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science departments. Over the last 18 years, however, the focus of this course
has broadened considerably. The topic of data structures has now been sub-
sumed under the broader topic of abstract data types (ADTs)—the study of classes of
objects whose logical behavior is defined by a set of values and a set of operations.
The term abstract data type describes a comprehensive collection of data values
and operations; the term data structures refers to the study of data and how to repre-
sent data objects within a program; that is, the implementation of structured rela-
tionships. The shift in emphasis is representative of the move towards more
abstraction in computer science education. We now are interested in the study of the
abstract properties of classes of data objects in addition to how the objects might be
represented in a program. Johannes J. Martin put it succinctly: “. . . depending on
the point of view, a data object is characterized by its type (for the user) or by its
structure (for the implementor).”!

Historically, a course on data structures has been a mainstay of most computer

Three Levels of Abstraction

The focus of this book is on abstract data types as viewed from three different per-
spectives: their specification, their application, and their implementation. The speci-
fication perspective describes the logical or abstract level of data types, and is
concerned with what the operations do. The application level, sometimes called the
user level, is concerned with how the data type might be used to solve a problem,
and is focused on why the operations do what they do. The implementation level is
where the operations are actually coded. This level is concerned with the how ques-
tions.

Within this focus, we stress computer science theory and software engineering
principles, including modularization, data encapsulation, information hiding, data

!Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in Computer Science,
C. A. R. Hoare, Series Editor, Prentice-Hall International, (UK), LTD, 1986, p. 1.
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abstraction, object-oriented decomposition, functional decomposition, the analysis of
algorithms, and life-cycle software verification methods. We feel strongly that these
principles should be introduced to computer science students early in their education so
that they learn to practice good software techniques from the beginning.

An understanding of theoretical concepts helps students put the new ideas they
encounter into place, and practical advice allows them to apply what they have learned.
To teach these concepts to students who may not have completed many college-level
mathematics courses, we consistently use intuitive explanations, even for topics that
have a basis in mathematics, like the analysis of algorithms. In all cases, our highest
goal has been to make our explanations as readable and as easily understandable as
possible.

Prerequisite Assumptions

In this book, we assume that students are familiar with the following C++ constructs:

e Built-in simple data types

e Stream I/0 as provided in <iostream>

e Stream I/O as provided in <fstream>

e Control structures while, do-while, for, if, and switch

e User-defined functions with value and reference parameters
e Built-in array types

e (lass construct

We have included sidebars within the text to refresh students’ memory concerning
some of the details of these topics.

Changes in the Third Edition

The third edition incorporates the following changes:

Object-oriented constructs moved forward: In the last five years, object-oriented pro-
gramming has become part of the first-year curriculum, as demonstrated by its inclu-
sion in all variations of the first year outlined in the Computing Curricula 2001
developed by the Joint Task Force of the IEEE Computer Society and the Association for
Computing Machinery. Accordingly, the class concept has moved into the first semes-
ter. Because of this, we assume that students have had experience using classes, and we
therefore moved much of the discussion of how to define and access classes to a side-
bar. We have kept a small discussion in the main text. Many students have already
seen inheritance and polymorphism, but the concepts are too important to move to a
sidebar, so we have moved them from Chapter 6 to Chapter 2.

More emphasis on object-oriented design: Object-oriented design is a hard topic for
most students, because people usually think procedurally in their lives. Because of this,
we introduce a methodology with four phases: brainstorming, during which the possible
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objects in a problem are isolated; filtering, during which the set of possible objects are
reexamined to look for duplicates and/or missing objects; scenarios, during which hand
simulations of the processing take place asking “what if” questions and assigning
responsibilities to classes; and responsibility algorithms, during which the algorithms for
the classes are designed. We use CRC cards to capture the results of the four-phase
process. The output from the scenarios phase is a CRC card for each class. The CRC
card lists the responsibilities of the class and any other classes with which the class
must collaborate, hence the name CRC: class, responsibility, collaboration.

More practical emphasis on testing: The concept of a multipurpose test driver is intro-
duced in Chapter 1. After a test plan has been designed, it is implemented as input to
the test driver. Throughout the rest of the book, this technique is used to test the ADTs.
The drivers, the input data, and the output data are available on the book’s web site:
http://computerscience.jbpub.com/cppDataStructures

Reduced use of templates: The concept of generic data types, as implemented in C++
using templates, is very important. Making every ADT a class template after templates
are introduced in Chapter 4, however, inserts an unnecessary complexity into already
complex code. Thus, when introducing a new construct such as a linked list or a binary
search tree, we have chosen to use classes rather than class templates. Subsequent
implementations of a construct are often in the form of class templates, or the student is
asked to transform a class into a class template in the exercises.

Nonlinked binary tree representation covered with binary trees: The nonlinked represen-
tation of a binary tree is an important concept within its own right, not just as an
implementation for a heap. This implementation, therefore, is covered in Chapter 8 with
other tree implementation techniques.

Removal of material on binary expression trees: Although interesting applications of
trees, binary expression trees do not fit into the discussion of abstract data types. Thus,
we have moved this discussion to the web site.

Inclusion of the ADT set: The exclusion of the ADT set has been an omission from pre-
vious editions. Not only is a set an interesting mathematical object, but there are inter-
esting implementation issues. We propose two implementations, one explicit (bit
vector) and one implicit (list-based).

Content and Organization

Chapter 1 outlines the basic goals of high-quality software, and the basic principles of
software engineering for designing and implementing programs to meet these goals.
Abstraction, functional decomposition, and object-oriented design are discussed. This
chapter also addresses what we see as a critical need in software education: the ability
to design and implement correct programs and to verify that they are actually correct.
Topics covered include the concept of “life-cycle” verification; designing for correctness
using preconditions and postconditions; the use of deskchecking and design/code walk-
throughs and inspections to identify errors before testing; debugging techniques, data
coverage (black-box), and code coverage (clear- or white-box) approaches; test plans,
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unit testing, and structured integration testing using stubs and drivers. The concept of a
generalized test driver is presented and executed in a Case Study that develops the ADT
Fraction.

Chapter 2 presents data abstraction and encapsulation, the software engineering
concepts that relate to the design of the data structures used in programs. Three per-
spectives of data are discussed: abstraction, implementation, and application. These
perspectives are illustrated using a real-world example, and then are applied to built-in
data structures that C++ supports: structs and arrays. The C++ class type is presented as
the way to represent the abstract data types we examine in subsequent chapters. The
principles of object-oriented programming—encapsulation, inheritance, and polymor-
phism—are introduced here along with the accompanying C++ implementation con-
structs. The Case Study at the end of this chapter reinforces the ideas of data abstraction
and encapsulation in designing and implementing a user-defined data type for general-
ized string input and output. This class is tested using a version of the generalized test
driver.

Chapter 2 ends with a discussion of two C++ constructs that help users write better
software: namespace and exception handling using the try/catch statement. Various
approaches to error handling are demonstrated in subsequent chapters.

We would like to think that the material in Chapters 1 and 2 is a review for most
students. The concepts in these two chapters, however, are so crucial to the future of
any and all students that we feel that we cannot rely on the assumption that they have
seen the material before.

Chapter 3 introduces the most fundamental abstract data type of all: the list. The
chapter begins with a general discussion of operations on abstract data types and then
presents the framework with which all of the other data types are examined: a presenta-
tion and discussion of the specification, a brief application using the operations, and the
design and coding of the operations. Both the unsorted and the sorted lists are pre-
sented with an array-based implementation. Overloading the relational operators is pre-
sented as a way to make the implementations more generic. The binary search is
introduced as a way to improve the performance of the search operation in the sorted
list. Because there is more than one way to solve a problem, we discuss how competing
solutions can be compared through the analysis of algorithms, using Big-O notation.
This notation is then used to compare the operations in the unsorted list and the sorted
list. The four-phase object-oriented methodology is presented and demonstrated in the
Case Study by using a simple real estate database.

Chapter 4 introduces the stack and the queue data types. Each data type is first
considered from its abstract perspective, and the idea of recording the logical abstrac-
tion in an ADT specification is stressed. Then the set of operations is implemented in
C++ using an array-based implementation. The concept of dynamic allocation is intro-
duced, along with the syntax for using C++ pointer variables, and then used to demon-
strate how arrays can be dynamically allocated to give the user more flexibility. With
the introduction of dynamic storage, the destructor must be introduced. Templates are
introduced as a way of implementing generic classes. A Case Study using stacks (post-
fix expression evaluator) and one using queues (simulation) are presented.
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Chapter 5 reimplements the ADTs from Chapters 3 and 4 as linked structures. The
technique used to link the elements in dynamically allocated storage is described in
detail and illustrated with figures. The array-based implementations and the linked
implementations are then compared using Big-0 notation.

Chapter 6 is a collection of advanced concepts and techniques. Circular linked lists
and doubly linked lists are discussed. The insertion, deletion, and list traversal algo-
rithms are developed and implemented for each variation. An alternative representation
of a linked structure, using static allocation (an array of structs), is designed. Class copy
constructors, assignment overloading, and dynamic binding are covered in detail. The
Case Study uses doubly linked lists to implement large integers.

Chapter 7 discusses recursion, giving the student an intuitive understanding of the
concept, and then shows how recursion can be used to solve programming problems.
Guidelines for writing recursive functions are illustrated with many examples. After
demonstrating that a by-hand simulation of a recursive routine can be very tedious, a
simple three-question technique is introduced for verifying the correctness of recursive
functions. Because many students are wary of recursion, the introduction to this mate-
rial is deliberately intuitive and nonmathematical. A more detailed discussion of how
recursion works leads to an understanding of how recursion can be replaced with itera-
tion and stacks. The Case Study develops and implements the Quick-Sort algorithm.

Chapter 8 introduces binary search trees as a way to arrange data, giving the flexi-
bility of a linked structure with O(log,N) insertion and deletion time. In order to build
on the previous chapter and exploit the inherent recursive nature of binary trees, the
algorithms first are presented recursively. After all the operations have been imple-
mented recursively, we code the insertion and deletion operations iteratively to show
the flexibility of binary search trees. A nonlinked array-based binary tree implementa-
tion is described. The Case Study discusses the process of building an index for a man-
uscript and implements the first phase.

Chapter 9 presents a collection of other branching structures: priority queues
(implemented with both lists and heaps), graphs, and sets. The graph algorithms make
use of stacks, queues, and priority queues, thus both reinforcing earlier material and
demonstrating how general these structures are. Two set implementations are discussed:
the bit-vector representation, in which each item in the base set is assigned a
present/absent flag and the operations are the built-in logic operations, and a list-based
representation, in which each item in a set is represented in a list of set items. If the
item is not in the list, it is not in the set.

Chapter 10 presents a number of sorting and searching algorithms and asks the
question: Which are better? The sorting algorithms that are illustrated, implemented,
and compared include straight selection sort, two versions of bubble sort, quick sort,
heap sort, and merge sort. The sorting algorithms are compared using Big-O nota-
tion. The discussion of algorithm analysis continues in the context of searching. Pre-
viously presented searching algorithms are reviewed and new ones are described.
Hashing techniques are discussed in some detail. Finally, radix sort is presented and
analyzed.
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Additional Features

Chapter Goals A set of goals presented at the beginning of each chapter helps the
students assess what they will learn. These goals are tested in the exercises at the end
of each chapter.

Chapter Exercises Most chapters have more than 35 exercises. They vary in levels of
difficulty, including short programming problems, the analysis of algorithms, and
problems to test the student’s understanding of concepts. Approximately one-third of
the exercises are answered in the back of the book. The answer key for the remaining
exercises is in the Instructor’s Guide.

Case Studies There are seven case studies. Each includes a problem description, an
analysis of the problem input and required output, and a discussion of the appropriate
data types to use. Several of the case studies are completely coded and tested. Others
are left at various stages in their development, requiring the student to complete and
test the final version.

Program Disk The specification and implementation of each class representing an ADT
is available on a program disk that can be downloaded, free of charge, from the Jones
and Bartlett Student Diskette Page on the World Wide Web (www.jbpub.com/disks).
The source code for the completed case studies and the partial source code for the
others is also available.

Instructor Support Material Instructor teaching tools and resources are available on
the web at http://computerscience.jbpub.com/cppDataStructures. On this site you will
find:

e Goals

e Qutlines

e Teaching Notes: suggestions for how to teach the material covered in each chap-
ter

e Workouts: suggestions for in-class activities, discussion questions, and short
exercises

e Exercise Key: answers to those questions that are not solved in the back of the
book

* Programming Assignments: a collection of a wide range of assignments carefully
chosen to illustrate the techniques described in the text

e Electronic TestBank: this computerized TestBank allows you to create cus-
tomized exams or quizzes from a collection of pre-made questions sorted by
chapter. Updated for this edition, the TestBank questions can be edited and
supplemented, and answers are provided for all pre-made questions. Each test
is developed using Brownstone Diploma Software and is available on the
book’s web site.

e PowerPoint Presentations: new PowerPoint slides developed specifically for the
third edition provide an excellent visual accompaniment to lectures. The Power-
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Point presentations for each chapter are designed to coordinate with the material
in the textbook, and can be downloaded from the book’s web site.
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Software Engineering
Principles

After studying this chapter, you should be able to
m Describe the general activities in the software life cycle
B Describe the goals for "quality” software

W Explain the following terms: software requirements, software specifica-
tions, algorithm, information hiding, abstraction, stepwise refinement

Explain and apply the fundamental ideas of top-down design
Explain and apply the fundamental ideas of object-oriented design
Identify several sources of program errors

Describe strategies to avoid software errors

Specify the preconditions and postconditions of a program segment or function

Show how deskchecking, code walk-throughs, and design and code inspections
can improve software quality and reduce the software development effort

B Explain the following terms: acceptance tests, regression testing, verification,
validation, functional domain, black-box testing, white-box testing

B State several testing goals and indicate when each would be appropriate

Bl Describe several integration-testing strategies and indicate when each would
be appropriate

B Explain how program verification techniques can be applied throughout the
software development process

B Create a C++ test driver program to test a simple class
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Chapter 1: Software Engineering Principles

1]

At this point in your computing career, you have completed at least one semester of
computer science course work. You can take a problem of medium complexity, write an
algorithm to solve the problem, code the algorithm in C++, and demonstrate the correct-
ness of your solution. At least, that’s what the syllabus for your introductory class said
you should be able to do when you complete the course. Now that you are starting your
second (or third?) semester, it is time to stop and review those principles that, if adhered
to, guarantee that you can indeed do what your previous syllabus claimed.

In this chapter, we review the software design process and the verification of soft-
ware correctness. In Chapter 2, we review data design and implementation.

The Software Process

When we consider computer programming, we immediately think of writing a program
for a computer to execute—the generation of code in some computer language. As a
beginning student of computer science, you wrote programs that solved relatively sim-
ple problems. Much of your initial effort went into learning the syntax of a program-
ming language such as C++: the language’s reserved words, its data types, its constructs
for selection (if-else and switch) and looping (while, do while, and for), and its
input/output mechanisms (cin and cout).

You may have learned a programming methodology that took you from the problem
description that your instructor handed out all the way through the delivery of a good
software solution. Programmers have created many design techniques, coding standards,
and testing methods to help develop high-quality software. But why bother with all that
methodology? Why not just sit down at a computer and write programs? Aren’'t we
wasting a lot of time and effort, when we could just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (like summing a list of prices or averaging grades), we might get away
with such a code-first technique (or, rather, lack of technique). Some new programmers
work this way, hacking away at the code until the program works more or less cor-
rectly—usually less.

As your programs grow larger and more complex, however, you must pay attention
to other software issues in addition to coding. If you become a software professional,
someday you may work as part of a team that develops a system containing tens of
thousands, or even millions, of lines of code. The activities involved in such a software
project’s whole “life cycle” clearly go beyond just sitting down at a computer and writ-
ing programs. These activities include

e Problem analysis Understanding the nature of the problem to be solved

e Requirements elicitation Determining exactly what the program must do

® Requirements definition Specifying what the program must do (functional
requirements) and any constraints on the solution approach (nonfunctional
requirements such as what language to use)

e High- and low-level design Recording how the program meets the requirements,
from the “big picture” overview to the detailed design
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e [Implementation of the design Coding a program in a computer language

e Testing and verification Detecting and fixing errors and demonstrating the cor-
rectness of the program

e Delivery Turning over the tested program to the customer or user (or instructor!)

e Operation Actually using the program

e Maintenance Making changes to fix operational errors and to add or modify
the program’s function

Software development is not simply a matter of going through these steps sequen-
tially. Rather, many activities take place concurrently. We may code one part of the
solution while we design another part, or define requirements for a new version of a
program while we continue testing the current version. Often a number of people may
work on different parts of the same program simultaneously. Keeping track of all these
activities is not an easy task.

We use the term software engineering to
refer to the discipline concerned with all
aspects of the development of high quality Sof.tware engingering Thg discipline devoted to the
software systems. It encompasses all varia- design, production, and mamte.znance of .corpputer pro-
tions of techniques used during the software grams thqt are developed on time and W|th|n' cost esti-
) ) 2. mates, using tools that help to manage the size and
life cycle p.lus supporting activities such as complexity of the resulting software products
documentation and teamwork. A software
process is a specific set of interrelated soft-
ware engineering techniques, used by a per-
son or organization to create a system.

What makes our jobs as programmers or
software engineers challenging is the ten-
dency of software to grow in size and complexity and to change at every stage of its
development. A good software process uses tools to manage this size and complexity
effectively. Usually a programmer takes advantage of several toolboxes, each containing
tools that help to build and shape a software product.

Software process A standard, integrated set of software
engineering tools and techniques used on a project or by
an organization

Hardware One toolbox contains the hardware itself: the computers and their
peripheral devices (such as monitors, terminals, storage devices, and printers), on which
and for which we develop software.

Software A second toolbox contains various software tools: operating systems to
control the computer’s resources, text editors to help us enter programs, compilers to
translate high-level languages like C++ into something that the computer can execute,
interactive debugging programs, test-data generators, and so on. You've used some of
these tools already.

Ideaware A third toolbox is filled with the shared body of knowledge that
programmers have collected over time. This box contains the algorithms that we use to
solve common programming problems as well as data structures for modeling the
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4 |  Chapter 1: Software Engineering Principles

information processed by our programs. Recall that an

Algorithm A logical sequence of discrete steps that algorithm is a step-by-step description of the solution
describes a complete solution to a given problem, com- to a problem. How we choose between two algorithms
putable in a finite amount of time that carry out the same task often depends on the

requirements of a particular application. If no relevant
requirements exist, the choice may be based on the
programmer’s own style.

Ideaware contains programming methodologies such as top-down and object-ori-
ented design and software concepts, including information hiding, data encapsulation,
and abstraction. It includes aids for creating designs such as CRC (Classes, Responsibili-
ties, and Collaborations) cards and methods for describing designs such as the UML
(Unified Modeling Language). It also contains some tools for measuring, evaluating, and
proving the correctness of our programs. We devote most this book to exploring the
contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming,
but we don’t believe that to be true. Artists and composers are creative, yet their inno-
vations are grounded in the basic principles of their crafts. Similarly, the most creative
programmers build high-quality software through the disciplined use of basic program-
ming tools.

Goals of Quality Software

Quality software entails much more than a program that somehow accomplishes the
task at hand. A good program achieves the following goals:

1. It works.
2. It can be modified without excessive time and effort.
3. It is reusable.

4. It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works The program must do the task it was designed to
perform, and it must do it correctly and completely. Thus the first step in
the development process is to determine exactly
what the program is required to do. To write a
program that works, you first need to have a
definition of the program’s requirements. For students,
function, inputs, processing, outputs, and special require- the requirements often are included in the instruc-
ments of a software product; it provides the information tor’s problem description: “Write a program that
needed to design and implement the program calculates....” For programmers working on a govern-
ment contract, the requirements document may be

hundreds of pages long.
We develop programs that meet the user’s requirements using software specifica-
tions. The specifications indicate the format of the input and the expected output,

Requirements A statement of what is to be provided by
a computer system or software product

Software specification A detailed description of the
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details about processing, performance measures (how fast? how big? how accurate?),
what to do in case of errors, and so on. The specifications tell exactly what the program
does, but not how it is done. Sometimes your instructor will provide detailed specifica-
tions; other times you may have to write them yourself, based on the requirements defi-
nition, conversations with your instructor, or guesswork. (We discuss this issue in more
detail later in this chapter.)

How do you know when the program is right? A program must be complete (it
should “do everything” specified) and correct (it should “do it right”) to meet its require-
ments. In addition, it should be usable. For instance, if the program needs to receive
data from a person sitting at a terminal, it must indicate when it expects input. The pro-
gram'’s outputs should be readable and understandable to users. Indeed, creating a good
user interface is an important subject in software engineering today.

Finally, Goal 1 means that the program should be as efficient as it needs to be. We
would never deliberately write programs that waste time or space in memory, but not all
programs demand great efficiency. When they do, however, we must meet these
demands or else the programs will not satisfy the requirements. A space-launch control
program, for instance, must execute in “real time”; that is, the software must process
commands, perform calculations, and display results in coordination with the activities
it is supposed to control. Closer to home, if a desktop-publishing program cannot
update the screen as rapidly as the user can type, the program is not as efficient as it
needs to be. In such a case, if the software isn’t efficient enough, it doesn’t meet its
requirements; thus, according to our definition, it doesn’t work correctly.

Goal 2: Quality Software Can Be Modified When does software need to be modified?
Changes occur in every phase of its existence.

Software gets changed in the design phase. When your instructor or employer gives
you a programming assignment, you begin to think of how to solve the problem. The
next time you meet, however, you may be notified of a small change in the program
description.

Software gets changed in the coding phase. You make changes in your program as
a result of compilation errors. Sometimes you suddenly see a better solution to a part of
the problem after the program has been coded, so you make changes.

Software gets changed in the testing phase. If the program crashes or yields wrong
results, you must make corrections.

In an academic environment, the life of the software typically ends when a cor-
rected program is turned in to be graded. When software is developed for real-world
use, however, most of the changes take place during the “maintenance” phase. Someone
may discover an error that wasn’t uncovered in testing, someone else may want to
include additional functions, a third party may want to change the input format, and a
fourth person may want to run the program on another system.

As you see, software changes often and in all phases of its life cycle. Knowing this
fact, software engineers try to develop programs that are modified easily. If you think it
is a simple matter to change a program, try to make a “small change” in the last pro-
gram you wrote. It's difficult to remember all the details of a program after some time
has passed, isn’t it? Modifications to programs often are not even made by the original
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authors but rather by subsequent maintenance programmers. (Someday you may be the
one making the modifications to someone else’s program.)

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood. A well-designed,
clearly written, well-documented program is certainly easier for human readers to
understand. The number of pages of documentation required for “real-world” programs
usually exceeds the number of pages of code. Almost every organization has its own
policy for documentation. Reading a well-written program can teach you techniques
that help you write good programs. In fact, it’s difficult to imagine how anyone could
become a good programmer without reading good programs.

Second, the program should readily be able to withstand small changes. The key
idea is to partition your programs into manageable pieces that work together to solve
the problem, yet remain relatively independent. The design methodologies reviewed
later in this chapter should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable It takes time and effort to create quality software.
Therefore, it is important to realize as much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, functions, and other components from previous projects. By using previ-
ously designed and tested code, you arrive at your solution sooner and with less effort.
Alternatively, when you create software to solve a problem, it is sometimes possible to
structure that software so it can help solve future, related problems. By doing so, you
gain more value from the software created.

Creating reusable software does not happen automatically. It requires extra effort
during the specification and design phases. To be reusable, software must be well docu-
mented and easy to read, so that a programmer can quickly determine whether it can be
used for a new project. It usually has a simple interface so that it can easily be plugged
into another system. It is also modifiable (Goal 2), in case a small change is needed to
adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally usable with a minimal amount of extra effort. In this
way, you increase the chances that you can reuse the software later. For example, if
you are creating a routine that sorts a list of integers into increasing order, you might
generalize the routine so that it can also sort other types of data. Furthermore, you
could design the routine to accept the desired sort order, increasing or decreasing, as a
parameter.

Goal 4: Quality Software Is Completed on Time and Within Budget You know what
happens in school when you turn in your program late. You probably have grieved over an
otherwise perfect program that received only half credit—or no credit at all—because you
turned it in one day late. “But the network was down five hours last night!” you protest.
Although the consequences of tardiness may seem arbitrary in the academic world,
they are significant in the business world. The software for controlling a space launch
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must be developed and tested before the launch can take place. A patient database sys-
tem for a new hospital must be installed before the hospital can open. In such cases, the
program doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite but failure to meet deadlines is expensive. A com-
pany generally budgets a certain amount of time and money for the development of a
piece of software. As a programmer, you are paid a salary or an hourly wage. If your
part of the project is only 80% complete when the deadline arrives, the company must
pay you—or another programmer—to finish the work. The extra expenditure in salary is
not the only cost, however. Other workers may be waiting to integrate your part of the
program into the system for testing. If the program is part of a contract with a cus-
tomer, monetary penalties may be assessed for missed deadlines. If it is being developed
for commercial sales, the company may be beaten to the market by a competitor and
eventually forced out of business.

Once you have identified your goals, what can you do to meet them? Where should
you start? Software engineers use many tools and techniques. In the next few sections
of this chapter, we review some of these techniques to help you understand, design, and
code programs.

Specification: Understanding the Problem

No matter which programming design technique you use, the first steps are always the
same. Imagine the following all-too-familiar situation. On the third day of class, you are
given a 12-page description of Programming Assignment 1, which must be running per-
fectly and turned in by noon, one week from yesterday. You read the assignment and
realize that this program is three times larger than any program you have ever written.
What is your first step?

The responses listed here are typical of those given by a class of computer science
students in such a situation:

1. Panic 39%
2. Sit down at the computer and begin typing 30%
3. Drop the course 27%
4. Stop and think 4%

Response 1 is a predictable reaction from students who have not learned good pro-
gramming techniques. Students who adopt Response 3 will find their education pro-
gressing rather slowly. Response 2 may seem to be a good idea, especially considering
the deadline looming ahead. Resist the temptation, though—the first step is to think.
Before you can come up with a program solution, you must understand the problem.
Read the assignment, and then read it again. Ask questions of your instructor (or man-
ager, or client). Starting early affords you many opportunities to ask questions; starting
the night before the program is due leaves you no opportunity at all.

The problem with writing first is that it tends to lock you into the first solution you
think of, which may not be the best approach. We have a natural tendency to believe
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that once we've put something in writing, we have invested too much in the idea to toss
it out and start over.

On the other hand, don’t agonize about all the possibilities until the day before your
deadline. (Chances are that a disk drive, network, or printer will fail that day!) When
you think you understand the problem, you should begin writing your design.

Writing Detailed Specifications

Many writers experience a moment of terror when faced with a blank piece of paper—
where to begin? As a programmer, however, you don’t have to wonder about where to
begin. Using the assignment description (your “requirements”), first write a complete
definition of the problem, including the details of the expected inputs and outputs, the
necessary processing and error handling, and all assumptions about the problem. When
you finish this task, you have a detailed specification—a formal definition of the prob-
lem your program must solve, which tells you exactly what the program should do. In
addition, the process of writing the specifications brings to light any holes in the
requirements. For instance, are embedded blanks in the input significant or can they be
ignored? Do you need to check for errors in the input? On which computer system(s)
will your program run? If you get the answers to these questions at this stage, you can
design and code your program correctly from the start.

Many software engineers work with user/operational scenarios to understand the
requirements. In software design, a scenario is a sequence of events for one execution of
the program. For example, a designer might consider the following scenario when
developing the software for a bank’s automated teller machine (ATM):

The customer inserts a bank card.

The ATM reads the account number on the card.

The ATM requests a PIN (personal identification number) from the customer.
The customer enters 5683.

The ATM successfully verifies the account number PIN combination.

U1 W N =

The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

~N

The customer selects the show balance option.
8. The ATM obtains the current account balance ($1,204.35) and displays it.

9. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

10. The customer selects quit.
11. The ATM returns the customer’s bank card.

Scenarios allow us to get a feel for the behavior expected from the system. Of
course, a single scenario cannot show all possible behaviors. For this reason, software
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engineers typically prepare many different scenarios to gain a full understanding of the
system’s requirements.

You must know some details to write and run the program. Other details, if not
explicitly stated in the program’s requirements, may be handled according to the pro-
grammer’s preference. Assumptions about unstated or ambiguous specifications should
always be written explicitly in the program’s documentation.

The detailed specification clarifies the problem to be solved. But it does more than
that: It also serves as an important piece of written documentation about the program.
There are many ways in which specifications may be expressed and a number of differ-
ent sections that may be included, depending on the nature of the problem. Our recom-
mended program specification includes the following sections:

® Processing requirements
e Sample inputs with expected outputs
e Assumptions

If special processing is needed for unusual or error conditions, it should be specified
as well. Sometimes it is helpful to include a section containing definitions of terms used.
Likewise, it may prove useful to list any testing requirements so that verifying the pro-
gram is considered early in the development process.

Program Design

Remember, the specification of the program tells what the program must do, but not
how it does it. Once you have fully clarified the goals of the program, you can begin to
develop and record a strategy for meeting them; in other words, you can begin the
design phase of the software life cycle.

Tools

In this section, we review some ideaware tools that are used for software design, includ-
ing abstraction, information hiding, stepwise refinement, and visual tools.

Abstraction The universe is filled with complex systems. We learn about such systems
through models. A model may be mathematical, like equations describing the motion of
satellites around the earth. A physical object such as a model airplane used in wind-
tunnel tests is another form of model. In this approach to understanding complex
systems, the important concept is that we consider only the essential characteristics of
the system; we ignore minor or irrelevant details. For example, although the earth is an
oblate ellipsoid, globes (models of the earth) are spheres. The small difference between
the earth’s equatorial diameter and polar diameter is not important to us in studying the
political divisions and physical landmarks on the earth. Similarly, the model airplanes
used to study aerodynamics do not include in-flight movies.
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Figure 1.1 An abstraction includes the essential details relative to the perspective of the viewer.

An abstraction is a model of a complex system

Abstraction A model of a complex system that includes that includes only the essential details. Abstractions
only the details essential to the perspective of the viewer are the fundamental way that we manage complexity.

of the system

Different viewers use different abstractions of a partic-

Module A cohesive system subunit that performs a ular system. Thus, while we may see a car as a means

share of the work

to transport us and our friends, the automotive brake
engineer may see it as a large mass with a small con-
tact area between it and the road (Figure 1.1).

What does abstraction have to do with software
development? The programs we write are abstractions. A spreadsheet program that is
used by an accountant models the books used to record debits and credits. An educa-
tional computer game about wildlife models an ecosystem. Writing software is difficult
because both the systems we model and the processes we use to develop the software
are complex. One of our major goals is to convince you to use abstractions to manage
the complexity of developing software. In nearly every chapter, we make use of abstrac-
tion to simplify our work.

Information Hiding Many design methods are based on decomposing a problem’s
solution into modules. A module is a cohesive system subunit that performs a share of
the work. Decomposing a system into modules helps us manage complexity. Additionally,
the modules can form the basis of assignments for different programming teams working
separately on a large system. One important feature of any design method is that the
details that are specified in lower levels of the program design remain hidden from the
higher levels. The programmer sees only the details that are relevant at a particular level
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of the design. This information hiding makes

certain details inaccessible to the programmer | |nformation hiding The practice of hiding the details of
at higher levels. a function or data structure with the goal of controlling
Modules act as an abstraction tool. access to the details of a module or structure

Because the complexity of its internal struc-

ture can be hidden from the rest of the sys-

tem, the details involved in implementing a module remain isolated from the details of
the rest of the system.

Why is hiding the details desirable? Shouldn’t the programmer know everything?
No! In this situation, a certain amount of ignorance truly is advantageous. Information
hiding prevents the higher levels of the design from becoming dependent on low-level
design details that are more likely to be changed. For example, you can stop a car with-
out knowing whether it has disc brakes or drum brakes. You don’t need to know these
lower-level details of the car’s brake subsystem to stop it.

Furthermore, you don’t want to require a complete understanding of the complicated
details of low-level routines for the design of higher-level routines. Such a requirement
would introduce a greater risk of confusion and error throughout the whole program. For
example, it would be disastrous if every time we wanted to stop our car, we had to think,
“The brake pedal is a lever with a mechanical advantage of 10.6 coupled to a hydraulic
system with a mechanical advantage of 7.3 that presses a semi-metallic pad against a steel
disc. The coefficient of friction of the pad/disc contact is....”

Information hiding is not limited to driving cars and programming computers. Try to
list all the operations and information required to make a peanut butter and jelly sand-
wich. We normally don’t consider the details of planting, growing, and harvesting peanuts,
grapes, and wheat as part of making a sandwich. Information hiding lets us deal with only
those operations and information needed at a particular level in the solution of a problem.

The concepts of abstraction and information hiding are fundamental principles of soft-
ware engineering. We will come back to them again and again throughout this book.
Besides helping us manage the complexity of a large system, abstraction and information
hiding support our quality-related goals of modifiability and reusability. In a well-designed
system, most modifications can be localized to just a few modules. Such changes are much
easier to make than changes that permeate the entire system. Additionally, a good system
design results in the creation of generic modules that can be used in other systems.

To achieve these goals, modules should be good abstractions with strong cohesion;
that is, each module should have a single purpose or identity and the module should
stick together well. A cohesive module can usually be described by a simple sentence. If
you have to use several sentences or one very convoluted sentence to describe your
module, it is probably not cohesive. Each module should also exhibit information hiding
so that changes within it do not result in changes in the modules that use it. This inde-
pendent quality of modules is known as loose coupling. If your module depends on the
internal details of other modules, it is not loosely coupled.

Stepwise Refinement In addition to concepts such as abstraction and information
hiding, software developers need practical approaches to conquer complexity. Stepwise
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refinement is a widely applicable approach. Many variations of it exist, such as top-
down, bottom-up, functional decomposition, and even “round-trip gestalt design.”
Undoubtedly you have learned a variation of stepwise refinement in your studies, as it
is a standard method for organizing and writing essays, term papers, and books. For
example, to write a book an author first determines the main theme and the major
subthemes. Next, the chapter topics can be identified, followed by section and
subsection topics. Outlines can be produced and further refined for each subsection. At
some point the author is ready to add detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar
steps are followed during each stage, with the only difference reflecting the level of
detail involved. The completion of each stage brings us closer to solving our problem.
Let’s look at some variations of stepwise refinement:

e Top-down With this approach, the problem is first broken into several large
parts. Each of these parts is, in turn, divided into sections, the sections are subdi-
vided, and so on. The important feature is that details are deferred as long as
possible as we move from a general to a specific solution. The outline approach
to writing a book involves a form of top-down stepwise refinement.

e Bottom-up As you might guess, with this approach the details come first. Bot-
tom-up development is the opposite of the top-down approach. After the detailed
components are identified and designed, they are brought together into increas-
ingly higher-level components. This technique could be used, for example, by the
author of a cookbook who first writes all the recipes and then decides how to
organize them into sections and chapters.

e Functional decomposition This program design approach encourages program-
ming in logical action units, called functions. The main module of the design
becomes the main program (also called the main function), and subsections
develop into functions. This hierarchy of tasks forms the basis for functional
decomposition, with the main program or function controlling the processing.
The general function of the method is continually divided into subfunctions until
the level of detail is considered fine enough to code. Functional decomposition is
top-down stepwise refinement with an emphasis on functionality.

e Round-trip gestalt design This confusing term is used to define the stepwise
refinement approach to object-oriented design suggested by Grady Booch,! one
of the leaders of the “object” movement. First, the tangible items and events in
the problem domain are identified and assigned to candidate classes and objects.
Next, the external properties and relationships of these classes and objects are
defined. Finally, the internal details are addressed; unless these are trivial, the
designer must return to the first step for another round of design. This approach
entails top-down stepwise refinement with an emphasis on objects and data.

Good software designers typically use a combination of the stepwise refinement

techniques described here.

!Grady Booch, Object Oriented Design with Applications (Benjamin Cummings, 1991).
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Visual Tools Abstraction, information hiding, and stepwise refinement are interrelated
methods for controlling complexity during the design of a system. We now look at
some tools that can help us visualize our designs. Diagrams are used in many
professions. For example, architects use blueprints, investors use market trend graphs,
and truck drivers use maps.

Software engineers use different types of diagrams and tables, such as the Unified Mod-
eling Language (UML) and Class, Responsibility, and Collaboration (CRC) cards. The
UML is used to specify, visualize, construct, and document the components of a soft-
ware system. It combines the best practices that have evolved over the past several
decades for modeling systems, and it is particularly well suited to modeling object-ori-
ented designs. UML diagrams represent another form of abstraction. They hide imple-
mentation details and allow systems designers to concentrate on only the major design
components. UML includes a large variety of interrelated diagram types, each with its
own set of icons and connectors. A very powerful development and modeling tool, it is
helpful for modeling designs after they have been developed.

In contrast, CRC cards help us determine our initial designs. CRC cards were first
described by Beck and Cunningham,? in 1989, as a means to allow object-oriented pro-
grammers to identify a set of cooperating classes to solve a problem.

A programmer uses a physical 4” X 6" index card to represent each class that had
been identified as part of a problem solution. Figure 1.2 shows a blank CRC card. It con-
tains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-
lic functions (called methods in object-oriented terminology)

3. Collaborations—other classes or objects that are used in fulfilling the responsibilities

K. B. Beck and W. Cunningham, http://c2.com/doc/oopsla89/paper.html.
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c )

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

Figure 1.2 A blank CRC card

CRC cards are great tools for refining an object-oriented design, especially in a
team programming environment. They provide a physical manifestation of the building
blocks of a system that allows programmers to walk through user scenarios, identifying
and assigning responsibilities and collaborations. We discuss a problem-solving
methodology using CRC cards in Chapter 3.

UML is beyond the scope of this text, but we will use CRC cards throughout.

Design Approaches

We have defined the concept of a module, described the characteristics of a good mod-
ule, and presented the concept of stepwise refinement as a strategy for defining mod-
ules. But what should these modules be? How do we define them? One approach is to
break the problem into functional subproblems (do this, then do this, then do that).
Another approach is to divide the problem into the “things” or objects that interact to
solve the problem. We explore both of these approaches in this section.

Top-Down Design One method for designing software is based on the functional
decomposition and top-down strategies. You may have learned this method in your
introductory class. First the problem is broken into several large tasks. Each of these
tasks is, in turn, divided into sections, the sections are subdivided, and so on. As we
said previously, the key feature is that details are deferred as long as possible as we
move from a general to a specific solution.
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To develop a computer program by this method, we begin with a “big picture”
solution to the problem defined in the specification. We then devise a general strat-
egy for solving the problem by dividing it into manageable functional modules.
Next, each of the large functional modules is subdivided into several tasks. We do
not need to write the top level of the functional design in source code (such as C++);
rather, we can write it in English or “pseudocode.” (Some software development proj-
ects even use special design languages that can be compiled.) This divide-and-con-
quer activity continues until we reach a level that can be easily translated into lines
of code.

Once it has been divided into modules, the problem is simpler to code into a well-
structured program. The functional decomposition approach encourages programming
in logical units, using functions. The main module of the design becomes the main pro-
gram (also called the main function), and subsections develop into functions. This hier-
archy of tasks forms the basis for functional decomposition, with the main program or
function controlling the processing.

As an example, let’s start the functional design for making a cake.

Make Cake

Get ingredients
Mix cake ingredients

Bake
Cool

Apply icing

The problem now is divided into five logical units, each of which might be further
decomposed into more detailed functional modules. Figure 1.3 illustrates the hierarchy
of such a functional decomposition.

Object-Oriented Design Another approach to designing programs is called object-
oriented design (00D). This methodology originated with the development of programs
to simulate physical objects and processes in the real world. For example, to simulate an
electronic circuit, you could develop a module for simulating each type of component in
the circuit and then “wire up” the simulation by having the modules pass information
among themselves along the same pattern in which wires connect the electronic
components.

In a simulation, the top-down decomposition of the problem has already taken
place. An engineer has designed a circuit or a mechanical device, a physicist has devel-
oped a model of a physical system, a biologist has developed an experimental model, an

TEAM LinG - Live, Informative, Non-cost and Genuine!



16 |  Chapter 1: Software Engineering Principles

I Make cake I
. Ge_t . LTS c_ake Bake Cool Apply
ingredients ingredients icing

- . Combine
Mix liquid Mix dry liquid and dry
ingredients ingredients ingredients

Figure 1.3 A portion of a functional design for baking a cake

economist has designed an economic model, and so on. As a programmer, your job is to
take this problem decomposition and implement it.

In object-oriented design, the first steps are to identify the simplest and most widely
used objects and processes in the decomposition and to implement them faithfully. Once
you have completed this stage, you often can reuse these objects and processes to
implement more complex objects and processes. This hierarchy of objects forms the
basis for object-oriented design.

Object-oriented design, like top-down design, takes a divide-and-conquer approach.
However, instead of decomposing the problem into functional modules, we divide it into
entities or things that make sense in the context of the problem being solved. These
entities, called objects, collaborate and interact to solve the problem. The code that
allows these objects to interact is called a driver program.

Let’s list some of the objects in our baking problem. There are, of course, all of the
various ingredients: eggs, milk, flour, butter, and so on. We also need certain pieces of
equipment, such as pans, bowls, measuring spoons, and an oven. The baker is another
important entity. All of these entities must collaborate
to create a cake. For example, a spoon measures indi-
vidual ingredients and a bowl holds a mixture of
ingredients.

Groups of objects with similar properties and
behaviors are described by an object class (usually

Object class (class) The description of a group of
objects with similar properties and behaviors; a pattern
for creating individual objects
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Class

Oven

Bowl

Egg
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Example of object classes that participate in baking a cake
Attributes Responsibilities (Operations)
Energy source Turn on
Size Turn off
Temperature Set desired temperature
Number of racks
Capacity Add to
Current amount Dump
Size Crack

Separate (white from yolk)

shortened to class). Each oven in the world is a unique object. We cannot hope to
describe every oven, but we can group oven objects together into a class called oven
that has certain properties and behaviors.

An object class is similar to a C++ class (see the sidebar on page 18 on class syntax
and the discussion in Chapter 2). C++ types are templates for variables; classes are tem-
plates for objects. Like types, object classes have attributes and operations associated with
them. For example, an oven class might have an attribute to specify whether it is gas or
electric and operations to turn it on or off and to set it to maintain a desired temperature.

With object-oriented design, we determine the classes from the things in the prob-
lem as described in the problem statement. We record each object class using a CRC
card. From this work, we determine a set of properties (attributes) and a set of responsi-
bilities (operations) to associate with each class. With object-oriented design, the func-
tionality of the program is distributed among a set of collaborating objects. Table 1.1
illustrates some of the object classes that participate in baking a cake.

Once we have defined an oven class, we can reuse it in other cooking problems,
such as roasting a turkey. Reuse of classes is an important aspect of modern software
development. One major goal of this text is to introduce you to a number of classes that
are particularly important in the development of software—abstract data types. We dis-
cuss the concept of an abstract data type in detail in Chapter 2. Throughout the book,
we fully develop many abstract data types, and we describe others leaving you to
develop them yourself. As these classes are fundamental to computer science, we can
often obtain the C++ code for them from a public or private repository or purchase it
from vendors who market C++ components. In fact, the new C++ language standard
includes components in the Standard Template Library (STL). You may wonder why, if
they are already available, we spend so much time on their development. Our goal is to
teach you how to develop software. As with any skill, you need to practice the funda-
mentals before you can become a virtuoso.

To summarize, top-down design methods focus on the process of transforming the
input into the output, resulting in a hierarchy of tasks. Object-oriented design focuses
on the data objects that are to be transformed, resulting in a hierarchy of objects. Grady
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Booch puts it this way: “Read the specification of the software you want to build.
Underline the verbs if you are after procedural code, the nouns if you aim for an object-
oriented program.™

We propose that you circle the nouns and underline the verbs. The nouns become
objects; the verbs become operations. In a functional design, the verbs are the primary
focus; in an object-oriented design, the nouns are the primary focus.

C++  (Class Syntax

A C++ class contains both data and functions that operate on the data. A class is declared in two
parts: the specification of the class and the implementation of the class functions.

class MoneyType

{
public:
void Initialize(long, long);
// Initializes dollars and cents.
long DollarsAre() const;
// Returns dollars.
long CentsAre() const;
// Returns cents.
private:
long dollars;
long cents;
ik

A member function is defined like any function with one exception: The name of the class type
within which the member is declared precedes the member function name with a double colon in
between (: :). The double colon operator is called the scope resolution operator.

void MoneyType::Initialize(long newDollars, long newCents)
// Post: dollars is set to newDollars; cents is set to
// newCents.
{
dollars = newDollars;
cents = newCents;

3Grady Booch, “What Is and Isn’t Object Oriented Design.” American Programmer, special issue on object ori-
entation, vol. 2, no. 7-8, Summer 1989.
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long MoneyType::DollarsAre() const
// Post: Class member dollars is returned.
{

return dollars;

long MoneyType::CentsAre() const
// Post: Class member cents is returned.
{

return cents;

If money is a variable of type MoneyType, the following statement prints the data fields of money:

cout << "$§" << money.DollarsAre()
< ", " << money.CentsAre();

'| 3 Verification of Software Correctness

At the beginning of this chapter, we discussed some characteristics of good programs.

The first of these was that a good program works—it accomplishes its intended function.

How do you know when your program meets that goal? The simple answer is, fest it.
Let’s look at testing as it relates to the rest

of the software development process. As pro-

grammers, we first make sure that we under- Testing The process of executing a program with data
stand the requirements. We then come up with  S¢ts designed to discover errors
a general solution. Next, we design the solu-  Debugging The process of removing known errors

tion in terms of a computer program, using Acceptance test The process of testing the system in its
good design principles. Finally, we implement real environment with real data

the solution, using good structured coding,

with classes, functions, self~-documenting code,

and so on.

Once we have the program coded, we compile it repeatedly until no syntax errors
appear. Then we run the program, using carefully selected test data. If the program
doesn’t work, we say that it has a “bug” in it. We try to pinpoint the error and fix it, a
process called debugging. Notice the distinction between testing and debugging. Testing
is running the program with data sets designed to discover any errors; debugging is
removing errors once they are discovered.

When the debugging is completed, the software is put into use. Before final deliv-
ery, software is sometimes installed on one or more customer sites so that it can be
tested in a real environment with real data. After passing this acceptance test phase, the
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Regression testing Reexecution of program tests after
modifications have been made to ensure that the program

still works correctly

Program verification The process of determining the
degree to which a software product fulfills its specifica-

tions

Program validation The process of determining the
degree to which software fulfills its intended purpose

software can be installed at all customer sites. Is the verification process now finished?
Hardly! More than half of the total life-cycle costs and effort generally occur after the
program becomes operational, in the maintenance phase. Some changes correct errors in
the original program; other changes add new capabilities to the software system. In
either case, testing must occur after any program
modification. This phase is called regression testing.

Testing is useful in revealing the presence of bugs
in a program, but it doesn’t prove their absence. We
can only say for sure that the program worked cor-
rectly for the cases we tested. This approach seems
somewhat haphazard. How do we know which tests or
how many of them to run? Debugging a whole pro-
gram at once isn't easy. Also, fixing the errors found
during such testing can sometimes be a messy task.
Too bad we couldn’t have detected the errors earlier—
while we were designing the program, for instance.
They would have been much easier to fix then.

We know how program design can be improved by using a good design methodol-
ogy. Can we use something similar to improve our program verification activities? Yes,
we can. Program verification activities don’t need to start when the program is com-
pletely coded; they can be incorporated into the entire software development process,
from the requirements phase on. Program verification is more than just testing.

In addition to program verification, which involves fulfilling the requirement speci-
fications, the software engineer has another important task—making sure the specified
requirements actually solve the underlying problem. Countless times a programmer has
finished a large project and delivered the verified software, only to be told, “Well, that’s
what I asked for but it’s not what I need.”

The process of determining that software accomplishes its intended task is called
program validation. Program verification asks, “Are we doing the job right?”; program
validation asks, “Are we doing the right job?"*

Can we really “debug” a program before it has ever been run—or even before it has
been written? In this section we review a number of topics related to satisfying the cri-
terion “quality software works.” The topics include

Designing for correctness

Performing code and design walk-throughs and inspections
Using debugging methods

Choosing test goals and data

Writing test plans

Structured integration testing

4B. W. Boehm, Software Engineering Economics (Englewood Cliffs, N.J.: Prentice-Hall, 1981).
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Origin of Bugs

When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every
time; he knows from experience all kinds of things that help him find solutions. Sup-
pose Holmes finds a victim in a muddy field. He immediately looks for footprints in the
mud, for he can tell from a footprint what kind of shoe made it. The first print he finds
matches the shoes of the victim, so he keeps looking. Now he finds another print, and
from his vast knowledge of footprints he can tell that it was made by a certain type of
boot. He deduces that such a boot would be worn by a particular type of laborer, and
from the size and depth of the print he guesses the suspect’s height and weight. Now,
knowing something about the habits of laborers in this town, he guesses that at 6:30
P.M. the suspect might be found in Clancy’s Pub.

(€
& w@? claN S

In software verification we are often expected to play detective. Given certain clues,
we have to find the bugs in programs. If we know what kinds of situations produce pro-
gram errors, we are more likely to be able to detect and correct problems. We may even
be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes
intervenes in time to prevent a crime from taking place.

Let’s look at some types of software errors that show up at various points in pro-
gram development and testing and see how they might be avoided.

Specifications and Design Errors What would happen if, shortly before you were
supposed to turn in a major class assignment, you discovered that some details in the
professor’s program description were incorrect? To make matters worse, you also found
out that the corrections were discussed at the beginning of class on the day you got
there late, and somehow you never knew about the problem until your tests of the class
data set came up with the wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of soft-
ware error. How bad can it be? Let’s look at a true story. Some time ago, a computer
company contracted to replace a government agency’s obsolete system with new hard-
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ware and software. A large and complicated program was written, based on specifica-
tions and algorithms provided by the customer. The new system was checked out at
every point in its development to ensure that its functions matched the requirements in
the specifications document. When the system was complete and the new software was
executed, users discovered that the results of its calculations did not match those of the
old system. A careful comparison of the two systems showed that the specifications of
the new software were erroneous because they were based on algorithms taken from the
old system’s inaccurate documentation. The new program was “correct” in that it
accomplished its specified functions, but the program was useless to the customer
because it didn’t accomplish its intended functions—it didn’t work. The cost of correct-
ing the errors measured in the millions of dollars.

How could correcting the error be so expensive? First, much of the conceptual and
design effort, as well as the coding, was wasted. It took a great deal of time to pinpoint
which parts of the specification were in error and then to correct this document before
the program could be redesigned. Then much of the software development activity
(design, coding, and testing) had to be repeated. This case is an extreme one, but it illus-
trates how critical specifications are to the software process. In general, programmers
are more expert in software development techniques than in the “application” areas of
their programs, such as banking, city planning, satellite control, or medical research.
Thus correct program specifications are crucial to the success of program development.

Most studies indicate that it costs 100 times as much to correct an error discovered
after software delivery than it does if the problem is discovered early in the software life
cycle. Figure 1.4 shows how fast the costs rise in subsequent phases of software devel-
opment. The vertical axis represents the relative cost of fixing an error; this cost might
be measured in units of hours, hundreds of dollars, or “programmer months” (the
amount of work one programmer can do in one month). The horizontal axis represents
the stages in the development of a software product. As you can see, an error that
would have taken one unit to fix when you first started designing might take 100 units
to correct when the product is actually in operation!

Good communication between the programmers (you) and the party who originated
the problem (the professor, manager, or customer) can prevent many specification
errors. In general, it pays to ask questions when you don’t understand something in the
program specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming assign-
ment. What error checking is necessary? What algorithm or data structure should be used
in the solution? What assumptions are reasonable? If you obtain answers to these ques-
tions when you first begin working on an assignment, you can incorporate them into your
design and implementation of the program. Later in the program’s development, unex-
pected answers to these questions can cost you time and effort. In short, to write a pro-
gram that is correct, you must understand precisely what your program is supposed to do.

Sometimes specifications change during the design or implementation of a pro-
gram. In such cases, a good design helps you to pinpoint which sections of the program
must be redone. For instance, if a program defines and uses type StringType to imple-
ment strings, changing the implementation of StringType does not require rewriting
the entire program. We should be able to see from the design—either functional or
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Figure 1.4  This graph demonstrates the importance of early detection of software errors.

object-oriented—that the offending code is restricted to the module where StringType
is defined. The parts of the program that require changes can usually be located more
easily from the design than from the code itself.

Compile-Time Errors In the process of learning your first programming language, you
probably made a number of syntax errors. These mistakes resulted in error messages
(for example, “TYPE MISMATCH,” “ILLEGAL ASSIGNMENT,” “SEMICOLON
EXPECTED,” and so on) when you tried to compile the program. Now that you are more
familiar with the programming language, you can save your debugging skills for
tracking down really important logical errors. Try to get the syntax right the first time.
Having your program compile cleanly on the first attempt is not an unreasonable goal.
A syntax error wastes computing time and money, as well as programmer time, and it
is preventable. Some programmers argue that looking for syntax errors is a waste of
their time, that it is faster to let the compiler catch all the typos and syntax errors.
Don’t believe them! Sometimes a coding error turns out to be a legal statement,
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syntactically correct but semantically wrong. This situation may cause very obscure,
hard-to-locate errors.

As you progress in your college career or move into a professional computing job,
learning a new programming language is often the easiest part of a new software assign-
ment. This does not mean, however, that the language is the least important part. In this
book we discuss abstract data types and algorithms that we believe are language inde-
pendent. That is, they can be implemented in almost any general-purpose programming
language. In reality, the success of the implementation depends on a thorough under-
standing of the features of the programming language. What is considered acceptable
programming practice in one language may be inadequate in another, and similar syntac-
tic constructs may be just different enough to cause serious trouble.

For this reason, it is worthwhile to develop an expert knowledge of both the control
and data structures and the syntax of the language in which you are programming. In
general, if you have a good knowledge of your programming language—and are care-
ful—you can avoid syntax errors. The ones you might miss are relatively easy to locate
and correct. Most are flagged by the compiler with an error message. Once you have a
“clean” compilation, you can execute your program.

Run-Time Errors Errors that occur during the execution of a program are usually more
difficult to detect than syntax errors. Some run-time errors stop execution of the
program. When this situation happens, we say that the program “crashed” or
“terminated abnormally.”

Run-time errors often occur when the programmer makes too many assumptions.
For instance,

result = dividend / divisor;

is a legitimate assignment statement, if we can assume that divisor is never zero. If
divisor is zero, however, a run-time error results.

Sometimes run-time errors occur because the programmer does not fully under-
stand the programming language. For example, in C++ the assignment operator is =,
and the equality test operator is ==. Because they look so much alike, they often are
miskeyed one for the other. You might think that this would be a syntax error that the
compiler would catch, but it is actually a logic error. Technically, an assignment in
C++ consists of an expression with two parts: The expression on the right of the
assignment operator (=) is evaluated and the result is returned and stored in the place
named on the left. The key word here is returned; the result of evaluating the right-
hand side is the result of the expression. Therefore, if the assignment operator is
miskeyed for the equality test operator, or vice versa, the code executes with surprising
results.

Let’s look at an example. Consider the following two statements:

count == count + 1;
if (count = 10)
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The first statement returns false; count can never be equal to count + 1. The semi-
colon ends the statement, so nothing happens to the value returned; count has not
changed. In the next statement, the expression (count = 10) is evaluated, and 10 is
returned and stored in count. Because a nonzero value (10) is returned, the if expres-
sion always evaluates to true.

Run-time errors also occur because of unanticipated user errors. For instance, if
newValue is declared to be of type int, the statement

>> newValue;

C++

causes a stream failure if the user inputs a nonnumeric character. An invalid file-
name can cause a stream failure. In some languages, the system reports a run-time
error and halts. In C++, the program doesn’t halt; the program simply continues with
erroneous data. Well-written programs should not stop unexpectedly (crash) or con-
tinue with bad data. They should catch such errors and stay in control until the user
is ready to quit.

Stream Input and Output

In C++, input and output are considered streams of characters. The keyboard input stream is cin;
the screen output stream is cout. Important declarations relating to these streams are supplied in
the library file <iostream>. If you plan to use the standard input and output streams, you must
include this file in your program. You must also provide for access to the namespace with the using
directive,

#include <iostream>

int main()

{

using namespace std;

int

intValue;

float realValue;

cout << "Enter an integer number followed by return."

cin

<< endl;
>> intValue;

cout << "Enter a real number followed by return."

<< endl;

cin >> realValue;

cout << "You entered " << intValue << " and "
<< realValue << endl;

return O;
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<< is called the insertion operator: The expressions on the right describe what is inserted into
the output stream. >> is called the extraction operator: Values are extracted from the input stream
and stored in the places named on the right. endl is a special language feature called a
manipulator; it terminates the current output line.

If you are reading or writing to a file, you include <fstream>. You then have access to the data
types ifstream (for input) and ofstream (for output). Declare variables of these types, use the
open function to associate each with the external file name, and use the variable names in place of
cin and cout, respectively.

#include <fstream>
int main()
{

using namespace std;

int intValue;

float realValue;
ifstream inData;
ofstream outData;

inData.open("input.dat");
outData.open("output.dat");

inData >> intValue;
inData »>> realValue;
outData << "The input values are "
<< intValue << "™ and "
<< realValue << endl;
return 0;

On input, whether from the keyboard or from a file, the >> operator skips leading whitespace
characters (blank, tab, line feed, form feed, carriage return) before extracting the input value. To
avoid skipping whitespace characters, you can use the get function. You invoke it by giving the
name of the input stream, a dot, and then the function name and parameter list:

cin.get (inputChar) ;

The get function inputs the next character waiting in the input stream, even if it is a white-
space character.

Stream Failure

The key to reading data in correctly (from either the keyboard or a file) is to ensure that the order
and the form in which the data are keyed are consistent with the order and type of the identifiers on
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the input statement. If an error occurs while accessing an |/0 stream, the stream enters the foil state,
and any further references to the stream will be ignored. For example, if you misspell the name of
the file that is the parameter to the function open (In.dat instead of Data. In, for example), the
file input stream will enter the fail state. Alternatively, if you try to input a value when the stream is
at the end of the file, the stream will enter the fail state. Your program may continue to execute
while the stream remains in the fail state, but all further references to the stream will be ignored.

C++ gives you a way to test the state of a stream: The stream name used in an expression
returns a value that is converted to true if the state is good and to false if the stream is in the fail
state. For example, the following code segment prints an error message and halts execution if the
proper input file is not found:

#include <fstream>
#include <iostream>

int main()

{
using namespace std;
ifstream inData;

inData.open("myData.dat") ;

if (!inData)

{
cout << "File myData.dat was not found." << endl;
return 1;

return O;

By convention, the main function returns an exit status of O if execution completed normally,
whereas it returns a nonzero value (above, we used 1) otherwise.

The ability of a program to recover
when an error occurs is called robustness. If Robustness The ability of a program to recover follow-
a commercial program is not robust, people ing an error; the ability of a program to continue to oper-
do not buy it. Who wants a word processor ate within its environment
that crashes if the user says “SAVE” when
there is no disk in the drive? We want the
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program to tell us, “Put your disk in the drive, and press Enter.” For some types of
software, robustness is a critical requirement. An airplane’s automatic pilot system or
an intensive care unit’s patient-monitoring program cannot afford to just crash. In
such situations, a defensive posture produces good results.

In general, you should actively check for error-creating conditions rather than let
them abort your program. For instance, it is generally unwise to make too many
assumptions about the correctness of input, especially “interactive” input from a key-
board. A better approach is to check explicitly for the correct type and bounds of such
input. The programmer can then decide how to handle an error (request new input, print
a message, or go on to the next data) rather than leave the decision to the system. Even
the decision to quit should be made by a program that controls its own execution. If
worse comes to worst, let your program die gracefully.

Of course, not everything that the program inputs must be checked for errors.
Sometimes inputs are known to be correct—for instance, input from a file that has been
verified. The decision to include error checking must be based upon the requirements of
the program.

Some run-time errors do not stop execution but do produce the wrong results.
You may have incorrectly implemented an algorithm or used a variable before it was
assigned a value. You may have inadvertently swapped two parameters of the same
type on a function call or forgotten to designate a function’s output data as a refer-
ence parameter. (See the Parameter Passing sidebar, page 74.) These “logical” errors
are often the hardest to prevent and locate. Later we will talk about debugging tech-
niques to help pinpoint run-time errors. We will also discuss structured testing meth-
ods that isolate the part of the program being tested. But knowing that the earlier we
find an error, the easier it is to fix, we turn now to ways of catching run-time errors
before run time.

Designing for Correctness

It would be nice if there were some tool that would locate the errors in our design or
code without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean Theorem by proving
that it worked on every triangle; that result would merely demonstrate that the theorem
works for every triangle we tried. We prove theorems in geometry mathematically. Why
can’t we do the same for computer programs?

The verification of program correctness, independent of data testing, is an impor-
tant area of theoretical computer science research. Such research seeks to establish a
method for proving programs that is analogous to the method for proving theorems
in geometry. The necessary techniques exist, but the proofs are often more compli-
cated than the programs themselves. Therefore a major focus of verification research
is the attempt to build automated program provers—verifiable programs that verify
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other programs. In the meantime, the formal verification techniques can be carried
out by hand.®

Assertions An assertion is a logical pro-

position that can be true or false. We can  Agsertion A logical proposition that can be true or false
make assertions about the state of the

program. For instance, with the assignment

statement

sum = part + 1 ; // sum and part are integers.

we might assert the following: “The value of sum is greater than the value of part.”
That assertion might not be very useful or interesting by itself, but let’s see what we can
do with it. We can demonstrate that the assertion is true by making a logical argument:
No matter what value part has (negative, zero, or positive), when it is increased by 1,
the result is a larger value. Now note what we didn’t do. We didn’'t have to run a pro-
gram containing this assignment statement to verify that the assertion was correct.

The general concept behind formal program verification is that we can make asser-
tions about what the program is intended to do, based on its specifications, and then
prove through a logical argument (rather than through execution of the program) that a
design or implementation satisfies the assertions. Thus the process can be broken down
into two steps:

1. Correctly assert the intended function of the part of the program to be verified.
2. Prove that the actual design or implementation does what is asserted.

The first step, making assertions, sounds as if it might be useful to us in the process
of designing correct programs. After all, we already know that we cannot write correct
programs unless we know what they are supposed to do.

Preconditions and Postconditions Let’s take the idea of making assertions down a level
in the design process. Suppose we want to design a module (a logical chunk of the
program) to perform a specific operation. To ensure that this module fits into the
program as a whole, we must clarify what happens at its boundaries—that is, what must
be true when we enter the module and what must be true when we exit.

To make the task more concrete, picture the design module as it is eventually coded,
as a function that is called within a program. To call the function, we must know its

*We do not go into this subject in detail here. For students who are interested in this topic, see David Gries,
The Science of Programming (New York: Springer-Verlag, 1981).
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Preconditions Assertions that must be true on entry
into an operation or function for the postconditions to be
guaranteed

VI IIIS

If you try to execute this operation
when the preconditions are not true,
the results are not guaranteed.

exact interface: the name and the parameter list,
which indicates its inputs and outputs. But this infor-
mation isn’t enough: We must also know any assump-
tions that must be true for the operation to function
correctly. We call the assertions that must be true on
entry into the function preconditions. The precondi-
tions act like a product disclaimer:

VI IIIS

WARNING

o

For instance, when we said that following the execution of

sum = part + 1;

Postconditions Assertions that state what results are
expected at the exit of an operation or function, assuming
that the preconditions are true

we can assert that sum is greater than part, we made
an assumption—a precondition—that part is not
INT_ MAX. If this precondition were violated, our asser-
tion would not be true.

We must also know what conditions are true
when the operation is complete. The postconditions
are assertions that describe the results of the opera-

tion. The postconditions do not tell us how these results are accomplished; rather, they
merely tell us what the results should be.

Let’s consider the preconditions and postconditions for a simple operation, one that
deletes the last element from a list and returns its value as an output. (We are using
“list” in an intuitive sense here; we formally define it in Chapter 3.) The specification for

@eﬁé@a&t is as follows:

GetLast(ListType list, ValueType lastValue)
. Function: Remove the last element in the list and return its
value in lastValue.

Precondition: The list is not empty.

Postconditions: lastValue is the value of the last element in the
list, the last element has been removed, and the
list length has been decremented.
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What do these preconditions and postconditions have to do with program verifica-
tion? By making explicit assertions about what is expected at the interfaces between
modules, we can avoid making logical errors based on misunderstandings. For instance,
from the precondition we know that we must check outside of this operation for the
empty condition; this module assumes that at least one element is present in the list.
The postcondition tells us that when the value of the last list element is retrieved, that
element is deleted from the list. This fact is an important one for the list user to know. If
we just want to take a peek at the last value without affecting the list, we cannot use
BetLast.

Experienced software developers know that misunderstandings about interfaces to
someone else’s modules are one of the main sources of program problems. We use pre-
conditions and postconditions at the module or function level in this book, because the
information they provide helps us to design programs in a truly modular fashion. We
can then use the modules we've designed in our programs, confident that we are not
introducing errors by making mistakes about assumptions and about what the modules
actually do.

Design Review Activities When an individual programmer is designing and
implementing a program, he or she can find many software errors with pencil and
paper. Deskchecking the design solution is a
very common method of manually verifying
a program. The programmer writes down
essential data (variables, input values,
parameters of subprograms, and so on) and
walks through the design, marking changes
in the data on the paper. Known trouble
spots in the design or code should be
double-checked. A checklist of typical errors
(such as loops that do not terminate,
variables that are used before they are
initialized, and incorrect order of parameters on function calls) can be used to make
the deskcheck more effective. A sample checklist for deskchecking a C++ program
appears in Figure 1.5.

Have you ever been really stuck trying to debug a program and showed it to a
classmate or colleague who detected the bug right away? It is generally acknowledged
that someone else can detect errors in a program better than the original author can. In
an extension of deskchecking, two programmers can trade code listings and check each
other’s programs. Universities, however, frequently discourage students from examining
each other’s programs for fear that this exchange will lead to cheating. Thus many stu-
dents become experienced in writing programs but don’t have much opportunity to
practice reading them.

Teams of programmers develop most sizable computer programs. Two extensions of
deskchecking that are effectively used by programming teams are design or code walk-
throughs and inspections. The intention of these formal team activities is to move the
responsibility for uncovering bugs from the individual programmer to the group.

Deskchecking Tracing an execution of a design or pro-
gram on paper

Walk-through A verification method in which a team
performs a manual simulation of the program or design

Inspection A verification method in which one member
of a team reads the program or design line by line and the
other members point out errors
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The Design
1. Does each module in the design have a clear function or purpose?
2. Can large modules be broken down into smaller pieces? (A common rule of thumb is that a C++
function should fit on one page.)
3. Are all the assumptions valid? Are they well documented?
4. Are the preconditions and postconditions accurate assertions about what should be happening in
the module they specify?
5. Is the design correct and complete as measured against the program specification? Are there any
missing cases? Is there faulty logic?
6. Is the program designed well for understandability and maintainability?
The Code
7. Has the design been clearly and correctly implemented in the programming language? Are fea-
tures of the programming language used appropriately?
8. Are all output parameters of functions assigned values?
9. Are parameters that return values marked as reference parameters (have & to the right of the type
if the parameter is not an array)?
10. Are functions coded to be consistent with the interfaces shown in the design?
11. Are the actual parameters on function calls consistent with the parameters declared in the func-
tion prototype and definition?
12. Is each data object to be initialized set correctly at the proper time? Is each data object set before
its value is used?
13. Do all loops terminate?
14. Is the design free of “magic” numbers? (A “magic” number is one whose meaning is not immedi-
ately evident to the reader.)
15. Does each constant, type, variable, and function have a meaningful name? Are comments

included with the declarations to clarify the use of the data objects?

Figure 1.5  Checklist for deskchecking a C++ program

Because testing is time consuming and errors cost more the later they are discovered,
the goal is to identify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or on a
blackboard. Unlike thorough program testing, the walk-through is not intended to simu-
late all possible test cases. Instead, its purpose is to stimulate discussion about the way
the programmer chose to design or implement the program’s requirements.

At an inspection, a reader (not the program’s author) goes through the design or
code line by line. Inspection participants point out errors, which are recorded on an
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Table 1.2 Defects Found in Different Phases*

Stage KSLOC
System Design 2
Software Requirements 8
Design 12
Code Inspection 34
Testing Activities 3

"Dennis Beeson, Manager, Naval Air Warfare Center, Weapons Division, F-18 Software Development Team.

inspection report. Some errors are uncovered just by the process of reading aloud. Oth-
ers may have been noted by team members during their preinspection preparation. As
with the walk-through, the chief benefit of the team meeting is the discussion that takes
place among team members. This interaction among programmers, testers, and other
team members can uncover many program errors long before the testing stage begins.

At the high-level design stage, the design should be compared to the program
requirements to make sure that all required functions have been included and that this
program or module correctly “interfaces” with other software in the system. At the low-
level design stage, when the design has been filled out with more details, it should be
reinspected before it is implemented. When the coding has been completed, the com-
piled listings should be inspected again. This inspection (or walk-through) ensures that
the implementation is consistent with both the requirements and the design. Successful
completion of this inspection means that testing of the program can begin.

For the last 20 years, the Software Engineering Institute at Carnegie Mellon Univer-
sity has played a major role in supporting research into formalizing the inspection
process in large software projects, including sponsoring workshops and conferences. A
paper presented at the SEI Software Engineering Process Group (SEPG) Conference
reported on a project that was able to reduce the number of product defects by 86.6%
by using a two-tiered inspection process of group walk-throughs and formal inspec-
tions. The process was applied to packets of requirements, design, or code at every stage
of the life cycle. Table 1.2 shows the defects per 1,000 source lines of code (KSLOC) that
were found in the various phases of the software life cycle in a maintenance project.
This project added 40,000 lines of source code to a software program of half a million
lines of code. The formal inspection process was used in all of the phases except testing
activities.

Looking back at Figure 1.4, you can see that the cost of fixing an error is relatively
cheap until you reach the coding phase. After that stage, the cost of fixing an error
increases dramatically. Using the formal inspection process clearly benefited this project.

These design-review activities should be carried out in as nonthreatening a manner
as possible. The goal is not to criticize the design or the designer, but rather to remove
defects in the product. Sometimes it is difficult to eliminate the natural human emotion
of pride from this process, but the best teams adopt a policy of egoless programming.
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Exceptions At the design stage, you should plan how
Exception An unusual, generally unpredictable event, “[0 handle exceptions ip your program. Excep.‘[ions". are
detectable by software or hardware, that requires special Jjust what the name implies: exceptional situations.
processing; the event may or may not be erroneous When these situations occur, the flow of control of the

program must be altered, usually resulting in a

premature end to program execution. Working with
exceptions begins at the design phase: What are the unusual situations that the program
should recognize? Where in the program can the situations be detected? How should the
situations be handled if they arise?

Where—indeed, whether—an exception is detected depends on the language, the
software package design, the design of the libraries being used, and the platform (that
is, the operating system and hardware). Where an exception should be detected depends
on the type of exception, the software package design, and the platform. Where an
exception is detected should be well documented in the relevant code segments.

An exception may be handled in any place in the software hierarchy—from the
place in the program module where the exception is first detected through the top level
of the program. In C++, as in most programming languages, unhandled built-in excep-
tions carry the penalty of program termination. Where in an application an exception
should be handled is a design decision; however, exceptions should be handled at a
level that knows what they mean.

An exception need not be fatal. In nonfatal exceptions, the thread of execution may
continue. Although the thread of execution may be picked up at any point in the pro-
gram, the execution should continue from the lowest level that can recover from the
exception. When an error occurs, the program may fail unexpectedly. Some of the fail-
ure conditions may possibly be anticipated; some may not. All such errors must be
detected and managed.

Exceptions can be written in any language. Some languages (such as C++ and Java)
provide built-in mechanisms to manage exceptions. All exception mechanisms have
three parts:

e Defining the exception
e Generating (raising) the exception
e Handling the exception

C++ gives you a clean way of implementing these three phases: the try-catch and
throw statements. We cover these statements at the end of Chapter 2 after we have
introduced some additional C++ constructs.

Program Testing

Eventually, after all the design verification, deskchecking, and inspections have been
completed, it is time to execute the code. At last, we are ready to start testing with the
intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to
assert that a program works correctly. We say “assert” rather than “prove” because test-
ing does not generally provide a proof of program correctness.
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The goal of each test case is to verify a particular program feature. For instance, we
may design several test cases to demonstrate that the program correctly handles various
classes of input errors. Alternatively, we may design cases to check the processing when
a data structure (such as an array) is empty, or when it contains the maximum number
of elements.

Within each test case, we perform a series of component tasks:

e We determine inputs that demonstrate the goal of the test case.

e We determine the expected behavior of the program for the given input. (This
task is often the most difficult one. For a math function, we might use a chart of
values or a calculator to figure out the expected result. For a function with com-
plex processing, we might use a deskcheck type of simulation or an alternative
solution to the same problem.)

e We run the program and observe the resulting behavior.

e We compare the expected behavior and the actual behavior of the program. If
they match, the test case is successful. If not, an error exists. In the latter case,
we begin debugging.

For now we are talking about test cases at a module, or function, level. It’s much
easier to test and debug modules of a program
one at a time, rather than trying to get the
whole program solution to work all at once.

Testing at this level is called unit testing. Functional domain The set of valid input data for a pro-
gram or function

Unit testing Testing a module or function by itself

How do we know what kinds of unit test
cases are appropriate, and how many are
needed? Determining the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task. Two approaches to specifying test cases exist: cases based on
testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage In those limited cases where the set of valid inputs, or the functional
domain, is extremely small, we can verify a subprogram by testing it against every
possible input element. This approach, known as “exhaustive” testing, can prove
conclusively that the software meets its specifications. For instance, the functional
domain of the following function consists of the values true and false:

void PrintBoolean(bool error)
// Prints the Boolean value on the screen.
{
if (error)
cout <K "true";
else
cout <K "false";
cout << endl;
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It makes sense to apply exhaustive testing to this function, because there are only two
possible input values. In most cases, however, the functional domain is very large, so
exhaustive testing is almost always impractical or impossible. What is the functional
domain of the following function?

void PrintInteger (int intValue)

// Prints the integer value intValue on the screen.

{
cout

Black-box testing Testing a program or function based
on the possible input values, treating the code as a "black

box"

Clear- (white-) box testing Testing a program or func-

tion based on covering
paths of the code

Statement coverage
executed at least once

<< intValue;

It is not practical to test this function by running it with every possible data input; the
number of elements in the set of int values is clearly too large. In such cases we do not
attempt exhaustive testing. Instead, we pick some other measurement as a testing goal.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt (except possibly by wasting time),
but it may not help much either. This approach is likely to uncover some bugs in a pro-
gram, but it is very unlikely to find all of them. Fortunately, strategies for detecting
errors in a systematic way have been developed.

One goal-oriented approach is to cover general classes of data. You should test at
least one example of each category of inputs, as well as boundaries and other special
cases. For instance, in the function PrintInteger there are three basic classes of int
data: negative values, zero, and positive values. You should plan three test cases, one
for each class. You could try more than three, of course. For example, you might want
to try INT MAX and INT_MIN; because the program simply prints the value of its input,
however, the additional test cases don’t accomplish much.

Other data coverage approaches exist as well. For example, if the input consists of
commands, you must test each command. If the input is a fixed-sized array containing
a variable number of values, you should test the max-
imum number of values—that is, the boundary condi-
tion. It is also a good idea to try an array in which no
values have been stored or one that contains a single
element. Testing based on data coverage is called
black-box testing. The tester must know the external
interface to the module—its inputs and expected out-
puts—but does not need to consider what is happening
inside the module (the inside of the black box). (See
Figure 1.6.)

all the statements, branches, or

Every statement in the program is

Code Coverage A number of testing strategies are
based on the concept of code coverage, the execution of statements or groups of
statements in the program. This testing approach is called clear- (or white-) box testing.
The tester must look inside the module (through the clear box) to see the code that is
being tested.

One approach, called statement coverage, requires that every statement in the pro-
gram be executed at least once. Another approach requires that the test cases cause
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Outputs
B Pull out rabbit.
Inputs
M Put in two
magic coins
B Tap with
magic wand

Black box testing Clear box testing
Does the trick work? How does the trick work?

Figure 1.6  Testing approaches

every branch, or code section, in the program
to be executed. A single test case can achieve Branch A code segment that is not always executed; for

statement coverage of an if-then statement, example, a switch statement has as many branches as
but it takes two test cases to test both there are case labels
branches of the statement. Path A combination of branches that might be traversed

A similar type of code-coverage goal is to when a program or function is executed
test program paths. A path is a combination Path testing A testing technique whereby the tester
of branches that might be traveled when the  {/jcs to execute all possible paths in a program or
program is executed. In path testing, we try function
to execute all possible program paths in dif-
ferent test cases.

The code-coverage approaches are analogous to the ways forest rangers might
check out the trails through the woods before the hiking season opens. If the rangers
wanted to make sure that all trails were clearly marked and not blocked by fallen trees,
they would check each branch of the trails (see Figure 1.7a). Alternatively, if they
wanted to classify each of the various trails (which may be interwoven) according to its
length and difficulty from start to finish, they would use path testing (see Figure 1.7b).

To create test cases based on code-coverage goals, we select inputs that drive the
execution into the various program paths. How can we tell whether a branch or a path
is executed? One way to trace execution is to put debugging output statements at the
beginning of every branch, indicating that this particular branch was entered. Software
projects often use tools that help programmers track program execution automatically.
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Figure 1.7a Checking out all the branches Figure 1.7b Checking out all the trails

These strategies lend themselves to measurements of the testing process. We can
count the number of paths in a program, for example, and keep track of how many
paths have been covered in our test cases. The numbers provide statistics about the cur-
rent status of testing; for instance, we could say that 75% of the branches of a program
have been executed or that 50% of the paths have been tested. When a single program-
mer is writing a single program, such numbers may be superfluous. In a software devel-
opment environment with many programmers, however, such statistics are very useful
for tracking the progress of testing.

These measurements can also indicate when a certain level of testing has been com-
pleted. Achieving 100% path coverage is often not a feasible goal. A software project
might have a lower standard (say, 80% branch coverage) that the programmer who
writes the module is required to reach before turning the module over to the project’s

testing team. Testing in which goals are based on cer-

) ] ] tain measurable factors is called metric-based testing.
Metric-based testing Testing based on measurable

factors Test Plans Deciding on the goal of the test
Test plan A document showing the test cases planned approach—data coverage, code coverage, or (most
for a program or module, their purposes, inputs, expected often) a mixture of the two—precedes the development
outputs, and criteria for success of a test plan. Some test plans are very informal—the

Implementing a test plan Running the program with

) ) goal and a list of test cases, written by hand on a
the test cases listed in the test plan

piece of paper. Even this type of test plan may be
more than you have ever been required to write for a
class programming project. Other test plans
(particularly those submitted to management or to a customer for approval) are very
formal, containing the details of each test case in a standardized format.

Implementing a test plan involves running the program with the input values listed
in the plan and observing the results. If the answers are incorrect, the program is
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debugged and rerun until the observed output always matches the expected output. The
process is complete when all test cases listed in the plan give the desired output.

Let’s develop a test plan for a function called Divide, which was coded from the
following specifications:

0 Divide(int dividend, int divisor, bool& error, float& result)

Function: Divides one number by another and tests for a
divisor of zero.

Preconditions: None.

Postconditions: error is true if divisor is 0.
result is dividend / divisor, if error is false.
result is undefined, if error is true.

Should we use code coverage or data coverage for this test plan? Because the code
is so short and straightforward, let’s begin with code coverage. A code-coverage test
plan is based on an examination of the code itself. Here is the code to be tested:

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.

{
if (divisor = 0)
error = true;
else
result = float(dividend) / float(divisor);
}

The code consists of one if statement with two branches; therefore, we can do com-
plete path testing. There is a case where divisor is zero and the true branch is taken
and a case where divisor is nonzero and the else branch is taken.

Reason for Test Case Input Values Expected Output

divisor is zero
(dividend can be anything) divisorisO error Is true
dividend is 8 result is undefined
divisor is honzero
(dividend can be anything) divisoris?2 error is false
dividend is 8 result is 4.0
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Test driver A program that sets up the testing environ-
ment by declaring and assigning initial values to variables,
then calls the subprogram to be tested

To implement this test plan, we run the program
with the listed input values and compare the results
with the expected output. The function is called from
a test driver, a program that sets up the parameter val-
ues and calls the functions to be tested. A simple test
driver is listed below. It is designed to execute both

test cases: It assigns the parameter values for Test 1, calls Divide, and prints the
results; then it repeats the process with new test inputs for Test 2. We run the test and
compare the values output from the test driver with the expected values.

f#include <iostream>

void Divide(int, int, bool&, float&);

// Function to be tested.

void Print(int, int, bool, float);

// Prints results of test case.

int main()

{
using namespace std;
bool error;
float result;
int dividend = 8; // Test 1
int divisor = 0;
Divide(dividend, divisor, error, result);
cout <K "Test 1: " << endl;
Print(dividend, divisor, error, result);
divisor = 2; // Test 2
Divide(dividend, divisor, error, result);
cout <K "Test 2: " <K endl;
Print(dividend, divisor, error, result);
return 0;
}

For Test 1, the expected value for error is true, and the expected value for
result is undefined, but the division is carried out anyway! How can that be when
divisor is zero? If the result of an if statement is not what you expect, the first thing
to check is the relational operator: Did we use a single = rather than ==? Yes, we did.
After fixing this mistake, we run the program again.

For Test 2, the expected value for error is false, yet the value printed is true!
Our testing has uncovered another error, so we begin debugging. We discover that the
value of error, set to true in Test 1, was never reset to false in Test 2. We leave
development of the final correct version of this function as an exercise.
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Now let’s design a data-coverage test plan for the same function. In a data-cover-
age plan, we know nothing about the internal working of the function; we know only
the interface that is represented in the documentation of the function heading.

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.

// If no error, set result to dividend / divisor.

There are two input parameters, both of type int. A complete data-coverage plan
would require that we call the function with all possible values of type int for each
parameter—clearly overkill. The interface tells us that one thing happens if divisor is
zero and another thing happens if divisor is nonzero. Clearly, we must have at least
two test cases: one where divisor is zero and one where divisor is nonzero. When
divisor is zero, error is set to true and nothing else happens, so one test case should
verify this result. When divisor is nonzero, a division takes place. How many test
cases does it take to verify that the division is correct? What are the end cases? There
are five possibilities:

divisor and dividend are both positive
divisor and dividend are both negative
divisor is positive and dividend is negative
divisor is negative and dividend is positive
dividend is zero

The complete test plan is shown below.

Reason for Test Case Input Values Expected Output

divisor is zero
(dividend can be anything) divisorisO error Is true

dividend is 8 result is undefined

divisor is nonzero
(dividend can be anything) divisor is2 error is false
combined with dividend is 8 result is 4.0
divisor is positive
dividend is positive

divisor is nonzero

divisor is negative divisor is —2 error is false
dividend is negative dividend is —8 result is 4.0
(continued)
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Reason for Test Case

divisor is nonzero
divisor is positive
dividend is negative

divisor is nonzero
divisor is negative
dividend is positive

dividend is zero
(divisor can be anything)

Input Values

divisoris2

dividend is —8

divisoris —2

dividend is 8

divisoris2

Expected Output

error is false
result is —4.0

error is false
result is —4.0

error is false

dividend is O resultis 0.0

In this case the data-coverage test plan is more complex than the code-coverage
plan: There are seven cases (two of which are combined) rather than just two. One case
covers a zero divisor, and the other six cases check whether the division is working cor-
rectly with a nonzero divisor and alternating signs. If we knew that the function uses
the built-in division operator, we would not need to check these cases—but we don't.
With a data-coverage plan, we cannot see the body of the function.

For program testing to be effective, it must be planned. You must design your test-
ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, you should start planning for testing before writing
a single line of code.

Planning for Debugging In the previous section we discussed checking the output from
our test and debugging when errors were detected. We can debug “on the fly” by
adding output statements in suspected trouble spots when problems arise. But in an
effort to predict and prevent problems as early as possible, can we also plan our
debugging before we ever run the program?

By now you should know that the answer will be yes. When you write your design,
you should identify potential trouble spots. You can then insert temporary debugging
output statements into your code in places where errors are likely to occur. For example,
to trace the program’s execution through a complicated sequence of function calls, you
might add output statements that indicate when you are entering and leaving each
function. The debugging output is even more useful if it also indicates the values of key
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variables, especially parameters of the function. The following example shows a series
of debugging statements that execute at the beginning and end of the function Divide:

void Divide(int dividend, int divisor, bool& error, float& result)

// Set error to indicate if divisor is zero.

// If no error, set result to dividend / divisor.

{

using namespace std;

// For debugging

cout
cout
cout

<< "Function Divide entered." <X endl;
<< "Dividend = " << dividend << endl;
<K "Divisor = " <K divisor << endl;

//*************************

// Rest of code goes here.

//*************************

// For debugging

if (error)

cout <X "Error = true ";

else

cout <K "Error = false ";
cout << "and Result = " << result <X endl;
cout << "Function Divide terminated." <X endl;

If hand testing doesn’t reveal all the bugs before you run the program, well-placed
debugging lines can at least help you locate the rest of the bugs during execution. Note
that this output is intended only for debugging; these output lines are meant to be seen
only by the tester, not by the user of the program. Of course, it’s annoying for debug-
ging output to show up mixed with your application’s real output, and it’s difficult to
debug when the debugging output isn’t collected in one place. One way to separate the
debugging output from the “real” program output is to declare a separate file to receive
these debugging lines, as shown in the following example:

#include <fstream>

std::ofstream debugFile;

debugFile << "This is the debug output from Test 1." << endl;

Usually the debugging output statements are removed from the program, or “com-
mented out,” before the program is delivered to the customer or turned in to the profes-
sor. (To “comment out” means to turn the statements into comments by preceding them
with // or enclosing them between /* and */.) An advantage of turning the debugging
statements into comments is that you can easily and selectively turn them back on for
later tests. A disadvantage of this technique is that editing is required throughout the
program to change from the testing mode (with debugging) to the operational mode
(without debugging).
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Integration testing Testing performed to integrate pro-
gram modules that have already been independently unit

tested
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Another popular technique is to make the debugging output statements dependent
on a Boolean flag, which can be turned on or off as desired. For instance, a section of
code known to be error-prone may be flagged in various spots for trace output by using
the Boolean value debugFlag:

// Set debugFlag to control debugging mode.
const bool debugFlag = true;

if (debugFlag)
debugFile <X "Function Divide entered." <X endl;

This flag may be turned on or off by assignment, depending on the programmer’s
needs. Changing to an operational mode (without debugging output) involves merely
redefining debugFlag as false and then recompiling the program. If a flag is used, the
debugging statements can be left in the program; only the if checks are executed in an
operational run of the program. The disadvantage of this technique is that the code for
the debugging is always there, making the compiled program larger. If a lot of debug-
ging statements are present, they may waste needed space in a large program. The
debugging statements can also clutter up the program, making it more difficult to read.
(This situation illustrates another tradeoff we face in developing software.)

Some systems have online debugging programs that provide trace outputs, making
the debugging process much simpler. If the system at your school or workplace has a
run-time debugger, use it! Any tool that makes the task easier should be welcome, but
remember that no tool replaces thinking.

A warning about debugging: Beware the quick fix! Program bugs often travel in
swarms, so when you find a bug, don’t be too quick to fix it and run your program again.
Often as not, fixing one bug generates another. A superficial guess about the cause of a
program error usually does not produce a complete solution. In general, time devoted to
considering all the ramifications of the changes you are making is time well spent.

If you constantly need to debug, your design process has flaws. Time devoted to
considering all the ramifications of the design you are making is time spent best of all.

Integration Testing In the last two sections we discussed unit testing and planned
debugging. In this section we explore many concepts and tools that can help you put
your test cases for individual units together for
structured testing of your whole program. The goal of
this type of testing is to integrate the separately tested
pieces, so it is called integration testing.

You can test a large, complicated program in a
structured way by using a method very similar to the
top-down approach to program design. The central idea is one of divide and conquer:
test pieces of the program independently and then use the parts that have been verified
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as the basis for the next test. The testing can use either a top-down or a bottom-up
approach, or a combination of the two.

With a top-down approach, we begin testing at the top levels. The purpose of the
test is to ensure that the overall logical design works and that the interfaces between
modules are correct. At each level of testing, the top-down approach is based on the
assumption that the lower-levels work correctly. We implement this assumption by
replacing the lower-level subprograms with
“placeholder” modules called stubs. A stub
may consist of a single trace output state-
ment, indicating that we have reached the
function, or a group of debug output state-
ments, showing the current values of the
parameters. It may also assign values to output parameters if values are needed by the
calling function (the one being tested).

An alternative testing approach is to test from the bottom up. With this approach,
we unit test the lowest-level subprograms first. A bottom-up approach can be useful in
testing and debugging a critical module, one in which an error would have significant
effects on other modules. “Utility” subprograms, such as mathematical functions, can
also be tested with test drivers, independently of the programs that eventually call them.
In addition, a bottom-up integration testing approach can prove effective in a group-
programming environment, where each programmer writes and tests separate modules.
The smaller, tested pieces of the program are later verified together in tests of the whole
program.

testing to stand in for a lower-level function

Testing C++ Data Structures

The major topic of this textbook is data structures: what they are, how we use them, and
how we implement them using C++. This chapter has provided an overview of software
engineering; in Chapter 2 we begin to focus on data and ways to structure it. It seems
appropriate to end this section about verification with a look at how we test the data
structures we implement in C++.

Throughout this book we implement data structures using C++ classes, so that
many different application programs can use the resulting structures. When we first
create a class that models a data structure, we do not necessarily have any applica-
tion programs ready to use it. We need to test the class by itself first, before creating
the applications. For this reason, we use a bottom-up testing approach utilizing test
drivers.

Every data structure that we implement supports a set of operations. For each struc-
ture, we would like to create a test driver that allows us to test the operations in a vari-
ety of sequences. How can we write a single test driver that allows us to test numerous
operation sequences? The solution is to separate the specific set of operations that we
want to test from the test driver program itself. We list the operations, and the necessary
parameters, in a text file. The test driver program reads the operations from the text file
one line at a time, performs the specified operation by invoking the member function of
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the data structure being tested, and reports the results to an output file. The test pro-
gram also reports its general results on the screen.

The testing approach described here allows us easily to change our test cases—we
just change the contents of the input file. Testing would be even easier if we could
dynamically change the name of the input file, whenever we run the program. We
could then run another test case or rerun a previous test case whenever we needed.
Therefore, we construct our test driver to read the name of the input file from the
console; we do the same for the output file. Figure 1.8 shows a model of our test
architecture.

Our test drivers all follow the same basic algorithm. First, we prompt for and read
the file names and prepare the files for input and output. Next, the name of the function

Data Structure Progress

Test input/output
file names

User/Tester
S N S N
Test Test
Input 1 Output 1
T N—— T N
Test Test
Input 2 Output 2
Test Driver
° °
° °
° °
S N
Test Test
Input N Output N
A" J

Figure 1.8  Model of test architecture
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to be executed is read from the input file. Because the name of the function drives the
flow of control, let’s call it command. As long as command is not “quit,” we execute the
function with that name, print the results, and read the next function name. We then
close the files and quit. Did we forget anything? The output file should have some sort
of a label. Let’s prompt the user to enter a label for the output file. We should also let
the user know what is going on by keeping track of the number of commands and
printing a closing message. Here, then, is the algorithm for our test driver program:

»

47

Declare an instance of the class being tested

Prompt for, read the input file name, and open the file

Prompt for, read the output file name, and open the file

Prompt for and read the label for the output file

Write the label on the output file

Read the next command from the input file

Set numCommands to 0

While the command read is not "quit"
Execute the command by invoking the member function of the same name
Print the results to the output file
Increment numCommands by 1
Print “Command number* numCommands “completed” to the screen
Read the next command from the input file

Close the input and output files

Print “Testing completed” to the screen

/

This algorithm provides us with maximum flexibility for minimum extra work when
we are testing our data structures. Once we implement the algorithm by creating a test
driver for a specific data structure, we can easily create a test driver for a different data
structure by changing only the first two steps in the loop. Here is the code for the test
driver with the data structure-specific code left to be filled in. We demonstrate how this
code can be written in the case study. The statements that must be filled in are shaded.

/ Test driver

#include <iostream>
#include <fstream>
#include <string>

/

/ #include file containing class to be tested

int main()

{

using namespace std;
ifstream inFile; // File containing operations
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ofstream outFile; // File containing output
string inFileName; // Input file external name
string outFileName; // Output file external name

string outputLabel;
string command; // Operation to be executed
int numCommands;

// Declare a variable of the type being tested

// Prompt for file names, read file names, and prepare files
cout << "Enter name of input file; press return." <K endl;
cin >> inFileName;

inFile.open(inFileName.c_str());

cout << "Enter name of output file; press return." << endl;
cin >> outFileName;
outFile.open(outFileName.c_str());

cout << "Enter name of test run; press return." << endl;
cin >> outputLabel;
outFile << outputLabel << endl;

inFile >> command;
numCommands = 0;
while (command != "Quit")

{

// The following should be specific to the structure being tested
// Execute the command by invoking the member function of the

// same name

// Print the results to the output file

numCommands++;
cout << "Command number " << numCommands << " completed."
<< endl:
inFile >> command;
}
cout < "Testing completed." <X endl;

inFile.close();
outFile.close();
return O;

Note that the test driver gets the test data and calls the member functions to be
tested. It also provides written output about the effects of the member function calls, so
that the tester can visually check the results. Sometimes test drivers are used to test
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hundreds or thousands of test cases. In such situations, the test driver should automati-
cally verify whether the test cases were handled successfully. We leave the expansion of
this test driver to include automatic test case verification as a programming assignment.

This test driver does not do any error checking to confirm that the inputs are valid.
For instance, it doesn’t verify that the input command code is really a legal command.
Remember that the goal of the test driver is to act as a skeleton of the real program, not
to be the real program. Therefore, the test driver does not need to be as robust as the
program it simulates.

By now you are probably protesting that these testing approaches are a lot of trou-
ble and that you barely have time to write your programs, let alone “throwaway code”
like stubs and drivers. Structured testing methods do require extra work. Test drivers
and stubs are software items; they must be written and debugged themselves, even
though they are seldom turned in to a professor or delivered to a customer. These pro-
grams are part of a class of software development tools that take time to create but are
invaluable in simplifying the testing effort.

Such programs are analogous to the scaffolding that a contractor erects around a
building. It takes time and money to build the scaffolding, which is not part of the final
product; without it, however, the building could not be constructed. In a large program,
where verification plays a major role in the software development process, creating
these extra tools may be the only way to test the program.

C++ Reading in File Names

The following code segment causes a compile-time error:

ifstream inFile;
string fileName;

cout << "Enter the name of the input file" << endl;
cin >> fileName;
inFile.open(fileName) ;

Why does the error arise? Because C++ recognizes two types of strings. One is a variable of the
string data type; the other is a limited form of string inherited from the C language. The open
function expects its argument to be a so-called C string. The code segment shown above passes a
string variable. Thus it generates a type conflict. To solve this problem, the string data type pro-
vides a value-returning function named c_str that can be applied to a string variable to convert
it to a C string. Here is the corrected code segment:

ifstream inFile;
string fileName;

cout << "Enter the name of the input file" << endl;

cin >> fileName;
inFile.open(fileName.c_str());

TEAM LinG - Live, Informative, Non-cost and Genuine!

49



50

Chapter 1: Software Engineering Principles

Practical Considerations

It is obvious from this chapter that program verification techniques are time consuming
and, in a job environment, expensive. It would take a long time to do all of the things
discussed in this chapter, and a programmer has only so much time to work on any par-
ticular program. Certainly not every program is worthy of such cost and effort. How can
you tell how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification
needed. In the classroom, your professor may specify the verification requirements as
part of a programming assignment. For instance, you may be required to turn in a
written, implemented test plan. Part of your grade may be determined by the com-
pleteness of your plan. In the work environment, the verification requirements are
often specified by a customer in the contract for a particular programming job. For
instance, a contract with a military customer may specify that formal reviews or
inspections of the software product be held at various times during the development
process.

A higher level of verification effort may be indicated for sections of a program that
are particularly complicated or error-prone. In these cases, it is wise to start the verifica-
tion process in the early stages of program development so as to avoid costly errors in
the design.

A program whose correct execution is critical to human life is obviously a candi-
date for a high level of verification. For instance, a program that controls the return of
astronauts from a space mission would require a higher level of verification than would
a program that generates a grocery list. As a more down-to-earth example, consider the
potential for disaster if a hospital’s patient database system had a bug that caused it to
lose information about patients’ allergies to medications. A similar error in a database
program that manages a Christmas card mailing list, however, would have much less
severe consequences.

Case Study

Fraction Class
Problem  Write and test a C++ class that represents a fraction.

Discussion A fraction is made up of a numerator and a denominator, so our fraction class
must have data members for each of these. What operations do we normally apply to
fractions? First we must initialize a fraction by storing values into the numerator and the
denominator, and we need member functions that return the numerator and the denominator.
Another operation would reduce the fraction to its lowest terms. We should also be able to
test whether the fraction is equal to zero or greater than 1. If the fraction is greater than or
equal to 1 (not a proper fraction), we should have an operation that converts the fraction to a
whole number and a fraction. There are binary operations on fractions, but we are asked only
to write and test a class that represents a fraction. Binary operations could be added later.
Let's summarize what we have said so far using a CRC card. A CRC card is a 4" X 6" or a
5" X 8" card on which we record the name of the class, the responsibilities, and the classes
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with which the class collaborates. CRC cards are used frequently in object-oriented design, and
we discuss them in more detail in later chapters. Here we use one to record what we have
decided our fraction class must do. We call the actions that the class must perform the
responsibilities of the class. We use a handwriting font to indicate that CRC cards are a pencil
and paper tool. We change to a monospaced font for the operations when we are talking
about their implementation.

-
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Before we translate this CRC card into a class definition in C++, let's examine each opera-
tion again. Let's change the expressions for the responsibilities into function names. The Ini-
tialize operation takes two integer values and stores them into the data members of the
class. Let's call these data members num and denom. NumeratorIs and DenominatorIs
return the values of the data members.

Reduce checks whether the numerator and the denominator have a common factor and,
if they do, divides both by the common factor. On second thought, should making sure that the
fraction is in reduced form be left to the user of the fraction class? If a fraction is not reduced
to its lowest terms, binary arithmetic operations could cause overflow problems; the sizes of
the numerator and denominator could become quite large. Let's remove this operation as a
member function and make it a precondition for instances of our fraction class. If binary oper-
ations are added to the class, it becomes the responsibility of these operations to reduce the
resulting fraction to its reduced form.

IsZero tests whether the fraction is zero. How do we represent zero as a fraction? The
numerator is zero and the denominator is 1, so IsZero tests whether the numerator is zero.
IsGreaterThanOrEqualToOne is too long an identifier. Let's call the operation that tests
to see if the numerator is greater than or equal to the denominator IsNotProper. Convert-
ToProper returns the whole-number part and leaves the remaining part in the fraction.

We are now ready to write the class definition. We know what each operation should do.
What about the preconditions for the operations? All fractions involved must be initialized
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before the member functions are called and must be in reduced form. ConvertToProper
should be called only if the fraction is improper.

class FractionType
{
public:
void Initialize(int numerator, int denominator);
// Function: Initialize the fraction
// Pre: Numerator and denominator are in reduced form
// Post: Fraction is initialized
int NumeratorIs();
// Function: Returns the value of the numerator
// Pre: Fraction has been initialized
// Post: Numerator is returned
int DenominatorIs();
// Function: Returns the value of the denominator
// Pre: Fraction has been initialized
// Post: Denominator is returned
bool IsZero();
// Function: Determines if fraction is zero
// Pre: Fraction has been initialized
// Post: Returns true if numerator is zero, false otherwise
bool IsNotProper();
// Function: Determines if fraction is a proper fraction
// Pre: Fraction has been initialized
// Post: Returns true if fraction is greater than or equal to 1; false
// otherwise
int ConvertToProper();
// Function: Converts the fraction to a whole number and a
// fractional part
// Pre: Fraction has been initialized, is in reduced form, and

// is not a proper fraction

// Post: Returns whole number

// Remaining fraction is original fraction minus the

// whole number; fraction is in reduced form
private:

int num;

int denom;
58

Test Driver

At this stage, before we write any code for the member functions, we can write our test driver
using the algorithm shown in the last section. Let's call the instance of the FractionType
fraction. Here is the portion of the algorithm that we must write:

TEAM LinG - Live, Informative, Non-cost and Genuine!



Case Study: Fraction Class

while . ..
Execute the command by invoking the member function of the same name
Print the results to the output file

We have six member functions to test. We can set up an if-then-else statement compar-
ing the input operation to the member function names. When the name matches, the function
is called and the result is written to the output file.

if (command is "Initialize")
Read numerator
Read denominator
fraction.Initialize(numerator, denominator)
Write on outFile "Numerator: ", fraction.Numeratorls()
“Denominator: ", fraction.Denominatorls()
else if (command is "Numeratorls")
Write on outFile "Numerator: ", fraction.Numeratorls()
else if (command is "Denominatorls")
Write on outFile "Denominator: ", fraction.Denominatorls()
else if (command is "IsZero")
if (fraction.lsZero)
Write on outFile "Fraction is zero"
else
Write on outFile “Fraction is not zero"
else if (command is "IsNotProper")
if (fraction.IsNotProper())
Write on outFile "Fraction is improper”
else
Write on outFile "Fraction is proper”
else
Write on outFile " Whole number is ", (fraction.ConvertToProper())
Write on outFile "Numerator: ", fraction.Numeratorls()
"Denominator:", fraction.Denominatorls()

The file containing the specification of class FractionType isin file "frac.h". Here
are the pieces that must be added to the generalized test driver to test this class:

f#include "frac.h" // File containing the class to be tested

FractionType fraction; // Declaration of FractionType object
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while (command != "Quit")

{
if (command == "Initialize")
{

int numerator, denominator;

inFile >> numerator;

inFile »>> denominator;

fraction.Initialize (numerator, denominator) ;

outFile << "Numerator: " << fraction.NumeratorIs()
<< " Denominator: " <K fraction.DenominatorIs()
<< endl;
}
else if (command == "NumeratorIs")
outFile << "Numerator: " << fraction.NumeratorIs()
<< endl;
else if (command == "DenominatorIs")
outFile << "Denominator: " << fraction.DenominatorIs()
<< endl;
else if (command == "IsZero")
if (fraction.IsZero())
outFile << "Fraction is zero " << endl;
else
outFile << "Fraction is not zero " <K endl;
else if (command == "IsNotProper")
if (fraction.IsNotProper())
outFile << "Fraction is improper " <K endl;
else

outFile << "Fraction is proper " << endl;

else
{
outFile << "Whole number is " <K fraction.ConvertToProper ()
<< endl;
outFile << "Numerator: " << fraction.NumeratorIs()
<< " Denominator: " << fraction.DenominatorIs()
<< endl;
}
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Function Definitions

We have the test driver and the specification file containing the class. Now we must write the
code for the function definitions and write and implement the test plan. The algorithms for the
first five functions are so straightforward that they can be written with no further comment.
The fifth function, ConvertToProper, must return the whole-number integer. It is extracted
by taking the integer result of dividing the denominator into the numerator. The integer
remainder becomes the numerator of the remaining fraction, and the denominator remains the
same. If the numerator of the remaining fraction is zero, we must set the denominator to 1 to
be consistent with the definition of a zero fraction.

// Implementation file for class FractionType
#include "frac.h"
void FractionType::Initialize(int numerator, int denominator)
// Function: Initialize the fraction
// Pre: numerator and denominator are in reduced form
// Post: numerator is stored in num; denominator is stored in
// denom
{
num = numerator;
denom = denominator;
}
int FractionType: :NumeratorIs()
// Function: Returns the value of the numerator
// Pre: Fraction has been initialized
// Post: numerator is returned
{
return num;
}
int FractionType: :DenominatorIs()
// Function: Returns the value of the denominator
// Pre: Fraction has been initialized
// Post: denominator is returned
{

return denom;

bool FractionType::IsZero()

// Function: Determines if fraction is zero

// Pre: Fraction has been initialized

// Post: Returns true if numerator is zero; false otherwise
{

return (num == 0);

bool FractionType::IsNotProper ()
// Function: Determines if fraction is a proper fraction
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// Pre: Fraction has been initialized
// Post: Returns true if num is greater than or equal to denom; false

// otherwise
{

return (num >= denom) ;
}

int FractionType: :ConvertToProper ()
// Function: Converts the fraction to a whole number and a

// fractional part

// Pre: Fraction has been initialized, is in reduced form, and
// is not a proper fraction

// Post: Returns num divided by denom

// num is original num % denom; denom is not changed

{

int result;
result = num / denom;
num = num % denom;
if (num == 0)
denom = 1;
return result;

Test Plan

We have six member functions to test. Two of the six are Boolean functions, so we need two
test cases for each. Here, then, is a test plan that has eight cases. Note that we have to initial-
ize the fraction three times: once for a proper fraction, once for an improper fraction, and once
for zero.

Operation to Be Tested and
Description of Action Input Values Expected Output

Initialize 3, 4 Numerator: 3
Denominator: 4

IsZero Fraction is not zero
IsNotProper Fraction is proper
NumeratorIs Numerator: 3
DenominatorIs Denominator: 4
Initialize 4, 3 Numerator: 4

Denominator: 3

(continued)
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Operation to Be Tested and
Description of Action

IsNotProper

ConvertToProper

Initialize

IsZero

Input Values

Case Study: Fraction Class

Expected Output

Fraction is improper
Whole number is 1
Numerator: 1
Denominator: 3
Numerator: O
Denominator: 1
Fraction is zero

Here are the input file, the output file, and a screen shot from the run:

Input File

Initialize

3

4

IsZero
IsNotProper
NumeratorIs
DenominatorIs
Initialize

4

3

IsNotProper
ConvertToProper
Initialize

0

1

IsZero

Quit

Output File

Test_Run_for_ FractionType
Numerator: 3 Denominator:
Fraction is not zero
Fraction is proper
Numerator: 3

Denominator: 4

Numerator: 4 Denominator:
Fraction is improper
Whole number is 1
Numerator: 1 Denominator:
Numerator: O Denominator:

Fraction is zero
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Std C++ Console BBt a8a07f
Enter nome of input file; press return.
fracln
Ernter name of output file; press return.
frocut

Enter name of test run; press return.
Testarun—forFractionTupe

Command rumber 1 completed.

Command rumber 2 completed.
Command number 2 complated.
Command rumber 4 completed.
Command rumber 5 completed.
Command rumber & completed.
Command rumber 7 completed.
Command rumber & complated.
Command rumber 9 completed.
Command rumber 18 completed.
Festing completed.

Summary

How are our quality software goals met by the strategies of abstraction and information
hiding? When details are hidden at each level, the code becomes simpler and more
readable, which makes the program easier to write and modify. Both functional decom-
position and object-oriented design processes produce modular units that are also easier
to test, debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized
in a small set of modules, so the cost of modifications is reduced. Remember that when-
ever a module is modified, it must be retested to make sure that it still works correctly
in the program. By localizing the modules affected by changes to the program, we limit
the extent of retesting needed.

We increase reliability by making the design conform to our logical picture and dele-
gating confusing details to lower levels of abstraction. An understanding of the wide
range of activities involved in software development—from requirements analysis
through maintenance of the resulting program—leads to an appreciation of a disciplined
software engineering approach. Everyone knows some programming wizard who can sit
down and hack out a program in an evening, working alone, coding without a formal
design. But we cannot depend on wizardry to control the design, implementation, verifi-
cation, and maintenance of large, complex software projects that involve the efforts of
many programmers. As computers grow larger and more powerful, the problems that
people want to solve on them also become larger and more complex. Some people refer
to this situation as a software crisis. We’d like you to think of it as a software challenge.

It should be obvious by now that program verification is not something you begin
the night before your program is due. Design verification and program testing go on
throughout the software life cycle.
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Summary

Verification activities begin when the software specifications are developed. At this
point, the overall testing approach and goals are formulated. Then, as program design
work begins, these goals are applied. Formal verification techniques may be used for
parts of the program, design inspections are conducted, and test cases are planned. Dur-
ing the implementation phase, the test cases are developed and test data to support them
are generated. Code inspections give the programmer extra support in debugging the
program before it is ever run. When the code has been compiled and is ready to be run,
unit (module-level) testing is done, with stubs and drivers used for support. After these
units have been completely tested, they are put together in integration tests. Once errors
have been found and corrected, some of the earlier tests are rerun to make sure that the
corrections have not introduced any new problems. Finally, acceptance tests of the
whole system are performed. Figure 1.9 shows how the various types of verification
activities fit into the software development life cycle. Throughout the life cycle, one
thing remains constant: The earlier in this cycle program errors are detected, the easier
(and less costly in time, effort, and money) they are to remove. Program verification is a
serious subject; a program that doesn’t work isn’t worth the disk it’s stored on.

Analysis Make sure that specifications are completely understood.
Understand testing requirements.

Specification Verify the identified requirements.
Perform requirements inspections with your client.

Design Design for correctness (using assertions such as preconditions
and postconditions).

Perform design inspections.

Plan the testing approach.

Code Understand the programming language well.
Perform code inspections.

Add debugging output statements to the program.
Write the test plan.

Construct test drivers and/or stubs.

Test Unit test according to the test plan.
Debug as necessary.

Integrate tested modules.

Retest after corrections.

Delivery Execute acceptance tests of the completed product.

Maintenance Execute regression test whenever the delivered product is changed
to add new functionality or to correct detected problems.

Figure 1.9  Life-cycle verification activities
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Exercises

1.
2.

A

10.
11.

Explain what we mean by “software engineering.”

Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in
the software life cycle.

Name three computer hardware tools that you have used.

Name two software tools that you have used in developing computer programs.
Explain what we mean by “ideaware.”

Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

Goal 4 says, “Quality software is completed on time and within budget.”

a. Explain some of the consequences of not meeting this goal for a student
preparing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team devel-
oping a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer
who is developing the user interface (the screen input/output) for a spacecraft
launch system.

For each of the following, describe at least two different abstractions for differ-
ent viewers (see Figure 1.1).

a. A dress

&

An aspirin
A carrot
A key

A saxophone

oo

A piece of wood

Functional decomposition is based on a hierarchy of , and
object-oriented design is based on a hierarchy of

What is the difference between an object and an object class? Give some examples.

Make a list of potential objects from the description of the automated teller
machine scenario given in this chapter.
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12. Have you ever written a programming assignment with an error in the specifica-
tions? If so, at what point did you catch the error? How damaging was the error
to your design and code?

13. Explain why the cost of fixing an error is higher the later in the software cycle
that the error is detected.

14. Explain how an expert understanding of your programming language can reduce
the amount of time you spend debugging.

15. Give an example of a run-time error that might occur as the result of a program-
mer’s making too many assumptions.

16. Define “robustness.” How can programmers make their programs more robust by
taking a defensive approach?

17. The following program has three separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?

void Increment(int);
int main()

{

int count = 1;

while (count < 10)

cout << " The number after " <X count; /* Function Increment
Increment (count) ; adds 1 to count */

cout << " is " <K count <X endl;

return 0;

}
void Increment (int nextNumber)
// Increment the parameter by 1.

{

nextNumber++;

18. Is there any way a single programmer (for example, a student working alone on
a programming assignment) can benefit from some of the ideas behind the
inspection process?

19. When is it appropriate to start planning a program’s testing?
a. During design or even earlier
b. While coding
c. As soon as the coding is complete

20. Differentiate between unit testing and integration testing.

21. Explain the advantages and disadvantages of the following debugging techniques:
a. Inserting output statements that may be turned off by commenting them out
b. Using a Boolean flag to turn debugging output statements on or off

c. Using a system debugger
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22.

Describe a realistic goal-oriented approach to data-coverage testing of the func-
tion specified below:

FindElement(list, targetltem, index, found)
. ' Function: Search list for targetltem.

23.

24,

25,
26.
27.
28.
29.

30.

Preconditions: Elements of list are in no particular
order; list may be empty.
Postconditions: found is true if targetltem is in list;
otherwise, found is false.
index is the position of targetltem if
found is true.

A program is to read in a numeric score (0 to 100) and display an appropriate
letter grade (A, B, C, D, or F).

a. What is the functional domain of this program?
b. Is exhaustive data coverage possible for this program?
c. Devise a test plan for this program.

Explain how paths and branches relate to code coverage in testing. Can we
attempt 100% path coverage?

Differentiate between “top-down” and “bottom-up” integration testing.
Explain the phrase “life-cycle verification.”

Write the corrected version of the function Divide.

Why did we type cast dividend and divisor in the function Divide?
The solution to the Case Study did not consider negative fractions.

a. How should a negative fraction be represented?

b. Which of the member functions would have to be changed to represent nega-
tive fractions? What changes would be involved?

c. Rewrite the test plan to test for negative fractions.

One of the member functions in the Case Study needed an additional test. Which
function is it and what should the data be?
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Implementation

After studying this chapter, you should be able to

Describe an ADT from three perspectives: the logical level, the application
level, and the implementation level

| Explain how a specification can be used to record an abstract data type

B Describe the component selector at the logical level, and describe appropri-

ate applications for the C++ built-in types: structs, classes, one-dimen-
sional arrays, and two-dimensional arrays

Declare a class object
Implement the member functions of a class
Manipulate instances of a class (objects)

Define the three ingredients of an object-oriented programming language:
encapsulation, inheritance, and polymorphism

Distinguish between containment and inheritance
Use inheritance to derive one class from another class
Use the C++ exception-handling mechanism

Access identifiers within a namespace

Define input/output operations for the abstract data type String from three
perspectives: logical, application, and implementation
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A

Data abstraction

In Chapter 1, we looked at an overview of the design process and reviewed the software
engineering principles that, if followed, lead to quality software. The role of testing at
all phases of the software life cycle was stressed.

In this chapter, we lay out the logical framework from which we examine data
structures. We look at data structures from three points of view: how they are specified,
how they are implemented, and how they can be used. In addition, the object-oriented
view of data objects is presented. Finally, we examine C++ constructs that can be used
to ensure the data structures we construct are correct.

Different Views of Data

What Do We Mean by Data?

When we talk about the function of a program, we use words such as “add,” “read,”
“multiply,” “write,” “do,” and so on. The function of a program describes what it does in
terms of the verbs in the programming language.

The data are the nouns of the programming world: the objects that are manipulated,
the information that is processed by a computer program. In a sense, this information is
just a collection of bits that can be turned on or off. The computer itself needs to have
data in this form. Humans, however, tend to think of information in terms of somewhat

larger units such as numbers and lists, so we want at
least the human-readable portions of our programs to

The separation of a data type's logical refer to data in a way that makes sense to us. To sepa-

properties from its implementation rate the computer’s view of data from our own view,

we use data abstraction to create other views. Whether

we use functional decomposition to produce a hierar-
chy of tasks or object-oriented design to produce a hierarchy of cooperating objects,
data abstraction is essential.

Data Abstraction

Many people feel more comfortable with things that they perceive as real than with
things that they think of as abstract. As a consequence, “data abstraction” may seem
more forbidding than a more concrete entity such as an “integer.” But let’s take a closer
look at that very concrete—and very abstract—integer you’'ve been using since you wrote
your earliest programs.

Just what is an integer? Integers are physically represented in different ways on dif-
ferent computers. In the memory of one machine, an integer may be a binary-coded
decimal. In a second machine, it may be a sign-and-magnitude binary. And in a third
one, it may be represented in one’s complement or two’s complement notation.
Although you may not know what any of these terms mean, that lack of knowledge
hasn’t stopped you from using integers. (You learn about these terms in an assembly
language course, so we do not explain them here.) Figure 2.1 shows several representa-
tions of an integer number.

The way that integers are physically represented determines how the computer
manipulates them. As a C++ programmer, you rarely get involved at this level; instead,

TEAM LinG - Live, Informative, Non-cost and Genuine!



2.1 Different Views of Data

Decimal: 153 -25 | -102 | -103 99
Representation: Unsigned Sign and One’s Two's Binary-
magnitude complement | complement coded
decimal
Figure 2.1 The decimal equivalents of an 8-bit binary number

you simply use integers. All you need to know is how to declare an int type variable
and what operations are allowed on integers: assignment, addition, subtraction, multi-
plication, division, and modulo arithmetic.

Consider the statement

distance = rate * time;

It’s easy to understand the concept behind this statement. The concept of multiplication
doesn’t depend on whether the operands are, say, integers or real numbers, despite the
fact that integer multiplication and floating-point multiplication may be implemented
in very different ways on the same computer. Computers would not be so popular if
every time we wanted to multiply two numbers we had to get down to the machine-rep-
resentation level. But that isn’t necessary: C++ has surrounded the int data type with a
nice, neat package and has given you just the information you need to create and
manipulate data of this type.

Another word for “surround” is “encapsulate.” Think of the capsules surrounding the
medicine you get from the pharmacist when you're sick. You don’t have to know any-
thing about the chemical composition of the medicine inside to recognize the big blue-
and-white capsule as your antibiotic or the
little yellow capsule as your decongestant.

65

Data encapsulation means that the physical
representation of a program’s data is sur-

Data encapsulation The separation of the representa-
tion of data from the applications that use the data at a
logical level; a programming language feature that

rounded. The user of the data doesn’t see the
implementation, but deals with the data only
in terms of its logical picture—its abstraction.

If the data are encapsulated, how can the user get to them? Operations must be pro-
vided to allow the user to create, access, and change data. Let’s look at the operations
C++ provides for the encapsulated data type int. First, you can create (“construct”)
variables of type int using declarations in your program. Then you can assign values to
these integer variables by using the assignment operator or by reading values into them
and perform arithmetic operations using +, -, *, /, and %. Figure 2.2 shows how C++
has encapsulated the type int in a tidy package.

The point of this discussion is that you have been dealing with a logical data
abstraction of “integer” since the very beginning. The advantages of doing so are clear:
You can think of the data and the operations in a logical sense and can consider their
use without having to worry about implementation details. The lower levels are still
there—they’re just hidden from you.

enforces information hiding
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Type

int

Value range: INT_MIN . . INT_MAX

Operations

+ prefix
- prefix
+ infix
- infix
* infix
/ infix
% infix

Relational Operators infix

identity

negation

addition
subtraction
multiplication
division

remainder (modulo)

(inside)
Representation of
int

(for example, 32 bits
two's complement)

plus

Implementations of
Operations

comparisons

Figure 2.2 A black box representing an integer

Remember that the goal in design is to reduce complexity through abstraction. We

Abstract data type (ADT) A data type whose properties
(domain and operations) are specified independently of

any particular implementation

Data Structures

can extend this goal further: to protect our data
abstraction through encapsulation. We refer to the set
of all possible values (the domain) of an encapsulated
data “object,” plus the specifications of the operations
that are provided to create and manipulate the data,
as an abstract data type (ADT for short).

A single integer can be very useful if we need a counter, a sum, or an index in a pro-
gram, but generally we must also deal with data that have lots of parts, such as a list.

Data structure A collection of data elements whose
organization is characterized by accessing operations that
are used to store and retrieve the individual data ele-
ments; the implementation of the composite data mem-

bers in an abstract data type

We describe the logical properties of such a collection
of data as an abstract data type; we call the concrete
implementation of the data a data structure. When a
program’s information is made up of component
parts, we must consider an appropriate data structure.

Data structures have a few features worth noting.
First, they can be “decomposed” into their component
elements. Second, the arrangement of the elements is a

feature of the structure that affects how each element is accessed. Third, both the
arrangement of the elements and the way they are accessed can be encapsulated.

Let’s look at a real-life example: a library. A library can be decomposed into its
component elements—books. The collection of individual books can be arranged in a
number of ways, as shown in Figure 2.3. Obviously, the way the books are physically
arranged on the shelves determines how one would go about looking for a specific
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Figure 2.3 A collection of books ordered in different ways

volume. The particular library with which we’re concerned doesn’t let its patrons get
their own books, however; if you want a book, you must give your request to the librar-
ian, who retrieves the book for you.
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The library “data structure” is composed of elements (books) in a particular physical
arrangement; for instance, it might be ordered on the basis of the Dewey decimal sys-
tem. Accessing a particular book requires knowledge of the arrangement of the books.
The library user doesn’t have to know about the structure, however, because it has been
encapsulated: Users access books only through the librarian. The physical structure and
the abstract picture of the books in the library are not the same. The card catalog pro-
vides logical views of the library—ordered by subject, author, or title—that differ from its
physical arrangement.

We use the same approach to data structures in our programs. A data structure is
defined by (1) the logical arrangement of data elements, combined with (2) the set of
operations we need to access the elements.

Notice the difference between an abstract data type and a data structure. The former
is a high-level description: the logical picture of the data and the operations that manip-
ulate them. The latter is concrete: a collection of data elements and the operations that
store and retrieve individual elements. An abstract data type is implementation inde-
pendent, whereas a data structure is implementation dependent. A data structure is how
we implement the data in an abstract data type whose values have component parts. The
operations on an abstract data type are translated into algorithms on the data structure.

Another view of data focuses on how they are used in a program to solve a particu-
lar problem—that is, their application. If we were writing a program to keep track of stu-
dent grades, we would need a list of students and a way to record the grades for each
student. We might take a by-hand grade book and model it in our program. The opera-
tions on the grade book might include adding a name, adding a grade, averaging a stu-
dent’s grades, and so on. Once we have written a specification for our grade book data
type, we must choose an appropriate data structure to implement it and design the algo-
rithms to implement the operations on the structure.

In modeling data in a program, we wear many hats. That is, we must determine the
logical picture of the data, choose the representation of the data, and develop the opera-
tions that encapsulate this arrangement. During this process, we consider data from
three different perspectives, or levels:

1. Application (or user) level: A way of modeling real-life data in a specific context;
also called the problem domain

2. Logical (or abstract) level: An abstract view of the data values (the domain) and the
set of operations to manipulate them

3. Implementation level: A specific representation of the structure to hold the data
items, and the coding of the operations in a programming language (if the opera-
tions are not already provided by the language)

In our discussion, we refer to the second perspective as the “abstract data type.”
Because an abstract data type can be a simple type such as an integer or character, as
well as a structure that contains component elements, we also use the term “composite
data type” to refer to abstract data types that may contain component elements. The
third level describes how we actually represent and manipulate the data in memory: the
data structure and the algorithms for the operations that manipulate the items on the
structure.
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Let’s see what these different viewpoints mean in terms of our library analogy. At
the application level, we focus on entities such as the Library of Congress, the Dimsdale
Collection of Rare Books, and the Austin City Library.

At the logical level, we deal with the “what” questions. What is a library? What
services (operations) can a library perform? The library may be seen abstractly as “a col-
lection of books” for which the following operations are specified:

Check out a book

Check in a book

Reserve a book that is currently checked out
Pay a fine for an overdue book

Pay for a lost book

How the books are organized on the shelves is not important at the logical level,
because the patrons don’t have direct access to the books. The abstract viewer of library
services is not concerned with how the librarian actually organizes the books in the
library. Instead, the library user needs to know only the correct way to invoke the
desired operation. For instance, here is the user’s view of the operation to check in a
book: Present the book at the check-in window of the library from which the book was
checked out, and receive a fine slip if the book is overdue.

At the implementation level, we deal with the “how” questions. How are the books
cataloged? How are they organized on the shelf? How does the librarian process a book
when it is checked in? For instance, the implementation information includes the fact
that the books are cataloged according to the Dewey decimal system and arranged in
four levels of stacks, with 14 rows of shelves on each level. The librarian needs such
knowledge to be able to locate a book. This information also includes the details of what
happens when each operation takes place. For example, when a book is checked back in,
the librarian may use the following algorithm to implement the check-in operation:
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ChecklnBook
Examine due date to see whether the book is late.
if book is late

Calculate fine.
Issue fine slip.

Update library records to show that the book has been returned.
Check reserve list to see if someone is waiting for the book.
if book is on reserve list

else

Put book on the reserve shelf.

Replace book on the proper shelf, according to the library's shelf arrangement scheme.
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All of this activity, of course, is invisible to the library user. The goal of our design
approach is to hide the implementation level from the user.

Picture a wall separating the application level from the implementation level, as
shown in Figure 2.4. Imagine yourself on one side and another programmer on the
other side. How do the two of you, with your separate views of the data, communicate
across this wall? Similarly, how do the library user’s view and the librarian’s view of the
library come together? The library user and the librarian communicate through the data

The implementation perspective

The user perspective Reserved Shelf

Q i

To —
Stacks
1-6

To
Siacks\
7-13

Implementation

Application Abg?::’rion

Utility
Programmer

N

Figure 2.4 Communication between the application level and implementation level

Application
Programmer

TEAM LinG - Live, Informative, Non-cost and Genuine!



S,

2.1 Different Views of Data

abstraction. The abstract view provides the specification of the accessing operations
without telling how the operations work. It tells what but not how. For instance, the
abstract view of checking in a book can be summarized in the following specification:

CheckInBook (library, book, fineSlip)

Function: Check in a book

Preconditions: book was checked out of this library; book is
presented at the check-in desk

Postconditions: fineSlip is issued if book is overdue; contents of
library is the original contents + book

The only communication from the user into the implementation level occurs in
terms of input specifications and allowable assumptions—the preconditions of the
accessing routines. The only output from the implementation level back to the user is
the transformed data structure described by the output specifications, or postconditions,
of the routines. The abstract view hides the data structure, but provides windows into it
through the specified accessing operations.

When you write a program as a class assignment, you often deal with data at all
three levels. In a job situation, however, you may not. Sometimes you may program an
application that uses a data type that has been implemented by another programmer.
Other times you may develop “utilities” that are called by other programs. In this book
we ask you to move back and forth between these levels.

Abstract Data Type Operator Categories

In general, the basic operations that are performed on an abstract data type are classi-
fied into four categories: constructors, transformers (also called mutators), observers, and
iterators.

A constructor is an operation that creates a new instance (object) of an abstract
data type. It is almost always invoked at the language level by some sort of declaration.
Transformers are operations that change the state of one or more of the data values,
such as inserting an item into an object, deleting an item from an object, or making an
object empty. An operation that takes two objects and merges them into a third object is
a binary transformer.!

An observer is an operation that allows us to observe the state of one or more of
the data values without changing them. Observers come in several forms: predicates
that ask if a certain property is true, accessor or selector functions that return a copy of
an item in the object, and summary functions that return information about the object

In some of the literature, operations that create new instances are called primitive constructors, and trans-
formers are called nonprimitive constructors.
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as a whole. A Boolean function that returns true if an object is empty and false if it
contains any components is an example of a predicate. A function that returns a copy
of the last item put into the structure is an example of an accessor function. A function
that returns the number of items in the structure is a summary function.

An iterator is an operation that allows us to process all components in a data struc-
ture sequentially. Operations that print the items in a list or return successive list items
are iterators. Iterators are only defined on structured data types.

In later chapters, we use these ideas to define and implement some useful data types
that may be new to you. First, however, let’s explore the built-in composite data
types C++ provides for us.

E E Abstraction and Built-In Types

In the last section, we suggested that a built-in simple type such as int or float could
be viewed as an abstraction whose underlying implementation is defined in terms of
machine-level operations. The same perspective
applies to built-in composite data types provided in
programming languages to build data objects. A com-
posite data type is one in which a name is given to a
collection of data items. Composite data types come in
two forms: unstructured and structured. An unstructured composite type is a collection
of components that are not organized with respect to one another. A structured data
type is an organized collection of components in which the organization determines the
method used to access individual data components.

For instance, C++ provides the following composite types: records (structs), classes,
and arrays of various dimensions. Classes and structs can have member functions as
well as data, but it is the organization of the data we are considering here. Classes and
structs are logically unstructured; arrays are structured.

Let’s look at each of these types from our three perspectives. First, we examine the
abstract view of the structure—how we construct variables of that type and how we
access individual components in our programs. Next, from an application perspective,
we discuss what kinds of things can be modeled using each structure. These two points
of view are important to you as a C++ programmer. Finally, we look at how some of the
structures may be implemented—how the “logical” accessing function is turned into a
location in memory. For built-in constructs, the abstract view is the syntax of the con-
struct itself, and the implementation level remains hidden within the compiler. So long
as you know the syntax, you as a programmer do not need to understand the imple-
mentation view of predefined composite data types. As you read through the implemen-
tation sections and see the formulas needed to access an element of a composite type,
you should appreciate why information hiding and encapsulation are necessary.

Composite data type A data type that allows a collec-
tion of values to be associated with an object of that type

Records

The record is not available in all programming languages. FORTRAN, for instance, does
not support records; conversely, COBOL, a business-oriented language, uses records
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extensively. In C++, records are implemented by structs. C++ classes are another imple-
mentation of a record. For the purposes of the following discussion, we use the generic
term “record,” but both structs and classes behave as records.

Logical Level A record is a composite data type made up of a finite collection of not
necessarily homogeneous elements called members or fields. Accessing is done directly
through a set of named member or field selectors.

We illustrate the syntax and semantics of the component selector within the con-
text of the following struct declaration:

struct CarType

{
int year;
char maker[10];
float price;

}s

CarType myCar;

The record variable myCar is made up of three components. The first, year, is of
type int. The second, maker, is an array of characters. The third, price, is a float
number. The names of the components make up the set of member selectors. A picture
of myCar appears in Figure 2.5.

The syntax of the component selector is the record variable name, followed by a
period, followed by the member selector for the component in which you are interested:

myCar.price

N

struct period member
variable selector

If this expression appears on the right-hand side of an assignment statement, a
value is being extracted from that place (for example, pricePaid = myCar.price). If
it appears on the left-hand side, a value is being stored in that member of the struct (for
example, myCar.price = 20009.33).

myCar
.year | 1998
.maker J A G U A R \0

.price 40998.33

Figure 2.5 Record myCar
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Here myCar.maker is an array whose elements are of type char. You can access
that array member as a whole (for example, myCar.maker), or you can access individ-
ual characters by using an index.

myCar .maker[2]

/

struct period member 3rd character
variable selector  in the array

In C++, a struct may be passed as a parameter to a function (either by value or by
reference), one struct may be assigned to another struct of the same type, and a struct
may be a function return value.

C++ Parameter Passing

C++ supports two types of formal parameters: value parameters and reference parameters. A value
parameter is a formal parameter that receives a copy of the contents of the corresponding actual
parameter (also called argument). Because the formal parameter holds a copy of the actual parame-
ter, the actual parameter cannot be changed by the function to which it is a parameter. On the other
hand, a reference parameter is a formal parameter that receives the location (memory address) of the
corresponding actual parameter. Because the formal parameter holds the memory address of the
actual parameter, the function can change the contents of the actual parameter. By default in C++,
arrays are passed by reference, and nonarray parameters are passed by value.

To specify that a formal nonarray parameter is a reference parameter, append an ampersand
(&) to the right of the type name on the formal parameter list. Look at the following examples:

void AdjustForInflation(CarType& car, float perCent)
// Increases price by the amount specified in perCent.
{

car.price = car.price * perCent + car.price;

bool LateModel (CarType car, int date)

// Returns true if the car's model year is later than or
// equal to date; returns false otherwise.

{

return car.year >= date;
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The function AdjustForInflation changes the price data member of the formal
parameter car, so car must be a reference parameter. Within the body of the function,
car.price is the price member of the actual parameter. The function LateModel examines
car without changing it, so car should be a value parameter. Within the function, car.year is
a copy of the caller's actual parameter.

Application Level Records (structs) are very useful for modeling objects that have a
number of characteristics. This data type allows us to collect various types of data about
an object and to refer to the whole object by a single name. We also can refer to the
different members of the object by name. You probably have seen many examples of
records used in this way to represent objects.

Records are also useful for defining other data structures, allowing programmers to
combine information about the structure with the storage of the elements. We make
extensive use of records in this way when we develop representations of our own pro-
grammer-defined data structures.

Implementation Level Two things must be done to implement a built-in composite data
type: (1) memory cells must be reserved for the data, and (2) the accessing function must
be determined. An accessing function is a rule that tells the compiler and run-time
system where an individual element is located within the data structure. Before we
examine a concrete example, let’s look at memory. The unit of memory that is assigned
to hold a value is machine dependent. Figure 2.6 shows several different memory
configurations. In practice, memory configuration is a consideration for the compiler
writer. To be as general as possible, we will use the generic term cell to represent a
location in memory rather than “word” or “byte.” In the examples that follow, we assume
that an integer or character is stored in one cell and a floating-point number in two cells.
(This assumption is not accurate in C++, but we use it here to simplify the discussion.)

7 07 07 07 07 07 07 07 0
Byte Byte Byte Byte Byte Byte Byte Byte Word ]
15 0
Half word Half word Half word Half word 16-Bit
Machine
Word Word
Double word
IBM 370 Architecture
Word Word
59 CcDC 0 7 0
8-Bit
Machine

Figure 2.6 Memory configurations
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The declaration statements in a program tell the compiler how many cells are
needed to represent the record. The name of the record then is associated with the char-
acteristics of the record. These characteristics include the following:

e The location in memory of the first cell in the record, called the base address of
the record

e A table containing the number of memory locations needed for each member of
the record

A record occupies a block of consecutive cells in memory.? The record’s accessing func-
tion calculates the location of a particular cell from a named member selector. The basic
question is, Which cell (or cells) in this consecutive block do you want?

The base address of the record is the address of the first member in the record. To
access any member, we need to know how much of the record to skip to get to the
desired member. A reference to a record member causes the compiler to examine the
characteristics table to determine the member’s offset from the beginning of the record.
The compiler then can generate the member’s address by adding the offset to the base.
Figure 2.7 shows such a table for CarType. If the base address of myCar were 8500, the
fields or members of this record would be found at the following addresses:

Address of myCar.year 8500 + 0 = 8500
Address of myCar.maker = 8500 + 1 = 8501

Address of myCar.price = 8500 + 11 = 8511

We said that the record is a nonstructured data type, yet the component selector
depends on the relative positions of the members of the record. This is true: A record is

Member Length Offset
year 1 0
maker 10 1
price 2 N
Address
8500 year member (length=1)
8501
8502

. maker member (length=10)
8509
8510
8511 .
e ]» price member (length=2)

Figure 2.7 Implementation-level view of CarType

’In some machines this statement may not be exactly true, because boundary alignment (full- or half-word)
may require that some space in memory be skipped so that the next member starts on an address that is divis-
ible by 2 or 4. See Figure 2.6.
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a structured data type if viewed from the implementation perspective. However, from
the user’s view, it is unstructured. The user accesses the members by name, not by posi-
tion. For example, if we had defined CarType as

struct CarType

{

1

char make[10];
float price;
int year;

the code that manipulates instances of CarType would not change.

One-Dimensional Arrays

Logical Level A one-dimensional array is a structured composite data type made up of
a finite, fixed-size collection of ordered homogeneous elements to which direct access is
available. Finite indicates that a last element is identifiable. Fixed size means that the
size of the array must be known in advance; it doesn’t mean that all slots in the array
must contain meaningful values. Ordered means that there is a first element, a second
element, and so on. (The relative position of the elements is ordered, not necessarily the
values stored there.) Because the elements in an array must all be of the same type, they
are physically homogeneous; that is, they are all of the same data type. In general, it is
desirable for the array elements to be logically homogeneous as well—that is, for all the
elements to have the same purpose. (If we kept a list of numbers in an array of integers,
with the length of the list—an integer—kept in the first array slot, the array elements
would be physically, but not logically, homogeneous.)

The component selection mechanism of an array is direct access, which means we
can access any element directly, without first accessing the preceding elements. The
desired element is specified using an index, which gives its relative position in the col-
lection. Later we discuss how C++ uses the index and some characteristics of the array
to figure out exactly where in memory to find the element. That’s part of the implemen-
tation view, and the application programmer using an array doesn’t need to be con-
cerned with it. (It’s encapsulated.)

Which operations are defined for the array? If the language we were using lacked
predefined arrays and we were defining arrays ourselves, we would want to specify at
least three operations (shown here as C++ function calls):

CreateArray (anArray, numberOfSlots);

// Create array anArray with numberOfSlots locations.

Store(anArray, value, index);

// Store value into anArray at position index.

Retrieve(anArray, value, index);

// Retrieve into value the array element found at position index.
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Because arrays are predefined data types, the C++ programming language supplies a
special way to perform each of these operations. C++’s syntax provides a primitive con-
structor for creating arrays in memory, with indexes used as a way to directly access an
element of an array.

In C++, the declaration of an array serves as a primitive constructor operation. For
example, a one-dimensional array can be declared with this statement:

int numbers[10];
The type of the elements in the array comes first, followed by the name of the array
with the number of elements (the array size) in brackets to the right of the name. This

declaration defines a linearly ordered collection of 10 integer items. Abstractly, we can
picture numbers as follows:

numbers

[0] | First element

[1] | Second element

[2] | Third element

[9] | Last element

Each element of numbers can be accessed directly by its relative position in the
array. The syntax of the component selector is described as follows:

array-name[index-expression]

The index expression must be of an integral type (char, short, int, long, or an enu-
meration type). The expression may be as simple as a constant or a variable name, or as
complex as a combination of variables, operators, and function calls. Whatever the form
of the expression, it must result in an integer value.

In C++, the index range is always O through the array size minus 1; in the case of
numbers, the value must be between 0 and 9. In some other languages, the user may
explicitly give the index range.

The semantics (meaning) of the component selector is “Locate the element associ-
ated with the index expression in the collection of elements identified by array-name.”
The component selector can be used in two ways:

1. To specify a place into which a value is to be copied:
numbers[2] = 5;
or

cin >> numbers([2];
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2. To specify a place from which a value is to be retrieved:
value = numbers[4];
or

cout << numbers[4];

If the component selector appears on the left-hand side of the assignment state-
ment, it is being used as a transformer: The data structure is changing. If the component
selector appears on the right-hand side of the assignment statement, it is being used as
an observer: It returns the value stored in a place in the array without changing it.
Declaring an array and accessing individual array elements are operations predefined in
nearly all high-level programming languages.

In C++, arrays may be passed as parameters (by reference only), but cannot be
assigned to one another or serve as the return value type of a function.

C++ One-Dimensional Arrays as Parameters

In C++, arrays can only be reference parameters; it is not possible to pass an array by value.
Therefore, the ampersand (&) to the right of the type is omitted. When an array is the formal
parameter, the base address of the array (the memory address of the first slot in the array) is
actually passed to a function. This is true whether the array has one or more dimensions. When
declaring a one-dimensional array parameter, the compiler needs to know only that the parame-
ter is an array; it does not need to know its size. If the size of the formal parameter is listed, the
compiler ignores it. The code in the function that processes the array is responsible for ensuring
that only legitimate array slots are referenced. Therefore, a separate parameter often is passed to
the function to specify how many array slots will be processed.

int SumValues(int values[], int numberOfValues)
// Returns the sum of values[0] through values[numberOfValues-1].
{

int sum = 0;
for (int index = 0; index < numberOfValues; indext+)

sum = sum + values[index];
return sum;

If arrays are always passed as reference parameters, how can we protect the actual parame-
ter from inadvertent changes? For example, in SumValues the parameter values is only to be
inspected but not modified. How can we protect it from being changed? We can declare it to be a
const parameter as follows:

int SumValues(const int values[], int numberOfValues)

Within the function body, trying to change the contents of values now causes a syntax error.
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Application Level A one-dimensional array is the natural structure for the storage of
lists of like data elements. Examples include grocery lists, price lists, lists of phone
numbers, lists of student records, and lists of characters (a string). You have probably
used one-dimensional arrays in similar ways in some of your programs.

Implementation Level Of course, when you use an array in a C++ program you do not
have to be concerned with all of the implementation details. You have been dealing
with an abstraction of the array from the time the construct was introduced, and you
will never have to consider all the messy details described in this section.

An array declaration statement tells the compiler how many cells are needed to rep-
resent that array. The name of the array then is associated with the characteristics of the
array. These characteristics include the following:

e The number of elements (Number)

e The location in memory of the first cell in the array, called the base address of
the array (Base)

e The number of memory locations needed for each element in the array (Size-
OfElement)

The information about the array characteristics is often stored in a table called an array
descriptor or dope vector. When the compiler encounters a reference to an array ele-
ment, it uses this information to generate code that calculates the element’s location in
memory at run time.

How are the array characteristics used to calculate the number of cells needed and
to develop the accessing functions for the following arrays? As before, we assume for
simplicity that an integer or character is stored in one cell and a floating-point number
is stored in two cells.

int data[10];
float money[6];
char letters([26];

These arrays have the following characteristics:

data money letters
Number 10 6 26
Base unknown unknown unknown
SizeOfElement 1 2 1

Let’s assume that the C++ compiler assigns memory cells to variables in sequential
order. If, when the preceding declarations are encountered, the next memory cell avail-
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able to be assigned is, say, 100, the memory assignments are as follows. (We have used
100 to make the arithmetic easier.)

data Address money Address letters Address
[0] 100 [0] 110 [0] 122
[ 101 [1] 112 [ 123
[9] 109 [5] 120 [25] 147

Now we have determined the base address of each array: data is 100, money is 110,
and letters is 122. The arrangement of these arrays in memory gives us the following
relationships:

Given The program must access
r - Al r A 1
data[0] 100
data[8] 108
letters[1] 123
letters[25] 147
money [0] 110
money [3] 116

In C++ the accessing function that gives us the position of an element in a one-
dimensional array associated with the expression Index is

Address(Index) = Base + Offset of the element at position Index

How do we calculate the offset? The general formula is

Offset = Index * SizeOfElement

The whole accessing function becomes

Address(Index) = Base + Index * SizeOfElement

Let’s apply this formula and see if we do get what we claimed we should.
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Base + Index * SizeOfElement Address
data[0] 100 + (0 * 1) = 100
data[8] 100 + (8 * 1) = 108
letters[1] 122 + (1 * 1) = 123
letters[25] 122 + (25 * 1) = 147
money [0] 110 + (0 * 2) = 110
money [3] 110 + (3 * 2) = 116

The calculation of an array element address in C++ is much simpler than it is in
many other languages because C++ assumes that the index range is from O through the
maximum size minus 1. Languages such as Pascal and Ada allow the user to specify the
lower and upper bounds on the index range rather than giving the size. This extra flexi-
bility complicates the indexing process considerably but leaves the abstraction cleaner.

Earlier, we noted that an array is a structured data type. Unlike with a record,
whose logical view is unstructured but whose implementation view is structured, both
views of an array are structured. The structure is inherent in the logical component
selector.

As we mentioned at the beginning of this section, when you use an array in a C++
program you do not have to be concerned with all of these implementation details. The
advantages of this approach are very clear: You can think of the data and the opera-
tions in a logical sense and can consider their use without having to worry about imple-
mentation details. The lower levels are still there—they just remain hidden from you. We
strive for this same sort of separation of the abstract and implementation views in the
programmer-defined classes discussed in the remainder of this book.

Two-Dimensional Arrays

Logical Level Most of what we have said about the abstract view of a one-dimensional
array applies as well to arrays of more than one dimension. A two-dimensional array is
a composite data type made up of a finite, fixed-size collection of homogeneous
elements ordered in two dimensions. Its component selector is direct access: a pair of
indexes specifies the desired element by giving its relative position in each dimension.

A two-dimensional array is a natural way to represent data that is logically viewed
as a table with columns and rows. The following example illustrates the syntax for
declaring a two-dimensional array in C++.

int table[10][6];

The abstract picture of this structure is a grid with rows and columns.
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Columns

[0] [1] .o [5]

0]

Rows [1]

E]

The component selector for the two-dimensional array is as follows:

table[row] [col]

specifies which row specifies which column
(first dimension) (second dimension)

C++ Two-Dimensional Arrays as Parameters

Two-dimensional arrays are stored in row order in C++. That is, all of the elements in one row are
stored together, followed by all of the elements in the next row. To access any row other than the
first, the compiler must be able to calculate where each row begins; this calculation depends on
how many elements are present in each row. The second row begins at the base address plus the
number of elements in each row, and each succeeding row begins at the address of the previous
row plus the number of elements in each row. The second dimension—the number of columns—
tells us how many elements are in each row; therefore the size of the second dimension must be
included in the declaration of the formal parameter for a two-dimensional array.

int ProcessValues(int values[] [5])

{

ProcessValues works for an array with any number of rows as long as it has exactly five
columns. That is, the size of the second dimension of both the actual and formal array parameters
must be identical. To ensure that formal and actual two-dimensional array parameters have the
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same size, use the typedef statement to define a two-dimensional array type and then declare
both the actual and the formal parameters to be of that type. For example,

const int NUM_ROWS 5;
const int NUM_COLS 4
typedef float TableType [NUM_ROWS] [NUM_COLS];

int ProcessValues(TableType table);

TableType mine;
TableType yours;

The typedef statement associates a two-dimensional float array with five rows and four
columns with the type name TableType; mine and yours are two such arrays. Any actual
parameter for ProcessValues should be of type TableType. By setting up the types this way,
no possible mismatch can occur.

Application Level As mentioned in the previous section, a two-dimensional array is

the ideal data structure for modeling data that are logically structured as a table with
rows and columns. The first dimension represents rows, and the second dimen-
sion represents columns. Each element in the array contains a value, and each
dimension represents a relationship. For example, we usually represent a map as a
two-dimensional array.

D|E|F|G|H
LA 1
]2
* Allentown 3
==
A 5
6

As with the one-dimensional array, the operations available for a two-dimensional
array object are so limited (only creation and direct access) that the major application is
the implementation of higher-level objects.

Implementation Level The implementation of two-dimensional arrays involves the
mapping of two indexes to a particular memory cell. The mapping functions are more
complicated than those for one-dimensional arrays. We do not give them here, as you
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will learn to write these accessing functions in later courses. Our goal is not to teach
you to be a compiler writer but rather to give you an appreciation of the value of
information hiding and encapsulation.

Higher-Level Abstraction and the C++ Class Type

In the last section, we examined C++’s built-in data types from the logical view, the
application view, and the implementation view. Now we shift our focus to data types
that are needed in a program but not pro-
vided by the programming language.

The class type is a construct in which the
members of the class can be both functions
and data; that is, the data members and the

Class An unstructured type that encapsulates a fixed
number of data components with the functions that
manipulate them; the predefined operations on an

85

code that manipulates them are bound instance of a class are whole assignment and component

together within the class itself. Because the aceess
data are bound together with the operations,
we can use one object to build another object; (instances) of a particular class

in other words, a data member of an object

can be another object.

When we design an abstract data type, we want to bind the operations of the data
type with the data that are being manipulated. The class is the perfect mechanism to
implement an abstract data type because it enforces encapsulation. The class acts like
the case around a watch that prevents us from accessing the works. The case is provided
by the watchmaker, who can easily open it when repairs become necessary.

Classes are written in two parts, the specification and the implementation. The spec-
ification, which defines the interface to the class, is like the face and knobs on a watch.
The specification describes the resources that the class can supply to the program.
Resources supplied by a watch might include the value of the current time and opera-
tions to set the current time. In a class, the resources include data and operations on the
data. The implementation section provides the implementation of the resources defined
in the specification; it is like the inside of the watch.

Significant advantages are derived from separating the specification from its imple-
mentation. A clear interface is important, particularly when a class is used by other
members of a programming team or is part of a software library. Any ambiguity in an
interface may result in problems. By separating the specification from its implementa-
tion, we are given the opportunity to concentrate our efforts on the design of a class
without needing to worry about implementation details.

Another advantage of this separation is that we can change the implementation at
any time without affecting the programs that use the class (clients of the class). We can
make changes when a better algorithm is discovered or the environment in which the
program is run changes. For example, suppose we need to control how text is displayed
on screen. Text control operations might include moving the cursor to a particular
location and setting text characteristics such as bold, blink, and underline. The algo-
rithms required for controlling these characteristics usually differ from one computer
system to another. By defining an interface and encapsulating the algorithms as
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member functions, we can easily move our program to a different system simply by
rewriting the implementation. We do not have to change the rest of the program.

Because the class is such an important construct, we review its syntax and seman-
tics in the next section. Most of you will be familiar with this material. Indeed, we used
a class in Chapter 1.

Class Specification

Although the class specification and implementation can reside in the same file, the two
parts of a class are usually separated into two files: The specification goes into a header
file (.n extension), and the implementation goes into a file with the same name but a
.cpp extension. This physical separation of the two parts of a class reinforces the logi-
cal separation.?

We describe the syntax and semantics of the class type within the context of defin-
ing an abstract data type Date.

// Declare a class to represent the Date ADT.
// This is file DateType.h.

class
{

DateType

public:

void Initialize(int newMonth, int newDay, int newYear);

int
int
int

YearIs() const; // Returns year
MonthIs() const; // Returns month
DayIs() const; // Returns day

private:

int
int
int

1

year;
month;
day;

The data members of the class are year, month, and day. The scope of a class
includes the parameters on the member functions, so we must use names other than
month, year, and day for our formal parameters. The data members are marked pri-
vate, which means that although they are visible to the human user, they cannot be
accessed by client code. Private members can be accessed only by the code in the imple-
mentation file.

3Your system may use extensions different from .h and .cpp for these files—for example, .hpp or .hxx (or no
extension at all) for header files and .cxx, .c, or .c for implementation files.
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The member functions of the class are Initialize, YearIs, MonthIs, and DayIs.
They are marked public, which means that client code can access these functions.
Initialize is a constructor operation; it takes values for the year, month, and day and
stores these values into the appropriate data members of an object (an instance of the
class).* YearIs, MonthIs, and DayIs are accessor functions; they are member functions
that access the data members of the class. The const beside the accessor function
names guarantees that these functions do not change any of the data members of the

objects to which they are applied.

C++ Scope Rules in C++

The rules of C++ that govern who knows what, where, and when are called scope rules. Three main
categories of scope exist for an identifier in C++: class scope, local scope, and global scope. Class
scope refers to identifiers declared within a class declaration. Local scope is the scope of an identi-
fier declared within a block (statements enclosed within {1). Global scope is the scope of an iden-
tifier declared outside all functions and classes.

All identifiers declared within a class are local to the class (class scope).

The scope of a formal parameter is the same as the scope of a local variable declared in the
outermost block of the function body (local scope).

The scope of a local identifier includes all statements following the declaration of the identifier
to the end of the block in which it is declared; it includes any nested blocks unless a local
identifier of the same name is declared in a nested block (local scope).

The name of a function that is not a member of a class has global scope. Once a global func-
tion name has been declared, any subsequent function can call it (global scope).

When a function declares a local identifier with the same name as a global identifier, the local
identifier takes precedence (local scope).

The scope of a global variable or constant extends from its declaration to the end of the file in
which it is declared, subject to the condition in the last rule (global scope).

The scope of an identifier does not include any nested block that contains a locally declared
identifier with the same name (local identifiers have name precedence).

Class Implementation

Only the member functions of the class DateType can access the data members, so we
must associate the class name with the function definitions. We do so by inserting the
class name before the function name, separated by the scope resolution operator (: :).
The implementation of the member functions goes into the file DateType.cpp. To
access the specifications, we must insert the file DateType.h by using an #include
directive.

4At the implementation level from here on, we use the word object to refer to a class object, an instance of a
class type.
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// Define member functions of class DateType.
// This is file DateType.cpp.
f#finclude "DateType.h" // Gain access to specification of class
void DateType::Initialize

(int newMonth, int newDay, int newYear)
// Post: year is set to newYear.

// month is set to newMonth.
// day is set to newDay.
{

year = newYear;

month = newMonth;
day = newDay;

int DateType::MonthIs() const
// Accessor function for data member month.
{

return month;

int DateType::YearIs() const
// Accessor function for data member year.
{

return year;

int DateType::DayIs() const
// Accessor function for data member day.
{

return day;

A client of the class DateType must have an #include "DateType.h" directive
for the specification (header) file of the class. Note that system-supplied header files are
enclosed in angle brackets (<iostream>), whereas user-defined header files are
enclosed in double quotes. The client then declares a variable of type DateType just as
it would any other variable.

f#finclude "DateType.h"
DateType today;
DateType anotherDay;
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Member functions of a class are invoked in the same way that data members of a

struct are accessed—with the dot notation. The following code segment initializes two
objects of type DateType and then prints the dates on the screen:

today.Initialize(9, 24, 2003);
anotherDay.Initialize(9, 25, 2003);

cout << " Today is " << today.MonthIs() <K "/" <K today.DayIs()
< "/ <K<K today.YearIs() <X endl;

cout << " Another date is " << anotherDay.MonthIs() << "/"
<< anotherDay.DayIs() << "/" << anotherDay.YearIs() << endl;

Member Functions with Object Parameters

A member function applied to a class object uses the dot notation. What if we want a
member function to operate on more than one object—for example, a function that com-
pares the data members of two instances of the class? The following code compares two

instances of the class DateType:

enum RelationType {LESS, EQUAL, GREATER};

// Prototype of member function in the specification file.
RelationType ComparedTo(DateType someDate);

// Compares self with someDate.

// Implementation of member function in the implementation file.

RelationType DateType::ComparedTo(DateType aDate)

// Pre: Self and aDate have been initialized.

// Post: Function value = LESS, if self comes before aDate.

// = EQUAL, if self is the same as aDate.
// = GREATER, if self comes after aDate.

{

if (year < aDate.year)
return LESS;

else if (year > aDate.year)
return GREATER;

else if (month < aDate.month)
return LESS;

else if (month > aDate.month)
return GREATER;

else if (day < aDate.day)
return LESS;

else if (day > aDate.day)
return GREATER;

else return EQUAL;
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In this code, year refers to the year data member
of the object to which the function is applied;
aDate.year refers to the data member of the object
passed as a parameter. The object to which a member
function is applied is called self. In the function definition, the data members of self are
referenced directly without using dot notation. If an object is passed as a parameter, the
parameter name must be attached to the data member being accessed using dot notation.
As an example, look at the following client code:

switch (today.ComparedTo (anotherDay))

{

case LESS

cout << "today comes before anotherDay";
break;

case GREATER :

cout << "today comes after anotherDay";
break;

case EQUAL

cout << "today and anotherDay are the same";
break;

Now look back at the ComparedTo function definition. In that code, year in the
function refers to the year member of today, and aDate.year in the function refers to
the year member of anotherDay, the actual parameter to the function.

Why do we use LESS, GREATER, and EQUAL when COMES_BEFORE, COMES_AFTER,
and SAME would be more meaningful in the context of dates? We use the more general
words here, because in other places we use functions of type RelationType when com-
paring numbers and strings.

Difference Between Classes and Structs

In C++, the technical difference between classes and structs is that, without the use of the
reserved words public and private, member functions and data are private by default
in classes and public by default in structs. In practice, structs and classes are often used
differently. Because the data in a struct is public by default, we can think of a struct as a
passive data structure. The operations that are performed on a struct are usually global
functions to which the struct is passed as a parameter. Although a struct may have mem-
ber functions, they are seldom defined. In contrast, a class is an active data structure
where the operations defined on the data members are member functions of the class.

In object-oriented programming, an object is viewed as an active structure with
control residing in the object through the use of member functions. For this reason, the
C++ class type is used to represent the concept of an object.
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2.4 Object-Oriented Programming

Object-Oriented Programming

In Chapter 1, we said that functional design results in a hierarchy of tasks and that
object-oriented design results in a hierarchy of objects. Structured programming is the
implementation of a functional design, and object-oriented programming (OOP) is the
implementation of an object-oriented design. However, these approaches are not
entirely distinct: The implementation of an operation on an object often requires a func-
tional design of the algorithm. In this section, we examine object-oriented programming
in more depth.

Concepts

The vocabulary of object-oriented programming has its roots in the programming lan-
guages Simula and Smalltalk. It can be very bewildering. Such terms and phrases as
“sending a message to,” “methods,” and “instance variables” are sprinkled throughout
the OOP literature. Although this vocabulary can seem daunting, don’t panic. There is a
straightforward translation between these terms and familiar C++ constructs.

An object is a class object or class instance—that is, an instance of a class type. A
method is a public member function, and an instance variable is a private data member.
Sending a message means calling a public member function. In the rest of this book, we
tend to mix object-oriented terms with their C++ counterparts.

Inheritance Inheritance is a mechanism
whereby a hierarchy of classes is constructed
such that each descendant class inherits the
properties (data and operations) of its
ancestor class. In the world at large, it is
often possible to arrange concepts into an
inheritance hierarchy—a hierarchy in which
each concept inherits the properties of the
concept immediately above it in the
hierarchy. For example, we might classify different kinds of vehicles according to the
inheritance hierarchy in Figure 2.8. Moving down the hierarchy, each kind of vehicle is
both more specialized than its parent (and all of its ancestors) and more general than its
children (and all of its descendants). A wheeled vehicle inherits properties common to
all vehicles (it holds one or more people and carries them from place to place) but has
an additional property that makes it more specialized (it has wheels). A car inherits
properties common to all wheeled vehicles, but has additional, more specialized
properties (four wheels, an engine, a body, and so forth). The inheritance relationship
can be viewed as an is-a relationship. In this relationship, the objects become more
specialized the lower in the hierarchy you go.

Object-oriented languages provide a way for creating inheritance relationships
among classes. You can take an existing class (called the base class) and create a new

Base class The class being inherited from
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Derived class The class that inherits

Polymorphism The ability to determine which of several
operations with the same name is appropriate; a combi-
nation of static and dynamic binding

Overloading Giving the same name to more than one
function or using the same operator symbol for more than
one operation; usually associated with static binding

Binding time The time at which a name or symbol is
bound to the appropriate code

Static binding The compile-time determination of
which implementation of an operation is appropriate

Dynamic binding The run-time determination of which
implementation of an operation is appropriate

Figure 2.8 Inheritance hierarchy

class from it (called the derived class). The derived
class inherits all the properties of its base class. In par-
ticular, the data and operations defined for the base
class are now defined for the derived class. Note the
is-a relationship—every object of a derived class is
also an object of the base class.

Polymorphism Polymorphism is the ability to
determine either statically or dynamically which of
several methods with the same name (within the class
hierarchy) should be invoked. Overloading means
giving the same name to several different functions
(or using the same operator symbol for different
operations). You have already worked with overloaded
operators in C++. The arithmetic operators are
overloaded because they can be applied to integral
values or floating-point values, and the compiler

selects the correct operation based on the operand types. The time at which a function
name or symbol is associated with code is called binding time (the name is bound to the
code). With overloading, the determination of which particular implementation to use
occurs statically (at compile time). Determining which implementation to use at compile

time is called static binding.

Dynamic binding, on the other hand, is the ability to postpone the decision of
which operation is appropriate until run time. Many programming languages support
overloading; only a few, including C++, support dynamic binding. Polymorphism
involves a combination of both static and dynamic binding.

Encapsulation, inheritance, and polymorphism are the three necessary constructs in
an object-oriented programming language.
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C++ Constructs for OOP

In an object-oriented design of a program, classes typically exhibit one of the following
relationships: They are independent of one another, they are related by composition, or
they are related by inheritance.

Composition Composition (or containment)
is the relationship in which a class contains a Composition (containment) A mechanism by which an
data member that is an object of another jnicrnaldata member of one class is defined to be an
class type. C++ does not need any special object of another class type
language notation for composition. You
simply declare a data member of one class to
be of another class type.
For example, we can define a class PersonType that has a data member birth-
date of class DateType.

#include <string>
class PersonType
{
public:
void Initialize(string, DateType);
string NameIs() const;
DateType BirthdateIs() const;
private:
string name;
DateType birthdate;
1

Deriving One Class from Another Let’s use the class MoneyType introduced in a
sidebar in Chapter 1 as the base class and derive a class that has a field that contains
the name of the currency.

#include <string>
class MoneyType
{
public:
void Initialize(long, long);
long DollarsAre() const;
long CentsAre() const;
private:
long dollars;
long cents;
1

class ExtMoneyType : public MoneyType
{
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public:

string CurrencyIs() const;
void Initialize(long, long, string);

private:

1

string currency;

ExtMoneyType extMoney;

The colon followed by the words public and MoneyType (a class identifier) says
that the new class being defined (ExtMoneyType) inherits the members of the class
MoneyType. MoneyType is called the base class or superclass and ExtMoneyType is
called the derived class or subclass.

extMoney has three member variables: one of its own (currency) and two that it
inherits from MoneyType (dollars and cents). extMoney has five member functions:
two of its own (Initialize and CurrencylIs) and three that it inherits from Money-
Type (Initialize, DollarsAre, and CentsAre). Although extMoney inherits the pri-
vate member variables from its base class, it does not have direct access to them.
extMoney must use the public member functions of MoneyType to access its inherited
member variables.

void ExtMoneyType::Initialize

(long newDollars, long newCents, string newCurrency)

currency = newCurrency;
MoneyType::Initialize(newDollars, newCents) ;

string ExtMoneyType::CurrencyIs() const

{

return currency;

Notice that the scope resolution operator (: :) appears between the type MoneyType
and the member function Initialize in the definition of the member function.
Because two member functions named Initialize now exist, you must indicate the
class in which the one you mean is defined. (That’s why it’s called the scope resolution
operator.) If you fail to do so explicitly, the compiler assumes you mean the most
recently defined one.

The C++ rule for passing parameters is that the actual parameter and its correspon-
ding formal parameter must be of an identical type. With inheritance, however, C++
relaxes this rule somewhat. That is, the type of the actual parameter may be an object of
a derived class of the formal parameter.
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Note that inheritance is a logical issue, not an implementation one. A class inherits
the behavior of another class and enhances it in some way. Inheritance does not mean
inheriting access to another class’s private variables. Although some languages do allow
access to the base class’s private members, such access often defeats the concepts of
encapsulation and information hiding. With C++, access to the private data members of
the base class is not allowed. Neither external client code nor derived class code can
directly access the private members of the base class.

Virtual Functions In the previous section we defined two member functions with the
same name, Initialize. The statements

money.Initialize (20, 66);

extMoney.Initialize (20, 66, "francs");

8.9

are not ambiguous, because the compiler can determine which Initialize to use by
examining the type of the object to which it is applied. Sometimes, however, the com-
piler cannot determine which member function is intended, so that the decision must be
made at run time. If the decision is left until run time, the word virfual must precede the
member function heading in the base class definition. We will have more to say about
how C++ implements polymorphism when we use this mechanism later in the book.

Constructs for Program Verification

Chapter 1 described methods for verifying software correctness in general. In this sec-
tion we look at two constructs provided in C++ to help ensure quality software (if we
use them!). The first is the exception mechanism, mentioned briefly in Chapter 1. The
second is the namespace mechanism, which helps handle the problem of duplicate
names appearing in large programs.

Exceptions

Most programs, and student programs in particular, are written under the most opti-
mistic of assumptions: They will compile the first time and execute properly. Such an
assumption is far too optimistic for almost any program beyond “Hello world.” Pro-
grams must deal with all sorts of error conditions and exceptional situations—some
caused by hardware problems, some caused by bad input, and some caused by undis-
covered bugs.

Aborting the program in the wake of such errors is not an option, as the user would
lose all work performed since the last save. At a minimum, a program must warn the
user, allow saving, and exit gracefully. In each situation, even if the exception manage-
ment technique calls for terminating the program, the code detecting the error cannot
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try

{

}

know how to shut down the program, let alone shut it down gracefully. Transfer of the
thread of control and information to a handler that knows how to manage the error sit-
uation is essential.

As we said in Chapter 1, working with exceptions begins at the design phase,
where the unusual situations and possible error conditions are specified and decisions
are made about handling each one. Now let’s look at the try-catch and throw state-
ments, which allow us to alert the system to an exception (throw the exception), to
detect an exception (fry code with a possible exception), and to handle an exception
(catch the exception).

try-catch and throw Statements The code segment in which an exception might occur
is enclosed within the try clause of a fry-catch statement. If the exception occurs, the
reserved word throw is used to alert the system that control should pass to the
exception handler. The exception handler is the code segment in the catch clause of the
associated try-catch statement, which takes care of the situation.

The code that may throw an exception is placed in a try block followed immediately
by one or more catch blocks. A catch block consists of the keyword catch followed by
an exception declaration, which is in turn followed by a block of code. If an exception
is thrown, execution immediately transfers from the try block to the catch block whose
type matches the type of the thrown exception. The exception variable receives the
exception of the type that is thrown in the try block. In this way, the thrown exception
communicates information about the event to the handler.

// Code that may raise an exception and/or set some condition

if (condition)

throw exception_name; // frequently a string

catch (typename variable)

{

}

// Code that handles the exception

/17
/7

It may call a cleanup routine and exit if the
program must be terminated

// Code to continue processing

/1
/1

This will be executed unless the catch block
stops the processing.

Let’s look at a concrete example. You are reading and summing positive values
from a file. An exception occurs if a negative value is encountered. If this event hap-
pens, you want to write a message to the screen and stop the program.
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infile >> value;

if (value < 0)

throw string("Negative value"); // Exception is a string

sum = sum + value;
} while (infile);

catch (string message)

// Parameter of the catch is type string

{

}

// Code that handles the exception
cout << message <K " found in file. Program aborted."
return 1;

// Code to continue processing if exception not thrown

cout << "Sum of values on the file: " <K sum;

If value is less than zero, a string is thrown; catch has a string as a parameter. The
system recognizes the appropriate handler by the type of the exception and the type of
the catch parameter. We will deal with exceptions throughout the rest of the book. As
we do, we will show more complex uses of the try-catch statement.

Here are the rules we follow in using exceptions within the context of the ADTs we
develop:

e The preconditions/postconditions on the functions represent a contract between
the client and the ADT that defines the exception(s) and specifies who (client or
ADT) is responsible for detecting the exception(s).

e The client is always responsible for handling the exception.

e The ADT code does not check the preconditions.

When we design an ADT, the software that uses it is called the client of the class. In
our discussion, we use the terms client and user interchangeably, thinking of them as
the people writing the software that uses the class, rather than the software itself.

Standard Library Exceptions In C++, the run-time environment (for example, a divide-
by-zero error) may implicitly generate exceptions in addition to those being thrown
explicitly by the program. The standard C++ libraries provide a predefined hierarchy of
error classes in the standard header file, stdexcept, including

logic_error
domain_error
invalid_argument
length error

out_of_range
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In addition, the class runtime_error provides the following error classes:

® range_error
® overflow_error
® underflow_error

Namespaces

Different code authors tend to use many of the same identifier names (name, for exam-
ple). Because library authors often have the same tendency, some of these names may
appear in the library object code. If these libraries are used simultaneously, name
clashes may occur, as C++ has a “one definition rule,” which specifies that each name in
a C++ program should be defined exactly once. The effect of dumping many names into
the namespace is called namespace pollution.

The solution to namespace pollution involves the use of the namespace mechanism.
A namespace is a C++ language technique for grouping a collection of names that logi-
cally belong together. This facility allows the enclosing of names in a scope that is simi-
lar to a class scope; unlike class scope, however, a namespace can extend over several
files and be broken into pieces in a particular file.

Creating a Namespace A namespace is declared with the keyword namespace before
the block that encloses all of the names to be declared within the space. To access
variables and functions within a namespace, place the scope resolution operator (: :)
between the namespace name and the variable or function name. For example, if we
define two namespaces with the same function,

namespace myNames

void getData (inté&);

namespace yourNames

void getData (inté&);

you can access the functions as follows:

myNames: :getData (int& dataValue); // getData from myNames
yourNames: :getData (int& dataValue); // getData from yourNames

This mechanism allows identical names to coexist in the same program.
Access to Identifiers in a Namespace Access to names declared in a namespace may

always be obtained by explicitly qualifying the name with the name of the namespace
with the scope resolution operator (::), as shown in the last example. Explicit
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qualification of names is sufficient to use these names. However, if many names will be
used from a particular namespace or if one name is used frequently, then repeated
qualification can be awkward. A using declaration avoids this repetition for a particular
identifier. The using declaration creates a local alias for the qualified name within the
block in which it is declared, making qualification unnecessary.

For example, by putting the following declaration in the program,

using myNames::getData;

the function getData can be used subsequently without qualification. To access getData
in the namespace yourNames, it would have to be qualified: yourNames: : getData.
One other method of access should be familiar: a using directive. For example,

using namespace myNames;

provides access to all identifiers within the namespace myNames. You undoubtedly have
employed a using directive in your program to access cout and cin defined in the
namespace std without having to qualify them.

A using directive does not bring the names into a given scope; rather, it causes the
name-lookup mechanism to consider the additional namespace specified by the direc-
tive. The using directive is easier to use, but it makes a large number of names visible in
this scope and can lead to name clashes.

Rules for Using the Namespace std Here are the rules that we follow in the balance of
the text in terms of qualifying identifiers from the namespace std:

e In function prototypes and/or function definitions, we qualify the identifier in
the heading.

e In a function block, if a name is used once, it is qualified. If a name is used more
than once, we use a using declaration with the name.

e If two or more names are used from a namespace, we use a using directive.

e A using directive is never used outside a class or a function block.

The goal is to never pollute the global namespace more than is necessary.

C++ Character and String Library Functions

C++ provides many character and string-handling facilities in its standard library. Operations
available through <cctype> include testing to see whether a character is a letter, number, con-
trol character, uppercase, or lowercase. Operations available through <cstring> include con-
catenating two strings, comparing two strings, and copying one string into another. See Appendix
C for more details.
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Case Study

User-Defined String I/0 Class

Strings are lists of characters; they represent text in a program. Strings are used extensively in
all kinds of programs. They label output, they are read from a file and sent to an output stream,
or they can be the data that a program processes. Many languages have strings as a built-in
data type. The C++ standard library provides a string class, whose declarations are available
in the header file <string>. The operations given in the string class include concatenation
of two strings using the + operator, searching a string for a substring, determining the number
of characters in a string, and some input/output operations. C++ also inherits a primitive string
type from C, which is simply an array of type char, with the null character (\0) used to signal
the end of the string. C++ also inherits from C a set of string-handling functions in
<cstring> and inputfoutput functions in <iostream> and <fstream>. The input/output
functions are the same in both cases and are rather restrictive.

Let's create our own abstract data type String that has general-purpose input and output
functions and encapsulate it into a class. We will call our class StrType so as not to confuse
it with the library class string.

Logical Level

At the logical level, a string is a finite sequence of alphanumeric characters, characterized by a
property called /ength. The length is the number of characters in the string.

What operations do we want defined on strings? At a minimum we need a primitive con-
structor that creates a string by initializing it to the empty state, a transformer that reads val-
ues from a file or the keyboard into a string, and an observer that sends a copy of the string to
the output stream or a file.

If a string has the property of length, we can define initializing a string as setting the
length of the string to zero. Reading values into a string is more difficult. We must decide
what we mean by a string in an input stream or a file. Do we mean the characters from the
current point in the stream until the next whitespace character is encountered (blank, tab,
newline, and so forth)? Until the next end-of-line is encountered? Until a special character is
encountered? What do we do if the character at the current position of a stream is a white-
space character?

Let's examine the operations for string handling available in <iostream> before we make
our decision. We assume that string in the following examples is an array of characters.

cin >> string: Whitespace is skipped and characters are collected and stored in string
until whitespace is encountered. The stream is left positioned at the first whitespace character
encountered. Using the extraction operator (>>) is not appropriate if the string you are trying
to enter contains blanks (which are whitespace).

cin.getline(string, max): Whitespace is not skipped; the characters from the current
position of the stream up to end-of-line are read and stored into string; the newline charac-
ter is read but not stored in string. If max-1 characters are read and stored before encoun-
tering the newline character, the processing stops with the stream positioned at the next
character.

TEAM LinG - Live, Informative, Non-cost and Genuine!



Case Study: User-Defined String I/0 Class

Intermingling these two methods of inputting strings can cause serious problems. The >>
operator leaves the stream positioned at whitespace. If that whitespace character is the new-
line character and the next operation is cin.getline(string, max), no characters are
input because the newline character stops the reading. Therefore, string is the empty
string. We want our string-input operation to avoid this problem and to work consistently in
all situations.

Let's allow the user of our string class to decide what is meant by an input string by pro-
viding two parameters: a Boolean flag that determines if inappropriate characters should be
skipped before inputting the string and a parameter that specifies which characters are legal in
the string (anything else ends the input process). If no appropriate characters are found, the
string should be set to the empty string.

The only question concerning output is whether the user wants the output to begin on a
new line. We can provide a parameter for the user that indicates which format is desired.

Let's summarize our observations in a CRC card before we write a formal specification for
our ADT.

Class Name: Superclass: Subclasses:
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Before we present our first ADT specification, a word about notation is in order. Because
we want the specification to be as programming language independent as possible, we use the
general word “Boolean” for the type name of Boolean variables rather than the C++ word
bool. On the other hand, there is no general word for input and output file types, so we use
the C++ terms ifstream and ofstream, respectively. We also use the C++ symbol amper-
sand (&) to indicate reference parameters.

Recall that to distinguish between the logical level and the implementation level, we put
logical-level identifiers in handwriting font and implementation-level identifiers in mono-
spaced font. In an ADT specification we use regular paragraph font throughout. In the specifi-
cations we also convert the phrases used in the CRC card to operation identifiers.
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y

String ADT Specification

Structure: A sequence of alphanumeric characters.

Operations:
MakeEmpty
Function:

Precondition:
Postcondition:

Initializes string to empty.
None.
String is empty.

GetStringFile(Boolean skip, InType charsAllowed, ifstream& inFile)

Function:
Assumptions:

Precondition:
Postconditions:

Gets a string from the file InFile.

(1) InType is a data type consisting of the fol-
lowing constants:

ALPHA: Only alphabetic characters are
stored.

ALPHA_NUM: Only alphanumeric characters
are stored.

NON_WHITE: All nonwhitespace characters
are stored.

NOT_NEW: All characters excluding the
newline character are stored.

(2) If skip is true, characters not allowed are
skipped until the first allowed character is
found. Reading and storing begins with this
character and continues until a character not
allowed is encountered. That character is read
but not stored. If skip is false, reading and
storing begins with the current character in
the stream.

inFile has been opened.

If no allowable characters are found, the
empty string is returned; else, a string has
been input according to the skip and charsAl-
lowed parameters. inFile is left positioned fol-
lowing the last character read.

GetString(Boolean skip, InType charsAllowed)

Function:
Assumptions:
Precondition:

Postconditions:

Gets a string from the standard input stream.
Same as those for GetStringFile.
None.

String has been input according to the skip
and charsAllowed parameters. Input stream is
left positioned following the last character
read, which is a nonallowed character.
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PrintToScreen(Boolean newLine)
Function: Prints an end-of-line character if needed
before printing the string to the screen.

Precondition:  String has been initialized.

Postcondition: If newLine is true, string has been printed on
the screen starting on a new line; otherwise,
string has been printed on the current line.

PrintToFile(Boolean newLine, ofstream& outFile)
Function: Prints an end-of-line character if needed before
printing the string to outFile.

Preconditions:  String has been initialized.
outFile has been opened.

Postconditions: If newLine is true, string has been printed on
outFile starting on a new line; otherwise,
string has been printed on the current line of
outFile. outFile is left positioned after the last
character written.

int Lengthls()
Function: Returns the number of characters in the string.
Precondition:  String has been initialized.

Postcondition: Function value = number of characters in the
string.

CopyString(StrType& newString)
Function: Copies self into newString.

Precondition:  Self has been initialized.
Postcondition:  Self has been copied into newString.

Application Level

Let's use this very simple set of operations to read words from a file, store them into an array, and
print them on the screen, one per line. The input is ordinary text; only alphanumeric characters
are allowed in the string. Thus, any nonalphanumeric character acts as a word (string) delimiter.

ffinclude <fstream>
ffinclude "StrType.h"
ffinclude <iostream>
const int MAX WORDS = 10;
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int main()

{

using namespace std;
StrType word;

ifstream inFile;

StrType words[MAX WORDS] ;
int numWords = 0;
inFile.open("words.in") ;

word.MakeEmpty () ;
word.GetStringFile (true, ALPHA NUM, inFile);
while (inFile && numWords < MAX WORDS)

{
word.CopyString (words [numWords]) ;
numWords++;
word.GetStringFile (true, ALPHA NUM, inFile);
}

if (inFile)
cout <K "First " << MAX WORDS <KX " words on the file: ";
else
cout << " Words on the file: ";
for (int index = 0; index < numWords; indext+)
words [index] .PrintToScreen(true) ;
return O;

=  strilestolt=——————— E

First 18 words aon the file:l
The
Abacus
which
appeared
in

th=
sixkeenth
century
was

the

ol
-

N

A slight change in the parameters allows us to consider only alphabetic characters to be mak-
ing up a word and all other characters to be acting as delimiters: word .GetStringFile (true,
ALPHA, inFile).We could add a function that would check whether word was present in the
words array and add it only if it were absent, giving us a list of unique words.

TEAM LinG - Live, Informative, Non-cost and Genuine!



Case Study: User-Defined String I/0 Class 105

We use the String ADT (class StrType) as defined by the previous specification many
times throughout the rest of this book.

Implementation Level

Now we must determine how we will represent our strings. Recall that C++ implements strings
as one-dimensional char arrays with the null character (\0) signaling the end of the string.
Another way of implementing a string would be a struct or a class with two data members: an
array of type char and an integer variable representing the length. The string characters
would be located between position 0 and position length - 1 in the array.

Which approach shall we use? The amount of storage required for both array-based
designs is nearly the same, and the amount of processing is approximately the same although
the algorithms differ somewhat. Let's use the null-terminated method here. To accommodate
the null character, we must remember to allocate one more position than the maximum num-
ber of characters expected. The maximum number of characters—where does this number
come from? Nothing in the specification hints at a limit on the number of characters allowed
in a string, but our array-based implementation requires us to specify an array size.

Let's arbitrarily choose a reasonably large number—say, 100—for the maximum string length.
In the specification file, StrType.h, we define a constant MAX_CHARS to be 100, letting the user
know that it is the maximum length allowed. In Chapter 4, we look at a more flexible technique
that lets us specify an array size dynamically (at run time) rather than statically (at compile time).

Should the client be responsible for making sure that the string is within the allowable
length, or should the code of GetString and GetStringFile check for this problem and dis-
card any characters that cannot be stored? Both approaches have merit. We choose the latter and
do the checking within StrType. The specifications need to be changed to reflect this decision.

The specification for the class StrType is contained in the following header file. Note
that the postconditions for GetString and GetStringFile have been expanded to
describe what happens if the number of characters is too large. Here is file StrType.h.

// Header file for class StrType, a specification for the
// String ADT

finclude <fstream>

ffinclude <iostream>

const int MAX_CHARS = 100;

enum InType {ALPHA NUM, ALPHA, NON_WHITE, NOT NEW};

°In the interest of brevity, we do not repeat the preconditions and postconditions on the member function pro-
totypes unless they have changed from those listed in the specification of the ADT. The code available on the
Web is completely documented.
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class StrType

{

public:

// Assumptions:

// InType is a data type consisting of the following constants:
// ALPHA: only alphabetic characters are stored;

// ALPHA NUM: only alphanumeric characters are stored;

// NON_WHITE: all nonwhitespace characters are stored;

// NOT_NEW: all characters excluding the newline character

// are stored.

// If skip is true, characters not allowed are skipped until the
// first allowed character is found. Reading and storing

// begins with this character and continues until a character
// not allowed is encountered. This character is read but not
// stored. If skip is false, reading and storing begins with
// the current character in the stream.

pr

5 g

void MakeEmpty () ;

void GetString(bool skip, InType charsAllowed) ;

// Post: If the number of allowable characters exceeds

// MAX_CHARS, the remaining allowable characters have
// been read and discarded.

void GetStringFile(bool skip, InType charsAllowed,
std::ifstream& inFile) ;

// Post: If the number of allowable characters exceeds

// MAX_CHARS, the remaining allowable characters have been

// read and discarded.

void PrintToScreen(bool newLine) ;

void PrintToFile(bool newLine, std::ofstreamé& outFile);
int LengthIs();

void CopyString(StrType& newString) ;

ivate:

char letters[MAX CHARS + 1];

Now we must design the algorithms for our member functions and code them. In Chapter
1, we discussed the testing process and suggested that planning for testing should occur in
parallel with the design. Let's practice what we preach, and consider testing as we code the
member functions. Our strategy is clear-box testing, because we are planning our testing as
we design and code the algorithms.
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MakeEmpty When called prior to any other processing, MakeEmpty Serves as a primitive
constructor that takes the storage structure assigned to a variable of the class type and
initializes any data members as necessary. We also can use MakeEmpty to return a structure
to the empty state after it has been used. In the case of the null-terminated implementation,
storing \0' in letters[0] changes the instance of StrType from undefined to the empty
string. To test this function, we must take a variable of type StrType, apply the function to it,
and determine whether the string is empty.

void StrType::MakeEmpty ()
// Post: letters is empty string.
{

letters[0] = '\0"';

GetStringFile If skip is true, then characters are read and discarded until one is
encountered that is found in the set of allowed characters. This character becomes the first
character in the data member 1letters. Characters are read and stored in letters until a
character is read that is not allowed. That character is then discarded. If MAX_CHARS
characters are read and stored before a character not allowed is encountered, characters are
read and discarded until such a character is encountered or end-of-file is encountered. The
last step is to store the null-terminator following the last character stored in letters.

If skip is false, no characters are skipped before reading and storing characters.

How do we determine what to skip and what to store? The constants of InType tell us.
We use them as labels on a switch statement.

GetStringFile(Boolean skip, InType charsAllowed, ifstream& inFile)

switch (charsAllowed)
case ALPHA_NUM : GetAlphaNum(skip, letters)
case ALPHA : GetAlpha(skip, letters)
case NON_WHITE : GetNonWhite(skip, letters)
case NOT_NEW  : GetTilNew(skip, letters)

We can use the functions available in <cctype> to control our reading in each of the
functions. If charsAllowed is ALPHA_ NUM, we skip characters until the function isalnum
returns true, and store them until isalnum returns false or inFile goes into the fail state. If
charsAllowed is ALPHA, we skip characters until the function isalpha returns true, and
store them until isalpha returns false or inFile goes into the fail state. If charsAllowed
is NON_WHITE, we skip characters until the function isspace returns false, and store them
until isspace returns true or inFile goes into the fail state. If charsAllowed is
NOT_NEW, we skip characters until the character is not \n', and store them until the character
is'\n" or inFile goes into the fail state.
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Each of the four cases has a Boolean parameter that controls processing. Our test driver
must call each case with skip set to true and with skip set to false. In addition, each alter-
native must be examined to determine what characters should appear within the test data to
test that alternative. We must be sure that each behaves properly when encountering end-of-
file within the skip phase, and we must be sure that our test data include words that are
longer than the maximum length MAX_ CHARS.

We code GetAlphaNum and GetTilNew here, leaving GetAlpha and GetNonWhite as
exercises.

#include <cctyped

// Prototypes of auxiliary functions.

// Note: If skip is true, nonallowable leading characters are
// skipped. If end-of-file is encountered while skipping

// characters, the empty string is returned. If the number
// of allowable characters exceeds MAX CHARS, the rest are
// read and discarded.

void GetAlphaNum(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only alphanumeric characters.

void GetAlpha(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only alphabetic characters.

void GetNonWhite(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only nonwhitespace characters.

void GetTilNew(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains everything up to newline character.

void StrType::GetStringFile(bool skip, InType charsAllowed,
std::ifstream& inFile)

{
switch (charsAllowed)
{
case ALPHA_NUM : GetAlphaNum(skip, letters, inFile);
break;
case ALPHA : GetAlpha(skip, letters, inFile);
break;
case NON_WHITE : GetNonWhite(skip, letters, inFile);
break;
case NOT_NEW : GetTilNew(skip, letters, inFile);
break;
}
}
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void GetAlphaNum(bool skip, char letters[], std::ifstream& inFile)
// Post: If skip is true, non-alphanumeric letters are skipped.

// Alphanumeric characters are read and stored until a

// non-alphanumeric character is read or MAX_ CHARS characters
// have been stored. If the stream is not in the fail state,
// the last character read was a non-alphanumeric character.
{

using namespace std;
char letter;
int count = 0;

if (skip)
{// Skip non-alphanumeric characters.
inFile.get (letter);
while (!isalnum(letter) && inFile)
inFile.get (letter) ;

}
else
inFile.get (letter);
if (!inFile || !isalnum(letter))
// No legal character found; empty string returned.
letters[0] = '\0';
else
{// Read and collect characters.
do
{
letters[count] = letter;
countt++;

inFile.get (letter);
} while (isalnum(letter) && inFile && (count < MAX CHARS));

letters[count] = '\0';

// Skip extra characters if necessary.

if (count == MAX CHARS && isalnum(letter))
do
{

inFile.get (letter);
} while (isalnum(letter) && inFile);

void GetTilNew(bool skip, char letters[], std::ifstream& inFile)
// Post: If skip is true, newline characters are skipped.
// All characters are read and stored until a newline
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// character is read or MAX CHARS characters have been
// stored. If the stream is not in the fail state, the
// last character read was a newline character.

{

using namespace std;
char letter;
int count = 0;
if (skip)
{// Skip newlines.
inFile.get (letter);
while ((letter == '\n') &&inFile)
inFile.get (letter) ;

}
else
inFile.get (letter);
if (!inFile || letter == '\n')
letters[0] = '\0';
else
{// Read and collect characters.
do
{
letters[count] = letter;
count+t+;
inFile.get (letter);
} while ((letter != '\n') && inFile && (count < MAX CHARS));
letters[count] = '\0';
// Skip extra characters if necessary.
if (count == MAX_ CHARS && letter != '\n')
do
{
inFile.get (letter) ;
} while ((letter != '\n') && inFile);
}

GetString This operation is nearly identical to GetStringFile, with inFile changed to
cin. We must write new auxiliary functions like those for GetStringFile, but replacing
inFile with cin and removing the file name as a parameter. The same test cases shown
later apply to this operation as to GetStringFile. We leave the coding of this function for
you.

PrintToScreen and PrintToFile Because we have implemented our string using the
same technique employed by C++, we can use cout to print to the screen. If newLine is true,
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we print a newline character before printing letters. We must test this function with

newLine both true and false.

void StrType::PrintToScreen(bool newLine)

// Pos
{

t: letters has been sent to the output stream.

using namespace std;

if (
co
cout

newLine)
ut <X endl;
< letters;

PrintToFile is nearly identical to PrintToScreen, with cout replaced with
outFile.

LengthIs and CopyString Because our implementation of a string is the same as that
found in C++, we can use the strcpy and strlen functions provided by the standard library
for these operations. Alternatively, we could write loops to count characters until the null
terminator is found for LengthIs and to copy characters from self to newString until the
null terminator has been copied for CopyString. We use strcpy here and leave the other
implementation as an exercise.

f#include <cstring>
void StrType::CopyString(StrType& newString)
// Post: letters has been copied into newString.letters.

{
std:

:strepy (newString.letters, letters);

int StrType::LengthIs()
// Post: Function value = length of letters string

{

return std::strlen(letters);

Test Plan

To test the String ADT, we create a test driver program similar to the one we created at the
end of Chapter 1 to test the class FractionType. That test driver accepted a sequence of
instructions from an input file that indicated which member function of FractionType to
invoke next. The test input also included any parameter values required by the FractionType
functions. Results of the function invocations were printed to an output file. Meanwhile, a
final count of the number of test cases was indicated in an output window.

Thanks to our planning when we created that test driver, it is not difficult to transform it
into a test driver for a different class. To use it to test StrType, we simply change the decla-
rations of the variables to appropriate ones for testing StrType, and rewrite the sequence of
if-else statements to invoke and report on the string functions instead of the fraction func-
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tions. Because the member functions to be tested involve reading from a file, we use the name
of the data file as input to the test driver as well as the name of the input file with the opera-
tion names and the output file. Creating the test driver is easy; the difficult part is designing
the test cases to use as input data to the test driver.

We must unit test each member function in the class representing the String ADT. We
need to go back through our design and collect the tests outlined during the design process.
Following is a portion of the test plan that covers the parts of the ADT that we have imple-
mented in this chapter: MakeEmpty, PrintToFile, LengthIs, CopyString, and Get-
StringFile with ALPHA NUM and NOT_NEW.

Member Function/Reason
for Test Case (parameters)

MakeEmpty
PrintToFile

GetStringFile
true, ALPHA NUM

GetStringFile
false, ALPHA_ NUM

GetStringFile
true, NOT_NEW

GetStringFile
false, NOT_NEW

CopyString
LengthIs
GetStringFile
GetStringFile

Input Values

none
none
now is al,a3jHF ABCE

now is al,a37HF ABCE

now is the
time al,a3

1HE.
ABCE,

now is the
time al,a3

1HE

ABCE,

ABCE,

ABCE,

empty file

string longer than
MAX_CHARS

Expected Output
(one word per line)
(] stands for newline)

empty string
blank line
now|is|al|a3|ABCE

| |[now|is|al|a3 || |ABCE
|

now is the

time al,a3

i/
ABCE,

now is the
time al,a3

1HE

ABCE,

ABCE,

5

empty string

string with first
MAX_CHARS characters

Here is a copy of the test driver and the input file. These files and the output files (str-
Type.out and strTest.screen) are available on the Web site.

// Test driver
#include <iostream>
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#include <fstream>

f#finclude <string>

f#include <cctyped

f#finclude <cstring>

f#finclude "StrType.h"

InType Allowed(std::string& inString);
bool Skip(std::string& inString);

int main()

{

using namespace std;

Case Study: User-Defined String I/0 Class

ifstream inFile; // File containing operations
ifstream inData; // Input data file

ofstream outFile; // File containing output
string inFileName; // Input file external name
string outFileName; // Output file external name

string inDataName;
string outputLabel;

string command; // Operation to be executed

string skip;

string allowed;
StrType inputString;
int numCommands;

// Prompt for file names, read file names, and prepare files

cout << "Enter name of input command file; press return." << endl;

cin >> inFileName;
inFile.open(inFileName.c_str());

cout << "Enter name of output file; press return." << endl;

cin >> outFileName;
outFile.open(outFileName.c_str());

cout << "Enter name of input data file; press return." <K endl;

cin >> inDataName;
inData.open(inDataName.c_str());

cout << "Enter name of test run; press return." << endl;

cin >> outputLabel;
outFile << outputLabel << endl;

inFile >> command;
numCommands = 0;
while (command != "Quit")
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{
if (command == "GetString")
{
inFile >> skip >> allowed;
inputString.GetStringFile (Skip (skip),
Allowed (allowed), inData);
}
else if (command == "MakeEmpty")
inputString.MakeEmpty () ;
else if (command == "PrintToFile")
inputString.PrintToFile (true, outFile);
else if (command == "PrintToScreen")
inputString.PrintToScreen (true);
else if (command == "CopyString")
{
StrType secondString;
inputString.CopyString(secondString) ;
outFile << "String to copy: ";
inputString.PrintToFile(false, outFile);
outFile << " Copy of string: ";
secondString.PrintToFile(false, outFile);
}
else
{
outFile << endl << "length of string " ;
inputString.PrintToFile(false, outFile);
outFile << " ig " << inputString.LengthIs() << endl;
}
numCommands++;
cout < " Command number " << numCommands << " completed."
<< endl;
inFile >> command;
}
cout < "Testing completed." <X endl;

return O;

InType Allowed(std::string& inString)

{
if (inString == "ALPHA NUM")
return ALPHA_ NUM;
else if (inString == "ALPHA")
return ALPHA;
else if (inString == "NON_WHITE")

return NON_WHITE;
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else return NOT NEW;

bool Skip(std::
{
if (inString
return true
else return f

MakeEmpty
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile
GetString true
PrintToFile

string& inString)
== "true")

B

alse;

ALPHA_ NUM
ALPHA_ NUM
ALPHA_NUM
ALPHA_NUM
ALPHA_NUM
ALPHA_ NUM
ALPHA_ NUM
ALPHA_NUM
ALPHA_NUM
ALPHA_NUM
ALPHA_NUM
ALPHA NUM
ALPHA_ NUM
ALPHA_ NUM
NOT_NEW
NOT_NEW

NOT_NEW

Case Study: User-Defined String I/0 Class
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GetString true NOT_NEW

PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
GetString false
PrintToFile
LengthIs
CopyString
PrintToScreen
Quit

NOT_NEW

NOT_NEW

NOT_NEW

NOT_NEW

Summary

We have discussed how data can be viewed from multiple perspectives, and we have
seen how C++ encapsulates the implementations of its predefined types and allows us to
encapsulate our own class implementations.

As we create data structures, using built-in data types such as arrays, structs, and
classes to implement them, we see that there are actually many levels of data abstrac-
tion. The abstract view of an array might be viewed as the implementation level of the
programmer-defined data type List, which uses an array to hold its elements. At the logi-
cal level, we do not access the elements of List through their array indexes but rather
through a set of accessing operations defined especially for objects of the List type. A
data type that is designed to hold other objects is called a container or collection type.
Moving up a level, we might see the abstract view of List as the implementation level of
another programmer-defined data type, ProductInventory, and so on.

Perspectives on Data

Application Logical or Implementation
or user view abstract view view
Product .
Inventory List Array
v s
Z Z
- & Row major
List Array access
, ,function
7 7
» » _Bi
Row major Miidggn
Array access IBM
function Doyl [AE
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Exercises

What do we gain by separating these views of the data? First, we reduce complexity
at the higher levels of the design, making the program easier to understand. Second, we
make the program more easily modifiable: The implementation can be completely
changed without affecting the program that uses the data structure. We take advantage
of this ability in this text, developing various implementations of the same objects in
different chapters. Third, we develop software that is reusable: The structure and its
accessing operations can be used by other programs, for completely different applica-
tions, as long as the correct interfaces are maintained. You saw in Chapter 1 that the
design, implementation, and verification of high-quality computer software is a very
laborious process. Being able to reuse pieces that are already designed, coded, and tested
cuts down on the amount of work required.

In the chapters that follow, we extend these ideas to build other container classes that
C++ does not provide: lists, stacks, queues, priority queues, trees, graphs, and sets. We
consider these data structures from the logical view: What is our abstract picture of the
data, and what accessing operations can we use to create, assign, and manipulate ele-
ments in the data structure? We express our logical view as an abstract data type (ADT)
and record its description in a data specification.

Next, we take the application view of the data, using an instance of the data type in
a short example.

Finally, we change hats and turn to the implementation view of the data type. We
consider the C++ type declarations that represent the data structure as well as the
design of the functions that implement the specifications of the abstract view. Data
structures can be implemented in more than one way, so we often look at alternative
representations and methods for comparing them. In some of the chapters, we
include a longer Case Study in which instances of the data type are used to solve a
problem.

Exercises
1. Explain what we mean by “data abstraction.”

2. What is data encapsulation? Explain the programming goal “to protect our data
abstraction through encapsulation.”

3. Name three perspectives from which we can view data. Using the logical data
structure “a list of student academic records,” give examples of what each per-
spective might tell us about the data.

4. Consider the abstract data type GroceryStore.
a. At the application level, describe GroceryStore.

b. At the logical level, what grocery store operations might be defined for the
customer?

c. Specify (at the logical level) the operation CheckOut.
d. Write an algorithm (at the implementation level) for the operation CheckOut.
e. Explain how parts (c) and (d) represent information hiding.
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5. What composite types are predefined in the C++ language?

6. Describe the component selectors for structs and classes at the logical level.

7. Describe the accessing functions for structs and classes at the implementation
level.

8. Describe the component selectors for one-dimensional arrays at the logical level.

9. Describe the accessing functions for one-dimensional arrays at the implementa-
tion level.

10. a.
b.

Declare a one-dimensional array, name, that contains 20 characters.

If each character occupies one “cell” in memory, and the base address of
name is 1000, what is the address of the cell referenced in the following
statement?

name[9] = 'A';

Use the following declarations for Exercises 11 and 12:

enum MonthType {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,

OCT, NOV, DEC};

struct WeatherType

{

};

int avgHiTemp;
int avgLoTemp;
float actualRain;
float recordRain;

Assume that an int requires one cell in memory, that a £loat number requires
two cells, and that the struct members are found in contiguous memory loca-
tions with no gaps.

11. a.

12. a.

13.

Q

Declare a one-dimensional array type, weatherListType, of WeatherType
components, to be indexed by values of type MonthType. Declare a variable,
yearlyWeather, of weatherListType.

. Assign the value 1.05 to the actual rainfall member of the July record in year-

lyWeather.

If the base address of yearlyWeather is 200, what is the address of the
member that you assigned in part (b)?

Declare a two-dimensional array, decadeWeather, of WeatherType compo-
nents, to be indexed by values of type MonthType in the first dimension.

Draw a picture of decadeWeather.

Assign the value 26 to the avgLoTemp member of the March 1989 entry.
Define a three-dimensional array at the logical level.

Suggest some applications for three-dimensional arrays.
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Use the following declarations for Exercises 14-16.

typedef char String[10];
struct StudentRecord
{
String firstName;
String lastName;
int id;
float gpa;
int currentHours;
int totalHours;
1
StudentRecord student;
StudentRecord students[100];

Assume that an int requires one cell in memory, that a float number requires
two cells, and that the struct members are found in contiguous memory loca-
tions with no gaps.

14. Construct a member-length-offset table for StudentRecord.

15. If the base address of student is 100, what address does the compiler generate
as the target of the following assignment statement?

student.gpa = 3.87;

16. How much space does the compiler set aside for students?

17. Indicate which predefined C++ types would most appropriately model each of
the following (more than one may be appropriate for each):

a. a chessboard
b. information about a single product in an inventory-control program
c. alist of famous quotations

d. the casualty figures (number of deaths per year) for highway accidents in
Texas from 1954 to 1974

e. the casualty figures for highway accidents in each of the states from 1954 to
1974

f. the casualty figures for highway accidents in each of the states from 1954 to
1974, subdivided by month

g. an electronic address book (name, address, and phone information for all
your friends)

h. a collection of hourly temperatures for a 24-hour period
18. What C++ construct is used to represent abstract data types?
19. Explain the difference between a C++ struct and class.

20. How is the client prevented from directly accessing the details of an instance of
a class?
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21. a.

The details of a private member can be seen by the user of a class. (True or
False?)

. The details of a private member may be accessed by a client program. (True or

False?)

22. Why is it good practice to put a class declaration in one file and the implemen-
tation in another?

23. Name three ways that classes can relate to each other.

24. Distinguish between composition and inheritance.

25. Dintinguish between a base class and a derived class.

26. Does a derived class have access to the private data members of the base class?

27. Does a derived class have access to the public member functions of the base class?

28. a.

b.

C.

d.

Write the specification for an ADT SquareMatrix. (A square matrix can be rep-
resented by a two-dimensional array with N rows and N columns.) You may
assume a maximum size of 50 rows and columns. Include the following opera-
tions:

MakeEmpty (n), which sets the first n rows and columns to zero
StoreValue(i, j, value), which stores value into the [i, j] position

Add, which adds two matrices together

Subtract, which subtracts one matrix from another

Copy, which copies one matrix into another

Convert your specification to a C++ class declaration.
Implement the member functions.
Write a test plan for your class.

29. Enhance StrType by adding a ComparedTo function with the following specifi-
cation:

S,

RelationType ComparedTo(StrType& otherString)

Function: Compare self to otherString in terms of
alphabetic order.
Precondition:  Self and otherString have been initialized.
Postcondition:  Function value = LESS if self comes before
otherString

= GREATER if self comes
after otherString

= EQUAL if self and other-
String are equal
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31.

32.

Exercises

a. Write the member function ComparedTo using strcmp in <cstring>.

b. Rewrite the member function ComparedTo in the class StrType without
using the stremp library function.

Rewrite the member function CopyString in the class StrType without using
the strepy library function.

Rewrite the specification for the String ADT to include the changes that were
made during the implementation phase.

Complete the member functions GetAlpha and GetNonWhite in the class Str-
Type.
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ADTs Unsorted List
and Sorted List

After studying this chapter, you should be able to

B Use the list operations to implement utility routines to do the following
application-level tasks:

B Print the list of elements
m Create a list of elements from a file
B Implement list operations for both unsorted lists and sorted lists:
| Create and destroy a list
B Determine whether the list is full
B Insert an element
I Retrieve an element
B Delete an element

B Explain the use of Big-O notation to describe the amount of work done by an
algorithm

B Compare the unsorted list operations and the sorted list operations in terms of
Big-0 approximations

B Define class constructors
M Overload the relational operators less than (<) and equality (==)

B [dentify and apply the phases of an object-oriented methodology
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]

In Chapter 2, we defined an abstract data type and showed how all data can be viewed
from three perspectives: from the logical perspective, the implementation perspective,
and the application perspective. The logical perspective is the abstract view of what the
ADT does. The implementation perspective offers a picture of how the logical operations
are carried out. The application perspective shows why the ADT behaves as it does—that
is, how the behavior can be useful in a real-world problem.

In this chapter, we look at an ADT that should be familiar to all of us: the list. We
all know intuitively what a “list” is; in our everyday lives we use lists constantly—gro-
cery lists, lists of things to do, lists of addresses, lists of party guests. Lists are places
where we write down things that we want to remember.

Lists

In computer programs, lists are very useful abstract data types. They are members of a
general category of abstract data types called containers, whose purpose is to hold other
objects. In some languages, the list is a built-in structure. In Lisp, for example, the list is
the main data structure provided in the language. In C++, while lists are provided in the
Standard Template Library, the techniques for building lists and other abstract data
types are so important that we show you how to design and write your own.
From a theoretical point of view, a list is a homo-
geneous collection of elements, with a linear relation-

Linear relationship Each element except the first has a
unique predecessor, and each element except the last has
a unique successor

Length The number of items in a list; the length can
vary over time

Unsorted list A list in which data items are placed in no
particular order; the only relationships between data ele-
ments are the list predecessor and successor relationships

Sorted list A list that is sorted by the value in the key; a
semantic relationship exists among the keys of the items
in the list

Key A member of a record (struct or class) whose value
is used to determine the logical and/or physical order of
the items in a list

ship between elements. Linear means that, at the
logical level, each element in the list except the first
one has a unique predecessor, and each element
except the last one has a unique successor. (At the
implementation level, a relationship also exists
between the elements, but the physical relationship
may not be the same as the logical one.) The number
of items in the list, which we call the length of the list,
is a property of a list. That is, every list has a length.
Lists can be unsorted—their elements may be
placed into the list in no particular order—or they can
be sorted in a variety of ways. For instance, a list of
numbers can be sorted by value, a list of strings can
be sorted alphabetically, and a list of grades can be
sorted numerically. When the elements in a sorted list

are of composite types, their logical (and often physical) order is determined by one of
the members of the structure, called the key member. For example, a list of students on
the honor roll can be sorted alphabetically by name or numerically by student identifi-
cation number. In the first case, the name is the key; in the second case, the identifica-
tion number is the key. Such sorted lists are also called key-sorted lists.

If a list cannot contain items with duplicate keys, it is said to have unique keys.
This chapter deals with both unsorted lists and lists of elements with unique keys, sorted
from smallest to largest key value.
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Abstract Data Type Unsorted List

Logical Level

Programmers can provide many different operations for lists. For different applications
we can imagine all kinds of things users might need to do to a list of elements. In this
chapter we formally define a list and develop a set of general-purpose operations for
creating and manipulating lists. By doing so, we build an abstract data type.

In the next section we design the specifications for a List ADT where the items in
the list are unsorted; that is, no semantic relationship exists between an item and its
predecessor or successor. [tems simply appear next to one another in the list.

Abstract Data Type Operations

The first step in designing any abstract data type is to stand back and consider what a
user of the data type would want it to provide. Recall that there are four kinds of opera-
tions: constructors, transformers, observers, and iterators. We begin by reviewing each
type and consider each kind of operation with respect to the List ADT. We use a hand-
writing font for operation names at the logical level and change to a monospaced font
when we refer to specific implementation.

Constructors A constructor creates an instance of the data type. It is usually
implemented with a language-level declaration.

Transformers Transformers are operations that change the structure in some way:
They may make the structure empty, put an item into the structure, or remove a specific
item from the structure. For our Unsorted List ADT, let’s call these transformers
m , Tsent Ttem, and Deletetem.

Vi needs only the list, no other parameters. As we implement our opera-
tions as member functions, the list is the object to which the function is applied.
Tosettem and Deleteltem need an additional parameter: the item to be inserted or
removed. For this Unsorted List ADT, let’s assume that the item to be inserted is not cur-
rently in the list and the item to be deleted is in the list.

A transformer that takes two sorted lists and merges them into one sorted list or
appends one list to another would be a binary transformer. The specification for such an
operation is given in the exercises, where you are asked to implement it.

Observers  Observers come in several forms. They ask true/false questions about the
data type (Is the structure empty?), select or access a particular item (Give me a copy of
the last item.), or return a property of the structure (How many items are in the
structure?). The Unsorted List ADT needs at least two observers: Is3=/ and é@m@%ﬂ.
L34 returns true if the list is full; PengthTs tells us how many items appear in the
list. Another useful observer searches the list for an item with a particular key and
returns a copy of the associated information if it is found; let’s call it Retuieseltem.
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If an abstract data type places limits on the component type, we could define other
observers. For example, if we know that our abstract data type is a list of numerical val-
ues, we could define statistical observers such as MWlwimuwn, Wlagimuwm, and 7&0%418,6
Here, we are interested in generality; we know nothing about the type of the items on
the list, so we use only general observers in our ADT.

In most of our discussions of error checking to date, we have put the responsibility
of checking for error conditions on the user through the use of preconditions that pro-
hibit the operation’s call if these error conditions exist. In making the client responsible
for checking for error conditions, however, we must make sure that the ADT gives the
user the tools with which to check for the conditions. In another approach, we could
keep an error variable in our list, have each operation record whether an error occurs,
and provide operations that test this variable. The operations that check whether an
error has occurred would be observers. However, in the Unsorted List ADT we are speci-
fying, let’s have the user prevent error conditions by obeying the preconditions of the
ADT operations.

Iterators Iterators are used with composite types to allow the user to process an entire
structure, component by component. To give the user access to each item in sequence,
we provide two operations: one to initialize the iteration process (analogous to Reset or
Open with a file) and one to return a copy of the “next component” each time it is
called. The user can then set up a loop that processes each component. Let’s call these
operations ResetLust and qef}’twﬁﬂam Note that ResetFust is not an iterator itself, but
rather an auxiliary operation that supports the iteration. Another type of iterator takes
an operation and applies it to every element in the list.

C++  Declarations and Definitions

In general programming terminology, a declaration associates an identifier with a data object, an action
(such as a function), or a data type. C++ terminology distinguishes between a declaration and a defini-
tion. A declaration becomes a definition when it binds storage to the identifier. Hence, all definitions
are declarations, but not all declarations are definitions. For example, a function prototype is a declara-
tion, but a function heading with a body is a function definition. On the other hand, declarations such
as typedef can never be definitions, because they are not bound to storage. Because of the way that
C++ treats classes, their specification is also a definition. Because the ISO/ANSI C++ standard uses the
term “definition” rather than "declaration” when referring to a class, we do the same here.

Generic Data Types

A generic data type is one for which the operations are defined but the types of the
items being manipulated are not. Some programming
languages have a built-in mechanism for defining

Generic data type A type for which the operations are generic data types; others lack this feature. Although

defined but the types of the items being manipulated are

not

C++ does have such a mechanism (called a template),
we postpone its description until the next chapter.
Here we present a simple, general-purpose way of
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simulating generics that works in any programming language. We let the user define the
type of the items on the list in a class named ItemType and have our Unsorted List ADT
include the class definition.

Two of the list operations (Deletetem and Wetuicoeltem) will involve the comparison
of the keys of two list components (as does TwsextItem if the list is sorted by key value).
We could require the user to name the key data member “key” and compare the key
data members using the C++ relational operators. However, this approach isn’t a very
satisfactory solution for two reasons: “key” is not always a meaningful identifier in an
application program, and the keys would be limited to values of simple types. C++ does
have a way to change the meaning of the relational operators (called overloading
them), but for now we present a general solution rather than a language-dependent
one.

We let the user define a member function Compared To in the class Iterr\/L%ﬂoe. This
function compares two items and returns LESS, GREATER, or EQUAL depending on
whether the key of one item comes before the key of the other item, the first key comes
after it, or the keys of the two items are equal, respectively. If the keys are of a simple
type such as an identification number, @oan& would be implemented using the
relational operators. If the keys are strings, function &W{E would use the string-
comparison operators supplied in <string>. If the keys are people’s names, both the
last name and the first name would be compared. Therefore, our specification assumes
that Compared To is a member of IM»L%F&

Our ADT needs one more piece of information from the client: the maximum num-
ber of items on the list. As this information varies from application to application, it is
logical for the client to provide it.

Let’s summarize our observations in two CRC cards: one for I@”Lrgd‘”’ and the other

for %wh&“@oe Note that %M@oe collaborates with Item,L%ﬂO&

( ™
Class Name: Superclass: Subclasses:

Responsibilities Collaborations

D ,
Fouvide

Y LAY THI <

o

1 AP
o £)

0 P A G0 4.
k,,\’)/*\zp»;ilk,&f, ]‘o (e ) weliiwns “seloion f‘ﬁuc
\ - v

TEAM LinG - Live, Informative, Non-cost and Genuine!

127



128

Chapter 3: ADTs Unsorted List and Sorted List
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Now we can formalize the specification for the Unsorted List ADT.

Unsorted List ADT Specification
” Structure:

The list elements are of ItemType. The list has a special prop-
erty called the current position—the position of the last element
accessed by GetNextItem during an iteration through the list.
Only ResetList and GetNextItem affect the current position.

Definitions and Operation (provided by user):

MAX_ITEMS:
ItemType:

RelationType:

A constant specifying the maximum number
of items on the list

Class encapsulating the type of the items in the
list

An enumeration type that consists of LESS,
GREATER, EQUAL

Member function of ItemType that must be included:

RelationType ComparedTo(ItemType item)

Function:

Determines the ordering of two ItemType
objects based on their keys.
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Precondition:  Self and item have their key members initial-
ized.
Postcondition:
Function value = LESS if the key of self is less than the key
of item.

= GREATER if the key of self is greater than
the key of item.

= EQUAL if the keys are equal.

Operations (provided by Unsorted List ADT):
MakeEmpty
Function: Initializes list to empty state.

Preconditions: None.
Postcondition:  List is empty.

Boolean IsFull
Function: Determines whether list is full.

Precondition:  List has been initialized.
Postcondition: Function value = (list is full).

int Lengthls
Function: Determines the number of elements in list.

Precondition: List has been initialized.
Postcondition: Function value = number of elements in list

Retrieveltem (ItemType& item, Boolean& found)
Function: Retrieves list element whose key matches
item’s key (if present).
Preconditions: List has been initialized.
Key member of item is initialized.

Postconditions: If there is an element someltem whose key
matches item’s key, then found = true and
item is a copy of someltem; otherwise found =
false and item is unchanged.

List is unchanged.

Insertltem (ItemType item)
Function: Adds item to list.

Preconditions: List has been initialized.
List is not full.
item is not in list.
Postcondition:  item is in list.
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Deleteltem (ItemType item)

Function: Deletes the element whose key matches item’s
key.

Preconditions:  List has been initialized.
Key member of item is initialized.
One and only one element in list has a key
matching item’s key.

Postcondition: No element in list has a key matching item’s
key.

ResetList
Function: Initializes current position for an iteration
through the list.

Precondition:  List has been initialized.
Postcondition:  Current position is prior to first element in list.

GetNextltem (ItemType& item)
Function: Gets the next element in list.

Preconditions:  List has been initialized.
Current position is defined.
Element at current position is not last in list.
Postconditions: Current position is updated to next position.
item is a copy of element at current position.

Because we do not know the makeup of the key member in the ItemType, we must
pass an entire object of ItemType as the parameter to both RetrieveItem and
DeleteItem. Notice that the preconditions for both operations state that the key mem-
ber of the parameter item is initialized. RetrieveIten fills in the rest of the members
of item if a list component with the same key is found, and DeleteItem removes from
the list the component whose key matches that of item.

The specifications of the operations are somewhat arbitrary. For instance, we speci-
fied in the preconditions of DeleteItem that the element to delete must exist in the list
and must be unique. We could also specify an operation that does not require the ele-
ment to be in the list and leaves the list unchanged if the item is not present. This deci-
sion is a design choice. If we were designing a specification for a specific application,
then the design choice would be based on the requirements of the problem. In this case,
we made an arbitrary decision. In the exercises, you are asked to examine the effects of
different design choices.

The operations defined in this specification are a sufficient set to create and main-
tain an unsorted list of elements. Notice that no operation depends on the type of the
items in the structure. This data independence makes the Unsorted List ADT truly
abstract. Each program that uses the Unsorted List ADT defines ItemType within the
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context of the application and provides a comparison member function defined on two
items of type ItemType.

Application Leve

The set of operations provided for the Unsorted List ADT may seem rather small and
primitive. In fact, this set of operations gives you the tools to create other special-pur-
pose routines that require a knowledge of ItemType. For instance, we have not
included a print operation. Why? Because to write a print routine, we must know what
the data members look like. The user (who does know what the data members look like)
can use the LengthIs, ResetList, and GetNextItem operations to iterate through the
list, printing each data member in turn. In the code that follows, we assume that the
user has defined a member function for ItemType that prints the data members of one
item. We also assume that the Unsorted List ADT is itself implemented as a class with
the operations as member functions.

void PrintList(std::ofstream& dataFile, UnsortedType list)

/] Pre:

/7

list has been initialized.

dataFile is open for writing.

// Post: Each component in list has been written to dataFile.

/7
{

dataFile is still open.

int length;

ItemType item;

list.ResetList();
length = list.LengthIs();
for (int counter = 1; counter <= length; counter++)

{

list.GetNextItem(item) ;
item.Print(dataFile) ;

Note that we defined a local variable length, stored the result of
list.LengthIs() in it, and used the local variable in the loop. We did so for efficiency
reasons: The function is called only once, saving the overhead of extra function calls.

Another operation that depends on the application reads data (of type ItemType)
from a file and creates a list containing these elements. Without knowing how the list is
implemented, the user can write a function CreateListFromFile, using the operations
specified in the Unsorted List ADT. We assume a function GetData, which accesses the
individual data members from the file and returns them in item.

void CreateListFromFile(std::ifstream& dataFile, UnsortedType& list)
// Pre: dataFile exists and is open.

// Post: list contains items from dataFile.
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// dataFile is in the fail state due to end-of-file.
// Items read after the list becomes full are discarded.
{

ItemType item;

list.MakeEmpty () ;
GetData(dataFile, item); // Reads one item from dataFile.
while (dataFile)
{
if (!list.IsFull())
list.InsertItem(item) ;
GetData(dataFile, item);

In these two functions we have made calls to the list operations specified for the
UnsortedList ADT, creating and printing a list without knowing how the list is imple-
mented. At an application level, these tasks are logical operations on a list. At a lower
level, these operations are implemented as C++ functions that manipulate an array or
other data-storing medium holding the list’s elements. Multiple functionally correct
ways are available to implement an abstract data type. Between the user picture and the
eventual representation in the computer’s memory, intermediate levels of abstraction
and design decisions are possible. For instance, how is the logical order of the list ele-
ments reflected in their physical ordering? We address questions like this as we now
turn to the implementation level of our ADT.

Implementation Level

The logical order of the list elements may or may not mirror the way that we actually
store the data. If we implement a list in an array, the components are arranged so that
the predecessor and the successor of a component are physically before and after it,
respectively. In Chapter 5, we introduce a way of implementing a list in which the com-
ponents are sorted logically rather than physically. However, the way that the list ele-
ments are physically arranged certainly affects the way that we access the elements of
the list. This arrangement may have implications for the efficiency of the list operations.
For instance, nothing in the specification of the Unsorted List ADT requires us to imple-
ment the list with the elements stored in random order. If we stored the elements in an
array, completely sorted, we could still implement all of the Unsorted List operations.
Does it make a difference if the items are stored unsorted or sorted? At the end of this
chapter, we introduce Big-O notation as a way of comparing the efficiency of algo-
rithms, and we answer this question then.

There are two ways to implement a list that preserves the order of the list items—
that is, that stores the elements physically in such a way that, from one list element, we
can access its logical successor directly. We look at a sequential array-based list repre-
sentation in this chapter. The distinguishing feature of this implementation is that the
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elements are stored sequentially, in adjacent slots in an array. The order of the elements
is implicit in their placement in the array.

The second approach, which we introduce in Chapter 5, is a linked-list representa-
tion. In a linked implementation, the data elements are not constrained to be stored in
physically contiguous, sequential order; rather, the individual elements are stored
“somewhere in memory,” and explicit links between them maintain their order.

Before we go on, let’s establish a design terminology that we can use in our algo-
rithms, independent of the eventual list implementation.

List Design Terminology Assuming that location “accesses” a particular list element,

Node(location) refers to all data at location, including implementation-specific data.
Info(location) refers to the user’s data at location.

Info(last) refers to the user’s data at the last location in the list.
Next(location) gives the location of the node following Node(location).

What, then, is location? For an array-based implementation, location is an index,
because we access array slots through their indexes. For example, the design statement

Print element Info(location)

means “Print the user’s data in the array slot at index location”; eventually it might
be coded in C++ as

list.info[location] .Print(dataFile) ;

When we look at a linked implementation in a later chapter, the translation is quite dif-
ferent but the algorithms remain the same. That is, our code implementing the opera-
tions changes, but the algorithms do not. Thus, using this design notation, we define
implementation-independent algorithms for our List ADT.

But what does Next(location) mean in an array-based sequential implementation?
To answer this question, consider how we access the next list element stored in an
array: We increment the location, which is the index. The design statement

Set location to Next(location)
might, therefore, be coded in C++ as
locationt+; // location is an array index.

We have not introduced this list design terminology just to force you to learn the
syntax of another computer “language.” Rather, we want to encourage you to think of
the list, and the parts of the list elements, as abstractions. We have intentionally made
the design notation similar to the syntax of function calls to emphasize that, at the
design stage, the implementation details can be hidden. A lower level of detail is encap-
sulated in the “functions” Node, Info, and Next. Using this design terminology, we hope
to record algorithms that can be coded for both array-based and linked implementations.
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Data Structure In our implementation, the elements of a list are stored in an array of
class objects.

ItemType info[MAX_ITEMS];

We need a length data member to keep track of both the number of items we have
stored in the array and the location where the last item was stored. Because the list
items are unsorted, we place the first item put into the list into the first slot, the second
item into the second slot, and so forth. Because our language is C++, we must remember
that the first slot is indexed by 0, the second slot by 1, and the last slot by MAX_ITEMS
- 1. Now we know where the list begins—in the first array slot. Where does the list end?
The array ends at the slot with index MAX_ITEMS - 1, but the list ends in the slot with
index length - 1.

Is there any other information about the list that we must include? Both operations
ResetList and GetNextItem refer to a “current position.” What is this current posi-
tion? It is the index of the last element accessed in an iteration through the list. Let’s
call it currentPos. ResetList initializes currentPos to —1. GetNextItem incre-
ments currentPos and returns the value in info[currentPos]. The ADT specification
states that only ResetList and GetNextItem affect the current position. Figure 3.1
illustrates the data members of our class UnsortedType.

class UnsortedType

length [
info [o]
[1] —~<—— Logical List
[2] items stored in
[3] an array
[length-1]
[MAX_ITEMS-1]

Figure 3.1 Data members of class UnsortedType
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#finclude "ItemType.h"
// File ItemType.h must be provided by the user of this class.
// ItemType.h must contain the following definitions:
// MAX_ITEMS: the maximum number of items on the list
// ItemType: the definition of the objects on the list
// RelationType: {LESS, GREATER, EQUAL}
// Member function ComparedTo(ItemType item), which returns
// LESS, if self "comes before" item
// GREATER, if self "comes after" item
// EQUAL, if self and item are the same
class UnsortedType
{
public:

UnsortedType () ;

bool IsFull() const;

int LengthIs() const;

void Retrieveltem(ItemType& item, bool& found);
void InsertItem(ItemType item);

void Deleteltem(ItemType item);

void ResetList();

void GetNextItem(ItemType& item);

private:

}s

int length;
ItemType info[MAX_ ITEMS];
int currentPos;

Now let’s look at the operations that we have specified for the Unsorted List ADT.

Constructor Operations W1 is an

initialization, or constructor, operation. We Class constructor A special member function of a class
said earlier that such an operation is often that is implicitly invoked when a class object is defined
a language-level operation. C++ provides a

language-level construct called a class

constructor that performs this initialization automatically when a variable of the class is
declared. A class constructor is a member function having the same name as the class

but no return type. A constructor initializes class members and, if necessary, allocates
resources (usually memory) for the object being constructed. Like any other member
function, a constructor has access to all members, public and private, both data
members and function members. Also like all other member functions, class
constructors can have an empty parameter list (called a default constructor) or have one

or more parameters.
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If we are implementing the Wlakagmdo% operation with the class constructor, what
must the UnsortedType class constructor do? The postcondition states that the list is
empty. Any array cannot be “empty”; after all, the slots still exist. A list, however, con-
sists of only those values that we have stored in the array, that is, from location zero
through location length - 1. An empty list, then, is one where the length is O.

UnsortedType: :UnsortedType ()

{

length = 0;

Notice that we do not have to do anything to the array that holds the list items to
make a list empty. If length is zero, the list is empty. If length is not zero, we must
have stored items in the array through the length - 1 position, covering up what was
there. What is present in the array from the length position to the end is of no interest
to us. This distinction is very important: The list is between positions 0 and length -
1; the array is between positions 0 and MAX_ITEMS - 1.

C++  Rules for Using Class Constructors

C++ has intricate rules governing the use of constructors. The following guidelines are especially
pertinent:

1.

A constructor cannot return a function value, so the function is declared without a return
value type. Although not necessary, return statements with no expressions are allowed at the
end of a constructor. Thus return; is legal in a constructor, but return 0; is not.

Like any other member function, a constructor may be overloaded. Hence, a class may pro-
vide several constructors. When a class object is declared, the compiler chooses the appro-
priate constructor based on the number and data types of the parameters to the constructor,
just as in any other call to overloaded functions.

Arguments to a constructor are passed by placing the argument list immediately after the
name of the class object being declared:

SomeType myObject(argumentl, argument2);

If a class object is declared without a parameter list, as in the statement

SomeType myObject;

then the effect depends on the constructors (if any) provided by the class. If the class has no
constructors, the compiler generates a default constructor that does nothing. If the class

does have constructors, then the default (parameterless) constructor is invoked if there is
one. If the class has constructors but no default constructor, a syntax error occurs.
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If a class has at least one constructor, and an array of class objects is declared as in the
statement

SomeType myObject[5];

then one of the constructors must be the default (parameterless) constructor. This construc-
tor is invoked for each element in the array.

Observer Operations The observer function IsFull checks whether length is equal to
MAX_TITEMS.

bool UnsortedType::IsFull() const

{

return (length == MAX_ITEMS) ;

The body of the observer member function LengthIs is also just one statement.

int UnsortedType::LengthIs() const

{

return length;

So far we have not used our special design terminology. The algorithms have all
been one (obvious) statement long. The next operation, RetrieveItem, iS more com-
plex. The RetrieveItem operation allows the list user to access the list item with a
specified key, if that element exists in the list. item (with the key initialized) is input to
this operation; item and a flag (found) are returned. If the key of item matches a key
in the list, then found is true and item is set equal to the element with the same key.
Otherwise, found is false and item remains unchanged. Notice that item is used for
both input to and output from the function. Conceptually, the key member is input; the
other data members are output because the function fills them in.

To retrieve an element, we must first find it. Because the items are unsorted, we
must use a linear search. We begin at the first component in the list and loop until
either we find an item with the same key or there are no more items to examine. Recog-
nizing a match is easy: item.ComparedTo (info[location]) returns EQUAL. But how
do we know when to stop searching? If we have examined the last element, we can stop.
Thus, in our design terminology, we continue looking as long as we have not examined
Info(last). Our looping statement is a while statement with the expression (moreToSearch
AND NOT found). The body of the loop is a switch statement based on the results of
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function ComparedTo. We summarize these observations in the following algorithm:

Retrieveltem
Initialize location to position of first item
Set found to false
Set moreToSearch to (have not examined Info(last))
while moreToSearch AND NOT found

switch (item.ComparedTo(Info(location)))

case LESS

case GREATER: Set location to Next(location)

Set moreToSearch to (have not examined Info(last))

case EQUAL : Set found to true
Set item to Info(location)
[ D]
Before we code this algorithm, let’s look at the cases where we find the item in the
list and where we examine Info(last) without finding it. We represent these cases in Fig-
ure 3.2 in an honor roll list. First, we retrieve Sarah. Sarah is in the list, SO more-
ToSearch is true, found is true, and location is 3. That’s as it should be (see Figure
(a) Retrieve Sarah (b) Retrieve Susan
f b g N
length *J moreToSearch: true length [%J moreToSearch: false
info [0]| Bobby found : true info [0][ Bobby found : false
[1]] Judy location : 3 [1]] Judy location A
[2]| June (2] June
[3]] Sarah [3]| Sarah
logical logical
garbage 5 garbage
[MAX_ITEMS-1] [MAX_ITEMS-1]
A" J A" J

Figure 3.2 Retrieving an item in an unsorted list
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3.2a). Next, we retrieve Susan. Susan is not in the list, SO moreToSearch is false,
found is false, and location is equal to length (see Figure 3.2b).

Now we are ready to code the algorithm, replacing the general design notation with
the equivalent array notation. The substitutions are straightforward except for initializ-
ing location and determining whether we have examined Info(last). To initialize
location in an array-based implementation in C++, we set it to 0. We know we have
not examined Info(last) as long as location is less than length. Be careful: Because
C++ indexes arrays starting with O, the last item in the list is found at index length -
1. Here is the coded algorithm:

void UnsortedType::Retrieveltem(ItemType& item, bool& found)

// Pre: Key member(s) of item is initialized.

// Post: If found, item's key matches an element's key in the

/1
/7
{

list and a copy of that element has been stored in item;
otherwise, item is unchanged.

bool moreToSearch;

int location = 0;
found = false;
moreToSearch = (location < length);

while (moreToSearch && !found)

switch (item.ComparedTo (info[location]))

case LESS
case GREATER : locationt+;
moreToSearch = (location < length);
break;
case EQUAL : found = true;
item = info[location];
break;

Note that a copy of the list element is returned. The caller cannot access directly
any data in the list.

Transformer Operations Where do we insert a new item? Because the list elements are
unsorted by key value, we can put the new item anywhere. A straightforward strategy is
to place the item in the length position and then to increment length.
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Insertitem

Set Info(length) to item
Increment length

This algorithm is translated easily into C++.

void UnsortedType::InsertItem(ItemType item)
// Post: item is in the list.

{

info[length] = item;
lengtht++;

The DeleteItem function takes an item with the key member indicating which
item to delete. This operation clearly has two parts: finding the item to delete and
removing it. We can use the RetrieveItem algorithm to search the list: When Com-
paredTo returns GREATER or LESS, we increment location; when it returns EQUAL, we
exit the loop and remove the element.

How do we “remove the element from the list”? Let’s look at the example in Figure
3.3. Removing Sarah from the list is easy, for hers is the last element in the list (see Fig-
ures 3.3a and 3.3b). If Bobby is deleted from the list, however, we need to move up all
the elements that follow to fill in the space—or do we? If the list is sorted by value, we
would have to move all elements up, as shown in Figure 3.3(c). Because the list is
unsorted, however, we can just swap the item in the length - 1 position with the item
being deleted (see Figure 3.3d). In an array-based implementation, we do not actually
remove the element; instead, we cover it up with the element that previously followed it
(if the list is sorted) or the element in the last position (if the list is unsorted). Finally, we
decrement length.

Because the preconditions for DeleteItem state that an item with the same key is
definitely present in the list, we do not need to test for the end of the list. This choice
simplifies the algorithm so much that we give the code with no further discussion.

void UnsortedType::Deleteltem(ItemType item)

// Pre: item's key has been initialized.
// An element in the list has a key that matches item's.
// Post: No element in the list has a key that matches item's.
{

int location = 0;
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(b) Deleting Sarah

(c) Deleting Bobby (move up)

r N 4
length length
info [0] | Bobby info [0]| Bobby
[1]] Judy [1]] Judy
[2]] June [2]] June
[3]] Sarah [3]] Sarah
logical
garbage
[MAX_ITEMS-1]
\ . \

logical
garbage

[MAX_ITEMS-1]

(d) Deleting Bobby (swap)

r " 4
length length
info [0][ Judy info [0]] Sarah
[1]] June [1]] Judy
[2] | Sarah [2]] June
[3]]| Sarah [3]]| Sarah
logical
garbage
[MAX_ITEMS-1]
\ v N

logical
garbage

[MAX_ITEMS-1]

Figure 3.3  Deleting an item in an unsorted list

TEAM LinG - Live, Informative, Non-cost and Genuine!



142 Chapter 3: ADTs Unsorted List and Sorted List
while (item.ComparedTo(info[location]) != EQUAL)
locationt+;
info[location] = info[length - 1];
length--;
}
Iterator Operations The ResetList function is analogous to the open operation for a
file in which the file pointer is positioned at the beginning of the file so that the first
input operation accesses the first component of the file. Each successive call to an input
operation gets the next item in the file. As a consequence, ResetList must initialize
currentPos to point to the predecessor of the first item in the list.
The GetNextItem operation is analogous to an input operation; it accesses the
next item by incrementing currentPos and returning Info(currentPos).
> |
ResetList

Initialize currentPos

GetNextltem
Set currentPos to Next(currentPos)
Set item to Info(currentPos)

currentPos remains undefined until ResetList initializes it. After the first call to
GetNextItem, currentPos is the location of the last item accessed by GetNextItem.
Therefore, to implement this algorithm in an array-based list in C++, currentPos must
be initialized to — 1. These operations are coded as follows:

void UnsortedType::ResetList()
// Post: currentPos has been initialized.
{

currentPos = -1;

What would happen if a transformer operation is executed between calls to GetNext -
Item? The iteration would be invalid. We should add a precondition to prevent this
from happening.

void UnsortedType::GetNextItem(ItemType& item)
// Pre: No transformer has been executed since last call
// Post: item is current item.

/] Current position has been updated.
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currentPos++;

item

= info[currentPos];

ResetList and GetNextItem are designed to be used in a loop in the client pro-
gram that iterates through all items in the list. The precondition in the specifications for
GetNextItem protects against trying to access an array element that is not present in
the list. This precondition requires that, before a call to GetNextItem, the element at
the current position not be the last item in the list. Notice that this precondition places
the responsibility for accessing only defined items on the client rather than on GetNext-
Item.

Notes on the Array-Based List Implementation In several of our list operations, we
have declared the local variable location, which contains the array index of the list
item being processed. The values of array indexes are never revealed outside of the list
operations; this information remains internal to the implementation of the Unsorted List
ADT. If the list user wants an item in the list, the RetrieveItem operation does not
give the user the index of the item; instead, it returns a copy of the item. If the user
wants to change the values of data members in an item, those changes are not reflected
in the list unless the user deletes the original values and inserts the modified version.
The list user can never see or manipulate the physical structure in which the list is
stored. These details of the list implementation are encapsulated by the ADT.

Test Plan The class UnsortedType has a constructor and seven other member
functions: InsertItem and DeleteItem (transformers); IsFull, LengthIs, and
RetrieveItem (observers); and ResetList and GetNextItem (iterators). Because our
operations are independent of the type of the objects on the list, we can define
ItemType to be int and know that if our operations work with these data, they work
with any other ItemType. Here, then, is the definition of ItemType that we use in our
test plan. We set the maximum number of items to 5. We include a member function to
print an item of the class ItemType to an ofstream object (a file). We need this
function in the driver program to see the value in a list item.

// The following declarations and definitions go into file ItemType.h.
#include <fstream>

const int MAX ITEMS = 5;
enum RelationType {LESS, GREATER, EQUAL};

class ItemType

{

public:
ItemType() ;
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RelationType ComparedTo(ItemType) const;
void Print(std::ofstream&) const;
void Initialize(int number) ;
private:
int value;

1

// The following definitions go into file ItemType.cpp.
#include <fstream>

finclude “ItemType.h”

ItemType::ItemType ()

{

value = 0;

RelationType ItemType::ComparedTo(ItemType otherItem) const
{
if (value < otherItem.value)
return LESS;
else if (value > otherItem.value)
return GREATER;
else return EQUAL;

void ItemType::Initialize(int number)
{

value = number;

void ItemType::Print(std::ofstream& out) const
// Pre: out has been opened.
// Post: value has been sent to the stream out.
{

out << value <K " ",

The preconditions and postconditions in our specification determine the tests neces-
sary for a black-box testing strategy. The code of the functions determines a clear-box
testing strategy. To test the ADT Unsorted List implementation, we use a combination of
the two strategies. Because a precondition on all other operations is that the list has
been initialized, we test the constructor by checking whether the list is empty initially (a
call to LengthIs returns 0).

Lengthls, InsertItem, and DeleteItem must be tested together. That is, we
insert several items and check the length; we delete several items and check the
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length. How do we know that InsertItem and DeleteItem work correctly? We
write an auxiliary function PrintList that uses LengthIs, ResetList, and Get-
NextItem to iterate through the list, printing out the values. We call PrintList to
check the status of the list after a series of insertions and deletions. To test the
IsFull operation, we insert four items and print the result of the test, and then insert
the fifth item and print the result of the test. To test RetrieveItem, we search for
items that we know are present in the list and for items that we know are not found
in the list.

How do we choose the values used in our test plan? We look at the end cases. What
are the end cases in a list? The item is in the first position in the list, the item is in the
last position in the list, and the item is the only one in the list. We must be sure that
DeleteItem can correctly delete items in these positions. We must also confirm that
RetrieveItem can find items in these same positions and correctly determine that val-
ues that are less than the one in the first position or greater than the one in the last
position are not found. Notice that this test plan involves a black-box strategy. That is,
we look at the list as described in the interface, not the code.

These observations are summarized in the following test plan. The tests are shown
in the order in which they should be performed.

Operation to Be Tested and

Description of Action Input Values Expected Output
Constructor

print LengthIs 0
InsertItem

Insert four items and print 57,69 5769

Insert item and print 1 57691
RetrieveItem

Retrieve 4 and print whether found [tem is not found

Retrieve 5 and print whether found [tem is found

Retrieve 9 and print whether found Item is found

Retrieve 10 and print whether found [tem is not found
IsFull

Invoke (list is full) List is full

Delete 5 and invoke List is not full
Deleteltem

Delete 1 and print 769

Delete 6 and print 79
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3.3

What about testing LengthIs, ResetList, and GetNextItem? They do not appear
explicitly in the test plan, but they are tested each time we call the auxiliary function
PrintList to print the contents of the list.

On the Web, the file 1istType.in contains the input to 1istDr.cpp (the test driver)
that reflects this test plan; 1istType.out and 1istTest.screen contain the output.

Abstract Data Type Sorted List

At the beginning of this chapter, we said that a list is a linear sequence of items; from
any item (except the last) you can access the next item. We looked at the specifications
and implementation for the operations that manipulate a list and guarantee this property.

Now we want to add another property: the key member of any item (except the
first) comes before the key member of the next one. We call a list with this property a
sorted list.

Logical Level

When we defined the specification for the Unsorted List ADT, we commented that noth-
ing in the specification prevented the list from being stored and maintained in sorted
order. Now, we must change the specification to guarantee that the list is sorted. We
must add preconditions to those operations for which order is relevant. The observer
functions do not change the state of the list, so we do not have to change them. Like-
wise, the algorithm for Wetueseltem can be improved but works on a sorted list. The
algorithms for ResetFist and Nextltem are not changed by the additional property.
What, then, must be changed? Duedltem and Deleteltem.

Sorted List ADT Specification (Partial)
‘ ’ Insertltem (ItemType item)

Function: Adds item to list.
Preconditions: List has been initialized.
List is not full.
item is not in list.

List is sorted by key member using the func-
tion ComparedTo.

Postconditions: item is in list.
List is still sorted.

Deleteltem (ItemType item)

Function: Deletes the element whose key matches item’s
key.
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Preconditions: List has been initialized.
Key member of item is initialized.
List is sorted by key member using the func-
tion ComparedTo.
One and only one element in list has a key
matching item’s key.

Postconditions: No element in list has a key matching item’s
key.
List is still sorted.

Application Level

The application level for the Sorted List ADT is the same as that for the Unsorted List
ADT. As far as the user is concerned, the interfaces are the same. The only difference is
that when GetNextItem is called in the Sorted List ADT, the element returned is the
next one in order by key. If the user wants that property, the client code includes the
file containing the class SortedType rather than UnsortedType.

Implementation Level

InsertItem Operation To add an element to a sorted list, we must first find the place
where the new element belongs, which depends on the value of its key. Let’s use an
example to illustrate the insertion operation. Suppose that Becca has made the honor
roll. To add the element Becca to the sorted list pictured in Figure 3.4(a) while
maintaining the alphabetic ordering, we must accomplish three tasks:

1. Find the place where the new element belongs.
2. Create space for the new element.

3. Put the new element in the list.

The first task involves traversing the list and comparing the new item to each item in
the list until we find an item where the new item is less (in this case, Becca). We set more-
ToSearch to false when we reach a point where item.ComparedTo (Info(location)) is
LESS. At this point, location indicates where the new item should go (see Figure 3.4b).
If we don’t find a place where item.ComparedTo (Info(location)) is LESS, then the item
should be put at the end of the list. In this case, location equals length.

Now that we know where the element belongs, we need to create space for it.
Because the list is sorted, Becca must be put into the list at Info(location). Of course, this
position may already be occupied. To “create space for the new element,” we must move
down all list elements that follow it, from location through length - 1. Then, we
just assign item to Info(location) and increment length. Figure 3.4(c) shows the result-
ing list.
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(a) Original list (b) Insert Becca
'8 - 4 M
length length[ 4 | moreToSearch: false
info [0]| Anne info [0][ Anne location gl
[1]| Bobby [1]| Bobby
[2] ] Chris [2] | Chris
[3]| Sarah [3]| Sarah
logical logical
garbage garbage
[MAX_ITEMS-1] [MAX_ITEMS-1]
N v N J
(c) Result
" ™
length
info [0]]| Anne
[1]] Becca
[2]| Bobby
[3]1| Chris moved down
[4]]| Sarah
logical
garbage
[MAX_ITEMS-1]
\ J

Figure 3.4 Inserting into a sorted list
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Let’s summarize these observations in algorithm form before we write the code:

[»

Insertitem
Initialize location to position of first item
Set moreToSearch to (have not examined Info(last))
while moreToSearch
switch (item.ComparedTo(Info(location)))
case LESS : Set moreToSearch to false
case EQUAL : /[ Cannot happen because item is not in list.
case GREATER : Set location to Next(location)
Set moreToSearch to (have not examined Info(last))
for index going from length DOWNTO location + 1
Set Info(index ) to Info(index - 1)
Set Info(location) to item
Increment length

Recall that the preconditions on InsertItem state that the item is not already pres-
ent in the list, so we do not need to have EQUAL as a label in the switch statement.
Translating the list notation into the array-based implementation gives us the follow-
ing function:

void SortedType::InsertItem(ItemType item)
{
bool moreToSearch;

int location = 0;
moreToSearch = (location < length);
while (moreToSearch)
{
switch (item.ComparedTo (info[location]))
{
case LESS : moreToSearch = false;
break;
case GREATER : locationt+;
moreToSearch = (location < length);
break;
}
}
for (int index = length; index > location; index--)
info[index] = info[index - 1];
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info[location] = item;
lengtht++;

Does this function work if the new element belongs at the beginning or the end of
the list? Draw a picture to confirm for yourself how the function works in each case.

DeleteItem Operation When discussing the function DeleteItem for the Unsorted
List ADT, we commented that if the list was sorted, we would have to move the
elements up one position to cover the one being removed. Moving the elements up one
position is the mirror image of moving the elements down one position. The loop
control for finding the item to delete is the same as for the unsorted version.

> |

Initialize location to position of first item
Set found to false
while NOT found
switch (item.ComparedTo(Info(location)))
case GREATER : Set location to Next(location)
case LESS : /| Cannot happen because list is sorted.
case EQUAL : Set found to true
for index going from location + 1 TO length - 1
Set Info(index - 1) to Info(index)
Decrement length

Examine this algorithm carefully and convince yourself that it is correct. Try cases
where you are deleting the first item and the last one.

void SortedType::Deleteltem(ItemType item)

{
int location = 0;
while (item.ComparedTo(info[location]) != EQUAL)
locationt+;
for (int index = location + 1; index < length; index++)
info[index - 1] = info[index];
length--;

Improving the RetrieveItem Operation If the list is not sorted, the only way to
search for a value is to start at the beginning and look at each item in the list,
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(b) Retrieve Susy

~
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Figure 3.5 Retrieving in a sorted list

comparing the key member of the item for which we are searching to the key member
of each item in the list in turn. We used this algorithm in the RetrieveItem operation
in the Unsorted List ADT.

If the list is sorted by key value, there are two ways to improve the searching algo-
rithm. The first way is to stop when we pass the place where the item would be found if
it were present. Look at Figure 3.5(a). If you are searching for Chris, a comparison with
Judy would show that Chris is LESS. Thus you have passed the place where Chris would
be found if it were present. At this point you can stop and return found as false. Fig-
ure 3.5(b) shows what happens when you are searching for Susy: location is equal to
4, moreToSearch is false, and found is false.

If the item we are seeking appears in the list, the search is the same for both the
unsorted list and the sorted list. When the item is not there, however, the new algorithm
is better. We do not have to search all of the items to confirm that the one we want is
not present. When the list is sorted, however, we can improve the algorithm even more.

Binary Search Algorithm Think of how you might go about finding a name in a phone
book, and you can get an idea of a faster way to search. Let’s look for the name
“David.” We open the phone book to the middle and see that the names there begin
with M. M is larger than D, so we search the first half of the phone book, the section
that contains A to M. We turn to the middle of the first half and see that the names
there begin with G. G is larger than D, so we search the first half of this section, from A
to G. We turn to the middle page of this section, and find that the names there begin
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[3]| Sarah [3]] Sarah
logical logical
garbage garbage
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(A-C) (D-G)

Figure 3.6 A binary search of the phone book

with C. C is smaller than D, so we search the second half of this section—that is, from D
to G—and so on, until we reach the single page that contains “David.” Figure 3.6
illustrates this algorithm.

We begin our search with the whole list to examine; that is, our current search area
goes from info [0] through info[length - 1].In each iteration, we split the current
search area in half at the midpoint; if the item is not found there, we search the appro-
priate half. The part of the list being searched at any time is the current search area. For
instance, in the first iteration of the loop, if a comparison shows that the item comes
before the element at the midpoint, the new current search area goes from index 0
through the midpoint - 1. If the item comes after the element at the midpoint, the new
current search area goes from the midpoint + 1 through index length - 1. Either way,
the current search area has been split in half. We can keep track of the boundaries of
the current search area with a pair of indexes, first and last. In each iteration of the
loop, if an element with the same key as item is not found, one of these indexes is reset
to shrink the size of the current search area.

How do we know when to quit searching? Two terminating conditions are possible:
item is not in the list and item has been found. The first terminating condition occurs
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when there’s no more to search in the current search area. The second terminating con-
dition occurs when item has been found.

[»

Set first to O
Set last to length - 1
Set found to false
Set moreToSearch to (first <= last)
while moreToSearch AND NOT found
Set midPoint to (first + last) / 2
switch (item.ComparedTo(Info[midPoint]))
case LESS : Set last to midPoint - 1
Set moreToSearch to (first <= last)
case GREATER: Set first to midPoint + 1
Set moreToSearch to (first <= last)
case EQUAL : Set found to true

Notice that when we look in the lower half or upper half of the search area, we can
ignore the midpoint because we know it is not there. Therefore, 1ast is set to midPoint
- 1,0r first is set to midPoint + 1. The coded version of our algorithm follows:

void SortedType::Retrieveltem(ItemType& item, bool& found)
{

int midPoint;

int first = 0;

int last = length - 1;

bool moreToSearch = first <= last;
found = false;
while (moreToSearch && !found)
{
midPoint = (first + last) / 2;
switch (item.ComparedTo (info[midPoint]))

{
case LESS : last = midPoint - 1;
moreToSearch = first <= last;
break;

case GREATER : first = midPoint + 1;
moreToSearch = first <= last;
break;
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case EQUAL : found = true;
item = info[midPoint];
break;

Let’s do a walk-through of the binary search algorithm. We are searching for the item
“bat.” Figure 3.7(a) shows the values of first, last, and midPoint during the first itera-
tion. In this iteration, “bat” is compared with “dog,” the value in info [midpoint]. Because
“bat” is less than (comes before) “dog,” 1ast becomes midPoint - 1 and first stays the
same. Figure 3.7(b) shows the situation during the second iteration. This time, “bat” is com-
pared with “chicken,” the value in info[midpoint]. Because “bat” is less than (comes

before) “chicken,” 1ast becomes midPoint - 1 and first again stays the same.

In the third iteration (Figure 3.7¢), midPoint and first are both 0. The item “bat”
is compared with “ant,” the item in info[midpoint]. Because “bat” is greater than
(comes after) “ant,” first becomes midPoint + 1.In the fourth iteration (Figure 3.7d),
first, last, and midPoint are all the same. Again, “bat” is compared with the item in

ant  [<— first (0] ant  |<— first [o] ant  [=<— first and midPoint
cat [1] cat [1] cat  [<— last
chicken [2] chicken [<«— midPoint [2] chicken \
cow [3] cow [3] cow
deer [4] deer |<— last [4] deer
dog  |<— midPoint [5] dog [5] dog
bat cannot be
fish [6] fish [6] fish > in this part
of the list
goat (71 goat bat cannot be  [7] goat
in this part
horse (8] horse of the list [8] horse
rat [9] rat [9] rat
snake |<— last [10] snake [10] snake J
First iteration Second iteration Third iteration
bat < dog bat < chicken bat > ant

(a)

(b) (0

Figure 3.7  Trace of the binary search algorithm

(o]

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

~<— first, last,

\

v

Fourth iteration

bat < cat

(d)
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info[middle]. Because “bat” is less than “cat,” last becomes midPoint - 1. Now
that last is less than first, the process stops; found is false.

The binary search is the most complex algorithm that we have examined so far.
Table 3.1 shows first, last, midPoint, and info[midpoint] for searches of the
items “fish,” “snake,” and “zebra,” using the same data as in the previous example.
Examine the results in Table 3.1 carefully.

Table 3.1 [teration Trace of the Binary Search Algorithm

Iteration

item: fish
First
Second
Third

item: snake
First
Second
Third
Fourth

item: zebra
First
Second
Third
Fourth
Fifth

first last midPoint
0 10 5
6 10 8
6 7 6
0 10 5
6 10 8
9 10 9
10 10 10
0 10 5
6 10 8
9 10 9
10 10 10
11 10

info[midPoint]

dog
horse
fish

dog
horse
rat
snake

dog
horse
rat
snake

Terminating
Condition

found is true

found is true

last < first

Notice that the loop never executes more than four times. It never executes more
than four times in a list of 11 components because the list is cut in half each time
through the loop. Table 3.2 compares a linear search and a binary search in terms of the
average number of iterations needed to find an item.

Table 3.2 Comparison of Linear and Binary Search

Length

10

100
1,000
10,000

Average Number of Iterations

Linear Search

55
50.5
500.5
5000.5

Binary Search

2.9
5.8
9.0

12.4
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If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of times through the loop, but more computations are
executed within the binary search loop than in the other search algorithms. If the num-
ber of components in the list is small (say, less than 20), the linear search algorithms are
faster because they perform less work at each iteration. As the number of components in
the list increases, however, the binary search algorithm becomes relatively more effi-
cient. Always remember that the binary search requires the list to be sorted and sorting
takes time.

Test Plan  We can use the same test plan that we employed with the unsorted list with
the expected outputs changed to reflect the ordering. We need to modify the items to be
deleted to reflect where the items fall in the list; that is, we need to delete one from
each end as well as from in the middle.

Operation to Be Tested and

Description of Action Input Values Expected Output
Constructor

print LengthIs 0
InsertItem

Insert four items and print 57,69 5679

Insert item and print 1 15679

Retrieveltem
Retrieve 4 and print whether found
Retrieve 1 and print whether found
Retrieve 9 and print whether found
Retrieve 10 and print whether found

Item is not found
[tem is found
Item is found
[tem is not found

IsFull
Invoke (list is full) List is full
Delete 5 and invoke List is not full
Deleteltem
Delete 1 and print 769
Delete 6 and print 79
Delete 9 and print 7

On the Web, the file S1istType.in contains the input to 1istDr.cpp (the test driver)
that reflects this test plan; S1istType.out and SlistTest.screen contain the output.
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3 4 Comparison of Algorithms

As noted in this chapter, there is more than one way to solve most problems. If you
were asked for directions to Joe’s Diner (see Figure 3.8), you could give either of two
equally correct answers:

1. "Go east on the big highway to the Y’all Come Inn, and turn left.”
2. "Take the winding country road to Honeysuckle Lodge, and turn right.”

The two answers are not the same, but following either route gets the traveler to Joe’s
Diner. Thus both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I'm late for dinner. What’s the quickest route to
Joe’s Diner?” calls for the first answer, whereas “Is there a pretty road that I can take to
get to Joe’s Diner?” suggests the second. If no special requirements are known, the
choice is a matter of personal preference—which road do you like better?

In this chapter, we have presented many algorithms. How we choose between two
algorithms that perform the same task often depends on the requirements of a particular
application. If no relevant requirements exist, the choice may be based on the program-
mer’s own style.

.
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Figure 3.8 Map to Joe's Diner
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Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? We are talking here of the amount of work that the computer does.
Later we also compare algorithms in terms of how much work the programmer does.
(One is often minimized at the expense of the other.)

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is
an important area of theoretical computer science; in advanced courses, students
undoubtedly see extensive work in this area. In this book, you learn about a small part
of this topic, enough to let you determine which of two algorithms requires less work to
accomplish a particular task.

How do programmers measure the work performed by two algorithms? The first
solution that comes to mind is simply to code the algorithms and then compare the exe-
cution times for running the two programs. The one with the shorter execution time is
clearly the better algorithm. Or is it? Using this technique, we can determine only that
program A is more efficient than program B on a particular computer. Execution times
are specific to a particular machine. Of course, we could test the algorithms on all possi-
ble computers, but we want a more general measure.

A second possibility is to count the number of instructions or statements executed.
This measure, however, varies with the programming language used as well as with
the individual programmer’s style. To standardize this measure somewhat, we could
count the number of passes through a critical loop in the algorithm. If each iteration
involves a constant amount of work, this measure gives us a meaningful yardstick of
efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and
count the number of times that this operation is performed. Suppose, for example, that
we are summing the elements in an integer list. To measure the amount of work
required, we could count the integer addition operations. For a list of 100 elements,
there are 99 addition operations. Note, however, that we do not actually have to count
the number of addition operations; it is some function of the number of elements (N) in
the list. Therefore, we can express the number of addition operations in terms of N: For
a list of N elements, N - 1 addition operations are carried out. Now we can compare the
algorithms for the general case, not just for a specific list size.

If we wanted to compare algorithms for multiplying two real matrices together, we
could use a measure that combines the real multiplication and addition operations
required for matrix multiplication. This example brings up an interesting consideration:
Sometimes an operation so dominates the algorithm that the other operations fade into
the background “noise.” If we want to buy elephants and goldfish, for example, and we
are considering two pet suppliers, we need to compare only the prices of elephants; the
cost of the goldfish is trivial in comparison. Similarly, on many computers floating-
point multiplication is so much more expensive than addition in terms of computer time
that the addition operation is a trivial factor in the efficiency of the whole matrix multi-
plication algorithm; we might as well count only the multiplication operations and
ignore the addition. In analyzing algorithms, we often can find one operation that dom-
inates the algorithm, effectively relegating the others to the “noise” level.
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Big-0

We have talked about work as a function of the size of the input to the operation (for
instance, the number of elements in the list to be summed). We can express an approxi-
mation of this function using a mathematical
notation called order of magnitude, or Big-0
notation. (This is the letter O, not a zero.) The
order of magnitude of a function is identified
with the term in the function that increases
fastest relative to the size of the problem. For
instance, if

a problem

fN) = N* + 100N? + 10N + 50

then f(N) is of order N*—or, in Big-O notation, O(N%). That is, for large values of N,
some multiple of N* dominates the function for sufficiently large values of N.

Why can we just drop the low-order terms? Remember the elephants and goldfish
that we discussed earlier? The price of the elephants was so much greater that we could
just ignore the price of the goldfish. Similarly, for large values of N, N* is so much
larger than 50, 10N, or even 100N? that we can ignore these other terms. This doesn’t
mean that the other terms do not contribute to the computing time, but rather that they
are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the rest of the
problems in this book involve data structures—lists, stacks, queues, and trees. Each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe the
work done by these operations in terms of N, where N is the number of elements in the
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structure. Yes, we know. We have called the number of elements on a list the length of
the list. However, mathematicians talk in terms of N, so we use N for the length when
we are comparing algorithms using Big-0 notation.

Suppose that we want to write all the elements in a list into a file. How much
work is involved? The answer depends on how many elements are in the list. Our algo-
rithm is

>
Open the file

while more elements in list do
Write the next element

If N is the number of elements in the list, the “time” required to do this task is
(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little time to open the file. How can we ignore the
open time in determining the Big-O approximation? Assuming that the time necessary
to open a file is constant, this part of the algorithm is our goldfish. If the list has only a
few elements, the time needed to open the file may seem significant. For large values of
N, however, writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell you how long in microseconds
the solution takes to run on your computer. Sometimes we need that kind of informa-
tion. For instance, a word processor’s requirements may state that the program must be
able to spell-check a 50-page document (on a particular computer) in less than 120 sec-
onds. For such information, we do not use Big-O analysis; we use other measurements.
We can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after the test. This
kind of “benchmark” test tells us how long the operations take on a particular computer,
using a particular compiler. The Big-O analysis, however, allows us to compare algo-
rithms without reference to these factors.

Common Orders of Magnitude

0(1) is called bounded time. The amount of work is bounded by a constant and does not
depend on the size of the problem. Assigning a value to the ith element in an array of N
elements is O(l), because an element in an array can be accessed directly through its
index. Although bounded time is often called constant time, the amount of work is not
necessarily constant. Rather, it is bounded by a constant.
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O(log,N) is called logarithmic time. The amount of work depends on the log of the
size of the problem. Algorithms that successively cut the amount of data to be processed
in half at each step typically fall into this category. Finding a value in a list of ordered
elements using the binary search algorithm is O(log,N).

O(N) is called linear time. The amount of work is some constant times the size of
the problem. Printing all the elements in a list of N elements is O(N). Searching for a
particular value in a list of unordered elements is also O(N), because you (potentially)
must search every element in the list to find it.

O(N log,N) is called (for lack of a better term) N log,N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algo-
rithms, such as Quicksort, Heapsort, and Mergesort discussed in Chapter 10, have N
log,N complexity. That is, these algorithms can transform an unordered list into a
sorted list in O(N log,N) time.

O(N?) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N?) algorithms. (See
Chapter 10.)

O(N?) is called cubic time. An example of an O(N?3) algorithm is a routine that incre-
ments every element in a three-dimensional table of integers.

0(2") is called exponential time. These algorithms are costly. As you can see in
Table 3.3, exponential times increase dramatically in relation to the size of N. (Note that

Table 3.3 Comparison of Rates of Growth

N

D 0 B~ N -

64

128

256

log,N N log,N N2 N3 2N
0 1 1 1 2

1 4 8 4

2 8 16 64 16

3 24 64 512 256

4 64 256 4,096 65,5636

5 160 1,024 32,768 4,294,967,296

6 384 4,096 262,114 About one month's worth of
instructions on a super-computer

7 896 16,384 2,097,152 About 10'? times greater

than the age of the universe

in nanoseconds (for a 6-

billion-year estimate)

8 2,048 65,536 16,777,216 Don't ask!
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the values in the last column grow so quickly that the computation time required for
problems of this order may exceed the estimated life span of the universe!)

Throughout this discussion we have been talking about the amount of work the
computer must do to execute an algorithm. This determination does not necessarily
relate to the size of the algorithm, say, in lines of code. Consider the following two
algorithms to initialize to zero every element in an N-element array:

Algorithm Init1 Algorithm Init2

items[0] = 0; for (index = 0; index < N; indext++)
items[1] = 0; items [index] = 0;

items[2] = 0;

items[3] = 0;

items[N - 1] = 0;

Both algorithms are O(N), even though they greatly differ in the number of lines of code.

Now let’s look at two different algorithms that calculate the sum of the integers
from 1 to N. Algorithm Suml is a simple for loop that adds successive integers to keep a
running total:

Algorithm Sum]1

sum = 0;

for (count = 1; count <= n; count++)
sum = sum + count;

That seems simple enough. The second algorithm calculates the sum by using a formula.
To understand the formula, consider the following calculation when N = 9:

1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9
+9+ 8+ 7+ 6+ 5+ 4+ 3+ 2+ 1

10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = 10 * 9 = 90

We pair up each number from 1 to N with another, such that each pair adds up to N
+ 1. There are N such pairs, giving us a total of (N + 1) * N. Now, because each number
is included twice, we divide the product by 2. Using this formula, we can solve the
problem: ((9 + 1) * 9)/2 = 45. Now we have a second algorithm:

Algorithm Sum?2
sum = ((n + 1) * n) / 2;

Both of the algorithms are short pieces of code. Let’s compare them using Big-O nota-
tion. The work done by Sum1 is a function of the magnitude of N; as N gets larger, the
amount of work grows proportionally. If N is 50, Sum1 works 10 times as hard as when
N is 5. Algorithm Sum1, therefore, is O(N).
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To analyze Sum2, consider the cases when N = 5 and N = 50. They should take the
same amount of time. In fact, whatever value we assign to N, the algorithm does the
same amount of work to solve the problem. Algorithm Sum2, therefore, is O(1).

Is Sum2 always faster? Is it always a better choice than Sum1? That depends. Sum2
might seem to do more “work,” because the formula involves multiplication and divi-
sion, whereas Sum1 calculates a simple running total. In fact, for very small values of
N, Sum2 actually might do more work than Suml. (Of course, for very large values of N,
Suml does a proportionally larger amount of work, whereas Sum2 stays the same.) So
the choice between the algorithms depends in part on how they are used, for small or
large values of N.

Another issue is the fact that Sum2 is not as obvious as Suml, and thus it is more
difficult for the programmer (a human) to understand. Sometimes a more efficient solu-
tion to a problem is more complicated; we may save computer time at the expense of
the programmer’s time.

What'’s the verdict? As usual in the design of computer programs, there are trade-
offs. We must look at our program’s requirements and then decide which solution is
better. Throughout this text we examine different choices of algorithms and data struc-
tures. We compare them using Big-0, but we also examine the program’s requirements
and the “elegance” of the competing solutions. As programmers, we design software
solutions with many factors in mind.

How long does it take to do a family's weekly laundry? We might describe the answer to this
question with the function

fIN)=c*N

where N represents the number of family members and c is the average number of minutes that
each person's laundry takes. We say that this function is O(N) because the total laundry time
depends on the number of people in the family. The “constant” ¢ may vary a little for different
families—depending on the size of their washing machine and how fast the family members can
fold clothes, for instance. That is, the time to do the laundry for two different families might be
represented with these functions:

f(N) = 100 *N
g(N)=90*N

Overall, however, we describe both functions as O(N).
Now what happens if Grandma and Grandpa come to visit the family for a week or two? The
laundry time function becomes

fIN) =100 *(N + 2)
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We still say that the function is O(N). How can that be? Doesn't the laundry for two extra people
take any time to wash, dry, and fold? Of course it does! If N is small (the family consists of
Mother, Father, and Baby), the extra laundry for two people is significant. But as N grows large
(the family consists of Mother, Father, 12 kids, and a live-in baby-sitter), the extra laundry for two
people doesn't make much difference. (The family's laundry is the elephant; the guest's laundry is
the goldfish.) Remember: When we compare algorithms using Big-O notation, we are concerned
with what happens when N is "large.”

If we are asking the question, “Can we finish the laundry in time to make the 7:05 train?", we
want a precise answer. The Big-0 analysis doesn't give us this information. Instead, it gives us an
approximation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N), how can we say which is
"better"? We can't—in Big-0 terms, they are all roughly equivalent for large values of N. Can we
find with a better algorithm for getting the laundry done? If the family wins the state lottery,
they can drop all their dirty clothes at a professional laundry 15 minutes' drive from their house
(30 minutes round trip). Now the function is

flN) =30

This function is O(1). The answer is not dependent on the number of people in the family. If the
family switches to a laundry 5 minutes from their house, the function becomes

fiN) =10

This function is also O(1). In Big-O terms, the two professional-laundry solutions are equivalent:
No matter how many family members or house guests you have, it takes a constant amount of
the family's time to do the laundry. (We aren't concerned with the professional laundry's time.)

3 5 Comparison of Unsorted and Sorted List ADT Algorithms

To determine the Big-O notation for the complexity of these functions, we must first
determine the size factor. Here we are considering algorithms to manipulate items in a

list, so the size factor is the number of items on the list: 1ength.

Many of our algorithms are identical for the Unsorted List ADT and the Sorted List
ADT. Let’s examine these algorithms first. MakeEmpty (the class constructor) contains
one line: length is set to 0. LengthIs and IsFull each contain only one statement:
return length and return (length == MAX_ITEMS). As none of these functions
depends on the number of items in the list, each has O(1) complexity. ResetList con-
tains one assignment statement and GetNextItem contains two assignment statements.
Neither of these functions depends on the number of items in the list, so each has 0(1)

complexity.
The other functions differ for the two implementations.
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Unsorted List ADT

The algorithm for RetrieveItem requires that the list be searched until an item is
found or the end of the list is reached. We might find the item in any position in the
list, or we might not find it at all. How many places must we examine? At best only
one, at worst length. If we took the best case as our measure of complexity, then all of
the operations would have O(1) complexity. This is a rare case, however. What we want
is the average case or worst case, which in this instance are the same: O(1ength). True,
the average case would be O(length/2), but when we use order notation, O(length)
and O(length/2) are equivalent. In some cases that we discuss later, the average and
the worst cases are not the same.

InsertItem has two parts: (1) find the place to insert the item and (2) insert the
item. In the unsorted list, the item is put in the length position and length is incre-
mented. Neither of these operations depends on the number of items in the list, so the
complexity is O(1).

DeleteItem also has two parts: (1) find the item to delete and (2) delete the item.
Finding the item uses the same algorithm as RetrieveItem, so the complexity of that
part is O(1length). To delete the item, we put the value in the length - 1 position into
the location of the item to be deleted and decrement 1length. These store and decrement
tasks are not dependent on the number of items in the list, so this part of the operation
has complexity O(1). The entire delete algorithm has complexity O(length) because
O(1length) plus O(1) is O(Length). (Remember that O(1) is the goldfish.)

Sorted List ADT

Earlier, we considered three different algorithms for RetrieveItem. We said that the
Unsorted List ADT algorithm would work for a sorted list but that two more efficient
algorithms existed: a linear search in the sorted list that exits when it passes the place
where the item would be and a binary search.

A linear search in a sorted list is faster than such a search in an unsorted list when
we are seeking an item that is nof in the list, but is the same when we are searching for
an item that is in the list. Therefore, the complexity of the linear search in a sorted list
is the same as the complexity in an unsorted list: O(1ength). Does that mean that we
shouldn’t bother taking advantage of the ordering in our search? No, it just means that
the Big-O complexity measures are the same.

What about the binary search algorithm? Table 3.2 compared the number of items
searched in a linear search versus a binary search for certain sizes of lists. How do we
describe this algorithm using Big-O notation? To figure this problem out, let’s see how
many times we can split a list of N items in half. Assuming that we don’t find the item
we are seeking at one of the earlier midpoints, we have to divide the list log,N times at
the most, before we run out of elements to split. In case you aren’t familiar with logs,

209N =

That is, if N = 1,024, log,N = 10 (2'° = 1024). How does that information apply to our
searching algorithms? The sequential search is O(N); in the worst case, we would have
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to search all 1,024 elements of the list. The binary search is O(log,N); in the worst case,
we would have to make log,N + 1, or 11, search comparisons. A heuristic (a rule of
thumb) tells us that a problem that is solved by successively splitting it in half is an
O(log,N) algorithm. Figure 3.9 illustrates the relative growth of the sequential and
binary searches, measured in number of comparisons.

InsertItem still has the same two parts: (1) finding the place to insert the item and
(2) inserting the item. Because the list must remain sorted, we must search for the posi-
tion in which to place the new item. Our algorithm used a linear search to find the
appropriate location: O(length). Inserting requires that we move all those elements
from the insertion point down one place in the array. How many items must we move?
At most length, giving us O(length). O(length) plus O(Length) is O(Length) because
we disregard the constant 2. Note, however, that the constant 2 does not actually occur
here. In reality, we access each item in the list only once except for the item at the inser-
tion point: We access those items to the place of insertion, and we move those items
stored from length - 1 through that place. Therefore, only the element in the insertion
location is accessed twice—once to find the insertion point and once to move it.

DeleteItem also still has the same two parts: (1) finding the item to delete and (2)
deleting the item. The algorithm for finding the item is the mirror image of that for
finding the insertion point: O(1ength). Deleting the item in a sorted list requires that all
the elements from the deletion location to the end of the list be moved forward one
position. This shifting algorithm is the reverse of the shifting algorithm in the insertion
and, therefore, has the same complexity: O(length). Hence the complexity of the inser-
tion and deletion algorithms is the same in the Sorted List ADT.

Table 3.4 summarizes these complexities. We have replaced length with N, the
generic name for the size factor.

In the deletion operation, we could improve our efficiency by using the binary
search algorithm to find the item to delete. Would this choice change the complexity?
No, it would not. The find operation would be O(log,N), but the removal would still be
O(N) because O(log,N) combined with O(N) is O(N). (Recall that the term with the
largest power of N dominates.) Does this point mean that we should not use the binary

Linear
search O(N)

Binary search
0O(log,N)

B

N (Number of elements)

Number of comparisons

Figure 3.9  Comparison of linear and binary searches
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Table 3.4 Comparison of List Operations

3.6 Overloading Operators

Operation Unsorted List Sorted List
MakeEmpty 0(1) 0(1)
Lengthls o(1) 0(1)
IsFull 0(1) o(1)
ResetList o(1) 0(1)
GetNextItem 0(1) 0(1)
RetrieveItem O(N) Linear search: O(N)
Binary search: O(log,N)

InsertItem

Find 0(1) o(N)

Put 0(1) O(N)

Combined o(1) 0(N)
Deleteltem

Find O(N) o(N)

Remove 0(1) O(N)

Combined O(N) O(N)

5.6

search algorithm? No, it just means that as the length of the list grows, the cost of the
removal dominates the cost of the find operation.

Think of the common orders of complexity as being bins into which we sort algo-
rithms (Figure 3.10). For small values of the size factor, an algorithm in one bin may
actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size factor increases, the differences among algorithms in the different bins grows ever
larger. When choosing between algorithms within the same bin, you should look at the
constants to determine which to use.

Overloading Operators

In this chapter, we have looked at a general implementation of two abstract data types
that represent what we normally think of as lists. We have used a sequential array-
based implementation where the user is responsible for providing the description of the
items on the list. We required the user to provide a comparison operation called Com-
paredTo for comparing items on the list. The technique presented here works in most
programming languages. In this section, however, we cover a C++ construct that makes
comparisons simpler and more robust. C++ allows us to redefine the meaning of the
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0(1) 0(log,N) 0(N) 0(Nlog,N) 0 (N*N)

Figure 3.10 Complexity bins

relational operators in terms of the data members of a class. This redefining of an oper-
ator symbol is called overloading the operator.

Let’s describe the mechanism in terms of the StrType class we defined in Chapter
2. As an exercise, you were asked to add a comparison operation to this class. We also
need this operation in our Case Study. The expanded definition of the class StrType is
shown here:

enum InType {ALPHA NUM, ALPHA, NON_WHITE, NOT NEW};
const int MAX = 200;
class StrType
{
public:
StrType() ;
void GetString(bool skip, InType inString);
void GetStringFile(bool skip, InType inString,
std::ifstream& inFile);
void PrintToScreen(bool newLine);
void PrintToFile(bool newLine, std::ofstream& outFile);
bool operator{(StrType otherString) const;
bool operator==(StrType otherString) const;
private:
char letters[MAX+1];

}s

The syntax for overloading a symbol is the reserved word operator followed by
the symbol to be overloaded. These member functions are known in C++ as operator
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functions. Because we store the characters in the same way that C++ does, we can use
the string functions provided in <cstring> to implement these operator functions.

bool StrType::operator{(StrType otherString) const
{

int result;

result = std::strcmp(letters, otherString.letters);
if (result < 0)

return true;
else

return false;

bool StrType::operator==(StrType otherString) const
{

int result;

result = std::strcmp(letters, otherString.letters);
if (result == 0)

return true;
else

return false;

When the client code includes

if (myString < yourString)

or

if (myString == yourString)

the respective member functions from StrType are invoked.

For our Unsorted ADT and Sorted ADT, we required ItemType to be a class with a
member function ComparedTo. Now that we know how to overload the relational oper-
ators, we could overload “<” and “=="in the ItemType class and then rewrite the code
for InsertItem, RetrieveItem, and DeleteItem using the relational operators. We
could—but should we? We cannot use the relational operators as labels on a switch
statement, so the code would have to be a series of if-else clauses. Some programmers
find switch statements more self-documenting, whereas others like to use the relational
operators. The choice is a matter of personal style.
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3.1

Object-Oriented Design Methodology

The object-oriented design that we present here involves four stages. Brainstorming is
the stage in which we make a first pass at determining the classes in the problem. Filter-
ing is the stage in which we go back over the proposed classes determined in the brain-
storming stage to see whether any can be combined, any are not needed, or any are
missing. Each class that survives the filtering stage is recorded on a CRC card.

Scenarios is the stage in which we determine the behavior of each class. Because
each class is responsible for its own behavior, we call the behaviors responsibilities. In
this stage, we explore “what if” questions to ensure that all situations are examined.
When we have determined all of the responsibilities of each class, we record them on
the class’s CRC card, along with the names of any other classes with which that class
must collaborate (interact) to complete its responsibility.

In Responsibility Algorithms, the last stage, we write the algorithms for each of the
responsibilities outlined on the CRC cards. Now you can see the source of the term CRC:
Class, Responsibility, and Collaboration.

Although these techniques are designed to be applied in groups, we can apply them
to our own individual thought processes as well, so let’s look at each of these stages in a
little more detail.

Brainstorming

Exactly what is brainstorming? The dictionary defines it as a group problem-solving
technique that involves the spontaneous contribution of ideas from all members of the
group.! Brainstorming brings to mind a movie or TV show where a group of bright
young people toss around ideas about an advertising slogan for the latest revolutionary
product. This picture seems at odds with the traditional picture of a computer analyst
working alone in a closed, windowless office for days who finally jumps up shouting
“Ah ha!” As computers have become more powerful, the problems that can be solved
have grown ever more complex, and the picture of the genius locked in a windowless
room has become obsolete. Solutions to complex problems need new and innovative
solutions based on collective “Ah ha!”s.

Belin and Simone list four principles of successful brainstorming.? First and fore-
most, all ideas are potential good ideas. It is imperative that the members of the group
not censor their own ideas or make judgments out of hand on other’s ideas. The second
principle relates to pace: Think fast and furiously first, and ponder later. The faster the
initial pace, the better the creative juices will flow. Third, give every voice a turn. To
slow down those predisposed to hog the conversation and spur those reluctant to talk,
use a rotation. Continue this pattern until team members are truly forced to “pass”
because they are out of ideas. Fourth, a little humor can be a powerful force. Humor
helps convert a random group into a cohesive team.

"Webster’s New Collegiate Dictionary.
?D. Belin and S. S. Simone, The CRC Card Book (Reading, MA: Addison-Wesley, 1997).

TEAM LinG - Live, Informative, Non-cost and Genuine!



3.7 Object-Oriented Design Methodology

In the context of object-oriented problem solving, brainstorming is a group activity
designed to produce a list of candidate classes to be used to solve a particular problem.
As Belin and Simone point out, although each project is different and each team has a
different personality, following the four steps described next is a good general
approach.

Step 1 is to review brainstorming principles at the beginning of the meeting to
remind everyone that the exercise is a group activity and that personal style should
therefore be put aside. Step 2 is to state specific session objectives such as “Today we
want to come up with a list of candidate classes for the student project” or “Today we
want to determine the classes that are active during the registration phase.” Step 3 is
to use a round-robin technique to allow the group to proceed at an even tempo but
give people enough time to think. Each person should contribute a possible object
class to the list. A facilitator should keep the discussion on target, and a scribe should
take notes. The brainstorming stops when each person in the group has to “pass”
because he or she cannot think of another class to suggest. Step 4 of Belin and
Simone’s process is to discuss the classes and select the final list of classes. We prefer
to think of this stage as separate from brainstorming and so discuss it in the section
on filtering.

Just as the people brainstorming for an advertising slogan know something about
the product before the session begins, brainstorming for classes requires that the partici-
pants know something about the problem at hand. Each participant should be familiar
with the requirements document and any correspondence relating to the technical
aspects of the project. If ambiguities are identified, participants should conduct inter-
views to clarify these points before the brainstorming sessions commence. Each team
member should enter the brainstorming sessions with a clear understanding of the prob-
lem to be solved. During the preparation, each team member will almost certainly have
generated his or her own preliminary list of classes.

Filtering

As noted previously, the brainstorming session produces a tentative list of classes. In the
filtering phase, the group takes the tentative list of classes and determines which should
serve as the core classes in the problem solution. The list may contain two classes that
are actually the same thing. These duplicate classes usually arise because people work-
ing in different parts of an organization use different names for the same concept or
entity. Perhaps two classes in the list share many attributes and behaviors. The common
parts should be gathered together into a superclass in which the two classes derive the
common properties and add the properties that are different.

Some classes may not really belong in the problem solution. For example, if we are
simulating a calculator, we might list the user as a possible class. In fact, the user is not
a class within the simulation; the user is an entity outside the problem who provides
input to the simulation. Another possible class might be the on button. A little thought
shows that the on button is not really part of the simulation; it simply starts the simula-
tion program running.
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As the filtering is completed, CRC cards should be written for each class that has
survived to this stage.

Scenarios

In this phase, we assign responsibilities to each class. What are responsibilities? They
are the tasks that each class must perform. Responsibilities are eventually implemented
as subprograms. At this stage we are interested only in what the tasks are, not in how
they might be carried out.

Two types of responsibilities exist: what a class must know about itself (knowledge)
and what a class must be able to do (behavior). A class encapsulates its data (knowledge);
objects in one class cannot directly access data in another class. Encapsulation is a key
to abstraction. However, each class has the responsibility of making data (knowledge)
available to other classes that need it. Therefore, each class has the responsibility for
knowing the things about itself that others need to know. For example, a student class
should “know” its name and address. The responsibilities for this knowledge might be
called knour name and know address. Whether the address is kept in the student class or
whether the student class must ask some other class to access the address is irrelevant at
this stage. The important fact is that the student class knows its own address.

The responsibilities for behavior look more like the tasks we described in top-down
design. For example, a responsibility for the student class might be to calculate its GPA
(grade point average). In top-down design, we would say that a task is to calculate the
GPA given the data. In object-oriented design, we would say that the student class is
responsible for calculating its own GPA. The distinction here is both subtle and pro-
found. The final code for the calculation may look the same, but it is executed in differ-
ent ways. In an imperative program, the program calls a subprogram that calculates the
GPA, passing the student object as a parameter. In an object-oriented program, a mes-
sage is sent to the object of the class to calculate its GPA. There are no parameters
because the object to which the message is sent knows its own data.

The name for the scenarios phase gives a clue as to how we go about assigning
responsibilities to classes. The team uses play-acting to test different scenarios. Each
member of the team plays the role of one of the classes. Scenarios are “what if” scripts
that allow participants to act out different situations. When a class has been sent a mes-
sage, the actor holds up the CRC card and responds to the message by sending messages
to other parties as needed. As the scripts are acted out, missing responsibilities are
unearthed and unneeded responsibilities are detected. Sometimes the need for new
classes surfaces. Although waving cards in the air when “you” are active may seem a
little embarrassing at first, team members quickly get into the spirit of the action when
they see how effective the technique is. See Figure 3.11.

The output from this phase is a set of CRC cards representing the core classes in the
problem solution. Each card lists the responsibilities for each class, along with the
classes with which a responsibility must collaborate.

Responsibility Algorithms

Eventually, we must write the algorithms for the responsibilities. Because the design
process focuses on data rather than actions in the object-oriented view of design, the
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Figure 3.11  Ascenario walk-through in progress

algorithms for carrying out responsibilities tend to be fairly short. For example, the
knowledge responsibilities usually return the contents of just one of an object’s vari-
ables, or send a message to another object to retrieve it. Action responsibilities are a lit-
tle more complicated, often involving calculations. For this reason, the top-down
method of designing an algorithm is usually appropriate for designing many responsi-
bility algorithms.

A Final Word

To summarize, top-down design methods focus on the process of transforming the input
into the output, resulting in a hierarchy of tasks. Object-oriented design focuses on the
data objects that will be transformed, resulting in a hierarchy of objects. The nouns in
the problem description become objects; the verbs become operations. In a top-down
design, the verbs are the primary focus; in an object-oriented design, the nouns are the
primary focus.

Case Study
Real Estate Listings: An Object-Oriented Design

Problem Write a program to keep track of a real estate company's residential listings. The
program needs to input and keep track of all listing information, which is currently stored on
3" X 5" cards in a box in the firm's office.

The real estate salespeople must be able to perform a number of tasks using these data:
add or delete a house listing, print the information about a particular house given the owner's
name, and print a list of homeowners sorted alphabetically.

Brainstorming We said that nouns in the problem statement represent objects and that
verbs describe actions. Let's approach this problem by analyzing the problem statement in
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Write a program to keep track of a real estate company's
residential (listings.) The program needs to input and keep track
of all listing(information, which is currently stored on 3" x

5"(cards)in a(box)in their office)

The real estate(salespeople)must be able to perform a number
of tasks using these [data) add or delete a house(listing,) print the
information)about a particular(house)given the owner's name,

and print a(list)of(homeowners)sorted alphabetically.
\ J

Figure 3.12  Problem statement with nouns circled and verbs underlined

terms of nouns and verbs. Let's circle nouns and underline verbs. The relevant nouns in the first
paragraph are listings, information, cards, box, and office: Circle them. The verbs that describe
possible program actions are keep track of, input, and stored: Underline them. In the second
paragraph, the nouns are salespeople, listing, data, information, house, name, list, and
homeowners: Circle them. Possible action verbs are perform, add, delete, and print: Underline
them. Figure 3.12 shows the problem statement with the nouns circled and the verbs
underlined.

We did not circle program or underline write because these instructions apply to the pro-
grammer and are not part of the problem to be solved. Thus our initial list of classes contains
the following: listings, information, cards, box, office, salespeople, data, house, name, and
homeowners. We'll shorten salespeople to people and homeowners to owners. Now, let's
examine these nouns and see which actually represent classes in our solution.

Filtering The first paragraph describes the current system: The objects are cards that contain
information. These cards are stored in a box. Therefore, we have two objects in the office to
simulate: 3" X 5” cards and a box to hold them. In the second paragraph, we see what
processing must be done with the cards and the box in which they are stored. Also, we
discover several synonyms for the cards: data, listing, information, and house. We model them
with the same objects that represent the cards. The noun people represents the outside world
interacting with the program, so the rest of the paragraph describes the processing options
that must be provided to the user of the program. In terms of the box of cards, the user must
be able to add a new card, delete a card, print the information on the card given the owner's
name, and print a list of all owners' names in the box in alphabetical order.

We can represent the cards by a class whose data members are the information written on
the 3" X 5" cards. Let's call this class “HWL]%F& How do we represent the box of cards? We
have just written two versions of the abstract data type List. A list is a good candidate to sim-
ulate a box, and the information on the list can be objects of type HWL@%

So far, we have ignored the noun office. A box of cards is stored permanently in the office.
A list is a structure that exists only as long as the program in which it is defined is running.
But how do we keep track of the information between runs of the program? That is, how do we
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simulate the office in which the box resides? A file is the structure that is used for permanent
storage of information. Hence, there are two representations of the box of cards. When the
program is running, the box is represented as a list. When the program is not running, the box
is represented as a file. The program must move the information on the cards from a file to a
list as the first action, and from a list to a file as the last action.

Now we have three classes outlined: HWLI’W, a class that holds information about a
house; a class that maintains a list of*{—(-omﬁgdoe objects; and a file that contains the Howse-
L@% objects when the program is not running; and the main program.

Scenarios Before we start assigning responsibilities to these classes, we need to examine the
overall processing a little more. Let's assume that the information on the 3" X 5" cards
includes the owner's first and last names and the house's address, price, number of square
feet, and number of bedrooms. The company never accepts more than one listing per customer,
so no duplicate names appear on the cards. If an agent attempts to insert a duplicate listing,
an error message is printed to the screen. As all processing is by owner's name, the combined
first and last name should be the object’s key.

Input We must give the user (the real estate agent) a menu of the tasks that can be performed
on the list of houses. After a consultation with the agents, we decide on the following commands:

A Add a house listing.

D Delete a house listing.

P Print all of the information about a house on the screen, given the name of the
owner.

L Print the names of all owners in alphabetical order on the screen.

Q Quit.

The user continues to manipulate the list of houses until he or she enters a Q.

Notice that we have three kinds of input: the file of houses saved from the last run of the
program, the commands, and data entered from the keyboard in conjunction with implement-
ing the commands.

Output There are two kinds of output: the file of houses saved at the end of the run of the
program, and screen output produced by one or more of the commands.

Data Objects In the filtering stage we came up with house objects and two container objects:
the file of house objects retained from one run of the program to the next and the list that stores
the house objects when the program is running. The collection of house listings is called our
database.

Let's name the physical file in which we retain the house objects as houses . dat. Within our
program, however, we must use two separate file stream objects, one for input and one for output,
even though both refer to the same physical file. Let's call our input file masterIn (of type
ifstream) and our output file masterOut (of type ofstream). The object masterIn reads
data from the physical file houses.dat, and the object masterOut writes to houses.dat.

TEAM LinG - Live, Informative, Non-cost and Genuine!

175



176

Chapter 3: ADTs Unsorted List and Sorted List

Stream object
masterIn

/ Object of

Stream obJect class HouseType

Physical

file -~

houses.dat masterOut first name
ObJect of last name
chssSortedLlst address
price
length square feet
bedrooms
info[0]

info[1]

info[length-1]

info [MAX_ITEM-1]

currentPos

Figure 3.13  The data objects in the case study

Figures 3.13 and 3.14 show the general flow of the processing and the appearance of the
data objects. Note that we know the internal workings of the List ADT because we wrote the
code earlier in the chapter. Now, however, we write the program using only the interface as
represented in the header file of the class. But which class shall we use? The unsorted version
or the sorted version? Because one of the operations prints the names of the owners in order,
the sorted version is a better choice.

The first time the program is run, houses.dat is empty, but it must exist; that is, we
need to create an empty file and name it houses.dat. The user must build the database (the
list of houses) by entering the information about the houses from the 3" X 5" cards. For exam-
ple, suppose the cards contain the following information:

John Jones
304 Spider Hollow, 78744

$96,000.00
1200 sq. feet, 3 bedrooms
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houses.dat

Program processes
the menu choices
A

D
P
L
Q

Figure 3.14  The high-level processing of the case study

Susan Smith
111 Lark Lane, 78712

$105,000.00
1500 sq. feet, 3 bedrooms

Claire Clear
123 Shallow Cove

$160,000
2000 sq. feet, 4 bedrooms

The first task for the user would be to signal that a new house is to be added to the list
(enter A at the prompt). The program would prompt for the information necessary, and the
user would key it from the 3” X 5" cards. Each house would be put into the list of houses as
it is entered. If the user then enters a Q, the information on these three houses would be
written to the file houses.dat. At the next run of the program, houses.dat has three list-
ings that are read in at the beginning of the run. The user is prompted to enter one of the
commands so as to add a new listing, delete a listing, print a particular listing, print all own-
ers, or quit.
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Responsibility Algorithms Where do we go from here? Do we determine the responsibilities
(member functions) for HouseType or do we determine the responsibilities for the main
function next? At this stage we do not know exactly what objects of type HouseType must
do, but we do know the general processing required. Let's assign responsibilities to the main
function first. Although the main function is not a class, let's use a CRC card to describe its
responsibilities.

s 2}
Class Name: Superclass: Subclasses:
Main
Responsibilities Collaborations
,[m{mt data, Enom Lile to list stneam
Execude commands
Oufﬁo@ data, @wm lst to é«/& 1}{?&1‘&@(&/»\/
"« J

Executing commands is clearly the central responsibility. We must first decide on the
interface with which the user will manipulate the database. The operations are to add a house,
delete a house, print information about one house, and print a listing of all owners. Let's define
an enumeration type with these commands.

Execute Commands

Get a command
while command != Quit
switch (command)
case ADD : AddHouse(houseList)
case DELETE : DeleteHouse(houseList)
case PRINT_ONE : PrintHouse(houseList)
case PRINT_ALL : PrintOwners(houseList)
Get a command

We have called our data file houses.dat. In fact, our program would be more general if
we let the user enter the name of the input file and the output file.
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FileToList(SortedType& houselList, ifstream& masterin)

Prompt for and get input file name
Open file masterln
item.GetFromFile(masterln) // Reads one item from mastern.
while more data
houseList.Insertltem(item)
item.GetFromFile(masterln)
Close file masterin

ListToFile(SortedType houseList, ofstream& masterOut)

Prompt for and get output file name

Open file file masterOut

houselList.ResetList()

Set length to houselList.Lengthls()

for index going from 1 to length
houseList.GetNextltem(item)
item.WriteToFile(masterOut)

Close file masterOut

Here are the second-level algorithms that process a command.

GetCommand(CommandType& command)

Write "Operations are listed below. "
“Enter the appropriate uppercase letter and press return.”
“A : Add a house to the list of houses."
"D : Delete a specific owner's house."
“P : Print all the information about an owner's house."
“L : Print all the names on the screen.”
"Q : Quit processing.”

/[ Input command.
Get a letter
Set ok to false
while NOT ok
Set ok to true
switch (letter)
case ‘A’ : Set command to ADD
case 'D' : Set command to DELETE
case 'P' : Set command to PRINT_ONE
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case ‘L' : Set command to PRINT_ALL

case 'Q' : Set command to QUIT

default : Write "Letter entered is not one of the specified "
"uppercase commands. Reenter and press return.”
Get a letter
Set ok to false

AddHouse(SortedType& houselist)

item.GetFromUser()
houseList.Retrieveltem(item, found)
if (NOT found)
houselList.Insertltem(item)
else
write "Duplicate name; operation aborted.”

DeleteHouse(SortedType& houseList)

item.GetNameFromUser()
houseList.Retrieveltem(item, found)
if (found)
houseList.Deleteltem(item)
else
Write “Person not in list.”

Note that we have to confirm that the house to be deleted is in the list because the pre-
condition on DeleteItem in the SortedType class is that the item is present. Because the
input/output is interactive, we should write a message to the user if the item is not found.

PrintHouse(SortedType houseList)

item.GetNameFromUser()
houseList.Retrieveltem(item, found)
if (found)
item.PrintHouseToScreen()
else
Write "Owner not in list."
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PrintOwners(SortedType houseList)

houseList.ResetList()

Set length to houseList.Lengthls()
for count going from 1 TO length
houseList.GetNextltem(item)

item.PrintNameToScreen()

All of the second-level tasks are simple enough to code directly, so we can turn our atten-

tion to HouseType and determine its responsibilities.
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Now we must design the data members and the responsibility algorithms. Three of the
data members are strings: last name, first name, and address. We can use StrType, which
was defined in Chapter 2. The other three data members (price, square feet, and bedrooms) are
of simple types. We incorporate these data members into the header file, ItemType.h, along

with the prototypes of the member functions required by the program.

Note that the header file must be named ItemType.h, not HouseType.h, because the
code for our Sorted List ADT uses the directive #include
typedef statement at the bottom of the header file. Because the Sorted List ADT expects the
list items to be of type ItemType, we use typedef to make ItemType an alias for House-

Type. Here is the CRC card from the SortedType class:
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s 8

Class Name: Superclass: Subclasses:
So«ﬁkﬁéﬁo&

Responsibilities Collaborations

T3l wetwns Boolean

FLengthLs wetwwins integen

Retrievetem (L?fem,, /E-‘i'){‘))giﬂl’l)

TrsentTtem (item.)
N %

Deleteltem (item)

(Qe/gef,;ﬁ‘wﬂ
Gt Nt Ttem, (tem) Ttem Type
« J

Here is the CRC card for StrType with the changes made in this chapter:
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Because all of the responsibilities for HouseType are simply member function calls to the
class strType, we leave the implementation of HouseType as an exercise. The responsibili-
ties for SortedType and StrType have already been coded and tested. Here, then, is the
client's program.
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// CLIENT PROGRAM

// This program manipulates real estate property listings.
#include <iostream>

f#finclude "SortedType.h" // Gain access to Sorted List ADT.
finclude <fstream>

#include <string>

enum CommandType {ADD, DELETE, PRINT ONE, PRINT_ALL, QUIT};
// Each constant represents a task.

void FileToList(SortedType&, std::ifstreamé&) ;
// Moves houses from file to list.

void ListToFile(SortedType, std::ofstream&);
// Moves houses from list to file.

void AddHouse(SortedType&) ;

// Adds a house to the list.

void DeleteHouse(SortedType&) ;

// Removes a house from the list.

void PrintHouse (SortedType) ;

// Prints a specific owner listing.

void PrintOwners (SortedType);

// Prints a sorted list of owners.

void GetCommand (CommandType&) ;

// Prompts for and gets next command.

int main()

{
using namespace std;
ifstream masterIn; // Master file of houses (input).
ofstream masterOut; // Master file of houses (output).
CommandType command;
SortedType houseList;

FileToList (houselList, masterIn) ;

GetCommand (command) ;
// Read and process commands until user enters a quit command.

while (command != QUIT)
{
switch (command)
{
case ADD : AddHouse (houseList) ;

break;
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case DELETE : DeleteHouse (houselList) ;
break;
case PRINT ONE : PrintHouse (houseList) ;
break;
case PRINT ALL : PrintOwners (houselList) ;
break;
}
GetCommand (command) ;

ListToFile(houselList, masterOut) ;
return O;

//*************************************************************

// *xkkxkkxkkx*kxx* Goocond-Level Functiong *** % * % &k kkkdkkkddnxkx

void FileToList(SortedType& houselList, std::ifstream& masterIn)
// Pre: masterIn has not been opened.
// Post: houselList contains items from masterIn.
// masterIn has been closed.
{
using namespace std;
ItemType item;
string dinFileName;

// Prompt for file name, read file name, and prepare file.
cout << "Enter name of file of houses; press return." << endl;
cin >> inFileName;

masterIn.open(inFileName.c_str());

item.GetFromFile (masterIn); // Reads one item from masterIn.
while (masterIn)
{

houseList.InsertItem(item) ;
item.GetFromFile (masterIn) ;
}

masterIn.close();

void ListToFile(SortedType houseList, std::ofstream& masterOut)
// Pre: masterOut has not been opened.

// houseList has been initialized.

// Post: houselList has been written on masterOut.

// masterOut has been closed.
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using namespace std;

ItemType item;

int length;

string outFileName;

cout << "Enter name of output file; press return." << endl;
cin >> outFileName;

masterOut.open(outFileName.c_str());

houseList.ResetList () ;
length = houseList.LengthIs();

for (int count = 1; count <= length; count++)
{
houseList.GetNextItem(item) ;
item.WriteToFile (masterOut) ;

masterOut.close();

void AddHouse(SortedType& houseList)

1/
/1
/1
/1
{

vo
1/
/1

Pre: houselList has been initialized.

Post: A house has been added to the list if the names are
not duplicated; otherwise, the operation is aborted with
a message to the user.

using namespace std;
bool found; ItemType item;

item.GetFromUser () ;
houseList.RetrieveItem(item, found) ;
if (!found)
{
houseList.InsertItem(item) ;
cout << "Operation completed." << endl;
}
else
cout << "Duplicate name; operation aborted" << endl;

id DeleteHouse(SortedType& houseList)
Pre: houselList has been initialized.
Post: A house, specified by user input, is no longer in the list.
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using namespace std;
bool found; ItemType item;

item.GetNameFromUser () ;
houseList.Retrieveltem(item, found) ;
if (found)
{

houseList.Deleteltem(item) ;

cout << "Operation completed." << endl;
}

else

cout << "Person not in list." << endl;

void PrintHouse (SortedType houseList)
// Pre: houselList has been initialized.
// Post: If owner, specified by user input, is in houselist,
// house info is printed on the screen.
{
using namespace std;
bool found; ItemType item;

item.GetNameFromUser () ;

houseList.RetrieveItem(item, found) ;

if (found)
item.PrintHouseToScreen() ;

else

cout << "Owner not in list." <K endl;

void PrintOwners (SortedType houseList)
// Pre: houselList has been initialized.
// Post: Owners' names are printed on the screen.
{
using namespace std;
ItemType item;
int length;

houseList.ResetList();
length = houseList.LengthIs();
for (int count = 1; count <= length; count++)
{
houseList.GetNextItem(item) ;
item.PrintNameToScreen() ;
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cout << "Operation completed." << endl;

void GetCommand (CommandType& command)
// Pre: None.

// Post: User command has been prompted for and input;

// command has been found.
{

using namespace std;

// Prompt.

cout << "Operations are listed below. "

<< "Enter the appropriate uppercase letter and "

a valid

<< "press return." << endl;
cout << "A : Add a house to the list of houses." << endl;
cout < "D : Delete a specific owner's house." <X endl;
cout << "P : Print the information about an owner's house."
<< endl;
cout << "L : Print all the names on the screen."
<< endl;
cout < "Q : Quit processing." << endl;

// Input command.
char letter;
cin >> letter;

bool ok = false;
while (!ok)
{
ok = true;
switch (letter)

{

case 'A' : command = ADD;
break;

case 'D' : command = DELETE;
break;

case 'P' : command = PRINT ONE;
break;

case 'L' : command = PRINT ALL;
break;

case 'Q' : command = QUIT;
break;

default : cout <K "Letter entered is not one of the "

<< "gpecified uppercase commands.

<< "Reenter and press return."
<< endl;
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cin >> letter;
ok = false; break;

In this extended example, we have walked through the design process from the informal
problem statement through the coding phase. We have not, however, written a formal specifi-
cation. We leave the writing of the formal specification as an exercise.

Test Plan The classes SortedType and StrType have been tested thoroughly. This leaves
the class HouseType and the main function to test. To test HouseType, we would need to
create a test driver program to call the member functions. Recall that these member functions
were determined to be those needed by the main function (or driver). Therefore, we can use
the main function as the test driver to test HouseType. In other words, we can test both
together.

The first task is to create a master file of houses by using the Add command to input sev-
eral houses and then quit. We also need to input a variety of commands to add more houses,
delete houses, print the list of owners, and print the information about a particular owner's
house. All of the error conditions must be tested thoroughly. The program must be run several
times to test the access and preservation of the database (the file houses.dat). We leave the
final test plan as a programming assignment.

In the discussion of object-oriented design in Chapter 1, we noted that the code responsi-
ble for coordinating the objects is called a driver. Now we can see why. In testing terminology,
a driver program calls various subprograms and observes their behavior. In object-oriented ter-
minology, a program is a collection of collaborating objects. Therefore, the role of the main
function is to invoke operations on certain objects—that is, to get them started collaborating—
so the term driver is appropriate. In subsequent chapters, when we use the term “driver," the
meaning should be clear from the context.

Summary
In this chapter, we created two abstract data types that represent lists. The Unsorted List
ADT assumes that the list elements are not sorted by key; the Sorted List ADT assumes
that the list elements are sorted by key. We viewed each ADT from three perspectives:
the logical level, the application level, and the implementation level. The extended Case
Study used the Sorted List ADT and the String ADT from Chapter 2 in a problem. Figure
3.15 shows the relationships among the three views of the list data in the Case Study.
To make the software as widely reusable as possible, the specification of each ADT
states that its user must prepare a class that defines the objects included in each con-
tainer class. A member function ComparedTo that compares two objects of this class
must be included in the definition. This function returns one of the constants in Rela-
tionType: LESS, EQUAL, or GREATER. Because the user must provide this information
about the objects on the list, the code of the ADTs is very general. The Unsorted List
and Sorted List ADTs can process items of any kind; they are completely context inde-
pendent. The Case Study demonstrated the value of this independence.
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Application View Logical View Implementation View

A List of Houses

> MakeEmpty —+—> class SortedType
InsertItem {

Deleteltem
ResetList I8
GetNextItem
class StrType
{

-t -
Must guarantee All communication Must guarantee
preconditions is through the logical postconditions
of logical view view: the specification of logical view

Figure 3.15  Relationships among the views of data

We compared the operations on the two ADTs using Big-0 notation. Insertion into an
unsorted list has order O(1); insertion into a sorted list has order O(N). Deletions from
both types of lists have order O(N). Searching in the unsorted list has order O(N);
searching in a sorted list has order O(log,N) if we use a binary search.

The relational operators can be overloaded, allowing us to compare values of differ-
ent types using the standard symbols.

This chapter also described a four-stage object-oriented design methodology. Brain-
storming involves coming up with a possible set of object classes for the problem solu-
tion. In filtering, we reexamine the tentative classes, eliminating those that are not
appropriate, combining some classes, and creating additional classes if necessary. With
scenarios, we examine the responsibilities of each proposed class and role play to see
whether all situations are covered. In the responsibility algorithms phase, algorithms are
derived to carry out the responsibilities. CRC cards are used as a visual means of record-
ing classes and their responsibilities. This methodology was applied to the Case Study.

Exercises
1. The Unsorted List ADT is to be extended with a Boolean member function,
IsThere, which takes as a parameter an item of type ItemType and determines
whether there is an element with this key in the list.

a. Write the specification for this function.

b. Write the prototype for this function.

c. Write the function definition.

d. Describe this function in terms of Big-0 notation.
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2. The Sorted List ADT is to be extended with a Boolean member function,
IsThere, which takes as a parameter an item of type ItemType and determines
whether there is an element with this key in the list.

a.
b.
c.
d.

Write the specification for this function.

Write the prototype for this function.

Write the function definition using the binary search algorithm.
Describe this function in terms of Big-0 notation.

3. Write a paragraph comparing your answers in Exercises 1 and 2.

4. Rather than enhancing the Unsorted List ADT by adding a member function
IsThere, you decide to write a client function to do the same task.

a.

b
c.
d

Write the specification for this function.

. Write the function definition.

Describe this function in terms of Big-0 notation.

. Write a paragraph comparing the client function and the member function

(Exercise 1) for the same task.

5. Rather than enhancing the Sorted List ADT by adding a member function
IsThere, you decide to write a client function to do the same task.

a.
b.

C.

d.

Write the specification for this function.

Write the function definition.

Were you able to use the binary search algorithm? Explain your answer.
Describe this function in terms of Big-0 notation.

e. Write a paragraph comparing the client function and the member function

(Exercise 2) for the same task.

6. Write a client function that merges two instances of the Sorted List ADT using
the following specification:

S,

MergeLists(SortedType list1, SortedType list2, Sorted-

Type& result)

Function: Merge two sorted lists into a third sorted
list.

Preconditions: list1 and list2 have been initialized and
are sorted by key using the function
ComparedTo.
list1 and list2 do not have any keys in
common.

Postconditions: result is a sorted list that contains all of

the items from list1 and list2.
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8.

Exercises

a. Write the prototype for MergeLists.
b. Write the code for the function.
c. Describe the algorithm in terms of Big-O notation.

Redo your answers to Exercise 6, making MergeLists a member function of the
Sorted List ADT.

A List ADT is to be extended by the addition of the function SplitLists, which
has the following specification where ListType is either the class UnsortedType or
the class SortedType:

o SplitLists(ListType list, [temType item, ListType& list1,

10.

ListType& list2)

Function: Divides list into two lists according to
the key of item.

Preconditions: list has been initialized and is not
empty.

Postconditions: list1 contains all the items of list whose

keys are less than or equal to item’s key.

list2 contains all the items of list whose
keys are greater than item'’s key.

a. Implement SplitLists as a member function of the Unsorted List ADT.
b. Implement SplitLists as a member function of the Sorted List ADT.

c. Compare the algorithms used in parts (a) and (b).

d. Implement SplitLists as a client function of the Unsorted List ADT.

e. Implement SplitLists as a client function of the Sorted List ADT.

The specification for the Unsorted List ADT states that the item to be deleted is
present in the list.

a. Rewrite the specification for DeleteItem so that the list is unchanged if the
item to be deleted is not present in the list.

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist.

d. Implement DeleteItem as specified in part (c).

The specification for the Sorted List ADT states that the item to be deleted is
present in the list.

a. Rewrite the specification for DeleteItem so that the list is unchanged if the
item to be deleted is not present in the list. (There is at most one such item.)
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11.
12.

13.

14.

15.

16.

17.

18.

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist.

d. Implement DeleteItem as specified in part (c).
Write a formal specification for the problem explored in the Case Study.

Give an example of an algorithm (other than the examples discussed in the chap-
ter) that is

a. 0(1)

b. O(N)

c. O(N?)

A routine to calculate the sum of the results of applying the int function X to
the values in the array data contains the following code segment:

sumOfX = 0;
for (int index = 0; index < numberOfElements; index++)
sumOfX = sumOfX + X(data[index]) ;

If the function X is O(N), what is the order of magnitude of the algorithm with
respect to numberOfElements?

Algorithm 1 does a particular task in a “time” of N3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1,000.

a. What are the Big-0 requirements of each algorithm?
b. Which algorithm is more efficient by Big-0 standards?

c. Under what conditions, if any, would the “less efficient” algorithm execute
more quickly than the “more efficient” algorithm?

Replace the function ComparedTo in the Unsorted List ADT by assuming that
member functions of ItemType overload the relational operators.

Replace the function ComparedTo in the Sorted List ADT by assuming that
member functions of ItemType overload the relational operators.

Discuss extending a List ADT by the addition of a member function Head, which
has the following precondition and postcondition:

Precondition: list has been initialized and is not empty.

Postcondition: return value is the last item inserted in the list
and the list is of type

a. UnsortedType
b. SortedType

Discuss extending a List ADT by the addition of function Tail, which has the
following precondition and postcondition:

Precondition: list has been initialized and is not empty.

Postcondition: return value is a new list with the last item inserted in the list
removed
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20.

21.

22.

23.

24,

Exercises

and the list is of type
a. UnsortedType
b. SortedType

DeleteItem does not maintain the order of insertions because the algorithm
swaps the last item into the position of the item being deleted and then decrements
length. Would there be any advantage to having DeleteItem maintain the inser-
tion order? Justify your answer.

Give a Big-0 estimate of the run time for the functions you wrote in Exercises 9
and 10.

a. Change the specification for the Unsorted List ADT so that InsertItem
throws an exception if the list is full.

b. Implement the revised specification in part (a).

a. Change the specification for the Sorted List ADT so that InsertItem throws
an exception if the list is full.

b. Implement the revised specification in part (a).

The method names used in the class FractionType were not very object ori-
ented. Rewrite the CRC card for this class using more object-oriented terminol-

ogy.
Complete coding class HouseType (ItemType).
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After studying this chapter, you should be able to

Describe a stack and its operations at a logical level

Demonstrate the effect of stack operations using a particular implementa-
tion of a stack

Implement the Stack ADT in an array-based implementation
Declare variables of pointer types

Access the variables to which pointers point

Create and access dynamically allocated data

Explain the difference between static and dynamic allocation of the space in
which the elements of an abstract data type are stored

Use the C++ template mechanism for defining generic data types
Define and use an array in dynamic storage
Describe the structure of a queue and its operations at a logical level

Demonstrate the effect of queue operations using a particular implementation
of a queue

Implement the Queue ADT using an array-based implementation

W Use inheritance to create a Counted Queue ADT

TEAM LinG - Live, Informative, Non-cost and Genuine!



196 | Chapter 4: ADTs Stack and Queue

4]

Stack An abstract data type in which elements are
added and removed from only one end; a “last in, first

out" (LIFO) structure

In Chapter 2, we looked at the built-in structures in C++ from the logical view, the
application view, and the implementation view. At the language level, the logical view
is the syntax of the construct itself, and the implementation view remains hidden within
the compiler. In Chapter 3, we defined the ADTs Unsorted List and Sorted List. For these
user-defined ADTs, the logical view is the class definition where the documentation for
the prototypes of the member functions becomes the interface between the client pro-
gram and the ADT. In this chapter, we expand your toolkit of ADTs to include two
important new ADTs: the stack and the queue.

Stacks

Logical Level

Consider the items pictured in Figure 4.1. Although the objects are all different, each
illustrates the same concept—a stack. At the logical level, a stack is an ordered group of
homogeneous items or elements. The removal of
existing items and the addition of new items can take
place only at the top of the stack. For instance, if your
favorite blue shirt is underneath a faded, old, red one
in a stack of shirts, you must first remove the red shirt
(the top item) from the stack. Only then can you
remove the desired blue shirt, which is now the top
item in the stack. The red shirt may then be replaced on the top of the stack or thrown
away.

The stack may be considered an “ordered” group of items because elements occur in
a particular sequence organized according to how long they’'ve been in the stack. The
items that have been present in the stack the longest are at the bottom; the most recent
are at the top. At any time, given any two elements in a stack, one is higher than the
other. (For instance, the red shirt was higher in the stack than the blue shirt.)

A stack of A stack of
cafeteria trays

shoe boxes

A stack
of pennies A stack of
neatly folded shirts

Figure 4.1 Real-life stacks
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Because items are added and removed only from the top of the stack, the last ele-
ment to be added is the first to be removed. A handy mnemonic can help you remember
this rule of stack behavior: A stack is a LIFO (Last In, First Out) structure.

The accessing protocol for a stack is summarized as follows: Both to retrieve ele-
ments and to store new elements, access only the top of the stack.

Operations on Stacks The logical picture of the structure provides only half of the
definition of an abstract data type. The other half consists of a set of operations that
allows the user to access and manipulate the elements stored in the structure. Given the
logical view of a stack, what kinds of operations do we need to use a stack?

The operation that adds an element to the top of a stack is usually called Fusk, and
the operation that removes the top element from the stack is referred to as (‘Poda.
Because we may need to examine the item at the top of the stack we can have ?Dodo
return the top element or we can use a separate operation L‘ffadc» to return a copy of the
top element without removing it. When we begin using a stack, it should be empty, so
we need an operation that sets the stack to empty: Wlahzgmdo% We must also be able
to tell whether a stack contains any elements before we pop it, so we need a Boolean
operation I@\do%. As a logical data structure, a stack is never conceptually “full,” but
for a particular implementation you may need to test whether a stack is full before
pushing. We call this Boolean operation Is3=ul. Figure 4.2 shows how a stack, envi-
sioned as a stack of building blocks, is modified by several Fusk and Fp operations.

We now have a logical picture of a stack and are almost ready to use it in a pro-
gram. The part of the program that uses the stack, of course, won’t care how the stack is

StackType stack; (Empty)

stack.Push(block2); I

3
stack.Push(block3); —— | 2 }—

stack.Push(blocks); — |

N

= stack.Top();

stack.Pop(); I

Figure 4.2 The effects of Push and Pop operations
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actually implemented—we want the implementation level to be hidden, or encapsulated.
The accessing operations such as Push, Pop, and Top serve as windows into the stack
encapsulation, through which the stack’s data are passed. The interfaces to the access-
ing operations are described in the following specification for the Stack ADT.

Stack ADT Specification
” Structure: Elements are added to and removed from the

top of the stack.
Definitions (provided by user):
MAX_ITEMS: Maximum number of items that might be on
the stack.

ItemType: Data type of the items on the stack.

Operations (provided by the ADT):

MakeEmpty
Function: Sets stack to an empty state.

Precondition: ~ None.
Postcondition:  Stack is empty.

Boolean IsEmpty
Function: Determines whether the stack is empty.

Precondition: ~ Stack has been initialized.
Postcondition:  Function value = (stack is empty).

Boolean IsFull
Function: Determines whether the stack is full.

Precondition: Stack has been initialized.
Postcondition: Function value = (stack is full).

Push(ItemType newltem)
Function: Adds newltem to the top of the stack.

Precondition: Stack has been initialized.

Postconditions: 1If (stack is full), exception FullStack is thrown,
else newltem is at the top of the stack.

Pop()
Function: Removes top item from the stack.
Precondition:  Stack has been initialized.

Postconditions: 1f (stack is empty), exception EmptyStack is
thrown, else top element has been removed
from stack.

TEAM LinG - Live, Informative, Non-cost and Genuine!



4.1 Stacks

ItemType Top()
Function: Returns a copy of the top item on the stack.
Precondition:  Stack has been initialized.

Postconditions: If (stack is empty), exception EmptyStack is
thrown, else a copy of the top element is
returned.

Application Level

Now let’s look at an example of how we might use the stack operations in a program.
Stacks are very useful ADTs that are often used in situations where we must process
nested components.

For example, programming language systems typically use a stack to keep track of
operation calls. The main program calls operation A, which in turn calls operation B, which
in turn calls operation C. When C finishes, control returns to B; when B finishes, control
returns to A; and so on. The call-and-return sequence is essentially a LIFO sequence, so a
stack is the perfect structure for tracking it. When an exception is thrown, this sequence of
operation calls is followed while looking for an appropriate catch statement.

Compilers often use stacks to perform syntax analysis of language statements. The
definition of a programming language usually consists of nested components—for
example, for loops can contain if-then statements that contain while loops that contain
for loops. As a compiler works through such nested constructs, it “saves” information
about what it is currently working on in a stack. When it finishes its work on the inner-
most construct, the compiler can “retrieve” its previous status from the stack, and pick
up where it left off. Similarly, an operating system sometimes saves information about
the currently executing process on a stack, so that it can work on a higher-priority
interrupting process. If that process becomes interrupted by an even higher-priority
process, its information can also be pushed onto the process stack. When the operating
system finishes its work on the highest-priority process, it pops the information about
the most recently stacked process, and continues working on it.

Let’s look at a simpler problem related to nested components—the problem of deter-
mining whether a set of parentheses is “well formed.” For this classic problem, a stack is
an appropriate data structure. The general problem can be stated as follows: Determine
whether a set of paired symbols is used appropriately. The specific problem is: Given a
set of different types of paired symbols, determine whether the opening and closing ver-
sions of each type are paired correctly. For our example, we consider parenthesis pairs
0, [I, and {}.! Any number of other characters may appear in the input, but a closing
parenthesis symbol must match the last unmatched opening parenthesis symbol and all

!An overzealous copyeditor once changed parenthesized expressions in a Pascal program from plain parenthe-
ses to alternating parentheses and square brackets. Fortunately, when all of the programs were tested, this
change was caught.
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[»

Well-Formed Expressions IllI-Formed Expressions
(o (o ()] xx) (0c (30 ()) 300 ) x0xx)

(10 {} 1

(LT {oox }sx () xxx) (xx [ xxx ) xx ]
(LLOCCEEx 31 x) 13 x]) (LLOCCTEx 31 XD} x})
XXXXXXXKXXXXXXXKXKXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX {

Figure 4.3  Well-formed and ill-formed expressions

parenthesis symbols must be matched when the input is finished. Figure 4.3 shows
examples of both well-formed and ill-formed expressions.

The program reads an expression character by character. For each character, it does
one of three tasks, depending on whether the character is an opening special symbol, a
closing special symbol, or not a special symbol. If the character is not a special symbol,
it is discarded and another character is read. If the character is an opening special sym-
bol, it is saved on the stack. If the character is a closing special symbol, it must be
checked against the last opening special symbol, which is on the top of the stack. If they
match, the character and the last opening special symbol are discarded and the program
processes the next character. If the closing special symbol does not match the top of the
stack or if the stack is empty, then the expression is ill formed. When the program has
processed all of the characters, the stack should be empty—otherwise, extra opening spe-
cial symbols are present.

Now we are ready to write the main algorithm, where stack is an instance of
StackType and symbol is the character being examined.

Main Algorithm

Set balanced to true

Set symbol to the first character in current expression
while (there are still more characters AND expression is still balanced)

Process symbol

Set symbol to next character in current expression

if (balanced)

Write "Expression is well formed."

else

Write “Expression is not well formed."

The algorithm follows this basic pattern:
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> |

Get the first piece of information

while not finished processing information
Handle the current information
Get the next piece of information

It uses this processing pattern for both the lines of expressions (if there is more than
one) and the characters within each line. Your programming proficiency will increase as
you recognize such patterns and “reuse” them when appropriate.

The only part of the algorithm that may require expansion before moving on to the
coding stage is the “Process symbol” command. Earlier, we described how to handle
each type of character. Here are those steps in algorithmic form:

> |

Process Symbol
if (symbol is an opening symbol)
Push symbol onto the stack
else if (symbol is a closing symbol)
if the stack is empty
Set balanced to false
else
Set openSymbol to the character at the top of the stack
Pop the stack
Set balanced to (symbol matches openSymbol)

> |

matches

symbol is *)' and openSymbol is ‘(" OR
symbol is '}" and openSymbol is ‘{" OR
symbol is ']" and openSymbol is ‘[
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We are now ready to code this algorithm as the program Balanced. We make use
of stack of the class StackType. We could code a class SymbolType with member
functions IsOpen, IsClosed, and Matches and one data item of type char. However,
because a symbol is just a built-in data type, a procedural solution is simpler.

f#include "StackType.h"

#include <iostream>

bool IsOpen(char symbol);

bool IsClosed(char symbol);

bool Matches(char symbol, char openSymbol);

int main()

{
using namespace std;
char symbol;
StackType stack;
bool balanced = true;
char openSymbol;

cout << "Enter an expression and press return." << endl;
cin.get (symbol);
while (symbol != '\n' && balanced)

{
if (IsOpen(symbol))
stack.Push(symbol) ;
else if (IsClosed(symbol))
{
if (stack.IsEmpty())
balanced = false;
else
{
openSymbol = stack.Top();
stack.Pop();
balanced = Matches(symbol, openSymbol) ;

}

cin.get (symbol) ;
}
if (balanced)

cout << "Expression is well formed." << endl;
else
cout < "Expression is not well formed." << endl;

return O;
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bool IsOpen(char symbol)
{

if ((symbol == ' (') || (symbol == '{') || (symbo

return true;
else
return false;

bool IsClosed(char symbol)
{

if ((symbol == ')') || (symbol == '}') || (symbo

return true;
else
return false;

bool Matches(char symbol, char openSymbol)

{

return (((openSymbol == '(') && symbol

((openSymbol == '{') && symbol
= && symbol

((openSymbol

— l)l)
—_—— ']')
= '1"));

"))

1))
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stack.out.out =]
Enter an expresszion ond press return.
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Exprassion is wall formed.
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stack.out.out B
Emter an expression and press return.
(R R Y
Expression is not well formed.
o
£

In this expression checker, we have acted as stack users. We have written an inter-
esting stack application, without even considering how the stack is implemented. The

TEAM LinG - Live, Informative, Non-cost and Genuine!



204

Chapter 4: ADTs Stack and Queue

stack user doesn’t need to know the implementation! The details of the implementation
remain hidden inside the StackType class. As users, however, we did not adhere to the
specifications carefully. We should have included Push, Pop, and Top with a try/catch
statement. We leave this correction as an exercise.

Implementation Level

Next, we consider the implementation of our Stack ADT. After all, our functions Push,
Pop, and Top are not magically available to the C++ programmer. We need to write
these routines to include them in a program.

Because all elements of a stack are of the same type, an array seems like a reason-
able structure to hold them. We can put elements into sequential slots in the array, plac-
ing the first element pushed into the first array position, the second element pushed into
the second array position, and so on. The floating “high-water” mark is the top element
in the stack. Why, this approach sounds just like our Unsorted List ADT implementation!
Here info[length - 1] is the top of the stack.

Be careful: We are not saying that a stack is an unsorted list. A stack and an
unsorted list are two entirely different abstract data types. We are saying, however, that
we can use the same implementation strategy for both.

Definition of the Stack Class We implement our Stack ADT as a C++ class. Just as we
did for the various versions of the List ADT, we require the user to provide us with a
class called ITtemType, which defines the items on the stack. However, we do not need a
comparison function because none of the operations requires comparing two items on
the stack.

Which data members does our Stack ADT need? We need the stack items them-
selves and a variable indicating the top of the stack (which behaves in the same way as
length in the List ADT). What about error conditions? Our specifications leave error
checking to the user (client) by having the ADT throw an exception when a push opera-
tion is attempted but the stack is full or when a pop or top operation is attempted but
the stack is empty. We include two exception classes, FullStack and EmptyStack, in
the following specification file, StackType.h.

f#finclude ItemType.h

// ItemType.h must be provided by the user of this class.

// This file must contain the following definitions:

// MAX_ITEMS: the
// ItemType: the

class FullStack
// Exception class used

{};

class EmptyStack
// Exception class used

{};

maximum number of items on the stack.
definition of the objects on the stack.

by Push when stack is full.

by Pop and Top when stack is empty.
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class StackType

{
public:
StackType() ;
bool IsEmpty() const;
bool IsFull() const;
void Push(ItemType item);
void Pop();
ItemType Top() const;
private:

int top;
ItemType items[MAX_ ITEMS];
1

Definitions of Stack Operations 1In the List ADT, length indicated how many items
were present on the list. In the Stack ADT, top indicates which element is on top. Thus
our analogy to the List ADT is off by one. The MakeEmpty operation is implemented
with a class constructor that sets top to —1 rather than 0. IsEmpty should compare
top with —1, and IsFull should compare top with MAX_ITEMS —1.

StackType: :StackType ()
{
top = -1;

bool StackType::IsEmpty() const
{
return (top == -1);

bool StackType::IsFull() const
{
return (top == MAX ITEMS-1);

Now we must write the algorithm to Push an item on the top of the stack, Pop an
item from the top of the stack, and return a copy of the top item. Push must increment
top and store the new item into items [top].
If the stack is already full when we invoke
Push, the resulting condition is called stack
overflow. We can handle error checking for
overflow conditions in a number of ways. Our
specification states that overflow causes an
exception to be thrown; thus the client is responsible for handling overflow by enclos-
ing the operation within a try/catch statement. Alternatively, we could pass an error flag
as a parameter, which Push sets to true if overflow occurs.

Stack overflow The condition resulting from trying to
push an element onto a full stack
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Push
if stack is full

throw an exception FullStack
else

Increment top

Set items[top] to newltem

void StackType::Push(ItemType newltem)

{
if (IsFull())
throw FullStack();
top++ H
items [top] = newItem;
}
The constructor for the exception class is called in the throw statement, because
C++ requires us to throw an object of an exception type. Because the documentation
states that the functions Push, Pop, and Top can throw exceptions, calls to them must
be enclosed within a fry block. The following example shows what the client code might
do with the exception:
try

// Code
stack.Push(item) ;
stack.Pop();
// More code
}
catch (FullStack exceptionObject)
{
cerr << "FullStack exception thrown" << endl;
}
catch (EmptyStack exceptionObject)
{
cerr << "EmptyStack exception thrown" << endl;

In this case, the FullStack or EmptyStack object that is thrown is not accessed. If
the exception class has member functions, they could be applied to exceptionObject.
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If the exception is so severe that the program should halt, the exit function can be
used.

catch (EmptyStack exceptionObject)

{
cerr < "EmptyStack exception thrown" << endl
<< "Exiting with error code 2" << endl;
exit(2);
}

C++ The Error Stream cerr

You already know about cin and cout, which are defined in the <iostream> header file. A
third stream defined in <iostream>, cerr, is called the error output stream. As its name sug-
gests, cerr is intended specifically for error messages.

Use of exit (n)

Calling exit (n), which is available in <cstdlib>, anywhere in a program cleans up and then
terminates the program. We cannot use return to terminate a program in any function other
than main. Using return in a function returns to the caller, which would not end the program.
In main, exit (n) has the same effect as return n.

Pop is essentially the reverse of Push: We
decrement top. If the stack is empty when we Stack underflow The condition resulting from trying to
invoke Pop or Top, a stack underflow results. pop an empty stack
As with the Push function, the specifications
for the operations say to throw an exception
in this event.
Here is the code for Pop and Top:

void StackType: :Pop()
{
if (IsEmpty())
throw EmptyStack();
top--;

ItemType StackType::Top() const
{
if (IsEmpty())
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Stack items Logical garbage
N AL
stack [o] (] (2] (3] oo [99]
.items ‘B ‘0’ Y
.top 2
Stack items Logical garbage
A A
stack [o] (] (2] (3] oo [99]
.items ‘B ‘0’ Y
.top 1

Figure 4.4  The effect of a Pop following a series of Pushes

throw EmptyStack();
return items[top];

Figure 4.4 shows the result of pushing and popping where the stack items are
characters.

Test Plan The test plan for the Stack ADT closely resembles the test plan for the List
ADT. Because we are testing the implementation of an abstract data type that we have
just written, we use a clear-box strategy, checking each operation. Unlike with the List
ADT, however, we do not have an iterator that allows us to cycle through the items and
print them. Instead, we must use a combination of calls to Top and Pop to print what is
in the stack, destroying it in the process.

Because the type of data stored in the stack has no effect on the operations that
manipulate the stack, we can define ItemType to represent int values and set
MAX_ ITEMS to 5, knowing that the code will work the same way whether MAX ITEMS is
5 or 1,000.
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Operation to Be Tested and
Description of Action

Class constructor
Apply IsEmpty immediately

Push, Pop, and Top
Push 4 items,
top, pop, and print
Push with duplicates
and pop, top, and print

Push, Pop, and Top
interlace operations
Push
Pop
Push
Push
Pop
Top and print

IsEmpty
Invoke when empty
Push and invoke
Pop and invoke

IsFull
Push 4 items and invoke
Push another item and invoke

throw FullStack
Push 5 items then
Push another item

throw EmptyStack
When stack is empty,
Attempt to pop
Attempt to top

Input Values
5, 7,6, 9
2, 3, 3, 4
5
3
7
1, 2, 3, 4
5
1, 2, 3, 4
6
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Expected Output

or Program Behavior

Stack is empty

9, 6, 7, 5
4, 3, 3, 2
3

Stack is empty
Stack is not empty
Stack is empty

Stack is not full
Stack is full

Caught by driver

Caught by driver
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Template A C++ language construct that allows the
compiler to generate multiple versions of a class type or a
function by allowing parameterized types

On the Web, the program StackDr.cpp is the test driver, the input file is Stack-
Type.in, and the output files are StackType.out and StackType.screen. Examine
StackDr.cpp to see how the try/catch statement is used.

More about Generics: C++ Templates

In Chapter 3, we defined a generic data type as a type for which the operations are
defined but the types of the items being manipulated are not. We have demonstrated
how the list and stack types can be generic by defining the type of the items included in
the structure in a separate file, ItemType.h, and then having ListType.h and Stack-
Type.h include that file. This technique works for any
language that allows you to include or access other
files. Some languages, however, have special con-
structs that allow you to define generic data types. In
C++, this construct is called a template. A template
allows you to write a description of a class type with
“blanks” left to be filled in by the client code. Just as variables serve as the parameters
to functions, types serve as the parameters to templates.
Let’s look at how this cons