to the top position, the S input on the latch becomes 0, 
which sets Data to 1. If the switch bounces away from the top position, the inputs to the 
latch become R = S = 1 and the value Data = 1 is stored by the latch. When the switch 
is thrown to the bottom position, Data changes to 0 and this value is stored in the latch if 
the switch bounces. Note that when a switch bounces, it cannot bounce fully between the 
S and R terminals; it only bounces slightly away from one of the terminals and then back 
to it. 

This chapter has provided several examples of digital systems that include one or more 
FSMs as well as building blocks like adders, registers, shift registers, and counters. We 
have shown how ASM charts can be used as an aid for designing a digital system, and we 
have shown how the circuits can be described using VHDL code. A number of 
issues have been discussed, such as clock skew, synchronization of asynchronous inputs. 
and switch debouncing. Some notable books that also cover the material presented in this 
chapter include [3- 101. 



% Data 

(a) Single-pole single-throw switch 

Data 

(b) Single-pole double-throw switch with a basic SR latch 

Figure 10.48 Switch debouncing circuit. 



C H A P T E R 1 0  DIGITAL SYSTEM UESIGN 
$"- "F 

10.1 The circuit in Figure 10.4 gives a shift register in which the parallel-load control input 
is independent of the enable input. Show a different shift register circuit in which 
parallel-load operation can be performed only when the enable input is also asserted. 

10.2 The ASM chart in Figure 10.10, which describes the bit-counting circuit, includes hloore- 
type outputs in states S 1 ,  S2 ,  and S3, and it has a Mealy-type output in state S 2 .  
(a) Show how the ASM chart can be modified such that it has only Moore-type outputs in 
state S 2 .  
(b) Give the ASM chart for the control circuit corresponding to part (a). 
(c) Give VHDL code that represents the modified control circuit. 

10.3 Figure 10.17 shows the datapath circuit for the shift-and-add multiplier. It uses a shift 
register for B so that bo can be used to decide whether or not A should be added to P .  A 
different approach is to use a normal register to hold operand B and to use a counter and 
multiplexer to select bit bi in each stage of the multiplication operation. 
(a) Show the ASM chart that uses a normal register for B. instead of a shift register. 
(b) Show the datapath circuit corresponding to part (a). 
(c) Give the ASM chart for the control circuit corresponding to part (b). 
(d) Give VHDL code that represents the multiplier circuit. 

1 0.4 Write VHDL code for the divider circuit that has the datapath in Figure 10.23 and the control 
circuit represented by the ASM chart in Figure 10.24, 

10.5 Section 10.2.4 shows how to implement the traditional long division that is done by "hand." 
A different approach for implementing integer division is to perform repeated subtraction 
as indicated in the pseudo-code in Figure P1O.l. 

Q = O ;  
R = A ;  
while ( ( R  - B )  > 0) do 

R = R - B ;  
Q = Q + l ;  

end while ; 

Figure P I  0.1 Pseudo-code for integer division. 

(a) Give an ASM chart that represents the pseudo-code in Figure P10.I. 
(b) Show the datapath circuit corresponding to part (a). 
(c) Give the ASM chart for the control circuit corresponding to part (h). 
(d) Give VHDL code that represents the divider circuit. 
(e) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit 
designed in section 10.2.4. 



In the ASM chart in Figure 10.32, the two states S3 and S4 are used to compute the mean 
M = Surn/k. Show a modified ASM chart that combines states S3 and S4 into a single 
state, called S3. 

Write VHDL code for the FSM represented by your ASM chart defined in problem 10.6. 

In the ASM chart in Figure 10.36, we specify the assignment Cj t Ci in state S2, and 
then in state S3 we increment C, by 1. Is it possible to eliminate state S3 if the assignment 
Cj t Ci + 1 is performed in S2? Explain any implications that this change has on the 
control and datapath circuits. 

Figure 10.35 gives pseudo-code for the sorting operation in which the registers being sorted 
are indexed using variables i and j. In the ASM chart in Figure 10.36, variables i and j are 
implemented using the counters Ci and C,. A different approach is to implement i and j 
using two shift registers. 
(a) Redesign the circuit for the sorting operation using the shift registers instead of the 
counters to index registers Ro, . . . , R3. 
(b) Give VHDL code for the circuit designed in part (a). 
(c) Discuss the relative merits and drawbacks of your circuit in c o m s o n  with the circuit 
that uses the counters Ci and Cj. 

Figure 10.42 shows a datapath circuit for the sorting operation that uses tri-s te buffers to 
access the registers. Using a schematic capture tool draw the schematic in 'gure 10.42. 
Create the other necessary subcircuits using VHDL code and create graphical s mbols that 9 represent them. Describe the control circuit using VHDL code, create a graphical symbol 
for it, and connect this symbol to the datapath modules in the 
result for your circuit implemented in a chip of your 
D for instructions on using the CAD tools. 

Figure 10.40 gives VHDL code for the sorting circuit. Show how to modify this code to 
make use of a subcircuit that represents a k x n SRAM block. Use the lpm-ram-dq module 
for the SRAM block. Choose the synchronous SRAM option so that all changes to the 
SRAM contents are synchronized to the clock signal. (Hint: use the complement of the 
clock signal to synchronize the SRAM operations because this approach allows the VHDL 
code for the FSM shown in Figure 10.40 to be used without changes.) 

Design a circuit that finds the log2 of an operand that is stored in an n-bit register. Show 
all steps in the design process and state any assumptions made. Give VHDL code that 
describes your circuit. 

Figure 10.33 shows a schematic for the circuit that computes the mean operation. Write 
VHDL code that represents this circuit. Use an array of registers instead of an SRAM block. 
For the divider subcircuit, use a shift operation that divides by four, instead of using the 
divider circuit designed in section 10.2.4. 

The circuit designed in section 10.2.5 uses an adder to compute the sum of the contents of 
the registers. The divider subcircuit used to compute M = Sum/k also includes an adder. 



Show how the circuit can be redesigned so that it contains only a single adder subcircuit 
that is used both for the summation operation and the division operation. Show only 
extra circuitry needed to connect to the adder; and explain its operation. 

Give VHDL code for the circuit designed in problem 10.14, including both the datapath 
and control circuits. 

The pseudo-code for the sorting operation given in Figure 10.35 uses registers A and B to 

hold the contents of the registers being sorted. Show pseudo-code for the sorting operation 
that uses only register A to hold temporary data during the sorting operation. Give a 
corresponding ASM chart that represents the datapath and control circuits needed, Use 
multiplexers to interconnect the registers, in the style shown in Figure 10.37. Give a 
separate ASM chart that represents the control circuit. 

Give VHDL code for the sorting circuit designed in problem 10.16. 

In section 7.14.1 we showed a digital system with three registers, R I to R3, and we designed 
a control circuit that can be used to swap the contents of registers R 1 and R2. Give an ASM 
chart that represents this digital system and the swap operation. 

(a) For the ASM chart derived in problem 10.18, show another ASM chart that specifies the 
required control signals to control the datapath circuit. Assume that multiplexers are used 
to implement the bus that connects the registers, as shown in Figure 7.60. 
(b) Write complete VHDL code for the system in problem 10.18, including the control 
circuit described in part (a). 
(c) Synthesize a circuit from the VHDLcode written in part (b) and show a timing simulation 
that illustrates correct functionality of the circuit. 

In section 7.14.2 we gave the design for a circuit that works as a processor. Give an ASM 
chart that describes the functionality of this processor. 

(a) For the ASM chart derived in problem 10.20, show another ASM chart that specifies 
the required control signals to control the datapath circuit in the processor. Assume that 
multiplexers are used to implement the bus that connects the registers, RO to R3, in the 
processor. 
(b) Write complete VHDL code for the system in problem 10.20, including the control 
circuit described in part (a) .  
(c) Synthesize a circuit from the VHDLcode written in part (b) and show a timing simulation 
that illustrates correct functionality of the circuit. 

Consider the design of a circuit that controls the traffic lights at the intersection of two roads. 
The circuit generates the outputs GI,  Y 1, R1 and G2, Y 2, R2. These outputs represent the 
states of the green, yellow, and red lights, respectively, on each road. A light is turned 
on if the corresponding output signal has the value 1. The lights have to be controlled in 
the following manner: when G 1 is turned on it must remain on for a time period called tl 
and then be turned off. Turning off G1 must result in Y 1 being immediately turned on; it 
should remain on for a time period called r l  and then be turned off. When either GI 0s Y1 
is on, R2 must be on and G2 and Y 2  must be off. Turning off Y 1 must result in G2 being 
immediately turned on for the tl time period. When G2 is turned off, Y2 is turned on for 
the t2  time period. Of course, when either G2 or Y 2  is turned on, R1 must be turned on and 
G1 and Y 1 must be off. 



(a) Give an ASM chart that describes the traffic-light controller. Assume that two down- 
counters exist, one that is used to measure the t l  delay and another that is used to measure 
t 2 .  Each counter has parallel load and enable inputs. These inputs are used to load an 
appropriate value representing either the tl or t 2  delay and then allow the counter to count 
down to 0. 
(b) Give an ASM chart for the control circuit for the traffic-light controller. 
(c) Write complete VHDL code for the traffic-light con troller, including the control circuit 
from part (a) and counters to represent tl and t2. Use any convenient clock frequency to 
clock the circuit and assume convenient count values to represent tl and tz. Give simulation 
results that illustrate the operation of your circuit. 

10.23 Assume that you need to use a single-pole single-throw switch as shown in Figure 10.48a. 
Show how a counter can be used as a means of debouncing the Data signal produced by the 
switch. (Hint: design an FSM that has Data as an input and produces the output a,  which is 
the debounced version of Data. Assume that you have access to a Clock input signal with 
the frequency 102.4 kHz, which can be used as needed.) 

10.24 Clock signals are usually generated using special purpose chips. One example of such 
a chip is the 555 programmable timer, which is depicted in Figure P10.2. By choosing 
particular values for the resistors R, and Rb and the c a p a c i m e 5 5  timer can be used 
to produce a desired clock signal. It is possible to choose both the period of the clock signal 
and its duty cycle. The term dun. cycle refers to the percentage of the clock,period for which 

Clock 
(output) 

Figure P10.2 The 555 programmable timer chip. 



the signal is high. The following equations define the clock signal produced by the chip 

Clock period = 0.7(R, + 2Rh)CI 

R, + R h  
Duty cycle = 

R, + 2Rb 

(a) Determine the values of R,, Rb, and C1 needed to produce a clock signal with a 50 
percent duty cycle and a frequency of about 500 kHz. 
(b) Repeat part ( a )  for a duty cycle of 75 percent. 

1. V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization, 5th ed. 
(McGraw-Hill: New York, 2002). 

2. D. A. Patterson and J. L. Hennessy, Computer Organization and Design-The 
Hardware/Software Interface, 2nd ed. (Morgan K a u f m m r a n c i s c o ,  C A, 
1998). 

3. D.  D. Gajski, Principles of Digital Design (Prentice-na~~: Upper Sadae River, NJ, 
1 997). 

4. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamevzt~ls 
(Prentice-Hall: Upper Saddle River, NJ, 1997). 

5. J. P. Daniels, Digital Design fm Zero to One (Wiley: New York, d 6 ) .  

6.  V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital b g i c  Circuit 
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995). 

7. R. H. Katz, Contemporary Logic Design (Benjamin/Cummings: Redwood City, CA, 
1994). 

8. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, M A ,  1993). 

9. C. H .  Roth Jr., Fundamentals of Logic Design, 4th ed. (West: St. Paul, MN, 1993). 

10. J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. (Prentice-Hall: 
Englewood Cliffs, NJ, 1 999). 

11. C. J. Myers, Asynchronous Circuit Design, (Wiley: New York, 2001). 



c h a p t e r  

In this chapter you will be introduced to: 

Various techniques for testing of digital circuits 

Representation of typical faults in a circuit 

Derivation of tests needed to test the behavior of a circuit 

Design of circuits for easy testability 



/ ZO C H A P 1 E R 1 1  lESTING OF LOGIC LIRCUITS %. 

In the previous chapters we have discussed the design of logic circuits. Following a sound design procedure, 
we expect that the designed circuit will perform as required. But how does one verify that the final circuit 
indeed achieves the design objectives? It is essential to ascertain that the circuit exhibits the required functional 
behavior and that it meets any timing constraints that are imposed on the design. We have discussed the timing 
issues in several places in the book. In this chapter we will discuss some testing techniques that can be used 
to verify the functionality of a given circuit. 

There are several reasons for testing a logic circuit. When the circuit is first developed, it is necessary 
to verify that the designed circuit meets the required functional and timing specifications. When multiple 
copies of a correctly designed circuit are being manufactured, it is essential to test each copy to ensure that 
the manufacturing process has not introduced any flaws. It is also necessary to test circuits used in equipment 
that is installed in the field when it is suspected that there may be something wrong. 

The basis of all testing techniques is to apply predefined sets of inputs, called tests, to a circuit and 
compare the outpuls observed with the patterns that a correctly functioning circuit is supposed to produce, 
The challenge is to derive a relatively small number of tests that provide an adequate indication that the circuit 
is correct. The exhaustive approach of applying all possible tests is impractical for large circuits because 
there are too many possible tests. 

A circuit functions incorrectly when there is somethi g wrong with it, such as a transistor i fault or an interconnection wiring fault. Many thing$ can go wrong, leading to a variety of 
faults. A transistor switch can break so that i t  i sdmanent ly  either closed or open. A wire 
in the circuit can be shorted to VDD or to ground, or it can be simply broken. There can be an 
unwanted connection between two wires. A logic gate may generate a wrong output signal 
because of a fault in the circuitry that implements the gate. Dealing with many different 
types of faults is cumbersome. Fortunately, it is possible to restrict the testing process to 

some simple faults, and obtain generally satisfactory results. 

Most circuits discussed in this text use logic gates as the basic building blocks. A good 
model for representing faults in such circuits is to assume that all faults manifest themselves 
as some wires (inputs or outputs of gates) being permanently stuck at logic value 0 or 1. 
We indicate that a wire, w, has an undesirable signal that always corresponds to the logic 
value 0 by saying that w is stuck-at-0, which is denoted as w / O .  If w has an undesirable 
signal that is always equal to logic 1, then w is stuck-at-], which is denoted as w / l .  

An obvious example of a stuck-at fault is when an input to a gate is incorrectly connected 
to a power supply, either Vm or ground. But the stuck-at model is also useful for dealing 
with faults of other types, which often cause the same problems as if a wire were stuck a' 
a particular logic value. The exact impact of a fault in the circuitry that implements a logic 
gate depends on the particular technology used. We will restrict our attention to the stuck-at 
faults and will examine the testing process assuming that these are the only faults that can 
occur. 



A circuit can be faulty because it has either a single fault or possibly many faults. Dealing 
with multiple faults is difficult because each fault can occur in many different ways. A 
pagmatic approach is to consider single faults only. Practice has shown that a set of tests 
that can detect all single faults in a given circuit can also detect the vast majority of multiple 
faults. 

A fault is detected if the output value produced by the faulty circuit is different from 
the value produced by the good circuit when an appropriate test is applied as input. Each 
test is supposed to be able to detect the occurrence of one or more faults. A complete set of 
tests used for a given circuit is referred to as the test set. 

CMOS logic circuits present some special problems in terms of faulty behavior. The 
transistors may fdil in permanently open or shorted (closed) state. Many such failures 
manifest themselves as stuck-at faults. But some produce entirely different behavior. For 
example, transistors that fail in the shorted state may cause a continuous flow of current from 
Vm %ground, which can create an intermediate output voltage that may not be determined 
as either logic 0 or 1. Transistors failing in the open state may lead to conditions where the 
output capacitor retains its charge level because the switch that is supposed to discharge it 
is broken. The effect is that a combinational CMOS circuit starts behaving as a sequential 
circuit, 

Specific techniques for testing of CMOS circuits are beyond the scope of this book. An 
introductory discussion of this topic can be found in references [I-31. Testing of CMOS 
circuits has been the subject of considerable research [4-61. We will assume that a test 
set developed using the stuck-at model will provide an adequate coverage of faults in all 
circuits. 

There is large difference in testing combinational and sequential circuits. Combinational 
circuits can be tested adequately regardless of their design. Sequential circuits present a 
lnuch greater challenge because the behavior of a circuit under test is influenced not only 
by the tests that are applied to the external inputs but also by the states that the cir Y is in when the tests are applied. It is very difficult to test a sequential circuit designed y a 
designer who does not take its testability into account. However, it is possible to design 
Such circuits to make them more easily testable, as we will discuss in section 11.6. We will 
Start by considering the testing of combinational circuits. 

An obvious way to test a combinational circuit is to apply a test set that comprises all 
Possible input valuations. Then it is only necesary to check if the output values produced 
by the circuit are the same as specified in a truth table that defines the circuit. This approach 
works well for small circuits, where the test set is not large, but it becomes totally impractical 

72 7 



for large circuits with many input variables. Fortunately, it is not necessary to apply all 2 n  
vafuations as tests for an n-input circuit. A complete test set, capable of detecting all single 
faults, usually comprises a much smaller number of tests. 

Figure 1 1.1 a gives a simple three-input circuit for which we want to determine the 
smallest test set. An exhaustive test set would include all eight input valuations. This 
circuit involves five wires, labeled a, b, c, d, and f in the figure. Using our fault model, 
each wire can be stuck either at 0 or 1. 

Figure 11. l b enumerates the utility of the eight input valuations as possible tests for 
the circuit. The valuation kcl W2W3 = 000 can detect the occurrence of a stuck-at-1 fault on 
wires a, d, and f .  In a good circuit this test results in the output f = 0. However, if my 
of the faults a /  1, d l  1, or f / 1 occurs, then the circuit will produce f = 1 when the input 
valuation 000 is applied. The test 001 causes f = 0 in the good circuit, and it results in 

(a) Circuit 

(b) Faults detected by the various input valuations 

Figure 1 1 . I  Fault detection in a simple circuit. 

Test 
W l w 2 w 3  

000 

00 1 

010 

011 

100 

101 

110 

11 1 

Fault detected 

f / l  

1/ 
J 
J 

c / l  

J 

f / O  

J 
J 
J 
1/ 
J 

d/O 

1/ 

C/O 

1/ 

d / l  

2/ 
-J 
J 

b / l  

J 

a/O 

1/ 
2/ 
If' 

a l l  

1/ 
J 
V' 

b/O 

J 



f = 1 if any of the faults a /  1, b/ 1, d /  1 ,  or f / 1 occurs. This test can detect the occurrence 
of four different faults. We say that it covers these faults. The last test, 11 1, can detect only 
one fault, f l o -  

A minimal test set that covers all faults in the circuit can be derived from the table by 
inspection. Some faults are covered by only one test, which means that these tests must be 
included in the test set. The fault b/ 1 is covered only by 001. The fault c/ 1 is covered only 
by 010. The faults b/O, c /o ,  and d / O  are covered only by 01 1 .  Therefore, these three tests 
are essential. For the remaining faults there is a choice of tests that can be used. Selecting 
the tests 001, 010, and 01 1 covers all faults except a/O. This fault can be covered by three 
different tests. Choosing 100 arbitrarily, a complete test set for the circuit is 

Test set = {001,010,011, 1001 

The conclusion is that all possible stuck-at faults in this circuit can be detected using four 
tests, rather than the eight tests that would be used if we simply tried to test the circuit using 
its complete truth table. 

The size of the complete test set for a given n-input circuit is generally much smaller 
than 2". But this size may still be unacceptably large in practical terms. Moreover, deriving 
the minimal test set is likely to be a daunting task for even moderately sized circuits. 
Certainly, the simple approach of Figure 11.1 is not practical. In the next section we will 
explore a more interesting approach. 

Deriving a test set by considering the individual faults on all wires in a circuit, as done in 
section 11.2, is not attractive from the practical point of view. There are too many wires 
and too many faults to consider. A better alternative is to deal with several wires that form 
a path as an entity that can be tested for several faults using a single test. It is possible to 
activate a path so that the changes in the signal that propagates along the path have a direct 
impact on the output signal. 

Figure 11.2 illustrates a path from input wl to output f ,  through three gates, which 
consists of wires a,  b, c, and f .  The path is activated by ensuring that other paths in the 
circuit do not determine the value of the output f .  Thus the input wz must be set to 1 so 
that the signal at b depends only on the value at a. The input w3 must be 0 so that it does 

Figure 1 1.2 A sensitized path. 



not affect the NOR gate, and w4 must be 1 to not affect the AND gate. Then if wl = 0 
output will be f = 1, whereas wl = 1 will cause f = 0. Instead of saying that the path 
from wl to f is activated, a more specific term is used in technical literature, which says 
that the path is sensitized. 

To sensitize a path through an input of an AND or NAND gate, all other inputs must 
be set to 1. To sensitize a path through an input of an OR or NOR gate, all other inputs 

- 

must be 0. 
Consider now the effect of faults along a sensitized path. The fault a / O  in Figure 11.2 

will cause f = 1 even if wl = 1. The same effect occurs if the faults b/O or c/ l  are 
present, Thus the test W I W ~ W ~ W ~  = 1101 detects the occurrence of faults a/0 ,  b/O, and 
4 1 .  Similarly, if w l  = 0, the output should be f = 1. But if any of the faults a / l ,  bl l ,  
or C/O is present, the output will be f = 0. Hence these three faults are detectable using 
the test 0101. The presence of any stuck-at fault along the sensitized path is detectable by 
applying only two tests. 

The number of paths in a given circuit is likely to be much smaller than the number 
of individual wires. This suggests that it may be attractive to derive a test set based on the 
sensitized paths. This possibility is illustrated in the next example. 

. I  PATH-SENSITIZED TESTS Consider the circuit in Figure 11.3. This circuit has five paths. 
The path wl - c - f is sensitized by setting w2 = 1 and w4 = 0. It doesn't matter whether 
w3 is 0 or 1, because w;? = 1 causes the signal on wire b to be equal to 0, which forces 
d = 0 regardless of the value of w3. Thus the path is sensitized by setting wzw3w4 = 1x0, 
where the symbol x means that the value of w3 does not matter. Now the tests W I  w2wjwq = 
01x0 and 11x0 detect all faults along this path. The second path, w2 - c - f ,  is tested using 
1000 and 1100. The path w2 - b - d - f is tested using 0010 and 01 10. The tests for the 
path w3 - d - f are xOOO and xO10. The fifth path, w4 - f ,  is tested with 0x00 and 0x01. 
Instead of using all ten of these tests, we can observe that the test 0110 serves also as the 
test 01x0, the test 1100 serves also as I 1x0, the test 1000 serves also as x000, and the test 
0010 serves also as xO 10. Therefore, the complete test set is 

Test set = (0110, 1100, 1000,0010,0x00,0x01} 

w4 - 
Figure 1 1.3 Circuit for Example 1 1 . I .  



while this approach is simpler, it is still impractical for large circuits. But the concept of 
path sensitizing is very useful, as we will see in the discussion that follows. 

Suppose that we suspect that the circuit in Figure 11 -3 has a fault where the wire b is stuck- 
at-l. A test that determines the presence of this fault can be obtained by sensitizing a path 
that propagates the effect of the fault to the output, f ,  where it can be observed. The path 
goes from b to d to f .  It is necessary to set w3 = 1, w4 = 0, and c = 0. The latter can be 

by setting wl = 0. If b is stuck-at-1, then it is necessary to apply an input 
that would normally produce the value of 0 on the wire b, so that the output values in good 
and faulty circuits would be different. Hence w* must be set to 1. Therefore, the test that 
detects the b/ 1 fault is wl W Z W ~ W ~  = 0 1 10. 

In general, the fault on a given wire can be detected by propagating the effect of the 
fault to the output, sensitizing an appropriate path. This involves assigning values to other 
inputs of the gates along the path. These values must be obtainable by assigning specific 
values to the primary inputs, which may not always be possible. Example 11 -2 illustrates 
the process. 

FAULT PROPAGATION As the effect of a fault propagates through the gates along a EJ 
sensitized path, the polarity of the signal will change when passing through an inverting 
gate. Let the symbol D denote a stuck-at-0 fault in general. The effect of the stuck-at-0 
fault will be unaltered when passed through an AND or OR gate. If D is on an input of an 
AND (OR) gate and the other inputs are set to 1 (0), then the output of the gate will behave 
as having D on it. But if D is on an input of a NOT, NAND, or NOR gate, then the output 
will appear to be stuck-at- 1 ,  which is denoted as D. 

Figure 11.4 shows how the effect of a fault can be propagated using the D and D 
symbols. Suppose first that there is a stuck-at-0 fault on wire b; that is, b/O. We want to 
propagate the effect of this fault along the path b - h - f .  This can be done as indicated 
in Figure 11.4b. Setting g = 1 propagates the fault to the wire h. Then h appears to be 
stuck-at- 1,  denoted by D. Next the effect is propagated to f by setting k = 1. Since the last 
NAND also inverts the signal, the output becomes equal to D, which is equivalent to f /O. 
Thus in a good circuit the output should be 1, but in a faulty circuit it will be 0. Next we must 
ascertain that it is possible to have g = 1 and k = 1 by assigning the appropriate values to 
the primary input variables. This is called the consistency check. By setting c = 0, both g 
and k will be forced to 1, which can be achieved with wn = w4 = 1. Finally, to cause the 
Propagation of the fault D on wire b, it is necessary to apply a signal that causes b to have 
'he value I ,  which means that either w l  or w2 has to be 0. Then the test W I W ~ W ~ W ~  = 00 11 
detects the fault b/O. 

Suppose next that the wire g is stuck-at-1, denoted by D. We can try to propagate the 
effect of this fault through the path g - h - f by setting b = 1 and k = 1. To make b = 1, 



(a) Circuit 

(b) Detection of b/O fault 

(c) Detection of g/l fault 

Figure 1 1.4 Detection of faults. 

we set wl = w2 = 0. TO make k = 1, we have to make c = 0. But it is also necessary to 
cause the propagation of the D fault on g by means of a signal that makes g = 0 in the good 
circuit. This can be done only if b = c = 1. The problem is that at the same time we need 
c = 0, to make k = 1. Therefore, the consistency check fails, and the fault g /  1 cannot be 
propagated in this way, 

Another possibility is to propagate the effect of the fault along two paths simultaneously~ 
as shown in Figure 11.4~. In this case the fault is propagated along the paths g - h -f and 



8 - k - f .  This requires setting b = 1 and c = 1, which also happens to be the condition 
needed to cause the propagation as explained above. The test 0000 achieves the desired 
objective of detecting g/1. Observe that if D (or D) appears on both inputs of a NAND 
gate, the output value will be (or D). 

The idea of propagating the effect of faults using path sensitizing has been exploited in 
of methods for derivation of test sets for fault detection. The scheme illustrated 

in Figure 11 -4 indicates the essence of the D-algorithm, which was one of the first practical 
developed for fault detection purposes [7] .  Other techniques have grown from this 

basic approach [81. 

Circuits with a treelike structure, where each gate has a fan-out of 1 ,  are particularly easy 
to test. The most common forms of such circuits are the sum-of-products or product-of- 
sums. Since there is a unique path from each primary input to the output of the circuit, it is 
sufficient to derive the tests for faults on the primary inputs. We will illustrate this concept 
by means of the sum-of-products circuit in Figure 11.5. 

If any input of an AND gate is stuck-at-0, this condition can be detected by setting all 
inputs of the gate to 1 and ensuring that the other AND gates produce 0. This makes f = 1 
in the good circuit, and f = 0 in the faulty circuit. Three such tests are needed because 
there are three AND gates. 

Testing for stuck-at-1 faults is slightly more involved. An input of an AND gate is 
tested for the stuck-at-1 fault by driving it with the logic value 0, while the other inputs of 
the gate have the logic value I .  Thus a good gate produces the output of 0, and a faulty 

Figure 1 1 .S Circuit with a tree structure. 



Stuck-at-0 

tests 

Stuck-at- I 

tests 

Figure 1 1.6 Derivation of tests for the circuit in Figure 1 1.5, 

1 

2 

3 

4 

5 

gate generates 1. At the same time, the other AND gates must have the output of 0, which 
is accomplished by making at least one input of these gates equal to 0. 

Figure 11.6 shows the derivation of the necessary tests. The first three tests are for 
the stuck-at-0 faults. Test 4 detects a stuck-at-1 fault on either the first input of the top 
AND gate or the third inputs of the other two gates. Observe that in each case the tested 
input is driven by logic 0, while the other inputs are equal to 1. This yields the test vector 
W I W ~ W ~ W ~  = 0100. Clearly, it is useful to test inputs on as many gates as possible using a 
single test vector. Test 5 detects a fault on either the second input of the top gate or the first 
input of the bottom gate; it does not test any inputs of the middle gate. The required test 
pattern is 1110. Three more tests are needed to detect stuck-at-1 faults on the remaining 
inputs of the AND gates. Therefore, the complete test set is 

Test set = (1000,0101,0111,0100, 1110, 1001, 1111,0011) 

0 0 0  0 0 1 1  

So far we have considered the task of deriving a deterministic test set for a given circuit. 
primarily relying on the path-sensitizing concept. In general, it is difficult to generate such 
test sets when circuits become larger. A useful alternative is to choose the tests at random, 
which we will explore in this section. 

Figure 11.7 gives all functions of two variables. For an n-variable function, there are 
2 

22" possible functions; hence there are 22 = 16 two-variable functions. Consider the XOR 
function, implemented as shown in Figure 11.8. Let us consider the possible stuck-at-0 and 
stuck-at- 1 faults on wires b, c, d, h, and k in this circuit. Each fault transforms the circuit 

- 

Test 

lu,W2"31Uq 

1 0 0 0  

0 1 0 1  

0 1 1 1  

0 1 0 0  

1 1 1 0  

Product term 
- 
WILUZW9 

0  0 0  

1 1 0  

1 1 1  

1 1 0  

0 1 1  

w1E3i54 

1 1 1  

0  1 0  

0 0 0  

0 1 1  

1 0 1  

w ~ i 5 3 w q  

0  1 0  

1 1 1  

1 0 1  

1 1 0  

1 0 0  



- 
figure 1 1.7 All two-variable functions. 

into a faulty circuit that implements a function other than XOR, as indicated in Figure 11.9. 
To test the circuit, we can apply one or more input valuations to distinguish the good circuit 
from the possible faulty circuits listed in Figure 11.9. Choose arbitrarily wl wz = 01 as the 
first test. This test will distinguish the good circuit, which must generate f = 1, from the 
faulty circuits that realize fo, f2, f3, and fro, because each of these would generate f = 0. 
Next. arbitrarily choose the test wl wz = 11 .  This test distinguishes the good circuit from the 
faulty circuits that realize f5, f7, and fis, in addition to f3, which we have already tested for 
using wlw2 = 01. Let the third test be wl w2 = 10; it will distinguish the good circuit from 
f4 and fi2. These three tests, chosen in a seemingly random way, detect all faulty circuits 
that involve the faults in Figure 11.9. Moreover, note that the first two tests distinguish 
seven of the nine possible faulty circuits. 

This example suggests that it may be possible to derive a suitable test set by selecting 
the tests randomly. How effective can random testing be? Looking at Figure 11.7, we 
see that any of the four possible tests distinguishes the correct function from eight faulty 
functions, because they produce different output values for this input valuation. These 
eight faulty functions detectable by a single test are one-half of the total number of possible 
functions (212-' for the two-variable case). The test cannot distinguish between the correct 
function and the seven faulty functions that produce the same output value. The application 
of the second test distinguishes four of the remaining seven functions because they produce 

Figure 1 1.8 The XOR circuit. 



Figure 1 1.9 The effect of various faults. 

Fault 

b/O 

b / l  

c / o  

c /  1 

d l0  

d l 1  

h l o  
h / l  

k /O  

k l  1 

an output value that is different from the correct function. Thus each application of a 
new test essentially cuts in half the number of faulty functions that have not been detected. 
Consequently, the probability that the first few tests will detect a large portion of all possible 
faults is high. More specifically, the probability that each faulty circuit can be detected by 

Circuit implements 

f5 = 332 
- 

f10 = w2 

f3 = w1 

f 1 2  = El 

fo = 0 

f7 = W l  +w2 

f l 5  = 1 

f 4  = El w2 

f l 5  = 1 

f2 = w1E2 

the first test is 

This is the ratio of the number of faulty circuits that produce an output value different from 
the good circuit, to the total number of faulty circuits. 

This reasoning is readily extended to n-variable functions. In this case the first test 
detects 22"-1 out of a total of 2'" - 1 possible faulty functions. Therefore, if rn tests are 
applied, the probability that a faulty circuit will be detected is 

This expression is depicted in graphical form in Figure 11.10. The conclusion is that random 
testing is very effective and that after a few tens of tests the existence of a fault is likely to 
be detected even in very large circuits. 

Random testing works particularly well for circuits that do not have high fan-in. If 
fan-in is high, then it may be necessary to resort to other testing schemes. For exampley 
suppose that an AND gate has a large number of inputs. Then there is a problem with 
detecting stuck-at-1 faults on its inputs, which may not be covered by random tests. But it 
is possible to test for these faults using the approach described in section 11.4. 



Percent b 
faults 

detected 

Number of tests 

Figure 1 1.10 Effectiveness of random testing. 

The simplicity of random testing is a very attractive feature. For this reason, coupled 
with good effectiveness of tests, this technique is often used in practice. 

As seen in the previous sections, combinational circuits can be tested effectively, using 
either deterministic or random test sets. It is much more difficult to test sequential circuits. 
The presence of memory elements allows a sequential circuit to be in various states, and the 
response of the circuit to externally applied test inputs depends on the state of the circuit. 

A combinational circuit can be tested by comparing its behavior with the functionality 
specified in the tmth table. An equivalent attempt would be to test a sequential circuit 
by comparing its behavior with the functionality specified in the state table. This entails 
checking that the circuit performs correctly all transitions between states and that it produces 
a correct output. This approach may seem easy, but in reality it is extremely difficult. A 
big problem is that it is difficult to ascertain that the circuit is in a specific state if the state 
variables are not observable on the external pins of the circuit, which is usually the case, 
Yet for each transition to be tested, it is necessary to verify with complete certainty that the 
correct destination state was reached. Such an approach may work for very small sequential 
circuits, but it is not feasible for practical-size circuits. A much better approach is to design 
the sequential circuits so that they are easily testable. 

A synchronous sequential circuit comprises the combinational circuit that implements the 
Output and next-state functions, as well as the flip-flops that hold the state information 
during a clock cycle. A general model for the sequential circuits is shown in Figure 8.90. 



The inputs to the combinational network are the primary inputs, wl through w,,, and the 
present state variables, yl through + J * K .  The outputs of the network are the primary outputs 
z,  through z,,, and the next-state variables, YI through Yk. The combinational network' 
could be tested using the techniques presented in the previous sections if it were possible 
to apply tests on all of its inputs and observe the results on all of its outputs. Applying the 
test vectors to the primary inputs poses no difficulty. Also, it is easy to observe the values 
on the primary outputs. The question is how to apply the test vectors on the present-state 
inputs and how to observe the values on the next-state outputs. 

A possible approach is to include a two-way multiplexer in the path of each present-state 
variable so that the input to the combinational network can be either the value of the state 
variable (obtained from the output of the corresponding flip-flop) or the value that is a part 
of the test vector. A significant drawback of this approach is that the second input of each 
multiplexer must be directly accessible through external pins, which requires many pins if 
there are many state variables. An attractive alternative is to provide a connection that allows 
shifting the test vector into the circuit one bit at a time, thus trading off pin requirements 
for the time it takes to perform a test. Several such schemes have been proposed, one of 
which is described below. 

Scan-Path Technique 
A popular technique, called the scan path, uses multiplexers on flip-flop inputs to allow 

the flip-flops to be used either independently during nor~nal operation of the sequential 
circuit, or as a part of a shift register for testing purposes. Figure 11.1 1 presents the general 
scan-path structure for a circuit with three flip-flops. A 2-to-1 multiplexer connects the D 
input of each flip-flop either to the corresponding next-state variable or to the serial path 
that connects all flip-flops into a shift register. The control signal Norm~il/Scun selects the 
active input of the multiplexer. During the normal operation the flip-flop inputs are driven 
by the next-state variables, Y l  , Y2, and Y3.  

For testing purposes the shift-register connection is used to scan in the portion of each 
test vector that involves the present-state variables, yz, and ~ 3 .  This connection has Q, 
connected to Dj+l. The input to the first flip-flop is the externally accessible pin Scan-in. 
The output comes from the last flip-flop, which is provided on the Scan-out pin. 

The scan-path technique involves the following steps: 

1.  The operation of the flip-flops is tested by scanning into them a pattern of 0s and Is, 
for example, 010 1 100 1,  in consecutive clock cycles, and observing whether the same 
pattern is scanned out. 

2. The combinational circuit is tested by applying test vectors on wl w l  . . w,,ylyzy3 and 
observing the values generated on zl z2 - - - z,Y1 Yz Y3.  This is done as follows: 

The ~ 1 ~ 2 ~ 3  portion of the test vector is scanned into the flip-flops during three 
clock cycles, using Norrnul/Scan = 1. 

The wl w2 - - . wn portion of the test vector is applied as usual and the normal 
operation of the sequential circuit is performed for one clock cycle, by setting 
Normal /Scan = 0. The outputs zl zz . . z,,~ are observed. The generated values of 
Y1 Y2Y3 are loaded into the flip-flops at this time. 

The select input is changed to Normul/Scan = I, and the contents of the 
flip-flops are scanned out during the next three clock cycles, which makes the 



Combinational 
circuit 

Clock Scan-in Normal/Scan 

Figure 1 1.1 1 Scan-path arrangement. 

Y l  Y2Y3 portion of the test result observable externally. At the same time, the next 
test vector can be scanned in to reduce the total time needed to test the circuit. 

The next example shows a specific circuit that is designed for scan-path testing. 

Figure 8.80 shows a circuit that recognizes a specific input sequence, which was discussed E x c  
In section 8.9. The circuit can be made easily testable by modifying it for scan path as 
\hewn in Figure 11.12. The combinational part, consisting of four AND and two OR gates, 
1s the same in both figures. 

739 



C H A P T E R 1 1 lESTING OF LOGIC LIRCUITS 

Resetn Clock Normal/Scan 

Figure 1 1.1 2 Circuit for Example 1 1.3. 

The flip-flops can be tested by scanning through them a sequence of 0s and 1s as 
explained above. The combinational circuit can be tested by applying test vectors on w, 
yi, and y2. Let us use the random-testing approach, choosing arbitrarily four test vectors 
WYIYZ = 001, 11 0, 100, and 11 1. To apply the first test vector, the pattern v~ = 01 is 
scanned into the flip-flops during two clock cycles. Then for one clock cycle, the circuit 
is made to operate in the normal mode with w = 0. This essentially applies the vector 
wy~yz = 001 to the AND-OR circuit. The result of this test should be = 0, Y I  = 0, and 
Yz = 0. The value of z can be observed directly. The values of Y, and Y7 are loaded into the 
respective flip-flops, and they are scanned out during the next two clock cycles. As these 
values are being scanned out, the next test pattern ylyz = 10 can be scanned in. Thus it 



takes five cycles to perform one test, but the last two cycles are overlapped with the second 
test. The third and fourth tests are performed in the same way. The total time needed to 

all four tests is 14 clock cycles. 
The preceding approach is based on testing a sequential circuit by testing its cornbina- 

tional part using the techniques developed in the previous sections. The scan-path facility 
it also possible to test the sequential circuit by making it go through all transitions 

specified in the state table. The circuit can be placed into a given state simply by  scanning 
into the flip-flops the valuation of the state variables that denotes this state. The result of 
the transition can be checked by observing the primary outputs and by scanning out the 
valuation that presents the destination state. We leave it to the reader to develop the details 
of this approach (see problem 1 1.16). 

One limitation of the scan-path technique is that it does not work well if the asyn- 
chronous preset and reset features of the flip-flops are used during normal operation. We 
have already suggested that it is better to use synchronous preset and reset. If the designer 
wishes to use the asynchronous preset and reset capability, then a testable circuit can be 
designed using techniques such as the level-sensitive scan design [ I ,  91. The reader can 
consult the references for a description of this technique. 

Until now we have assumed that testing of logic circuits is done by externally applying the 
test inputs and comparing the results with the expected behavior of the circuit. This requires 
connecting external equipment to the circuit under test. An interesting question is whether 
it is possible to incorporate the testing capability within the circuit itself so that no external 
equipment is needed. Such built-in capability would allow the circuit to be self-testable. 
This section presents a scheme that provides the built-in self-test (BIST) capability. 

Figure 11.13 shows a possible BIST arrangement in which a test vector generator 
produces the test vectors that must be applied to the circuit under test. In section 11.5 
we explained that randomly chosen test vectors give good results, with the fault coverage 
depending on the number of tests perfomled. For each test vector applied to the circuit, it is 

vector under result 
generator compressor 

Xn- 1 p m -  1 . . . 
Signature 

Figure 1 1.1 3 The testing arrangement. 



necessary to determine the required response of the circuit. The response of a good circuit 
may be determined using the simulator tool of a CAD system. The expected responses to 
the applied tests must be stored on the chip so that a comparison can be made when the 
circuit is being tested. 

A practical approach for generating the test vectors on-chip is to use pseudorandom 
tests, which have the same characteristics as random tests but are produced deterministically 
and can be repeated at will. The generator for pseudorandom tests is easily constructed 
using a feedback shift-register circuit. A small example of a possible generator is given in 
Figure 1 1.14. A four-bit shift register, with the signals from the first and fourth stages fed 
back through an XOR gate, generates 15 different patterns during successive clock cycles. 
If the shift register is set at the beginning to x3xzxixo = 1000, then the generated patterns 
are as shown in part (b) of the figure. Observe that the pattern 0000 cannot be used, because 
the circuit would be locked in this pattern indefinitely. 

The circuit in Figure 11.14 is representative of a class of circuits known as linear 
feedback shifr registers (LFSRs). Using feedback from the various stages of an n-bit shift 

v 

PRBS 

f 
D Q 

- - Q - 
Clock 

(a) Circuit 

(b) Generated sequence 

Figure 1 1.14 Pseudorandom binary sequence generator (PRBSG). 

1 v 

D Q - D Q D Q-I  

- - Q - 
i - 

- - Q - 
- - 



register, connected to the first stage by means of XOR gates, it is possible to generate a 
sequence of 2" - 1 patterns that have the characteristics of randomly generated numbers. 
sue h circuits are used extensively in error-correcting codes. The theory of operation of these 

is presented in a number of books [I-3, 101. A table of the feedback connections for 
various values of n, which generate a maximum-length pseudorandom sequence, is given 
in Peterson and Weldon [ 1 11. 

The pseudorandom binary sequence generator (PRBSG) gives a simple method of 
oenerating tests. The required response of the circuit under test can he determined by using a 
the simulator tool of the CAD system. The remaining question is how to check whether 
the circuit indeed produces the required response. It is not attractive to have to store a 
large number of responses to the tests on a chip that also includes the main circuit. A 
practical solution is to compress the  results of the tests into a single pattern. This can 
be done using an LFSR circuit. Instead of just providing the feedback signals as the 
input, a compressor circuit includes the output signals produced by the circuit under test. 
Figure 11.15 shows a single-input compressor circuit (SIC), which uses the same feedback 
connections as the PRBSG of Figure 11.14. The input p is the output of a circuit under test. 
After applying a number of test vectors, the resulting values of p drive the SIC and, coupled 
with the LFSR functionality. produce a four-bit pattern. The pattern generated by the STC 
is called a signature of the tested circuit for the given sequence of tests. The signature 
represents a single pattern that may be interpreted as a result of all the applied tests. It can 
be compared against a predetermined pattern to see if the tested circuit is working properly. 
Storing a single n-bit pattern for comparison purposes presents only a small overhead. The 
randomizing nature of the compressor circuits based on LFSRs provides a good coverage 
of patterns that may result from a faulty circuit [12]. 

If the circuit under test has more than one output, then an LSFR with multiple inputs 
can be used. Figure 11.16 illustrates how four inputs, po through p3, can be added to the 
basic circuit of Figure 1 1.14. Again the four-bi t signature provides a good mechanism for 
distinguishing among different sequences of four-bit patterns that may appear on the inputs 
of this multiple-input compressor circuit (MIC). 

Signature 
A 

Figure 1 1 . I  5 Single-input compressor circuit (SIC). 

( I  

1 

1 ,  

- 

- 

I b 

- 

Clock L - - A 

D Q 
- 

> Q 

D Q 
- 

> Q 

- 

- - 

Q 
- 

> Q 

- 

- 
D 

- 

> Q 

Q -  



Signature 

:igure 1 1.16 Multiple-input compressor circuit (MIC). 

A complete BIST scheme for a sequential circuit may be implemented as indicated in 
Figure 11.17. The scan-path approach is used to provide a testable circuit. The test patterns 
that would normally be applied on the primary inputs W = wl wz . . - w, are generated 
internally as the patterns on X = ~1x2  - . . x,. Multiplexers are needed to allow switching 
from W to X,  as inputs to the combinational circuit. A pseudorandom binary sequence 

Figure 1 1.1 7 BIST in a sequential circuit. 

Normal/Tes t 

W 

X 
I 

v" Combinational 
circuit 

z 

Y 

Scan-out 

Flip-flops Y-signature 

multiplexers 



pera to r ,  PRBSG-X, generates the test patterns for X.  The portion of the tests applied 
via the next-state signals, y ,  is generated by  the second PRBS generator, PRBSG-y. These 
patterns are scanned into the flip-flops as explained in section 1 1.6. 

The test outputs are compressed using the two compressor circuits. The patterns on 
the primary outputs, Z = zlz2 - - - z,, are compressed using the MIC circuit, and those 
on the next-state wires Y = Y I  YZ . . . Y k ,  by  the SIC circuit. These circuits produce the 
2-signature and Y-signature, respectively. The testing procedure is the same as given in 
Example 11.3 except that the comparison with the test result that a good circuit is supposed 
to give is done only once; at the end of the testing process the two signatures are com- 
pared with the stored patterns. Figure 11.17 does not show the circuitry needed to store 
these patterns and perform the comparison. Instead of storing the signature patterns of the 
required results as a part of the designed circuit, it is possible to shift out the contents of 
MIC and SIC shift registers onto two output pins and to perform the necessary compari- 
son with the expected signatures externally. Note that using signature testing in this way 
reduces the testing time significantly, compared to the time it would take to test the circuit 
by scanning out the results of individual tests and comparing them with predetermined 
patterns. 

The effectiveness of the BIST approach depends on the length of the LFSR generator 
and compressor circuits. Longer shift registers give better results 1131. One reason for 
failing to detect that the circuit under test may be faulty is that the pseudorandomly generated 
tests do not have perfect coverage of all possible faults. Another reason is that a signature 
generated by compressing the outputs of a faulty circuit may coincidentally end up being 
the same as the signature of the good circuit. This can occur because the compression 
process results in a loss of some information, such that two distinct output patterns may be 
compressed into the same signature. This is known as the aliasing problem. 

The essence of BIST is to have internal capability for generation of tests and for compression 
of the results. Instead of using separate circuits for these two functions, it is possible to 
design a single circuit that serves both purposes. Figure 11.18 shows the structure of a 
possible circuit, known as the built-in logic block observer (BILBO) [14]. This four-bit 
circuit has the same feedback connections as the circuit of Figure 11.14. 

The BILBO circuit has four modes of operation, which are controlled by the mode bits, 
Mi and MZ. The modes are as follows: 

MI M2 = 1 1 -Normal system mode in which all flip-flops are independently controlled 
by the signals on inputs po through p3. In this mode each flip-flop may be used to 
implement a state variable of a finite state machine by using po to p3 as yo to y3. 

' M1M2 = 00 - Shift-register mode in which the flip-flops are connected into a shift 
register. This mode allows test vectors to be scanned in, and the results of applied tests 
to be scanned out, if the control input G/s is equal to I .  If G / s  = 0, then the circuit 
acts as the PRBS generator. 

M 1 M 2  = 10 - Signature mode in which a series of patterns applied on inputs po 
through p3 are compressed into a signature available as a pattern on qo through 9 3 .  

' M I M z  = 01 - Reset mode in which all flip-flops are reset to 0. 

745 





1 1.7 BUILT-IN SELF-'IEST 

An efficient way of using BILBO circuits is presented in Figure 11.19. A combinational 
circuit can be tested by partitioning it into two (or more) parts. A BILBO circuit is used to 
provide inputs to one part and to accept outputs from the other part. The testing process 
involves a two-phase approach. First, BlLBOl is used as a PRBS generator that provides 
test patterns for combinational network 1 (CNI). During this time BILB02 acts as a 
compressor and produces a signature for the test. The signature is shifted out by placing 
BILBO2 into the shift-register mode. Next, the roles of BILBO 1 and BILB02 are reversed, 
and the process is repeated to test CN2. 

The detailed steps in the testing process are 

1. Scan the initial test pattern into BILBO 1 and reset all flip-flops in BILB02. 

2. Use BILBOI as the PRBS generator for a given number of clock cycles and use 
BILB02 to produce a signature. 

3. Scan out the contents of BILB02 and externally compare the signature; then scan 
into it the initial test pattern for testing CN2. Reset the flip-flops in BILBOI. 

4. Use BILB02 as the PRBS generator for a given number of clock cycles and use 
BILBO 1 to produce a signature. 

5. Scan out the signature in BILBOl and externally compare it with the required pattern. 

The BILBO circuits are used in this way for testing purposes. At other times the normal 
system mode is used. 

We have explained the use of signatures in the context of implementing an efficient built- 
in testing mechanism. The main idea of compressing a long sequence of test results into 
a single signature was originally developed as the basis for an instrument manufactured 
by Hewlett-Packard in the 1970s, known as the Signature Analyzer [ 151. Thus the name 
signature analysis was coined to refer to the testing schemes that use signatures to represent 
the results of applied tests. 

Figure 1 1.19 Using BILBO circuits for testing. 

= Scan-out 

Combinational Combinational 
network network -I\m -fi 

t 
Scan-in 

- 
- 
0 



Signature analysis is particularly suitable for digital systems that naturally include 
an ability to generate the desired test patterns. Such is the case with computer systems in 
which various parts of the system can be stimulated by test patterns produced under software 
control. 

The testing techniques discussed in the previous sections are equally applicable to circuits 
that are implemented on single chips or on printed circuit boards that contain a number of 
chips. A circuit can be tested only if it is possible to apply the tests to it and observe the 
outputs produced. This involves having access to the primary inputs and outputs. 

When chips are soldered onto a printed circuit board, it often becomes impossible to 
attach test probes to pins. This hinders the testing process unless some indirect access to the 
pins is provided. The scan-path concept can be extended to the board level to deal with the 
problem. Suppose that each primary input or output pin on a chip is connected through a D 
flip-flop and that a provision is made for a test mode in which all flip-flops can be connected 
into a shift register. Then the test information can be scanned in and scanned out using the 
shift-register path, via two pins that serve as serial input and output. Connecting the serial 
output pin of one chip to the serial input pin of another chip results in the pins of all chips 
being connected into a board-wide shift register for testing purposes. This approach has 
become popular in practice and has been embodied into the IEEE Standard 1149.1 [16]. 

Design and testing techniques presented in this book can be applied to any logic circuit, 
whether the circuit is realized on a single chip or its implementation involves a number 
of chips placed on a printed circuit board (PCB). In this section we discuss some practical 
issues that arise when one or more circuits that form a larger digital system are implemented 
on a PCB. 

A typical PCB contains multiple layers of wiring. When the board is manufactured, the 
wiring pattern on each layer is generdted. The layers are separated by insulating material 
and pressed together in sandwichlike fashion to form the board. Connections between 
different wiring levels are made through holes that are provided for this purpose. Chips 
and other components are then soldered to the top and possibly to the bottom layers. 

In preceding chapters we have discussed in considerable detail the CAD tools used for 
designing circuits that can be implemented on a single chip, such as a PLD, For a multiple- 
chip implementation, we need a different set of CAD tools to design a PCB that incorporates 
the chips and connections needed to realize the complete digital system. Such tools are 
available from a number of companies, for example, Cadence Design Systems and Mentor 
Graphics. These tools can automatically determine where each chip should be placed on 
the PCB, but the designer can also specify the location of particular chips. This is called 
the placement process. Given a specific placement of chips and other components (such 
as connectors and capacitors), the tools generate a layout for each layer of wiring traces 
that provide the required connections on the board. This process is referred to as roufing* 



~ ~ a i n  the designer can intervene and manually route some connections. However, since 
the number of connections can be in the tens of thousands, it is crucial to obtain a good 

solution. 
In addition to the design issues discussed in the previous chapters, a large circuit 

implemented on a PCB is subject to some other constraints. Signals on the wiring traces 
may be affected by noise problems caused by crosstalk, spikes in the power supply voltage, 
and reflections from the end points of long traces. 

Crosstalk 
Two closely spaced wires that run parallel to each other are capacitively coupled, and 

a pulse on one wire can induce a similar (but usually much smaller) pulse on the adjoining 
wire. This is referred to as crosstalk. Its existence is undesirable because it contributes to 
noise problems. 

When drawing timing diagrams, we usually draw ideal wavefonns with sharp edges, 
which have well-defined voltage levels for the logic values 0 and 1. In an actual circuit the 
corresponding signals may depart significantly from the desired behavior. As explained in 
section 3.8.4, noise in a circuit can affect voltage levels, which can be troublesome. For 
example, if at some point in time the noise diminishes the value of a signal that should be 
at logic 1 to a level where this signal is interpreted by the next gate as being logic 0, then a 
malfunction in the circuit is likely to occur. Since the noise effects tend to be random, they 
are often difficult to detect. 

To minimize crosstalk, it is prudent to avoid having long wires running parallel in close 
proximity to each other. This may be difficult to achieve because of limited space on a PCB 
and the need to provide a large number of wires. Using additional layers (planes) of wiring 
helps in coping with crosstalk problems. 

Power Supply Koise 
When a CMOS circuit changes its state, there is a momentary flow of current in the 

circuit, which is manifested as a current pulse on the  power supply (VDD and Grour~d) wires. 
Since a wiring trace on a PCB has a small "line inductance," such a current pulse causes a 
voltage spike (short pulse) on these lines. The cumulative effect of such voltage spikes can 
cause a malfunction of the circuit. 

The induced voltage spikes can be reduced significantly by connecting a small capacitor 
between the VDD and Ground wires, in close proximity to the chip that causes the spikes 
to occur. Since these spikes have the characteristic of a very high frequency signal, the 
path through the capacitor is essentially a short circuit for them. Thus the voltage spikes 
$ 6  bypass" the power supply lines and do not affect other chips connected to the same lines. 
Such capacitors are called bypass capacitors. They do not affect the DC voltage on the 
Power supply lines. 

Large chips, such as PLDs, often require more than one Vm and Ground connection. 
In this case it is advisable to use one bypass capacitor for each pair of VDn and Ground 
pins on the chip. For example, with PLDs the manufacturers recommend using a 0.2 pF 
capacitor for each such pair of pins, placed as close as possible to the PLD chip. 

Reflections and Terminations 

Wiring traces on a PCB act as simple wires in circuits when the clock frequency is 
low. However, at higher clock frequencies it becomes necessary to worry about so-called 



transmissinn-line eflects. When a signal propagates along a long wire, it is attenuated due 
to the small resistance of the wire, it picks up crosstalk that manifests itself as noise, and it 
may be reflected when it reaches the end of the wire. The reflection causes a problem if its 
effect does not die down before the next active clock edge. The discussion of transmission, 
line effects is beyond the scope of this book. We will only mention that the reflection of 
signals can be prevented by placing a suitable "termination" component on the line. This 
termination can be as simple as a resistor whose resistance matches the apparent resistance 
of the line, known as the characteristic impedance of the line. Other forms of termination 
are also possible. For details of such schemes, the reader may consult other references 
[17-181. 

1 1.8.1 TESTING OF PCBs 

The manufactured PCB has to be tested thoroughly. Flaws in the manufacturing process 
may cause some connections to be broken and others to be shorted by a solder blob that 
touches two adjacent wires. There may be problems caused by design errors that were not 
discovered during the design process. Finally, some chips and other components on the 
PCB may be defective. 

Power Up 
The first step is to turn on the power supply. In the worst case this may cause some 

chip to be destroyed because of a fatal short-circuit condition (in an extreme case a chip 
package may actually blow apart). Assuming that this is not the case, it is essential to check 
if any of the chips is becoming inordinately hot. Overheating is a symptom of a serious 
problem that must be corrected. 

It is also necessary to check that the power and ground connections are properly made 
on each chip and that the voltage level is as specified. 

Reset 
The next step is to reset all circuitry on the PCB to reach a predetermined starting 

point. This typically implies resetting the flip-flops, which is usually achieved by asserting 
a common reset line. It is important to verify that the starting state is correctly established. 

Low-Level Functional Testing 
Since practical circuits can be extremely complex, it  is prudent to test the basic func- 

tionality first. A key test is to verify that the control signals are working correctly. 
Using the divide-and-conquer approach, simple functions are tested first, followed by 

the more complex ones. 

Full Functional Testing 
Having verified the operation of smaller subcircuits, it is necessary to test the func- 

tionality of the entire system on the PCB. The number of errors often depends on the 
thoroughness of the simulation done during the design process. In general, it is difficult 
to simulate large digital systems fully, so some errors are likely to be found on the PCB* 
Typical errors are due to 



Manufacturing errors, such as wrong wiring traces, blown components, or incorrect 
power supply voltage. 

+ Incorrect specifications. 

+ Designer's misinterpretation of information on the data sheets that describe some chips. 

Incorrect information on the data sheets provided by the chip manufacturer. 

AS mentioned earlier, PCBs contain multiple layers of wiring. Each layer may have several 
thousands of wires in it. Finding and fixing errors can be a difficult and time-consuming 
task. especially if errors involve wires in internal (as opposed to the top or bottom) wiring 
layers. 

Timing 
It is next necessary to verify the timing of the circuit. A good strategy is to start with 

slow clock. If the circuit works properly, then the clock frequency is gradually increased 
llntil the required operating frequency is reached. 

Tlming problems arise because of propagation delays through various paths in a circuit. 
These delays are caused by the logic gates and the wiring that interconnects them. It is 
ssstntial to ensure that all data inputs to flip-flops in the circuit are stable before the active 
edge of the clock signal arrives, as required by the setup time. 

Reliability 
A digital system is expected to operate reliably for a long time. Its reliability may be 

affected by several factors, such as timing, noise, and crosstalk problems. 
The timing of signals has to provide some safety margin to allow for small changes in 

propagation delays. If the timing is too tight, then it is likely that the circuit will operate 
correctly for some period of time, but will eventually fail because of a timing error. The 
timing of chips may change with temperature, so failures can occur if thermal constraints 
are not adhered to. Cooling is usually provided by means of fans. 

Testing of circuits implemented in PCBs requires some specialized instruments. 

Oscilloscope 

The details of individual signals can be examined using an oscilloscope, This instru- 
ment displays the voltage waveform of a signal, showing the potential problems with respect 
to propagation delay and noise. The waveform displayed on an oscilloscope shows the ac- 
tual voltage levels of the signal; it does not depict the simplified view of ideal waveforms 
that have perfectly square edges. If the user wants to see only the logic values of a signal 
(0 or l),  then a different type of instrument called a logic analyzer can be used. 

Logic Analyzer 
While an oscilloscope allows simultaneous examination of a few signals, a logic an- 

alyzer allows examination of tens or even hundreds of signals at the same time. It takes 
Inputs from a set of points in the circuit, by means of probes attached to these points, and 



digitizes and displays the detected signals in the form of waveforms on a screen. A powerful 
feature of the logic analyzer is that it has internal storage capable of recording a sequence 
of changes in the signals over a substantial period of time. Then any segment of this infor- 
mation can be displayed as desired by the operator. Qpically, it is possible to record a few 
milliseconds' worth of events, which involves many cycles of a normal digital clock. 

Looking at the waveforms taken when the circuit under test is working properly is not 
helpful in the debugging process. It is essential to see the waveforms generated when a 
malfunction takes place. The logic analyzer can be "triggered" to record a window of events 
that occurred before and after the trigger event. The user must specify the trigger event, 
For example, suppose that a malfunction is suspected to be caused by two control signals, 
A and B, being asserted at the same time, even though the design specification requires that 
these signals be mutually exclusive. A useful trigger point can then be established as the 
time when the AND of A and B has the value 1 .  Finding suitable trigger events can be 
difficult, and the user must rely on intuition and experience. 

To use a logic analyzer effectively, it must be possible to connect the probes to some 
useful (for testing purposes) points in the circuit. Thus it is important to provide such "test" 
points when a PCB is being designed. 

Manufactured products must be tested to ensure that they perform as expected. All of the 
techniques discussed in this chapter are relevant for this type of testing. The development 
of tests and the required responses is based on the assumption that the circuits are designed 
correctly. Thus it  is the validity of the physical implementation that is being tested. 

Another aspect of testing occurs during the design process. The designer has to ascertain 
that the designed circuit meets the specifications. From the testing point of view, this poses 
a significant problem because there exists no provably good circuit that can be used to 
generate the desired tests. CAD tools are helpful in deriving tests for a designed circuit, but 
they cannot determine whether the circuit is indeed what the designer intended to achieve 
in terms of its functionality. A design error usually results in a circuit that has somewhat 
different functionality than required by the specification. 

Small circuits can be tested fully to verify their functionality. A combinational circuit 
can be tested to see if it performs according to its truth table. A sequential circuit can be 
tested by checking the transitions specified in the state table. This is much easier to do if the 
circuit is designed for testability, as explained in section 1 1.6.1. Large circuits cannot be 
tested exhaustively, because a vast number of tests would have to be applied. In this case 
the designer's ingenuity is needed to determine a manageable set of tests that will hopefully 
demonstrate the correctness of the circuit. 

1 1 1 Derive a table similar to Figure 11.1 b for the circuit in Figure P1l.l to show the coverage 
of the various stuck-at-0 and stuck-at-1 faults by the eight possible tests. Find a minima1 
test set for this circuit. 

752 



Figure P 1 1 . I  Circuit for problem 1 1 . I  . 

1 1.2 Repeat problem 11.1 for the circuit in Figure P11.2. 

Figure P 1 1.2 Circuit for problem 1 1.2. 

* 1 1.3 Devise a test to distinguish between two circuits that implement the following expressions 

g = (31 + ~ 2 ) ( ~ 3  +x4) 

1 1.4 Consider the circuit in Figure P11.3. Sensitize each path in this circuit to obtain a complete 
test set that comprises a minimum number of tests. 

Figure P I  1.3 Circuit for problem 1 1.4. 

* 1 1.5 For the circuit of Figure 11.4a, show the tests that can detect each of the faults: wl/O, w4/ 1, 
g /0, and c /  1. 



1 1.6 Suppose that the tests wlw*w,w4 = 0100, 1010,0011, 11 11, and01 10 are chosen randomly 
to test the circuit in Figure 11.3. What percentage of single faults are detected using these 
tests? 

1 1.7 Repeat problem 11.6 for the circuit in Figure 1 1 . 4 ~ .  

1 1.8 Repeat problem 11.6 for the circuit in Figure 11.5. 

* 1 1.9 Consider the circuit in Figure P11.4. Are all single stuck-at-0 and stuck-at-1 faults in this 
circuit detectable? If not, explain why. 

Figure P I  1.4 Circuit for problem 1 1.9. 

1 1 . lo  Prove that in a circuit in which all gates have a fan-out of 1, any set of tests that detects all 
single faults on the input wires detects all single faults in the entire circuit. 

* 1 1 .1 1 The circuit in Figure P11.5 determines the parity of a four-bit data unit. Derive a minimal 
test set that can detect all single stuck-at-0 and stuck-at-1 faults in this circuit. Would your 
test set work if the XOR gates are implemented using the circuit in Figure 4.26c? Can your 
result be extended to a general case that involves n-bit data units? 

Figure PI 1.5 Circuit for problem 1 1.1 1. 

b 1 1.12 Derive a test set that can detect all single faults in the decoder circuit in Figure 6.16~. 

1 1.13 List all single faults in the circuit in Figure 11.Q that can be detected using each of the tests 
W I W ~ W ~ W ~  = 1100,0010, and 0110. 



1 1.1 4 Sensitize each path in the combinational part of the circuit in Figure 11.12 to obtain a 
complete test set that comprises as few tests as possible. Show how your test set can be 
applied to test this circuit. How many clock cycles are needed to perform the necessary 
tests? 

1 1.1 5 Derive an ASM chart that represents the flow of control needed to test the circuit in Figure 
11.12. 

1 1 .16 The circuit in Figure 1 1.1 2 provides an easily testable implementation of the FSM in Figure 
8.81. In Example 1 1.3 we showed how this circuit may be tested by testing thecombinational 
part using randomly chosen tests. A different approach to testing may be to attempt to 
determine whether the circuit actually realizes the functionality specified in the state table 
in Figure 8.81b. This can be done by making the circuit go through all transitions given 
in the state table. For example, after applying the Rrsetn = 0 signal, the circuit begins in 
state A. It must be verified that the circuit is indeed forced into state A by scanning out 
the expected valuation yzyl = 00. Next each transition must be checked. To verify the 
transition A + A if w = 0, it is necessary to make the input w equal to 0 and allow the 
normal operation to take place for one clock cycle by making Normal /Scan = 0. The value 
of the output z must be observed. This is followed by scanning out the values of y2 and yl 

to see if y2y1 = 00. At the same time, the valuation for the next test should be scanned in. 
If this test involves verifying that B -+ A if w = 0, then the valuation y2y1 = 01 is scanned 
in. This process continues until all transitions have been verified. 
Indicate in the form of a table the values of the signals Norrnal/Scan, Scan-in, Scan-out, 
w, and z ,  as well as the transition tested, for each clock cycle necessary to perform the 

. . 
'--' complete test for this circuit. 

1 1.1 7 Write VHDL code that represents the circuit in Figure 11.12. 

1 1.1 8 Derive an ASM chart that describes the control needed to test a digital system that uses the 
BiLBO structure in Figures 11.18 and 1 1.19. 

1 .  A. Miczo, Digital Logic Testing and Simulation (Wiley: New York, 1986). 

2. P. K. Lala, Practical Digital Logic Design and Testing (Prentice-Hall: Englewood 
Cliffs, NJ, 1996). 

3. F. H. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on 
VLSI, 4th ed. (Wiley: New York, 1993)- 

4. Y. M, El Ziq, "Automatic Test Generation for Stuck-Open Faults in CMOS VLSI," 
Proc. 18th Design Automation Conf., 198 1, pp. 347-54. 

5 .  D. Baschiera and B. Courtois, "Testing CMOS: A Challenge," VLSI Design, October 
1984, pp. 58-62. 

6. P. S. Moritz and I,. M. Thorsen, "CMOS Circuit Testability," IEEE Journal of Solid 
State Circuits SC-21 (April 1986), pp. 3069. 



7. J. P. Roth et al., "Programmed Algorithms to Compute Tests to Detect and 
Distinguish Between Failures in Logic Circuits," IEEE Transactions on Computers 
EC-16, no. 5, (October 19671, pp. 567-80. 

8. J. Abraham and V. K. Agarwal, "Test Generation for Digital Systems," in D. K. 
Pradhan, Fault-Tolerant Computing, vol. 1, (Prentice-Hall: Englewood Cliffs, NJ, 
1986). 

9. T. W. Williams and K. P. Parker, "Design for Testability-a Survey," IEEE 
Transactions on Cornp~iters C-3 1 (January 1982), pp. 2-15. 

10. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit 
Analvsis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995). 

11. W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes, 2nd ed. (MIT Press: 
Boston, MA, 1972). 

12. J. E. Smith, "Measures of Effectiveness of Fault Signature Analysis," IEEE 
Transactions on Computers C-29, no. 7 (June 1980), pp. 5 10-4. 

13. R. David, "Testing by Feedback Shift Register," IEEE Transactions on Computers 
C-29, no. 7 (July 1980), pp. 668-73. 

14. B. Koenemann, J. Mucha, and G. Zwiehoff, "Built-In Logic Block Observation 
Techniques," Proceedings 1977 Test Conference, IEEE Pub. 79CH1609-9C, October 
1979, pp. 3 7 4  1. 

15. A. Y. Chan, "Easy-to-Use Signature Analyzer Accurately Troubleshoots Complex 
Logic Circuits," Hewlett-Packard Journal, May 1997, pp. 9-1 4. 

16. Test Access Port and Boundary-Scan Architecture, IEEE Standard 1149.1, May 1990. 

17. High-Speed Board Designs, Application Note 75, Altera Corporation, January 1998. 

18. L. Y. Levesque, "High-Speed Interconnection Techniques," Technical Report, Texas 
Instruments Inc., 1994. 



c h a p t e r  

In this chapter you will learn how CAD tools can be used to design 
and implement a logic circuit. The discussion deals with the synthesis 
and physical design stages in a typical CAD system, including 

Netlist extraction 

Technology mapping 

Placement 

Routing 

Static timing analysis 



W e  introduced CAD tools in section 2.9, and have discussed them briefly in other chapters. The word tool 
in this context means a software program that allows a user to perform a particular task. In this chapter 
describe some of the tools in a typical CAD system in more detail, by showing how a small design example 
is processed and optimized as it passes through different stages in the CAD flow, 

Figure 12.1, which is reproduced from Figure 2.29, gives an overview of a CAD system. A 
description of the desired circuit is prepared, usually in the form of a hardware description 
language like VHDL. The VHDL code is then processed by the synthesis stage of the CAD 
system. Synthesis is the process of generating a logic circuit from the user's specification. 
Figure 12.2 shows three typical phases that are found in the synthesis process. 

The netlist generation phase checks the syntax of the code, and reports any errors such as 
undefined signals, missing parentheses, and wrong keywords. Once all errors are fixed a 
circuit netlist is generated as determined by the semantics of the VHDL code. The netlist 
uses logic expressions to describe the circuit, and includes components such as adders, 
flip-flops, and finite state machines. 

The next phase is gute optimization, which performs the kinds of logic optimizations de- 
scribed in Chapter 4. These optimizations manipulate the netlist to obtain an equivalent, 
but better circuit according to the optimization goals. As we said in section 2.9.2, the mea- 
surement of what makes one circuit better than another may be based on the cost of the 
circuit, its speed of operation, or a combination of both. 

As an example of results produced by the synthesis phases discussed so far, consider 
the VHDL code for the addersubtractor entity in Figure 12.3, which specifies a circuit that 
can add or subtract n-bit numbers and accumulate the result in a register. From this code 
the synthesis tool produces a netlist that corresponds to the drcuit in Figure 12.4. The illput 
numbers, A = ao, . . . , a,,-1 and B = bo, . . . , b,,-l, are placed into registers Areg and Breg 
prior to being used in addition or subtraction operations. These registers synchronize the 
operation of the circuit if A and B are externally provided asynchronous inputs. The control 
input Sel determines the mode of operation. If Sel = 0, then A is selected as an input to 
the adder; if Sel = 1, then the result register Zreg is selected. The control input ~ d d S ~ l ~  
determines whether the operation is addition or subtraction. The Rip-flops in Figure 12.4for 
registers A, B, Sel, AddSub, and Ove$ow are inferred from the code at the bottom of Figure 
1 2 . 3 ~ .  Multiplexers are produced from the mirdtol entity in Figure 12.3b, and an adder 
is generated from the adderk entity in Figure 12 .3~.  The exclusive-OR gates connected to 



Design conception e 
DESIGN ENTRY 

Schematic capture 5' 
Synthesis SJ 

Functional simulation a 
I 

Physical design 

I 

Timing simulation 

Yes 1 
Chip configuration fi 

Figure 12.1 A typical CAD system. 



C A P T E R 12 COMPUTER AIDED UESIGN lOOLS 

Figure 12.2 The stages included in a synthesis tool. 

Synthesis 
1 

Netlist Generation 

I 

register B, and the XOR function for the OveMow output are generated from the code at 
the end of the adders~ibtractor entity. 

Gate Optimization 

The final phase of synthesis is technology mapping. This phase determines how each corn- 
ponent in the netlist can be realized in the resources available in the target chip. To see the 
results of technology mapping assume that we have selected an FPGA for implementation of 
our example circuit. We showed in section 3.6.5 that an FPCA contains a two-dimensional 
array of logic blocks. Figure 3.38 gives a diagram of a simple logic block that contains 
a three-input lookup table (LUT) and a flip-flop. The block has one output, which can be 
selected from either the LUT or the flip-flop. 

A more flexible logic block is depicted in Figure 12 .5~ .  It contains a four-input LUT 
and a flip-flop, and has two outputs. A multiplexer is provided to allow loading of the 
flip-flop from the LUT or directly from input In3. Another multiplexer allows the stored 
value in the flip-flop to be fed back to one input of the LUT. There are a number of different 
ways, or modes, in which this logic block can be used. The most straightforward choice is 
to implement a function of up to four inputs in the LUT, and store this function's value in 
the flip-flop; both the LUT and flip-flop can provide outputs from the logic block. Pans 
to e of the figure illustrate four other modes of using the block. In parts b and c only the 

LUT or the flip-flop is used, but not both. In part d only the LUT provides an output of the 
logic block, and one of the LUT's inputs is connected to the flip-flop. 

I 

+ 
Technology Mapping 

. 

I 



LIBRARY ieee ; 
USE ieee.stdAogic-l164.all ; 

ENTITY addersubtractor IS 
GENERIC ( n : INTEGER := 16 ) ; 
PORT ( A, B : IN STD-LOGIC_VECTOR(n- 1 DOWNT( 

Clock, Reset, Sel, AddSub : IN STD-LOGIC ; 
Z : BUFFER STD- LOGIC-VECTOR(n- 1 DOWNT( 
Overflow : OUT STD-LOGIC ) ; 

END addersubtractor ; 

ARCHITECTURE Behavior OF addersubtractor IS 
SIGNAL G ,  H, M, Areg, Breg, Zreg, AddSubR-n : STD-LOGIC-VECTOR(n-1 DOWN 
SIGNAL SelR, AddSubR, carryout, overflow : STD-LOGIC ; 
COMPONENT mux2tol 

GENERIC ( k : INTEGER := 8 ) ; 
PORT ( V, W : IN STD-LOGIC-VECTOR(k-1 DOWNTO 0) ; 

Sel : IN STD-LOGIC ; 
F : OUT STD-LOGIC-VECTOR(k - 1 DOWNTO 0) ) ; 

END COMPONENT ; 
COMPONENT adderk 

GENERIC ( k : INTEGER := 8 ) ; 
PORT ( carryin : IN STD-LOGIC ; 

x, y : IN STD-LOGIC-VECTOR(k - 1 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(k -1 DOWNTO 0) ; 
carryout : OUT STD-LOGIC ) ; 

END COMPONENT ; 
BEGIN 

PROCESS ( Reset, Clock ) 
BEGIN 

IF Reset = ' 1 ' THEN 
Areg <= (OTHERS => '0'); Breg <= (OTHERS => '0'); 
Zreg c= (OTHERS => '0'); SelR <= '0'; AddSubR c= '0'; Overflow <= 

ELSIF Clock' EVENT AND Clock = ' 1 ' THEN 
Areg <= A; Breg <= B; Zreg <= M; 
SelR <= Sel; AddSubR <= AddSub; Overflow <= over-flaw; 

END IF ; 
END PROCESS : 

. . . continued in  Part b 
Figure 1 2.3 VHDL code for an accumulator circuit (Part a).  

In Chapter 5 we said that FPGAs often contain dedicated circuitry for implementation 
of fast adder circuits. Figure 12.5e shows one way in which such circuitry can be realized. 
The LUT is used in two halves, where one half produces the sum function of three LUT 
inputs and the other half produces the carry function of these inputs (recall from section 
3.6.5 that a four-input LUT is built by using two three-input LUTs). The sum function can 
Provide an output of the block or be stored in the flip-flop, and the carry function provides a 
Special output signal. This carry output connects directly to a neighboring logic block that 
uses it as a carry input. This block in turn generates the next stage of carry output, and so 



nbit-adder: adderk 
GENERIC MAP ( k => n ) 
PORT MAP ( AddSubR, G ,  H, M, carryout ) ; 

multiplexer: mux2to 1 
GENERIC MAP ( k => n ) 
PORT MAP ( Areg, Z ,  SelR, G ) ; 

A d d S u b R ~  <= (OTHERS => AddSubR) ; 
H <= Breg XOR AddSubR-n ; 
overflow <= carryout XOR G(n-1) XOR H(n- 1)  XOR M(n-1) ; 
Z <= Zreg ; 

END Behavior; 

LIBRARY ieee ; 
USE ieee-stdlogic-l164.all ; 

ENTITY mux2tol IS 
GENERIC ( k : INTEGER := 8 ) ; 

PORT ( V, W : IN STD-LOGIC-VECTOR(k- 1 DOWNTO 0) ; 
Sel : IN STD-LOGIC ; 
F : OUT STD-LOGIC-VECTOR(k- 1 DOWNTO 0) ) ; 

END mux2to l ; 

ARCHITECTURE Behavior OF mux2tol IS 
BEGIN 

PROCESS ( V, W, Sel) 
BEGIN 

IF Sel = '0' THEN - . -.-. A- 

F < = V ;  
ELSE 

F < = W ;  
END IF ; 

END PROCESS ; 
END Behavior ; 

. . . continued in Part c 

Figure 12.3 VHDL code for an accumulator circuit (Part 6) .  

on. In this way, direct connections between neighboring logic blocks are used to form fast 
cany chains. 

Figure 12.6 shows a part of the results of technology mapping for the netlist !generated 
for Figure 12.4. Each logic block is highlighted with a blue square, and has a label on the 
lower left corner that indicates which mode in Figure 12.5 is being used. The figure shows 
bit ho from Figure 12.4, which is produced by a logic block in mode d .  This block uses 
a flip-flop to store the value of primary input br), and implements an XOR function in its 
LUT, which is needed in subtraction operations to complement the number B. One input of 
the XOR is provided by the logic block in mode c that stores in a flip-flop the value ofthe 
AddSub input. This flip-flop also drives 15 other logic blocks that implement h l ,  . . . , hi57 

but these blocks are not shown in the figure. 



LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 
USE ieee.std_logic-signed.al1 ; 

ENTITY adderk IS 
GENERIC ( k : INTEGER := 8 ) ; 
PORT ( carryin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(k- 1 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(k- 1 DOWNTO 0) ; 
carryout : OUT STD-LOGIC ) ; 

END adderk ; 

ARCHITECTURE Behavior OF adderk IS 
SIGNAL Sum : STD-LOGIC-VECTOR(k DOWNTO 0) ; 

BEGIN 
Sum <= ('0' & X) + Y + carryin ; 
S <= Sum(k- 1 DOWNTO 0) ; 
carryout < = Sum(k) ; 

END Behavior ; 

Figure 12.3 VHDL code for an accumulator cicruit (Part c). 

The AddSub flip-flop is connected to the caw-in of the first logic block in the adder. 
This block uses mode e to produce sum and carry outputs. The sum is stored in a flip-flop 
that produces zo, and the carry feeds the next stage of the adder. The figure shows the carry 
function in the form 

This expression is functionally equivalent to the one used in Chapter 5 ,  which has the form 
cl = coho + cog0 + hogo, but it represents more closely how the carry chain is built in an 
FPGA. The last logic block of the adder in Figure 12.6 does not use its flip-flop, because 
the sum output has to be connected directly to the logic block that implements the Overflow 
signal. The sum output cannot be provided from both the combinational and registered 
outputs concurrently, so a separate logic block in mode c is needed for the 215 signal. 

Figure 12.6 shows only a few of the logic blocks that a technology mapping tool would 
create for implementing our circuit. In general, there are many different ways in which 
technology mapping can be done, and each method will lead to equivalent, but different 
circuits. The reader can consult references [l-31 for a detailed discussion of technology 
mapping approaches. 



I a * .  I 
n-bit register n-bit register 

Areg = areg, - I 1 arego I Breg = breg, - I 

.= h 1 I 
n-bit adder carryin 

n-hi t register Zreg 

overJow Zreg = zreg,  - I Irego 

! 12.4 Circuit specified by the code in Figure 12.3. 

The next stages following synthesis in Figure 12.1 are functional simulation and physical 
design. As we said in section 2.9, functional simulation involves applying test patterns to 
the synthesized netlist and checking to see if it produces the correct outputs. The sirnulation 
assumes that there are no propagation delays in the circuit, because the intent is to evaluate 



(a) An FPGA logic element. 

(b) Combinational mode (c) Synchronous mode 

(d) Synchronous feedback mode (e) Arithmetic (synchronous) mode 

Figure 12.5 Different modes of an FPGA logic block. 

the basic functionality rather than timing. The netlist used by a functional simulator could 
be either the version before technology mapping, or after. An example of performing 
functional simulation using the software included with the book is provided in Appendix 
B, and we will not discuss it further here. 

Once the netlist produced by synthesis is functionally correct, the physical design 
stage can be performed. This stage determines exactly how the synthesized netlist will be 
implemented in the target chip. As illustrated in Figure 12.7, three phases are involved: 
placement, routing, and static timing analysis. 





Figure 12.7 Phases in physical design. 

Physical Design 

The placement phase chooses a location on the target device for each logic block in the 
technology-mapped netlist, An example of a placement result is given in Figure 12.8. It 
shows an array of logic blocks in a small portion of an FPGA chip. The white squares 
represent unoccupied blocks and the grey squares show the placement of blocks that irnple- 
ment the circuit of Figure 12.4. There is a total of 53 logic blocks in this circuit, inchding 
the ones shown in Figure 12.6. Also shown in Figure 12.8 is the placement of some of the 
primary inputs to the circuit, which are assigned to pins around the chip periphery. 

To find a good placement solution a number of different locations have to be considered 
for each logic block. For a large circuit, which may contain tens of thousands of blocks, 
this is a hard problem to solve. To appreciate the complexity involved, consider how many 
different placement solutions are possible for a given circuit, Assume that the circuit has 
N logic blocks. and it is to be placed in an FPGA that also contains exactly N blocks. A 
placement tool has N choices for the location of the first block that it selects. Their remain 
N - 1 choices for the second block, N - 2 choices for the third, and so on. Multiplying 
these choices gives a total of ( N ) ( N  - 1) . - (1) = N! possible placement solutions. For 
even moderate values, N! is a huge number, which means that heuristic techniques must be 
used to find a good solution while considering only a small fraction of the total number of 
choices. A typical commercial placement tool operates by constructing an initial placement 
configuration and then moving logic blocks to different locations in an iterative manner. 
For each iteration the quality of the solution is assessed by using metrics that estimate the 

Y 

Placement 

Routing 

I 
Static Timing Analysis 



Figure 12.8 Placement of the circuit in Figure 12.6. 

speed of operation of the implemented circuit, or its cost. The placement problem has been 
studied extensively and is described in detail in references [4-71. 

Once a location in the chip is chosen for each logic block in a circuit, the routing phase 
connects the blocks together by using the wires that exist in the chip. An example of a 
routing solution for the placement in Figure 12.8 is given in Figure 12.9. In addition to 
showing the logic blocks, this figure also displays some of the wires in the chip. Wires 



- iC1  ' t.. 2 

" - 
Figure 12.9 Routing for the in Figure 12.8. 

that are being used by the implemented circuit are shaded in grey. The figure depicts both 
individual wires, which may be of various lengths, and bundles of wires, which are shown as 
grey rectangles. The routing CAD tool tries to make the best use of various kinds of wires, 
such as efficient connections for carry chains. Figure 12.9 shows an example of the carry 
chain path from Figure 12.6, Black lines highlight the carry chain wires, which connect 
through the stages of the adder, ending at the Oveflow register, A detailed discussion of 
routing tools can be found in references [3], [5-61, and [8]. 

After routing is complete the timing delays for the implemented circuit are known, because 
the CAD system computes the timing delays of all blocks and wires in the chip. A static 
riming analysis tool examines this delay information and produces a set of tables that 



quantify the circuit's performance. An example of a timing analysis result is given in Table 
12.1, which lists four parameters: Jf;,,,, t,,.,, t,,, and t h .  The.f;,,,, value specifies the maximum 
operating frequency of the circuit's clock. This value is determined by the path with the 
longest propagation delay, often called the critical path, between any two flip-flops in the 
circuit. As shown in section 10.3, the path delay must account for the delays through logic 
blocks and wires, as well as the flip-flop register delay ( t rd)  and setup (t,,) parameters. 1, 
our example the critical path delay is 1 /261.1 x 10" 3.83 ns. The last two columns in the 
f,, row show that the path starts at the AddSub Rip-flop and ends at the Overjlow flip-flop 
shown in Figure 12.6. 

Most CAD systems allow users to specify the timing requirements for their circuit. In 
Table 12.1 we assume the user has specified that the circuit clock has to operate correctly 
up to a frequency of 200 MHz. The difference between this requirement and the result that 
is obtained by the CAD tools is referred to as slack. In the table, the requirement is that 
the propagation delays must not exceed 1/200 x lo6 = 5 ns; the result is 3.83 ns, which 
gives a slack value of 1.17 ns. This positive slack means that the constraints have been 
met with some room to spare. If the obtained result had a negative slack, then the user's 
requirements would not have been met, and it would be necessary to modify the VHDL 
code or settings used in the CAD tool to try to meet the constraints. 

The other rows in Table 12.1 show the timing results for the design's primary inputs 
and outputs. The t,, result indicates the worst-case setup requirement is 2.356 ns, from 
pin ho to flip-flop brego. This parameter means that the bo signal must have a stable value 
at least 2.356 ns before each active edge of the clock signal at its assigned pin. Since 
the designer specified a worst-case setup requirement of 10 ns, the obtained result means 
that the implemented circuit exceeds the requirement by a slack value of 7.644 ns. The 
worst-case clock-to-output delay for our circuit is 6.772 ns, from flip-flop zrego to pin zo. 
This means that the propagation delay from an active edge of the clock signal at its pin to a 
corresponding change in the zo signal at its pin is 6.772 ns. Since the designer's constraint 
specifies that a 10 ns t,, is allowed, the available slack is 3.228 ns. 

The last row in Table 12.1 gives a maximum hold time of 0.24 ns, for the path from 
pin bl to flip-flop bregl. Hence, the signal at pin bl must maintain a stable value for at least 
0.24 ns after each active edge at the clock pin. We assume that no constraint was set for 
this parameter, thus no slack value is shown. 

-r 

&able 12.1 A summary of static timing analysis results. 
t 



Table 12.1 lists only the worst-case paths for fm, t,,, t,,, and t h .  The implemented 
circuit will have a number of other paths that have smaller delays and greater slack values. 
A static timing analysis tool typically provides additional tables for each parameter, which 
list more paths. 

The final stage of the CAD flow in Figure 12.1 is timing simulation. We show in Ap- 
pendix C how timing simulation is performed by applying test patterns to the implemented 
circuit and observing both its functional and timing behavior. 

In this chapter we explained briefly a typical design flow made possible by the existence of 
powerful CAD tools. We considered only the most important subset of the tools available 
in commercial CAD systems. To learn more the reader can consult references [I-81, or 
visit the web sites of CAD tool suppliers. Table 12.2 lists some of the major vendors of 
CAD tools, and shows their web addresses and the names of some popular products. 

Table 12.2 Major CAD tool products. 

Vendor Name 

Mentor Graphics 
Synplicity 
Synopsys 
Xilinx 

WWW Locator Product N m e s  

altera.com Quartus I1 
mentorgraphics.com ModelSim, Precision 
synplicity.com S ynplify 
synopsys.com Design CompiIer, VCS 
xilinx.com ISE 

1. R. Murgai, R. Brayton, A. Sangiovanni-Vincentelli, Logic Synthesis for 
Field-Programmable Gate Arrays, (Kluwer Academic Publishers, 1995). 

2. J. Cong and Y. Ding, FlowMap: An Optimal Technology Mapping Algorithm for 
Delay Optimization in Lookup-Table Based FPGA Designs, (in IEEE Transactions on 
Computer-aided Design 13 ( 1 ), January 1994). 

3. S. Brown, R. Francis, J. Rose, Z. Vranesic, Field-Programmable Gate Arrays, 
(Kluwer Academic Publishers, 1995). 

4. M. Breuer, A Class of Min-cut Placement Algorithms, (in Design Automation 
Conference, pages 284-290, IEEE/ACM, 1977). 



5. Carl Sechen, VLSI Placement and Global Routing Using Sir.zzulated Annealing, 
(Kluwer Academic Publishers, 1988). 

6. V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron 
FPGAs, (Kluwer Academic Publishers, 1999). 

7. M. Sarrafzadeh, M. Wang, and X. Yang, Modern Placement Techniques, (Kluwer 
Academic Publishers, 2003). 

8. L, McMurchie and C. Ebeling, PathFinder: A Negotiation-Based 
Per$ormance-Driven Router for FPGAs, (in International Symposium on Field 
Programmable Gate Arrays, Monterey, Ca., Feb. 1995). 



a p p e n d i x  

VHDL REFERENCE 

This appendix describes the features of VHDL that are used in this book. It is meant to 
serve as a convenient reference for the reader. Hence only brief descriptions are provided, 
along with examples. The reader is encouraged to first study the introduction to VHDL in 
sections 2.10 and 4.12. 

In some ways VHDL uses an unusual syntax for describing logic circuits. The prime 
reason is that VHDL was originally intended to be a language for documenting and simulat- 
ing circuits, rather than for describing circuits for synthesis. This appendix is not meant to 
be a comprehensive VHDL manual. While we discuss almost all the features of VHDL that 
are useful in the synthesis of logic circuits, we do not discuss any of the features that are 
useful only for simulation of circuits or for other purposes. Although the omitted features 
are not needed for any of the examples used in this book, a reader who wishes to learn more 
about using VHDL can refer to specialized books [ 1-71, 

How Not to Write VHDL Code 
In section 2.10 we mentioned the most common problem encountered by designers 

who are just beginning to write VHDL code. The tendency for the novice is to write code 
that resembles a computer program, containing many variables and loops. It is difficult 
to determine what logic circuit the CAD tools will produce when synthesizing such code. 
This book contains more than 150 examples of complete VHDL code that represents a wide 
range of logic circuits. In all of these examples, the code is easily related to the described 
logic circuit. The reader is encouraged to adopt the same style of code. A good general 
guideline is to assume that if the designer cannot readily determine what logic circuit is 
described by the VHDL code, then the CAD tools are not likely to synthesize the circuit 
that the designer is trying to describe. 

Since VHDL is a complex language, errors in syntax and usage are quite common. 
Some problems encountered by our students, as novice designers, are listed at the end of 
this appendix in section A. 1 1. The reader may find it useful to examine these errors in an 
effort to avoid them when writing code. 

Once complete VHDL code is written for a particular design, it is useful to analyze the 
resulting circuit synthesized by the CAD tools. Much can be learned about VHDL, logic 
circuits, and logic synthesis by studying the circuits that are produced automatically by the 
CAD tools. 



- I A. 1 DOCUMENTATION IN VHDL CODE 

Documentation can be included in VHDL code by writing a comment. The two characters 
'-', '-' denote the beginning of the comment. The VHDL compiler ignores any text on a 
line after the '- -'. 

- 
- this is a VHDL comment 

Information is represented in VHDL code as data objects. Three kinds of data objects 
are provided: signals, constants, and variables. For describing logic circuits, the most 
important data objects are signals. They represent the logic signals (wires) in the circuit. 
The constants and variables are also sometimes useful for describing logic circuits, but they 
are used infrequently. 

The rules for specifying data object names are simple: any alphanumeric character may 
be used in the name, as well as the '-' underscore character. There are four caveats. A 
name cannot be a VHDL keyword, it must begin with a letter, it cannot end with an '-' 
underscore, and it cannot have two successive '-' underscores. Thus examples of legal 
names are x, x l ,  x-y, and Byte. Some examples of illegal names are l x ,  - y ,  x--y, and 
entity. The latter name is not allowed because it is a VHDL keyword. We should note that 
VHDL is not case sensitive. Hence x is the same as Xi and ENTITY is the same as entity. 
To make the examples of VHDL code in this book more readable, we use uppercase letters 
in all keywords. 

To avoid confusion when using the word signal, which can mean either a VHDL data 
object or a logic signal in a circuit, we sometimes write the VHDL data object as SIGNAL. 

We use SIGNALdata objects to represent individual logic signals in a circuit, multiple logic 
signals, and binary numbers (integers). The value of an individual SIGNAL is specified 
using apostrophes, as in '0' or ' 1 ' . The value of a multibit SIGNAL is given with double 
quotes. An example of a four-bit SIGNAL value is "1001", and an eight-bit value is 
'4 10011000". Double quotes can also be used to denote a binary number. Hence while 
"1001 " can represent the four SIGNAL values ' 1 ', 'O', 'O', ' 1 ', it can also mean the integer 
(1001)2 = (9) lo. Integers can alternatively be specified in decimal by not using quotes, 
as in 9 or 152. The values of CONSTANT or VARIABLE data objects are specified in the 
same way as for SIGNAL data objects. 

774 
A 



A.2.3 SIGNAL DATA OBJECTS 

slGNAL data objects represent the logic signals, or wires, in a circuit. There are three 
places in which signals can be declared in  VHDL code: in an entity declaration (see section 
A.4. I ) ,  in the declarative section of an architecture (see section A.4.2), and in the declarative 
section of a package (see section A.5). A signal has to be declared with an associated type, 
as follows: 

SIGNAL signal-name : type-name ; 

The signal's type-name determines the legal values that the signal can have and its le- 
gal uses in  VHDL code. In this section we describe 10 signal types: BIT, BIT-VECTOR, 
STD-LOGIC, STD-LOGIC-VECTOR, STD-ULOGIC, SIGNED, UNSIGNED, 
INTEGER, ENUMERATION, and BOOLEAN. 

A.2.4 BIT AND BIT-VECTOR TYPES 

These types are predefined in the VHDL Standards IEEE 1076 and IEEE 1164. Hence no 
library is needed to use these types in the code. Objects of BIT type can have the values '0' 
or ' 1'. An object of BIT-VECTOR type is a linear array of BIT objects. 

SIGNAL x l  : BIT ; 
SIGNAL C : BIT-VECTOR (1 TO 4) ; 
SIGNAL Byte : BIT-VECTOR (7 DOWNTO 0) ; 

The signals C and Byte illustrate the two possible ways of defining a multibit data object. 
The syntax "lowest-index TO highest-index" is useful for a multibit signal that is simply 
an array of bits. In the signal C the most-significant (left-most) bit is referenced using 
lowest-index, and the least-significant (right-most) bit is referenced using highest-index. 
The syntax "highest-index DOWNTO lowest-index" is useful if the signal represents a 
binary number, In this case the most-significant (left-most) bit has the index highest-index, 
and the least-significant (right-most) bit has the index lowest-index. 

The multibit signal C represents four BIT objects. Tt can be used as a single four-bit 
quantity, or each bit can be referred to individually. The syntax for referring to the signals 
individually is C(1), C(2), C(3), or C(4). An assignment statement such as 

results in C(1) = 1, C(2)  = 0, C(3) = 1 ,  and C(4) = 0. 
The signal Byte comprises eight BIT objects. The assignment statement 

Byte <= "10011000" ; 

results in Byte(7) = 1, Byte(6) = 0, and so on to Byte (0) = 0. 



A.2.5 STD-LOGIC AND STDLOGIC-VECTOR TYPES 

The STD - LOGIC type was added to the VHDL Standard in IEEE 11 64. It provides more 
flexibility than the BIT type, To use this type, we must include the two statements 

LIBRARY ieee ; 
USE ieee.std-logic-1164.all ; 

These statements provide access to the std-logic-1164 package, which defines the 
STD-LOGIC type. We describe VHDL packages in section A S .  In general, they are 
used as a place to store VHDL code, such as the code that defines a type, which can then 
be used in other source code files. The following values are legal for a STD-LOGIC data 
object: 0, 1, Z, -, L, H, U, X, and W. Only the first four are useful for synthesis of logic 
circuits. The value Z represents high impedance, and - stands for "don't care." The value 
L stands for "weak 0," H means "weak 1 ," U means "uninitialized," X means "unknown," 
and W means "weak unknown.'' The STD-LOGIC-VECTOR type represents an array of 
STD-LOGIC objects. 

SIGNAL x l ,  x2, Cin, Cout, Sel : STD-LOGIC ; 
SIGNAL C : STD-LOGIC-VECTOR ( I  TO 4) ; 
SIGNAL X, Y, S : STD-LOGIC-VECTOR ( 3  DOWNTO 0) ; 

STD-LOGIC objects are often used in logic expressions in VHDL code. 
STD-LOGIC-VECTOR signals can be used as binary numbers in arithmetic circuits by 
including in the code the statement 

USE ieee. std-logic-signed.al1 ; 

The std-logic-signed package specifies that it is legal to use the STD-LOGIC-VECTOR 
signals with arithmetic operators, like + (see section A.7. I) .  The VHDL compiler should 
generate a circuit that works for signed numbers. An alternative is to use the package 
std-logic-unsigned. In this case the compiler should generate a circuit that works for 
unsigned numbers. 

A.2.6 STD-ULOGIC TYPE 

In this book we use the STD-LOGIC type in most examples of VHDL code. This 
is actually a subrype of the STD-ULOGIC type. Signals that have the S T D - U L O ~ ' ~  
type can take the same values as the STD-LOGIC signals that we have been using The 



only difference between STD-ULOGIC and STD-LOGIC has to do with the concept of 
a resolution function. In VHDL a resolution function is used to determine what value a 
signal should take if there are two sources for that signal. For example, two tri-state buffers 
could both have their outputs connected to a signal, x. At some given time one buffer might 

the output value '2' and the other buffer might produce the value 1. A resolution 
function is used to determine that the value of x should be 1 in this case. The STD-LOGIC 
type allows multiple sources for a signal; it resolves the correct value using a resolution 
function that is provided as part of the std-logic-1164 package. The STD-ULOGIC type 
does not permit signals to have multiple sources. We have introduced STD-ULOGIC for 
completeness only; it is not used in this book. 

A.2.7 SIGNED AND UNSIGNED TYPES 

The std-logic-signed and std-logic-unsigned packages mentioned in section A.2.5 make 
use of another package, called std-logic-arith. This package defines the type of circuit 
that should be used to implement the arithmetic operators, such as +. The std-logic-arith 
package defines two signal types, SIGNED and UNSIGNED. These types are identical to 
the STD-LOGIC-VECTOR type because they represent an array of STD-LOGIC signals. 
The purpose of the SIGNED and UNSIGNED types is to allow the user to indicate in the 
VHDL code what kind of number representation is being used. The SIGNED type is used 
in code for circuits that deal with signed (2's complement) numbers, and the UNSIGNED 
type is used in code that deals with unsigned numbers. 

Assume that A and B are signals with the SIGNED type. Assume that A is assigned the EJ 
value "1000", and B is assigned the value "0001". VHDL provides relational operators 
(see Table A. 1 in section A.3) that can be used to compare the values of two signals. The 
comparison A < B evaluates to true because the signed values are A = -8 and B = 1. On 
the other hand, if A and B are defined with the UNSIGNED type, then A < B evaluates to 
false because the unsigned values are A = 8 and B = 1. 

The std-logic-signed package specifies that STD-LOGIC-VECTOR signals should 
be treated like SIGNED signals. Similarly, the std-logic-unsigned package specifies that 
STD-LOGIC-VECTOR signals should be treated like UNSIGNED signals. It is an arbi- 
trary choice whether code is written using STD-LOGIC-VECTOR signals in conjunction 
with the std-logicsigned or std-logic-unsigned packages or using SIGNED and UN- 
SIGNED signals with the std-logic-arith package. 

The std-logic-arith package, and hence the std-logic-signed and std-logic-unsigned 
Packages, are not actually a part of the VHDL standards. They are provided by Synopsys 
Inc., which is a vendor of CAD software. However, these packages are included with most 
CAD systems that support VHDL, and they are widely used in practice. 



A.2.8 INTEGER TYPE 

The VHDL standard defines the INTEGER type for use with arithmetic operators. In this 
book the STD LOGIC-VECTOR type is usually preferred in code for arithmetic circuits 
but the INTEGER type is used occasionally. An INTEGER signal represents a bina; 
number. The code does not  specifically give the number of bits in the signal, as it does 
for STD-LOGIC-VECTOR signals. By default, an INTEGER signal has 32 bits and can 
represent numbers from - 1 )  to z3' - 1 .  This is one number less than the normal 2 ' ~  
complement range; the reason is simply that the VHDL standard specifies an equal number 
of negative and positive numbers. Integers with fewer bits can also be declared, using the 
RANGE keyword. 

SIGNAL X : INTEGER RANGE - 127 TO 127 ; 

This defines X as an eight-bit signed number. 

A.2.9 BOOLEAN TYPE 

An object of type BOOLEAN can have the values TRUE or FALSE, where TRUE is 
equivalent to 1 and FALSE is 0. 

SIGNAL Flag : Boolean ; 

A.2.10 ENUMERATION TYPE 

A SIGNAL of ENUMERATION type is one for which the possible values that the signal 
can have are user specified. The general form of an ENUMERATION type is  

TYPE enumerated-type-name IS (name { , name ) ) ; 

The curly brackets indicate that one or more additional items can be included. We use these 
brackets in this manner in several places in the appendix. The most common example of 
using the ENUMERATION type is for specifying the states for a finite-state machine- 



TYPE State-type IS (stateA, stateB, stateC) ; 
SIGNAL y : State-type ; 

This declares a signal named y, for which the legal values are stateA, statel?, and stateC, 
When the code is translated by the VHDL compiler, it automatically assigns bit patterns 
(codes) to represent stateA, stateB, and stateC. 

A.2.11 CONSTANT DATA OBJECTS 

A CONSTANT is a data object whose value cannot be changed. Unlike a SIGNAL, a 
CONSTANT does not represent a wire in a circuit. The general form of a CONSTANT 
declaration is 

CONSTANT constant-name : type-name : = constant-value ; 

The purpose of a constant is to improve the readability of code, by using the name of the 
constant in place of a value or number. 

Ex 

CONSTANT Zero : STD-LOGIC-VECTOR (3 DOWNTO 0) := "0000" ; 

Then the word Zero can be used in the code to indicate the constant value "0000". 

A.2.12 VARIABLE DATA OBJECTS 

AVARIABLE, unlike a SIGNAL, does not necessarily represent a wire in a circuit. VARI- 
ABLE data objects are sometimes used to hold the results of computations and for the index 
variables in loops. We will give some examples in section A.9.7. 

VHDL is a strongly type-checked language, which means that it does not permit the value 
of a signal of one type to be assigned to another signal that has a different type. Even for 
signals that intuitively seem compatible, such as BIT and STD-LOGIC, using the two types 
together is not permitted. To avoid this problem, we generally use only the STD-LOGIC 



A P P E N D I X A VHDL REFERENCE 

and STD - LOGIC - VECTOR types in this book. When it is necessary to use code that has a 
mixture of types, type-conversion functions can be used to convert from one type to another. 

Assume that X is defined as an eight-bit STD-LOGIC-VECTOR signal and Y is an 
INTEGER signal defined with the range from 0 to 255. An example of a conversion function 
that allows the value of Y to be assigned to X is 

This conversion function has two parameters: the name of the signal to be converted and 
the number of bits in X .  The function is provided as part of the std-logic-arith package; 
hence that package must be included in the code using the appropriate LIBRARY and USE 
clauses. 

We said above that the BIT-VECTOR and STD-LOGIC-VECTOR types are arrays of BIT 
and STD-LOGIC signals, respectively. The definitions of these arrays, which are provided 
as part of the VHDL standards, are 

TYPE BIT-VECTOR IS ARRAY (NATURAL RANGE < >) OF BIT ; 
TYPE STD-LOGIC-VECTOR IS ARRAY (NAWRAL RANGE < >) OF STD-LOGIC ; 

The sizes of the arrays are not set in the definitions; the syntax (NATURAL RANGE < >) 
has the effect of allowing the user to set the size of the array when a data object of either 
type is declared. Arrays of any type can be defined by the user. For example 

TYPE Byte IS ARRAY (7 DOWNTO 0) OF STD-LOGIC ; 
SIGNAL X : Byte ; 

declares the signal X with the type Byte, which is an eight-element array of STDLOGIC 
data objects. 

An example that defines a two-dimensional array is 

TYPE RegArray IS ARRAY(3 DOWNTO 0) OF STD-LOGIC-VECTOR(7 DOWNTO 0) ; 
SIGNAL R : RegArray ; 

This code defines R as an array with four elements. Each element is an eight-bit 
STD-LOGIC-VECTOR signal. The syntax R(i) ,  where 3 z - i z 0, is used to refer to 
element i of the array. The syntax R ( i ) ( j ) ,  where 7 2 j 2 0, is usid to refer to one bit in 
the array R(i) .  This bit has the type STD-LOGIC. An example using the RegArray tYPe is 
given in section 10.2.6. 



VHDL provides a number of operators that are useful for synthesizing, simulating, and 
documenting logic circuits. In section 6.6.8 we discussed the operators that are used for 
synthesis purposes. We listed them according to their functionality. The VHDL Standard 
groups all operators into formal classes as shown in Table A. 1. Operators in a given class 
have the same precedence. The precedence of classes is indicated in the table. Observe 
that the NOT operator is in the Miscellaneous class rather than Logical class. Hence, NOT 
has higher precedence than AND and OR. 

In a logic expression, the operators of the same class are evaluated from left to right. 
Parentheses should always be used to ensure the correct interpretation of the expression. 
For example, the expression 

xl AND x2 OR x3 AND x4 

does not have the ~ 1 x 2  + ~ 3 x 4  meaning that would be expected because AND does not have 
precedence over OR. To have the desired meaning, it must be written as 

(x l  AND x2) OR (x3 AND x4) 

Table A. 1 The VHDL operators. 

A.4 VHDL DESIGN ENTITY 

Highest precedence 

Lowest precedence 

A circuit or subcircuit described with VHDL code is called a design entity, or just entity. 
Figure A.l  shows the general structure of an entity. It has two main parts: the entity 
declaration, which specifies the input and output signals for the entity, and the architecture, 
which gives the circuit details. 

Operator Class 

Miscellaneous 

Multiplying 

Sign 

Adding 

Relational 

Logical 

Operator 

**, ABS, NOT 

*, /, MOD, REM 

+, - 
f, - ,  & 

=, / =, <, i=, >, >= 

AND, OR, NAND, NOR, XOR, XNOR 



I Entity I 

Figure A.l The general structure of a VHDL design entity. 

A.4.1 ENTITY DECLARATION 

The input and output signals in an entity are specified using the ENTITY declaration, as 
indicated in Figure A.2. The name of the entity can be any legal VHDL name. The square 
brackets indicate an optional item. The input and output signals are specified using the 
keyword PORT. Whether each port is an input, output, or bidirectional signal is specified 
by the mode of the port. The available modes are summarized in Table A.2. If the mode of 
a port is not specified, it is assumed to have the mode IN. 

An ARCHITECTURE provides the circuit details for an entity. The general structure of an 
architecture is shown in Figure A.3. It has two main parts: the declclmtive region and the 
architectrr re body. The declarative region appears preceding the BEGIN keyword. Tt can 
be used to declare signals, user-defined types, and constants. It can also be used to declare 

ENTITY entity aame IS 
PORT ( [SIGNAL] signal-name { , s igna l~ame)  : [mode] type-name {; 

SIGNAL] signal-name {, signalaame) : [mode] type-name ) ) ; 
END entityaame ; 

Figure A.2 The general form of an entity declaration. 



A.4 VHDL DESIGN ENTITY 

Table A.2 The possible modes for signals that ore entity ports. 

I m  I I Used for a signal that is an input to an entity. I 
I Mode 

OUT 

Purpose 

Used for a signal that is an output from an entity. The value of the signal can not be used 
inside the entity. This means that in an assignment statement, the signal can appear only 
to the left of the i= operator. 

r INOUT I I Used for a signal that is both an input to an entity and an output from the entity. I 
Used for a signal that is an output from an entity. The value of the signal can be used 
inside the entity, which means that in an assignment statement, the signal can appear both 
on the left and right sides of the <= operator. 

ARCHITECTURE archi tecturemame OF entity -name IS 
[SIGNAL declarations] 
[CONSTANT declarations] 
[TYPE declarations] 
[COMPONENT declarations] 
[ATTRIBUTE specifications] 

BEGIN 
(COMPONENT instantiation statement ;) 
(CONCURRENT ASSIGNMENT statement ; } 
{PROCESS statement ; ) 
{ GENERATE statement ; ) 

END [architecture~lamej ; 

Figure A.3 The general form of an architecture. 

components and to specify attributes; we discuss the COMPONENT and ATTRIBUTE 
keywords in sections A.6 and A. 10.13, respectively. 

The functionality of the entity is specified in the architecture body, which follows the 
BEGIN keyword. This specification involves statements that define the logic functions in 
the circuit, which can be given in a variety of ways. We will discuss a number of possibilities 
in the sections that follow. 

Figure A.4 gives the VHDL code for an entity named fulladd, which represents a full-adder E; 
circuit. (The full-adder is discussed in section 5.2.) The entity declaration specifies the 
input and output signals. The input port Cin is the carry-in, and the bits to be added are the 
input ports x and y. The output ports are the sum, s, and the carry-out, Cout. The input and 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee.stdlogic-ll64.all ; 

ENTITY fulladd IS 
PORT ( Cin, x, y : IN STD-LOGIC ; 

s, Cout : OUT STD-LOGIC ) ; 
END fulladd ; 

ARCHITECTURE LogicFunc OF fulladd IS 
BEGIN 

s <= x XOR y XOR Cin ; 
Cout <= (x AND y) OR (x AND Cin) OR (y AND Cin) ; 

END LogicFunc ; 

Figure A.4 Code for a full-adder. 

output signals are called the ports of the entity. This term is adopted from the electrical 
jargon in which it refers to an input or output connection in an electrical circuit. 

The architecture defines the functionality of the full-adder using logic equations. The 
name of the architecture can be any legal VHDL name. We chose the name LogicFunc for 
this simple example. In terms of the general form of the architecture in Figure A.3, a logic 
equation is a type of concurrent assignment statement. These statements are described in 
section A. 7. 

A VHDL package serves as a repository. It is used to hold VHDL code that is of general 
use, like the code that defines a type. The package can be included for use in any number of 
other source code files, which can then use the definitions provided in the package. Like an 
architecture, introduced in section A.4.2, a package can have two main parts: the package 
declaration and the package body. The package-body is an optional part, which we do 
not use in this book; one use of a package body is to define VHDL functions, such as the 
conversion functions introduced in section A.2.23. 

The general form of a package declaration is depicted in Figure A.5. Definitions 
provided in the package, such as the definition of a type, can be used in any source code 
file that includes the statements 

LIBRARY library-name ; 
USE library-name.package-name.al1 ; 



PACKAGE package-name IS 
[TYPE declarations] 
[SIGNAL declarations] 
[COMPONENT declarations] 

END package-name ; 

Figure A.5 The general form of a PACKAGE declaration. 

The library-name represents the location in the computer file system where the package is 
stored. A library can either be provided as part of a CAD system, in which case it is termed 
a system library, or be created by the user, in which case it is called a user library. An 
example of a system library is the ieee library. We discussed four packages in that library in 
section A.2: std-logic-1/64, std-logic-signed, std-logic-unsigned, and std-logic-arith. 

A special case of a user library is represented by the file-system directory where the 
VHDL source code file that declares a package is stored. This directory can be referred 
to by the library name work, which stands for working directory. Hence, if a source code 
file that contains a package declaration called user-package-name is compiled, then the 
package can be used in another source code file (which is stored in the same file-system 
directory) by including the statements 

LIBRARY work ; 
USE work.user-package-name.all ; 

Actually, for the special case of the work library, the LIBRARY clause is not required, 
because the work library is always accessible. 

Figure A.5 shows that the package declaration can be used to declare signals and 
components. Components are discussed in the next section. A signal declared in a package 
can be used by any design entity that accesses the package. Such signals are similar in 
concept to global variables used in computer programming languages. In contrast, a signal 
declared in an architecture can be used only inside that architecture. Such signals are 
analogous to local variables in a programming language. 

A VHDL entity defined in one source code file can be used as a subcircuit in another source 
code file. In VHDL jargon the subcircuit is called a component. A subcircuit must be 
declared using a component declaration. This statement specifies the name of the subcircuit 
and gives the names of its input and output ports. The component declaration can appear 
either in the declaration region of an architecture or in a package declaration. The general 
f ~ r m  of the statement is shown in Figure A.6. The syntax used is similar to the syntax in 
an entity declaration. 

Once a component declaration is given, the component can be instantiated as a subcir- 
wit. This is done using a component instantiation statement. It has the general form 



COMPONENT component-name 
[GENERIC ( parameter-name : integer := default-value {; 

parameter-name : integer := default-value} ) ;] 
PORT ( [SIGNAL] signal-name {, signal-name) : [mode] typemame { ;  

SIGNAL] signalaame {, signal-ame) : [mode] typedame } ) ; 
END COMPONENT ; 

Figure A.6 The form of a component declaration. 

instance-name : component-name PORT MAP ( 
formal-name => actual-name {, formal-name => actual-name} ) ; 

Each fumzul-name is the name of a port in the subcircuit. Each actual-name is the name 
of a signal in the code that instantiates the subcircuit. The syntax "formal-name =>'? is 
provided so that the order of the signals listed after the PORT MAP keywords does not have 
to be the same as the order of the ports in the corresponding COMPONENT declaration. 
In VHDL jargon this is called the named association. If the signal names following the 
PORT MAP keywords are given in the same order as in the COMPONENT declaration, 
then "formal-name =>" is not needed. This is called the positional association, 

An example using a component (subcircuit) is shown in Figure A.7. It gives the code 
for a four-bit ripple-carry adder built using four instances of the fulladd subcircuit. The 
inputs to the adder are the carry-in, Cin, and the 2 four-bit numbers X and Y .  The output 
is the four-bit sum, S ,  and the carry-out, Cout. We have chosen the name Structure in the 
architecture because the hierarchical style of code that uses subcircuits is often called the 
structural style. Observe that a three-bit signal, C, is declared to represent the carry-outs 
from stages 0, 1, and 2. This signal is declared in the architecture, rather than in the entity 
declaration, because it is used internally in the circuit and is not an input or output port. 

The next statement in the architecture gives the component declaration for the fulladd 
subcircuit. The architecture body instantiates four copies of the full-adder subcircuit. In the 
first three instantiation statements, we have used positional association because the signals 
are listed in the same order as given in the declaration for the fulladd component in Figure 
A.4. The last instantiation statement gives an example of named association. Note that it 
is legal to use the same name for a signal in the architecture that is used for a port name 
in a component. An example of this is the Cout signal. The signal names used in the 
instantiation statements implicitly specify how the component instances are interconnected 
to create the adder entity. 

A second example of component instantiation is shown in Figure A.8. A package called 
lpm-components in the library named Zpm is included in the code. This package represents 
a collection of components called the Library of Parameterized Modules (LPM), which is 
a standardized library of circuit building blocks that are generally useful for implementing 
logic circuits. 

The code in Figure A.8 instantiates the LPM component called ipm-add-sub, which 
is introduced in section 5.5.1. It represents an adder/subtractor circuit. The GENERI' 
keyword is used to set the number of bits in the adderlsubtractor to 4. We discuss generics 



LIBRARY ieee ; 
USE ieee.stdAogic-1 I64.all ; 

ENTITY adder IS 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END adder : 

ARCHITECTURE Structure OF adder IS 
SIGNAL C : STD-LOGIC-VECTOR(1 TO 3) ; 
COMPONENT fulladd 

PORT ( Cin, x, y : IN STD-LOGIC ; 
s, Cout : OUT STD-LOGIC) ; 

END COMPONENT ; 
BEGIN 

stage0: fulladd PORT MAP ( Cin , X(O), Y(O), S(O), C(l) ) ; 
stagel: fulladd PORT MAP ( C(1), X(1), Y(l) ,  S(l), C(2) ) ; 
stage2: fulladd PORT MAP ( C(2), X(2), Y(2),  S(2), C(3)  ) ; 
stage3: fulladd PORT MAP ( 

x => X(3), y => Y(3), Cin => C(3), s => S(3), Cout => Cout ) ; 
END Structure ; 

Figure A.7 Code for a four-bit adder, using component instantiation. 

in section A.8. The function of each PORT on the lpm-add-sub component is self-evident 
from the port names used in the instantiation statement. 

A.6.1 DECLARING A COMPONENT IN A PACKAGE 

Figure A.5 shows that a component declaration can be given in a package. An example is 
shown in Figure A.9. It defines the package named fulladd>ackage, which provides the 
component declaration for the fulladd entity. This package can be stored in a separate source 
code file or can be included at the end of the file that defines thefrrlladd entity (see Figure 
A.4). Any source code that includes the statement "USE work.fulladd~package.all" can use 
the fulladd component as a subcircuit. Figure A. 10 shows how a four-bit ripple-carry adder 
entity can be written to use the package. The code is the same as that in Figure A.7 except 
that it includes the extra USE clause for the package and deletes the component declaration 
statement from the architecture. 



A P P E N D I X A . VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee-stddogic-l164.all ; 
LIBRARY lprn ; 
USE Ipm.1pm~components.all ; 

ENTITY adderLPM IS 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END adderLPM ; 

ARCHITECTURE Structure OF adderLPM IS 
BEGIN 

instance: lpm-add-sub 
GENERIC MAP ( LPM -WIDTH => 4) 
PORT MAP ( 

dataa => X, datab => Y, Cin => Cin, result => S, Cout => Cout ) ; 
END Structure ; 

Figure A.8 Instantiating a four-bit adder from the LPM library. 

LIBRARY ieee ; 
USE ieee.std-logic-1 164.all ; 

PACKAGE fulladd-package IS 
COMPONENT fulladd 

PORT ( Cin, x, y : IN STD-LOGIC ; 
s, Cout : OUT STD-LOGIC ) ; 

END COMPONENT ; 
END fulladd-package ; 

Figure A.9 An example of a package declaration. 

A concurrent assignment statement is used to assign a value to a signal in an architecture 
body. An example was given in Figure A.4, in which the logic expressions illustrate one 
type of concurrent assignment statement. VHDL provides four different types of concurrent 
assignment statements: simple signal assignment, selected signal assignment, conditional 
signal assignment, and generate statements. 



LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 
USE work.fulladd-package.al1 ; 

ENTITY adder IS 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END adder ; 

ARCHITECTURE Structure OF adder IS 
SIGNAL C : STD-LOGIC-VECTOR(1 TO 3 )  ; 

BEGIN 
stage0: fulladd PORT MAP ( Cin, X(O), Y(O), S(O), C(1) ) ; 
stagel: fuIladd PORT MAP ( C(l), X(1), Y(l),  S(1), C(2) ) ; 
stage2: fulladd PORT MAP ( C(2),  X(2), Y(2), S(2), C(3) ) ; 
stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S ( 3 ) ,  Cout ) ; 

END Structure ; 

Figure A.10 Using a component defined in a package. 

A simple signal assignment statement is used for a logic or an arithmetic expression. The 
general form is 

signal-name < = expression ; 

where <= is the VHDL assignment operator. The following examples illustrate its use. 

SIGNAL x 1, x2, x3, f : STD-LOGIC ; 

f <= (XI AND x2) ORx3 ; 

This defines f i n  a logic expression, which involves single-bit quantities. VHDL also 
supports multibit logic expressions, as in 



SIGNALA, B, C : STD-LOGIC-VECTOR (1 TO 3) ; 

C <= AANDB ; 

This results in C(1) = A ( l )  - B(l), C ( 2 )  = A(2)  B(2) ,  and C(3)  = A(3)  - B(3) .  
An example of an arithmetic expression is 

SIGNAL X, Y, S : STD-LOGIC-VECTOR (3  DOWNTO 0) ; 

This represents a four-bit adder, without carry-in and carry-out. We can alternativelydeclare 
a carry-in signal, Cin, and a five-bit signal, Sum, as follows 

SIGNAL Cin : STD-LOGIC ; 
SIGNAL Sum : STD-LOGIC-VECTOR (4 DOWNTO 0) ; 

Then the statement 

Sum <= ('0' & X) + Y + Cin ; 

represents the four-bit adder with carry-in and carry-out. The four sum bits are Sum(3) 
to Sum(O), while the carry-out is the bit Sum(4). The syntax ('0' & X) uses the VHDL 
concatenate operator, &, to put a 0 on the left end of the signal X. The reader should 
not confuse this use of the & symbol with the logical AND operation, which is the usual 
meaning of this symbol; in VHDL the logical AND is indicated by the word AND, and & 
means concatenate. The concatenate operation prepends a 0 digit onto X, creating a five-bit 
number. VHDL requires at least one of the operands of an arithmetic expression to have the 
same number of bits as the signal used to hold the result. The complete code for the four-bit 
adder with carry signals is given in Figure A. 11. We should note that this is a different way 
(it is actually a better way) to describe a four-bit adder, in comparison with the structural 
code in Figure A.7. Observe that the statement "S <= Sum(3 DOWNTO 0)" assigns the 
lower four bits of the Sum signal, which are the four sum bits, to the output S. 

A.7.2 ASSIGNING SIGNAL VALUES USING OTHERS 

Assume that we wish to set all bits in the signal S to 0. As we already know, one way to do 
SO is to write "S <= "0000" ;". If the number of bits in S is large, a more convenient way 
of expressing the assignment statement is to use the OTHERS keyword, as in 

S <= (OTHERS => '0') ; 

This statement also sets all bits in S to 0. But it has the benefit of working for any number 
of bits, not just four. In general, the meaning of (OTHERS => Value) is to set each bit of 
the destination operand to Value. An example of code that uses this constmct is shown in 
Figure A.28. 

790 
A 



LIBRARY ieee ; 
USE ieee-std-logic-l164.all ; 
USE ieee.std_logic-signed.al1 ; 

ENTITY adder IS 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0)  ; 
S : OUT STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END adder ; 

ARCHITECTURE Behavior OF adder IS 
SIGNAL Sum : STD-LOGIC-VECTOR(4 DOWNTO 0) ; 

BEGIN 
Sum <= ('0' & X) + Y + Cin ; 
S <= Sum(3 DOWNTO 0) ; 
Cout <= Sum(4) ; 

END Behavior ; 

Figure A. 1 1 Code for a four-bit adder, using arithmetic expressions. 

A selected signal assignment statement is used to set the value of a signal to one of several 
alternatives based on a selection criterion. The general form is 

[label:] - - an optional label can be placed here 
WITH expression SELECT 

signal-name < = expression WHEN constant-value { , 
expression WHEN constant-value) ; 

SIGNAL x 1, x2, Sel, f : STD-LOGIC ; 

WITH Sel SELECT 
f <= xl WHEN '0'' 

x2 WHEN OTHERS ; 

This code describes a 2-to-1 multiplexer with Sel as the select input. In a selected signal 
assignment, all possible values of the select input, Sel in this case, must be explicitly listed 
in the code. The word OTHERS provides an easy way to meet this requirement. OTHERS 
represents all possible values not already listed. In this case the other possible values are 

791 
C 



A P P E N D I X A VHDL REFERENCE 

1,  Z ,  -, and so on. Another requirement for the selected signal assignment is that each 
WHEN clause must specify a criterion that is mutually exclusive of the criteria in all other 
WHEN clauses. 

Similar to the selected signal assignment, the conditional signal assignment is used to set a 
signal to one of several alternative values. The general form is 

[label:] 
signal-name < = expression WHEN logic-expression ELSE 

{expression WHEN logic-expression ELSE} 
expression ; 

An example is 

One key difference in comparison with the selected signal assignment has to be noted. 
The conditions listed after each WHEN clause need not be mutually exclusive, because the 
conditions are given a priority from the first listed to the last listed. This is illustrated by 
the example in Figure A. 12. The code represents a priority encoder in which the highest- 
priority request is indicated as the output of the circuit. (Encoder circuits are described in 
Chapter 6.) The output, f, of the priority encoder comprises two bits whose values depend 
on the three inputs, reql, req2, and req3. If reql is 1, then f is set to 01. If req2 is I ,  
then f is set to 10, but only if reql is not also 1. Hence reql has higher priority than req2. 

LIBRARY ieee; 
USE ieee.stdAogic-1164.all; 

ENTITY priority IS 
PORT ( reql, req2, req3 : IN STD-LOGIC ; 

f : OUT STD-LOGIC-VECTOR(1 DOWNTO 0) ) ; 
END priority ; 

ARCHITECTURE Behavior OF priority IS 
BEGIN 

f <= "01" WHEN reql = ' 1 '  ELSE 
" 1 0  WHEN req2 = '1' ELSE 
"11" WHENreq3 = '1' ELSE 
"00" ; 

END Behavior; 

Figure A. 12 A priority encoder described with a conditional signal assignment. 

792 
A& 



generatedabel : 
FOR index-variable IN range GENERATE 

statement ; 
{ statement ; ) 

END GENERATE ; 

generate-label: 
IF expression GENERATE 

statement ; 
{ statement : } 

END GENERATE ; 

Figure A.13 The general forms of the GENERATE statement. 

Similarly, reg1 and req2 have higher priority than req3. Thus if req3 is 1, then f is 11, but 
only if neither reg1 nor req2 is also 1 .  For this priority encoder, if none of the three inputs 
is 1, then f is assigned the value 00. 

A.7.5 GENERATE STATEMENT 

There are two variants of the GENERATE statement: the FOR GENERATE and the IF 
GENERATE. The general form of both types is shown in Figure A. 1 3. The IF GENERATE 
statement is seldom needed, but FOR GENERATE is often used in practice. It provides a 
convenient way of repeating either a logic expression or a component instantiation. Figure 
A. 14 illustrates its use for component instantiation. The code in the figure is equivalent to 
the code given in Figure A.7. 

The code in Figure A. 14 represents an adder for four-bit numbers. It is possible to make this 
code more general by introducing a parameter in the code that represents the number of bits 
in the adder. In VHDL jargon such a parameter is called a GENERIC. Figure A.15 gives the 
code for an n-bit adder entity, named addern. The GENERIC keyword is used to define the 
number of bits, n, to be added. This parameter is used in the code, both in the definitions 
of the signals X,  Y,  and S and in the FOR GENERATE statement that instantiates the n 
full-adders. 

It is possible to use the GENERIC feature with components that are instantiated as 
subcircuits in other code. In section A. 10.9 we give an example that uses the addem entity 
as a subcircuit. 

793 



LIBRARY ieee ; 
USE ieee.std~logic~l164.all ; 
USE work.fulladd~package.all ; 

ENTITY adder IS 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(3 DOWNTO 0)  ; 
Cout : OUT STD-LOGIC ) ; 

END adder ; 

ARCHITECTURE Structure OF adder IS 
SIGNAL C : STD-LOGIC-VECTOR(0 TO 4) ; 

BEGIN 
C(0) <= Cin ; 
Generate-labei: 
FOR i IN 0 TO 3 GENERATE 

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+l)) ; 
END GENERATE ; 
Cout <= C(4) ; 

END Structure ; 

Figure A.14 An example of component instantiation with FOR GENERATE. 

The order in which the concurrent assignment statements in an architecture body appear 
does not affect the meaning of the code. Many types of logic circuits can be described 
using these statements. However, VHDL also provides another type of statements, called 
sequential assignment statements, for which the order of the statements in the code can 
affect the semantics of the code. There are three variants of the sequential assignment 
statements: IF statement, CASE statement, and LOOP statements. 

A.9.1 PROCESS STATEMENT 

Since the order in which the sequential statements appear in VHDL code is significant, 
whereas the ordering of concurrent statements is not, the sequential statements must be 
separated from the concurrent statements. This is accomplished using a PROCESS state- 
ment. The PROCESS statement appears inside an architecture body, and it encloses other 
statements within it. The IF, CASE, and LOOP statements can appear only inside a pro- 
cess. The general form of a PROCESS statement is shown in Figure A.16. Its structure is 
somewhat similar to an architecture. VARIABLE data objects can be declared (mly) inside 



LIBRARY ieee ; 
USE ieee-std-logic-l164.all ; 
USE work.fulladd-package.al1 ; 

ENTITY addern IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( Cin : IN STD-LOGIC ; 

X, Y : IN STD-LOGIC-VECTOR(n- 1 DOWNTO 0)  ; 
S : OUT STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END addern ; 

ARCHITECTURE Structure OF addern IS 
SIGNAL C : STD-LOGIC-VECTOR(0 TO n) ; 

BEGIN 
C(0) <= Cin ; 
Generate-label: 
FOR i IN 0 TO n- 1 GENERATE 

stage: fulladd PORT MAP ( C(i), X(i), Y (i), S(i), C(i+ 1)) ; 
END GENERATE ; 
Cout <= C(4) ; 

END Structure ; 

Figure A.15 An n-bit adder. 

[process label:] 
PROCESS [( signal name { ,  signal name) )] 

[VARIABLE declarations] 
BEGIN 

[WAIT statement] 
[Simple Signal Assignment Statements] 
[Variable Assignment Statements] 
[IF Statements] 
[CASE Statements] 
[LOOP Statements] 

END PROCESS [processlabel] ; 

Figure A. 16 The general form of a PROCESS statement. 

the process. Any variable declared can be used only by the code within the process; we say 
that the scope of the variable is limited to the process. To use the value of such a variable 
outside the process, the variable's value can be assigned to a signal. The various elements 
of the process are best explained by giving some examples. But first we need to introduce 
the IF, CASE, and LOOP statements. 



The IF, CASE, and LOOP statements can be used to describe either combinational 
sequential circuits. We will introduce these statements by giving some examples of corn- 
binational circuits because they are easier to understand. Sequential circuits are described 
in section A. 10. 

The general form of an IF statement is given in Figure A.17. An example using an IF 
statement for combinational logic is 

IF Sel = '0' THEN 
f < = x l ;  

ELSE 
f <=x2; 

END IF ; 

This code defines the 2-to-1 multiplexer that was used as an example of a selected sig- 
nal assignment in the previous section. Examples of sequential logic described with IF 
statements are given in section A. 10. 

A.9.3 CASE STATEMENT 

The general form of a CASE statement is shown in Figure A. 18. The constant-value can 
be a single value, such as 2, a list of values separated by the 1 pipe, such as 213, or a range, 
such as 2 to 4. An example of a CASE statement used to describe combinational logic is 

IF expression THEN 
statement ; 
{ statement ; ) 

ELSIF expression THEN 
statement ; 
{statement ; } 

ELSE 
statement ; 
{ statement ; ) 

END IF ; 

Figure A.17 The general form of an IF statement. 



CASE expression IS 
WHEN constant-value => 

statement ; 
{ statement ; } 

WHEN constant-value => 
statement ; 
{ statement ;) 

WHEN OTHERS => 
statement ; 
{ statement ; ) 

END CASE ; 

Figure A.18 The general form of a CASE statement. 

CASE Sel IS 
WHEN '0' => 

f <= x l  ; 
WHEN OTHERS => 

f < = x 2 ;  
END CASE ; 

This code represents the same 2-to-1 multiplexer described in section A.9.2 using the IF 
statement. Similar to a selected signal assignment, all possible valuations of the expression 
used for the WHEN clauses must be listed; hence the OTHERS keyword is needed. Also, all 
WHEN clauses in the CASE statement must be mutually exclusive. Examples of sequential 
circuits described with the CASE statement are given in section A. 10.10. 

VHDL provides two types of loop statements: the FOR-LOOP statement and the WHILE- 
LOOP statement. Their general forms are shown in Figure A. 19. These statements are used 
to repeat one or more sequential assignment statements in much the same way as a FOR 
GENERATE s taternent is used to repeat concurrent assignment statements. Examples of 
the FOR-LOOP are given in section A.9.7. 

An example of a PROCESS statement is shown in Figure A.20. It includes the code for 
the IF statement from section A.9.2. The signals Sel, x l ,  and x2 are shown in parentheses 
after the PROCESS keyword. They indicate which signals the process depends on and are 
called the sensitivity list of the process. For a process that describes combinational logic, 
as in this example, the sensitivity list includes all input signals used inside the process. 



[loop- label:] 
FOR variablename IN range LOOP 

statement ; 
{statement ;) 

END LOOP [loop-label] ; 

[looplabel:] 
WHILE boolean-expression LOOP 

statement ; 
{statement ; ) 

END LOOP [loop-label] ; 

Figure A. 19 The general forms of FOR-LOOP and 
WHILE-LOOP statements. 

PROCESS ( Sel, x l ,  x2 ) 
BEGIN 

IF Sel = '0' THEN ."-.- 

f < = x l ;  
ELSE 

f <= x 2 ;  
END IF ; 

END PROCESS ; 

Figure A.20 A PROCESS statement. 

In VHDL jargon a process is described as follows. When the value of a signal in the 
sensitivity list changes, the process becomes active. Once active, the statements inside the 
process are "evaluated" in sequential order. Any signal assignments made in the process 
take effect only after all the statements inside the process have been evaluated. We say that 
the signal assignment statements inside the process are scheduled and will take effect at the 
end of the process. 

The process describes a logic circuit and is translated into logic expressions in the same 
manner as the concurrent assignment statements in an architecture body. The concept of the 
process statements being evaluated in sequence provides a convenient way of understanding 
the semantics of the code inside a process. In particular, a key concept is that if multiple 
assignments are made to a signal inside a process, only the last one to be evaluated has any 
effect. This is illustrated in the next example. 



The IF statement in Figure A.20 describes a multiplexer that assigns either of two inputs, 
,x 1 or x2, to the output f. Another way of describing the multiplexer with an IF statement 
is shown in Figure A.21. The statement "f <= x l  ;" is evaluated first. However, the 
signalf may not actually be changed to the value of x 1, because there may be a subsequent 
assignment to f in the code inside the process statement. At this point in the process, x l  
represents the default value for f if no other assignment to f is evaluated. If we assume 
that Sel = 1, then the statement "f <= x2 ;" will be evaluated. The effect of this second 
assignment to f is to override the default assignment. Hence the result of the process is that 
f is set to the value x2 when Se1 = 1. If we assume that Sel = 0, then the IF condition fails 
and f is assigned its default value, xl . 

This example illustrates the effect of the ordering of statements inside a process. If the 
two statements were reversed in order, then the IF statement would be evaluated first and 
the statement "f <= x l  ;" would be evaluated last. Hence the process would always result 
in f being set to the value of x 1. 

Implied Memory 
Consider the process in Figure A.22. It is the same as the process in Figure A.2 1 except 

that the default assignment statement "f <= x l  ;" has been removed. Because the process 
does not specify a default value forf, and there is no ELSE clause in the IF statement, the 
meaning of the process is that f should retain its present value when the IF condition is not 

PROCESS ( Sel, x l ,  x2 ) 
BEGIN 

f <=xl; 
IF Sel = 1 THEN 

f < = x 2 ;  
END IF ; 

END PROCESS ; 

Figure A.21 An example illustrating the ordering of 
statements within a PROCESS. 

PROCESS ( Sel, x2 ) 
BEGIN 

IF Sel = 1 THEN 
f <=x2; 

END IF ; 
END PROCESS ; 

figure A.22 An example of implied memory. 



satisfied. The following expression is generated by the VHDL compiler for this process 

f = Sel - x2 + Sel - f 
Hence when SeZ = 0, the value of x2 is "remembered" at the output5 In VHDL jargon this 
is called implied memory or implicit memory. Although it is rarely useful for combinational 
circuits, we will show shortly that implied memory is the key concept used to describe 
sequential circuits. 

A.9.7 USING A VARIABLE IN A PROCESS 

We mentioned earlier that VHDL provides VARIABLE data objects, in addition to SIGNAL 
data objects. Unlike a signal, a variable data object does not represent a wire in a circuit, 
Therefore, a variable can be used to describe the functionality of a logic circuit in ways that 
are not possible using a signal. This concept is illustrated in Figure A.23. The intent of 
the code is to describe a logic circuit that counts the number of bits in the three-bit signal 
X that are equal to 1. The count is output using the signal called Count, which is a two-bit 
unsigned integer. Notice that Counr is declared with the mode Buffer because it is used in 
the architecture body on both the left and right sides of an assignment operator. Table A.2 
explains the meaning of the BufSer mode. 

Inside the process, Count is initially set to 0. No quotes are used for the number 0 in this 
case, because VHDL allows a decimal number, which we said in section A.2.2 is denoted 

- . .- 

LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY numbits IS 
PORT ( X : IN STD-LOGIC-VECTOR(1 TO 3 )  ; 

Count : BUFFER INTEGER RANGE 0 TO 3 ) ; 
END numbits ; 

ARCHITECTURE Behavior OF numbits IS 
BEGIN 

PROCESS ( X ) - - count the number of bits in X with the value I 
BEGIN 

Count <= 0 ; - - the 0 with no quotes is a decimal number 
FOR i IN 1 TO 3 LOOP 

IF X(i) = ' 1 ' THEN 
Count <= Count + 1 ; 

END IF ; 
END LOOP ; 

END PROCESS ; 
END Behavior ; 

Figure A.23 A WR-LOOP that does not represent a sensible circuit. 



with no quotes, to be assigned to an INTEGER signal. The code gives a FOR-LOOP with 
the loop index variable i. For the values of i from 1 to 3, the IF statement inside the FOR- 
LOOP checks the value of bit X(i); if it is 1 ,  then the value of Count is incremented. The 
code given in the figure is legal VHDL code and can be compiled without generating any 
errors. However, it will not work as intended, and it does not represent a sensible logic 
circuit. 

There are two reasons why the code in FigureA.23 will not work as intended. First, there 
are multiple assignment statements for the signal Count within the process. As explained 
for the previous example, only the last of these assignments will have any effect. Hence 
if any bit in X is 1 ,  then the statement "Count i= '0' ;" will not have the desired effect 
of initializing Count to 0, because it will be overridden by the assignment statement in 
the FOR-LOOP. Also, the FOR-LOOP will not work as desired, because each iteration for 
which X(1) is 1 will override the effect of the previous iteration. The second reason why 
the code is not sensible is that the statement "Count <= Count + ' 3 ' ;" describes a circuit 
with feedback. Since the circuit is combinational, such feedback will result in oscilIations 
and the circuit will not be stable. 

The desired behavior of the VHDL code in FigureA.23 can be achieved using a variable, 
instead of a signal. This is illustrated in Figure A.24, in which the variable Tmp is used 
instead of the signal Count inside the process. The value of Trnp is assigned to Count at the 
end of the process. Observe that the assignment statements to Trnp are indicated with the := 

- ---- LIBRARY ieee ; .-. -r **, .-+. r - *-." 

USE ieee.std-logic-l164.all ; 

ENTITY Numbits IS 
PORT ( X : IN STD-LOGIC-VECTOR(1 TO 3) ; 

Count : OUT INTEGER RANGE 0 TO 3 ) ; 
END Numbits ; 

ARCHITECTURE Behavior OF Numbits IS 
BEGIN 

PROCESS ( X ) - - count the number of bits in X equal to 1 
VARIABLE Trnp : INTEGER ; 

BEGIN 
Trnp := 0 ; 
FOR i IN 1 TO 3 LOOP 

IF X(i) = ' 1 ' THEN 
Trnp := Trnp + 1 ; 

END IF ; 
END LOOP ; 
Count <= Trnp ; 

END PROCESS ; 
END Behavior ; 

Figure A.24 The FOR-LOOP from Figure A.23 using a variable. 



A P P E N D I X A VHDL REFERENCE 

operator, as opposed to the <= operator. The := is called the variable assignment operator, 
Unlike <=, it does not result in the assignment being scheduled until the end of the process. 
The variable assignment takes place immediately. This immediate assignment solves the 
first of the two problems with the code in Figure A.23. The second problem is also solved 
by using a variable instead of a signal. Because the variable does not represent a wire in 
a circuit, the FOR-LOOP need not be literally interpreted as a circuit with feedback. B~ 
using the variable, the FOR-LOOP represents only a desired behavior, orfrcnctionality, of 
the circuit. When the code is translated, the VHDL compiler will generate a combinational 
circuit that implements the functionality expressed in the FOR-LOOP. 

When the code in Figure A.24 is translated by the VHDL compiler, it produces the 
circuit with 2 two-bit adders shown in Figure A.25. It is possible to see how this circuit 
corresponds to the FOR-LOOP in the code. The result of the first iteration of the loop is 
that Count is set to the value of X(1). The second iteration then adds X( l )  to X ( 2 ) .  This is 
realized by the top adder in the figure. The third iteration adds X ( 3 )  to the sum produced 
from the second iteration. This corresponds to the bottom adder. When this circuit is 
optimized by the logic synthesis algorithms, the resulting expressions for Count are 

These expressions represent a full-adder circuit, with Count(0) as the sum output and 
Count(1) as the carry-out. It is interesting to note that even though the VHDL code describes 
the desired behavior of the circuit in an abstract way, using a FOR-LOOP, in this example 

Count (1)  Count (0) 

I 

Figure A.25 The circuit generated from the code in 
Figure A.24. 

I 
x1 "0 Y I  Y o  

Two-bit adder 

S 1  So 

0 X(3) 

"1 Xo Y l  Y o  

Two-bit adder 

S1 So 



the logic synthesis algorithms produce the most efficient circuit, which is the full-adder. As 
we said at the beginning of this appendix and in section 2.10, the style of code in Figure 
A.24 should be avoided, because it is often difficult for the designer to envisage what logic 
circuit the code represents. 

As another example of the use of a variable, Figure A.26 gives the code for an n-bit 
NAND gate entity, named NANDn. The number of inputs to the NAND gate is set by the 
GENERIC parameter n. The inputs are the n-bit signal X,  and the output is f .  The variable 
 TIT^^ is defined in the architecture and originally set to the value of the input signal X(1). In 
the FOR LOOP, Trnp is ANDed successively with input signals X (2) to X (n). Since Trnp 
is a variable data object, assignments to it take effect immediately; they are not scheduled 
to take effect at the end of the process. The complement of Trnp is assigned to f ,  thus 
completing the description of the n-input NAND operation. 

Figure A.27 shows the same code given in Figure A.26 but with the data object Tmp 
defined as a signal, instead of as a variable. This code gives a wrong result, because only 
the last statement included in the process has any effect on Tmp. The code results in Trnp = 
T ~ n p  - X (4), as determined by the last iteration of the FOR LOOP. Also, since Trnp is never 
initialized, its value is unknown. Hence the value of the output f = Trnp is unknown. 

Figure A.28 shows one way to describe the n-input NAND gate using signals. Here 
Tmp is defined as an n-bit signal, which is set to contain n 1 s using the (OTHERS = > ' 1 ') 

-? 

LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY NANDn IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( X : IN STD-LOGIC-VECTOR(1 TO n) ; 

f : OUT STD-LOGIC ) ; 
END NANDn ; 

ARCHITECTURE Behavior OF NANDn IS 
BEGIN 

PROCESS ( X ) 
VARIABLE Trnp : STD-LOGIC ; 

BEGIN 
Tmp := X(l) ; 
AND-bits: FOR i IN 2 TO n LOOP 

Trnp := Tmp AND X(i) ; 
END LOOP AND-bits ; 
f <= NOTTmp;  

END PROCESS ; 
END Behavior ; 

. Figure A.26 Using a variable to describe an n-input NAND gate. 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee.std~logic~l164.all ; 

ENTITY NANDn IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( X : IN STD-LOGIC-VECTOR(1 TO n) ; 

f : OUT STD-LOGIC ) ; 
END NANDn ; 

ARCHITECTURE Behavior OF NANDn IS 
SIGNAL Trnp : STD-LOGIC ; 

BEGIN 
PROCESS ( X ) 
BEGIN 

Trnp <= X(l )  ; 
AND-bits: FOR i IN 2 TO n LOOP 

Trnp <= Trnp AND X(i) ; 
END LOOP AND-bits ; 
f <= NOT Trnp ; 

END PROCESS ; 
END Behavior ; 

Figure A.27 The code from Figure A.26 using a signal. 

LIBRARY ieee ; 
USE ieee.stdJogic-l164.all ; 

ENTITY NANDn IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( X : IN STD-LOGIC-VECTOR(1 TO n) ; 

f : OUT STD-LOGIC ) ; 
END NANDn ; 

ARCHITECTURE Behavior OF NANDn IS 
SIGNAL Trnp : STD-LOGIC-VECTOR(1 TO n) ; 

BEGIN 
Trnp <= (OTHERS => ' 1') ; 
f <= '0' WHENX = TmpELSE'l' ; 

END Behavior ; 

Figure A.28 Using a signal to describe an n-input NAND gate. 



construct. The conditional signal assignment specifies that f is 0 only if a11 bits in the input 
X are 1, thus describing the NAND operation. 

A final example of variables used in a sequential circuit is given in section A. 10,7. In 
general, using both variables and signals in VHDL code can lead to confusion because they 
imply different semantics. Since variables do not necessarily represent wires in a circuit, 
the meaning of code that uses variables is sometimes ill defined. To avoid confusion, in 
this book we use variables only for the loop indices in FOR GENERATE and FOR LOOP 
statements. Except for similar purposes, the reader should avoid using variables because 
they are not needed for describing logic circuits. 

Although combinational circuits can be described using either concurrent or sequential 
assignment statements, sequential circuits can be described only with sequential assignment 
statements. We now give some representative examples of sequential circuits. 

Figure A.29 gives the code for a gated D latch. The process sensitivity list includes both 
the latch's data input, D, and clock, clk. Hence whenever a change occurs in the value of 
either D or clk, the process becomes active. The IF statement specifies that Q should be set 

LIBRARY ieee ; 
USE ieee.std1ogic-l164.all ; 

ENTITY latch IS 
PORT ( D, clk : IN STD-LOGIC ; 

Q : OUT STD-LOGIC ) ; 
END latch ; 

ARCHITECTURE Behavior OF latch IS 
BEGIN 

PROCESS ( D, clk ) 
BEGIN 

IF elk = ' 1 3  THEN 
Q < = D ;  

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.29 A gated D Latch. 



to the value of D whenever the clock is 1. There is no ELSE clause in the IF statement. 
we explained for Figure A.22, this implies that Q should retain its present value when the 
IF condition is not met. 

Figure A.30 gives a process that is slightly different from the one in Figure A,29. The 
sensitivity list includes only the Clock signal. which means that the process is active only 
when the value of Clock changes. The condition in the IF statement looks unusual. The 
syntax Clock'EVENT represents a change in the value of the clock signal. In VHDL jargon 
'EVENT is called an attribute, and combining 'EVENT with a signal name, such as Clock, 
yields a logical condition. The combination in the IF statement of the two conditions 
Clock'EVENT and Clock = '1' specifies that Q should be assigned the value of D when 
"a change occurs in the value of Clock, and Clock is now 1". This describes a low-to-high 
transition of the clock signal; hence the code describes a positive-edge-triggered D ff ip-flop. 

The std-logic-1164 package defines the two functions named rising-edge and 
falling-edge. They can be used as a short-form notation for the condition that checks for 
the occurrence of a clock edge. In Figure A.30 we could replace the line "IF Clock'EVENT 
AND Clock = '1' THEN" with the equivalent line "IF rising-edge(C1ock) THEN". We do 
not use rising-edge or fallingedge in this book; they are mentioned for completeness. 

LIBRARY ieee ; 
USE ieee.std_logic-1164.all ; 

ENTITY flip flop IS 
PORT ( D, Clock : IN STDLOGIC ; 

Q : OUT STD-LOGIC ) ; 
END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS 
BEGIN 

PROCESS ( Clock ) 
BEGIN 

IF Clock9EVENT AND Clock = ' 1 ' THEN 
Q < = D ;  

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.30 D flip-flop. 



A.10.3 USING A WAIT UNTIL STATEMENT 

The process in Figure A.3 1 uses a different syntax to describe a D flip-flop. Synchronization 
with the clock edge is specified by using the statement "WAIT UNTIL Clock'EVENTAND 
Clock = '1'  ;". A process that uses a WAIT UNTIL statement is a special case because the 
sensitivity list is omitted. Use of this WAIT UNTIL statement implicitly specifies that the 
sensitivity list includes only Clock. For our purposes, which is using VHDL for synthesis 
of circuits, a process can include a WAIT UNTIL statement only if it is the first statement 
in the process. 

The WAIT UNTIL statement above can be written more simply as 

WAIT UNTIL Clock = ' 1 ' ; 

which means "wait for the next positive edge of the Clack signal". But, since some CAD 
synthesis tools require the inclusion of the 'EVENT attribute, we include the attribute in 
our examples. 

As seen in Figures A.30 and A.3 1, both IF and WAIT UNTIL statements can be used 
to describe flip-flops. If a process only defines flip-flops, then it makes no difference which 
construct is used. However, in practical designs a process often includes many statements. 
If one or more of these statements specify a combinational subcircuit, then it is necessary to 
use IF statements to infer flip-flops where desired. If the WAIT UNTIL statement is used, 
which has to be the first statement in the process, then there will be flip-flops inferred for 
all statements in the process. For this reason, designers prefer using the IF statement. 

LIBRARY ieee ; 
USE ieee.stdAogic-l164.all ; 

ENTITY flipflop IS 
PORT ( D, Clock : IN STD-LOGTC ; 

Q : OUT STD-LOGIC ) ; 
END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS 
BEGIN 

PROCESS 
BEGIN 

WAIT UNTIL Clock' EVENT AND Clock = ' 1 ' ; 
Q < = D ;  

END PROCESS ; 
END Behavior ; 

Figure A.31 Equivalent code to Figure A.30, using a WAIT UNTIL statement. 



Figure A.32 gives a process that is similar to the one in Figure A.30. It describes a D 
flip-flop with an asynchronous reset, or clear, input. The reset signal has the name Resetn. 
When Resetn = 0, the flip-flop output Q is set to 0. Appending the letter n to a signal name 
is a widely used convention to denote an active-low signal. 

Figure A.33 shows how a flip-flop with a synchronous reset input can be described by using 
the IF statement. FigureA.34 presents a specification based on the WAIT UNTIL statement. 

One possible approach for describing a multibit register is to create an entity that instantiates 
multiple flip-flops. A more convenient method is illustrated in Figure A.35. It gives the 
same code shown in Figure A.32 but using the four-bit STD-LOGIC-VECTOR input D 
and the four-bit output Q. The code describes a four-bit register with asynchronous clear, 

Figure A.36 gives the code for an entity named regn. It shows how the code in Figure 
A.35 can be extended to represent an n-bit register. The number of flip-flops is set by the 
generic parameter n. 

The code in Figure A.37 shows how an enable input can be added to the n-bit register 
from Figure A.36. When the active clock edge occurs, the flip-flops in the register cannot 

LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 

ENTITY flip flop IS 
PORT ( D, Resetn, Clock : IN STIILOGIC ; 

Q : OUT STD-LOGIC ) ; 
END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q <= '0' ; 

ELSIF Clock' EVENT AND Clock = ' 1 ' THEN 
Q < = D ;  

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.32 D flip-flop with asynchronous reset. 



LIBRARY ieee ; 
USE ieee.std-logic-1 l64.all ; 

ENTITY flipflop IS 
PORT ( D, Resetn, Clock : IN STDLOGIC ; 

Q : OUT STELLOGIC ) ; 
END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Clock'EVENT AND Clock = ' 1' THEN 
IF Resetn = '0' THEN 

Q <= '07 ; 
ELSE 

Q < = D ;  
END IF ; 

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.33 D flip-flop with synchronous reset, using an IF statement. 

LIBRARY ieee ; 
USE ieee.std~logic~l164.all ; 

ENTITY flipflop IS 
PORT ( D, Resetn, Clock : IN STD-LOGIC ; 

Q : OUT STD-LOGIC ) ; 
END flipflop ; 

ARCHITECTURE Behavior OF flipflop IS 
BEGIN 

PROCESS 
BEGIN 

WAIT UNTIL Clock'EVENT AND Clock = ' 1' ; 
IF Resetn = '0' THEN 

Q <= '0' ; 
ELSE 

Q < = D ;  
END IF ; 

END PROCESS ; 
END Behavior ; 

Figure A.34 D flip-flop with synchronous reset, using a WAIT UNTIL statement. 

809 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee.stdlogic-1164.all ; 

ENTITY reg4 IS 
PORT ( D : IN STIXLOGIC-VECTOR(3 DOWNTO 0) ; 

Resetn, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR(3 DOWNTO 0) ) ; 

END reg4 ; 

ARCHITECTURE Behavior OF reg4 IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q <= "0000" ; 

ELSIF Clock'EVENT AND Clock = ' 1 ' THEN 
Q < = D ;  

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.35 Code for a four-bit register with asynchronous clear. 

LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY regn IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( D : IN STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ; 

Resetn, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ) ; 

END regn ; 

ARCHITECTURE Behavior OF regn IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q <= (OTHERS => '0') ; 

ELSIF Clock'EVENT AND Clock = ' 1' THEN 
Q < = D ;  

END IF ; 
END PROCESS ; 

END Behavior ; 

Figure A.36 Code for an n-bit register with asynchronous clear. 
81 0 



LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY regne IS 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( D : IN STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ; 

Resetn : IN STD-LOGIC ; 
E, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ) ; 

END regne ; 

ARCHITECTURE Behavior OF regne IS 
BEGIN 

PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
Q <= (OTHERS => '07) ; 

ELSIF Clock'EVENT AND Clock = ' 1' THEN 
IF E = ' I '  THEN 

Q c = D ;  
END IF ; 

END IF ; 
END PROCESS ; - 

END Behavior ; 

Figure A.37 VHDL code for an n-bit register with an enable input. 

change their stored values if the enable E is 0. If E = 1, the register responds to the active 
clock edge in the normal way. 

An example of code that defines a four-bit shift register is shown in Figure A.38. The lines 
of code are numbered for ease of reference. The shift register has a serial input, w, and 
parallel outputs, Q. The right-most bit in the register is Q(4), and the left-most bit is Q(1) ;  
shifting is performed in the right-to-left direction. The architecture declares the signal Sreg, 
which is used to describe the shift operation. All assignments to Sreg are synchronized to 
the clock edge by the IF condition; hence Sreg represents the outputs of flip-flops. The 
statement in line 13 specifies that Sreg(4) is assigned the value of w .  As we explained 
previously, this assignment does not take effect immediately but is scheduled to occur at 
the end of the process. In line 14 the current value of Sreg(4), before it is shifted as a result 
of line 13, is assigned to Sreg(3). Lines 15 and 16 complete the shift operation. They assign 
the current values of Sreg(3)  and Sreg(2), before they are changed as a result of lines 14 
and 15, to Sreg(2) and Sreg(l), respectively. Finally, Sreg is assigned to the Q outputs. 

81 1 



1 LIBRARY ieee ; 
2 USE ieee.std-logic-ll64.all ; 

3 ENTITY shift4 IS 
4 PORT ( w, Clock : IN STD-LOGIC ; 
5 Q : OUT STD-LOGIC-VECTOR(1 TO 4) ) ; 
6 END shift4 ; 

ARCHITECTURE Behavior OF shift4 IS 
SIGNAL Sreg : STD-LOGIC-VECTOR(1 TO 4) ; 

BEGIN 
PROCESS ( Clock ) 
BEGIN 

IF Clock'EVENT AND Clock = ' 1' THEN 
Sreg(4) c= w ; 
Sreg(3) <= Sreg(4) ; 
Sreg(2) <= Sreg(3) ; 
Sreg(1) <= Sreg(2) ; 

END IF ; 
END PROCESS ; 
Q <= Sreg ; 

END Behavior ; 

Figure A.38 Code for a four-bit shift register. 

The key point that has to be appreciated in the code in Figure A.38 is that the assignment 
statements in lines 13 to 16 do not take effect until the end of the process. Hence all flip- 
flops change their values at the same time, as required in the shift register. We could write 
the statements in lines 13 to 16 in any order without changing the meaning of the code. 

In section A .9.7 we introduced variables and showed how they differ from signals. As 
another example of the semantics involved using variables, Figure A.39 gives the code from 
Figure A.38 but with Sreg declared as a variable, instead of as a signal. The statement in 
line 13 assigns the value of w to Sreg (4). Since Sreg is a variable, the assignment takes 
effect immediately. In line 14 the value of Sreg (4), which has already been changed to w,  
is assigned to Sreg (3). Hence line 14 results in Sreg ( 3 )  = w.  Similarly, lines 15 and 16 
set Sreg (2) and Sreg (1) to the value of w. The code does not describe the desired shift 
register, but rather loads all flip-flops with the value on the input w. 

For the code in Figure A.39 to correctly describe a shift register, the ordering of lines 
13 to 16 has to be reversed. Then the first assignment sets Sreg (1) to the value of Sreg (21, 
the second sets Sreg (2) to the value of Sreg (3), and so on. Each successive assignment 
is not affected by the one that precedes it; hence the semantics of using variables does not 
cause a problem. As we said in section A.9.7, it can be confusing to use both signals and 
variables at the same time because they imply different semantics. 



1 LIBRARY ieee ; 
2 USE ieee.std-logic-l164.all ; 

3 ENTITY shift4 I S  
4 PORT ( w, Clock : IN STD-LOGIC ; 
5 Q : OUT STD-LOGIC-VECTOR(1 TO 4) ) ; 
6 ENDshift4; 

ARCHITECTURE Behavior OF shift4 IS 
BEGIN 

PROCESS ( Clock ) 
VARlABLE Sreg : STD-LOGIC-VECTOR(1 TO 4) ; 

BEGIN 
IF Clock'EVENT AND Clock = ' I '  THEN 

Sreg(4) := w ; 
Sreg(3) : = Sreg(4) ; 
Sreg(2) := Sreg(3) ; 
Sreg( 1 ) := Sreg(2) ; 

END IF ; 
Q <= Sreg ; 

END PROCESS ; 
END Behavior ; 

Figure A.39 The code from Figure A.38, using a variable. 

Figure A.40 shows the code for a four-bit counter with an asynchronous reset input. The 
counter also has an enable input. On the positive clock edge, if the enable E is I ,  the 
count is incremented. If E = 0, the counter holds its current value. Because counters are 
commonly needed in logic circuits, most CAD systems provide a selection of counters that 
can be instantiated in a design. 

A. 10.9 USING SUBCIRCUITS WITH GENERIC PARAMETERS 

We have shown several examples of VHDL entities that include generic parameters. When 
these subcircuits are used as components in other code, the generic parameters can be 
set to whatever values are needed. To give an example of component instantiation using 
generics, consider the circuit shown in Figure A.41. The circuit adds the binary number 
represented by the k-bit input X to itself a number of times. Such a circuit is often called 
an accumulator. To store the result of each addition operation, the circuit includes a k-bit 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee-std-logic-l164.all ; 
USE ieee.std1ogic-unsigned.al1 ; 

ENTITY count4 IS 
PORT ( Resetn : IN STD-LOGIC ; 

E, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR (3 DOWNTO 0) ) ; 

END count4 ; 

ARCHITECTURE Behavior OF count4 IS 
SIGNAL Count : STD-LOGIC-VECTOR (3 DOWNTO 0) ; 

BEGIN 
PROCESS ( Clock, Resetn ) 
BEGIN 

IF Resetn = '0' THEN 
Count <= "0000" ; 

ELSIF (Clock'EVENT AND Clock = ' 1') THEN 
IF E = '1' THEN 

Count <= Count + 1 ; 
END IF ; 

END IF ; 
END PROCESS ; - 
Q <= Count ; 

END Behavior ; 

Figure A.40 An example of a counter. 

register. The register has an asynchronous reset input, Resetn. It also has an enable input. 
E, which is controlled by a four-bit counter. The counter has an asynchronous clear input 
and a count enable input. The circuit operates by first clearing all bits in the register and 
counter to 0. Then in each clock cycle, the counter is incremented, and the sum outputs 
from the adder are stored in the register. When the counter reaches the value 11 11, the 
enable inputs on both the register and counter are set to 0 by the NAND gate. Hence the 
circuit remains in this state until it is reset again. The final value stored in the register is 
equal to 15X. 

We can represent the accumulator circuit using several subcircuits described in this 
appendix: addern (Figure A.15), NANDn (Figure A.28), regne, and count4. We placed 
the component declaration statements for all of these subcircuits in one package, named 
components, which is shown in Figure A.42. 

Complete code for the accumulator is given in Figure A.43. It uses the generic parameter 
k to represent the number of bits in the input X.  Using this parameter in the code makes l t  

easy to change the bit-width at a later time if desired. The architecture defines the signal Slrm 

to represent the outputs of the adder; for simplicity, we ignore the possibility of arithmetlC 
overflow and assume that the sum can be represented using k bits. The four-bit signal 



Resetn Clock X 

Figure A.41 The accumulator circuit. 

1 

4 

represents the outputs from the counter. The Stop signal is connected to the enable inputs 
on the register and counter. 

The statement labeled adder instantiates the addern subcircuit. The GENERIC MAP 
keywords are used to specify the value of the adder's generic parameter, n. The syntax 
(n => k) sets the number of bits in the adder to k. We do not need the carry-in port on 
the adder, but a signal must be connected to it. The signal Zero-bit, which is set to '0' in 
the code, is used as a placeholder for the carry-in port (the VHDL syntax does not permit 
a constant value, such as ' 1 ', to be associated directly with a port; hence a signal must be 
defined for this purpose). The k-bit data inputs to the adder are X and the output of the 
register, which is named Result. The sum output from the adder is named Sum, and the 
carry-out, which is not used in the circuit, is named Cout. 

The regne subcircuit is instantiated in the statement Iabeled reg. GENERIC MAP is 
used to set the number of bits in the register to k. The k-bit register input is provided by the 
Sum output from the adder. The register's output is named Result; this signal represents the 
output of the accumulator circuit. It has the mode BUFFER in the entity declaration. This 
is required in the VHDL syntax for the signal to be connected to a port on an instantiated 
component. 

- E - E  

Resetn Counter + Resetn Register 

> 
41 

- __X_ 

Result 

+ 

I 
Sum 
,- k 
T 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee-std-logic-l164.all ; 

PACKAGE components IS 

COMPONENT addern - - n-bit adder 
GENERIC ( n : INTEGER := 4 ) ; 
PORT ( Cin : IN STJlLOGIC ; 

X, Y : IN STIILOGIC-VECTOR(n- 1 DOWNTO 0) ; 
S : OUT STD-LOGIC-VECTOR(n- 1 DOWNTO 0) ; 
Cout : OUT STD-LOGIC ) ; 

END COMPONENT ; 

COMPONENT regne - - n-bit register with enable 
GENERIC ( n : INTEGER : = 4 ) ; 
PORT ( D : IN STD-LOGIC-VECTOR(n- I DOWNTO 0) ; 

Resetn : IN STD-LOGIC ; 
E, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR(n- 1 DOWNTO 0)  ) ; 

END COMPONENT ; 

COMPONENT count4 - - 4-bit counter with enable 
PORT ( Resetn : IN STD-LOGIC ; 

E, Clock : IN STD-LOGIC ; 
Q : OUT STD-LOGIC-VECTOR ( 3  DOWNTO 0) ) ; 

END COMPONENT ; 

COMPONENT NANDn - - n-bit AND gate 
GENERTC ( n : INTEGER := 4 ) ; 
PORT ( X : IN STD- LOGIC-VECTOR(1 TO n) ; 

f : OUT STD-LOGIC ) ; 
END COMPONENT ; 

END components ; 

Figure A.42 Component declarations for the accumulator circuit. 

The count4 and NANDn components are instantiated in the statements labeled Counter 
and NANDgate. We do not have to use the GENERIC MAP keyword for NANDtz, because 
the default value of its generic parameter is 4, which is the value needed in this application+ 

Figure A.44 shows the state diagram of a simple Moore machine. The code for this machine 
is shown in Figure A.45. The signal named y represents the state of the machine. ~t is 

81 6 
A 



LIBRARY ieee ; 
USE ieee-std-logic-l164.all ; 
USE work.components.all ; 

ENTITY accum IS 
GENERIC ( k : INTEGER : = 8 ) ; 
PORT ( Resetn, Clock : IN STD-LOGIC ; 

X : IN STD-LOGIC-VECTOR(k-1 DOWNTO 0) ; 
Result : BUFFER STD-LOGIC-VECTOR(k-I DOWNTO 0) ) ; 

END accum ; 

ARCHITECTURE Structure OF accum IS 
SIGNAL Sum : STD-LOGIC-VECTOR(k-1 DOWNTO 0) ; 
SIGNAL C : STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
SIGNAL Zero-bit, Cout, Stop : STD-LOGIC ; 

BEGIN 
Zero-bit < = '0' ; 
adder: addern 

GENERIC MAP ( n => k ) 
PORT MAP ( Zero-bit, X, Result, Sum, Cout ) ; 

reg: regne 
GENERIC MAP ( n => k ) 
PORT MAP ( Sum, Resetn, Stop, Clock, Result ) ; 

Counter: count4 
PORT MAP ( Clock, Resetn, Stop, C ) ; 

NANDgate: NANDn 
PORT MAP ( C, Stop ) ; 

END Structure ; 

Figure A.43 Code for the accumulator circuit 

declared with an enumerated type, State-type, that has the three possible values A, B, and C. 
When the code is compiled, the VHDL compiler automatically performs a state assignment 
to select appropriate bit patterns for the three states. The behavior of the machine is defined 
by the process with the sensitivity list that comprises the reset and clock signals. 

The VHDL code includes an asynchronous reset input that puts the machine in state 
A. The state table for the machine is defined using a CASE statement. Each WHEN clause 
corresponds to a present state of the machine, and the IF statement inside the WHEN clause 
specifies the next state to be reached after the next positive edge of the clock signal. Since 
the machine is of the Moore type, the output z can be defined as a separate concurrent 
assignment statement that depends only on the present state of the machine. Alternatively, 
the appropriate value for z could have been specified within each WHEN clause of the 
CASE statement. 

81 7 
- 



Reset 

Figure A.44 State diagram of a simple Moore-type FSM. 

An alternative way to describe a Moore-type finite state machine is given in the archi- 
tecture in Figure A.46. Two signals are used to describe how the machine moves from one 
state to another state. The signal y-present represents the outputs of the state flip-flops, 
and the signal y-next represents the inputs to the flip-flops. The code has two processes. 
The top process describes a combinational circuit. It uses a CASE statement to specify the 
values that _v_next should have for each value of x ~ ? r e s e n t .  The other process represents 
a sequential circuit, which specifies that y-present is assigned the value of y-next on the 
positive clock edge. The process also specifies that .Y-present should take the value A when 
Resetn is 0, which provides the asynchronous reset. 

A state diagram for a simple Mealy machine is shown in Figure A.47, The corresponding 
code is given in Figure A.48. The code is the same as in Figure A.45 except that the output 
z is specified using a separate CASE statement. The CASE statement states that when the 
FSM is in state A, z should be 0, but when in state B, z should take the value of w.  This 
CASE statement properly describes the logic needed for z .  However, it is not obvious why 
we have used a second CASE statement in the code, rather than specify the value of z inside 
the CASE statement that defines the state table for the machine. This approach would 
not work properly because the CASE statement for the state table is nested inside the IF 
statement that waits for a clock edge to occur. Hence if we placed the code for z inside this 
CASE statement, then the value of z could change only as a result of a clock edge. This 
does not meet the requirements of the Mealy-type FSM, because the value of I depends not 
only on the state of the machine but also on the value of the input w. 



LIBRARY ieee ; 
USE ieee.std-logic-1164.aIl ; 

ENTITY moore IS 
PORT ( Clock : IN STIILOGIC ; 

w : IN STD-LOGIC ; 
Resetn : IN STD-LOGIC ; 
z : OUT STD-LOGIC ) ; 

END moore ; 

ARCHITECTURE Behavior OF moore TS 
TYPE State-type IS (A, B, C )  ; 
SIGNAL y : State-type ; 

BEGIN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y <= A ;  

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN 
CASE y IS 

WHEN A => 
IF w = '0' THEN 

-- y < = A ;  

ELSE 
y < = B ;  

END IF ; 
WHEN B => 

IF w = '0' THEN 
y < = A ;  

ELSE 
y < = C ;  

END IF ; 
WHEN C => 

IF w = '0' THEN 
y < = A ;  

ELSE 
y < = C ;  

END IF ; 
END CASE ; 

END IF ; 
END PROCESS ; 

z <= ' 1 '  WHEN y = C ELSE '0' ; 
END Behavior ; 

Figure A.45 An example of a Moore-type finite state machine. 



ARCHITECTURE Behavior OF moore IS 
TYPE State-type IS (A, B, C) ; 
SIGNAL y-present, y-next : State-type ; 

BEGIN 
PROCESS ( w, y-present ) 
BEGIN 

CASE y-present IS 
WHEN A => 

IF w = '0' THEN 
y-next <= A ;  

ELSE 
y-next <= B ; 

END IF ; 
WHEN B => 

IF w = '0' THEN 
y-next <= A ;  

ELSE 
y-next c= C ; 

END IF ; 
WHEN C => 

IF = 90' THEN 
y- next < = A ; 

ELSE *- --- - - . 

y-next <= C ; 
END IF ; 

END CASE ; 
END PROCESS ; 

PROCESS ( Clock, Resetn ) 
BEGIN 

IF Resetn = '0' THEN 
y-present <= A ; 

ELSIF (Clock'EVENT AND Clock = ' 1 ') THEN 
y-present <= y-next ; 

END IF ; 
END PROCESS ; 

z <= ' 1 ' WHEN y-present = C ELSE '0' ; 
END Behavior ; 

Figure A.46 Code equivalent to Figure A.45, using two processes. 



A . l l  COMMON ERRORS IN VHDL CODE 

Reset 

Figure A.47 State diagram of a Mealy-type FSM. 

A. 1 1 COMMON ERRORS IN VHDL CODE I 
This section lists some common errors that our students have made when writing VHDL 
code. 

ENTITY and ARCHITECTURE Names 
The name used in an ENTITY declaration and the corresponding ARCHITECTURE 

must be identical. The code 

ENTITY adder IS 

END adder ; 
ARCHITECTURE Structure OF adder4 IS 

END Structure ; 

is erroneous because the ENTITY declaration uses the name adder, whereas the architecture 
uses the name adder4. 

Missing Semicolon 
Every VHDL statement must end with a semicolon. 

Use of Quotes 
Single quotes are used for single-bit data, double quotes for multibit data, and no quotes 

are used for integer data. Examples are given in section A.2. 

Combinational versus Sequential Statements 
Combinational statements include simple signal assignments, selected signal assign- 

ments, and generate statements. Simple signal assignments can be used either outside or 
inside a PROCESS statement. The other types of combinational statements can be used 
only outside a PROCESS statement. 



A P P E N D I X A VHDL REFERENCE 

LIBRARY ieee ; 
USE ieee.std_logic-l164.all ; 

ENTITY mealy IS 
PORT ( Clock, Resetn : IN STD-LOGIC ; 

w : IN STD-LOGIC ; 
z : OUT STD-LOGIC ) ; 

END mealy ; 

ARCHITECTURE Behavior OF mealy IS 
TYPE State-type IS (A, B) ; 
SIGNAL y : State-type ; 

BEGIN 
PROCESS ( Resetn, Clock ) 
BEGIN 

IF Resetn = '0' THEN 
y < = A ;  

ELSIF (Clock'EVENT AND Clock = ' 1') THEN 
CASE y IS 

WHEN A => 
IFw = '0' THENy <= A ;  
ELSE y <= B ; 
END IF ; - .- 

WHEN B => 
I F w =  '0' THENy <= A ;  
ELSEy c= B ;  
END IF ; 

END CASE ; 
END IF ; 

END PROCESS ; 

PROCESS ( y, w ) 
BEGIN 

CASE y IS 
WHEN A => 

<= '0' ; 
WHEN B => 

z < = w ;  
END CASE ; 

END PROCESS ; 
END Behavior ; 

Figure A.48 An example of a Mealy-type machine. 



A. 1 1 COMMON ERRORS IN VHDL CODE 

Sequential statements include IF, CASE, and LOOP statements. Each of these types 
of statements can be used only inside a process statement. 

Component Instantiation 
The following statement contains two errors 

control: shiftr GENERIC MAP ( K => 3 ) ; 
PORT MAP ( 'l', Clock, w, Q ) ; 

There should be no semicolon at the end of the first line, because the two lines represent a 
single VHDL statement. Also, it is illegal to associate a constant value (' 1 ') with a port on 
a component. The following code shows how the two errors can be fixed 

SIGNAL High ; 

High <= '1'  ; 
control: shiftr GENERIC MAP ( K = > 3 ) 

PORT MAP ( High, Clock, w, Q ) ; 

Label, Signal, and Variable Names 
It is illegal to use any VHDL keyword as a label, signal, or variable name. For example, 

i t  is illegal to name a signal In or Out. Also, it is illegal to use the same name multiple 
times for any label, signal, or variable in a given VHDL design. A common error is to use 
the same name for a signal and a variable used as the index in a generate or loop statement. 
For instance, if the code uses the generate statement 

Generate-label: 
FOR i IN 0 TO 3 GENERATE 

bit: fulladd PORT MAP ( C(i), X(i), Y(i), S(i), C(i+ 1 )  ) ; 
END GENERATE ; 

then it is illegal to define a signal named i (or I, because VHDL does not distinguish between 
lower and uppercase letters). 

Implied Memory 
As shown in section A. 10, implied memory is used to describe storage elements. Care 

must be taken to avoid unintentional implied memory. The code 

IF LA = '1'  THEN 
EA <= '1' ; 

END IF ; 



results in implied memory for the EA signal. If this is not desired, then the code can be 
fixed by writing 

IF LA = '1' THEN 
EA <= '1' ; 

ELSE 
EA <= '0' ; 

END IF ; 

Implied memory also applies to CASE statements. The statement 

CASE y IS 
WHEN S 1 = >  

EA <= '1' ; 
WHEN S2 => 

EB <= '1' ; 
END CASE ; 

does not specify the value of the EA signal when y is not equal to S 1, and it does not specify 
the value of EB when y is not equal to S 2 .  To avoid having implied memory for both EA 
and EB, these signals should be assigned default values, as in the code 

EA <= '0' ; EB <= '0' ; 
CASE y IS 

WHEN S 1 = >  
EA c= ' I '  ; 

WHEN S2 => 
EB <= '1'  ; 

END CASE ; 

In general, the designer should attempt to write VHDL code that contains as few errors 
as possible because finding the source of an error can often be difficult. 

This appendix describes all the important VHDL constructs that are useful for the synthesis 
of logic circuits. As mentioned earlier, we do not discuss any features of VHDL that are 
useful only for simulation of circuits, or for other purposes. A reader who wishes to learn 
more about using VHDL can refer to specialized books El-71. 



Institute of Electrical and Electronics Engineers, " 1076- 1993 IEEE Standard VHDL 
Language Reference Manual," 1 993. 

D. L. Peny, VHDL, 3rd ed. (McGraw-Hill: New York, 1998). 

Z. Navabi, VHDL-Analysis and Modeling of Digital Systems, 2nd ed. 
(McGraw-Hill: New York, 1998). 

J. Bhasker, A VHDL Primer, 3rd ed. (Prentice-Hall: Englewood Cliffs, NJ, 1998). 

K. Skahill, VHDL for Progra~nmable Logic (Addison-Wesley: Menlo Park, CA, 
1996). 

A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.: 
Boston, MA, 1997). 

S. Yalamanchili, VHDL Starter's Guide (Prentice-Hall: Upper Saddle River, NJ, 
1998). 







Appendix B, C and D 
comes here !! 



a p p e n d i x  

In Chapter 3 we described the three main types of programmable logic devices (PLDs): 
simple PLDs, complex PLDs, and field-programmable gate arrays (FPGAs). This appendix 
describes some examples of commercial PLD products. 

p~pp - - 

E. 1 SIMPLE PLDs 

Simple PLDs (SPLDs) include PLAs, PALS, and other similar types of devices. The major 
manufacturers of SPLD products are listed in Table E. 1. The first and second columns show 
the company name and some of the SPLD products it offers. Data sheets that describe each 
product can be obtained from the World Wide Web (WWW), using the locator given in the 
third column in the table. 

Table E. 1 Commercial SPLD products. 

E. 1.1 THE 22VlO PAL DEVICE 

PAL devices are among the most commonly used SPLDs. They are offered in a range of 
sizes and are identified by a part number of the form NNXMM-S. The digits NN specify 
the total number of input and output pins; the digits MM give the number of pins that can 
be used as outputs. The letter X gives additional information, such as whether the PAL 



contains flip-flops. The final digit, S ,  specifies the speed grade. This value represents the 
propagation delay from an input pin on the PAL to an output pin, assuming that the flip-flop, 
if present, is bypassed. 

An example of a commonly used PAL is the 22V10 [I],  which is depicted in Figure 
E. 1. There are 1 1 input pins that feed the AND plane, and an additional input that can also 

Inputs 

Clock 

Figure E.l The 22V10 PAL device. 

I 

8 
I 

u Macrocell - - 
I 

#10 

Reset 



E.2 COMPLEX PLDs 

Frc 
AND 

8 
I 

plane 

1 Preset - Pin 

I7 

Reset I I 
o/ 1 

To I 

AND plane 

Figure E.2 The 22V 1 0 macrocell. 

serve as a clock input. The OR gates are of variable size, ranging from 8 to 16 inputs. Each 
output pin has a tri-state buffer, which allows the pin to optionally be used as an input pin. 

We said in section 3.6.2 that the circuitry between an OR gate and an output in a PAL 
is usually called a macrocell. Figure E.2 shows one of the macrocells in the 22V10 PAL. 
It connects the OR gate shown to one input on an XOR gate, which feeds a D flip-flop. 
Since the other input to the XOR gate can be programmed to be 0 or 1, it can be used to 
complement the OR-gate output. A 2-to- 1 multiplexer allows bypassing of the flip-flop, and 
the tri-state buffer can be either permanently enabled or connected to a product term from 
the AND plane. Either the Q output from the flip-flop or the output of the tri-state buffer 
can be connected to the AND plane. If the tri-state buffer is disabled, the corresponding 
pin can be used as an input. 

- - 

E.2 COMPLEX PLDs I 
The names of several manufacturers of Complex PLDs (CPLDs), products they offer, and 
the corresponding WWW locators are listed in Table E.2. An example of a widely used 
CPLD family, the Altera MAX 7000 [2 ] ,  is described in the next section. 



ble E.2 Commercial CPLD products. 

E.2.1 ALTERA MAX 7000 

The MAX 7000 CPLD family includes chips that range in size from the 7032, which has 32 
macrocells, to the 7512, which has 512 macrocells. There are two main variants of these 
chips, identified by the suffix S .  If this letter is present in the chip name, as in 7128S, then 
the chip is in-system programmable. But if the suffix is absent, as in 7128, then the chip 
has to be programmed in a programming unit. 

The overall structure of a MAX 7000 chip is illustrated in Figure E.3. There are four 
dedicated input pins; two of these can be used as global clock inputs, and one can be used 
as a global reset for all flip-fops. Each shaded box in the figure is called a logic array 

Figure E.3 MAX 7000 CPLD (courtesy of Altera). 



block (LAB), which contains 16 macroceIls. Each LAB is connected to an I/O control 
block, which contains tri-state buffers that are connected to pins on the chip package; each 
of these pins can be used as an input or output pin. Each LAB is also connected to the 
programmable interconnect array (PIA) .  The PIA consists of a set of wires that span the 
entire device. All connections between macrocells are made using the PIA. 

Figure E.4 shows the structure of a MAX 7000 macrocell. There are five product 
terms that can be connected through the product term select matrix to an OR gate. This OR 
gate can be configured to use only the product terms needed for the logic function being 
implemented in  the rnacrocell. If more than five product terms are required, additional 
product terms can be "shared" from other macrocells, as described below. The OR gate is 
connected through an XOR gate to a flip-flop, which can be bypassed. 

Figure E.5 shows how product terms can be shared between macrocells. The OR gate 
in a macrocell includes an extra input that can be connected to the output of the OR gate 
in the macrocell above it. This feature is called purallel expanders and is used for logic 
functions with up to 20 product terms. If even more product terms are needed, then a feature 
called shared expanders is used. As shown in the lower shaded box in Figure E.4, one of 
the product terms in a macrocell is inverted and fed back to the product term array. If the 
inputs to this product terms are used in their complemented form, then using DeMorgan's 
theorem, a sum term is produced. A shared expander can be used by any macrocell in the 
same LAB. 

Each specific MAX 7000 device is available in a range of speed grades. These grades 
specify the propagation delay from an input pin through the PIA and a macrocell to an 
output pin. For example, the chip named 7 128s-7 has a propagation delay of 7.5 ns. If 
the logic function implemented uses parallel or shared expanders, the propagation delay is 
increased. 

L o w  A m y  

Figure E.4 MAX 7000 macrocell (courtesy of Altera). 



to Next 

38 Sighah 16 Shared 
from PIA Expanders 

lure E.5 Parallel Expanders (courtesy of Altera). 

mer-mcrr 
PI odircl- 
Tern? I q i c  

Table E.3 lists the names of FFGA manufacturers, their products, and their WWW locators. 
This section describes examples of FPGAs produced by Altera and Xilinx. 

E.3.1 ALTERA FLEX 1OK 

Figure E.6 shows the structure of the FLEX 10K chip [3].  It contains a collection of logic 
array blocks (LABS), where each LAB comprises eight logic elements based on lookup 
tables (LUTs). In addition to LABS, the chip also contains embedded array blocks (EABs), 
which are SRAM blocks that can be configured to provide memory blocks of various aspect 
ratios (see section 10.1.3). The LABS and EABs can be interconnected using the row and 
column interconnect wires. These wires aIso provide connections to the input and output 
pins on the chip package. 

Figure E.7 shows the contents of a LAB. It has a number of inputs that are provided 
from the adjacent row interconnect wires to a set of local interconnect wires inside the 
LAB. These local wires are used to make connections to the inputs of the logic elements, 
and the logic element outputs also feed back to the local wires. Logic element outputs also 
connect to the adjacent row and column wires. The structure of a Iogic element is depicted 
in Figure E.8. The element has a four-input LUT and a flip-flop that can be bypassed. 

904 
d 



Table E.3 Commercial FPGA products. 
- 

Manufacturer 

Actel 

~ a t t i c e  I ispXPGA, ORCA I http:l/www.latticeserni.com 

Altera 

pASIC, Eclipse, Eclipse I1 http://www.quicklogic.corn 

XC3000, XC4000, Spartan (31, http://www.xilinx.com 
%flex, Virtex I1 (Pro) 

FPGA Products 

Act I ,  2 and 3, MX, SX 

Figure E.6 FLEX 1 OK FPGA (courtesy of Altera). 

WWW Locator 

http://www.actel.com 

FLEX 6000, 8000 and IOK. Mercury, 
APEX 20K (11), Excalibur, Stratix (IT) 

For implementation of arithmetic adders, the four-input LUT can be used to implement 2 
three-input functions, namely, the sum and carry functions in a full-adder. 

The structure of an EAB is depicted in Figure E.9. It contains 2048 SRAM cells, which 
can be used to provide memory blocks that have a range of aspect ratios: 256 x 8, 512 
x 4, 1024 x 2, and 2048 x 1 bits. The address and data inputs to the memory block are 

http://www.altera.com 



Row ~ M P Y C O P W ~ I  

z E.7 FLEX 1 OK logic array block (courtesy of Altera). 

provided from a set of local interconnect wires. These inputs, as well as a write enable for 
the memory block, can optionally be stored in flip-flops. Figure E.9 shows that the number 
of address and data inputs connected to the memory block varies depending on the aspect 
ratio being used. The data outputs can also optionally be stored in flip-flops. For large 
memory blocks it is possible to combine multiple EABs. 

Configuration of EABs is done using predesigned modules, such as those in the LPM 
library. For example, the module named lpm-ram-dq can be used to specify an SRAM 
block, and Zpm-mm can be used for a ROM block. These modules can be imported into a 
schematic or instantiated in code using a language such as VHDL, It is possible to specify 
initial data to be loaded into the memory block when the FPGAchip is programmed. This is 
done by creating a special type of file, called a memory initializatimzfile, that is associated 
with the lpm-mm-dq or Iprn-rom module. Complete details on using these modules can 
be found in the MAX+plusII documentation. 



Figure E.8 FLEX 1 OK logic element (courtesy of Altera). 

FLEX 1 OK chips are available in sizes ranging from the I OK10 to 10K250, which offer 
about 10,000 and 250,000 equivalent logic gates, respectively. Specific chips are available 
in various speeds, indicated using a suffix letter, such as A ,  as in 1 OKlOA, and a speed grade, 
as in 10K10A- 1. Unlike PALS and CPLDs, the speed grade for an FPGA does not specify 
an actual propagation delay in nanoseconds. Instead, it represents a relative speed within 
the device family. For instance, the 10K10-1 is a faster chip than the 10KIO-2. The actual 
propagation delays in implemented circuits can be examined using a timing simulator CAD 
tool. 

The structure of a Xilinx XC4000 chip [4j is similar to the FPGA structure shown in 
Figure 3.35. It has a two-dimensional array of conjgurable logic blocks (CLBs) that can 
be interconnected using the vertical and horizontal routing channels. Chips range in size 
from the XC4002 to XC40250, which have about 2000 and 250,000 equivalent logic gates, 
respectively. As shown in Figure E.lO, a CLB contains 2 four-input LUTs; hence it can 
implement any two logic functions of up to four variables. The output of each of these 
LUTs can optionally be stored in a flip-flop. The CLB also contains a three-input LUT 
connected to the 2 four-input LUTs, which allows implementation of functions with five or 
more variables. 

Similar to the logic elements in the FLEX 10K FPGAs described in section E.3.1, the 
CLB can be configured for efficient implementation of adder modules. In this mode each 



&A& 1 r X r 3 l l n f ~ ~ r n C  

e E.9 Embedded array block (courtesy of Altera). 

four-input LUT in the CLB implements both the sum and carry functions of a full-adder. 
Also, instead of implementing logic functions, the CLB can be used as a memory module. 
Each four-input LUT can serve as a 16 x 1 memory block, or both four-LUTs can be 
combined into a 32 x 1 memory block. Multiple CLBs can be combined to form larger 
memory blocks. 

The CLBs are interconnected using the wires in the routing channels. Wires of various 
lengths are provided, from wires that span a single CLB to wires that span the entire device. 
The number of wires in a routing channel varies for each specific chip. 



Figure E. 10 XC4000 configurable logic block (courtesy of Xilinx). 

4, 
C?"'C4 / 

7 1 
- 
T 

E.3.3 ALTERA APEX 20K 

H 1 DIN 'HZ SRrnr, 

- P 

t 

01- 
P 

l I . '.. 
WM 

The Altera APEX 20K [5] family is the next generation product following the FLEX 10K. 
The logic element (LE), which is an optimized version of the one depicted in Figure E.8, 
contains a four-input LUT and a flip-flop. Chips range in sizes from 1200 to 5 1,840 LEs. 

Each APEX device contains logic elements (LUTs), memory blocks, and I 0  cells. The 
LEs are arranged into LABS similar, to the structure depicted in Figure E.7, with ten LEs per 
LAB. The LABs are further grouped into MegaLABs, with up to 24 LABs in a MegaLAB. 
As shown in Figure E. 11, the MegaLAB contains wires to interconnect the LABs, and it also 
contains a memory block, called the embedded system block (ESB). Similar to the EAB 
shown in Figure E.9, the ESB supports memory blocks with various aspect ratios. An APEX 
device comprises either two or four columns of MegaLABs; the number of MegaLABs per 
column varies for each device. 

EC 

I 

C Q 

} 

Stratix [ti] is Altera's FPGA product that supersedes the APEX family. Figure E. 12 shows 
the architecture of a Stratix device. Each chip comprises columns of resources of various 
types. The LAB columns house logic elements arranged into LABS that have ten LEs per 
LAB. Each LE contains a four-input LUT and a register, and can be configured in a variety 

f4 - 

EC 
RD 
I 

1 
Y 

X 

D S D  Q 

- 

r K 

> 
EC 

RO 

[CLOCK) 1 I 
X 



To Adjacent 
LAB or lOEs 

LA Bs 

Figure E. 1 1 APEX 20K MegalAB (courtesy of Altera). 

M512 RAM Blacks DSP Blocks W K  RAM Blocks VO Standards 

MegaRAM Block 

ire E. 1 2 Stratix LAB, DSP, and memory blocks (courtesy of Al tera). 

of modes, including a fast arithmetic mode. There are a number of types of wiring resources 
in a Stratix chip. Connections within a LAB are made using fast local resources, such as a 
carry chain that runs downward in each cofumn. For connections from one LAB to other 
resources there exist short nearest-neighbor connections, wires that span four columns or 
rows, and longer wires. 

In addition to LAB columns, Stratix devices contain three other types of columns. The 
M5 12 columns consist of memory blocks with 5 12 bits each, and the M4K columns contain 
larger memory blocks with 4K bits per block. Each of the M5 12 and M4K blocks support 
implementations of memories with various aspect ratios. Stratix devices also include very 
large memory blocks called MegaRAMs, each of which contains 5 12K bits of memory. 



Finally, there are columns that comprise Digital Signal Processing (DSP) blocks. Each 
of these blocks includes hardware multiplier and adder circuits that allow fast multiplication 
and accumulation (summing) of data. These blocks provide efficient implementation of the 
types of circuits used in digital signal processing applications. 

Stratix chips are available in sizes from 10,570 to 79,040 logic elements and over seven 
Mbits of memory. 

Cyclone [7] FPGAs are based on the Stratix architecture, but are intended for low-cost 
applications. A Cyclone chip has the same basic structure as that shown in Figure 12, 
except that the DSP columns are removed, and only M4K memory blocks are included. 
The Cyclone logic element is a four-input LUT with dedicated arithmetic circuitry and a 
programmable flip-flop. Cyclone devices range in size from 2910 to 20,060 logic elements 
and 288 Kbits of memory. 

Stratix I1 [83 FPGAs are the successor to the Stratix family. They offer device sizes from 
15,600 to 179,400 logic elements and up to nine Mbits of memory. Stratix I1 contains a 
more complex logic element than other FPGAs, called the Adaptive Logic Module (ALM). 
As shown in Figure E. 13, the ALM comprises a combinational logic circuit and two pro- 
grammable flip-flops. The combinational logic circuit can be programmed as either one or 
two LUTs; it can implement a single logic function of up to seven inputs, or two functions 

To general or 
local rordtrng 

Figure E. 13 The Stratix II Adaptive Logic Module. 



Figure E.14 Some of the modes of the Strati~ II A M .  

of various sizes. Figure E. 14 shows a few of the possible configurations of the ALM, such 
as realizing two four-input LUTs, a four-input LUT plus a five-input LUT, and so on. 

The Xilinx Virtex [9] FPGAs are the next generation family folIowing the XC4000. As 
indicated in Figure E. 15, each Virtex chip comprises logic resources called CLBs, and 
memory resources called Block RAMS (BRAMs). The CLB is an enhanced version of the 
XC4000 CLB shown in Figure E. 10. As indicated in Figure E. 16, the Virtex CLB is divided 
into two halves; each half is called a slice. Each slice contains two four-input LUTs, two 
registers, and dedicated arithmetic (carry chain) logic. 

The BRAM blocks contain 4K bits of memory, and can be configured to support aspect 
ratios from 4096 x 1 to 256 x 16. The CLB and BRAM blocks can be interconnected by 
wires that span a single CLB, or longer distances. Virtex devices are available in sizes from 
256 to 46,592 CLB slices. 

The Xilinx Virtex-I1 [lo] and Virtex-I1 Pro [ll] FPGAs are the successors to the Virtex 
family. They are offered in sizes from 3 168 to 99,2 1 6 logic elements and with more than 
eight Mbits of memory. The logic elements are arranged into slices similar to the Virtex 

91 2 



Figure E.15 Virtex FPGA (courtesy of Xilinx). 

I_ 

~4 r- 

A n 
CIN C IN 

Figure E. 16 Virtex logic block (courtesy of Xilinx). 

FPGAs (see Figure E. 16), with four slices in a CLB. The Virtex-I1 Pro chips include one or 
more microprocessor cores within the chip, and have additional advanced features that are 
not present in Virtex-11. 

The Xilinx Spartan-3 [12] FPGAs are a low-cost version of the Virtex-I1 architecture. 
Similar to Virtex-11, the logic elements are arranged into CLBs that each have four slices, 

91 3 
- ..- 



A P P E N D I X E COMMERCIAL DEVICES 

but not all dices have the same feature-set as in Virtex-11. Spartan-3 chips are available in 
sizes from 1728 to 74,880 logic elements and more than 1.8 Mbits of memory. 

Before the emergence of CMOS, the dominant technology was transistor-transistor logic, 
commonly referred to as TTL. Most digital systems built in the 1970s and 1980s were based 
on this technology. TTL circuits are available in relatively small sizes, known as small- 
scale integration (SSI) and medium-scale integration (MSI), as explained in section 3.5. A 
typical SSI chip contains just a few logic gates, with their inputs and outputs available on 
the pins of the package. An MSI chip may comprise a somewhat larger circuit, such as a 
four-bit arithmetic and logic unit (ALU). 

TTL technology is not as suitable for large-scale integration as CMOS technology, 
which has led to TTL's demise. However, its impact was so large that some aspects are still 
important today. In this section we consider these aspects. 

Voltage Levels 
TTL circuits use a 5-volt power supply. Any voltage in the range 0 to 0.8 V is interpreted 

as a logic 0 when applied to an input pin. A voltage in the range 2 to 5 volts is interpreted 
as a logic 1. Using the terminology from section 3.8, VIL = 0.8 V and VM = 2 V. The 
maximum output voltage produced for logic 0 is VOL = 0.4 V, and the minimum voltage 
produced for logic 1 is VOH = 2.4 V. These parameters lead to the noise margins NML = 
NMH = 0.4 V. Typical output voltages generated by a TTL circuit are 0.2 V for logic 0 and 
3.6 V for logic I .  

When a new digital circuit is designed, it is often intended for use in an existing digital 
system. If different technologies are used to implement different parts of a system, it 
is essential to ensure that compatible voltage levels are used for signals in the interfaces 
between the different parts. While CMOS voltage levels are normally different from TTL 
levels, some CMOS chips, such as PLDs, can be configured to use TTL-compatible voltage 
levels on their input and output pins. 

Input Connections 
In CMOS circuits all inputs to a gate must always be driven to either logic value 0 or 

1. Otherwise, the gate's output will have an unknown (usually tri-state) value. In the case 
of TTL circuits, an unconnected input behaves as if it were connected to a constant I .  

E.4.1 TTL CIRCUIT FAMILIES 

TTL circuits are available in several designs that have different propagation speeds and 
power consumption. They have the same functional characteristics, defined by the speci- 
fications for the type of circuits known as the 7400 series, which is introduced in section 
3.5. Actually, the 7400 label denotes a chip that comprises 4 two-input NAND gates. Other 
chips that contain different logic elements have the same prefix 74, but are identified by 



additional digits. For example, 7421 denotes a chip that comprises 2 four-input AND gates. 
Table E.4 presents the propagation delay and power dissipation characteristics of the various 
TTL families. 

Standard TTLis based on the original specifications, and it was the first type of such cir- 
cuits introduced in the 1960s. Subsequent versions provided various improvements. Faster 
circuits were developed, trading off increased power consumption for shorter propagation 
delays. Conversely. low-power circuits were developed, at the cost of longer propagation 
delays. Table E.4 gives the typical values that can be expected under normal operating 
conditions. 

The maximum fan-out in TTL circuits is 10 in most cases, but it can be as high as 20 
for the low-power types. The fan-in is determined by the number of inputs provided on a 
given chip. 

TTL gates can have different output configurations. In addition to the normal output 
configuration, there exist gates that have tri-state outputs or open-collector outputs. The 
purpose of a tri-state output is discussed in section 3.8.8. Gates with open-collector outputs 
are used when it is desirable to connect the outputs of two or more gates together directly. 
These gates are not damaged by such a connection, because each gate either drives the 
output to 0 or does not affect it at all. Connecting the outputs of several open-collector 
gates through a pull-up resistor to +5 V results in a circuit where the voltage at the output 
point is equal to +5 V if none of the gates produces an output of 0 and is equal to 0 i f  
one or more gates produce the output of 0. A similar approach can be used with CMOS 
technology, resulting in open-drain gates. 

We have not pursued TTL technology in any detail because of its diminished importance 
in today's design environment. An interested reader may consult numerous books that 
provide a detailed explanation. A particularly thorough reference is [ 131. 



1. Lattice Semiconductor, Simple PLDs Data Sheets, http://www.latticeserni.com 

2. Altera Corporation, MAX 7000 CPLD Data Sheets, http://www.altera.com 

3. Altera Corporation, FLEX 1 OK Data Sheets, http://www.altera.com 

4, Xilinx Corporation, XC4000 FPGA Data Sheets, http://www.xilinx.com 

5. Altera Corporation, APEX 20K Data Sheets, http://www.altera.com 

6. Altera Corporation, Stratix FPGA Data Sheets, http://www.altera.com 

7. Altera Corporation, Cyclone FPGA Data Sheets, http://www.altera.com 

8. Altera Corporation, Stratix IT FPGA Data Sheets, http://www.altera.com 

9. Xilinx Corporation, Virtex FPGA Data Sheets, http://www.xilinx.com 

10. Xilinx Corporation, Virtex-I1 FPGA Data Sheets, http://www.xilinx.com 

11. Xilinx Corporation, Virtex-11 Pro FPGA Data Sheets, http://www.xilinx.com 

12. Xilinx Corporation, Spartan-3 FPGA Data Sheets, http://www.xilinx.com 

13. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. (Oxford University 
Press: New York, 2003). 



2.7. (a)Yes ( b ) Y e s  (c)No 

2.12. f =x1x3+x2x3+X2& 

2-15. f = ( X I  +x2 ) (Z2  +x3) 

2-20. f = ~ 2 . ~ 3  + xIX3 

2-23. f = ( x ,  + x, )(TI + F,) 

2'28* f = xlx2 + ~ 1 x 3  + ~ 2 x 3  

2*32* f = (xl +x2 + x 3 ) ( x 1  + X 2  + x 3 ) ( X 1  +% + X 3 ) ( X ]  + x 2  +x3) 

2*33* f = xlx3 + xz + x'2x3 + x ~ X ~ ; C ~  

2.40. T h e  circuit is 

2.42. The circuit is 



I  CHAPTER^ 

3.4. Using the circuit 

The number of transistors needed is 16. 

3.8. The complete circuit is 



3.25. (a) NMH = 0.5 V NML = 0.7 V (b) VOL = 0.8 V W L  = 0.2 V 

The two NMOS transistors in a CMOS NOR gate are connected in parallel. The worst 
case current to drive the output low happens when only one of these transistors is turned 
"ON". Thus each transistor has to have the same dimensions as the NMOS transistor in the 
inverter, namely W,,/L, = 2. 

The two PMOS transistors are connected in series. If each of these transistors had the 
ratio W,/L,, then the two transistors could be thought of as one transistor with a Wp/2Lp 
ratio. Thus each PMOS transistor must be made twice as wide as that in the inverter, namely 
W,/L, = 8. 



3.45. f = x2 + xlE3. The corresponding circuit is 

3.55. The circuit in Figure P3.11 is a two-input XOR gate. This circuit has two drawbacks: when 
both inputs are 0 the PMOS transistor must drive f to 0, resulting in f = VT volts. Also, 
when = 1 and x2 = 0, the NMOS transistor must drive the output high, resulting in 
f = vm- V T .  

4.1. SOP form: f = Fix2 + % ~ 3  

POS form: f = (Fl + X2)(~2 + x3) 
4.2. SOP form: f = x1T2 + ~ 1 x 3  + X 2 ~ 3  

POS form: f = (xi +x3)(xl +%)(% + ~ 3 )  

4.1 1. The statement is false. As a counter example consider f (xl , xz, x3) = m(O,5,7). 
Then, the minimum-cost SOP form f = xlx3 + X1X2X3 is unique. 
But, there are two minimum-cost POS forms: 
f = (XI + X3)(:1 + X~)(XI + X2) and 
f = ( ~ 1  +z3>(F1 + ~ 3 ) 6 2  + ~ 3 )  

4.1 2. In a combined circuit: 
f = X2x3X4 + FIX3% + X ~ X Z X ~ X ~  + z 1 ~ 2 ~ 3  

g = X2x3& + X1X3& + ~ 1 Y 2 X 3 ~ 4  f XlX2X4 
The first 3 product terms are shared, hence the total cost is 31. 



4.18. f = Z ~ ( X ~ + X ~ ) ( X ~ + X ~ ) + X ~ ( T ~ + X ~ ) ( Z ~ + X ~ )  

4.21. f = g . h + ~ . ~ , w h e r e g = x l x z a n d h = x 3 + x 4  

4.23. f = X1X2X4 + XIxZX3 + xl.X2X3 + ~ 2 ~ 3 x 4  

4.32. Representing both functions in the form of Karnaugh map, it is easy to show that f = g .  

'TER 5 I 
5.1. (a) 478 (b) 743 (c) 2025 (d) 4 1567 (e) 6 1680 

5.2. (a)478 (b)-280 (c)-1 

5.3. (a)478 (b)-281 (c)-2 

5.4. The numbers are represented as follows: 

5.1 1. Yes, it works. The NOT gate that produces ci is not needed in stages where i > 0. The 
drawback is "poor" propagation of Fi = 1 through the topmost NMOS transistor. The 
positive aspect is fewer transistors needed to produce Fi+, . 

Decimal 

73 
1906 
-95 

- 1630 

5.1 2. From Expression 5.4, each ci requires i AND gates and one OR gate. Therefore, to determine 
all ci signals we need Cy=, (i + I )  = (n2 + 3 n ) / 2  gates. In addition to this, we need 3n 
gates to generate all g, p, and s functions. Therefore, a total of (n2 + 9n)/2 gates are needed. 

5.13. 84 gates. 

Sign and Magnitude 

000001001001 
011101110010 
10000101 1111 
111001011110 

5.17. The code in Figure P5.2 represents a multiplier, It multiplies the lower two bits of Input by 
the upper two bits of Input, producing the four-bit Output. 

1's Complement 

000001001001 
01 1101 110010 
111 110100000 
100110100001 

2's Complement 

00000 100 1 00 1 
011 101110010 
111110100001 
100110100010 



5.2 1. A full-adder circuit can be used, such that two of the bits of the number are connected as 
inputs x and y ,  while the third bit is connected as the carry-in. Then, the carry-out and sum 
bits will indicate how many input bits are equal to 1. 

z2 Z l  

v 

Result 



6.5. The derived circuit is 

6.12. Expansion off in terms of wz gives 

The cost of this circuit is 2 gates + 4 inputs = 6. 

6.14. Any number of 5-variable functions can be implemented by using two4-LUTs. For example, 
if we cascade the two 4-LUTs by connecting the output of one 4-LUT to an input of the 
other, then we can realize any function of the form 

. f =fi(wl,WzrW3,~4) + W 5  

f =f1(~1, W2r W3r w4) ' W5 
6.18. The code in Figure P6.2 is a 2-to-4 decoder with an enable input. It is not a good style for 

defining this decoder. The code is not easy to read. It is better to use the style in Figures 
6.30 or 6.46. 

Clk -1 



Clock I 

7.9. The circuit acts as a negative-edge-triggered JK flip-flop, in which J = A, K = B, 
~ l o c k = ~ , ~ = ~ , a n d q = ~ .  

1 

Clock 

7.18. The counting sequence is 000,001,010.11 1. 



7.24. The longest delay in the circuit is the from the output of FFo to the input of FF3. This delay 
totals 5 ns. Thus the minimum period for which the circuit will operate reliably is 

The maximum frequency is 

F,, = l/Tmi, = 111 MHz 

7.28. LIBRARY ieee ; 
USE ieee.std-logic-l164.all ; 
USE ieee.std-logic-unsigned.al1 ; 

ENTITY prob7-28 IS 
PORT ( Clock, Reset : IN STD-LOGIC ; 

Data : IN STD-LOGIC-VECTOR(3 DOWNTO 0) ; 
Q : BUFFER STD-LOGIC-VECTOR(3 DOWNTO 0) ) ; 

END prob7-28; 

ARCHITECTURE Behavior OF prob7-28 IS 
BEGIN 

PROCESS ( Clock, Reset ) 
BEGIN 

IF Reset = ' 1 ' THEN 
Q <= "0000 ; 

ELSIF Clock' EVENT AND Clock = ' 1 ' THEN 
Q < = Q + D a t a ;  

END IF ; 
END PROCESS ; 

END Behavior ; 



Start 

Clock 

8.1. The expressions for the inputs of the flip-flops are 

D 2 =  Y 2 =  w2+L1Y2 
Dl=Yi  = w @ y 1 @ ~ 2  

The output equation is z = yly2. 

8.2. The expressions for the inputs of the flip-flops are 

J2  = 7, 

The output equation is z = yly2. 



8.15. The next-state expressions are 
8.5. 

D4 = Y4 = Wy3 + wy1 

The output is given by z = y4. 

8.17. Minimal state table is 

8.2 1. The desired circuit is 

1 

8.22. The desired circuit is 

1 

Output z 

w = O  w = l  

0 0 
0 1 
0 1 

Present 
state 

A 
C 
F 

Next state 

w = ~  w = l  

A C 
F C 
C A 



8.15. The next-state expressions are 
- 

D4 = y4 = wy3 + wy1 
D3=Y3 = W(y1+y4) 

D2 = y2 = Wy:! + wy4 

Dl =y1 = w(Y*+y , )  

The output is given by z = y4. 

8.1 7. Minimal state table is 

8.2 1. The desired circuit is 

1 

8.22. The desired circuit is 

Output z 

W E 0  w = l  

0 0 
0 1 
0 1 

Present 
state 

A 
C 
F 

Next state 

w = o  w = l  

A C 
F C 
C A 



The circuit produces z = 1 whenever the input sequence on w comprises a 0 followed by 
an even number of 1 s. 

Present 
state 

A 
B 
C 
D 

3R 9 

1 .  The flow table is 

Present Next state 

state 

Next state 

w = o  w = l  

A C 
A D 
A D 
A B 

The behavior is the same as described in the flow table in Figure 9.21a, if the state inter- 
changes A ti D and B t, C are made. 

Output 

z 

0 
I 
0 
0 



9,8. Using the merger diagram in Figure 9.40a, the FSM in Figure 9.39 becomes 

9.10. The minimum-cost hazard-free implementation is 

f = X,X3X4 + X l X * X 4  + X l X 3 X 4  

Present 
state 

A 

I3 

c 

D 

E 

G 

9.1 2. The minimum-cost hazard-free POS implementation is 

f = (x l  +x2 +x4)(x1 + x *  +%)(XI +% + % ) ( ~ 2  + X 3  +x4) 

9.14. I f A = B = D = E =  landCchangesfrornOto1,thenf changeso-, 1 + O a n d g  
changes 0 -+ 1 -+ 0 + 1. Therefore, there is a static hazard on f and a dynamic hazard 
on g. 

9.1 7. The excitation table is 

Next state 

wzw1 =oo 01 10 11 

0 E - 

@ C O D  

B E @  
- 

C E @  
- O D  

D 

Output 
z 

0 

0 

1 

0 

1 

1 

The next-state expression is Y = WE+ cy + wy. Note that the term wy is included to prevent 
a static hazard. 

The output expression is z = cy . 

Output 

00 01 10 11 

Z 

0 0 0 0 

Present 
state 

Y 

0 

Next state 

wc = 00 01 10 11 

Y 

@ @  1 @ 
1 1 0 1 



1 1 .I. A minimal test set must include the tests W I  ~ 2 ~ 3  = 01 1, 101, and 111, as well as one of 
000,010, or 100. 

1 1.3. The two functions differ only in the vertex ~ 1 ~ 2 x 3 ~ 4  = 01 11. Therefore, the circuits can be 
distinguished by applying this input valuation. 

11.5. The testsare wlw2w3w4 = 1111, 1110,0111, and 1111. 

1 1.9. Cannot detect if the input wire w1 is stuck-at-I. The reason is that this circuit is highly 
redundant. It realizes the function f = w3(El + K), which can be implemented with a 
simpler circuit. 

1 1.1 1. Test set = {OOOO, 01 11, 1 1 11, 1000). It would work with XORs implemented as shown in 
Figure 4.28~.  

For n bits, the same patterns can be used; thus 

Test set = (00. .  .00,011.. . l ,  11 . .  . 1, 100.. .0}. 

1 1.12. In the decoder circuit in Figure 6.16~ the four AND gates are enabled only if the En signal 
is active. The required test set has to include all four valuations of wl and w2 when En = 1. 
It is also necessary to test if the En wire is stuck at 1, which can be accomplished with the 
test w vtv7 EII = 000. Therefore, a complete test set comprises wl w2En = 000, 001, 01 1, 
101, and 111. 





I N D E X  

A 
Absorption property, 30 
Accumulator, 424, 8 13 
Active clock edge, 389,480 
Active-low signal, 133 
Adaptive Logic Module (ALM), 91 1 
Adder: 

BCD, 297 
cany lookahead, 271 
cany save, 309 
full-adder, 252 
half-adder, 250 
in VHDL code, 28 1-289 
propagation delay, 270,276 
ripple-carry, 255,867 
serial, 5 14 

Addertsubtractor, 264,459 
Addition, 250-255, 261 

BCD, 297 
carry, 250 
generate function, 27 1 
overflow, 269 
propagate function, 271 
sum, 250 
VHDL, 285-289 

Address, 334 
Aliasing problem in testing, 745 
Algorithm, 673 
Algorithmic state machine (ASM): 

ASM charts, 555 
ASM block, 558 
conditional output box, 556 
decision box, 556 
implied timing, 675 
state box, 556 

Alphanumeric characters, 303 
Altera APEX ?OK, 909 
Altera Cyclone, 91 1 
Altera FLEX 10K, 904 
Altera MAX 7000 CPLD, 902 
Altera Stratix FPGA, 909 
Altera Stratix I1 FPGA. 91 1 
Altera UP- 1 board, 895 
And-Or-Invert cells, 146 
Analysis, 27, 196, 551, 582 
AND gate (see Gates) 
AND plane, 94 

Anode terminal, 46 1 
Arbiter circuit, 543,597 
Archjtecture (VHDL), 6 1,782 

body, 782 
declarative part, 782 

Arithmetic: 
floating-point (see Floating point) 
operators (VHDL), 362 
overflow, 269,760 
(See also Addition; Division; 

Multiplication; Subtraction) 
Arithmetic and logic unit (ALU), 358 
Arithrrletic assignment (VHDL), 285 
Array multiplier (see Multiplication) 
Array (VHDL), 780 
ASCII code, 302 
ASIC, 6, 11 1 
ASM block, 558 
ASM chart (see Algorithmic state 

machine) 
Associative property, 30 
Asynchronous clear (reset), 393,412 
Asynchronous clear (in VHDL), 422,808 
Asynchronous counter, 403 
Asynchronous inputs, 717 
Asynchronous sequential circuits 
(see Sequential circuits) 
Attribute (VHDL), 420,509, 806 

enurn-encoding, 509 
EVENT, 420,806 

Axioms of Boolean algebra, 29 

B 
Barrel shifter, 369, 685 
Basic latch, 381, 398 
BCD (.we Binary-coded decimal) 
BCD-to-7-segment decoder, 338, 358 
Behavioral VHDL code, 285, 339-342, 

466,802 
BGA package, 106 
BILBO (Built-in Logic Block Observer), 

745 
Binary-coded decimal (BCD), 297 

addition, 297 
counter, 463 
digits, 297 

Binary decoder (see Decoder) 
Binary encoder (see Encoder) 
Binary numbers, 247 

in VHDL code, 687 
Binary variable, 20 
BIST (Built-in Self Test), 741 
Bit, 247 
Bit-counting circuit, 675, 802 
BIT type, 60,775 
Body effect, 127 
Boolean algebra, 29-37 
Boundary scan, 748 
Branching heuristic, 213,221 
Buffer, 131,463 

inverting, 13 1 
tri-state, 93, 442 
VHDL (port mode), 434 

Bus, 435,441,870 
Bypass capacitor, 749 
Byte, 247 

C 
CAD (see Computer aided design) 
Canonical expressions: 

canonical product-of-sums, 43 
canonical sum-of-products, 41 

Capacitance, 121, 147 
Carry, 250 

carry -in, 250 
carry-out, 252 

Carry chain, 408, 762, 769, 877 
Carry lookahead adder, 27 1 
Carry save adder, 309 
CASE statement, 356,457,797 
Cathode terminal, 461 
Channel (in MOSFET), 115 
Character codes, 301 
characteristic impedance, 750 
Characteristic table, 382 
Chip configuration, 58 
Circuit size, 105 
Clear input (see Reset input), 393 
Clock, 385, 883 
Clock divider, 46 1 
Clock enable, 664 



Clock'EVENT, 420 
Clock skew, 437,7 13 
Clock synchronization, 402,713 
Clock-to-output time (t,,), 417, 716,770, 

886 
CMOS technology, 78 
Code: 

BCD (see Binary-coded decimal) 
binary, 247 
converter, 337,366 
decimal, 246 
error-detecting, 303 
Gray, 366 

Cofactor, 326 
Coincidence operation, 254 
Column dominance, 21 1 
Combinational circuits, 315-372 
Combining property, 31 
Comment (VHDL), 774 
Commutative property, 30 
Comparator, 238 
Compatible states, 607 
Complement: 

diminished radix, 268 
of a logic variable, 23 
l's, 258 
radix, 265 
2's, 259 

Complementary metal-oxide 
semiconductor 

(see CMOS technology) 
Completely specified FSM, 53 1 
Complex gate (CMOS), 86 
Complex programmable logic device 

(CPLD), 101 
Components (VHDL), 281,445,666,786 
Compressor circuit, 743 
Computer, 9 
Computer-aided design (CAD), 54-58 

chip configuration, 895 
design entry, 54 
functional simulation, 57,846 
technology mapping, 760 
timing analysis, 769 
timing simulation, 57, 871 
tools, 54 

Concatenation (VHDL), 287, 362, 790 
Concurrent assignment statement 

(VHDL), 350,788 
Conditional signal assignment (VHDL), 

344,792 
Configurable logic block (CLB), 907 
Consensus property, 3 1 
Consistency check, 731 
Constant (in VHDL), 779 
Context sensitive help, 830, 857 

Control circuit, 664 
Conversion of types (VHDL), 780 
Cost, 41, 174 
Counter: 

asynchronous, 403 
asynchronous circuit design, 595 
BCD, 412 
design, 4 15 
down, 403 
enable and clear capability, 406 
Johnson, 415,468 
modulo-n, 468 
parallel load of, 408 
reset of, 4 10,4 12 
ring, 41 4 
ripple, 403 
synchronous, 405,406,533 
up, 402,676 
up/down, 403 
VHDL code, 434,454,814 

Cover, 174 
fault, 729 
minimum, 209 
table, 209 

Critical path, 271,770, 873 
Crossbar, 319 
Cross-coupled gates, 383 
Crosstalk, 749 
Cubical representation, 203-207 
Current flow: 

dynamic, 123 
gate, 1 16 
leakage, 119 
short circuit, 125, 133 
sink, 46 1 
static, 119, 127, 144 

Custom chips, 6, I1 1 
Cut-off region, 114 
Cut set, 590 

D 
D flip-flop (see Flip-flop) 
D-algorithm, 733 
Data, 334 
Datapath, 664 
DC-set, 220 
Debouncing, 718 
Decimal numbers, 246 
Decoder, 329,45 1 

tree, 33 1 
Decomposition (see Functional 

decomposition) 
Default value (VHDL), 455,799 
Delay (see Propagation delay) 
DeMorgan's theorem, 3 1 

Demultiplexer, 333 
Design ENTITY (see ENTITY) 
Design entry, 54 
Design for testability, 737 
Design process, 6 
Digital hardware, 2 
Digital system, 664 
Diminished radix complement, 268 
DIP package, 91 
Directory, 828 
Disjoint decomposition, 193 
Distributive property, 30 
Divide and conquer, 12 
Division, 686 
Don't-care condition, 180 

in VHDL code, 358 
Double precision (see Floating point) 
Down-counter, 403,434 
Drain (in MOSFET transistor), 76 
Duality, 30 
Duty cycle, 883 
Dynamic hazard, 635 

E 
EDA tools, 830 
Edge (in signals), 389 
Edge-triggered, 388, 392 
EDIF, 833 
Editing tool, 845 
Electrically-erasable programmable 

read-only memory (EEPROM), 138 
Embedded Array Blocks (EABs), 904 
Enable input, 406,5 18,664 
Encoder: 

binary. 335,446 
priority, 336 

Energy (capacitor), 125 
ENTITY, 60,781 
ENTITY declaration, 60,782 

with GENERIC parameter, 793 
enurn-encoding, 509 
Enumeration type (VHDL), 778 
Equivalence: 

of logic networks, 28 
of states, 524 

Equivalent-gates metric, 105 
Erasable programmable read-only 

memory (EPROM), 140 
Errors in VHDL code, 821 
Espresso, 223 
Essential prime implicant, 175,218 
EVENT attribute, 420 
Excess-127 format, 296 
Excess-1023 format, 296 
Excitation table, 58 1 



Exclusive-NOR (XNOR) gate (see Gates) 
Exclusive-OR ( X O R )  gate (see Gates) 
Expansion theorem (Shannon's), 325 

F 
Factoring, 186 
Fall time, 123 
Fan-in, 187, 128 
Fan-out, 130 
Fault: 

detection. 727,731 
model, 726 
propagation, 731 
stuck-at, 726 

Feedback, 38 1 
Field-programmable gate array (FPGA), 

5,105 
Finite state machine (FSM), 480 

incompletely specified, 531 
summary of design procedure, 488 

555 programmable timer chip, 723 
Fixed-point numbers, 293 
Flip-flop, 389,398 
Flip-flops: 

clear and preset inputs, 393 
configurable (in PLDs), 397 
D, 389,420 
edge-triggered, 392,398 
JK, 398.467,536 
master-slave, 389, 398, 582 
negative-edge-triggered, 392 
positive-edge-triggered, 392, 395 
SR, 369 
T, 394 
VHDL code for, 420,806 

Floating gate, 138 
Floating point, 295 

double precision, 295 
exponent, 295 
format, 295 
IEEE standard, 295 
mantissa, 295 
normalized, 295 
representation, 295 
single precision, 295 

Floorplan Editor, 863 
Flow table, 581 

primitive, 605 
state reduction, 603-61 7 

f,,,, 770, 885 
Folder, 828 
FOR GENERATE statement, 348,432, 

454,683,692,703,793 
FOR LOOP statement, 432,442,797,801 
Fowler-Nordheim tunneling, 139 

FPLA (see PLA) 
FSM (see Finite state machine) 
Full-adder, 252,28 1, 784 
Functional behavior, 27 
Functional decomposition, 190 
Functional equivalence, 28 
Functional simulation, 57 
Fundamental mode, 578 
Fuse, 136 

G 
Gate (in MOSFET transistor), 76 
Gate array, 112 
Gate delay (see Propagation delay) 
Gate optimization, 758 
Gated D latch, 398,419, 582, 805 
Gated latch, 385, 398 
Gated SR latch, 383,385,398 
Gates, 25 

AND, 26 
NAND, 45,80,83 
NOR, 45,8O, 85 
NOT, 26, 78, 82 
OR, 26 
XNOR, 254, 135 
XOR, 252, 135 

GENERATE statement, 348, 454, 793 
GENERIC (see ENTITY declaration) 
GENERIC MAP, 426,428, 815 
Glitch, 587,634 
Global signals, 504,714 
Gray code, 366 
Guidelines, 835 

H 
H tree, 714 
Half-adder, 250 
Hamming distance, 618 
Handshake signaling, 597 
Hardware description language (HDL), 55 
Hazard-free design, 638 
Hazards, 634-641 

dynamic, 635 
static, 417,634 

Heuristic approach, 176 
Hexadecimal numbers, 248 
Hierarchical design, 55, 274 
Hierarchical VHDL code, 282-284,343, 

349,786 
High-level behavioral VHDL code, 466 
High-impedance output, 132 
Hold time, 389, 770, 885 
Huntington's postulates, 31 
Hypercube, 207 

I 
IF GENERATE statement, 349 
IF statement, 350, 796 
IEEE, 55 
IEEE standards (see Standards) 
Implicant, 173 
Implied memory (VHDL), 355,419,455, 

799 
Incompletely specified FSM, 531 
Incompletely specified functions, 180 
Input variable, 2 1 
Instantiation (of VHDL components), 281, 

445,785 
Instrumentation, 751 
In-system programming (ISP), 100,902 
Integer: 

in VHDL, 289,433,778 
signed, 246 
unsigned, 246 

INTEGER type (VHDL), 289,778 
Intersection, 33 
Inversion, 23 
Inverter, 78, 82 

J 
JK f ip-flop, 398,467,536 
Johnson counter, 415,468 
JTAG port, 104 

K 
Karnaugh map, 164-1 72 
k-cube, 207 
k-successor, 524 
Key board short-cuts, 841 
Keywords (VHDL), 774 

L 
Large scale integration (LSI), 93 
Latch: 

basic SR, 381,398, 578 
D, 398 
gated D, 386,398,419,582 
gated SR, 383,385,398 
set-dominant SR, 472 
VHDL code, 419 

Leads, 9 1 
Leakage current, 11 9 
Least-significant bit, 247 
LED (Light emitting diode), 132,460 
Level sensitive element, 388 
Level sensitive scan design, 741 



Libraries, 55,224 
ieee, 283 
work, 284, 785 

Library of Parameterized Modules (LPM), 
279,786 

lpm-add-sub, 279,424,876 
lpm-counter, 427 
LPM-DIRECTION, 426 
Ipm ff, 424 
lpm-ramdq, 701,721,906 
lpm-rom, 906 
lpm-shiftreg, 426 
LPM-WIDTH, 426 

Linear feedback shift register (LFSR), 742 
Linear region (see Triode region) 
Literal, 173 
Logic analyzer, 27,751 
Logic array block (LAB). 903,904,909 
Logic block, 105 
Logic circuit, 2, 26 
Logic element, 904 
Logic expression, 21 
Logic functions, 21 

AND, 22 
minimization, 172-179,207-222 
NAND, 45,80 
NOR, 45 
NOT, 23 
OR, 22 
synthesis, 37-44 
XNOR, 254 
XOR, 252 

Logic gates, 25 
drive capability, 131 
dynamic operation, 121 
fall time, 123 
fan-in, 187, 128,863,863 
fan-out, 130 
noise margin, 119,914 
power dissipation, 124 
propagation delay, 122 
rise time, 122 
transfer characteristic, 120 

Logic network, 26 
Logic values, 20 
Logical operators (VHDL), 259 
Logical product (AND), 36 
Logical sum (OR), 36 
Lookup table. 107 
Loop statement (see FOR LOOP) 
LUT, 107 

M 
Macrocell, 98, 901 
Macrofunction, 279 

Magnitude, 256 
Majority function, 237 
Master (see Flip-flop, master-slave) 
Master-slave (see Flip-flop) 
Maxtem, 42 
Mealy FSM, 480,496 

VHDLcode, 511,818 
Mealy output, 556 
Mean operation, 696 
Medium-scale integration (MSI), 93 
Megafunction, 279 
Megawizard Plug-in Manager, 876 
Memory, 

implied memory (VHDL), 355,419, 
799 

Memory initialization file, 906 
Merger diagram, 607 
Merging, 605 

pmcedure, 607 
Metal-oxide semiconductor (see 

MOSFET) 
Metastability, 717 
Minimization: 

of logic functions, 172-179, 207-222 
of states, 524-53 I, 603-6 17 

Minterm, 40 
Mixed logic, 90 
Mode (of a logic block), 760 
Moore FSM, 480 

VHDL code, 502,s  16 
Moore output, 556 
Moore's law, 2 
MOSFET transistor, 75 

on-resistance, 117 
Most-significant bit, 247 
Motherboard, 9 
Multilevel circuits, 185-203,864 
Multiple-output circuits, 182 
Multiplex (definition), 333 
Multiplexer, 5 1 , 3  16-328, 133, 136 
Multiplexer (VHDL code), 341-344,446 
Multiplication, 289,677 

array implementation, 291 
partial product, 290 
sequential implementation, 677 
signed-operand, 292 

Mutual exclusion element (ME), 602 

N 
Named association (VHDL), 282, 786 
Names (VHDL), 774 
NAND circuits, 45-47, 195,80 
NAND gate (see Gates) 
n-cube, 207 
Negative edge, 389 

Negative logic, 74, 88 
Negative numbers, 256 
Netlist generation, 758 
Network, 25 
Next state, 483, 579 

variables, 484,579 
Nibble, 247 
9's complement, 265 
NMOS technology, 78 
NMOS transistor, 75 
Node Finder, 844 
Node (Quartus 11), 838 
Noise, 11 9 

margin, 119 
power supply, 749 

Non-disjoint decomposition, 193 
Nonvolatile programming, 104 
NOR circuits, 45-48, 195, 80 
NOR gate (see Gates) 
NOR plane, 138 
NOT gate (see Gates) 
Number conversion, 247-250 
Number representation: 

binary coded decimal 297 
fixed-point, 293 
floating-point, 295 
hexadecimal, 248 
octal, 248 
l's-complement, 258 
positional notation, 246 
sign and magnitude, 258 
signed integer, 256 
10's-complement, 265 
2's-complement, 259 
unsigned integer, 246 
in VHDL, 284 

Numbers (in VHDL), 774 

0 
Octal numbers, 248 
Odd function, 252 
One-hot encoding, 330,414,494,633 
I 's-complement representation, 258 
1076 VHDL Standard, 58 
1164 VHDL Standard, 58 
1149.1 Standard, 748 
On-resistance, 11 7 
ON-set, 220 
Open-collector, 9 15 
Open-drain, 915 
Operations (see Logic functions) 
Operators (VHDL), 359,781 
Optimization (see Minimization) 
OR gate (see Gates) 
OR plane, 94 



Ordering of statements (VHDL), 350,431, 
799,812 

Oscilloscope, 27,751 
OTHERS (VHDL), 340,428,790 
Output delay time (tad), 715 
Overflow (see Arithmetic overflow) 

P 
Packages (physical): 

ball grid array (BGA), 106 
dual inline (DIP), 9 1 
pin grid array (PGA), 106 
plastic-leaded chip carrier (PLCC), 

100 
quad flat pack, 102 
small-outline integrated circuit 

(SOIC), 93 
Package (VHDL), 225,283,444,454,784 
PAL, 97 
Parallel expanders, 903 
Parallel-to-serial converter, 569 
Parallel transfer, 400 
Parasitic capacitance, 121 
Parity, 303,591 
Partial product, 290 
Pass transistor, 144 
Path sensitizing, 729 
Physical design, 57 
Pin assignments, 889 
Pins, 91 
Pinstub, 838 
PLA, 94,138 
Placement, 748,767 
PLD, 5.94 
PMOS transistor, 76 
P-N junction, 114 
Polysilicon, 114 
Port (VHDL), 61,782 
PORT MAP, 282,786 
Portability, 55 
Positional assosiation (VHDL), 282, 786 
Positional number representation, 246 
Positive logic, 74, 88 
Power dissipation, 124 

dynamic, 124, 126 
in CMOS circuits, 125 
in NMOS circuits, 124 
static, 124, 127, 144 

PRBSG 743 
Precedence of operations, 37,363 
Present state, 483,579 

variables, 484,579 
Preset input, 393 
Pricelperfomance ratio, 270 
Prime implicant, 174 

Primitive flow table, 605 
Primitives library, 833 
Printed circuit board (PCB), 13, 748 
Priority, 336 

encoder, 336 
in VHDL code, 345,353 

Process statement (VHDL), 350,794,798 
Process transconductance parameter, 116 
Processor, 449 
Product-of-sums form (POS), 43 
Programmable array logic (see PAL) 
Programmable logic array (see PLA) 
Programmable logic device (see PLD) 
Programmable ROM (PROM), 335, 109 
Programmable switch, 4 
Project (Quartus 11), 828 
Propagation delay, 57, 122,388 
Properties of Boolean algebra, 30 
Pseudo-NMOS technology, 119, 149 
Pseudorandom tests, 742 
Pseudorandom binary sequence generator 

(PRBSG), 742 
Pull-down network, 81 
Pull-up network, 82 
Pull-up resistor, 79 
Pulse mode, 578 

Q 
QFP package, 102 
Quartus project file, 860 
Quine-McCluskey method, 207 

R 
Race condition, 592 
Radix, 246, 870 
Radix complement, 265 
RAM (see Static random access memory) 
Random testing, 734 
Read-only memory (ROM), 334 
Reflections, 749 
Register, 399 

VHDL code, 808 
Register delay time (td), 714 
Register-Transfer Level (RTL) code, 466 
Register (VHDL code), 426 
Relational operators (VHDL), 361 
Reliability, 751 
Reset input, 380,482 
Reset state, 481 
Resistance (transistor channel), 117 
Resolution function (VHDL), 777 
Ring counter, 414 
Ring Oscillator, 475 
Ripple-carry adder, 255 

Ripple counter, 403 
Rise time, 122 
ROM (see Read only memory) 
Rotate operators (VHDL), 362 
Rotate symbol, 835 
Routing, 748, 768 

channel. 105, 11 1 
Row dominance, 207 
Rubberbanding, 839 

s 
Saturation region, 116 
Scan path, 738 
Schematic, 25 
Schematic capture, 55,278 
Sea-of-gates technology, 112 
Selected signal assignment (VHDL), 299, 

340,791 
Selection tool, 845 
Semiconductor, 114 
Semi-custom chips, I I I 
Sensitivity list (VHDL), 350, 798 
Sequence detector, 48 1,561 
Sequential assignment statement (VHDL), 

350,794 
Sequential circuits, 480 

analysis, 55 1, 582 
asynchronous, 578-657 
definition of, 380,480 
finite state machine, 480 
flow table, 581 
formal model, 559 
merger diagram, 607 
state assignment, 483,491,618 
state assignment in VHDL, 509 
state diagram, 482 
state minimization, 524-53 1,603-617 
state table, 483 
synchronous, 380,480-560 
testing, 737-748 
transition diagram, 621 

Serial adder, 5 14 
Serial parity generator, 591 
Series-to-parallel converter, 400 
Setup time, 388, 714,770,885 
7400-series chips, 9 1 
7-segment display, 338,463 

BCD-to-7-segment decoder, 338 
Shannon's expansion, 324 
Sharp-operation (#-operation), 2 18 
Shift operators (VHDL), 362 
Shift register, 399,666 

VHDL code, 430,8 11 
SIA roadmap, 2 
Sign bit, 256 



Sign-and-magnitude representation, 258 
SIGNAL, 775 
Signature, 743 
Signature analysis, 747 
Sign extension, 293 
Signed numbers, 256 
SIGNED type, 288 
Simple signal assignment, 62, 789 
Simplification (see Minimization) 
Simulation: 

functional, 57, 15 
timing, 57, 15 

Simulator, 57 
Single-precision (see Floating point) 
SIS (Sequential Interactive Synthesis), 223 
Skew (see Clock skew) 
Slack, 770 
Slave (see Flip-flop, master-slave) 
Slice, 9 12 
Small-scale integration (SSI), 93 
Socket, 101 
Sort operation, 703 
Source (in MOSFET transistor), 76 
Speed grade, 861,900 
SR latch (see Latch) 
Stable state, 578 
Standard cells, 11 1, 146 
Standard chips, 4 
Standards: 

IEEE floating-point, 295 
1 149.1 (Testing), 748 
Verilog, 55 
1076 (VHDL). 58 
1 164 (VHDL), 58 

Star-operation (*-operation), 216 
Starvation, 55 1 
Starting state, 48 1 
State, 480 

assignment, 483,491,618 
assignment in VHDL, 509 
compatibility, 607 
definition of, 380,480 
diagram, 482 
equivalence, 524 
minimization, 524-53 1,603 
table, 483 
variables, 483,579 

State-adjacency diagram, 621 
State-assigned table, 484 
State machine (see Finite state machine) 
Statement ordering (VHDL), 350,43 1, 

799,812 
Static hazard, 4 17,634 
Static random access memory (SRAM), . 

142,468,700 
SRAM blocks in PLDs, 673 

Static timing analysis (see Timing 
analyzer) 

STD-LOGIC type, 224 
Storage cells, 107 
Structural VHDL code, 281 
Stuck-at fault, 726 
Substrate, 76 
Subtraction, 262 
Subtype (VHDL), 776 
Sum, 250 
Sum-of-products form (SOP), 41 
Switch, 20 
Synchronous clear (reset), 393,410,423 
Synchronous counter, 405,406 
Synchronous sequential circuits (see 

Sequential circuits) 
Synthesis, 27, 39,56, 321,488,590, 840 

logic, 37-44 
multilevel, 185- 196,864 

T 
T flip-flop, 394 
Technology mapping, 223,760 
10's complement, 265 
Template (Gate array), 112 
Templates (VHDL), 849 
Terminations, 749 
Test, 726 
Test generation, 727-737, 842 
Test set, 727-737 
Test vectors (see Test generation) 
Testing, 506, 727-752 
Text Editor, 848 
Theorems of Boolean algebra, 30 
Three-state output (see Tri-state) 
Threshold voltage, 74, 114 
Third party tools, 830 
Timer, 723 
Timing Analyzer, 769,873 
Timing diagram, 27,486 
Timing simulation, 57 
Tool (CAD), 758 
Traffic light controller, 722 
Transfer characteristic, 119 
Transistor: 

EEPROM, 138 
EPROM, 140 
MOSFET, 75 
size, 123 

Transistor-transistor logic (TTL), 914 
Transition diagram, 621 
Transition table (see Excitation table) 
Transmission gate, 134, 136 
Transmission line effects, 750 
Tree structure, 733 

Triode region, 116 
Tri-state: 

buffer, 93, 132 
VHDL code, 442 

Truth table, 24 
2's-complement representation, 259 
22V 10 PAL, 900 
Type (VHDL), 775 

U 
Ultraviolet light, 140 
Union, 33 
Universal shift register, 473 
Unsigned numbers, 246 
UNSIGNED type, 288 
Unstable state, 587 
Up-counter, 402,432,454,676 
Upldown-counter, 403 
USE clause, 224,784 
User-programmable device (see PLD) 

Valuation, 24 
Variable assignment statement, 802 
VARIABLE, 779,800 
Vending machine controller, 469, 526,642 
Venn diagram, 33-36 
Verilog HDL, 55  
Vertex, 204 
Very large-scale integration (VLSI), 93 
VHDL, 58-63, 224,281-288,339-363, 

502-5 12, 773-824 
architecture, 61,782 
arithmetic assignment, 285 
array, 705,780 
asynchronous clear, 422,808 
BUFFER, 434 
CASE statement, 356,457,797 
comment, 774 
component, 28 1,786 
concatenation, 287,790 
conditional signal assignment, 344, 

792 
don't care, 358,776 
entity, 60,782 
FOR LOOP, 432,797,801 
GENERATE, 348,454,793 
IF statement, 350, 796 
implied memory, 355,419,799 
instantiation of components, 281,445, 

666,785 
named association, 282 
names, 774 
number representaton, 284,774 



INDEX YJY 

operators, 359. 781 
ordering of statements, 350,43 1,799, 

812 
package, 225,283,444,454,784 
port, 61,782 
positional association, 282 
precedence, 363 
process, 350,794,798 
selected signal assignment, 299, 340, 

79 1 
sensitivity list, 350,798 
signal, 775 
synchronous reset, 423,808 
variable, 779, 800 

vector, 775 
Via, 11 I 
Volatile programming, 109 
Voltage levels, 

high, 74 
low, 74 
substrate bias, 127 
VOH and VOL,  120 
VIH and V,, , 120 

Voltage transfer characteristic (VTC), 119 

W 
WAiT UNTIL statement, 420,430,807 

Waveform Editor, 845 
WHEN clause (VHDL), 340,356,792 
Wiring complexity, 190 
World Wide Web, 223 

X 
Xilinv Spartan-3,913 
Xilinx Virtex FPGA, 912 
Xilinx Virtex I1 (Pro) FPGA, 912 
Xilinx XC4000 FPGA, 907 
XNOR (Exclusive-NOR) gate (see Gates) 
XOR (Exclusive-OR) gate (see Gates) 




