
A rtificial intelligence touches every part of our lives.
It powers our shopping and TV recommendations; it
informs our medical diagnoses. Embracing this new

world means mastering the core algorithms at the heart of AI.

Grokking Artificial Intelligence Algorithms uses illustrations,
exercises, and jargon-free explanations to teach fundamental
AI concepts. All you need is the algebra you remember from
high school math class. Explore coding challenges like detect-
ing bank fraud, creating artistic masterpieces, and setting a
self-driving car in motion.

What’s Inside
• Use cases for different AI algorithms
• Intelligent search for decision making
• Biologically inspired algorithms
• Machine learning and neural networks
• Reinforcement learning to build a better robot

For software developers with high school–level algebra and
calculus skills.

Rishal Hurbans is a technologist, startup and AI group founder,
and international speaker.

To download their free eBook in PDF, ePub,
and Kindle formats, owners of this book should visit
www.manning.com/books/grokking-artificial-intelligence-algorithms

grokking
Artificial Intelligence
Algorithms
Rishal Hurbans

grok
k

in
g

 A
rtifi

cial In
telligen

ce A
lgorith

m
s

“ From start to finish, the best
book to help you learn AI
algorithms and recall why
and how you use them.”

 — Linda Ristevski
York Region District School
Board

“ This book takes an impossibly
broad area of computer science
and communicates what
working developers need to
understand in a clear and
thorough way.”

 — David Jacobs
Product Advance Local

“ The most comprehensive
content I have seen on AI
algorithms.”

 — Karan Nih
Classic Software Solutions

“ This book removes the fear
of stepping into the mechanics
of AI.”

 — Kyle Peterson
University of Iowa Athletics

MANNING $59.99 | Can $79.99 (including eBook)

H
urbans

Free eBook

ARTIFICIAL INTELLIGENCE

See first page

MANNING

grokking

Artificial
Intelligence
Algorithms

Rishal Hurbans

M A N N I N G
Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more
information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road, PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

 �Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also
our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

Manning Publications Co.	 Development editor: Elesha Hyde
20 Baldwin Road 	 Technical development editor: Frances Buontempo
Shelter Island, NY 11964	 Review editor: Ivan Martinović
	 Production editor: Deirdre Hiam
	 Copy editor: Keir Simpson
	 Proofreader: Jason Everett
	 Technical proofreader: Krzysztof Kamyczek
	 Typesetter: Jennifer Houle
	 Cover designer: Marija Tudor

ISBN: 9781617296185
Printed in the United States of America

To my parents, Pranil and Rekha. To making a positive difference.

v

contents

preface� ix

acknowledgments� xvii

about this book� xix

about the author� xxiii

1	 Intuition of artificial intelligence� 1

What is artificial intelligence?� 1
A brief history of artificial intelligence� 6
Problem types and problem-solving paradigms� 8
Intuition of artificial intelligence concepts� 10
Uses for artificial intelligence algorithms� 14

2	 Search fundamentals� 21

What are planning and searching?� 21
Cost of computation: The reason for smart algorithms� 24
Problems applicable to searching algorithms� 25
Representing state: Creating a framework to represent

problem spaces and solutions� 28
Uninformed search: Looking blindly for solutions� 34
Breadth-first search: Looking wide before looking deep� 36
Depth-first search: Looking deep before looking wide� 45

vi	 contents

Use cases for uninformed search algorithms� 53
Optional: More about graph categories� 54
Optional: More ways to represent graphs� 56

3	 Intelligent search� 59

Defining heuristics: Designing educated guesses� 59
Informed search: Looking for solutions with guidance� 63
Adversarial search: Looking for solutions in a

changing environment� 72

4	 Evolutionary algorithms� 91

What is evolution?� 91
Problems applicable to evolutionary algorithms� 95
Genetic algorithm: Life cycle� 99
Encoding the solution spaces� 102
Creating a population of solutions� 108
Measuring fitness of individuals in a population� 110
Selecting parents based on their fitness� 112
Reproducing individuals from parents� 116
Populating the next generation� 122
Configuring the parameters of a genetic algorithm� 126
Use cases for evolutionary algorithms� 127

5	 Advanced evolutionary approaches� 131

Evolutionary algorithm life cycle� 131
Alternative selection strategies� 133
Real-value encoding: Working with real numbers� 137
Order encoding: Working with sequences� 141
Tree encoding: Working with hierarchies� 144
Common types of evolutionary algorithms� 148
Glossary of evolutionary algorithm terms� 149
More use cases for evolutionary algorithms� 150

	 contents� vii

6	 Swarm intelligence: Ants� 153

What is swarm intelligence?� 153
Problems applicable to ant colony optimization� 156
Representing state: What do paths and ants look like?� 160
The ant colony optimization algorithm life cycle� 164
Use cases for ant colony optimization algorithms� 187

7	 Swarm intelligence: Particles� 189

What is particle swarm optimization?� 189
Optimization problems: A slightly more technical perspective� 192
Problems applicable to particle swarm optimization� 195
Representing state: What do particles look like?� 198
Particle swarm optimization life cycle� 199
Use cases for particle swarm optimization algorithms� 223

8	 Machine learning� 227

What is machine learning?� 227
Problems applicable to machine learning� 230
A machine learning workflow� 232
Classification with decision trees� 256
Other popular machine learning algorithms� 275
Use cases for machine learning algorithms� 276

9	 Artificial neural networks� 279

What are artificial neural networks?� 280
The Perceptron: A representation of a neuron� 283
Defining artificial neural networks� 287
Forward propagation: Using a trained ANN� 295
Backpropagation: Training an ANN� 303
Options for activation functions� 314
Designing artificial neural networks� 316
Artificial neural network types and use cases� 319

viii	 contents

10	 Reinforcement learning with Q-learning� 323

What is reinforcement learning?� 323
Problems applicable to reinforcement learning� 327
The life cycle of reinforcement learning� 329
Deep learning approaches to reinforcement learning� 349
Use cases for reinforcement learning� 350

index� 355

ix

preface

This preface aims to describe the evolution of technology, our need to automate, and our
responsibility to make ethical decisions while using artificial intelligence in building the
future.

Our obsession with technology and
automation
Throughout history, we have had a hunger to solve problems while reducing manual
labor and human effort. We have always strived for survival and conservation of our
energy through the development of tools and automation of tasks. Some may argue that
we are beautiful minds that seek innovation through creative problem-solving or cre-
ative works of literature, music, and art, but this book wasn’t written to discuss philo-
sophical questions about our being. This is an overview of artificial intelligence (AI)
approaches that can be harnessed to address real-world problems practically. We solve
hard problems to make living easier, safer, healthier, more fulfilling, and more enjoyable.
All the advancements that you see in history and around the world today, including AI,
address the needs of individuals, communities, and nations.

To shape our future, we must understand some key milestones in our past. In many
revolutions, human innovation changed the way we live, and shaped the way we interact
with the world and the way we think about it. We continue to do this as we iterate and
improve the tools we use, which open future possibilities (figure 0.1).

This short high-level material on history and philosophy is provided purely to estab-
lish a baseline understanding of technology and AI, and to spur thought on responsible
decision-making when embarking on your projects.

x	 preface

Figure 0.1 A brief timeline of technological improvements in history

	 preface� xi

In the timeline figure, notice the compression of the milestones in more recent times. In
the past 30 years, the most notable advancements have been in the improvement of
microchips, the wide adoption of personal computers, the boom of networked devices,
and the digitization of industries to break physical borders and connect the world. These
are also the reasons that artificial intelligence has become a feasible and sensible area to
pursue.

•	 The internet has connected the world and made it possible to collect mass
amounts of data about almost anything.

•	 Advancements in computing hardware has given us the means to compute
previously known algorithms using the massive amounts of data that we have
collected, while discovering new algorithms along the way.

•	 Industries have seen a need to leverage data and algorithms to make better
decisions, solve harder problems, offer better solutions, and optimize our lives as
people have done since the beginning of humanity.

Although we tend to think of technological progress as linear, by examining our history,
we find that it is more likely that our progress is and will be exponential (figure 0.2).
Advancements in technology will move faster each year that goes by. New tools and tech-
niques need to be learned, but problem solving fundamentals underpin everything.

This book includes foundation-level concepts that help solve hard problems, but it
also aims to make learning the more complex concepts easier.

Figure 0.2 Perceived technological progress versus actual technological progress

xii	 preface

Automation can be perceived differently by different people. For a technologist, automa-
tion may mean writing scripts that make software development, deployment, and distri-
bution seamless and less error-prone. For an engineer, it may mean streamlining a
factory line for more throughput or fewer defects. For a farmer, it may mean using tools
to optimize the yield of crops through automatic tractors and irrigation systems.
Automation is any solution that reduces the need for human energy to favor productivity
or add superior value compared with what a manual intervention would have added
(figure 0.3).

Figure 0.3 Manual processes versus automated processes

If we think about reasons not to automate, one prominent reason is simply that a person
can do the task better, with less chance of failure and better accuracy, if the task
requires intuition about several perspectives in a situation, when abstract creative think-
ing is required, or when understanding social interactions and the nature of people is
important.

Nurses don’t simply complete tasks, but connect with and take care of their patients.
Studies show that the human interaction by caring people is a factor in the healing pro-
cess. Teachers don’t simply offload knowledge, but find creative ways to present knowl-
edge, mentor, and guide students based on their ability, personality, and interests. That
said, there is a place for automation through technology and a place for people. With the
innovations of today, automation via technology will be a close companion to any
occupation.

Ethics, legal matters, and our responsibility
You may be wondering why a section on ethics and responsibility is in a technical book.
Well, as we progress towards a world in which technology is intertwined with the way of
life, the ones who create the technology have more power than they know. Small contri-
butions can have massive knock-on effects. It important that our intentions be benevo-
lent and that the output of our work not be harmful (figure 0.4).

	 preface� xiii

Figure 0.4 Aim for ethical and legal applications of technology

Intention and impact: Understanding your vision and goals
When you develop anything—such as a new physical product, service, or software—
there’s always a question about the intention behind it. Are you developing software that
affects the world positively, or is your intention malevolent? Have you thought about the
broader impact of what you’re developing? Businesses always find ways to become more
profitable and powerful, which is the whole point of growing a business. They use strat-
egies to determine the best ways to beat the competition, gain more customers, and
become even more influential. That said, businesses must ask themselves whether their
intentions are pure, not only for the survival of the business, but also for the good of
their customers and society in general. Many famous scientists, engineers, and technol-
ogists have expressed a need to govern the use of AI to prevent misuse. As individuals,
we also have an ethical obligation to do what is right and establish a strong core set of
values. When you’re asked to do something that violates your principles, it is important
to voice those principles.

Unintended use: Protecting against malicious use
It is important to identify and protect against unintended use. Although this may seem
obvious and easy to accomplish, it is difficult to understand how people will use what-
ever you are creating, and even more difficult to predict whether it aligns with your
values and the values of the organization.

xiv	 preface

An example is the loudspeaker, which was invented by Peter Jensen in 1915. The loud-
speaker was originally called Magnavox, which was initially used to play opera music
to large crowds in San Francisco, which is quite a benevolent use of the technology.
The Nazi regime in Germany had other ideas, however: they placed loudspeakers in
public places in such a way that everyone was subjected to hearing Hitler’s speeches and
announcements. Because the monologues were unavoidable, people became more sus-
ceptible to Hitler’s ideas, and after this point in time, the Nazi regime gained the major-
ity of its support in Germany. This is not what Jensen envisioned his invention being
used for, but there’s not much he could have done about it.

Times have changed, and we have more control of the things we build, especially soft-
ware. It is still difficult to imagine how the technology you build may be used, but it is
almost guaranteed that someone will find a way to use it in a way that you did not
intend, with positive or negative consequences. Given this fact, we, as professionals in
the technology industry and the organizations we work with must think of ways to mit-
igate malevolent use as far as possible.

Unintended bias: Building solutions for everyone
When building AI systems, we use our understanding of contexts and domains. We also
use algorithms that find patterns in data and act on it. It can’t be denied that there is bias
all around us. A bias is a prejudice against a person or group of people, including, but not
limited to their gender, race, and beliefs. Many of these biases arise from emergent
behavior in social interactions, events in history, and cultural and political views around
the world. These biases affect the data that we collect. Because AI algorithms work with
this data, it is an inherent problem that the machine will “learn” these biases. From a
technical perspective, we can engineer the system perfectly, but at the end of the day,
humans interact with these systems, and it’s our responsibility to minimize bias and
prejudice as much as possible. The algorithms we use are only as good as the data pro-
vided to them. Understanding the data and the context in which it is being used is the
first step in battling bias, and this understanding will help you build better solutions—
because you will be well versed in the problem space. Providing balanced data with as
little bias as possible should result in better solutions.

The law, privacy, and consent: Knowing the importance of core values
The legal aspect of what we do is hugely important. The law governs what we can and
cannot do in the interest of society as a whole. Due to the fact that many laws were writ-
ten in a time when computers and the internet were not as important in our lives as they
are today, we find many gray areas in how we develop technology and what we are
allowed to do with that technology. That said, laws are slowly changing to adapt to the
rapid innovation in technology.

We are compromising our privacy almost every hour of every day via our interactions
on computers, mobile phones, and other devices, for example. We are transmitting a vast
amount of information about ourselves, some more personal than others. How is that

	 preface� xv

data being processed and stored? We should consider these facts when building solu-
tions. People should have a choice about what data is captured, processed, and stored
about them; how that data is used; and who can potentially access that data. In my expe-
rience, people generally accept solutions that use their data to improve the products they
use and add more value to their lives. Most important, people are more accepting when
they are given a choice and that choice is respected.

Singularity: Exploring the unknown
The singularity is the idea that we create an AI that is so generally intelligent that it is
capable of improving itself and expanding its intelligence to a stage where it becomes
super intelligence. The concern is that something of this magnitude cannot be under-
stood by humans which could change civilization as we know it for reasons we can’t even
comprehend. Some people are concerned that this intelligence may see humans as a
threat; others propose that we may be to a super intelligence what ants are to us. We don’t
pay explicit attention to ants or concern ourselves with how they live, but if we are irri-
tated by them, we deal with them in isolation.

Whether these assumptions are accurate representations of the future or not, we must
be responsible and think about the decisions we make, as they ultimately affect a person,
a group of people, or the world at large.

xvii

acknowledgments

Writing this book has been one of the most challenging yet rewarding things I’ve done
to date. I needed to find time where I had none, find the right headspace while jug-
gling many contexts, and find motivation while being caught up in the reality of life. I
couldn’t have done it without a number of amazing people. I have learned and grown
through this experience. Thank you, Bert Bates, for being a fantastic editor and men-
tor to me. I’ve learned so much about effective teaching and written communication
from you. Our discussions and debates, and your empathy throughout the process
has helped mold this book into what it is. Every project needs someone organized with a
finger on the pulse making sure things are happening. For this, I’d like to thank Elesha
Hyde, my development editor. Working with you has been an absolute pleasure. You
always provide direction and interesting insights about my work. We always need people
to bounce ideas off, and who better to annoy than your friends. I’d like to especially
thank Hennie Brink for being a great sounding board and pillar of support always. Next,
I’d like to thank Frances Buontempo and Krzysztof Kamyczek for providing construc-
tive criticism and objective feedback from a writing and technical perspective. Your
input has helped fill gaps and make the teaching more accessible. I would also like to
thank Deirdre Hiam, my project manager; my review editor, Ivan Martinovic; my copy-
editor Kier Simpson; and my proofreader, Jason Everett.

Finally, I’d like to thank all the reviewers who took the time to read my manuscript
throughout development and provided invaluable feedback that has made the book bet-
ter in some or other way: Andre Weiner, Arav Agarwal, Charles Soetan, Dan Sheikh,
David Jacobs, Dhivya Sivasubramanian, Domingo Salazar, GandhiRajan, Helen Mary
Barrameda, James Zhijun Liu, Joseph Friedman, Jousef Murad, Karan Nih, Kelvin D.
Meeks, Ken Byrne, Krzysztof Kamyczek, Kyle Peterson, Linda Ristevski, Martin Lopez,
Peter Brown, Philip Patterson, Rodolfo Allendes, Tejas Jain, and Weiran Deng.

xix

about this book

Grokking Artificial Intelligence Algorithms was written and illustrated to make under-
standing and implementing artificial intelligence algorithms and their uses in solving
problems more accessible to the average person in the technology industry through the
use of relatable analogies, practical examples, and visual explanations.

Who should read this book
Grokking Artificial Intelligence Algorithms is for software developers and anyone in the
software industry who want to uncover the concepts and algorithms behind artificial
intelligence through practical examples and visual explanations over theoretical deep
dives and mathematical proofs.

This book is aimed at anyone with an understanding of basic computer programming
concepts including variables, data types, arrays, conditional statements, iterators, classes,
and functions—experience in any language is sufficient; and, anyone with an under-
standing of basic mathematical concepts such as data variables, the representation of
functions, and plotting data and functions on a graph.

How this book is organized: A roadmap
This book contains 10 chapters, each focusing on a different artificial intelligence algo-
rithm or algorithmic approach. The material covers fundamental algorithms and con-
cepts at the start of the book that form a foundation for learning more sophisticated
algorithms throughout the book.

xx	 about this book

•	 Chapter 1—Intuition of artificial intelligence, introduces the intuition and
fundamental concepts that surround data, types of problems, categories of
algorithms and paradigms, and use cases for artificial intelligence algorithms.

•	 Chapter 2—Search fundamentals, covers the core concepts of data structures and
approaches for primitive search algorithms, and their uses.

•	 Chapter 3—Intelligent search, goes beyond primitive search algorithms and
introduces search algorithms for finding solutions more optimally, and finding
solutions in a competitive environment.

•	 Chapter 4—Evolutionary algorithms, dives into the workings of genetic
algorithms where solutions to problems are iteratively generated and improved
upon by mimicking evolution in nature.

•	 Chapter 5—Advanced evolutionary approaches, is a continuation of genetic
algorithms but tackles advanced concepts involving how steps in the algorithm
can be adjusted to solve different types of problems more optimally.

•	 Chapter 6—Swarm intelligence: Ants, digs into the intuition for swam intelligence
and works through how the ant colony optimization algorithm uses a theory of
how ants live and work to solve hard problems.

•	 Chapter 7—Swarm intelligence: Particles, continues with swarm algorithms while
diving into what optimization problems are, and how they’re solved using
particle swarm optimization—as it seeks good solutions in large search spaces.

•	 Chapter 8—Machine learning, works through a machine learning workflow for
data preparation, processing, modeling, and testing—to solve regression
problems with linear regression, and classification problems with decision trees.

•	 Chapter 9—Artificial neural networks, uncovers the intuition, logical steps, and
mathematical calculations in training and using an artificial neural network to
find patterns in data and make predictions; while highlighting its place in a
machine learning workflow.

•	 Chapter 10—Reinforcement learning with Q-Learning, covers the intuition of
reinforcement learning from behavioral psychology, and works through the
Q-Learning algorithm for agents to learn good and bad decisions to make in an
environment.

The chapters should be read from start to end sequentially. Concepts and understand-
ings are built up along the way as the chapters progress. It is useful to reference the
Python code in the repository after reading each chapter to experiment and gain practi-
cal insight into how the respective algorithm can be implemented.

	 about this book� xxi

About the Code
This book contains Pseudocode to focus on the intuition and logical thinking behind
the algorithms, as well as to ensure that the code is accessible to anyone, regardless of
programming language preferences. Pseudocode is an informal way to describe instruc-
tions in code. It is intended to be more readable and understandable; basically more
human-friendly.

With that said, all algorithms described in the book have examples of working
Python code available on Github (http://mng.bz/Vgr0). Setup instructions and com-
ments are provided in the source code to guide you as you learn. One potential learning
approach would be to read each chapter then reference the code after to cement your
understanding of the respective algorithms.

The Python source code is intended to be a reference for how the algorithms could be
implemented. These examples are optimized FOR LEARNING and NOT PRODUCTION
use. The code was written to serve as a tool for teaching. Using established libraries and
frameworks is recommended for projects that will make their way into production, as
they are usually optimized for performance, well tested, and well supported.

liveBook discussion forum
Purchase of Grokking Artificial Intelligence Algorithms includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum, go to http://mng.bz/xWoe. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

Other online resources
Source code for Grokking Artificial Intelligence Algorithms:

http://mng.bz/Vgr0
Author website:

https://rhurbans.com

https://rhurbans.com

xxiii

about the author

Rishal has been obsessed with computers, technology, and crazy ideas since childhood.
Throughout his career he has been involved in the leadership of teams and projects,
hands-on software engineering, strategic planning, and the end-to-end design of solu-
tions for various international businesses. He has also been responsible for actively
growing a culture of pragmatism, learning and skills development within his company,
community, and industry.

Rishal has a passion for business mechanics and strategy, growing people and teams,
design thinking, artificial intelligence, and philosophy. Rishal has founded various dig-
ital products to help people and businesses be more productive and focus on what’s
important. He has also spoken at dozens of conferences around the globe to make com-
plex concepts more accessible and help people elevate themselves.

1

What is artificial intelligence?
Intelligence is a mystery—a concept that has no agreed-upon definition.
Philosophers, psychologists, scientists, and engineers all have different
opinions about what it is and how it emerges. We see intelligence in nature
around us, such as groups of living creatures working together, and we see
intelligence in the way that humans think and behave. In general, things
that are autonomous yet adaptive are considered to be intelligent.
Autonomous means that something does not need to be provided constant
instructions; and adaptive means that it can change its behavior as the envi-
ronment or problem space changes. When we look at living organisms and

1

This chapter covers

•	 Definition of AI as we know it

•	 Intuition of concepts that are applicable to AI

•	 Problem types in computer science and AI, and their properties

•	 Overview of the AI algorithms discussed in this book

•	 Real-world uses for AI

Intuition of
artificial intelligence

2	 Chapter 1 I Intuition of artificial intelligence

machines, we see that the core element for operation is data. Visuals that we see are data;
sounds that we hear are data; measurements of the things around us are data. We con-
sume data, process it all, and make decisions based on it; so a fundamental understand-
ing of the concepts surrounding data is important for understanding artificial intelligence
(AI) algorithms.

Defining AI
Some people argue that we don’t understand what AI is because we struggle to define
intelligence itself. Salvador Dalí believed that ambition is an attribute of intelligence; he
said, “Intelligence without ambition is a bird without wings.” Albert Einstein believed
that imagination is a big factor in intelligence; he said, “The true sign of intelligence is
not knowledge, but imagination.” And Stephen Hawking said, “Intelligence is the ability
to adapt,” which focuses on being able to adapt to changes in the world. These three great
minds had different outlooks on intelligence. With no true definitive answer to intelli-
gence yet, we at least know that we base our understanding of intelligence on humans as
being the dominant (and most intelligent) species.

For the sake of our sanity, and to stick to the practical applications in this book, we
will loosely define AI as a synthetic system that exhibits “intelligent” behavior. Instead
of trying to define something as AI or not AI, let’s refer to the AI-likeness of it. Something
might exhibit some aspects of intelligence because it helps us solve hard problems and
provides value and utility. Usually, AI implementations that simulate vision, hearing,
and other natural senses are seen to be AI-like. Solutions that are able to learn autono-
mously while adapting to new data and environments are also seen to be AI-likeness.

Here are some examples of things that exhibit AI-ness:

•	 A system that succeeds at playing many types of complex games

•	 A cancer tumor detection system

•	 A system that generates artwork based on little input

•	 A self-driving car

Douglas Hofstadter said, “AI is whatever hasn’t been done yet.” In the examples just
mentioned, a self-driving car may seem to be intelligent because it hasn’t been perfected
yet. Similarly, a computer that adds numbers was seen to be intelligent a while ago but is
taken for granted now.

The bottom line is that AI is an ambiguous term that means different things to dif
ferent people, industries, and disciplines. The algorithms in this book have been classi-
fied as AI algorithms in the past or present; whether they enable a specific definition of
AI or not doesn’t really matter. What matters is that they are useful for solving hard
problems.

	 What is artificial intelligence?� 3

Understanding that data is core to AI algorithms
Data is the input to the wonderful algorithms that perform feats that almost appear to
be magic. With the incorrect choice of data, poorly represented data, or missing data,
algorithms perform poorly, so the outcome is only as good as the data provided. The
world is filled with data, and that data exists in forms we can’t even sense. Data can rep-
resent values that are measured numerically, such as the current temperature in the
Arctic, the number of fish in a pond, or your current age in days. All these examples
involve capturing accurate numeric values based on facts. It’s difficult to misinterpret
this data. The temperature at a specific location at a specific point in time is absolutely
true and is not subject to any bias. This type of data is known as quantitative data.

Data can also represent values of observations, such as the smell of a flower or one’s
level of agreement with a politician’s policies. This type of data is known as qualitative
data and is sometimes difficult to interpret because it’s not an absolute truth, but a per-
ception of someone’s truth. Figure 1.1 illustrates some examples of the quantitative and
qualitative data around us.

Figure 1.1 Examples of data around us

Data is raw facts about things, so recordings of it usually have no bias. In the real world,
however, data is collected, recorded, and related by people based on a specific context
with a specific understanding of how the data may be used. The act of constructing
meaningful insights to answer questions based on data is creating information.
Furthermore, the act of utilizing information with experiences and consciously applying
it creates knowledge. This is partly what we try to simulate with AI algorithms.

Figure 1.2 shows how quantitative and qualitative data can be interpreted. Standard-
ized instruments such as clocks, calculators, and scales are usually used to measure

4	 Chapter 1 I Intuition of artificial intelligence

quantitative data, whereas our senses of smell, sound, taste, touch, and sight, as well as
our opinionated thoughts, are usually used to create qualitative data.

Figure 1.2 Qualitative data versus quantitative data

Data, information, and knowledge can be interpreted differently by different people,
based on their level of understanding of that domain and their outlook on the world, and
this fact has consequences for the quality of solutions—making the scientific aspect of
creating technology hugely important. By following repeatable scientific processes to cap-
ture data, conduct experiments, and accurately report findings, we can ensure more accu-
rate results and better solutions to problems when processing data with algorithms.

Viewing algorithms as instructions in recipes
We now have a loose definition of AI and an understanding of the importance of data.
Because we will be exploring several AI algorithms throughout this book, it is useful to
understand exactly what an algorithm is. An algorithm is a set of instructions and rules
provided as a specification to accomplish a specific goal. Algorithms typically accept
inputs, and after several finite steps in which the algorithm progresses through varying
states, an output is produced.

Even something as simple as reading a book can be represented as an algorithm. Here’s
an example of the steps involved in reading this book:

1.	 Find the book Grokking Artificial Intelligence Algorithms.

2.	 Open the book.

	 What is artificial intelligence?� 5

3.	 While unread pages remain,

a.	 Read page.

b.	 Turn to next page.

c.	 Think about what you have learned.

4.	 Think about how you can apply your learnings in the real world.

An algorithm can be viewed as a recipe, as seen in figure 1.3. Given some ingredients and
tools as inputs, and instructions for creating a specific dish, a meal is the output.

Figure 1.3 An example showing that an algorithm is like a recipe

Algorithms are used for many different solutions. For example, we can enable live video
chat across the world through compression algorithms, and we can navigate cities
through map applications that use real-time routing algorithms. Even a simple “Hello
World” program has many algorithms at play to translate the human-readable program-
ming language into machine code and execute the instructions on the hardware. You
can find algorithms everywhere if you look closely enough.

To illustrate something more closely related to the algorithms in this book, figure 1.4
shows a number-guessing-game algorithm represented as a flow chart. The computer
generates a random number in a given range, and the player attempts to guess that num-
ber. Notice that the algorithm has discrete steps that perform an action or determine a
decision before moving to the next operation.

6	 Chapter 1 I Intuition of artificial intelligence

Figure 1.4 A number-guessing-game algorithm flow chart

Given our understanding of technology, data, intelligence, and algorithms: AI algo-
rithms are sets of instructions that use data to create systems that exhibit intelligent
behavior and solve hard problems.

A brief history of artificial intelligence
A brief look back at the strides made in AI is useful for understanding that old tech-
niques and new ideas can be harnessed to solve problems in innovative ways. AI is not a
new idea. History is filled with myths of mechanical men and autonomous “thinking”
machines. Looking back, we find that we’re standing on the shoulders of giants. Perhaps
we ourselves can contribute to the pool of knowledge in a small way.

Looking at past developments highlights the importance of understanding the funda-
mentals of AI; algorithms from decades ago are critical in many modern AI implemen-
tations. This book starts with fundamental algorithms that help build the intuition of
problem-solving and gradually moves to more interesting and modern approaches.

Figure 1.5 isn’t an exhaustive list of achievements in AI—it is simply a small set of
examples. History is filled with many more breakthroughs!

	 A brief history of artificial intelligence� 7

Figure 1.5 The evolution of AI

8	 Chapter 1 I Intuition of artificial intelligence

Problem types and problem-solving
paradigms
AI algorithms are powerful, but they are not silver bullets that can solve any problem.
But what are problems? This section looks at different types of problems that we usually
experience in computer science, showing how we can start gaining intuition about them.
This intuition can help us identify these problems in the real world and guide the choice
of algorithms used in the solution.

Several terms in computer science and AI are used to describe problems. Problems are
classified based on the context and the goal.

Search problems: Find a path to a solution
A search problem involves a situation that has multiple possible solutions, each of which
represents a sequence of steps (path) toward a goal. Some solutions contain overlapping
subsets of paths; some are better than others; and some are cheaper to achieve than oth-
ers. A “better” solution is determined by the specific problem at hand; a “cheaper” solu-
tion means computationally cheaper to execute. An example is determining the shortest
path between cities on a map. Many routes may be available, with different distances and
traffic conditions, but some routes are better than others. Many AI algorithms are based
on the concept of searching a solution space.

Optimization problems: Find a good solution
An optimization problem involves a situation in which there are a vast number of valid
solutions and the absolute-best solution is difficult to find. Optimization problems usu-
ally have an enormous number of possibilities, each of which differs in how well it solves
the problem. An example is packing luggage in the trunk of a car in such a way as to
maximize the use of space. Many combinations are available, and if the trunk is packed
effectively, more luggage can fit in it.

Local best versus global best
Because optimization problems have many solutions, and because these solutions
exist at different points in the search space, the concept of local bests and global
bests comes into play. A local best solution is the best solution within a specific area
in the search space, and a global best is the best solution in the entire search space.
Usually, there are many local best solutions and one global best solution. Consider
searching for the best restaurant, for example. You may find the best restaurant in
your local area, but it may not necessarily be the best restaurant in the country or
the best restaurant in the world.

	 Problem types and problem-solving paradigms� 9

Prediction and classification problems: Learn from patterns in data
Prediction problems are problems in which we have data about something and want to try
to find patterns. For example, we might have data about different vehicles and their
engine sizes, as well as each vehicle’s fuel consumption. Can we predict the fuel con-
sumption of a new model of vehicle, given its engine size? If there’s a correlation in the
data between engine sizes and fuel consumption, this prediction is possible.

Classification problems are similar to prediction problems, but instead of trying to
find an exact prediction such as fuel consumption, we try to find a category of some-
thing based on its features. Given the dimensions of a vehicle, its engine size, and the
number of seats, can we predict whether that vehicle is a motorcycle, sedan, or sport-
utility vehicle? Classification problems require finding patterns in the data that group
examples into categories. Interpolation is an important concept when finding patterns
in data because we estimate new data points based on the known data.

Clustering problems: Identify patterns in data
Clustering problems include scenarios in which trends and relationships are uncovered
from data. Different aspects of the data are used to group examples in different ways.
Given cost and location data about restaurants, for example, we may find that younger
people tend to frequent locations where the food is cheaper.

Clustering aims to find relationships in data even when a precise question is not being
asked. This approach is also useful for gaining a better understanding of data to inform
what you might be able to do with it.

Deterministic models: Same result each time it’s calculated
Deterministic models are models that, given a specific input, return a consistent output.
Given the time as noon in a specific city, for example, we can always expect there to be
daylight; and given the time as midnight, we can always expect darkness. Obviously this
simple example doesn’t take into account the unusual daylight durations near the poles
of the planet.

Stochastic/probabilistic models:
Potentially different result each time it’s calculated
Probabilistic models are models that, given a specific input, return an outcome from a set
of possible outcomes. Probabilistic models usually have an element of controlled ran-
domness that contributes to the possible set of outcomes. Given the time as noon, for
example, we can expect the weather to be sunny, cloudy, or rainy; there is no fixed
weather at this time.

10	 Chapter 1 I Intuition of artificial intelligence

Intuition of artificial intelligence concepts
AI is a hot topic, as are machine learning and deep learning. Trying to make sense of
these different but similar concepts can be a daunting experience. Additionally, within
the domain of AI, distinctions exist among different levels of intelligence.

In this section, we demystify some of these concepts. The section is also a road map of
the topics covered throughout this book.

Let’s dive into the different levels of AI, introduced with figure 1.6.

Figure 1.6 Levels of AI

Narrow intelligence: Specific-purpose solutions
Narrow intelligence systems solve problems in a specific context or domain. These sys-
tems usually cannot solve a problem in one context and apply that same understanding
in another. A system developed to understand customer interactions and spending
behavior, for example, would not be capable of identifying cats in an image. Usually, for
something to be effective in solving a problem, it needs to be quite specialized in the
domain of the problem, which makes it difficult to adapt to other problems.

Different narrow intelligence systems can be combined in sensible ways to create
something greater that seems to be more general in its intelligence. An example is a voice
assistant. This system can understand natural language, which alone is a narrow problem,
but through integration with other narrow intelligence systems, such as web searches
and music recommenders, it can exhibit qualities of general intelligence.

	 Intuition of artificial intelligence concepts� 11

General intelligence: Humanlike solutions
General intelligence is humanlike intelligence. As humans, we are able to learn from var-
ious experiences and interactions in the world and apply that understanding from one
problem to another. If you felt pain when touching something hot as a child, for exam-
ple, you can extrapolate and know that other things that are hot may have a chance of
hurting you. General intelligence in humans, however, is more than just reasoning
something like “Hot things may be harmful.” General intelligence encompasses mem-
ory, spatial reasoning through visual inputs, use of knowledge, and more. Achieving
general intelligence in a machine seems to be an unlikely feat in the short term, but
advancements in quantum computing, data processing, and AI algorithms could make
it a reality in the future.

Super intelligence: The great unknown
Some ideas of super intelligence appear in science-fiction movies set in postapocalyptic
worlds, in which all machines are connected, are able to reason about things beyond our
understanding, and dominate humans. There are many philosophical differences about
whether humans could create something more intelligent than ourselves and, if we
could, whether we’d even know. Super intelligence is the great unknown, and for a long
time, any definitions will be speculation.

Old AI and new AI
Sometimes, the notions of old AI and new AI are used. Old AI is often understood as
being systems in which people encoded the rules that cause an algorithm to exhibit intel-
ligent behavior—via in-depth knowledge of the problem or by trial and error. An exam-
ple of old AI is a person manually creating a decision tree and the rules and options in
the entire decision tree. New AI aims to create algorithms and models that learn from
data and create their own rules that perform as accurately as, or better than, human-
created rules. The difference is that the latter may find important patterns in the data
that a person may never find or that would take a person much longer to find. Search
algorithms are often seen as old AI, but a robust understanding of them is useful in
learning more complex approaches. This book aims to introduce the most popular AI
algorithms and gradually build on each concept. Figure 1.7 illustrates the relationship
between some of the different concepts within artificial intelligence.

12	 Chapter 1 I Intuition of artificial intelligence

Figure 1.7 Categorization of concepts within AI

Search algorithms
Search algorithms are useful for solving problems in which several actions are required to
achieve a goal, such as finding a path through a maze or determining the best move to
make in a game. Search algorithms evaluate future states and attempt to find the opti-
mal path to the most valuable goal. Typically, we have too many possible solutions to
brute-force each one. Even small search spaces could result in thousands of hours of
computing to find the best solution. Search algorithms provide smart ways to evaluate
the search space. Search algorithms are used in online search engines, map routing
applications, and even game-playing agents.

Biology-inspired algorithms
When we look at the world around us, we notice incredible things in various creatures,
plants, and other living organisms. Examples include the cooperation of ants in gather-
ing food, the flocking of birds when migrating, estimating how brains work, and the
evolution of different organisms to produce stronger offspring. By observing and learn-
ing from various phenomena, we’ve gained knowledge of how these organic systems
operate and of how simple rules can result in emergent intelligent behavior. Some of
these phenomena have inspired algorithms that are useful in AI, such as evolutionary
algorithms and swarm intelligence algorithms.

Evolutionary algorithms are inspired by the theory of evolution defined by Charles
Darwin. The concept is that a population reproduces to create new individuals and that
through this process, the mixture of genes and mutation produces individuals that

	 Intuition of artificial intelligence concepts� 13

perform better than their ancestors. Swarm intelligence is a group of seemingly “dumb”
individuals exhibiting intelligent behavior. Ant-colony optimization and particle-swarm
optimization are two popular algorithms that we will be exploring in this book.

Machine learning algorithms
Machine learning takes a statistical approach to training models to learn from data. The
umbrella of machine learning has a variety of algorithms that can be harnessed to
improve understanding of relationships in data, to make decisions, and to make predic-
tions based on that data.

There are three main approaches in machine learning:

•	 Supervised learning means training models with algorithms when the training
data has known outcomes for a question being asked, such as determining the
type of fruit if we have a set of data that includes the weight, color, texture, and
fruit label for each example.

•	 Unsupervised learning uncovers hidden relationships and structures within the
data that guide us in asking the dataset relevant questions. It may find patterns
in properties of similar fruits and group them accordingly, which can inform the
exact questions we want to ask the data. These core concepts and algorithms
helps us create a foundation for exploring advanced algorithms in the future.

•	 Reinforcement learning is inspired by behavioral psychology. In short, it describes
rewarding an individual if a useful action was performed and penalizing that
individual if an unfavorable action was performed. To explore a human example,
when a child achieves good results on their report card, they are usually
rewarded, but poor performance sometimes results in punishment, reinforcing
the behavior of achieving good results. Reinforcement learning is useful for
exploring how computer programs or robots interact with dynamic
environments. An example is a robot that is tasked to open doors; it is penalized
when it doesn’t open a door and rewarded when it does. Over time, after many
attempts, the robot “learns” the sequence of actions required to open a door.

Deep learning algorithms
Deep learning, which stems from machine learning, is a broader family of approaches
and algorithms that are used to achieve narrow intelligence and strive toward general
intelligence. Deep learning usually implies that the approach is attempting to solve a
problem in a more general way like spatial reasoning, or it is being applied to problems
that require more generalization such as computer vision and speech recognition.
General problems are things humans are good at solving. For example, we can match
visual patterns in almost any context. Deep learning also concerns itself with super-
vised learning, unsupervised learning, and reinforcement learning. Deep learning
approaches usually employ many layers of artificial neural networks. By leveraging

14	 Chapter 1 I Intuition of artificial intelligence

different layers of intelligent components, each layer solves specialized problems;
together, the layers solve complex problems toward a greater goal. Identifying any object
in an image, for example, is a general problem, but it can be broken into understanding
color, recognizing shapes of objects, and identifying relationships among objects to
achieve a goal.

Uses for artificial intelligence algorithms
The uses for AI techniques are potentially endless. Where there are data and problems to
solve, there are potential applications of AI. Given the ever-changing environment, the
evolution of interactions among humans, and the changes in what people and industries
demand, AI can be applied in innovative ways to solve real-world problems. This section
describes the application of AI in various industries.

Agriculture: Optimal plant growth
One of the most important industries that sustain human life is agriculture. We need to
be able to grow quality crops for mass consumption economically. Many farmers grow
crops on a commercial scale to enable us to purchase fruit and vegetables at stores con-
veniently. Crops grow differently based on the type of crop, the nutrients in the soil, the
water content of the soil, the bacteria in the water, and the weather conditions in the
area, among other things. The goal is to grow as much high-quality produce as possi-
ble within a season, because specific crops generally grow well only during specific
seasons.

Farmers and other agriculture organizations have captured data about their farms
and crops over the years. Using that data, we can leverage machines to find patterns and
relationships among the variables in the crop-growing process and identify the factors
that contribute most to successful growth. Furthermore, with modern digital sensors,
we can record weather conditions, soil attributes, water conditions, and crop growth in
real time. This data, combined with intelligent algorithms, can enable real-time recom-
mendations and adjustments for optimal growth (figure 1.8).

	 Uses for artificial intelligence algorithms� 15

Figure 1.8 Using data to optimize crop farming

Banking: Fraud detection
The need for banking became obvious when we had to find a common consistent cur-
rency for trading goods and services. Banks have changed over the years to offer differ-
ent options for storing money, investing money, and making payments. One thing that
hasn’t changed over time is people finding creative ways to cheat the system. One of the
biggest problems—not only in banking but also in most financial institutions, such as
insurance companies—is fraud. Fraud occurs when someone is dishonest or does some-
thing illegal to acquire something for themselves. Fraud usually happens when loopholes
in a process are exploited or a scam fools someone into divulging information. Because
the financial-services industry is highly connected through the internet and personal
devices, more transactions happen electronically over a computer network than in per-
son, with physical money. With the vast amounts of transaction data available, we can,
in real-time, find patterns of transactions specific to an individual’s spending behavior
that may be out of the ordinary. This data helps save financial institutions enormous
amounts of money and protects unsuspecting consumers from being robbed.

Cybersecurity: Attack detection and handling
One of the interesting side effects of the internet boom is cybersecurity. We send and
receive sensitive information over the internet all the time—instant messages, credit-
card details, emails, and other important confidential information that could be

16	 Chapter 1 I Intuition of artificial intelligence

misused if it fell into the wrong hands. Thousands of servers across the globe receive
data, process it, and store it. Attackers attempt to compromise these systems to gain
access to the data, devices, or even facilities.

By using AI, we can identify and block potential attacks on servers. Some large inter-
net companies store data about how specific individuals interact with their service,
including their device IDs, geolocations, and usage behavior; when unusual behavior is
detected, security measures limit access. Some internet companies can also block and
redirect malicious traffic during a distributed denial of service (DDoS) attack, which
involves overloading a service with bogus requests in an attempt to bring it down or
prevent access by authentic users. These unauthentic requests can be identified and
rerouted to minimize the impact of the attack by understanding the users’ usage data,
the systems, and the network.

Health care: Diagnosis of patients
Health care has been a constant concern throughout human history. We need access to
diagnosis and treatment of different ailments in different locations in varying windows
of time before a problem becomes more severe or even fatal. When we look at the diag-
nosis of a patient, we may look at the vast amounts of knowledge recorded about the
human body, known problems, experience in dealing with these problems, and a myriad
of scans of the body. Traditionally, doctors were required to analyze images of scans to
detect the presence of tumors, but this approach resulted in the detection of only the
largest, most advanced tumors. Advances in deep learning have improved the detection
of tumors in images generated by scans. Now doctors can detect cancer earlier, which
means that a patient can get the required treatment in time and have a higher chance of
recovery.

Furthermore, AI can be used to find patterns in symptoms, ailments, hereditary
genes, geographic locations, and the like. We could potentially know that someone has a
high probability of developing a specific ailment and be prepared to manage that ailment
before it develops. Figure 1.9 illustrates feature recognition of a brain scan using deep
learning.

Figure 1.9 Using machine learning for feature recognition in brain scans

	 Uses for artificial intelligence algorithms� 17

Logistics: Routing and optimization
The logistics industry is a huge market of different types of vehicles delivering differ-
ent types of goods to different locations, with different demands and deadlines. Imagine
the complexity in a large e-commerce site’s delivery planning. Whether the delivera-
bles are consumer goods, construction equipment, parts for machinery, or fuel, the sys-
tem aims to be as optimal as possible to ensure that demand is met and costs are
minimized.

You may have heard of the traveling-salesperson problem: a salesperson needs to visit
several locations to complete their job, and the aim is to find the shortest distance to
accomplish this task. Logistics problems are similar but usually immensely more com-
plex due to the changing environment of the real world. Through AI, we can find
optimal routes between locations in terms of time and distance. Furthermore, we can
find the best routes based on traffic patterns, construction blockages, and even road
types based on the vehicle being used. Additionally, we can compute the best way to pack
each vehicle and what to pack in each vehicle in such a way that each delivery is
optimized.

Telecoms: Optimizing networks
The telecommunications industry has played a huge role in connecting the world. These
companies lay expensive infrastructure of cables, towers, and satellites to create a net-
work that many consumers and organizations can use to communicate via the internet
or private networks. Operating this equipment is expensive, so optimization of a net-
work allows for more connections, which allows more people to access high-speed con-
nections. AI can be used to monitor behavior on a network and optimize routing.
Additionally, these networks record requests and responses; this data can be used to
optimize the networks based on known load from certain individuals, areas, and spe-
cific local networks. The network data can also be instrumental for understanding where
people are and who they are, which is useful for city planning.

Games: Creating AI agents
Since home and personal computers first became widely available, games have been a
selling point for computer systems. Games were popular very early in the history of per-
sonal computers. If we think back, we may remember arcade machines, television con-
soles, and personal computers with gaming capabilities. The games of chess, backgammon,
and others have been dominated by AI machines. If the complexity of a game is low
enough, a computer can potentially find all possibilities and make a decision based on
that knowledge faster than a human can. Recently, a computer was able to defeat human
champions in the strategic game, Go. Go has simple rules for territory control but has
huge complexity in terms of the decisions that need to be made for a winning scenario.
A computer can’t generate all possibilities for beating the best human players because the
search space is so large; instead, it calls for a more-general algorithm that can “think”

18	 Chapter 1 I Intuition of artificial intelligence

abstractly, strategize, and plan moves toward a goal. That algorithm has already been
invented and has succeeded in defeating world champions. It has also been adapted to
other applications, such as playing Atari games and modern multiplayer games. This
system is called Alpha Go.

Several research organizations have developed AI systems that are capable of playing
highly complex games better than human players and teams. The goal of this work is to
create general approaches that can adapt to different contexts. At face value, these
game-playing AI algorithms may seem unimportant, but the consequence of developing
these systems is that the approach can be applied effectively in other important problem
spaces. Figure 1.10 illustrates how a reinforcement learning algorithm can learn to play a
classic video game like Mario.

Figure 1.10 Using neural networks to learn how to play games

	 Uses for artificial intelligence algorithms� 19

Art: Creating masterpieces
Unique, interesting artists have created beautiful paintings. Each artist has their own
way of expressing the world around them. We also have amazing music compositions
that are appreciated by the masses. In both cases, the quality of the art cannot be mea-
sured quantitatively; rather, it is measured qualitatively (by how much people enjoy the
piece). The factors involved are difficult to understand and capture; the concept is driven
by emotion.

Many research projects aim to build AI that generates art. The concept involves gen-
eralization. An algorithm would need to have a broad and general understanding of the
subject to create something that fits those parameters. A Van Gogh AI, for example,
would need to understand all of Van Gogh’s work and extract the style and “feel” so that
it can apply that data to other images. The same thinking can be applied to extracting
hidden patterns in areas such as health care, cybersecurity, and finance.

Now that we have abstract intuition about what AI is, the categorization of themes within
it, the problems it aims to solve, and some use cases, we will be diving into one of the
oldest and simplest forms of mimicking intelligence: search algorithms. Search algo-
rithms provide a good grounding in some concepts that are employed by other, more
sophisticated AI algorithms explored throughout this book.

20	 Chapter 1 I Intuition of artificial intelligence

SUMMARY OF INTUITION OF ARTIFICIAL INTELLIGENCE

21

What are planning and searching?
When we think about what makes us intelligent, the ability to plan before
carrying out actions is a prominent attribute. Before embarking on a trip to
a different country, before starting a new project, before writing functions
in code, planning happens. Planning happens at different levels of detail in
different contexts to strive for the best possible outcome when carrying out
the tasks involved in accomplishing goals (figure 2.1).

This chapter covers

•	 The intuition of planning and searching

•	 Identifying problems suited to be solved using search algorithms

•	 Representing problem spaces in a way suitable to be processed by

search algorithms

•	 Understanding and designing fundamental search algorithms to

solve problems

2Search
fundamentals

22	 Chapter 2 I Search fundamentals

Figure 2.1 Example of how plans change in projects

Plans rarely work out perfectly in the way we envision at the start of an endeavor. We
live in a world in which environments are constantly changing, so it is impossible to
account for all the variables and unknowns along the way. Regardless of the plan we
started with, we almost always deviate due to changes in the problem space. We need to
(again) make a new plan from our current point going forward, if after we take more
steps, unexpected events occur that require another iteration of planning to meet the
goals. As a result, the final plan that is carried out is usually different from the origi-
nal one.

Searching is a way to guide planning by creating steps in a plan. When we plan a trip,
for example, we search for routes to take, evaluate the stops along the way and what they
offer, and search for accommodations and activities that align with our liking and bud-
get. Depending on the results of these searches, the plan changes.

Suppose that we have settled on a trip to the beach, which is 500 kilometers away, with
two stops: one at a petting zoo and one at a pizza restaurant. We will sleep at a lodge close
to the beach on arrival and partake in three activities. The trip to the destination will
take approximately 8 hours. We’re also taking a shortcut private road after the restau-
rant, but it’s open only until 2:00.

We start the trip, and everything is going according to plan. We stop at the petting zoo
and see some wonderful animals. We drive on and start getting hungry; it’s time for the
stop at the restaurant. But to our surprise, the restaurant recently went out of business.
We need to adjust our plan and find another place to eat, which involves searching for a
close-by establishment of our liking and adjusting our plan.

After driving around for a while, we find a restaurant, enjoy a pizza, and get back on
the road. Upon approaching the shortcut private road, we realize that it’s 2:20. The road
is closed; yet again, we need to adjust our plan. We search for a detour and find that it
will add 120 kilometers to our drive, and we will need to find accommodations for the
night at a different lodge before we even get to the beach. We search for a place to sleep

	 What are planning and searching?� 23

and plot out our new route. Due to lost time, we can partake in only two activities at
the destination. The plan has been adjusted heavily through searching for different
options that satisfy each new situation, but we end up having a great adventure en route
to the beach.

This example shows how search is used for planning and influences planning toward
desirable outcomes. As the environment changes, our goals may change slightly, and our
path to them inevitably needs to be adjusted (figure 2.2). Adjustments in plans can
almost never be anticipated and need to be made as required.

Figure 2.2 Original plan versus adjusted plan for a road trip

Searching involves evaluating future states toward a goal with the aim of finding an
optimal path of states until the goal is reached. This chapter centers on different
approaches to searching depending on different types of problems. Searching is an old
but powerful tool for developing intelligent algorithms to solve problems.

24	 Chapter 2 I Search fundamentals

Cost of computation:
The reason for smart algorithms
In programming, functions consist of operations, and due to the way that traditional
computers work, different functions use different amounts of processing time. The more
computation required, the more expensive the function is. Big O notation is used to
describe the complexity of a function or algorithm. Big O notation models the number
of operations required as the input size increases. Here are some examples and associ-
ated complexities:

•	 A single operation that prints Hello World—This operation is a single
operation, so the cost of computation is O(1).

•	 A function that iterates over a list and prints each item in the list—The number of
operations is dependent on the number of items in the list. The cost is O(n).

•	 A function that compares every item in a list with every item in another list—This
operation costs O(n²).

Figure 2.3 depicts different costs of algorithms. Algorithms that require operations to
explore as the size of the input increases are the worst-performing; algorithms that require
a more constant number of operations as the number of inputs increases are better.

Figure 2.3 Big O complexity

	 Problems applicable to searching algorithms� 25

Understanding that different algorithms have different computation costs is import-
ant because addressing this is the entire purpose of intelligent algorithms that solve
problems well and quickly. Theoretically, we can solve almost any problem by brute-
forcing every possible option until we find the best one, but in reality, the computation
could take hours or even years, which makes it infeasible for real-world scenarios.

Problems applicable to searching algorithms
Almost any problem that requires a series of decisions to be made can be solved with
search algorithms. Depending on the problem and the size of the search space, different
algorithms may be employed to help solve it. Depending on the search algorithm
selected and the configuration used, the optimal solution or a best available solution
may be found. In other words, a good solution will be found, but it might not necessarily
be the best solution. When we speak about a “good solution” or “optimal solution,” we
are referring to the performance of the solution in addressing the problem at hand.

One scenario in which search algorithms are useful is being stuck in a maze and
attempting to find the shortest path to a goal. Suppose that we’re in a square maze con-
sisting of an area of 10 blocks by 10 blocks (figure 2.4). There exists a goal that we want
to reach and barriers that we cannot step into. The objective is to find a path to the goal
while avoiding barriers with as few steps as possible by moving north, south, east, or
west. In this example, the player cannot move diagonally.

Figure 2.4 An example of the maze problem

26	 Chapter 2 I Search fundamentals

How can we find the shortest path to the goal while avoiding barriers? By evaluating
the problem as a human, we can try each possibility and count the moves. Using trial and
error, we can find the paths that are the shortest, given that this maze is relatively small.

Using the example maze, figure 2.5 depicts some possible paths to reach the goal,
although note that we don’t reach the goal in option 1.

Figure 2.5 Examples of possible paths to the maze problem

	 Problems applicable to searching algorithms� 27

By looking at the maze and counting blocks in different directions, we can find several
solutions to the problem. Five attempts have been made to find four successful solutions
out of an unknown number of solutions. It will take exhaustive effort to attempt to com-
pute all possible solutions by hand:

•	 Attempt 1 is not a valid solution. It took 4 actions, and the goal was not found.

•	 Attempt 2 is a valid solution, taking 17 actions to find the goal.

•	 Attempt 3 is a valid solution, taking 23 actions to find the goal.

•	 Attempt 4 is a valid solution, taking 17 actions to find the goal.

•	 Attempt 5 is the best valid solution, taking 15 actions to find the goal. Although
this attempt is the best one, it was found by chance.

If the maze were a lot larger, like the one in figure 2.6, it would take an immense amount
of time to compute the best possible path manually. Search algorithms can help.

Figure 2.6 A large example of the maze problem

Our power as humans is to perceive a problem visually, understand it, and find solutions
given the parameters. As humans, we understand and interpret data and information
in an abstract way. A computer cannot yet understand generalized information in the
natural form that we do. The problem space needs to be represented in a form that is
applicable to computation and can be processed with search algorithms.

28	 Chapter 2 I Search fundamentals

Representing state: Creating a framework
to represent problem spaces and solutions
When representing data and information in a way that a computer can understand, we
need to encode it logically so that it can be understood objectively. Although the data
will be encoded subjectively by the person who performs the task, there should be a con-
cise, consistent way to represent it.

Let’s clarify the difference between data and information. Data is raw facts about
something, and information is an interpretation of those facts that provides insight about
the data in the specific domain. Information requires context and processing of data to
provide meaning. As an example, each individual distance traveled in the maze example
is data, and the sum of the total distance traveled is information. Depending on the per-
spective, level of detail, and desired outcome, classifying something as data or informa-
tion can be subjective to the context and person or team (figure 2.7).

Figure 2.7 Data versus information

	 Representing state: Creating a framework to represent problem spaces and solutions � 29

Data structures are concepts in computer science used to represent data in a way that
is suitable for efficient processing by algorithms. A data structure is an abstract data type
consisting of data and operations organized in a specific way. The data structure we use
is influenced by the context of the problem and the desired goal.

An example of a data structure is an array, which is simply a collection of data.
Different types of arrays have different properties that make them efficient for different
purposes. Depending on the programming language used, an array could allow each
value to be of a different type or require each value to be the same type, or the array may
disallow duplicate values. These different types of arrays usually have different names.
The features and constraints of different data structures also enable more efficient com-
putation (figure 2.8).

Figure 2.8 Data structures used with algorithms

Other data structures are useful in planning and searching. Trees and graphs are ideal
for representing data in a way that search algorithms can use.

Graphs: Representing search problems and solutions
A graph is a data structure containing several states with connections among them.
Each state in a graph is called a node (or sometimes a vertex), and a connection between
two states is called an edge. Graphs are derived from graph theory in mathematics
and used to model relationships among objects. Graphs are useful data structures that
are easy for humans to understand, due to the ease of representing them visually as well
as to their strong logical nature, which is ideal for processing via various algorithms
(figure 2.9).

30	 Chapter 2 I Search fundamentals

Figure 2.9 The notation used to represent graphs

Figure 2.10 is a graph of the trip to the beach discussed in the first section of this chapter.
Each stop is a node on the graph; each edge between nodes represent points traveled
between; and the weights on each edge indicate the distance traveled.

Figure 2.10 The example road trip represented as a graph

	 Representing state: Creating a framework to represent problem spaces and solutions � 31

Representing a graph as a concrete data structure
A graph can be represented in several ways for efficient processing by algorithms. At its
core, a graph can be represented by an array of arrays that indicates relationships among
nodes, as shown in figure 2.11. It is sometimes useful to have another array that simply
lists all nodes in the graph so that the distinct nodes do not need to be inferred from the
relationships.

Figure 2.11 Representing a graph as an array of arrays

Other representations of graphs include an incidence matrix, an adjacency matrix, and
an adjacency list. By looking at the names of these representations, you see that the adja-
cency of nodes in a graph is important. An adjacent node is a node that is connected
directly to another node.

EXERCISE: REPRESENT A GRAPH AS A MATRIX
How would you represent the following graph using edge arrays?

32	 Chapter 2 I Search fundamentals

SOLUTION: REPRESENT A GRAPH AS A MATRIX

Trees: The concrete structures used to represent search solutions
A tree is a popular data structure that simulates a hierarchy of values or objects. A hier-
archy is an arrangement of things in which a single object is related to several other
objects below it. A tree is a connected acyclic graph—every node has an edge to another
node, and no cycles exist.

In a tree, the value or object represented at a specific point is called a node. Trees typ-
ically have a single root node with zero or more child nodes that could contain subtrees.
Let’s take a deep breath and jump into some terminology. When a node has connected
nodes, the root node is called the parent. You can apply this thinking recursively. A child
node may have its own child nodes, which may also contain subtrees. Each child node
has a single parent node. A node without any children is a leaf node.

	 Representing state: Creating a framework to represent problem spaces and solutions � 33

Trees also have a total height. The level of specific nodes is called a depth.
The terminology used to relate family members is heavily used in working with

trees. Keep this analogy in mind, as it will help you connect the concepts in the tree data
structure. Note that in figure 2.12, the height and depth are indexed from 0 from the
root node.

Figure 2.12 The main attributes of a tree

The topmost node in a tree is called the root node. A node directly connected to one or
more other nodes is called a parent node. The nodes connected to a parent node are
called child nodes or neighbors. Nodes connected to the same parent node are called sib-
lings. A connection between two nodes is called an edge.

A path is a sequence of nodes and edges connecting nodes that are not directly con-
nected. A node connected to another node by following a path away from the root node
is called a descendent, and a node connected to another node by following a path toward
the root node is called an ancestor. A node with no children is called a leaf node. The term
degree is used to describe the number of children a node has; therefore, a leaf node has
degree zero.

Figure 2.13 represents a path from the start point to the goal for the maze problem.
This path contains nine nodes that represent different moves being made in the maze.

34	 Chapter 2 I Search fundamentals

Figure 2.13 A solution to the maze problem represented as a tree

Trees are the fundamental data structure for search algorithms, which we will be diving
into next. Sorting algorithms are also useful in solving certain problems and computing
solutions more efficiently. If you’re interested in learning more about sorting algorithms,
take a look at Grokking Algorithms (Manning Publications).

Uninformed search:
Looking blindly for solutions
Uninformed search is also known as unguided search, blind search, or brute-force search.
Uninformed search algorithms have no additional information about the domain of the
problem apart from the representation of the problem, which is usually a tree.

Think about exploring things you want to learn. Some people might look at a
wide breadth of different topics and learn the basics of each, whereas other people
might choose one narrow topic and explore its subtopics in depth. This is what breadth-
first search (BFS) and depth-first search (DFS) involve, respectively. Depth-first search
explores a specific path from the start until it finds a goal at the utmost depth. Breadth-
first search explores all options at a specific depth before moving to options deeper in
the tree.

Consider the maze scenario (figure 2.14). In attempting to find an optimal path to the
goal, assume the following simple constraint to prevent getting stuck in an endless loop

	 Uninformed search: Looking blindly for solutions � 35

and prevent cycles in our tree: the player cannot move into a block that they have previously
occupied. Because uninformed algorithms attempt every possible option at every node,
creating a cycle will cause the algorithm to fail catastrophically.

Figure 2.14 The constraint for the maze problem

This constraint prevents cycles in the path to the goal in our scenario. But this constraint
will introduce problems if, in a different maze with different constraints or rules, moving
into a previously occupied block more than once is required for the optimal solution.

In figure 2.15, all possible paths in the tree are represented to highlight the different
options available. This tree contains seven paths that lead to the goal and one path that
results in an invalid solution, given the constraint of not moving to previously occupied
blocks. It’s important to understand that in this small maze, representing all the possi-
bilities is feasible. The entire point of search algorithms, however, is to search or generate
these trees iteratively, because generating the entire tree of possibilities up front is ineffi-
cient due to being computationally expensive.

It is also important to note that the term visiting is used to indicate different things.
The player visits blocks in the maze. The algorithm also visits nodes in the tree. The
order of choices will influence the order of nodes being visited in the tree. In the maze
example, the priority order of movement is north, south, east, and then west.

36	 Chapter 2 I Search fundamentals

Figure 2.15 All possible movement options represented as a tree

Now that we understand the ideas behind trees and the maze example, let’s explore how
search algorithms can generate trees that seek out paths to the goal.

Breadth-first search:
Looking wide before looking deep
Breadth-first search is an algorithm used to traverse or generate a tree. This algorithm
starts at a specific node, called the root, and explores every node at that depth before
exploring the next depth of nodes. It essentially visits all children of nodes at a specific
depth before visiting the next depth of child until it finds a goal leaf node.

The breadth-first search algorithm is best implemented by using a first-in, first-out
queue in which the current depths of nodes are processed, and their children are queued
to be processed later. This order of processing is exactly what we require when imple-
menting this algorithm.

	 Breadth-first search: Looking wide before looking deep � 37

Figure 2.16 is a flow chart describing the sequence of steps involved in the breadth-
first search algorithm.

Figure 2.16 Flow of the breadth-first search algorithm

Here are some notes and additional remarks about each step in the process:

1.	 Enqueue root node. The breadth-first search algorithm is best implemented with a
queue. Objects are processed in the sequence in which they are added to the
queue. This process is also known as first in, first out (FIFO). The first step is
adding the root node to the queue. This node will represent the starting position
of the player on the map.

38	 Chapter 2 I Search fundamentals

2.	 Mark root node as visited. Now that the root node has been added to the queue
for processing, it is marked as visited to prevent it from being revisited for no
reason.

3.	 Is queue empty? If the queue is empty (all nodes have been processed after many
iterations), and if no path has been returned in step 12 of the algorithm, there is
no path to the goal. If there are still nodes in the queue, the algorithm can
continue its search to find the goal.

4.	 Return No path to goal. This message is the one possible exit from the
algorithm if no path to the goal exists.

5.	 Dequeue node as current node. By pulling the next object from the queue and
setting it as the current node of interest, we can explore its possibilities. When the
algorithm starts, the current node will be the root node.

6.	 Get next neighbor of current node. This step involves getting the next possible
move in the maze from the current position by referencing the maze and
determining whether a north, south, east, or west movement is possible.

7.	 Is neighbor visited? If the current neighbor has not been visited, it hasn’t been
explored yet and can be processed now.

8.	 Mark neighbor as visited. This step indicates that this neighbor node has been
visited.

9.	 Set current node as parent of neighbor. Set the origin node as the parent of the
current neighbor. This step is important for tracing the path from the current
neighbor to the root node. From a map perspective, the origin is the position that
the player moved from, and the current neighbor is the position that the player
moved to.

10.	 Enqueue neighbor. The neighbor node is queued for its children to be explored
later. This queuing mechanism allows nodes from each depth to be processed in
that order.

11.	 Is goal reached? This step determines whether the current neighbor contains the
goal that the algorithm is searching for.

12.	 Return path using neighbor. By referencing the parent of the neighbor node, then
the parent of that node, and so on, the path from the goal to the root will be
described. The root node will be a node without a parent.

13.	 Current has next neighbor? If the current node has more possible moves to make
in the maze, jump to step 6 for that move.

Let’s walk through what that would look like in a simple tree. Notice that as the tree is
explored and nodes are added to the FIFO queue, the nodes are processed in the order
desired by leveraging the queue (figures 2.17 and 2.18).

	 Breadth-first search: Looking wide before looking deep � 39

Figure 2.17 The sequence of tree processing using breadth-first search (part 1)

40	 Chapter 2 I Search fundamentals

Figure 2.18 The sequence of tree processing using breadth-first search (part 2)

	 Breadth-first search: Looking wide before looking deep � 41

EXERCISE: DETERMINE THE PATH TO THE SOLUTION
What would be the order of visits using breadth-first search for the following tree?

SOLUTION: DETERMINE THE PATH TO THE SOLUTION

42	 Chapter 2 I Search fundamentals

In the maze example, the algorithm needs to understand the current position of the
player in the maze, evaluate all possible choices for movement, and repeat that logic for
each choice of movement made until the goal is reached. By doing this, the algorithm
generates a tree with a single path to the goal.

It is important to understand that the processes of visiting nodes in a tree is used to
generate nodes in a tree. We are simply finding related nodes through a mechanism.

Each path to the goal consists of a series of moves to reach the goal. The number of
moves in the path is the distance to reach the goal for that path, which we will call the
cost. The number of moves also equals the number of nodes visited in the path, from the
root node to the leaf node that contains the goal. The algorithm moves down the tree
depth by depth until it finds a goal; then it returns the first path that got it to the goal as
the solution. There may be a more optimal path to the goal, but because breadth-first
search is uninformed, it is not guaranteed to find that path.

NOTE  In the maze example, all search algorithms used terminate when
they’ve found a solution to the goal. It is possible to allow these algorithms to
find multiple solutions with a small tweak to each algorithm, but the best use
cases for search algorithms find a single goal, as it is often too expensive to
explore the entire tree of possibilities.

Figure 2.19 shows the generation of a tree using movements in the maze. Because the tree
is generated using breadth-first search, each depth is generated to completion before
looking at the next depth (figure 2.20).

	 Breadth-first search: Looking wide before looking deep � 43

Figure 2.19 Maze movement tree generation using breadth-first search

44	 Chapter 2 I Search fundamentals

Figure 2.20 Nodes visited in the entire tree after breadth-first search

Pseudocode

As mentioned previously, the breadth-first search algorithm uses a queue to generate a
tree one depth at a time. Having a structure to store visited nodes is critical to prevent
getting stuck in cyclic loops; and setting the parent of each node is important for deter-
mining a path from the starting point in the maze to the goal:

	 Depth-first search: Looking deep before looking wide� 45

Depth-first search:
Looking deep before looking wide
Depth-first search is another algorithm used to traverse a tree or generate nodes and
paths in a tree. This algorithm starts at a specific node and explores paths of con-
nected nodes of the first child, doing this recursively until it reaches the farthest leaf
node before backtracking and exploring other paths to leaf nodes via other child nodes
that have been visited. Figure 2.21 illustrates the general flow of the depth-first search
algorithm.

46	 Chapter 2 I Search fundamentals

Figure 2.21 Flow of the depth-first search algorithm

Let’s walk through the flow of the depth-first search algorithm:

1.	 Add root node to stack. The depth-first search algorithm can be implemented
by using a stack in which the last object added is processed first. This process
is known as last in, first out (LIFO). The first step is adding the root node to
the stack.

2.	 Is stack empty? If the stack is empty and no path has been returned in step 8 of
the algorithm, there is no path to the goal. If there are still nodes in the stack, the
algorithm can continue its search to find the goal.

	 Depth-first search: Looking deep before looking wide � 47

3.	 Return No path to goal. This return is the one possible exit from the
algorithm if no path to the goal exists.

4.	 Pop node from stack as current node. By pulling the next object from the stack and
setting it as the current node of interest, we can explore its possibilities.

5.	 Is current node visited? If the current node has not been visited, it hasn’t been
explored yet and can be processed now.

6.	 Mark current node as visited. This step indicates that this node has been visited to
prevent unnecessary repeat processing of it.

7.	 Is goal reached? This step determines whether the current neighbor contains the
goal that the algorithm is searching for.

8.	 Return path using current node. By referencing the parent of the current node,
then the parent of that node, and so on, the path from the goal to the root is
described. The root node will be a node without a parent.

9.	 Current has next neighbor? If the current node has more possible moves to make
in the maze, that move can be added to the stack to be processed. Otherwise, the
algorithm can jump to step 2, where the next object in the stack can be processed
if the stack is not empty. The nature of the LIFO stack allows the algorithm to
process all nodes to a leaf node depth before backtracking to visit other children
of the root node.

10.	 Set current node as parent of neighbor. Set the origin node as the parent of the
current neighbor. This step is important for tracing the path from the current
neighbor to the root node. From a map perspective, the origin is the position that
the player moved from, and the current neighbor is the position that the player
moved to.

11.	 Add neighbor to stack. The neighbor node is added to the stack for its children to
be explored later. Again, this stacking mechanism allows nodes to be processed to
the utmost depth before processing neighbors at shallow depths.

Figures 2.22 and 2.23 explore how the LIFO stack is used to visit nodes in the order
desired by depth-first search. Notice that nodes get pushed onto and popped from the
stack as the depths of the nodes visited progress. The term push describes adding objects
to a stack, and the term pop describes removing the topmost object from the stack.

48	 Chapter 2 I Search fundamentals

Figure 2.22 The sequence of tree processing using depth-first search (part 1)

	 Depth-first search: Looking deep before looking wide � 49

Figure 2.23 The sequence of tree processing using depth-first search (part 2)

50	 Chapter 2 I Search fundamentals

EXERCISE: DETERMINE THE PATH TO THE SOLUTION
What would the order of visits be in depth-first search for the following tree?

SOLUTION: DETERMINE THE PATH TO THE SOLUTION

It is important to understand that the order of children matters substantially when using
depth-first search, as the algorithm explores the first child until it finds leaf nodes before
backtracking.

In the maze example, the order of movement (north, south, east, and west) influences
the path to the goal that the algorithm finds. A change in order will result in a different
solution. The forks represented in figures 2.24 and 2.25 don’t matter; what matters is the
order of the movement choices in our maze example.

	 Depth-first search: Looking deep before looking wide � 51

Figure 2.24 Maze movement tree generation using depth-first search

52	 Chapter 2 I Search fundamentals

Figure 2.25 Nodes visited in the entire tree after depth-first search

Pseudocode

Although the depth-first search algorithm can be implemented with a recursive func-
tion, we’re looking at an implementation that is achieved with a stack to better repre-
sent the order in which nodes are visited and processed. It is important to keep track
of the visited points so that the same nodes do not get visited unnecessarily, creating
cyclic loops:

	 Use cases for uninformed search algorithms� 53

Use cases for uninformed search algorithms
Uninformed search algorithms are versatile and useful in several real-world use cases,
such as

•	 Finding paths between nodes in a network—When two computers need to
communicate over a network, the connection passes through many connected
computers and devices. Search algorithms can be used to establish a path in that
network between two devices.

•	 Crawling web pages—Web searches allow us to find information on the internet
across a vast number of web pages. To index these web pages, crawlers typically
read the information on each page, as well as follow each link on that page
recursively. Search algorithms are useful for creating crawlers, metadata
structures, and relationships between content.

•	 Finding social network connections—Social media applications contain many
people and their relationships. Bob may be friends with Alice, for example, but
not direct friends with John, so Bob and John are indirectly related via Alice. A
social media application can suggest that Bob and John should become friends
because they may know each other through their mutual friendship with Alice.

54	 Chapter 2 I Search fundamentals

Optional: More about graph categories
Graphs are useful for many computer science and mathematical problems, and due to
the nature of different types of graphs, different principles and algorithms may apply to
specific categories of graphs. A graph is categorized based on its overall structure, num-
ber of nodes, number of edges, and interconnectivity between nodes.

These categories of graphs are good to know about, as they are common and some-
times referenced in search and other AI algorithms:

•	 Undirected graph—No edges are directed. Relationships between two nodes are
mutual. As with roads between cities, there are roads traveling in both directions.

•	 Directed graph—Edges indicate direction. Relationships between two nodes are
explicit. As in a graph representing a child of a parent, the child cannot be the
parent of its parent.

•	 Disconnected graph—One or more nodes are not connected by any edges. As in a
graph representing physical contact between continents, some nodes are not
connected. Like continents, some are connected by land, and others are separated
by oceans.

•	 Acyclic graph—A graph that contains no cycles. As with time as we know it, the
graph does not loop back to any point in the past (yet).

•	 Complete graph—Every node is connected to every other node by an edge. As in
the lines of communication in a small team, everyone talks to everyone else to
collaborate.

•	 Complete bipartite graph—A vertex partition is a grouping of vertices. Given a
vertex partition, every node from one partition is connected to every node of the
other partition with edges. As at a cheese-tasting event, typically, every person
tastes every type of cheese.

•	 Weighted graph—A graph in which the edges between nodes have a weight. As in
the distance between cities, some cities are farther than others. The connections
“weigh” more.

It is useful to understand the different types of graphs to best describe the problem and
use the most efficient algorithm for processing (figure 2.26). Some of these categories of
graphs are discussed in upcoming chapters, such as chapter 6 on ant colony optimization
and chapter 8 on neural networks.

	 Optional: More about graph categories� 55

Figure 2.26 Types of graphs

56	 Chapter 2 I Search fundamentals

Optional: More ways to represent graphs
Depending on the context, other encodings of graphs may be more efficient for processing
or easier to work with, depending on the programming language and tools you’re using.

Incidence matrix
An incidence matrix uses a matrix in which the height is the number of nodes in the
graph and the width is the number of edges. Each row represents a node’s relationship
with a specific edge. If a node is not connected by a specific edge, the value 0 is stored. If
a node is connected by a specific edge as the receiving node in the case of a directed
graph, the value -1 is stored. If a node is connected by a specific edge as an outgoing
node or connected in an undirected graph, the value 1 is stored. An incidence matrix
can be used to represent both directed and undirected graphs (figure 2.27).

Figure 2.27 Representing a graph as an incidence matrix

Adjacency list
An adjacency list uses linked lists in which the size of the initial list is the number of
nodes in the graph and each value represents the connected nodes for a specific node. An
adjacency list can be used to represent both directed and undirected graphs (figure 2.28).

Figure 2.28 Representing a graph as an adjacency list

	 Optional: More ways to represent graphs� 57

Graphs are also interesting and useful data structures because they can easily be repre-
sented as mathematical equations, which are the backing for all algorithms we use. You
can find more information about this topic throughout the book.

SUMMARY OF SEARCH FUNDAMENTALS

59

Defining heuristics:
Designing educated guesses
Now that we have an idea of how uninformed search algorithms work from
chapter 2, we can explore how they can be improved by seeing more infor-
mation about the problem. For this purpose, we use informed search.
Informed search means that the algorithm has some context of the specific
problem being solved. Heuristics are a way to represent this context. Often
described as a rule of thumb, a heuristic is a rule or set of rules used to eval-
uate a state. It can be used to define criteria that a state must satisfy or

This chapter covers

•	 Understanding and designing heuristics for guided search

•	 Identifying problems suited to being solved with guided search

approaches

•	 Understanding and designing a guided search algorithm

•	 Designing a search algorithm to play a two-player game

3Intelligent
search

60	 Chapter 3 I Intelligent search

measure the performance of a specific state. A heuristic is used when a clear method of
finding an optimal solution is not possible. A heuristic can be interpreted as an educated
guess in social terms and should be seen more as a guideline than as a scientific truth
with respect to the problem that is being solved.

When you’re ordering a pizza at a restaurant, for example, your heuristic of how good
it is may be defined by the ingredients and type of base used. If you enjoy extra tomato
sauce, extra cheese, mushrooms, and pineapple on a thick base with crunchy crust, a
pizza that includes more of these attributes will be more appealing to you and achieve
a better score for your heuristic. A pizza that contains fewer of those attributes will be
less appealing to you and achieve a poorer score.

Another example is writing algorithms to solve a GPS routing problem. The heuristic
may be “Good paths minimize time in traffic and minimize distance traveled” or “Good
paths minimize toll fees and maximize good road conditions.” A poor heuristic for a
GPS routing program would minimize straight-line distance between two points. This
heuristic might work for birds or planes, but in reality, we walk or drive; these methods
of transport bind us to roads and paths between buildings and obstacles. Heuristics need
to make sense for the context of use.

Take the example of checking whether an uploaded audio clip is an audio clip in a
library of copyrighted content. Because audio clips are frequencies of sound, one way to
achieve this goal is to search every time slice of the uploaded clip with every clip in the
library. This task will require an extreme amount of computation. A primitive start to
building a better search could be defining a heuristic that minimizes the difference of
distribution of frequencies between the two clips, as shown in figure 3.1. Notice that the
frequencies are identical apart from the time difference; they don’t have differences in
their frequency distributions. This solution may not be perfect, but it is a good start
toward a less-expensive algorithm.

Figure 3.1 Comparison of two audio clips using frequency distribution

	 Defining heuristics: Designing educated guesses � 61

Heuristics are context-specific, and a good heuristic can help optimize solutions sub-
stantially. The maze scenario from chapter 2 will be adjusted to demonstrate the concept
of creating heuristics by introducing an interesting dynamic. Instead of treating all
movements the same way and measuring better solutions purely by paths with fewer
actions (shallow depth in the tree), movements in different directions now cost different
amounts to execute. There’s been some strange shift in the gravity of our maze, and
moving north or south now costs five times as much as moving east or west (figure 3.2).

Figure 3.2 Adjustments to the maze example: gravity

In the adjusted maze scenario, the factors influencing the best possible path to the goal
are the number of actions taken and the sum of the cost for each action in a respec-
tive path.

In figure 3.3, all possible paths in the tree are represented to highlight the options
available, indicating the costs of the respective actions. Again, this example demon-
strates the search space in the trivial maze scenario and does not often apply to real-life
scenarios. The algorithm will be generating the tree as part of the search.

62	 Chapter 3 I Intelligent search

Figure 3.3 All possible movement options represented as a tree

A heuristic for the maze problem can be defined as follows: “Good paths minimize cost
of movement and minimize total moves to reach the goal.” This simple heuristic helps
guide which nodes are visited because we are applying some domain knowledge to solve
the problem.

THOUGHT EXPERIMENT: GIVEN THE FOLLOWING SCENARIO,
WHAT HEURISTIC CAN YOU IMAGINE?

Several miners specialize in different types of mining, including diamond,
gold, and platinum. All the miners are productive in any mine, but they mine
faster in mines that align with their specialties. Several mines that can con-
tain diamonds, gold, and platinum are spread across an area, and depots
appear at different distances between mines. If the problem is to distribute
miners to maximize their efficiency and reduce travel time, what could a
heuristic be?

	 Informed search: Looking for solutions with guidance� 63

THOUGHT EXPERIMENT: POSSIBLE SOLUTION

A sensible heuristic would include assigning each miner to a mine of their
specialty and tasking them with traveling to the depot closest to that mine.
This can also be interpreted as minimizing assigning miners to mines that
are not their specialty and minimizing the distance traveled to depots.

Informed search: Looking for solutions
with guidance
Informed search, also known as heuristic search, is an algorithm that uses both breadth-
first search and depth-first search approaches combined with some intelligence. The
search is guided by heuristics, given some predefined knowledge of the problem at hand.

We can employ several informed search algorithms, depending on the nature of the
problem, including Greedy Search (also known as Best-first Search). The most popular
and useful informed search algorithm, however, is A*.

A* search
A* search is pronounced “A star search.” The A* algorithm usually improves performance
by estimating heuristics to minimize the cost of the next node visited.

Total cost is calculated with two metrics: the total distance from the start node to the
current node and the estimated cost of moving to a specific node by using a heuristic.
When we are attempting to minimize cost, a lower value indicates a better-performing
solution (figure 3.4).

Figure 3.4 The function for the A* search algorithm

64	 Chapter 3 I Intelligent search

The following example of processing is an abstract example of how a tree is visited using
heuristics to guide the search. The focus is on the heuristic calculations for the different
nodes in the tree.

Breadth-first search visits all nodes on each depth before moving to the next depth.
Depth-first search visits all nodes down to the final depth before traversing back to the
root and visiting the next path. A* search is different, in that it does not have a pre-
defined pattern to follow; nodes are visited in the order based on their heuristic costs.
Note that the algorithm does not know the costs of all nodes up front. Costs are calcu-
lated as the tree is explored or generated, and each node visited is added to a stack, which
means nodes that cost more than nodes already visited are ignored, saving computation
time (figures 3.5, 3.6, and 3.7).

Figure 3.5 The sequence of tree processing using A* search (part 1)

	 Informed search: Looking for solutions with guidance � 65

Figure 3.6 The sequence of tree processing using A* search (part 2)

66	 Chapter 3 I Intelligent search

Figure 3.7 Flow for the A* search algorithm

Let’s walk through the flow of the A* search algorithm:

1.	 Add root node to stack. The A* search algorithm can be implemented with a stack
in which the last object added is processed first (last-in, first-out, or LIFO). The
first step is adding the root node to the stack.

2.	 Is stack empty? If the stack is empty, and no path has been returned in step 8 of
the algorithm, there is no path to the goal. If there are still nodes in the queue, the
algorithm can continue its search.

	 Informed search: Looking for solutions with guidance � 67

3.	 Return No path to goal. This step is the one possible exit from the
algorithm if no path to the goal exists.

4.	 Pop node from stack as current node. By pulling the next object from the stack and
setting it as the current node of interest, we can explore its possibilities.

5.	 Is current node visited? If the current node has not been visited, it hasn’t been
explored yet and can be processed now.

6.	 Mark current node as visited. This step indicates that this node has been visited to
prevent unnecessary repeat processing.

7.	 Is goal reached? This step determines whether the current neighbor contains the
goal that the algorithm is searching for.

8.	 Return path using current node. By referencing the parent of the current node,
then the parent of that node, and so on, the path from the goal to the root is
described. The root node will be a node without a parent.

9.	 Current has next neighbor? If the current node has more possible moves to make
in the maze example, that move can be added to be processed. Otherwise, the
algorithm can jump to step 2, in which the next object in the stack can be
processed if it is not empty. The nature of the LIFO stack allows the algorithm to
process all nodes to a leaf-node depth before backtracking to visit other children
of the root node.

10.	 Sort stack by cost ascending. When the stack is sorted by the cost of each node in
the stack ascending, the lowest-cost node is processed next, allowing the cheapest
node always to be visited.

11.	 Set current node as parent of neighbor. Set the origin node as the parent of the
current neighbor. This step is important for tracing the path from the current
neighbor to the root node. From a map perspective, the origin is the position that
the player moved from, and the current neighbor is the position that the player
moved to.

12.	 Calculate cost for neighbor. The cost function is critical for guiding the A*
algorithm. The cost is calculated by summing the distance from the root node
with the heuristic score for the next move. More-intelligent heuristics will directly
influence the A* algorithm for better performance.

13.	 Add neighbor to stack. The neighbor node is added to the stack for its children to
be explored later. Again, this stacking mechanism allows nodes to be processed to
the utmost depth before processing neighbors at shallow depths.

Similar to depth-first search, the order of child nodes influences the path selected, but
less drastically. If two nodes have the same cost, the first node is visited before the second
(figures 3.8, 3.9, and 3.10).

68	 Chapter 3 I Intelligent search

Figure 3.8 The sequence of tree processing using A* search (part 1)

	 Informed search: Looking for solutions with guidance � 69

Figure 3.9 The sequence of tree processing using A* search (part 2)

Figure 3.10 Nodes visited in the entire tree after A* search

70	 Chapter 3 I Intelligent search

Notice that there are several paths to the goal, but the A* algorithm finds a path to the
goal while minimizing the cost to achieve it, with fewer moves and cheaper move costs
based on north and south moves being more expensive.

Pseudocode

The A* algorithm uses a similar approach to the depth-first search algorithm but inten-
tionally targets nodes that are cheaper to visit. A stack is used to process the nodes, but
the stack is ordered by cost ascending every time a new calculation happens. This order
ensures that the object popped from the stack is always the cheapest, because the cheap-
est is first in the stack after ordering:

The functions for calculating the cost are critical to the operation of A* search. The cost
function provides the information for the algorithm to seek the cheapest path. In our
adjusted maze example, a higher cost is associated with moving up or down. If there is a
problem with the cost function, the algorithm may not work.

The following two functions describe how cost is calculated. The distance from the
root node is added to the cost of the next movement. Based on our hypothetical example,
the cost of moving north or south influences the total cost of visiting that node:

	 Informed search: Looking for solutions with guidance � 71

Uninformed search algorithms such as breadth-first search and depth-first search
explore every possibility exhaustively and result in the optimal solution. A* search is a
good approach when a sensible heuristic can be created to guide the search. It computes
more efficiently than uninformed search algorithms, because it ignores nodes that cost
more than nodes already visited. If the heuristic is flawed, however, and doesn’t make
sense for the problem and context, poor solutions will be found instead of optimal ones.

Use cases for informed search algorithms
Informed search algorithms are versatile and useful for several real-world use cases in
which heuristics can be defined, such as the following:

•	 Path finding for autonomous game characters in video games—Game developers
often use this algorithm to control the movement of enemy units in a game in
which the goal is to find the human player within an environment.

•	 Parsing paragraphs in natural language processing (NLP)—The meaning of a
paragraph can be broken into a composition of phrases, which can be broken
into a composition of words of different types (like nouns and verbs), creating a
tree structure that can be evaluated. Informed search can be useful in extracting
meaning.

•	 Telecommunications network routing—Guided search algorithms can be used to
find the shortest paths for network traffic in telecommunications networks to
improve performance. Servers/network nodes and connections can be
represented as searchable graphs of nodes and edges.

•	 Single-player games and puzzles—Informed search algorithms can be used to
solve single-player games and puzzles such as the Rubik’s Cube, because each
move is a decision in a tree of possibilities until the goal state is found.

72	 Chapter 3 I Intelligent search

Adversarial search: Looking for solutions
in a changing environment
The search example of the maze game involves a single actor: the player. The environ-
ment is affected only by the single player; thus, that player generates all possibilities. The
goal until now was to maximize the benefit for the player: choosing paths to the goal
with the shortest distance and cost.

Adversarial search is characterized by opposition or conflict. Adversarial problems
require us to anticipate, understand, and counteract the actions of the opponent in pur-
suit of a goal. Examples of adversarial problems include two-player turn-based games
such as Tic-Tac-Toe and Connect Four. The players take turns for the opportunity to
change the state of the environment of the game to their favor. A set of rules dictates how
the environment may be changed and what the winning and end states are.

A simple adversarial problem
This section uses the game of Connect Four to explore adversarial problems. Connect
Four (figure 3.11) is a game consisting of a grid in which players take turns dropping
tokens into a specific column. The tokens in a specific column pile up, and any player
who manages to create four adjacent sequences of their tokens—vertically, horizontally,
or diagonally—wins. If the grid is full, with no winner, the game results in a draw.

	 Adversarial search: Looking for solutions in a changing environment � 73

Figure 3.11 The game of Connect Four

74	 Chapter 3 I Intelligent search

Min-max search: Simulate actions and choose the best future
Min-max search aims to build a tree of possible outcomes based on moves that each
player could make and favor paths that are advantageous to the agent while avoiding
paths that are favorable to the opponent. To do so, this type of search simulates possible
moves and scores the state based on a heuristic after making the respective move. Min-
max search attempts to discover as many states in the future as possible; but due to
memory and computation limitations, discovering the entire game tree may not be real-
istic, so it searches to a specified depth. Min-max search simulates the turns taken by
each player, so the depth specified is directly linked to the number of turns between
both players. A depth of 4, for example, means that each player has had 2 turns. Player A
makes a move, player B makes a move, player A makes another move, and Player B
makes another move.

Heuristics
The min-max algorithm uses a heuristic score to make decisions. This score is defined
by a crafted heuristic and is not learned by the algorithm. If we have a specific game
state, every possible valid outcome of a move from that state will be a child node in the
game tree.

Assume that we have a heuristic that provides a score in which positive numbers are
better than negative numbers. By simulating every possible valid move, the min-max
search algorithm tries to minimize making moves where the opponent will have an
advantage or a winning state and maximize making moves that give the agent an advan-
tage or a winning state.

Figure 3.12 illustrates a min-max search tree. In this figure, the leaf nodes are the only
nodes where the heuristic score is calculated, since these states indicate a winner or a
draw. The other nodes in the tree indicate states that are in progress. Starting at the
depth where the heuristic is calculated and moving upward, either the child with the
minimum score or the child with the maximum score is chosen, depending on whose
turn is next in the future simulated states. Starting at the top, the agent attempts to max-
imize its score; and after each alternating turn, the intention changes, because the aim is
to maximize the score for the agent and minimize the score for the opponent.

	 Adversarial search: Looking for solutions in a changing environment � 75

Figure 3.12 The sequence of tree processing using min-max search

76	 Chapter 3 I Intelligent search

EXERCISE: WHAT VALUES WOULD PROPAGATE IN THE FOLLOWING MIN-MAX TREE?

SOLUTION: WHAT VALUES WOULD PROPAGATE IN THE FOLLOWING MIN-MAX TREE?

	 Adversarial search: Looking for solutions in a changing environment � 77

Because the min-max search algorithm simulates possible outcomes, in games that offer
a multitude of choices, the game tree explodes, and it quickly becomes too computation-
ally expensive to explore the entire tree. In the simple example of Connect Four played
on a 5 × 4 block board, the number of possibilities already makes exploring the entire
game tree on every turn inefficient (figure 3.13).

Figure 3.13 The explosion of possibilities while searching the game tree

To use min-max search in the Connect Four example, the algorithm essentially makes
all possible moves from a current game state; then it determines all possible moves from
each of those states until it finds the path that is most favorable. Game states that result
in a win for the agent return a score of 10, and states that result in a win for the opponent
return a score of -10. Min-max search tries to maximize the positive score for the agent
(figures 3.14 and 3.15).

Figure 3.14 Scoring for the agent versus scoring for the opponent

78	 Chapter 3 I Intelligent search

Figure 3.15 Flow for the min-max search algorithm

Although the flow chart for the min-max search algorithm looks complex due to its size,
it really isn’t. The number of conditions that check whether the current state is to maxi-
mize or minimize causes the chart to bloat.

Let’s walk through the flow of the min-max search algorithm:

1.	 Given a game state, whether the current mode is minimization or maximization,
and a current depth, the algorithm can start. It is important to understand
the inputs for the algorithm, as the min-max search algorithm is recursive. A
recursive algorithm calls itself in one or more of its steps. It is important
for a recursive algorithm to have an exit condition to prevent it from calling
itself forever.

	 Adversarial search: Looking for solutions in a changing environment � 79

2.	 Is current an end state or depth is 0? This condition determines whether the
current state of the game is a terminal state or whether the desired depth has been
reached. A terminal state is one in which one of the players has won or the game
is a draw. A score of 10 represents a win for the agent, and a score of -10
represents a win for the opponent, and a score of 0 indicates a draw. A depth is
specified, because traversing the entire tree of possibilities to all end states is
computationally expensive and will likely take too long on the average computer.
By specifying a depth, the algorithm can look a few turns into the future to
determine whether a terminal state exists.

3.	 Return the current score and last move. The score for the current state is returned
if the current state is a terminal game state or if the specified depth has been
reached.

4.	 Is current mode MAX? If the current iteration of the algorithm is in the maximize
state, it tries to maximize the score for the agent.

5.	 Set best known score as +∞. If the current mode is to minimize the score, the best
score is set to positive infinity, because we know that the scores returned by the
game states will always be less. In actual implementation, a really large number is
used rather than infinity.

6.	 Set best known score as -∞. If the current mode is to maximize the score, the best
score is set to negative infinity, because we know that the scores returned by the
game states will always be more. In actual implementation, a really large negative
number is used rather than infinity.

7.	 Get all possible moves, given current game state. This step specifies a list of possible
moves that can be made, given the current game state. As the game progresses,
not all moves available at the start may be available anymore. In the Connect Four
example, a column may be filled; therefore, a move selecting that column is
invalid.

8.	 Has next valid move? If any possible moves have not been simulated yet and there
are no more valid moves to make, the algorithm short-circuits to returning the
best move in that instance of the function call.

9.	 Copy current game state as game_n. A copy of the current game state is required to
perform simulations of possible future moves on it.

10.	 Simulate by applying move to game state game_n. This step applies the current
move of interest to the copied game state.

11.	 Set best_n as the result of running this algorithm recursively. Here’s where recursion
comes into play. best_n is a variable used to store the next best move, and we’re
making the algorithm explore future possibilities from this move.

80	 Chapter 3 I Intelligent search

12.	 If current mode is MAX? When the recursive call returns a best candidate, this
condition determines whether the current mode is to maximize the score.

13.	 Is best_n less than known best? This step determines whether the algorithm has
found a better score than one previously found if the mode is to maximize the
score.

14.	 Is best_n greater than known best? This step determines whether the algorithm has
found a better score than one previously found if the mode is to minimize the
score.

15.	 Set known best as best_n. If the new best score is found, set the known best as that
score.

Given the Connect Four example at a specific state, the min-max search algorithm gen-
erates the tree shown in figure 3.16. From the start state, every possible move is explored.
Then each move from that state is explored until a terminal state is found—either the
board is full or a player has won.

Figure 3.16 A representation of the possible states in a Connect Four game

The highlighted nodes in figure 3.17 are terminal state nodes in which draws are scored
as 0, losses are scored as -10, and wins are scored as 10. Because the algorithm aims to
maximize its score, a positive number is required, whereas opponent wins are scored
with a negative number.

	 Adversarial search: Looking for solutions in a changing environment � 81

Figure 3.17 The possible end states in a Connect Four game

When these scores are known, the min-max algorithm starts at the lowest depth and
chooses the node whose score is the minimum value (figure 3.18).

Figure 3.18 The possible scores for end states in a Connect Four game (part 1)

Then, at the next depth, the algorithm chooses the node whose score is the maximum
value (figure 3.19).

82	 Chapter 3 I Intelligent search

Figure 3.19 The possible scores for end states in a Connect Four game (part 2)

Finally, at the next depth, nodes whose score is the minimum are chosen, and the root
node chooses the maximum of the options. By following the nodes and score selected
and intuitively applying ourselves to the problem, we see that the algorithm selects a path
to a draw to avoid a loss. If the algorithm selects the path to the win, there is a high
likelihood of a loss in the next turn. The algorithm assumes that the opponent will
always make the smartest move to maximize their chance of winning (figure 3.20).

Figure 3.20 The possible scores for end states in a Connect Four game (part 3)

	 Adversarial search: Looking for solutions in a changing environment � 83

The simplified tree in figure 3.21 represents the outcome of the min-max search algo-
rithm for the given game state example.

Figure 3.21 Simplified game tree with min-max scoring

Pseudocode

The min-max search algorithm is implemented to be a recursive function. The function
is provided with the current state, desired depth to search, minimization or maximiza-
tion mode, and last move. The algorithm terminates by returning the best move and
score for every child at every depth in the tree. Comparing the code with the flow chart
in figure 3.15, we notice that the tedious conditions of checking whether the current
mode is maximizing or minimizing are not as apparent. In the pseudocode, 1 or -1 rep-
resents the intention to maximize or minimize, respectively. By using some clever logic,
the best score, conditions, and switching states can be done via the principle of negative
multiplication, in which a negative number multiplied by another negative number
results in a positive. So if -1 indicates the opponent’s turn, multiplying it by -1 results in
1, which indicates the agent’s turn. Then, for the next turn, 1 multiplied by -1 results
in -1 to indicate the opponent’s turn again:

84	 Chapter 3 I Intelligent search

Alpha-beta pruning: Optimize by exploring the sensible paths only
Alpha-beta pruning is a technique used with the min-max search algorithm to short-cir-
cuit exploring areas of the game tree that are known to produce poor solutions. This
technique optimizes the min-max search algorithm to save computation, because insig-
nificant paths are ignored. Because we know how the Connect Four example game tree
explodes, we clearly see that ignoring more paths will improve performance significantly
(figure 3.22).

	 Adversarial search: Looking for solutions in a changing environment � 85

Figure 3.22 An example of alpha-beta pruning

The alpha-beta pruning algorithm works by storing the best score for the maximizing
player and the best score for the minimizing player as alpha and beta, respectively.
Initially, alpha is set as -∞, and beta is set as ∞—the worst score for each player. If the
best score of the minimizing player is less than the best score of the maximizing
player, it is logical that other child paths of the nodes already visited would not affect the
best score.

Figure 3.23 illustrates the changes made in the min-max search flow to accommodate
the optimization of alpha-beta pruning. The highlighted blocks are the additional steps
in the min-max search algorithm flow.

86	 Chapter 3 I Intelligent search

Figure 3.23 Flow for the min-max search algorithm with alpha-beta pruning

	 Adversarial search: Looking for solutions in a changing environment � 87

The following steps are additions to the min-max search algorithm. These conditions
allow termination of exploration of paths when the best score found will not change the
outcome:

16.	 Is current mode MAX? Again, determine whether the algorithm is currently
attempting to maximize or minimize the score.

17.	 Is best_n greater than or equal to alpha? If the current mode is to maximize the
score and the current best score is greater than or equal to alpha, no better scores
are contained in that node’s children, allowing the algorithm to ignore that node.

18.	 Set alpha as best_n. Set the variable alpha as best_n.

19.	 Is alpha greater than or equal to beta? The score is as good as other scores found,
and the rest of the exploration of that node can be ignored by breaking.

20.	 Is best_n less than or equal to beta? If the current mode is to minimize the score
and the current best score is less than or equal to beta, no better scores are
contained in that node’s children, allowing the algorithm to ignore that node.

21.	 Set beta as best_n. Set the variable beta as best_n.

22.	 Is alpha greater than or equal to beta? The score is as good as other scores found,
and the rest of the exploration of that node can be ignored by breaking.

Pseudocode

The pseudocode for achieving alpha-beta pruning is largely the same as the code for
min-max search, with the addition of keeping track of the alpha and beta values and
maintaining those values as the tree is traversed. Note that when minimum(min) is
selected the variable min_or_max is -1, and when maximum(max) is selected, the vari-
able min_or_max is 1:

88	 Chapter 3 I Intelligent search

Use cases for adversarial search algorithms
Informed search algorithms are versatile and useful in real-world use cases such as the
following:

•	 Creating game-playing agents for turn-based games with perfect information—In
some games, two or more players act on the same environment. There have been
successful implementations of chess, checkers, and other classic games. Games
with perfect information are games that do not have hidden information or
random chance involved.

•	 Creating game-playing agents for turn-based games with imperfect information—
Unknown future options exist in these games, including games like poker and
Scrabble.

	 Adversarial search: Looking for solutions in a changing environment � 89

•	 Adversarial search and ant colony optimization (ACO) for route optimization—
Adversarial search is used in combination with the ACO algorithm (discussed in
chapter 6) to optimize package-delivery routes in cities.

SUMMARY OF INTELLIGENT SEARCH

91

What is evolution?
When we look at the world around us, we sometimes wonder how every-
thing we see and interact with came to be. One way to explain this is the
theory of evolution. The theory of evolution suggests that the living organ-
isms that we see today did not suddenly exist that way, but evolved through
millions of years of subtle changes, with each generation adapting to its
environment. This implies that the physical and cognitive characteristics of
each living organism are a result of best fitting to its environment for sur-
vival. Evolution suggests that organisms evolve through reproduction by
producing children of mixed genes from their parents. Given the fitness of

This chapter covers

•	 The inspiration for evolutionary algorithms

•	 Solving problems with evolutionary algorithms

•	 Understanding the life cycle of a genetic algorithm

•	 Designing and developing a genetic algorithm to solve

optimization problems

4Evolutionary
algorithms

92	 Chapter 4 I Evolutionary algorithms

these individuals in their environment, stronger individuals have a higher likelihood of
survival.

We often make the mistake of thinking that evolution is a linear process, with clear
changes in successors. In reality, evolution is far more chaotic, with divergence in a spe-
cies. A multitude of variants of a species are created through reproduction and mixing of
genes. Noticeable differences in a species could take thousands of years to manifest and
be realized only by comparing the average individual in each of those time points.
Figure 4.1 depicts actual evolution versus the commonly mistaken version of the evolu-
tion of humans.

Figure 4.1 The idea of linear human evolution vs. actual human evolution

Charles Darwin proposed a theory of evolution that centers on natural selection. Natural
selection is the concept that stronger members of a population are more likely to survive
due to being more fit for their environment, which means they reproduce more and,
thus, carry traits that are beneficial to survival to future generations—that could poten-
tially perform better than their ancestors.

A classic example of evolution for adaption is the peppered moth. The peppered moth
was originally light in color, which made for good camouflage against predators as the
moth could blend in with light-colored surfaces in its environment. Only around 2% of
the moth population was darker in color. After the Industrial Revolution, around 95%
of the species were of the darker color variant. One explanation is that the lighter-colored
moths could not blend in with as many surfaces anymore because pollution had dark-
ened surfaces; thus lighter-colored moths were eaten more by predators because those
moths were more visible. The darker moths had a greater advantage in blending in with

	 What is evolution?� 93

the darker surfaces, so they survived longer and reproduced more, and their genetic
information was more widely spread to successors.

Among the peppered moths, the attribute that changed on a high level was the color
of the moth. This property didn’t just magically switch, however. For the change to hap-
pen, genes in moths with the darker color had to be carried to successors.

In other examples of natural evolution, we may see dramatic changes in more than
simply color between different individuals, but in actuality, these changes are influenced
by lower-level genetic differences over many generations (figure 4.2).

Figure 4.2 The evolution of the peppered moth

Evolution encompasses the idea that in a population of a species, pairs of organisms
reproduce. The offspring are a combination of the parent’s genes, but small changes are
made in that offspring through a process called mutation. Then the offspring become
part of the population. Not all members of a population live on, however. As we know,
disease, injury, and other factors cause individuals to die. Individuals that are more
adaptive to the environment around them are more likely to live on, a situation that gave
rise to the term survival of the fittest. Based on Darwinian evolution theory, a population
has the following attributes:

•	 Variety—Individuals in the population have different genetic traits.

•	 Hereditary—A child inherits genetic properties from its parents.

•	 Selection—A mechanism that measures the fitness of individuals. Stronger
individuals have the highest likelihood of survival (survival of the fittest).

These properties imply that the following things happen during the process of evolution
(figure 4.3):

94	 Chapter 4 I Evolutionary algorithms

•	 Reproduction—Usually, two individuals in the population reproduce to create
offspring.

•	 Crossover and mutation—The offspring created through reproduction contain a
mix of their parents’ genes and have slight random changes in their genetic code.

Figure 4.3 A simple example of reproduction and mutation

In summary, evolution is a marvelous and chaotic system that produces variations of life
forms, some of which are better than others for specific things in specific environments.
This theory also applies to evolutionary algorithms; learnings from biological evolution
are harnessed for finding optimal solutions to practical problems by generating diverse
solutions and converging on better-performing ones over many generations.

This chapter and chapter 5 are dedicated to exploring evolutionary algorithms, which
are powerful but underrated approaches to solving hard problems. Evolutionary algo-
rithms can be used in isolation or in conjunction with constructs such as neural net-
works. Having a solid grasp of this concept opens many possibilities for solving different
novel problems.

	 Problems applicable to evolutionary algorithms� 95

Problems applicable to
evolutionary algorithms
Evolutionary algorithms aren’t applicable to solving all problems, but they are powerful
for solving optimization problems in which the solution consists of a large number of
permutations or choices. These problems typically consist of many valid solutions, with
some being more optimal than others.

Consider the Knapsack Problem, a classic problem used in computer science to explore
how algorithms work and how efficient they are. In the Knapsack Problem, a knapsack
has a specific maximum weight that it can hold. Several items are available to be stored
in the knapsack, and each item has a different weight and value. The goal is to fit as many
items into the knapsack as possible so that the total value is maximized and the total
weight does not exceed the knapsack’s limit. The physical size and dimensions of the
items are ignored in the simplest variation of the problem (figure 4.4).

Figure 4.4 A simple Knapsack Problem example

96	 Chapter 4 I Evolutionary algorithms

As a trivial example, given the specification of the problem in table 4.1, a knapsack can
hold a total weight capacity of 9 kg, and it could contain any of the eight items of varying
weight and value.

Table 4.1  Knapsack weight capacity: 9 kg

Item ID Item name Weight (kg) Value ($)

1 Pearls 3 4

2 Gold 7 7

3 Crown 4 5

4 Coin 1 1

5 Axe 5 4

6 Sword 4 3

7 Ring 2 5

8 Cup 3 1

This problem has 255 possible solutions, including the following (figure 4.5):

•	 Solution 1—Include Item 1, Item 4, and Item 6. The total weight is 8 kg, and the
total value is $8.

•	 Solution 2—Include Item 1, Item 3, and Item 7. The total weight is 9 kg, and the
total value is $14.

•	 Solution 3—Include Item 2, Item 3, and Item 6. The total weight is 15 kg, which
exceeds the knapsack’s capacity.

Figure 4.5 The optimal solution for the simple Knapsack Problem example

	 Problems applicable to evolutionary algorithms � 97

Clearly, the solution with the most value is Solution 2. Don’t concern yourself too much
about how the number of possibilities is calculated, but understand that the possibilities
explode as the number of potential items increases.

Although this trivial example can be solved by hand, the Knapsack Problem could
have varying weight constraints, a varying number of items, and varying weights and
values for each item, making it impossible to solve by hand as the variables grow larger.
It will also be computationally expensive to try to brute-force every combination of
items when the variables grow; thus, we look for algorithms that are efficient at finding
a desirable solution.

Note that we qualify the best solution we can find as a desirable solution rather than
the optimal solution. Although some algorithms attempt to find the one true optimal
solution to the Knapsack Problem, an evolutionary algorithm attempts to find the opti-
mal solution but is not guaranteed to find it. The algorithm will find a solution that is
acceptable for the use case, however—a subjective opinion of what an acceptable solu-
tion is, based on the problem. For a mission-critical health system, for example, a
“good enough” solution may not cut it; but for a song-recommender system, it may be
acceptable.

Now consider the larger dataset (yes, a giant knapsack) in table 4.2, in which the num-
ber of items and varying weights and values makes the problem difficult to solve by
hand. By understanding the complexity of this dataset, you can easily see why many
computer science algorithms are measured by their performance in solving such prob-
lems. Performance is defined as how well a specific solution solves a problem, not neces-
sarily computational performance. In the Knapsack Problem, a solution that yields a
higher total value would be better-performing. Evolutionary algorithms provide one
method of finding solutions to the Knapsack Problem.

98	 Chapter 4 I Evolutionary algorithms

Table 4.2  Knapsack capacity: 6,404,180 kg

Item ID Item name Weight (kg) Value ($)

1 Axe 32,252 68,674

2 Bronze coin 225,790 471,010

3 Crown 468,164 944,620

4 Diamond statue 489,494 962,094

5 Emerald belt 35,384 78,344

6 Fossil 265,590 579,152

7 Gold coin 497,911 902,698

8 Helmet 800,493 1,686,515

9 Ink 823,576 1,688,691

10 Jewel box 552,202 1,056,157

11 Knife 323,618 677,562

12 Long sword 382,846 833,132

13 Mask 44,676 99,192

14 Necklace 169,738 376,418

15 Opal badge 610,876 1,253,986

16 Pearls 854,190 1,853,562

17 Quiver 671,123 1,320,297

18 Ruby ring 698,180 1,301,637

19 Silver bracelet 446,517 859,835

20 Timepiece 909,620 1,677,534

21 Uniform 904,818 1,910,501

22 Venom potion 730,061 1,528,646

23 Wool scarf 931,932 1,827,477

24 Crossbow 952,360 2,068,204

25 Yesteryear book 926,023 1,746,556

26 Zinc cup 978,724 2,100,851

One way to solve this problem is to use a brute-force approach. This approach involves
calculating every possible combination of items and determining the value of each com-
bination that satisfies the knapsack’s weight constraint until the best solution is
encountered.

Figure 4.6 shows some benchmark analytics for the brute-force approach. Note that
the computation is based on the hardware of an average personal computer.

	 Genetic algorithm: Life cycle� 99

Figure 4.6 Performance analytics of brute-forcing the Knapsack Problem

Keep the Knapsack Problem in mind, as it will be used throughout this chapter as we
attempt to understand, design, and develop a genetic algorithm to find acceptable solu-
tions to this problem.

NOTE  A note about the term performance: From the perspective of an indi-
vidual solution, performance is how well the solution solves the problem.
From the perspective of the algorithm, performance may be how well a spe-
cific configuration does in finding a solution. Finally, performance may mean
computational cycles. Bear in mind that this term is used differently based on
the context.

The thinking behind using a genetic algorithm to solve the Knapsack Problem can be
applied to a range of practical problems. If a logistics company wants to optimize the
packing of trucks based on their destinations, for example, a genetic algorithm would be
useful. If that same company wanted to find the shortest route between several destina-
tions, a genetic algorithm would be useful as well. If a factory refined items into raw
material via a conveyor-belt system, and the order of the items influenced productivity,
a genetic algorithm would be useful in determining that order.

When we dive into the thinking, approach, and life cycle of the genetic algorithm, it
should become clear where this powerful algorithm can be applied, and perhaps you will
think of other uses in your work. It is important to keep in mind that a genetic algorithm
is stochastic, which means that the output of the algorithm is likely to be different each
time it is run.

Genetic algorithm: Life cycle
The genetic algorithm is a specific algorithm in the family of evolutionary algorithms.
Each algorithm works on the same premise of evolution but has small tweaks in the dif-
ferent parts of the life cycle to cater to different problems. We explore some of these
parameters in chapter 5.

100	 Chapter 4 I Evolutionary algorithms

Genetic algorithms are used to evaluate large search spaces for a good solution. It is
important to note that a genetic algorithm is not guaranteed to find the absolute best
solution; it attempts to find the global best while avoiding local best solutions.

A global best is the best possible solution, and a local best is a solution that is
less optimal. Figure 4.7 represents the possible best solutions if the solution must be
minimized—that is, the smaller the value, the better. If the goal was to maximize a solu-
tion, the larger the value, the better. Optimization algorithms like genetic algorithms
aim to incrementally find local best solutions in search of the global best solution.

Figure 4.7 Local best vs. global best

Careful attention is needed when configuring the parameters of the algorithm so that it
strives for diversity in solutions at the start and gradually gravitates toward better solu-
tions through each generation. At the start, potential solutions should vary widely in
individual genetic attributes. Without divergence at the start, the risk of getting stuck
in a local best increases (figure 4.8).

	 Genetic algorithm: Life cycle� 101

Figure 4.8 Diversity to convergence

The configuration for a genetic algorithm is based on the problem space. Each problem
has a unique context and a different domain in which data is represented, and solutions
are evaluated differently.

The general life cycle of a genetic algorithm is as follows:

•	 Creating a population—Creating a random population of potential solutions.

•	 Measuring the fitness of individuals in the population—Determining how good a
specific solution is. This task is accomplished by using a fitness function that
scores solutions to determine how good they are.

•	 Selecting parents based on their fitness—Selecting pairs of parents that will
reproduce offspring.

•	 Reproducing individuals from parents—Creating offspring from their parents by
mixing genetic information and applying slight mutations to the offspring.

•	 Populating the next generation—Selecting individuals and offspring from the
population that will survive to the next generation.

Several steps are involved in implementing a genetic algorithm. These steps encompass
the stages of the algorithm life cycle (figure 4.9).

102	 Chapter 4 I Evolutionary algorithms

Figure 4.9 Genetic algorithm life cycle

With the Knapsack Problem in mind, how would we use a genetic algorithm to find
solutions to the problem? The next section dives into the process.

Encoding the solution spaces
When we use a genetic algorithm, it is paramount to do the encoding step correctly,
which requires careful design of the representation of possible states. The state is a data
structure with specific rules that represents possible solutions to a problem. Furthermore,
a collection of states forms a population (figure 4.10).

	 Encoding the solution spaces� 103

Figure 4.10 Encode the solution.

1. The first step in the genetic
algorithm lifecycle is encoding the
solution space.

Terminology
With respect to evolutionary algorithms, an individual candidate solution is called
a chromosome. A chromosome is made up of genes. The gene is the logical type for
the unit, and the allele is the actual value stored in that unit. A genotype is a repre-
sentation of a solution, and a phenotype is a unique solution itself. Each chromo-
some always has the same number of genes. A collection of chromosomes forms a
population (figure 4.11).

104	 Chapter 4 I Evolutionary algorithms

Figure 4.11 Terminology of the data structures representing a population of solutions

In the Knapsack Problem, several items can be placed in the knapsack. A simple way to
describe a possible solution that contains some items but not others is binary encod-
ing (figure 4.12). Binary encoding represents excluded items with 0s and included items
with 1s. If the value at gene index 3 is 1, for example, that item is marked to be included.
The complete binary string is always the same size: the number of items available for
selection. Several alternative encoding schemes exist, however, and are described in
chapter 5.

	 Encoding the solution spaces� 105

Figure 4.12 Binary-encoding the Knapsack Problem

106	 Chapter 4 I Evolutionary algorithms

Binary encoding: Representing possible solutions with zeros and ones
Binary encoding represents a gene in terms of 0 or 1, so a chromosome is represented by
a string of binary bits. Binary encoding can be used in versatile ways to express the pres-
ence of a specific element or even encoding numeric values as binary numbers. The
advantage of binary encoding is that it is usually more performant due to the use of
primitive types. Using binary encoding places less demand on working memory, and
depending on the language used, binary operations are computationally faster. But crit-
ical thought must be used to ensure that the encoding makes sense for the respective
problem and represents potential solutions well; otherwise, the algorithm may perform
poorly (figure 4.13).

Figure 4.13 Binary-encoding the larger dataset for the Knapsack Problem

Given the Knapsack Problem with a dataset that consists of 26 items of varying weight
and value, a binary string can be used to represent the inclusion of each item. The result
is a 26-character string in which for each index, 0 means that the respective item is
excluded and 1 means that the respective item is included.

Other encoding schemes—including real-value encoding, order encoding, and tree
encoding—are discussed in chapter 5.

	 Encoding the solution spaces� 107

EXERCISE: WHAT IS A POSSIBLE ENCODING FOR THE FOLLOWING PROBLEM?

SOLUTION: WHAT IS A POSSIBLE ENCODING FOR THE FOLLOWING PROBLEM?

Because the number of possible words is always the same, and the words are
always in the same position, binary encoding can be used to describe which
words are included and which are excluded. The chromosome consists of 9
genes, each gene indicating a word in the phrase.

108	 Chapter 4 I Evolutionary algorithms

Creating a population of solutions
In the beginning, the population was created. The first step in a genetic algorithm is
initializing random potential solutions to the problem at hand. In the process of initial-
izing the population, although the chromosomes are generated randomly, the con-
straints of the problem must be taken into consideration, and the potential solutions
should be valid or assigned a terrible fitness score if they violate the constraints. Each
individual in the population may not solve the problem well, but the solution is valid. As
mentioned in the earlier example of packing items into a knapsack, a solution that spec-
ifies packing the same item more than once should be an invalid solution and should not
form part of the population of potential solutions (figure 4.14).

Figure 4.14 Create an initial population.

Given how the Knapsack Problem’s solution state is represented, this implementation
randomly decides whether each item should be included in the bag. That said, only solu-
tions that satisfy the weight-limit constraint should be considered. The problem with
simply moving from left to right and randomly choosing whether the item is included is
that it creates a bias toward the items on the left end of the chromosome. Similarly, if we
start from the right, we will be biased toward items on the right. One possible way to get

3. The next concrete step in the genetic
algorithm lifecycle is creating an initial
population.

Generate some possible solutions!

Setting the algorithm parameters does
happen before this step, but we will get
to this a bit later once a general
understanding of the life cycle has been
established.

	 Creating a population of solutions� 109

around this is to generate an entire individual with random genes and then determine
whether the solution is valid and does not violate any constraints. Assigning a terrible
score to invalid solutions can solve this problem (figure 4.15).

Figure 4.15 An example of a population of solutions

Pseudocode

To generate an initial population of possible solutions, an empty array is created to hold
the individuals. Then, for each individual in the population, an empty array is created to
hold the genes of the individual. Each gene is randomly set to 1 or 0, indicating whether
the item at that gene index is included:

110	 Chapter 4 I Evolutionary algorithms

Measuring fitness of individuals
in a population
When a population has been created, the fitness of each individual in the population
needs to be determined. Fitness defines how well a solution performs. The fitness func-
tion is critical to the life cycle of a genetic algorithm. If the fitness of the individuals is
measured incorrectly or in a way that does not attempt to strive for the optimal solution,
the selection process for parents of new individuals and new generations will be influ-
enced; the algorithm will be flawed and cannot strive to find the best possible solution.

Fitness functions are similar to the heuristics that we explored in chapter 3. They are
guidelines for finding good solutions (figure 4.16).

Figure 4.16 Measure the fitness of individuals.

In our example, the solution attempts to maximize the value of the items in the knapsack
while respecting the weight-limit constraints. The fitness function measures the total
value of the items in the knapsack for each individual. The result is that individuals with
higher total values are more fit. Note that an invalid individual appears in figure 4.17, to
highlight that its fitness score would result in 0—a terrible score, because it exceeds the
weight capacity for this instance of the problem, which is 6,404,180.

4. The next step is measuring the fitness
of individuals in the population.

Which solutions are performing well?

	 Measuring fitness of individuals in a population � 111

Figure 4.17 Measuring the fitness of individuals

Depending on the problem being solved, the result of the fitness function may be
required to be minimized or maximized. In the Knapsack Problem, the contents of the
knapsack can be maximized within constraints, or the empty space in the knapsack
could be minimized. The approach depends on the interpretation of the problem.

Pseudocode

To calculate the fitness of an individual in the Knapsack Problem, the sums of the values
of each item that the respective individual includes must be determined. This task is
accomplished by setting the total value to 0 and then iterating over each gene to deter-
mine whether the item it represents is included. If the item is included, the value of the
item represented by that gene is added to the total value. Similarly, the total weight is
calculated to ensure that the solution is valid. The concepts of calculating fitness and
checking constraints can be split for clearer separation of concerns:

112	 Chapter 4 I Evolutionary algorithms

Selecting parents based on their fitness
The next step in a genetic algorithm is selecting parents that will produce new individu-
als. In Darwinian theory, the individuals that are more fit have a higher likelihood of
reproduction than others because they typically live longer. Furthermore, these individ-
uals contain desirable attributes for inheritance due to their superior performance in
their environment. That said, some individuals are likely to reproduce even if they are
not the fittest in the entire group, and these individuals may contain strong traits even
though they are not strong in their entirety.

Each individual has a calculated fitness that is used to determine the probability of it
being selected to be a parent to a new individual. This attribute makes the genetic algo-
rithm stochastic in nature (figure 4.18).

	 Selecting parents based on their fitness� 113

Figure 4.18 Select parents.

A popular technique in choosing parents based on their fitness is roulette-wheel selec-
tion. This strategy gives different individuals portions of a wheel based on their fitness.
The wheel is “spun,” and an individual is selected. Higher fitness gives an individual a
larger slice of the wheel. This process is repeated until the desired number of parents is
reached.

By calculating the probabilities of 16 individuals of varying fitness, the wheel allocates
a slice to each. Because many individuals perform similarly, there are many slices of
similar size (figure 4.19).

5. The next step is selecting parents that
will reproduce new individuals.

Who will be the lucky candidates that
will spread their genes?

114	 Chapter 4 I Evolutionary algorithms

Figure 4.19 Determining the probability of selection for each individual

The number of parents selected to be used for reproducing new offspring is determined
by the intended total number of offspring required, which is determined by the desired
population size for each generation. Two parents are selected, and offspring are created.
This process repeats with different parents selected (with a chance of the same individu-
als being a parent more than once) until the desired number of offspring have been
generated. Two parents can reproduce a single mixed child or two mixed children. This
concept will be made clearer later in this chapter. In our Knapsack Problem example, the
individuals with greater fitness are those that fill the bag with the most combined value
while respecting the weight-limit constraint.

Population models are ways to control the diversity of the population. Steady state
and generational are two population models that have their own advantages and
disadvantages.

Steady state: Replacing a portion of the population each generation
This high-level approach to population management is not an alternative to the other
selection strategies, but a scheme that uses them. The idea is that the majority of the
population is retained, and a small group of weaker individuals are removed and replaced
with new offspring. This process mimics the cycle of life and death, in which weaker

	 Selecting parents based on their fitness� 115

individuals die and new individuals are made through reproduction. If there were 100
individuals in the population, a portion of the population would be existing individuals,
and a smaller portion would be new individuals created via reproduction. There may be
80 individuals from the current generation and 20 new individuals.

Generational: Replacing the entire population each generation
This high-level approach to population management is similar to the steady-state model
but is not an alternative to selection strategies. The generational model creates a number
of offspring individuals equal to the population size and replaces the entire population
with the new offspring. If there were 100 individuals in the population, each generation
would result in 100 new individuals via reproduction. Steady state and generational are
overarching ideas for designing the configuration of the algorithm.

Roulette wheel: Selecting parents and surviving individuals
Chromosomes with higher fitness scores are more likely to be selected, but chromo-
somes with lower fitness scores still have a small chance of being selected. The term
roulette-wheel selection comes from a roulette wheel at a casino, which is divided into
slices. Typically, the wheel is spun, and a marble is released into the wheel. The selected
slice is the one that the marble lands on when the wheel stops turning.

In this analogy, chromosomes are assigned to slices of the wheel. Chromosomes with
higher fitness scores have larger slices of the wheel, and chromosomes with lower fitness
scores have smaller slices. A chromosome is selected randomly, much as a ball randomly
lands on a slice.

This analogy is an example of probabilistic selection. Each individual has a chance of
being selected, whether that chance is small or high. The chance of selection of individ-
uals influences the diversity of the population and convergence rates mentioned earlier
in this chapter. Figure 4.19, also earlier in this chapter, illustrates this concept.

Pseudocode

First, the probability of selection for each individual needs to be determined. This prob-
ability is calculated for each individual by dividing its fitness by the total fitness of the
population. Roulette-wheel selection can be used. The “wheel” is “spun” until the desired
number of individuals have been selected. For each selection, a random decimal number
between 0 and 1 is calculated. If an individual’s fitness is within that probability, it is
selected. Other probabilistic approaches may be used to determine the probability of
each individual, including standard deviation, in which an individual’s value is com-
pared with the mean value of the group:

116	 Chapter 4 I Evolutionary algorithms

Reproducing individuals from parents
When parents are selected, reproduction needs to happen to create new offspring from
the parents. Generally, two steps are related to creating children from two parents. The
first concept is crossover, which means mixing part of the chromosome of the first parent
with part of the chromosome of the second parent, and vice versa. This process results in
two offspring that contain inversed mixes of their parents. The second concept is muta-
tion, which means randomly changing the offspring slightly to create variation in the
population (figure 4.20).

	 Reproducing individuals from parents� 117

Figure 4.20 Reproduce offspring.

6. The next step is reproducing new
offspring.

How do new candidate solutions get
made up?

Crossover
Crossover involves mixing genes between two individuals to create one or more
offspring individuals. Crossover is inspired by the concept of reproduction. The
offspring individuals are parts of their parents, depending on the crossover strategy
used. The crossover strategy is highly affected by the encoding used.

Single-point crossover: Inheriting one part from each parent
One point in the chromosome structure is selected. Then, by referencing the two parents
in question, the first part of the first parent is used, and the second part of the second par-
ent is used. These two parts combined create a new offspring. A second offspring can be
made by using the first part of the second parent and the second part of the first parent.

Single-point crossover is applicable to binary encoding, order/permutation encod-
ing, and real-value encoding (figure 4.21). These encoding schemes are discussed in
chapter 5.

118	 Chapter 4 I Evolutionary algorithms

Figure 4.21 Single-point crossover

Pseudocode

To create two new offspring individuals, an empty array is created to hold the new indi-
viduals. All genes from index 0 to the desired index of parent A are concatenated with all
genes from the desired index to the end of the chromosome of parent B, creating one
offspring individual. The inverse creates the second offspring individual:

	 Reproducing individuals from parents� 119

Two-point crossover: Inheriting more parts from each parent
Two points in the chromosome structure are selected; then, referencing the two parents
in question, parts are chosen in an alternating manner to make a complete offspring
individual. This process is similar to single-point crossover, discussed earlier. To describe
the process completely, the offspring consist of the first part of the first parent, the sec-
ond part of the second parent, and the third part of the first parent. Think about two-
point crossover as splicing arrays to create new ones. Again, a second individual can be
made by using the inverse parts of each parent. Two-point crossover is applicable to
binary encoding and real-value encoding (figure 4.22).

Figure 4.22 Two-point crossover

Uniform crossover: Inheriting many parts from each parent
Uniform crossover is a step beyond two-point crossover. In uniform crossover, a mask is
created that represents which genes from each parent will be used to generate the child
offspring. The inverse process can be used to make a second offspring. The mask can be
generated randomly each time offspring are created to maximize diversity. Generally
speaking, uniform crossover creates more-diverse individuals because the attributes of
the offspring are quite different compared with any of their parents. Uniform crossover
is applicable to binary encoding and real-value encoding (figure 4.23).

120	 Chapter 4 I Evolutionary algorithms

Figure 4.23 Uniform crossover

Mutation
Mutation involves changing offspring individuals slightly to encourage diversity in
the population. Several approaches to mutation are used based on the nature of the
problem and the encoding method.

One parameter in mutation is the mutation rate—the likelihood that an off-
spring chromosome will be mutated. Similarly to living organisms, some chromo-
somes are mutated more than others; an offspring is not an exact combination of its
parents’ chromosomes but contains minor genetic differences. Mutation can be
critical to encouraging diversity in a population and preventing the algorithm from
getting stuck in local best solutions.

A high mutation rate means that individuals have a high chance of being selected
to be mutated or that genes in the chromosome of an individual have a high chance
of being mutated, depending on the mutation strategy. High mutation means more
diversity, but too much diversity may result in the deterioration of good solutions.

	 Reproducing individuals from parents� 121

EXERCISE: WHAT OUTCOME WOULD UNIFORM CROSSOVER GENERATE
FOR THESE CHROMOSOMES?

SOLUTION: WHAT OUTCOME WOULD UNIFORM CROSSOVER GENERATE
FOR THESE CHROMOSOMES?

Bit-string mutation for binary encoding
In bit-string mutation, a gene in a binary-encoded chromosome is selected randomly
and changed to another valid value (figure 4.24). Other mutation mechanisms are appli-
cable when nonbinary encoding is used. The topic of mutation mechanisms will be
explored in chapter 5.

Figure 4.24 Bit-string mutation

122	 Chapter 4 I Evolutionary algorithms

Pseudocode

To mutate a single gene of an individual’s chromosome, a random gene index is selected.
If that gene represents 1, change it to represent 0, and vice versa:

Flip-bit mutation for binary encoding
In flip-bit mutation, all genes in a binary-encoded chromosome are inverted to the
opposite value. Where there were 1s are 0s, and where there were 0s are 1s. This type of
mutation could degrade good-performing solutions dramatically and usually is used
when diversity needs to be introduced into the population constantly (figure 4.25).

Figure 4.25 Flip-bit mutation

Populating the next generation
When the fitness of the individuals in the population has been measured and offspring
have been reproduced, the next step is selecting which individuals live on to the next
generation. The size of the population is usually fixed, and because more individuals
have been introduced through reproduction, some individuals must die off and be
removed from the population.

It may seem like a good idea to take the top individuals that fit into the popula-
tion size and eliminate the rest. This strategy, however, could create stagnation in the
diversity of individuals if the individuals that survive are similar in genetic makeup
(figure 4.26).

	 Populating the next generation� 123

Figure 4.26 Populate the next generation.

The selection strategies mentioned in this section can be used to determine the individ-
uals that are selected to form part of the population for the next generation.

Exploration vs. exploitation
Running a genetic algorithm always involves striking a balance between exploration and
exploitation. The ideal situation is one in which there is diversity in individuals and the
population as a whole seeks out wildly different potential solutions in the search space;
then stronger local solution spaces are exploited to find the most desirable solution. The
beauty of this situation is that the algorithm explores as much of the search space as
possible while exploiting strong solutions as individuals evolve (figure 4.27).

7. The next step is populating the next
generation.

Which lucky individuals get to live to the
next generation?

124	 Chapter 4 I Evolutionary algorithms

Figure 4.27 Measure the fitness of individuals.

Stopping conditions
Because a genetic algorithm is iterative in finding better solutions through each genera-
tion, a stopping condition needs to be established; otherwise, the algorithm might run
forever. A stopping condition is the condition that is met where the algorithm ends; the
strongest individual of the population at that generation is selected as the best solution.

The simplest stopping condition is a constant—a constant value that indicates the
number of generations for which the algorithm will run. Another approach is to stop
when a certain fitness is achieved. This method is useful when a desired minimum fit-
ness is known but the solution is unknown.

Stagnation is a problem in evolutionary algorithms in which the population yields
solutions of similar strength for several generations. If a population stagnates, the likeli-
hood of generating strong solutions in future generations is low. A stopping condition
could look at the change in the fitness of the best individual in each generation and, if
the fitness changes only marginally, choose to stop the algorithm.

8. The next step is measuring the
performance of the solutions in the
current generation.

How well do these solutions solve the
problem at hand?

	 Populating the next generation� 125

Pseudocode

The various steps of a genetic algorithm are used in a main function that outlines the life
cycle in its entirety. The variable parameters include the population size, the number of
generations for the algorithm to run, and the knapsack capacity for the fitness function,
in addition to the variable crossover position and mutation rate for the crossover and
mutation steps:

As mentioned at the beginning of this chapter, the Knapsack Problem could be solved
using a brute-force approach, which requires more than 60 million combinations to be
generated and analyzed. When comparing genetic algorithms that aim to solve the same
problem, we can see far more efficiency in computation if the parameters for exploration
and exploitation are configured correctly. Remember, in some cases, a genetic algorithm
produces a “good enough” solution that is not necessarily the best possible solution but
is desirable. Again, using a genetic algorithm for a problem depends on the context
(figure 4.28).

126	 Chapter 4 I Evolutionary algorithms

Figure 4.28 Brute-force performance vs. genetic algorithm performance

Configuring the parameters of a
genetic algorithm
In designing and configuring a genetic algorithm, several decisions need to be made that
influence the performance of the algorithm. The performance concerns fall into two
areas: the algorithm should strive to perform well in finding good solutions to the prob-
lem, and the algorithm should perform efficiently from a computation perspective. It
would be pointless to design a genetic algorithm to solve a problem if the solution will be
more computationally expensive than other traditional techniques. The approach used
in encoding, the fitness function used, and the other algorithmic parameters influence
both types of performances in achieving a good solution and computation. Here are
some parameters to consider:

•	 Chromosome encoding—The chromosome encoding method requires thought to
ensure that it is applicable to the problem and that the potential solutions strive for
global maxima. The encoding scheme is at the heart of the success of the algorithm.

•	 Population size—The population size is configurable. A larger population
encourages more diversity in possible solutions. Larger populations, however,
require more computation at each generation. Sometimes, a larger population
balances out the need for mutation, which results in diversity at the start but no
diversity during generations. A valid approach is to start with a smaller
population and grow it based on performance.

•	 Population initialization—Although the individuals in a population are
initialized randomly, ensuring that the solutions are valid is important for
optimizing the computation of the genetic algorithm and initializing individuals
with the right constraints.

•	 Number of offspring—The number of offspring created in each generation can be
configured. Given that after reproduction, part of the population is killed off to

	 Use cases for evolutionary algorithms� 127

ensure that the population size is fixed, more offspring means more diversity, but
there is a risk that good solutions will be killed off to accommodate those
offspring. If the population is dynamic, the population size may change after
every generation, but this approach requires more parameters to configure and
control.

•	 Parent selection method—The selection method used to choose parents can be
configured. The selection method must be based on the problem and the desired
explorability versus exploitability.

•	 Crossover method—The crossover method is associated with the encoding
method used but can be configured to encourage or discourage diversity in the
population. The offspring individuals must still yield a valid solution.

•	 Mutation rate—The mutation rate is another configurable parameter that
induces more diversity in offspring and potential solutions. A higher mutation
rate means more diversity, but too much diversity may deteriorate good-
performing individuals. The mutation rate can change over time to create more
diversity in earlier generations and less in later generations. This result can be
described as exploration at the start followed by exploitation.

•	 Mutation method—The mutation method is similar to the crossover method in
that it is dependent on the encoding method used. An important attribute of the
mutation method is that it must still yield a valid solution after the modification
or assigned a terrible fitness score.

•	 Generation selection methods—Much like the selection method used to choose
parents, a generation selection method must choose the individuals that will
survive the generation. Depending on the selection method used, the algorithm
may converge too quickly and stagnate or explore too long.

•	 Stopping condition—The stopping condition for the algorithm must make sense
based on the problem and desired outcome. Computational complexity and time
are the main concerns for the stopping condition.

Use cases for evolutionary algorithms
Evolutionary algorithms have a wide variety of uses. Some algorithms address isolated
problems; others combine evolutionary algorithms with other techniques to create novel
approaches to solving difficult problems, such as the following:

•	 Predicting investor behavior in the stock market—Consumers who invest make
decisions every day about whether to buy more of a specific stock, hold on to
what they have, or sell stock. Sequences of these actions can be evolved and

128	 Chapter 4 I Evolutionary algorithms

mapped to outcomes of an investor’s portfolio. Financial institutions can use this
insight to proactively provide valuable customer service and guidance.

•	 Feature selection in machine learning—Machine learning is discussed in chapter 8,
but a key aspect of machine learning is: given a number of features about something,
determining what it is classified as. If we’re looking at houses, we may find many
attributes related to houses, such as age, building material, size, color, and location.
But to predict market value, perhaps only age, size, and location matter. A genetic
algorithm can uncover the isolated features that matter the most.

•	 Code breaking and ciphers—A cipher is a message encoded in a certain way to
look like something else and is often used to hide information. If the receiver
does not know how to decipher the message, it cannot be understood.
Evolutionary algorithms can generate many possibilities for changing the
ciphered message to uncover the original message.

Chapter 5 dives into advanced concepts of genetic algorithms that adapt them to differ-
ent problem spaces. We explore different techniques for encoding, crossover, mutation,
and selection, as well as uncover effective alternatives.

	 Use cases for evolutionary algorithms� 129

SUMMARY OF EVOLUTIONARY ALGORITHMS

131

Evolutionary algorithm life cycle
The general life cycle of a genetic algorithm is outlined in chapter 4. In this
chapter, we consider other problems that may be suitable to be solved with
a genetic algorithm, why some of the approaches demonstrated thus far
won’t work, and alternative approaches.

As a reminder, the general life cycle of a genetic algorithm is as follows:

•	 Creating a population—Creating a random population of potential
solutions.

This chapter covers

•	 Considering options for the various steps in the genetic algorithm

life cycle

•	 Adjusting a genetic algorithm to solve varying problems

•	 The advanced parameters for configuring a genetic algorithm life

cycle based on different scenarios, problems, and datasets

NOTE  Chapter 4 is a prerequisite to this chapter.

5Advanced
evolutionary approaches

132	 Chapter 5 I Advanced evolutionary approaches

•	 Measuring fitness of individuals in the population—Determining how good a
specific solution is. This task is accomplished by using a fitness function that
scores solutions to determine how good they are.

•	 Selecting parents based on their fitness—Selecting pairs of parents that will
reproduce offspring.

•	 Reproducing individuals from parents—Creating offspring from their parents by
mixing genetic information and applying slight mutations to the offspring.

•	 Populating the next generation—Selecting individuals and offspring from the
population that will survive to the next generation.

Keep the life cycle flow (depicted in figure 5.1) in mind as we work through this
chapter.

Figure 5.1 Genetic algorithm life cycle

This chapter starts by exploring alternative selection strategies; these individual
approaches can be generically swapped in and out for any genetic algorithm. Then it
follows three scenarios that are tweaks of the Knapsack Problem (chapter 4) to highlight
the utility of the alternative encoding, crossover, and mutation approaches (figure 5.2).

	 Alternative selection strategies� 133

Figure 5.2 The example Knapsack Problem

Alternative selection strategies
In chapter 4, we explored one selection strategy: roulette-wheel selection, which is one of
the simplest methods for selecting individuals. The following three selection strategies
help mitigate the problems of roulette-wheel selection; each has advantages and disad-
vantages that affect the diversity of the population, which ultimately affects whether an
optimal solution is found.

Rank selection: Even the playing field
One problem with roulette-wheel selection is the vast differences in the magnitude of
fitness between chromosomes. This heavily biases the selection toward choosing indi-
viduals with high fitness scores or giving poor-performing individuals a larger chance of
selection than desired. This problem affects the diversity of the population. More diver-
sity means more exploration of the search space, but it can also make finding optimal
solutions take too many generations.

134	 Chapter 5 I Advanced evolutionary approaches

Rank selection aims to solve this problem by ranking individuals based on their fit-
ness and then using each individual’s rank as the value for calculating the size of its slice
on the wheel. In the Knapsack Problem, this value is a number between 1 and 16, because
we’re choosing among 16 individuals. Although strong individuals are more likely to be
selected and weaker ones are less likely to be selected even though they are average, each
individual has a fairer chance of being selected based on rank rather than exact fitness.
When 16 individuals are ranked, the wheel looks slightly different from roulette-wheel
selection (figure 5.3).

Figure 5.3 Example of rank selection

Figure 5.4 compares roulette-wheel selection and rank selection. It is clear that rank
selection gives better-performing solutions a better chance of selection.

	 Alternative selection strategies� 135

Figure 5.4 Roulette-wheel selection vs. rank selection

Tournament selection: Let them fight
Tournament selection plays chromosomes against one other. Tournament selection ran-
domly chooses a set number of individuals from the population and places them in a
group. This process is performed for a predetermined number of groups. The individual
with the highest fitness score in each respective group is selected. The larger the group,
the less diverse it is, because only one individual from each group is selected. As with
rank selection, the actual fitness score of each individual is not the key factor in selecting
individuals globally.

When 16 individuals are allocated to four groups, selecting only 1 individual from
each group results in the choice of 4 of the strongest individuals from those groups. Then
the 4 winning individuals can be paired to reproduce (figure 5.5).

136	 Chapter 5 I Advanced evolutionary approaches

Figure 5.5 Example of tournament selection

Elitism selection: Choose only the best
The elitism approach selects the best individuals in the population. Elitism is useful for
retaining strong-performing individuals and eliminating the risk that they will be lost
through other selection methods. The disadvantage of elitism is that the population can
fall into a local best solution space and never be diverse enough to find global bests.

Elitism is often used in conjunction with roulette-wheel selection, rank selection, and
tournament selection. The idea is that several elite individuals are selected to reproduce,
and the rest of the population is filled with individuals by means of one of the other
selection strategies (figure 5.6).

	 Real-value encoding: Working with real numbers� 137

Figure 5.6 Example of elitism selection

Chapter 4 explores a problem in which including items in or excluding items from
the knapsack was important. A variety of problem spaces require a different encoding
because binary encoding won’t make sense. The following three sections describe these
scenarios.

Real-value encoding:
Working with real numbers
Consider that the Knapsack Problem has changed slightly. The problem remains choos-
ing the most valuable items to fill the weight capacity of the knapsack. But the choice
involves more than one unit of each item. As shown in table 5.1, the weights and values
remain the same as the original dataset, but a quantity of each item is included. With this
slight adjustment, a plethora of new solutions are possible, and one or more of those
solutions may be more optimal, because a specific item can be selected more than once.
Binary encoding is a poor choice in this scenario. Real-value encoding is better suited to
representing the state of potential solutions.

138	 Chapter 5 I Advanced evolutionary approaches

Table 5.1  Knapsack capacity: 6,404,180 kg

Item ID Item name Weight (kg) Value ($) Quantity

1 Axe 32,252 68,674 19

2 Bronze coin 225,790 471,010 14

3 Crown 468,164 944,620 2

4 Diamond statue 489,494 962,094 9

5 Emerald belt 35,384 78,344 11

6 Fossil 265,590 579,152 6

7 Gold coin 497,911 902,698 4

8 Helmet 800,493 1,686,515 10

9 Ink 823,576 1,688,691 7

10 Jewel box 552,202 1,056,157 3

11 Knife 323,618 677,562 5

12 Long sword 382,846 833,132 13

13 Mask 44,676 99,192 15

14 Necklace 169,738 376,418 8

15 Opal badge 610,876 1,253,986 4

16 Pearls 854,190 1,853,562 9

17 Quiver 671,123 1,320,297 12

18 Ruby ring 698,180 1,301,637 17

19 Silver bracelet 446,517 859,835 16

20 Timepiece 909,620 1,677,534 7

21 Uniform 904,818 1,910,501 6

22 Venom potion 730,061 1,528,646 9

23 Wool scarf 931,932 1,827,477 3

24 Crossbow 952,360 2,068,204 1

25 Yesteryear book 926,023 1,746,556 7

26 Zinc cup 978,724 2,100,851 2

Real-value encoding at its core
Real-value encoding represents a gene in terms of numeric values, strings, or symbols,
and expresses potential solutions in the natural state respective to the problem. This
encoding is used when potential solutions contain continuous values that cannot be
encoded easily with binary encoding. As an example, because more than one item is
available to be carried in the knapsack, each item index cannot indicate only whether the
item is included; it must indicate the quantity of that item in the knapsack (figure 5.7).

	 Real-value encoding: Working with real numbers � 139

Figure 5.7 Example of real-value encoding

Because the encoding scheme has been changed, new crossover and mutation options
become available. The crossover approaches discussed for binary encoding are still valid
options to real-value encoding, but mutation should be approached differently.

Arithmetic crossover: Reproduce with math
Arithmetic crossover involves an arithmetic operation to be computed by using each par-
ent as variables in the expression. The result of applying an arithmetic operation using
both parents is the new offspring. When we use this strategy with binary encoding, it is
important to ensure that the result of the operation is still a valid chromosome. Arithmetic
crossover is applicable to binary encoding and real-value encoding (figure 5.8).

NOTE  Be wary: this approach can create very diverse offspring, which can be
problematic.

Figure 5.8 Example of arithmetic crossover

140	 Chapter 5 I Advanced evolutionary approaches

Boundary mutation
In boundary mutation, a gene randomly selected from a real-value encoded chromo-
some is set randomly to a lower bound value or upper bound value. Given 26 genes in a
chromosome, a random index is selected, and the value is set to either a minimum value
or a maximum value. In figure 5.9, the original value happens to be 0 and will be adjusted
to 6, which is the maximum for that item. The minimum and maximum can be the
same for all indexes or set uniquely for each index if knowledge of the problem informs
the decision. This approach attempts to evaluate the impact of individual genes on the
chromosome.

Figure 5.9 Example of boundary mutation

Arithmetic mutation
In arithmetic mutation, a randomly selected gene in a real-value-encoded chromosome
is changed by adding or subtracting a small number. Note that although the example in
figure 5.10 includes whole numbers, the numbers could be decimal numbers, including
fractions.

	 Order encoding: Working with sequences� 141

Figure 5.10 Example of arithmetic mutation

Order encoding: Working with sequences
We still have the same items as in the Knapsack Problem. We won’t be determining the
items that will fit into a knapsack; instead, all the items need to be processed in a refinery
in which each item is broken down to extract its source material. Perhaps the gold coin,
silver bracelet, and other items are smelted to extract only the source compounds. In this
scenario, items are not selected to be included, but all are included.

To make things interesting, the refinery requires a steady rate of extraction, given the
extraction time and the value of the item. It’s assumed that the value of the refined mate-
rial is more or less the same as the value of the item. The problem becomes an ordering
problem. In what order should the items be processed to maintain a constant rate of
value? Table 5.2 describes the items with their respective extraction times.

142	 Chapter 5 I Advanced evolutionary approaches

Table 5.2  Factory value per hour: 600,000

Item ID Item name Weight (kg) Value ($) Extraction time

1 Axe 32,252 68,674 60

2 Bronze coin 225,790 471,010 30

3 Crown 468,164 944,620 45

4 Diamond statue 489,494 962,094 90

5 Emerald belt 35,384 78,344 70

6 Fossil 265,590 579,152 20

7 Gold coin 497,911 902,698 15

8 Helmet 800,493 1,686,515 20

9 Ink 823,576 1,688,691 10

10 Jewel box 552,202 1,056,157 40

11 Knife 323,618 677,562 15

12 Long sword 382,846 833,132 60

13 Mask 44,676 99,192 10

14 Necklace 169,738 376,418 20

15 Opal badge 610,876 1,253,986 60

16 Pearls 854,190 1,853,562 25

17 Quiver 671,123 1,320,297 30

18 Ruby ring 698,180 1,301,637 70

19 Silver bracelet 446,517 859,835 50

20 Timepiece 909,620 1,677,534 45

21 Uniform 904,818 1,910,501 5

22 Venom potion 730,061 1,528,646 5

23 Wool scarf 931,932 1,827,477 5

24 Crossbow 952,360 2,068,204 25

25 Yesteryear book 926,023 1,746,556 5

26 Zinc cup 978,724 2,100,851 10

Importance of the fitness function
With the change in the Knapsack Problem to the Refinery Problem, a key difference is
the measurement of successful solutions. Because the factory requires a constant mini-
mum rate of value per hour, the accuracy of the fitness function used becomes para-
mount to finding optimal solutions. In the Knapsack Problem, the fitness of a solution
is trivial to compute, as it involves only two things: ensuring that the knapsack’s weight

	 Order encoding: Working with sequences� 143

limit is respected and summing the selected items’ value. In the Refinery Problem, the
fitness function must calculate the rate of value provided, given the extraction time for
each item as well as the value of each item. This calculation is more complex, and an
error in the logic of this fitness function directly influences the quality of solutions.

Order encoding at its core
Order encoding, also known as permutation encoding, represents a chromosome as a
sequence of elements. Order encoding usually requires all elements to be present in the
chromosome, which implies that corrections might need to be made when performing
crossover and mutation to ensure that no elements are missing or duplicated. Figure 5.11
depicts how a chromosome represents the order of processing of the available items.

Figure 5.11 Example of order encoding

Another example in which order encoding is sensible is representing potential solutions
to route optimization problems. Given a certain number of destinations, each of which
must be visited at least once while minimizing the total distance traveled, the route can
be represented as a string of the destinations in the order in which they are visited. We
will use this example when covering swarm intelligence in chapter 6.

Order mutation: Order/permutation encoding
In order mutation, two randomly selected genes in an order-encoded chromosome swap
positions, ensuring that all items remain in the chromosome while introducing diversity
(figure 5.12).

144	 Chapter 5 I Advanced evolutionary approaches

Figure 5.12 Example of order mutation

Tree encoding: Working with hierarchies
The preceding sections show that binary encoding is useful for selecting items from a set,
real-value encoding is useful when real numbers are important to the solution, and order
encoding is useful for determining priority and sequences. Suppose that the items in the
Knapsack Problem are placed in packages to be shipped to homes around the town. Each
delivery wagon can hold a specific volume. The requirement is to determine the optimal
positioning of packages to minimize empty space in each wagon (table 5.3).

	 Tree encoding: Working with hierarchies� 145

Table 5.3  Wagon capacity: 1000 wide ×× 1000 high

Item ID Item name Weight (kg) Value ($) W H

1 Axe 32,252 68,674 20 60

2 Bronze coin 225,790 471,010 10 10

3 Crown 468,164 944,620 20 20

4 Diamond
statue

489,494 962,094 30 70

5 Emerald belt 35,384 78,344 30 20

6 Fossil 265,590 579,152 15 15

7 Gold coin 497,911 902,698 10 10

8 Helmet 800,493 1,686,515 40 50

9 Ink 823,576 1,688,691 5 10

10 Jewel box 552,202 1,056,157 40 30

11 Knife 323,618 677,562 10 30

12 Long sword 382,846 833,132 15 50

13 Mask 44,676 99,192 20 30

14 Necklace 169,738 376,418 15 20

15 Opal badge 610,876 1,253,986 5 5

16 Pearls 854,190 1,853,562 10 5

17 Quiver 671,123 1,320,297 30 70

18 Ruby ring 698,180 1,301,637 5 10

19 Silver
bracelet

446,517 859,835 10 20

20 Timepiece 909,620 1,677,534 15 20

21 Uniform 904,818 1,910,501 30 40

22 Venom
potion

730,061 1,528,646 15 15

23 Wool scarf 931,932 1,827,477 20 30

24 Crossbow 952,360 2,068,204 50 70

25 Yesteryear
book

926,023 1,746,556 25 30

26 Zinc cup 978,724 2,100,851 15 25

In the interest of simplicity, suppose that the wagon’s volume is a two-dimensional rect-
angle and that the packages are rectangular rather than 3D boxes.

146	 Chapter 5 I Advanced evolutionary approaches

Tree encoding at its core
Tree encoding represents a chromosome as a tree of elements. Tree encoding is versatile
for representing potential solutions in which the hierarchy of elements is important
and/or required. Tree encoding can even represent functions, which consist of a tree of
expressions. As a result, tree encoding could be used to evolve program functions in
which the function solves a specific problem; the solution may work but look bizarre.

Here is an example in which tree encoding makes sense. We have a wagon with a spe-
cific height and width, and a certain number of packages must fit in the wagon. The goal
is to fit the packages in the wagon so that empty space is minimized. A tree-encoding
approach would work well in representing potential solutions to this problem.

In figure 5.13, the root node, node A, represents the packing of the wagon from top to
bottom. Node B represents all packages horizontally, similarly to node C and node D.
Node E represents packages packed vertically in its slice of the wagon.

Figure 5.13 Example of a tree used to represent the Wagon Packing Problem

Tree crossover: Inheriting portions of a tree
Tree crossover is similar to single-point crossover (chapter 4) in that a single point in the
tree structure is selected and then the parts are exchanged and combined with copies of
the parent individuals to create an offspring individual. The inverse process can be used
to make a second offspring. The resulting children must be verified to be valid solutions
that obey the constraints of the problem. More than one point can be used for crossover
if using multiple points makes sense in solving the problem (figure 5.14).

	 Tree encoding: Working with hierarchies� 147

Figure 5.14 Example of tree crossover

Change node mutation: Changing the value of a node
In change node mutation, a randomly selected node in a tree-encoded chromosome is
changed to a randomly selected valid object for that node. Given a tree representing an
organization of items, we can change an item to another valid item (figure 5.15).

148	 Chapter 5 I Advanced evolutionary approaches

Figure 5.15 Change node mutation in a tree

This chapter and chapter 4 cover several encoding schemes, crossover schemes, and
selection strategies. You could substitute your own approaches for these steps in your
genetic algorithms if doing so makes sense for the problem you’re solving.

Common types of evolutionary algorithms
This chapter focuses on the life cycle and alternative approaches for a genetic algorithm.
Variations of the algorithm can be useful for solving different problems. Now that we
have a grounding in how a genetic algorithm works, we’ll look at these variations and
possible use cases for them.

Genetic programming
Genetic programming follows a process similar to that of genetic algorithms but is used
primarily to generate computer programs to solve problems. The process described in the
previous section also applies here. The fitness of potential solutions in a genetic program-
ming algorithm is how well the generated program solves a computational problem. With

	 Glossary of evolutionary algorithm terms� 149

this in mind, we see that the tree-encoding method would work well here, because most
computer programs are graphs consisting of nodes that indicate operations and processes.
These trees of logic can be evolved, so the computer program will be evolved to solve a
specific problem. One thing to note: these computer programs usually evolve to look like
a mess of code that’s difficult for people to understand and debug.

Evolutionary programming
Evolutionary programming is similar to genetic programming, but the potential solu-
tion is parameters for a predefined fixed computer program, not a generated computer
program. If a program requires finely tuned inputs, and determining a good combina-
tion of inputs is difficult, a genetic algorithm can be used to evolve these inputs. The
fitness of potential solutions in an evolutionary programming algorithm is determined
by how well the fixed computer program performs based on the parameters encoded in
an individual. Perhaps an evolutionary programming approach could be used to find
good parameters for an artificial neural network (chapter 9).

Glossary of evolutionary algorithm terms
Here is a useful glossary of evolutionary algorithms terms for future research and
learning:

•	 Allele—The value of a specific gene in a chromosome

•	 Chromosome—A collection of genes that represents a possible solution

•	 Individual—A single chromosome in a population

•	 Population—A collection of individuals

•	 Genotype—The artificial representation of the potential solution population in
the computation space

•	 Phenotype—The actual representation of the potential solution population in the
real world

•	 Generation—A single iteration of the algorithm

•	 Exploration—The process of finding a variety of possible solutions, some of
which may be good and some of which may be bad

•	 Exploitation—The process of honing in on good solutions and iteratively
refining them

•	 Fitness function—A particular type of objective function

•	 Objective function—A function that attempts to maximize or minimize

150	 Chapter 5 I Advanced evolutionary approaches

More use cases for evolutionary algorithms
Some of the use cases for evolutionary algorithms are listed in chapter 4, but many more
exist. The following use cases are particularly interesting because they use one or more
of the concepts discussed in this chapter:

•	 Adjusting weights in artificial neural networks—Artificial neural networks are
discussed later, in chapter 9, but a key concept is adjusting weights in the network
to learn patterns and relationships in data. Several mathematical techniques
adjust weights, but evolutionary algorithms are more efficient alternatives in the
right scenarios.

•	 Electronic circuit design—Electronic circuits with the same components can be
designed in many configurations. Some configurations are more efficient than
others. If two components that work together often are closer together, this
configuration may improve efficiency. Evolutionary algorithms can be used to
evolve different circuit configurations to find the most optimal design.

•	 Molecular structure simulation and design—As in electronic circuit design,
different molecules behave differently and have their own advantages and
disadvantages. Evolutionary algorithms can be used to generate different
molecular structures to be simulated and studied to determine their behavioral
properties.

Now that we’ve been through the general genetic algorithm life cycle in chapter 4 and
some advanced approaches in this chapter, you should be equipped to apply evolutionary
algorithms in your contexts and solutions.

	 More use cases for evolutionary algorithms� 151

SUMMARY OF ADVANCED EVOLUTIONARY APPROACHES

153

What is swarm intelligence?
Swarm intelligence algorithms are a subset of evolutionary algorithms that
were discussed in chapter 5 and are also known as nature-inspired algo-
rithms. As with the theory of evolution, the observation of the behavior of
life forms in nature is the inspiration for the concepts behind swarm intel-
ligence. When we observe the world around us, we see many life forms that
are seemingly primitive and unintelligent as individuals, yet exhibit intelli-
gent emergent behavior when acting in groups.

An example of these life forms is ants. A single ant can carry 10 to 50
times its own body weight and run 700 times its body length per minute.

This chapter covers

•	 Seeing and understanding what inspired swarm intelligence

algorithms

•	 Solving problems with swarm intelligence algorithms

•	 Designing and implementing an ant colony optimization

algorithm

6Swarm intelligence:
Ants

154	 Chapter 6 I Swarm intelligence: Ants

These are impressive qualities; however, when acting in a group, that single ant can
accomplish much more. In a group, ants are able to build colonies; find and retrieve
food; and even warn other ants, show recognition to other ants, and use peer pressure
to influence others in the colony. They achieve these tasks by means of pheromones—
essentially, perfumes that ants drop wherever they go. Other ants can sense these per-
fumes and change their behavior based on them. Ants have access to between 10 and 20
types of pheromones that can be used to communicate different intentions. Because
individual ants use pheromones to indicate their intentions and needs, we can observe
emergent intelligent behavior in groups of ants.

Figure 6.1 shows an example of ants working as a team to create a bridge between two
points to enable other ants to carry out tasks. These tasks may be to retrieve food or
materials for their colony.

Figure 6.1 A group of ants working together to cross a chasm

An experiment based on real-life harvesting ants showed that they always converged to
the shortest path between the nest and the food source. Figure 6.2 depicts the difference
in the colony movement from the start to when ants have walked their paths and
increased the pheromone intensity on those paths. This outcome was observed in a clas-
sical asymmetric bridge experiment with real ants. Notice that the ants converge to the
shortest path after just eight minutes.

	 What is swarm intelligence?� 155

Figure 6.2 Asymmetric bridge experiment

Ant colony optimization (ACO) algorithms simulate the emergent behavior shown in
this experiment. In the case of finding the shortest path, the algorithm converges to a
similar state, as observed with real ants.

Swarm intelligence algorithms are useful for solving optimization problems when
several constraints need to be met in a specific problem space and an absolute best solu-
tion is difficult to find due to a vast number of possible solutions—some better and
some worse. These problems represent the same class of problems that genetic algorithms
aim to solve; the choice of algorithm depends on how the problem can be represented
and reasoned about. We dive into the technicalities of optimization problems in particle
swarm optimization in chapter 7. Swarm intelligence is useful in several real-world con-
texts, some of which are represented in figure 6.3.

156	 Chapter 6 I Swarm intelligence: Ants

Figure 6.3 Problems addressed by swarm optimization

Given the general understanding of swarm intelligence in ants, the following sections
explore specific implementations that are inspired by these concepts. The ant colony
optimization algorithm is inspired by the behavior of ants moving between destinations,
dropping pheromones, and acting on pheromones that they come across. The emergent
behavior is ants converging to paths of least resistance.

Problems applicable to
ant colony optimization
Imagine that we are visiting a carnival that has many attractions to experience. Each
attraction is located in a different area, with varying distances between attractions.
Because we don’t feel like wasting time walking too much, we will attempt to find the
shortest paths between all the attractions.

Figure 6.4 illustrates the attractions at a small carnival and the distances between
them. Notice that taking different paths to the attractions involves different total lengths
of travel.

	 Problems applicable to ant colony optimization � 157

Figure 6.4 Carnival attractions and paths between them

The figure shows six attractions to visit, with 15 paths between them. This example
should look familiar. This problem is represented by a fully connected graph, as described
in chapter 2. The attractions are vertices or nodes, and the paths between attractions are
edges. The following formula is used to calculate the number of edges in a fully con-
nected graph. As the number of attractions gets larger, the number of edges explodes:

Attractions have different distances between them. Figure 6.5 depicts the distance on each
path between every attraction; it also shows a possible path between all attractions. Note that
the lines in figure 6.5 showing the distances between the attractions are not drawn to scale.

Figure 6.5 Distances between attractions and a possible path

158	 Chapter 6 I Swarm intelligence: Ants

If we spend some time analyzing the distances between all the attractions, we will find
that figure 6.6 shows an optimal path between all the attractions. We visit the attractions
in this sequence: swings, Ferris wheel, circus, carousel, balloons, and bumper cars.

Figure 6.6 Distances between attractions and an optimal path

The small dataset with six attractions is trivial to solve by hand, but if we increase the
number of attractions to 15, the number of possibilities explodes (figure 6.7). Suppose
that the attractions are servers, and the paths are network connections. Smart algorithms
are needed to solve these problems.

Figure 6.7 A larger dataset of attractions and paths between them

	 Problems applicable to ant colony optimization � 159

EXERCISE: FIND THE SHORTEST PATH IN THIS CARNIVAL CONFIGURATION BY HAND

SOLUTION: FIND THE SHORTEST PATH IN THIS CARNIVAL CONFIGURATION BY HAND

One way to solve this problem computationally is to attempt a brute-force approach:
every combination of tours (a tour is a sequence of visits in which every attraction is
visited once) of the attractions is generated and evaluated until the shortest total dis-
tance is found. Again, this solution may seem to be a reasonable solution, but in a large
dataset, this computation is expensive and time-consuming. A brute-force approach
with 48 attractions runs for tens of hours before finding an optimal solution.

160	 Chapter 6 I Swarm intelligence: Ants

Representing state: What do paths
and ants look like?
Given the Carnival Problem, we need to represent the data of the problem in a way that
is suitable to be processed by the ant colony optimization algorithm. Because we have
several attractions and all the distances between them, we can use a distance matrix to
represent the problem space accurately and simply.

A distance matrix is a 2D array in which every index represents an entity; the related
set is the distance between that entity and another entity. Similarly, each index in the list
denotes a unique entity. This matrix is similar to the adjacency matrix that we dived into
in chapter 2 (figure 6.8 and table 6.1).

Figure 6.8 An example of the Carnival Problem

	 Representing state: What do paths and ants look like? � 161

Table 6.1  Distances between attractions

Circus Balloons
Bumper

cars Carousel Swings
Ferris
wheel

Circus 0 8 7 4 6 4

Balloon 8 0 5 7 11 5

Bumper
cars

7 5 0 9 6 7

Carousel 4 7 9 0 5 6

Swings 6 11 6 5 0 3

Ferris
wheel

4 5 7 6 3 0

Pseudocode

The distances between attractions can be represented as a distance matrix, an array of
arrays in which a reference to x, y in the array references the distance between attractions
x and y. Notice that the distance between the same attraction will be 0 because it’s in the
same position. This array can also be created programmatically by iterating through
data from a file and creating each element:

The next element to represent is the ants. Ants move to different attractions and leave
pheromones behind. Ants also make a judgment about which attraction to visit next.
Finally, ants have knowledge about their respective total distance traveled. Here are the
basic properties of an ant (figure 6.9):

•	 Memory—In the ACO algorithm, this is the list of attractions already visited.

•	 Best fitness—This is the shortest total distance traveled across all attractions.

•	 Action—Choose the next destination to visit, and drop pheromones along the way.

162	 Chapter 6 I Swarm intelligence: Ants

Figure 6.9 Properties of an ant

Pseudocode

Although the abstract concept of an ant entails memory, best fitness, and action, specific
data and functions are required to solve the Carnival Problem. To encapsulate the logic
for an ant, we can use a class. When an instance of the ant class is initialized, an empty
array is initialized to represent a list of attractions that the ant will visit. Furthermore, a
random attraction will be selected to be the starting point for that specific ant:

The ant class also contains several functions used for ant movement. The visit_*
functions are used to determine to which attraction the ant moves to next. The visit_
attraction function generates a random chance of visiting a random attraction. In
this case, visit_random_attraction is called; otherwise, roulette_wheel_
selection is used with a calculated list of probabilities. More details are coming up in
the next section:

	 Representing state: What do paths and ants look like? � 163

Last, the get_distance_traveled function is used to calculate the total distance
traveled by a specific ant, using its list of visited attractions. This distance must be min-
imized to find the shortest path and is used as the fitness for the ants:

The final data structure to design is the concept of pheromone trails. Similarly to the
distances between attractions, pheromone intensity on each path can be represented as
a distance matrix, but instead of containing distances, the matrix contains pheromone
intensities. In figure 6.10, thicker lines indicate more-intense pheromone trails. Table 6.2
describes the pheromone trails between attractions.

Figure 6.10 Example pheromone intensity on paths

164	 Chapter 6 I Swarm intelligence: Ants

Table 6.2  Pheromone intensity between attractions

Circus Balloons
Bumper

cars Carousel Swings
Ferris
wheel

Circus 0 2 0 8 6 8

Balloon 2 0 10 8 2 2

Bumper
cars

2 10 0 0 2 2

Carousel 8 8 2 0 2 2

Swings 6 2 2 2 0 10

Ferris
wheel

8 2 2 2 10 0

The ant colony optimization
algorithm life cycle
Now that we understand the data structures required, we can dive into the workings of
the ant colony optimization algorithm. The approach in designing an ant colony optimi-
zation algorithm is based on the problem space being addressed. Each problem has a
unique context and a different domain in which data is represented, but the principles
remain the same.

That said, let’s look into how an ant colony optimization algorithm can be configured
to solve the Carnival Problem. The general life cycle of such an algorithm is as follows:

•	 Initialize the pheromone trails. Create the concept of pheromone trails between
attractions, and initialize their intensity values.

•	 Set up the population of ants. Create a population of ants in which each ant starts
at a different attraction.

•	 Choose the next visit for each ant. Choose the next attraction to visit for each ant
until each ant has visited all attractions once.

•	 Update the pheromone trails. Update the intensity of pheromone trails based on
the ants’ movements on them, as well as factor in evaporation of pheromones.

•	 Update the best solution. Update the best solution, given the total distance
covered by each ant.

•	 Determine the stopping criteria. The process of ants visiting attractions repeats for
several iterations. One iteration is every ant visiting all attractions once. The
stopping criterion determines the total number of iterations to run. More
iterations allow ants to make better decisions based on the pheromone trails.

	 The ant colony optimization algorithm life cycle � 165

Figure 6.11 describes the general life cycle of the ant colony optimization algorithm.

Figure 6.11 The ant colony optimization algorithm life cycle

Initialize the pheromone trails
The first step in the ant colony optimization algorithm is to initialize the pheromone
trails. Because no ants have walked on the paths between attractions yet, the pheromone
trails will be initialized to 1. When we set all pheromone trails to 1, no trail has any
advantage over the others. The important aspect is defining a reliable data structure to
contain the pheromone trails, which we look at next (figure 6.12).

166	 Chapter 6 I Swarm intelligence: Ants

Figure 6.12 Set up the pheromones.

This concept can be applied to other problems in which instead of distances between
locations, the pheromone intensity is defined by another heuristic.

1. Trivial but important:
make sure the pheromone
intensity is set to 1.

	 The ant colony optimization algorithm life cycle � 167

In figure 6.13, the heuristic is the distance between two destinations.

Figure 6.13 Initialization of pheromones

Pseudocode

Similarly to the attraction distances, the pheromone trails can be represented by a dis-
tance matrix, but referencing x, y in this array provides the pheromone intensity on the
path between attractions x and y. The initial pheromone intensity on every path is ini-
tialized to 1. Values for all paths should initialize with the same number to prevent
biasing any paths from the start:

168	 Chapter 6 I Swarm intelligence: Ants

Set up the population of ants
The next step of the ACO algorithm is creating a population of ants that will move
between the attractions and leave pheromone trails between them (figure 6.14).

Figure 6.14 Set up the population of ants.

Ants will start at randomly assigned attractions (figure 6.15)—at a random point in a
potential sequence because the ant colony optimization algorithm can be applied to
problems in which actual distance doesn’t exist. After touring all the destinations, ants
are set to their respective starting points.

2. Ants are assigned to
start at randomly
selected destinations.

	 The ant colony optimization algorithm life cycle � 169

Figure 6.15 Ants start at random attractions.

We can adapt this principle to a different problem. In a task-scheduling problem, each
ant starts at a different task.

Pseudocode

Setting up the colony of ants includes initializing several ants and appending them to a
list where they can be referenced later. Remember that the initialization function of the
ant class chooses a random attraction to start at:

170	 Chapter 6 I Swarm intelligence: Ants

Choose the next visit for each ant
Ants need to select the next attraction to visit. They visit new attractions until they have
visited all attractions once, which is called a tour. Ants choose the next destination based
on two factors (figure 6.16):

•	 Pheromone intensities—The pheromone intensity on all available paths

•	 Heuristic value—A result from a defined heuristic for all available paths, which is
the distance of the path between attractions in the carnival example

Figure 6.16 Choose the next visit for each ant.

Ants will not travel to destinations they have already visited. If an ant has already visited
the bumper cars, it will not travel to that attraction again in the current tour.

The stochastic nature of ants
The ant colony optimization algorithm has an element of randomness. The intention is
to allow ants the possibility of exploring less-optimal immediate paths, which might
result in a better overall tour distance.

First, an ant has a random probability of deciding to choose a random destination. We
could generate a random number between 0 and 1, and if the result is 0.1 or less, the ant

3. Ants each decide on
the next destination
to visit based on the
pheromone trails and
a heuristic.

	 The ant colony optimization algorithm life cycle � 171

will decide to choose a random destination; this is a 10% chance of choosing a ran-
dom destination. If an ant decides that it will choose a random destination, it needs to
randomly select a destination to visit, which is a random selection between all available
destinations.

Selecting destination based on a heuristic
When an ant faces the decision of choosing the next destination that is not random, it
determines the pheromone intensity on that path and the heuristic value by using the
following formula:

After it applies this function to every possible path toward its respective destination, the
ant selects the destination with the best overall value to travel to. Figure 6.17 illustrates
the possible paths from the circus with their respective distances and pheromone
intensities.

Figure 6.17 Example of possible paths from the circus

Let’s work through the formula to demystify the calculations that are happening and
how the results affect decision-making (figure 6.18).

172	 Chapter 6 I Swarm intelligence: Ants

Figure 6.18 The pheromone influence and heuristic influence of the formula

The variables alpha (a) and beta (b) are used to give greater weight to either the phero-
mone influence or the heuristic influence. These variables can be adjusted to balance the
ant’s judgment between making a move based on what it knows versus pheromone trails,
which represent what the colony knows about that path. These parameters are defined
up front and are usually not adjusted while the algorithm runs.

The following example works through each path starting at the circus and calculates
the probabilities of moving to each respective attraction.

•	 a (alpha) is set to 1.

•	 b (beta) is set to 2.

Because b is greater than a, the heuristic influence is favored in this example.
Let’s work through an example of the calculations used to determine the probability

of choosing a specific path (figure 6.19).

Figure 6.19 Probability calculations for paths

	 The ant colony optimization algorithm life cycle � 173

After applying this calculation, given all the available destinations, the ant is left with the
options shown in figure 6.20.

Figure 6.20 The final probability of each attraction being selected

Remember that only the available paths are considered; these paths have not been
explored yet. Figure 6.21 illustrates the possible paths from the circus, excluding the
Ferris wheel, because it’s been visited already. Figure 6.22 shows probability calculations
for paths.

Figure 6.21 Example of possible paths from the circus, excluding visited attractions

174	 Chapter 6 I Swarm intelligence: Ants

Figure 6.22 Probability calculations for paths

The ant’s decision now looks like figure 6.23.

Figure 6.23 The final probability of each attraction being selected

	 The ant colony optimization algorithm life cycle � 175

Pseudocode

The pseudocode for calculating the probabilities of visiting the possible attractions is
closely aligned with the mathematical functions that we have worked through. Some
interesting aspects of this implementation include:

•	 Determining the available attractions to visit—Because the ant would have visited
several attractions, it should not return to those attractions. The possible_
attractions array stores this value by removing visited_attractions
from the complete list of attractions: all_attractions.

•	 Using three variables to store the outcome of the probability calculations—
possible_indexes stores the attraction indexes; possible_
probabilities stores the probabilities for the respective index; and total_
probabilities stores the sum of all probabilities, which should equal 1 when
the function is complete. These three data structures could be represented by a
class for a cleaner code convention.

176	 Chapter 6 I Swarm intelligence: Ants

We meet roulette-wheel selection again. The roulette-wheel selection function takes the
possible probabilities and attraction indexes as input. It generates a list of slices, each of
which includes the index of the attraction in element 0, the start of the slice in index 1,
and the end of the slice in index 2. All slices contain a start and end between 0 and 1. A
random number between 0 and 1 is generated, and the slices that it falls into is selected
as the winner:

Now that we have probabilities of selecting the different attractions to visit, we will use
roulette-wheel selection.

To recap, roulette-wheel selection (from chapters 3 and 4) gives different possibili-
ties portions of a wheel based on their fitness. Then the wheel is “spun,” and an individ-
ual is selected. A higher fitness gives an individual a larger slice of the wheel, as shown in
figure 6.23 earlier in this chapter. The process of choosing attractions and visiting them
continues for every ant until each one has visited all the attractions once.

	 The ant colony optimization algorithm life cycle � 177

EXERCISE: DETERMINE THE PROBABILITIES OF VISITING THE ATTRACTIONS
WITH THE FOLLOWING INFORMATION

SOLUTION: DETERMINE THE PROBABILITIES OF VISITING THE ATTRACTIONS
WITH THE FOLLOWING INFORMATION

178	 Chapter 6 I Swarm intelligence: Ants

Update the pheromone trails
Now that the ants have completed a tour of all the attractions, they have all left pheromones
behind, which changes the pheromone trails between the attractions (figure 6.24).

Figure 6.24 Update the pheromone trails.

Two steps are involved in updating the pheromone trails: evaporation and depositing
new pheromones.

Updating pheromones due to evaporation
The concept of evaporation is also inspired by nature. Over time, the pheromone trails
lose their intensity. Pheromones are updated by multiplying their respective current val-
ues by an evaporation factor—a parameter that can be adjusted to tweak the perfor-
mance of the algorithm in terms of exploration and exploitation. Figure 6.25 illustrates
the updated pheromone trails due to evaporation.

5. After all ants have
completed their
respective tours,
evaporate pheromone
trails, and the update
them given the ants’
movements.

	 The ant colony optimization algorithm life cycle � 179

Figure 6.25 Example of updating pheromone trails for evaporation

Updating pheromones based on ant tours
Pheromones are updated based on the ants that have moved along the paths. If more ants
move on a specific path, there will be more pheromones on that path.

Each ant contributes its fitness value to the pheromones on every path it has
moved on. The effect is that ants with better solutions have a greater influence on the
best paths. Figure 6.26 illustrates the updated pheromone trails based on ant movements
on the paths.

180	 Chapter 6 I Swarm intelligence: Ants

Figure 6.26 Pheromone updates based on ant movements

	 The ant colony optimization algorithm life cycle � 181

EXERCISE: CALCULATE THE PHEROMONE UPDATE GIVEN THE
FOLLOWING SCENARIO

182	 Chapter 6 I Swarm intelligence: Ants

SOLUTION: CALCULATE THE PHEROMONE UPDATE GIVEN THE
FOLLOWING SCENARIO

	 The ant colony optimization algorithm life cycle � 183

Pseudocode

The update_pheromones function applies two important concepts to the phero-
mone trails. First, the current pheromone intensity is evaporated based on the evapora-
tion rate. If the evaporation rate is 0.5, for example, the intensity decreases by half. The
second operation adds pheromones based on ant movements on that path. The amount
of pheromones contributed by each ant is determined by the ant’s fitness, which in this
case is each respective ant’s total distance traveled:

Update the best solution
The best solution is described by the sequence of attraction visits that has the lowest total
distance (figure 6.27).

Figure 6.27 Update the best solution.

6. Looking at all
the ants in the
population, choose
the best solution
from the best ant.

184	 Chapter 6 I Swarm intelligence: Ants

Pseudocode

After an iteration, after every ant has completed a tour (a tour is complete when an ant
visits every attraction), the best ant in the colony must be determined. To make this
determination, we find the ant that has the lowest total distance traveled and set it as the
new best ant in the colony:

Determine the stopping criteria
The algorithm stops after several iterations: conceptually, the number of tours that the
group of ants concludes. Ten iterations means that each ant does 10 tours; each ant would
visit each attraction once and do that 10 times (figure 6.28).

Figure 6.28 Reached stopping condition?

7. The algorithm can’t continue
indefinitely. By creating
stopping criteria, the algorithm
converges to good solutions
without unnecessary iterations.

	 The ant colony optimization algorithm life cycle � 185

The stopping criteria for the ant colony optimization algorithm can differ based on the
domain of the problem being solved. In some cases, realistic limits are known, and when
they’re unknown, the following options are available:

•	 Stop when a predefined number of iterations is reached. In this scenario, we define
a total number of iterations for which the algorithm will always run. If 100
iterations are defined, each ant completes 100 tours before the algorithm
terminates.

•	 Stop when the best solution stagnates. In this scenario, the best solution after
each iteration is compared with the previous best solution. If the solution
doesn’t improve after a defined number of iterations, the algorithm terminates.
If iteration 20 resulted in a solution with fitness 100, and that iteration is
repeated up until iteration 30, it is likely (but not guaranteed) that no better
solution exists.

Pseudocode

The solve function ties everything together and should give you a better idea of the
sequence of operations and the overall life cycle of the algorithm. Notice that the algo-
rithm runs for several defined total iterations. The ant colony is also initialized to its
starting point at the beginning of each iteration, and a new best ant is determined after
each iteration:

We can tweak several parameters to alter the exploration and exploitation of the ant
colony optimization algorithm. These parameters influence how long the algorithm will
take to find a good solution. Some randomness is good for exploring. Balancing the
weighting between heuristics and pheromones influences whether ants attempt a greedy

186	 Chapter 6 I Swarm intelligence: Ants

search (when favoring heuristics) or trust pheromones more. The evaporation rate also
influences this balance. The number of ants and the total number of iterations they have
influences the quality of a solution. When we add more ants and more iterations, more
computation is required. Based on the problem at hand, time to compute may influence
these parameters (figure 6.29):

Figure 6.29 Parameters that can be tweaked in the ant colony optimization algorithm

Now you have insight into how ant colony optimization algorithms work and how they
can be used to solve the Carnival Problem. The following section describes some other
possible use cases. Perhaps these examples may help you find uses for the algorithm in
your work.

	 Use cases for ant colony optimization algorithms� 187

Use cases for ant colony
optimization algorithms
Ant colony optimization algorithms are versatile and useful in several real-world appli-
cations. These applications usually center on complex optimization problems such as the
following:

•	 Route optimization—Routing problems usually include several destinations that
need to be visited with several constraints. In a logistics example, perhaps the
distance between destinations, traffic conditions, types of packages being
delivered, and times of day are important constraints that need to be considered
to optimize the operations of the business. Ant colony optimization algorithms
can be used to address this problem. The problem is similar to the carnival
problem explored in this chapter, but the heuristic function is likely to be more
complex and context specific.

•	 Job scheduling—Job scheduling is present in almost any industry. Nurse shifts are
important to ensure that good health care can be provided. Computational jobs
on servers must be scheduled in an optimal manner to maximize the use of the
hardware without waste. Ant colony optimization algorithms can be used to
solve these problems. Instead of looking at the entities that ants visit as locations,
we see that ants visit tasks in different sequences. The heuristic function includes
constraints and desired rules specific to the context of the jobs being scheduled.
Nurses, for example, need days off to prevent fatigue, and jobs with high
priorities on a server should be favored.

•	 Image processing—The ant colony optimization algorithm can be used for edge
detection in image processing. An image is composed of several adjacent pixels,
and the ants move from pixel to pixel, leaving behind pheromone trails. Ants
drop stronger pheromones based on the pixel colors’ intensity, resulting in
pheromone trails along the edges of objects containing the highest density of
pheromones. This algorithm essentially traces the outline of the image by
performing edge detection. The images may require preprocessing to decolorize
the image to grayscale so that the pixel-color values can be compared
consistently.

188	 Chapter 6 I Swarm intelligence: Ants

SUMMARY OF ANT COLONY OPTIMIZATION

189

What is particle swarm optimization?
Particle swarm optimization is another swarm algorithm. Swarm intelli-
gence relies on emergent behavior of many individuals to solve difficult
problems as a collective. We saw in chapter 6 how ants can find the shortest
paths between destinations through their use of pheromones.

Bird flocks are another ideal example of swarm intelligence in nature.
When a single bird is flying, it might attempt several maneuvers and tech-
niques to preserve energy, such as jumping and gliding through the air or
leveraging wind currents to carry it in the direction in which it intends to
travel. This behavior indicates some primitive level of intelligence in a

This chapter covers

•	 Understanding the inspiration for particle swarm intelligence

algorithms

•	 Understanding and solving optimization problems

•	 Designing and implementing a particle swarm optimization

algorithm

7Swarm intelligence:
Particles

190	 Chapter 7 I Swarm intelligence: Particles

single individual. But birds also have the need to migrate during different seasons. In
winter, there is less availability of insects and other food. Suitable nesting locations also
become scarce. Birds tend to flock to warmer areas to take advantage of better weather
conditions, which improves their likelihood of survival. Migration is usually not a short
trip. It takes thousands of kilometers of movement to arrive at an area with suitable con-
ditions. When birds travel these long distances, they tend to flock. Birds flock because
there is strength in numbers when facing predators; additionally, it saves energy. The
formation that we observe in bird flocks has several advantages. A large, strong bird will
take the lead, and when it flaps its wings, it creates uplift for the birds behind it. These
birds can fly while using significantly less energy. Flocks can change leaders if the direc-
tion changes or if the leader becomes fatigued. When a specific bird moves out of forma-
tion, it experiences more difficulty in flying via air resistance and corrects its movement
to get back into formation. Figure 7.1 illustrates a bird flock formation; you may have
seen something similar.

Figure 7.1 An example bird flock formation

Craig Reynolds developed a simulator program in 1987 to understand the attributes of
emergent behavior in bird flocks and used the following rules to guide the group. These
rules are extracted from observation of bird flocks:

•	 Alignment—An individual should steer in the average heading of its neighbors to
ensure that the group travels in a similar direction.

•	 Cohesion—An individual should move toward the average position of its
neighbors to maintain the formation of the group.

•	 Separation—An individual should avoid crowding or colliding with its neighbors
to ensure that individuals do not collide, disrupting the group.

Additional rules are used in different variants of attempting to simulate swarm behavior.
Figure 7.2 illustrates the behavior of an individual in different scenarios, as well as the
direction in which it is influenced to move to obey the respective rule. Adjusting move-
ment is a balance of these three principles shown in the figure.

	 What is particle swarm optimization?� 191

Figure 7.2 Rules that guide a swarm

Particle swarm optimization involves a group of individuals at different points in the
solution space, all using real-life swarm concepts to find an optimal solution in the
space. This chapter dives into the workings of the particle swarm optimization algo-
rithm and shows how it can be used to solve problems. Imagine a swarm of bees that
spreads out looking for flowers and gradually converges on an area that has the most
density of flowers. As more bees find the flowers, more are attracted to the flowers. At its
core, this example is what particle swarm optimization entails (figure 7.3).

Figure 7.3 A bee swarm converging on its goal

Optimization problems have been mentioned in several chapters. Finding the optimal
path through a maze, determining the optimal items for a knapsack, and finding the
optimal path between attractions in a carnival are examples of optimization problems.
We worked through them without diving into the details behind them. From this chap-
ter on, however, a deeper understanding of optimization problems is important. The
next section works through some of the intuition to be able to spot optimization prob-
lems when they occur.

192	 Chapter 7 I Swarm intelligence: Particles

Optimization problems: A slightly more
technical perspective
Suppose that we have several peppers of different sizes. Usually, small peppers tend to be
spicier than large peppers. If we plot all the peppers on a chart based on size and spici-
ness, it may look like figure 7.4.

Figure 7.4 Pepper spice vs. pepper size

The figure depicts the size of each pepper and how spicy it is. Now, by removing the
imagery of the peppers, plotting the data points, and drawing a possible curve between
them, we are left with figure 7.5. If we had more peppers, we would have more data
points, and the curve would be more accurate.

Figure 7.5 Pepper spice vs. pepper size trend

	 Optimization problems: A slightly more technical perspective� 193

This example could potentially be an optimization problem. If we searched for a mini-
mum from left to right, we would come across several points less than the previous
ones, but in the middle, we encounter one that is higher. Should we stop? If we did, we
would be missing the actual minimum, which is the last data point, known as the global
minimum.

The trend line/curve that is approximated can be represented by a function, such as the
one shown in figure 7.6. This function can be interpreted as the spiciness of the pepper
being equal to the result of this function where the size of the pepper is represented by x.

Figure 7.6 An example function for pepper spice vs. pepper size

Real-world problems typically have thousands of data points, and the minimum output
of the function is not as clear as this example. The search spaces are massive and difficult
to solve by hand.

Notice that we have used only two properties of the pepper to create the data points,
which resulted in a simple curve. If we consider another property of the pepper, such as
color, the representation of the data changes significantly. Now the chart has to be rep-
resented in 3D, and the trend becomes a surface instead of a curve. A surface is like a
warped blanket in three dimensions (figure 7.7). This surface is also represented as a
function but is more complex.

Figure 7.7 Pepper spice vs. pepper size vs. pepper color

194	 Chapter 7 I Swarm intelligence: Particles

Furthermore, a 3D search space could look fairly simple, like figure 7.7, or be so com-
plex that attempting to inspect it visually to find the minimum would be almost impos-
sible (figure 7.8).

Figure 7.8 A function visualized in the 3D space as a plane

Figure 7.9 shows the function that represents this plane.

Figure 7.9 The function that represents the surface in figure 7.8

It gets more interesting! We have looked at three attributes of a pepper: its size, its color,
and how spicy it is. As a result, we’re searching in three dimensions. What if we want to
include the location of growth? This attribute would make it even more difficult to visu-
alize and understand the data, because we are searching in four dimensions. If we add
the pepper’s age and the amount of fertilizer used while growing it, we are left with a
massive search space in six dimensions, and we can’t imagine what this search might
look like. This search too is represented by a function, but again, it is too complex and
difficult for a person to solve.

Particle swarm optimization algorithms are particularly good at solving difficult
optimization problems. Particles are distributed over the multidimensional search space
and work together to find good maximums or minimums.

	 Problems applicable to particle swarm optimization� 195

Particle swarm optimization algorithms are particularly useful in the following
scenarios:

•	 Large search spaces—There are many data points and possibilities of
combinations.

•	 Search spaces with high dimensions—There is complexity in high dimensions.
Many dimensions of a problem are required to find a good solution.

EXERCISE: HOW MANY DIMENSIONS WILL THE SEARCH SPACE FOR THE
FOLLOWING SCENARIO BE?

In this scenario, we need to determine a good city to live in based on the aver-
age minimum temperature during the year, because we don’t like the cold. It
is also important that the population be less than 700,000 people, because
crowded areas can be inconvenient. The average property price should be as
little as possible, and the more trains in the city, the better.

SOLUTION: HOW MANY DIMENSIONS WILL THE SEARCH SPACE FOR THE
FOLLOWING SCENARIO BE?

The problem in this scenario consists of five dimensions:

•	 Average temperature

•	 Size of population

•	 Average price of property

•	 Number of trains

•	 Result of these attributes, which will inform our decision

Problems applicable to particle
swarm optimization
Imagine that we are developing a drone, and several materials are used to create its body
and propeller wings (the blades that make it fly). Through many research trials, we have
found that different amounts of two specific materials yield different results in terms of
optimal performance for lifting the drone and resisting strong winds. These two mate-
rials are aluminum, for the chassis, and plastic, for the blades. Too much or too little of
either material will result in a poor-performing drone. But several combinations yield
a good-performing drone, and only one combination results in an exceptionally well-
performing drone.

196	 Chapter 7 I Swarm intelligence: Particles

Figure 7.10 illustrates the components made of plastic and the components made of
aluminum. The arrows illustrate the forces that influence the performance of the drone.
In simple terms, we want to find a good ratio of plastic to aluminum for a version of the
drone that reduces drag during lift and decreases wobble in the wind. So plastic and
aluminum are the inputs, and the output is the resulting stability of the drone. Let’s
describe ideal stability as reducing drag during liftoff and wobble in the wind.

Figure 7.10 The drone optimization example

Precision in the ratio of aluminum and plastic is important, and the range of possibilities
is large. In this scenario, researchers have found the function for the ratio of aluminum
and plastic. We will use this function in a simulated virtual environment that tests the
drag and wobble to find the best values for each material before we manufacture another
prototype drone. We also know that the maximum and minimum ratios for the materi-
als are 10 and -10, respectively. This fitness function is similar to a heuristic.

Figure 7.11 shows the fitness function for the ratio between aluminum (x) and plastic
(y). The result is a performance score based on drag and wobble, given the input values
for x and y.

Figure 7.11 The example function for optimizing aluminum (x) and plastic (y)

	 Problems applicable to particle swarm optimization � 197

How can we find the amount of aluminum and the amount of plastic required to create
a good drone? One possibility is to try every combination of values for aluminum and
plastic until we find the best ratio of materials for our drone. Take a step back and imag-
ine the amount of computation required to find this ratio. We could conduct an
almost-infinite number of computations before finding a solution if we try every possi-
ble number. We need to compute the result for the items in table 7.1. Note that negative
numbers for aluminum and plastic are bizarre in reality; however, we’re using them in
this example to demonstrate the fitness function used to optimize these values.

Table 7.1  Possible values for aluminum and plastic compositions

How many parts aluminum? (x) How many parts plastic? (y)

-0.1 1.34

-0.134 0.575

-1.1 0.24

-1.1645 1.432

-2.034 -0.65

-2.12 -0.874

0.743 -1.1645

0.3623 -1.87

1.75 -2.7756

… …

-10 ≥ Aluminum ≥ 10 -10 ≥ Plastic ≥ 10

This computation will go on for every possible number between the constraints and is
computationally expensive, so it is realistically impossible to brute-force this problem. A
better approach is needed.

Particle swarm optimization provides a means to search a large search space without
checking every value in each dimension. In the drone problem, aluminum is one dimen-
sion of the problem, plastic is the second dimension, and the resulting performance of
the drone is the third dimension.

In the next section, we determine the data structures required to represent a particle,
including the data about the problem that it will contain.

198	 Chapter 7 I Swarm intelligence: Particles

Representing state:
What do particles look like?
Because particles move across the search space, the concept of a particle must be defined
(figure 7.12).

Figure 7.12 Properties of a particle

The following represent the concept of a particle:

•	 Position—The position of the particle in all dimensions

•	 Best position—The best position found using the fitness function

•	 Velocity—The current velocity of the particle’s movement

Pseudocode

To fulfill the three attributes of a particle, including position, best position, and velocity,
the following properties are required in a constructor of the particle for the various
operations of the particle swarm optimization algorithm. Don’t worry about the inertia,
cognitive component, and social component right now; they will be explained in upcom-
ing sections:

	 Particle swarm optimization life cycle� 199

Particle swarm optimization life cycle
The approach to designing a particle swarm optimization algorithm is based on the
problem space being addressed. Each problem has a unique context and a different
domain in which data is represented. Solutions to different problems are also measured
differently. Let’s dive into how a particle swarm optimization can be designed to solve
the drone construction problem.

The general life cycle of a particle swarm optimization algorithm is as follows
(figure 7.13):

1.	 Initialize the population of particles. Determine the number of particles to be used,
and initialize each particle to a random position in the search space.

2.	 Calculate the fitness of each particle. Given the position of each particle, determine
the fitness of that particle at that position.

3.	 Update the position of each particle. Repetitively update the position of all the
particles, using principles of swarm intelligence. Particles will explore the search
space and then converge to good solutions.

4.	 Determine the stopping criteria. Determine when the particles stop updating and
the algorithm stops.

200	 Chapter 7 I Swarm intelligence: Particles

Figure 7.13 The life cycle of a particle swarm optimization algorithm

The particle swarm optimization algorithm is fairly simple, but the details of step 3 are
particularly intricate. The following sections look at each step in isolation and uncover
the details that make the algorithm work.

	 Particle swarm optimization life cycle� 201

Initialize the population of particles
The algorithm starts by creating a specific number of particles, which will remain the
same for the lifetime of the algorithm (figure 7.14).

Figure 7.14 Set up the particles.

The three factors that are important in initializing the particles are (figure 7.15):

•	 Number of particles—The number of particles influences computation. The more
particles that exist, the more computation is required. Additionally, more
particles will likely mean that converging on a global best solution will take
longer because more particles are attracted to their local best solutions. The
constraints of the problem also affect the number of particles. A larger search
space may need more particles to explore it. There could be as many as 1,000
particles or as few as 4. Usually, 50 to 100 particles produce good solutions
without being too computationally expensive.

•	 Starting position for each particle—The starting position for each particle should
be a random position in all the respective dimensions. It is important that the
particles are distributed evenly across the search space. If most of the particles
are in a specific region of the search space, they will struggle to find solutions
outside that area.

1. Create a swarm of particles with
each particle’s position initialized to a
random point, and set the particles’
velocities to zero.

202	 Chapter 7 I Swarm intelligence: Particles

•	 Starting velocity for each particle—The velocity of particles is initialized to 0
because the particles have not been affected yet. A good analogy is that birds
begin takeoff for flight from a stationary position.

Figure 7.15 A visualization of the initial positions of four particles in a 3D plane

Table 7.2 describes the data encapsulated by each particle at the initialization step of the
algorithm. Notice that the velocity is 0; the current fitness and best fitness values are 0
because they have not been calculated yet.

Table 7.2  Data attributes for each particle

Particle Velocity

Current
aluminum

(x)

Current
plastic

(y)
Current
fitness

Best
aluminum (x)

Best
plastic

(y)
Best

fitness

1 0 7 1 0 7 1 0

2 0 -1 9 0 -1 9 0

3 0 -10 1 0 -10 1 0

4 0 -2 -5 0 -2 -5 0

	 Particle swarm optimization life cycle� 203

Pseudocode

The method to generate a swarm consists of creating an empty list and appending new
particles to it. The key factors are:

•	 Ensuring that the number of particles is configurable.

•	 Ensuring that the random number generation is done uniformly; numbers are
distributed across the search space within the constraints. This implementation
depends on the features of the random number generator used.

•	 Ensuring that the constraints of the search space are specified: in this case, -10
and 10 for both x and y of the particle.

Calculate the fitness of each particle
The next step is calculating the fitness of each particle at its current position. The fitness
of particles is calculated every time the entire swarm changes position (figure 7.16).

Figure 7.16 Calculate the fitness of the particles.

2. Determine how well each particle
solves the problem using the fitness
function.

204	 Chapter 7 I Swarm intelligence: Particles

In the drone scenario, the scientists provided a function in which the result is the amount
of drag and wobble given a specific number of aluminum and plastic components. This
function is used as the fitness function in the particle swarm optimization algorithm in
this example (figure 7.17).

Figure 7.17 The example function for optimizing aluminum (x) and plastic (y)

If x is aluminum and y is plastic, the calculations in figure 7.18 can be made for each
particle to determine its fitness by substituting x and y for the values of aluminum and
plastic.

Figure 7.18 Fitness calculations for each particle

Now the table of particles represents the calculated fitness for each particle (table 7.3). It
is also set as the best fitness for each particle because it is the only known fitness in the
first iteration. After the first iteration, the best fitness for each particle is the best fitness
in each specific particle’s history.

Table 7.3  Data attributes for each particle

Particle Velocity

Current
aluminum

(x)

Current
plastic

(y)
Current
fitness

Best
aluminum

(x)

Best
plastic

(y)
Best

fitness

1 0 7 1 296 7 1 296

2 0 -1 9 104 -1 9 104

3 0 -10 1 80 -10 1 80

4 0 -2 -5 365 -2 -5 365

	 Particle swarm optimization life cycle� 205

EXERCISE: WHAT WOULD THE FITNESS BE FOR THE FOLLOWING INPUTS
GIVEN THE DRONE FITNESS FUNCTION?

Particle Velocity

Current
aluminum

(x)

Current
plastic

(y)
Current
fitness

Best
aluminum

(x)

Best
plastic

(y)
Best

fitness

1 0 5 -3 0 5 -3 0

2 0 -6 -1 0 -6 -1 0

3 0 7 3 0 7 3 0

4 0 -1 9 0 -1 9 0

SOLUTION: WHAT WOULD THE FITNESS BE FOR THE FOLLOWING INPUTS
GIVEN THE DRONE FITNESS FUNCTION?

Pseudocode

The fitness function is representing the mathematical function in code. Any math library
will contain the operations required, such as a power function and a square-root
function:

206	 Chapter 7 I Swarm intelligence: Particles

The function for updating the fitness of a particle is also trivial, in that it determines
whether the new fitness is better than a past best and then stores that information:

The function to determine the best particle in the swarm iterates through all particles,
updates their fitness based on their new positions, and finds the particle that yields the
smallest value for the fitness function. In this case, we are minimizing, so a smaller value
is better:

	 Particle swarm optimization life cycle� 207

Update the position of each particle
The update step of the algorithm is the most intricate, because it is where the magic hap-
pens. The update step encompasses the properties of swarm intelligence in nature into a
mathematical model that allows the search space to be explored while honing in on good
solutions (figure 7.19).

Figure 7.19 Update the positions of the particles.

Particles in the swarm update their position given a cognitive ability and factors in the
environment around them, such as inertia and what the swarm is doing. These factors
influence the velocity and position of each particle. The first step is understanding how
velocity is updated. The velocity determines the direction and speed of movement of the
particle.

The particles in the swarm move to different points in the search space to find better
solutions. Each particle relies on its memory of a good solution and the knowledge of the
swarm’s best solution. Figure 7.20 illustrates the movement of the particles in the swarm
as their positions are updated.

3. Update the velocity and position
of all particles while balancing
exploration and exploitation of
solutions.

208	 Chapter 7 I Swarm intelligence: Particles

Figure 7.20 The movement of particles over five iterations

	 Particle swarm optimization life cycle� 209

The components of updating velocity
Three components are used to calculate the new velocity of each particle: inertia, cogni-
tive, and social. Each component influences the movement of the particle. We will look
at each of the components in isolation before diving into how they are combined to
update the velocity and, ultimately, the position of a particle:

•	 Inertia—The inertia component represents the resistance to movement or change
in direction for a specific particle that influences its velocity. The inertia
component consists of two values: the inertia magnitude and the current velocity
of the particle. The inertia value is a number between 0 and 1.

	° A value closer to 0 translates to exploration, potentially taking more
iterations.

	° A value closer to 1 translates to more exploration for particles in fewer
iterations.

•	 Cognitive—The cognitive component represents the internal cognitive ability of a
specific particle. The cognitive ability is a sense of a particle knowing its best
position and using that position to influence its movement. The cognitive
constant is a number greater than 0 and less than 2. A greater cognitive constant
means more exploitation by the particles.

•	 Social—The social component represents the ability of a particle to interact with
the swarm. A particle knows the best position in the swarm and uses this
information to influence its movement. Social acceleration is determined by
using a constant and scaling it with a random number. The social constant
remains the same for the lifetime of the algorithm, and the random factor
encourages diversity in favoring the social factor.

210	 Chapter 7 I Swarm intelligence: Particles

The greater the social constant, the more exploration there will be, because the particle
favors its social component more. The social constant is a number between 0 and 2. A
greater social constant means more exploration.

Updating velocity
Now that we understand the inertia component, cognitive component, and social com-
ponent, let’s look at how they can be combined to update a new velocity for the particles
(figure 7.21).

Figure 7.21 Formula to calculate velocity

By looking at the math, we may find it difficult to understand how the different compo-
nents in the function affect the velocity of the particles. Figure 7.22 depicts how the dif-
ferent factors influence a particle.

Figure 7.22 The intuition of the factors influencing velocity updates

	 Particle swarm optimization life cycle� 211

Table 7.4 shows the attributes of each particle after the fitness of each is calculated.

Table 7.4  Data attributes for each particle

Particle Velocity
Current

aluminum
Current
plastic

Current
fitness

Best
aluminum

Best
plastic

Best
fitness

1 0 7 1 296 2 4 296

2 0 -1 9 104 -1 9 104

3 0 -10 1 80 -10 1 80

4 0 -2 -5 365 -2 -5 365

Next, we will dive into the velocity update calculations for a particle, given the formulas
that we have worked through.

Here are the constant configurations that have been set for this scenario:

•	 Inertia is set to 0.2. This setting favors slower exploration.

•	 Cognitive constant is set to 0.35. Because this constant is less than the social
constant, the social component is favored over an individual particle’s cognitive
component.

•	 Social constant is set to 0.45. Because this constant is more than the cognitive
constant, the social component is favored. Particles put more weight on the best
values found by the swarm.

Figure 7.23 describes the calculations of the inertia component, cognitive component,
and social component for the velocity update formula.

212	 Chapter 7 I Swarm intelligence: Particles

Figure 7.23 Particle velocity calculation walkthrough

	 Particle swarm optimization life cycle� 213

After these calculations have been completed for all particles, the velocity of each parti-
cle is updated, as represented in table 7.5.

Table 7.5  Data attributes for each particle

Particle Velocity
Current

aluminum
Current
plastic

Current
fitness

Best
aluminum

Best
plastic

Best
fitness

1 2.295 7 1 296 7 1 296

2 1.626 -1 9 104 -1 9 104

3 2.043 -10 1 80 -10 1 80

4 1.35 -2 -5 365 -2 -5 365

Position update
Now that we understand how velocity is updated, we can update the current position of
each particle, using the new velocity (figure 7.24).

Figure 7.24 Calculating the new position of a particle

By adding the current position and new velocity, we can determine the new position of
each particle and update the table of particle attributes with the new velocities. Then the
fitness of each particle is calculated again, given its new position, and its best position is
remembered (table 7.6).

214	 Chapter 7 I Swarm intelligence: Particles

Table 7.6  Data attributes for each particle

Particle Velocity
Current

aluminum
Current
plastic

Current
fitness

Best
aluminum

Best
plastic

Best
fitness

1 2.295 9.925 3.325 721.286 7 1 296

2 1.626 0.626 10 73.538 0.626 10 73.538

3 2.043 7.043 1.043 302.214 -10 1 80

4 1.35 -0.65 -3.65 179.105 -0.65 -3.65 179.105

Calculating the initial velocity for each particle in the first iteration is fairly simple
because there was no previous best position for each particle—only a swarm best posi-
tion that affected only the social component.

Let’s examine what the velocity update calculation will look like with the new infor-
mation for each particle’s best position and the swarm’s new best position. Figure 7.25
describes the calculation for particle 1 in the list.

	 Particle swarm optimization life cycle� 215

Figure 7.25 Particle velocity calculation walkthrough

In this scenario, the cognitive component and the social component both play a role in
updating the velocity, whereas the scenario described in figure 7.23 is influenced by the
social component, due to it being the first iteration.

Particles move to different positions over several iterations. Figure 7.26 depicts the
particles’ movement and their convergence on a solution.

216	 Chapter 7 I Swarm intelligence: Particles

Figure 7.26 A visualization of the movement of particles in the search space

	 Particle swarm optimization life cycle� 217

In the last frame of figure 7.26, all the particles have converged in a specific region in the
search space. The best solution from the swarm will be used as the final solution. In real-
world optimization problems, it is not possible to visualize the entire search space (which
would make optimization algorithms unnecessary). But the function that we used for
the drone example is a known function called the Booth function. By mapping it to the
3D Cartesian plane, we can see that the particles indeed converge on the minimum point
in the search space (figure 7.27).

Figure 7.27 Visualization of convergence of particles and a known surface

After using the particle swarm optimization algorithm for the drone example, we find
that the optimal ratio of aluminum and plastic to minimize drag and wobble is 1:3—
that is, 1 part aluminum and 3 parts plastic. When we feed these values into the fitness
function, the result is 0, which is the minimum value for the function.

Pseudocode

The update step can seem to be daunting, but if the components are broken into simple
focused functions, the code becomes simpler and easier to write, use, and understand.
The first functions are the inertia calculation function, the cognitive acceleration func-
tion, and the social acceleration function. We also need a function to measure the dis-
tance between two points, which is represented by squaring the sum of the square of the
difference in x values summed with the square of the difference in the y values:

218	 Chapter 7 I Swarm intelligence: Particles

The cognitive component is calculated by finding the cognitive acceleration, using the
function that we defined in an earlier section, and the distance between the particle’s
best position and its current position:

The social component is calculated by finding the social acceleration, using the function
that we defined earlier, and the distance between the swarm’s best position and the par-
ticle’s current position:

	 Particle swarm optimization life cycle� 219

The update function wraps everything that we have defined to carry out the actual
update of a particle’s velocity and position. The velocity is calculated by using the inertia
component, cognitive component, and social component. The position is calculated by
adding the new velocity to the particle’s current position:

220	 Chapter 7 I Swarm intelligence: Particles

EXERCISE: CALCULATE THE NEW VELOCITY AND POSITION FOR PARTICLE 1 GIVEN THE
FOLLOWING INFORMATION ABOUT THE PARTICLES

•	 Inertia is set to 0.1.

•	 The cognitive constant is set to 0.5, and the cognitive random number is 0.2.

•	 The social constant is set to 0.5, and the cognitive random number is 0.5.

Particle Velocity
Current

aluminum
Current
plastic

Current
fitness

Best
aluminum

Best
plastic

Best
fitness

1 3 4 8 721.286 7 1 296

2 4 3 3 73.538 0.626 10 73.538

3 1 6 2 302.214 -10 1 80

4 2 2 5 179.105 -0.65 -3.65 179.105

	 Particle swarm optimization life cycle� 221

SOLUTION: CALCULATE THE NEW VELOCITY AND POSITION FOR PARTICLE 1 GIVEN THE
FOLLOWING INFORMATION ABOUT THE PARTICLES

222	 Chapter 7 I Swarm intelligence: Particles

Determine the stopping criteria
The particles in the swarm cannot keep updating and searching indefinitely. A stopping
criterion needs to be determined to allow the algorithm to run for a reasonable number
of iterations to find a suitable solution (figure 7.28).

Figure 7.28 Has the algorithm reached a stopping condition?

The number of iterations influences several aspects of finding solutions, including:

•	 Exploration—Particles require time to explore the search space to find areas with
better solutions. Exploration is also influenced by the constants defined in the
update velocity function.

•	 Exploitation—Particles should converge on a good solution after reasonable
exploration occurs.

A strategy to stop the algorithm is to examine the best solution in the swarm and deter-
mine whether it is stagnating. Stagnation occurs when the value of the best solution
doesn’t change or doesn’t change by a significant amount. Running more iterations in
this scenario will not help find better solutions. When the best solution stagnates, the
parameters in the update function can be adjusted to favor more exploration. If more
exploration is desired, this adjustment usually means more iterations. Stagnation could
mean that a good solution was found or that that the swarm is stuck on a local best solu-
tion. If enough exploration occurred at the start, and the swarm gradually stagnates, the
swarm has converged on a good solution (figure 7.29).

5. Determine how many
iterations the algorithm runs
for—this is the number of times
all particles are updated.

	 Use cases for particle swarm optimization algorithms� 223

Figure 7.29 Exploration converging and exploiting

Use cases for particle swarm
optimization algorithms
Particle swarm optimization algorithms are interesting because they simulate a natural
phenomenon, which makes them easier to understand, but they can be applied to a range
of problems at different levels of abstraction. This chapter looked at an optimization
problem for drone manufacturing, but particle swarm optimization algorithms can be
used in conjunction with other algorithms, such as artificial neural networks, playing a
small but critical role in finding good solutions.

One interesting application of a particle swarm optimization algorithm is deep brain
stimulation. The concept involves installing probes with electrodes into the human
brain to stimulate it to treat conditions such as Parkinson’s disease. Each probe contains
electrodes that can be configured in different directions to treat the condition correctly
per patient. Researchers at the University of Minnesota have developed a particle swarm
optimization algorithm to optimize the direction of each electrode to maximize the
region of interest, minimize the region of avoidance, and minimize energy use. Because
particles are effective in searching these multidimensional problem spaces, the particle
swarm optimization algorithm is effective for finding optimal configurations for elec-
trodes on the probes (figure 7.30).

224	 Chapter 7 I Swarm intelligence: Particles

Figure 7.30 Example of factors involved for probes in deep brain stimulation

Here are some other real-world applications of particle swarm optimization algorithms:

•	 Optimizing weights in an artificial neural network—Artificial neural networks are
modeled on an idea of how the human brain works. Neurons pass signals to
other neurons, and each neuron adjusts the signal before passing it on. An
artificial neural network uses weights to adjust each signal. The power of the
network is finding the right balance of weights to form patterns in relationships
of the data. Adjusting weights is computationally expensive, as the search space is
massive. Imagine having to brute-force every possible decimal number
combination for 10 weights. That process would take years.

Don’t panic if this concept sounds confusing. We explore how artificial neural
networks operate in chapter 9. Particle swarm optimization can be used to adjust
the weights of neural networks faster, because it seeks optimal values in the
search space without exhaustively attempting each one.

•	 Motion tracking in videos—Motion tracking of people is a challenging task in
computer vision. The goal is to identify the poses of people and imply a motion
by using the information from the images in the video alone. People move

	 Use cases for particle swarm optimization algorithms � 225

differently, even though their joints move similarly. Because the images contain
many aspects, the search space becomes large, with many dimensions to predict
the motion for a person. Particle swarm optimization works well in high-
dimension search spaces and can be used to improve the performance of motion
tracking and prediction.

•	 Speech enhancement in audio—Audio recordings are nuanced. There is always
background noise that may interfere with what someone is saying in the
recording. A solution is to remove the noise from recorded speech audio clips. A
technique used for this purpose is filtering the audio clip with noise and
comparing similar sounds to remove the noise in the audio clip. This solution is
still complex, as reduction of certain frequencies may be good for parts of the
audio clip but may deteriorate other parts of it. Fine searching and matching
must be done for good noise removal. Traditional methods are slow, as the search
space is large. Particle swarm optimization works well in large search spaces and
can be used to speed the process of removing noise from audio clips.

226	 Chapter 7 I Swarm intelligence: Particles

SUMMARY OF PARTICLE SWARM OPTIMIZATION

227

What is machine learning?
Machine learning can seem like a daunting concept to learn and apply, but
with the right framing and understanding of the process and algorithms, it
can be interesting and fun.

Suppose that you’re looking for a new apartment. You speak to friends
and family, and do some online searches for apartments in the city. You

This chapter covers

•	 Solving problems with machine learning algorithms

•	 Grasping a machine learning life cycle, preparing data, and

selecting algorithms

•	 Understanding and implementing a linear-regression algorithm for

predictions

•	 Understanding and implementing a decision-tree learning

algorithm for classification

•	 Gaining intuition about other machine learning algorithms and

their usefulness

8Machine
learning

228	 Chapter 8 I Machine learning

notice that apartments in different areas are priced differently. Here are some of your
observations from all your research:

•	 A one-bedroom apartment in the city center (close to work) costs $5,000
per month.

•	 A two-bedroom apartment in the city center costs $7,000 per month.

•	 A one-bedroom apartment in the city center with a garage costs $6,000
per month.

•	 A one-bedroom apartment outside the city center, where you will need to travel
to work, costs $3,000 per month.

•	 A two-bedroom apartment outside the city center costs $4,500 per month.

•	 A one-bedroom apartment outside the city center with a garage costs $3,800 per
month.

You notice some patterns. Apartments in the city center are most expensive and are usually
between $5,000 and $7,000 per month. Apartments outside the city are cheaper.
Increasing the number of rooms adds between $1,500 and $2,000 per month, and access
to a garage adds between $800 and $1,000 per month (figure 8.1).

Figure 8.1 An illustration of property prices and features in different regions

	 What is machine learning?� 229

This example shows how we use data to find patterns and make decisions. If you encoun-
ter a two-bedroom apartment in the city center with a garage, it’s reasonable to assume
that the price would be approximately $8,000 per month.

Machine learning aims to find patterns in data for useful applications in the real world.
We could spot the pattern in this small dataset, but machine learning spots them for us
in large, complex datasets. Figure 8.2 depicts the relationships among different attributes
of the data. Each dot represents an individual property.

Notice that there are more dots closer to the city center and that there is a clear pattern
related to price per month: the price gradually drops as distance to the city center
increases. There is also a pattern in the price per month related to the number of rooms;
the gap between the bottom cluster of dots and the top cluster shows that the price jumps
significantly. We could naïvely assume that this effect may be related to the distance
from the city center. Machine learning algorithms can help us validate or invalidate this
assumption. We dive into how this process works throughout this chapter.

Figure 8.2 Example visualization of relationships among data

Typically, data is represented in tables. The columns are referred to as features of the
data, and the rows are referred to as examples. When we compare two features, the fea-
ture being measured is sometimes represented as y, and the features being changed are
grouped as x. We will gain a better intuition for this terminology as we work through
some problems.

230	 Chapter 8 I Machine learning

Problems applicable to machine learning
Machine learning is useful only if you have data and have questions to ask that the data
might answer. Machine learning algorithms find patterns in data but cannot do useful
things magically. Different categories of machine learning algorithms use different
approaches for different scenarios to answer different questions. These broad categories
are supervised learning, unsupervised learning, and reinforcement learning (figure 8.3).

Figure 8.3 Categorization of machine learning and uses

	 Problems applicable to machine learning� 231

Supervised learning
One of the most common techniques in traditional machine learning is supervised learn-
ing. We want to look at data, understand the patterns and relationships among the data,
and predict the results if we are given new examples of different data in the same format.
The apartment-finding problem is an example of supervised learning to find the pattern.
We also see this example in action when we type a search that autocompletes or when
music applications suggest new songs to listen to based on our activity and preference.
Supervised learning has two subcategories: regression and classification.

Regression involves drawing a line through a set of data points to most closely fit the
overall shape of the data. Regression can be used for applications such as trends between
marketing initiatives and sales. (Is there a direct relationship between marketing through
online ads and actual sales of a product?) It can also be used to determine factors that
affect something. (Is there a direct relationship between time and the value of crypto-
currency, and will cryptocurrency increase exponentially in value as time passes?)

Classification aims to predict categories of examples based on their features. (Can we
determine whether something is a car or a truck based on its number of wheels, weight,
and top speed?)

Unsupervised learning
Unsupervised learning involves finding underlying patterns in data that may be difficult
to find by inspecting the data manually. Unsupervised learning is useful for clustering
data that has similar features and uncovering features that are important in the data. On
an e-commerce site, for example, products might be clustered based on customer pur-
chase behavior. If many customers purchase soap, sponges, and towels together, it is
likely that more customers would want that combination of products, so soap, sponges,
and towels would be clustered and recommended to new customers.

Reinforcement learning
Reinforcement learning is inspired by behavioral psychology and operates by reward-
ing or punishing an algorithm based on its actions in an environment. It has similari-
ties to supervised learning and unsupervised learning, as well as many differences.
Reinforcement learning aims to train an agent in an environment based on rewards and
penalties. Imagine rewarding a pet for good behavior with treats; the more it is rewarded
for a specific behavior, the more it will exhibit that behavior. We discuss reinforcement
learning in chapter 10.

232	 Chapter 8 I Machine learning

A machine learning workflow
Machine learning isn’t just about algorithms. In fact, it is often about the context of the
data, the preparation of the data, and the questions that are asked.

We can find questions in two ways:

•	 A problem can be solved with machine learning, and the right data needs to be
collected to help solve it. Suppose that a bank has a vast amount of transaction
data for legitimate and fraudulent transactions, and it wants to train a model
with this question: “Can we detect fraudulent transactions in real time?”

•	 We have data in a specific context and want to determine how it can be used to
solve several problems. An agriculture company, for example, might have data
about the weather in different locations, nutrition required for different plants,
and the soil content in different locations. The question might be “What
correlations and relationships can we find among the different types of data?”
These relationships may inform a more concrete question, such as “Can we
determine the best location for growing a specific plant based on the weather and
soil in that location?”

Figure 8.4 is a simplified view of the steps involved in a typical machine learning
endeavor.

Figure 8.4 A workflow for machine learning experiments and projects

	 A machine learning workflow� 233

Collecting and understanding data: Know your context
Collecting and understanding the data you’re working with is paramount to a successful
machine learning endeavor. If you’re working in a specific area in the finance industry,
knowledge of the terminology and workings of the processes and data in that area is
important for sourcing the data that is best to help answer questions for the goal you’re
trying to achieve. If you want to build a fraud detection system, understanding what data
is stored about transactions and what it means is critical to identifying fraudulent trans-
actions. Data may also need to be sourced from various systems and combined to be
effective. Sometimes, the data we use is augmented with data from outside the organiza-
tion to enhance accuracy. In this section, we use an example dataset about diamond
measurements to understand the machine learning workflow and explore various algo-
rithms (figure 8.5).

Figure 8.5 Terminology of diamond measurements

234	 Chapter 8 I Machine learning

Table 8.1 describes several diamonds and their properties. X, Y, and Z describe the size of
a diamond in the three spatial dimensions. Only a subset of data is used in the examples.

Table 8.1  The diamond dataset

Carat Cut Color Clarity Depth Table Price X Y Z

1 0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73

2 0.41 Ideal I SI1 61.7 55 561 4.77 4.80 2.95

3 0.75 Very Good D SI1 63.2 56 2,760 5.80 5.75 3.65

4 0.91 Fair H SI2 65.7 60 2,763 6.03 5.99 3.95

5 1.20 Fair F I1 64.6 56 2,809 6.73 6.66 4.33

6 1.31 Premium J SI2 59.7 59 3,697 7.06 7.01 4.20

7 1.50 Premium H I1 62.9 60 4,022 7.31 7.22 4.57

8 1.74 Very Good H I1 63.2 55 4,677 7.62 7.59 4.80

9 1.96 Fair I I1 66.8 55 6,147 7.62 7.60 5.08

10 2.21 Premium H I1 62.2 58 6,535 8.31 8.27 5.16

The diamond dataset consists of 10 columns of data, which are referred to as features.
The full dataset has more than 50,000 rows. Here’s what each feature means:

•	 Carat—The weight of the diamond. Out of interest: 1 carat equals 200 mg.

•	 Cut—The quality of the diamond, by increasing quality: fair, good, very good,
premium, and ideal.

•	 Color—The color of the diamond, ranging from D to J, where D is the best color
and J is the worst color. D indicates a clear diamond, and J indicates a foggy one.

•	 Clarity—The imperfections of the diamond, by decreasing quality: FL, IF, VVS1,
VVS2, VS1, VS2, SI1, SI2, I1, I2, and I3. (Don’t worry about understanding these
code names; they simply represent different levels of perfection.)

•	 Depth—The percentage of depth, which is measured from the culet to the table
of the diamond. Typically, the table-to-depth ratio is important for the “sparkle”
aesthetic of a diamond.

•	 Table—The percentage of the flat end of the diamond relative to the X
dimension.

•	 Price—The price of the diamond when it was sold.

•	 X—The x dimension of the diamond, in millimeters.

•	 Y—The y dimension of the diamond, in millimeters.

•	 Z—The z dimension of the diamond, in millimeters.

	 A machine learning workflow� 235

Keep this dataset in mind; we will be using it to see how data is prepared and processed
by machine learning algorithms.

Preparing data: Clean and wrangle
Real-world data is never ideal to work with. Data might be sourced from different sys-
tems and different organizations, which may have different standards and rules for data
integrity. There are always missing data, inconsistent data, and data in a format that is
difficult to work with for the algorithms that we want to use.

In the sample diamond dataset in table 8.2, again, it is important to understand that
the columns are referred to as the features of the data and that each row is an example.

Table 8.2  The diamond dataset with missing data

Carat Cut Color Clarity Depth Table Price X Y Z

1 0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73

2 0.41 Ideal I si1 61.7 55 561 4.77 4.80 2.95

3 0.75 Very Good D SI1 63.2 56 2,760 5.80 5.75 3.65

4 0.91 - H SI2 - 60 2,763 6.03 5.99 3.95

5 1.20 Fair F I1 64.6 56 2,809 6.73 6.66 4.33

6 1.21 Good E I1 57.2 62 3,144 7.01 6.96 3.99

7 1.31 Premium J SI2 59.7 59 3,697 7.06 7.01 4.20

8 1.50 Premium H I1 62.9 60 4,022 7.31 7.22 4.57

9 1.74 Very Good H i1 63.2 55 4,677 7.62 7.59 4.80

10 1.83 fair J I1 70.0 58 5,083 7.34 7.28 5.12

11 1.96 Fair I I1 66.8 55 6,147 7.62 7.60 5.08

12 - Premium H i1 62.2 - 6,535 8.31 - 5.16

Missing data
In table 8.2, example 4 is missing values for the Cut and Depth features, and example 12
is missing values for Carat, Table, and Y. To compare examples, we need complete under-
standing of the data, and missing values make this difficult. A goal for a machine learn-
ing project might be to estimate these values; we cover estimations in the upcoming
material. Assume that missing data will be problematic in our goal to use it for some-
thing useful. Here are some ways to deal with missing data:

•	 Remove—Remove the examples that have missing values for features—in this
case, examples 4 and 12 (table 8.3). The benefit of this approach is that the data is
more reliable because nothing is assumed; however, the removed examples may
have been important to the goal we’re trying to achieve.

236	 Chapter 8 I Machine learning

Table 8.3  The diamond dataset with missing data: removing examples

Carat Cut Color Clarity Depth Table Price X Y Z

1 0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73

2 0.41 Ideal I si1 61.7 55 561 4.77 4.80 2.95

3 0.75 Very Good D SI1 63.2 56 2,760 5.80 5.75 3.65

4 0.91 - H SI2 - 60 2,763 6.03 5.99 3.95

5 1.20 Fair F I1 64.6 56 2,809 6.73 6.66 4.33

6 1.21 Good E I1 57.2 62 3,144 7.01 6.96 3.99

7 1.31 Premium J SI2 59.7 59 3,697 7.06 7.01 4.20

8 1.50 Premium H I1 62.9 60 4,022 7.31 7.22 4.57

9 1.74 Very Good H i1 63.2 55 4,677 7.62 7.59 4.80

10 1.83 fair J I1 70.0 58 5,083 7.34 7.28 5.12

11 1.96 Fair I I1 66.8 55 6,147 7.62 7.60 5.08

12 - Premium H i1 62.2 - 6,535 8.31 - 5.16

•	 Mean or median—Another option is to replace the missing values with the mean
or median for the respective feature.

The mean is the average calculated by adding all the values and dividing by the
number of examples. The median is calculated by ordering the examples by value
ascending and choosing the value in the middle.

Using the mean is easy and efficient to do but doesn’t take into account
possible correlations between features. This approach cannot be used with
categorical features such as the Cut, Clarity, and Depth features in the diamond
dataset (table 8.4).

	 A machine learning workflow� 237

Table 8.4  The diamond dataset with missing data: using mean values

Carat Cut Color Clarity Depth Table Price X Y Z

1 0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73

2 0.41 Ideal I si1 61.7 55 561 4.77 4.80 2.95

3 0.75 Very Good D SI1 63.2 56 2,760 5.80 5.75 3.65

4 0.91 - H SI2 - 60 2,763 6.03 5.99 3.95

5 1.20 Fair F I1 64.6 56 2,809 6.73 6.66 4.33

6 1.21 Good E I1 57.2 62 3,144 7.01 6.96 3.99

7 1.31 Premium J SI2 59.7 59 3,697 7.06 7.01 4.20

8 1.50 Premium H I1 62.9 60 4,022 7.31 7.22 4.57

9 1.74 Very Good H i1 63.2 55 4,677 7.62 7.59 4.80

10 1.83 fair J I1 70.0 58 5,083 7.34 7.28 5.12

11 1.96 Fair I I1 66.8 55 6,147 7.62 7.60 5.08

12 1.19 Premium H i1 62.2 57 6,535 8.31 - 5.16

To calculate the mean of the Table feature, we add every available value and
divide the total by the number of values used:

Using the Table mean for the missing values seems to make sense, because the
table size doesn’t seem to differ radically among different examples of data. But
there could be correlations that we do not see, such as the relationship between
the table size and the width of the diamond (X dimension).

On the other hand, using the Carat mean does not make sense, because we can
see a correlation between the Carat feature and the Price feature if we plot the
data on a graph. The price seems to increase as the Carat value increases.

•	 Most frequent—Replace the missing values with the value that occurs most often
for that feature, which is known as the mode of the data. This approach works
well with categorical features but doesn’t take into account possible correlations
among features, and it can introduce bias by using the most frequent values.

•	 (Advanced) Statistical approaches—Use k-nearest neighbor, or neural networks.
K-nearest neighbor uses many features of the data to find an estimated value.
Similar to k-nearest neighbor, a neural network can predict the missing values
accurately, given enough data. Both algorithms are computationally expensive
for the purpose of handling missing data.

238	 Chapter 8 I Machine learning

•	 (Advanced) Do nothing—Some algorithms handle missing data without any
preparation, such as XGBoost, but the algorithms that we will be exploring
will fail.

Ambiguous values
Another problem is values that mean the same thing but are represented differently.
Examples in the diamond dataset are rows 2, 9, 10, and 12. The values for the Cut and
Clarity features are lowercase instead of uppercase. Note that we know this only because
we understand these features and the possible values for them. Without this knowledge,
we might see Fair and fair as different categories. To fix this problem, we can standardize
these values to uppercase or lowercase to maintain consistency (table 8.5).

Table 8.5  The diamond dataset with ambiguous data: standardizing values

Carat Cut Color Clarity Depth Table Price X Y Z

1 0.30 Good J SI1 64.0 55 339 4.25 4.28 2.73

2 0.41 Ideal I si1 61.7 55 561 4.77 4.80 2.95

3 0.75 Very Good D SI1 63.2 56 2,760 5.80 5.75 3.65

4 0.91 - H SI2 - 60 2,763 6.03 5.99 3.95

5 1.20 Fair F I1 64.6 56 2,809 6.73 6.66 4.33

6 1.21 Good E I1 57.2 62 3,144 7.01 6.96 3.99

7 1.31 Premium J SI2 59.7 59 3,697 7.06 7.01 4.20

8 1.50 Premium H I1 62.9 60 4,022 7.31 7.22 4.57

9 1.74 Very Good H i1 63.2 55 4,677 7.62 7.59 4.80

10 1.83 fair J I1 70.0 58 5,083 7.34 7.28 5.12

11 1.96 Fair I I1 66.8 55 6,147 7.62 7.60 5.08

12 1.19 Premium H i1 62.2 57 6,535 8.31 - 5.16

Encoding categorical data
Because computers and statistical models work with numeric values, there will be a
problem with modeling string values and categorical values such as Fair, Good, SI1, and
I1. We need to represent these categorical values as numerical values. Here are ways to
accomplish this task:

•	 One-hot encoding—Think about one-hot encoding as switches, all of which are
off except one. The one that is on represents the presence of the feature at that
position. If we were to represent Cut with one-hot encoding, the Cut feature
becomes five different features, and each value is 0 except for the one that
represents the Cut value for each respective example. Note that the other features
have been removed in the interest of space in table 8.6.

	 A machine learning workflow� 239

Table 8.6  The diamond dataset with encoded values

Carat Cut: Fair Cut: Good Cut: Very Good Cut: Premium Cut: Ideal

1 0.30 0 1 0 0 0

2 0.41 0 0 0 0 1

3 0.75 0 0 1 0 0

4 0.91 0 0 0 0 0

5 1.20 1 0 0 0 0

6 1.21 0 1 0 0 0

7 1.31 0 0 0 1 0

8 1.50 0 0 0 1 0

9 1.74 0 0 1 0 0

10 1.83 1 0 0 0 0

11 1.96 1 0 0 0 0

12 1.19 0 0 0 1 0

•	 Label encoding—Represent each category as a number between 0 and the number
of categories. This approach should be used only for ratings or rating-related
labels; otherwise, the model that we will be training will assume that the number
carries weight for the example and can introduce unintended bias.

EXERCISE: IDENTIFY AND FIX THE PROBLEM DATA IN THIS EXAMPLE

Decide which data preparation techniques can be used to fix the following
dataset. Decide which rows to delete, what values to use the mean for, and
how categorical values will be encoded. Note that the dataset is slightly differ-
ent from what we’ve been working with thus far.

Carat Origin Depth Table Price X Y Z

1 0.35 South Africa 64.0 55 450 4.25 2.73

2 0.42 Canada 61.7 55 680 4.80 2.95

3 0.87 Canada 63.2 56 2,689 5.80 5.75 3.65

4 0.99 Botswana 65.7 2,734 6.03 5.99 3.95

5 1.34 Botswana 64.6 56 2,901 6.73 6.66

6 1.45 South Africa 59.7 59 3,723 7.06 7.01 4.20

7 1.65 Botswana 62.9 60 4,245 7.31 7.22 4.57

8 1.79 63.2 55 4,734 7.62 7.59 4.80

9 1.81 Botswana 66.8 55 6,093 7.62 7.60 5.08

10 2.01 South Africa 62.2 58 7,452 8.31 8.27 5.16

240	 Chapter 8 I Machine learning

SOLUTION: IDENTIFY AND FIX THE PROBLEM DATA IN THIS EXAMPLE

One approach for fixing this dataset involves the following three tasks:

•	 Remove row 8 due to missing Origin. We don’t know what the dataset will be
used for. If the Origin feature is important, this row will be missing and it
may cause issues. Alternatively, the value for this feature could be estimated if
it has a relationship with other features.

•	 Use one-hot encoding to encode the Origin column value. In the example
explored thus far in the chapter, we used label encoding to convert string
values to numeric values. This approach worked because the values indicated
more superior cut, clarity, or color. In the case of Origin, the value identifies
where the diamond was sourced. By using label encoding, we introduce bias
to the dataset, because no Origin location is better than another in this
dataset.

•	 Find the mean for missing values. Row 1, 2, 4, and 5 are missing values for Y,
X, Table, and Z, respectively. Using a mean value should be a good technique
because, as we know about diamonds, the dimensions and table features are
related.

Testing and training data
Before we jump into training a linear regression model, we need to ensure that we have
data to teach (or train) the model, as well as some data to test how well it does in predict-
ing new examples. Think back to the property-price example. After gaining a feel for the
attributes that affect price, we could make a price prediction by looking at the distance
and number of rooms. For this example, we will use table 8.7 as the training data because
we have more real-world data to use for training later.

Training a model: Predict with linear regression
Choosing an algorithm to use is based largely on two factors: the question that is being
asked and the nature of the data that is available. If the question is to make a prediction
about the price of a diamond with a specific carat weight, regression algorithms can be
useful. The algorithm choice also depends on the number of features in the dataset
and the relationships among those features. If the data has many dimensions (there are
many features to consider to make a prediction), we can consider several algorithms and
approaches.

Regression means predicting a continuous value, such as the price or carat of the dia-
mond. Continuous means that the values can be any number in a range. The price of
$2,271, for example, is a continuous value between 0 and the maximum price of any
diamond that regression can help predict.

Linear regression is one of the simplest machine learning algorithms; it finds relation-
ships between two variables and allows us to predict one variable given the other. An

	 A machine learning workflow� 241

example is predicting the price of a diamond based on its carat value. By looking at many
examples of known diamonds, including their price and carat values, we can teach a
model the relationship and ask it to estimate predictions.

Fitting a line to the data
Let’s start trying to find a trend in the data and attempt to make some predictions.
For exploring linear regression, the question we’re asking is “Is there a correlation
between the carats of a diamond and its price, and if there is, can we make accurate
predictions?”

We start by isolating the carat and price features and plotting the data on a graph.
Because we want to find the price based on carat value, we will treat carats as x and price
as y. Why did we choose this approach?

•	 Carat as the independent variable (x)—An independent variable is one that is
changed in an experiment to determine the effect on a dependent variable. In
this example, the value for carats will be adjusted to determine the price of a
diamond with that value.

•	 Price as the dependent variable (y)—A dependent variable is one that is being
tested. It is affected by the independent variable and changes based on the
independent variable value changes. In our example, we are interested in the
price given a specific carat value.

Figure 8.6 shows the carat and price data plotted on a graph, and table 8.7 describes the
actual data.

Table 8.7  Carat and price data

Carat (x) Price (y)

1 0.30 339

2 0.41 561

3 0.75 2,760

4 0.91 2,763

5 1.20 2,809

6 1.31 3,697

7 1.50 4,022

8 1.74 4,677

9 1.96 6,147

10 2.21 6,535

	 Figure 8.6 A scatterplot of carat and price data

242	 Chapter 8 I Machine learning

Notice that compared with Price, the Carat values are tiny. The price goes into the thou-
sands, and carats are in the range of decimals. To make the calculations easier to under-
stand for the purposes of learning in this chapter, we can scale the Carat values to be
comparable to the Price values. By multiplying every Carat value by 1,000, we get num-
bers that are easier to compute by hand in the upcoming walkthroughs. Note that by
scaling all the rows, we are not affecting the relationships in the data, because every
example has the same operation applied to it. The resulting data (figure 8.7) is repre-
sented in table 8.8.

Table 8.8  Data with adjusted
carat values

Carat (x) Price (y)

1 300 339

2 410 561

3 750 2,760

4 910 2,763

5 1,200 2,809

6 1,310 3,697

7 1,500 4,022

8 1,740 4,677

9 1,960 6,147

10 2,210 6,535

	 Figure 8.7 A scatterplot of carat and price data

Finding the mean of the features
The first thing we need to do to find a regression line is find the mean for each feature.
The mean is the sum of all values divided by the number of values. The mean is 1,229 for
carats, represented by the vertical line on the x axis. The mean is $3,431 for price, repre-
sented by the horizontal line on the y axis (figure 8.8).

	 A machine learning workflow� 243

Figure 8.8 The means of x and y represented by vertical and horizontal lines

The mean is important because mathematically, any regression line we find will pass
through the intersection of the mean of x and the mean of y. Many lines may pass
through this point. Some regression lines might be better than others at fitting the data.
The method of least squares aims to create a line that minimizes the distances between
the line and among all the points in the dataset. The method of least squares is a popular
method for finding regression lines. Figure 8.9 illustrates examples of regression lines.

Figure 8.9 Possible regression lines

244	 Chapter 8 I Machine learning

Finding regression lines with the least-squares method
But what is the regression line’s purpose? Suppose that we’re building a subway that tries
to be as close as possible to all major office buildings. It will not be feasible to have a
subway line that visits every building; there will be too many stations and it will cost a
lot. So, we will try to create a straight-line route that minimizes the distance to each
building. Some commuters may have to walk farther than others, but the straight line is
optimized for everyone’s office. This goal is exactly what a regression line aims to achieve;
the buildings are data points, and the line is the straight subway path (figure 8.10).

Figure 8.10 Intuition of regression lines

Linear regression will always find a straight line that fits the data to minimize distance
among points overall. Understanding the equation for a line is important because we
will be learning how to find the values for the variables that describe a line.

A straight line is represented by the equation y = c + mx (figure 8.11):

•	 y: The dependent variable

•	 x: The independent variable

•	 m: The slope of the line

•	 c: The y-value where the line intercepts the y axis

	 A machine learning workflow� 245

Figure 8.11 Intuition of the equation that represents a line

The method of least squares is used to find the regression line. At a high level, the process
involves the steps depicted in figure 8.12. To find the line that’s closest to the data, we
find the difference between the actual data values and the predicted data values. The
differences for data points will vary. Some differences will be large, and some will be
small. Some differences will be negative values, and some will be positive values. By
squaring the differences and summing them, we take into consideration all differences
for all data points. Minimizing the total difference is getting the least square difference
to achieve a good regression line. Don’t worry if figure 8.12 looks a bit daunting; we will
work through each step.

Figure 8.12 The basic workflow for calculating a regression line

246	 Chapter 8 I Machine learning

Thus far, our line has some known variables. We know that an x value is 1,229 and a y
value is 3,431, as shown in step 2.

Next, we calculate the difference between every Carat value and the Carat mean, as
well as the difference between every Price value and the Price mean, to find (x – mean of
x) and (y – mean of y), which is used in step 3 (table 8.9).

Table 8.9  The diamond dataset and calculations

Carat (x) Price (y) x – mean of x y – mean of y

1 300 339 300 – 1,229 -929 339 – 3,431 -3,092

2 410 561 410 – 1,229 -819 561 – 3,431 -2,870

3 750 2,760 750 – 1,229 -479 2,760 – 3,431 -671

4 910 2,763 910 – 1,229 -319 2,763 – 3,431 -668

5 1,200 2,809 2,100 – 1,229 -29 2,809 – 3,431 -622

6 1,310 3,697 1,310 – 1,229 81 3,697 – 3,431 266

7 1,500 4,022 1,500 – 1,229 271 4,022 – 3,431 591

8 1,740 4,677 1,740 – 1,229 511 4,677 – 3,431 1,246

9 1,960 6,147 1,960 – 1,229 731 6,147 – 3,431 2,716

10 2,210 6,535 2,210 – 1,229 981 6,535 – 3,431 3,104

1,229 3,431

Means

For step 3, we also need to calculate the square of the difference between every carat and
the carat mean to find (x – mean of x) 2̂. We also need to sum these values to minimize,
which equals 3,703,690 (table 8.10).

	 A machine learning workflow� 247

Table 8.10  The diamond dataset and calculations, part 2

Carat (x) Price (y) x – mean of x y – mean of y (x – mean of x)^2

1 300 339 300 – 1,229 -929 339 – 3,431 -3,092 863,041

2 410 561 410 – 1,229 -819 561 – 3,431 -2,870 670,761

3 750 2,760 750 – 1,229 -479 2,760 – 3,431 -671 229,441

4 910 2,763 910 – 1,229 -319 2,763 – 3,431 -668 101,761

5 1,200 2,809 2,100 – 1,229 -29 2,809 – 3,431 -622 841

6 1,310 3,697 1,310 – 1,229 81 3,697 – 3,431 266 6,561

7 1,500 4,022 1,500 – 1,229 271 4,022 – 3,431 591 73,441

8 1,740 4,677 1,740 – 1,229 511 4,677 – 3,431 1,246 261,121

9 1,960 6,147 1,960 – 1,229 731 6,147 – 3,431 2,716 534,361

10 2,210 6,535 2,210 – 1,229 981 6,535 – 3,431 3,104 962,361

1,229 3,431 3,703,690

Means Sums

The last missing value for the equation in step 3 is the value for (x – mean of x) * (y – mean
of y). Again, the sum of the values is required. The sum equals 11,624,370 (table 8.11).

Table 8.11  The diamond dataset and calculations, part 3

Carat (x) Price (y)
x – mean

of x
y – mean

of y
(x – mean

of x)^2

(x – mean
of x) * (y –
mean of y)

1 300 339 300 – 1,229 -929 339 – 3,431 -3,092 863,041 2,872,468

2 410 561 410 – 1,229 -819 561 – 3,431 -2,870 670,761 2,350,530

3 750 2,760 750 – 1,229 -479 2,760 – 3,431 -671 229,441 321,409

4 910 2,763 910 – 1,229 -319 2,763 – 3,431 -668 101,761 213,092

5 1,200 2,809 2,100 – 1,229 -29 2,809 – 3,431 -622 841 18,038

6 1,310 3,697 1,310 – 1,229 81 3,697 – 3,431 266 6,561 21,546

7 1,500 4,022 1,500 – 1,229 271 4,022 – 3,431 591 73,441 160,161

8 1,740 4,677 1,740 – 1,229 511 4,677 – 3,431 1,246 261,121 636,706

9 1,960 6,147 1,960 – 1,229 731 6,147 – 3,431 2,716 534,361 1,985,396

10 2,210 6,535 2,210 – 1,229 981 6,535 – 3,431 3,104 962,361 3,045,024

1,229 3,431 3,703,690 11,624,370

Means Sums

248	 Chapter 8 I Machine learning

Now we can plug in the calculated values to the least-squares equation to calculate m:

Now that we have a value for m, we can calculate c by substituting the mean values for x
and y. Remember that all regression lines will pass this point, so it is a known point
within the regression line:

Finally, we can plot the line by generating some values for carats between the minimum
value and maximum value, plugging them into the equation that represents the regres-
sion line, and then plotting it (figure 8.13):

	 A machine learning workflow� 249

Figure 8.13 A regression line plotted with the data points

We’ve trained a linear regression line based on our dataset that accurately fits the data,
so we’ve done some machine learning by hand.

EXERCISE: CALCULATE A REGRESSION LINE USING THE LEAST-SQUARES METHOD

Following the steps described and using the following dataset, calculate the
regression line with the least-squares method.

Carat (x) Price (y)

1 320 350

2 460 560

3 800 2,760

4 910 2,800

5 1,350 2,900

6 1,390 3,600

7 1,650 4,000

8 1,700 4,650

9 1,950 6,100

10 2,000 6,500

250	 Chapter 8 I Machine learning

SOLUTION: CALCULATE A REGRESSION LINE USING THE LEAST-SQUARES METHOD

The means for each dimension need to be calculated. The means are 1,253 for
x and 3,422 for y. The next step is calculating the difference between each
value and its mean. Next, the square of the difference between x and the mean
of x is calculated and summed, which results in 3,251,610. Finally, the differ-
ence between x and the mean of x is multiplied by the difference between y
and the mean of y and summed, resulting in 10,566,940.

Carat (x) Price (y)
x – mean

of x
y – mean

of y
(x – mean

of x)^2
(x – mean of x) *
(y – mean of y)

1 320 350 -933 -3,072 870,489 2,866,176

2 460 560 -793 -2,862 628,849 2,269,566

3 800 2,760 -453 -662 205,209 299,886

4 910 2,800 -343 -622 117,649 213,346

5 1,350 2,900 97 -522 9,409 -50,634

6 1,390 3,600 137 178 18,769 24,386

7 1,650 4,000 397 578 157,609 229,466

8 1,700 4,650 447 1,228 199,809 548,916

9 1,950 6,100 697 2,678 485,809 1,866,566

10 2,000 6,500 747 3,078 558,009 2,299,266

1,253 3,422 3,251,610 10,566,940

The values can be used to calculate the slope, m:

m = 10566940 / 3251610
m = 3.25

Remember the equation for a line:

y = c + mx

Substitute the mean values for x and y and the newly calculated m:

3422 = c + 3.35 * 1253
c = -775.55

Substitute the minimum and maximum values for x to calculate points to plot a line:

Point 1, we use the minimum value for Carat: x = 320
y = 775.55 + 3.25 * 320
y = 1 815.55

Point 2, we use the maximum value for Carat: x = 2000
y = 775.55 + 3.25 * 2000
y = 7 275.55

	 A machine learning workflow� 251

Now that we have an intuition about how to use linear regression and how regression
lines are calculated, let’s take a look at the pseudocode.

Pseudocode

The code is similar to the steps that we walked through. The only interesting aspects are
the two for loops used to calculate summed values by iterating over every element in
the dataset:

Testing the model: Determine the accuracy of the model
Now that we have determined a regression line, we can use it to make price predictions
for other Carat values. We can measure the performance of the regression line with new
examples in which we know the actual price and determine how accurate the linear
regression model is.

We can’t test the model with the same data that we used to train it. This approach
would result in high accuracy and be meaningless. The trained model must be tested
with real data that it hasn’t been trained with.

Express the first point of the
regression line by y = c + mx

Express the second point of the
regression line by y = c + mx

252	 Chapter 8 I Machine learning

Separating training and testing data
Training and testing data are usually split 80/20, with 80% of the available data used as
training data and 20% used to test the model. Percentages are used because the number
of examples needed to train a model accurately is difficult to know; different contexts
and questions being asked may need more or less data.

Figure 8.14 and table 8.12 represent a set of testing data for the diamond example.
Remember that we scaled the Carat values to be similar-size numbers to the Price values
(all Carat values have been multiplied by 1,000) to make them easier to read and work
with. The dots represent the testing data points, and the line represents the trained
regression line.

Table 8.12  The carat and
price data

Carat (x) Price (y)

1 220 342

2 330 403

3 710 2,772

4 810 2,789

5 1,080 2,869

6 1,390 3,914

7 1,500 4,022

8 1,640 4,849

9 1,850 5,688

10 1,910 6,632

	 Figure 8.14 A regression line plotted with the data points

Testing a model involves making predictions with unseen training data and then com-
paring the accuracy of the model’s prediction with the actual values. In the diamond
example, we have the actual Price values, so we will determine what the model predicts
and compare the difference.

	 A machine learning workflow� 253

Measuring the performance of the line
In linear regression, a common method of measuring the accuracy of the model is cal-
culating R2 (R squared). R2 is used to determine the variance between the actual value
and a predicted value. The following equation is used to calculate the R2 score:

The first things we need to do, similar to the training step, are calculate the mean of the
actual Price values, calculate the distances between the actual Price values and the mean
of the prices, and then calculate the square of those values. We are using the values plot-
ted as dots in figure 8.14 (table 8.13).

Table 8.13  The diamond dataset and calculations

Carat (x) Price (y) y – mean of y (y – mean of y)^2

1 220 342 -3,086 9,523,396

2 330 403 -3,025 9,150,625

3 710 2,772 -656 430,336

4 810 2,789 -639 408,321

5 1,080 2,869 -559 312,481

6 1,390 3,914 486 236,196

7 1,500 4,022 594 352,836

8 1,640 4,849 1,421 2,019,241

9 1,850 5,688 2,260 5,107,600

10 1,910 6,632 3,204 10,265,616

3,428 37,806,648

Mean Sum

The next step is calculating the predicted Price value for every Carat value, squaring the
values, and calculating the sum of all those values (table 8.14).

254	 Chapter 8 I Machine learning

Table 8.14  The diamond dataset and calculations, part 2

Carat (x) Price (y)
y – mean

of y
(y – mean

of y)^2 Predicted y

Predicted
y – mean

of y

(Predicted
y – mean

of y)^2

1 220 342 -3,086 9,523,396 264 -3,164 10,009,876

2 330 403 -3,025 9,150,625 609 -2,819 7,944,471

3 710 2,772 -656 430,336 1,802 -1,626 2,643,645

4 810 2,789 -639 408,321 2,116 -1,312 1,721,527

5 1,080 2,869 -559 312,481 2,963 -465 215,900

6 1,390 3,914 486 236,196 3,936 508 258,382

7 1,500 4,022 594 352,836 4,282 854 728,562

8 1,640 4,849 1,421 2,019,241 4,721 1,293 1,671,748

9 1,850 5,688 2,260 5,107,600 5,380 1,952 3,810,559

10 1,910 6,632 3,204 10,265,616 5,568 2,140 4,581,230

3,428 3,7806,648 33,585,901

Mean Sum Sum

Using the sum of the square of the difference between the predicted price and mean, and
the sum of the square of the difference between the actual price and mean, we can cal-
culate the R2 score:

The result—0.88—means that the model is 88% accurate to the new unseen data. This
result is a fairly good one, showing that the linear regression model is fairly accurate. For
the diamond example, this result is satisfactory. Determining whether the accuracy is
satisfactory for the problem we’re trying to solve depends on the domain of the problem.
We will be exploring performance of machine learning models in the next section.

Additional information: For a gentle introduction to fitting lines to data, reference
http://mng.bz/Ed5q —a chapter from Math for Programmers by Manning Publications.
Linear regression can be applied to more dimensions. We can determine the relationship
among Carat values, prices, and cut of diamonds, for example, through a process called
multiple regression. This process adds some complexity to the calculations, but the fun-
damental principles remain the same.

	 A machine learning workflow� 255

Improving accuracy
After training a model on data and measuring how well it performs on new testing data, we
have an idea of how well the model performs. Often, models don’t perform as well as desired,
and additional work needs to be done to improve the model, if possible. This improvement
involves iterating on the various steps in the machine learning life cycle (figure 8.15).

Figure 8.15 A refresher on the machine learning life cycle

The results may require us to pay attention to one or more of the following areas. Machine
learning is experimental work in which different tactics at different stages are tested
before settling on the best-performing approach. In the diamond example, if the model
that used Carat values to predict Price performed poorly, we might use the dimensions
of the diamond that indicate size, coupled with the Carat value, to try to predict the price
more accurately. Here are some ways to improve the accuracy of the model:

•	 Collect more data. One solution may be to collect more data related to the dataset
that is being explored, perhaps augmenting the data with relevant external data
or including data that previously was not considered.

•	 Prepare the data differently. The data used for training may need to be prepared
in a different way. Referring to the techniques used to fix data earlier in this
chapter, there may be errors in the approach. We may need to use different
techniques to find values for missing data, replace ambiguous data, and encode
categorical data.

•	 Choose different features in the data. Other features in the dataset may be better
suited to predicting the dependent variable. The X dimension value might be a
good choice to predict the Table value, for example, because it has a physical
relationship with it, as shown in the diamond terminology figure (figure 8.5),
whereas predicting Clarity with the X dimension is meaningless.

256	 Chapter 8 I Machine learning

•	 Use a different algorithm to train the model. Sometimes, the selected algorithm is
not suited to the problem being solved or the nature of the data. We can use a
different algorithm to accomplish different goals, as discussed in the next
section.

•	 Dealing with false-positive tests. Tests can be deceiving. A good test score may
show that the model performs well, but when the model is presented with unseen
data, it might perform poorly. This problem can be due to overfitting the data.
Overfitting is when the model is too closely aligned with the training data and is
not flexible for dealing with new data with more variance. This approach is
usually applicable to classification problems, which we also dive into in the next
section.

If linear regression didn’t provide useful results, or if we have a different question to ask,
we can try a range of other algorithms. The next two sections will explore algorithms to
use when the question is different in its nature.

Classification with decision trees
Simply put, classification problems involve assigning a label to an example based on its
attributes. These problems are different from regression, in which a value is estimated.
Let’s dive into classification problems and see how to solve them.

Classification problems: Either this or that
We have learned that regression involves predicting a value based on one or more other
variables, such as predicting the price of a diamond given its Carat value. Classification
is similar in that it aims to predict a value but predicts discrete classes instead of contin-
uous values. Discrete values are categorical features of a dataset such as Cut, Color, or
Clarity in the diamond dataset, as opposed to continuous values such as Price or Depth.

Here’s another example. Suppose that we have several vehicles that are cars and trucks.
We will measure the weight of each vehicle and the number of wheels of each vehicle. We
also forget for now that cars and trucks look different. Almost all cars have four wheels,
and many large trucks have more than four wheels. Trucks are usually heavier than cars,
but a large sport-utility vehicle may be as heavy as a small truck. We could find relation-
ships between the weight and number of wheels of vehicles to predict whether a vehicle
is a car or a truck (figure 8.16).

	 Classification with decision trees� 257

Figure 8.16 Example vehicles for potential classification based
on the number of wheels and weight

EXERCISE: REGRESSION VS. CLASSIFICATION

Consider the following scenarios, and determine whether each one is a regres-
sion or classification problem:

1.	 Based on data about rats, we have a life-expectancy feature and an obesity
feature. We’re trying to find a correlation between the two features.

2.	 Based on data about animals, we have the weight of each animal and whether
or not it has wings. We’re trying to determine which animals are birds.

3.	 Based on data about computing devices, we have the screen size, weight, and
operating system of several devices. We want to determine which devices are
tablets, laptops, or phones.

4.	 Based on data about weather, we have the amount of rainfall and a humidity
value. We want to determine the humidity in different rainfall seasons.

SOLUTION: REGRESSION VS. CLASSIFICATION

1.	 Regression—The relationship between two variables is being explored. Life
expectancy is the dependent variable, and obesity is the independent variable.

2.	 Classification—We are classifying an example as a bird or not a bird, using the
weight and the wing characteristic of the examples.

3.	 Classification—An example is being classified as a tablet, laptop, or phone by
using its other characteristics.

4.	 Regression—The relationship between rainfall and humidity is being
explored. Humidity is the dependent variable, and rainfall is the independent
variable.

258	 Chapter 8 I Machine learning

The basics of decision trees
Different algorithms are used for regression and classification problems. Some popular
algorithms include support vector machines, decision trees, and random forests. In this
section, we will be looking at a decision-tree algorithm to learn classification.

Decision trees are structures that describe a series of decisions that are made to find a
solution to a problem (figure 8.17). If we’re deciding whether to wear shorts for the day,
we might make a series of decisions to inform the outcome. Will it be cold during the
day? If not, will we be out late in the evening, when it does get cold? We might decide to
wear shorts on a warm day, but not if we will be out when it gets cold.

Figure 8.17 Example of a basic decision tree

For the diamond example, we will try to predict the cut of a diamond based on the Carat
and Price values by using a decision tree. To simplify this example, assume that we’re a
diamond dealer who doesn’t care about each specific cut. We will group the differ-
ent cuts into two broader categories. Fair and Good cuts will be grouped into a cate-
gory called Okay, and Very Good, Premium, and Ideal cuts will be grouped into a
category called Perfect.

1 Fair 1 Okay

2 Good

3 Very Good 2 Perfect

4 Premium

5 Ideal

	 Classification with decision trees� 259

Our sample dataset now looks like table 8.15.

Table 8.15  The dataset used for the classification example

Carat Price Cut

1 0.21 327 Okay

2 0.39 897 Perfect

3 0.50 1,122 Perfect

4 0.76 907 Okay

5 0.87 2,757 Okay

6 0.98 2,865 Okay

7 1.13 3,045 Perfect

8 1.34 3,914 Perfect

9 1.67 4,849 Perfect

10 1.81 5,688 Perfect

By looking at the values in this small example and intuitively looking for patterns, we
might notice something. The price seems to spike significantly after 0.98 carats, and the
increased price seems to correlate with the diamonds that are Perfect, whereas diamonds
with smaller Carat values tend to be Average. But example 3, which is Perfect, has a small
Carat value. Figure 8.18 shows what would happen if we were to create questions to filter
the data and categorize it by hand. Notice that decision nodes contain our questions, and
leaf nodes contain examples that have been categorized.

Figure 8.18 Example of a decision tree designed through human intuition

260	 Chapter 8 I Machine learning

With the small dataset, we could easily categorize the diamonds by hand. In real-world
datasets, however, there are thousands of examples to work through, with possibly thou-
sands of features, making it close to impossible for a person to create a decision tree by
hand. This is where decision tree algorithms come in. Decision trees can create the ques-
tions that filter the examples. A decision tree finds the patterns that we might miss and
is more accurate in its filtering.

Training decision trees
To create a tree that is intelligent in making the right decisions to classify diamonds, we
need a training algorithm to learn from the data. There is a family of algorithms for
decision tree learning, and we will use a specific one named CART (Classification and
Regression Tree). The foundation of CART and the other tree learning algorithms is this:
decide what questions to ask and when to ask those questions to best filter the examples
into their respective categories. In the diamond example, the algorithm must learn the
best questions to ask about the Carat and Price values, and when to ask them, to best
segment Average and Perfect diamonds.

Data structures for decision trees
To help us understand how the decisions of the tree will be structured, we can review the
following data structures, which organize logic and data in a way that’s suitable for the
decision tree learning algorithm:

•	 Map of classes/label groupings—A map is a key-value pair of elements that cannot
have two keys that are the same. This structure is useful for storing the number
of examples that match a specific label and will be useful to store the values
required for calculating entropy, also known as uncertainty. We’ll learn about
entropy soon.

•	 Tree of nodes—As depicted in the previous tree figure (figure 8.18), several nodes
are linked to compose a tree. This example may be familiar from some of the
earlier chapters. The nodes in the tree are important for filtering/partitioning the
examples into categories:

	° Decision node—A node in which the dataset is being split or filtered.

•	 Question: What question is being asked? (See the Question point
coming up).

•	 True examples: The examples that satisfy the question.

•	 False examples: The examples that don’t satisfy the question.

	° Examples node/leaf node—A node containing a list of examples only. All
examples in this list would have been categorized correctly.

•	 Question—A question can be represented differently depending on how flexible
it can be. We could ask, “Is the Carat value > 0.5 and < 1.13?” To keep this

	 Classification with decision trees� 261

example simple to understand, the question is a variable feature, a variable value,
and the >= operator: “Is Carat >= 0.5?” or “Is Price >=3,045?”

	° Feature—The feature that is being interrogated

	° Value—The constant value that the comparing value must be greater than
or equal to

Decision-tree learning life cycle
This section discusses how a decision-tree algorithm filters data with decisions to clas-
sify a dataset correctly. Figure 8.19 shows the steps involved in training a decision tree.
The flow described in figure 8.19 is covered throughout the rest of this section.

Figure 8.19 A basic flow for building a decision tree

In building a decision tree, we test all possible questions to determine which one is the
best question to ask at a specific point in the decision tree. To test a question, we use the
concept of entropy—the measurement of uncertainty of a dataset. If we had 5 Perfect
diamonds and 5 Okay diamonds, and tried to pick a Perfect diamond by randomly
selecting a diamond from the 10, what are the chances that the diamond would be Perfect
(figure 8.20)?

262	 Chapter 8 I Machine learning

Figure 8.20 Example of uncertainty

Given an initial dataset of diamonds with the Carat, Price, and Cut features, we can
determine the uncertainty of the dataset by using the Gini index. A Gini index of 0
means that the dataset has no uncertainty and is pure; it might have 10 Perfect dia-
monds, for example. Figure 8.21 describes how the Gini index is calculated.

Figure 8.21 The Gini index calculation

The Gini index is 0.5, so there’s a 50% chance of choosing an incorrectly labeled example
if one is randomly selected, as shown in figure 8.20 earlier.

The next step is creating a decision node to split the data. The decision node includes
a question that can be used to split the data in a sensible way and decrease the uncer-
tainty. Remember that 0 means no uncertainty. We aim to partition the dataset into
subsets with zero uncertainty.

Many questions are generated based on every feature of each example to split the data
and determine the best split outcome. Because we have 2 features and 10 examples, the
total number of questions generated would be 20. Figure 8.22 depicts some of the ques-
tions asked—simple questions about whether the value of a feature is greater than or
equal to a specific value.

	 Classification with decision trees� 263

Figure 8.22 An example of questions asked to split the data with a decision node

Uncertainty in a dataset is determined by the Gini index, and questions aim to reduce
uncertainty. Entropy is another concept that measures disorder using the Gini index for
a specific split of data based on a question asked. We must have a way to determine how
well a question reduced uncertainty, and we accomplish this task by measuring informa-
tion gain. Information gain describes the amount of information gained by asking a spe-
cific question. If a lot of information is gained, the uncertainty is smaller.

Information gain is calculated by the subtracting entropy before the question is asked
by the entropy after the question is asked, following these steps:

1.	 Split the dataset by asking a question.

2.	 Measure the Gini index for the left split.

3.	 Measure the entropy for the left split compared with the dataset before the split.

4.	 Measure the Gini index for the right split.

5.	 Measure the entropy for the right split compared with the dataset before the split.

264	 Chapter 8 I Machine learning

6.	 Calculate the total entropy after by adding the left entropy and right entropy.

7.	 Calculate the information gain by subtracting the total entropy after from the
total entropy before.

Figure 8.23 illustrates the data split and information gain for the question “Is Price >= 3914?”

Figure 8.23 Illustration of data split and information gain based on a question

In the example in figure 8.23, the information gain for all questions is calculated, and
the question with the highest information gain is selected as the best question to ask at
that point in the tree. Then the original dataset is split based on the decision node with
the question “Is Price >= 3,914?” A decision node containing this question is added to the
decision tree, and the left and right splits stem from that node.

In figure 8.24, after the dataset is split, the left side contains a pure dataset of Perfect
diamonds only, and the right side contains a dataset with mixed diamond classifications,
including two Perfect diamonds and five Okay diamonds. Another question must be
asked on the right side of the dataset to split the dataset further. Again, several questions
are generated by using the features of each example in the dataset.

	 Classification with decision trees� 265

Figure 8.24 The resulting decision tree after the first decision node and possible questions

EXERCISE: CALCULATING UNCERTAINTY AND INFORMATION GAIN FOR A QUESTION

Using the knowledge gained and figure 8.23 as a guide, calculate the informa-
tion gain for the question “Is Carat >= 0.76?”

266	 Chapter 8 I Machine learning

SOLUTION: CALCULATING UNCERTAINTY AND INFORMATION GAIN FOR A QUESTION

The solution depicted in figure 8.25 highlights the reuse of the pattern of
calculations that determine the entropy and information gain, given a ques-
tion. Feel free to practice more questions and compare the results with the
information-gain values in the figure.

Figure 8.25 Illustration of data split and information gain based on a question at the second level

	 Classification with decision trees� 267

The process of splitting, generating questions, and determining information gained hap-
pens recursively until the dataset is completely categorized by questions. Figure 8.26
shows the complete decision tree, including all the questions asked and the resulting
splits.

Figure 8.26 The complete trained decision tree

268	 Chapter 8 I Machine learning

It is important to note that decision trees are usually trained with a much larger sample
of data. The questions asked need to be more general to accommodate a wider variety of
data and, thus, would need a variety of examples to learn from.

Pseudocode

When programming a decision tree from scratch, the first step is counting the number
of examples of each class—in this case, the number of Okay diamonds and the number
of Perfect diamonds:

Next, examples are split based on a question. Examples that satisfy the question are
stored in examples_true, and the rest are stored in examples_false:

	 Classification with decision trees� 269

We need a function that calculates the Gini index for a set of examples. The next func-
tion calculates the Gini index by using the method described in figure 8.23:

information_gain uses the left and right splits and the current uncertainty to
determine the information gain:

270	 Chapter 8 I Machine learning

The next function may look daunting, but it’s iterating over all the features and their
values in the dataset, and finding the best information gain to determine the best ques-
tion to ask:

The next function ties everything together, using the functions defined previously to
build a decision tree:

Note that this function is recursive. It splits the data and recursively splits the resulting
dataset until there is no information gain, indicating that the examples cannot be split
any further. As a reminder, decision nodes are used to split the examples, and example
nodes are used to store split sets of examples.

	 Classification with decision trees� 271

We’ve now learned how to build a decision-tree classifier. Remember that the trained
decision-tree model will be tested with unseen data, similar to the linear regression
approach explored earlier.

One problem with decision trees is overfitting, which occurs when the model is
trained too well on several examples but performs poorly for new examples. Overfitting
happens when the model learns the patterns of the training data but new real-world data
is slightly different and doesn’t meet the splitting criteria of the trained model. A model
with 100% accuracy is usually overfitted to the data. Some examples are classified incor-
rectly in an ideal model as a consequence of the model being more general to support
different cases. Overfitting can happen with any machine learning model, not just deci-
sion trees.

Figure 8.27 illustrates the concept of overfitting. Underfitting includes too many
incorrect classifications, and overfitting includes too few or no incorrect classifications;
the ideal is somewhere in between.

Figure 8.27 Underfitting, ideal, and overfitting

Classifying examples with decision trees
Now that a decision tree has been trained and the right questions have been determined,
we can test it by providing it new data to classify. The model that we’re referring to is the
decision tree of questions that was created by the training step.

To test the model, we provide several new examples of data and measure whether they
have been classified correctly, so we need to know the labeling of the testing data. In the
diamond example, we need more diamond data, including the Cut feature, to test the
decision tree (table 8.16).

272	 Chapter 8 I Machine learning

Table 8.16  The diamond dataset for classification

Carat Price Cut

1 0.26 689 Perfect

2 0.41 967 Perfect

3 0.52 1,012 Perfect

4 0.76 907 Okay

5 0.81 2,650 Okay

6 0.90 2,634 Okay

7 1.24 2,999 Perfect

8 1.42 3850 Perfect

9 1.61 4,345 Perfect

10 1.78 3,100 Okay

Figure 8.28 illustrates the decision-tree model that we trained, which will be used to
process the new examples. Each example is fed through the tree and classified.

Figure 8.28 The decision tree model that will process new examples

The resulting predicted classifications are detailed in table 8.17. Assume that we’re try-
ing to predict Okay diamonds. Notice that three examples are incorrect. That result is
3 of 10, which means that the model predicted 7 of 10, or 70% of the testing data correctly.
This performance isn’t terrible, but it illustrates how examples can be misclassified.

	 Classification with decision trees� 273

Table 8.17  The diamond dataset for classification and predictions

Carat Price Cut Prediction

1 0.26 689 Okay Okay ✓
2 0.41 880 Perfect Perfect ✓
3 0.52 1,012 Perfect Perfect ✓
4 0.76 907 Okay Okay ✓
5 0.81 2,650 Okay Okay ✓
6 0.90 2,634 Okay Okay ✓
7 1.24 2,999 Perfect Okay †

8 1.42 3,850 Perfect Okay †

9 1.61 4,345 Perfect Perfect ✓
10 1.78 3,100 Okay Perfect †

A confusion matrix is often used to measure the performance of a model with test-
ing data. A confusion matrix describes the performance using the following metrics
(figure 8.29):

•	 True positive (TP)—Correctly classified examples as Okay

•	 True negative (TN)—Correctly classified examples as Perfect

•	 False positive (FP)—Perfect examples classified as Okay

•	 False negative (FN)—Okay examples classified as Perfect

Figure 8.29 A confusion matrix

274	 Chapter 8 I Machine learning

The outcomes of testing the model with unseen examples can be used to deduce several
measurements:

•	 Precision—How often Okay examples are classified correctly

•	 Negative precision—How often Perfect examples are classified correctly

•	 Sensitivity or recall—Also known as the true-positive rate; the ratio of correctly
classified Okay diamonds to all the actual Okay diamonds in the training set

•	 Specificity—Also known as the true-negative rate; the ratio of correctly classified
Perfect diamonds to all actual Perfect diamonds in the training set

•	 Accuracy—How often the classifier is correct overall between classes

Figure 8.30 shows the resulting confusion matrix, with the results of the diamond exam-
ple listed as input. Accuracy is important, but the other measurements can unveil addi-
tional useful information about the model’s performance.

Figure 8.30 Confusion matrix for the diamond test example

By using these measurements, we can make more-informed decisions in a machine
learning life cycle to improve the performance of the model. As mentioned throughout
this chapter, machine learning is an experimental exercise involving some trial and
error. These metrics are guides in this process.

	 Other popular machine learning algorithms� 275

Other popular machine learning algorithms
This chapter explores two popular and fundamental machine learning algorithms. The
linear-regression algorithm is used for regression problems in which the relationships
between features are discovered. The decision-tree algorithm is used for classification
problems in which the relationships between features and categories of examples are
discovered. But many other machine learning algorithms are suitable in different con-
texts and for solving different problems. Figure 8.31 illustrates some popular algorithms
and shows how they fit into the machine learning landscape.

Figure 8.31 A map of popular machine learning algorithms

The classification and regression algorithms satisfy problems similar to the ones explored
in this chapter. Unsupervised learning contains algorithms that can help with some of
the data preparation steps, find hidden underlying relationships in data, and inform
what questions can be asked in a machine learning experiment.

Notice the introduction of deep learning in figure 8.31. Chapter 9 covers artificial
neural networks—a key concept in deep learning. This chapter will give us a better
understanding of the types of problems that can be solved with these approaches and
how the algorithms are implemented.

276	 Chapter 8 I Machine learning

Use cases for machine learning algorithms
Machine learning can be applied in almost every industry to solve a plethora of problems
in different domains. Given the right data and the right questions, the possibilities are
potentially endless. We have all interacted with a product or service that uses some aspect
of machine learning and data modeling in our everyday lives. This section highlights some
of the popular ways machine learning can be used to solve real-world problems at scale:

•	 Fraud and threat detection—Machine learning has been used to detect and prevent
fraudulent transactions in the finance industry. Financial institutions have gained a
wealth of transactional information over the years, including fraudulent transaction
reports from their customers. These fraud reports are an input to labeling and
characterizing fraudulent transactions. The models might consider the location of
the transaction, the amount, the merchant, and so on to classify transactions, saving
consumers from potential losses and the financial institution from insurance losses.
The same model can be applied to network threat detection to detect and prevent
attacks based on known network use and reported unusual behavior.

•	 Product and content recommendations—Many of us use e-commerce sites to
purchase goods or media streaming services for audio and video consumption.
Products may be recommended to us based on what we’re purchasing, or content
may be recommended based on our interests. This functionality is usually
enabled by machine learning, in which patterns in purchase or viewing behavior
is derived from people’s interactions. Recommender systems are being used in
more and more industries and applications to enable more sales or provide a
better user experience.

•	 Dynamic product and service pricing—Products and services are often priced
based on what someone is willing to pay for them or based on risk. For a ride-
sharing system, it might make sense to hike the price if there are fewer available
cars than the demand for a ride, sometimes referred to as surge pricing. In the
insurance industry, a price might be hiked if a person is categorized as high-risk.
Machine learning is used to find the attributes and relationships between the
attributes that influence pricing based on dynamic conditions and details about
a unique individual.

•	 Health-condition risk prediction—The medical industry requires health
professionals to acquire an abundance of knowledge so that they can diagnose and
treat patients. Over the years, they have gained a vast amount of data about
patients: blood types, DNA, family-illness history, geographic location, lifestyle,
and more. This data can be used to find potential patterns that can guide the
diagnosis of illness. The power of using data to find diagnoses is that we can treat
conditions before they mature. Additionally, by feeding the outcomes back into the
machine learning system, we can strengthen its reliability in making predictions.

	 Use cases for machine learning algorithms� 277

SUMMARY OF MACHINE LEARNING

279

This chapter covers

•	 Understanding the inspiration and intuition of artificial neural

networks

•	 Identifying problems that can be solved with artificial neural

networks

•	 Understanding and implementing forward propagation using a

trained network

•	 Understanding and implementing backpropagation to train a

network

•	 Designing artificial neural network architectures to tackle different

problems

9Artificial
neural networks

280	 Chapter 9 I Artificial neural networks

What are artificial neural networks?
Artificial neural networks (ANNs) are powerful tools in the machine learning toolkit,
used in a variety of ways to accomplish objectives such as image recognition, natural
language processing, and game playing. ANNs learn in a similar way to other machine
learning algorithms: by using training data. They are best suited to unstructured data
where it’s difficult to understand how features relate to one another. This chapter covers
the inspiration of ANNs; it also shows how the algorithm works and how ANNs are
designed to solve different problems.

To gain a clear understanding of how ANNs fit into the bigger machine learning land-
scape, we should review the composition and categorization of machine learning
algorithms. Deep learning is the name given to algorithms that use ANNs in varying
architectures to accomplish an objective. Deep learning, including ANNs, can be used
to solve supervised learning, unsupervised learning, and reinforcement learning prob-
lems. Figure 9.1 shows how deep learning relates to ANNs and other machine learn-
ing concepts.

Figure 9.1 A map describing the flexibility of deep learning and ANNs

	 What are artificial neural networks?� 281

ANNs can be seen as just another model in the machine learning life cycle (chapter 8).
Figure 9.2 recaps that life cycle. A problem needs to be identified; that data needs to
be collected, understood, and prepared; and the ANN model will be tested and improved
if necessary.

Figure 9.2 A workflow for machine learning experiments and projects

Now that we have an idea of how ANNs fit into the abstract machine learning landscape
and know that an ANN is another model that is trained in the life cycle, let’s explore the
intuition and workings of ANNs. Like genetic algorithms and swarm-intelligence algo-
rithms, ANNs are inspired by natural phenomena—in this case, the brain and nervous
system. The nervous system is a biological structure that allows us to feel sensations and
is the basis of how our brains operate. We have nerves across our entire bodies and neu-
rons that behave similarly in our brains.

Neural networks consist of interconnected neurons that pass information by using
electrical and chemical signals. Neurons pass information to other neurons and adjust
information to accomplish a specific function. When you grab a cup and take a sip of
water, millions of neurons process the intention of what you want to do, the physical
action to accomplish it, and the feedback to determine whether you were successful.
Think about little children learning to drink from a cup. They usually start out poorly,
dropping the cup a lot. Then they learn to grab it with two hands. Gradually, they learn
to grab the cup with a single hand and take a sip without any problems. This process
takes months. What’s happening is that their brains and nervous systems are learning
through practice or training. Figure 9.3 depicts a simplified model of receiving inputs
(stimuli), processing them in a neural network, and providing outputs (response).

282	 Chapter 9 I Artificial neural networks

Figure 9.3 A simplified model of a biological neural system

Simplified, a neuron (figure 9.4) consists of dendrites that receive signals from other
neurons; a cell body and a nucleus that activates and adjusts the signal; an axon that
passes the signal to other neurons; and synapses that carry, and in the process adjust,
the signal before it is passed to the next neuron’s dendrites. Through approximately
90 billion neurons working together, our brains can function at the high level of intelli-
gence that we know.

Figure 9.4 The general composition of neurons

Although ANNs are inspired by biological neural networks and use many of the con-
cepts that are observed in these systems, ANNs are not identical representations of bio-
logical neural systems. We still have a lot to learn about the brain and nervous system.

	 The Perceptron: A representation of a neuron� 283

The Perceptron: A representation of a neuron
The neuron is the fundamental concept that makes up the brain and nervous system.
As mentioned earlier, it accepts many inputs from other neurons, processes those
inputs, and transfers the result to other connected neurons. ANNs are based on the
fundamental concept of the Perceptron—a logical representation of a single biological
neuron.

Like neurons, the Perceptron receives inputs (like dendrites), alters these inputs by
using weights (like synapses), processes the weighted inputs (like the cell body and
nucleus), and outputs a result (like axons). The Perceptron is loosely based on a neuron.
You may notice that the synapses are depicted after the dendrites, representing the influ-
ence of synapses on incoming inputs. Figure 9.5 depicts the logical architecture of the
Perceptron.

Figure 9.5 Logical architecture of the Perceptron

The components of the Perceptron are described by variables that are useful in calculat-
ing the output. Weights modify the inputs; that value is processed by a hidden node; and
finally, the result is provided as the output.

Here is a brief description of the components of the Perceptron:

•	 Inputs—Describe the input values. In a neuron, these values would be an
input signal.

•	 Weights—Describe the weights on each connection between an input and the
hidden node. Weights influence the intensity of an input and result in a weighted
input. In a neuron, these connections would be the synapses.

284	 Chapter 9 I Artificial neural networks

•	 Hidden node (sum and activation)—Sums the weighted input values and then
applies an activation function to the summed result. An activation function
determines the activation/output of the hidden node/neuron.

•	 Output—Describes the final output of the Perceptron.

To understand the workings of the Perceptron, we will examine the use of one by revis-
iting the apartment-hunting example from chapter 8. Suppose that we are real estate
agents trying to determine whether a specific apartment will be rented within a month,
based on the size of the apartment and the price of the apartment. Assume that a
Perceptron has already been trained, meaning that the weights for the Perceptron have
already been adjusted. We explore the way Perceptions and ANNs are trained later in
this chapter; for now, understand that the weights encode relationships among the inputs
by adjusting the strength of inputs.

Figure 9.6 shows how we can use a pretrained Perceptron to classify whether an apart-
ment will be rented. The inputs represent the price of a specific apartment and the size
of that apartment. We’re also using the maximum price and size to scale the inputs
($8,000 for maximum price and 80 square meters for maximum size). For more about
scaling data, see the next section.

Figure 9.6 An example of using a trained Perceptron

Notice that the price and size are the inputs and that the predicted chance of the apart-
ment being rented is the output. The weights are key to achieving the prediction. Weights
are the variables in the network that learn relationships among inputs. The summation
and activation functions are used to process the inputs multiplied by the weights to
make a prediction.

	 The Perceptron: A representation of a neuron� 285

Notice that we’re using an activation function called the sigmoid function. Activation
functions play a critical role in the Perceptron and ANNs. In this case, the activation
function is helping us solve a linear problem. But when we look at ANNs in the next
section, we will see how activation functions are useful for receiving inputs to solve non-
linear problems. Figure 9.7 describes the basics of linear problems.

The sigmoid function results in an S curve between 0 and 1, given inputs between 0
and 1. Because the sigmoid function allows changes in x to result in small changes in y,
it allows for gradual learning. When we get to the deeper workings of ANNs later in this
chapter, we will see how this function helps solve nonlinear problems as well.

Figure 9.7 The sigmoid function

Let’s take a step back and look at the data that we’re using for the Perceptron.
Understanding the data related to whether an apartment was sold is important for
understanding what the Perceptron is doing. Figure 9.8 illustrates the examples in the
dataset, including the price and size of each apartment. Each apartment is labeled as one
of two classes: rented or not rented. The line separating the two classes is the function
described by the Perceptron.

286	 Chapter 9 I Artificial neural networks

Figure 9.8 Example of a linear classification problem

Although the Perceptron is useful for solving linear problems, it cannot solve nonlinear
problems. If a dataset cannot be classified by a straight line, the Perceptron will fail.

ANNs use the concept of the Perceptron at scale. Many neurons similar to the
Perceptron work together to solve nonlinear problems in many dimensions. Note that
the activation function used influences the learning capabilities of the ANN.

EXERCISE: CALCULATE THE OUTPUT OF THE FOLLOWING INPUT FOR THE PERCEPTRON

Using your knowledge of how the Perceptron works, calculate the output for
the following:

	 Defining artificial neural networks� 287

SOLUTION: CALCULATE THE OUTPUT OF THE FOLLOWING INPUT FOR THE PERCEPTRON

Defining artificial neural networks
The Perceptron is useful for solving simple problems, but as the dimensions of the data
increases, it becomes less feasible. ANNs use the principles of the Perceptron and apply
them to many hidden nodes as opposed to a single one.

To explore the workings of multi-node ANNs, consider an example dataset related to
car collisions. Suppose that we have data from several cars at the moment that an unfore-
seen object enters the path of their movement. The dataset contains features related to
the conditions and whether a collision occurred, including the following:

•	 Speed—The speed at which the car was traveling before encountering the object

•	 Terrain quality—The quality of the road on which the car was traveling before
encountering the object

•	 Degree of vision—The driver’s degree of vision before the car encountered
the object

•	 Total experience—The total driving experience of the driver of the car

•	 Collision occurred?—Whether a collision occurred or not

Given this data, we want to train a machine learning model—namely, an ANN—to
learn the relationship between the features that contribute to a collision, as shown in
table 9.1.

288	 Chapter 9 I Artificial neural networks

Table 9.1  Car collision dataset

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

1 65 km/h 5/10 180° 80,000 km No

2 120 km/h 1/10 72° 110,000 km Yes

3 8 km/h 6/10 288° 50,000 km No

4 50 km/h 2/10 324° 1,600 km Yes

5 25 km/h 9/10 36° 160,000 km No

6 80 km/h 3/10 120° 6,000 km Yes

7 40 km/h 3/10 360° 400,000 km No

An example ANN architecture can be used to classify whether a collision will occur
based on the features we have. The features in the dataset must be mapped as inputs to
the ANN, and the class that we are trying to predict is mapped as the output of the ANN.
In this example, the input nodes are speed, terrain quality, degree of vision, and total
experience; the output node is whether a collision happened (figure 9.9).

Figure 9.9 Example ANN architecture for the car-collision example

As with the other machine learning algorithms that we’ve worked through, preparing
data is important for making an ANN classify data successfully. The primary concern is
representing data in comparable ways. As humans, we understand the concept of speed
and degree of vision, but the ANN doesn’t have this context. Directly comparing

	 Defining artificial neural networks� 289

65 km/h and 36-degree vision doesn’t make sense for the ANN, but comparing the ratio
of speed with the degree of vision is useful. To accomplish this task, we need to scale
our data.

A common way to scale data so that it can be compared is to use the min-max scaling
approach, which aims to scale data to values between 0 and 1. By scaling all the data in a
dataset to be consistent in format, we make the different features comparable. Because
ANNs do not have any context about the raw features, we also remove bias with large
input values. As an example, 1,000 seems to be much larger than 65, but 1,000 in the
context of total driving experience is poor, and 65 in the context of driving speed is sig-
nificant. Min-max scaling represents these pieces of data with the correct context by
taking into account the minimum and maximum possible values for each feature.

Here are the minimum and maximum values selected for the features in the car-
collision data:

•	 Speed—The minimum speed is 0, which means that the car is not moving. We
will use the maximum speed of 120, because 120 km/h is the maximum legal
speed limit in most places around the world. We will assume that the driver
follows the rules.

•	 Terrain quality—Because the data is already in a rating system, the minimum
value is 0, and the maximum value is 10.

•	 Degree of vision—We know that the total field of view in degrees is 360. So the
minimum value is 0, and the maximum value is 360.

•	 Total experience—The minimum value is 0 if the driver has no experience. We
will subjectively make the maximum value 400,000 for driving experience. The
rationale is that if a driver has 400,000 km of driving experience, we consider
that driver to be highly competent, and any further experience doesn’t matter.

Min-max scaling uses the minimum and maximum values for a feature and finds
the percentage of the actual value for the feature. The formula is simple: subtract the
minimum from the value, and divide the result by the minimum subtracted from the
maximum. Figure 9.10 illustrates the min-max scaling calculation for the first row of
data in the car-collision example:

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

1 65 km/h 5/10 180° 80,000 km No

290	 Chapter 9 I Artificial neural networks

Figure 9.10 Min-max scaling example with car collision data

Notice that all the values are between 0 and 1 and can be compared equally. The same
formula is applied to all the rows in the dataset to ensure that every value is scaled. Note
that for the value for the “Collision occurred?” feature, Yes is replaced with 1, and No is
replaced with 0. Table 9.2 depicts the scaled car-collision data.

Table 9.2  Car collision dataset scaled

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

1 0.542 0.5 0.5 0.200 0

2 1.000 0.1 0.2 0.275 1

3 0.067 0.6 0.8 0.125 0

4 0.417 0.2 0.9 0.004 1

5 0.208 0.9 0.1 0.400 0

6 0.667 0.3 0.3 0.015 1

7 0.333 0.3 1.0 1.000 0

Pseudocode

The code for scaling the data follows the logic and calculations for min-max scaling
identically. We need the minimums and maximums for each feature, as well as the total
number of features in our dataset. The scale_dataset function uses these parame-
ters to iterate over every example in the dataset and scale the value by using the scale_
data_feature function:

	 Defining artificial neural networks� 291

Now that we have prepared the data in a way that is suitable for an ANN to process, let’s
explore the architecture of a simple ANN. Remember that the features used to predict a
class are the input nodes, and the class that is being predicted is the output node.

Figure 9.11 shows an ANN with one hidden layer, which is the single vertical layer in
the figure, with five hidden nodes. These layers are called hidden layers because they are
not directly observed from outside the network. Only the inputs and outputs are inter-
acted with, which leads to the perception of ANNs as being black boxes. Each hidden
node is similar to the Perceptron. A hidden node takes inputs and weights and then
computes the sum and an activation function. Then the results of each hidden node are
processed by a single output node.

292	 Chapter 9 I Artificial neural networks

Figure 9.11 Example ANN architecture for the car-collision problem

Before we consider the calculations and computation of an ANN, let’s try to dig intui-
tively into what the network weights are doing at a high level. Because a single hidden
node is connected to every input node but every connection has a different weight, inde-
pendent hidden nodes might be concerned with specific relationships among two or
more input nodes.

Figure 9.12 depicts a scenario in which the first hidden node has strong weightings
on the connections to terrain quality and degree of vision but weak weightings on the
connections to speed and total experience. This specific hidden node is concerned with
the relationship between terrain quality and degree of vision. It might gain an under-
standing of the relationship between these two features and how it influences whether
collisions happen; poor terrain quality and poor degree of vision, for example, might
influence the likelihood of collisions more than good terrain quality and an average
degree of vision. These relationships are usually more intricate than this simple
example.

	 Defining artificial neural networks� 293

Figure 9.12 Example of a hidden node comparing terrain quality and degree of vision

In figure 9.13, the second hidden node might have strong weightings on the connections
to terrain quality and total experience. Perhaps there is a relationship among different
terrain qualities and variance in total driving experience that contributes to collisions.

Figure 9.13 Example of a hidden node comparing terrain quality and total experience

294	 Chapter 9 I Artificial neural networks

The nodes in a hidden layer can be conceptually compared with the analogy of ants dis-
cussed in chapter 6. Individual ants fulfill small tasks that are seemingly insignificant,
but when the ants act as a colony, intelligent behavior emerges. Similarly, individual
hidden nodes contribute to a greater goal in the ANN.

By analyzing the figure of the car-collision ANN and the operations within it, we can
describe the data structures required for the algorithm:

•	 Input nodes—The input nodes can be represented by a single array that stores the
values for a specific example. The array size is the number of features in the
dataset that are being used to predict a class. In the car-collision example, we
have four inputs, so the array size is 4.

•	 Weights—The weights can be represented by a matrix (a 2D array), because each
input node has a connection to each hidden node and each input node has five
connections. Because there are 4 input nodes with 5 connections each, the ANN
has 20 weights toward the hidden layer and 5 toward the output layer, because
there are 5 hidden nodes and 1 output node.

•	 Hidden nodes—The hidden nodes can be represented by a single array that stores
the results of activation of each respective node.

•	 Output node—The output node is a single value representing the predicted class
of a specific example or the chance that the example will be in a specific class.
The output might be 1 or 0, indicating whether a collision occurred; or it could
be something like 0.65, indicating a 65% chance that the example resulted in a
collision.

Pseudocode

The next piece of pseudocode describes a class that represents a neural network. Notice
that the layers are represented as properties of the class and that all the properties are
arrays, with the exception of the weights, which are matrices. An output property rep-
resents the predictions for the given examples, and an expected_output property is
used during the training process:

	 Forward propagation: Using a trained ANN� 295

Forward propagation: Using a trained ANN
A trained ANN is a network that has learned from examples and adjusted its weights to
best predict the class of new examples. Don’t panic about how the training happens and
how the weights are adjusted; we will tackle this topic in the next section. Understanding
forward propagation will assist us in grasping backpropagation (how weights are trained).

Now that we have a grounding in the general architecture of ANNs and the intuition
of what nodes in the network might be doing, let’s walk through the algorithm for using
a trained ANN (figure 9.14).

Figure 9.14 Life cycle of forward propagation in an ANN

296	 Chapter 9 I Artificial neural networks

As mentioned previously, the steps involved in calculating the results for the nodes in an
ANN are similar to the Perceptron. Similar operations are performed on many nodes
that work together; this addresses the Perceptron’s flaws and is used to solve problems
that have more dimensions. The general flow of forward propagation includes the fol-
lowing steps:

1.	 Input an example—Provide a single example from the dataset for which we want
to predict the class.

2.	 Multiply inputs and weights—Multiply every input by each weight of its
connection to hidden nodes.

3.	 Sum results of weighted inputs for each hidden node—Sum the results of the
weighted inputs.

4.	 Activation function for each hidden node—Apply an activation function to the
summed weighted inputs.

5.	 Sum results of weighted outputs of hidden nodes to the output node—Sum the
weighted results of the activation function from all hidden nodes.

6.	 Activation function for output node—Apply an activation function to the summed
weighted hidden nodes.

For the purpose of exploring forward propagation, we will assume that the ANN has
been trained and the optimal weights in the network have been found. Figure 9.15 depicts
the weights on each connection. The first box next to the first hidden node, for example,
has the weight 3.35, which is related to the Speed input node; the weight -5.82 is related
to the Terrain Quality input node; and so on.

Figure 9.15 Example of weights in a pretrained ANN

	 Forward propagation: Using a trained ANN� 297

Because the neural network has been trained, we can use it to predict the chance of col-
lisions by providing it with a single example. Table 9.3 serves as a reminder of the scaled
dataset that we are using.

Table 9.3  Car collision dataset scaled

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

1 0.542 0.5 0.5 0.200 0

2 1.000 0.1 0.2 0.275 1

3 0.067 0.6 0.8 0.125 0

4 0.417 0.2 0.9 0.004 1

5 0.208 0.9 0.1 0.400 0

6 0.667 0.3 0.3 0.015 1

7 0.333 0.3 1.0 1.000 0

If you’ve ever looked into ANNs, you may have noticed some potentially frightening
mathematical notations. Let’s break down some of the concepts that can be represented
mathematically.

The inputs of the ANN are denoted by X. Every input variable will be X subscripted
by a number. Speed is X

0
, Terrain Quality is X

1
, and so on. The output of the network is

denoted by y, and the weights of the network are denoted by W. Because we have two
layers in the ANN—a hidden layer and an output layer—there are two groups of weights.
The first group is superscripted by W

0
, and the second group is W

1
. Then each weight is

denoted by the nodes to which it is connected. The weight between the Speed node and
the first hidden node is W

00,0
, and the weight between the Terrain Quality node and the

first hidden node is W
01,0

. These denotations aren’t necessarily important for this exam-
ple, but understanding them now will support future learning.

Figure 9.16 shows how the following data is represented in an ANN:

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

1 0.542 0.5 0.5 0.200 0

298	 Chapter 9 I Artificial neural networks

Figure 9.16 Mathematical denotation of an ANN

As with the Perceptron, the first step is calculating the weighted sum of the inputs and
the weight of each hidden node. In figure 9.17, each input is multiplied by each weight
and summed for every hidden node.

Figure 9.17 Weighted sum calculation for each hidden node

	 Forward propagation: Using a trained ANN� 299

The next step is calculating the activation of each hidden node. We are using the sigmoid
function, and the input for the function is the weighted sum of the inputs calculated for
each hidden node (figure 9.18).

Figure 9.18 Activation function calculation for each hidden node

Now we have the activation results for each hidden node. When we mirror this result
back to neurons, the activation results represent the activation intensity of each neuron.
Because different hidden nodes may be concerned with different relationships in the
data through the weights, the activations can be used in conjunction to determine an
overall activation that represents the chance of a collision, given the inputs.

Figure 9.19 depicts the activations for each hidden node and the weights from each
hidden node to the output node. To calculate the final output, we repeat the process of
calculating the weighted sum of the results from each hidden node and applying the
sigmoid activation function to that result.

NOTE  The sigma symbol (Σ) in the hidden nodes depicts the sum
operation.

300	 Chapter 9 I Artificial neural networks

Figure 9.19 Final activation calculation for the output node

We have calculated the output prediction for our example. The result is 0.00214, but
what does this number mean? The output is a value between 0 and 1 that represents the
probability that a collision will occur. In this case, the output is 0.214 percent (0.00214 ×
100), indicating that the chance of a collision is almost 0.

The following exercise uses another example from the dataset.

EXERCISE: CALCULATE THE PREDICTION FOR THE EXAMPLE BY USING FORWARD
PROPAGATION WITH THE FOLLOWING ANN

Speed
Terrain
quality

Degree of
vision

Total
experience

Collision
occurred?

2 1.000 0.1 0.2 0.275 1

	 Forward propagation: Using a trained ANN� 301

SOLUTION: CALCULATE THE PREDICTION FOR THE EXAMPLE BY USING FORWARD
PROPAGATION WITH THE FOLLOWING ANN

302	 Chapter 9 I Artificial neural networks

When we run this example through our pretrained ANN, the output is 0.99996, or
99.996 percent, so there is an extremely high chance that a collision will occur. By apply-
ing some human intuition to this single example, we can see why a collision is likely. The
driver was traveling at the maximum legal speed, on the poorest-quality terrain, with a
poor field of vision.

Pseudocode

One of the important functions for activation in our example is the sigmoid function.
This method describes the mathematical function that represents the S curve:

Notice that the same neural network class defined earlier in the chapter is described in
the following code. This time, a forward_propagation function is included. This
function sums the input and weights between input and hidden nodes, applies the sig-
moid function to each result, and stores the output as the result for the nodes in the
hidden layer. This is done for the hidden node output and weights to the output node
as well:

Exp is a mathematical constant called
Euler’s number, approximately 2.71828.

	 Backpropagation: Training an ANN� 303

Backpropagation: Training an ANN
Understanding how forward propagation works is useful for understanding how ANNs
are trained, because forward propagation is used in the training process. The machine
learning life cycle and principles covered in chapter 8 are important for tackling back-
propagation in ANNs. An ANN can be seen as another machine learning model. We still
need to have a question to ask. We’re still collecting and understanding data in the con-
text of the problem, and we need to prepare the data in a way that is suitable for the
model to process.

We need a subset of data for training and a subset of data for testing how well the
model performs. Also, we will be iterating and improving through collecting more data,
preparing it differently, or changing the architecture and configuration of the ANN.

Training an ANN consists of three main phases. Phase A involves setting up the ANN
architecture, including configuring the inputs, outputs, and hidden layers. Phase B is
forward propagation. And phase C is backpropagation, which is where the training hap-
pens (figure 9.20).

The symbol • implies
matrix multiplication.

304	 Chapter 9 I Artificial neural networks

Figure 9.20 Life cycle of training an ANN

Phase A, Phase B, and Phase C describe the phases and operations involved in the back-
propagation algorithm.

	 Backpropagation: Training an ANN� 305

Phase A: Setup

1.	 Define ANN architecture. This step involves defining the input nodes, the output
nodes, the number of hidden layers, the number of neurons in each hidden layer,
the activation functions used, and more.

2.	 Initialize ANN weights. The weights in the ANN must be initialized to some value.
We can take various approaches. The key principle is that the weights will be
adjusted constantly as the ANN learns from training examples.

Phase B: Forward propagation
This process is the same one that we covered in Phase A. The same calculations are car-
ried out. The predicted output, however, will be compared with the actual class for each
example in the training set to train the network.

Phase C: Training

1.	 Calculate cost. Following from forward propagation, the cost is the difference
between the predicted output and the actual class for the examples in the training
set. The cost effectively determines how bad the ANN is at predicting the class of
examples.

2.	 Update weights in the ANN. The weights of the ANN are the only things that can
be adjusted by the network itself. The architecture and configurations that we
defined in phase A don’t change during training the network. The weights
essentially encode the intelligence of the network. Weights are adjusted to be
larger or smaller, affecting the strength of the inputs.

3.	 Define a stopping condition. Training cannot happen indefinitely. As with many of
the algorithms explored in this book, a sensible stopping condition needs to be
determined. If we have a large dataset, we might decide that we will use 500
examples in our training dataset over 1,000 iterations to train the ANN. In this
example, the 500 examples will be passed through the network 1,000 times, and
the weights will be adjusted in every iteration.

When we worked through forward propagation, the weights were already defined
because the network was pretrained. Before we start training the network, we need to
initialize the weights to some value, and the weights need to be adjusted based on train-
ing examples. One approach to initializing weights is to choose random weights from a
normal distribution.

Figure 9.21 illustrates the randomly generated weights for our ANN. It also shows the
calculations for forward propagation for the hidden nodes, given a single training exam-
ple. The first example input used in the forward propagation section is used here to
highlight the differences in output, given different weights in the network.

306	 Chapter 9 I Artificial neural networks

Figure 9.21 Example initial weights for an ANN

The next step is forward propagation (figure 9.22). The key change is checking the differ-
ence between the obtained prediction and the actual class.

Figure 9.22 Example of forward propagation with randomly initialized weights

	 Backpropagation: Training an ANN� 307

By comparing the predicted result with the actual class, we can calculate a cost. The cost
function that we will use is simple: subtract the predicted output from the actual output.
In this example, 0.84274 is subtracted from 0.0, and the cost is -0.84274. This result indi-
cates how incorrect the prediction was and can be used to adjust the weights in the ANN.
Weights in the ANN are adjusted slightly every time a cost is calculated. This happens
thousands of times using training data to determine the optimal weights for the ANN to
make accurate predictions. Note that training too long on the same set of data can lead
to overfitting, described in chapter 8.

Here is where some potentially unfamiliar math comes into play: the Chain Rule.
Before we use the Chain Rule, let’s gain some intuition about what the weights mean and
how adjusting them improves the ANN’s performance.

If we plot possible weights against their respective cost on a graph, we find some
function that represents the possible weights. Some points on the function yield a lower
cost, and other points yield a higher cost. We are seeking points that minimize cost
(figure 9.23).

Figure 9.23 Weight versus cost plotted

A useful tool from the field of calculus, called gradient descent, can help us move the
weight closer to the minimum value by finding the derivative. The derivative is import-
ant because it measures the sensitivity to change for that function. For example, velocity
might be the derivative of an object’s position with respect to time; and acceleration is
the derivative of the object’s velocity with respect to time. Derivatives can find the slope
at a specific point in the function. Gradient descent uses the knowledge of the slope to
determine which way to move and by how much. Figures 9.24 and 9.25 describe how the
derivatives and slope indicate the direction of the minimums.

308	 Chapter 9 I Artificial neural networks

Figure 9.24 Derivatives’ slopes and direction of minimums

Figure 9.25 Example of adjusting a weight by using gradient descent

When we look at one weight in isolation, it may seem trivial to find a value that mini-
mizes the cost, but many weights being balanced affect the cost of the overall network.
Some weights may be close to their optimal points in reducing cost, and others may not,
even though the ANN performs well.

Because many functions comprise the ANN, we can use the Chain Rule. The Chain
Rule is a theorem from the field of calculus that calculates the derivative of a composite
function. A composite function uses a function g as the parameter for a function f to
produce a function h, essentially using a function as a parameter of another function.

Figure 9.26 illustrates the use of the Chain Rule in calculating the update value for
weights in the different layers of the ANN.

	 Backpropagation: Training an ANN� 309

Figure 9.26 Formula for calculating weight updates with the Chain Rule

We can calculate the weight update by plugging the respective values into the formula
described. The calculations look scary, but pay attention to the variables being used and
their role in the ANN. Although the formula looks complex, it uses the values that we
have already calculated (figure 9.27).

310	 Chapter 9 I Artificial neural networks

Figure 9.27 Weight-update calculation with the Chain Rule

Here’s a closer look at the calculations used in figure 9.27:

Now that the update values are calculated, we can apply the results to the weights in the
ANN by adding the update value to the respective weights. Figure 9.28 depicts the appli-
cation of the weight-update results to the weights in the different layers.

	 Backpropagation: Training an ANN� 311

Figure 9.28 Example of the final weight-update for the ANN

EXERCISE: CALCULATE THE NEW WEIGHTS FOR THE HIGHLIGHTED WEIGHTS

312	 Chapter 9 I Artificial neural networks

SOLUTION: CALCULATE THE NEW WEIGHTS FOR THE HIGHLIGHTED WEIGHTS

The problem that the Chain Rule is solving may remind you of the drone problem exam-
ple in chapter 7. Particle-swarm optimization is effective for finding optimal values in
high-dimensional spaces such as this one, which has 25 weights to optimize. Finding the
weights in an ANN is an optimization problem. Gradient descent is not the only way to
optimize weights; we can use many approaches, depending on the context and problem
being solved.

	 Backpropagation: Training an ANN� 313

Pseudocode

The derivative is important in the backpropagation algorithm. The following piece of
pseudocode revisits the sigmoid function and describes the formula for its derivative,
which we need to adjust weights:

We revisit the neural network class, this time with a backpropagation function that
computes the cost, the amount by which weights should be updated by using the Chain
Rule, and adds the weight-update results to the existing weights. This process will com-
pute the change for each weight given the cost. Remember that cost is calculated by using
the example features, predicted output, and expected output. The difference between the
predicted output and expected output is the cost:

Exp is a mathematical constant called
Euler’s number, approximately 2.71828.

The symbol • implies
matrix multiplication.

314	 Chapter 9 I Artificial neural networks

Because we have a class that represents a neural network, functions to scale data, and
functions for forward propagation and backpropagation, we can piece this code together
to train a neural network.

Pseudocode

In this piece of pseudocode, we have a run_neural_network function that accepts
epochs as an input. This function scales the data and creates a new neural network
with the scaled data, labels, and number of hidden nodes. Then the function runs
forward_propagation and back_propagation for the specified number of
epochs:

Options for activation functions
This section aims to provide some intuition about activation functions and their proper-
ties. In the examples of the Perceptron and ANN, we used a sigmoid function as the acti-
vation function, which was satisfactory for the examples that we were working with.
Activation functions introduce nonlinear properties to the ANN. If we do not use an activa-
tion function, the neural network will behave similarly to linear regression as described in
chapter 8. Figure 9.29 describes some commonly used activation functions.

	 Options for activation functions� 315

Figure 9.29 Commonly used activation functions

Different activation functions are useful in different scenarios and have different
benefits:

•	 Step unit—The step unit function is used as a binary classifier. Given an input
between -1 and 1, it outputs a result of exactly 0 or 1. A binary classifier is not
useful for learning from data in a hidden layer, but it can be used in the output
layer for binary classification. If we want to know whether something is a cat or a
dog, for example, 0 could indicate cat, and 1 could indicate dog.

•	 Sigmoid—The sigmoid function results in an S curve between 0 and 1, given an
input between -1 and 1. Because the sigmoid function allows changes in x to
result in small changes in y, it allows for learning and solving nonlinear
problems. The problem sometimes experienced with the sigmoid function is that
as values approach the extremes, derivative changes become tiny, resulting in
poor learning. This problem is known as the vanishing gradient problem.

•	 Hyperbolic tangent—The hyperbolic tangent function is similar to the sigmoid
function, but it results in values between -1 and 1. The benefit is that the
hyperbolic tangent has steeper derivatives, which allows for faster learning. The
vanishing gradient problem is also a problem at the extremes for this function, as
with the sigmoid function.

•	 Rectified linear unit (ReLU)—The ReLU function results in 0 for input values
between -1 and 0, and results in linearly increasing values between 0 and 1. In a
large ANN with many neurons using the sigmoid or hyperbolic tangent function,
all neurons activate all the time (except when they result in 0), resulting in lots of
computation and many values being adjusted finely to find solutions. The ReLU
function allows some neurons to not activate, which reduces computation and
may find solutions faster.

The next section touches on some considerations for designing an ANN.

316	 Chapter 9 I Artificial neural networks

Designing artificial neural networks
Designing ANNs is experimental and dependent on the problem that is being solved.
The architecture and configuration of an ANN usually change through trial and error as
we attempt to improve the performance of the predictions. This section briefly lists the
parameters of the architecture that we can change to improve performance or address
different problems. Figure 9.30 illustrates an artificial neural network with a different
configuration to the one seen throughout this chapter. The most notable difference is the
introduction of a new hidden layer and the network now has two outputs.

NOTE  As in most scientific or engineering problems, the answer to “What is
the ideal ANN design?” is often “It depends.” Configuring ANNs requires a
deep understanding of the data and the problem being solved. A clear-cut gen-
eralized blueprint for architectures and configurations doesn’t exist . . . yet.

Figure 9.30 An example of a multilayer ANN with more than one output

	 Designing artificial neural networks� 317

Inputs and outputs
The inputs and outputs of an ANN are the fundamental parameters for use of the net-
work. After an ANN model has been trained, the trained ANN model will potentially be
used in different contexts and systems, and by different people. The inputs and outputs
define the interface of the network. Throughout this chapter, we saw an example of an
ANN with four inputs describing the features of a driving scenario and one output
describing the likelihood of a collision. We may have a problem when the inputs and
outputs mean different things, however. If we have a 16- by 16-pixel image that rep-
resents a handwritten digit, for example, we could use the pixels as inputs and the digit
they represent as the output. The input would consist of 256 nodes representing the pixel
values, and the output would consist of 10 nodes representing 0 to 9, with each result
indicating the probability that the image is the respective digit.

Hidden layers and nodes
An ANN can consist of multiple hidden layers with varying numbers of nodes in each
layer. Adding more hidden layers allows us to solve problems with higher dimensions
and more complexity in the classification discrimination line. In the example in figure
9.8, a simple straight line classified data accurately. Sometimes, the line is nonlinear but
fairly simple. But what happens when the line is a more-complex function with many
curves potentially across many dimensions (which we can’t even visualize)? Adding
more layers allows these complex classification functions to be found. The selection of
the number of layers and nodes in an ANN usually comes down to experimentation and
iterative improvement. Over time, we may gain intuition about suitable configurations,
based on experiencing similar problems and solving them with similar configurations.

Weights
Weight initialization is important because it establishes a starting point from which the
weight will be adjusted slightly over many iterations. Weights that are initialized to be
too small lead to the vanishing gradient problem described earlier, and weights that are
initialized to be too large lead to another problem, the exploding gradient problem—in
which weights move erratically around the desired result.

Various weight-initialization schemes exist, each with its own pros and cons. A rule of
thumb is to ensure that the mean of the activation results in a layer is 0—the mean of all
results of the hidden nodes in a layer. Also, the variance of the activation results should
be the same: the variability of the results from each hidden node should be consistent
over several iterations.

Bias
We can use bias in an ANN by adding a value to the weighted sum of the input nodes or
other layers in the network. A bias can shift the activation value of the activation func-
tion. A bias provides flexibility in an ANN and shifts the activation function left or right.

318	 Chapter 9 I Artificial neural networks

A simple way to understand bias is to imagine a line that always passes through 0,0 on
a plane; we can influence this line to pass through a different intercept by adding +1 to a
variable. This value will be based on the problem to be solved.

Activation functions
Earlier we covered the common activation functions used in ANNs. A key rule of thumb
is to ensure that all nodes on the same layer use the same activation function. In multi-
layer ANNs, different layers may use different activation functions based on the problem
to be solved. A network that determines whether loans should be granted, for example,
might use the sigmoid function in the hidden layers to determine probabilities and a step
function in the output to get a clear 0 or 1 decision.

Cost function and learning rate
We used a simple cost function in the example described earlier where the predicted
output is subtracted from the actual expected output, but many cost functions exist.
Cost functions influence the ANN greatly, and using the correct function for the prob-
lem and dataset at hand is important because it describes the goal for the ANN. One of
the most common cost functions is mean square error, which is similar to the function
used in the machine learning chapter (chapter 8). But cost functions must be selected
based on understanding of the training data, size of the training data, and desired preci-
sion and recall measurements. As we experiment more, we should look into the cost
function options.

Finally, the learning rate of the ANN describes how dramatically weights are adjusted
during backpropagation. A slow learning rate may result in a long training process
because weights are updated by tiny amounts each time, and a high learning rate might
result in dramatic changes in the weights, making for a chaotic training process. One
solution is to start with a fixed learning rate and to adjust that rate if the training stag-
nates and doesn’t improve the cost. This process, which would be repeated through the
training cycle, requires some experimentation. Stochastic gradient descent is a useful
tweak to the optimizer that combats these problems. It works similarly to gradient
descent but allows weights to jump out of local minimums to explore better solutions.

Standard ANNs such as the one described in this chapter are useful for solving non-
linear classification problems. If we are trying to categorize examples based on many
features, this ANN style is likely to be a good option.

That said, an ANN is not a silver bullet and shouldn’t be the go-to algorithm for any-
thing. Simpler, traditional machine learning algorithms described in chapter 8 often
perform better in many common use cases. Remember the machine learning life cycle.
You may want to try several machine learning models during your iterations while seek-
ing improvement.

	 Artificial neural network types and use cases� 319

Artificial neural network types and use cases
ANNs are versatile and can be designed to address different problems. Specific architec-
tural styles of ANNs are useful for solving certain problems. Think of an ANN architec-
tural style as being the fundamental configuration of the network. The examples in this
section highlight different configurations.

Convolutional neural network
Convolutional neural networks (CNNs) are designed for image recognition. These net-
works can be used to find the relationships among different objects and unique areas
within images. In image recognition, convolution operates on a single pixel and its neigh-
bors within a certain radius. This technique is traditionally used for edge detection,
image sharpening, and image blurring. CNNs use convolution and pooling to find rela-
tionships among pixels in an image. Convolution finds features in images, and pooling
downsamples the “patterns” by summarizing features, allowing unique signatures in
images to be encoded concisely through learning from multiple images (figure 9.31).

Figure 9.31 Simple example of a CNN

CNNs are used for image classification. If you’ve ever searched for an image online, you
have likely interacted indirectly with a CNN. These networks are also useful for optical
character recognition for extracting text data from an image. CNNs have been used in
the medical industry for applications that detect anomalies and medical conditions via
X-rays and other body scans.

320	 Chapter 9 I Artificial neural networks

Recurrent neural network
Whereas standard ANNs accept a fixed number of inputs, recurrent neural networks
(RNNs) accept a sequence of inputs with no predetermined length. These inputs are like
spoken sentences. RNNs have a concept of memory consisting of hidden layers that rep-
resent time; this concept allows the network to retain information about the relation-
ships among the sequences of inputs. When we are training a RNN, the weights in the
hidden layers throughout time are also influenced by backpropagation; multiple weights
represent the same weight at different points in time (figure 9.32).

Figure 9.32 Simple example of a RNN

RNNs are useful in applications pertaining to speech and text recognition and predic-
tion. Related use cases include autocompletion of sentences in messaging applications,
translation of spoken language to text, and translation between spoken languages.

Generative adversarial network
A generative adversarial network (GAN) consists of a generator network and a discrimi-
nator network. For example, the generator creates a potential solution such as an image
or a landscape, and a discriminator uses real images of landscapes to determine the real-
ism or correctness of the generated landscape. The error or cost is fed back into the net-
work to further improve its ability to generate convincing landscapes and determine
their correctness. The term adversarial is key, as we saw with game trees in chapter 3.
These two components are competing to be better at what they do and, through that
competition, generate incrementally better solutions (figure 9.33).

	 Artificial neural network types and use cases� 321

Figure 9.33 Simple example of a GAN

GANs are used to generate convincing fake videos (also known as deepfakes) of famous
people, which raises concern about the authenticity of information in the media. GANs
also have useful applications such as overlaying hairstyles on people’s faces. GANs have
been used to generate 3D objects from 2D images, such as generating a 3D chair from a
2D picture. This use case may seem to be unimportant, but the network is accurately
estimating and creating information from a source that is incomplete. It is a huge step in
the advancement of AI and technology in general.

This chapter aimed to tie together the concepts of machine learning with the
somewhat-mysterious world of ANNs. For further learning about ANNs and deep learn-
ing, try Grokking Deep Learning (Manning Publications); and for a practical guide to a
framework for building ANNs, see Deep Learning with Python (Manning Publications).

322	 Chapter 9 I Artificial neural networks

SUMMARY OF ARTIFICIAL NEURAL NETWORKS

323

What is reinforcement learning?
Reinforcement learning (RL) is an area of machine learning inspired by
behavioral psychology. The concept of reinforcement learning is based on
cumulative rewards or penalties for the actions that are taken by an agent in
a dynamic environment. Think about a young dog growing up. The dog is
the agent in an environment that is our home. When we want the dog to
sit, we usually say, “Sit.” The dog doesn’t understand English, so we might
nudge it by lightly pushing down on its hindquarters. After it sits, we usu-
ally pet the dog or give it a treat. This process will need to be repeated sev-
eral times, but after some time, we have positively reinforced the idea of

This chapter covers

•	 Understanding the inspiration for reinforcement learning

•	 Identifying problems to solve with reinforcement learning

•	 Designing and implementing a reinforcement learning algorithm

•	 Understanding reinforcement learning approaches

10Reinforcement learning
with Q-learning

324	 Chapter 10 I Reinforcement learning with Q-learning

sitting. The trigger in the environment is saying “Sit”; the behavior learned is sitting; and
the reward is pets or treats.

Reinforcement learning is another approach to machine learning alongside supervised
learning and unsupervised learning. Whereas supervised learning uses labeled data to
make predictions and classifications, and unsupervised learning uses unlabeled data to
find clusters and trends, reinforcement learning uses feedback from actions performed
to learn what actions or sequence of actions are more beneficial in different scenarios
toward an ultimate goal. Reinforcement learning is useful when you know what the goal
is but don’t know what actions are reasonable to achieve it. Figure 10.1 shows the map of
machine learning concepts and how reinforcement learning fits in.

Figure 10.1 How reinforcement learning fits into machine learning

Reinforcement learning can be achieved through classical techniques or deep learning
involving artificial neural networks. Depending on the problem being solved, either
approach may be better.

Figure 10.2 illustrates when different machine learning approaches may be used. We
will be exploring reinforcement learning through classical methods in this chapter.

	 What is reinforcement learning?� 325

Figure 10.2 Categorization of machine learning, deep learning, and reinforcement learning

The inspiration for reinforcement learning
Reinforcement learning in machines is derived from behavioral psychology, a field that
is interested in the behavior of humans and other animals. Behavioral psychology usu-
ally explains behavior by a reflex action, or something learned in the individual’s his-
tory. The latter includes exploring reinforcement through rewards or punishments,
motivators for behaviors, and aspects of the individual’s environment that contribute to
the behavior.

Trial and error is one of the most common ways that most evolved animals learn
what is beneficial to them and what is not. Trial and error involves trying something,
potentially failing at it, and trying something different until you succeed. This process
may happen many times before a desired outcome is obtained, and it’s largely driven by
some reward.

This behavior can be observed throughout nature. Newborn chicks, for example, try
to peck any small piece of material that they come across on the ground. Through trial
and error, the chicks learn to peck only food.

Another example is chimpanzees learning through trial and error that using a stick to
dig the soil is more favorable than using their hands. Goals, rewards, and penalties are
important in reinforcement learning. A goal for a chimpanzee is to find food; a reward

326	 Chapter 10 I Reinforcement learning with Q-learning

or penalty may be the number of times it has dug a hole or the time taken to dig a hole.
The faster it can dig a hole, the faster it will find some food.

Figure 10.3 looks at the terminology used in reinforcement learning with reference to
the simple dog-training example.

Figure 10.3 Example of reinforcement learning: teaching a dog to sit by using food as a reward

Reinforcement learning has negative and positive reinforcement. Positive reinforcement is
receiving a reward after performing an action, such as a dog getting a treat after it sits.
Negative reinforcement is receiving a penalty after performing an action, such as a dog
getting scolded after it tears up a carpet. Positive reinforcement is meant to motivate
desired behavior, and negative reinforcement is meant to discourage undesired behavior.

Another concept in reinforcement learning is balancing instant gratification with
long-term consequences. Eating a chocolate bar is great for getting a boost of sugar and
energy; this is instant gratification. But eating a chocolate bar every 30 minutes will likely
cause health problems later in life; this is a long-term consequence. Reinforcement learn-
ing aims to maximize the long-term benefit over short-term benefit, although short-
term benefit may contribute to long-term benefit.

Reinforcement learning is concerned with the long-term consequence of actions in an
environment, so time and the sequence of actions are important. Suppose that we’re
stranded in the wilderness, and our goal is to survive as long as possible while traveling
as far as possible in hopes of finding safety. We’re positioned next to a river and have two
options: jump into the river to travel downstream faster or walk along the side of the
river. Notice the boat on the side of the river in figure 10.4. By swimming, we will travel
faster but might miss the boat by being dragged down the wrong fork in the river. By
walking, we will be guaranteed to find the boat, which will make the rest of the journey

	 Problems applicable to reinforcement learning� 327

much easier, but we don’t know this at the start. This example shows how important the
sequence of actions is in reinforcement learning. It also shows how instant gratification
may lead to long-term detriment. Furthermore, in a landscape that didn’t contain a boat,
the consequence of swimming is that we will travel faster but have soaked clothing,
which may be problematic when it gets cold. The consequence of walking is that we will
travel slower but not wet our clothing, which highlights the fact that a specific action
may work in one scenario but not in others. Learning from many simulation attempts is
important to finding more-generalist approaches.

Figure 10.4 An example of possible actions that have long-term consequences

Problems applicable to
reinforcement learning
To sum it up, reinforcement learning aims to solve problems in which a goal is known
but the actions required to achieve it are not. These problems involve controlling an
agent’s actions in an environment. Individual actions may be rewarded more than oth-
ers, but the main concern is the cumulative reward of all actions.

Reinforcement learning is most useful for problems in which individual actions build
up toward a greater goal. Areas such as strategic planning, industrial-process automa-
tion, and robotics are good cases for the use of reinforcement learning. In these areas,
individual actions may be suboptimal to gain a favorable outcome. Imagine a strategic
game such as chess. Some moves may be poor choices based on the current state of the
board, but they help set the board up for a greater strategic win later in the game.

328	 Chapter 10 I Reinforcement learning with Q-learning

Reinforcement learning works well in domains in which chains of events are important
for a good solution.

To work through the steps in a reinforcement learning algorithm, we will use the
example car-collision problem from chapter 9 as inspiration. This time, however, we will
be working with visual data about a self-driving car in a parking lot trying to navigate to
its owner. Suppose that we have a map of a parking lot, including a self-driving car, other
cars, and pedestrians. Our self-driving car can move north, south, east, and west. The
other cars and pedestrians remain stationary in this example.

The goal is for our car to navigate the road to its owner while colliding with as few cars
and pedestrians as possible—ideally, not colliding with anything. Colliding with a car is
not good because it damages the vehicles, but colliding with a pedestrian is more severe.
In this problem, we want to minimize collisions, but if we have a choice between collid-
ing with a car and a pedestrian, we should choose the car. Figure 10.5 depicts this
scenario.

Figure 10.5 The self-driving car in a parking lot problem

We will be using this example problem to explore the use of reinforcement learning for
learning good actions to take in dynamic environments.

	 The life cycle of reinforcement learning� 329

The life cycle of reinforcement learning
Like other machine learning algorithms, a reinforcement learning model needs to be
trained before it can be used. The training phase centers on exploring the environment
and receiving feedback, given specific actions performed in specific circumstances or
states. The life cycle of training a reinforcement learning model is based on the Markov
Decision Process, which provides a mathematical framework for modeling decisions (fig-
ure 10.6). By quantifying decisions made and their outcomes, we can train a model to
learn what actions toward a goal are most favorable.

Figure 10.6 The Markov Decision Process for reinforcement learning

Before we can start tackling the challenge of training a model by using reinforcement
learning, we need an environment that simulates the problem space we are working in.
Our example problem entails a self-driving car trying to navigate a parking lot filled
with obstacles to find its owner while avoiding collisions. This problem needs to be mod-
eled as a simulation so that actions in the environment can be measured toward the
goal. This simulated environment is different from the model that will learn what actions
to take.

330	 Chapter 10 I Reinforcement learning with Q-learning

Simulation and data: Make the environment come alive
Figure 10.7 depicts a parking-lot scenario containing several other cars and pedestrians.
The starting position of the self-driving car and the location of its owner are represented
as black figures. In this example, the self-driving car that applies actions to the environ-
ment is known as the agent.

The self-driving car, or agent, can take several actions in the environment. In this sim-
ple example, the actions are moving north, south, east, and west. Choosing an action
results in the agent moving one block in that direction. The agent can’t move diagonally.

Figure 10.7 Agent actions in the parking-lot environment

When actions are taken in the environment, rewards or penalties occur. Figure 10.8
shows the reward points awarded to the agent based on the outcome in the environment.
A collision with another car is bad; a collision with a pedestrian is terrible. A move to an
empty space is good; finding the owner of the self-driving car is better. The specified
rewards aim to discourage collisions with other cars and pedestrians, and to encourage
moving into empty spaces and reaching the owner. Note that there could be a reward for
out-of-bounds movements, but we will simply disallow this possibility for the sake of
simplicity.

	 The life cycle of reinforcement learning� 331

Figure 10.8 Rewards due to specific events in the environment due to actions performed

NOTE  An interesting outcome of the rewards and penalties described is that
the car may drive forward and backward on empty spaces indefinitely to
accumulate rewards. We will dismiss this as a possibility for this example, but
it highlights the importance of crafting good rewards.

The simulator needs to model the environment, the actions of the agent, and the rewards
received after each action. A reinforcement learning algorithm will use the simulator to
learn through practice by taking actions in the simulated environment and measuring
the outcome. The simulator should provide the following functionality and information
at minimum:

•	 Initialize the environment. This function involves resetting the environment,
including the agent, to the starting state.

•	 Get the current state of the environment. This function should provide the current
state of the environment, which will change after each action is performed.

•	 Apply an action to the environment. This function involves having the agent apply
an action to the environment. The environment is affected by the action, which
may result in a reward.

•	 Calculate the reward of the action. This function is related to applying the action
to the environment. The reward for the action and effect on the environment
need to be calculated.

•	 Determine whether the goal is achieved. This function determines whether the
agent has achieved the goal. The goal can also sometimes be represented as is
complete. In an environment in which the goal cannot be achieved, the
simulator needs to signal completion when it deems necessary.

332	 Chapter 10 I Reinforcement learning with Q-learning

Figures 10.9 and 10.10 depict possible paths in the self-driving-car example. In figure
10.9, the agent travels south until it reaches the boundary; then it travels east until it
reaches the goal. Although the goal is achieved, the scenario resulted in five collisions
with other cars and one collision with a pedestrian—not an ideal result. Figure 10.10
depicts the agent traveling along a more specific path toward the goal, resulting in no
collisions, which is great. It’s important to note that given the rewards that we have spec-
ified, the agent is not guaranteed to achieve the shortest path; because we heavily encour-
age avoiding obstacles, the agent may find any path that is obstacle-free.

Figure 10.9 A bad solution to the parking-lot problem

	 The life cycle of reinforcement learning� 333

Figure 10.10 A good solution to the parking-lot problem

At this moment, there is no automation in sending actions to the simulator. It’s like a
game in which we provide input as a person instead of an AI providing the input. The
next section explores how to train an autonomous agent.

Pseudocode

The pseudocode for the simulator encompasses the functions discussed in this section.
The simulator class would be initialized with the information relevant to the starting
state of the environment.

The move_agent function is responsible for moving the agent north, south, east, or
west, based on the action. It determines whether the movement is within bounds, adjusts
the agent’s coordinates, determines whether a collision occurred, and returns a reward
score based on the outcome:

334	 Chapter 10 I Reinforcement learning with Q-learning

Here are descriptions of the next functions in the pseudocode:

•	 The cost_movement function determines the object in the target coordinate
that the agent will move to and returns the relevant reward score.

•	 The is_within_bounds function is a utility function that makes sure the
target coordinate is within the boundary of the road.

•	 The is_goal_achieved function determines whether the goal has been
found, in which case the simulation can end.

•	 The get_state function uses the agent’s position to determine a number that
enumerates the current state. Each state must be unique. In other problem
spaces, the state may be represented by the actual native state itself.

	 The life cycle of reinforcement learning� 335

Training with the simulation using Q-learning
Q-learning is an approach in reinforcement learning that uses the states and actions in
an environment to model a table that contains information describing favorable actions
based on specific states. Think of Q-learning as a dictionary in which the key is the state
of the environment and the value is the best action to take for that state.

Reinforcement learning with Q-learning employs a reward table called a Q-table. A
Q-table consists of columns that represent the possible actions and rows that represent
the possible states in the environment. The point of a Q-table is to describe which actions
are most favorable for the agent as it seeks a goal. The values that represent favorable
actions are learned through simulating the possible actions in the environment and
learning from the outcome and change in state. It’s worth noting that the agent has a
chance of choosing a random action or an action from the Q-table, as shown later in

336	 Chapter 10 I Reinforcement learning with Q-learning

figure 10.13. The Q represents the function that provides the reward, or quality, of an
action in an environment.

Figure 10.11 depicts a trained Q-table and two possible states that may be represented
by the action values for each state. These states are relevant to the problem we’re solving;
another problem might allow the agent to move diagonally as well. Note that the number
of states differs based on the environment and that new states can be added as they are
discovered. In state 1, the agent is in the top-left corner, and in state 2, the agent is in the
position below its previous state. The Q-table encodes the best actions to take, given each
respective state. The action with the largest number is the most beneficial action. In this
figure, the values in the Q-table have already been found through training. Soon, we will
see how they’re calculated.

Figure 10.11 An example Q-table and states that it represents

The big problem with representing the state using the entire map is that the configura-
tion of other cars and people is specific to this problem. The Q-table learns the best
choices only for this map.

A better way to represent state in this example problem is to look at the objects
adjacent to the agent. This approach allows the Q-table to adapt to other parking-lot

	 The life cycle of reinforcement learning� 337

configurations, because the state is less specific to the example parking lot from which it
is learning. This approach may seem to be trivial, but a block could contain another car
or a pedestrian, or it could be an empty block or an out-of-bounds block, which works
out to four possibilities per block, resulting in 65,536 possible states. With this much
variety, we would need to train the agent in many parking-lot configurations many times
for it to learn good short-term action choices (figure 10.12).

Figure 10.12 A better example of a Q-table and states that it represents

Keep the idea of a reward table in mind as we explore the life cycle of training a model
using reinforcement learning with Q-learning. It will represent the model for actions
that the agent will take in the environment.

Let’s take a look at the life cycle of a Q-learning algorithm, including the steps involved
in training. We will look at two phases: initialization, and what happens over several
iterations as the algorithm learns (figure 10.13):

338	 Chapter 10 I Reinforcement learning with Q-learning

Figure 10.13 Life cycle of a Q-learning reinforcement learning algorithm

•	 Initialize. The initialize step involves setting up the relevant parameters and
initial values for the Q-table:

1.	 Initialize Q-table. Initialize a Q-table in which each column is an action
and each row represents a possible state. Note that states can be added to
the table as they are encountered, because it can be difficult to know the
number of states in the environment at the beginning. The initial action
values for each state are initialized with 0s.

2.	 Set parameters. This step involves setting the parameters for different
hyperparameters of the Q-learning algorithm, including:

	 The life cycle of reinforcement learning� 339

•	 Chance of choosing a random action—This is the value threshold for
choosing a random action over choosing an action from the Q-table.

•	 Learning rate—The learning rate is similar to the learning rate in
supervised learning. It describes how quickly the algorithm learns
from rewards in different states. With a high learning rate, values in
the Q-table change erratically, and with a low learning rate, the values
change gradually but it will potentially take more iterations to find
good values.

•	 Discount factor—The discount factor describes how much potential
future rewards are valued, which translates to favoring immediate
gratification or long-term reward. A small value favors immediate
rewards; a large value favors long-term rewards.

•	 Repeat for n iterations. The following steps are repeated to find the best actions in
the same states by evaluating these states multiple times. The same Q-table will
be updated over all iterations. The key concept is that because the sequence of
actions for an agent is important, the reward for an action in any state may
change based on previous actions. For this reason, multiple iterations are
important. See an iteration as a single attempt to achieving a goal:

1.	 Initialize simulator. This step involves resetting the environment to the
starting state, with the agent in a neutral state.

2.	 Get environment state. This function should provide the current state of the
environment. The state of the environment will change after each action is
performed.

3.	 Is goal achieved? Determine whether the goal is achieved (or the simulator
deems the exploration to be complete). In our example, this goal is picking up
the owner of the self-driving car. If the goal is achieved, the algorithm ends.

4.	 Pick a random action. Determine whether a random action should be
selected. If so, a random action will be selected (north, south, east, or
west). Random actions are useful for exploring the possibilities in the
environment instead of learning a narrow subset.

5.	 Reference action in Q-table. If the decision to select a random action is not
selected, the current environment state is transposed to the Q-table, and
the respective action is selected based on the values in the table. More
about the Q-table is coming up.

6.	 Apply action to environment .This step involves applying the selected
action to the environment, whether that action is random or one selected
from the Q-table. An action will have a consequence in the environment
and yield a reward.

340	 Chapter 10 I Reinforcement learning with Q-learning

7.	 Update Q-table. The following material describes the concepts involved in
updating the Q-table and the steps that are carried out.

The key aspect of Q-learning is the equation used to update the values of the Q-table.
This equation is based on the Bellman equation, which determines the value of a decision
made at a certain point in time, given the reward or penalty for making that decision.
The Q-learning equation is an adaptation of the Bellman equation. In the Q-learning
equation, the most important properties for updating Q-table values are the current
state, the action, the next state given the action, and the reward outcome. The learning
rate is similar to the learning rate in supervised learning, which determines the extent to
which a Q-table value is updated. The discount is used to indicate the importance of
possible future rewards, which is used to balance favoring immediate rewards versus
long-term rewards:

Because the Q-table is initialized with 0s, it looks similar to figure 10.14 in the initial
state of the environment.

Figure 10.14 An example initialized Q-table

	 The life cycle of reinforcement learning� 341

Next, we explore how to update the Q-table by using the Q-learning equation based on
different actions with different reward values. These values will be used for the learning
rate (alpha) and discount (gamma):

•	 Learning rate (alpha): 0.1

•	 Discount (gamma): 0.6

Figure 10.15 illustrates how the Q-learning equation is used to update the Q-table, if the
agent selects the East action from the initial state in the first iteration. Remember that
the initial Q-table consists of 0s. The learning rate (alpha), discount (gamma), current
action value, reward, and next best state are plugged into the equation to determine the
new value for the action that was taken. The action is East, which results in a collision
with another car, which yields -100 as a reward. After the new value is calculated, the
value of East on state 1 is -10.

Figure 10.15 Example Q-table update calculation for state 1

342	 Chapter 10 I Reinforcement learning with Q-learning

The next calculation is for the next state in the environment following the action that
was taken. The action is South and results in a collision with a pedestrian, which yields
-1,000 as the reward. After the new value is calculated, the value for the South action on
state 2 is -100 (figure 10.16).

Figure 10.16 Example Q-table update calculation for state 2

Figure 10.17 illustrates how the calculated values differ in a Q-table with populated val-
ues because we worked on a Q-table initialized with 0s. The figure is an example of the
Q-learning equation updated from the initial state after several iterations. The simula-
tion can be run multiple times to learn from multiple attempts. So, this iteration is suc-
ceeding many before it, where the values of the table have been updated. The action for
East results in a collision with another car and yields -100 as a reward. After the new
value is calculated, the value for East on state 1 changes to -34.

	 The life cycle of reinforcement learning� 343

Figure 10.17 Example Q-table update calculation for state 1 after several iterations

EXERCISE: CALCULATE THE CHANGE IN VALUES FOR THE Q-TABLE

Using the Q-learning update equation and the following scenario, calculate
the new value for the action performed. Assume that the last move was East
with a value of -67:

344	 Chapter 10 I Reinforcement learning with Q-learning

SOLUTION: CALCULATE THE CHANGE IN VALUES FOR THE Q-TABLE

The hyperparameter and state values are plugged into the Q-learning equa-
tion, resulting in the new value for Q(1, east):

•	 Learning rate (alpha): 0.1

•	 Discount (gamma): 0.6

•	 Q(1, east): -67

•	 Max of Q(2, all actions): 112

	 The life cycle of reinforcement learning� 345

Pseudocode

This pseudocode describes a function that trains a Q-table by using Q-learning. It could
be broken into simpler functions but is represented this way for readability. The function
follows the steps described in this chapter.

The Q-table is initialized with 0s; then the learning logic is run for several iterations.
Remember that an iteration is an attempt to achieve the goal.

The next piece of logic runs while the goal has not been achieved:

1.	 Decide whether a random action should be taken to explore possibilities in the
environment. If not, the highest value action for the current state is selected from
the Q-table.

2.	 Proceed with the selected action, and apply it to the simulator.

3.	 Gather information from the simulator, including the reward, the next state
given the action, and whether the goal is reached.

4.	 Update the Q-table based on the information gathered and hyperparameters.
Note that in this code, the hyperparameters are passed through as arguments of
this function.

5.	 Set the current state to the state outcome of the action just performed.

These steps will continue until a goal is found. After the goal is found and the desired
number of iterations is reached, the result is a trained Q-table that can be used to test in
other environments. We look at testing the Q-table in the next section:

346	 Chapter 10 I Reinforcement learning with Q-learning

	 The life cycle of reinforcement learning� 347

Testing with the simulation and Q-table
We know that in the case of using Q-learning, the Q-table is the model that encompasses
the learnings. When presented with a new environment with different states, the algo-
rithm references the respective state in the Q-table and chooses the highest-valued
action. Because the Q-table has already been trained, this process consists of getting the
current state of the environment and referencing the respective state in the Q-table to
find an action until a goal is achieved (figure 10.18).

Figure 10.18 Referencing a Q-table to determine what action to take

Because the state learned in the Q-table considers the objects directly next to the agent’s
current position, the Q-table has learned good and bad moves for short-term rewards,
so the Q-table could be used in a different parking-lot configuration, such as the one
shown in figure 10.18. The disadvantage is that the agent favors short-term rewards over
long-term rewards because it doesn’t have the context of the rest of the map when taking
each action.

One term that will likely come up in the process of learning more about reinforce-
ment learning is episodes. An episode includes all the states between the initial state and
the state when the goal is achieved. If it takes 14 actions to achieve a goal, we have 14
episodes. If the goal is never achieved, the episode is called infinite.

348	 Chapter 10 I Reinforcement learning with Q-learning

Measuring the performance of training
Reinforcement learning algorithms can be difficult to measure generically. Given a spe-
cific environment and goal, we may have different penalties and rewards, some of which
have a greater effect on the problem context than others. In the parking-lot example, we
heavily penalize collisions with pedestrians. In another example, we may have an agent
that resembles a human and tries to learn what muscles to use to walk naturally as far as
possible. In this scenario, penalties may be falling or something more specific, such as
too-large stride lengths. To measure performance accurately, we need the context of the
problem.

One generic way to measure performance is to count the number of penalties in a
given number of attempts. Penalties could be events that we want to avoid that happen
in the environment due to an action.

Another measurement of reinforcement learning performance is average reward per
action. By maximizing the reward per action, we aim to avoid poor actions, whether the
goal was reached or not. This measurement can be calculated by dividing the cumulative
reward by the total number of actions.

Model-free and model-based learning
To support your future learning in reinforcement learning, be aware of two approaches
for reinforcement learning: model-based and model-free, which are different from the
machine learning models discussed in this book. Think of a model as being an agent’s
abstract representation of the environment in which it is operating.

We may have a model in our heads about locations of landmarks, intuition of direc-
tion, and the general layout of the roads within a neighborhood. This model has been
formed from exploring some roads, but we’re able to simulate scenarios in our heads to
make decisions without trying every option. To decide how we will get to work, for
example, we can use this model to make a decision; this approach is model-based. Model-
free learning is similar to the Q-learning approach described in this chapter; trial and
error is used to explore many interactions with the environment to determine favorable
actions in different scenarios.

Figure 10.19 depicts the two approaches in road navigation. Different algorithms can
be employed to build model-based reinforcement learning implementations.

	 Deep learning approaches to reinforcement learning� 349

Figure 10.19 Examples of model-based and model-free reinforcement learning

Deep learning approaches to
reinforcement learning
Q-learning is one approach to reinforcement learning. Having a good understanding of
how it functions allows you to apply the same reasoning and general approach to other
reinforcement learning algorithms. Several alternative approaches depend on the prob-
lem being solved. One popular alternative is deep reinforcement learning, which is
useful for applications in robotics, video-game play, and problems that involve images
and video.

Deep reinforcement learning can use artificial neural networks (ANNs) to process the
states of an environment and produce an action. The actions are learned by adjusting
weights in the ANN, using the reward feedback and changes in the environment.
Reinforcement learning can also use the capabilities of convolutional neural networks
(CNNs) and other purpose-built ANN architectures to solve specific problems in differ-
ent domains and use cases.

Figure 10.20 depicts, at a high level, how an ANN can be used to solve the parking-lot
problem in this chapter. The inputs to the neural network are the states; the outputs are
probabilities for best action selection for the agent; and the reward and effect on the envi-
ronment can be fed back using backpropagation to adjust the weights in the network.

350	 Chapter 10 I Reinforcement learning with Q-learning

Figure 10.20 Example of using an ANN for the parking-lot problem

The next section looks at some popular use cases for reinforcement learning in the real
world.

Use cases for reinforcement learning
Reinforcement learning has many applications where there is no or little historic data to
learn from. Learning happens through interacting with an environment that has heuris-
tics for good performance. Use cases for this approach are potentially endless. This sec-
tion describes some popular use cases for reinforcement learning.

Robotics
Robotics involves creating machines that interact with real-world environments to
accomplish goals. Some robots are used to navigate difficult terrain with a variety of
surfaces, obstacles, and inclines. Other robots are used as assistants in a laboratory, tak-
ing instructions from a scientist, passing the right tools, or operating equipment. When
it isn’t possible to model every outcome of every action in a large, dynamic environment,
reinforcement learning can be useful. By defining a greater goal in an environment and
introducing rewards and penalties as heuristics, we can use reinforcement learning to

	 Use cases for reinforcement learning� 351

train robots in dynamic environments. A terrain-navigating robot, for example, may
learn which wheels to drive power to and how to adjust its suspension to traverse diffi-
cult terrain successfully. This goal is achieved after many attempts.

These scenarios can be simulated virtually if the key aspects of the environment can
be modeled in a computer program. Computer games have been used in some projects
as a baseline for training self-driving cars before they’re trained on the road in the real
world. The aim in training robots with reinforcement learning is to create more-general
models that can adapt to new and different environments while learning more-general
interactions, much the way that humans do.

Recommendation engines
Recommendation engines are used in many of the digital products we use. Video stream-
ing platforms use recommendation engines to learn an individual’s likes and dislikes in
video content and try to recommend something most suitable for the viewer. This
approach has also been employed in music streaming platforms and e-commerce stores.
Reinforcement learning models are trained by using the behavior of the viewer when
faced with decisions to watch recommended videos. The premise is that if a recom-
mended video was selected and watched in its entirety, there’s a strong reward for the
reinforcement learning model, because it has assumed that the video was a good recom-
mendation. Conversely, if a video never gets selected or little of the content is watched,
it’s reasonable to assume that the video did not appeal to the viewer. This result would
result in a weak reward or a penalty.

Financial trading
Financial instruments for trading include stock in companies, cryptocurrency, and
other packaged investment products. Trading is a difficult problem. Analysts monitor
patterns in price changes and news about the world, and use their judgment to make a
decision to hold their investment, sell part of it, or buy more. Reinforcement learning
can train models that make these decisions through rewards and penalties based on
income made or loss incurred. Developing a reinforcement learning model to trade well
takes a lot of trial and error, which means that large sums of money could be lost in
training the agent. Luckily, most historic public financial data is freely available, and
some investment platforms provide sandboxes to experiment with.

Although a reinforcement learning model could help generate a good return on
investment, here’s an interesting question: if all investors were automated and completely
rational, and the human element was removed from trading, what would the market
look like?

Game playing
Popular strategy computer games have been pushing players’ intellectual capabilities for
years. These games typically involve managing many types of resources while planning
short-term and long-term tactics to overcome an opponent. These games have filled

352	 Chapter 10 I Reinforcement learning with Q-learning

arenas, and the smallest mistakes have cost top-notch players many matches.
Reinforcement learning has been used to play these games at the professional level and
beyond. These reinforcement learning implementations usually involve an agent watch-
ing the screen the way a human player would, learning patterns, and taking actions. The
rewards and penalties are directly associated with the game. After many iterations of
playing the game in different scenarios with different opponents, a reinforcement learn-
ing agent learns what tactics work best toward the long-term goal of winning the game.
The goal of research in this space is related to the search for more-general models that
can gain context from abstract states and environments and understand things that can-
not be mapped out logically. As children, for example, we never got burned by multiple
objects before learning that hot objects are potentially dangerous. We developed an intu-
ition and tested it as we grew older. These tests reinforced our understanding of hot
objects and their potential harm or benefit.

In the end, AI research and development strives to make computers learn to solve
problems in ways that humans are already good at: in a general way, stringing abstract
ideas and concepts together with a goal in mind and finding good solutions to
problems.

	 Use cases for reinforcement learning� 353

SUMMARY OF REINFORCEMENT LEARNING

355

index

Symbols
-1 value, 56

A
accuracy, improving, 255–256
actions, simulating, 74–83
activation functions, 314–315,

318
adjacency lists, 56–57
adversarial problems, 72–73
adversarial searches, 72–89

algorithms for, 88–89
alpha-beta pruning, 84–88
choosing best future, 74–84
min-max search, 74–84
optimizing by exploring

sensible paths, 84–88
simple adversarial prob-

lems, 72–73
simulating actions, 74–84

agents with AI algorithms,
17–18

agriculture, algorithms for,
14–15

AI (artificial intelligence)
AI algorithms

biology-inspired, 12–13
deep learning, 13–14
for agriculture, 14–15
for AI agents, 17–19
for art, 19–20
for banking, 15
for cybersecurity, 15–16
for games, 17–18
for health care, 16
for logistics, 17
for optimization, 17
for optimizing net-
works, 17

for routing, 17
for telecoms, 17
machine learning, 13
overview of, 2–3
role of data in, 3–4
search algorithms, 12
use cases for, 14–19

brief history of, 6–7
defining, 2
humanlike solutions, 11
new AI, 11–12
old AI, 11–12

overview of, 1
problem-solving para-

digms, 8–9
problem types, 8–9
specific-purpose solutions,

10
super intelligence, 11

algorithms
biology-inspired, 12–13
evolutionary, 91–129

glossary of terms, 149
hierarchies, 144–148
life cycle of, 131–133
order encoding, 141–144
overview of, 91
problems applicable to,
95–99

real numbers, 137–141
real-value encoding,
137–141

selection strategies,
133–137

sequences, 141–144
tree encoding, 144–148
types of, 148–149
use cases for, 127–129,
150–151

356	 index

algorithms (continued)
for adversarial searches,

88–89
for ant colony optimiza-

tion, 153–188
ants, 160–164
paths, 160–164
problems applicable to,
156–159

representing state,
160–164

swarm intelligence,
153–156

use cases for, 187–188
for artificial intelligence

agriculture, 14–15
art, 19
banking, 15
creating agents with,
17–18

cybersecurity, 15–16
games, 17–18
health care, 16
logistics, 17
optimization with,
17

optimizing networks
with, 17

role of data in, 3
routing, 17
telecoms, 17

for deep learning, 13–14
for machine learning, 13,

275
for particle swarm optimi-

zation, 189–191
optimization problems,
192–195

overview of, 189–191
problems applicable to,
195–197

use cases for, 223–226
for searching, 12, 25–27

for uninformed searches,
53

genetic configuring pa-
rameters of, 126–127

overview of, 4–5
smart algorithms, 24–25

alpha-beta pruning, 84–88
ambiguous values, 238
ANNs (artificial neural

networks), 279–322
backpropagation of,

303–314
training, 305–314

defining, 287–295
designing, 316–319

activation functions,
318

bias, 317–318
cost function, 318
hidden layers, 317
inputs, 317
learning rate, 318
nodes, 317
outputs, 317
weights, 317

forward propagation of,
295–303, 305

options for activation
functions, 314–315

overview of, 280–282
perceptron, 283–287
representing neurons,

283–287
training, 303–312
types of, 319–322

CNNs (convolutional
neural networks),
319

GANs (generative
adversarial networks),
320–322

RNNs (recurrent neu-
ral networks), 320

ant colony optimization algo-
rithm, 153–188

ants, 160–164
paths, 160–164
problems applicable to,

156–159
representing state,

160–164
swarm intelligence,

153–156
use cases for, 187–188

arithmetic crossover, 139
arithmetic mutation,

140–141
art, AI algorithms for, 19–20
artificial neural networks

(ANNs), 279–322
A* search, 63–70

B

backpropagation of ANNs,
303–314

setup, 305
training, 305–314

banking, AI algorithms for,
15

bias, 317–318
biology-inspired algorithms,

12–13
blind searches, 34–36
boundary mutations, 140
breadth-first searches, 36–45

C

categorical data, encoding,
238–239

classification
problems applicable to, 9,

256–257

	 index� 357

with decision trees,
258–274

classifying examples
with, 271–274

overview of, 258
training, 260–271

clustering, problems applica-
ble to, 9

CNNs (convolutional neural
networks), 319

collecting data, 233–235
computations, cost of, 24–25
context of data, 233–235
convolutional neural net-

works, 319
cost

functions, 318
of computations, 24–25

crossover
arithmetic crossover, 139
tree crossover, 146–147

cybersecurity, AI algorithms
for, 15–16

D
data

categorical, 238–240
collecting, 233–235
context of, 233–235
fitting line to, 241–242
identifying patterns in, 9
in AI algorithms, 3–4
learning from patterns

in, 9
missing, 235–238
preparing, 235–240
separating, 252
testing, 240
training, 240

data structures
for decision trees, 260–271

representing graphs as,
31–32

decision trees
classification with, 256–257
classifying examples with,

271–274
data structures for, 260–271
learning life cycle, 261–271
overview of, 258–260
training, 260–271

deep learning
algorithms for, 13–14
approaches to rein-

forcement learning,
349–350

depth-first search (DFS),
45–53

designing ANNs, 316–318
activation functions, 318
bias, 317–318
cost function, 318
hidden layers, 317
inputs, 317
learning rate, 318
nodes, 317
outputs, 317
weights, 317

deterministic models, 9
DFS (depth-first search),

45–53

E
elitism selection, 136–137
encoding

categorical data, 238–240
order encoding, 141–144

fitness functions,
142–143

order mutation,
143–144

overview of, 141

permutation encoding,
143–144

real-value encoding,
137–141

arithmetic crossover,
139

arithmetic mutation,
140–141

boundary mutation,
140

overview of, 137–138
trees, 144–148

changing node muta-
tion, 147–148

changing values of
nodes, 147–148

inheriting portions of
trees, 146–147

overview of, 146
tree crossover, 146–147

evolutionary algorithms,
91–129

configuring parameters
of genetic algorithms,
126–127

glossary of terms, 149
hierarchies, 144–148

changing node muta-
tion, 147–148

changing values of
nodes, 147–148

inheriting portions of
trees, 146–147

tree crossover, 146–147
tree encoding, 146

life cycle of, 131–133
order encoding, 141–144

fitness functions,
142–143

order mutation,
143–144

overview of, 143
overview of, 91

358	 index

evolutionary algorithms
(continued)

permutation encoding,
143–144

populating next genera-
tion stopping condi-
tions, 124–126

problems applicable to,
95–99

real-value encoding,
137–141

arithmetic crossover,
139

arithmetic mutation,
140–141

boundary mutation,
140

overview of, 138–139
selection strategies,

133–137
elitism selection,
136–137

rank selection, 133–135
tournament selection,
135–136

sequences, 141–144
fitness functions,
142–143

order encoding,
143–144

order mutation,
143–144

permutation encoding,
143–144

tree encoding, 144–148
changing node muta-
tion, 147–148

changing values of
nodes, 147–148

inheriting portions of
trees, 146–147

tree crossover,
146–147

types of, 148–149
evolutionary program-
ming, 149

genetic programming,
148–149

use cases for, 127–129,
150–151

evolutionary programming,
149

examples, classifying,
271–274

F

features, finding mean of,
242–243

financial trading, 351
fitness functions, 142–143
forward propagation of

ANNs, 295–303, 305
frameworks

representing problem
spaces with, 28–34

representing solutions
with, 28–34

functions
activation functions,

314–315, 318
cost functions, 318
fitness functions, 142–143

future, choosing, 74–84

G

games
AI algorithms for, 17–18
playing, 351–353

GANs (generative adversarial
networks), 320–322

genetic algorithms
parameters of, 126–127

genetic programming,
148–149

graphs, 29–31
categories of, 54–55
representing, 56–57

adjacency lists, 56–57
as data structures,
31–32

incidence matrix, 56

H

health care, AI algorithms
for, 16–17

heuristics, 59–63
for choosing best future,

74–84
for min-max search, 74–4
for simulating actions,

74–84
hidden layers, 317
hierarchies, 144–148

changing node mutation,
147–148

changing values of nodes,
147–148

inheriting portions of
trees, 146–147

tree crossover, 146–147
tree encoding, 146

humanlike solutions, 11

I

incidence matrix, 56
informed searches, 63–71

algorithms for, 71
A* search, 63–71

inheriting portions of trees,
146–147

inputs, 317

	 index� 359

L
layers, hidden, 317
learning

decision-tree life cycle for,
261–271

from patterns in data, 9
model-based, 348–349
model-free, 348–349
rates, 318
supervised, 231
unsupervised, 231

least-squares method, 244–251
life cycle

of decision tree learning,
261–271

of evolutionary algo-
rithms, 131–133

of reinforcement learning,
329–349

linear regression, 240–251
finding mean of features,

242–243
finding regression lines

with least-squares
method, 244–251

fitting line to data, 241–242
lines

fitting to data, 241–242
measuring performance

of, 253–254
lists, adjacency, 56–57
logistics, AI algorithms for,

17

M
machine learning, 227–277

algorithms for, 13,
275–277

classification with decision
trees, 256–274

classification problems,
256–257

classifying examples
with decision trees,
271–274

overview of decision
trees, 258–260

training decision trees,
260–271

overview of, 227–229
problems applicable to,

230–231
workflow of, 232–256

collecting data, 233–235
context of data, 233–235
improving accuracy,
255–256

linear regression,
240–251

preparing data,
235–240

testing models, 251–254
training models,
240–251

matrix, incidence, 56
mean of features, finding,

242–243
methods, least-squares,

244–251
min-max search, 74–84
missing data, 235–238
model-based learning,

348–349
model-free learning, 348–349
models

testing, 251–254
measuring perfor-
mance of line, 253–254

separating training and
testing data, 252

training, 240–251
finding mean of fea-
tures, 242–243

finding regression lines
with least-squares
method, 244–251

fitting line to data,
241–242

mutations
arithmetic mutation,

140–141
boundary mutation, 140
of nodes, changing,

147–148
order mutation, 143–144

N
networks

optimizing with AI algo-
rithms, 17

neurons, representing,
283–287

next generations, populating
stopping conditions,

124–126
nodes, 317

changing mutation of,
147–148

changing values of, 147–148

O
optimization

AI algorithms for, 17
ant colony optimization

algorithm, 153–188
ants, 160–164
paths, 160–164
problems applicable to,
156–159

representing state,
160–164

use cases for, 187–188

360	 index

optimization (continued)
exploring sensible paths

for, 84–88
of networks, 17
particle swarm optimi-

zation algorithms,
189–226

overview of, 189–191
problems applicable to,
195–197

use cases for, 223–226
problems applicable to,

8–9, 192–195
order encoding, 141–144

fitness functions,
142–143

order mutation, 143–144
overview of, 142–143

order mutation, 143–144
outputs, 317

P
parameters of genetic algo-

rithms, configuring,
126–127

particle swarm optimization
algorithms, 189–191

optimization problems,
192–195

overview of, 189–191
problems applicable to,

195–197
use cases for, 223–226

patterns in data
identifying, 9
learning from, 9

performance
of lines, measuring,

253–254
of training, measuring,

348

permutation encoding,
143–144

populating next generation
stopping conditions,

124–126
prediction, problems applica-

ble to, 9
preparing data

ambiguous values, 238
encoding categorical data,

238–240
missing data, 235–238
testing data, 240
training data, 240

probabilistic models, 9
probability, 9
problem spaces, representing,

28–34
graphs, 29–30
graphs as concrete data

structures, 31–32
search problems, 29–30
search solutions with con-

crete structures,
32–34

solutions, 29–30
trees, 32–34

pruning, 84–88

Q
Q-learning

reinforcement learning
with, 323–327

deep learning ap-
proaches to, 349–350

financial trading, 351
game playing, 351–353
life cycle of, 329–350
overview of, 323–325
problems applicable to,
327–328

recommendation
engines, 351

robotics, 350–351
training with simulations,

335–346

R
rank selections, 133–135
real numbers, 137–141

arithmetic crossover, 139
arithmetic mutation,

140–141
boundary mutation, 140
real-value encoding,

138–139
real-value encoding, 137–141

arithmetic crossover, 139
arithmetic mutation,

140–141
boundary mutation, 140
overview of, 138–139

recommendation engines,
351

recurrent neural networks
(RNNs), 320

reinforcement learning, 231
RL (reinforcement learning)

deep learning approaches
to, 349–350

inspiration for, 325–327
life cycle of, 329–349

data, 330–335
measuring perfor-
mance of training, 348

model-based learning,
348–349

model-free learning,
348–349

simulations, 330–335
testing with Q-table,
347

	 index� 361

testing with simula-
tions, 347

training with simula-
tions using Q-learn-
ing, 335–346

overview of, 323–325
problems applicable to,

327–328
with Q-learning, 323–353

financial trading, 351
game playing, 351–352
recommendation en-
gines, 351

robotics, 350
RNNs (recurrent neural net-

works), 320
robotics, 350–351
routing, AI algorithms for, 17

S
search

adversarial, 72–89
alpha-beta pruning,
84–88

choosing best future,
74–84

optimizing by explor-
ing sensible paths,
84–88

simple problems,
72–73

simulating actions,
74–84

use cases for, 88–89
algorithms for, 12–14,

25–27, 53
A* search, 63–71
blind, 34–36
breadth-first, 36–45
cost of computations,

24–25

depth-first, 45–53
for solutions in changing

environments, 72–89
for solutions with guid-

ance, 63–71
frameworks to represent

solutions, 28–34
graph categories, 54–55
heuristics for, 59–63
informed, 63–71
min-max, 74–84
planning, 21–23
problems applicable to,

8–9
representing graphs,

56–57
adjacency lists, 56–57
as concrete data struc-
tures, 31–32

incidence matrix, 56
representing problems,

29–30
representing solutions,

29–30, 32–34
representing state, 28–34

graphs, 29–30
trees, 32–34

smart algorithms, 24–25
uninformed, 34–36, 53

search algorithms, 12, 25–27,
53

selection
elitism selection, 136–137
rank selection, 133–135
strategies for, 133–137
tournament selection,

135–136
sequences, 141–144

fitness function, 142–143
order encoding, 143
order mutation, 143–144
permutation encoding,

143–144

simulations, 330–349
of actions, 74–84
testing with, 347
training with, 335–346

smart algorithms, 24–25
solutions

blind search for, 34–36
finding, 8
for specific-purpose, 10
humanlike, 11
in changing environ-

ments, 72–89
adversarial search algo-
rithms, 88–89

alpha-beta pruning,
84–88

choosing best future,
74–84

min-max search, 74–84
optimizing by explor-
ing sensible paths,
84–88

simple adversarial
problems, 72–73

simulating actions,
74–84

paths to, 8
representing, 29–30

with concrete struc-
tures, 32–34

with frameworks,
28–34

with guidance, 63–71
A* search, 63–71

specific-purpose solutions, 10
state, representing, 28–34

graphs, 29–32
search problems, 29–30
solutions, 29–30, 32–34
trees, 32–34

stochastic models, 9
stopping conditions, 124–126
super intelligence, 11

362	 index

supervised learning, 231
swarm intelligence, 153–188

ant colony optimization
algorithms

problems applicable to,
156–159

use cases for, 187–188
ants, 160–164
overview of, 153–156
particle swarm optimi-

zation algorithms,
189–226

optimization problems,
192–195

overview of, 189–191
problems applicable to,
195–197

use cases for, 223–226
paths, 160–164
representing state,

160–164

T
telecoms, AI algorithms for,

17
testing

data, 240
models, 251–254

measuring perfor-
mance of line, 253–254

separating training and
testing data, 252

with Q-table, 347
with simulations, 347

tournament selection, 135–136
training

ANNs, 303–314
forward propagation,
305

setup, 305
data, 240
decision trees, 260–271

data structures for,
260–261

learning life cycle,
261–271

measuring performance
of, 348

models, 240–251
finding mean of fea-
tures, 242–243

finding regression lines
with least-squares
method, 244–251

fitting line to data,
241–242

with simulations using
Q-learning, 335–346

trees, 32–34
crossover, 146–147
decision trees

classification with,
256–271

classifying examples
with, 271–274

overview of, 258–260
training, 260–271

encoding, 144–148
changing node muta-
tion, 147–148

changing values of
nodes, 147–148

overview of, 146
inheriting portions of,

146–147

U

uninformed search algo-
rithms, 53

uninformed searches,
34–36

unsupervised learning, 231

V

values
ambiguous, 238
of nodes, changing,

147–148
real-value encoding,

137–141
arithmetic crossover,
139

arithmetic mutation,
140–141

boundary mutation,
140

overview of, 138–139

W

weights, 317

Grokking Algorithms
by Aditya Y. Bhargava

ISBN 9781617292231
256 pages
eBook: $35.99/Print book + eBook: $44.99
May 2016

Grokking Deep Learning
by Andrew W. Trask

ISBN 9781617293702
336 pages
eBook: $39.99/Print book + eBook: $49.99
January 2019

Grokking Bitcoin
by Kalle Rosenbaum
Foreword by David A. Harding

ISBN 9781617294648
480 pages
eBook: $31.99/Print book + eBook: $39.99
April 2019

For ordering information go to www.manning.com

RELATED MANNING TITLES

Deep Learning with Python, Second Edition
by François Chollet

ISBN 9781617296864
400 pages (estimated)
eBook: $19.99/Print book + eBook: $24.99
Fall 2020 (estimated)

Deep Learning with Pytorch
by Eli Stevens, Luca Antiga, and Thomas Viehmann
Foreword by Soumith Chintala

ISBN 9781617295263
520 pages
eBook: $39.99/Print book + eBook: $49.99
July 2020

Machine Learning with Tensorflow
by Nishant Shukla
with Kenneth Fricklas

ISBN 9781617293870
272 pages
eBook: $35.99/Print book + eBook: $44.99
January 2018

For ordering information go to www.manning.com

RELATED MANNING TITLES

Machine Learning with R,
the tidyverse, and mlr
by Hefin I. Rhys

ISBN 9781617296574
536 pages
eBook: $39.99/Print book + eBook: $49.99
March 2020

Deep Learning with JavaScript
Shanqing Cai, Stanley Bileschi, Eric D. Nielsen, and
Francois Chollet
Foreword by Nikhil Thorat and Daniel Smilkov

ISBN 9781617296178
560 pages
eBook: $39.99/Print book + eBook: $49.99
January 2020

GANs in Action
by Jakub Langr and Vladimir Bok

ISBN 9781617295560
240 pages
eBook: $39.99/Print book + eBook: $49.99
September 2019

For ordering information go to www.manning.com

RELATED MANNING TITLES

Natural Language Processing in Action
by Hobson Lane, Cole Howard, and Hannes Max Hapke
Foreword by Dr. Arwen Griffioen

ISBN 9781617294631
544 pages
eBook: $39.99/Print book + eBook: $49.99
March 2019

Succeeding with AI
by Veljko Krunic

ISBN 9781617296932
288 pages
eBook: $39.99/Print book + eBook: $49.99
March 2020

Zero to AI
by Nicolò Valigi and Gianluca Mauro

ISBN 9781617296062
264 pages
eBook: $39.99/Print book + eBook: $49.99
April 2020

For ordering information go to www.manning.com

RELATED MANNING TITLES

	Contents
	Preface
	Acknowledgments
	About this book
	About the author
	Chapter 1. Intuition of artificial intelligence
	What is artificial intelligence?
	A brief history of artificial intelligence
	Problem types and problem-solving paradigms
	Intuition of artificial intelligence concepts
	Uses for artificial intelligence algorithms

	Chapter 2. Search fundamentals
	What are planning and searching?
	Cost of computation: The reason for smart algorithms
	Problems applicable to searching algorithms
	Representing state: Creating a framework to represent problem spaces and solutions
	Uninformed search: Looking blindly for solutions
	Breadth-first search: Looking wide before looking deep
	Depth-first search: Looking deep before looking wide
	Use cases for uninformed search algorithms
	Optional: More about graph categories
	Optional: More ways to represent graphs

	Chapter 3. Intelligent search
	Defining heuristics: Designing educated guesses
	Informed search: Looking for solutions with guidance
	Adversarial search: Looking for solutions in a changing environment

	Chapter 4. Evolutionary algorithms
	What is evolution?
	Problems applicable to evolutionary algorithms
	Genetic algorithm: Life cycle
	Encoding the solution spaces
	Creating a population of solutions
	Measuring fitness of individuals in a population
	Selecting parents based on their fitness
	Reproducing individuals from parents
	Populating the next generation
	Configuring the parameters of a genetic algorithm
	Use cases for evolutionary algorithms

	Chapter 5. Advanced evolutionary approaches
	Evolutionary algorithm life cycle
	Alternative selection strategies
	Real-value encoding: Working with real numbers
	Order encoding: Working with sequences
	Tree encoding: Working with hierarchies
	Common types of evolutionary algorithms
	Glossary of evolutionary algorithm terms
	More use cases for evolutionary algorithms

	Chapter 6. Swarm intelligence: Ants
	What is swarm intelligence?
	Problems applicable to ant colony optimization
	Representing state: What do paths and ants look like?
	The ant colony optimization algorithm life cycle
	Use cases for ant colony optimization algorithms

	Chapter 7. Swarm intelligence: Particles
	What is particle swarm optimization?
	Optimization problems: A slightly more technical perspective
	Problems applicable to particle swarm optimization
	Representing state: What do particles look like?
	Particle swarm optimization life cycle
	Use cases for particle swarm optimization algorithms

	Chapter 8. Machine learning
	What is machine learning?
	Problems applicable to machine learning
	A machine learning workflow
	Classification with decision trees
	Other popular machine learning algorithms
	Use cases for machine learning algorithms

	Chapter 9. Artificial neural networks
	What are artificial neural networks?
	The Perceptron: A representation of a neuron
	Defining artificial neural networks
	Forward propagation: Using a trained ANN
	Backpropagation: Training an ANN
	Options for activation functions
	Designing artificial neural networks
	Artificial neural network types and use cases

	Chapter 10. Reinforcement learning with Q-learning
	What is reinforcement learning?
	Problems applicable to reinforcement learning
	The life cycle of reinforcement learning
	Deep learning approaches to reinforcement learning
	Use cases for reinforcement learning

	Index

