# Raw Sockets and ICMP

Srinidhi Varadarajan

# **Topics**

- Raw sockets
- Internet Control Message Protocol (ICMP)
- Code Examples
  - Ping
  - Traceroute

#### Raw Sockets

- Usually, sockets are used to build applications on top of a transport protocol
  - Stream sockets (TCP)
  - Datagram sockets (UDP)
- Some applications need to access a lower layer protocol
  - Control protocols built on IP rather than UDP or TCP, such as ICMP and IGMP
  - Experimental transport protocols
- A "raw" socket allows direct access to IP
  - Used to build applications on top of the network layer

### Creating a Raw Socket

- Standard socket() call used to create a raw socket
  - Family is AF\_INET, as for TCP or UDP
  - Socket type is SOCK\_RAW instead of SOCK\_STREAM or SOCK\_DGRAM
  - Socket protocol needs to be specified, e.g. IPPROTO\_ICMP (often left at 0 for UDP or TCP sockets)

```
socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)
```

# Socket Types

| Stream socket              | SOCK_STREAM    | 1 |
|----------------------------|----------------|---|
| Datagram socket            | SOCK_DGRAM     | 2 |
| Raw protocol interface     | SOCK_RAW       | 3 |
| Reliably delivered message | SOCK_RDM       | 4 |
| Sequenced packet stream    | SOCK_SEQPACKET | 5 |

#### **Protocols**

- Protocol values
  - Used to define the Protocol field in the IP header

| IP (dummy)      | IPPROTO_IP   | 0         |
|-----------------|--------------|-----------|
| ICMP            | IPPROTO_ICMP | 1         |
| IGMP            | IPPROTO_IGMP | 2         |
| Gateway         | IPPROTO_GGP  | 3         |
| TCP             | IPPROTO_TCP  | 6         |
| PUP             | IPPROTO_PUP  | 12        |
| UDP             | IPPROTO_UDP  | 17        |
| XND IDP         | IPPROTO_IDP  | 22        |
| <b>Net Disk</b> | IPPROTO_ND   | <b>77</b> |
| Raw IP          | IPPROTO_RAW  | 255       |

## Internet Control Message Protocol

- ICMP defined in RFC 792
- ICMP messages
  - Query network node(s) for information
  - Report error conditions
- ICMP messages are carried as IP datagrams
  - ICMP "uses" or is "above" IP
- ICMP messages usually processed by IP, UDP, or TCP
  - IP, TCP, and UDP "use" or are above ICMP

#### ICMP in the TCP/IP Suite



## ICMP Message Format (1)

- ICMP messages are encapsulated in IP datagrams
  - IP-level routing use to move ICMP messages through a network
  - IP provides multiplexing/demultiplexing based on protocol number (IPPROTO\_ICMP = 1)



## ICMP Message Format (2)



- TYPE: Type of ICMP message
- CODE: Used by some types to indicate a specific condition
- CHECKSUM: Checksum over full message
- Contents depend on TYPE and CODE

### Example ICMP Message Types

#### Queries

- TYPE = 8: Echo request
- TYPE = 0: Echo reply
- TYPE = 13: Time stamp request
- TYPE = 14: Time stamp reply

#### Errors

- TYPE = 3: Destination unreachable
  - CODE = 0: Network unreachable
  - CODE = 1: Host unreachable
  - CODE = 2: Protocol unreachable
  - CODE = 3: Port unreachable
- TYPE = 11: Time exceeded
  - CODE = 0: Time-to-live equals 0 in transit

### Error Example: Port Unreachable

- Port unreachable error occurs when a receiving host receives a packet with an unknown (inactive) port number
- IP datagram is valid -- reaches addressed host
- UDP datagram contains a port that is not in use (e.g. 8000 and no application has a socket bound to an address with that port)
- UDP replies with an ICMP "Destination Unreachable/Port Unreachable" message
  - TYPE = 3, CODE =3

### ICMP Error Messages

- ICMP error messages include header and first 8 bytes of offending IP datagram
  - All of IP header
    - Destination address, protocol number, etc.
  - For UDP, all of UDP header including source and destination port numbers
- ICMP message for port unreachable



# Ping Example

#### "Ping" utility

- Tests whether or not a host is reachable
- Provides a round-trip time
- Written by Mike Muuss in 1983 to diagnose network problems

#### Operation

- ICMP echo request (TYPE = 8) sent to host
- Host replies with ICMP echo reply (TYPE = 0)

#### Client-server roles

- Host sending echo request is the client
- Host sending echo reply is the server
- Server usually implemented in TCP/IP code

# Ping Algorithm

- 1) Initialize echo request
- 2) Send echo request
- 3) Wait for echo reply (or time out)
- 4) Receive reply
- 5) Report results
- 6) Go back to 1 until complete

## Echo Request/Reply Format (1)



- IDENTIFIER: Means to identify sending instance of "ping"
  - Process id in UNIX
- SEQUENCE NUMBER: Means to identify lost or misordered replies

### Echo Request/Reply Format (2)

 Common ICMP echo reply/request header definition from icmp.h code example

### Echo Request

- Echo request will include
  - Common request/reply header
  - Time stamp (32 bits)
  - Filler data (REQ\_DATASIZE bytes)

static ECHOREQUEST echo req;

### Initializing the Echo Request

```
echo_req.icmpHdr.Type
                                = ICMP ECHOREQ;
echo_req.icmpHdr.Code
                                = 0;
echo req.icmpHdr.Checksum
                              = 0;
echo_req.icmpHdr.ID
                               = id++;
echo_req.icmpHdr.Seq
                                = seq++;
// Fill in some data to send
memset(echo_req.cData, ' ', REQ_DATASIZE);
// Save tick count when sent (milliseconds)
echo_req.dwTime = gettime ...;
// Put data in packet and compute checksum
echo_req.icmpHdr.Checksum = in_cksum(...);
```

### Waiting for Echo Reply

- Time-out is important since ping will often be used when a host is unreachable
- select() used with a time-out value to wait for echo reply

### Echo Reply

- Raw socket returns IP header
- Received datagram contains
  - IP header
  - ICMP echo request/reply header
  - Echo request message
  - Potentially, additional fill data

# IP Header (1)

| 0                      | 4      | 8            | 16              | 24 | 31 |  |
|------------------------|--------|--------------|-----------------|----|----|--|
| Vers                   | HLen   | Service Type | Total Length    |    |    |  |
| Identification         |        | Flags        | Fragment Offs   | et |    |  |
| Time T                 | o Live | Protocol     | Header Checksum |    |    |  |
| Source IP Address      |        |              |                 |    |    |  |
| Destination IP Address |        |              |                 |    |    |  |

#### IP Header (2)

```
typedef struct tagIPHDR
  u char VIHL;
                        // Ver, Hdr length
                        // Type of service
  u char TOS;
  short TotLen;
                        // Total length
  short ID;
                        // Identification
  short FlagOff;
                        // Flags, Frag off
                        // Time-to-live
  u char TTL;
  u_char Protocol; // Protocol
  u short Checksum; // Checksum
  struct in_addr iaSrc; // Source IP addr
  struct in addr iaDst; // Dest IP addr
 IPHDR, *PIPHDR;
```

### Extracting Results from Reply

 Ping client can extract IP, ICMP, and echo information from the received datagram

```
"
ECHOREPLY echo_reply;
...
type = echo_reply.echoRequest.icmpHdr.Type;
ttl = echo_reply.ipHdr.TTL;
...
```

#### Traceroute Example

#### Traceroute

- Reports the route used by an IP datagram from source to destination
- Provides a round-trip time
- Written by Van Jacobson as a network diagnostic and debugging tool

#### Operation

- Sends ICMP or other datagram toward destination
- IP time-to-live (TTL) value is controlled to limit extent
- Intermediate nodes return ICMP time exceeded error -- includes router address

#### IP TTL Value

- IP Time-To-Live Value: Maximum number of routers through which the datagram may pass
  - Decremented at each router
    - May be decremented once per second
    - Decremented at least once per router
  - Used to prevent looping in the network
- Basis for Traceroute

#### Traceroute Operation



- IP packets sent by source (traceroute)
- ICMP packets returned by routers and host

#### Traceroute Algorithm

- 1) Set TTL value to 1
- 2) Initialize echo request
- 3) Send echo request
- 4) Wait for echo reply or time exceeded error (or time out)
- 5) Receive reply
- 6) Report results
- 7) If echo reply, then done; else increment TTL and return to 2

May want to do echo multiple times per TTL

#### Setting the TTL Value

- Need to control the IP TTL value
- Raw socket with ICMP does not let us write IP header values
- Use setsockopt() to set TTL value

or

#### Basic Traceroute Loop

```
ttl = 0;
do {
  ++ttl;
  if(setsockopt(raw, IPPROTO_IP, IP_TTL,
  (char *) &ttl, sizeof(ttl)))
     errexit("setsockopt() failed: %d\n",
     perror());
  done = PingTarget(raw, target addr);
} while (!done && ttl < MAX_TTL);</pre>
```

#### Potential "Bells and Whistles"

- Multiple pings for each TTL value to better assess round-trip time
- Modify amount of data sent in echo request
- Calculate link delay and other statistics
  - Delay[i] = RTT[i] RTT[i-1]
- Look up intermediate host names using gethostbyaddr()
- Graphical features

## ICMP, Ping, Traceroute Reference

W. Richard Stevens, *TCP/IP Illustrated, Volume 1, The Protocols*, Addison-Wesley Publishing Co., Reading, MA, 1994 (Chapters 6-8).

#### You should now be able to ...

- Describe the use of ICMP for queries and replies
- Analyze ICMP message format
- Analyze the operation of Ping and Traceroute applications
- Analyze, design, and implement network applications using raw sockets