Springer LINK: Lecture Notes in Computer Science

&

Farum @

A
What's New Search Order Up

order LINK access

M. Penttonen, E. Meineche Schmidt (Eds.):

Wlaintl Bynmisaes
Eris Meanrcha Schomkds (Tl

Algorithm Theory - SWAT 2002

¢ Algorithm Theory - 8th Scandinavian Workshop on Algorithm Theory, Turku,
< SWAT 2002 Finland, July 3-5, 2002. Proceedings

T, s Wt g i e ow Ty

LNCS 2368

Ordering Information

Table of Contents

Title pagesin PDF (9 KB)

In Memory of Timo Raitain PDF (14 KB)
Prefacein PDF (15 KB)

Organization in PDF (20 KB)

Table of Contentsin PDF (45 KB)

Invited Speakers

An Efficient Quasidictionary
Torben Hagerup and Rajeev Raman
LNCS 2368, p. 1 ff.

Abstract | Full articlein PDF (217 KB)

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (1 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/home.htm
http://buffy.lib.unimelb.edu.au:2150/forum.htm
http://buffy.lib.unimelb.edu.au:2151/
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/index.htm
http://buffy.lib.unimelb.edu.au:2150/forum.htm
http://buffy.lib.unimelb.edu.au:2150/whatsnew.htm
http://buffy.lib.unimelb.edu.au:2150/search.htm
http://buffy.lib.unimelb.edu.au:2150/orders.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs.htm
http://buffy.lib.unimelb.edu.au:2150/orders/index.htm
http://buffy.lib.unimelb.edu.au:2151/cgi-bin/bag_generate.pl?ISBN=3-540-43866-1
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368titl.pdf
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368swat.pdf
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368pref.pdf
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368orga.pdf
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368toc.pdf
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680001.htm

Springer LINK: Lecture Notes in Computer Science

Combining Pattern Discovery and Probabilistic M odeling in Data Mining
Heikki Mannila

LNCS 2368, p. 19

Abstract | Full articlein PDF (33 KB)

Scheduling

Time and Space Efficient Multi-method Dispatching

Stephen Alstrup, Gerth Stelting Brodal, Inge Li Gartz, and Theis Rauhe
LNCS 2368, p. 20 ff.

Abstract | Full articlein PDF (160 KB)

Linear Time Approximation Schemesfor Vehicle Scheduling
John E. Augustine and Steven S. Seiden

LNCS 2368, p. 30 ff.

Abstract | Full articlein PDF (160 KB)

Minimizing M akespan for the Lazy Bureaucrat Problem
Clint Hepner and Cliff Stein

LNCS 2368, p. 40 ff.

Abstract | Full articlein PDF (149 KB)

A PTASfor the Single Machine Scheduling Problem with Controllable Processing Times
Monaldo Mastrolilli

LNCS 2368, p. 51 ff.

Abstract | Full articlein PDF (154 KB)

Computational Geometry

Optimum I napproximability Resultsfor Finding Minimum Hidden Guard Setsin
Polygonsand Terrains

Stephan Eidenbenz

LNCS 2368, p. 60 ff.

Abstract | Full articlein PDF (138 KB)

Simplex Range Searching and & Nearest Neighbors of a Line Segment in 2D
Partha P. Goswami, Sandip Das, and Subhas C. Nandy

LNCS 2368, p. 69 ff.

Abstract | Full articlein PDF (208 KB)

Adaptive Algorithmsfor Constructing Convex Hullsand Triangulations of Polygonal
Chains

Christos Levcopoulos, Andrzegj Lingas, and Joseph S.B. Mitchell

LNCS 2368, p. 80 ff.

Abstract | Full articlein PDF (149 KB)

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (2 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680019.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680020.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680030.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680040.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680051.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680060.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680069.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680080.htm

Springer LINK: Lecture Notes in Computer Science

Exact Algorithmsand Approximation Schemes for Base Station Placement Problems
Nissan Lev-Tov and David Peleg

LNCS 2368, p. 90 ff.

Abstract | Full articlein PDF (174 KB)

A Factor-2 Approximation for Labeling Pointswith Maximum Sliding L abels
Zhongping Qin and Binhai Zhu

LNCS 2368, p. 100 ff.

Abstract | Full articlein PDF (153 KB)

Optimal Algorithm for a Special Point-L abeling Problem
Sasanka Roy, Partha P. Goswami, Sandip Das, and Subhas C. Nandy
LNCS 2368, p. 110 ff.

Abstract | Full articlein PDF (171 KB)

Random Arc Allocation and Applications
Peter Sanders and Berthold V 6cking

LNCS 2368, p. 121 ff.

Abstract | Full articlein PDF (159 KB)

On Neighborsin Geometric Per mutations
Micha Sharir and Shakhar Smorodinsky
LNCS 2368, p. 131 ff.

Abstract | Full articlein PDF (152 KB)

Graph Algorithms

Power s of Geometric I ntersection Graphs and Dispersion Algorithms
Geir Agnarsson, Peter Damaschke, and Magnus M. Halldorsson

LNCS 2368, p. 140 ff.

Abstract | Full articlein PDF (179 KB)

Efficient Data Reduction for DOMINATING SET: A Linear Problem Kernel for the
Planar Case

Jochen Alber, Michadl R. Fellows, and Rolf Niedermeier

LNCS 2368, p. 150 ff.

Abstract | Full articlein PDF (242 KB)

Planar Graph Coloring with Forbidden Subgraphs: Why Trees and Paths Are Danger ous
Hajo Broersma, Fedor V. Fomin, Jan Kratochvil, and Gerhard J. Woeginger

LNCS 2368, p. 160 ff.

Abstract | Full articlein PDF (158 KB)

Approximation Hardness of the Steiner Tree Problem on Graphs
Miroslav Chlebik and Janka Chlebikova

LNCS 2368, p. 170 ff.

Abstract | Full articlein PDF (146 KB)

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (3 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680090.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680100.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680110.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680121.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680131.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680140.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680150.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680160.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680170.htm

Springer LINK: Lecture Notes in Computer Science

The Dominating Set Problem Is Fixed Parameter Tractable for Graphs of Bounded Genus
J. Ellis, H. Fan, and Michael R. Fellows

LNCS 2368, p. 180 ff.

Abstract | Full articlein PDF (175 KB)

The Dynamic Vertex Minimum Problem and Its Application to Clustering-Type
Approximation Algorithms

Harold N. Gabow and Seth Pettie

LNCS 2368, p. 190 ff.

Abstract | Full articlein PDF (131 KB)

A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid
Alexander Golynski and Joseph D. Horton

LNCS 2368, p. 200 ff.

Abstract | Full articlein PDF (160 KB)

Approximation Algorithms for Edge-Dilation & -Center Problems
Jochen Kdnemann, Y anjun Li, Ojas Parekh, and Amitabh Sinha
LNCS 2368, p. 210 ff.

Abstract | Full articlein PDF (176 KB)

Forewarned |Is Fore-Armed: Dynamic Digraph Connectivity with L ookahead Speeds Up a
Static Clustering Algorithm

Sarnath Ramnath

LNCS 2368, p. 220 ff.

Abstract | Full articlein PDF (137 KB)

Improved Algorithmsfor the Random Cluster Graph M odel
Ron Shamir and Dekel Tsur

LNCS 2368, p. 230 ff.

Abstract | Full articlein PDF (187 KB)

A -List Vertex Coloringin Linear Time
San Skulrattanakul cha

LNCS 2368, p. 240 ff.

Abstract | Full articlein PDF (145 KB)

Robotics

Robot L ocalization without Depth Per ception

Erik D. Demaine, Algandro L6pez-Ortiz, and J. lan Munro
LNCS 2368, p. 249 ff.

Abstract | Full articlein PDF (189 KB)

Online Parallel Heuristics and Robot Sear ching under the Competitive Framework
Algjandro L épez-Ortiz and Sven Schuierer

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (4 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680180.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680190.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680200.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680210.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680220.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680230.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680240.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680249.htm

Springer LINK: Lecture Notes in Computer Science

LNCS 2368, p. 260 ff.
Abstract | Full articlein PDF (159 KB)

Analysisof Heuristicsfor the Freeze-Tag Problem

Marcelo O. Sztainberg, Esther M. Arkin, Michael A. Bender, and Joseph S.B. Mitchell
LNCS 2368, p. 270 ff.

Abstract | Full articlein PDF (175 KB)

Approximation Algorithms

Approximationsfor Maximum Transportation Problem with Permutable Supply Vector
and Other Capacitated Star Packing Problems

Esther M. Arkin, Refael Hassin, Shiomi Rubinstein, and Maxim Sviridenko

LNCS 2368, p. 280 ff.

Abstract | Full articlein PDF (150 KB)

All-Norm Approximation Algorithms

Yoss Azar, Leah Epstein, Y oss Richter, and Gerhard J. Woeginger
LNCS 2368, p. 288 ff.

Abstract | Full articlein PDF (147 KB)

Approximability of Dense I nstances of NEAREST CODEWORD Problem
Cristina Bazgan, W. Fernandez de laVega, and Marek Karpinski

LNCS 2368, p. 298 ff.

Abstract | Full articlein PDF (152 KB)

Data Communication

Call Control with & Rejections

R. Sai Anand, Thomas Erlebach, Alexander Hall, and Stamatis Stefanakos
LNCS 2368, p. 308 ff.

Abstract | Full articlein PDF (95 KB)

On Network Design Problems: Fixed Cost Flows and the Covering Steiner Problem
Guy Even, Guy Kortsarz, and Wolfgang Slany

LNCS 2368, p. 318 ff.

Abstract | Full articlein PDF (164 KB)

Packet Bundling

Jens S. Frederiksen and Kim S. Larsen
LNCS 2368, p. 328 ff.

Abstract | Full articlein PDF (148 KB)

Algorithmsfor the Multi-constrained Routing Problem
Anuj Puri and Stavros Tripakis
LNCS 2368, p. 338 ff.

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (5 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680260.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680270.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680280.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680288.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680298.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680308.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680318.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680328.htm

Springer LINK: Lecture Notes in Computer Science

Abstract | Full articlein PDF (178 KB)

Computational Biology

Computing the Threshold for g-Gram Filters

Juha Kéarkkainen
LNCS 2368, p. 348 ff.
Abstract | Full articlein PDF (173 KB)

On the Generality of Phylogenies from Incomplete Directed Characters
Itsik Pe'er, Ron Shamir, and Roded Sharan

LNCS 2368, p. 358 ff.

Abstract | Full articlein PDF (193 KB)

Data Storage and Manipulation

Sorting with a Forklift

M.H. Albert and M.D. Atkinson
LNCS 2368, p. 368 ff.

Abstract | Full articlein PDF (117 KB)

Tree Decompositionswith Small Cost
Hans L. Bodlaender and Fedor V. Fomin
LNCS 2368, p. 378 ff.

Abstract | Full articlein PDF (166 KB)

Computing the Treewidth and the Minimum Fill-in with the M odular Decomposition
Hans L. Bodlaender and Udi Rotics

LNCS 2368, p. 388 ff.

Abstract | Full articlein PDF (164 KB)

Performance Tuning an Algorithm for Compressing Relational Tables
Jyrki Katajainen and Jeppe Ngjsum Madsen

LNCS 2368, p. 398 ff.

Abstract | Full articlein PDF (147 KB)

A Randomized In-Place Algorithm for Positioning the £tA Element in a Multiset
Jyrki Katagjainen and Tomi A. Pasanen

LNCS 2368, p. 408 ff.

Abstract | Full articlein PDF (165 KB)

Paging on a RAM with Limited Resour ces
Tony W. Lai

LNCS 2368, p. 418 ff.

Abstract | Full articlein PDF (105 KB)

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (6 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680338.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680348.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680358.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680368.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680378.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680388.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680398.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680408.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680418.htm

Springer LINK: Lecture Notes in Computer Science

An Optimal Algorithm for Finding NCA on Pure Pointer Machines
A. Dal Pali, E. Pontelli, and D. Ranjan

LNCS 2368, p. 428 ff.

Abstract | Full articlein PDF (173 KB)

Amortized Complexity of Bulk Updatesin AVL-Trees
Eljas Soisalon-Soininen and Peter Widmayer

LNCS 2368, p. 439 ff.

Abstract | Full articlein PDF (139 KB)

Author Index
LNCS 2368, p. 449 ff.
Author Index in PDF (18 KB)

Online publication: June 21, 2002
hel pdesk @link.springer.de
© Springer-Verlag Berlin Heidelberg 2002

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/tocs/t2368.htm (7 of 7) [9/30/2002 10:21:43 PM]

http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680428.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/bibs/2368/23680439.htm
http://buffy.lib.unimelb.edu.au:2150/link/service/series/0558/papers/2368/2368auth.pdf
mailto:helpdesk@link.springer.de

An Efficient Quasidictionary

Torben Hagerup! and Rajeev Raman?*
! Institut fiir Informatik, Johann Wolfgang Goethe-Universitit Frankfurt,
D-60054 Frankfurt am Main. hagerup@ka.informatik.uni-frankfurt.de

2 Department of Maths and Computer Science, University of Leicester,
Leicester LE1 TRH, UK. r.raman@mcs.le.ac.uk

Abstract. We define a quasidictionary to be a data structure that
supports the following operations: check-in(v) inserts a data item v
and returns a positive integer tag to be used in future references to v;
check-out(z) deletes the data item with tag x; access(z) inspects and/or
modifies the data item with tag z. A quasidictionary is similar to a
dictionary, the difference being that the names identifying data items
are chosen by the data structure rather than by its user. We describe a
deterministic quasidictionary that executes the operations check-in and
access in constant time and check-out in constant amortized time, works
in linear space, and uses only tags bounded by the maximum number of
data items stored simultaneously in the quasidictionary since it was last
empty.

1 Introduction

Many data structures for storing collections of elements and executing certain
operations on them have been developed. For example, the red-black tree [14]
supports the operations insert, delete, and access, among others, and the Fi-
bonacci heap [I00] supports such operations as insert, decrease, and extractmin.
An element is typically composed of a number of fields, each of which holds a
value. Many common operations on collections of elements logically pertain to a
specific element among those currently stored. E.g., the task of a delete operation
is to remove an element from the collection, and that of a decrease operation is
to lower the value of a field of a certain element. Therefore the question arises
of how a user of a data structure can refer to a specific element among those
present in the data structure.

The elements stored in a red-black tree all contain a distinguished key drawn
from some totally ordered set, and the tree is ordered with respect to the keys.
In some cases, it suffices to specify an element to be deleted, say, through its
key. If several elements may have the same key, however, this approach is not
usable, as it may not be immaterial which of the elements with a common key
gets deleted. Even when keys are unique, specifying an element to be deleted
from a Fibonacci heap through its key is not a good idea, as Fibonacci heaps

* Supported in part by EPSRC grant GR L/92150.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 1-{I8 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 T. Hagerup and R. Raman

do not support (efficient) searching: Locating the relevant key may involve the
inspection of essentially all of the elements stored, an unacceptable overhead. In
still other cases, such as with finger trees [517], even though reasonably efficient
search is available, it may be possible to execute certain operations such as
deletions faster if one already knows “where to start”.

For these reasons, careful specifications of data-structure operations such as
delete state that one of their arguments, rather than being the element to be
operated on, is a pointer to that element. Several interpretations of the exact
meaning of this are possible. In their influential textbook, Cormen et al. use the
convention that elements are actually stored “outside of” the data structures,
the latter storing only pointers to the elements [6] Part III, Introduction]. Thus
insert and delete operations alike take a pointer to an element as their argument.
In contrast, the convention employed by the LEDA library is that (copies of)
elements are stored “inside” the data structures, and that an insertion of an
element returns a pointer (a “dependent item”, in LEDA parlance) to be used
in future references to the element [19 Section 2.2].

The method employed by Cormen et al. can have its pitfalls. Consider, e.g.,
the code proposed for the procedure BINOMIAL-HEAP-DECREASE-KEY in [6]
Section 20.2] and note that the “bubbling up” step repeatedly exchanges the
key fields and all satellite fields of two nodes y and z, in effect causing y and z
to refer to different elements afterwards. Because of this, repeated calls such as
BINOMIAL-HEAP-DECREASE-KEY (H, 2, k1); BINOMIAL-HEAP-DECREASE-KEY
(H,x, ko), despite their appearance, may not access the same logical element.
Indeed, as binomial heaps do not support efficient searching, it will not be easy
for a user to get hold of valid arguments z to use in calls of the form BINOMIAL-
HEAP-DECREASE-KEY(H, 2, k). One might think that this problem could be
solved by preserving the key and satellite fields of the nodes y and z and instead
exchanging their positions within the relevant binomial tree. Because of the
high degrees of some nodes in binomial trees, however, this would ruin the time
bounds established for the BINOMIAL-HEAP-DECREASE-KEY operation.

Presumably in recognition of this problem, in the second edition of their
book, Cormen et al. include a discussion of so-called handles [7| Section 6.5].
One kind of handle, which we might call an inward handle, is a pointer from an
element of an application program to its representation in a data structure in
which, conceptually, it is stored. The inward handle has a corresponding outward
handle that points in the opposite direction. Whenever the representation of an
element is moved within a data structure, its outward handle is used to locate
and update the corresponding inward handle. While this solution is correct, it
is not modular, in that the data structure must incorporate knowledge of the
application program that uses it. It can be argued that this goes against current
trends in software design.

A solution that does not suffer from this drawback can be obtained by em-
ploying the LEDA convention described above and introducing one more level
of indirection: The pointer supplied by the user of a binomial heap would then
point not into the heap itself, but to an auxiliary location that contains the

An Efficient Quasidictionary 3

actual pointer into the heap and is updated appropriately whenever the element
designated moves within the heap.

In the following, we adopt the LEDA convention and assume that every
insertion of an element into a data structure returns a pointer to be used in
future references to the element. The pointer can be interpreted as a positive
integer, which we will call the tag of the element. At every insertion of an element,
the data structure must therefore “invent” a suitable tag and hand it to the user,
who may subsequently access the element an arbitrary number of times through
its tag. Eventually the user may delete the element under consideration, thus in
effect returning its tag to the data structure for possible reuse. During the time
interval in which a user is allowed to access some element through a tag, we say
that the tag is in use. When the tag is not in use, it is free. Fig. [[l contrasts the
solution using handles with the one based on tags.

Application Data structure Application Data structure
= handles @\)]
O ? ? [=
: : tags
(a) (b)

Fig. 1. The interplay between an application and a data structure based on (a) handles
and (b) tags.

It might seem that the only constraint that a data structure must observe
when “inventing” a tag is that the tag should not already be in use. This con-
straint can easily be satisfied by maintaining the set of free tags in a linked list:
When a new tag is needed, the first tag on the free list is deleted from the list
and put into use, and a returned tag is inserted at the front of the list. In gen-
eral, however, a data structure has close to no control over which tags are in use.
In particular, it may happen that at some point, it contains only few elements,
but that these have very large tags. Recall that the purpose of a tag is to allow
efficient access to an element stored in the data structure. The straightforward
way to realize this is to store pointers to elements inside the data structure in
a tag array indexed by tag values. Now, if some tags are very large (compared
to the current number of elements), the tag array may have to be much bigger
than the remaining parts of the data structure, putting any bounds established
for its space consumption in jeopardy.

In his discussion of adding the delete operation to priority queues that lack
it, Thorup [23, Section 2.3] proposes the use of tags (called “identifiers”) and a
tag array (called “D”). He recognizes the problem that identifiers may become
too big for the current number of elements. The solution that he puts forward to

4 T. Hagerup and R. Raman

solve this problem places the burden on the user of a data structure: Whenever
the number of elements stored has halved, the user is required to extract all
elements from the data structure and subsequently reinsert them, which gives
the data structure an opportunity to issue smaller tags. Our goal in this paper
is to provide an algorithmic solution to the problem.

Even when no tag arrays are needed, small tags may be advantageous, sim-
ply because they can be represented in fewer bits and therefore stored more
compactly. This is particularly crucial in the case of packed data structures,
which represent several elements in a single computer word and operate on all of
them at unit cost. In such a setting, tags must be stored with the elements that
they designate and follow them as they move around within a data structure.
Therefore it is essential that tags can be packed as tightly as the corresponding
elements, which means that they should consist of essentially no more bits. The
investigation reported here was motivated by an application to a linear-space
packed priority queue.

We formalize the problem of maintaining the tags of a data structure by
defining a quasidictionary to be a data structure that stores an initially empty
set S of elements and supports the following operations:

check-in(v), where v is an element (an arbitrary constant-size collection of
fields), inserts v in S and returns a positive integer called the tag of v and distinct
from the tag of every other element of S.

check-out(x), where x is the tag of an element in S, removes that element
from S.

access(x), where x is the tag of an element in S, inspects and/or modifies
that element (but not its tag); the exact details are of no importance here.

The term “quasidictionary” is motivated by the similarity between the data
structure defined above and the standard dictionary data structure. The latter
supports the operations insert(z,v), delete(z), and access(x). The access opera-
tions of the two data structures are identical, and delete(x) has the same effect
as check-out(z). The difference between insert(x,v) and check-in(v) is that in
the case of insert(x,v), the tag = that gives access to v in later operations is
supplied by the user, whereas in the case of check-in(v), it is chosen by the data
structure. In many situations, the tags employed are meaningful to the user, and
a dictionary is what is called for. In other cases, however, the elements to be
stored have no natural a priori names, and a quasidictionary can be used and
may be more convenient.

Quasidictionaries have potential applications to storage management. A stor-
age allocator must process online a sequence of requests for contiguous blocks of
memory of specified sizes, interspersed with calls to free blocks allocated earlier.
It is known [2T)22] that if N denotes the maximum total size of the blocks in
use simultaneously, the storage allocator needs 2(N log N) words of memory to
serve the requests in the worst case. As proved in [I§], randomization does not
help very much. A decision version of the corresponding offline problem, in which
all requests are known initially, is NP-complete, even when all block sizes are 1
or 2 [12, Section A4.1], and the best polynomial-time approximation algorithm

An Efficient Quasidictionary 5

known has an approximation ratio of 3 [13]. Thus the storage-allocation problem
is difficult in theory. As argued in detail in [24], despite the use of a number of
heuristics, it also continues to constitute a challenge in practice.

Conventional storage allocators are not allowed to make room for a new
block by relocating other blocks while they are still in use. This is because of
the difficulty or impossibility of finding and updating all pointers that might
point into such blocks. Relocating storage allocators, however, can achieve a
superior memory utilization in many situations. This is where quasidictionaries
come into the picture: Equipped with a “front-end” quasidictionary, a relocating
storage allocator can present the interface of a nonrelocating one. An application
requesting a block of memory then receives a tag that identifies the block rather
than a pointer to the start of the block, and subsequent accesses to the block
are made by passing the tag of the block and an offset within the block to a
privileged operation that accesses the quasidictionary. This has a number of
disadvantages. First, the tag cannot be used as a “raw” pointer into memory,
and address arithmetic involving the tag is excluded. This may not be a serious
disadvantage. Indeed, the use of pointers and pointer arithmetic is a major source
of difficult-to-find software errors and “security holes”. Second, memory accesses
are slowed down due to the extra level of indirection. However, in the interest
of security and programmer productivity, considerable run-time checks (e.g., of
array indices against array bounds) were already made an integral part of modern
programming languages such as Java.

Our model of computation is the unit-cost word RAM, a natural and realistic
model of computation described and discussed more fully in [I5]. Just as a usual
RAM, a word RAM has an infinite memory consisting of cells with addresses
0,1,2,..., not assumed to be initialized in any particular way. For a positive
integer parameter w, called the word length, every memory cell stores an integer
in the range {0, ... ,2* —1}, known as a word. We assume that the instructions in
the so-called multiplication instruction set can be executed in constant time on
w-bit operands. These include addition, subtraction, bitwise Boolean operations,
left and right bit shifts by an arbitrary number of positions, and multiplication.
The word length w is always assumed to be sufficiently large to allow the memory
needed by the algorithms under consideration to be addressed; in the context of
the present paper, this will mean that if a quasidictionary at some point must
store n elements, then w > logyn + ¢ for a suitable constant ¢ > 0; in particular,
we will have n < 2*. An algorithm for the word RAM is called weakly nonuniform
if it needs access to a constant number of precomputed constants that depend
on w. If it needs only the single constant 1, it is called uniform. When nothing
else is stated, uniformity is to be understood.

Since the space requirements of data structures are of central interest to the
present paper, we provide a careful definition, which is somewhat more involved
than the corresponding definition for language-recognition problems. Informally,
the only noteworthy points are that the space consumption is related not to an
input size, but to the number of elements currently stored, and that space is
counted in units of w-bit words.

6 T. Hagerup and R. Raman

First, a legal input to a data structure D is a sequence of operations that D
is required to execute correctly, starting from its initial state. We will say that D
uses space s during the execution of a legal input oy to D if, even if the contents
of all memory cells with addresses > s are altered arbitrarily at arbitrary times
during the execution of o, subsequently every operation sequence oo such that
0102 is a legal input to D is executed correctly, and if s is the smallest non-
negative integer with this property. Assume now that D stores sets of elements
and let IN = {1,2,...} and INg = INU {0}. The space consumption of D is the
pointwise smallest function g : INg — INg such that for all legal inputs o to D, if
D contains n elements after the execution of o, then the space used by D during
the execution of ¢ is bounded by g(n). If the space consumption of D is O(n),
we say that D works in linear space.

Our main result is the following:

Theorem 1. There is a uniform deterministic quasidictionary that can be ini-
tialized in constant time, executes the operations check-in and access in constant
time and check-out in constant amortized time, works in linear space, and uses
only tags bounded by the maximum number of tags in use simultaneously since
the quasidictionary was last empty.

A result corresponding to Theorem [is not known for the more powerful
dictionary data structure. Constant execution times in conjunction with a linear
space consumption can be achieved, but only at the expense of introducing ran-
domization [9]. A deterministic solution based on balanced binary trees executes
every operation in O(logn) time, where n is the number of elements currently
stored, whereas a data structure of Beame and Fich [4], as deamortized by An-
dersson and Thorup [3], yields execution times of O(1/logn/loglogn). If we
insist on constant-time access, the best known result performs insertions and
deletions in O(n¢) time, for arbitrary fixed € > 0 [16]. We are not aware of any
previous work specifically on quasidictionaries.

2 Four Building Blocks

We will compose the quasidictionary postulated in Theorem [from four sim-
pler data structures. One of these is a quasidictionary, except that it supports
an additional operation scan that lists all tags currently in use, and that it is
initialized with a set of pairs of (distinct) tags already in use and their corre-
sponding elements, rather than starting out empty; we call such a data structure
an initialized quasidictionary. The three other data structures are static dictio-
naries, which are also initialized with a set of (tag,element) pairs, and which
subsequently support only the operation access. The four building blocks are
characterized in the following four lemmas.

Lemma 1. There is an initialized quasidictionary that, provided that every tag
mitially in use is bounded by N and that the number of tags simultaneously
in use is guaranteed never to exceed N, can be initialized in O(N) time and

An Efficient Quasidictionary 7

space, uses O(N) space, and executes check-in, check-out and access in constant
time and scan in O(N) time. Moreover, every tag used is bounded by a tag
initially present or by the maximum number of tags in use simultaneously since
the quasidictionary was initialized.

Proof. Use a tag array storing for each of the integers 1,... , N whether it is
currently in use as a tag and, if so, its associated element. Moreover, maintain
the set of free tags in {1,... , N} in a linked list as described in the introduction.
By assumption, no tag will be requested when the list is empty, and it is easy
to carry out the operations within the stated time bounds. Provided that the
initial free list is sorted in ascending order, no check-in operation will issue a tag
that is too large.

We will refer to the integer N that appears in the statement of the previous
lemma as the capacity of the data structure. A data structure similar to that of
the lemma, but without the need for an initial specification of a capacity, was
implemented previously by Demaine [§] for use in a simulated multiprocessor
environment.

Lemma 2. There is a static dictionary that, when initialized with n > 4 tags in
{1,..., N} and their associated elements, can be initialized in O(n + N/log N)
time and space, uses O(n+N/log N) space, and supports constant-time accesses.

Proof. Assume without loss of generality that the tag N is in use. The data
structure begins by computing a quantity b as a power of two with 2 < b < log N,
but b = 2(log N), as well as logb, with the help of which divisions by b can be
carried out in constant time. Similarly, it computes [as a power of two with
logh <1 <b, but I = O(logb), as well as log!.

Let S be the set of tags to be stored. For j =0,... ,r = |N/b],let U; = {z |
1<z <N and |z/b] =j} and take S; = SNU;. For j =0,...,r, the elements
with tags in S; are stored in a separate static dictionary D, the starting address
of which is stored in position j of an array of size r + 1. For j = 0,...,r, D;
consists of an array B; of size |S;| that contains the elements with tags in S,
and a table L; that maps every tag in S; to the position in B; of its associated
element. L; is organized in one of two ways.

If |Sj| > I, L; is an array indexed by the elements of U;. Since |S;| < b < 2!,
every entry in L; fits in a field of [bits. Moreover, by assumption, the word
length w is at least log N > b. We therefore store L; in [< |S;| words, each of
which contains b/! fields of [bits each. It is easy to see that accesses to L; can
be executed in constant time.

If |S;| <1, L; is a list of |\S}| pairs, each of which consists of the remainder
modulo b of a tag x € S, (a tag remainder) and the corresponding position in
Bj;. Each pair can be represented in 2/ bits, so the entire list L; fits in 2{% =
O((loglog N)?) bits. We precompute a table, shared between all of Dy, ..., D,,
that maps a list L; with |S;| < | and a tag remainder to the corresponding
position in B;. The table occupies o(r) words and is easily computed in o(r)
time. Again, accesses to L; can be executed in constant time.

8 T. Hagerup and R. Raman

It is simple to verify that the overall dictionary uses O(r+3_7_(1+(5;])) =
O(n+ N/log N) space, can be constructed in O(n+ N/log N) time, and supports
accesses in constant time.

Lemma 3. There is a static dictionary that, when initialized with n > 2 tags in
{1,...,N} and their associated elements, can be initialized in O(nlogn) time
and O(n) space, uses O(n) space, and supports accesses in O(1 + log N /logn)
time.

Proof. We give only the proof for N = n®(") | which is all that is needed in the
following. The proof of the general case proceeds along the same lines and is
hardly any more difficult.

The data structure begins by sorting the tags in use. Viewing each tag as a
k-digit integer to base n, where k = O(1 4 log N /logn) = O(1), and processing
the tags one by one in sorted order, it is then easy, in O(n) time, to construct a
trie or digital search tree T for the set of tags. T is a rooted tree with exactly
n leaves, all at depth exactly k, each edge of T is labeled with a digit, and each
leaf u of T" corresponds to a unique tag x in the sense that the labels on the path
in T from the root to u are exactly the digits of x in the order from most to least
significant. If the element associated with each tag is stored at the corresponding
leaf of T, it is easy to execute access operations in constant time by searching in
T, provided that the correct edge to follow out of each node in T' can be found
in constant time.

T contains fewer than n branching nodes, nodes with two or more children,
and these can be numbered consecutively starting at 0. Since the total number
of children of the branching nodes is bounded by 2n, it can be seen that the
problem of supporting searches in 7' in constant time per node traversed reduces
to that of providing a static dictionary for at most 2n keys, each of which is a
pair consisting of the number of a branching node and a digit to base n, i.e., is
drawn from a universe of size bounded by n2. We construct such a dictionary
using the O(nlogn)-time procedure described in [I6, Section 4].

Remark. The main result of [16] is a static dictionary for n arbitrary keys that
can be constructed in O(nlogn) time and supports constant-time accesses. The
complete construction of that dictionary is weakly nonuniform, however, which
is why we use only a uniform part of it.

Lemma 4. There is a constant v € IN and functions f1,...,f, : Ng — INg,
evaluable in linear time, such that given a set S of n > 2 tags bounded by
N with associated elements as well as f1(b), ..., f,(b) for some integer b with
logN < b < w, a static dictionary for S that uses O(n) space and supports
accesses in constant time can be constructed in O(n®) time using O(n) space.

Proof. For log N < n®, we use a construction of Raman [20, Section 4], which
works in O(n?log N) = O(n®) time.

For log N > n?, the result can be proved using the fusion trees of Fredman
and Willard [IT] (see [I5, Corollary 8]). Reusing some of the ideas behind the
fusion trees, we give a simpler construction.

An Efficient Quasidictionary 9

Number the bit positions of a w-bit word from the right, starting at 0. Our
proof takes the following route: First we show how to compute a set A of fewer
than n bit positions such that two arbitrary distinct tags in S differ in at least
one bit position in A. Subsequently we describe a constant-time transformation
that, given an arbitrary word z, clears the bit positions of x outside of A and
compacts the positions in A to the first n bit positions. Noting that this maps S
injectively to a universe of size 2”3, we can appeal to the first part of the proof.

Write S = {x1,... ,z,} with 21 < -+ < x,,. We take

A= {MSB([EZ @mi+1) | 1<i< n},

where @ denotes bitwise exclusive-or and MSB(z) = |log,x| is the most sig-
nificant bit of x, i.e., the position of the leftmost bit of z with a value of 1. In
other words, A is the set of most significant bit positions in which consecutive
elements of S differ. To see that elements z; and x; of S with z; < z; differ
in at least one bit position in A even if j # i + 1, consider the digital search
tree T for S described in the previous proof, but for base 2, and observe that
MSB(z; @ ;) = MSB(z, & x,41), where z, is the largest key in S whose cor-
responding leaf in T is in the left subtree of the lowest common ancestor of the
leaves corresponding to x; and x;.

By assumption, @ is a unit-time operation, and Fredman and Willard have
shown how to compute MSB(x) from z in constant time [T} Section 5]. Their
procedure is weakly nonuniform in our sense. Recall that this means that it
needs to access a fixed number of constants that depend on the word length w.
It is easy to verify from their description that the constants can be computed
in O(w) time (in fact, in O(logw) time). We define v and fi,..., f, so that
the required constants are precisely f1(b),..., f.(b). For this we must pretend
that the word length w is equal to b, which simply amounts to clearing the bit
positions b,b + 1,... after each arithmetic operation. It follows that A can be
computed in O(nlogn) time.

Take k = |A| and write A = {a1,...,ar}. Multiplication with an integer
W= Zle 2™i can be viewed as copying each bit position a to positions a +
my,...,a+ myg. Following Fredman and Willard, we plan to choose p so that
no two copies of elements of A collide, while at least one special copy of each
element of A is placed in one of the bit positions b, ... ,b+ k3 — 1. The numbers

mi,...,my can be chosen greedily. For i = 1,... |k, none of the k copies of a;
may be placed in one of the at most (k — 1)k positions already occupied, which
leaves at least one position in the range b, ... ,b+ k3 — 1 available for the special

copy of a;. Thus a suitable multiplier u can be found in O(k*) = O(n*) time.

An operation access(z) is processed as follows: First the bits of = outside of
positions in A are cleared. Then the product px is formed. It may not fit in one
word. Since b+ k% < w+n? < w+log N < 2w, however, it fits in two words and
can be computed in constant time using simulated double-precision arithmetic.
Shifting px right by b bits and clearing positions n?,n% + 1,... completes the
transformation of x, and the transformed tag is accessed in a data structure
constructed using Raman’s method.

10 T. Hagerup and R. Raman

The static dictionaries of Lemmas] Bland[4] can easily be extended to support
deletions in constant time and scans in O(n) time. For deletion, it suffices to mark
each tag with an additional bit that indicates whether the tag is still in use. For
scan, step through the list from which the data structure was initialized (which
must be kept around for this purpose) and output precisely the tags not marked
as deleted.

3 The Quasidictionary

In this section we describe a quasidictionary with the properties claimed in The-
orem[I], except that check-in operations take constant time only in an amortized
sense. After analyzing the data structure in the next section, we describe the mi-
nor changes needed to turn the amortized bound for check-in into a worst-case
bound. Since we can assume that the data structure is re-initialized whenever it
becomes empty, in the following we will simplify the language by assuming that
the data structure was never empty in the past after the execution of the first
(check-in) operation.

Observe first that for any constant ¢ € IN, the single semi-infinite memory at
our disposal can emulate ¢ separate semi-infinite memories with only a constant-
factor increase in execution times and space consumption: For ¢ € INp, the real
memory cell with address 4 is simply interpreted as the cell with address |i/c| in
the ((4 mod ¢) 4 1)st emulated memory. Then a space bound of O(n) established
for each emulated memory translates into an overall O(n) space bound. In the
light of this, we shall feel free to store each of the main components of the
quasidictionary in its own semi-infinite array.

We divide the set of potential tags into layers: For j € IN, the jth layer U;
consists of those natural numbers whose binary representations contain exactly
J bits; i.e., Uy = {1}, Uy = {2,3}, U3 = {4,...,7} and so on. In general, for
JEWN,U; ={2771,...,27 -1} and |U;| = 277!, Let S be the current set of tags
in use and for j € IN, take S; = SNU;. For j € IN, we call |S;| + |S;_1| the pair
size of j (take Sp = @), and we say that S is full if S; = Uj.

Let J ={j € N | S; # @}. For all j € J and all tags « € S;, the element
with (external) tag x is stored with an (internal) tag of z — (2/=% — 1) in a
separate data structure D; called a data stripe and constructed according to one
of Lemmas [[HAl The offset 0; = 277! — 1 applied to tags in D; is called for by
our convention of letting all tag ranges start at 1. For j € J and « =[,... ,A
if D; is constructed as described in Lemma 4, we will say that D; is (stored) in
Representation i. All data stripes are stored in an initial block of a semi-infinite
array D. The first cell of D following this block is pointed to by a variable top.
When stating that a data stripe D; is moved to D, what we mean is that it is
stored in D, starting at the address top, after which top is incremented by the
size of D;. Converting a data stripe D; to Representation i means extracting
all (tag, element) pairs stored in D; by means of its scan operation, abandoning
the old D; (which may still continue to occupy a segment of D), initializing a
new D; in Representation ¢ with the pairs extracted, and moving (the new) D,

An Efficient Quasidictionary 11

to D. Every data stripe is marked or unmarked, the significance of which will be
explained shortly.

Another main component of the quasidictionary is a dictionary H that maps
each j € J to the starting address in D of (the current) D;. All changes to D
are reflected in H through appropriate calls of its operations; this will not be
mentioned explicitly on every occasion. Following the first check-in operation,
we also keep track of b = |logyN | + 1, where N is the maximum number of tags
simultaneously in use since the initialization. By assumption, we always have
b < w, and b never decreases. The main components of the quasidictionary are
illustrated in Fig. 2.

=N o R O
—
)
w
N

H D

Fig. 2. The array D that holds the data stripes and a symbolic representation of the
dictionary H that stores their starting addresses. A star denotes a marked data stripe,
and an abandoned data stripe is shown with parentheses.

3.1 access

To execute access(z), we first determine the value of j such that « € U;, which is
the same as computing MSB(x) + 1. Then the starting address of D; is obtained
from H, and the operation access(z — 0;) is executed on D;.

As explained in the proof of Lemma [MSB(x) can be computed from z
in constant time, provided that certain quantities fi(b),..., f,(b) depending
on b are available. We assume that fy(b),..., f,(b) are stored as part of the
quasidictionary and recomputed at every change to b.

3.2 check-in

To execute check-in(v), we first compute the smallest positive integer j such that
S; is nonfull. For this purpose we maintain a bit vector ¢ whose bit in position
b—iis 1 if and only if S; is nonfull, for ¢ = 1,... ,b, so that j = b — MSB(q).

12 T. Hagerup and R. Raman

Note that, by assumption, |S| remains bounded by 2° — 1, which implies that ¢
is always nonzero just prior to the execution of a check-in operation.

If j & J, we create a new, empty, and unmarked data stripe D; with capacity
271 in Representation [[] move it to D (recall that this means placing it at the
end of the used block of D, recording its starting address in H, and updating
top), execute the operation check-in(v) on D;, and return the tag obtained from
Dj plus o; to the caller.

If j € J, we locate D; as in the case of access. If D; is not stored in Rep-
resentation [, we convert it to that representation with capacity 2771, execute
the operation check-in(v) on (the new) Dj;, and return the tag obtained from D;
plus o; to the caller.

3.3 check-out

To execute check-out(x), we first determine the value of j such that « € U as in
the case of access(z). Operating on D;, we then execute check-out(xz — o0,) if D;
is in Representation [l and delete(x — 0;) otherwise. For i € {j, j + 1} N J, if the
pair size of ¢ has dropped below 1/4 of its value when D; was (re)constructed, we
mark D;. Finally we execute a global cleanup (see below) if the number of check-
out operations executed since the last global cleanup (or, if no global cleanup
has taken place, since the initialization) exceeds the number of tags currently in
use.

3.4 Global Cleanup

A global cleanup clears D after copying it to temporary storage, sets top = 0,
and then processes the data stripes one by one. If a data stripe D; is empty
(i.e., S; = ©), it is discarded. Otherwise, if D, is not marked, it is simply moved
back to D. If D; is marked, it is unmarked and moved to D after conversion to
Representation i, where

2, if27/5 <18,
i=1q3, if 29/ <|8;| < 27/j,
4, if |S;] < 29/°.

3.5 The Dictionary H

The dictionary H that maps each j € J to the starting address h; of D; in D
is implemented as follows: The addresses h;, for j € J, are stored in arbitrary
order in the first |J| locations of a semi-infinite array 7. When a new element
J enters J, h; is stored in the first free location of #, and when an element j
leaves J, h; is swapped with the address stored in the last used location of H,
which is subsequently declared free. This standard device ensures that the space
used in H remains bounded by |S5].

What remains is to implement a dictionary H’ that maps each j € J to the
position d; of h; in H, a nonnegative integer bounded by b — 1. We do this in a

An Efficient Quasidictionary 13

way reminiscent of Representation[2l Let [be a power of two with logb < [< b,
but I = O(logb). We assume that [and its logarithm are recomputed at every
change to b.

When |J| grows beyond 2, H’ is converted to a representation as an array,
indexed by 1, ... ,b and stored in at most 21 < |J| words, each of which contains
|b/1] fields of [bits each.

When |J| decreases below I, H' is converted to a representation in which the
elements of J are stored in the rightmost |.J| fields of [4 1 bits each in a single
word X (or a constant number of words), and the corresponding positions in H
are stored in the same order in the rightmost |J]| fields of [+ 1 bits in another
word Y. Given j € J, the corresponding position d; can be computed in constant
time using low-level subroutines that exploit the instruction set of the word RAM
and are discussed more fully in [I]. First, multiplying j by the word 1,11 with a
1 in every field yields a word with j stored in every field. Incrementing this word
by 1,41, shifted left by [bits, changes to 1 the leftmost bit, called the test bit, of
every field. Subtracting X from the word just computed leaves in the position
of every test bit a 1 if and only if the value 7 of the corresponding field in X
satisfies 4 < j. A similar computation carries out the test ¢ > j, after which a
bitwise AND singles out the unique field of X containing the value j. Subtracting
from the word just created, which has exactly one 1, a copy of itself, but shifted
right by [positions, we obtain a mask that can be used to isolate the field of Y
containing d;. This field still has to be brought to the right word boundary. This
can be achieved through multiplication by 1,1, which copies d; to the leftmost
field, right shift to bring that field to the right word boundary, and removal of
any spurious bits to the left of d;. It can be seen that H' uses O(]S|) space and
can execute access, insert, and delete in constant time.

The description so far implicitly assumed b to be a constant. Whenever b
increases, the representation of H and the auxiliary quantity 1,41 are recomputed
from scratch.

4 Analysis

The data structure described in the previous section can clearly be initialized
in constant time. We will show that it works in linear space, that it executes
access in constant time and check-in and check-out in constant amortized time,
and that every tag is bounded by the maximum number of tags in use since the
initialization.

4.1 Space Requirements

In this subsection we show the space taken up by every component of the qua-
sidictionary to be linear in the number of tags currently in use. As concerns the
dictionary H, this was already observed in the discussion of its implementation,
so we can restrict attention to D. The size of the used part of D is given by the
value of top, so our goal is to show that top = O(|S]) holds at all times.

14 T. Hagerup and R. Raman

Define an epoch to be the part of the execution from the initialization or
from just after a global cleanup to just after the next global cleanup or, if there
are no more global cleanups, to the end of the execution. Let n = |S| and, for
all j € IN, denote |S;| by n; and the pair size |S;| + |S;—1| of j by p;.

Let j > 2 and i € {1,...,4} and consider a (re)construction of D; in Repre-
sentation 7 at the time at which it happens. If i = 1, the size of D; is O(27) and
p; > 2972 1f i = 2, the size of D; is O(n;+2771/(j — 1)), which is O(n;) = O(p;)
because Representation @ is chosen only if n; > 27/;. If i € {3,4}, the size of D;
is O(n;) = O(p;). Thus, in all cases, when D is (re)constructed, its size is O(p;).
Moreover, since D; is marked as soon as p; drops below 1/4 of its value at the
time of the (re)construction of Dj;, the assertion that the size of D; is O(p;) re-
mains true as long as D; is unmarked. This shows that at the beginning of every
epoch, where every data stripe is unmarked, we have top = O(E;’;l pj) = O(n).

Consider a fixed epoch, let o be the sequence of operations executed in the
epoch, and let ¢’ be the sequence obtained from o by removing all check-out
operations. We will analyze the execution of ¢’ starting from the same situation
as o at the beginning of the epoch and use primes (') to denote quantities that
pertain to the execution of ¢’. Note that n’ and p}, p5, ... never decrease.

During the execution of o', the used part of D grows only by data stripes
D; in Representation [[l and there is at most one such data stripe for each value
of j. Consider a particular point in time ¢ during the execution of ¢’. For each
J > 2 for which a data stripe D; was moved to D before time ¢ in the epoch
under consideration, the size of this newly added D; is within a constant factor
of the value of p’. at the time of its creation and also, since p’; is nondecreasing,
at time ¢. At time ¢, therefore, the total size of all data stripes added to D
during the execution of o’ is O(3 72, pj) = O(n’). By the analysis above, the
same is true of the data stripes present in D at the beginning of the epoch, so
top’ = O(n’) holds throughout.

Consider now a parallel execution of o and o', synchronized at the execution
of every operation in ¢’. It is easy to see that check-out operations never cause
more space on D to be used, i.e., top < top’ holds at all times during the epoch.
We may have n < n’. Since the epoch ends as soon as n’ — n > n, however, we
always have n’ < 2n + 2. At all times, therefore, top < top’ = O(n’) = O(n).

4.2 Execution Times

access operations clearly work in constant time and leave the data structure
unchanged (except for changes to elements outside of their tags), so they will
be ignored in the following. We will show that check-in and check-out opera-
tions take constant amortized time by attributing the cost of maintaining the
quasidictionary to check-in and check-out operations in such a way that every
operation is charged for only a constant amount of computation.

Whenever b increases, various quantities depending on b as well as the repre-
sentation of H are recomputed. This incurs a cost of O(b) that can be charged
to £2(b) check-in operations since the last increase of b or since the initialization.

An Efficient Quasidictionary 15

When |J| rises above 21 or falls below [, H is converted from one representa-
tion to another. The resulting cost of O(l) can be charged to the £2(I) check-in
or check-out operations since the last conversion of H or since the initialization.

For j € IN, define a j-phase as the part of the execution from just be-
fore a (re)construction of D; in Representation [to just before the next such
(re)construction or, if there is none, to the end of the execution. Consider a
particular j-phase for some j > 2. The cost of the (re)construction of D; in
Representation [I] at the beginning of the phase is O(27). Since the pair size of j
at that point is bounded by 27 and D is not reconstructed until the pair size of
j has dropped below 1/4 of its initial value, Lemma Pl shows the total cost of all
reconstructions of D; in Representation 2lin the j-phase under consideration to
be

o3 (a2 + 271/ - 1)),

2

where the sum extends over all ¢ > 1 with_4*i .27 > 97 /4. The number of such
i being O(log j), the sum evaluates to O(27). Likewise, by Lemmas [3 and] the
total cost of all reconstructions of D; in Representations Bl and Bl are

oo

O3 (47" (2//5) - log(2/ /1))) = O(27) and

=0

O(i(4_i . 2j/5)5> _ 0(23')7

=0

respectively. Thus the total cost of all (re)constructions of D; in a j-phase is
O(27). For the first j-phase, we can charge this cost to 292 check-in operations
that filled S;_;. For every subsequent j-phase, the pair size of j dropped below
1/4 of its initial value during the previous phase, hence to at most (1/4)(27~! +
2972) = (3/4) - 2972, Since Sj_; was full again at the beginning of the phase
under consideration, we can charge the cost of O(27) to the intervening at least
(1/4)-2772 check-in operations that refilled S;_;. The arguments above excluded
the case j = 1, but the cost incurred in (re)constructing D; once is O(1) and
can be charged to whatever operation is under execution.

At this point, the only execution cost not accounted for is that of copying
unmarked data stripes back to D during a global cleanup. By the analysis of the
previous subsection, this cost is O(]S]), and it can be charged to the at least | S|
check-out operations executed since the last global cleanup.

4.3 Tag Sizes

Consider the point in time just after the quasidictionary issues a tag x and
suppose that no tag of x or larger was issued earlier and that x € U;. Then D; is
in Representation [and just issued the tag x — o, and neither D, nor an earlier
data stripe with index j (an “earlier incarnation” of D;) ever before issued a

16 T. Hagerup and R. Raman

tag of # — o; or larger. The last sentence of Lemma [I] can be seen to imply that
D; has x — o; tags in use. Moreover, by the implementation of check-in, all of
S1,...,5j-1 are full, so that they contribute an additional 1+2+--- 42072 = 0j
tags in use. Thus the overall quasidictionary has x tags in use after issuing x.
It is now easy to see that the quasidictionary never uses a tag larger than the
maximum number of tags in use since its initialization.

As an aside, we note that the binary representation of every tag issued by
the quasidictionary consists of exactly as many bits as that of the smallest free
tag.

5 Deamortization

In this section we show how the constant amortized time bound for check-in op-
erations can be turned into a constant worst-case time bound. Since the deamor-
tization techniques used are standard, we refrain from giving all details.

In addition to computation that is covered by a constant time bound, a check-
in operation, in our formulation to this point, may carry out one or more of the
following:

— After an increase in b, an O(b)-time computation of various quantities de-
pending on b;

— After an increase in |J| beyond 2I, an O(l)-time conversion of the dictio-
nary H to its array representation;

— A (re)construction of a data stripe in Representation [

The computation triggered by an increase in b is easy to deamortize. For
concreteness, consider the calculation of fi(b),..., f,(b). Following an increase
in b, rather than calculating f;(b), ... , f,(b), we anticipate the next increase in b
and start calculating f1(b+1),..., f,(b+1). The calculation is interleaved with
the other computation and carried out piecemeal, O(1) time being devoted to it
by each subsequent check-in operation. Since the entire calculation needs O(b)
time, while at least 2° check-in operations are executed before the next increase
in b, it is easy to ensure that fi(b+1),..., f,(b+ 1) are ready when they are
first needed.

The conversion of H to its array representation is changed to begin as soon
as |J| exceeds I. While the conversion is underway, queries to H are answered
using its current representation, but updates are executed both in the current
representation and in the incomplete array representation, so that an interleaved
computation that spends constant time per check-in operation on the conversion
can deliver an up-to-date copy of H in the array representation when |J| first
exceeds 2[—because of the simplicity of the array representation, this is easily
seen to be possible. Provided that any incomplete array representation of H is
abandoned if and when |J| decreases below [, a linear space bound continues to
hold.

For j > 2, the analysis in Section H]already charged the cost of (re)construct-
ing a data stripe D, in Representation [l to at least % - 2972 check-in operations
that (re)filled S;_1. We now let an interleaved construction actually take place as

An Efficient Quasidictionary 17

part of the execution of these check-in operations. In other words, every check-in
operation that issues a tag from a data stripe D;_; that is at least 3/4 full also
spends constant time on the (re)construction of D; in Representation [l in such
a way as to let the new D; be ready before S;_; is full. As above, updates to D;
that occur after the (re)construction has begun (these can only be deletions) are
additionally executed on the incomplete new D;. Provided that global cleanups
remove every partially constructed data stripe D; for which |S;_1| < % 22972 it
is easy to see that a linear space bound and a constant amortized time bound
for check-out operations continue to hold.

6 Conclusions

We have described a deterministic quasidictionary that works in linear space
and executes every operation in constant amortized time. However, our result
still leaves something to be desired.

First, we would like to deamortize the data structure, turning the amortized
time bound for deletion into a worst-case bound. Barring significant advances in
the construction of static dictionaries, it appears that techniques quite different
from ours would be needed to attain this goal. To see this, consider an operation
sequence consisting of a large number of calls of check-in followed by as many
calls of check-out. During the execution of the check-out operations, the need to
respect a linear space bound presumably requires the repeated construction of
a static dictionary for the remaining keys. The construction cannot be started
much ahead of time because the set of keys to be accommodated is unknown at
that point. Therefore, if it needs superlinear time, as do the best constructions
currently known, some calls of check-out will take more than constant time.

Second, one might want to eliminate the use of multiplication from the op-
erations. However, by a known lower bound for the depth of unbounded-fanin
circuits realizing static dictionaries [2, Theorem C], this cannot be done with-
out weakening our time or space bounds or introducing additional unit-time
instructions.

Finally, our construction is not as practical as one might wish, mainly due to
the fairly time-consuming (though constant-time) access algorithm. Here there
is much room for improvement.

References

1. A. Andersson, T. Hagerup, S. Nilsson, and R. Raman, Sorting in linear time?, J.
Comput. System Sci. 57 (1998), pp. 74-93.

2. A. Andersson, P. B. Miltersen, S. Riis, and M. Thorup, Static dictionaries on AC°
RAMs: Query time ©(y/logn/loglogn) is necessary and sufficient, Proc., 37th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1996), pp.
441-450.

3. A. Andersson and M. Thorup, Tight(er) worst-case bounds on dynamic searching
and priority queues, Proc., 32nd Annual ACM Symposium on Theory of Comput-
ing (STOC 2000), pp. 335-342.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

T. Hagerup and R. Raman

P. Beame and F. E. Fich, Optimal bounds for the predecessor problem, Proc., 31st
Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 295-304.
M. R. Brown and R. E. Tarjan, A representation for linear lists with movable fingers,
Proc., 10th Annual ACM Symposium on Theory of Computing (STOC 1978), pp.
19-29.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms (1st
edition), The MIT Press, Cambridge, MA, 1990.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms (2nd edition), The MIT Press, Cambridge, MA, 2001.

. E.D. Demaine, A threads-only MPI implementation for the development of parallel

programs, Proc., 11th International Symposium on High Performance Computing
Systems (HPCS 1997), pp. 153-163.

. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,

and R. E. Tarjan, Dynamic perfect hashing: Upper and lower bounds, SIAM J.
Comput. 23 (1994), pp. 738-761.

M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved
network optimization problems, J. ACM 34 (1987), pp. 596-615.

M. L. Fredman and D. E. Willard, Surpassing the information theoretic bound with
fusion trees, J. Comput. System Sci. 47 (1993), pp. 424-436.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.

J. Gergov, Algorithms for compile-time memory optimization, Proc., 10th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 907-908.

L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, Proc.,
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1978),
pp- 8-21.

T. Hagerup, Sorting and searching on the word RAM, Proc., 15th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 1998), Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Vol. 1373, pp. 366-398.

T. Hagerup, P. B. Miltersen, and R. Pagh, Deterministic dictionaries, J. Algorithms
41 (2001), pp. 69-85.

S. Huddleston and K. Mehlhorn, A new data structure for representing sorted lists,
Acta Inf. 17 (1982), pp. 157-184.

M. G. Luby, J. Naor, and A. Orda, Tight bounds for dynamic storage allocation,
Proc., 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1994),
pp. 724-732.

K. Mehlhorn and S. Néher, LEDA: A Platform for Combinatorial and Geometric
Computing, Cambridge University Press, 1999.

R. Raman, Priority queues: Small, monotone and trans-dichotomous, Proc., 4th
Annual European Symposium on Algorithms (ESA 1996), Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Vol. 1136, pp. 121-137.

J. M. Robson, An estimate of the store size necessary for dynamic storage alloca-
tion, J. ACM 18 (1971), pp. 416-423.

J. M. Robson, Bounds for some functions concerning dynamic storage allocation,
J. ACM 21 (1974), pp. 491-499.

M. Thorup, On RAM priority queues, SIAM J. Comput. 30 (2000), pp. 86-109.
P.R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, Dynamic storage allocation:
A survey and critical review, Proc., International Workshop on Memory Manage-
ment (IWMM 1995), Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Vol. 986, pp. 1-116.

Combining Pattern Discovery and Probabilistic
Modeling in Data Mining

Heikki Mannilal2

! HIIT Basic Research Unit, University of Helsinki, Department of Computer
Science, PO Box 26, FIN-00014 University of Helsinki, Finland
Heikki.Mannila@cs.helsinki.fi, http://www.cs.helsinki.fi/u/mannila
2 Laboratory of Computer and Information Science, Helsinki University of
Technology, PO Box 5400, FIN-02015 HUT, Finland

Abstract. Data mining has in recent years emerged as an interesting
area in the boundary between algorithms, probabilistic modeling, statis-
tics, and databases. Data mining research has come from two different
traditions. The global approach aims at modeling the joint distribution
of the data, while the local approach aims at efficient discovery of fre-
quent patterns from the data. Among the global modeling techniques,
mixture models have emerged as a strong unifying theme, and methods
exist for fitting such models on large data sets. For pattern discovery, the
methods for finding frequently occurring positive conjunctions have been
applied in various domains. An interesting open issue is how to combine
the two approaches, e.g., by inferring joint distributions from pattern
frequencies. Some promising results have been achieved using maximum
entropy approaches. In the talk we describe some basic techniques in
global and local approaches to data mining, and present a selection of
open problems.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, p. 19, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Time and Space Efficient Multi-method
Dispatching

Stephen Alstrup', Gerth Stglting Brodal®*, Inge Li Ggrtz', and Theis Rauhe!

! The IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV,
Denmark. {stephen,inge,theis}@it-c.dk
2 BRICS (Basic Research in Computer Science), Center of the Danish National
Research Foundation, Department of Computer Science, University of Aarhus, Ny
Munkegade, DK-8000 Arhus C, Denmark. gerth@brics.dk.

Abstract. The dispatching problem for object oriented languages is
the problem of determining the most specialized method to invoke for
calls at run-time. This can be a critical component of execution per-
formance. A number of recent results, including [Muthukrishnan and
Miiller SODA’96, Ferragina and Muthukrishnan ESA’96, Alstrup et al.
FOCS’98], have studied this problem and in particular provided various
efficient data structures for the mono-method dispatching problem. A
recent paper of Ferragina, Muthukrishnan and de Berg [STOC’99] ad-
dresses the multi-method dispatching problem.

Our main result is a linear space data structure for binary dispatching
that supports dispatching in logarithmic time. Using the same query
time as Ferragina et al., this result improves the space bound with a
logarithmic factor.

1 Introduction

The dispatching problem for object oriented languages is the problem of deter-
mining the most specialized method to invoke for a method call. This specializa-
tion depends on the actual arguments of the method call at run-time and can be a
critical component of execution performance in object oriented languages. Most
of the commercial object oriented languages rely on dispatching of methods with
only one argument, the so-called mono-method or unary dispatching problem. A
number of papers, see e.g.,[I0JI5] (for an extensive list see [I1]), have studied
the unary dispatching problem, and Ferragina and Muthukrishnan [10] provide
a linear space data structure that supports unary dispatching in log-logarithmic
time. However, the techniques in these papers do not apply to the more general
multi-method dispatching problem in which more than one method argument
are used for the dispatching. Multi-method dispatching has been identified as
a powerful feature in object oriented languages supporting multi-methods such

* Supported by the Carlsberg Foundation (contract number ANS-0257/20). Partially
supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 20-29] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Time and Space Efficient Multi-method Dispatching 21

as Cecil [3], CLOS [2], and Dylan [4]. Several recent results have attempted to
deal with d-ary dispatching in practice (see [11] for an extensive list). Ferragina
et al. [11] provided the first non-trivial data structures, and, quoting this paper,
several experimental object oriented languages’ “ultimately success and impact
in practice depends, among other things, on whether multi-method dispatching
can be supported efficiently”.

Our result is a linear space data structure for the binary dispatching problem,
i.e., multi-method dispatching for methods with at most two arguments. Our
data structure uses linear space and supports dispatching in logarithmic time.
Using the same query time as Ferragina et al. [IT], this result improves the space
bound with a logarithmic factor. Before we provide a precise formulation of our
result, we will formalize the general d-ary dispatching problem.

Let T be a rooted tree with N nodes. The tree represents a class hierarchy
with nodes representing the classes. T defines a partial order < on the set of
classes: A < B < A is a descendant of B (not necessarily a proper descendant).
Let M be the set of methods and let m denote the number of methods and M
the number of distinct method names in M. Each method takes a number of
classes as arguments. A method invocation is a query of the form s(Ay, ..., Ay)
where s is the name of a method in M and Ay,...,Aq are class instances. A
method s(Bi,...,Bq) is applicable for s(Aq,...,Aq) if and only if A; < B; for
all 4. The most specialized method is the method s(By, ..., Bg) such that for
every other applicative method s(C1,...,Cy) we have B; < C; for all 7. This
might be ambiguous, i.e., we might have two applicative methods s(By, ... , Bg)
and s(Cy,...,Cq) where B; # C;, B; # Cj, B; < C;, and C; < B, for some
indices 1 < 4,7 < d. That is, neither method is more specific than the other.
Multi-method dispatching is to find the most specialized applicable method in
M if it exists. If it does not exist or in case of ambiguity, “no applicable method”
resp. “ambiguity” is reported instead.

The d-ary dispatching problem is to construct a data structure that supports
multi-method dispatching with methods having up to d arguments, where M
is static but queries are online. The cases d = 1 and d = 2 are the unary and
binary dispatching problems respectively. In this paper we focus on the binary
dispatching problem which is of “particular interest” quoting Ferragina et al. [I1].

The input is the tree T" and the set of methods. We assume that the size of T
is O(m), where m is the number of methods. This is not a necessary restriction
but due to lack of space we will not show how to remove it here.

Results. Our main result is a data structure for the binary dispatching problem
using O(m) space and query time O(log m) on a unit-cost RAM with word size
logarithmic in N with O(N + m (loglog m)?) time for preprocessing. By the use
of a reduction to a geometric problem, Ferragina et al. [I1], obtain similar time
bounds within space O(mlogm). Furthermore they show how the case d = 2
can be generalized for d > 2 at the cost of factor log?~2 m in the time and space
bounds.

22 S. Alstrup et al.

Our result is obtained by a very different approach in which we employ a
dynamic to static transformation technique. To solve the binary dispatching
problem we turn it into a unary dispatching problem — a variant of the marked
ancestor problem as defined in [I], in which we maintain a dynamic set of meth-
ods. The unary problem is then solved persistently. We solve the persistent unary
problem combining the technique by Dietz [5] to make a data structure fully per-
sistent and the technique from [I] to solve the marked ancestor problem. The
technique of using a persistent dynamic one-dimensional data structure to solve
a static two-dimensional problem is a standard technique [17]. What is new in
our technique is that we use the class hierarchy tree to denote the time (give
the order on the versions) to get a fully persistent data structure. This gives
a “branching” notion for time, which is the same as what one has in a fully
persistent data structure where it is called the version tree. This technique is
different from the plane sweep technique where a plane-sweep is used to give a
partially persistent data structure. A top-down tour of the tree corresponds to
a plane-sweep in the partially persistent data structures.

Related and Previous Work. For the unary dispatching problem the best
known bound is O(N + m) space and O(loglog N') query time [I5/I0]. For the d-
ary dispatching, d > 2, the result of Ferragina et al. [11] is a data structure using
space O(m (t log m/log t)4~1) and query time O((log m/log t)?~!loglog N),
where t is a parameter 2 < t < m. For the case t = 2 they are able to improve
the query time to O(log?~'m) using fractional cascading. They obtain their re-
sults by reducing the dispatching problem to a point-enclosure problem in d
dimensions: Given a point ¢, check whether there is a smallest rectangle con-
taining ¢. In the context of the geometric problem, Ferragina et al. also present
applications to approximate dictionary matching.

In [9] Eppstein and Muthukrishnan look at a similar problem which they call
packet classification. Here there is a database of m filters available for preprocess-
ing. Each query is a packet P, and the goal is to classify it, that is, to determine
the filter of highest priority that applies to P. This is essentially the same as
the multiple dispatching problem. For d = 2 they give an algorithm using space
O(m'*t°M) and query time O(loglogm), or O(m**¢) and query time O(1). They
reduce the problem to a geometric problem, very similar to the one in [11]. To
solve the problem they use a standard plane-sweep approach to turn the static
two-dimensional rectangle query problem into a dynamic one-dimensional prob-
lem,which is solved persistently such that previous versions can be queried after
the plane sweep has occurred.

2 Preliminaries

In this section we give some basic concepts which are used throughout the paper.

Definition 1 (Trees). Let T be a rooted tree. The set of all nodes in T is
denoted V(T). The nodes on the unique path from a node v to the root are denoted

Time and Space Efficient Multi-method Dispatching 23

7(v), which includes v and the root. The nodes w(v) are called the ancestors of
v. The descendants of a node v are all the nodes u for which v € w(u). If v #u
we say that u is a proper descendant of v. The distance dist(v,w) between two
nodes in T is the number of edges on the unique path between v and w. In the
rest of the paper all trees are rooted trees.

Let C be a set of colors. A labeling I(v) of a node v € V(T') is a subset of C,
i.e., I(v) C C. A labeling 1 : V(T) — 2¢ of a tree T is a set of labelings for the
nodes in T.

Definition 2 (Persistent data structures). The concept of persistent data
structures was introduced by Driscoll et al. in [§]. A data structure is partially
persistent if all previous versions remain available for queries but only the newest
version can be modified. A data structure is fully persistent if it allows both
queries and updates of previous versions. An update may operate only on a single
version at a time, that is, combining two or more versions of the data structure
to form a new one is not allowed. The versions of a fully persistent data structure
form a tree called the version tree. Each node in the version tree represents the
result of one update operation on a version of the data structure. A persistent
update or query take as an extra argument the version of the data structure to
which the query or update refers.

Known results. Dietz [5] showed how to make any data structure fully persis-
tent on a unit-cost RAM. A data structure with worst case query time O(Q(n))
and update time O(F(n)) making worst case O(U(n)) memory modifications can
be made fully persistent using O(Q(n) loglog n) worst case time per query and
O(F(n) loglog n) expected amortized time per update using O(U(n) loglog n)
space.

Definition 3 (Tree color problem).

Let T be a rooted tree with n nodes, where we associate a set of colors with
each node of T. The tree color problem is to maintain a data structure with the
following operations:

color(v,c): add ¢ to v’s set of colors, i.e., l(v) + l(v) U{c},

uncolor(v,c): remove ¢ from v’s set of colors, i.e., l(v) + I(v)\ {c},
findfirstcolor(v,c): find the first ancestor of v with color ¢ (this may be v
itself).

The incremental version of this problem does not support uncolor, the decremen-
tal problem does not support color, and the fully dynamic problem supports both
update operations.

Known results. In [I] it is showed how to solve the tree color problem on
a RAM with logarithmic word size in expected update time O(loglog n) for
both color and wuncolor, query time O(log n/loglog n), using linear space and
preprocessing time. The expected update time is due to hashing. Thus the ex-
pectation can be removed at the cost of using more space. We need worst case
time when we make the data structure persistent because data structures with

24 S. Alstrup et al.

Fig. 1. The solid lines are tree edges and the dashed and dotted lines are bridges of
color c and ¢, respectively. firstcolorbridge(c,v1,v2) returns bs. firstcolorbridge(c’ ,vs,v4)
returns ambiguity since neither b; or bs is closer than the other.

amortized /expected time may perform poorly when made fully persistent, since
expensive operations might be performed many times.

Dietz [5] showed how to solve the incremental tree color problem in
O(loglog n) amortized time per operation using linear space, when the nodes
are colored top-down and each node has at most one color.

The unary dispatching problem is the same as the tree color problem if we
let each color represent a method name.

Definition 4. We need a data structure to support insert and predecessor
queries on a set of integers from {1,... ,n}. This can be solved in worst case
O(loglogn) time per operation on a RAM using the data structure of van Emde
Boas [I8] (VEB). We show how to do modify this data structure such that it
only uses O(1) memory modifications per update.

3 The Bridge Color Problem

The binary dispatching problem (d = 2) can be formulated as the following tree
problem, which we call the bridge color problem.

Definition 5 (Bridge Color Problem). Let Ty and Ty be two rooted trees.
Between Ty and Ty there are a number of bridges of different colors. Let C' be the
set of colors. A bridge is a triple (c,v1,v2) € C x V(T1) x V(T3) and is denoted
by c(vy,v2). If v1 € w(uy) and vy € w(ug) we say that c(vy,ve) is a bridge over
(u1,u2). The bridge color problem is to construct a data structure which sup-
ports the query firstcolorbridge(c,v1,v2). Formally, let B be the subset of bridges
c(wy, ws) of color ¢ where wy is an ancestor of vy, and wy an ancestor of ve. If
B = 0 then firstcolorbridge(c,v1,v2) = NIL. Otherwise, let by = c(wy,w}) € B,
such that dist(vy,wi) is minimal and by = c(wh, we) € B, such that dist(va, ws)
is minimal. If by = by then firstcolorbridge(c,v1,v2)= b1 and we say that by is
the first bridge over (vi,vs2), otherwise firstcolorbridge(c,v1,v2) = “ambiguity”.
See Fig. .

The binary dispatching problem can be reduced to the bridge color problem
the following way. Let T7 and T5 be copies of the tree T in the binary dispatching

Time and Space Efficient Multi-method Dispatching 25

problem. For every method s(vy,v2) € M make a bridge of color s between
V1 € V(Tl) and vy € V(Tg)

The problem is now to construct a data structure that supports firstcolor-
bridge. The object of the remaining of this paper is show the following theorem:
Theorem 1. Using expected O(m (loglogm)?) time for preprocessing and O(m)
space, firstcolorbridge can be supported in worst case time O(log m) per opera-
tion, where m is the number of bridges.

4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges (| B |= m) for which we want to construct a data
structure for the bridge color problem. As mentioned in the introduction we
can assume that the number of nodes in the trees involved in the bridge color
problem is O(m), i.e., |V(T1) | + | V(T2) |= O(m). In this section we present a
data structure that supports firstcolorbridge in O(log m) time per query using
O(m) space for the bridge color problem.

For each node v € V(T1) we define the labeling I, of T» as follows. The
labeling of a node w € V(T3) contains color ¢ if w is the endpoint of a bridge
of color ¢ with the other endpoint among ancestors of v. Formally, ¢ € [,(w)
if and only if there exists a node u € 7(v) such that c¢(u,w) € B. Similar
define the symmetric labelings for 77. In addition to each labeling [,, we need
to keep the following extra information stored in a sparse array H(v): For each
pair (w,c¢) € V(Iz) x C, where [,(w) contains color ¢, we keep the node v’ of
maximal depth in 7(v) from which there is a bridge ¢(v', w) in B. Note that this
set is sparse, i.e., we can use a sparse array to store it.

For each labeling I, of Ty, where v € V(T7), we will construct a data structure
for the static tree color problem. That is, a data structure that supports the query
findfirstcolor(u,c) which returns the first ancestor of u with color ¢. Using this
data structure we can find the first bridge over (u,w) € V(T1) x V(I2) of color
¢ by the following queries.

In the data structure for the labeling [,, of the tree To we perform the query
findfirstcolor(w,c). If this query reports NIL there is no bridge to report, and
we can simply return NIL. Otherwise let w’ be the reported node. We make
a lookup in H(u) to determine the bridge b such that b = ¢(v/,w’) € B. By
definition b is the bridge over (u,w’) with minimal distance between w and w’'.
But it is possible that there is a bridge (u”,w”) over (u,w) where dist(u,u”) <
dist(u,u’). By a symmetric computation with the data structure for the labeling
l(w) of Ty we can detect this in which case we return “ambiguity”. Otherwise
we simply return the unique first bridge b.

Explicit representation of the tree color data structures for each of the label-
ings I, for nodes v in T} and Ty would take up space O(m?). Fortunately, the
data structures overlap a lot: Let v,w € V(T1), u € V(T2), and let v € w(w).
Then I, (u) € l,,(u). We take advantage of this in a simple way. We make a fully
persistent version of the dynamic tree color data structure using the technique of
Dietz [5]. The idea is that the above set of O(m) tree color data structures cor-
responds to a persistent, survived version, each created by one of O(m) updates
in total.

26 S. Alstrup et al.

Formally, suppose we have generated the data structure for the labeling ,,
for v in T;. Let w be the child of node v in T;. We can then construct the
data structure for the labeling [,, by simply updating the persistent structure
for I, by inserting the color marks corresponding to all bridges with endpoint
w (including updating H(v)). Since the data structure is fully persistent, we
can repeat this for each child of v, and hence obtain data structures for all the
labelings for children of v. In other words, we can form all the data structures
for the labeling I, for nodes v € V(T1), by updates in the persistent structures
according to a top-down traversal of 77. Another way to see this, is that T3 is
denoting the time (give the order of the versions). That is, the version tree has
the same structure as 77.

Similar we can construct the labelings for 77 by a similar traversal of T,. We
conclude this discussion by the following lemma.

Lemma 1. A static data structure for the bridge color problem can be con-
structed by O(m) updates to a fully persistent version of the dynamic tree color
problem.

4.1 Reducing the Memory Modifications in the Tree Color Problem

The paper [1] gives the following upper bounds for the tree color problem for a
tree of size m. Update time expected O(loglog m) for both color and uncolor,
and query time O(log m/loglog m), with linear space and preprocessing time.

For our purposes we need a slightly stronger result, i.e., updates that only
make worst case O(1) memory modifications. By inspection of the dynamic tree
color algorithm, the bottle-neck in order to achieve this, is the use of the van
Emde Boas predecessor data structure [I8] (VEB). Using a standard technique
by Dietz and Raman [6] to implement a fast predecessor structure we get the
following result.

Theorem 2. Insert and predecessor queries on a set of integers from {1,... ,n}
can be performed in O(loglog n) worst case time per operation using worst case
O(1) memory modifications per update.

To prove the theorem we first show an amortized resulf. The elements in
our predecessor data structure is grouped into buckets Si,..., Sk, where we
maintain the following invariants:

(1) max S; < min S;41 fori=1,...k—1, and
(2)1/2 log n < |S;| <2 log n for all 4.

We have k € O(n/ log n). Each S; is represented by a balanced search tree
with O(1) worst case update time once the position of the inserted or deleted
element is known and query time O(log m), where m is the number of nodes in
the tree [T2/T3]. This gives us update time O(loglogn) in a bucket, but only O(1)
memory modifications per update. The minimum element s; of each bucket .5;
is stored in a VEB.

! The amortized result (Lemma) was already shown in [I4], bur in order to make
the deamortization we give another implementation here.

Time and Space Efficient Multi-method Dispatching 27

When a new element x is inserted it is placed in the bucket S; such that
s; < & < Si41, or in S7 if no such bucket exists. Finding the correct bucket is
done by a predecessor query in the VEB. This takes O(loglog n) time. Inserting
the element in the bucket also takes O(loglog n) time, but only O(1) memory
modifications. When a bucket S; becomes to large it is split into two buckets of
half size. This causes a new element to be inserted into the VEB and the binary
trees for the two new buckets have to be build. An insertion into the VEB
takes O(loglog n) time and uses the same number of memory modifications.
Building the binary search trees uses O(log n) time and the same number of
memory modifications. When a bucket is split there must have been at least
log n insertions into this bucket since it last was involved in a split. That is,
splitting and inserting uses O(1) amortized memory modifications per insertion.

Lemma 2. Insert and predecessor queries on a set of integers from {1,... ,n}
can be performed in O(loglogn) worst case time for predecessor and O(loglogn)
amortized time for insert using O(1) amortized number of memory modifications
per update.

We can remove this amortization at the cost of making the bucket sizes
O(log?n) by the following technique by Raman [I6] called thinning.

Let o > 0 be a sufficiently small constant. Define the criticality of a bucket
to be: p(b) = ngnmax{o, size(b) — 1.8 log? n}. A bucket b is called critical if
p(b) > 0. We want to ensure that size(h) < 2 log® n. To maintain the size of
the buckets every a log n updates take the most critical bucket (if there is any)
and move log n elements to a newly created empty adjacent bucket. A bucket
rebalancing uses O(log n) memory modifications and we can thus perform it
with O(1) memory modifications per update spread over no more than « log n
updates.

We now show that the buckets never get too big. The criticality of all buckets
can only increase by 1 between bucket rebalancings. We see that the criticality of
the bucket being rebalanced is decreased, and no other bucket has its criticality
increased by the rebalancing operations. We make use of the following lemma
due to Raman:

Lemma 3 (Raman). Let x1,... ,x, be real-valued variables, all initially zero.
Repeatedly do the following:

(1) Choose n non-negative real numbers ai, ... ,an such that > a; =1, and
set x; < x; +a; for 1 <i<n.

(2) Choose an x; such that x; = maz;{z;}, and set z; < maz{z; — ¢,0} for
some constant ¢ > 1.

Then each x; will always be less than In n + 1, even when ¢ = 1.

Apply the lemma as follows: Let the variables of Lemma[3 be the criticalities
of the buckets. The reals a; are the increases in the criticalities between rebal-
ancings and ¢ = 1/a. We see that if a < 1 the criticality of a bucket will never
exceed In 4+ 1 = O(log n). Thus for sufficiently small a the size of the buckets
will never exceed 2 log2 n. This completes the proof of Theorem [2

We need worst case update time for colorin the tree color problem in order to
make it persistent. The expected update time is due to hashing. The expectation

28 S. Alstrup et al.

can be removed at the cost of using more space. We now use Theorem Blto get
the following lemma.

Lemma 4. Using linear time for preprocessing, we can maintain a tree with
complezity O(loglog n) for color and complexity O(log n/loglog n) for findfirst-
color, using O(1) memory modifications per update, where n is the number of
nodes in the tree.

4.2 Reducing the Space

Using Dietz’ method [5] to make a data structure fully persistent on the data
structure from Lemma H] we can construct a fully persistent version of the tree
color data structure with complexity O((loglog m)?) for color and uncolor, and
complexity O((log m/loglog m) - loglog m) = O(log m) for findfirstcolor, using
O(m) memory modifications, where m is the number of nodes in the tree.

According to Lemma [I] a data structure for the first bridge problem can
be constructed by O(m) updates to a fully persistent version of the dynamic
tree color problem. We can thus construct a data structure for the bridge color
problem in time O(m (loglog m)?), which has query time O(log m), where m is
the number of bridges.

This data structure might use O(c-m) space, where ¢ is the number of method
names. We can reduce this space usage using the following lemma.

Lemma 5. If there exists an algorithm A constructing a static data structure
D using expected t(n) time for preprocessing and expected m(n) memory mod-
ifications and has query time q(n), then there exists an algorithm constructing
a data structure D' with query time O(q(n)), using expected O(t(n)) time for
preprocessing and space O(m(n)).

Proof. The data structure D’ can be constructed the same way as D using
dynamic perfect hashing [7] to reduce the space. a

Since we only use O(m) memory modifications to construct the data structure
for the bridge color problem, we can construct a data structure with the same
query time using only O(m) space. This completes the proof of Theorem [

If we use O(N) time to reduce the class hierarchy tree to size O(m) as
mentioned in the introduction, we get the following corollary to Theorem [l
Corollary 1. Using O(N + m (loglog m)?) time for preprocessing and O(m)
space, the multiple dispatching problem can be solved in worst case time
O(log m) per query. Here N is the number of classes and m is the number
of methods.

References

1. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems (extended ab-
stract). In IEEE Symposium on Foundations of Computer Science (FOCS), pages
534-543, 1998.

2. D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A.
Moon. Common LISP object system specification X3J13 document 88-002R. ACM
SIGPLAN Notices, 23, 1988. Special Issue, September 1988.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Time and Space Efficient Multi-method Dispatching 29

Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Mad-
sen, editor, ECOOP 92, European Conference on Object-Oriented Programming,
Utrecht, The Netherlands, volume 615 of Lecture Notes in Computer Science, pages
33-56. Springer-Verlag, New York, NY, 1992.

Inc. Apple Computer. Dylan interim reference manual, 1994.

P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-R. Sack, and N. Santoro, edi-
tors, Proceedings of the Workshop on Algorithms and Data Structures, volume 382
of Lecture Notes in Computer Science, pages 67-74, Berlin, August 1989. Springer-
Verlag.

Paul F. Dietz and Rajeev Raman. Persistence, amortization and randomization. In
Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78-88,
1991.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In 29th
Annual Symposium on Foundations of Computer Science (FOCS), pages 524-531.
IEEE Computer Society Press, 1988.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Computer Systems Sci., 38(1):86-124, 1989.

David Eppstein and S. Muthukrishnan. Internet packet filter manegement and
rectangle geometry. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
2001.

P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object
oriented languages. In European Symposium on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 107-120, 1996.

P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: A
geometric approach with applications to string matching problems. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 483—
491, New York, May 1-4 1999. ACM Press.

R. Fleischer. A simple balanced search tree with O(1) worst-case update time.
International Journal of Foundations of Computer Science, 7:137-149, 1996.

C. Levcopoulos and M. Overmars. A balanced search tree with O(1) worstcase
update time. Acta Informatica, 26:269-277, 1988.

K. Mehlhorn and S. Naher. Bounded ordered dictionaries in O(loglogn) time and
O(n) space. Information Processing Letters, 35:183-189, 1990.

S. Muthukrishnan and Martin Miiller. Time and space efficient method-lookup
for object-oriented programs (extended abstract). In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 42-51, Atlanta,
Georgia, January 28-30 1996.

R. Raman. FEliminating Amortization: On Data Structures with Guaranteed Re-
sponse Time. PhD thesis, University of Rochester, Computer Science Department,
October 1992. Technical Report TR439.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669-679, 1986.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80-82, 1978.

Linear Time Approximation Schemes for Vehicle
Scheduling

John E. Augustine! and Steven S. Seiden?*

! Dept. of Electrical & Computer Eng., Louisiana State University, Baton Rouge, LA
70803, USA,
augustine@ieee.org
2 Department of Computer Science, 298 Coates Hall, Louisiana State University,
Baton Rouge, LA 70803, USA,
sseiden@acm.org,

Abstract. We consider makespan minimization for vehicle scheduling
problems on trees with release and handling times. 2-approximation al-
gorithms were known for several variants of the single vehicle problem
on a path [16]. A 3/2-approximation algorithm was known for the single
vehicle problem on a path where there is a fixed starting point and the
vehicle must return to the starting point upon completion [13]. Karuno,
Nagamochi and Ibaraki give a 2-approximation algorithm for the single
vehicle problem on trees. We develop a linear time PTAS for the sin-
gle vehicle scheduling problem on trees which have a constant number
of leaves. This PTAS can be easily adapted to accommodate various
starting/ending constraints. We then extended this to a PTAS for the
multiple vehicle problem where vehicles operate in disjoint subtrees. For
this problem, the only previous result is a 2-approximation algorithm for
paths [10]. Finally, we present competitive online algorithms for some
single vehicle scheduling problems.

1 Introduction

In this paper we study the multiple vehicle scheduling problem (MVSP), which
involves scheduling a set of vehicles to handle jobs at different sites. There are
a large number of applications for such problems, for instance, scheduling auto-
mated guided vehicles [10], scheduling delivery ships on a shoreline [16], schedul-
ing flexible manufacturing systems [10], etc.... MVSP is also equivalent to certain
machine scheduling problems where there are costs for reconfiguring machines
to perform different operations [2], and to power consumption minimization in
CPU instruction scheduling [3].

Problem Description: MVSP is a variation of the well-known traveling
salesman problem. In the most general formulation, the problem consists of a
metric space M along with n jobs. Each job j becomes available for processing

* Contact author. This research was partially supported by the Research Competiti-
veness Subprogram of the Louisiana Board of Regents.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 30-39] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Linear Time Approximation Schemes for Vehicle Scheduling 31

at a time r; > 0 known as its release time. Job j requires a specific amount
of time h; > 0 for its completion known as its handling time. Job handling is
non-preemptive in nature meaning that if the vehicle starts processing a job, it
is required to complete the processing. Finally, each job has a position p; in M.
We are given a set of k vehicles that can traverse M and handle or serve these
jobs. Our goal is to minimize the maximum completion time over all jobs, called
the makespan, using the given set of vehicles.

Note that without loss of generality M is finite. M can be represented by a
weighted graph, where the points are vertices, and the distance from p € M to
q € M is the length of the shortest path from p to ¢ in the graph. In an abuse
of notation, we also use M to denote this graph. We are interested in the case
where M is a tree; unless stated otherwise, all the discussion to follow pertains
to this case. We use m and t to denote the number of vertices and leaves in M,
respectively. Note that a particularly interesting special case is t = 2, where M
is a path.

Several different variants of this problem are possible:

— The single vehicle scheduling problem (SVSP) is just the special case k = 1.

— In the zone multiple vehicle scheduling problem (ZMVSP), the vehicles all
operate in disjoint subtrees of G called zomes. Part of the problem is to
specify the zones.

— There are a large number of possibilities for vehicle starting/ending con-
straints. It is possible that the starting positions of the vehicles are given as
part of the problem, or that they can be chosen by the algorithm. We call
a problem specified starting point for a vehicle the origin of that vehicle.
There are analogous possible constraints on vehicle ending positions. The
most common variant when an ending position is specified is that the origin
and the ending position are the same. We denote this variant as RTO (return
to origin). When no ending position is specified, the most common variant
is that each vehicle has a fixed origin. We denote this variant as FO (fixed
origin).

— In the online variants of these problems, jobs are unknown before their release
times, and even the number of jobs is a priori unspecified.

Since even SVSP on a path is NP-hard [7JT7], we shift our focus from finding
an optimal solution to finding an approximate solution with cost that is guaran-
teed to be within a certain bound relative to the optimal cost. Suppose we have
an algorithm A for problem P. We define cost 4(o) to be the cost of the solution
produced by A on instance o of P. Let cost(c) be minimum possible cost for
o. A polynomial time p-approrimation algorithm A guarantees that for every
instance o of P, cost4(0) < pcost(o) and that A runs in polynomial time in |o|.
A polynomial time approximation scheme (PTAS) for problem P is a family of
approximation algorithms {A.}.>o such that each is a polynomial time (1 + €)-
approximation algorithm for P. A fully polynomial time approzimation scheme
(PTAS) is a PTAS whose running time is polynomial in both |o| and 1/e. The
reader is referred to [8] for a more comprehensive treatment of approximation
algorithms.

32 J.E. Augustine and S.S. Seiden

Previous Results: The traveling salesman problem, which is a precursor
and special case of SVSP, is known to be NP-complete [9]. Further, it has been
shown that a polynomial time p-approximation algorithm is only possible for
p > 203/202, unless P=NP [6]. Because of these negative results, many people
have attempted to solve special cases of this problem. Researchers have often
exploited the different network topologies on which the TSP or more generally
MVSP are formulated. Papadimitriou [15] shows that the TSP is NP-complete
even in the Euclidean plane. For the general TSP, a 3/2-approximation is known,
due to Christofides [4]. Approximation algorithms are known for several special
cases [8].

Psaraftis et al. [I6] consider SVSP on a path when all handling times are
zero. They show that the RTO version can be solved exactly in O(n) time, while
the FO version can be solved exactly in O(n?) time. Psaraftis et al. further
give 2-approximation algorithms for both these versions of SVSP with positive
handling times. Tsitsiklis [I7] shows that the FO and RTO versions of SVSP on
paths with release and handling times are NP-complete. MVSP is NP-complete
for all k > 2 even if all release times are zero and there is only a single point
in M, since this is exactly the multiprocessor scheduling problem [7]. If k is
part of the input, then MVSP is strongly NP-complete. For paths, Karuno et al.
develop a 3/2-approximation algorithm for the RTO version of SVSP [13] and a
2-approximation for the version of MVSP where the origins and ending points are
not pre-specified [I0]. For SVSP on trees, Karuno, Nagamochi and Ibaraki [12]
develop a 2-approximation algorithm. For SVSP on trees with zero handling
times, Nagamochi, Mochizuki and Ibaraki [I4] give an exact algorithm that runs
in time O(n') and show strong NP-hardness. For SVSP on general metrics, they
give an exact algorithm which runs in time O(n22"), and a 5/2-approximation
algorithm.

There has also been interest in the online version of SVSP. Ausiello et al. [1]
investigate the online RTO and FO versions of the problem, where all han-
dling times are zero. For a general class of metrics spaces, they show 2.5 and
2-competitive algorithms for the FO and RTO variants, respectively. For the FO
version, they give a 7/3-competitive online algorithm, and a lower bound of 2 on
the competitive ratio of any online algorithm. For the RTO variant, their upper
and lower bounds are 7/4 and (9 + v/17)/8 > 1.64038, respectively.

There is a large body of work on vehicle scheduling problems with different
job requirements, metric spaces and objective functions. For instance, Tsitsik-
lis [I7] considers job deadlines, while Charikar et al. [3] consider precedence
constraints. We do not give a comprehensive treatment of all variations here,
but refer the reader to the survey of Desrosiers et al. [5].

Our Results: In this paper, we develop a PTAS that can be applied to many
of the variants of SVSP. We begin in Section [2 by giving an exact algorithm for
solving the FO variant of SVSP on a tree when the number of distinct release
times is at most R. This algorithm runs in time O(R(m-+1)F-D0E+D+15) Tn Sec-
tion Bl we use this result to provide an O(f(1/e,t)n) time (1 + ¢)-approximation
algorithm for the FO variant of SVSP, where f(1/e,t) is a function exponential

Linear Time Approximation Schemes for Vehicle Scheduling 33

in both ¢ and 1/e. This is accomplished by running the algorithm of Section
on a modified problem on a modified metric space. In this modified problem, R
and m are constants depending only on e. Our PTAS is easily adapted to all
the other starting/finishing constraints previously mentioned, as well as others.
In Section [we extend our algorithm to include ZMVSP using a dynamic pro-
gramming approach. Essentially, this multiplies the running time by a factor of
O(nt). In Section B, we show that an extension of SVSP to include deadlines is
NP-hard, even when all release times are zero. Finally, in Section Bl we show how
to adapt the algorithms of Ausiello et al. [1] to get competitive online algorithms
for some SVSP variants.

Note: Recently and independently, Karuno and Nagamochi [I1] have also
developed PTAS’s for the vehicle scheduling problems described here. Their
approach is different than ours. They develop an exact pseudopolynomial time
algorithm for MVSP. The running time of this algorithm is exponential in k£ and
polynomial in Zj hj. We get a linear time PTAS for SVSP where they do not.
Our PTAS for ZMSVP runs in time polynomial in k, whereas all their algorithms
have running times exponential in k.

2 A Special Case

In this section, we consider the single vehicle scheduling problem on trees when
there are a constant number R of distinct release times. We show that this
problem can be solved exactly in time O(R(m + 1)B-DEHD+1p) We assume
the FO variant, but the algorithm given here can easily be adapted to handle
all of the different starting and ending conditions described in the introduction.

We denote the origin by py. We assume that in the input, M is in adjacency
list form. We use d(z,y) to mean the distance from point x to point y in M.
We use x ~ y to denote the set of vertices on the shortest path from x to y,
including x and y. It is easy to see that vertices of degrees one and two containing
no request can be eliminated from M. Therefore we have m < n +t — 2.

A schedule for the single vehicle problem is just a permutation 7 on
{1,...,n}. In an abuse of notation, we define 7(0) = 0. The arrival time a2 ()
and completion time cZ(i) of the vehicle at the ith request in 7 are defined

az (i) = cz(i — 1) + d(Pr(i-1)s Pr(i))s
c7(0) =0,

cg (i) = max{rz(;), ag (i)} + hre)-

If the problem instance is clear from the context, we drop the o superscript. The
cost of 7 is ¢Z(n).

We say that schedule 7 eagerly serves request ¢ if for all ¢ such that p, €
Pr(i—1) ™ Pr() €ither w(£) < i or 7o > cr(i — 1) + d(pr(i—1), pe). If ™ eagerly
serves all requests, we say that 7 is eager. Intuitively, an eager schedule never
passes through the location of an available request without serving the request.

34 J.E. Augustine and S.S. Seiden

Lemma 1. For any finite metric M, if there is a schedule w for a single vehicle
scheduling problem o with cost x then there is also an eager schedule w for o
with cost at most x.

Proof. Consider some schedule 7. Define

e(z,ﬁ) = Cﬂ—(i — 1) + d(pﬂ-(ifl)a p€)7
foe=min{i | r¢ < e(i,€),pr € Pr(i—1) ~ Pr(i) }-

Intuitively, e(, £) is the earliest point in time that position py can be reached after
servicing requests w(1),... ,m(i — 1). The vehicle crosses request ¢ for the first
time after it becomes available when traveling from request 7(f; — 1) to request
7(fe). fo is well defined since py € pr(i—1) ~ Pr(i) and r¢ < e(i, £) for i = 7= 1(¢).
If fp = 7w=1(¢) for all £, then 7 is eager. Otherwise, there is some request ¢ with
fe < 7 1(¢). Among these requests, let L be the one which minimizes e(f,¢). L
is the first request crossed by m which is not eagerly served. Define ¢ = 7~ 1(L).
Basically, we modify 7 to get m’ by removing L from its current position in
the order defined by = and inserting it between requests 7 (fr, — 1) and «(fz).
This causes the service of requests 7(f1),... ,m(q — 1) to be delayed by at most
hr. However, in the modified schedule, we go directly from request w(q — 1) to
(g + 1), and so we arrive at (g 4+ 1) at least as early as before. Thus we see
that ar (¢+1) < ar(q¢+1) (we show this formally in the full version). Using this
fact, it is easy to show by induction that ¢,/ (i) < ¢, (7) for ¢ < i < n. Therefore,
the cost of ' is at most the cost of 7. We have increased the number of eagerly
served requests by one. By iterating this process, we eventually reach an eager
schedule w. O

We use 0 < u; < --- < up to denote the possible release times. Define ug = 0
and ur41 = oo. Define phase i to be the time interval [u;, u;11) for 0 <i < R.

We show that it is possible to construct the optimal schedule in polynomial
time. Let m be an optimal schedule. Without loss of generality, 7 is eager. For
the remainder of the paragraph, let ¢ be in {1,...,R}. Let X; be the set of
requests whose service is initiated during phase i. If X, is non-empty, define T;
to be the minimal subtree of M which contains all the requests in X;. Define L;
to be the set of leaves of T;. Note that |L;| <t since T} is subtree of M, and M
has at most t leaves. Let X? be the position of the first request served during
phase 7 in schedule 7. For 1 < j < |L;], let Xf be the jth leaf visited by the
vehicle during phase 4 in schedule w. For |L;| < j < ¢, define Xf = XJL”. If X;
is empty then we define Xl-j = —1 for 0 < j < t. Define X{ = po.

We claim that the structure of 7 is completely defined by XZ for 1 <j <t,
0 < i < R. This follows from the fact that since 7 is eager, and all requests
released during phase ¢ are released at the beginning of the phase. X; consists
of exactly those requests which lie in 7; and which are released at or before time
u;. Define a sweep to be a time period during which the vehicle travels along
some path, possibly stopping to serve requests, but without changing direction.
Essentially, ¢t + 1 sweeps per phase are sufficient. If we sweep from X! ; to X?,

Linear Time Approximation Schemes for Vehicle Scheduling 35

L, sweep from X} to X? etc..., we pass through all
requests in X;. We take this route and service all the requests in X; when they
are first encountered. Clearly, this is the optimal route that serves all request in
X, visiting X?,... ,XJL” in order.

If we fix Xij for 1 < j <t 0<1¢< R-—1 then note that this determines
Xpg and T, since all requests not served in phases 0... R — 1 must be served
during phase R. The number of choices for X% is m + 1. Once X% is fixed, it
is easy to determine the remaining schedule in O(n) time, since this is just the
Hamiltonian path problem on a tree. For 1 < i < R there are m!*! + 1 possible
choices for X?, ..., X}. Therefore, the total number of possible schedules is at
most (m+1)(m! 14 1)-1 < (m41)EHDE=D+1 which is constant with respect
to n.

From these observations, we conclude that there is a polynomial time algo-
rithm for finding the optimal schedule: We enumerate the possible schedules, of
which there are at most (m + 1)¢+DFE=D+1 " calculating the cost for each, and
return the minimum cost schedule. _

The calculation of the cost of a schedule, given X] for 1 < j < ¢, 0 <
i < R, can be accomplished in time O(Rn): We first determine . This can be
accomplished by using depth first search on each sweep to determine the requests
served. This takes time O(Rn). From 7 we can calculate the cost in time O(n).

Therefore, the total running time of the algorithm is O(R(m +
1)EHDE=D+1n) which is linear in n, since ¢t and R are constants and m <
n+t—2.

then sweep from X! to X}

3 The Offline Single Vehicle Problem

In this section, we present a (1 + ¢)-approximation algorithm for SVSP, for all
€ > 0. Denote the input problem instance as o.

Define rpyax = maxi<;<n 7. Let a = 2[1/€] and 6 = rpax/a. Since cost(o) >
Tmax, We have § < ecost(o)/2.

Let P be the sum of all edge weights in M. Define b = 2(t + 1)a? and A =
P/b. Since every edge must be traversed to serve all requests, cost(c) > P and
therefore A < ecost(o)/(4(t + 1)m). We define a new metric A" with a constant
number of points, which we use to approximate M. A junction of M is defined
to be a vertex of degree three or more. Define a essential path of M to be path
whose endpoints are either leaves or junctions. M has a unique decomposition
into a set F of at most 2t — 2 essential paths. We find this decomposition and
perform the following operation on each essential path p € E: We embed p
in the real line, with an arbitrary endpoint at position 0. The other endpoint
lies at position |p|. This assigns each vertex v in p a non-negative coordinate
value z(v). We get a new path p’ by rounding the coordinates to get 2'(v) =
min{|p|, A|x(v)/A+1/2]}. p’ consists y = [|p|/A] vertices, y— 1 edges of length
A, and one edge of length |p| — A(y — 1). There is an obvious mapping from
vertices in p to those in p’. From this, we get a mapping ¢ from points in M to
points in . Note that the number of points in N is at most

36 J.E. Augustine and S.S. Seiden

S pl/AT < S Ipl/A+ 1

pEE peEE
<P/A+2t—2=0b+2t—2.

Using N, we define two new problem instances o' and o+. Problem o is
defined in terms of o by rii = d0|r;/d], pf = ¢(pi), hf = h;, for 1 < i < n. For
purposes that shall become clear, we add a request at the origin to o', the Oth
request, with pé = po, ré =0 and hé = 0. Clearly, this additional request does
not affect the solution of o+ in any way, since the vehicle is already at po at time
0, and the request has zero handling time. Note that in ot there are at most
a + 1 distinct release times and b + 2t — 2 distinct job positions (not including
o). Problem o is defined by r] = rf +6, p = pf and h! = h; for 1 <i < n.
As with o', in o7 there is an additional request at the origin, the Oth request,
with pg = po, rg =0 and hg = §. Using the algorithm described in the preceding
section, we can solve ot exactly in time O(n (a 4 1)(b 4 2t — 1)(tH+Dat1) —
O(n (8(t + 1)[1/€]? + 2t — 1)2HDI/el+1 /) wwhich is linear in n for constant ¢
and e.

We now observe that an optimal schedule 7 for o+ is also an optimal schedule
for o1, Intuitively, problem o' is the same as problem o+ but with all requests
except 0 shifted back ¢ time units. Applied to o' schedule 7 stays at py until
time ¢, since 7(0) = 0 and hg = 4, and then travels the same route as for ot,
except that each point is reached § time units later. The cost incurred by 7 on
ol is therefore cost(o+) + §. Note that when 7 is used for o' every request is
served after its release time in o. With a bit of care, we can also use 7 as a
schedule for o. To ensure that the vehicle reaches all jobs, we have to increase
the length of each sweep, but by at most A each. Therefore 7 is also a schedule
for o with cost at most cost(o¥) + 6 + (t + 1)mA.

We now relate cost(ot) to cost(c). To accomplish this, we consider a third
modified instance, which we denote o*. This instance is defined in terms of
the original metric M by r} = rj, P = pi, hy = hy, for 1 < i < n. We
first observe that clearly, cost(c) > cost(c*). The optimal schedule 7* for o*
has the structure that we have explained in the preceding section; i.e. at most
t + 1 sweeps per phase are sufficient. Note that if we apply 7* to o+, we have a
feasible schedule for o*. Each sweep still covers the same jobs, since the rounding
scheme used to obtain A/ does not change the order of points along any essential
path. Further, we increase the length of each sweep by at most A. Therefore,
cost(o*) + (t + 1)mA > cost(o¥).

We conclude that the cost incurred by the algorithm is at most

cost(oV) + 6 + (t + 1)mA < cost(c*) + 8§ + 2(t + 1)mA
< cost(o) + 0 + 2(t + 1)mA < (1 + €) cost(o).

Linear Time Approximation Schemes for Vehicle Scheduling 37

4 The Offline Zone Multiple Vehicle Problem

In this section, we show that if we have a p-approximation algorithm A for SVSP
which runs in time O(g(n)), then we also have a p-approximation algorithm B
for ZMVSP which runs in time O(tkn' +n'g(n)). The basic idea is to generalize
the dynamic programming algorithm given by Karuno and Nagamochi [10] for
computing the optimal one way zone schedule for the multiple vehicle scheduling
problem. The general case is quite complicated, so we begin by looking at the
special case of ¢ = 2, where M is a path. We assume in this section that the
starting and finishing positions of each vehicle can be selected by the algorithm.
Since the requests are all on a single path, we assume that they are given
in order along this path, i.e. request 1 is at one end of the path, request 2 is
adjacent to request 1, etc.... Define C*(3, j) for 1 < i < j <n to be the optimal
cost for serving requests 4, . .. , j using a single vehicle. Further define x*(i, ¢) for
1<i<nand1l</{<ktobe the cost of the optimal zone schedule for serving
requests 1,...,7 with ¢ vehicles. Then the cost of the optimal zone schedule
for the entire problem is given by z*(n, k). We calculate z* using the following

recurrence z*(4,1) = C*(1,1) giving
2 (i,0) = min max{z*(j,£—1), C*(j+1,4)}. (1)

1<5<4

Of course, we do not know how to calculate C*(i,7) in polynomial time. We
are therefore led to consider the following modified recurrence. Define C'(3, j) for
1 <i < j <n to be the cost incurred by A for serving requests i,... ,j with a
single vehicle. Define x(i,¢) for 1 <i < n and 1 < ¢ < k to be minimum cost
of a zone schedule for serving requests 1,... ,i with £ vehicles using A to serve

requests in each zone. Similar to the situation with z*, we calculate x(n, k) using
x(i,1) = C(1,14) giving

x(i,0) = 11;1}1;1imax {z(j,0-1),C(H+1,i)}. (2)

Using induction, one can show that x(i,¢) < pa*(i,f) for 1 < i < nand 1 <
¢ < k. In particular, this means that z(n,k) < pa*(n,k), which leads us to a
p-approximation algorithm B:

1. Calculate the values C(i,) for 1 < i < j < n, storing them in an array.
2. Calculate z(n, k) using dynamic programming (i.e. store z in an array).
3. From z find the zone partition and use the schedule of A within each zone.

Step 1 takes O(n?g(n)) time. Step 2 takes O(kn?) time. Step 3 can be accom-
plished in O(k) time if we record the values of j minimizing (2)) in Step 2.

We now sketch the general solution. To begin, we calculate the cost C(T)
for serving the requests in each subtree T of M with a single vehicle. The total
number of subtrees is at most n', so the time to do this is O(n'g(n)). We pick
an arbitrary leaf r and designate it to be the root. The partial solutions we
build are subtrees of M containing r. To find the minimum cost z(T,¢) of an
£ vehicle solution for a rooted tree T', we use depth first search starting from each

38 J.E. Augustine and S.S. Seiden

leaf of T', excluding the root. At each point in the depth first search, we have
a decomposition of T" into two disjoint subtrees: the portion of T visited in the
depth first search, which we call U, and the remainder, which we call V =T —U.
V contains the root. The minimum of max{z(V,¢—1),C(U)} over all possible U
and V gives us the minimum cost for 7. The time required to calculate z(T, ¢)
in O(¢n), since T has at most ¢ leaves. The number of rooted trees T' is at most
O(n'=1). The total time used is therefore O(n'g(n) + tkn'), as claimed.

We now make a number of remarks on the relationship between the cost of the
optimal zone schedule, and the optimal non-zone schedule. If we allow multiple
requests to appear at a single location, then clearly the cost of the optimal zone
schedule can be k times the cost of the optimal non-zone schedule: Consider an
input where n = k, r; =0, h; = 1 and p; = p; for 1 < j < k. Then in a zone
schedule, a single vehicle must serve all requests, whereas in a non-zone schedule
we can devote a vehicle per request. If requests must occur at distinct locations,
then we get a weaker bound stated in the following lemma. The proof will be
given in the full version.

Lemma 2. For all k > 2 and t > 2, there exists an MVSP problem instance
o where the cost of the optimal zone schedule is 2 — 1/t times the cost of the
optimal non-zone schedule.

5 Other Results

Tsitsiklis [17] shows that SVSP with deadlines on paths is strongly NP-hard,
but leaves open the complexity of SVSP with general deadlines and zero release
times. In the full version, we show that this problem is NP-hard on paths and
strongly NP-hard on trees.

The problem of scheduling a single vehicle online when all handling times
are zero is investigated by Ausiello et al. [T]. The FO and RTO variants of this
problem are of interest. For both FO and RTO, they obtain results for general
metrics, and stronger results for paths.

We show that if one has a c-competitive online algorithm for zero handling
times, then it is possible to get a (¢ + 1)-competitive online algorithm for non-
negative handling times. The proof will be given in the full version.

6 Conclusions

We have presented the first approximation schemes for single and multiple vehicle
scheduling problems on trees. Such problems are well motivated, having a large
number of applications [10]. We believe that this paper is just an initial step in
the exploration of such problems and so we state several open problems. Can
the 2-approximation given in [I0] for the non-zone multiple vehicle problem on
a path be extended to trees? Is an FPTAS possible for SVSP on paths or trees
with a constant number of leaves? For what other metrics is a PTAS possible?
In [1], lower bounds are given for online vehicle scheduling problems with zero
handling costs. Can these lower bounds be increased using handling costs?

Linear Time Approximation Schemes for Vehicle Scheduling 39

References

10.

11.

12.

13.

14.

15.

16.

17.

. AusieLLO, G., FEUERSTEIN, E., LEONARDI, S., STOUGIE, L., AND TALAMO, M.

Algorithms for the on-line travelling salesman. Algorithmica 29, 4 (2001), 560-581.
BRruNoO, J., AND DOWNEY, P. Complexity of task sequencing with deadlines, set-
up times and changeover costs. SIAM Journal on Computing 7, 4 (Nov. 1978),
393-404.

CHARIKAR, M., MoTwWANI, R., RAGHAVAN, P., AND SILVERSTEIN, C. Constrained
TSP and low-power computing. In Proceedings of the 5th International Workshop
on Algorithms and Data Structures (Aug. 1997), pp. 104-115.

. CHRISTOFIDES, N. Worst-case analysis of a new heuristic for the travelling sales-

man problem. Tech. Rep. CS-93-13, Carnegie Mellon University, Graduate School
of Industrial Administration, 1976.

DESROSIERS, J., DuMAS, Y., SOLOMON, M., AND SouMis, F. Time constrained
routing and scheduling. In Network Routing, Volume 8 of Handbooks in Operations
Research and Management Science, M. O. Ball, T. L. Magnanti, C. L. Monma, and
G. L. Nemhauser, Eds. Elsevier Science, 1995.

ENGEBRETSEN, L., AND KARPINSKI, M. Approximation hardness of TSP with
bounded metrics. In Proceedings of the 28th Annual International Colloguium on
Automata, Languages and Programming (July 2001), pp. 201-212.

GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A Guide to
the theory of of NP-Completeness. Freeman and Company, San Francisco, 1979.
HocuBauMm, D. Approzimation Algorithms for NP-hard Problems. PWS Publish-
ing Company, 1997.

KArpP, R. M. Reducibility Among Combinatorial Problems. Plenum Press, NY,
1972, pp. 85-103.

KARUNO, Y., AND NAGAMOCHI, H. A 2-approximation algorithm for the multi-
vehicle scheduling problem on a path with release and handling times. In Proceed-
ings of the 9th Annual European Symposium on Algorithms (Aug. 2001), pp. 218—
229.

KARUNO, Y., AND NAGAMOCHI, H. A polynomial time approximation scheme for
the multi-vehicle scheduling problem on a path with release and handling times. In
Proceedings of the 12th International Symposium on Algorithms and Computation
(Dec. 2001), pp. 36-47.

KArUNO, Y., NacaMocHI, H., AND IBARAKI, T. Vehicle scheduling on a tree with
release and handling times. Annals of Operations Research 69 (1997), 193-207.
KARUNO, Y., NAcaMOcCHI, H., AND IBARAKI, T. A 1.5-approximation for single-
vehicle scheduling problem on a line with release and handling times. In Japan-
U.S.A. Symposium on Flexible Automation (July 1998), pp. 1363-1366.
NacamocHi, H., MocHIZUKI, K., AND IBARAKI, T. Complexity of the single vehi-
cle scheduling problem on graphs. INFOR: Information Systems and Operational
Research 35, 4 (1997), 256-276.

PaprabpimiTRIOU, C. H. The Euclidean traveling salesman problem is NP-complete.
Theoretical Computer Science 4, 3 (June 1977), 237-244.

PsaArAFTIS, H., SOLOMON, M., MAGNANTI, T., AND KiM, T. Routing and schedul-
ing on a shoreline with release times. Management Science 36, 2 (1990), 212-223.
TsiTsikLis, J. Special cases of traveling salesman and repairman problems with
time windows. Networks 22 (1992), 263-282.

Minimizing Makespan for the Lazy Bureaucrat
Problem*

Clint Hepner! and Cliff Stein?

! Department of Computer Science,
Dartmouth College, Hanover NH, 03755, chepner@cs.dartmouth.edu
2 Department of Industrial Engineering and Operations Research,
Columbia University, New York NY, 10027, cliff@ieor.columbia.edu

Abstract. We study the problem of minimizing makespan for the Lazy
Bureaucrat Scheduling Problem. We give a pseudopolynomial time al-
gorithm for a preemptive scheduling problem, resolving an open prob-
lem by Arkin et al. We also extend the definition of Lazy Bureaucrat
scheduling to the multiple-bureaucrat (parallel) setting, and provide
pseudopolynomial-time algorithms for problems in that model.

1 Introduction

The Lazy Bureaucrat Scheduling Problem is a modification of traditional
scheduling models in which the goal is to minimize, rather than maximize, the
amount of work done. The bureaucrat is given a list of jobs that have deadlines.
His goal is to do as little work as possible (as defined by a given objective), under
the greedy constraint that he must work on a job if one is available (otherwise,
the obvious choice would be to do no work at all). Jobs whose deadlines pass
before they are completed expire and can no longer be scheduled; this is desir-
able, since unscheduled jobs reduce the amount of work the bureaucrat needs to
do. The Lazy Bureaucrat Scheduling Problem was introduced by Arkin et al. [1],
who considered several different objectives and variants of the greedy constraint.

Arkin et al. motivate the study of this problem with two examples. One
supposes an office worker who wants to do as little work as possible while main-
taining a busy appearance. For example, suppose he is allowed to go home at
5:00 p.m. At 3:00 p.m., he has two jobs available, which will take 15 minutes
and one hour, respectively, to complete. He may work on either, but he must
work on one. At 3:15 p.m. he has a personnel meeting which he can skip if he
is otherwise busy. He could do the 15-minute job, go to the meeting, then finish
the hour-long job by 5:00. However, he can do less work by doing the hour-long
job first, which will excuse him from the meeting, followed by the 15-minute
job which he completes at 4:15 p.m. The other is the real-life example shown in
the movie Schindler’s List[3], in which the factory workers needed to stay busy
without making any real contribution to the German war effort.

* Research partially supported by NSF Grant EIA-98-02068, NSF Grant DMI-9970063
and an Alfred P. Sloan Foundation Fellowship

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 40-50, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Minimizing Makespan for the Lazy Bureaucrat Problem 41

Another example might be a professor scheduling students during his office
hour. Being a dedicated teacher, Professor Green does not want to leave before
each student present has a chance to ask his question. However, he is leaving
for a conference after his office hour, and he would like to finish up as soon
as possible so that he has time to pack. Luckily, he knows that some students
will leave before seeing him if they get tired of waiting or if they figure out the
answer themselves. Therefore, Professor Green may want to see students in an
order that will get through all the students as soon as possible, whether or not
he actually talks to them.

In this paper, we will study preemptive variants of the Lazy Bureaucrat prob-
lem. We further motivate our examination of the preemptive Lazy Bureaucrat
problem with the following observation. In the usual deterministic single-machine
scheduling models, the use of preemption can “correct” scheduling decisions
made prior to the arrival of a new job. When all jobs have the same release
date, preemption does not help because the scheduler can already choose from
every unscheduled job at every point in time. In the Lazy Bureaucrat Schedul-
ing Problem, preemption can be beneficial even when all release dates are equal,
since a job can be left partially completed if it is preempted and never resumed.
Partially processing a job allows the scheduler to stay busy just long enough for
the deadline of a more costly job to pass. We shall use this unique feature of the
Lazy Bureaucrat Scheduling Problem to show that preemption can be used to
reduce the makespan of a schedule even if the all the release dates are equal.

We also extend the Lazy Bureaucrat Scheduling Problem by allowing multi-
ple bureaucrats. We restrict ourselves to a model where each bureaucrat works
independently so that one bureaucrat cannot prevent another from working.
When preemption is allowed, we also make the restriction that a job can only
be run by the bureaucrat that started the job, i.e., migration is not allowed.

Arkin et al. define many different Lazy Bureaucrat scheduling problems in [1]
and they present NP-hardness results for most problems. They give polynomial-
time algorithms for some special cases, and they give pseudopolynomial-time
algorithms for some weakly NP-complete problems. Of particular interest to us
is a pseudopolynomial-time algorithm for minimizing the makespan of a schedule
for a set of jobs which share a common release date.

In this paper, we give pseudopolynomial-time algorithms for the problem of
minimizing makespan when preemption is allowed, assuming a job may only be
scheduled if it is possible to finish it by its deadline, in both the single- and
multiple-machine settings. We first prove structural results that show any pre-
emptive schedule can be converted to a schedule with at most one preemption.
Our algorithm converts an instance I of a preemptive problem into a pseu-
dopolynomial number of nonpreemptive instances. One of these new instances
has the optimal preemptive schedule of I as its optimal nonpreemptive sched-
ule. The nonpreemptive version has a pseudopolynomial-time algorithm, so the
optimal preemptive schedule can be found in pseudopolynomial time as well.
In the multiple-bureaucrat setting, we introduce pseudopolynomial-time algo-
rithms for minimizing the makespan of both nonpreemptive and preemptive

42 C. Hepner and C. Stein

schedules with equal release dates by modifying the algorithms for the corre-
sponding single-bureaucrat problems. We show that for a fixed number of bu-
reaucrats, we can assign jobs to bureaucrats with dynamic programming to find
the optimal nonpreemptive schedule. When preemption is allowed, we can again
convert a problem instance to a set of nonpreemptive problem instances and take
the best optimal nonpreemptive schedule as the optimal preemptive schedule.

2 Preliminaries

Definitions and Notation. A bureaucrat is an entity capable of doing work, sim-
ilar to a machine in a traditional scheduling problem. A bureaucrat, however,
must obey a greedy principle, which states that if at time ¢ there is an unsched-
uled job that can be run, the bureaucrat must run a job.

An instance of a Lazy Bureaucrat problem is a set J of n jobs, a number m
of bureaucrats and a specification of the notion of availability. Each job j has
a processing time p; and a deadline d;. We define pmax = max;p; to be the
maximum processing time and dpna.x = max; d; to be the maximum deadline.
The critical point of a job, c;vt(a), is the latest point in time, as of time t, that
job j can be scheduled in schedule o and still complete by its deadline. If y,¢ (o)
is the amount of processing remaining for job j at time ¢ in schedule o, then
cji(0) = dj —yjt(c). When the schedule o and the point in time ¢ are clear from
context, we abbreviate the critical point and the remaining processing time as
c; and y;, respectively. The starting time of a job j is referred to as S;, and the
completion time C; is the time at which the job has run for p; units of time.
Each job also has a release date r; before which it may not be processed. For
the rest of this paper, we assume that all release dates are equal. This means
that by the greedy principle, the schedule may never be idle.

In the preemptive setting, the notion of availability must be defined precisely.
For example, if a job cannot be completed before its deadline, should the bu-
reaucrat be allowed to work on it anyway? Three definitions of availability for
incomplete jobs are given in [1], which we will denote as pmitnl, pmitnil, and
pmitnlll; see that paper for details. Under pminl, a job may be processed at
any time before its deadline passes. A job is only available under pminlIl if it
can be completed by its deadline; this means a job cannot be scheduled after its
critical point. The final constraint, pminlll requires a job to be completed if it
is started. We consider preemptive problems only of type pmitnll in this paper.

To more easily refer to Lazy Bureaucrat problems, we introduce the follow-
ing extensions to the three-field classification scheme due to Graham et al. [2]
as follows. Since bureaucrats are identified with machines, they continue to be
represented by the usually symbols (1, P, R, etc.). The tag lazy in the constraints
field indicates that the problem is a Lazy Bureaucrat problem. The three objec-
tives studied in [1], makespan, total time spent working, and weighted sum of
completed jobs, are specified by Cpax, Zij t;5, and Zj w; (1 —Uj), respectively,
where ¢;; is a binary variable that indicates if job j executes at time ¢, and Uj is
a binary variable that indicates if job j does not finish (compare with the slightly

Minimizing Makespan for the Lazy Bureaucrat Problem 43

different normal meaning of U;, which is 1 if a j finishes after its deadline). For
example, the problem of minimizing the makespan of a nonpreemptive schedule
would be 1]|lazy|Chax. If preemption is allowed and only completable jobs are
available, the problem would be 1|lazy, pminll | Ciax-

Previous Results. Many results for Lazy Bureaucrat problems were given in [1].
A brief summary of results relevant to this paper is given here. In the general
nonpreemptive case the Lazy Bureaucrat Scheduling Problem is strongly NP-
complete for all three objective functions Cuax, »;;tij, and >, w;(1 — Uj).
They are also hard to approximate to within any constant factor. When all re-
lease dates are equal, there is a pseudopolynomial-time algorithm. Several special
cases have polynomial-time algorithms. When preemption is allowed, hardness
results depend on the type of preemption allowed. For all three objective func-
tions, the Lazy Bureaucrat Scheduling Problem is polynomially solvable under
pminl, weakly NP-complete under pminll, and strongly NP-complete under
pminlll. Open problems include finding algorithms for 1|lazy, pmtnll | Ciax,
Llazy, pminIl |37, tij, and 1[lazy, pmtnll |3, w;(1 —U;) that run in pseu-
dopolynomial time, with or without release dates.

3 New Results for the Single Bureaucrat

In this section, we present an algorithm for 1|lazy, pmtnll | Ciax which runs in
pseudopolynomial time. We first discuss why it is interesting to study a preemp-
tive scheduling problem when the release dates are equal. We next study the
structure of an optimal preemptive schedule for 1|lazy, pminll |Cpax. Finally,
we give a dynamic programming algorithm that runs in O(n? dpax Pmax) time.
As pointed out in [1], when all release dates are equal the makespan objective
is equivalent to total time spent working and, if all scheduled jobs are com-
pleted, weighted sum of completed jobs. Therefore, we focus on the problem of
minimizing makespan; our results hold for the other two problems as well.

3.1 Preemption and Makespan with Equal Release Dates

Under normal single-machine scheduling models, preemption does not give a
better schedule when all the release dates are equal. Because every job must be
completed, one always has the option of running job i before j for any pair of jobs
7 and j. In other words, any time a job ¢ is preempted by a job j, it is also feasible
for job j to run prior to job 7 in the first place. However, in the Lazy Bureaucrat
Scheduling Problem, there are times when it is beneficial to preempt a job and
not resume it later, running just enough of the preempted job to prevent other
jobs from being scheduled. Consider a three-job instance with p; = 7, dy = §;
p2 = 7, do = 15; and p3 = 20, d3 = 30. The optimal nonpreemptive schedule
runs jobs 1 and 2 for a makespan of 14. If preemption is allowed, we can run
the same jobs, but we can preempt job 1 at time 4 for a final makespan of 11.
The preempted job is not finished, but it runs long enough to prevent job 3 from

44 C. Hepner and C. Stein

starting. Job 1 itself cannot be resumed after job 2 completes, since its deadline
has passed. This shows that preemption can be used to improve the makespan
of the schedule by delaying other jobs.

As pointed out in [1], there may not be an optimal solution at all when we
allow preemption. Consider our example once more. For any positive value of
€ < 1, we can preempt job 1 at time 3 + € instead of time 4. This is still long
enough to prevent job 3 from starting, and the preemptive schedule remains
valid, but the makespan can be made arbitrarily close to 10 for sufficiently small
values of e. Because of this feature of the Lazy Bureaucrat Scheduling Problem,
it seems like the preemptive version is much harder than the nonpreemptive
version. The dynamic programming algorithm from [1] does not seem to be
applicable here, since there are an infinite number of possible preemption points.

To allow the problem to be algorithmically solvable, we will define a schedule
with integral makespan which can be returned by our algorithm. We refer to
schedule ¢ as a representative preemptive schedule for a family @ of preemptive
schedules if the makespan of ¢ is T'+ 1, the makespan of each schedule in &
falls in the interval (T, T + 1], and ¢ can be transformed into any member of ¢
by decreasing the processing time of exactly one job. Thus, if in the limit the
optimal makespan of a preemptive schedule is T'+ € for any € > 0, we need only
return a representative schedule of makespan T + 1.

3.2 Properties of an Optimal Preemptive Solution

The following lemmas provide us with information about the structure of an
optimal preemptive schedule that will allow us to build on the nonpreemptive
algorithm for makespan minimization given in [1]. The lemmas build on each
other; each proof assumes the previous lemmas have been applied.

First we prove that we only need to consider O(n) possible preemptions.

Lemma 1. Any preemptive schedule for an instance I of 1|lazy, pminIl | Crax
can be converted to a preemptive schedule of equal makespan in which no job is
resumed once it has been preempted.

Proof Sketch. We rearrange the scheduled pieces so that each job runs during
one continuous interval. Let k& be the index of the preempted job that occurs last
in the schedule, and let ¢ be time at which the last piece of j; finishes. We reorder
the job pieces within the interval [Sk,t] in a way that introduces no idle time
or extra processing, so the makespan does not increase. All pieces of j; move to
the end of the interval; the other job pieces run earlier in the interval to make
room. We repeat this process until no job is preempted more than once. a

Figure 1 shows a schedule before and after Lemma 1 is applied to job jk.
Next, we prove that we only need to preempt one job in the schedule and
that every other job we start is allowed to finish.

Lemma 2. Any preemptive schedule for an instance I of 1|lazy, pminll | Crax
can be converted to a preemptive schedule of equal makespan in which at most

Minimizing Makespan for the Lazy Bureaucrat Problem 45

Before ky | | ks | ks | |

After i

Fig. 1. Application of Lemma 1

one job remains unfinished. Furthermore, if a job is preempted, it is the first job
in the schedule.

Proof. We prove this lemma by repeatedly applying a procedure that either
reduces the number of unfinished jobs or pushes the last unfinished job earlier in
the schedule. Assume ¢ is a preemptive schedule that obeys Lemma 1. Without
loss of generality, let the jobs scheduled in ¢ be renumbered in increasing order
of their starting times, and let T" be the makespan of ¢.

We start by letting k£ be the index of the last unfinished job in ¢ and k—1 the
index of the job that immediately precedes job ji. If there are no unfinished jobs
or k = 1, the lemma holds. Otherwise, we either swap ji and ji_1, or we reassign
some or all of the time spent on ji_1 to ji. Let A = min{pr_1,yrr ()} > 0 be the
amount of time we want to take from ji_; to complete ji. T 4+ yp_17+ A <
dr_1, we know that jr_; completes by time 7', so we can swap the two jobs.
Otherwise, we can reassign the interval [Sy — A, Sg] to ji. In this case we either
complete ji or we remove ji_1 from the schedule entirely. This either reduces
the number of unfinished jobs in the schedule, or moves the last unfinished job
earlier in the schedule. By repeating this argument, we prove the lemma. O

Figure 2 illustrates Lemma 2 being applied to a schedule.

Original preemptive schedule o b e
Finishing job ¢ e 5 c
Swapping jobs a and b | » o ¢
i I 1 1 T T T T

Fig. 2. Application of Lemma 2
Figure 2 shows the first three jobs of a schedule with makespan T" during the application
of Lemma 2. Job a has p, =5, dy, = T +3. Job b has p, = 3, dy, = 15. Job ¢ has p. = 8,
de = 20. The top line is before Lemma 2 is applied; jobs a and b complete, job c is
preempted at time 14. The second line shows job ¢ completing with time taken from
job b, since dy is too early for job b to resume. The third line shows jobs a and b being
swapped; if job b takes time from job a, job a remains available at time T'

46 C. Hepner and C. Stein

The next lemma further reduces the number of possible preemptive schedules
by proving that the completed jobs in a schedule can appear in earliest due date
(EDD) order (after the unfinished job, if any). The proof is by a standard pair-
wise interchange argument and is omitted.

Lemma 3. For a given job instance I, a preemptive schedule with at most one
unfinished job can be converted to a preemptive schedule in which the completed
jobs are scheduled in order of nondecreasing deadlines (EDD).

In the previous section, we claimed we could find a representative preemptive
schedule whose makespan could be reduced to the optimal value in the limit.

Lemma 4. For a given instance I, a preemptive schedule with one preempted
one job can be converted to a schedule that runs its unfinished job for an integral
amount of time; this change increases the makespan by at most one unit of time.

Proof. Suppose the unfinished job completes at time ¢ + € for some t € ZZ and
€ > 0. Round the time allotted to the unfinished job up to the nearest integer.
Since all deadlines and processing times are integral, the set of available jobs
does not change between integral times. Therefore, no job is pushed past its
deadline by the rounding, and the schedule remains feasible. O

3.3 The Pseudopolynomial Algorithm for 1|lazy, pmitnIl | Cmax

To find an optimal preemptive schedule in pseudopolynomial time, we reduce
an instance of 1|lazy, pminll | Ciax to a pseudopolynomial number of instances
of 1|lazy|Cmax- The preemptive algorithm solves each of the nonpreemptive
instances; we will show that the best schedule found is the best preemptive
schedule. First, we discuss how to solve the nonpreemptive scheduling problem.

Arkin et al. [1] observe that 1|lazy|Cpax has a pseudopolynomial-time al-
gorithm based on a dynamic program [4] for minimizing the weighted sum of
tardy jobs. We give this algorithm explicitly, as we will refer to the details for
our algorithms in the remainder of this paper.

Let the jobs in J be numbered so that so that dy < ds < ... < d,, with ties
broken arbitrarily. Define f(j,t) to be the minimum penalty of the schedule that
completes a subset of jobs 1 through j by time t. The penalty of a schedule is
the inverse of the sum of the processing times of the jobs that are not scheduled.
The value of f(j,t) is defined recursively as:

fG,t)=0 J=0,t=0 (1)
[, t) =400 j=0,t#0 (2)
f(4, t) = +o0 i=1,...,mt<0 (3)
FG,) = min { F(—1, t-p3), FG-10) —ps} G=1m t20 ()

If an entry f(j,t) is non-positive, it represents a subset of jobs which begins at
time zero and ends at exactly time ¢. Positive entries represent subsets of jobs

Minimizing Makespan for the Lazy Bureaucrat Problem 47

that don’t exactly fill the interval [0,¢]. Since the maximum makespan of any
feasible schedule is 7' = max{dmax, > ; Pj} = O(dmax), we only need to consider
values of ¢ up to T'. Once the table is filled, each entry f(j,t) for j = n that has
non-positive penalty represents a (possibly) feasible schedule whose makespan is
t. To ensure that a schedule is feasible, one must check that the unscheduled jobs
all have critical times earlier than time ¢, and that the scheduled jobs complete
by their deadlines. If we record the critical point of an unscheduled job and
verify that a scheduled job completes on time when the decision is made, we
can amortize the time needed for these checks over the time it takes to fill the
table. The optimal schedule is the one associated with the table entry with the
smallest ¢ index. The running time of the algorithm is O(n dpax)-

Theorem 1. There is an O(n® Pmax dmax) algorithm for 1|lazy, pmtnIl | Cpax.

Proof. Let J be the set of jobs to be scheduled. By Lemmas 1-4, we have es-
tablished that there is a representative preemptive schedule ¢ for J that runs
each scheduled job in one interval of integer length and leaves at most one job
unfinished. If all jobs in ¢ complete, it is a nonpreemptive schedule, and the
nonpreemptive algorithm can find it. If ¢ contains an unfinished job, we know
that it is the first job and it runs for at most ppax units of time. Therefore, a
nondeterministic algorithm could guess which job j is the unfinished job and
trim its processing time so that ¢ completes it instead of preempting it. In re-
ality, we don’t know j or its length, so we enumerate over all the possibilities.
We generate O(n pmax) instances J;i, for all j € J and k = 1,... , pmax, where
Jikr = J —{j} U{j’} and p; = k. One of these instances is identical to the in-
stance the nondeterministic algorithm creates, and the optimal nonpreemptive
schedule of that instance is ¢. To find an optimal preemptive schedule, we create
the O(n pmax) new instances and solve each instance with a version of the non-
preemptive algorithm, with equations (1) and (2) replaced with f(j’,p}) = 0 and
f(j',t) = +o0 for t # pj, respectively. Since each instance J;; can be scheduled
in O(n dmax) time, the lemma is proved. O

It remains open if 1|lazy, pminll, ;| Cpax is strongly NP-complete.

4 Multiple Bureaucrats

In this section, we discuss extending the Lazy Bureaucrat Scheduling Problem to
multiple bureaucrats. In this model, there are m bureaucrats, each of which can
process any available job. The greedy requirement still holds, so each bureaucrat
must work on a job if one is available. We also require that the bureaucrats
obey the non-interaction principle, which merely states that the work of one bu-
reaucrat does not affect the work of other bureaucrats. This means that multiple
bureaucrats cannot simultaneously work on the same job, nor can one bureaucrat
undo the work of another bureaucrat.

The factory example of [1] is a natural example of multiple bureaucrats.
While the factory can be viewed as a single bureaucrat that works on jobs one

48 C. Hepner and C. Stein

at a time, it is more realistic to assume that the factory is collection of individual
workers and /or groups of workers that can work on multiple jobs simultaneously.

Many of the problems formulated in [1] are NP-complete and hard to approx-
imate, thus they remain so when extended to the multiple-bureaucrat setting.
As in the previous section, we will concentrate on minimizing the makespan.
We will give pseudopolynomial-time algorithms for both Pm|lazy|Chmax and
Pm/|lazy, pmtnll | Cinax. We also show that when moving into the multiple-
bureaucrat setting, equivalences among the objective functions that held with a
single bureaucrat may no longer hold.

Minimizing Makespan. Because P|lazy|Chax is a generalization of the one ma-
chine problem, it is both strongly NP-complete and inapproximable to within
any constant factor. Therefore, we focus on problems involving a fixed number of
bureaucrats. We represent time with an m-dimensional vector t = (¢1,... ,t;,)
which stores the time for each of the m bureaucrats separately. When we ask
what jobs are scheduled at time ¢t = (3,5,9,2), we are really asking what job
the first bureaucrat is running at time 3, the second at time 5, and so on. The
makespan of a multiple-bureaucrat schedule is the largest completion time by
any bureaucrat. A schedule ending at time (15, 18, 10, 23) has a makespan of 23.
To simplify the use of a time vector, we define the following operator. Let
©; be a subtraction operator that subtracts a value x from only the ith element
of a vector. For example, (10,12,8,11) ©5 3 = (10,9,8,11). Formally, t ©; z =
(t1,... ,ti—z,... ,t;m). The m-dimensional zero vector is 0.
Theorem 2. Pm|lazy|Cpax is NP-complete and solvable in O(nd)

max

) time.

Proof. The single-bureaucrat version of this problem is weakly NP-complete;
therefore it remains so with multiple bureaucrats. The pseudopolynomial-time
algorithm in Section 3.3 can be modified to solve this problem as well by rep-
resenting time as an m-dimensional vector instead of an integer. This increases
the size of the dynamic program’s table and therefore the running time.

The dynamic program decides which jobs are scheduled and on which bu-
reaucrats. We define f(j,t) to be the minimum penalty of a schedule of a subset
of jobs 1 through j in which bureaucrat ¢ finishes by time ¢;. The penalty of
a schedule is the same as in the single-bureaucrat algorithm. The function f is
defined recursively by the following equations:

f(j7t):0 (j:07t:0)1 (5)

[, t) = +oo (j=0,t#0), (6)

f(g,t) =400 (j=0,1,...,n; Ji:t; <0), (7)
. _ mlln{f(]_latel pj)}v . . m

f(4,t) = min {f(j—l,t)—pj } (j=1,2,...,n; te N™). (8)

Whenever we consider adding job j to the schedule now, we consider which
is smaller: the penalty of the schedule if j does not run, or the smallest penalty

Minimizing Makespan for the Lazy Bureaucrat Problem 49

found by assigning job j to bureaucrat i for each ¢ = 1,... ,m. As before, each
f(n,t) entry represents the schedule in which each bureaucrat completes at time
t;. If every bureaucrat does not complete exactly ¢; units of processing, f(n,t)
will have positive infinite value. The optimal schedule is the feasible schedule of
f(n,t) for which the maximal element of ¢ is minimized. Since there are O(d}2,5)

schedules to check, the running time for the entire algorithm is O(nd,.). O

If a job is required to be processed only by the bureaucrat that begins it,
we can use this algorithm to solve Pm |lazy, pminil | Ciyax in the same way the
single-bureaucrat problem is solved. Treating each bureaucrat separately, Lem-
mas 1-4 are still applicable to each bureaucrat’s jobs. To simplify the analysis,
assume that there are m additional jobs with zero processing time to sched-
ule. Since at most m jobs can be preempted (one per bureaucrat), we create
O(n™pi,.) nonpreemptive instances by enumerating over the ("1™) = O(n™)
sets of jobs we could choose as the preempted jobs. If we modify the above algo-
rithm in the same manner as for the single-bureaucrat preemptive problem, to
allow the chosen preempted jobs to run at time 0 on each bureaucrat, we prove
the following theorem.

i

Theorem 3. There exists an algorithm which runs in O(n Thax

for the problem Pm |lazy, pminll | Cpax.

) time

Difference between Makespan and Total Time Spent Working. We note that with
multiple bureaucrats, the makespan and total time spent working objectives are
not equivalent when release dates are equal. Suppose two bureaucrats are given
three jobs with p; = 5, d; = 10; po = 10, d3 = 10; and p3 = 20, d3 = 30. There
are two schedules which minimize makespan, but only one of those minimizes
the total time spent working.

5 Conclusion

We have given a pseudopolynomial-time algorithm for a preemptive Lazy Bu-
reaucrat Scheduling Problem, resolving an open question from [1]. This algorithm
uses the the notion of a representative schedule for a set of jobs to represent a
family of schedules whose minimal makespan achieves, in the limit, the smallest
makespan for that set of jobs. The algorithm also uses the technique of convert-
ing a preemptive scheduling problem into a set of nonpreemptive problems; to
the best of the authors’ knowledge, this technique is new. We also extend the
notion of Lazy Bureaucrat Scheduling to the multiple-bureaucrat model, and
give two weakly NP-complete multiple-bureaucrat problems, each of which can
be solved in pseudopolynomial time with a simple modification to an algorithm
for its corresponding single-bureaucrat problem. Open problems include finding
hardness results for multiple-bureaucrat problems whose single-bureaucrat ver-
sions are polynomially or pseudopolynomially solvable. Other future work may
revolve around relaxing the non-interaction constraint on multiple bureaucrats
and further exploring other multiple-bureaucrat models.

50 C. Hepner and C. Stein

Acknowledgments. The authors would like to thank Michael Bender for help-
ful discussions.

References

[1] E. M. Arkin, M. A. Bender, J. S. B. Mitchell, and S. S. Skiena. The lazy bureaucrat
scheduling problem. WADS’99, 1999.

[2] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Opti-
mization and approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics, 5:287-326, 1979.

[3] T. Keneally. Schindler’s list. Touchstone Publishers, 1993.

[4] E. L. Lawler and J. M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16:77-84, 1969.

A PTAS for the Single Machine Scheduling
Problem with Controllable Processing Times

Monaldo Mastrolilli*

IDSIA, Galleria 2, 6928 Manno, Switzerland, monaldo@idsia.ch

Abstract. In a scheduling problem with controllable processing times
the job processing time can be compressed through incurring an addi-
tional cost. We consider the problem of scheduling n jobs on a single
machine with controllable processing times. Each job has a release date,
when it becomes available for processing, and, after completing its pro-
cessing, requires an additional delivery time. Feasible schedules are fur-
ther restricted by job precedence constraints. We develop a polynomial
time approximation scheme whose running time depends only linearly
on the input size. This improves and generalize the previous (3/2 + ¢)-
approximation algorithm by Zdrzalka.

1 Introduction

In this paper we consider the following single machine scheduling problem. A
set, J = {J1, ..., Jn }, of n jobs is to be processed without interruption on a single
machine. For each job J; there is an interval [¢;,u;], 0 < ¢; < u;, specifying its
possible processing times. The cost for processing job J; in time /; is c§ >0
and for processing it in time u; the cost is ¢} > 0. For any value §; € [0, 1]
the cost for processing job J; in time p;(d;) = 0;¢; + (1 — 6;)u; is ¢;(d;) =
(5jc§ + (1 —d;)c}f, where §; is the compression parameter. Additionally, each job
J; has a release date r; > 0 when it first becomes available for processing and,
after completing its processing on the machine, requires an additional delivery
time ¢; > 0; if s; (> r;) denotes the time J; starts processing, then it has
been delivered at time s; + p;(d;) + g;, for compression parameter §;. Delivery
is a non-bottleneck activity, in that all jobs may be simultaneously delivered.
Feasible schedules are further restricted by job precedence constraints given by
the partial order <, where J; < J; means that job J, must be processed after
job J;. Let n be a permutation of the set J that is consistent with the precedence
constraints; 17 denotes a processing order of jobs. Denote by Q(4,7) the (earliest)
mazimum delivery time of all the jobs for compression parameters § = (91, ..., 6,)
and processing order 7. The total cost of compression parameters ¢ is equal to
> jes¢i(0;), and the total scheduling cost for compression parameters ¢ and
processing order 7 is defined as

* Supported by the “Metaheuristics Network”, grant HPRN-CT-1999-00106, and by
Swiss National Science Foundation project 20-63733.00/1, “Resource Allocation and
Scheduling in Flexible Manufacturing Systems”.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 51-[59 2002.
© Springer-Verlag Berlin Heidelberg 2002

52 M. Mastrolilli

K(0,m) =Q(6,n) + > ¢;(5;).

jeJ

The problem is to find §* and #»* minimizing K(J,).

When all processing times are fixed (¢; = u;), the problem is equivalent to
the well-known sequencing problem denoted as 1|r;, prec|Limax in Graham et al.
[1]. Since the special case with fixed processing times and without precedence
constraints (noted 1|r;|Lmax in [1]) is strongly NP-hard [7], the stated problem
is also strongly NP-hard.

Hall and Shmoys [2/4] propose two polynomial time approximation schemes
for problem 1|r;j|Lmax, the running time of which are O((g)o(l/g)) and

O(nlogn+n(1/e21/e))). For the corresponding problem with controllable pro-
cessing times, Zdrzalka [9] gives a polynomial time approximation algorithm with
a worst-case ratio of 3/2 + &, where € > 0 can be made arbitrarily small. When
the precedence constraints are imposed and the job processing times are fixed
(1|rj, prec|Lmax), Hall and Shmoys [3] give a PTAS. This consists of executing,
for log, A times, an extended version of their previous PTAS for 1|r;, |Lmax,
where A denotes an upper bound on the optimal value of any given instance
whose data are assumed to be integral. Recently, the author has presented [§] a
new PTAS for 1|r;, prec|Liax that runs in O(n + £ + 1/e9(1/9)) time, where £
denotes the number of precedences.

In this paper we provide the first known PTAS for problem 1|r;, prec|Lmax
with controllable processing times that runs in linear time. This improves and
generalizes all the previous results [2/3/4]8/9].

Our algorithm is as follows. We start partitioning jobs into a constant number
of subsets (Section 2.1). We show that the precedence graph can be simplified
into a more primitive graph (Section[2Z). This simplification depends on the de-
sired precision ¢ of approximation; the closer ¢ is to zero, the closer the modified
graph will resemble the original one. Then, jobs belonging to the same subset are
grouped together into a single compact job to obtain a smaller instance of con-
stant size. The processing times and cost of these compact jobs are constrained
to belong to a constant sized set of values; this set is computed by solving a
constant number of linear programs (Section 2.3)). After this, a non-feasible so-
lution is constructed by allowing preemption. A feasible solution is obtained by
processing preempted jobs without interruptions (Section [3).

2 Simplifying the Input

We start by transforming any given instance into a standard form. Let d; =
min{{; + cﬁ,uj +ci}, D = Z;-lzl dj, Tmax = max;7; and ¢max = Max; q;.
Moreover, let OPT denote the optimal solution value of the given instance.

A PTAS for the Single Machine Scheduling Problem 53

Lemma 1. Without loss of generality, we can assume that the following holds:

- 1<OPT<3;
— Inax {D7 Tmax Qmax} <1
—0<t;<u; <3and0< ¢y <cf <3.

Proof. We begin by bounding the largest number occurring in any given instance.
Let LB = max{D, rmax, ¢max }, we claim that LB < OPT < 3LB. Indeed, since
D, rmax and gmax are lower bounds for OPT, LB is also a lower bound for OPT.
We show that 3LB is an upper bound for OPT by exhibiting a schedule with
value at most 3LB. Starting from time rpy.x all jobs have been released and
they can be scheduled one after the other in any fixed ordering of the jobs that
is consistent with the precedence relation; this can be obtained by topologically
sorting the precedence graph. Then every job can be completed by time ryax+ D
and the total scheduling cost is bounded by 7max + D + gmax < 3LB. By dividing
every €, u;, cﬁ, ci,rj and g; by LB, we may (and will) assume, without loss of
generality, that ryax, gmax < 1, LB=1and 1 < OPT < 3.

Furthermore, we can assume, without loss of generality, that 0 < ¢; < u; <3
and 0 < c}L < c§ < 3, for all jobs Jj: if cﬁ < c}‘, then there exists an optimal
solution with d; = 1 (i.e., the processing time of job J; is equal to ¢;). Then,
we can reset cf = cﬁ without affecting the value of the objective function of
any feasible schedule. Moreover, in any optimal solution the processing time of
any job cannot be larger than 3; therefore, if u; > 3 we can reduce, without
loss of generality, the interval of possible processing times and get an equivalent
instance by setting ¢} := 43 (ol c})+cf and u; = 3. Similar arguments hold

ujfej J
ﬁ%>&m

Following Lageweg, Lenstra and Rinnoy Kan [5], if J; < Jy and r; > 7, then
we can reset ry := r; and each feasible schedule will remain feasible. Similarly,
if g; < qi then we can reset q; := g without changing the objective function
value of any feasible schedule. Thus, by repeatedly applying these updates we
can always obtain an equivalent instance that satisfies

Jj < Jp = (rj < rp and g; > qx) (1)

Such a resetting requires O(¢) time, where ¢ denotes the number of precedence
constraints. Thus in the following we assume that () holds.

A technique used by Hall and Shmoys [2] allows us to deal with only a
constant number of release dates and delivery times. The idea is to round each
release and delivery time down to the nearest multiple of e, for i € N. Since
max < 1, the number of different release dates and delivery times is now bounded
by 1/e + 1. Clearly, the optimal value of this transformed instance cannot be
greater than OPT. Every feasible solution for the modified instance can be
transformed into a feasible solution for the original instance just by adding ¢ to
each job’s starting time, and reintroducing the original delivery times. It is easy
to see that the solution value may increase by at most 2¢.

54 M. Mastrolilli

Therefore, we will assume henceforth that the input instance has a constant
number of release dates and delivery times, and that condition holds. We
shall refer to this instance as I. By the previous arguments, OPT > OPT(I),
where OPT(I) denotes the optimal value for instance I.

2.1 Partitioning the Set of Jobs

Partition the set of jobs in two subsets:
L={J;:d; >¢e*},
S:{Jj:djgsz}.

Let us say that L is the set of large jobs, while S the set of small jobs. Observe
that the number of large jobs is bounded by 1/¢% by Lemma [1. We further
partition the set S of small jobs as follows. For each small job J; € S consider
the following three subsets of L:

Pre(j)={Ji € L:J; < J;},
Suc(j) ={J; € L:J; < J;},
Free(j) = L — (Pre(j) U Suc(j)).

Let us say that T(j) = {Pre(j), Suc(j), Free(j)} represents a $-partition of
set L with respect to job J;. The number 7 of distinct 3-partitions of L is

clearly bounded by the number of small jobs and by 3/ < 31/ 52, therefore
7 < min {n,Sl/Ez}. Let {T1,...,T-} denote the set of all distinct 3-partitions.

Now, we define the execution profile of a small job J; to be a 3-tuple < i1, 42,13 >
such that r; = €141, g; = € - i and T(j) = T;,, where i1,i2 = 0,1,...,1/¢ and
i3 = 1,...,7. For any given instance, the number of distinct execution profiles is
clearly bounded by the number of jobs and, by the previous arguments, cannot
be larger than (1 + 1/¢)7.

Corollary 1. The number w of distinct execution profiles is bounded by m <
min {n,31/52(1 + 1/5)2}.

Partition the set .S of small jobs into 7 subsets, S1, So, ..., Si, such that jobs
belonging to the same subset have the same execution profile. Clearly, S =
S1USs,...US; and S, NS; = 0, for i # h. We illustrate the above by the
following.

Ezxample 1. Consider the precedence structure given by the graph in Figure [II
Shaded nodes represent large jobs, while the others denote small jobs. Assume
that r3 = r4 = rg and g3 = g4 = q9. Since Pre(3) = Pre(4) = Pre(9) = {J1, J2}
and Suc(3) = Suc(4) = Suc(9) = {J7}, jobs Js, Js and Jy establish the same
3-partition of set L and therefore T'(3) = T'(4) = T(9). Moreover, jobs Js,
J4 and Jy have the same execution profile since they have equal release dates
and delivery times. Therefore, the set S = {J3, J4, Js, Js, Jo} of small jobs is
partitioned into 3 subsets Sy = {J3, Jy, Jo}, So = {Js} and S5 = {Js}.

A PTAS for the Single Machine Scheduling Problem 55

Fig. 1. Graph of Example [l

2.2 Adding New Precedences
Let us say that job Jj, is a neighbor of set S; (i =1,...,7) if:

— Jp, is a small jobj;
— Jn & Si;

— there exists a precedence relation between job Jj, and some job in S;.

Moreover, we say that Jj, is a front-neighbor (back-neighbor) of S; if Jy, is a
neighbor of S; and there is a job J; € S; such that J; < Jp, (Jp < J;).

Let n; = |S;| (¢ =1,...,m), and let (J1 4, ..., Jn, ;) denote any fixed ordering of
the jobs from S; that is consistent with the precedence relation. In the rest of this
section we restrict the problem such that the jobs from S; are processed according
to this fixed ordering. Furthermore, every back-neighbor (front-neighbor) J;, of
S; (i =1,...,m) must be processed before (after) every job from S;. This can be
accomplished by adding a directed arc from J;; to Jjq1,4, for j =1,...,n; — 1,
and by adding a directed arc from Jj to Jy, if J is a back-neighbor of \S;, or
an arc from J,, ; to Jp, if Jj, is a front-neighbor. Note that the number of added
arcs can be bounded by n + ¢ (recall that ¢ denotes the number of precedence
constraints of the input instance). The above is illustrated by the following.

Ezample 2. Consider Example[Il Observe that (Js, Jy, Jo) is an ordering of the
jobs from S; that is consistent with the precedence relation. Job Jg is a back-
neighbor of S7, while job Jg is a front-neighbor of S;. The new precedence
structure is given by the graph in Figure[2, where the new added arcs are em-
phasized.

We observe that condition () is valid also after these changes. Indeed, if Jj,
is a back-neighbor of S; then there is a job J; € S; such that J, < J;, and
therefore by condition () we have r;, < r; and ¢, > g;. But, the jobs from S;
have the same release dates and delivery times, therefore r;, < r; and g, > g; for
each J; € S;. It follows that if we restrict Jj to be processed before the jobs from

56 M. Mastrolilli

Fig. 2. Graph of Example B

S;, condition () is still valid. Similar arguments hold if J,, is a front-neighbor.
Moreover, all the jobs from .S; have the same release dates and delivery times,
therefore condition () is still satisfied, if we restrict these jobs to be processed
in any fixed ordering that is consistent with the precedence relation.

2.3 Compact Representation of Job Subsets

Consider set S; (i = 1, ..., 7). Note that the number of jobs in S; may be O(n). We
replace the jobs from S; with one compact job JZ-# . Job Ji# has the same release
’I“Z# and delivery time ql# as the jobs from S,. Furthermore, if J; < Jy (Jy < J;),
J;j € S; and Jj ¢ S;, then in the new modified instance we have Jl-# < Ji
(Jp < Ji#). Finally, the processing requirement of Ji# is specified by a finite set
of alternative pairs of processing times and costs determined as follows. Consider
the following set Vg = {£, £(1+¢), £(1 +¢)?, ..., 3}. By simple algebra, we have
|Vs| = O(1/€3). Recall that 7 is the number of distinct execution profiles. Let
A; (and B;) be the value obtained by rounding >, ¢ ¢; (and >, g u;) up to
the nearest value from set Vg. The possible processing times for Ji# are specified
by set P; of values from Vg that fall in interval [A;, B;], i.e., P; := Vs N[A;, By].
For each value p € P;, we compute the corresponding cost value C;(p) as follows.
Consider the problems (S;,p) of computing the minimum sum of costs for jobs
belonging to S;, when the total sum of processing times is at most p, for every
p € P;. We can formulate problem (S;,p) by using the following linear program
LP(S;,p):

By setting 0; = 1 — xj, it is easy to see that an optimal solution for LP(S;,p)
can be obtained by solving the following linear program:

A PTAS for the Single Machine Scheduling Problem 57

Fig. 3. Graph of Example

max Zjesi(cf — c}‘)mj

st Djes, (ug —€)x; <p—=3ieq
0< Z; <1 Jj € S;

Note that p — Z;;l £; is non-negative, since p € P; and the smallest value
of P; cannot be smaller than Z;.lzl Z;. The previous linear program corre-
sponds to the classical knapsack problem with relaxed integrality constraints.
By partially sorting jobs in nonincreasing ratio (c§ — c%)/(u; — £;) ratio or-
der, the set {LP(S;,p):p € P;} of O(1/e®) many problems can be solved in
O(|S;i|log L +(1/3)log 1) time by employing a median-finding routine (we refer
to Lawler [6] for details). For each value p € P;, the corresponding cost value
Ci(p) is equal to the optimal solution value of LP(S;,p) rounded up to the
nearest value of set Vg. It follows that the number of alternative pairs of pro-
cessing times and costs for each compact job Ji# is bounded by the cardinality
of set P;. Furthermore, since Y., |S;| < n, it is easy to check that the amor-
tized total time to compute the processing requirements of all compact jobs is
O(n(1/e%)log). Therefore, every set S; is transformed into one compact job
Ji# with O(1/e3) alternative pairs of costs and processing times. We use S# to
denote the set of compact jobs.

Ezample 3. Consider Example 2l We group jobs J3, Jy and Jy together and get
a new instance whose precedence structure is given by the graph in Figure [3

Now, let us consider the modified instance as described so far and turn our
attention to the set L of large jobs. We map each large job J; € L to a new
job JJ# which has the same release date, delivery time and set of predecessors
and successors as job J;, but a more restricted set of possible processing times
and costs. More precisely, let A; (and B;) be the value obtained by rounding ¢;
(and u;) up to the nearest value from set V, = {3,e%(1 +¢),3(1 +¢)?,...,3}.
The possible processing times for Jj# are specified by set P; := Vi N[{;,u;]. For
each value p € P;, the corresponding cost value Cj(p) is obtained by rounding
up to the nearest value of set Vi the cost of job J; when its processing time is

58 M. Mastrolilli

p. We use L# to denote the set of jobs obtained by transforming jobs from L as
described so far.

Let I# denote this modified instance. We observe that I# can be computed
in O(n(1/e%)log L + 20(1/¢%)) time: the time required to partition the set of jobs
into 7 subsets can be bounded by O(n + ¢ + 20(1/)), O(n + £) is the time to
add new precedences; O(n(1/¢%)log 1) is the time to compute the alternative
pairs of costs and processing times. Moreover, this new instance has at most
v =3¢ . (141/)? 4 1/£2 jobs; each job has a constant number of alternative
pairs of costs and processing times. Now let us focus on I# and consider the
problem of finding the schedule for I# with the minimum scheduling cost such
that compact jobs can be preempted, while interruption is not allowed for jobs
from L7#.

The following lemma shows that the optimal solution value of I# has value
close to OPT(I). Moreover, it gives a bound on the number of preempted jobs.
(A proof of the following lemma can be found in the long version of this paper
available at: http://www.idsia.ch/ monaldo/research_papers.html.)

Lemma 2. For any fized € > 0, it is possible to compute in constant time an
optimal solution for I with at most 1/e preempted compact jobs. Moreover,

OPT(I#) < (1+ 4)OPT(I).

3 Generating a Feasible Solution

In this subsection we show how to transform the optimal solution SOL# for
instance I# into a (1 + O(e))-approximate solution for instance I. This is ac-
complished as follows.

First, replace the jobs from L# with the corresponding large jobs. Let p}# and

c}# denote the processing time and cost, respectively, of job JJ# € L# according
to solution SOL#, then it is easy to check that the corresponding job JjeL
can be processed in time and cost at most p;% and c;%, respectively.

Second, we replace each compact job Ji# with the corresponding small jobs
from set .S; as follows. Remove job Ji# , this clearly creates gaps into the schedule.
Then, fill in the gaps by inserting the small jobs from set .S; according to any
fixed ordering that is consistent with the precedence relation, and by allowing
preemption; the processing time and cost of these small jobs are chosen according
to the optimal solution of LP(SZ-,pf&) (see Subsection[23]), where pf denotes the
processing time of job Ji# according to solution SOL#. (Recall that the optimal
solution of LP(Si,p?&) chooses the processing requirements of jobs from S;
such that the sum of processing times is at most pf& and the sum of costs is
minimum.) However, these replacements do not yield a feasible solution for I,
since there may be a set M of preempted small jobs. By Lemma 2] we have that
the number of preempted small jobs is at most 1/e. For each J; € M let s; be
the time at which job J; starts in the preemptive schedule. Remove each J; € M
and schedule J; without interruption at time s; with processing time p; and cost

A PTAS for the Single Machine Scheduling Problem 59

¢j, where p; 4+ ¢; = d;. It is easy to see that the maximum delivery time may
increase by at most }; .\, p; and the cost by at most 3, ., c;. Therefore,
the solution value is increased by at most ZJjeM dj < |Mle? <e<e-OPT(I),
since |[M| <1/e, M C S and S = {J; :d; <&*}.

Finally, we have already observed that every feasible solution for the modified
instance with only a constant number of release dates and delivery times can be
transformed into a feasible solution for the original instance by simply delaying
each job starting time by at most €, and reintroducing the original delivery times.
This may increase the value of the solution by at most 2¢. Therefore, by Lemma
2 the value of the returned solution is at most (14 7¢) - OPT(I), that confirms
that this construction does in fact yield an (1 4+ O(e))-approximate solution of
I. To conclude, we have shown that problem 1|r;, prec|Lmax with controllable
processing times admits a PTAS.

Theorem 1. There exists a linear time approximation scheme for problem
1|rj, prec|Limax with controllable processing times.

References

1. R. Graham, E. Lawler, J. Lenstra, and A. R. Kan. Optimization and approxima-
tion in deterministic sequencing and scheduling: A survey. In Annals of Discrete
Mathematics, volume 5, pages 287-326. North—Holland, 1979.

2. L. Hall and D. Shmoys. Approximation algorithms for constrained scheduling prob-
lems. In Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science, pages 134-139, 1989.

3. L. Hall and D. Shmoys. Near-optimal sequencing with precedence constraints. In
Proceedings of the 1st Integer Programming and Combinatorial Optimization Con-
ference, pages 249-260. University of Waterloo Press, 1990.

4. L. Hall and D. Shmoys. Jackson’s rule for single-machine scheduling: Making a good
heuristic better. MOR: Mathematics of Operations Research, 17:22-35, 1992.

5. B. Lageweg, J. Lenstra, and A. R. Kan. Minimizing maximum lateness on one
machine: Computational experience and some applications. Statist. Neerlandica,
30:25-41, 1976.

6. E. Lawler. Fast approximation algorithms for knapsack problems. Proceedings of
the 18th Annual Symposium on Foundations of Computer Science, pages 206—218,
1977.

7. J. Lenstra, A. R. Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Operations Research, 1:343-362, 1977.

8. M. Mastrolilli. Grouping techniques for one machine scheduling subject to prece-
dence constraints. In Proceedings of the 21st Foundations of Software Technology
and Theoretical Computer Science, volume LNCS 2245, pages 268-279, 2001.

9. S. Zdrzalka. Scheduling jobs on a single machine with release dates, delivery times,
and controllable processing times: worst-case analysis. Operations Research Letters,
10:519-532, 1991.

Optimum Inapproximability Results for Finding
Minimum Hidden Guard Sets in Polygons and
Terrains

Stephan Eidenbenz

Institute of Theoretical Computer Science, ETH Ziirich, Switzerland
eidenben@inf.ethz.ch

Abstract. We study the problem MINIMUM HIDDEN GUARD SET, which
consists of positioning a minimum number of guards in a given polygon or
terrain such that no two guards see each other and such that every point
in the polygon or on the terrain is visible from at least one guard. By
constructing a gap-preserving reduction from MAXIMUM 5-OCURRENCE-
3-SATISFIABILITY, we show that this problem cannot be approximated
by a polynomial-time algorithm with an approximation ratio of n'=¢ for
any € > 0, unless NP = P, where n is the number of polygon or terrain
vertices. The result even holds for input polygons without holes. This
separates the problem from other visibility problems such as guarding
and hiding, where strong inapproximability results only hold for poly-
gons with holes. Furthermore, we show that an approximation algorithm
achieves a matching approximation ratio of n.

1 Introduction

In the field of visibility problems, guarding and hiding are among the most
prominent and most intensely studied problems. In guarding, we are given as
input a simple polygon with or without holes and we need to find a minimum
number of guard positions in the polygon such that every point in the interior
of the polygon is visible from at least one guard. Two points in the polygon are
visible from each other, if the straight line segment connecting the two points
does not intersect the exterior of the polygon. In hiding, we need to find a
maximum number of points in the given input polygon such that no two points
see each other.

The combination of these two classic problems has been studied in the liter-
ature as well [11]. The problem is called MINIMUM HIDDEN GUARD SET and is
formally defined as follows:

Definition 1. The problem MINIMUM HIDDEN GUARD SET consists of finding
a minimum set of guard positions in the interior of a given simple polygon such
that mo two guards see each other and such that every point in the interior of
the polygon is visible from at least one guard.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 60-[68 2002.
© Springer-Verlag Berlin Heidelberg 2002

Optimum Inapproximability Results 61

We can define variations of this problem by allowing input polygons to con-
tain holes or not or by letting the input be a 2.5 dimensional terrain. A 2.5
dimensional terrain is given as a triangulated set of vertices in the plane to-
gether with a height value for each vertex. The linear interpolation inbetween
the vertices defines a bivariate continuous function, thus the name 2.5 dimen-
sional terrain (see [I0]). In other variations, the guards are restricted to sit on
vertices. Problems of this type arise in a variety of applications, most notably
in telecommunications, where guards correspond to antennas in a network with
a simple line-of-sight wave propagation model (see [H]).

While MiNniMUM HIDDEN GUARD SET is N P-hard for input polygons with or
without holes [T1], no approximation algorithms or inapproximability results are
known. For other visibility problems, such as guarding and hiding, the situation is
different: MINIMUM VERTEX/POINT/EDGE GUARD are N P-hard [9] and cannot
be approximated with an approximation ratio that is better than logarithmic in
the number of polygon or terrain vertices for input polygons with holes or terrains
[4]; these problems are APX ~hard] for input polygons without holes [4]. The best
approximation algorithms for these guarding problems achieve a logarithmic
approximation ratio for MINIMUM VERTEX/EDGE GUARD for polygons [8] and
terrains [6], which matches the logarithmic inapproximability result upto low-
order terms in the case of input polygons with holes and terrains; the best
approximation ratio for MINIMUM POINT GUARD is ©(n), where n is the number
of polygon or terrain vertices. The problem MAxXiMUM HIDDEN SET cannot
be approximated with an approximation ratio of n¢ for some ¢ > 0 for input
polygons with holes and it is APX-hard for polygons without holes ([5] or [7]).
The best approximation algorithms achieve approximation ratios of ©(n). Thus,
for both, hiding and guarding, the exact inapproximability threshold is still open
for input polygons without holes. To get an overview of the multitude of results
in visibility problems, consult [12] or [13].

In this paper, we present the first inapproximability result for MINIMUM
HIDDEN GUARD SET: we show that no polynomial-time algorithm can guarantee
an approximation ratio of n'~¢ for any € > 0, unless NP = P, where n is the
number of vertices of the input structure. The result holds for terrains, polygons
with holes, and even polygons without holes as input structures. We obtain our
result by constructing a gap-preserving reduction (see [I] for an introduction to
this concept) from MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY, which is the
APX-hard satisfiability variation, where each clause consists of at most three
literals and each variable occurs at most five times as a literal [2]. We also analyze
an approximation algorithm for MINIMUM HIDDEN GUARD SET proposed in [11]
and show that it achieves a matching approximation ratio of n.

1 A problem is in the class APX, if it can be approximated by a polynomial-time
algorithm with an approximation ratio of 14 ¢, for some constant 6 > 0. It is APX-
hard, if no polynomial-time algorithm can guarantee an approximation ratio of 1+¢,
for some constant € > 0, unless P = NP. A problem is APX-complete, if it is in
APX and APX-hard. See [2] for more details.

62 S. Eidenbenz

X1 Xn

@ variable patterns

0. rake-gadget dausepatterns o) © M T e

Fig. 1. Overview of construction

In Sect. 2 we present the construction of the reduction. We analyze the re-
duction and obtain our main result in Sect. Bl We analyze an approximation
algorithm in Sect. [l Section [contains some extensions of our results and con-
cluding thoughts.

2 Construction of the Reduction

In this section, we show how to construct in polynomial time from a given
instance I of MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY with n variables
Z1,...,T, and m clauses ci, ..., ¢, an instance I’ of MINIMUM HIDDEN GUARD
SET, i.e., a simple polygon.

An overview of the construction is given in Fig. [l The main body of the
constructed polygon is of rectangular shape. For each clause ¢;, a clause pattern
is constructed on the lower horizontal line of the rectangle, and for each variable
x;, we construct a variable pattern on the upper horizontal line as indicated in
Fig. M

The construction will be such that a variable assignment that satisfies all
clauses of I exists, if and only if the corresponding polygon I’ has a hidden
guard set with O(n) guards; otherwise, I’ has a hidden guard set of size O(¢),
where ¢ will be defined as part of the rake-gadget in the construction. The rake
gadget, shown in Fig. 2] enables us to force a guard to a specific point R in the
polygon. It consists of ¢ dents, which are small trapezoidal elements that point
towards point R. Rakes have the following property:

Lemma 1. If the t dents of a rake are not covered by a single hidden guard at
point R, then t hidden guards (namely one guard for each dent) are necessary
to cover the dents.

Optimum Inapproximability Results 63

Fig. 2. Rake with ¢ dents

t

Fig. 3. Clause pattern consisting of ¢ triangles

Proof. Clearly, any guard outside the triangle R, [, and r and outside the dents
does not see a single dent completely. A guard in this triangle (but not at R)
sees at most one dent completely, but only one such guards can exist as guards
must be hidden from each other. Therefore, at least ¢ — 1 guards must be hidden
in the dents. O

In order to benefit from this property of a rake, we must place the rake in the
polygon in such a way that the view from point R to the rake dents is not blocked
by other polygon edges. As shown in Fig.[dl, we place a rake at point Rg in the
lower left corner of the rectangle with the ¢ dents at the top left corner.

A clause pattern, shown in Fig. Bl consists of t triangular-shaped spikes.
Clause patterns are placed on the lower horizontal line of the rectangle. They
are constructed in such a way that a guard on the upper horizontal line could see
all spikes of all clause patterns. (This, however, will never happen, as we have
already forced a guard to point Ry to cover its rake. This guard would see any
guard on the upper horizontal line.)

For each variable x;, we construct a variable pattern, that is placed on top of
the horizontal line of the rectangle. Each variable pattern opens the horizontal
line for a unit distance. Each variable pattern has constant distance from its
neighbors and the right-most variable pattern (for variable x,,) is still to the left
of the left-most clause pattern (for clause ¢;), as indicated in Fig.[Il The variable
patterns will differ in height, with the left-most variable pattern (for 1) being
the smallest and the right-most (for x,,) the tallest. Figure @] shows the variable
pattern of variable x;.

64 S. Eidenbenz

s? S? T T E! E]

Fig. 4. Variable pattern with three positive and two negative literals

A variable pattern is roughly a rectangular structure with a point F; on top
and a point T; on the bottom. The construction is such that a guard sits at
F;, if the variable is set to false, and at T; otherwise. Literals are represented by
triangles with tips L}, ..., L? for each of the five occurrences of the variable (some
may be missing, if a variable occurs less than five times as literal). These triangles
are constructed such that — for positive literals — they are completely visible from
F;, but not from T3, and — for negative literals — they are completely visible from
T;, but not from F;. A guard that sits at a point LY, for any k = 1,...,5, can
see through the exit of the variable pattern between points Ef and E7. The
construction is such that such a guard sees all spikes of the corresponding clause
pattern (but no spikes of other clause patterns). This is shown schematically in
Fig. [

In order to force a guard to sit at either F; or T;, we construct a rake point
R} above L} and a rake point R? below L? with t dents, all of which are on the
right vertical line of the variable rectangle. Points R} and R? are at the tip of
small triangles that point towards points F; and T}, which lie a small distance
to the right of F; and Tj, respectively. In addition, we construct two areas S}
and S? to the left of T; and F;, where we put ¢ triangular spikes, each pointing
exactly towards F; and T;. For simplicity, we have only drawn three triangular

Optimum Inapproximability Results 65

spikes in Fig.[d instead of t. Area S} is the area of all these triangles at the top
of the variable rectangle, area S? is the area of all these triangles at the bottom
of the variable rectangle.

This completes our description of the constructed polygon that is an instance
of MINIMUM HIDDEN GUARD SET. The polygon consists of a number of vertices
that is polyonmial in the size || of the MAX 5-OCCURRENCE-3-SATISFIABILITY
instance I and in ¢t. The coordinates of each vertex can be computed in time
polynomial in |I| and ¢, and they can be expressed by a polynomial (in |I| and
t) number of bits. Thus, the reduction is polynomial, if ¢ is polynomial in |I].

3 Analysis of the Reduction

The following two lemmas describe the reduction as gap-preserving and will
allow us to prove our inapproximability result.

Lemma 2. If the MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY instance I
with n variables can be satisfied by a variable assignment, then the corresponding
MINIMUM HIDDEN GUARD SET instance I' has a solution with at most 8n + 1
guards.

Proof. In I', we set a guard at each rake point Ry and R} and R?, fori =1,...,n,
which gives a total of 2n+ 1 hidden guards. For each variable z;, we then place a
guard at F; or T; depending on the truth value of the variable in a fixed satisfying
truth assignment; this yields additional n hidden guards. Finally, we place a
guard at each literal L¥, if and only if the corresponding literal is true. This
yields at most 5n hidden guards, as each variable occurs at most five times as a
literal. Since the thruth assignment satisfies all clauses, all clause patterns will be
covered by at least one guard. The variable patterns and the main body rectangle
are covered completely as well. Thus, the solution is feasible and consists of at

most 8n + 1 guards. a

Lemma 3. If the MAXIMUM 5-OCCURRENCE-3-SATISFIABILITY instance [
with n variables cannot be satisfied by a variable assignment, then any solution
of the corresponding MINIMUM HIDDEN GUARD SET instance I' has at least t
guards.

Proof. We prove the following equivalent formulation: If I’ has a solution with
strictly less than t guards, then I is satisfiable.

Assume we have a solution for I’ with less than ¢ guards. Then, there must
be a guard at each rake point Ry and R} and R? for i = 1,...,n; this already
restricts the possible positions for all other guards quite drastically, since they
must be hidden from each other.

Observe in this solution, how the triangles of the areas S} and S? are covered.
Since we have guards at rake points R} and R?, the guards for S} and S? can
only lie in the 4-gons (S}, S}, Fy, F}) or (87,,57,,Ti, T]), but only a guard in

the smaller triangle of either (Fj, F}, F!") or (T;,T!,T}") can see both areas S}

K3

66 S. Eidenbenz

and S? (see Fig. H)). If S} or S? is covered by a guard outside these triangles, then
the other area can only be covered with ¢ guards inside the S} or S? triangles.
Therefore, there must be a guard in either one of the two triangles (F;, F}, F})
or (T;,T!,T!) in each variable pattern. (Point F’ is the intersection point of the
line from R} to F} and from S7, to Fy; Point T} is the intersection point of the
line from R to T} and from S}, to T;). We can move this guard to point Fj or
T;, respectively, without changing which literal triangles it sees.

Now, the only areas in the construction not yet covered are the literal trian-
gles of those literals that are true and the spikes of the clause patterns. Assume
for the sake of contradiction that one guard is hidden in a triangle of a clause
pattern ¢;. This guard sees the triangles of all literals that represent literals from
the clause. This, however, implies that the remaining ¢t — 1 triangles of the clause
pattern ¢; can only be covered by ¢ — 1 additional guards in the clause pattern,
thus resulting in ¢ guards total. Therefore, all remaining guards must sit in the
literal triangles in the variable patterns. W.l.o.g., we assume that there is a guard
at each literal point Lf that is not yet covered by a guard at points F; or T;.
If these guards collectively cover all clause patterns, we have a satisfying truth
assignment; if they do not, at least ¢ guards are needed to cover the remaining
clause patterns. a

Lemmas [2 and [3 immediately imply that we cannot approximate MINIMUM

. . . . t . . .
HIDDEN GUARD SET with an approximation ratio of &na1 in polynomial time,

because such an algorithm could be used to decide MAXIMUM 5-OCCURRENCE-
3-SATISFIABILITY. To get to an inapproximability result, we first observe that

|| < (8t + 30)n + 2tm + 4t + 100 < 18tn + 30n + 4t + 100

by generously counting the constructed polygon vertices and using m < 5n. We
now set

t=mn

for an arbitrary but fixed k > 1. This implies |I’| < n*+2 and thus
n > |I')7=

On the other hand, we cannot approximate MINIMUM HIDDEN GUARD SET
with an approximation ratio of

t n k—2 =2 Nl-7ts
> — = > | Er2 = |] E+2 |
8n+1~— n? " = 17l

Since k is an arbitrarily large constant, we have shown our main theorem:

Theorem 1. MINIMUM HIDDEN GUARD SET on input polygons with or without
holes cannot be approrimated by any polynomial time approximation algorithm
with an approzimation ratio of |I|*=¢ for any € > 0, where |I| is the number of
polygon vertices, unless NP = P.

Optimum Inapproximability Results 67

4 An Approximation Algorithm

The following algorithm to find a feasible solution for MiNIMUM HIDDEN GUARD
SET was proposed in [L1]: Iteratively add a guard to the solution by placing it
in an area of the input polygon (or terrain) that is not yet covered by any other
guard that is already in the solution. In terms of an approximation ratio for this
algorithm, we have the following

Theorem 2. MINIMUM HIDDEN GUARD SET can be approximated in polyno-
mial time with an approzimation ratio of |I|, where |I| is the number of polygon
vertices.

Proof. Any triangulation of the input polygon partitions the polygon into || —2
triangles. Now, fix any triangulation. Any guard that the approximation algo-
rithm places (as described above) lies in at least one of the triangles of the
triangulation and thus sees the corresponding triangle completely. Therefore,
the solution will contain at most |I| — 2 guards. Since any solution must consist
of at least one guard, the result follows. O

5 Extensions and Conclusion

Theorem [[] extends straight-forward to terrains as input structures by using the
following transformation from a polygon to a terrain (see [4]): Given a simple
polygon, draw a bounding box around the polygon and then let all the area
in the exterior of the polygon have height h (for some h > 0) and the interior
height zero. This results in a terrain with vertical walls that we then triangulate.
Similarly, Theorem [2] extends to terrains as input structures immediately.

Another straight-forward extension of Theorem [I]leads to problem variations,
where the guards may only sit at vertices of the input structure. Since we have
always placed or moved guards to vertices throughout our construction, The-
orem [1] holds for MINIMUM HIDDEN VERTEX GUARD SET for input polygons
with or without holes and terrains. Unfortunately, the vertex-restricted prob-
lem variations cannot be approximated analogously to Theorem [} as even the
problem of determining whether a feasible solution exists for these problems is
N P-hard [11].

If we restrict the problem even more, namely to a variation, where the guards
may only sit at vertices and they only need to cover the vertices rather than
the whole polygon interior, we arrive at the problem MINIMUM INDEPENDENT
DOMINATING SET for visibility graphs. Also in this case, Theorem [l holds, thus
adding the class of visibility graphs to the numerous graph classes for which
this problem cannot be approximated with a ratio of n'~¢. The approximation
algorithm from Sect. Bl can be applied for this variation and achieves a matching
ratio of n.

The complementary problem MAXIMUM HIDDEN GUARD SET, where we
need to find a maximum number of hidden guards that cover a given polygon,
is equivalent to MAXIMUM HIDDEN SET. Therefore, it cannot be approximated

68 S. Eidenbenz

with an approximation ratio of n¢ for some € > 0 for input polygons with holes
and it is APX-hard for input polygons without holes [7]. The corresponding
vertex-restricted variation cannot be approximated, as it is — again — N P-hard
to even find a feasible solution.

We have presented a number of inapproximability and approximability re-
sults for MINIMUM HIDDEN GUARD SET in several variations. Most results are
tight upto low-order terms. However, there still exists a large gap regarding
the inapproximability of the problem MAXiMUM HIDDEN GUARD SET on in-
put polygons without holes, where only APX-hardness is known and the best
approximation algorithms achieve approximation ratios of ©(n).

References

1. S. Arora, C. Lund; Hardness of Approximations; in: Approximation Algorithms
for NP-Hard Problems (ed. Dorit Hochbaum), PWS Publishing Company, pp. 399
- 446, 1996.

2. P. Crescenzi, V. Kann; A Compendium of NP Optimization Problems; in the book
by G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M.
Protasi, Complexity and Approximation. Combinatorial Optimization Problems
and their Approximability Properties, Springer-Verlag, Berlin, 1999; also available
in an online-version at:
http://www.nada.kth.se/theory/compendium/compendium.html.

3. S. Eidenbenz, C. Stamm, and P. Widmayer; Inapproximability of some Art Gallery
Problems; Proc. 10th Canadian Conf. on Computational Geometry, pp. 64 - 65,
1998.

4. S. Eidenbenz, C. Stamm, and P. Widmayer; Inapproximability Results for Guard-
ing Polygons and Terrains; Algorithmica, Vol. 31, pp. 79 - 113, 2001.

5. S. Eidenbenz; Inapproximability of Finding Maximum Hidden Sets on Polygons
and Terrains; Computational Geometry: Theory and Applications (CGTA), Vol.
21, pp. 139 - 153, 2002.

6. S. Eidenbenz; Approximation Algorithms for Terrain Guarding; Information Pro-
cessing Letters (IPL), Vol. 82, pp. 99 - 105, 2002.

7. S. Eidenbenz; How Many People Can Hide in a Terrain?; Lecture Notes in Com-
puter Science, Vol. 1741 (ISAAC’99), pp. 184 - 194, 1999.

8. S. Ghosh; Approximation Algorithms for Art Gallery Problems; Proc. of the Cana-
dian Information Processing Society Congress, 1987.

9. D. T. Lee and A. K. Lin; Computational Complexity of Art Gallery Problems;
IEEE Trans. Info. Th, pp. 276 - 282, IT-32, 1986.

10. M. van Kreveld; Digital Elevation Models and TIN Algorithms; in: Algorithmic
Foundations of Geographic Information Systems (ed. van Kreveld et al.), LNCS
tutorial vol. 1340, pp. 37 - 78, Springer, 1997.

11. T. Shermer; Hiding People in Polygons; Computing 42, pp. 109 - 131, 1989.

12. T. Shermer; Recent results in Art Galleries; Proc. of the IEEE, 1992.

13. J. Urrutia; Art Gallery and Illumination Problems; in: Handbook on Computa-
tional Geometry, J.R. Sack, J. Urrutia (eds.), North Holland, pp. 973 - 1127, 2000.

Simplex Range Searching and k Nearest
Neighbors of a Line Segment in 2D

Partha P. Goswami!, Sandip Das?, and Subhas C. Nandy?

! Computer Center, Calcutta University, Calcutta 700 009, India
2 Indian Statistical Institute, Calcutta 700 035, India

Abstract. We present an efficient algorithm for finding k nearest neigh-
bours of a query line segment among a set of points distributed arbitrarily
on a two dimensional plane. For solving the above, we improved simplex
range searching technique in 2D. Given a set of n points, we preprocess
them to create a data structure using O(n2) time and space, which re-
ports the number of points inside a query triangular region A in O(logn)
time. The members of P inside A can be reported in O(log?n + k) time,
where k is the size of the output. Finally, this technique is used to find k&
nearest neighbors of a query straight line segment in O(log®n + k) time.

1 Introduction

Given a set P = {p1,pa,...,pn} of n points arbitrarily distributed on a plane,
we study the problem of finding k nearest neighbors of a query line segment o.
On the way of studying this problem, we developed an improved algorithm for
the simplex range searching, where the objective is to report the subset of points
in P that lie inside a query triangle.

A simplex in R? is a space bounded by d + 1 hyperplanes. In the simplex range
query problem, a set of points P (in RY) is given; the objective is to report
the number/subset of points which lie inside a simplex query region. We shall
refer these two problems as counting query problem and subset reporting problem
respectively. The simplex range search problem was studied extensively [2J6l/TT].
In R?, the best result is obtained by Matousek [11]; the preprocessing time and
space are O(n?log®n) and O(n?) respectively (e is a fixed positive constant), and
the counting query takes O(loggn) time. In [6], a quasi-optimal upper bound
for the time complexity of simplex range searching problem is presented. The
algorithm in [6] can achive O(logn) time for the counting query at an expense
of O(n?*¢) storage and preprocessing time. For both of these algorithms, the
subset reporting problem needs an additional O(k) time, where & is the size of
the output. In [6], the authors agreed that the result in [I1] is actually better
since the n® factor in the storage is replaced by a polylogarithmic factor in the
preprocessing and query time. We improve the counting query time to O(logn)
reducing the preprocessing time and space complexities to O(n?). The subset
reporting query requires (logzn + k) time.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 69-[79] 2002.
© Springer-Verlag Berlin Heidelberg 2002

70 P.P. Goswami, S. Das, and S.C. Nandy

The problem of computing the nearest neighbor of a query line was initially
addressed in [7J10]. An algorithm of preprocessing time and space O(n?) was
proposed in that paper which can answer the query in O(logn) time. In [12], the
problem of finding the k nearest/farthest neighbors of a line is proposed along
with an algorithm. The preprocessing time and space complexities are both of
O(n?), and the query time complexity is O(k + logn). The proximity queries
regarding line segments are studied very little. The first work appeared in [3]
which addresses few restricted cases of the problem of locating the nearest point
of a query straight line segment among a set of n points on the plane.

We consider an unrestricted version of the nearest neighbor query problem. The
objective is to report the nearest neighbor of an arbitrary query line segment o
among a set of points P. We show that the preprocessed data structure for the
simplex range searching problem can answer this query in O(logzn) time. We
also show that the following queries can also be answered using our method:

Segment dragging query: Report the first k& points (of P) hit by the query
line segment o if o is dragged in its perpendicular direction. This needs
O(k+log2n) time. The preprocessing time and space complexities are O(n?).

k-nearest neighbors query: This problem has two phases: (i) find k nearest
neighbors of the interior of o, and (ii) find k& neraest neighbors of each end
point of o. The first phase can be solved using segment dragging query tech-
nique. The second phase needs to use order-k Voronoi diagram, provided k
is known prior to the preprocessing.

2 Preliminaries

We use geometric duality for solving the problems mentioned in this paper. Here
(i) a point ¢ = (a,b) of the primal plane is mapped to the line ¢*: y = az — b in
the dual plane, and (ii) a non-vertical line £: y = cx — d of the primal plane is
mapped to the point £* = (¢,d) in the dual plane. A point ¢ is below (resp., on,
above) a line ¢ in the primal plane if and only if the line ¢* is above (resp., on,
below) the point ¢* in the dual plane.

Let @ be a set of m points distributed arbitrarily on a 2D plane, and Q* be the set
of dual lines corresponding to the points in Q. A(Q*) denotes the arrangement
of the lines in Q*. As a preprocessing of half-plane range query problem, we
construct a data structure for storing the levels of the arrangement A(Q*) as
defined below. From now onwards, we refer this data structure as level-structure.

Definition 1. [8] A point ¢ in the dual plane is at level 8 (0 < 6 < m) if there
are exactly 0 lines in Q* that lie strictly below g. The 6-level of A(Q*) is the
closure of a set of points on the lines of @* whose levels are exactly 6 in A(Q*),
and is denoted as \g.

Simplex Range Searching and k& Nearest Neighbors of a Line Segment in 2D 71

level - 2(A2) = I evel -3(A3)

I evel - 1(M\1)

| evel - 0(A0) 7

Fig. 1. Demonstration of levels in an arrangement of lines

Clearly, the edges of Ay form a monotone polychain from z = —oco to x = oo.
Each vertex of the arrangement A(Q*) appears in two consecutive levels, and
each edge of A(Q*) appears in exactly one level (see Fig. 1).

Definition 2. The level-structure is an array A whose elements correspond to
the levels {6 | 6 = 1,...,m} of the arrangement A(Q™*). Each element represent-
ing a level 0, is attached with a linear array containing the vertices of Ay in a
left to right order.

In order to reduce the query time complexity, an augmentation procedure of
the level-structure is described in [12]. It creates few more vertices and edges by
projecting the existing vertices on some existing edges of A(Q*). Then it attaches
a pair of pointers with each edge. The following theorem abstracts the complexity
results of the half-plane range queries, using augmented level structure.

Theorem 1. Given a set of n points in the plane, it can be preprocessed in
O(n?) time and O(n?) space such that (i) the half-plane counting query can
be answered in O(logn) time, and (i) the half-plane subset reporting can be
performed in O(k + logn) time, where k is the size of the output.

3 Simplex Range Searching

A simplex in 2D is a triangular region obtained as the intersection of three
halfplanes, each of them is defined by a straight line. Given a triangular range
A, our objective is to report the points of P that lie inside A. We shall consider
both counting query and subset reporting query for the triangular range searching
problem separately.

3.1 Preprocessing

Let P = {p1,p2,...,pn} be a set of n points arbitrarily distributed in 2D plane.
A line splitting the set P into two non-empty subsets is called a cut. A cut is
said to be balanced if it splits P into two subsets P; and P, such that the size of
these two subsets differ by at most one. For a given point set P, the balanced cut

72 P.P. Goswami, S. Das, and S.C. Nandy

may not be unique. But we may choose any one of them. The point sets P; and
P, are further divided recursively using balanced cuts. This process continues
until all the partitions contain exactly one element.

As a preprocessing for the simplex range query, we create a data structure T'(P),
called partition tree, based on the hierarchical balanced bipartitioning of the
point set P. Its root node (at layer-0) corresponds to the set P. The cut Iy
splits P into two subsets P; and P,. Thus, the two successors of the root (at
layer-1) correspond to the point sets P; and P» respectively. P; and P, are
further partitioned using balanced cuts to create 4 nodes at layer-2. The splitting
continues and the nodes of the tree are defined recursively in this manner.

Each node v of T'(P) is attached with (i) the set of points P, attached to node
v, (ii) an integer field y, indicating the size of P,, and (iii) the balanced cut line
I, bipartitioning the points P,.

Given a set of points P, we uniquely define the partition tree T'(P) using ham-
sandwich cuts [9). T(P) can be constructed in O(nlogn) time and space.

At each non-leaf node of the partition tree T'(P), we attach two secondary struc-
tures, namely 5SS and SSs. SS7 is a level structure with the dual lines of the
points in P,. It is useful for the simplex range counting query, but is not ef-
ficient for subset reporting. S.S; is created with the same point set P, in the
primal plane, and is used for reporting the members inside the query triangle.
It’s performence with respect to the counting query is inferior to S57.

Secondary structure - 55

Consider the node v in T'(P). Py is the set of lines corresponding to the duals
of the points in P,. We create the augmented level structure A(P;) (as defined
in Section 2) , and attach it with node v. We refer this secondary structure as
551 (v). We further augment the data structure using the following lemma. This

accelarates the simplex range counting query.

Lemma 1. Let v be a node in T(P), and w be a successor of node v in T(P).
A cell in A(P)) is completely contained in exactly one cell of A(P)).

Proof: Let u be the other successor of node v. P; and P,; are the duals of the
points attached to nodes u and w. Let C be a cell in A(P)). It is bounded by
the lines of both P} and P;. If the lines of P} are removed, the cell C' will be
contained in a cell of the arrangement A(P). O

With each cell C € A(P)), we attach two pointers, cell_ptry, and cell_ptrg. They
point to the cells Cr, € A(P)) and Cr € A(P)) respectively in which the cell C is
contained. Basically, this can be done by attaching the pointers with each edge
of e € A(Py). If the edge e is a part of an edge e* € Cy, then its cell_ptry, points
to e*. We draw a vertical line at the left end point of e in downward direction.
Let it hits the edge e** € Cr. The cell_ptr,;qn: points to e**. If e is a part of an
edge in Cg, the cell_ptrr and cell_ptrp are set in a similar manner.

Simplex Range Searching and k Nearest Neighbors of a Line Segment in 2D 73

Lemma 2. The time and space required for creating and storing the preprocessed
data structure SSy for all non-leaf nodes in T(P) are both O(n?).

Proof: The initial partition tree can be constructed in O(nlogn) time and space.
The number of nodes at level i of T'(P) is 2, and each of them contains 5 points,
1=0,1,...,logn — 1. For each non-leaf node at level i, the size of SS; structure
is O((3+)?), and it can be constructed from the point set assigned to that node
in O((3+)?) time. So, the total time and space required for constructing the S5

data structure for all nodes in T'(P) is O(Z;O:gg*ly x (#£)%) = O(n?).

Finally, we use topological line sweep to set cell_ptry, and cell_ptrg attached to
each edge of A(P;). This requires an additional O(n?) amount of time. O

Secondary structure - S5

This is another secondary structure attached to each non-leaf node of T'(P). It
is created with the points attached to each node in the primal plane.

Consider a non-root node v at i-th layer of the tree T'(P). The region attached
to it is R,,, and the set of points attached to it is P,. Note that, R, is a convex
polygonal region whose boundaries are defined by the cut lines of its predecessors,
i.e., all the nodes on the path from the root of T'(P) upto the parent of the current
node. Thus, if v is at layer-i, the number of sides of the region R, is at most i.
We store the boundary edges of R, in an array. Each edge I is attached with
the following data structure.

Let m be a point on an edge I of the boundary of R,. A half-line is rotated
around 7 inside the region R, by an amount 180°, and a list L, is formed with
the points in P, ordered with respect to their appearance during the rotation.
For each point of I we get such a list. Note that, we may get an interval on I
around the point 7 such that for all points inside this interval, the list remains
same. In order to get these intervals, we join each pair of points in P, by a
straight line. These lines are extended in both sides up to the boundary of R,.
This creates at most O(|P,|*) intervals along the boundary of R,,. If we consider
any two consecutive intervals on an edge I of the boundary of R,, the circular
order of points only differ by a swap of two members in their respective lists.
This indicates that O(|P,|*) space is enough to store the circular order of the
points of P, for all the intervals on I. Indeed, we can use the data structure
proposed in [5] for storing almost similar lists for this purpose. For the details
about this data structure, see [Bl[].

Lemma 3. The time and space required for creating and storing the SSs data
structure for all nodes in T(P) is O(n?).

Proof: Each point appears in exactly one region in each layer of T(P). But
a point p inside a region R, (corresponding to a node v) appears in the data
structure attached to all the edges of R,. For a node v at the i-th layer of

T'(P), its attached R, is bounded by at most 7 cut-lines, and contains ; points.
Thus the total space required to store the data structure for each edge I on the

74 P.P. Goswami, S. Das, and S.C. Nandy

n

boundary of R, is at most i x (3+)?. Again, the number of nodes in the i-th layer
is 2°. Thus, the time and space required for creating and storing the 5S5 data
structure for all nodes in T'(P) in the worst case is

=1.20.(%)2 +2.22.(3%)? +3.25.(35)? + ... + logn.2'°8" (52)2

_ 1.2 2 2 3 2 logn 2 __ 2
=30+ 53.0° + 53.0° + ..+ grer.n” = O(n®). O

In the next section, we discuss two types of queries, namely (i) counting query,
and (ii) subset reporting query separately for a triangular query region A.

3.2 Counting Query

Here the objective is to report the number of points of P that lie inside a trian-
gular region A. We traverse the preprocessed data structure T'(P) from its root
with the query region A. A global COUNT field (initialized with 0) is maintained
during the traversal.

During the traversal, if a leaf node is reached with a query region A* (€ A),
the COUNT is incremented by one if the point attached to that node lies inside
A*. While processing a non-leaf node v with a query region A*, its attached
partition line I,, may or may not split A*. In the former case, v is said to be a
split node, and in the latter case v is said to be a non-split node.

At a non-split node v, the traversal proceeds towards one child of v whose cor-
responding partition contains A*. On the other hand, at a split node, A* splits
into two query regions; each of them is any one of the following types.

type-0 : A region having no corner of A,
type-1 : A region having one corner of A, and
type-2 : A region having two corners of A.

Lemma 4. All types of regions obtained by successive splitting of A, are convex.

When A splits for the first time, it gives birth to one type-1 and one type-2
regions. In the successive splits,

a type-2 region may either split into (i) one type-0 region and one type-2 region,
or (ii) two type-1 regions. In case (i), the counting query inside the type-
0 region is performed among the points in the partition attached to one
successor of v, and the traversal proceeds towards the other successor of v
containing the type-2 region. In case (ii), traversal proceeds towards both the
successors of v with the corresponding type-1 region, in recursive manner.

A type-1 region splits into one type-0 and one type-1 region. The processing of
type-0region is permormed at one successor of node v. The traversal proceeds
towards the other successor with the type-1 region.

The processing of a type-0 region at a node v is described below.

Simplex Range Searching and k Nearest Neighbors of a Line Segment in 2D 75

Fig. 2. Different possibilities of type-0 region

Lemma 5. The number of type-0 regions generated during the entire traversal
with the region A may be at most O(logn).

Counting Query Inside a Type-0 Region

Lemma 6. The number of edges of A that appear on the boundary of a type-0
region may be at most three.

Let A* be a type-0 region, and the counting query with respect to A* need to be
processed at node v of T'(P). We now consider the following four cases depending
on the number of sides of A that appear on the boundary of A*.

Case 1: A* is not bounded by any edge of A (see Fig. 2(a)). Here all the
Xv(= |Py|) points lie inside A*.

Case 2: Exactly one edge e of A appears on the boundary of A* (see Fig. 2(b)).
The edge e cuts the boundary of R, in exactly two points, and it splits the point
set P, into two disjoint subsets. One of these subsets lies completely outside A*,
and the other one completely lies inside A*. The number of points of P, lying
inside A* can be obtained by performing half-plane range counting query among
the point set P, with respect to the line containing e.

Case 3: Exactly two edges of A appear on the boundary of A* (see Fig. 2(c)).
These two edges are mutually non-intersecting inside R,, and each of them
intersects the boundary of R, in exactly two points. Let these two edges be e;,
i = 1,2. As stated earlier, each of these edges (e;) partitions the point set P,
into two disjoint subsets, say P,(e;) and P,(e;). P,(e;) lies completely outside
A* but P,(e;) may not completely lie inside A* due to the constraint imposed
by the other member e;,j # i.

The number of points of P, inside A* is equal to |P,(e1) N Py(e2)| = (xv —
|P,(e1)| — |Py(e2)]), and it can be obtained by performing the half-plane range
counting query with the lines e; and ey separately.

Case 4: Exactly three edges of A appear on the boundary of A* (see Fig. 2(d)).
As in Case 3, all these edges are mutually non-intersecting inside R,, and each
of them intersects the boundary of R, in exactly two points. The number of
points of P, inside A* is equal to (x, — Zle |P,(e;)|), where P,(e;) is defined as
in Case 3. Thus, to report the number of points inside A*, we need to perform
half-plane range counting query among the points in P, at most three times.

76 P.P. Goswami, S. Das, and S.C. Nandy

Time Complexity of Counting Query

The simplex range counting query starts from the root of T'(P) and with COUNT
equal to zero. Let ¢7, ¢5 and /3 be the duals of the lines containing the three
edges e1, e2 and ez of A. We find the cells containing ¢7, £5 and ¢35 in the S5,
data structure attached to the root node of T'(P). During traversal, when search
moves from a node v to its children, the cells corresponding to ¢;, ¢5 and #;
in the secondary structure of the children of v are reached using cell_ptry and
cell_ptrr in O(1) time. At each node on the traversal path, if a type-0 region is
generated, the number of points inside that region is computed, and added with
COUNT. If a leaf node is reached, the point attached with it is tested to check
whether it lies inside A in O(1) time. If so, COUNT field is incremented by 1.
At the end of traversal, COUNT field indicates the number of points inside A.

Theorem 2. Given a set of n points we can preprocess them in O(n?) time and
space such that the number of points inside a query triangle can be obtained in
O(logn) time.

Proof: The preprocessing time and space complexity results follow from Lemma
During query, O(logn) time is spent to locate the cells containing ¢3, €5 and £%
in the §5; data structure attached to the root node. From the next layer of T'(P)
onwards, the desired cells in the 5SS structure of each node on the traversal path
are reached in O(1) time as mentioned earlier. In each cell containing a type-0
region, the number of points outside the query region are obtained from the level
information attached to the edges of A crossing that cell, which may be at most
3 (see Lemma [B). This takes O(1) time. The result follows from the fact that
O(logn) nodes need to be visited during the traversal (see Lemma 5). O

The drawback of using 557 secondary structure is that, it is not efficient in
reporting the set of points inside A. The worst case time complexity of subset
reporting query may be O(klogn), where x is the number of points inside A.

3.3 Subset Reporting Query

The subset reporting for a triangular query region A is also done by traversing
T(P). At each split node, if the query region is either type-1 or type-2, it splits in
a similar manner as described in the counting query. While processing a type-0
region at a particular node, either of the four cases, as mentioned earlier, may
appear. The processing of those cases is described below.

e In case 1, all the points in P, are reported.

e In case 2, the subset of points in P, lying in one side of the edge e (of A)
are reported. These can be easily obtained from SS; data structure itself.

e In case 3, the query region at node v is bounded by two edges, say e; and
ea, of A. We use the secondary structure SS5 for the reporting in this case.
In Fig. 3, edge e; (resp. e2) intersects R, at a1 and ag (resp. (1 and [(32).

Simplex Range Searching and k Nearest Neighbors of a Line Segment in 2D 77

We split the query region by the diagonal a; (s (indicated by dotted line).
Let the points «; and (3 lie on the edges I and J of R, respectively. We
use binary search with the point oy (resp. (2) to locate its corresponding
interval on the edge I (resp. J). Next we use the data structure attached
to I (resp. J) to report the points inside the darkly (resp. lightly) shaded
angular region. The detailed method is described in [5]. The time complexity
of this reporting is (logn +), where & is the size of the output.

Pabove]

Fig. 3. Reporting in case 3 Fig. 4. Segment dragging query

e In case 4, the query region at node v is bounded by three edges e, es and
eg of A. Here we need to proceed the traversal to the successor(s) of v in
T(P). If the query region splits at v, it may generate at most one query
region which is bounded by three edges of A. Traversal proceeds with this
part. The other part of the split is bounded by either one or two edges of A.
The points inside this part are reported as in Case 1 or Case 2 or Case 3.
This type of split takes place at most (logn) time. So the reporting time in
this case may be O(log’n + k).

Theorem 3. Given a set of n points we can preprocess them in O(n?) time and
space such that the subset of points inside a query triangle can be reported in
O(log?n + k) time.

4 Segment Dragging Query

We shall use the preprocessed data structure discussed in the earlier section for
solving the segment dragging query with respect to a line segment o = [«, f].

Let us consider a corridor C, defined by two parallel lines L and Lo drawn
through the points o and 3 respectively, and each of them is perpendicular to o.
The set of points inside the corridor is split into two subsets Pypove and Prpejow
by the segment o. In the segment dragging query, we need to report k nearest
points of ¢ among the members in P,pope (Poeiow)- Here k may be specified at
the query time.

Consider the levels of arrangement A(P*). Let ¢, denotes the line containing
the segment o. Let €% (the dual of ¢,) lies between levels A and A+ 1 in the dual

78 P.P. Goswami, S. Das, and S.C. Nandy

plane. If A < k, then o hits no more than A\(< k) points if it is dragged above
up to infinity. So, all the points in Pppe need to be reported. If A > k, we need
to find a line segment & parallel to o and touching the two boundaries of the
corridor C, such that the number of points inside the region R defined by L,
Ly, 0 and 6 (as shown in Fig. 4) is equal to k (excepting the degenerate cases).
Thus, here the segment dragging query consists of two phases: (i) compute &
appropriately, and (ii) report the points inside R.

We solve the first part as follows: draw a vertical ray from the point £} down-
wards. Let e € A(P*) be an edge at level § (6 < A — k) whom the ray hits. Let
p* (p € P) be the line containing the edge e. We draw a line parallel to o at the
point p. This defines a rectangle Ry bounded by two boundaries of C,, the given
query segment o, and the portion of the line p* inside the corridor C,. Let kg
denotes the number of points inside Ry. We compute kg by splitting Ry into two
triangles, and then applying the triangular range counting method as described
in Section 3.

Lemma 7. Let e; and ez be two edges at level i and j, 1 < j. R; and R; denote
two rectangles as defined above. If k; and k; denote the number of points inside
R; and R; respectively, then k; > K;.

Proof: Follows from the fact that the area of R; is greater than that of R;, but
the three sides of R; are common with those of R;. a

Lemma 8. A rectangle R above the query line segment o and containing exactly
k points can be obtained in O(log>n) time.

Proof: We consider the subset of edges of A(P*) that are hit by the vertically
upward ray shot from £%. These edges are at different levels of A(P*). By Lemma
[7] the desired 6 can be selected using binary search among these edges. At each
step of the binary search, (i) we choose an edge from the above subset and
define the corresponding rectangle inside the corridor C, (in the primal plane),
and then (ii) we need to find the number of points inside that rectangle by
applying triangular range counting query. Hence the lemma follows. a

Next, using subset reporting query algorithm, we report the points inside the

rectangle R. Thus, we have the main result of this work.

Theorem 4. Given a set of n points in 2D, it can be preprocessed in O(n?)
time and space such that for an arbitrary query segment, the dragging query can
be answered in O(k + log2n) time, where k is an input at the query time.

5 k Nearest Neighbors of o

The problem of finding k& nearest neighbors of o = [a, 8] (k is known apriori)
has two phases: (i) find k nearest neighbors of @ and § using order-k Voronoi

Simplex Range Searching and k Nearest Neighbors of a Line Segment in 2D 79

diagram, and (ii) solve segment dragging query with parameter k for both above
and below ¢. Finally, a merge like pass is executed to report k nearest neighbors
of the line segment ¢. Thus, the time complexity of creating an order-k Voronoi
diagram influences the preprocessing time complexity for finding & nearest neigh-
bors query of a line segment. The time complexity of the best known determin-
istic and randomized algorithms for creating an order-k Voronoi diagram are
O(nk;log%(ig%)o(l)) [] and O(nlog®n + k(n — k)) [I] respectively. The storage
and query time complexities for the k nearest neighbors problem remain same
as that of the segment dragging query problem.

Final remark: In case of finding the nearest neighbor of a query line segment
o (i.e., when k = 1), the preprocessing time and space complexities are both
O(n?), and query can be answered in O(log®n) time. This is a generalized and
improved result of the problem presented in [3]. Here S.S; data structure supports
the segment dragging query; so S.S; is not needed.

References

1. P. K. Agarwal, M. de Berg, J. Matousek, and O. Schwartzkopf, Constructing levels
in arrangement and higher order Voronoi diagram, STAM J. Computing, vol. 27,
pp. 654-667, 1998.

2. P. K. Agarwal and J. Matousek, Dynamic half-space range reporting and its appli-
cations, Algorithmica, vol. 13, pp. 325-345, 1995.

3. S. Bespamyatnikh and J. Snoeyink, Queries with segments in Voronoi diagram,
Computational Geometry - Theory and Applications, vol. 16, pp. 23-33, 2000.

4. T. M. Chan, Random sampling, halfspace range reporting, and construction of
(< k)-levels in three dimension, STAM J. Computing, vol. 30, pp. 561-575, 2000.

5. R. Cole, Searching and storing similar lists, Journal of Algorithms, vol. 7, pp.
202-230, 1986.

6. B. Chazelle, M. Sharir and E. Welzl, Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica, vol. 8, pp. 407-429, 1992.

7. R. Cole and C. K. Yap, Geometric retrieval problems, Information and Control,
pp. 39-57, 1984.

8. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Berlin, 1987.

9. H.Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n-5%%)
query time, Information Processing Letters, vol. 23, pp. 289-293, 1986.

10. D. T. Lee and Y. T. Ching, The power of geometric duality revisited, Information
Processing Letters, vol. 21, pp. 117-122, 1985.

11. J. Matousek, Range searching with efficient hierarchical cutting, Proc. 8th. Annual
Symp. on Computational Geometry, pp. 276-285, 1992.

12. S. C. Nandy, An efficient k-nearest neighbors searching algorithm for a query line,
Proc. 6th. Annual Int. Conf. on Computing and Combinatorics, LNCS-1858, pp.
291-298, 2000.

Adaptive Algorithms for Constructing Convex
Hulls and Triangulations of Polygonal Chains

Christos Levcopoulos!, Andrzej Lingas!, and Joseph S.B. Mitchell?*

! Dept. of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
{Christos.Levcopoulos,Andrzej.Lingas}@cs.1lth.se
2 Dept. of Applied Mathematics and Statistics, SUNY, Stony Brook, NY 11794, USA
jsbm@ams . sunysb.edu

Abstract. We study some fundamental computational geometry prob-
lems with the goal to exploit structure in input data that is given as a
sequence C' = (p1,p2,...,pn) of points that are “almost sorted” in the
sense that the polygonal chain they define has a possibly small num-
ber, k, of self-intersections, or the chain can be partitioned into a small
number, ¥, of simple subchains. We give results that show adaptive com-
plexity in terms of k or x: when k or x is small compared to n, we achieve
time bounds that approach the linear-time (O(n)) bounds known for the
corresponding problems on simple polygonal chains. In particular, we
show that the convex hull of C' can be computed in O(nlog(x +2)) time,
and prove a matching lower bound of 2(nlog(x + 2)) in the algebraic
decision tree model. We also prove a lower bound of 2(nlog(k/n)) for
k > n in the algebraic decision tree model; since x < k, the upper bound
of O(nlog(k + 2)) follows.

We also show that a polygonal chain with k proper intersections can
be transformed into a polygonal chain without proper intersections by
adding at most 2k new vertices in time O(n - min{v'k,logn} + k). This
yields O(n - min{v/k,logn} + k)-time algorithms for triangulation, in
particular the constrained Delaunay triangulation of a polygonal chain
where the proper intersection points are also regarded as vertices.

1 Introduction

A polygonal chain in the Euclidean plane is specified by a finite sequence C' =
(p1,D2, - - -, Pn) of points (vertices), which define the chain’s edges, p1p2, P2ps3, - - -
Dn—1Pn, and possibly p,p1 (if the chain is closed). The chain is strongly simple
if any two edges, pipi+1 and p;jpji1, of C that are not adjacent (i # j) are
disjoint and any two adjacent edges share only their one common vertex. We
say that C is simple if it is not self-crossing but it is possibly self-touching, with
a vertex falling on a non-incident edge or on another vertex; i.e., it is simple
if it is strongly simple or it has an infinitesimal perturbation that is strongly
simple. If the chain is not strongly simple, but it is simple, we say that it is

* Partially supported by HRL Labs (DARPA subcontract), NASA Ames Research,
NSF (CCR~0098172), U.S.-Israel Binational Science Foundation.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 80-[89 2002.
© Springer-Verlag Berlin Heidelberg 2002

Adaptive Algorithms for Constructing Convex Hulls 81

weakly simple. A crossing witness for a polygonal chain is a pair of its edges that
intersect properly at a witness point.

In this paper we consider the problem of efficiently constructing the convex
hull of the vertices of a polygonal chain. If the input polygonal chain is simple,
in particular only weakly simple, these basic geometric structures, and many
others, can be computed in linear time [AJ6l7]. If the input chain is arbitrary
(with no special structure), then computing the convex hull of C is known to
have an {2(nlogn) lower bound.

A natural approach to these problems is to compute all k self-crossings of
the chain C, cut the chain into subchains at the crossing points, apply known
methods (e.g., to compute convex hulls) to each of the resulting subchains, and
merge the results. The problem with this approach is that computing all k of
the intersections seems too costly. The best known method for reporting segment
intersections among an unordered set of n line segments takes time O(n logn+k)
and space O(n) [3], and this is optimal, in general. Since our goal is to replace
O(nlogn) solutions for convex hulls and triangulations with O(n) solutions in
the case of small k, the O(nlogn) overhead for computing the intersections is
already too much for us to spend. There is speculation that if the n segments are
given in order as the edges along a chain, as in our problem, then the intersection
points can be computed in time O(n + k); this, however, remains a challenging
open problem. Also, even if this problem is solved in time O(n + k), the running
time is potentially too high when k is super-linear in n.

Thus, the fundamental question we address here is: Can we exploit the fact
that the n points or segments are given in an order along a chain, to avoid the
O(nlogn) sorting overhead, even when the chain is not simple?

We measure the degree of non-simplicity in terms of two parameters: (1) the
number, k, of self-intersections, and (2) the simple partition number, x, defined
to be the minimum number of partitioning points at which we need to cut the
(open) chain C in order to partition C' into simple subchains. If C' is simple, then
k = x = 0. Note that x < k, since one can partition C' into simple subchains by
cutting it at the points of self-intersection.

Our goal is to have a time complexity that matches the simple chain case
when k or x is equal to zero (or a constant), and never goes above the time
complexity for the unordered case, in which C' is given in arbitrary order, even
when k or y are large (e.g., when k is close to its maximum possible value of
(n —2)(n —3)/2, or when Y is close to its maximum, [(n —1)/2]).

Questions of the sort “Does simplicity help?” are prominent in computational
geometry. Usually the answer is “Yes” — e.g., the convex hull or a triangulation
of a simple polygon is found in O(n) time, while, in general, both computations
require time {2(nlogn) for an unordered set of points. The question we study
here is whether we can exploit “approximate simplicity” in designing algorithms
whose time complexity is adaptive in the parameter k or x.

A polygonal chain with a moderate number of self-intersections or a small
simple partition number is the geometric analogue to a partially sorted file in the
area of sorting algorithms. There exists a vast literature on adaptive algorithms

82 C. Levcopoulos, A. Lingas, and J.S.B. Mitchell

for sorting partially sorted files and measures of presortedness (e.g., see [10]).
There is also work of Aurenhammer [1J2] that studies the problem of computing
the convex hull, in linear time, of a special class of self-intersecting polygonal
chains that arises in the context of Jordan sorting [8] and on-line sorting of
“twisted sequences”.

Chazelle [4] shows that his linear-time polygon triangulation algorithm can be
used for simplicity testing (determining if £ = y = 0) in linear time; essentially,
he says that the triangulation algorithm “fails” in a controlled way on a non-
simple input. Chazelle has also observed [5] that, with some additional work, his
algorithm can be made to report a crossing witness if the chain is non-simple.

Our first result (Section[2) in this paper is a linear-time method to compute a
crossing witness (if one exists), relying solely on a “black box” verifier for polyg-
onal chain weak simplicity. By combining this method of crossing detection with
the optimal method for segment intersection [3], we show how a polygonal chain
with k& proper intersections can be transformed into a weakly simple polygonal
chain by adding 2k vertices in time O(n - min{v/k,logn} + k). Since the afore-
mentioned linear-time methods work even for weakly simple chains [4J6l[7], we
obtain O(n - min{v/k,logn} + k)-time algorithms for the convex hull of C' and
for triangulation of C, in particular for the constrained Delaunay triangulation,
where the proper intersection points are also regarded as vertices.

Then, in Section [3 we present a more efficient approach to computing the
convex hull of a polygonal chain, relying solely on a linear-time weak simplic-
ity test for a polygonal chain, without the crossing witness requirement. This
approach enables us to show that the convex hull of a polygonal chain with
simple partition number x can be computed in time O(nlog(x + 2)). The same
approach is applied to sorting the intersection points ¢ N C along a given line
£ in time O(nlog(x + 2)); this generalizes the Jordan sorting result [§] to self-
intersecting chains. While our convex hull result relies on the use of the com-
plicated linear-time algorithm of Chazelle [4], we also show that a very simple
algorithm solves the convex hull problem in O(n) time for chains having at most
one self-intersection (k < 1).

We complement our algorithms with a proof of lower bounds in the algebraic
decision tree model. In particular, we prove a bound of 2(nlog(x +2)), showing
that our upper bound of O(nlog(y + 2)) is asymptotically tight. We also prove
that £2(nlogk/n) is a lower bound on computing the convex hull of a polygonal
chain with k£ > n proper intersections.

2 Crossing Witnesses, the Transformation, and Adaptive
Triangulation Algorithms
The following fact is shown in the last section of [4].

Fact 1. A polygonal chain can be tested for weak simplicity in linear time.

The auxiliary procedure below will be useful in determining a crossing witness
of a polygonal chain via Fact 1.

Adaptive Algorithms for Constructing Convex Hulls 83

Procedure FindInt(C’,C")

Input: two weakly simple polygonal chains C’, C” which properly intersect each
other.

Output: an edge €’ of C’ and an edge e” of C" where €’ intersects ¢’ at a proper
intersection point of C’ and C”.

1. If |C"| <1 or |C”] <1 then check the single edge of one of the chains for
intersection with all the edges of the other chain, report the pair defining
the proper intersection point and stop;

2. C1 <+ the prefix of C’ of length [|C’]/2]; C4 + the remaining suffix of C’;

3. CY < the prefix of C" of length [|C"|/2]; C¥ « the remaining suffix of C";

4. fori=1, 2do

for j =1, 2do

By adding at most |C}| + |C}| new vertices connect C; with C7 into a
polygonal chain C; ; without introducing new proper intersections;

If C; j is not weakly simple then FindInt(C},C) and stop.

Lemma 1. FindInt(Cy,Cs) can be implemented in time O(|Cy| + |Ca|).

Proof. To form the chain C; j, we simply double the chains C] and C7 so they
become cyclic, and draw a minimal subsegment of the straight-line segment
connecting, say the leftmost vertex of C} with the leftmost one of C7, so the
two cycles become connected and no new proper intersections are introduced.
By testing the segment for intersection with each edge in both chains, this can
be done in time O(|C'| 4 |C"|). Next, we split the two cycles at the endpoints of
the subsegment introducing a double vertex at each of them. Now, it is sufficient
to make an Euler tour of the resulting figure, possibly deleting the last edge,
in order to obtain the polygonal chain C; ;. It follows via Fact 1 that the body
of the procedure takes time O(|C’| 4+ |C"|). Hence, the recursive calls take time

O (IC" +1C7)/2Y), Le., O(IC| +1C"). 0

The main recursive procedure for reporting a crossing witness, using FindInt
as a subroutine, is as follows.

Procedure Witness(C)

Input: a self-intersecting polygonal chain C.
Output: two edges €', €' of C' where ¢’ intersects e” at the proper self-intersection
point of C.

1. Cy + the prefix of C of length [|C|/2]; C2 + the remaining suffix of C;
2. If ¢y and Cy are weakly simple then FindInt(Cy,Cs3) and stop;
3. If C is weakly simple then Witness(Cs) else Witness(Ch)

Lemma 2. Witness(C) runs in time O(|C|).

Proof. The body of the procedure takes time O(]C|) by Fact 1 and Lemma [T
Hence, the recursive calls take time O(Y,|C|/2%), i.e., O(|C|). O

84 C. Levcopoulos, A. Lingas, and J.S.B. Mitchell

Since the correctness of the procedure Witness is obvious, we obtain the
following result by Lemma [21

Theorem 1. A crossing witness for a polygonal chain which is not weakly simple
can be found in linear time.

By iterating the method of Theorem [l and combining it with the optimal
method for segment intersection [3], we obtain the following theorem.

Theorem 2. A polygonal chain properly intersecting itself k times can be trans-
formed into a weakly simple polygonal chain by adding at most 2k new vertices
in time O(n - min{vk,logn} + k).

Proof. Let C be a polygonal chain properly intersecting itself at most £k times.
Assume first that &k is known.

Case: k < 1og2 n. We show in this case how to detect all proper intersections
of C' and transform C' into a weakly simple chain by adding at most 2k new
vertices, in total time O(nvk)) . We start by partitioning C into [v/k] subchains
Cy,Cs, ..., C[\/E] of about equal length, plus/minus 1. Next, each C; is tested in
isolation to find all of its (internal) proper intersections, and we add vertices
to transform it into a weakly simple chain. This is done by repeatedly applying
the procedure Witness(C;) and introducing, after each application, two new
vertices at the detected proper intersection point, while reordering the edges of
the resulting chain so this proper intersection is eliminated and no new proper
intersections are created. Note that the introduction of these two new vertices
and the reordering involve deleting and creating O(1) links and thus take O(1)
time.

Since k < log?n, the size of each subchain remains O(n/vk), even with the
introduction of the new vertices. By Lemma [2] each intersection is detected and
transformed in time O(|C;|) = O(n/Vk), so that the total time for transforming
all subchains C; into weakly simple chains is O(kn/Vk)) = O(nVk)).

Next, for each pair of subchains C; and Cj, with 1 < i < j < [VEk], we
repeatedly call the procedure FindInt(C;, C;) to detect all proper intersections
between the subchains and eliminate them by creating two new vertices for
each such intersection and rearranging the edge ordering accordingly. Since we
may assume without loss of generality that k < log?n, the size of both sub-
chains remains O(n/vk) throughout the entire algorithm. Thus, the detection
of each consecutive proper intersection by FindInt(C;,C;) takes time O(n/Vk),
by Lemmal[2l Hence, the total time for finding and transforming all intersections
in C is O(nVk)).

Case: k > log®n. 1In this case, the optimal algorithm for reporting segment
intersection, running in time O(nlogn + k)-time [3], is more efficient than the
partitioning method of the previous case. We simply run this algorithm, and,
whenever an intersection is reported, we eliminate it again by creating two new
vertices and rearranging the edge ordering in the current chain accordingly.

Finally, if k£ is unknown we use the standard trick of “doubling”: we run our
method for values of kK = 1,2,4, ... until all intersections are detected. Clearly,
this does not change the asymptotic upper bound on the running time. a

Adaptive Algorithms for Constructing Convex Hulls 85

Since the aforementioned linear-time algorithms ([4]6]) for triangulation, in
particular the constrained Delaunay triangulation, of a simple polygonal chain
work also for weakly simple polygonal chains, we obtain the following corollary
of Theorem [2

Corollary 1. A triangulation, in particular the constrained Delaunay triangu-
lation, of a polygonal chain with k proper self-intersections can be constructed
in time O(n - min{v/k,logn} + k). Here, the proper self-intersection points are
regarded as vertices that must appear in the triangulation.

The method from the proof of Theorem [2| can also be used to decide if
the number k of self-intersections of a polygonal chain is at most K, for some
specified K. Simply, we run the method for ¥ = K and whenever it detects the
K + 1st crossing, we stop it. In effect, we obtain an O(n - min{v'K,logn} + K)-
time algorithm for the decision problem.

3 Adaptive Convex Hull Algorithms

We now present an improved adaptive algorithm for computing the convex hull
of the vertices of a polygonal chain. The algorithm uses divide-and-conquer and
applies in a more general setting to any construction problem P associated with
a polygonal chain that has the following two properties: (1) P can be solved
in linear time for chains that are (weakly) simple; and, (2) the solutions to P
applied to two distinct chains can be merged in time linear in the sizes of the
chains. The algorithm is specified by the following simple recursive procedure
Construct.

Procedure Construct(chain, A)

Input: a polygonal chain C and a subroutine A for the construction problem P
on weakly simple polygonal chains.
Output: a solution to the construction problem P for C.

. If C is weakly simple then return A(C') and stop;

. Cy < the prefix of C of length [|C|/2]; C3 < the remaining suffix;
. Q1 < Construct(C1, A); Qa < Construct(Ca, A);

merge (1 with Q2 and return the result

=W N

We analyze the running time in terms of what we call the simple partition
number, x, of a chain. More precisely, let x denote the minimum number of
partitioning points at which we need to cut the (open) chain C in order to
partition C' into simple subchains. If C' is simple, then y = 0. While it is always
the case that xy < k, since we can cut at the k self-crossings, note that C' may
have k = £2(n?) self-intersections, while y = 1. Thus, x can be a substantially
smaller measure of nonsimplicity than is k. (Note that if C' is a closed chain, we
can artificially open it by replicating one vertex to serve as the start/end of the
new open chain.)

86 C. Levcopoulos, A. Lingas, and J.S.B. Mitchell

Lemma 3. Assuming there is a linear-time algorithm A and a linear-time merge
algorithm, Construct runs in time O(nlog(x + 2)).

Proof. Let t(n, x) be the worst-case time taken by the procedure Construct for
an input chain of n vertices that has simple partition number y. Then, t(n, x)
satisfies the following recursion relation:

t(In/2],x1) +t([n/2],x2) + O(n) ifx>1
t(n’X)S{O([n)/1X) ([n/2], x2) (n) ifiﬁ:o’

where x1+x2 < x. The solution to this recursion gives t(n, x) = O(nlog(x+2)).
O

We can apply Lemma [3] to the problem of computing the convex hull of a
polygonal chain, since the convex hull of a weakly simple polygonal chain can
be computed in linear time using any of several known convex hull algorithms
(e.g., see Melkman [11] and a survey in [7]), and the merge step (computing the
convex hull of two convex polygons) is also readily done in linear time.

Theorem 3. Let C' be a polygonal chain of n vertices that can be partitioned
into x simple subchains. Then the convex hull of C can be computed in time
O(nlog(x + 2)).

Another application of Lemma [3] yields a similar result about sorting inter-
section points:

Theorem 4. Given a line £ and a polygonal chain C of n vertices that can be
partitioned into x simple subchains, one can compute the sorted order along £ of
the intersection points £ N C in time O(nlog(x + 2)).

Proof. Tt is known that if C' is simple, the points of intersection £ N C' can be
found in sorted order along ¢ in linear (O(n)) time, via “Jordan sorting” [8].
This provides the algorithm A. Merging of two sorted lists is easily done in
linear time. O

3.1 Avoiding the Need for Chazelle’s Linear-Time Algorithm

One drawback of the above method is that it relies on the highly complex linear-
time algorithm of Chazelle []. It would be nice, in general, to give a simple
and implementable algorithm for the convex hull that is linear-time for small
values of k. While we do not know of such a method in general, we can give the
following simple linear-time algorithm for the case of k < 1: Apply Melkman’s
online convex hull algorithm to the chain C' twice — once going forwards along
the chain, once going backwards. If the chain is simple (k = 0), the algorithm
is guaranteed to compute correctly the convex hull (whether we go forwards or
backwards). If k = 1, then potentially the algorithm fails to compute the convex
hull correctly, as Figure [l (a) shows, if the chain is traversed either forward or
backwards. But, the following theorem shows that the convex hull of the chain
C' is the convex hull of the results of running the algorithm both forwards and
backwards along the chain.

Adaptive Algorithms for Constructing Convex Hulls 87

o<

Vl
(€Y (b)

Fig.1. (a). An example having kK = 1 of a 4-vertex chain for which Melkman’s on-
line convex hull computation fails both for a forwards traversal (which yields triangle
vov1v2) and for a backwards traversal (which yields triangle vsvav1); however, the con-
vex hull of the union of the two triangles is the desired output. (b). An example (having
k = 4) in which Melkman’s algorithm applied forwards (resp., backwards) gives trian-
gle vov1v2 (resp., vevsv4), and the convex hull of the union (which is triangle voviv2)
is also not the convex hull of the input chain.

Theorem 5. The convex hull of a polygonal chain C' properly intersecting itself
k <1 times is given by the convex hull of the union, Pp U Pg, where Pr (resp.,
Pg) is the convez polygon produced as the output of Melkman’s algorithm while
traversing the chain C forwards (resp., backwards).

Proof. The proof of correctness of Melkman’s algorithm establishes that it main-
tains the convex hull of the sequence of points that have been considered so far:
P1,D2,---,Pi- Suppose that there is exactly one proper self-intersection of the
chain C', with edge p;p;+1 crossing p;p;+1, for 1 <i < j <n—1. Then, the sub-
chain Cr = (p1,p2, .- .,p;) is simple, so the output of Melkman’s algorithm, Pp,
applied in a forward pass of C' is a superset of the convex hull of Cr. Similarly,
the backwards subchain Cg = (pn,Pn—1,---,pi+1) is simple and the output of
Melkman’s algorithm, Ppg, applied in a backwards pass of C is a superset of the
convex hull of C'g. Thus, the convex hull of Pr U Pg contains all vertices of C,
S0, since its vertices are vertices of C, it equals the convex hull of C. a

Corollary 2. Using two passes of Melkman’s online convex hull algorithm, the
convez hull of a polygonal chain having at most one self-intersection can be found
in O(n) time.

Remark. If £ > 1, the two-pass method can fail, as in Figure [(b).

3.2 Lower Bounds

We turn now to proving a lower bound on the time required to compute the
convex hull of a self-intersecting polygonal chain. (Here, by computing the convex
hull, we mean that the output is required to be the vertices of the hull, given in
order around the boundary of the hull.)

Theorem 6. Computing the convez hull of a polygonal chain having simple par-
tition number x requires 2(nlog(x+2)) time in the algebraic decision tree model
of computation.

88 C. Levcopoulos, A. Lingas, and J.S.B. Mitchell

Proof. We assume without loss of generality that n is an integral multiple of
x and that x > 2, so that logx > 1. We use a technique similar to that used
in the proof of the 2(nlogn) bound for computing the convex hull of a set of
n points. The idea is to reduce (in linear time) the problem of sorting n real
numbers to the problem of computing the convex hull of a set of points. This
is done by producing, for each real number r, a point with (z,y)-coordinates
(r,r%). The resulting set of points is given as input to the convex-hull algorithm
(e.g., see [12]).

Let us consider the related problem of sorting x real numbers that lie within
an interval between two consecutive positive integers. In fact, we consider the
problem whose instance is an ordered sequence of n/x copies of this sorting
problem, each consisting of an (unordered) subsequence of x real numbers, in
the intervals (1,2), (3,4),(5,6),...,(2n/x — 1,2n/x). The ith instance of the
sorting problem consists of an (unordered) set S; = {x; 1,2 2,..., %} of real
numbers in the interval (2¢ — 1, 2¢). We know from lower bounds on sorting that
it takes (n/x) x 2(xlogx) time, i.e., 2(nlogx) time, in the worst case to sort
the set of n numbers in this instance of the sorting problem.

We reduce this sorting problem in linear time to computing the convex hull
of a polygonal chain with n vertices that can be partitioned into x simple sub-
chains: We map each input real number 7 to the point (r,r%?) € R? on the
parabola y = 2. We let p;; = (x;;,27;) be the lifted image of z;; € S,
on the parabola. We then map, in time O(n), the input instances Si,..., S, /y
to the chain (p1,1,P2,1, -+ Pr/x,1s P1,2:D2.25 - - s Pr/x,2 -+ s PLxs P2x0 - - - > Pr/xox)-
We note that each of the x subchains (p1,j,p2,j, - -, Pn/y,;) is simple. Thus, the
simple partition number of C' is at most y — 1. The proof is concluded by noting
that, since the points on the parabola are in convex position, an algorithm that
computes the convex hull of C' must output the points p; ; in a cyclic order that
exactly gives the xz-order of the n input real numbers. O

We similarly obtain a lower bound as a function of n and k; for the proof,
see the full version of the paper on the authors’ web sites.

Theorem 7. Computing the convex hull of a polygonal chain that properly in-
tersects itself k times requires £2(nlog(k/n)) time in the algebraic decision tree
model of computation.

Remark. Even if the convex hull algorithm is only required to report which
points are vertices of the convex hull, we can obtain the same asymptotic lower
bound, using a reduction from other standard problems on sets of real numbers
(e.g., the min-gap problem or the element uniqueness problem [12]).

4 Conclusion

We conclude with several interesting open questions:

(1) Can one close the gap between our upper and lower bounds, in terms of
n and k, for the adaptive convex hull construction? While our bounds are
tight as functions of n and Y, there is a gap when the bounds are written as
functions of n and k: £2(nlog(k/n)) versus O(nlog(k + 2)).

(2)

Adaptive Algorithms for Constructing Convex Hulls 89

Can good adaptive bounds for convex hulls be obtained for large values of
x or k without resorting to the use of Chazelle’s complicated linear-time
triangulation algorithm?

Can one compute a triangulation of the vertices of a chain C' (ignoring the
edges of the chain) in time O(nlog(x + 2)) or time O(nlog(k + 2))?

Can one compute the convex hull of a chain C' in time O(n + k)? (This
is interesting in the case that k is super-linear, but o(nlogn).) Can one
compute all k self-intersection points of a chain C' in time O(n + k)?

Can one avoid the use of the complicated algorithm of Chazelle [4] to com-
pute the convex hull of a chain with y <1 in linear time?

How efficiently can one compute the simple partition number, y, of a given
chain of n vertices? We note that a greedy algorithm that iteratively re-
moves from one end of the chain a maximal length simple subchain can be
implemented to run in time O(nlogn). Thus, our goal is to obtain a bound
of o(nlogn), at least in the case of small x.

What bounds can one obtain for the worst-case complexity of computing
the convex hull in terms of the input size (n), the degree of non-simplicity
(x and/or k), and the output size, h?

References

1.

2.

10.

11.

12.

F. Aurenhammer. Jordan sorting via convex hulls of certain non-simple polygons.
Proc. 3rd ACM Symposium on Computational Geometry, pp. 21-29, 1987.

F. Aurenhammer. On-line sorting of twisted sequences in linear time. BIT 28, pp.
194-204, 1988.

1.J. Balaban. An Optimal Algorithm for finding segment intersections. Proc. 11th
ACM Symposium on Computational Geometry, pp. 211-219, 1995.

. B. Chazelle. Triangulating a simple polygon in linear time. Discrete Computational

Geometry 6, pp. 485:524, 1991.

B. Chazelle. Personal communication, 2001.

F. Chin and C. Wang. Finding the constrained Delaunay triangulation and con-
strained Voronoi diagram of a simple polygon in linear time. STAM J. Comput.
Vol. 12, No. 2, pp. 471-486, 1998.

J.E. Goodman and J. O’Rourke. Handbook of Discrete and Computational Geom-
etry. CRC Press, Boca Raton, New York 1997.

K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan. Sorting Jordan se-
quences in linear time using level-linked search trees. Inform. Control Vol. 68,
pp. 170-184, 1986.

D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing 15, pp. 287-299, 1986.

C. Levcopoulos and O. Petersson. Adaptive Heapsort. Journal of Algorithms 14,
pp. 395-413, 1993.

A. Melkman. On-line construction of the convex hull of a simple polyline. Infor-
mation Processing Letters 25, pp. 11-12, 1987.

F.P. Preparata and M.I. Shamos. Computational Geometry - An Introduction.
Texts and Monographs in Computer Science, Springer Verlag, 1985.

Exact Algorithms and Approximation Schemes
for Base Station Placement Problems

Nissan Lev-Tov* and David Peleg*

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel
{nissanl,peleg}@uisdom.weizmann.ac.il

Abstract. This paper concerns geometric disk problems motivated by
base station placement problems arising in wireless network design. We
first study problems that involve maximizing the coverage under vari-
ous interference-avoidance constraints. A representative problem for this
type is the mazimum weight independent set problem on unit disk graphs,
for which we present an exact solution whose complexity is exponential
but with a sublinear exponent. Specifically, our algorithm has time com-
plexity 20(Vm1oe™) ' where m is the number of disks. We then study the
problem of covering all the clients by a collection of disks of variable radii
while minimizing the sum of radii, and present a PTAS for this problem.

1 Introduction

1.1 Background

This paper deals with efficient algorithmic solutions for base station place-
ment problems and related problems arising in wireless network design. The
input for these problems consists of two sets of points in the Euclidean plane,
X = {z1,22,..., Ty} representing potential locations for placing base stations,
and Y = {y1,¥2,...,yn} representing the clients. A base station located at x;
has a certain transmission range R;, which could be either fixed or variable. A
client node y; is covered by a base station placed at x; if it is within its trans-
mission range, namely, if y; falls within the disk of radius R; centered at x;.
However, coverage may not be enough; in certain models it is also necessary to
avoid interferences between neighboring base stations whose transmission disks
partially overlap. Hence our problems concern selecting a placement for the base
stations (henceforth referred to in short as servers) that will guarantee adequate
(interference-free) coverage for the clients while attempting to optimize certain
cost functions.

Two design issues affect the nature of the optimization problem at hand. The
first concerns the question whether interference avoidance must be enforced. In
particular, when interferences are ignored, the problem to be solved is typically
a disk-covering problem, namely, finding a minimum cost collection of servers
covering all clients. In contrast, when interferences must be avoided, it might be

* Supported in part by a grant from the Israel Ministry of Industry and Commerce.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 90-09 2002.
© Springer-Verlag Berlin Heidelberg 2002

Exact Algorithms and Approximation Schemes 91

impossible to satisfy all the clients simultaneously, hence it is of interest to study
also variants of the problem aimed at maximizing the number of clients which
are covered by ezactly one server (henceforth referred to as supplied clients).
A combined approach which is examined as well is to simultaneously take into
account the number of supplied clients and the cost of the servers, by attempting
to optimize total profit, defined as the gain from supplied clients minus the cost
of the servers.

The second design issue is whether transmission radii are fixed or variable.
When the radii are variable, we must decide on the transmission range of each
server to be built, in addition to choosing its locations. The typical goal is to
choose for each server x; a transmission radius R; such that all the clients are
covered and the sum of radii is minimized. This target arises from the assumption
that the cost of choosing a certain radius depends linearly on that radius. Such
assumption is often made in various clustering and covering problems [].

1.2 The Problems

This paper considers problems of two main types. The first involves maximization
problems on disks of fixed radius. Given the locations of the clients and servers
and a fixed transmission range R, it is required to choose an active set of servers
in an optimal way. Several optimization targets can be considered, all taking
into account interferences between active servers.

We start with the problem of maximizing the number of supplied clients un-
der the condition that the R-disks around the servers are disjoint. This require-
ment is perhaps not the most natural in the context of base station placement,
as overlaps over client-free regions should cause no problems. On the other hand,
this problem can be handled as a special case of the maximum weight indepen-
dent set (MWIS) problem on unit disk graphs, which is of independent interest.
In the MWIS problem there are weights associated with the points in X, and
it is required to choose a maximum weight subset of X such that the R-disks
around them are all disjoint. To get our problem as a special case of the MWIS
problem, the weight of each vertex z; € X is set to the number of clients covered
in the R-disk around x;.

We also consider a number of related problems, which capture the restrictions
of the model more adequately. The first problem requires us to maximize the
number of supplied clients under the constraint that no client is in the transmis-
sion range of more than one chosen server. Again, this problem can be generalized
into the mazimum weight collision-free set (MWCS) problem, which is to find a
maximum weight subset of servers such that the R-disks around the servers do
not contain common clients. Another variant of this problem, named mazimum
supplied clients (MSC), which may be even more useful from practical point of
view, is defined as follows. For any subset X of X, let Supp(X) denote the set of
clients supplied by X. The problem is to choose a subset of servers X maximiz-
ing the number of supplied clients, |Supp(X)|. We also consider a variant of the
problem named mazimum profit (MP), in which costs and benefits are treated
in a combined manner. The goal is to choose a subset of servers maximizing the
profit P(X) = c¢1|Supp(X)| — ¢2|X|, where ¢1, ¢y > 0 are given constants.

92 N. Lev-Tov and D. Peleg

The MWCS, MSC and MP problems turn out to be hard to manage for
arbitrary inputs, and we consider them in a restricted setting referred to as
the grid-based setting. In this setting, the set X of possible server locations is
restricted to grid points of a given spacing, fixed for concreteness to be 1, and
moreover, the transmission range R is assumed to be bounded by a constant.
Without loss of generality we assume that the underlying unit grid G, is aligned
so that (0,0) occurs as a grid point. Throughout, the grid-based version of a
problem PROB is denoted PROB,,.

The second type of problems considered in this paper is disk-covering prob-
lems, where the goal is to achieve minimum sum of radii. Given a set of clients
Y and a set of servers X in the plane, we aim to choose the transmission range
R; of each server x; such that all the clients are covered and the sum of the
transmission ranges chosen, ¢ = . R;, is minimized. Although any radius R;
can be chosen for a given server, every solution is dominated by a solution in
which for each chosen radius R; # 0 the corresponding R;-disk has a client on
its border. So the problem is equivalent to choosing from all n - m disks centered
at a server and with a client on their border. This problem is referred to as
minimum sum of radii cover (MSRC).

We also study the variant of this problem where interferences are involved,
meaning that the transmission ranges must be chosen such that no two disks
intersect on a client. We call this problem minimum sum of radii cover with
interferences (MSRCI). Its representation is more general as we are given a set
of disks of various radii and we have to choose a subset of the given set of disks
such that the chosen disks are all disjoint and minimum sum of radii is achieved.

1.3 Previous Work

The disk-covering problem on fixed radius disks is studied in [5], in a model
where the server locations are not restricted to a given set of possible locations
but rather may be chosen at any point on the plane. A PTAS is given for this
problem using a grid-shifting strategy.

Fixed radius covering problems where only potential server locations are
considered, with or without interferences, are studied in [4]. They consider op-
timization problems for cellular telephone networks that arise in a traffic load
model which also addresses the positioning of servers on given possible locations
with the aim of maximizing the number of supplied clients and minimizing the
number of servers to be built.

A technique called slab dividing is proposed in [7]. It is used there to give a

sub-exponential exact solution of time complexity O(no(‘/ﬁ)) for the Euclidean
P-center problem. This approach is essentially based on a version of the y/n-
planar separator theorem of [§], suitably adapted to the Euclidean case.

The MWIS problem on unit-disk graphs is shown to be NP-hard in [2], and
is given a PTAS in [6]. The MWIS problem on general (arbitrary radii) disk
graphs is considerably harder, and was only recently shown to have a PTAS
using a sophisticated hierarchical grid-shifting technique [3].

Exact Algorithms and Approximation Schemes 93

1.4 Our Results

The paper presents exact and approximate solutions for the above problems.
We begin in Section Blby developing a variant of the slab technique of [d] which
is suitable for handling maximum independent set and maximum covering set
problems. We then apply our method for deriving an 20(vVmlogm) time exact
solution for the MWIS problem.

Using variations of our method it is possible to obtain similar results for a
number of grid-based problems. In particular, the grid-based MWIS, problem
can be given a slightly better 2°(v™) time solution, and a similar solution exists
for the grid-based MWCS, problem. The grid-based problems MSC, and MP,
enjoy 20(Vmtlogn) time exact solutions. The details of these results are also
deferred to the full paper. In the full paper we also provide a PTAS for the
grid-based MP, problem, using a grid-shifting strategy similar to that of [5].

We then turn to the variable radii model. In section Bl we present a PTAS
for the MSRC problem (with no interference constraints), based on a modified
variant of the hierarchical grid-shifting technique of [3].

Note that all our results can be extended for the case where each client has
a certain weight (say, representing the fee paid by this client or the significance
of providing it with service), and the optimization targets refer to the sum of
weights of the supplied clients instead of merely their number.

While our focus is on the natural 2-dimensional variants of the above prob-
lems, we also studied their 1-dimensional variants. Our polynomial time solutions
for the 1-dimensional MWIS, MWCS, MSC and MP problems and the MSRC
problems with and without interference constraints are deferred to the full paper.

2 Maximization Problems on Fixed Radius Disks

In this section we develop a variant of the slab method of [7] suitable for han-
dling maximum independent set and maximum covering set problems, and then
apply this method for giving a 29(vV™) exact solution for a number of problems,
including MWIS, MWCS,, MSC, and MP,,.

Let us first describe our variant of the slab method. Subdivide the plane by
introducing a grid Gs of lines at distance 6 = 2R of each other, aligned so that
the point (0,0) is a grid point. The vth vertical line, —0o < v < 00, is at x = v-d;
the index v will be used to identify the line. The same goes for horizontal line h.

Each vertical line v defines a vertical slab denoted Slab(v), which is the strip
v-0 < < (v+1)-d. Similarly, S1ab(h) is the horizontal strip h-d <y < (h+1)-d.
These vertical and horizontal slabs induce § x § squares which are open on their
right and upper sides and will be referred to as grid-squares. A grid-square is
called occupied if it contains a server, otherwise it is called empty. We use these
definitions for vertical and horizontal slabs as well.

Without loss of generality, all the points of the problem instance are contained
in a rectangle with boundaries vy, v2, h1, ho whose sides are each no larger than
m-d (otherwise there must be an empty slab which divides the problem instance
into two independent problems each contained in a smaller rectangle, and in this

94 N. Lev-Tov and D. Peleg

case each of the rectangles could be dealt with separately). Let M denote the
number of occupied squares contained in this rectangle.

For a vertical slab Slab(v), v1 < v < v, denote by In(v) the set of occupied
grid-squares contained in Slab(v), by Left(v) the set of occupied grid-squares to
the left of Slab(v) and by Right(v) the set of occupied grid-squares to the right
of Slab(v). For a horizontal slab Slab(h) define In(h), Above(h) and Below(h)
in a similar way. By the above definitions, for every v and £,

[Left(v)|+|In(v)|+|Right(v)| = M and |Below(h)|+|In(h)|+|Above(h)| = M.

Definition: For any input instance XY, a dividing slab is either a vertical
slab Slab(v), v; < v < va such that (1) |In(v)| < 5v/M, (2) [Left(v)| < 2 M,
and (3) [Right(v)| < - M, or a horizontal slab Slab(h), h1 < h < h such that
(1) [In(h)| < 5V/M, (2) |Above(h)| < 2 - M, and (3) [Below(h)| < 2 - M.

Lemma 1. For any input instance X,Y, there exists a dividing slab.

Proof. Let v} be the smallest vertical line index such that [Left(v})| > M/5 and
let v}, be the largest vertical line index such that |Right(v5—1)| > M/5. Similarly,
let R} be the smallest horizontal line index such that [Below(h})| > M/5 and let
h% be the largest horizontal line index such that |Above(h, — 1)| > M/5. Note
that [Left(v] — 1)| < M/5 by choice of v}, hence [Right (v} — 2)| > 4M /5. This
implies that v{ — 1 < v}, since otherwise v} — 1 should have been chosen instead
of v}. Moreover, each of the vertical slabs in Ly = {Slab(v) | v] — 1 < v < v}
satisfies [Left(v)| < 4M/5 and [Right(v)| < 4M /5. Analogous statements apply
for horizontal slabs in Ly = {Slab(h) | h{ —1 < h < h4} with Above and Below.

‘We now show that at least one of the slabs in Ly U Ly also satisfies the first
condition of a dividing slab. Let R be the rectangle bounded by v]—1,v5+1,] —
1,h + 1, and let M’ be the number of occupied grid-squares in R. Note that R
contains all the occupied rectangles save those in Left(v; — 1), Right(v) + 1),
Below(h] — 1) and Above(h} + 1), whose total number is at most 4M /5, and
therefore M’ > M/5.

There are [, = |Ly| = vh — v} + 2 vertical slabs and I, = |Lg| = h, — h] +2
horizontal slabs in the rectangle R. We now observe that [, - I;, < M’ by the
definition of M’, and therefore either [, > VM’ or ly, > V' M'. Without loss of
generality suppose 1, > vV M’'. As M’ > M/5, we conclude that I, > /M/5.

If |In(v)] > 5-+/M for each vertical slabs Slab(v) € Ly, then we get
more than M occupied grid-squares altogether. Therefore there must be a slab
Slab(v) € Ly for which |In(v)| < 5-vM. |

The above lemma suggests a generic recursive procedure which is at the heart
of a number of algorithms for solving some geometric optimization problems. We
next discuss the resulting algorithm for the MWIS problem and state the results
for the grid-based version of the other problems.

Let X(uy,09,h1,hs) and Y(u1 o1 ni ny) denote the sets of servers and clients re-
stricted to the area bounded by the lines vy, vs, hy, he and v], v}, b, h}, respec-
tively. Let MWIS[X (4, vy ,h1,h2)5 Y(v1,09,h1,h2)] denote the problem restricted to
those servers and clients.

Exact Algorithms and Approximation Schemes 95

The procedure OPTIMIZE(X,Y) recursively finds an optimal set of servers.
The bottom level of the recursion is when X is contained in a single disk square,
In this case the procedure computes an optimal solution by an exhaustive search,
going through all possible choices of three servers in the square.(Note that choos-
ing four servers inside a single § x4 grid-square will necessarily cause their R-disks
to intersect, even if they are symmetrically located on the four corners.) Each
step starts with the procedure identifying a dividing slab Slab(v) or Slab(h).
This is done by exhaustively examining each slab. The procedure then cycles
over all local (not necessarily optimal) partial solutions X; of the local prob-
lem where the servers are contained in squares of In(v) or In(h), respectively.
Each such partial solution X; is composed of all possible choices of up to three
servers inside each grid-square of In(v) or In(h). For each such partial solution
X, the procedure then creates the left and right (resp., above and below) sub-
problems, in which the servers are restricted to squares of Left(v) and Right(v)
(resp., Below(h) and Above(h)), while deleting from these subproblems the set of
servers Neighbors(X;) whose disks intersect disks of X;. We now solve the left
and right (resp., below and above) subproblems recursively. The procedure stops
when remaining with a single square, in which case it finds a local solution by
exhaustively searching all O(m?) possibilities of choosing a disjoint set of disks
with servers inside the grid-square.

Procedure OpTIMIZE(X,Y")

If X is contained in a single grid-square
then exhaustively compute and return an optimal solution.
Find either a vertical dividing slab Slab(v) or a horizontal dividing slab Slab(h).
If a vertical dividing slab Slab(v) is found then do:
For each local solution X; of MWIS[X (4, y11,h1,he), Y] do:
X1 < OPTIMIZE(X (4, 0,k ,hy) — Neighbors(X¢), Y, vt1,h1,h))
Xy < OPTIMIZE(X (y41,09,h1,he) — Neighbors(X:), Y(y vs,h1,h0))
Xp+— Xt UXUX,
Else do:
For each local solution X; of MWIS[X (4, vy,h,h41), Y] do:
X1 <= OPTIMIZE(X (4, vy ,hy 1) — Neighbors(X:), V(v vs,h1,ht1))
X, < OPTIMIZE(X (4, vp,h+1,h5) — Neighbors(X:), Yiu, vs,h,h0))
Xp+— Xt UXUX,
Return Xp of maximum weight among all the X;s.

To analyze the algorithm, first note that after deleting the neighbors of X,
we are left with two independent subproblems to be solved recursively. This is
because the dividing slab is wide enough so that the servers in the two subprob-
lems never cover the same clients. By using an efficient data structure we can
find a dividing slab in O(mlogm) time.

By Lemmaland the fact that no more than three servers can be chosen inside

5vVM
each grid-square, there are no more than (Z?:l (T)) < m'V™ /2 possible
solutions X; with servers inside the squares of the slab. For each X}, the process
of deleting its neighbors takes at most O(m) time. Thus for M > 2 we have the

96 N. Lev-Tov and D. Peleg

recurrence T'(M) < mlogm+ (2T(4M/5) +m) -mVM /2 5o after the kth iter-
ation T(M) < m*™ M0 VI 7 (3% 0r) 4 Shotm! 20 VT2
The problem on a single grid- bquare requlreb choosing at most three servers so
T(1) = O(m?), and as Y .o, /4 = < 10 we have that k = logs 4 M.

So as M < m, we have T(M) = 20(\ﬁ1°g m).

Theorem 1. The MWIS problem has an 20V™18™) time exact algorithm.

In the full paper we show the following.
Theorem 2.

1. The MWIS, and MWCS,, problems have an 20V'™m) time exzact algorithm.

2. The MSC, and MP,, problems have an 200V 1087 time exact algorithm.

3. The MP, problem admits a PTAS which for every k > 3 guarantees an
approximation ratio of 1 — 2/k with time complezity O(k* - m - 2((k_1)6)2).
Similar claims hold also for the MWIS,, MWCS, and MSC problems.

3 Minimum Sum of Radii Problems

In this section we turn to the variable radii model, and consider the MSRC
problem. Let D be the set of n - m disks determined by the sets X and Y as
follows. For each 1 < p < m and 1 < ¢ < n, the client y, € Y and the server
r, € X determine a disk Df € D of radius R} = dist(xp,y,) centered at x,. A
weight w! = R{ is associated with each disk D{, and w(D') = ZD?,GD’ wi is the
total weight for a set of disks D’ C D. Let 0] = 2R be the diameter of disk Dj
and let dyq2 and dyin, respectively, be the maximal and minimal values of o
for all possible p and gq.

A set of disks D' C D is called a cover for a set of clients Y’ C Y if each
client y, € Y’ is contained in some disk of D’. The problem is to find a cover
D' C D for Y of minimum total weight w(D"). We now present a polynomial
time algorithm that approximates the problem with ratio 1 + 2 6 for every given
integer k > 1.

First, the disks in D are scaled such that 6,4, = 1. Given k > 1, Let
0= [lgp (5 -)]. The set D is partitioned into £ + 1 levels s.t. for 0 < j < ¢

m,t

the disk Dg is on level j if and only if its diameter 7 satisfies (k + 1)~ U+ <
64 < (k+1)77. Disks of level j are called j-disks.

Analogously, we subdivide the plane by introducing a hierarchy of increas-
ingly finer grids, s.t. each level 0 < j < £ imposes a grid G of lines at distance
(k + 1) of each other, aligned so there is a grid point at (0,0). We refer to
lines of the level j grid G; as j-lines. A vertical j-line is of index v, for integer
—00 < v < oo, if its coordinate is & = v(k + 1)77; a similar definition applies
to horizontal j-lines.

On top of each grid G of this hierarchy, we now construct a coarser super-
grid SG;(v, h) for every 0 < v, h < k as follows. For every 0 < v < k, let VL;(v)

Exact Algorithms and Approximation Schemes 97

denote the collection of vertical j-lines of G; whose index modulo % equals v.
Similarly, for every 0 < h < k, let HL;(h) denote the collection of horizontal
Jj-lines of G; whose index modulo k equals h. Now the super-grid SG;(v,), for
0 <wv,h <k, consists of the line collection VL;(v) UHL;(h).

For fixed (v, h) and a certain level 0 < j < ¢, the lines of SG, (v, h) subdivide
the plane into disjoint squares of side k- (k+1)~7, called j-squares. A j-square J
is called relevant if D contains a j-disk that covers a client in J. For a relevant
j-square J and a relevant j’-square J’ where j' > j, J' is called a child of J
(denoted J’ < J) if it is contained in J and there is no “intermediate” relevant
j"-square s.t. j < j” <j and J' C J" C J.

For a fixed choice of v,h and level j, for each j-disk D] € D and relevant
j-square J imposed by v and h, we define the disk-sector S{i(J) induced by D}
and J as their intersection. The disk sector S(.J) is then called relevant if it
contains a client of J. Note that each disk can induce up to four relevant disk
sectors.

Also, for each choice of v, h and level j, let D;(v,h) be the set of relevant
disk-sectors which are induced by j — disks and j — squares of SG;(v, h). For
given v, h, let D(v,h) = Jy<;<,Dj(v, h). This set is made of disk-sectors that
are each completely contained in a relevant square on their level. Note that a
disk-sector can be a full disk if the whole disk is contained in a square of the same
level. The weight of each disk-sector is defined to be the radius of the original
disk and the level and center of the disk-sector remain the same as well.

Two disks DJ! and D2 are said to be semi-disjoint if DJ! does not con-
tain z,, and D2 does not contain z,,. A subset of disk-sectors S € D(v,h)
is then said to be semi-disjoint if D! and Dj2 are semi-disjoint for every
S8 (1), B () €S,

Let OPT(D(v, h)) be the optimal value of a cover for Y that can be obtained
when restricted to the elements of D(v, h). We then have the following lemma.

Lemma 2. At least one pair (v, h), for some 0 < v, h < k, satisfies
OPT(D(v,h)) < (1+6/k)- OPT(D).

Proof. Let C denote the optimal cover by the original disks, i.e., such that
OPT(D) = w(C). For each choice of v and h, let C(v,h) be the set of rele-
vant disk sectors of C as mentioned above. Because the spacing between j-lines
is no smaller than the diameter of a j-disk, it follows that if a j-disk of C was
cut by a vertical j-line in SG,(v, h) then for all other choices of v # v this disk
will not be cut by any vertical j-line of VL;(v’). Also, if a j-disk of C was cut by
a horizontal j-line in SG,(v, h) then for all other choices of A’ # h this disk will
not be cut by any horizontal j-line of HL;(h').

For 0 < v < k and a level j, let C} be the set of all j-disks in C that intersect
a line of VL;(v), and let C* = |J;C}. Note that C = (J,C" and by the above
argument the sets C¥ for 0 < v < k are disjoint, so w(C) = >, w(C"). Therefore
the weight of at least one of these sets must be at most a %—fraction of the weight
of C, i.e., w(C) < w(C)/k for some 0 < v < k. Similarly, letting C]’-1 be the set
of all j-disks in C that intersect a line of HL;(h) and letting C" = Uj th, we get
that w(C") < w(C)/k for some 0 < h < k. Hence for these v and h, w(C”* UC") <

98 N. Lev-Tov and D. Peleg

#w(C). Bach disk DJ of C* UC" induces up to four disk-sectors in C(v, h) with
weight w(D{). Thus when calculating w(C(v, h)), we count the weight of each
disk of C while possibly adding the weight of the disks which belong to C* U C"
at most three times more. We therefore have w(C(v,h)) < (1+ £)-w(C). |

For fixed v, h and j-square J we use the following terminology. For any subset
S € D(v,h) and integers 0 < a < b < k, S[‘(]l] is the set of all sectors in S of

levels in the range [a, b] that contain a client of J. If a = b we write simply S./.
A full partial cover of J is a collection F of semi-disjoint disk-sectors of levels in
the range [0, j] that contain a client of J such that F is a cover for the clients of
J that cannot be covered by any of the disk-sectors of levels in [j+1,1]. A partial
cover P of J is a set of disk-sectors ffé,j—l] for some full-partial cover F of J.
For a partial-cover P of .J, a (J,P)-completion is a collection C of disk-sectors of
levels in the range [j,(] that contain a client of J such that C UP is a cover for

the clients of J and P U CJJ is a full partial cover for the clients of J.

Lemma 3. For a j-square J there exists a constant v (depending only on k),
such that for every full-partial cover F of J, |F| < 7.

Proof. The disk sectors of F are induced by J or by a square containing J, so
no two sectors are induced by the same disk. Therefore, letting Q' be the set of
(semi-disjoint) disks inducing the sectors of F we have |F| < |Q’|. Consequently,
it suffices to show that there exists a constant - such that for a set Q of semi-
disjoint disks of levels in the range [0, j] that intersect J, |Q| < 7.

Let Q be such a set of disks and let 1) = (k+1)~7 and d = % Let dmin(Q)
denote the minimal distance between the centers of Q. The semi-disjointness
property of Q implies that dpin(Q) > d. Let J' be a square consisting of J and
a strip of width v surrounding J. Let Q7 " be the set of disks in Q whose centers
are contained in .J’ and let 97 = Q — Q7.

To bound |Q”'|, subdivide J' into a grid GH composed of lines at distance
d/\/2 of each other (the last strip will be narrower, as the side length of J’ is
not an integral multiple of d/v/2). As dmin(Q) > d, each square of the grid GH
contains at most one center of a disk of Q7 /, hence the size of Q7 " is bounded

by the number of grid squares, i.e., |QJ,| < ““jf/)f = O(k%).

It remains to bound the size of Q7. Observe that this set consists of disks of
levels smaller than j, because the centers of all disks of level j must fall inside
J'. Consider the grid G; and ignore all the j-lines that do not touch the square
J. To this grid add two lines which determine the diagonals of J. These lines
impose a subdivision of R? — J’ into 4(k + 2) regions. The proof is completed
upon verifying that each part of the subdivision can contain at most one center
of the disks of Q7' and hence |Q7'| < 4(k+2). |

The algorithm for computing the table T uses the procedure Proc(J, F)
for each j—squar(,e J and full partial cover F. This procedure looks up the table
entries T'(J’ 7}'[‘6, ;) of all children J "of J (which were already computed) and

outputs their union .

Exact Algorithms and Approximation Schemes 99

Procedure PROC is used within the procedure CoNs(T) for constructing the
table T'. Procedure CONS operates on the levels j from [to 0. For each j, the
procedure looks at each relevant j-square J and each full partial cover F of
J, computes P = .7-"[‘(’)7j_1] and then uses Procedure PROC to compute C =

Proc(J, F) U Fy. Finally, it updates T'(J,P) to C provided this entry was still
undefined or its previous weight was higher than w(C).

The main algorithm operates as follows. For each choice of v, h, Let R be the
set of relevant squares and R the set of relevant squares without a parent. Then
the algorithm outputs the minimum of w({J;cx, T(J,0)) over all pairs v, h.

In the analysis, deferred to the full paper, we prove that for each relevant
j-square J and partial cover P, the table entry T'(J,P) is a minimum weight
(J,P)-completion, and that for a minimum-weight cover M C D(v,h) for YV
and a relevant j-square .J, /\/%7 il is semi-disjoint. Verifying that the algorithm
is polynomial in the input size, we have the following result.

Theorem 3. The MSRC problem admits a PTAS.

References

1. M. Charikar and R. Panigary. Clustering to minimize the sum of cluster diameters.
In Proc. 88rd ACM Symp. on Theory of Computing, July 2001.

2. B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk graphs. Discrete Mathe-
matics, 86:165-177, 1990.

3. T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation schemes for
geometric graphs. In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, 2001.

4. C. Glasser, S. Reith, and H. Vollmer. The complexity of base station positioning in
cellular networks. In Proc. ICALP Workshops, 167-177. Carleton Press, 2000.

5. D.S. Hochbaum and W. Maas. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32:130-136, 1985.

6. H.B Hunt, S.S. Ravi, M.V.Marathe, D.J.Rosenkrantz, V.Radhakrishnan, and
R.E.Stearns. NC-approximation schemes for NP-and PSPACE-hard problems for
geometric graphs. Journal of Algorithms, 26(2):238-274, 1998.

7. R.Z Hwang, R.C.T Lee, and R.C. Chang. The slab dividing approach to solve the
Fuclidian p-center problem. Algorithmica, 9:1-22, 1993.

8. R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM J. on
Applied Math., 36(2):177-189, April 1979.

A Factor-2 Approximation for Labeling Points
with Maximum Sliding Labels*

Zhongping Qin'? and Binhai Zhu?

! Department of Mathematics, Huazhong University of Science and Technology,
Wuhan, China. qin@cs.montana.edu.
2 Department of Computer Science, Montana State University, Bozeman, MT
59717-3880, USA. bhz@cs.montana.edu.

Abstract. In this paper we present a simple approximation algorithm
for the following NP-hard map labeling problem: Given a set S of n
distinct sites in the plane, one needs to place at each site an axis-parallel
sliding square of maximum possible size (i.e., a site can be anywhere on
the boundary of its labeling square) such that no two squares overlap and
all the squares have the same size. By exploiting the geometric properties
of the problem, we reduce a potential 4SAT problem to a 2SAT problem.
We obtain a factor-2 approximation which runs in O(n? logn) time using
discrete labels. This greatly improves the previous factor of 4.

1 Introduction

Map labeling is an old art in cartography and finds new applications in recent
years in GIS, graphics and graph drawing [1[4J5/12[1415/19117/182112526/27].
About a decade ago, an interesting relation between 2SAT and map labeling
was found by Formann and Wagner [12]|. This finding leads to a series of exact
and approximate solutions for different map labeling problems; among them, the
first factor-2 approximation for labeling points with maximum discrete squares
[12], the first polynomial time solution for labeling a set of disjoint rectilinear
line segments [21], a factor-3.6 approximation for labeling points with maximum
circles [7], and a factor-2 approximation for labeling points with maximum square
pairs [22]. (Recently, we obtain a very simple factor-3 approximation for labeling
points with maximum circles [23].)

The idea of using 2SAT in map labeling is very simple. Suppose that we have
two points p, ¢ and somehow we want to label p,q using two candidate labels
each, one upper and one lower (Figure 1), we need to pick one label for each
point. Assume that we use a binary variable X (Y') to encode the labeling of p
(¢) in Figure 1, i.e., if we pick the upper label for p (¢) then X =1 (Y =1) else
X =0 (Y =0), then in the example of Figure 1 we need to satisfy the following
formula (X AY)A=(=X AY) A =(=X A =Y), where —=(u A v) means ‘we do
not want u,v to be true at the same time’. Simplifying the above formula, we

* This research is partially supported by Hong Kong RGC CERG grant Ci-
tyU1103/99E, NSF CARGO grant DMS-0138065 and a MONTS grant.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 100-[I09 2002.
© Springer-Verlag Berlin Heidelberg 2002

A Factor-2 Approximation for Labeling Points 101

have (=X V-Y)A (X VY)A (X VY). It is easy to find a truth assignment
X =1,Y = 0 for this 2SAT formula, which implies that we should choose the
upper label for p and lower label for q.

Fig. 1. An example of using 2SAT in map labeling.

At this point let us say a few words about the discrete/sliding models used
in map labeling. In [I2], for each site one has 4 candidate labels (axis-parallel
squares each of which has a vertex anchored at the site) and the problem is to
select one out of the 4 candidates for each site so as to maximize the labels’ size
yet make sure that no two labels intersect. (We simply call each of the 4 candidate
labels a discrete label.) In the past several years more generalized models have
been proposed. The basic idea is to allow each site to have an infinite number of
possible candidate labels (see [8[I3]16/24/26]). This model is more natural than
the previous discrete model (like the one in [12]) and has been coined as the
sliding model in [16]. Certainly, designing efficient algorithms for map labeling
under the sliding model becomes a new challenge.

In this paper, we investigate the following map labeling problem under the
sliding model. Given a set .S of n sites in the plane, label sites in S with maximum
uniform axis-parallel squares, namely how to place n axis-parallel squares of the
same size such that no two squares intersect except at their boundary; each square
18 associated with a point p; in S such that p; lies on the boundary of that square;
and the size of these uniform squares is maximum.

In [16] van Kreveld et al. proved the NP-hardness of this problem, i.e., it is
NP-hard to decide whether a set of points can all be labeled with axis-parallel
unit squares under the sliding model. A careful look at their proof results in a
better hardness-result, i.e., it is NP-hard to decide whether a set of points can all
be labeled with axis-parallel squares of size greater than 0.75. (Notice that van
Kreveld et al. tried to maximize the number of sites labeled instead of the size of
the labels in [16].) Clearly, it is meaningful to study approximation algorithms
for this problem. In [27], two approximation algorithms, with factor-5v/2 and
factor-4 respectively, were proposed.

Our idea is as follows. We first compute the minimum diameter Ds o (5), un-
der the L, metric, of a 5-subset of S and use it to bound the optimal solution [*.
We then design a decision procedure, which, for L < Ds o (5), decides whether
a labeling of S using discrete labels of size L/2 exists or not and if L <I* then
the answer is always yes. This can be done as follows. We identify all the feasible

102 Z. Qin and B. Zhu

regions (to be defined formally) to place a label of size L for p;. (There are at
most 4 such feasible regions for p;.) We prove that if we shrink all of the optimal
sliding labels by a half then we can label points in S with discrete labels at least
half of the optimal size at 2 stages: some of them can be labeled at a unique
discrete position and will not interact with other labels, others can be labeled
at one of the 2 discrete positions such that either one of the candidates of such
a point p; is in the optimal label for p; or one of the candidates of p; intersects
at most one candidate of another point p;.

Our detailed algorithm again uses 2SAT. For each point p;, let C;(L) be the
square that has p; as its center and is of edge length L < Dj (5). We thus
have an O(n)-size intersection graph G(L) for all C;(L),1 < i < n. (G(L) can be
constructed in O(nlogn) time.) Consequently, for fixed L whether we can label
S using sliding labels of size at least L/2 can be determined in O(n) time and
moreover; if L < [* then the answer is always positive and the corresponding
approximate labeling can be determined also in O(n) time. With this decision
procedure, we can either have an O(n?logn) time approximation.

2 Preliminaries

In this section we make some necessary definitions related to our algorithm.
The decision version of the MLUS-AP problem is defined as follows:

Instance: Given a set S of points (sites) p1, pa, ..., pn in the plane, a real
number [> 0.

Problem: Does there exist a set of n uniform axis-parallel squares of edge
length [, each of which is placed at each input site p; € S such that no two
squares intersect, a site can be anywhere on the boundary of its labeling square
and no site is contained in any square.

This problem is NP-hard [16]. From now on we will focus on the mazimiza-
tion version of this problem (i.e., to compute/approximate the optimal solution
with size [*). We say that an approximation algorithm for a (maximization) op-
timization problem IT provides a performance guarantee of p if for every instance
I of II, the solution value returned by the approximation algorithm is at least
1/p of the optimal value for I. (For the simplicity of description, we simply say
that this is a factor-p approximation algorithm for IT.)

If we allow a small number of sites to be unlabeled then it is possible to
obtain a bicriteria polynomial time approximation scheme (PTAS) for this
problem [8]. The best known approximation factor is 4 and the running time
of the corresponding algorithm is O(nlogn) [27]. In this paper we present an
O(n?logn) time, factor-2 approximation algorithm for this problem.

Let k > 2 be an integer. Given a set S of k points (sites) in the plane, the
k-diameter of S under the L..-metric is defined as the maximum L ..-distance
between any two points in S. Given a set S of at least k sites in the plane, the

A Factor-2 Approximation for Labeling Points 103

min-k-diameter of S under the Lo, metric, denoted as Dy, oo (.S), is the minimum
k-diameter over all possible subsets of S of size k.

In the following section we present an approximation solution for MLUS-
AP. We use D5 »(S), the min-5-diameter of the set S under L., to bound
the optimal solution I*. Given a set of n sites S, D5 (5) can be computed in
O(nlogn) time [6/10].

3 Algorithm

In this section we present the details of an approximation algorithm for the
MLUS-AP problem. Let [* denote the size of each square in the optimal solution
of the problem MLUS-AP. For any two points p;,p; € S, let doo(p;, pj) denote
the L-distance between them. We first refer the following fundamental lemma
in [27].

y
/l b 4
A T) P L2,
‘ §s£i) s (i)
4 : il A L ZERTEREE
e R ’ D) g ')iL/2
L q(Sl ‘ Sl
doo A
P .
. c;L)
V' o
vy R

Fig. 2. Maximal feasible regions for p;.

Lemma 1. If |S| < 4, then I* is unbounded and if |S| > 5, then I* < D5 o (S).

From now on we assume that |S| > 5. Let L < D5 o(S) and let C;(L) denote
the open Ly, -circle centered at point p; € S with radius L/2. Clearly, the circle
C;(L) contains at most four points from the input set S, including its center.
(Otherwise, the five points inside C;(L) would have a diameter smaller than
L < D5 (5).) We partition each circle C;(L) into 4 Ly-circles with radius
L/4, which are geometrically squares (see Figure 2). We loosely call them sub-
squares s1(1), s2(1), s3(1), s4(2) of C;(L) which are corresponding to the quadrants
originated at p; in which they lie in. When labeling S with labels of size L/2, if
a sub-square of C;(L) has no intersection with any other label then we call such
a sub-square free. Clearly, a free sub-square of C;(L) can be a discrete label for
bi-

104 Z. Qin and B. Zhu

We define the mazimal feasible region for labeling p; € S using a sliding label
of size L as follows. (If L < [* this definition is always valid.) A mazimal feasible
region for a site p; € S whose corresponding Loo-circle C;(L) contains at most
one other point p; in S is the set of all vectors originated at p; which pass through
the center of a sliding label of size L for p;. Each such vector corresponds to a
maximal feasible box with length and height at least L, e.g., in Figure 2 v; is
corresponding to the box through p; and py. Clearly a maximal feasible region
for p; is determined by two points in S, e.g., p; and p;. in Figure 2. We call p;, pi,
the anchor points of this region. (Note that there are degenerate cases, e.g., in
Figure 2 the feasible region for p; anchored by p;, p,, contains only one vector
1}2.)

In [7] it is shown that in the case of labeling points with uniform approximate
circles, every point has at most two maximal feasible regions. This makes it pos-
sible to apply 2SAT directly to obtain a factor-3.6 approximation [7]. However,
in our case a point p; € S can have four maximal feasible regions; therefore, a
different method has to be used.

Given L < D5 (S) we compute the number of free sub-squares in C;(L)
and the maximal feasible regions for every point p; € S. (This can be done by
computing the points which are within D5 o (S) distance to p;. By the property
of D5 +(5), for each p; we have at most 24 such points and they can be computed
in O(nlogn) time using the algorithms in [10/6]. If some point p; has no maximal
feasible region then L > [* and we have to search for a smaller L.) If a point p;
has at most two maximal regions or if C;(L) has at most two non-empty sub-
squares then we can always choose at most two discrete candidates of size L/2
for p; such that at least one of the candidate is contained in an optimal label for
p; with fixed size L.

In a solution which we can label all input sites with labels of size L < [*,
we call the corresponding label for p; the optimal label for p; (with size L). The
nontrivial part of our algorithm, which is different from [7], is as follows. If p;
has more than two maximal feasible regions, then we can still pick up a pair
of discrete labels with size L/2 for p; such that either one of them appears in
the optimal label for p; with size L, or any one of them intersects at most one
candidate of another point p;. This reduces a potential 4SAT problem to a 2SAT
problem; in other words, if we simply list all four discrete labels of size L/2 for
p; then we would have four candidates for each p; [27]. The following lemma
shows the correctness of the above method.

Lemma 2. Let p; have more than two mazimal feasible regions and let L < [*.
We can compute two discrete candidate labels with size L/2, c1(p;) and c2(p;),
for p; such that either one of ¢1(p;) and ca(p;) is contained in the optimal label
for p; with size L or c1(p;) (c2(psi)) intersects at most one candidate of another

point p;.

Proof: We refer to Figure 3, in which p; has three maximal feasible regions
and Figure 3 (a) shows the points around p;. By the definition of a maximal
feasible region, we can have at most four of them and each region can contribute

A Factor-2 Approximation for Labeling Points 105

e R T
oP : “
S I
T (S |
[) ° [EeEE ‘
P B T i
L] [| s 00000 i .H’:
SCIEETI ot
Ba |

p'e A DU 3

-
@ (b)

Fig. 3. Illustration for the proof of Lemma 2.

a square of size L. This implies that we must have two maximal feasible boxes
By, By which do not intersect (Figure 3 (b)). Although we do not know what
direction the optimal label for p; actually goes — this is determined by the whole
set of points, not just those local points of p;, we claim that either one of the
two diagonal sub-squares of C;(L) which are completely contained in By U By is
contained in the optimal label of p; with size L or one of the candidates of p;
intersects at most one candidate of another point which shares the same maximal
feasible box with p; (e.g., a candidate of p; in Figure 3). If neither of these two
conditions is true then either we cannot label p; with a label of size L or some
point is contained in a maximal feasible box of p;, both leads to a contradiction.
O

In the above lemma, note that once having all of the maximal feasible boxes
(regions) of p; we can easily construct two such labels with size L/2, ¢1(p;) and
c2(p;) (which can be encoded with a binary variable), in constant time. The
above lemma, though simple, has a strong implication. We label a point p; with
one of its selected candidates, which might force one of its neighboring points to
be labeled using a unique candidate. If a candidate of p; is inside the optimal
label of p; (with twice of the size) then certainly this candidate can intersect at
most one candidate of any other point p;. Otherwise, i.e., when p; has 4 maximal
feasible regions and we make a wrong decision in choosing p;’s candidates, we
still have this property. Of course, we might still have a problem: When p;
has 4 maximal feasible regions and we fail to choose the right candidates for
pi, there might be two cycles through p;’ candidates in the intersection graph
G'(L) of all candidates of input sites. (The vertices in G’(L) are candidates of
input sites, there is an edge between ¢, (p;) and ¢, (p;) if ¢, (p;) intersects c.(p;),
y,z € {1,2}.) This can be handled with the following lemma.

Lemma 3. Let p; have four maximal feasible regions and let L < [*. Let the two
discrete candidate labels for p; with size L/2 be s1(i) and s3(3) (s2(i) and s4(7)).

106 Z. Qin and B. Zhu

In G'(L), if we have two cycles associated with the candidates of p;, then we can
update the candidates of p; as s2(i) and s4(i) (s1(i) and s3(i)) to eliminate both
of the cycles.

Therefore, for the 2SAT formula we eventually construct, if L < [*, every
literal X can only intersect one of Y and —Y’; moreover, there is at most one cycle
associated with X and —X. Clearly, such a 2SAT formula is always satisfiable.
The following lemma contains other details we have not described so far and is
the basis for our approximation algorithm. For each input site we only need to
consider at most two discrete labels as its labeling candidates! This naturally
connects this problem, for one more time, to 2SAT.

Lemma 4. For any L < [I*, we can label S using discrete labels of size at least
L/2; moreover, for each site p; € S we only need to consider at most two candi-
dates.

e
°

(d)
Fig. 4. Illustration for the proof of Lemma 3.

Proof: It is easy to see that given a labeling of S with sliding labels of size
L, we can always label S using discrete labels of size L/2 for every p; € S (i.e.,
shrinking all sliding labels by a half to a discrete label with size L/2). In the
following, we exploit the geometric properties of the problem to show that to
actually label p; using a label of size L/2 we only need to consider at most two
discrete candidates for every p;.

First of all, remember that C;(L) contains at most four sites in S including
its center p;. If all four sites are within the Lo-circle C;(L/2) then we can label

A Factor-2 Approximation for Labeling Points 107

the 4 sites in a unique way using discrete labels of size L/2 without any conflict
with other labels (Figure 4 (a)).

Now assume that the above situations have been handled. Because C;(L)
has 4 sub-squares and it contains only 3 other sites different from p;; by the
Pigeonhole Principle, one of the sub-squares of C;(L) must be empty of other
sites in S. If exactly one of the sub-squares of C;(L) is empty (e.g., the upper-left
sub-square s2(7) in Figure 4 (b)), then it must be free as any label with size L
for p; must contain this sub-square. In this case, we can simply label p; with
s2(i) as the discrete label.

If exactly two of the sub-squares of C;(L) are empty (e.g., the upper-left and
bottom-right sub-squares s5(i), s4(¢) in Figure 4 (c)), then one of them must
be free. We therefore use two literals X;(L) and —X;(L) to encode these two
sub-squares. (If two adjacent sub-squares are empty, we can handle the situation
similarly.)

If either three or four of the sub-squares of C;(L) are empty (e.g., the case
in Figure 4 (d)), then we identify the maximal feasible regions around p; and by
definition if L < [* then such a region must exist.

If p; has three maximal feasible regions, then we can handle this case using
Lemma 2 (Figure 4 (d)). If all four sub-squares of C;(L) are empty and if p;
has four maximal regions, then we can handle this case using the algorithm
summarized in Lemma 2 and Lemma 3. O

We now present our decision procedure which tests whether a labeling of S
using squares of size L/2, L < Ds o, under the discrete model exists or not. First
we consider the intersection graph G(L) of all C;(L)’s (i.e., C;(L), 1 < i < n,
are the vertices for G(L) and there is an edge between C;(L),C;(L) if they
intersect.) This graph G(L) has two properties: (1) G(L) is planar; and (2)
G(L) has maximum vertex degree 7.

We can construct the graph G(L) in O(nlogn) time using standard algo-
rithm, like plane sweep [20]. (G'(L) can be computed from G(L) in O(n) time.)
If the sub-square corresponding to the literal X;(L) intersects another sub-square
corresponding to the literal X;(L), then we will build a 2SAT clause

~(Xi(L) A XG(L)) = (=Xi(L) V = X;(L)).

As G(L) is of linear size the eventual 2SAT formula contains at most O(n)
such clauses. Following Lemma 4, if L < [* then this 2SAT formula is always
satisfiable and finding a truth assignment can be done in O(n) time [11]. We
thus have the following lemma.

Lemma 5. Deciding whether a labeling of S using discrete labels of size L/2
exists, L < D5 »(S5), can be done in O(n) time.

By runing a binary search on L € (0, D5 »(S5)] and stop when the eventual
search interval is small enough, say §, we can compute a labeling of S using
discrete labels of size at least {*/(2 4 §) in O(nlogn + nlog DE’%(S)) time. We
thus have the following theorem.

108 Z. Qin and B. Zhu

Theorem 1. There is an O(nlogn+nlog %%%S))

imation for MLUS-AP.

time, factor-(2+9) approz-

Notice that the running time of this algorithm is not fully polynomial. Nev-
ertheless, it is conceptually simple. In practice, we could make the algorithm
completely practical by using a heuristic algorithm to approximate Ds o (S). If
we want to have a fully polynomial time approximation algorithm, we need to
identify the possible candidates for [* which is proved in the following lemma.

Lemma 6. The candidates for I* include doo (pi, p;)/ K, 1 < K < n—1, provided
that they are bounded above by Dy o (S).

Lemma 6 implies that the number of candidates for I* is O(n?). If we compute
them out explicitly, sort them and run a binary search of this list (using the
decision procedure summarized in Lemma 5), then we would have an O(n? log n+
nlogn) = O(n3logn) time approximation. Using a technique reminiscent of
Blum et al. [2] on finding a median in linear time and a technique on computing
weighted median (page 193 of [3]), we do not have to try all the combinations of
i,j, K and we obtain an O(n?logn) time approximation algorithm for MLUS-
AP. (An identical technique is used in [9].) Therefore, we have the main theorem
of this paper.

Theorem 2. For any given set S of n sites in the plane, there is an O(n?logn)
time, factor-2 approzimation for the MLUS-AP problem.

Notice that in the NP-completeness proof of [I2] the optimal solutions of
using sliding labels and discrete labels to label the constructed input points are
the same. Therefore, if we use discrete labels to approximate MLUS-AP then we
cannot obtain a factor better than 2.

Corollary 1. It is NP-hard to obtain an approzimation solution with a factor
better than 2 using discrete labels for the MLUS-AP problem.

Notice that how to reduce the gap between 1.33 — ¢ and 2 for approximating
MLUS-AP remains an open problem. From Corollary 1, apparently we have to
use sliding labels to improve the factor-2 approximation.

References

1. P. Agarwal, M. van Kreveld and S. Suri. Label placement by maximum independent
set in rectangles. Comp. Geom. Theory and Appl., 11:209-218, 1998.

2. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan. Time Bounds
for Selection. J. of Computer and System Sciences, 7(4):448-461, 1973.

3. T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to algorithms. MIT
Press, 1990.

4. J. Christensen, J. Marks, and S. Shieber. An Empirical Study of Algorithms for
Point-Feature Label Placement, ACM Transactions on Graphics, 14:203-222, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A Factor-2 Approximation for Labeling Points 109

J. Doerschler and H. Freeman. A rule-based system for cartographic name place-
ment. CACM, 35:68-79, 1992.

A. Datta, I1.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms
for k-point clustering problems, J. Algorithms, 19:474-503, 1995.

S. Doddi, M. Marathe and B. Moret, Point set labeling with specified positions.
In Proc. 16th Annu. ACM Sympos. Comput. Geom., pages 182-190, June, 2000.
S. Doddi, M. Marathe, A. Mirzaian, B. Moret and B. Zhu, Map labeling and its gen-
eralizations. In Proc. 8th ACM-SIAM Symp on Discrete Algorithms (SODA’97),
New Orleans, LA, pages 148-157, Jan, 1997.

R. Duncan, J. Qian, A. Vigneron and B. Zhu. Polynomial time algorithms for
three-label point labeling, Invited paper accepted by TCS, a special issue for CO-
COON’01, March, 2002.

D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly-
topes, Discrete € Comput. Geom., 11:321-350, 1994.

S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicom-
modity flow problem. SIAM J. Comput., 5:691-703, 1976.

M. Formann and F. Wagner. A packing problem with applications to lettering of
maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 281-288, 1991.
C. Iturriaga and A. Lubiw. Elastic labels: the two-axis case. In Proc. Graph
Drawing’97, pages 181-192, 1997.

E. Imhof. Positioning names on maps. The American Cartographer, 2:128-144,
1975.

C. Jones. Cartographic name placement with Prolog. Proc. IEEE Computer Graph-
ics and Applications, 5:36-47, 1989.

M. van Kreveld, T. Strijk and A. Wolff. Point set labeling with sliding labels.
Comp. Geom. Theory and Appl., 13:21-47, 1999.

K. Kakoulis and I. Tollis. An algorithm for labeling edges of hierarchical drawings.
In Proc. Graph Drawing’97, pages 169-180, 1997.

K. Kakoulis and I. Tollis. A unified approach to labeling graphical features. Proc.
14th Annu. ACM Sympos. Comput. Geom., pages 347-356, 1998.

D. Knuth and A. Raghunathan. The problem of compatible representatives. STAM
J. Disc. Math., 5:422-427, 1992.

F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

C.K. Poon, B. Zhu and F. Chin, A polynomial time solution for labeling a recti-
linear map. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 451-453,
1997.

Z.P. Qin, A. Wolff, Y. Xu and B. Zhu. New algorithms for two-label point labeling,
In Proc. 8th European Symp. on Algorithms (ESA’00), pages 368-379, Springer-
Verlag, LNCS series, 2000.

Z.P. Qin, B. Zhu and R. Cimikowski. A simple factor-3 approximation for labeling
points with circles, Submitted to IPL, April, 2002.

T. Strijk and A. Wolff. Labeling points with circles. Intl. J. Computational Ge-
ometry and Applications, 11(2):181-195, 2001.

F. Wagner and A. Wolff. Map labeling heuristics: Provably good and practically
useful. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 109-118, 1995.
B. Zhu and C.K. Poon. Efficient approximation algorithms for two-label point
labeling, Intl. J. Computational Geometry and Applications, 11(4):455-464, 2001.
B. Zhu and Z.P. Qin. New approximation algorithms for map labeling with sliding
labels, J. Combinatorial Optimization, 6(1):99-110, 2002.

Optimal Algorithm for a Special Point-Labeling
Problem

Sasanka Roy!, Partha P. Goswami?, Sandip Das!, and Subhas C. Nandy'

! Indian Statistical Institute, Calcutta 700 035, India
2 Computer Center, Calcutta University, Calcutta 700 009, India

Abstract. We investigate a special class of map labeling problem. Let
P = {p1,p2,...,pn} be a set of point sites distributed on a 2D map. A
label associated with each point is a axis-parallel rectangle of a constant
height but of variable width. Here height of a label indicates the font size
and width indicates the number of characters in that label. For a point
i, its label contains the point p; at its top-left or bottom-left corner,
and it does not obscure any other point in P. Width of the label for each
point in P is known in advance. The objective is to label the maximum
number of points on the map so that the placed labels are mutually non-
overlapping. We first consider a simple model for this problem. Here, for
each point p;, the corner specification (i.e., whether the point p; would
appear at the top-left or bottom-left corner of the label) is known. We
formulate this problem as finding the maximum independent set of a
chordal graph, and propose an O(nlogn) time algorithm for producing
the optimal solution. If the corner specification of the points in P is not
known, our algorithm is a 2-approximation algorithm. Next, we develop
a good heuristic algorithm that is observed to produce optimal solutions
for most of the randomly generated instances and for all the standard
benchmarks available in [13].

1 Introduction

Labeling a point set is a classical problem in the geographic information systems,
where the points represent cities on a map which need to be labeled with city
names. The point set labeling problem finds many important statistical applica-
tions, e.g., scatter plot of principal component analysis [6], in spatial statistics
where the aim is to post the field measures against the points, etc. The ACM
Computational Geometry Impact Task Force report [2] lists label placement as
an important research area.

In general, the label placement problem includes positioning labels for area, line
and point features on a 2D map. A good labeling algorithm has two basic require-
ments: the label of a site should touch the site at its boundary, and the labels
of two sites must not overlap. Another important requirement is that the label
of one site should not obscure the other sites on the map. Many other aesthetic

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 110-[120} 2002.
© Springer-Verlag Berlin Heidelberg 2002

Optimal Algorithm for a Special Point-Labeling Problem 111

requirements for map labeling are listed in [7]. Given the basic requirements, two
major types of problems are considered: (1) label as many sites as possible, and
(2) find the largest possible size of the label such that all the sites can be labeled
in a non-overlapping manner. In general, both of these problems are NP-hard
[M]. In this paper, we shall consider a special case of the first variation of the
point-site labeling problem.

Let P = {p1,p2,...,pn} be aset of n points in the plane. For each point p; € P,
we have a rectangular label r; of specified size, and a set m; of marked posi-
tions on the boundary of r;. The label of a point p; must be placed parallel
to the coordinate axes, and must contain p; on one of the marked positions
on m;. A feasible configuration is a family of axis-parallel rectangles (labels)
R = {ry/,ro,... 7}, where all the ¢/ € {1',2/,... k'} are different and r; is
represented by a tuple {(py, i) | pir € P, zy € my and 7y is placed with py
at the position z; on its boundary}, such that the members in R are mutually
non-overlapping. The label placement problem is to find the largest feasible con-
figuration [I]. Typical choices of m; include (i) the end points of the left edge
of r;, (ii) the four corners of r;, or (iii) the four corners and the center points
of four edges of r;, etc. In [I], an O(logn)-approximation algorithm is proposed
for this problem which runs in O(nlogn) time. An a-approximation algorithm
produces a solution of size at least %, where A is the size of the optimal solu-
tion. In particular, if the labels are of the same height, a dynamic programming
approach is adopted to get a (1 + %)—approximation algorithm which runs in
O(nlogn + n?~1) time [1]. This case is of particular importance since it models
the label placement problem when all labels have the same font size. In [15], a
simple heuristic algorithm for the point labeling problem is proposed which is
easy to implement and produces near-optimal solution, but the running time is
O(nlogn + k), where k may be O(n?) in the worst case. The point labeling with
sliding labels is introduced in [8], where the point p; can assume any position
on the boundary of r;. The problem has shown to be NP-hard, and using plane
sweep paradigm, a 2-approximation algorithm has been presented whose time
complexity is O(nlogn). The label placement problem in the slider model has
been extended for the map containing several polygonal obstacles, and the ob-
jective is to label a set of n point sites avoiding those obstacles [1{]. The time
complexity of this algorithm is O((n + m)log(n + m)), where m and n are re-
spectively the total number of vertices of all the polygons, and the number of
point sites to be labeled. In [I1], a decision theoretic version of the map labeling
problem is introduced where the sites are horizontal and vertical line segments.
Each label has unit height and is as long as the segment it labels. The problem
is to decide whether it is possible to label all the sites. The problem is trans-
formed to the well known 2-SATISFIABILITY problem, and an algorithm for
this decision problem is proposed which runs in O(n?) time. Later, in [J], the
time complexity was improved to O(nlogn). Good heuristics are proposed for
labeling arbitrary line segments and polygonal areas [3].

In our model, the labels of the points on the map are axis-parallel rectangles
of a constant height (h) but of variable width. The width (w;) of the label of

112 S. Roy et al.

a point p; is pre-specified. The point p; appears either on the top-left or the
bottom-left corner of its label. A label said to be wvalid if it does not contain
any other point(s) of P. Thus, for each point, it may not have any valid label,
or it can have one valid label or it can have two valid labels. We consider the
following two variations of the problem:

P1: For each point p; € P, the corner specification (i.e., whether p; would appear
at the top-left or bottom-left corner of the label) is known.

P2: The corner specifications of the points in P are not known.

Problem P1 is modeled using maximum independent set of a chordal graph,
and an O(nlogn) time algorithm is proposed which produces optimum solution.
A minor modification of this algorithm is proved to be a 2-approximation al-
gorithm for problem P2. Finally, we propose an efficient heuristic algorithm for
the problem P2. This heuristic is tested on several randomly generated examples
and the standard benchmarks [13]. In most of the randomly generated examples,
and for all the benchmarks it produces optimum solution. Surely, we have en-
countered few random instances where it fails to produce optimum solution.
However, for all instances, we have tried, our algorithm outputs better result
than the algorithm presented in [IJ.

2 Problem P1

Let P = {p1,p2,...,pn} be a set of points in the plane. Each point p; is as-
sociated with a label r; which is a closed region bounded by an axis-parallel
rectangle. We assume that the heights of all r; are same, but their width may
vary. The placement of label r; must coincide with the point p; at either of
its top-left and bottom-left corners which is specified. A label r; is said to be
valid if it does not contain any point p; € P(j # ¢) in its interior. In Fig. 1,
we demonstrate the valid and invalid labels (using solid and dashed rectangles,
respectively). We construct a graph, called label graph LG = (V| E), whose set
of vertices (V') correspond to the valid labels of the points in P. An edge e € E
connects a pair of nodes v;,v; if their corresponding labels have a non-empty
intersection. In the worst case, |V| = n and |E| = O(n?). Our problem is to find
the largest subset P’ € P such that valid labels corresponding to the members
of P’ are mutually non-overlapping. We show that the above problem reduces to
finding the maximum independent set of the label graph LG. In the next section,
we mention some important characterization of the label graph.

2.1 Some Useful Results

Definition 1. [5] An undirected graph is a chordal graph if and only if every
cycle of length greater than or equal to 4 possesses a chord.

Optimal Algorithm for a Special Point-Labeling Problem 113

Fig. 1. Examples of valid and invalid labels

Definition 2. [J] A graph G = (V, E) is said to have a transitive orientation
property if each edge e € E can be assigned a one-way direction in such a way
that the resulting oriented graph G' = (V, F) satisfies the following condition:
ab € F and bc € F imply ac € F for all a,b,c € V. Here F denotes the set of
oriented edges obtained from the set of edges E of the graph G.

Definition 3. [J] The intersection graph of a family of intervals on a real line
1s called an interval graph.

Fact 1 [5] A chordal graph is an interval graph if and only if the complement
of the graph has a transitive orientation. O

Fact 2 [5] Every chordal graph is a perfect graph. a

From now onwards, we use ZG, £G and CG to denote the classes of interval
graphs, label graphs and chordal graphs, respectively.

Lemma 1. The intersection graph of a set of valid labels is a chordal graph, but
the converse may not always be true.

Proof: Let LG be a label graph which contains a chordless cycle C' of length
greater than or equal to 4 (see Fig. 2(a)). Since the left edge of r is rightmost,
either s or ¢ must contain the point that r labels (since labels are of same
height). This contradicts the validity of r. For the second part, consider the
chordal graph in Fig. 2(b). It can be easily shown that it is impossible to place
points corresponding to all the vertices of that graph such that the labels (with
any arbitrary size and the corner specification) of all the points are valid. O

It can be easily shown that any interval graph is a label graph, but the converse
is not true. This leads to the following theorem.

Theorem 1. ZG C LG C CG. m]

114 S. Roy et al.

(a) (b)

Fig. 2. Proof of Lemmal(Il

2.2 Algorithm

We propose an efficient algorithm for finding the placement of maximum number
of labels for the points in P. For each point p; € P, the size of its label r;, and
the corner specification (top-left /bottom-left) of point p; on r; is already known.
For each label, we check its wvalidity (whether it obscures any other points or
not) by searching a 2-d tree [12] with the set of points in P. This step requires
O(nlogn) time in total for all the labels.

Let R = {r1,r2,...,r~n} (N < n) be a set of valid labels placed on the plane.
The traditional line sweep technique may be used to construct the label graph
LG in O(nlogn + |E|) time. Our objective is to find the maximum independent
set of LG, denoted by MIS(LG). As LG is a perfect graph (see Lemma [I] and
Fact 2), we define the perfect elimination order (PEQO) among the vertices of
the graph as follows:

Definition 4. [5] A vertezv of a graph LG is a simplicial vertex if its adjacency
set Adj(v) induces a complete subgraph of LG.

Definition 5. [J] Let 0 = {v1,v2,...v,} be an ordering of vertices of LG. We
say that o is a perfect elimination order (PEQ) if each v; is a simplicial vertex
of the induced subgraph with the set of vertices {v;,...,v,}. In other words, each
set X; = {v; € Adj(v;)|j > i} is a complete graph.

Lemma 2. If v; (corresponding to point p;) is a simplicial vertex in LG, then
there exists an optimal solution of the problem P1 containing the label r;.

Proof: [By contradiction] Let v; be a simplicial vertex, and it does not appear in
the optimum solution. Let V; = {v;1, vi2, ..., vir} be the set of vertices adjacent
to v;. Now we need to consider two cases: (i) none of the vertices in V; appears
in MIS(LG), and (ii) one member, say v;; of V; appears in MIS(LG). Case (i) is
impossible since we can include v; in MIS(LG) as it does not intersect with any
one of the existing members of MIS(LG). In case (ii), no member of V; except v;;
is present in MIS(LG). Thus, we can replace v;; by v; in MIS(LG); the updated
set (MIS(L@G)) will remain maximum independent set of LG. O

Optimal Algorithm for a Special Point-Labeling Problem 115

Iy

Fig. 3. Proof of Lemma[3]

Lemma 3. Let R be a set of valid labels. The sorted order of the left boundaries
of R from the right to the left, gives a PEO of the graph LG.

Proof. Let L = {\1,A2,...,An} be the left boundaries of the labels in R, and
let L* denote the sorted sequence of the members in L in a right-to-left order.
Consider the left boundary \; of a label ;. Let R’ be a subset of R such that the
left boundaries of all the members in R’ appear after \; in L*, and all of them
intersect r;. We need to prove that R’ U {r;} forms a clique. As the placement
of r; is valid, either all the members of R’ contain the top-left corner of r; or all
of them enclose the bottom-left corner of r; (in Fig. 3, r; and 74 encloses the
top-left corner of r;). In other words, the corresponding point p; € P is present
either at the bottom-left corner of r; or at the top-left corner of r;. Hence all the
members in R U {r;} have a common region of intersection. O

Theorem 2. The PEO of a label graph with n vertices can be obtained in
O(nlogn) time.

Proof. Follows from Lemma [l O
Let o be a PEO for the graph LG = (V, E). We define inductively a sequence
of vertices yi,...,y: in the following manner: y; = o(1); y; is the first vertex

in o which follows y;_1, and which is not in {X,, UX,, U...UX,, |}, where
X, = {z € Adj(v) | 071 (v) < 071(x)}. Hence, all the vertices following y; are
in X,, UX,, U...UX,,,and V={y,..., 5.t UX,, UX,, U...UX,,.

Theorem 3. The vertices {y1, ..,y } forms a mazimum independent set in LG.

Proof. Follows from Theorem [1l and Theorem 4.18 of [5]. O

The maximum independent set of LG can be obtained in O(|V| + |E|) time [5].
We now show that if the placement of the labels corresponding to the vertices
of LG is available in the plane, then a maximum independent set of LG can
be determined in a faster way by simply sweeping the plane with a vertical line
from right to left.

116 S. Roy et al.

Algorithm MIS (* for finding the maximum independent set of LG *)

Input: An array L containing the line segments corresponding to the left and
the right boundaries of all the valid labels r; € R. An element representing
a right boundary of a label has a pointer to its left boundary. With each
element of L, a flag is stored and is initialized to 0. During execution, the
flag of an element is set to 1 if it is selected as a member of MIS(LG) or if
its corresponding label overlaps on a label of M1S(LG) under construction.
Output: A maximum independent set (MIS) of the intersection graph of R.
Preprocessing: We initialize an interval tree 7 [I2] with the y-coordinates of
the top and bottom boundaries of the labels in R. T is used for storing the
vertical intervals of those labels that the sweep-line currently intersects, and
does not overlap with any of the existing members in MIS.
Step 1: Sort the array L with respect to the z-coordinates of its elements in
decreasing order.
Step 2: Process the elements of the array L in order.
Let I € L be the current element.
If flag of I is 1, then ignore I; otherwise perform the following steps.
2.1: If I corresponds to the right boundary of a label, then insert I in 7.
2.2: Otherwise (* if it corresponds to the left boundary of a label *)
2.2.1: Insert the label r (corresponding to I) in MIS.

2.2.2: (* Note that [is currently in T *)
Search T to find the set X, = {J | J € T and J overlaps with I}.
2.2.3: (* Note that TU X, form a clique. In other words, the set of labels
corresponding to I U X,. are mutually overlapping *)
For each member in X, (* representing the right boundary of a label
*) the flag bit of its corresponding left boundary element is set to 1.
2.2.4: Finally, remove all the intervals in I U X,. from 7.
Step 3: Report the elements of the array MIS.

Theorem 4. Algorithm MIS computes the mazximum independent set of the
label graph LG in O(nlogn) time.

Proof. The PEO of the graph LG is obtained from the right to left sweep on
the plane (see Theorem [2). When a label is selected as a member in the MIS, its
adjacent labels are discarded by setting 1 in their flag bit. Now by Theorem [3]
the correctness of the algorithm follows. Next, we discuss the time complexity
of the algorithm.

The initial sorting requires O(nlogn) time. A vertical interval corresponding to
each label is inserted once in 7. After placing a label, say r;, in the MIS array, it
is deleted from 7. The set of labels X,,, whose corresponding vertical intervals
are in 7 and which overlap on r;, are recognized in O(k; + logn) time. These
intervals are deleted from 7, so that none of them will be recognized further.
So, for every pair of elements r;,7; € MIS, X, (| X,, = ¢, and if MIS contains ¢
elements then Zﬁzlki < n. Each insertion/deletion in 7 requires O(logn) time.
Thus the proof of the result. O

Optimal Algorithm for a Special Point-Labeling Problem 117

3 Problem P2

As in the problem P1, here also the point p; may appear either of the top-left
and bottom-right corners of r;, and for each point p; € P, the size of its label
r; is given, but unlike problem P1, the corner specification of the label r; is not
known in advance. Thus, a point p; may not have any valid label, or it may have
one or two valid labels. If a point p; has two valid labels, say r; and 7}, they
have an edge in the label graph LG. Fig. 4 shows that, in this case, the label
graph may contain cycle(s) of length > 5; so it may not always be a perfect
graph. Thus, the earlier algorithm may not produce optimum result. We first
prove that a minor modification of our algorithm MIS produces a 2-approximate
solution of problem P2. Next, we present an efficient heuristic algorithm for the
problem P2.

/@—@
F 2 L] e @@

I. 37 13
|L3 |5 %‘ ®_‘\ g
+—| | eee .
a U@
(a) (b)

Fig. 4. The label graph corresponding to problem P2 is not perfect

3.1 2-Approximation Result

Let R be the set of all valid labels. During the right to left scan, let r; and r be a
pair of valid labels (corresponding to point p;) which are currently encountered
by the sweep line. Prior to this instant of time some labels are already selected for
solution, and for these selections, some labels are removed from the set of valid
labels by setting their flag bit to 1. Let R* denote the set of valid labels whose flag
bit contain 0 at the current instant of time, and LG* denotes the corresponding
label graph, and OPT(R*) is the set of valid labels corresponding to MIS(LG™).
It is easy to show that there must exist an optimal solution containing either of r;
and ;. We select any one (say ;) of them arbitrarily in our modified algorithm.
Let R; and R] denote the set of labels adjacent to r; and r] respectively.

Lemma 4. 1 + #(OPT(R* \ R;)) < #(OPT(R*)) < 2+ #(OPT(R* \ R;)),
where #(A) indicates the size of set A.

118 S. Roy et al.

Proof: The first part of the lemma is trivial. For the second part, consider the
following argument.

If r, € OPT(R"), then OPT(R*) = {r;} | JOPT(R* \ R;). So the lemma follows
in this case.

If v, € OPT(R*) then OPT(R*) = {r}} | JOPT(R* \ R}).

Again, (R*\ Rj) = (R* \ {R; U R;}) U(Ri \ {r,77}).

Thus, #(OPT((R*\ {R: U Ri}) U(Ri \{ri,r}))) < #(OPT(R*\{R; J R})) +
#(OPT(R; \ {ri, ri})).

Again, #(OPT(R; \ {ri,r.})) = 1 since R; \ {r;,7;} forms a clique. Hence the
lemma follows. O

If r; € OPT(R), and we choose r; we lead to a non-optimal solution. But Lemma
Bl says that the maximum penalty for doing a wrong choice is at most one. If
k choices are made during the entire execution of MIS, and all the choices are
wrong, the size of OPT'(R) is at most 2k. Thus we have the following theorem:

Theorem 5. If the ties are resolved arbitrarily, then the size of the solution
obtained by the algorithm MIS is no worse than 5 x OPT(R).

3.2 Heuristic Algorithm
The key idea of our heuristic is as follows:

1. At each step, locate a simplicial vertex of the label graph.
2. If such a vertex found then
Select it as a member of the maximum independent set.
3. else (* the rightmost point p; has a pair of valid labels, say r; and r; *)
Select the vertex corresponding to any one label (say r;) of p; arbitrarily.
4. Remove the selected vertex and all its adjacent vertices from the graph
by setting their flag bit.
5. Repeat steps 1 to 4 until the flag bit of all the vertices are set to 1.

The algorithm is implemented by sweeping two horizontal lines I; and I, and
two vertical lines J; and Jy simultaneously. I (resp. I3) is swept from the top
(resp. bottom) boundary to the bottom (resp. top) boundary, and J; (resp. J2)
is swept from the left (resp. right) boundary to the right (resp. left) boundary.
We explain the sweeping of the vertical line Js. The sweeping of the other lines
are done in a similar manner.

We maintain an interval tree 7 with the y-coordinates of the end points of the
vertical boundaries of n valid rectangles. The secondary structure, attached with
each node of the interval tree, is a pair of height balanced trees, say AV L; and
AV L. They store the set of intervals, which are attached to this node during the
sweep. To insert an interval £ in the interval tree, we start traversing from the
root with the interval £. As soon as we reach a node whose discriminant value

Optimal Algorithm for a Special Point-Labeling Problem 119

lies inside ¢, we attch ¢ with that node. In other words, its top (resp. bottom)
end point is inserted in AV L; (resp. AV Ly).

During the sweep, when J; encounters a right boundary of a valid label, the
corresponding interval is stored in the appropriate node of the interval tree T
and sweep continues. When a left boundary is faced by J,, the sweep halts for
searching with the corresponding interval, say ¢, in the interval tree to find the
set of other intervals (present in the interval tree) which overlap on £. If all these
intervals are mutually overlapping, then the vertex of LG corresponding to the
label having the above left boundary, is simplicial.

At each step I (resp. I3) proceeds until a bottom (resp. top) boundary of a valid
rectangle is faced, and J; (resp. J2) proceeds until a left (resp. right) boundary is
faced. If any of this scan returns a simplicial vertex v;, the corresponding label r;
is inserted in M IS. Otherwise, the label which is obtained by Jo (in right to left
scan) is selected for insertion in M IS. The vertex v;, and all the vertices whose
labels overlap on r; are marked by setting their flag bit to 1. The corresponding
intervals are removed from all the four interval trees if they are present there.
The process is repeated until the flag bit of all the vertices are set to 1.

The insertion and deletion of an interval in the interval tree takes O(logn) time.
Consider the processing of a left boundary ¢. Let II, the path from root to the
node 7 whose discriminant is contained in ¢, and II; (resp. II3) be the path
from 7 to the leaf node containing the left (resp. right) end point of £. We spend
O(logn) time for finding the paths I, IT; and Il». All the intervals stored with
the node 7 overlap on £. We first find the common intersection region among the
intervals stored with 7. Next, we inspect the secondary structure of each node on
II, II; and II5, to find the intervals which are attached to that node and which
overlap on {. If all these intervals have a common intersection region, then /¢
contributes a simplicial vertex. Thus, the overall time complexity is O(nlogn).
Surely, the space complexity is O(n).

3.3 Experimental Results

We executed this algorithm on many randomly generated examples and on all
the benchmark examples available in [13]. In most of the examples, at each
step we could locate a simplicial vertex, which leads to an optimum solution.
It needs to mention that we have also encountered few random instances where
our algorithm could not produce optimum solution. For example, in Fig. 4, the
optimum solution is {1, 3,4',6,7,9,10’, 11,12, 13}, whereas our algorithm returns
{1,3,4',6',8,9',10,12,13}. We have also compared our result with the labeling
algorithm suggested in [I] (see Table 1). The algorithm of [I] assumes that the
label of a point p; may contain p; at one of its four corner. Thus, each point may
have at most four valid labels. In spite of this flexibility, it is observed that our
proposed algorithm can label more points than the algorithm proposed in [I].

120 S. Roy et al.

Table 1. Experimental results on the benchmarks cited in [I3]

Examples No. of| height [Optimum Our algorithm Algorithm [1]
sites |(pixels)| solution No. of No. of No. of No. of
valid labels|points labeled|valid labels|points labeled
Tourist shops in Berlin | 357 4 216 401 216 799 165
5 206 389 206 769 166
German raitlway stations| 366 4 304 569 304 1133 258
5 274 513 274 1030 243
American cities 1041 4 1036 2048 1036 4095 859
5 1031 2027 1031 4053 878
Drill holes in Munich 19461 | 1000 A 27156 13895 54325 13730
5000 HoAk 10107 4737 20197 4678

Acknowledgment. We are thankful to Dr. Alexander Wolff for providing us
the benchmark examples.

References

1

10.

11.

12.

13.

14.

15.

P. K. Agarwal, M. van Kreveld and S. Suri, Label placement by mazimum indepen-
dent set in rectangles, Computational Geometry: Theory and Applications, vol. 11,
pp. 209-218, 1998.

B. Chazelle et at, Application challenges to computational geometry: CG impact task
force report, http://www.cs.princeton.edu/chazelle/taskforce/CGreport.ps, 1996.
S. Edmondson, J. Christensen, J. Marks, and S. Shieber, A general cartographic
labeling algorithm, Cartographica, vol. 33, no. 4, pp. 13-23, 1997.

M. Formann and F. Wagner, A packing problem with applications to lettering of
maps, Proc. 7th. Annual ACM Symp. on Computational Geometry, pp. 281-288, 1991.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
NY, 1980.

E. H. Isaaks and R. M. Srivastava, An Introduction to Applied Geostatistics, Oxford
University Press, New York, 1989.

E. Imhof, Positioning names on maps, The American Cartographer, vol. 2, no. 2,
pp. 128-144, 1975.

M. van Kreveld, T. Strijk and A. Wolff, Point labeling with sliding labels, Compu-
tational Geometry: Theory and Applications, vol. 13, pp. 21-47, 1999.

T. Strijk and M. van Kreveld, Labeling a rectilinear map more efficiently, Informa-
tion Processing Letters, vol. 69, pp. 25-30, 1999.

T. Strijk and M. van Kreveld, Practical extension of point labeling in the slider
model, Tth. Int. Symp. on Advances in Geographical Information Systems, (ACM-GIS
'99), pp. 47-52, 1999.

C. K. Poon, B. Zhu and F. Chin, A polynomial time solution for labeling a recti-
linear map, Proc. 13th. ACM Symp. on Computational Geometry, pp. 451-453, 1997.
F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer, Berlin, 1985.

A. Wolff, General Map Labeling Webpage,
http://www.math-inf.uni-greifswald.de/map-labeling /general /.

F. Wagner, A. Wolff, A practical map labeling algorithm, Computational Geometry:
Theory and Applications, vol. 7, pp. 387-404, 1997.

F. Wagner, A. Wolff, V. Kapoor and T. Strijk, Three rules suffice for good label
placement, Algorithmica, vol. 30, pp. 334-349, 2001.

Random Arc Allocation and Applications*

Peter Sanders and Berthold Vocking

Max Planck Institut fiir Informatik
Saarbriicken, Germany
[sanders,voecking] @mpi-sb.mpg.de

Abstract. The paper considers a generalization of the well known ran-
dom placement of balls into bins. Given n circular arcs of lengths a1,

. ,ay, we study the maximum number of overlapping arcs on a circle
if the starting points of the arcs are chosen randomly. We give almost
exact tail bounds on the maximum overlap of the arcs. These tail bounds
yield a characterization of the expected maximum overlap that is tight
up to constant factors in the lower order terms. We illustrate the strength
of our results by presenting new performance guarantees for several ap-
plication: Minimizing rotational delays of disks, scheduling accesses to
parallel disks and allocating memory to limit cache interference misses.

1 Introduction

Randomly assigning tasks or data to computational resources has proved an
important load balancing technique for many algorithmic problems. The model
we study here was motivated by three different applications one of the authors
became involved with where the lack of an accurate analysis of such a simple
system became an obstacle. Section [3] gives more details on these applications:
minimizing rotational delays in disk scheduling, scheduling parallel disks, and
memory allocation to limit cache conflicts. The common theme there is that
jobs (disk blocks, strings of disk blocks, memory segments) have to be allocated
to a contiguous resource that wraps around (disk tracks, striped disks, memory
locations mod cache size). In all three applications randomization is used to
make worst case situations unlikely.

The following model describes all three applications. It is so simple that we
expect further applications. An arc allocation describes the arrangement of n
circular arcs that are pieces of a unit circle, i.e., a circle with circumference 1.
We represent points on this circle by numbers from the half open interval [0, 1).
Let 0 < a; < 1 denote the starting point of left endpoint of arc ¢ and «; the
arc length of arc i. Arc i spans the half open interval [a;,a; + «; mod 1) where
x mod 1 denotes the fractional part of x and where [a,b) for a > b denotes
the set [a,1] U [0,b) in this paper. Let a = >, a;/n denote the average arc
length. If all arc length are identical, a; = « for all 0 < ¢ < n, we have a
uniform arc allocation. In a random arc allocation, the starting points are chosen

* Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 121-[I30} 2002.
© Springer-Verlag Berlin Heidelberg 2002

122 P. Sanders and B. Vocking

independently and uniformly at random. Let L(z) denote the number of arcs
containing x. Let L = sup,¢o 1 L(z) denote the maximum overlap of an arc
allocation. In this paper, we estimate the expectation E[L] of the maximum
overlap and derive tail bounds for L.

Let us go back to the interpretation of arcs as jobs to be executed/allocated.
The maximum overlap L is important because all jobs can be executed using
between L and L+ 1 trips around the circle if all jobs are known in advance (see
Section M) Furthermore, there is a natural online allocation algorithm that
needs at most 2L trips around the circle (see Section B3)).

1.1 New Results for Random Arc Allocation

In this paper we present almost exact tail bounds on the maximum overlap for
random arc allocation. These tail bounds yield a complete characterization of
the expected maximum overlap. Let A = L — an denote the difference between
maximum and average load. We are able to describe E[A] almost exactly in
terms of Lambert’s W function [5]. This function is discussed in more detail
below. The tail bounds imply the following estimates for E[A].

A) If o < 22 then E[A] = O<om exp (w <1n(1m)>)>

B) For a € [22 1] E[A] = O(,/anln (;))an

C) Forae[i,1-11] E[A] = O (l—oz)nln(1 !)

n

o) 021 5 e 1 (1 - (w (000}

Our estimates on E[A] in all four cases are essentially tight in the sense
that they describe the case of uniform arc length exactly up to constant factors.
Observe that the cases D) and C) are symmetric to the cases A) and B) in o and
1 — @, resp. In fact, these bounds are derive using a simple symmetry arguments
treating holes (i.e., the uncovered pieces of the circle) like arcs. In case A) it
holds E[L] = E[A]. Exact estimates for this case can be derived relatively easily
using Chernoff bounds. More interesting is case D. To obtain tight estimates in
this case, we need to combine Chernoff bounds with a random walk analysis.

Now let us come to a discussion of Lambert’s W function. This function is
defined to be the unique positive solution to the equation W(z) -exp(W(x)) = x
for x > 0. Of particular interest for us is the function exp(W(z)). Asymp-
totically, this function can be estimated by lim, ,. exp(W(z)) = z/ln(x).
For example, consider the estimate of E[A] for the subcase that arcs are
very short, say o = O(1/n). In this case, the characterization above gives
E[L] = E[A] = O((Inn)/Inlnn). Furthermore, if o = @(long) then we obtain
E[L] =E[A] = O((lnn)/Inlnn).

Finally, in some applications there might be arcs wrapping around the circle
several times, i.e., a; > 1. Clearly, in this case our bounds for E[A] transfer

Random Arc Allocation and Applications 123

immediately when using o = % >, o mod 1 instead of cv. In Section 2] we prove
these bounds for the uniform case. The generalization to variable arc lengths is
deferred to the full paper.

1.2 Results for Chains-into-Bins

Many applications in computer science also require a discrete variant of arc
allocation where the circle is subdivided into M equal bins and where arc end
points are multiples of a bin size. We note that our proof techniques and hence
our upper bounds directly transfer to this discrete model. Observe that discrete
arc allocation is equivalent to the following chains-into-bins problem: N = >". o
balls connected into n chains are allocated to M bins that are arranged in a circle.
A chain is allocated by throwing its first ball into a bin chosen independently,
uniformly at random and by putting its remaining balls into adjacent bins in a
round robin fashion. In this notation, the bounds in A) and B) become

E[L)] = 0 (Aj\; W(W)) N> M, (1)

E[ACD] = 6 (%111 (MZ)) if N=02(MIn(Mn/N)) and a < M/2 (2)

where L(P) is the number of balls in the fullest bin and A(?) = L(P) — N/M.
In the way one can translate the results in the cases C) and D).

Let us compare our results for chains-into-bins to the well known results
for balls-into-bins processes. These processes are among of the most intensively
studied stochastic processes in the context of algorithm analysis (e.g., [LOJT7/12]).
The simplest balls-into-bins process assumes that N balls are placed at random
into M bins [T0JT7]. Balls-into-bins are the special case of chains-into-bins where
all chains consist of a single ball, i.e., n = N. We get

B[] = 6 (AJ\; W(El/%)) N> M 3)

E[A®Y] =6 (,/AA; In M) if N=Q(MInM) . (4)

The Bounds (B) and (#) are well known although other papers [TOJT7I13] use a
different, slightly more complicated notation that yields more information about
constant factors.

Another instructive perspective is that arc allocations are related to balls-
into-bins systems with 1/« bins. Our analyses for L and A will give further
insights into the relationship between the two different random processes.

1.3 Previous Results

Barve et al. [2] introduce the chains-into-bins problem and show why several tail
bounds for the case N = n also apply to the general case. Apparently, E[L(Cb)]

124 P. Sanders and B. Vocking

can only grow if chains are atomized into individual balls (although this is not
proven yet). Our bounds improve these results by showing that AP) can be
much smaller if n < N, i.e., if chains are long.

Chains-into-bins have been analyzed asking what is the expected number
of bins with at least a balls [IT]. This measure was needed to estimate the
number of cache misses in executing a class of cache-efficient algorithms. Refer
to Section B3] for more details.

Arc allocations have been studied in mathematics under the aspect of when
the arcs cover the circle (e.g., [15]). This is related to the minimum overlap which
seems to be more important for most computer science applications. We have
adopted the convention from these papers to measure arc lengths between 0 and
1 rather than 0 and 27 in order to avoid notational overhead.

An arc allocation defines a circular arc graph [Q)8] with n nodes where there
is an edge between nodes 7 and j if the corresponding arcs overlap. A set of
overlapping arcs defines a clique of the circular arc graph. In this terminology,
we are studying the size of the maximum overlap clique of a random circular arc
graph. But note that the maximum overlap clique is not necessarily maximum
clique of a circular arc graph [3].

2 Uniform Arcs

In this section we assume that all arcs have the same length. The following tail
bound imply the expectation Bounds A) and B) respectively.

Theorem 1. Suppose n arcs of length a < % are placed at random onto the

unit circle. Let u > an denote an upper bound on the average overlap. Then, for
every € > 0,

PrlA>ept1] <n ((HeE)H)“ (5)
Pr[A > 5ey) < g ((lJree)lJF>M . (6)

Bound (@) that is best suited for short arcs is derived by bounding the max-
imum overlap by the overlap at the discrete set of starting positions of arcs. We
defer the analysis to the full paper since simple Chernoff bound arguments are
sufficient in this case.

Perhaps the most interesting case are rather long arcs with o < 1/2. Sec-
tion [Z11 derives Bound (@) that is a up to a factor ©(n) more tight in this case.
The proof combines Chernoff bound arguments with random walk arguments
that may be interesting for other applications too. Bounds C) and D) for even
longer arcs can be proven using an almost symmetric argument on the minimum
overlap of non-arcs or holes. The proof is deferred to the full paper. In the full
paper we furthermore argue that our results are essentially tight by giving lower
bounds in terms of a balls-into-bins process considering 1/« equally spaced po-
sitions on the circle. Section reports simulation results that even give some
hints as to what the constant factors in Bounds B) and C) might be.

Random Arc Allocation and Applications 125

2.1 Proof of Bound ()

Proof. Define k = [1/a] > 2. Let xg,... ,z,_1 denote x points on the circle
that decompose the circle into s intervals X; = [x;,z;41) of identical length
[1] ~ . (Here and in the following i + 1 abbreviates (i + 1) mod x.) Observe
that every arc has at most one endpoint in each interval. Define A; = L(z;) —an
and A} = sup,¢ x,(L(x) — L(x;)). In this way, the maximum overlap in interval
X; is exactly an + A; + Al. Our argument is based on the following two claims:

Ve > 0:Pr[A; > eu] < ((1—:3;)1“) (7)

€ (A+e)p
€
Ve>0: PI‘[A; > 6(2 + 26)[1, | A + Ai+1 < QGH] <2 ((1+E)1+€) (8)

Let us show that, in fact, these claims imply the theorem. First suppose € > 1.
The maximum overlap in interval X; is bounded above by L(x;) + L(ziy1) =
2an + A; + A;41 because every arc overlapping with interval X; covers z; or
x;4+1. This implies the inequality al: A < max;{an + A; + A;11} so that we
obtain

(a1) (a2)
Pr[A > 3eu] < Pr[ﬂ?;ol can+ A+ Ay > 3ep] < Pr [3:";01 A > e,u]

(a<3) 1 e " (a<4) 2 ef a
Kk \(1+4¢€)tte o \(1+e)tte ’

where inequality (a2) follows from an < eu, (a3) follows from Claim (7)), and

(ad) follows from k= [17.

Now assume € < 1. Observe that this implies bl: € > €(3+2¢) /5. Furthermore,
we apply b2: A = max;{4A; + A}} and obtain

(b1)
Pr[A > 5eu] < Pr[A > €(3+ 2¢)y]

(b2)

< Pr[i) A > ep VAL > €2+ 26)]

(b3) k—1

< Z Pr[A; > ep] + Pr[A] > e(2+26)u | Ai + Aip1 < 2¢p]
i=0

(b4) o€ p) e atan g et »
<k B — <2 (—).
= “(<1+e>1+e> T <<1+e>1+6> =4 <<1+e>1+€>

The following basic fact from probability theory implies inequality (b3). For
events X, X', and Y with X’ C X it holds Pr[X VY] < Pr[X]+ Pr[Y \ X'] <
Pr[X] + Pr[Y|X']. Furthermore, inequality (b4) follows from the Claims ({I8).

It remains to prove the two claims. Observe that E[L(xz;)] < u so that the
bound in Claim (@) follows directly from a Chernoff bound. Hence it only remains
to show the Claim (8). We will estimate A/, by investigating the following random

126 P. Sanders and B. Vocking

walk. Recall that each arc has at most one endpoint in interval X;. Let m denote
the number of those arcs that have an endpoint in X;. As we condition on
A+ Ajp1 < 2epu, we can assume

m < L(x;) + L(xzig1) = 20+ A+ Qi1 < (24+26)p .

For the time being, assume that m is fixed. Let y1, ... , ¥, denote the endpoints
in X;, sorted from left to right. If we are given these endpoints without further
information then the orientation of the corresponding arcs (i.e., whether y; is
a left or right endpoint) defines a random experiment that can be described
in terms of binary random variables as follows. Let s1,... ,s,, denote random
variables with

- _ J+1if y; is a left endpoint, and
5T -1t y; is a right endpoint.

The only assumption that we made about the allocation of the arcs is A;+ 4,41 <
2eu. As this assumption does not affect the arc’s orientation, the variables
S1,--. ,Sm are independent and Pr[s; = 1] =Pr[s; = —1] = 1, for 1 < j < m.

Now let us define S; = Zi:l sj, for 0 < j < m. Notice that the sequence
So,51,..., 5, corresponds to a random walk in which a particle starts at po-
sition 0 and goes up or down by one position in each step with probability %
each, that is, A = maxo<;<m (S;). Hence, we can estimate A} by analyzing this
random walk. Applying Theorem II1.7.1 from [6] we can derive the following
probability bound. For every r > 0,

PrEj{l,...,m}:S; > 7] =Y Pr[Sm = k| + Pr[Sm = k+1] < 2Pr[S)n > 7].
k=r+1

Next we observe that the random variable X,, = S,,/2 + m/2 follows the bino-
mial distribution and, hence, can be estimated using a Chernoff bound. In this
way, we obtain

Pr[S,, > em] = Pr[X,, > (1+e)m/2] < <(1+e;1+6>m/2 :
for every € > 0. As a consequence,
e€ /2
Pr[A, >em] < 2Pr[S,, >em] < 2 ((1+€)1+6)

Clearly, A} is monotonically increasing in m. Therefore, the worst-case choice

for m is m = (2 + 2¢)u, and we obtain,

) e€ (1+e)p
Pr[A] > e(2+2¢)p] < 2 <(1+€)1+6) ,

which proves Claim (8). Thus Theorem [is shown.

Random Arc Allocation and Applications 127

2.2 Simulations

Fig. [shows simulations for three different values of n and compares them
with our analytic bound from the case B) and C) of our characterization for
E[A]. Merging the bounds in these two cases we obtain the elegant estimate

E[4] =~ \/a(la)nln(a(ll_a)).

Fig.1. Comparison of the
theoretical prediction A =

en‘oz(l—a)lnﬁ

with simulations for differ-
ent n. The measurements
are averages of 10000 repe-

titions for n < 128 and 1000

average Amt?

02 prediction
repetitions for n = 1024. : n=1024 ---
01} n=128 ----
n=16 -
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
arc length a

In fact, the measured and predicted curves are quite close together when we
choose an appropriate constant factor (namely 1/€) in front of this estimate. Even
for n = 16, where a significant influence of lower order terms can be expected,
A is fairly well approximated. An interesting phenomenon is that the measured
graphs for A(a) are not completely symmetric around o« = 1/2. This asymmetry
is not reflected by our theoretical analysis since we use the same Chernoff bounds
to estimate the overlap of arcs in case of a < % and the overlap of holes in case of
a > % In fact, however, the deviation of holes below the mean can be expected
to be slightly less than the deviation of arcs above the mean, which explains the
asymmetry that can be observed in the experiments.

3 Applications

We now present three examples, where our bounds on arc allocation yield perfor-
mance guarantees. In Section Bl Bound () guarantees that rotational delays in
accessing a single disks eventually become small compared to data access times.
Section gives a different disk scheduling application where load balancing
data accesses over several disks is the objective. Whereas the first two exam-
ple concern execution time, the last example in Section 3331 bounds the memory
consumption of a technique for reducing cache interference misses.

In all three applications very bad worst case behavior is avoided using ran-
domization. The price paid is that the best case behavior gets worse. Since best
case behavior may sometimes not be far from real inputs, it is crucial for our

128 P. Sanders and B. Vocking

performance bounds to demonstrate that this possible penalty is very small. This
is a quite strong incentive to study lower order terms in the performance bounds
rather than bounds that leave the constant factors open.

3.1 Disks and Drums

One of our main motivations for studying arc allocations was the desire to find
disk scheduling algorithms that take rotational delays into account. For example,
consider a data base query selecting the set S = {z € r : z.a = y} from a relation
r. Assume we have an index of r with respect to attribute a that tells us a set
of small disk blocks where we can find S. In this situation, the access time
for retrieving S is dominated by rotational delays and seek times rather than
the access or transmission time of the data [14]. Unfortunately, simultaneously
minimizing seek times and rotational delays is NP-hard [I]. On the other hand,
the explosive growth of disk storage densities in the last years suggests to consider
the case where the accessed file fits into a narrow zone on the disk. In this case,
seek times can be bounded by a constant that is only slightly larger than the
overhead for request initiation, data transmission, and settling the head into
a stable state. Such constant overheads can be absorbed into the size of the
blocks and we end up with a problem where only block lengths and rotational
delays matter. Interestingly, this reasoning leads to a model logically identical
to drums — rotating storage devices from the 50s [4] that are technologically
outdated since the 70s. Drums have a separate read/write head for every data
track and hence suffer no seek delays.

To read a block on a drum one just has to wait until its start rotates to the
position of the read head and then read until the end of the block. Suppose we
want to read a batch of n blocks efficiently. Each block can be modeled as an arc
in an arc allocation problem in the obvious way. Obviously, L is a lower bound
for the number of drum rotations needed to retrieve all n blocks. Fuller [7/16]
found optimal and near optimal drum scheduling algorithms that can retrieve
the blocks in at most L+1 drum rotations. One such algorithm, Shortest Latency
Time First (SLTF), is very simple: When the drum is at point x, pick the unread
block 7 whose starting point a; is closest, read it, set © = a;+«a; mod 1 and iterate
until all blocks are read.

The question arises, how good is an optimal schedule. In the worst case,
n rotations may be needed. For example, if all blocks have the same starting
point. In this case, even a good scheduling algorithm is of little help. Our results
provide us with very attractive performance guarantees if the starting points are
randomized. We need time na + O(y/n) rotations and hence for large n, almost
all of the schedule time is spent productively reading data.

Performance guarantees for random starting points need not merely be pre-
dictions for the average case if we randomize the mapping of logical blocks to
physical positions. Here is one scheme with particular practical appeal: Start
with a straightforward non-randomized mapping of logical blocks to physical
positions by filling one track after the other. Now rotate the mapping on each
track by a random amount. This way, accesses to consecutive blocks mapped to
the same track remain consecutive. A technical problem is that starting points

Random Arc Allocation and Applications 129

are not completely independent so that our analysis does not strictly apply.
However, starting points of two blocks in a batch of blocks to be read are either
independent or the two blocks do not overlap (we merge consecutive blocks on
the same track). Therefore it seems likely that our upper bounds still apply.

3.2 Parallel Disk Striping

Assume a file is to be allocated to M parallel disks numbered 0 through M —1 so
that accesses to any consecutive range of data in the file can be done efficiently. A
common allocation approach is striping — block i of the data stream is allocated
to disk i mod M. The situation gets more complicated if n files are accessed
concurrently. Barve et al. [2] propose simple randomized striping (SR) where
block 7 of a file f is mapped to disk r¢ + ¢ mod M where r is a random offset
between 0 and M — 1. The number of I/O steps needed to access N blocks
from the n data streams and M disks is the variable L(°?) in the corresponding
chains-into-bins problem. Our results improve the performance bounds shown in
[2] for the case that n < N.

3.3 Cache Efficient Allocation of DRAM Memory

Many algorithms that are efficient on memory hierarchies are based on accessing
n arrays in such a way that accesses in each array are sequential but where
it is unpredictable how accesses to different arrays are interleaved. In [11] it is
shown that these algorithms even work well on hardware caches where we have
no direct control over the cache content provided that the starting points of the
arrays modulo the cache size M are chosen at random. (Essentially the SR disk
striping from [2] is applied to words in the cache.) Now the question arises how
to allocate the arrays. Assume we have a large contiguous amount of memory
available starting at address x mod M. A naive approach allocates one array
after the other in arbitrary order by picking a random location y mod M and
allocating the array so that it starts at point z+ (y —« mod M). On the average
this strategy wastes nM /2 of storage. A better way is by applying the simple
SLTF algorithm we have seen for drum scheduling. This way we need space M L
on the average wasting only M A of memory.

This bound for the offline algorithm also translates into a performance guar-
antee for an online allocation algorithm where requests for memory segments
arrive one at a time. The following greedy algorithm can be easily proven to be
2-competitive: Keep a list of free memory intervals sorted by starting address.
Allocate a new segment in the first free interval that has room at the right ad-
dress offsets. Hence, space 2M (L + A) memory suffices to fulfill all requests. In
the final version of [11] citing our result replaces a lengthy derivation that shows
a bound of 4eM L for the online algorithm. No result on the offline case was
available there.

Acknowledgements. We would like to thank Ashish Gupta and Ashish Rastogi
for fruitful cooperation on disk scheduling algorithms.

130 P. Sanders and B. Vocking
References
1. M. Andrews, M. A. Bender, and L. Zhang. New algorithms for the disk scheduling

10.

11.

12.

13.

14.

15.

16.

17.

problem. In IEEE, editor, 37th Annual Symposium on Foundations of Computer
Science, pages 550-559. IEEE Computer Society Press, 1996.

. R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on

parallel disks. Parallel Computing, 23(4):601-631, 1997.

B. Bhattacharya, P. Hell, and J. Huang. A linear algorithm for maximum weight
cliques in proper circular arc graphs. SIAM Journal on Discrete Mathematics,
9(2):274-289, May 1996.

. A. A. Cohen. Technical developments: Magnetic drum storage for digital infor-

mation processing systems (in Automatic Computing Machinery). Mathematical
Tables and Other Aids to Computation, 4(29):31-39, January 1950.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
lambert W function. Advances in Computational Mathematics, 5:329-359, 1996.
W. Feller. An Introduction to Probability Theory and its Applications. Wiley, 3rd
edition, 1968.

S. H. Fuller. An optimal drum scheduling algorithm. IEEE Trans. on Computers,
21(11):1153, November 1972.

M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete
Methods, 1(2):216-227, June 1980.

V. Klee. What are the intersections graphs of arcs in a circle? Amer. Math.
Monthly, 76:810-813, 1969.

V. F. Kolchin, B. A. Sevatyanov, and V. P. Chistiakov. Random Allocations. V.
H. Winston, 1978.

K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory.
Algorithmica, 2002. to appear.

M. Mitzenmacher, A. Richa, and R. Sitaraman. The power of two random choices:
A survey of the techniques and results. In P. Pardalos, S. Rajasekaran, and
J. Rolim, editors, Handbook of Randomized Computing. Kluwer, 2000.

M. Raab and A. Steger. “balls into bins” — A simple and tight analysis. In RAN-
DOM: International Workshop on Randomization and Approximation Techniques
in Computer Science. LNCS, 1998.

C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. Computer,
27(3):17-28, March 1994.

A. F. Siegel and L. Holst. Covering the circle with random arcs of random sizes.
J. Appl. Probab., 19:373-381, 1982.

H. S. Stone and S. F. Fuller. On the near-optimality of the shortest-access-time-
first drum scheduling discipline. Communications of the ACM, 16(6), June 1973.
Also published in/as: Technical Note No.12, DSL.

J. S. Vitter and P. Flajolet. Average case analysis of algorithms and data struc-
tures. In Handbook of Theoretical Computer Science, volume A: Algorithms and
Complexity, chapter 9, pages 431-524. Elsevier, 1990.

On Neighbors in Geometric Permutations*

Micha Sharir!? and Shakhar Smorodinsky!**

L School of Computer Science,

Tel Aviv University, Tel Aviv 69978, Israel,
smoro@tau.ac.il
sharir@cs.tau.ac.il
2 Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA;

Abstract. We introduce a new notion of ‘neighbors’ in geometric per-
mutations. We conjecture that the maximum number of neighbors in a
set S of n pairwise disjoint convex bodies in R? is O(n), and we prove
this conjecture for d = 2. We show that if the set of pairs of neighbors in
a set S is of size N, then S admits at most O(N~') geometric permu-
tations. Hence we obtain an alternative proof of a linear upper bound on
the number of geometric permutations for any finite family of pairwise
disjoint convex bodies in the plane.

1 Background and Motivation

Let S be a finite family of convex bodies in R?. A line ¢ that intersects every
member of S is called a line transversal of S.

If the bodies in S are pairwise disjoint, then a line transversal £ of S induces
a pair of linear orderings on S (one order being the reverse of the other order),
which are the orders in which the members of S are met by ¢, corresponding to
the two orientations of ¢. Katchalski et al. [6] were the first to study such pairs
of orderings and called them geometric permutations. We refer to [3[456I7/8] for
the recent study of this concept, its applications and its generalizations.

Line transversals have practical applications in computing visibility infor-
mation for efficient rendering of scenes, e.g., in 3-dimensional computer games
and in architectural walkthroughs. See [2/12] for the algorithmic aspects of line
transversals.

Let g4(n) denote the maximum number of geometric permutations in R%,
where the maximum is taken over all such families S of size n. A major open

* Work on this paper has been supported by NSF Grants CCR-97-32101 and CCR-
00-98246, by a grant from the U.S.-Israeli Binational Science Foundation, by a grant
from the Israeli Academy of Sciences for a Center of Excellence in Geometric Com-
puting at Tel Aviv University, and by the Hermann Minkowski-MINERVA Center
for Geometry at Tel Aviv University.

** The research by this author was done while the author was a Ph.D. student under
the supervision of Micha Sharir.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 131-[I39] 2002.
© Springer-Verlag Berlin Heidelberg 2002

132 M. Sharir and S. Smorodinsky

problem in transversal theory is to give sharp asymptotic bounds on g4(n). Edels-
brunner and Sharir [3] have shown that g2(n) = 2n — 2 (for n > 3). Katchalski
et al. [7] showed that gq(n) = £2(n?~1). The only known general upper bound on
ga(n) is O(n?¥=2) and is due to Wenger [13]. Hence, for d > 3 there still exists
a wide gap between the known upper and lower bounds. Recently, Smorodinsky
et al. [10/I1], obtained a tight bound of ©(n¢~1) on the maximum number of
geometric permutations, in the special case where S consists of pairwise disjoint
balls in R?. (For the case of congruent or nearly congruent balls, the number of
geometric permutations is only O(1), as shown recently by Zhou and Suri [14].)
This result was followed by an extension of the same bound to the case of “fat”
convex bodies, by Katz and Varadarajan [§]. A very recent result by Koltun and
Sharir [9] implies that the number of geometric permutations of a set S of n
pairwise disjoint convex semialgebraic sets of constant description complexity in
R3 is O(n3+€), for any € > 0; this is an intermediate bound between the upper
bound O(n*) of [I3] and the lower bound £2(n?) of [7]. It has been conjectured
that g4(n) = O(n4=1).

1.1 Separation Sets and Neighbors

Wenger [13] introduced the notion of separation set, which was later generalized
in [I1]:

Definition 1. Let S be a family of pairwise disjoint convex sets in R?, and let
P be a set of hyperplanes in R? passing through the origin. We say that P is
a separation set for S if for each pair s;,s; € S there exists a hyperplane h,
parallel to a hyperplane in P, such that s; and s; are contained in different open
half-spaces bounded by h.

For a family S of pairwise disjoint convex sets, let GP(S) denote the number
of geometric permutations of S.

Lemma 2. (see [10]15]). Let S be a collection of pairwise disjoint convex sets
in RY and let P be a separation set for S. Then GP(S) = O(|P|*™).

Proof (sketch): Consider the cross section A*(P) of the arrangement A(P)
within the unit sphere S?~!; it is an arrangement of |P| great spheres, each
consisting of all orientations parallel to some hyperplane in P. It is easy to
show that, for each cell C' of A*(P), there is at most one possible geometric
permutation that is induced by lines with orientation in C, and this implies the
asserted bound. a

Since any set of n pairwise disjoint convex bodies admits a separation set of
size (Z), one obtains an upper bound of O(n?9=2) on the number of geometric
permutations in d-space. (This is Wenger’s proof.)

It was shown in [II] that, if S is a collection of pairwise disjoint balls in
R?, then there exists a separation set for S of size O(n), where the constant

of proportionality depends on the dimension d. Hence, combined with Lemma

On Neighbors in Geometric Permutations 133

one immediately gets an O(nd_l) upper bound on the number of geometric
permutations for S. The fact that, in any dimension, balls can be separated with
only O(n) hyperplane directions seems to depend on their fatness. Indeed, Katz
and Varadarajan [8] showed later that any set of pairwise disjoint o-fat convex
bodies in R? (i.e., the ratio between the circumradius and inradius of any input
body is at most «, where « is a constant), admits a separation set of size O(n),
where the constant of proportionality depends on « and on the dimension d.

The problem with the notion of separation set is that, already in three dimen-
sions, one cannot hope to get a separation set of linear size for general convex
bodies. In fact, there exist collections S of n pairwise disjoint convex bodies in
R3, for arbitrarily large n, such that any separation set for S is of size £2(n?).
For example, one can take S to be the collection of Voronoi cells of the Voronoi
diagram of a set consisting of n/2 points on the line l; : z = 0;z = 1 and of n/2
points on the line Iy : y = 0; z = 0. It is easily seen that every pair of points (p, ¢),
such that p € [; and q € I, have touching Voronoi cells, and that the separating
facets of these pairs of cells have different orientations. Shrink the bodies in S by
a small amount, to make them pairwise disjoint. Hence any separation set for .S
must contain a distinct plane for each of these pairs of formerly touching cells,
so its size must be ©(n?). Therefore, Lemma Plis useless in the general case.

In this paper, we introduce a weaker notion of separation, and show that it
can be used, in a manner similar to that in Lemmal[Z], to derive bounds on the
number of geometric permutations.

Definition 3. Let S be a family of n pairwise disjoint convex sets in R%. Two
objects a,b € S are called neighbors if there exists a line tranversal I of S such
that a and b are consecutive elements of the geometric permutation induced by [.

Denote by N(S) the set of all neighbors in S. Note that if GP(S) = 0 then
N(S) =0 and if GP(S) > 1 then |[N(S)| >n — 1.

Conjecture 4. If S is a family of pairwise disjoint convex bodies in R then

IN(S)| = O(n).

In Section [2] we establish the conjecture for the planar case.

It can be shown that, in the above example involving Voronoi cells, we have
GP(S) > 1, and there are indeed only O(n) neighbors. The following lemma
shows that, if the conjecture is true, it leads to sharp bounds on the number of
geometric permutations in the general case.

Lemma 5. Let S be a family of n pairwise disjoint convex bodies in R*. Then

GP(S) = O(IN(S)|*7).

Proof: For each pair of bodies a,b € N(S5), let hq be any hyperplane separating
a and b, and let P be the set of these |[N(S)| hyperplanes. We proceed as in the
proof of Lemma 2] by considering the arrangement 4*(P) of the great spheres
in S9~1 associated with the hyperplanes in P. Fix a (full-dimensional) cell C
of A*(P) and let ¢ be an oriented line transversal to S with orientation in C.

134 M. Sharir and S. Smorodinsky

¢ induces a geometric permutation m = (7, ma,... ,m,) on S. For each i =
1,...,n — 1, the elements 7;, m;11 are neighbors (by definition), so there exists
a hyperplane h; € P that separates them. h; corresponds to one of the great
spheres in the arrangement A*(P), with C lying in one of the two corresponding
hemispheres. This means that every oriented line that intersects both 7; and
mi+1 and has orientation in C, must intersect these two sets in a fixed order.
This implies that in any geometric permutation induced by a line transversal
with orientation in C, m; must precede m;11, for each i = 1,... ;n — 1. Clearly,
exactly one geometric permutation (namely, 7) has this property. We conclude
that there is at most one geometric permutation that can be induced by lines
with orientation in C'. Hence the number of geometric permutations is at most
the number of cells in A*(P), which is O(|N(9)[¢~1). O

2 Linear Bound on the Number of Neighbors in the
Plane

In this section we prove our main result, showing that our conjecture is true in
the plane.

Theorem 6. Let S be a set of n pairwise disjoint convex bodies in the plane.
Then the number of neighbor pairs in S is O(n).

Proof: We define a graph G on S, whose edges connect each of the neighbor
pairs. We will show that G is a quasi-planar graph, i.e., G can be drawn in
the plane so that no three edges with distinct endpoints are pairwise crossing.
The theorem then follows from the result of Agarwal et al. [1], that quasi-planar
graphs have linear size.

We draw G as follows. For each object a € S we fix a point v, inside a; these
are the vertices of (the drawing of) G. If (a,b) are neighbors, we choose one
transversal line ¢ of S along which £ Na and £N b appear consecutively. Let ¢,
and ¢, be the two nearest endpoints of these two respective intervals. Then we
draw the edge ab of G as the polygonal arc v,q.qpvy. See Figure[dl.

To prove that G is quasi-planar, assume to the contrary that there exist six
distinct objects a,b,c¢,d, e, f in S, such that the edges (a,b), (¢,d), (e, f) are
pairwise crossing. Any of these edges, say, (a,b), is drawn as a polygonal arc,
whose portion outside aUb is a straight segment s,p, connecting a point ¢, € da
to a point g, € 9b, such that s, is contained in a line transversal £,; of S, along
which a and b are neighbors, and so that the relative interior of s is disjoint
from a and b (and from all other objects in S as well). Similar constructions
hold for the edges (¢,d) and (e, f). Note that the crossing between, say (a,b)
and (c,d) must be at an interior point of s, and of s.q, and similarly for the
two other crossings.

The removal of s, from £, partitions this line into two rays, one of which
meets a and is denoted as p,, and the other meets b, and is denoted as p,. A
similar notation holds for the two other lines.

On Neighbors in Geometric Permutations 135

qb

AN

Fig. 1. Drawing an edge of G.

Note that the lines £4p, €cq, ey must be distinct transversals of S. Let A
be the triangle whose vertices are the crossing points of the segments sqp, Scd,
Scf. Order the six objects a, b, ¢, d, e, f according to the counterclockwise angular
order of the endpoints ¢q, gs, gc, g4, ge, g5 about (any point of) A. Without loss of
generality, assume that this circular order is (a,c, e, b, d, f); note that the three
pairs a and b, ¢ and d, and e and f must be ‘antipodal’ elements of this order.
See Figure

qe Qe

Fig. 2. The structure of a triple edge-crossing in G.

Since each of the lines £4, £cq, Loy is transversal to S, it meets each of the
six sets a, b, ¢, d, e, f. Consider, say, the line £,;. Since the relative interior of the
contained segment s, is disjoint from all sets in .S, each of the four other objects
¢, d, e, f meets £y, at one (and only one) of the two complementary rays pq, pp-

We make the following simplification of the configuration, by replacing each
of these six objects by a straight segment. Consider one of the objects, say a.
Pick a point ¢, € a N 4.4, and a point ¢ € a N Ley. Then ¢, € p. U pg and
q € pe U py. It is impossible that ¢/, € pg and ¢, € p, for then the segment s,

136 M. Sharir and S. Smorodinsky

would not be disjoint from a, as is easily seen (see Figure [2). Hence there are
three possible cases (the mnemonics refer to the positioning of ¢, in the triple

{¢a: a4, 4 }):

i) ¢/ € p. and ¢’ € ps. In this case we refer to a as a middle object, and
4% €p q € ps]
replace it by the straight segment ¢/,q”; see Figure Bla).
ii) ¢/, € p. and ¢ € p.. In this case we refer to a as a clockwise object, and
4, €p ¢ €p j
replace it by the straight segment g,q.; see Figure B(b).
(iil) ¢}, € pa and ¢} € py. In this case we refer to a as a counterclockwise object,

and replace it by the straight segment ¢,q/,; see Figure3|(c).

Similar ‘straightenings’ are applied to the five other objects. Each straight-
ened object is contained in the corresponding original object, and thus the re-
sulting six segments are pairwise disjoint. Note that the straightened a need not
contain the point g, (in case (i)). In this case we replace g, by the intersection of
the straightened a with £,;. This step, applied to each of the objects if needed,
may cause some of the segments sqp, Scd, Sey to expand, but it is easily checked
that the relative interiors of the new segments are still all disjoint from all the
new six objects; see Figure Bfa).

Lemma 7. If one of the siz objects is middle or clockwise (resp., middle or
counterclockwise) then the object immediately succeeding (resp., preceding) it in
the counterclockwise circular order about A must be clockwise (resp., counter-
clockwise).

Proof: Without loss of generality, assume that the first object is a and that it is
middle or clockwise. The succeeding object, ¢, must meet £,;, within p,, or else
a and ¢ would have to intersect (because any segment connecting g. to a point
on p, has to cross ¢,q,, C a). Then ¢ must be clockwise. m|

Corollary 8. Fither all six objects are clockwise or all are counterclockwise.

Without loss of generality, we may assume that all objects are clockwise.
Start at the a-endpoint v; = ¢, of s4p, and draw through it a line that is parallel
to £ey and intersects .q at a point va, which lies counterclockwise from vy with
respect to A. Then draw from vs a line parallel to £4; which intersects f.s at a
point v, again, lying counterclockwise from vy. Keep ‘turning’ like this to trace
a closed hexagon H. (It is not hard to show that this process does indeed always
produce a closed hexagon.) See Figure [l

We claim that the vertices of H satisfy

V1 = Ga, V2 € Pc, U3 € Pe, V4 € Py, Us € Pd, V6 € Pf-

Indeed, since the segment a is clockwise, it meets p., and thus must lie
counterclockwise to the ray q,v3. Since a N €.q € p., we have vy € p. as well. A
similar argument, proceeding inductively counterclockwise around H, holds for
all other vertices.

On Neighbors in Geometric Permutations 137

(0)

Fig. 3. The three types of objects and their straightening.

Note that the segment f, being clockwise, meets p, and p.. Hence its orienta-
tion is on one hand counterclockwise to that of g, = Ugv1 (or else it would not
have met p.), and is on the other hand clockwise to that of Tguy (since vs € py
and f meets p,). This contradiction implies that the graph G cannot have three
pairwise crossing edges, and thus G is quasi-planar and has linear size. This
completes the proof of Theorem [O

138 M. Sharir and S. Smorodinsky

Fig. 4. The hexagon H and the final contradiction.

3 Conclusion

Theorem [6, combined with Lemma [, yields an alternative proof that go(n) =
O(n) (albeit with a weaker bound than the tight 2n — 2 bound in [3]). The main
open problem is to establish the conjecture in higher dimensions, in particular
for d = 3.

Interesting by itself is the use of the linear bound on the size of quasi-planar
graphs in the proof of Theorem [6l This application is among the very few known
applications of quasi-planarity. It is conceivable, though, that the neighbor graph
G is in fact planar. However, our specific (and quite natural) way of drawing G
can have crossing edges, as can be easily shown.

References

[1] P. Agarwal, B. Aronov, J. Pach, R. Pollack and M. Sharir, Quasi-planar graphs
have a linear number of edges, Combinatorica 17:1-9, 1997.

[2] N. Amenta. Finding a line transversal of axial objects in three dimensions. Proc.
8rd ACM-SIAM Sympos. Discrete Algorithms, pages :66—71, 1992.

[3] H. Edelsbrunner and M. Sharir. The maximum number of ways to stab n convex
non-intersecting sets in the plane is 2n — 2. Discrete Comput. Geom., 5(1):35-42,
1990.

[4] J.E. Goodman and R. Pollack. Hadwiger’s transversal theorem in higher dimen-
sions. J. Amer. Math. Soc., 1(2):301-309, 1988.

[5] J.E. Goodman, R. Pollack and R. Wenger. Geometric transversal theory. In New
Trends in Discrete and Computational Geometry, (J. Pach, ed.), Springer Verlag,
Heidelberg, 1993, pp. 163—198.

[6]

[12]
[13]

[14]

On Neighbors in Geometric Permutations 139

M. Katchalski, T. Lewis, and A. Liu. Geometric permutations and common
transversals. Discrete Comput. Geom., 1:371-377, 1986.

M. Katchalski, T. Lewis, and A. Liu. The different ways of stabbing disjoint
convex sets. Discrete Comput. Geom., 7:197-206, 1992.

M.J. Katz and K.R. Varadarajan. A tight bound on the number of geometric per-
mutations of convex fat objects in R, Proc. 17th Annu. ACM Sympos. Comput.
Geom, 2001 :249-251.

V. Koltun and M. Sharir. The partition technique for overlays of envelopes.
Manuscript, 2002.

S. Smorodinsky. Geometric Permutations and Common Transversals. Master’s
thesis, Tel-Aviv University, School of Mathematical Sciences, Tel-Aviv, Israel,
July 1998.

S. Smorodinsky, J.S.B Mitchell, and M. Sharir. Sharp bounds on geometric permu-
tations of pairwise disjoint balls in R%. Discrete Comput. Geom., 23(2):247-2509,
2000.

S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs.
Computer Graphics (Proc. SIGGRAPH ’91), 25:61-69, 1991.

R. Wenger. Upper bounds on geometric permutations for convex sets. Discrete
Comput. Geom., 5:27-33, 1990.

Y. Zhou and S. Suri. Shape sensitive geometric permutations. Proc. 12th ACM-
SIAM Sympos. Discrete. Algorithms, 2001 :234—243.

Powers of Geometric Intersection Graphs and
Dispersion Algorithms

Geir Agnarsson', Peter Damaschke?, and Magniis M. Halldérsson®

! Department of Computer Science, Armstrong Atlantic State University, Savannah,
Georgia 31419-1997. geir@drake.armstrong.edu
2 Department of Computer Science, Chalmers University, 41296 Géteborg, Sweden.
ptr@cs.chalmers.se
3 Department of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland,
and Iceland Genomics Corp. (UVS), Snorrabraut 60, IS-105 Reykjavik. mmh@hi.is

Abstract. We study powers of certain geometric intersection graphs:
interval graphs, m-trapezoid graphs and circular-arc graphs. We define
the pseudo product, (G,G') — G * G’, of two graphs G and G’ on the
same set of vertices, and show that G*G’ is contained in one of the three
classes of graphs mentioned here above, if both G and G’ are also in that
class and fulfill certain conditions. This gives a new proof of the fact that
these classes are closed under taking power; more importantly, we get
efficient methods for computing the representation for G* if k > 1 is an
integer and G belongs to one of these classes, with a given representation
sorted by endpoints. We then use these results to give efficient algorithms
for the k-independent set, dispersion and weighted dispersion problem on
these classes of graphs, provided that their geometric representations are
given.

1 Introduction

The dispersion problem is to select a given number of vertices in a graph so as
to maximize the minimum distance between them. The problem is dual to the
Maximum k-Independent Set problem (k-IS), which is that of finding a maximum
collection of vertices whose inter-vertex distance is greater than a given bound
k. That problem in turn is equivalent to the Maximum Independent Set problem
(MIS) on the power graph G* of the original graph. Thus, in order to give efficient
dispersion algorithms, we are led to study efficient methods for constructing k-
independent sets and power graphs, as well as to study structural properties of
these powers.

In this article we do this for some classes of geometric intersection graphs
listed below. The containment of graph classes under study is as follows: m-
trapezoid graphs are interval graphs when m = 0, trapezoid graphs when m < 1,
and cocomparability graphs for any m. Similarly, circular-arc graphs form a
proper subclass of circular m-trapezoid graphs, and they also properly contain
the respective non-circular class.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 140-[I49] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Powers of Geometric Intersection Graphs and Dispersion Algorithms 141

These and various other classes of graphs have been shown to be closed un-
der taking power [56/0I10/16/17]. Generally, these proofs of containment do not
immediately yield efficient algorithms. This led us to derive an efficient method
for computing the power graph G* of an interval graph G in time O(nlogk) [2].
We both improve and generalize this result in the present paper.

To this end we define the pseudo product (G,G') — G x G’ for two general
graphs on the same set of vertices. This composition turns out to be commu-
tative, but not associative in general. However, when we restrict to the class of
various powers of a fixed graph, then the pseudo product is also associative, in
fact if s and t are positive integers then G° x Gt = G***.

Our fast power computations finally lead to efficient algorithms for the dis-
persion problem in the mentioned classes. The problem is defined as follows:

(Weighted) Dispersion

Given: Graph G (with vertex weights w : V(G) — R), and a number q.
Find: A set of vertices with cardinality (total weight) at least g, with the
minimum distance between the chosen vertices at maximum.

Dispersion is NP-hard for general graphs, since MIS is reducible to it, while it
can be approximated in polynomial time within factor 2, see e.g. [18]. In fact, it
is also hard to approximate within any factor less than 2, unless P = NP [11].

There is an obvious relationship between Dispersion and k-independent sets
in graph classes being closed under taking power. However the straightforward
use of it yields §2(n?) time dispersion algorithms in such classes. For faster al-
gorithms we have to avoid explicit insertion of edges when considering the k-th
powers of G, such that fast power computations is exactly what we need here.

We want to make very clear that we always assume that our graphs are given
by their geometric representations, rather than by their edge lists. Thus they are
described in O(n) space, by the extreme points of geometric sets representing
the vertices. Without such a representation, it is impossible to achieve equally
fast algorithms for the problems we study. (For m-trapezoid graphs, already the
recognition problem is NP-hard [9].) We further assume everywhere in this paper
that the endpoints of the intervals/arcs/trapezoids are given in a sorted list. This
quite natural assumption which is common in the literature on algorithms in
these classes allows us to derive o(nlogn) algorithms for many of these problems.

Only a few subquadratic dispersion algorithms have been provided before:
Dispersion is solvable in O(n) time for trees [3], while weighted dispersion in
O(nlogn) time for paths [I8], and in O(nlog*n) time for trees [4]. The current
paper extends a recent paper of Damaschke [7], who gave O(nlogn/q?) time
algorithm for unweighted dispersion of circular-arc graphs, O(nloglogn) time
for interval graphs, and O(n log? n) time for weighted dispersion on trapezoid
graphs.

1.1 Outline of Results

The following table summarizes the asymptotic complexity of the problems that
we consider, provided that a representation as stated above is given. In the table,

142 G. Agnarsson, P. Damaschke, and M.M. Halldérsson

n denotes the number of vertices in G, and lg refers to the usual base-2 logarithm,
an m is any constant.

Class Power k-1IS Dispersion W-Dispersion
Interval n n n nlgk
Circular-arc n n n

m-Trapezoid nlgk n(lgk + (Iglgn)™) n(lgk + (Iglgn)™) nlg k(lglgn)™

1.2 Notation

We will denote the positive integers {1,2,3,...} by N, the nonnegative integers
{0,1,2,...} by Ny, the set of real numbers by R, the Cartesian product R x R
by R2, and the set of the closed interval {z : a < x < b} by [a;b]. All graphs
we consider are simple unless otherwise stated. For a graph G the set of its
vertices will be denoted by V(G), and the set of its edges by E(G). The open
neighborhood of a vertex v in G, that is, the set of neighbors of v not including
v, will be denoted by Ng(v). The closed neighborhood of a vertex v in G, that
is, the set of neighbors of v, including v itself, will be denoted by N¢[v]. For two
vertices u and v in G, the distance between them will be denoted by dg(u,v) or
simply by d(u,v) when unambiguous. We use notation compatible with [19].

Recall for a graph G and an integer k, the k-th power of G is the graph G* on
the same set of vertices as G, and where every pair of vertices of distance k or less
in G are connected by an edge. Also, a graph G is called the intersection graph of
a collection of sets {S1,...,5,} if V(G) = {v1,...,v,} and {v;,v;} € E(G) &
SiNS; # 0, for all distinct 4, j € {1,...,n}. Note that when G is represented by
{S1,...,Sn}, then d(S;, S;) is just the distance dg(v;,v;) between v; and v; in
the intersection graph G.

2 Powers of m-Trapezoid Graphs

In this section we discuss a way to calculate the k-th power of an m-trapezoid
graphs efficiently, and, as a special case, an interval or a circular-arc graph by
means of the pseudo product which we define here below.

Definition 1. Let G and G’ be simple graphs on the same set of vertices V(G) =
V(G') =V, where |V| =n > 1. Define the pseudo product of G and G’ to be
the simple graph G x G' on the set vertex set V' with the edge set E(G x G') =
E(G)U E(G") U E* where

E* ={{u,v}: Jw eV : {u,w} € E(G),{w,v} € E(G'),
and Jw' € V: {u,w'} € E(G),{vw',v} € E(G)}.

If we view * as an operation among all the simple graphs on V', then it is not an
associative operation, in other words, the formula (GxG')*xG" = Gx(G'*G") does
not hold in general. We have however the following, which is a direct consequence
of Definition [

Proposition 1. For a simple graph G and nonnegative integers s and t, we have
G* x Gt = G*Tt. In particular, the pseudo product is an associative operation on
the set {G* : k € {0,1,2,...}} for any fized simple graph G.

Powers of Geometric Intersection Graphs and Dispersion Algorithms 143

Assume that for each I € {0,1,...,m} we have two real numbers, a; and b,
where a; < b;. As defined in [9], an m-trapezoid T is simply the closed interior of
the polygon formed by the points S = {(a;,1), (b;,1) : 1 € {0,1,...,m}} C R
That means, the left side of the polygon is the chain of straight-line segments
connecting (a;,!) and (aj41,0+1) (I € {0,1,...,m — 1}), and similarly for the
right side and numbers b;. The lower and upper boundary of T is the horizontal
line with ordinate 0 and I, respectively. We denote that by T = inter(.S). The
horizontal lines with ordinates [€ {0,1,...,m} will be called lanes.

An m-trapezoid graph is a graph G on n vertices {vy,...,v,} which is an in-
tersection graph of a set {71, ...,T,} of m-trapezoids, that is, {v;,v;} € E(G) &
T; NT; # 0. Let G be an m-trapezoid graph represented by {T7,...,T,} where
each

T; = inter({(as;, 1), (bis, 1) : 1 € {0,1,...,m}}). (1)

We will write a;; (resp. by) for the point (ay,!) (resp. (by,1)) in R2. We say
that the left sides of T; and T} cross (or synonymously, intersect) if there are
distinct indices p,q € {0,1,...,m} such that a,; < ap; and aq > ag;.

If G and G’ are two m-trapezoid graphs, both on n vertices, represented by
sets of m-trapezoids T = {T1,...,T,,} and T/ = {17, ..., T, } respectively, where
the left side of T; and the left side of T} coincide, that is T; = inter({a, by il €
{0,1,...,m}}) and T} = inter({ay;, by, : 1 € {0,1,...,m}}), foralli € {1,...,n},
then we will say that 7 and 7" are left-coincidal.

Recall that d(T;,Ts) and d(T},T),) denote the distances between correspond-
ing vertices in G and G’ respectively. We now put bj; = maxg(rs 77)<1{bia} and
by = maxg(r, 1,)<1105} for each i € {1,...,n} and 1 € {0, 1,...,m}.
Theorem 1. For an integer m > 0 let G and G’ be two m-trapezoid graphs
on the same number of vertices, with left-coincidal representations {T1,...,T,}
and {Ty,..., T} respectively. Assume further that for each i we have either
b, < by for alll € {0,1,...,m}, or bj, > b}, for all 1 € {0,1,...,m}. In
this case, the pseudo product G * G' is also an m-trapezoid graph with an m-
trapezoid representation T* = {T7,...,Tr}, which is left-coincidal with both
T and T, and where the right sides of each T} are determined by bj where
bir = max{by;, b, min{b;,b}.'}}, for alli € {1,...,n} and 1 € {0,1,...,m}.

Proof. To prove Theorem [[] we need to show
{’l}i7’()j} € E(G G/) < TN T; # (). (2)

We can assume that the left sides of T; and T} do not cross, say a;; < ay; for all
1€{0,1,...,m}, otherwise there is nothing to prove. Furthermore, if {v;,v,} is
either in F(G) or in E(G") then T} NT} # () by definition. Hence, we can further
assume

ap < by < aij and a; < by, < ai; (3)

to hold for all I € {0,1,...,m} throughout the proof.

144 G. Agnarsson, P. Damaschke, and M.M. Halldérsson

“=” in (2): By definition of E(G % G’), there are v, and vz such that
{va,v;}, {vi,v3} € E(G) and {v;,va}, {vg,v;} € E(G’). This, together with (3],
means that there are indices p, g € {0,1, ..., m} such that T/NT), # 0, ap; < bpa,
T;NTp # 0 and ag; < bl . If by, < b;‘n-' then we have byF = by, > bya > ayj, and
hence T7 N1} # (. If however by > by, " then by assumption in the theorem we
have that b7, > b}, also holds and hence we have by = %' > b5 > aqj, which
implies that T* N T* £ 0.

“<” in (IZI): By @) there is an I € {0,1,...,m} such that b} > a;;. By
definition of b}, and b};" we can find o and 3 such that T/ N T, # 0, bjo, = b};,
T;NTs # 0 and bgﬁ = bfi’. Since now both by, and bz are greater or equal to b
we have T/ N T}, # 0, bijo > aij, T; N Tz # 0 and b;ﬁ > a;j. By our assumption
in @) we have T/ N T, # 0, To N T; # 0, T, N T # 0 and T3 N T] # 0, which
implies that {v;,v,;} € E(G*G"). O

Let us now consider the more special cases of a pseudo product of two powers of
a fixed m-trapezoid graph G. By Proposition [we have that G**G! = G**¢, and
hence Theorem [I] gives us a way to obtain the representation of G**¢ dzrectly
from the representations of G* and G'. In [1] it is shown that if G is an m-
trapezoid graph represented by a set {T1,...,T,} of m-trapezoids (as in and
k > 11is an integer, then G* is represented by m-trapezoids {T;(k), ..., T, (k)}
which are given by

T; (k) = inter({ag, bu(k) : 1 € {0,...,m}}), (4)

where by;(k) = maxg(r, 7,)<k—11b1a }. Although () provides a formula for the
representation of G¥ from the representation of G, this is not computationally
feasible, since the definition of Blz(k) is complex from a computational point of
view. We are, however, able to compute precisely this representation much more
efficiently, by applying the pseudo product.

Let s,t > 1 be integers, and G a fixed m-trapezoid graph. If G* and G* have
{T1(s),...,Tn(s)} and {T1(t),...,T.(t)}, respectively, as their representations,
then we can get the representation of the pseudo product G*¢ = G* x G¢, given
in Theorem I, by calculating bj; explicitly and get

* o __
bli_

(0

max {bia(s)} = max { max
(T3 (), T (£)) <1 d(T,To)<t | d(Tu,Ts)<s—1

AT TB)< T 1{b15} = buls +1).
In the same way we get that bZ‘i = by;(s + t), and hence we have in the case for
pseudo product of G° and G* that
by = max{by, b}, min{bj;,b;;'}} = max{by;(s), b (t),bii(s +)} = bu(s + t).
Hence, the representation of Gt is {Ty(s +t),...,T,,(s + t)}, as given in (@).
We see from the above that Theorem [applies when considering various
powers of a fixed graph G, as the following observation shows.

Proposition 2. If both G and G’ are powers of the same m-trapezoid graph on
n wvertices, then b}, = b7, holds for alll € {0,1,...,m} and i € {1,...,n}.

Powers of Geometric Intersection Graphs and Dispersion Algorithms 145

Recall that the pseudo product is associative on the set of powers of a fixed
graph G, and therefore the notion G™ * - - - x G™ (k times) is perfectly sensible.

Corollary 1. Let k = Y7 | 2" be the binary representation of k. For an m-
trapezoid graph G represented by {Ty, ..., T,}, the representation for G¥ = G2 «
-xG2* from Theorem is {Ty(k), ..., T,(k)}, the representation of G* in 7).

3 Computing Powers of m-Trapezoid Graphs

In this section we implement the theory of Section [2], to obtain a fast method
of computing the representation of G¥, where k € N and G is an m-trapezoid
graph with a given representation. Let T = {Ty,...,T,} and T’ = {T7,..., T}
be two such left-coincidal representations for G' and G’ respectively, as given by
(@). Here we shall assume that for each lane [€ {0,1,...,m} the endpoints, a;;
and by;, where ¢ € {1,...,n}, have been translated to the set {1,2,...,2n}.

We want to compute the pseudo product G * G’, whose right endpoints are
denoted by b} as in Theorem[Il. We shall compute a series of m+1 by 2n matrices
Ap, where for p,l =0,1,...,m and ¢ = 1,...,2n, the entry A,[l, ¢] equals the
rightmost coordinate along lane p among trapezoids T/, in G’ with a;, < ¢. Each
trapezoid T, that intersects T; must satisfy a;, < by;, for some [. Thus, given the
values of A, we compute b* from Theorem [by setting b = max{b},’, by}
where b;’;i/ < max;eqo,...,m} Apll, bii], which takes m + 1 operations. To compute
Ay, we first initialize with zero and insert values for each trapezoid: For each
aec{l,...,n}and € {0,...,m} let be A,[l, a;o] = b],,. This, together with the
zero initialization, uses a total of 2(m + 1)n operations. We can then complete
it in one pass from left to right, using the trivial observations that coordinates
to the left of ¢ — 1 are also to the left of ¢q. That is, we form a prefix maxima of
A, by Apll, q] + max(A4,[l,q], A,[l,¢—1]). This second loop also uses 2(m +1)n
operations as [goes through {0, ..., m} and ¢ through {1,...,2n}, so we perform
4(m + 1)n operations to compute each matrix A,. Therefore the computation
of A, where p € {0,...m} takes a total of 4(m + 1)?n operations. Hence, by
Proposition [and Theorem [l we have the following.

Theorem 2. Given powers G* and Gt of an m-trapezoid graph G, the power
graph G*** can be computed in O(m?n) time.

This generalizes the algorithm given in [2] for interval graphs. The same
construction holds also for circular-arc and circular-trapezoid graphs, where the
max operator is viewed in modular arithmetic.

If k€ Nand k = Y7, 2% is its binary representation, then G* = G2 «
G2? % ... % G2 . Using fast multiplication G* can be computed in at most
ts+s—1 < 2logk—1 pseudo products. By Theorem[2 and Corollary [l we have:

Corollary 2. The representation of G¥ where G is an m-trapezoid graph, can
be computed in O(m?nlogk) time.

146 G. Agnarsson, P. Damaschke, and M.M. Halldérsson

4 Computing Powers of Interval Graphs and Circular-Arc
Graphs

Let G be an interval graph on n vertices, represented by a set Zg of n intervals.
We may assume that all the intervals have their 2n endpoints distinct among
the numbers {1,2,...,2n}. For each interval I € Zs there is a unique interval
I' € Iy with the rightmost endpoint of any interval which intersects I. This
yields a mapping f : Zg — Zg, defined by f(I) = I'. This mapping is acyclic
and thus induces a directed forest F¢ on Zg (which is a directed tree if G is
connected), with an arc from each I € Zg to f(I). Note that the root of any tree
of F¢ will point to itself.

The representation of G* can now be obtained quickly: For each interval
I = [az;br] € Zg we obtain an interval I(k) = [ark); br(r)] where arg) = ar and
br(k) = br,, where Iy is the k-th ancestor of I in the tree of the above forest Fg
(where the parent of the root is the root itself).

This is computed in a single traversal of the tree. As we traverse the tree, we
keep the nodes on the path from the root to the current node on an indexable
stack. This is a data structure supporting all the stack operation, as well as
constant-time indexing of elements in the stack. Namely, we use an array X,
and as we traverse a node I at depth dj, we store it in X[d]. Then, the root
is stored in X[0], and the k-th ancestor of v is stored at X[d; — k], for k < d.
We obtain Ij simply as X (max{d; — k,0}), and for each node I, we output new
interval I(k) obtained by I(k) = [ar; bx (max{d;—k,0})]-

When G is a circular-arc graph, mapping f is a pseudo forest (or a pseudo tree
if G is connected), i.e. each component contains exactly one cycle, as the number
of edges equals the number of vertices. We must now treat nodes at depth less
than k differently. Select any node R on the sole cycle to be a “root”, and set its
depth to be 0. Extend the array X to negative indices, and let X[—1] = f(R)
and generally X[—i] = f)(R). We now traverse the tree rooted at R, as before,
and set Ij, to be X[d; — k] for each node I of depth d; from R. Otherwise, the
process is identical. We have therefore the following.

Theorem 3. Let G be a circular-arc graph with a given representation. For any
k, we can compute the representation of the power graph G* in O(n) time.

5 k-Independent Set and Dispersion Algorithms

By computing the k-th power of a graph, we reduce the problems k-IS and k-WIS
to MIS and MWIS, respectively, on the corresponding class of graphs, within an
additive factor of O(nlogk). The following is known about those problems.
Proposition 3. MWIS can be computed in O(n) time for interval graphs, and
in O(nloglogn) time for trapezoid graphs. MIS can be computed in O(n) time
for circular-arc graphs.

For the MWIS result on interval graphs see [I3]. The MIS result on circular-
arc graphs has been rediscovered several times [I2I4J15)21]. Felsner et al. [§]

Powers of Geometric Intersection Graphs and Dispersion Algorithms 147

showed that weighted IS of trapezoid graphs can be computed in O(nlogn)
time, when the representation is given. Their algorithm uses a data structure
supporting Insert, Delete, Predecessor, and Successor operations of endpoints,
and the complexity is equal to the complexity of n of each of these operations.
With O(nlogn) preprocessing, we may assume that all endpoints are integers
from 1 to 2n. Then, the data structure of van Emde Boas supports these op-
erations in loglogn steps. Hence, we can compute the weighted IS of trapezoid
graphs in O(nloglogn) time. Thus we obtain:

Theorem 4. k-WIS can be found in O(n) time for interval graphs, and in
O(n(loglogn + logk)) time for trapezoid graphs. k-IS can be found in O(n)
time for circular-arc graphs.

Proof. By Theorem [3] and Corollary 2] we can compute the k-th power of an
interval graph and of a trapezoid graph in O(n) time and O(nlogk) time, re-
spectively, and MWIS on the k-th power is equivalent to k-MWIS. This and
Proposition [3] gives the results for these classes. The bound on k-IS for circular-
arc graphs follows similarly. a

5.1 Dispersion via Binary Search for k

A simple algorithm looks for the largest power G* of G that still admits an
independent set of weight at least ¢. This is achieved by repeated doubling
followed by binary search; the details are straightforward. This & is, of course,
the solution to the dispersion problem. The time complexity is dominated by
the number of computations of maximum (weighted) independent sets. Here, it
is at most 2log k. Hence:

Theorem 5. For Weighted Dispersion we have the following time bounds:
O(nlogk) on interval graphs and O(nlogkloglogn) on trapezoid graphs.

5.2 Unweighted Dispersion of Geometric Graphs

For convenience let k-IS(G) denote the size of a minimum k-independent set in
graph G. Recall the notion of a lane from Section 2.

Lemma 1. Let G be an m-trapezoid graph, and d be the distance between trape-
zoids that are furthest in each direction along some lane. Then |d/(k+1)|+1 <
k-IS(G) < |d/(k—1)| + 1.

Proof. Let u (resp. u’) be the trapezoid furthest to the left (resp. right) along a
given lane, and let P = (u = ug,u1, us,...,uq = u’) be a shortest path between
u and v'. The set {u;p41)li = 0,1,2,...,[d/(k + 1)]} then forms a k-IS, thus
showing the first part of the claim.

On the other hand, suppose {v1,va,...,v:} is a k-IS. For each v;, the trape-
zoid representing v; intersects some trapezoid representing a node u,, in the
abovementioned path P. Since v; and v; ;1 are of distance at least k+ 1, we have
that 2,11 > x; +k—1. It follows by induction that d > 2y > 21+ (t—1)(k—1) >
(t—1)(k—1). Thus, t < |d/(k—1)]+1, yielding the second part of the claim. O

148 G. Agnarsson, P. Damaschke, and M.M. Halldérsson

Theorem 6. Let G be an m-trapezoid graph, d be the distance between vertices
respectively with the leftmost and rightmost endpoint along some lane, and K
be |d/(q — 1)|. Then, the optimum dispersion of G is one of the three values
{K-1,K K+ 1}.

Proof. Let OPT be the optimum dispersion of G, i.e. the largest value ¢ such
that ¢-IS(G) > ¢. By the definition of K, K(q — 1) < d, and thus by Lemma [
g <|d/K|+1< (K -1)IS(G). That is, OPT > K — 1. By the definition of K,
d/(K +1) < g, so K is the largest number such that [2] > g— 1. By Lemmal[l]
q < OPT-1S(G) < |d/(OPT —1)] + 1. Thus, OPT < K + 1. 0

This can be extended to circular-arc graphs. A greedy covering of the circle is
defined as follows: Start with an arbitrary arc I, add f(I) and let I := f(I),
until the whole circle is covered. (Do not put the initial I in the set.) Such a
covering exists unless the graph is actually an interval graph. Note that a greedy
covering is a chordless cycle in the graph and can be computed in O(n) time.
The following result holds by an argument similar to Lemma [Tl

Lemma 2. Let ¢ be the size of a greedy covering of a circular-arc graph G. Then
[/ (k + 1)] < k-IS(G) < |e/(k— 1)].

This can be further extended to circular m-trapezoid graphs. Due to lack of
space, we only state the result:

Theorem 7. Let G be a circular m-trapezoid graph, and let K be |c¢/q|. Then,
the optimum dispersion of G is one of the three values {K — 1, K, K + 1}.

The proof follows the lines of Theorem[6l On circular-arc graphs, we can compute
each k-IS in linear time, as mentioned earlier. Thus we finally get the following

Corollary 3. Dispersion has equivalent complexity as k-1S on interval, circular-
arc, m-trapezoid, and circular m-trapezoid graphs. In particular, it can be com-
puted in O(n(log k+ (loglogn)™)) time on m-trapezoid graphs, and in O(n) time
on interval and circular-arc graphs.

Acknowledgments. Parts of this work were done while Geir was a Visiting
Scholar at Los Alamos National Laboratory in Los Alamos, New Mexico, Sum-
mer of 2000. He is grateful to Madhav Marathe for his hospitality. We thank
Rasmus Pagh for advice.

References

—_

. G. Agnarsson. On Powers of some Intersection Graphs, Congressus Numerantium,
submitted in April 2001.

2. G. Agnarsson, R. Greenlaw, M. M. Halldérsson. On Powers of Chordal Graphs
and Their Colorings, Congressus Numerantium, 144:41-65, (2000).

3. B. K. Bhattacharya, M. E. Houle. Generalized Maximum Independent Sets for
Trees. Computing - The 3rd Australian Theory Symposium CATS’97.

4. B. K. Bhattacharya, M. E. Houle. Generalized Maximum Independent Sets for

Trees in Subquadratic Time. 10th Int. Symp. on Algorithms and Computation

ISAAC’99, LNCS 1741 (Springer), 435-445.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Powers of Geometric Intersection Graphs and Dispersion Algorithms 149

E. Dahlhaus and P. Duchet. On Strongly Chordal Graphs. Ars Combinatoria, 24
B:23-30, (1987).

P. Damaschke. Distances in Cocomparability Graphs and Their Powers. Discrete
Applied Mathematics, 35:67-72, (1992).

P. Damaschke. Efficient Dispersion Algorithms for Geometric Intersection Graphs.
26th Int. Workshop on Graph-Theoretic Concepts in Computer Science WG’2000,
LNCS 1928 (Springer), 107-115.

S. Felsner, R. Miiller and L. Wernisch. Trapezoid Graphs and Generalizations,
Geometry and Algorithms. Discrete Applied Mathematics, 74:13-32, (1997).

C. Flotow. On Powers of m-Trapezoid Graphs. Discrete Applied Mathematics,
63:187-192, (1995).

C. Flotow. On Powers of Circular Arc graphs and Proper Circular Arc Graphs.
Discrete Applied Mathematics, 74:199-207, (1996).

J. Hastad. Clique is hard to approximate within n'~¢. Acta Mathematica, 182:105—
142, (1999).

W. L. Hsu, K. H. Tsai. Linear-time Algorithms on Circular Arc Graphs. Infor-
mation Proc. Letters, 40:123-129, (1991).

J. Y. Hsiao, C. Y. Tang, R. S. Chang. An Efficient Algorithm for Finding a Max-
imum Weight 2-Independent Setw on Interval Graphs. Information Proc. Letters,
43:229-235, (1992).

D. T. Lee, M. Sarrafzadeh, Y. F. Wu. Minimum Cuts for Circular-Arc Graphs.
SIAM J. Computing, 19:1041-1050, (1990).

S. Masuda and K. Nakajima. An Optimal Algorithm for Finding a Maximum
Independent Set of a Circular-Arc Graph. STAM J. Computing, 17:219-230, (1988).
A. Raychaudhuri. On Powers of Interval and Unit Interval Graphs. Congressus
Numerantium, 59:235-242, (1987).

A. Raychaudhuri. On Powers of Strongly Chordal and Circular Graphs. Ars
Combinatoria, 34:147-160, (1992).

D. J. Rosenkrantz, G. K. Tayi, S. S. Ravi. Facility Dispersion Problems Under
Capacity and Cost Constraints. J. of Combinatorial Optimization, 4:7-33 (2000).
D. B. West. Introduction to Graph Theory. Prentice-Hall Inc., Upper Saddle
River, New Jersey, (1996).

M. Yannakakis. The complexity of the partial order dimension problem. SIAM
J. Alg. Disc. Meth. 3:351-358, 1982.

S. Q. Zheng. Maximum Independent Sets of Circular Arc Graphs: Simplified
Algorithms and Proofs. Networks, 28:15-19, (1996).

Efficient Data Reduction for DOMINATING SET:
A Linear Problem Kernel for the Planar Case

Jochen Alber*!, Michael R. Fellows?, and Rolf Niedermeier!

! Universitat Tiibingen, Wilhelm-Schickard-Institut fiir Informatik,
Sand 13, D-72076 Tiibingen, Fed. Rep. of Germany,
alber,niedermr@informatik.uni-tuebingen.de
2 University of Newcastle, School of Electrical Engineering and Computer Science,
University Drive, Callaghan, NSW 2308, Australia,
mfellows@cs.newcastle.edu.au

Abstract. Dealing with the NP-complete DOMINATING SET problem on
undirected graphs, we demonstrate the power of data reduction by pre-
processing from a theoretical as well as a practical side. In particular, we
prove that DOMINATING SET on planar graphs has a so-called problem
kernel of linear size, achieved by two simple and easy to implement re-
duction rules. This answers an open question from previous work on the
parameterized complexity of DOMINATING SET on planar graphs.

1 Introduction

In this work, two lines of research meet. On the one hand, there is DOMINATING
SET, one of the NP-complete core problems of combinatorial optimization and
graph theory. According to a 1998 survey [12, Chapter 12], more than 200 re-
search papers and more than 30 PhD theses investigate the algorithmic com-
plexity of domination and related problems [15]. Moreover, domination prob-
lems occur in numerous practical settings, ranging from strategic decisions such
as locating radar stations or emergency services through computational biology
to voting systems (see [14] for a survey). On the other hand, the second line of
research is that of algorithm engineering and, in particular, the power of data
reduction by efficient preprocessing. Weihe [T6l17] gave a striking example when
dealing with the closely related NP-complete HITTING SET problem in context of
the European railroad network. In a preprocessing phase, he applied two simple
data reduction rules again and again until no further application was possible.
The impressive result of his empirical study was that each of his real-world in-
stances was broken into very small pieces such that for each of these a simple
brute-force approach was sufficient to solve the hard problems efficiently and
optimally. Here, we present two easy to implement reduction rules for DomI-
NATING SET and analytically (not only empirically) substantiate their strength
in the case of planar graphs. More precisely, we can prove a linear size problem

* Work supported by the Deutsche Forschungsgemeinschaft (DFG), research project
PEAL (Parameterized complexity and Exact ALgorithms), NI 369/1-1,1-2.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 150-[I59] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Efficient Data Reduction for DOMINATING SET 151

kernel for DOMINATING SET on planar graphs. This parallels results on a linear
problem kernel for the VERTEX COVER problem observed by Chen et al. [§]
based on a well-known theorem of Nemhauser and Trotter [13][7].

A k-dominating set D of an undirected graph G is a set of k vertices of G
such that each of the rest of the vertices has at least one neighbor in D. The
minimum k such that G has a k-dominating set is called the domination number
of G, denoted by v(G). The DOMINATING SET problem is to decide, given a
graph G = (V, E) and a positive integer k, whether v(G) < k. DOMINATING SET
belongs to the best-studied problems in parameterized complexity theory [BIT0]
11]. Here, the fundamental question is whether a given parameterized problem
is fized-parameter tractable, i.e., whether it can be solved in time f(k) - nPM,
that is, time polynomial with respect to the input except for the parameter k
where exponential behavior is allowed. It is well-known that DOMINATING SET
is probably not fixed-parameter tractable on general graphs, more precisely,
DOMINATING SET is W|[2]-complete [9/I0]. By way of contrast, restricting it to
planar graphs (i.e., those graphs that can be drawn in the plane without edge
crossing), where it still remains NP-complete, DOMINATING SET becomes fixed-
parameter tractable. Currently, the two best known results in this respect are a
time O(cV* - n) (with ¢ = 45V3) algorithm based on tree decompositions [1]
and a time O(8* - n) search tree algorithm [2]. In both these works, it remained
an open question to show whether DOMINATING SET on planar graphs possesses
a linear problem kernel. More precisely, the question was whether, given a planar
graph G and a parameter k as input, can we—in a polynomial time preprocessing
phase—construct a planar graph G’ and a parameter k¥’ < k such that

1. G’ consists of only ¢ - k vertices for some constant ¢, and
2. G has a dominating set of size k iff G’ has a dominating set of size I4E

We answer this question affirmatively, in this way also providing both easy and
strong data reduction rules in the sense of Weihe [16//17].

Our main result is that DOMINATING SET on planar graphs has a problem kernel
of size 335k. Note, however, that our main concern in analyzing the multiplica-
tive constant 335 was conceptual simplicity, for which we deliberately sacrificed
the aim to further lower it by way of refined analysis (without changing the
reduction rules). Our problem kernel can be constructed by applying two simple
data reduction rules again and again until no further application is possible. In
the worst case, for a planar input graph of n vertices this data reduction needs
time O(n?). Besides answering an open question from previous work, the linear
problem kernel also leads to further improvements of known results. First, on the
structural side, combining our linear problem kernel with the graph separator

! In [1], an exponential base ¢ = 36V34 jg stated, involving a tiny flaw in the analysis.
The correct worst case upper bound should read ¢ = 4°V3% (sece also [6]).
2 Usually, one also wants to efficiently get the dominating set for G' once having the
dominating set for G’. This is easily achieved in our and basically all known reduc-

tions to problem kernel.

152 J. Alber, M.R. Fellows, and R. Niedermeier

e O Ny (v, w)
@glgvi > O

2y O ON;3(v,w
O Ny () 3(v, w)

Fig.1. The left-hand side shows the partitioning of the neighborhood of a single
vertex v. The right-hand side shows the partitioning of a neighborhood N (v, w) of two
vertices v and w. Since, in the left-hand figure, N3(v) # (), reduction Rule [applies.
In the right-hand figure, since N3(v,w) cannot be dominated by a single vertex at all,
Case 2 of Rule B applies

approach presented in [4] immediately results in an O(c‘/E -k 4+ n°M) DomI-
NATING SET algorithm on planar graphs (for some constant ¢). Also, the linear
problem kernel directly proves the so-called “Layerwise Separation Property” [3]
for DOMINATING SET on planar graphs, again implying an O(C\/E -~k 4+ nPM)
algorithm. Second, the linear problem kernel improves the time O(8* - n) search
tree algorithm from [2] to an O(8%k + n?) algorithm. Apart from these theoret-
ical results, we also underpin the practical importance of our approach through
(ongoing) experimental studies. These indicate that the two proposed reduction
rules can be implemented efficiently and lead to massive reductions on given in-
put data. Notably, our data reductions also significantly accelerate implemented
tree decomposition based algorithms for DOMINATING SET on planar graphs [6]
due to an empirically observed reduction of the treewidth of the tested graphs.
Due to the lack of space, many details had to be omitted and will appear in the
full version of the paper.

2 The Reduction Rules

We present two reduction rules for DOMINATING SET. Both reduction rules are
based on the same principle: We explore the local structure of the graph and try
to replace it by a simpler structure.

2.1 The Neighborhood of a Single Vertex

Consider a vertex v € V of the given graph G = (V, E). We partition the vertices
of the neighborhood N (v) of v into three different sets Ny (v), No(v), and N3(v)
depending on what neighborhood structure these vertices have. More precisely,
setting N[v] := N(v) U {v}, we define

Ni(v) = {u € N(v) : N(u)\ N[e] # 0},
)

Efficient Data Reduction for DOMINATING SET 153

An example which illustrates the partitioning of N(v) into the subsets Ny (v),
Ns(v), and N3(v) can be seen in the left-hand diagram of Fig. [Il Based on the
above definitions we give our first reduction rule.

Rule 1 If N3(v) # 0 for some vertez v, then

e remove No(v) and N5(v) from G and
e add a new vertex v' with the edge {v,v'}.

Lemma 1. Let G = (V,E) be a graph and let G' = (V',E') be the resulting
graph after having applied Rule[l to G. Then v(G) = v(G").

Proof. Consider a vertex v € V such that N3(v) # 0. The vertices in N3(v)
can only be dominated by either v or by vertices in Na(v) U N3(v). But, clearly,
N(w) € N(v) for every w € N2(v) U N3(v). This shows that an optimal way to
dominate N3(v) is given by taking v into the dominating set. This is simulated by
the “gadget” {v,v'} in G’. Tt is safe to remove Na(v)UN3(v), since these vertices
need not to be used in an optimal dominating set. Hence, v(G') = v(G). O

Lemma 2. Rule[] can be carried out in time O(n) for planar graphs and in
time O(n®) for general graphs. O

2.2 The Neighborhood of a Pair of Vertices

Similar to Rule 1, we explore the set N(v,w) := N(v) U N(w) of two vertices
v,w € V. Analogously, we now partition N(v,w) into three disjoint subsets
Ny (v, w), Na(v,w), and N3(v,w). Setting N[v,w] := N[v] U N[w], we define

Ni(v,w) :={u € N(v,w) | N(u) \ N[v,w] # 0},
No(v,w) :={u € N(v,w) \ Ni(v,w) | N(u) N N1(v,w) # 0},
Ni(v,w) := N(v,w) \ (N1(v, w) U Na(v,w)).

The right-hand diagram of Fig. [l shows an example which illustrates the parti-
tioning of N (v, w) into the subsets Ni(v,w), No(v,w), and N3(v,w).
Our second reduction rule—compared to Rule [[}is slightly more complicated.

Rule 2 Consider v,w € V (v # w) and suppose that N3(v,w) # 0. Suppose
that N3(v,w) cannot be dominated by a single vertex from Na(v,w) U N3(v,w).

Case 1 If N3(v,w) can be dominated by a single vertex from {v,w}:
(1.1) If Ns(v,w) € N(v) as well as N3(v,w) C N(w):
e remove N3(v,w) and Na(v,w) N N(v) N N(w) from G and
e add two new vertices z, 2 and edges {v, z}, {w, 2z}, {v, 2}, {w, 2’ }.
(1.2) If Ns(v,w) € N(v), but not N3(v,w) C N(w):
e remove N3(v,w) and Na(v,w) N N(v) from G and
e add a new vertex v’ and the edge {v,v'} to G.
(1.3) If Ns(v,w) C N(w), but not N3(v,w) C N(v):
e remove N3(v,w) and Na(v,w) N N(w) from G and

154 J. Alber, M.R. Fellows, and R. Niedermeier

e add a new vertex w' and the edge {w,w'} to G.
Case 2 If N5(v,w) cannot be dominated by a single vertex from {v,w}:
e remove N3(v,w) and Na(v,w) from G and
e add two new vertices v',w' and edges {v,v'}, {w,w'}.

Lemma 3. Let G = (V, E) be a graph and let G' = (V', E’) be the resulting
graph after having applied Rule[d to G. Then v(G) = v(G").

Proof. Similar to the proof of Lemma [[] we observe that vertices from N3(v, w)
can only be dominated by vertices from M = {v,w} U Na(v,w) U N3(v,w).
All cases in Rule 2] are based on the fact that N3(v,w) needs to be dominated.
All rules only apply if there is not a single vertex in Na(v,w) U N3(v,w) which
dominates N3(v,w).

We first of all discuss the correctness of Case (1.2) (and similarly the symmetric
Case (1.3)): If v dominates N3(v,w) (and w does not), then it is better to
take v into the dominating set—and at the same time still leave the option of
taking vertex w—than to take any combination of two vertices {z,y} from the
set M \ {v}. It may be that we still have to take w to a minimum dominating
set, but in any case {v,w} dominates at least as many vertices as {z,y}. The
“gadget” {v,v'} simulates the effect of taking v. It is safe to remove N :=
(Na2(v,w) N N(v)) U N3(v,w) since, by taking v into the dominating set, all
vertices in N are already dominated and since, as discussed above, it is always
better to take {v,w} into a minimum dominating set than to take v and any
other of the vertices from N.

In the situation of Case (1.1), we can dominate N3(v,w) by both v or w. Since
we cannot decide at this point which of these vertices should be chosen to be in
the dominating set, we use the “gadget” with vertices v’ and w’ which simulates
a choice between v or w, as can be seen easily. In any case, however, it is better to
take one of the vertices v and w (maybe both) than taking any two of the vertices
from M \ {v,w}. The argument for this is similar to the one for Case (1.2). The
removal of N3(v,w) U (Na(v,w) N N(v) N N(w)) is safe by a similar argument
than the one that justified the removal of N in Case (1.2).

In Case 2, we need at least two vertices to dominate N3(v,w). Since N(v,w) 2
N(z,y) for all pairs x,y € M it is best to take v and w into the dominating set,
simulated by the gadgets {v,v'} and {w,w’}. As in the previous cases remov-
ing N3(v,w) U Na(v,w) is safe since these vertices are already dominated and
since these vertices need not be used for an optimal dominating set. O

Lemma 4. Rule[d can be carried out in time O(n?) for planar graphs and in
time O(n?) for general graphs. O

2.3 Reduced Graphs

Definition 1. Let G = (V, E) be a graph such that both the application of Rule 1
and the application of Rule 2 leave the graph unchanged. Then we say that G is
reduced with respect to these rules.

Efficient Data Reduction for DOMINATING SET 155

Observing that the (successful) application of any reduction rule always
“shrinks” the given graph implies that there can only be O(n) successful ap-
plications of reduction rules. This leads to the followingE

Lemma 5. A graph G can be transformed into a reduced graph G’ with v(G) =
v(G') in time O(n?) in the planar case and in time O(n®) in the general case. O

3 A Linear Problem Kernel for Planar Graphs

Here, we show that the reduction rules given in Section 2Tl yield a linear size
problem kernel for DOMINATING SET on planar graphs.

Theorem 1. For a planar graph G = (V, E) which is reduced with respect to
Rules [l and [3, we get |V| < 335+(G), i.e., the DOMINATING SET problem on
planar graphs admits a linear problem kernel.

The rest of this section is devoted to sketch a proof of Theorem [[1 The proof can
be split into two parts. In a first step, we try to find a so-called “maximal region
decomposition” of the vertices V of G. In a second step, we show, on the one
hand, that such a maximal region decomposition must contain all but O(y(G))
many vertices from V. On the other hand, we prove that such a region decompo-
sition uses at most O(y(G)) regions, each of which having size O(1). Combining
the results then yields |V| = O(v(G)).

3.1 Finding a Maximal Region Decomposition

Suppose that we have a reduced planar graph G with a minimum dominating
set D. We know that, in particular, neither Rule [l applies to a vertex v € D,
nor Rule 2] applies to a pair of vertices v,w € D. We want to get our hands
on the number of vertices that lie in neighborhoods N(v) for v € D, or neigh-
borhoods N (v, w) for v,w € D. A first idea to prove that |V| = O(|D|) would
be to find (at most O(|D|) many) neighborhoods N(vy,wi),... , N(vg, we) with
vi,w; € D, such that all vertices in V' lie in at least one such neighborhood;
and then use the fact that G is reduced in order to prove that each N(v;,w;)
has size at most O(1). However, even if the graph G is reduced, the neighbor-
hoods N (v,w) of two vertices v,w € D may contain many vertices: the size
of N(v,w) in a reduced graph basically depends on how big Ny (v, w) is.

In order to circumvent these difficulties, we define the concept of a region R(v, w)
for which we can guarantee that in a reduced graph it consists of only a constant
number of vertices.

Definition 2. Let G = (V, E) be a plandd graph. A region R(v,w) between two
vertices v,w s a closed subset of the plane with the following properties:

1. the boundary of R(v,w) is formed by two paths Py and Py in'V which connect
v and w, and the length of each path is at most thre, and

3 It must be emphasized here that our polynomial time bounds for the reduction rules
give real worst-case bounds (which may not even be tight) and, in practice, the
algorithms implementing these rules appear to be much faster.

4 A plane graph is a particular planar embedding of a planar graph.

5 The length of a path is the number of edges on it.

156 J. Alber, M.R. Fellows, and R. Niedermeier

shes
ae \\. |||n.,% //@

Fig.2. The left-hand side diagram shows an example of a possible D-region decom-
position R of some graph G, where D is the subset of vertices in G that are drawn
in black. The various regions are highlightened by different patterns. The remaining
white areas are not considered as regions. Note that the given D-region decomposition
is maximal. The right-hand side shows the induced graph Gz (Definition [)

2. all vertices which are strictly insiddd the region R(v,w) are from N(v,w).

For a region R, let V(R) denote the vertices belonging to R, i.e.,

V(R) :={u € V | u sits inside or on the boundary of R}.

Definition 3. Let G = (V, E) be a plane graph and D C V. A D-region decom-
position of G is a set R of regions between pairs of vertices in D, such that

1. for R(v,w) € R no vertex from D (except for v,w) lies in V(R(v,w)), and
2. no two regions Ry, Ry € R do intersect (however, they may touch each other
by having common boundaries).

For a D-region decomposition R, we define V(R) := Jper V(R). A D-region
decomposition R is called maximal if there is no region R ¢ R such that R’ :=
R U{R} is a D-region decomposition with V(R) C V(R').

For an example of a (maximal) D-region decomposition we refer to the left-hand
side diagram of Fig. 2] It is not directly clear, whether, for a given graph G with
dominating set D, a maximal D-region decomposition of G exists. We will see
that this indeed is the case. Moreover, we will show that we can even find a
special maximal D-region decomposition. For that purpose, we observe that a
D-region decomposition induces a graph in a very natural way.

Definition 4. The induced graph Gr = (Vg,Exr) of a D-region decomposi-
tion R of G is the graph with possible multiple edges which is defined as follows:
Vr = D, and Exr = {{v, w} |
there is a region R(v,w) € R between v, w € D}.

Note that, by Definition [8] the induced graph G of a D-region decomposition
is planar. For an example of an induced graph G see Fig.

5 i.e., not sitting on the boundary of R(v,w)

Efficient Data Reduction for DOMINATING SET 157

Worst-case scenario for a region R(v,w): Simple regions S(z,y):

Fig. 3. The left-hand diagram shows a worst-case scenario for a region R(v, w) between
two vertices v and w in a reduced planar graph (cf. the proof of Proposition B]). Such
a region may contain up to four vertices from Ni(v,w), namely u1,usz, us, and us. The
vertices from R(v,w) which belong to the sets Na(v,w) and N3(v,w) can be grouped
into so-called simple regions of Type 1 (marked with a line-pattern) or of Type 2
(marked with a crossing-pattern); the structure of such simple regions S(z, y) is given in
the right-hand part of the diagram. In R(v, w) there might be two simple regions S(d, v)
and S(d,w) (of Type 2), containing vertices from N3(v,w). And, we can have up to six
simple regions of vertices from Na(v,w): S(u1,v), S(v, u3), S(ua, w), S(w, usz), S(uz,v),
and S(u4,v) (among these, the latter two can be of Type 2 and the others are of
Type 1)

Definition 5. We say that a planar graph G = (V, E) with multiple edges is
thin, if there exists a planar embedding such that the following property holds:
If there are two edges ey, es between a pair of distinct vertices v,w € 'V, then
there must be two further vertices uy,us € V which sit inside the two disjoint
regions of the plane that are enclosed by ey, es.

Lemma 6. For a thin planar graph G = (V, E) we have |E| < 3|V| — 6.

Proof. The claim is true for planar graphs without multiple edges. An easy
induction on the number of multiple edges in G proves the claim. a

Using the notion of thin graphs, we can formulate the main result of this section.

Proposition 1. For a reduced plane graph G with dominating set D, there exists
a mazximal D-region decomposition R such that Gr is thin. O

3.2 Region Decompositions and the Size of Reduced Planar Graphs

Suppose that we are given a reduced planar graph G = (V| E) with a minimum
dominating set D. Then, by Proposition[Il and Lemmal6l, we can find a maximal
D-region decomposition R of G with at most O(y(G)) regions. In order to see

158 J. Alber, M.R. Fellows, and R. Niedermeier

that |V| = O(7(G)), it remains to show that (1) there are at most O(y(G))
vertices which do not belong to any of the regions in R, and that (2) every
region of R contains at most O(1) vertices. These issues are treated by the
following two propositions, the extensive proofs of which are omitted.

Proposition 2. Let G = (V, E) be a plane reduced graph and let D be a domi-
nating set of G. If R is a mazimal D-region decomposition, then R contains all
but O(|D| + |R|) vertices of G. More precisely, |V \ V(R)| < 2|D| + 56|R|. O

We now investigate the maximal size of a region in a reduced graph. The worst-
case scenario for a region in a reduced graph is depicted in Fig. Bl

Proposition 3. A region R of a plane reduced graph contains at most 55 ver-
tices, i.e., |V(R)| < 55. |

To prove Theorem [I] we first of all observe that, for a graph G with minimum
dominating set D, by Proposition [[] and Lemma [B] we can find a D-region de-
composition R of G with at most 3y(G) regions, i.e., |R| < 3v(G). By Propo-
sition [3, we know that [V(R)| < > pcr IV(R)| < 55|R|. By Proposition 2] we
have |V \ V(R)| < 2|D|+ 56|R|. Hence, we get |V| < 2|D| + 111|R| < 335(G).

4 Conclusion

Presenting two simple and easy to implement reduction rules for DOMINATING
SET, we proved that for planar graphs a linear size problem kernel can be ef-
ficiently constructed. Our result complements and partially improves previous
results [TJ2J3/4] on the parameterized complexity of DOMINATING SET on planar
graphs. We emphasize that the proven bound on the problem kernel size is a
pure worst-case upper bound. In first experimental studies to be reported else-
where, we obtained much smaller problem kernels. An immediate open question
is whether or not we can improve the constant factor to values around 10. This
would bring the problem kernel for DOMINATING SET on planar graphs into “di-
mensions” as known for VERTEX COVER, where it is of size 2k [§]. This could be
done by either improving the analysis given or (more importantly) further im-
proving the given reduction rules or both. Improving the rules should be doable
by further extending the concept of neighborhood to more than two vertices.
From a practical point of view, however, one also has to take into account to
keep the reduction rules as simple as possible in order to avoid inefficiency due
to increased overhead. It might well be the case that additional, more compli-
cated reduction rules only improve the worst case bounds, but are of little or no
practical use due to their computational overhead.

Acknowledgements. For two years, besides ourselves the linear size problem
kernel question for DOMINATING SET on planar graphs has taken the attention
of numerous people, all of whom we owe sincere thanks for their insightful and
inspiring remarks and ideas. Among these people we particularly would like to
mention Frederic Dorn, Henning Fernau, Jens Gramm, Michael Kaufmann, Ton
Kloks, Klaus Reinhardt, Fran Rosamond, Peter Rossmanith, Ulrike Stege, and

Efficient Data Reduction for DOMINATING SET 159

Pascal Tesson. Special thanks go to Henning for the many hours he spent with
us on “diamond discussions” and for pointing us to a small error concerning the
application of the linear problem kernel, and to Frederic for again doing a perfect
implementation job, which also uncovered a small error in a previous version of
Rule 2.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

J. Alber, H. L. Bodlaender, H. Fernau, and R. Niedermeier. Fixed parameter
algorithms for planar dominating set and related problems. In Proc. 7th SWAT
2000, Springer-Verlag LNCS 1851, pp. 97-110, 2000.

J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. Rosamond, and
U. Stege. Refined search tree technique for DOMINATING SET on planar graphs. In
Proc. 26th MFCS 2001, Springer-Verlag LNCS 2136, pp. 111-122, 2001.

J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential
speed-up for planar graph problems. In Proc. 28th ICALP 2001, Springer-Verlag
LNCS 2076, pp. 261-272, 2001.

. J. Alber, H. Fernau, and R. Niedermeier. Graph separators: a parameterized view.

In Proc. 7th COCOON 2001, Springer-Verlag LNCS 2108, pp. 318-327, 2001.

J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard problems:
a parameterized point of view. Discrete Mathematics, 229: 3-27, 2001.

J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Proc. 5th LATIN 2002, Springer-Verlag LNCS 2286,
pp. 613-627, 2002.

R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25: 27-46, 1985.

J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280-301, 2001.

R. G. Downey and M. R. Fellows. Parameterized computational feasibility. In P.
Clote, J. Remmel (eds.): Feasible Mathematics II, pp. 219-244. Birkh&auser, 1995.
R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer-Verlag, 1999.

M. R. Fellows. Parameterized complexity: the main ideas and some research fron-
tiers. In Proc. 12th ISAAC 2001, Springer-Verlag LNCS 2223, pp. 291-307, 2001.
T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of Domination
in Graphs. Monographs and textbooks in pure and applied Mathematics Vol. 208,
Marcel Dekker, 1998.

G. L. Nemhauser and L. E. Trotter. Vertex packing: structural properties and
algorithms. Mathematical Programming, 8:232-248, 1975.

F. S. Roberts. Graph Theory and Its Applications to Problems of Society. SIAM
Press 1978. Third printing 1993 by Odyssey Press.

J. A. Telle. Complexity of domination-type problems in graphs. Nordic J. Comput.
1:157-171, 1994.

K. Weihe. Covering trains by stations or the power of data reduction. In Proc. 1st
ALEX’98, pp. 1-8, 1998.

K. Weihe. On the differences between “practical” and “applied” (invited paper).
In Proc. WAE 2000, Springer-Verlag LNCS 1982, pp. 1-10, 2001.

Planar Graph Coloring with Forbidden
Subgraphs: Why Trees and Paths Are
Dangerous™

Hajo Broersma', Fedor V. Fomin?, Jan Kratochvil®, and
Gerhard J. Woeginger!

! Faculty of Mathematical Sciences, University of Twente, 7500 AE Enschede, The
Netherlands, {broersma, g.j.woeginger}@math.utwente.nl
2 Heinz Nixdorf Institut, Fiirstenallee 11, D-33102 Paderborn, Germany,
fomin@uni-paderborn.de
3 Faculty of Mathematics and Physics, Charles University, 118 00 Prague, Czech
Republic, honza@kam.ms .mff.cuni.cz

Abstract. We consider the problem of coloring a planar graph with
the minimum number of colors such that each color class avoids one or
more forbidden graphs as subgraphs. We perform a detailed study of the
computational complexity of this problem.

We present a complete picture for the case with a single forbidden con-
nected (induced or non-induced) subgraph. The 2-coloring problem is
NP-hard if the forbidden subgraph is a tree with at least two edges, and
it is polynomially solvable in all other cases. The 3-coloring problem is
NP-hard if the forbidden subgraph is a path, and it is polynomially solv-
able in all other cases. We also derive results for several forbidden sets
of cycles.

Keywords: graph coloring; graph partitioning; forbidden subgraph; pla-
nar graph; computational complexity.

1 Introduction

We denote by G = (V, E) a finite undirected and simple graph with [V| = n
vertices and |E| = m edges. For any non-empty subset W C V, the subgraph of
G induced by W is denoted by G[W]. A clique of G is a non-empty subset C C V/
such that all the vertices of C are mutually adjacent. A non-empty subset I C V'
is independent if no two of its elements are adjacent. An r-coloring of the vertices

* The work of HIJB and FVF is sponsored by NWO-grant 047.008.006. Part of the
work was done while FVF was visiting the University of Twente, and while he was
a visiting postdoc at DIMATIA-ITT (supported by GACR 201/99/0242 and by the
Ministry of Education of the Czech Republic as project LNO0A056). FVF acknowled-
ges support by EC contract IST-1999-14186: Project ALCOM-FT (Algorithms and
Complexity - Future Technologies). JK acknowledges support by the Czech Mini-
stry of Education as project LNO0A056. GJW acknowledges support by the START
program Y43-MAT of the Austrian Ministry of Science.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 160-[I69] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Planar Graph Coloring with Forbidden Subgraphs 161

of G is a partition Vi, Va,... ,V, of V; the r sets Vj are called the color classes
of the r-coloring. An r-coloring is proper if every color class is an independent
set. The chromatic number x(G) is the minimum integer r for which a proper
r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class V;
the induced subgraph G[V;] does not contain a subgraph isomorphic to P,. This
observation leads to a number of interesting generalizations of the classical graph
coloring concept. One such generalization was suggested by Harary [I5]: Given
a graph property m, a positive integer r, and a graph G, a w r-coloring of G
is a (not necessarily proper) r-coloring in which every color class has property
7. This generalization has been studied for the cases where the graph property
7 is being acyclic, or planar, or perfect, or a path of length at most k, or a
clique of size at most k. We refer the reader to the work of Brown & Corneil [5],
Chartrand et al [718], and Sachs [20] for more information on these variants.

In this paper, we will investigate graph colorings where the property = can
be defined via some (maybe infinite) list of forbidden induced subgraphs. This
naturally leads to the notion of F-free colorings. Let F = {F, F»,...} be the
set of so-called forbidden graphs. Throughout the paper we will assume that
the set F is non-empty, and that all graphs in F are connected and contain at
least one edge. For a graph G, a (not necessarily proper) r-coloring with color
classes V1, Vs, ..., V, is called weakly F—free, if for all 1 < j < r, the graph G[V}]
does not contain any graph from F as an induced subgraph. Similarly, we say
that an r-coloring is strongly F -free if G[V;] does not contain any graph from
F as an (induced or non-induced) subgraph. The smallest possible number of
colors in a weakly (respectively, strongly) F-free coloring of a graph G is called
the weakly (respectively, strongly) F-free chromatic number; it is denoted by
X" (F,G) (respectively, by x*(F,G)).

In the cases where F = {F'} consists of a single graph F, we will sometimes
simplify the notation and not write the curly brackets: We will write F-free short
for { F'}-free, x*V (F, G) short for x" ({F'}, G), and x°(F, G) short for x*({F}, G).
With this notation x (G) = x° (P2, G) = x" (P2, G) holds for every graph G. Note
that

X"(F,G) < X5(F,G) < x(G).

It is easy to construct examples where both inequalities are strict. For instance,
for F = {Ps} (the path on three vertices) and G = C3 (the cycle on three
vertices) we have x(G) = 3, x*(Ps;,G) = 2, and x" (P3,G) = 1.

1.1 Previous Results

The literature contains quite a number of papers on weakly and strongly F-free
colorings of graphs. The most general result is due to Achlioptas [I]: For any
graph F with at least three vertices and for any r > 2, the problem of deciding
whether a given input graph has a weakly F-free r-coloring is NP-hard.

162 H. Broersma et al.

The special case of weakly Ps-free colorings is known as the subcoloring prob-
lem in the literature. It has been studied by Broere & Mynhardt [4], by Albert-
son, Jamison, Hedetniemi & Locke [2], and by Fiala, Jansen, Le & Seidel [11].

Proposition 1. [Fiala, Jansen, Le & Seidel [11]]
Weakly Ps-free 2-coloring is NP-hard for triangle-free planar graphs.

A (1,2)-subcoloring of G is a partition of Vg into two sets S; and Sy such
that S; induces an independent set and Sy induces a subgraph consisting of a
matching and some (possibly no) isolated vertices. Le and Le [I7] proved that
recognizing (1, 2)-subcolorable cubic graphs is NP-hard, even on triangle-free
planar graphs.

The case of weakly Pj-free colorings has been investigated by Gimbel &
Nesetfil [13] who study the problem of partitioning the vertex set of a graph into
induced cographs. Since cographs are exactly the graphs without an induced Py,
the graph parameter studied in [I3] equals the weakly Py-free chromatic number
of a graph. In [I3] it is proved that the problems of deciding x" (Py, G) < 2,
X" (Py,G) = 3, xV(Py,G) < 3 and x"(Py,G) = 4 all are NP-hard and/or
coNP-hard for planar graphs. The work of Hoang & Le [16] on weakly Py-free 2-
colorings was motivated by the Strong Perfect Graph Conjecture. Among other
results, they show that weakly P,-free 2-coloring is NP-hard for comparability
graphs.

A notion that is closely related to strongly F-free r-coloring is the so-called
defective graph coloring. A defective (k,d)-coloring of a graph is a k-coloring
in which each color class induces a subgraph of maximum degree at most d.
Defective colorings have been studied for instance by Archdeacon [3], by Cowen,
Cowen & Woodall [10], and by Frick & Henning [12]. Cowen, Goddard & Jesurum
[9] have shown that the defective (3, 1)-coloring problem and the defective (2, d)-
coloring problem for any d > 1 are NP-hard even for planar graphs. We observe
that defective (2, 1)-coloring is equivalent to strongly Ps-free 2-coloring, and that
defective (3, 1)-coloring is equivalent to strongly Ps-free 3-coloring.

Proposition 2. [Cowen, Goddard & Jesurum [9]]
(i) Strongly P3-free 2-coloring is NP-hard for planar graphs.
(ii) Strongly Ps-free 3-coloring is NP-hard for planar graphs.

1.2 Our Results

We perform a complexity study of weakly and strongly F-free coloring problems
for planar graphs. By the Four Color Theorem (4CT), every planar graph G
satisfies x(G) < 4. Consequently, every planar graph also satisfies " (F,G) < 4
and x°(F,G) < 4, and we may concentrate on 2-colorings and on 3-colorings.
For the case of a single forbidden subgraph, we obtain the following results for
2-colorings:

— If the forbidden (connected) subgraph F' is not a tree, then every planar
graph is strongly and hence also weakly F-free 2-colorable. Hence, the cor-
responding decision problems are trivially solvable.

Planar Graph Coloring with Forbidden Subgraphs 163

— If the forbidden subgraph F' = P,, then F-free 2-coloring is equivalent to
proper 2-coloring. It is well-known that this problem is polynomially solvable.

— If the forbidden subgraph is a tree 7" with at least two edges, then both
weakly and strongly T-free 2-coloring are NP-hard for planar input graphs.
Hence, these problems are intractable.

For 3-colorings with a single forbidden subgraph, we obtain the following results:

— If the forbidden (connected) subgraph F is not a path, then every planar
graph is strongly and hence also weakly F'-free 3-colorable. Hence, the cor-
responding decision problems are trivially solvable.

— For every path P with at least one edge, both weakly and strongly P-free
3-coloring are NP-hard for planar input graphs. Hence, these problems are
intractable.

Moreover, we derive several results for 2-colorings with certain forbidden sets of
cycles.

— For the forbidden set F,,; = {C3,Cy, Cs}, weakly and strongly Fs,s-free 2-
coloring both are NP-hard for planar input graphs. Also for the forbidden
set F.,.. of all cycles, weakly and strongly F.,..-free 2-coloring both are
NP-hard for planar input graphs.

— For the forbidden set F,,, of all cycles of odd lengths, every planar graph is
strongly and hence also weakly F,,,-free 2-colorable.

2 The Machinery for Establishing NP-Hardness

Throughout this section, let F denote some fixed set of forbidden planar sub-
graphs. We assume that all graphs in F are connected and contain at least two
edges. We will develop a generic NP-hardness proof for certain types of weakly
and strongly F-free 2-coloring problems. The crucial concept is the so-called
equalizer gadget.

Definition 1. (Equalizer)

An (a,b)-equalizer for F is a planar graph £ with two special vertices a and b
that are called the contact points of the equalizer. The contact points are non-
adjacent, and they both lie on the outer face in some fixed planar embedding of
E. Moreover, the graph £ has the following properties:

(i) In every weakly F-free 2-coloring of £, the contact points a and b receive
the same color.

(ii) There exists a strongly F-free 2-coloring of £ such that a and b receive the
same color, whereas all of their neighbors receive the opposite color. Such a
coloring is called a good 2-coloring of £.

The following result is our (technical) main theorem. This theorem is going
to generate a number of NP-hardness statements in the subsequent sections of
the paper. We omit the proof of this theorem in this extended abstract.

164 H. Broersma et al.

Theorem 1. (Technical main result of the paper)
Let F be a set of planar graphs that all are connected and that all contain at
least two edges. Assume that

— F contains a graph on at least four vertices with a cut verter, or a 2-
connected graph with a planar embedding with at least five vertices on the
outer face;

— there exists an (a,b)-equalizer for F.

Then deciding weakly F-free 2-colorability and deciding strongly F-free 2-
colorability are NP-hard problems for planar input graphs.

3 Tree-Free 2-Colorings of Planar Graphs

The main result of this section will be an NP-hardness result for weakly and
strongly T-free 2-coloring of planar graphs for the case where T is a tree with at
least two edges (see Theorem[2)). The proof of this result is based on an inductive
argument over the number of edges in T. The following two auxiliary Lemmas [I]
and [2 will be used to start the induction.

Lemma 1. Let Ky, be the star with k > 2 leaves. Then it is NP-hard to decide
whether a planar graph has a weakly (strongly) K i-free 2-coloring.

Proof. For k = 2, the statement for weakly K j-free 2-colorings follows from
Proposition [, and the statement for strongly K -free 2-colorings follows from
Proposition 2L(i). For k¥ > 3, we apply Theorem [Ml The first condition in this
theorem is fulfilled, since for & > 3 the star K is a graph on at least four
vertices with a cut vertex. For the second condition, we construct an (a,b)-
equalizer.

The equalizer is the complete bipartite graph K o1 with bipartitions I,
|[I| = 2k — 1, and {a, b}. This graph satisfies Definition [[}(i): In any 2-coloring,
at least k of the vertices in I receive the same color, say color 0. If ¢ and b
are colored differently, then one of them is colored 0. This yields an induced
monochromatic Ki . A good coloring as required in Definition [l (ii) results
from coloring a and b by the same color, and all vertices in I by the opposite
color.

For 1 < k < m, a double-star Xy p, is the tree of the following form: Xj, .,
has k& +m + 2 vertices. There are two adjacent central vertices y; and y». Vertex
y1 is adjacent to k leaves, and y- is adjacent to m leaves. In other words, the
double-star X}, ,,, results from adding an edge between the two central vertices
of the stars K ; and K ,,,. Note that X ; is isomorphic to the path P;.

Lemma 2. Let Xy ., be a double star with 1 < k < m. Then it is NP-hard to
decide whether a planar graph has a weakly (strongly) X, m-free 2-coloring.

Planar Graph Coloring with Forbidden Subgraphs 165

Proof. We apply Theorem [1. The first condition in this theorem is fulfilled,
since X}, ,, is a graph on at least four vertices with a cut vertex. For the second
condition, we will construct an (a,b)-equalizer.

The (a,b)-equalizer £ = (V', E’) consists of 2m + k — 1 independent copies
(Vi, E*) of the double star Xy, where 1 <i < 2m + k — 1. Moreover, there are
five special vertices a, b, v1, v, and vz. We define

V' = {v1,v9,v3,a,b} U U Vi and
1<i<2mtk—1
E' ={vv; :1<i,j <3} U avs U bvg U
U £ u
1<i<2mtk—1

U {vjv:v eV} U

1<i<m

U {vgv:v €V} U

m+1<i<2m

U {vgv: v € V'),

2m+1<i<2m+k—1

We claim that every 2-coloring of £ with a and b colored in different colors
contains a monochromatic induced copy of Xy, ,,,: Consider some weakly X .-
free coloring of €. Then each copy (V% E?) of X, must have at least one
vertex that is colored 0 and at least one vertex that is colored 1. If v; and v had
the same color, then together with appropriate vertices in V?, 1 <4 < 2m, they
would form a monochromatic copy of Xy, ,,. Hence, we may assume by symmetry
that vy is colored 1, that vy is colored 0, and that vz is colored 0. Suppose for
the sake of contradiction that a and b are colored differently. Then one of them
would be colored 0, and there would be a monochromatic copy of Xy, ,, with
center vertices v and ve. Thus £ satisfies property (i) in Definition [T}

To show that also property (ii) in Definition [is satisfied, we construct a
good 2-coloring: The vertices a, b, v1 are colored 0, and vy and v3 are colored 1.
In every set V¥ with 1 < i < m, one vertex is colored 0 and all other vertices are
colored 1. In every set V? with m +1 < i < 2m + k — 1, one vertex is colored 1
and all other vertices are colored 0.

Now we are ready to prove the main result of this section.

Theorem 2. Let T be a tree with at least two edges. Then it is NP-hard to
decide whether a planar input graph G has a weakly (strongly) T -free 2-coloring.

Proof. By induction on the number ¢ of edges in T'. If T" has ¢ = 2 edges, then
T = K; 2, and NP-hardness follows by Lemma [[1 If 7" has ¢ > 3 edges, then
we consider the so-called shaved tree T of T that results from 7" by removing
all the leaves. If the shaved tree T is a single vertex, then T is a star, and

166 H. Broersma et al.

NP-hardness follows by Lemma [Il If the shaved tree T™* is a single edge, then T’
is a double star, and NP-hardness follows by Lemma [2]

Hence, it remains to settle the case where the shaved tree T contains at
least two edges. In this case we know from the induction hypothesis that weakly
(strongly) T*-free 2-coloring is NP-hard. Consider an arbitrary planar input
graph G* for weakly (strongly) T*-free 2-coloring. To complete the NP-hardness
proof, we will construct in polynomial time a planar graph G that has a weakly
(strongly) T-free 2-coloring if and only if G* has a weakly (strongly) T*-free
2-coloring: Let A be the maximum vertex degree of T'. For every vertex v in G*,
we create A independent copies T1(v),...,Ta(v) of T, and we connect v to all
vertices of all these copies.

Assume first that G* is weakly (strongly) T*-free 2-colorable. We extend this
coloring to a weakly (strongly) T-free coloring of G by taking a proper 2-coloring
of every subgraph T;(v) in G. It can be verified that this extended coloring for
G does not contain any monochromatic copy of T'.

Now assume that G is weakly (strongly) T-free 2-colorable, and let ¢ be such
a 2-coloring. Every subgraph 7T;(v) in G must meet both colors. This implies
that every vertex v in the subgraph G* of G has at least A neighbors of color 0
and at least A neighbors of color 1 in the subgraphs T;(v). This implies that the
restriction of the coloring ¢ to the subgraph G* is a weakly (strongly) T*-free
2-coloring. This concludes the proof of the theorem.

4 Cycle-Free 2-Colorings of Planar Graphs

In the previous sections we have shown that for every tree F' with |E(F)| > 2,
the problem of deciding whether a given planar graph has a weakly (strongly)
F-free 2-coloring is NP-hard. If the forbidden tree F' is a P, then F-free 2-
coloring is equivalent to proper 2-coloring, and hence the corresponding problem
is polynomially solvable.

We now turn to the case in which F' is not a tree and hence contains a cycle
(we assume F' is connected).

If F contains an odd cycle, then the Four Color Theorem (4CT) shows that
any planar graph G has a weakly (strongly) F-free 2-coloring: a proper 4-coloring
of G partitions Vg into two sets S; and S each inducing a bipartite graph.
Coloring all the vertices of S; by color i yields a weakly (strongly) F-free 2-
coloring of G. If we extend the set of forbidden cycles to all cycles of odd length,
denoted by F,,,, then the converse is also true: In any F,,,-free 2-coloring of G
both monochromatic subgraphs of G are bipartite, yielding a 4-coloring of G.
To summarize we obtain the following.

Lemma 3. The statement “x°(F,.4, G) < 2 for every planar graph G” is equiv-
alent to the 4CT.

In case F'is just the triangle C3, one can avoid using the heavy 4CT machin-
ery to prove that for every planar graph G x°(Cs,G) < 2 by applying a result
due to Burstein [6]. We omit the details.

Planar Graph Coloring with Forbidden Subgraphs 167

If F contains no triangles, a result of Thomassen [21] can be applied. He
proved that the vertex set of any planar graph can be partitioned into two sets
each of which induces a subgraph with no cycles of length exceeding 3. Hence
every planar graph is weakly (strongly) F>4-free 2-colorable, where >4 denotes
the set of all cycles of length exceeding 3. The following theorem summarizes
the above observations.

Theorem 3. If the forbidden connected subgraph F is not a tree, then every
planar graph G is strongly and hence also weakly F-free 2-colorable.

The picture changes if one forbids several cycles.

Theorem 4. Let Fy,s = {C5,C4,Cs} be the set of cycles of lengths three, four,
and five. Then the problem of deciding whether a given planar graph has a weakly
(strongly) Fs.s-free 2-coloring is NP-hard.

We omit the proof of the theorem in the extended abstract.
Recently Kaiser & Skrekovski announce the proof of xV (F,G) < 2 for F =
{C5,C4} and every planar graph G.

5 3-Colorings of Planar Graphs

A linear forest is a disjoint union of paths and isolated vertices. The following
result was proved independently in [T4] and [19]:

Proposition 3. [Goddard [14] and Poh [19]]
Every planar graph G has a partition of its vertex set into three subsets such that
every subset induces a linear forest.

This result immediately implies that if a connected graph F' is not a path, then
XV (F,G) < 3 and x°(F,G) < 3 hold for all planar graphs G. Hence, these
coloring problems are trivially solvable in polynomial time.

We now turn to the remaining cases of F-free 3-coloring for planar graphs
where the forbidden graph F' is a path. We start with a technical lemma that
will yield a gadget for the NP-hardness argument.

Lemma 4. For every k > 2, there exists an outer-planar graph Yy, that satisfies
the following properties.

(i) Yy is not weakly Py-free 2-colorable.
(ii) There exists a strongly Py-free 3-coloring of Yy, in which one of the colors
is only used on an independent set of vertices.

We omit the proof of the lemma here.

Theorem 5. For any path Py with k > 2, it is NP-hard to decide whether a
planar input graph G has a weakly (strongly) Py-free 3-coloring.

168 H. Broersma et al.

Proof. We will use induction on k. The basic cases are k = 2 and k = 3. For
k = 2, weakly and strongly P,-free 3-coloring is equivalent to proper 3-coloring
which is well-known to be NP-hard for planar graphs.

Next, consider the case k = 3. Proposition Rl(ii) yields NP-hardness of
strongly Ps-free 3-coloring for planar graphs. For weakly Ps-free 3-coloring, we
sketch a reduction from proper 3-coloring of planar graphs. As a gadget, we use
the outer-planar graph Z depicted in Figure[dl. The crucial property of Z is that
it does not allow a weakly Ps-free 2-coloring, as is easily checked. Now consider
an arbitrary planar graph G. From G we construct the planar graph G’: For
every vertex v in G, create a copy Z(v) of Z, and add all possible edges between
v and Z(v). It can be verified that x(G) < 3 if and only if ¥ (Ps,G’) < 3.

Fig. 1. The graph Z in the proof of Theorem [

For k > 4, we will give a reduction from weakly (strongly) Pj_o-free 3-
coloring to weakly (strongly) Py-free 3-coloring. Consider an arbitrary planar
graph G, and construct the following planar graph G’: For every vertex v in G,
create a copy Yi(v) of the graph Y} from Lemma [and add all possible edges
between v and Y (v). Since Y} is outer-planar, the new graph G’ is planar. If
G has a weakly (strongly) Py_o-free 3-coloring, then this can be extended to
a weakly (strongly) Pg-free 3-coloring of G’ by coloring the subgraphs Y% (v)
according to Lemma [l (ii). And if G’ has a weakly (strongly) Py-free 3-coloring,
then by Lemmaldl.(i) this induces a weakly (strongly) Py_»-free 3-coloring for G.

Acknowledgments. We are grateful to Oleg Borodin, Alesha Glebov, Sasha
Kostochka, and Carsten Thomassen for fruitful discussions on the topic of this

paper.

References

1. D. AcHLIOPTAS, The complexity of G-free colorability, Discrete Math., 165/166
(1997), pp. 21-30. Graphs and combinatorics (Marseille, 1995).

2. M. O. ALBERTSON, R. E. JamIsoN, S. T. HEDETNIEMI, AND S. C. LOCKE, The
subchromatic number of a graph, Discrete Math., 74 (1989), pp. 33-49.

3. D. ARCHDEACON, A note on defective colorings of graphs in surfaces, J. Graph
Theory, 11 (1987), pp. 517-519.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Planar Graph Coloring with Forbidden Subgraphs 169

I. BROERE AND C. M. MYNHARDT, Generalized colorings of outer-planar and pla-
nar graphs, in Graph theory with applications to algorithms and computer science
(Kalamazoo, Mich., 1984), Wiley, New York, 1985, pp. 151-161.

J. I. BROWN AND D. G. CORNEIL, On uniquely —G k-colorable graphs, Quaestiones
Math., 15 (1992), pp. 477-487.

M. I. BURSTEIN, The bi-colorability of planar hypergraphs, Sakharth. SSR Mecn.
Akad. Moambe, 78 (1975), pp. 293-296.

G. CHARTRAND, D. P. GELLER, AND S. HEDETNIEMI, A generalization of the
chromatic number, Proc. Cambridge Philos. Soc., 64 (1968), pp. 265-271.

G. CHARTRAND, H. V. KRONK, AND C. E. WALL, The point-arboricity of a graph,
Israel J. Math., 6 (1968), pp. 169-175.

. L. J. CoweN, W. GODDARD, AND C. E. JESURUM, Defective coloring revisited, J.

Graph Theory, 24 (1997), pp. 205-219.

L. J. CoweN, R. H. CowEN, AND D. R. WOODALL, Defective colorings of graphs
in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory, 10
(1986), pp. 187-195.

J. FiarA, K. JANSEN, V. B. LE, AND E. SEIDEL, Graph subcoloring: Complex-
ity and algorithms, in Graph-theoretic concepts in computer science, WG 2001,
Springer, Berlin, 2001, pp. 154-165.

M. FrICK AND M. A. HENNING, Eztremal results on defective colorings of graphs,
Discrete Math., 126 (1994), pp. 151-158.

J. GIMBEL AND J. NESETRIL, Partitions of graphs into cographs, Technical Report
2000-470, KAM-DIMATIA, Charles University, Czech Republic, 2000.

W. GODDARD, Acyclic colorings of planar graphs, Discrete Math., 91 (1991),
pp. 91-94.

F. HARARY, Conditional colorability in graphs, in Graphs and applications (Boul-
der, Colorado, 1982), Wiley, New York, 1985, pp. 127-136.

C. T. HoANG AND V. B. LE, Py-free colorings and Py-bipartite graphs, Discrete
Math. Theor. Comput. Sci., 4 (2001), pp. 109-122 (electronic).

H.-O. LE AND V. B. LE, The NP-completeness of (1,r)-subcoloring of cubic graphs,
Information Proc. Letters, 81 (2002), pp. 157-162.

D. LICHTENSTEIN, Planar formulae and their uses, STAM J. Comput., 11 (1982),
pp. 329-343.

K. S. PoH, On the linear vertex-arboricity of a planar graph, J. Graph Theory, 14
(1990), pp. 73-75.

H. SAcCHS, Finite graphs (Investigations and generalizations concerning the con-
struction of finite graphs having given chromatic number and no triangles)., in
Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics,
1968), Academic Press, New York, 1969, pp. 175-184.

C. THOMASSEN, Decomposing a planar graph into degenerate graphs, J. Combin.
Theory Ser. B 65 (1995), pp. 305-314.

Approximation Hardness of the Steiner Tree
Problem on Graphs

Miroslav Chlebik! and Janka Chlebikova?*

! Max Planck Institute for Mathematics in the Sciences
Inselstrafie 22-26, D-04103 Leipzig, Germany
2 Christian-Albrechts-Universitiit zu Kiel
Institut fiir Informatik und Praktische Mathematik
Olshausenstrafie 40, D-24098 Kiel, Germany
jch@informatik.uni-kiel.de

Abstract. Steiner tree problem in weighted graphs seeks a minimum
weight subtree containing a given subset of the vertices (terminals). We
show that it is NP-hard to approximate the Steiner tree problem within
96/95. Our inapproximability results are stated in parametric way and
can be further improved just providing gadgets and/or expanders with
better parameters. The reduction is from Hastad’s inapproximability re-
sult for maximum satisfiability of linear equations modulo 2 with three
unknowns per equation. This was first used for the Steiner tree problem
by Thimm whose approach was the main starting point for our results.

1 Introduction

Given a graph G = (V, E), a weight function w: E — RT on the edges, and a
set of required vertices T' C V, the terminals. A Steiner tree is a subtree of G
that spans all vertices in T'. (It might use vertices in V' \ T as well.)

The STEINER TREE PROBLEM (STP) is to find a Steiner tree of minimum
weight. Denote OPT the optimal value of the Steiner tree OPT := min{w(T) :
T is a Steiner tree}.

An instance of the Steiner tree problem is called quasi-bipartite if there is no
edge in the set V' \ T, and uniformly quasi-bipartite if it is quasi-bipartite and
edges incident to the same non-terminal vertex have the same weight.

Steiner trees are important in various applications, for example VLSI routing,
wirelength estimation and network routing.

The STEINER TREE PROBLEM is among the 21 basic problems for which
Karp has shown NP-hardness in his paper [6].

As we cannot expect to find polynomial time algorithms for solving it exactly
(unless P = NP), the search is for effective approximation algorithms. During
the last years many approximation algorithms for the STEINER TREE PROBLEM
were designed, see [5] for survey. The currently best approximation algorithm

* The second author has been supported by the EU-Project ARACNE, Approximation
and Randomized Algorithms in Communication Networks, HPRN-CT-199-00112.

M. Penttonen and E. Meineche Schmidt (Eds.): SWAT 2002, LNCS 2368, pp. 170-[I79] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Approximation Hardness of the Steiner Tree Problem on Graphs 171

of Robins and Zelikovsky ([8]) has a performation ratio of 1.550, and 1.279 for
quasi-bipartite instances. In the case of uniformly quasi-bipartite instances, the
best known algorithm has a performation ratio 1.217 [5].

It is a natural question how small the performation ratio of a polynomial
time algorithm can get. Unless P = NP, it cannot get arbitrarily close to 1.
This follows from PCP-Theorem [I] and from the fact that the problem is APX-
complete [2].

Until now, the best known lower bound is inapproximability within 1.00617,
due to Thimm ([9]). (In fact, Thimm’s paper claims the lower bound of 1.0074,
but there is a small error in the paper and only a slightly worse lower bound can
be shown along the lines of the proof. Moreover, Thimm’s paper uses the more
restrictive assumption co-RP # NP.)

Main Result

The main result of this article improves the lower bounds on approximability of
the STP and reduces the gap between known approximability and inapproxima-
bility results.

Main Theorem. It is NP-hard to approrimate the STEINER TREE PROBLEM
within ratio 1.01063 (> %). For the special case of (uniformly) quasi-bipartite

instances approzimation within ratio 1.00791 (> 123) is NP-hard.

Our reduction is from Hastad’s hard-gap result for maximum satisfiability of
linear equations modulo 2 with three unknowns per equation, MAX-E3-LIN-2.

Definition 1. MAX-E3-LIN-2 s the following optimization problem: Given a
system of linear equations over Zs, with exactly 3 variables in each equation. The
goal is to find an assignment to the variables that satisfies as many equations as
possible.

To suit our purposes we state Hastad’s important result in the following way
(see also [7] for application of that result in a similar context).

Theorem 1. ([4]) For every ¢ € (0, i) and every fived sufficiently large inte-
ger k > k(g), the following partial decision subproblem of MAX-E3-LIN-2 is
NP-hard:

Given an instance MAX-E3-LIN-2 consisting of n equations and

P(e k) with exactly 2k occurrences of each variable, to decide if at least
67 . . .
(1—¢&)n or at most (% +€)n equations are satisfied by the optimal

assignment.

The same NP-hardness result holds on instances where all equations are of
the form x +y + z = 0 (respectively, all equations are of the form z +y+ 2z = 1),
where literals x, y, z are variables or their negations, and each variable appears
exactly k times negated and k times unnegated. This subproblem of the problem
P(e, k) will be referred to as Py(e, k) (respectively P (e, k)) in what follows.

172 M. Chlebik and J. Chlebikova

2 NP-Hard-Gap Preserving Reduction

We start with a set L of n linear equations over Z,, all of the form z+y+2 =0
(respectively, all of the form x + y + z = 1), where literals x, y, z are variables
from the set V or their negations, and each variable v € V appears in L exactly
k times negated as ¥ and k times unnegated.

For an assignment ¢ € {0,1} to variables let S(¢)) be the number of equa-
tions of L satisfied by 1. We will reduce the problem of maximizing S(v) over
all assignments to the instance of the STEINER TREE PROBLEM. To get an ap-
proximation preserving reduction we will use equation gadgets and couple them
properly using a graph with good vertex-expansion property.

The Equation Gadget

Now we introduce the notion of («, 3, v)-gadget for the reduction from the equa-
tion system of the form x +y + z = 0 (respectively, from the system of the form
x+1y+ 2 =1). This will be an instance G = (V, E), w: E — R*, T C V of the
STEINER TREE PROBLEM with the following properties:

1. One of (possibly more) terminal vertices is distinguished and denoted by O.

2. Three of (possibly more) non-terminal vertices are distinguished and denoted
by z, y and z.

3. For any u € {z,y, 2z} there is a path from u to O of weight at most 1.

4. For any subset R of {z,y, 2z} consider the instance of the STP with altered
terminal set T := T'U R. The weight of the corresponding minimum Steiner
tree is denoted by sp and is required to depend on the cardinality of the set
R only in the following way,

sr = a+ |R|f + (|R| mod 2)y.

(Respectively, if our system L is of the form = + y + z = 1, we require
sg=a+ |R|3+ (1 —|R| mod 2)v.)

An (o, 8,7)-gadget with no edges between non-terminal vertices is called
quasi-bipartite («, 3,7)-gadget. A quasi-bipartite (a,,7)-gadget such that
edges incident to the same non-terminal have the same weight and for vertices
x, y, z the incident edges have the weight 1 is called uniformly quasi-bipartite
(v, B,7)-gadget.

In our reduction we will use one copy of a fixed («, 3, v)-gadget per each
equation of L. For each variable v, k negated and k unnegated occurrences of v
will be further coupled using a particular k by k regular bipartite multigraph,
which is a good expander.

The condition 3 above is just a proper normalization.

The condition 4 on si, := sg, k = |R| € {0, 1,2, 3}, has the following interpre-
tation in our construction: « is a basic cost per equation, 3 is an extra payment
for connecting some of {z,y, z} to the Steiner tree, and ~ is a penalty for the
failure in the parity check of the number of vertices of {z,y, 2} adjacent to the
Steiner tree.

Approximation Hardness of the Steiner Tree Problem on Graphs 173

Ezample 1. For any v € (0, 1) there is a (0,1 — ~,v)-gadget (for the system L
of the form x4y + z = 0), depicted on Fig. 1. The vertex O is the only terminal.
Clearly so =0, s1 =1, s$9 =2 —2v, and s3 = 3 — 2.

(2+2y)I3

1-2y

Fig. 1. Fig. 2.

Ezample 2. For any v € <07 %> there is a uniform quasi-bipartite (343, 1—~,~)-
gadget (for the system L of the form = + y + z = 1), depicted on Fig. 2.

There are 4 terminals in this gadget, all drawn as boxes. One can easily check
that so = 3+ 4y, s1 =4+ 27, s = 5+ 27, and s3 = 6. This is essentially the
gadget used by Thimm ([9]) in his reduction translated to our language.

Expanders

An expander with parameters (c,7,d) (shortly, (c,7,d)-expander) is a
d-regular bipartite multigraph with balanced k by k bipartition (V3,V2), such
that

ifUCVyorUCV,, and |U| <7k, then |I'(U)| > c|U].

Here I'(U) stands for the set of neighbors of U, I'(U) := {y : y is a vertex
adjacent to some z € U}.

It is known that for any sufficiently large k, (¢, T, d)-expander with k by k
bipartition exists, provided that 0 < 7 < % < 1 and Hy(c,7) > 0, where

1
Hy(e,7):=(d—-1)F(r) — dCTF(*) — F(er),
c
with F(z) = —zlogz — (1 — z)log(1l — =) being the entropy function. In fact,
under the above condition, almost every random d-regular balanced bipartite
multigraph is (¢, 7, d)-expander, see Theorem 6.6 in [3].

174 M. Chlebik and J. Chlebikova

Definition 2. We say that d-regular bipartite graph with k by k bipartition
(V1, Vo) is a c-good expander provided the following implication holds:

ifUCVy or U CVa, then |I'(U)| > min{c|U|,k+1—|U[}.

The condition of being c-good expander for a balanced d-regular bipartite
graph is just a bit stronger than the one of being (c7 ?11, d)—expander. In par-
ticular, it can be easily seen that (c, T, d)-expander with k by k bipartition is
c-good, provided that 7 > 04%1 and k > m

Consequently, for any sufficiently large k, a d-regular c-good expander with
k by k bipartition exists, provided that ¢ > 1 satisfies

(1) Hd<c, c%) > 0.

In fact, by continuity it follows that Hy(c,7) > 0 also for some 7 € (Cil, %),
and we can use the existence result for (¢, 7, d)-expanders cited above.
For any integer d > 3 we introduce the constant ¢(d) defined in the following

way:
(2) ¢(d) = sup{c: there are infinitely many d-regular c-good expanders}.

Denote by x(d) the unique z € (1,00) for which Hy(z, -47) = 0. It can be

easily numerically approximated, as (z + 1)Hy (a: can be simplified to

 5+1)
(d—2)(z+1)log(z+1) — (2d — 2)zlogz + d(x — 1) log(z — 1).

Hence () holds for any ¢ in (1,z(d)) and, consequently, c(d) > z(d) for any
integer d > 3. In particular, ¢(6) > 1.76222 and ¢(7) > 1.94606.

Now we are ready to describe our reduction of instances like L to the instances
of the STEINER TREE PROBLEM. For this purpose we will use one fixed (a, 3,7)-
gadget, and one fixed k by k bipartite d-regular multigraph H which is supposed

to be gfz -good.

Construction

Take n pairwise disjoint copies of that («, 3, v)-gadget, one for each equation
of the system L, and identify their vertices labeled by O. The z, y, z vertices
in each equation gadget correspond to occurrences of literals in that equation
and we re-label them by those literals. By assumption, each variable from V
appears exactly k£ times negated and k times unnegated as a label. We couple
negated and unnegated occurrences of each variable using our fixed bipartite
d-regular multigraph H with bipartition (V1,V2), Vi = {a1,as,...,ar}, Vo =
{b1,ba,...,br} in the following way:

Assume that equations (and their equation gadgets) are numbered by 1, 2, ... |
n. Given literal z, i.e. x = v or z = T for some v € V, let m(z) < ma(z) <
-++ < my(x) be the numbers of equations in which that literal occurs.

Approximation Hardness of the Steiner Tree Problem on Graphs 175

Consider one variable of V, say v. For each a;b; edge e of H (1 < 4,5 < k)
we add a new coupling terminal vertex ¢(v, e). Now connect it with the v-vertex
in the m;(v)-th equation gadget and with the T-vertex in the m;(7)-th equation
gadget, by edges of weight 1.

Making the above coupling for all variables from V one after another, we
get an instance of the Steiner tree problem, that corresponds to the system L.
Consider any Steiner tree T for this instance, i.e. a tree spanning all terminals.

In the following claim we prove that in the Steiner trees with the optimal
value OPT each coupling terminal vertex t(v,e) is a leaf of 7. We call simple
a Steiner tree 7 with mentioned property that each coupling terminal vertex
t(v,e) is a leaf of T.

Claim. OPT = min{w(T) : T is a simple Steiner tree}.

Proof. To show that, one can transform any given Steiner tree 7 with nonempty
‘bad’ set BAD(T) := {coupling terminals that are not leaves of T} to another
Steiner tree 7' with |BAD(T")| < |BAD(T)| and w(7’) < w(T). Fix T with
nonempty bad set and choose t = t(v,e) € BAD(T). Deleting one of edges
incident to t decreases both |[BAD(T)| and w(7) by 1. But we have two compo-
nents now, with one of vertices labeled by v or ¥ in the distinct component than
the vertex O belongs. Connect this vertex with O in its equation gadget in the
cheapest possible way, to obtain the Steiner tree 7.

By property 3 of («, 8,7)-gadget it increases the weight by at most 1, hence
w(T") < w(T). O

Definition 3. We say that a simple Steiner tree T is well-behaved if it is locally
minimal in the following sense:

Consider any equation of L, say i-th, i € {1,2,...,n}. Let x, y, z be its literals,
T :=T? be the set of terminal vertices of its equation gadget, and R := R’ be
the set of vertices of this gadget labeled by x, y, or z, that belong to T. The
subgraph T* of T induced by this equation gadget is supposed to be the local
minimal Steiner tree (in this gadget) for the altered terminal set Tp :== T U R.

Claim. OPT = min{w(T) : T is a well-behaved Steiner tree}.

Proof. Clearly, any simple Steiner tree 7 with w(7) = OPT has to be well-
behaved, because otherwise one could create, by local change in some of its
gadget, a Steiner tree with less weight. In particular, OPT = min{w(7) : T is a
well-behaved Steiner tree}. O

By property 4 of (a, 3,7)-gadget, the weight of subtree 7% is a + |R|3 +
(|R| mod 2)7 (respectively, a + |R|S + (1 — |R| mod 2)7). Hence, the weight of
any well-behaved Steiner tree 7 can be expressed in the following way: denote
by N the number of vertices corresponding to literals that belong to 7, and by
M the number of equations for which R := R’ above fails the parity check, i.e.
|R!| is odd (respectively, |R| is even). Then

(3) w('T):om+gnd+Nﬁ+M'y.

176 M. Chlebik and J. Chlebikova

Here %nd edges of weight 1 connect all %nd coupling terminals as leaves of
the tree T. Clearly, N > %n, as at least one from each coupled pair of vertices
correspond to variables has to belong to 7, to connect the corresponding coupling
terminal to the tree T.

Suppose we are given an assignment 1) € {0, 1} to variables and let S(3) be
the number of equations satisfied by . For i-th equation of L (i = 1,2,...,n)
let R := be denote the set of vertices in its equation gadget labeled by literals
with value 1 by the assignment 1, and let T := T denote the terminals of this
equation gadget. Take one (of possibly more) local minimum Steiner tree in this
gadget with altered terminal set Tz := T'U R and connect each vertex of R to
all d coupling terminals adjacent to it. Such kind of well-behaved Steiner tree
(denoted by Ty), which follows from some assignment ¢ will be called standard
Steiner tree.

The weight of standard Steiner tree Ty can be expressed using (3]), where we
have now N = 2n (exactly half of vertices for variables correspond to literals

2
assigned 1), and M =n — S(¢). Hence

(4) w(Ty) = an+ gnd + gnﬁ + (n—S))y.

The challenge is to prove Lemma [l below that OPT is achieved on a stan-
dard Steiner tree for some assignment . If this is the case, from () it can be
easily seen that hard-gap result of Hastad for the problem max S(t) implies the
corresponding hard-gap and inapproximability results for the STEINER TREE
PROBLEM.

Lemma 1. If («, 8,7)-gadget has parameters 3 > v > 0, and an expander graph
used for the coupling is %—good, then

OPT = min{w(T) : T is a standard Steiner tree}.

Proof. We already know that there exists a well-behaved Steiner tree 7 such
that w(7T) = OPT. Thus it is sufficient to show that 7 can be transformed into
a standard Steiner tree 7* without increasing the weight. In the following we
describe such construction of 7* from 7 in |V| steps. Consider one variable,
v € V. Let A; be the set of vertices labeled by v, and A, be the set of vertices
labeled by ©. Clearly |A;| = |A2| = k. Denote by C; (i = 1,2) the set of vertices
in A; that are vertices of the tree T, and put U; = 4; \ C;. We will assume that
|Uy| < |Us|, otherwise we change the role of A; and Ay in what follows.

Let I'(U), for a set U C Aj, be the set of vertices in Ay which are coupled
with a vertex in U. Clearly Uy N I'(Uy) = (), because otherwise some coupling
terminal is not connected to 7. Hence I'(U7) C Cs.

As our expander is gfz—good, it implies that either |I'(Uy)| > k+ 1 — |U4],
or [I(Th)] > G220, .

We see that the first condition is not satisfied, as

k—1Ui| >k — |Us| = |Ca| > |I'(Uy)].

Approximation Hardness of the Steiner Tree Problem on Graphs 177

Thus we can apply the second one to get

+
5) Cal = (1) = 2 oy
=
Now we modify 7 to the new well-behaved ST T,ew as follows: all vertices
in Ay and none in A, are in Thew, and for any distinguished vertex u which is

labeled by literal distinct from v and v,
UE Tpew S ueT.

We also connect the coupling terminals accordingly.
Applying formula @) for well-behaved Steiner trees we obtain

w(T) - w(ﬂlcw) - (N - Nncw)ﬁ + (M - Mncw)7~
Clearly, N — Npow = |Ca| — |Uy| and Myew < M + |Cs| 4 |Uy], hence
w(T) — w(Taew) > (|C2| = |U1])B = (|Co| + [Ur])y = |Ca|(B —) — |UL](B +),

which is nonnegative, by ([@)). Thus w(Thew) < w(T).

Now we apply the similar modification to 7Theww with another variable. It is
easy to see that if we have done this for all variables, one after another, the result
T* is a standard tree for some assignment, with w(7*) < w(T). Consequently,
w(T*) = OPT. 0

Theorem 2. Given an integer d > 3 and let ¢(d) be a constant defined in (2)).
Let further an (a, 8,7)-gadget with > v > 0 and g%z < ¢(d) be given. Then
for any constant r, 1 < r < 1+ m, it is NP-hard to approximate the
STEINER TREE PROBLEM within r