
; ;

Co, n

== S SIa

I N IO

a *pp

Foundations
of

Computing

JOIN US ON THE INTERNET VIA WWW, GOPHER,
FTP OR EMAIL:

WWW: http://www.itcpmedia.com
GOPHER: gopher.thomson.com
FTP: ftp.thomson.com
EMAIL: findit@kiosk.thomson.com

A service of I(cP ®

Foundations
of

Computing

Jozef Gruska

INTERNATIONAL THOMSON COMPUTER PRESS

1 () P® An International Thomson Publishing Company

London * Bonn * Boston * Johannesburg • Madrid * Melbourne • Mexico City • New York • Paris
Singapore • Tokyo • Toronto • Aibany, NY ° Belmont, CA • Cincinnati, OH • Detroit, MI

Copyright © 1997 International Thomson Computer Press

A division of International Thomson Publishing Inc.
The ITP logo is a trademark under license.

Printed in the United States of America.

For more information, contact:

International Thomson Computer Press International Thomson Publishing GmbH
20 Park Plaza K6nigswinterer Strafle 418
13th Floor 53227 Bonn
Boston, MA 02116 Germany
USA

International Thomson Publishing Europe International Thomson Publishing Asia
Berkshire House 221 Henderson Road #05-10
168-173 High Holborn Henderson Building
London WCIV 7AA Singapore 0315
England

Thomas Nelson Australia International Thomson Publishing Japan
102 Dodds Street Hirakawacho Kyowa Building, 3F
South Melbourne, 3205 2-2-1 Hirakawacho
Victoria Chiyoda-ku, 102 Tokyo
Australia Japan

Nelson Canada International Thomson Editores
1120 Birchmount Road Campos Eliseos 385, Piso 7
Scarborough, Ontario Col. Polenco
Canada M 1K 5G4 11560 Mexico D.F. Mexico

International Thomson Publishing Southern Africa International Thomson Publishing France
Bldg. 19, Constantia Park Tours Maine-Montparnasse
239 Old Pretoria Road, PO. Box 2459 22 avenue du Maine
Halfway House 75755 Paris Cedex 15
1685 South Africa France

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by
any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and
retrieval systems - without the written permission of the Publisher.

Products and services that are referred to in this book may be either trademarks and/or registered trademarks of their
respective owners. The Publisher(s) and Author(s) make no claim to these trademarks.

While every precaution has been taken in the preparation of this book, the Publisher and the Author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained herein. In no
event shall the Publisher and the Author be liable for any loss of profit or any other commercial damage, including but
not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 1-85032-243-0

Publisher/Vice President: Jim DeWolf, ITCP/Boston
Projects Director: Vivienne Toye, ITCP/Boston
Marketing Manager: Christine Nagle, ITCP/Boston
Manufacturing Manager: Sandra Sabathy Carr, ITCP/Boston

Production: Hodgson Williams Associates, Tunbridge Wells and Cambridge, UK

Contents

Preface xiii

1 Fundamentals 1
1.1 Examples 2
1.2 Solution of Recurrences - Basic Methods 8

1.2.1 Substitution Method ... 8
1.2.2 Iteration Method .. 9
1.2.3 Reduction to Algebraic Equations 10

1.3 Special Functions 14
1.3.1 Ceiling and Floor Functions 14
1.3.2 Logarithms 16
1.3.3 Binomial Functions - Coefficients 17

1.4 Solution of Recurrences - Generating Function Method 19
1.4.1 Generating Functions 19
1.4.2 Solution of Recurrences .. 22

1.5 Asymptotics .. 28
1.5.1 An Asymptotic Hierarchy 29
1.5.2 0-, E- and Q-notations 31
1.5.3 Relations between Asymptotic Notations 34
1.5.4 Manipulations with O-notation 36
1.5.5 Asymptotic Notation - Summary 37

1.6 Asymptotics and Recurrences ... 38
1.6.1 Bootstrapping 38
1.6.2 Analysis of Divide-and-conquer Algorithms 39

1.7 Primes and Congruences 40
1.7.1 Euclid's Algorithm ... 41
1.7.2 Primes ... 43
1.7.3 Congruence Arithmetic .. 44

1.8 Discrete Square Roots and Logarithms* 47
1.8.1 Discrete Square Roots ... 48
1.8.2 Discrete Logarithm Problem 53

1.9 Probability and Randomness 53
1.9.1 Discrete Probability 53
1.9.2 Bounds on Tails of Binomial Distributions* 59
1.9.3 Randomness and Pseudo-random Generators 60

vi I CONTENTS

1.9.4 Probabilistic Recurrences* 62
1.10 Asymptotic Complexity Analysis 64

1.10.1 Tasks of Complexity Analysis 64
1.10.2 Methods of Complexity Analysis 66
1.10.3 Efficiency and Feasibility 67
1.10.4 Complexity Classes and Complete Problems 68
1.10.5 Pitfalls 69

1.11 Exercises 70
1.12 Historical and Bibliographical References 75

2 Foundations 77
2.1 Sets 78

2.1.1 Basic Concepts 78
2.1.2 Representation of Objects by Words and Sets by Languages 80
2.1.3 Specifications of Sets - Generators, Recognizers and Acceptors 83
2.1.4 Decision and Search Problems 87
2.1.5 Data Structures and Data Types 89

2.2 Relations 91
2.2.1 Basic Concepts 91
2.2.2 Representations of Relations 93
2.2.3 Transitive and Reflexive Closure 94
2.2.4 Posets 96

2.3 Functions 97
2.3.1 Basic Concepts 98
2.3.2 Boolean Functions ... 102
2.3.3 One-way Functions 107
2.3.4 Hash Functions ... 108

2.4 Graphs 113
2.4.1 Basic Concepts ... 113
2.4.2 Graph Representations and Graph Algorithms 118
2.4.3 Matchings and Colourings 119
2.4.4 Graph Traversals .. 122
2.4.5 Trees 126

2.5 Languages 127
2.5.1 Basic Concepts ... 127
2.5.2 Languages, Decision Problems and Boolean Functions 131
2.5.3 Interpretations of Words and Languages 131
2.5.4 Space of w-languages* .. 137

2.6 Algebras .. 138
2.6.1 Closures .. 138
2.6.2 Semigroups and Monoids 138
2.6.3 Groups 139
2.6.4 Quasi-rings, Rings and Fields 142
2.6.5 Boolean and Kleene Algebras 143

2.7 Exercises 145
2.8 Historical and Bibliographical References 151

CONTENTS U vii

3 Automata 153
3.1 Finite State Devices 154
3.2 Finite Autom ata ... 157

3.2.1 Basic Concepts ... 158
3.2.2 Nondeterministic versus Deterministic Finite Automata 161
3.2.3 Minimization of Deterministic Finite Automata 164
3.2.4 Decision Problems ... 166
3.2.5 String Matching with Finite Automata 167

3.3 Regular Languages 169
3.3.1 Closure Properties ... 169
3.3.2 Regular Expressions .. 171
3.3.3 Decision Problems ... 174
3.3.4 Other Characterizations of Regular Languages 176

3.4 Finite Transducers 178
3.4.1 Mealy and Moore Machines 179
3.4.2 Finite State Transducers 180

3.5 Weighted Finite Automata and Transducers 182
3.5.1 Basic Concepts ... 182
3.5.2 Functions Computed by WFA 187
3.5.3 Image Generation and Transformation by WFA and WFT 188
3.5.4 Image Compression .. 190

3.6 Finite Automata on Infinite Words 191
3.6.1 Biuchi and Muller Automata 191
3.6.2 Finite State Control of Reactive Systems* 193

3.7 Limitations of Finite State Machines 195
3.8 From Finite Automata to Universal Computers 196

3.8.1 Transition Systems .. 196
3.8.2 Probabilistic Finite Automata 197
3.8.3 Two-way Finite Automata 201
3.8.4 Multi-head Finite Automata 203
3.8.5 Linearly Bounded Automata 205

3.9 Exercises 209
3.10 Historical and Bibliographical References 212

4 Computers 215
4.1 Turing Machines 217

4.1.1 Basic Concepts 217
4.1.2 Acceptance of Languages and Computation of Functions 218
4.1.3 Programming Techniques, Simulations and Normal Forms 221
4.1.4 Church's Thesis 222
4.1.5 Universal Turing Machines 224
4.1.6 Undecidable and Unsolvable Problems 227
4.1.7 Multi-tape Turing Machines 229
4.1.8 Time Speed-up and Space Compression 235

4.2 Random Access Machines 237
4.2.1 Basic Model 237
4.2.2 Mutual Simulations of Random Access and Turing Machines 240
4.2.3 Sequential Computation Thesis 242
4.2.4 Straight-line Programs .. 245

viii N CONTENTS

4.2.5 RRAM - Random Access Machines over Reals 249
4.3 Boolean Circuit Families 250

4.3.1 Boolean Circuits 250
4.3.2 Circuit Complexity of Boolean Functions 254
4.3.3 Mutual Simulations of Turing Machines and Families of Circuits*......... 256

4.4 PRAM - Parallel RAM 261
4.4.1 Basic M odel . 262
4.4.2 M emory Conflicts 263
4.4.3 PRAM Programming 264
4.4.4 Efficiency of Parallelization 266
4.4.5 PRAM Programming - Continuation 268
4.4.6 Parallel Computation Thesis 271
4.4.7 Relations between CRCW PRAM Models 275

4.5 Cellular Autom ata 277
4.5.1 Basic Concepts 277
4.5.2 Case Studies 279
4.5.3 A Norm al Form 284
4.5.4 Mutual Simulations of Turing Machines and Cellular Automata 286
4.5.5 Reversible Cellular Automata 287

4.6 Exercises . 288
4.7 Historical and Bibliographical References 293

5 Complexity 297
5.1 Nondeterministic Turing Machines 298
5.2 Complexity Classes, Hierarchies and Trade-offs 303
5.3 Reductions and Complete Problems 305
5.4 NP-complete Problems 308

5.4.1 Direct Proofs of NP-completeness 308
5.4.2 Reduction Method to Prove NP-completeness 313
5.4.3 Analysis of NP-completeness 317

5.5 Average-case Complexity and Completeness 320
5.5.1 Average Polynomial Time 321
5.5.2 Reductions of Distributional Decision Problems 322
5.5.3 Average-case NP-completeness 323

5.6 Graph Isomorphism and Prime Recognition 324
5.6.1 Graph Isomorphism and Nonisomorphism 324
5.6.2 Prim e Recognition 325

5.7 N P versus P 326
5.7.1 Role of NP in Computing 326
5.7.2 Structure of N P 327
5.7.3 P = NP Problem 327
5.7.4 Relativization of the P = NP Problem* 329
5.7.5 P-completeness ... 330
5.7.6 Structure of P . 331
5.7.7 Functional Version of the P = NP Problem 332
5.7.8 Counting Problems - Class #P 334

5.8 Approximability of NP-Complete Problems 335
5.8.1 Performance of Approximation Algorithms 335
5.8.2 NP-complete Problems with a Constant Approximation Threshold 336

CONTENTS a ix

5.8.3 Travelling Salesman Problem 339
5.8.4 Nonapproxim ability 341
5.8.5 Com plexity classes 341

5.9 Randomized Complexity Classes 342
5.9.1 Randomized algorithms 342
5.9.2 Models and Complexity Classes of Randomized Computing 347
5.9.3 The Complexity Class BPP 349

5.10 Parallel Complexity Classes 351
5.11 Beyond N P 352

5.11.1 Between NP and PSPACE - Polynomial Hierarchy 353
5.11.2 PSPACE-complete Problems 354
5.11.3 Exponential Complexity Classes 355
5.11.4 Far Beyond NP - with Regular Expressions only 357

5.12 Computational Versus Descriptional Complexity* 358
5.13 Exercises . 361
5.14 Historical and Bibliographical References 364

6 Computability 369
6.1 Recursive and Recursively Enumerable Sets 370
6.2 Recursive and Primitive Recursive Functions 373

6.2.1 Primitive Recursive Functions 373
6.2.2 Partial Recursive and Recursive Functions 377

6.3 Recursive Reals ... 382
6.4 Undecidable Problems 382

6.4.1 Rice's Theorem 383
6.4.2 Halting Problem 384
6.4.3 Tiling Problem s 385
6.4.4 Thue Problem 389
6.4.5 Post Correspondence Problem 390
6.4.6 Hilbert's Tenth Problem 391
6.4.7 Borderlines between Decidability and Undecidability 393
6.4.8 Degrees of Undecidability 394

6.5 Limitations of Formal Systems 396
6.5.1 G6del's Incompleteness Theorem 397
6.5.2 Kolmogorov Complexity: Unsolvability and Randomness 398
6.5.3 Chaitin Complexity: Algorithmic Entropy and Information 401
6.5.4 Limitations of Formal Systems to Prove Randomness 404
6.5.5 The Number of Wisdom* 406
6.5.6 Kolmogorov/Chaitin Complexity as a Methodology 409

6.6 Exercises 410
6.7 Historical and Bibliographical References 414

7 Rewriting 417
7.1 String Rewriting Systems 418
7.2 Chomsky Grammars and Automata 420

7.2.1 Chomsky Gramm ars 421
7.2.2 Chomsky Grammars and Turing Machines 423
7.2.3 Context-sensitive Grammars and Linearly Bounded Automata 424
7.2.4 Regular Grammars and Finite Automata 427

x U CONTENTS

7.3 Context-free Grammars and Languages 428
7.3.1 Basic Concepts 428
7.3.2 Normal Forms 432
7.3.3 Context-free Grammars and Pushdown Automata 434
7.3.4 Recognition and Parsing of Context-free Grammars 437
7.3.5 Context-free Languages 441

7.4 Lindenmayer Systems ... 445
7.4.1 OL-systems and Growth Functions 445
7.4.2 Graphical Modelling with L-systems 448

7.5 Graph Rewriting 452
7.5.1 Node Rewriting 452
7.5.2 Edge and Hyperedge Rewriting 454

7.6 Exercises 456
7.7 Historical and Bibliographical References 462

8 Cryptography 465
8.1 Cryptosystems and Cryptology 467

8.1.1 Cryptosystems ... 467
8.1.2 Cryptoanalysis ... 470

8.2 Secret-key Cryptosystems ... 471
8.2.1 Mono-alphabetic Substitution Cryptosystems 471
8.2.2 Poly-alphabetic Substitution Cryptosystems 473
8.2.3 Transposition Cryptosystems 474
8.2.4 Perfect Secrecy Cryptosystems 475
8.2.5 How to Make the Cryptoanalysts' Task Harder 476
8.2.6 DES Cryptosystem ... 476
8.2.7 Public Distribution of Secret Keys 478

8.3 Public-key Cryptosystems ... 479
8.3.1 Trapdoor One-way Functions 479
8.3.2 Knapsack Cryptosystems 480
8.3.3 RSA Cryptosystem ... 484
8.3.4 Analysis of RSA 485

8.4 Cryptography and Randomness* 488
8.4.1 Cryptographically Strong Pseudo-random Generators 489
8.4.2 Randomized Encryptions 490
8.4.3 Down to Earth and Up 492

8.5 Digital Signatures ... 492
8.6 Exercises 494
8.7 Historical and Bibliographical References 497

9 Protocols 499
9.1 Cryptographic Protocols .. 500
9.2 Interactive Protocols and Proofs 506

9.2.1 Interactive Proof Systems 507
9.2.2 Interactive Complexity Classes and Shamir's Theorem 509
9.2.3 A Brief History of Proofs 514

9.3 Zero-knowledge Proofs 516
9.3.1 Examples 517
9.3.2 Theorems with Zero-knowledge Proofs* 519

CONTENTS U xi

9.3.3 Analysis and Applications of Zero-knowledge Proofs* 520
9.4 Interactive Program Validation 521

9.4.1 Interactive Result Checkers 522
9.4.2 Interactive Self-correcting and Self-testing Programs 525

9.5 Exercises 529
9.6 Historical and Bibliographical References 531

10 Networks 533
10.1 Basic Networks 535

10.1.1 Networks 535
10.1.2 Basic Network Characteristics 539
10.1.3 Algorithms on Multiprocessor Networks 542

10.2 Dissemination of Information in Networks 546
10.2.1 Information Dissemination Problems 546
10.2.2 Broadcasting and Gossiping in Basic Networks 549

10.3 Embeddings .. 554
10.3.1 Basic Concepts and Results 555
10.3.2 Hypercube Embeddings 558

10.4 Routing 565
10.4.1 Permutation Networks 566
10.4.2 Deterministic Permutation Routing with Preprocessing 569
10.4.3 Deterministic Permutation Routing without Preprocessing 570
10.4.4 Randomized Routing* .. 573

10.5 Simulations 576
10.5.1 Universal Networks .. 577
10.5.2 PRAM Simulations ... 579

10.6 Layouts 581
10.6.1 Basic Model, Problems and Layouts 581
10.6.2 General Layout Techniques 587

10.7 Limitations* 592
10.7.1 Edge Length of Regular Low Diameter Networks 592
10.7.2 Edge Length of Randomly Connected Networks 594

10.8 Exercises 596
10.9 Historical and Bibliographical References 600

11 Communications 603
11.1 Examples and Basic Model 604

11.1.1 Basic Model ... 608
11.2 Lower Bounds ... 609

11.2.1 Fooling Set Method 611
11.2.2 Matrix Rank Method ... 613
11.2.3 Tiling Method 614
11.2.4 Comparison of Methods for Lower Bounds 615

11.3 Communication Complexity 617
11.3.1 Basic Concepts and Examples 617
11.3.2 Lower Bounds - an Application to VLSI Computing* 620

11.4 Nondeterministic and Randomized Communications 623
11.4.1 Nondeterministic Communications 623
11.4.2 Randomized Communications 627

xii I CONTENTS

11.5 Communication Complexity Classes 631
11.6 Communication versus Computational Complexity 632

11.6.1 Communication Games 632
11.6.2 Complexity of Communication Games 633

11.7 Exercises . 636
11.8 Historical and Bibliographical References 639

Bibliography 641

Index 669

Preface

One who is serious all day will never Science is a discipline in which even
have a good time, while one who is a fool of this generation should be
frivolous all day will never establish able to go beyond the point reached
a household. by a genius of the last.

Ptahhotpe, 24th century BC Scientific folklore, 20th century AD

It may sound surprising that in computing, a field which develops so fast that the future often becomes
the past without having been the present, there is nothing more stable and worthwhile learning than
its foundations.

It may sound less surprising that in a field with such a revolutionary methodological impact
on all sciences and technologies, and on almost all our intellectual endeavours, the importance of
the foundations of computing goes far beyond the subject itself. It should be of interest both to
those seeking to understand the laws and essence of the information processing world and to those
wishing to have a firm grounding for their lifelong reeducation process - something which everybody
in computing has to expect.

This book presents the automata-algorithm-complexity part of foundations of computing in a
new way, and from several points of view, in order to meet the current requirements of learning and
teaching.

First, the book takes a broader and more coherent view of theory and its foundations in the various
subject areas. It presents not only the basics of automata, grammars, formal languages, universal
computers, computability and computational complexity, but also of parallelism, randomization,
communications, cryptography, interactive protocols, communication complexity and theoretical
computer/communication architecture.

Second, the book presents foundations of computing as rich in deep, important and exciting
results that help to clarify the problems, laws, and potentials in computing and to cope with its
complexity.

Third, the book tries to find a new balance between the formal rigorousness needed to present
basic concepts and results, and the informal motivations, illustrations and interpretations needed to
grasp their merit.

Fourth, the book aims to offer a systematic, complex and up-to-date presentation of the main
basic concepts, models, methods and results, as well as to indicate new trends and results whose
detailed demonstration would require special lectures. To this end, basic concepts, models, methods
and results are presented and illustrated in detail, whilst other deep/new results with difficult or
rather obsure proofs are just stated, explained, interpreted and commented upon.

The topics covered are very broad and each chapter could be expanded into a separate book.

xiv I FOUNDATIONS OF COMPUTING

The aim of this textbook is to concentrate only on subjects that are central to the field; on concepts,
methods and models that are simple enough to present; and on results that are either deep, important,
useful, surprising, interesting, or have several of these properties.

This book presents those elements of the foundations of computing that should be known by
anyone who wishes to be a computing expert or to enter areas with a deeper use of computing and its
methodologies. For this reason the book covers only what everybody graduating in computing or in
related area should know from theory. The book is oriented towards those for whom theory is only,
or mainly, a tool. For those more interested in particular areas of theory, the book could be a good
starting point for their way through unlimited and exciting theory adventures. Detailed bibliography
references and historical/bibliographical notes should help those wishing to go more deeply into a
subject or to find proofs and a more detailed treatment of particular subjects.

The main aim of the book is to serve as a textbook. However, because of its broad view of the
field and up-to-date presentation of the concepts, methods and results of foundations, it also serves
as a reference tool. Detailed historical and bibliographical comments at the end of each chapter, an
extensive bibliography and a detailed index also help to serve this aim.

The book is a significantly extended version of the lecture notes for a one-semester, four hours a
week, course held at the University of Hamburg.

The interested and/or ambitious reader should find it reasonably easy to follow. Formal
presentation is concise, and basic concepts, models, methods and results are illustrated in a fairly
straightforward way. Much attention is given to examples, exercises, motivations, interpretations and
explanation of connections between various approaches, as well as to the impact of theory results
both inside and outside computing. The book tries to demonstrate that the basic concepts, models,
methods and results, products of many past geniuses, are actually very simple, with deep implications
and important applications. It also demonstrates that foundations of computing is an intellectually
rich and practical body of knowledge. The book also illustrates the ways in which theoretical concepts
are often modified in order to obtain those which are directly applicable. More difficult sections are
marked by asterisks.

The large number of examples/algorithms/protocols (277), figures/tables (214) and exercises
aims to assist in the understanding of the presented concepts, models, methods, and results. Many of
the exercises (574) are included as an inherent part of the text. They are mostly (very) easy or reasonably
difficult and should help the reader to get an immediate feedback while extending knowledge and
skill. The more difficult exercises are marked by one or two asterisks, to encourage ambitious readers
without discouraging others. The remaining exercises (641) are placed at the end of chapters. Some
are of the same character as those in the text, only slightly different or additional ones. Others extend
the subject dealt with in the main text. The more difficult ones are again marked by asterisks.

This book is suported by an on-line supplement that will be regularly updated. This includes
a new chapter 'Frontiers', that highlights recent models and modes of computing. Readers are also
encouraged to contribute further examples, solutions and comments.

These additional materials can be found at the following web sites:

//www. itcpmedia.com

//www. savba. sk/sav/mu/foundations. html

Acknowledgement

This book was inspired by the author's three-year stay at the University of Hamburg within the
Konrad Zuse Program, and the challenge to develop and practice there a new approach to teaching
foundations of computing. Many thanks go to all those who made the stay possible, enjoyable and
fruitful, especially to Riidiger Valk, Manfred Kudlek and other members of the theory group. The

PREFACE N xv

help and supportive environment provided by a number of people in several other places was also
essential. I would like to record my explicit appreciation of some of them: to Jacques Mazoyer and his
group at LIP, cole Normale Sup~rieure de Lyon; to Giinter Harring and his group at University of
Wien; to Rudolf Freund, Alexander Leitsch and their colleagues at the Technical University in Wien;
and to Roland Vollmar and Thomas Worsch at the University of Karlsruhe, without whose help the
book would not have been finished.

My thanks also go to colleagues at the Computing Centre of the Slovak Academy of Sciences for
their technical backing and understanding. Support by a grant from Slovak Literary Foundation is
also appreciated.

I am also pleased to record my obligations and gratitude to the staff of International Thomson
Coputer Press, in particular to Sam Whittaker and Vivienne Toye, and to John Hodgson from HWA
for their effort, patience and understanding with this edition.

I should also like to thank those who read the manuscript or parts at different stages of its
development and made their comments, suggestions, corrections (or pictures): Ulrich Becker, Wilfried
Brauer, Christian Calude, Patrick Cegielski, Anton Cemr, Karel Culik, Josep Diaz, Bruno Durand,
Hennig Femau, Rudolf Freund, Margret Freund-Breuer, Ivan Frig, Damas Gruska, Irene Guessarian,
Annegret Habel, Dirk Hauschildt, Juraj HromkoviR, Mathias Jantzen, Bernd Kirsig, Ralf Klasing,
Martin Kochol, Pascal Korain, Ivan Korec, Jana Ko~eckd, Mojmir Kfetinsky, Hans-Jorg Kreowski,
Marco Ladermann, Bruno Martin, Jacques Mazoyer, Karol Nemoga, Michael N611e, Richard Ostertag,
Dana Pardubski, Dominico Parente, Milan Pagt~ka, Holger Petersen, Peter Raj~Ani, Vladimir Sekerka,
Wolfgang Slany, Ladislav Stacho, Mark-Oliver Stehr, R6bert Szelepcs~nyi, Laura Tougny, Luca
Trevisan, Juraj Vaczulik, R6bert Vittek, Roland Vollmar, Jozef Vysko6, Jie Wang and Juraj Wiedermann.

The help of Martin Stanek, Thomas Worsch, Ivana Cernr and Manfred Kudlek is especially
appreciated.

To my father
for his integrity, vision and optimism.

To my wife
for her continuous devotion, support and patience.

To my children
with best wishes for their future

Fundamentals

INTRODUCTION
Foundations of computing is a subject that makes an extensive and increasing use of a variety of basic
concepts (both old and new), methods and results to analyse computational problems and systems.
It also seeks to formulate, explore and harness laws and limitations of information processing.
This chapter systematically introduces a number of concepts, techniques and results needed for
quantitative analysis in computing and for making use of randomization to increase efficiency, to
extend feasibility and the concept of evidence, and to secure communications. All concepts introduced
are important far beyond the foundations of computing. They are also needed for dealing with
efficiency within and outside computing.

Simplicity and elegance are the common denominators of many old and deep concepts, methods
and results introduced in this chapter. They are the products of some of the best minds in science in
their search for laws and structure. Surprisingly enough, some of the newest results presented in this
book, starting with this chapter, demonstrate that randomness can also lead to simple, elegant and
powerful methods.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. methods to solve recurrences arising in the analysis of computing systems;

2. a powerful concept of generating functions with a variety of applications;

3. main asymptotic notations and techniques to use and to manipulate them;

4. basic concepts of number theory, especially those related to primes and congruences;

5. methods to solve various congruences;

6. problems of computing discrete square roots and logarithms that play an important role in
randomized computations and secure communications;

7. basics of discrete probability;

8. modem approaches to randomness and pseudo-random generators.

9. aims, methods, problems and pitfalls of the asymptotic analysis of algorithms and algorithmic
problems.

2 3 FUNDAMENTALS

The firm, the enduring, the simple and the
modest are near to virtue.

Confucius (551-479 BC)

Efficiency and inherent complexity play a key role in computing, and are also of growing
importance outside computing. They provide both practically important quantitative evaluations and
benchmarks, as well as theoretically deep insights into the nature of computing and communication.
Their importance grows with the maturing of the discipline and also with advances in performance of
computing and communication systems. The main concepts, tools, methods and results of complexity
analysis belong to the most basic body of knowledge and techniques in computing. They are natural
subjects with which to begin a textbook on foundations of computing because of their importance
throughout. Their simplicity and elegance provide a basis from which to present, demonstrate and
use the richness and power of the concepts and methods of foundations of computing.

Three important approaches to complexity issues in design and performance analysis of
computing systems are considered in this chapter: recursion, (asymptotic) estimations and
randomization.

The complex systems that we are able to design, describe or understand are often recursive by
nature or intent. Their complexity analysis leads naturally to recurrences which is why we start this
chapter with methods of solving recurrences.

In the analysis of complex computational systems we are generally unable to determine exactly
the resources needed: for example, the exact number of computer operations needed to solve
a problem. Fortunately, it is not often that we need to do so. Simple asymptotic estimations,
providing robust results that are not dependent on a particular computer, are in most cases not
only satisfactory, but often much more useful. Methods of handling, in a simple but precise way,
asymptotic characterizations of functions are of key importance for analysing computing systems
and are treated in detail in this chapter.

The discovery that randomness is an important resource for managing complexity is one of the
most important results of foundations of computing in recent years. It has been known for some time
that the analysis of algorithms with respect to a random distribution of input data may provide more
realistic results. The main current use of randomness is in randomized algorithms, communication
protocols, designs, proofs, etc. Coin-tossing techniques are used surprisingly well in the management
of complexity. Elements of probability theory and of randomness are included in this introductory
chapter and will be used throughout the book. These very modern uses of randomness to provide
security, often based on old, basic concepts, methods and results of number theory, will also be
introduced in this chapter.

1.1 Examples

Quantitative analysis of computational resources (time, storage, processors, programs,
communication, randomness, interactions, knowledge) or of the size of computing systems
(circuits, networks, automata, grammars, computers, algorithms or protocols) is of great importance.
It can provide invaluable information as to how good a particular system is, and also deep insights
into the nature of the underlying computational and communication problems.

Large and/or complex computing systems are often designed or described recursively. Their
quantitative analysis leads naturally to recurrences. A recurrence is a system of equations or
inequalities that describes a function in terms of its values for smaller inputs.

EXAMPLES • 3

T 2n
I . ..

n
; •

(a) .j Il I,

2n i- , T

T2n-2 T2.-2 T 2 n-2 T20n-2

n=2 (c)

0
1 L(n-l)---

2 n

(b) L(n)

(d)

Figure 1.1 H-layout of complete binary trees

Example 1.1.1 (H-layout of binary trees) A layout of a graph G into a two-dimensional grid is a mapping
of different nodes of G into different nodes of the grid and edges (u,v) of G into nonoverlapping paths, along
the grid lines, between the images of nodes u and v in the grid.

The so-called H-layout HT2, of a complete binary tree T2n of depth 2n, n > 0 (see Figure 1.1a for T2n and
its subtrees T2n- 2), is described recursively in Figure 1.1c.

A more detailed treatment of such layouts will be found in Section 10.6. Here it is of importance
only that for length L(n) of the side of the layout HT2, we get the recurrence

S2, if n = 1;
2L(n- 1) +2, ifn > 1.

As we shall see later, L(n) = 2n,1 - 2. A complete binary tree of depth 2n has 22n, - 1 nodes. The
total area A(m) of the H-layout of a complete binary tree with m nodes is therefore proportional to
the number of nodes of the tree.' Observe that in the 'natural layout of the binary tree', shown in
Figure 1.1d, the area of the smallest rectangle that contains the layout is proportional to m log m. To
express this concisely, we will use the notation A(m) = 8(m) in the first case and A(m) = 8(mlgm) in
the second case. The notationf(n) = O(g(n)) - which means that f(n) grows proportionally tog(n)' 2

- is discussed in detail and formally in Section 1.5.

'The task of designing layouts of various graphs on a two-dimensional grid, with as small an area as possible,
is of importance for VLSI designs. For more on layouts see Section 10.6.

2Or, more exactly, that there are constants cl, c2 > 0 such that cl g(n) I f(n) _ c2 lg(n) for all but finitely

4 U FUNDAMENTALS

B

A C

Figure 1.2 Towers of Hanoi

Algorithmic problems often have a recursive solution, even if their usual formulation does not
indicate that.

Example 1.1.2 (Towers of Hanoi problem) Suppose we are given three rods A, B, C, and n rings piled in
descending order of magnitude on A while the other rods are empty - see Figure 1.2for n = 5. The task is to
move rings from A to B, perhaps using C in the process, in such a way that in one step only one ring is moved,
and at no instant is a ring placed atop a smaller one.

There is a simple recursive algorithm for solving the problem.

Algorithm 1.1.3 (Towers of Hanoi - a recursive algorithm)

1. Move n - I top rings from A to C.

2. Move the largest ring from A to B.

3. Move all n - 1 rings from C to B.

The correctness of this algorithm is obvious. It is also clear that the number T(n) of ring moves
satisfies the equations

S 1, if n = 1(1.1)
T 2T(n-1)+1, if n>l.

In spite of the simplicity of the algorithm, it is natural to ask whether there exists a faster one that
entails fewer ring moves. It is a simple task to show that such an algorithm does not exist. Denote by
Trmin (n) the minimal number of moves needed to perform the task. Clearly, Train (n) Ž 2 Tmin (n - 1) + 1,
because in order to remove all rings from rod A to rod B, we have first to move the top n - 1 of them
to C, then the largest one to B, and finally the remaining ones to B. This implies that our solution is
the best possible.

Algorithm 1.1.3 is very simple. However, it is not so easy to perform it 'by hand', because of the
need to keep track of many levels of recursion. The second, 'iterative' algorithm presented below is
from this point of view much simpler. (Try to apply both algorithms for n = 4.)

Algorithm 1.1.4 (Towers of Hanoi - an iterative algorithm)

Do the following alternating steps, starting with step 1, until all the rings are properly transferred:

EXAMPLES U 5

1. Move the smallest top ring in clockwise order (A -- B -- C -- A) if the number of rings is odd,
and in anti-clockwise order if the number of rings is even.

2. Make the only possible move that does not involve the smallest top ring.

In spite of the simplicity of Algorithm 1.1.4, it is far from obvious that it is correct. It is also far
from obvious how to determine the number of ring moves involved until one shows, which can be
done by induction, that both algorithms perform exactly the same sequences of moves.

Now consider the following modification of the Towers of Hanoi problem. The goal is the same,
but it is not allowed to move rings from A onto B or from B onto A. It is easy to show that in this case
too there is a simple recursive algorithm for solving the problem; for its number T'(n) of ring moves
we have T'(1) = 2 and

T'(n)=3T'(n-1)+2, for n>1. (1.2)

There is a modem myth which tells how Brahma, after creating the world, designed 3 rods made
of diamond with 64 golden rings on one of them in a Tibetan monastery. He ordered the monks to
transfer the rings following the rules described above. According to the myth, the world would come
to an end when the monks finished their task.3

Exercise 1.1.5 Use both algorithms for the Towers of Hanoi problem to solve the cases (a) n = 3; (b)
n = 5; (c)* n = 6.

Exercise 1.1.6*(Parallel version of the Towers of Hanoi problem) Assume that in each step more than
one ring can be moved, but with the following restriction: in each step from each rod at most one ring is
removed, and to each rod at most one ring is added. Determine the recurrence for the minimal number
Tp(n) of parallel moves needed to solve the parallel version of the Towers of Hanoi problem. (Hint:
determine Tp(1), Tp(2) and Tp(3), and express Tp(n) using Tp(n- 2).)

The two previous examples are not singular. Complexity analysis leads to recurrences
whenever algorithms or systems are designed using one of the most powerful design methods -
divide-and-conquer.

Example 1.1.7 We can often easily and efficiently solve an algorithmic problem P of size n = ci, where c, i are
integers, using. the following recursive method, where bl, b2 and d are constants (see Figure 1.3):

1. Decompose P, in time bin, into subproblems of the same type and size

2. Solve all subproblems recursively, using the same method.

3. Compose, in time b2n, the solution ofP from solutions of all its a subproblems.

For the time complexity T(n) of the resulting algorithm we have the recurrence:

'n) d, if n =1;(13

aT(n)+bin+b2n, if n>l.

3Such a prophecy is not unreasonable. Since T(n) = 2" - 1, as will soon be seen, it would take more than 500,000
years to finish the task if the monks moved one ring per second.

6 W FUNDAMENTALS

a subproblems

Figure 1.3 Divide-and-conquer method

As an illustration, we present the well-known recursive algorithm for sorting a sequence of n =2
numbers.

Algorithm 1.1.8 (MERGESORT)

1. Divide the sequence in the middle, into two sub-sequences.

2. Sort recursively both sub-sequences.

3. Merge both already sorted subsequences.

If arrays are used to represent sequences, steps (1) and (3) can be performed in a time proportional
ton.

Remark 1.1.9 Note that we have derived the recurrence (1.3) without knowing the nature of the
problem P or the computational model to be used. The only information we have used is that both
decomposition and composition can be performed in a time proportional to the size of the problem.

Exercise 1.1.10 Suppose that n circles are drawn in a plane in such a way that no three circles meet in
a point and each pair of circles intersects in exactly two points. Determine the recurrence for the number
of distinct regions of the plane created by such n circles.

An analysis of the computational complexity of algorithms often depends quite significantly
on the underlying model of computation. Exact analysis is often impossible, either because of the
complexity of the algorithm or because of the computational model (device) that is used. Fortunately,
exact analysis is not only unnecessary most of the time, it is often superfluous. So-called asymptotic
estimations not only provide more insights, they are also to a large degree independent of the
particular computing model/device used.

EXAMPLES * 7

Example 1.1.11 (Matrix multiplication) Multiplication of two matrices A = {aij =,, B = {fbij} =, ofc
degree n, with the resulting matrix C = AB = {cij } =,1 , using the well-known relation

n

c= Z aikbkj, (1.4)
k= 1

requires T(n) = 2n3 - n2 arithmetical operations to perform.

It is again simpler and for the most part sufficiently informative, to say that T(n) = E(n 3) than to
write exactly T(n) = 2n3

- n2
. If a program for computing cij using the formula (4.3.3) is written in

a natural way in a high-level programming language and is implemented on a normal sequential
computer, then exact analysis of the number of computer instructions, or the time T(n) needed
is almost impossible, because it depends on the available compiler, operating system, computer
and so on. Nevertheless, the basic claim T(n) = 9(n3) remains valid provided we assume that each
arithmetical operation takes one unit of time.

Remark 1.1.12 If, on the other hand, parallel computations are allowed, quite different results
concerning the number of steps needed to multiply two matrices are obtained. Using n3 processors, all
multiplications in equation (4.3.3) can be performed in one parallel step. Since any sum of n numbers
x, +... + x, can be computed with 1 processors using the recursive doubling technique4 in [log2 nl
steps, in order to compute all cij in (4.3.3) by the above method, we need E(n 3

) processors and E (log n)
parallel steps.

Example 1.1.13 (Exponentiation) Let bk-1 ... bo be the binary representation of an integer n with bo as the
least signifcant bit and bk-1 = 1. Exponentiation e = a" can be performed in k = [log2 (n + 1)] steps using the
following so-called repeated squaring method based on the equalities

k- k-1i

e =a Zk r'=]Ja~~2 = 11J(a2 b

Algorithm 1.1.14 (Exponentiation)

begin e *- 1;p -- a;
for i - 0 to'k - 1

do if bi = I then e - e p;
Pp~pp

od

end

Exercise 1.1.15 Determine exactly the number of multiplications which Algorithm 1.1.14 performs.

Remark 1.1.16 The term 'recurrence' is sometimes used to denote only the equation in which the
inductive definition is made. This terminology is often used explicitly in cases where the specific
value of the initial conditions is not important.

4 For example, to getxl+ •. -x8, we compute in the first step z = X1 + x 2 ,z 2 = X3 + x4,Z3 = X5 + X6, Z4 = x7 + x8;
in the second step z5 = z1 + z2 , z 6 = z3 + z4 ; and in the last step Z7 = Z5 + Z6.

8 3 FUNDAMENTALS

1.2 Solution of Recurrences - Basic Methods
Several basic methods for solving recurrences are presented in this chapter. It is not always easy to
decide which one to try first. However, it is good practice to start by computing some of the values
of the unknown function for several small arguments. It often helps

1. to guess the solution;

2. to verify a solution-to-be.

Example 1.2.1 For small values of n, the unknown functions T(n) and T'(n)from the recurrences (1.1) and
(1.2) have the following values:

n 1 2 3 4 5 6 7 8 9 10

T(n) 1 3 7 15 31 63 127 255 511 1,023
T'(n) 2 8 26 80 242 728 2,186 6,560 19,682 59,049

From this table we can easily guess that T(n) = 2n - I and T'(n) = Y - 1. Such guesses have then to
be verified, for example, by induction, as we shall do later for T(n) and T'(n).

Example 1.2.2 The recurrence

a, if n=0;
Qn= 3, if n=1;

2QnQ 2 , if n>1;

where a, 0 > 0, looks quite complicated. However, it is easy to determine that Q2 = /3, Q3 = a, Q4 = /t. Hence

Q C i n = 3kforsomek;{ = 3, otherwise.

1.2.1 Substitution Method

Once we have guessed the solution of a recurrence, induction is often a good way of verifying the
correctness of the guess.

Example 1.2.3 (Towers of Hanoi problem) We show by induction that ourguess T(n) = 2n -1 is correct.
Since T(1) = 21 - 1 = 1, the initial case n = 1 is verified. From the inductive assumption T(n) = 2" - 1 and
the recurrence (1.1), we get, for n > 1,

T(n + 1) = 2T(n) + I = 2(2n _ 1) + I = 2n+1 _ 1.

This completes the induction step.

Similarly, we can show that T'(n) = 3" - 1 is the correct solution of the modified Towers of Hanoi
problem, and L(n) = 2n+ 1 - 2 is the length of the side of the H-layout in Example 1.1.1. The inductive
step'in the last case is L(n + 1) = 2L(n) + 2 = 2(2n+I - 2) + 2 = 2 n+2 -2.

SOLUTION OF RECURRENCES - BASIC METHODS • 9

1.2.2 Iteration Method

Using an iteration (unrolling) of a recurrence, we can often reduce the recurrence to a summation,
which may be easier to compute or estimate.

Example 1.2.4 For the recurrence (1.2) of the modried Towers of Hanoi problem we get by an unrolling

T'(n) = 3T'(n-1)+2= 3(3T'(n-2) +2) +2 = 9T'(n-2)+6+2

= 9(3T'(n-3)+2)+6+2=3 3T'(n-3)+2x32+2x3+2

n-1 n-1Y•3ix 2 = 2E--3= =2-Zn-1= 3n-1

i=0 i=0

Example 1.2.5 For the recurrence T(1) = g(1) and T(n) = T(n - 1) +g(n),for n > 1, the unrolling yields
n

T(n) = -g(i).

Example 1.2.6 By an unrolling of the recurrence

Sb, if n=1;
aT(')+bn, if n=ci>l;

obtained by an analysis of divide-and-conquer algorithms, we get

T(n) = aT(n) +bn=a(aT(-n) +bn) +bn=a2T(n)+bna+bn

n a 3(n 2a a
2aT-+b +bn +bn=a3T(-) +bn- +bn- +bn

logcn
=bnZ(;)'.

j=0

Therefore,

a Case 1, a < c: T(n) = 0(n), because the sum a (converges.
i0

e Case 2, a = c: T(n) = E(nlogn).

* Case 3, a > c: T(n) = O(n'09c').

Indeed, in Case 3 we get

T ~) n logcn (a) i = b (ý a) logcn+ l-a 1

T(n) = bn___=bn

cn~

= bna- = balogcn = bn-Igca,
n

10 FUNDAMENTALS

using the identity a|°gcn =- nlogca.
Observe that the time complexity of a divide-and-conquer algorithm depends only on the ratio ,

and neither on the problem being solved nor the computing model (device) being used, provided
that the decomposition and composition require only linear time.

Exercise 1.2.7 Solve the recurrences obtained by doing Exercises 1.1.6 and 1.1.10.

Exercise 1.2.8 Solve the following recurrence using the iteration method:

T(n) = 3T(n) +nfor n = 4k > 1.

Exercise 1.2.9 Determine gn, n a power of 2, defined by the recurrence

gi = 3 and gn = (23 + 1)gn for n > 2.

Exercise 1.2.10 Express T(n) in terms of thefunction gfor the recurrence T(l) = a,
T(n) = 2PT(n / 2) + nPg(n), where p is an integer, n = 2k, k > 0 and a is a constant.

1.2.3 Reduction to Algebraic Equations

A large class of recurrences, the homogeneous linear recurrences, can be solved by a reduction to
algebraic equations. Before presenting the general method, we will demonstrate its basic idea on an
example.

Example 1.2.11 (Fibonacci numbers) Leonardo Fibonacci5 introduced in 1202 a sequence of numbers
defined by the recurrence

Fo =O, Fj=1 (the initial conditions); (1.5)

Fn = Fn- 1 + Fn- 2 , if n > 1 (the inductive equation). (1.6)

Fibonacci numbers form one of the most interesting sequences of natural numbers:

0,1,1, 2,3,5,8,13,21,34,55,89,144,233,377,610,...

Exercise 1.2.12 Explore the beauty of Fibonacci numbers: (a) find all n such that Fn = n and all n

such that Fn = n2; (b) determine E-k 0 FE; (c) show that Fn+ jFn-1 -F2 = (-1)nfor all n; (d) show that
= F n + F2 1 for all n; (e) compute F16,..., F49 (F5 0 = 12,586,269,025).

5Leonardo of Pisa (1170-1250), known also as Fibonacci, was perhaps the most influential mathematician of
the medieval Christian world. Educated in Africa, by a Muslim teacher, he was famous for his possession of the
mathematical knowledge of both his own and the preceding generations. In his celebrated and influential classic
Liber Abachi (which appeared in print only in the nineteenth century) he introduced to the Latin world the Arabic
positional system and Hindu methods of calculation with fractions, square roots, cube roots, etc. The following
problem from the Liber Abachi led to Fibonacci numbers: How many pairs of rabbits will be produced in a year, beginning
with a single pair, if in every month each pair bears a new pair which becomes productive from the second month on.

SOLUTION OF RECURRENCES - BASIC METHODS I II

It is natural to ask whether, given an integer n, we can determine F. without computing Fi for all
i < n. More precisely, can we find an explicit formula for F.?

Let us first try to find a solution of the inductive equation (1.6) in the form Fn = r', where r is, so
far, an unknown constant. Suppose r" is a solution of (1.6), then

r n r n-
1

+ ±rn-
2

has to hold for all n > 1, and therefore either r =0, which is an uninteresting case, or r2 = r + 1. The
last equation has two roots:

2 2 2

Unfortunately, neither of the functions r1, r2 satisfies the initial conditions in (1.5). We are therefore
not ready yet. Fortunately, however, each linear combination Ar" + yrn satisfies the inductive equation
(1.6). Therefore, if),,/ are chosen in such a way that the initial conditions (1.5) are also met, that is, if

Ar +pro = F0 = 0, Arl + pr' = F1 = 1, (1.7)

then F, = Arn + ,r2 is the solution of recurrences (1.5) and (1.6). From (1.7) we get

A1

and thus

1 ((1 +V 5)5 (1 _-V0)

Since lim = 0, we also get a simpler, approximate expression for Fn of the form

Fn• ýý1 ,+for n -, oo.

The method used in the previous example will now be generalized. Let us consider a
homogeneous linear recurrence: that is, a recurrence where the value of the unknown function
is expressed as a linear combination of a fixed number of its values for smaller arguments:

un= aju, +a 2 Un_ 2 +-.. +-akUn-k if n > k, (the inductive equation) (1.8)

ui = bi, if 0 < i < k (the initial conditions) (1.9)

where a,, . . . , ak and b0, ... , bk-1 are constants, and let

k

P(r) = rk - ZajrkI (1.10)

j=1

be the characteristic polynomial of the inductive equation (1.8) and P(r) = 0 its characteristic
equation. The roots of the polynomial (1.10) are called characteristic roots of the inductive equation
(1.8). The following theorem says that we can always find a solution of a homogeneous linear
recurrence when the roots of its characteristic polynomial are known.

12 a FUNDAMENTALS

Theorem 1.2.13 (1) If the characteristic equation P(r) = 0 has k dýferent roots rl, ... rk, then the recurrence
(1.8) with the initial conditions (1.9) has the solution

k

u,= , jr, (1.11)
1=l

where Aj are solutions of the system of linear equations

k

bi 1:ZAjrj, 0 < i < k. (1.12)
j~l

(2) If the characteristic equation P(r) = 0 has p different roots, rl, rp, p < k, and the root rj, 1 < j : p,
has the multiplicity mj > 1, then rj, nr, n2 r7, . . . nmi-1 r7, are also solutions of the inductive equation (1.8),
and there is a solution of(1.8) satisfying the initial conditions (1.9) of the form u, = E=, Pi(n)r,, where each
Pj(n) is a polynomial of degree mj - 1, the coefficient of which can be obtained as the unique solution of the
system of linear equations bi = EZ Pj(i)rj, 1 < i < k.
Proof: (1) Since the inductive equation (1.8) is satisfied by un rn for 1 < j < k, it is satisfied also by an

arbitrary linear combination j= I ajr7. To prove the first part of the theorem, it is therefore sufficient
to show that the system of linear equations (1.12) has a unique solution. This is the case when the
determinant of the matrix of the system does not equal zero. But this is a well-known result from
linear algebra, because the corresponding (Vandermond) matrix and determinant have the form

1 1 ... 1
rl. r1 2 rk = (ri - rj) . 0.

k-1 k-1 k-1
rI r2 . . . r

(2) A detailed proof of the second part of the theorem is quite technical; we present here only its
basic idea.

We have first to show that if r1 is a root of the equation P(r) = 0 of multiplicity mj > 1, then all
functions u, = ri, u. = nr7, un = n 2 rn, . . . , u, = nm-lr7 satisfy the inductive equation (1.8). To prove
this, we can use the well-known fact from calculus, that if rj is a root of multiplicity mj > 1 of the
equation P(r) = 0, then rj is also a root of the equations P(J) (r) = 0, 1 < j < mj, where P(i) (r) is the jth
derivative of P(r).

Let us consider the polynomial

Q(r) = r. (rn-kP(r))f = r. [(n - k)r n-k-P(r) + rn-kpI(r)].

Since P(rj) = P'(rj) = 0, we have Q(rj) = 0. However,

Q(r) = rtr" -air" -i ... -akr"-kit

= nr n- -+ -= nr -al(n-1)r - ak-l(n-k+l)r -~-ak(n-k)r-k

and since Q(rj) = 0, we have that un = nrj is the solution of the inductive equation (1.8).
In a similar way we can show by induction that all un = nsr2 , 1 < s < mi, are solutions of (1.8)

by considering the following sequence of polynomials: Q1 (r) = Q(r), Q2 (r) = rQ' (r), . . . , Q,(r) =

rQ's-l(r).
It then remains to show that the matrix of the system of linear equations bi = E= P1 (i)r•, 1 <i _ k

is nonsingular. This is a (nontrivial) exercise in linear algebra. 0

SOLUTION OF RECURRENCES - BASIC METHODS 31 13

Example 1.2.14 The recurrence

Un = 3Un-1 -- 2u,-2, n > 2;

UO = 0, ul = 1,

has the characteristic equation r2 = 3r - 2 with two roots: r, = 2, r2 = 1. Hence un = A,12n + A2, where A, = 1
and A2 = -1 are solutions of the system of equations 0 = A12' + A2 1

0 and 1 = A121 + A211.

Example 1.2.15 The recurrence

Un = 5un-1 - 8u,-2 +-4un-3, n > 3,

U0 = O, U1 =•-1, U2 = 2,

has the characteristic equation r3 = 5r 2
- 8r + 4, which has one simple root, r, = 1, and one root of multiplicity

2, r 2 = 2. The recurrence therefore has the solution un = a + (b + cn)2n, where a, b, c satisfy the equations

O=a+(b+c.0)2 0 , -l=a+(b+c.1)21, 2=a+(b+c-2)22 .

Example 1.2.16 (a) The recurrence uo = 3, ul = 5 and un = un-] - un_ 2,for n > 2, has two roots, xi - -+,-3
2

and x2 = -, and the solution u, = - iV7i)x+ (+ (iv',)x2. (Verify that all un are integers!)

(b) For the recurrence uo = 0, ul = 1 and un = 2un_1 - 2un 2,for n > 2, the characteristic equation has
two roots, x, = (1 + i) and x2 = (1 - i), and we get

un= ((1 i)"-(I i)n)=2 s n(-7-,

using a well-known identity from calculus.

Exercise 1.2.17 Solve the recurrences (a) uo = 6, ul = 8, u= 4un-1 - 4u,-2, n > 2; (b) uo = 1, ul = 0,
Un = 5Un-1 - 6u,-2, n > 2; (c) u0 = 4, ul = 10, un = 6Un -- 8Un-2, n > 2.

Exercise 1.2.18 Solve the recurrences (a) u0 = 0, ul = 1, u2 = 1, un = 2Un-2 + Un-3, n > 3; (b) u0 = 7,
Ul = -4, u2 = 8, Un = 2Un-1 + 5Un-2 - 6Un-3, n > 3; (c) u0 = 1, ul = 2, u 2 = 3, u, = 6u,-1 - 11u,-2 +
6Un-3, n > 3.

Exercise 1.2.19* Using some substitutions of variables, transform the following recurrences to the cases
dealt with in this section, and in this way solve the recurrences (a) ul = 1, un = u,- 1 - uu,-,, n > 2;
(b) ul = 0, un = n(Un/2)2, n is a power of 2; (c) u0 = 1, ul = 2, un = Vuflun 2, n > 2.

Finally, we present an interesting open problem due to Lothar Collatz (1930), a class of recurrences
that look linear, but whose solution is not known.

For any positive integer i we define the so-called (3x + 1)-recurrence by (a Collatz process) u(=

and for n > 0,

(i if U)
n+1 2 (1, if ui is even;j+ 3un) + 1, if U i) is odd.

14 3 FUNDAMENTALS

3/

2

- -2 - 0 1 2 3

Figure 1.4 Ceiling and floor functions

It has been verified that for any i < 2~ there exists an integer n, such that un~ = 1 (and therefore

u 4, U n1i+2 = 2, u ()= -,. 1 . However, it has been an open problem since the early 1950s - the

ni+-I

so-called Collatz problem - whether this is true for all i.

Exercise 1.2.20 Denote by a(n) the smallest i such that u~i < n. Determine (a) a(26), a(27), o7(28);
(b) * o- (2" - 1), or (250 + 1), or (2500 - 1), (Y(2500 + 1).

1.3 Special Functions
There are several simple functions that are often used in the design and analysis of computing systems.
In this section we deal with some of them: ceiling and floor functions for real-to-integer conversions,
logarithms and binomial functions.

Despite their apparent simplicity, these functions have various interesting properties and also, as
discussed later, surprising computational power in the case of ceiling and floor functions.

1.3.1 Ceiling and Floor Functions

Integers play an important role in computing and communications. The same is true of two basic
reals-to-integers conversion functions.

Floor: [x] - the largest integer < x
Ceiling: [x] - the smallest integer > x

For example,

[3.14j = 3 =[3.75], [-3.14]= -4 =[-3 7 5];
[3.14] = 4 =[r3.75], [-3.14] = -3 = F-3.75].

SPECIAL FUNCTIONS 15

The following basic properties of the floor and ceiling functions are easy to verify:

[x + nj = [x] + n and [x + nl = [x] + n, if n is an integer;

Lxi = x # x is an integer 4=> [x] = x;

x-l< Lxj_<x_< fxi <x+l, for anyx;

[-x] = -[x] and [-x] = -[xj, for any x;

LxI <-12]÷ + -X<rx];

[2= Lx2] for anyx;

0- 0, if x is an integer;rX1 [X1 1, otherwise.

In spite of the simplicity of ceiling and floor functions, expressions that involve more occurrences
of these functions are usually not easy to handle. It is therefore natural to ask when we can remove
some of these functions from formulas without affecting their values. The case [x i] J is trivial. It is
less obvious that we can also do this in such expressions as [V[xj] and flog [x]1. This follows from
the following general result.

Lemma 1.3.1 Let f(x) be a continuous, strictly monotonically increasing function such that f f(x) is an
integer, then so is x. Then

L[(LxJ)J = Lf (x)j and ff([x])] = [f(x)].

Proof: We show the result for the floor function. The proof for the ceiling function is similar. If [xJ = x,
then there is nothing to prove. Therefore, let [xj < x. Thenf([xj) < f(x), sincef is increasing. Thus

Lf(Lxi)i - L [(x)j• If Lf(Lxj)j < Lf(x)j, there must exist a number y such that Lxi < y < x,f(y) = Lf(x)],
becausef is continuous. This means thatf(y) is an integer and, because of the special property off, y
must be too. This is a contradiction - there is no integer between Lx] and x. Hence [f([xj)J = Lf(x)J.

Exercise 1.3.2 Draw graphs of the functions (a)f(x) = [2xj; (b)f(x) = [x / 2J; (c)f(x) = [x2j.

Exercise 1.3.3 Show that (a) [2xJ = [x] + [x+]J, for any real x; (b) [n / k] = [(n- 1) / kJ + l for

any integers n, k G N+; (c) 2n(n+ 1)J = [v2(n +)J for any n E N.

Ceiling and floor functions often occur in recurrences obtained from an analysis of
divide-and-conquer algorithms. For example, for the number of comparisons of the MERGESORT
we get

T(1) 0, (1.13)

T(n) = n-I+T([n/2j)+T([n/2]), (1.14)

because the most balanced partition of a sequence of n elements is into sequences of [2j and [51
elements. We deal with this type of recurrences in Section 1.6.2.

16 * FUNDAMENTALS

The following two identities indicate that sums of floors, and also of ceilings, that look complicated
have simple solutions. For integers m, n and k we have

M- [n+kjYý [n;
k=0

[v-k = na- 5a3 -_a 6 a, where a = [vnnj.
k-0

1.3.2 Logarithms

The logarithmic function log1 x, a > 1, is continuous and monotonically increasing for x > 1. If a is an
integer, then log, x acquires integer values only at integer points. By Lemma 1.3.1 we therefore get
[loga [x] 1 = [loga x] and [log, [xj j = [loga xj for x > 1. Logarithmic functions with the bases 2, e and 10
are used so often that a special notation has been developed for them:

lg n = log 2 n {binary logarithm};
Inn = loge n {natural logarithm};

log n = log10 n {decimal logarithm}.

Since loga b = logb we have the following relations between the main logarithms:

logca'

lg x ; 1. 4426952 In x ; 3.3219286 log x.

There are various interpretations of binary logarithms worth noticing: {lg(n + 1)1 is the number
of bits in the binary representation of the integer n; [ig n] is the minimal depth of the binary tree
with n leaves and also the minimal number of parallel steps to compute x, o X2 0... o x,, where o is an
associative binary operation.

Since lnx = In2 + In 1, of special importance are properties of the function ln(x + 1) for IxI < 1.
Two of them, derived by calculus, are

X
2

X
3

X
4

X
5

In (x+l1) = x- - + •--+ -+ 5 .. for Ixj < 1;

x
+x < ln(l+x) <x.

In the analysis of computations we often encounter powers and compositions of logarithmic
functions. The following notation has been developed for them:

lgk n = (lgn)k, where k is an integer;
lglgn = lg(lgn);

lglglgn = lg(lg(lgn));
lg(k) n = lglg. ... lgn, if lg(k 1) n>0.

k times

Another, related function that also occurs often in complexity analysis is the iterated logarithm:

lg*n = mini > 01 lg() n < 1}.

SPECIAL FUNCTIONS U 17

This function grows so slowly that its value is at most 5 for all 'feasible' arguments. Indeed,

lg*2 = 1, lg*4 = 2, Ig* 16 = 3;
lg* 65536 = 4, lg'(2 65 5 36) = 5.

(Observe that 265536 is much greater than most of the current estimates for the number of atoms in the
universe.) However, the functions lg ig n and Ig Ig Ig n also grow very slowly. Indeed,

lglg2 65 53
6 = 16, lglglg2 65 53 6 = 4.

This shows that doubly logarithmic and iterated logarithmic functions, which often occur in the
analysis of algorithms, actually contribute to the overall complexity, as an additive or multiplicative
factor, by only a small amount.

The inverse of the natural logarithmic function is ex (exp(x) is another notation that is sometimes
more convenient).

1.3.3 Binomial Functions - Coefficients

The binomial function, or binomial coefficient which is the more common terminology, (') is defined
for an arbitrary real r and an integer k as follows:

r(r-)..(r-k+1) k > 0;= 1,k = 0; (1.15)

k 0, k<0.

Observe that if r > k > 0 are integers, then (r) is the number of possibilities for choosing k elements
from r elements.

There are various reasons why binomial coefficients often occur in discrete computations. One of
them is the identity

Binomial theorem: (x + y)n = (

O~k n

Another reason, of immediate importance to us, is that binomial coefficients often occur as
coefficients of generating functions - a useful tool for solving recurrences, as we shall see in the
next section.

Some important identities for binomial coefficients are listed below. They can easily be proved
using the basic definition. Acquaintance with them may help one find simple solutions for quite
complicated expressions and sums.

k,(n-k)' n>k>0 (I) = (nnk), n>0,

(O = l-1 k 7$0 (,) = r..L(r-1), r zAk,

(rc) (.3.4 Po (r-)t d (i) (do u tr) br-aik (, r k
kr -1 r m r-k

Exercise 1.3.4 Prove the identities listed above using the basic definition of (k)

18 U FUNDAMENTALS

Example 1.3.5 If n > r > 0 are integers, then we can use the first identity in (*) to compute the following
sum:

c• (r+k) = (r) + (r11) + (r+2) +...+ (r+n) = (r+n+l). (1.16)

Indeed, it holds that
(r)= (r+1)

(r+1•) (r+2)+ 1 1]

by(.)
(r+2) (r+3)+F 2 2•

b(,) + (r3) (r±4)

by(,~)

+ (r+ n+l)

by(*)

and using this idea we can easily prove (1.16) by induction.

Example 1.3.6 Let n > m > 0 be integers. Compute

M~ (Mk
k=~O(nk)

Using the second identity in (*) we get
S() _ (m-k) _ 1 • n k

(7k) _k) n ~z-0o -; Fk o ()) E: (m-k)
To solve the problem, we need to compute the last sum. If we replace k in that sum by m - k and then use the
result of the previous example, we get

m-k = -(m-k) (1.17)
k=O k=O

= -(n-m+k)(n+m) (1.18)

k=O

The overall result is therefore ,+ 1

Exercise 1.3.7* Show the following identities for all natural numbers a, b and n > 1:

(a) (a°b) = EZnnnla) (a) k), (b) (2n) = Eno (n)2; (c) (3n) = E onZ•0 (r)(7) (,o)*

Exercise(n J.3.8*n Sho ta n= k= (kk i +k)'Exercise 1.3.8" Show that F-- ,= (n)(n-1) --- 2m (n)

SOLUTION OF RECURRENCES - GENERATING FUNCTION METHOD U 19

1.4 Solution of Recurrences - Generating Function Method
The concept of generating functions is fundamental, and represents an important methodology with
numerous applications. In this chapter we describe and illustrate two of them. The first one is used
to solve recurrences.

The essence of the power of generating functions, as a methodology, is that they allow us to
reduce complex manipulations with infinite objects (sequences) to easy operations with finite objects,
for example, with rational functions. This often allows us to solve quite complicated problems in a
surprisingly simple way.

1.4.1 Generating Functions

With any infinite sequence (ao, a,, a2 .• ..) of numbers we associate the following generating function
- formal power series:

A(z) = ao + aiz + a2z
2 + . akZk akZk (1.19)

k>O

where the use of the symbol z for a variable indicates that it can deal with complex numbers (even
in cases where we are interested only in natural numbers). The word 'formal' highlights the fact
that the role of powers z' in (1.19) is mostly that of position holders for elements a,. (The question
of convergences is not important here, and will be discussed later.) With regard to coefficients, it is
sometimes convenient to assume that ak = 0 for k < 0 and to use the notation T, akZ k (see (1.19)), with k
running through all integers. Observe too that some ak in (1.19) may be equal to zero. Therefore, finite
sequences can also be represented by generating functions. For the coefficient of z" in a generating
function A(z) we use the notation

[z']A(z) = a, (1.20)

The main reason why generating functions are so important is that as functions of complex
variables they may have simple, closed-form expressions that represent a whole (infinite or finite)
sequence, as the following example illustrates.

Example 1.4.1 (1) (1 + z)r is the generatingfunctionfor the sequence K ((), (•), (2) .3 .).By the binomial

theorem and the fact that (•) = Ofor k > r, we get

(1 +Z)r= k (;)zk.

k>O

(2) - is the generating function for the power series zn, because
n>O

(1 - z)(EZz) = 1. (1.21)
n>O

Such basic operations as addition, subtraction, multiplication, inversion of a function
(if a0 5 0), special division by z', derivation, and integration can be performed on generating functions
'component-wise'. Table 1.1, in which

F(z) = ýf nz and G(z)= gnz•,
n n

20 U FUNDAMENTALS

ciF(z) + OG(z) = J (of.++0g.)zn

F(z)G(z) = En (Ek=0fkgn-k)zn

G Z)= ,,(n gk n

T G(z) = I (yk 0 gk)Z {summation rule}

F-> (z) = E,,obz", wherebo=fo1,

= -f Z1fbn~bn do Ek"=,fkb.-k

z'G(z) = Ygfl-mZ' m >_ 0

G(z) go-glz ... -gm,
1 z'-

1
-= E> 0gn+mZ

G'(z) = r,(n +)g+1zn

zG'(z) = Enngý z

fo G(t)dt = n>l Ingn 1,zn

Table 1.1 Operations on generating functions and the corresponding sequences

summarizes some basic operations on generating functions and on the corresponding formal power
series. These identities can be derived in a straightforward way. Some examples follow

Linear combination:
S+ c~zZ- + j3 Zgn= (afo + og,, lzn

xF (z) + 3G (z) ~fz fIgz = a(cfD+"gE9n

n n n

Multiplication by zm (m > 0):

zmG(z) gnz- n+= zgnmZn
n n

Derivation:
G'(z) = g, + 2g2z + 3g 3z

2 + . (n + 1)g+ 1 zn;
n

therefore G'(z) is the generating function for the sequence ((n + 1)gn+1) = (gl, 2g2,...), and zG'(z)
for the sequence (ng,) = (0 ,gl,2 g2,.••).

For multiplication we get

F(z)G(z) =2Z2 + (go +g1Z-+-X2z2+...)

= fogo + (fog 1 +f lgO)z + (fog 2 +fig1 +f2go)z 2 +...,

SOLUTION OF RECURRENCES - GENERATING FUNCTION METHOD U 21

and therefore
n

[z"]F(z)G(z) = (g, +figýi +... +fngo) = Efkgn-k.

k-0

The product F(z)G(z), where [zn]A(n)B(n) = Zk ofkg,-k, is called the discrete convolution of
F(z) and G(z).

The summation rule in Table 1.1 is a special case of multiplication with F(z) z -_

Remark 1.4.2 In the case of generating functions we often do not care about convergence of the
corresponding power series. It is therefore natural to ask whether our manipulations with infinite
sums, as for example in (1.21), are correct. There are two reasons not to worry. First, one can show
formally that all the operations mentioned above are correct. The second reason is quite different.
It is often not very important whether all the operations we perform on generating functions are
correct. Why? Because once we get some results using these operations we can use other methods,
for example, induction, to show their correctness.

Let us illustrate this approach with an example:

Example 1.4.3 Theffunctions (1+z)r and (1 +z)s are generatingfunctionsfor sequences (0), (•), (2) ...

and)), Because (1 +z)r(1 +z)= (1 + z)r+s, we have

[Zn]~ (1+k)r(j+ ~ s) (rn+ s)=[Z.](l+z)r+s.

[z](1+z)(1 +z) k =) (k =k=0

In a similar way we can show, using the identity (1 - z)r(1 + z)r = - Z2) , that

j(r)(r) (-1)k=(-1)() ifniseven.

k-0

In this way we have easily obtained two far from obvious identities for sums of binomial coefficients.
Their correctness can now be verified by induction.

Generating functions for some important sequences are listed in Table 1.2. Some of the results in
the table follow in a straightforward way from the rules in Table 1.1. The generating function for the
sequence (1,2,3,... . can be obtained using the summation rule with G(z) = 1-•. Since the sequence
(1,2,3,...) also has the form (1,2, (Q), (3), (4),''"), we get, using the summation rule and the identity

in Example 1.3.5, that 1 is the generating function for the sequence (1,3, (1), (1), (6), ...). By

induction we can then show, again using the summation rule and the identity in Example 1.3.5,
that, for an arbitrary integer c, 1 is the generating function for the sequence (1,c, (c+1), (c+ 2)

Generating functions for the last three sequences in Table 1.2 are well known from calculus.

22K FUNDAMENTALS

sequence generating function closed form
(1 1 , ,E 1-. >0 z n 1_ L

(1,-,1, 1,)•--,>o(_ 1)nzn 1_ _

(1,00, 1 ,1,0,0 ,. . .I n O[m\n]z" 1
m m

(1,2 ,3 ,4 , E n) •] (n + 1)zn_ (J Z)

(aCaG = 3c+ 0,2,1 + 2 2 2

(1,C, (2~)' (c+2), > (c+n-l"•Zn

1 .1Slil on oRe1-r

(0i1iaa , an alfr. (assum ng n 1=0

(0 1, 1,1 1 -1 nlz ln(l +z)

-11, -1 .. -

2 ' " "! "E n! e

Table 1.2 Generating functions for some sequences and their closed forms

Exercise 1.4.4 Find a closed form of the generating function for the sequences

(a) an = 3" + 5' + n, n > 1; (b) (0, 2,0, 2,O),2,0,2,

Exercise 1.4.5" Find a generating function F(z) such that [zn]F(z) = Ei, 0 (n) n j-2), for n >_ 1.

Exercise 1.4.6 Use generating functions to show that 0i~ (n)2 = (2n).

1.4.2 Solution of Recurrences

The following general method can often be useful in finding a closed form for elements of a sequence
(g,)} defined through a recurrence

Step 1 Form a single equation in which gn is expressed in terms of other elements of the sequence. It
is important that this equation holds for any n; also for those n for which gn is defined by the
initial values, and also for n < 0 (assuming gn = 0).

Step 2 Multiply both sides of the resulting equation by Zn , and sum over all n. This gives on the
left-hand side G(z) = E~g, zn - the generating function for (g.). Arrange the right-hand side in

such a way that an expression in terms of G(z) is obtained.

Step 3 Solve the equation to get a closed form for G(z).

SOLUTION OF RECURRENCES - GENERATING FUNCTION METHOD U 23

Step 4 Expand G (z) into a power series. The coefficient of z" is a closed form for g,.

Examples

In the following three examples we show how to perform the first three steps of the above method.
Later we present a method for performing Step 4 - usually the most difficult one. This will then be
applied to finish the examples.

In the examples, and also in the rest of the book, we use the following mapping of the truth values
of predicates P(n) onto integers:

[P(n)] 1, if P(n) is true;
0, ifP(n) is false.

Example 1.4.7 Let us apply the above method to the recurrences (1.5) and (1.6)for Fibonacci numbers with
the initial conditionsfo = 0, f, = I and the inductive equation

fý =fn-1 +fn-2, n >.

Step 1 The single equation capturing both the inductive step and the initial conditions has the form

fn =fn-I +ffn-2 + [n = 1].

(Observe - and this is important - that the equation is valid also for n < 1, becausefn = 0 for n < 0.)
Step 2 Multiplication by zn and a summation produce

F(z)= Efz = E =+f- +[n=l1)zn

n n

=- fn Z n~ + Zjn-2Zn + Zin jizn
n n n

= zF(z) +z2F(z) +z.

Step 3 From the previous equation we get
Z

Iz-F (z) - Z -_ Z 2 .

Example 1.4.8 Solve the recurrence

1, ifn = 0;

gn= 2, i n = 1;
2g._ 1 + 3g._2 + -),0n> 1.

Step 1 A single equation for gn has the form

g9 = 2g9n1 + 3gn-2 + (-1)"[n > 0] + [n = 1].

24 U FUNDAMENTALS

~~iz il'/I
n n- ni n 2

Un =Vn_ I + Vn_1I + Un_2

(a)
n n n

(b) - u + V-2

Figure 1.5 Recurrences for tiling by dominoes

Step 2 Multiplication by zn and summation give

G(z) = Eg, zn = E (2g-1 +3g,-2 + (-1)n[n > 0] + [n= 1])zn

= nz~z n+> 3Z2 1~+1+Z= 2z~z) 3z2 ~z) + z

2+z

Step 3 Solving the last equation for G(z), we get

z2 + z +
G(z) = (1 +z) 2(1-3z)

As illustrated by the following example, the generating function method can also be used to solve
recurrences with two unknown functions. In addition, it shows that such recurrences can arise in a
natural way, even in a case where the task is to determine only one unknown function.

Example 1.4.9 (Domino problem) Determine the number u, of ways of covering a 3 x n rectangle with
identical dominoes of size I x 2.

Clearly u, = 0 for n = 1,3 and u2 = 3. To deal with the general case, let us introduce a new variable,
v,, to denote the number of ways we can cover a 3 x n with-a-coiner-rectangle (see Figure 1.5b) with
such dominoes. For the case n = 0 we have exactly one possibility: to use no domino. We therefore
get the recurrences

u0 =1, u1 =0; V0 =0, v1 =1;
U, = 2v, 1- Un- 2 ; Vn = Un, +- Vn-2, n > 2.

Let us now perform Steps 1-3 of the above method.

StepIun=2v,,-+un_ 2 +In=0], v,,=un- +v,- 2.

SOLUTION OF RECURRENCES - GENERATING FUNCTION METHOD N 25

Step 2 U(z) = 2zV(z) + z 2U(z) + 1, V(z) = zU(z) +-Z
2
V(Z).

Step 3 The solution of this system of two equations with two unknown functions has the form

1 -z 2 z
U(z)= 1-4z 2+z 4 ' V(z) z

A general method of performing step 4

In the last three examples, the task in Step 4 is to determine the coefficients [zn]R(z) of a rational
function R(z) = P(z) / Q(z). This can be done using the following general method.

If the degree of the polynomial P(z) is greater than or equal to the degree of Q(z), then by
dividing P(z) by Q(z) we can express R(z) in the form T(z) + S(z), where T(z) is a polynomial and
S(z) = P1 (z) / Q(z) is a rational function with the degree of Pi(z) smaller than that of Q(z). Since
[zn]R(z) = [zn]T(z) + [zn]S(z), the task has been reduced to that of finding [z']S(z).

From the sixth row of Table 1.2 we find that

a +nn (m n Z"
(1_pz)m+l = (napz,

n>O

and therefore we can easily find the coefficient [zn]S(z) in the case where S(z) has the form

(1 piz)mi-1
(1.22)

for some constants aj, pi and mi, 1 < i < m. This implies that in order to develop a methodology for
performing Step 4 of the above method, it is sufficient to show that S(z) can always be transformed
into either the above form or a similar one.

In orderto transform Q(z) = qo +qiz+ -.. qmz m into theform Q(z) = qo(I -piz) (1 -p2z)... (1 - pmZ),
we need to determine the roots 1 . of Q(z). Once these roots have been found, one of the

following theorems can be used to perform Step 4.

Theorem 1.4.10 If S(z) = • , where Q(z) = qo(1 - piz) ... (1 - pmZ), the numbers pl, p. ,Pmare distinct,

and the degree of P1 (z) is smaller than that of Q(z), then

[zn]S(z) = alpln +... + alpm',

where
-PkPl(1)

ak - k

Pk

Proof: It is a fact well known from calculus that if all pi are different, there exists a decomposition

S(z) a, a,

5() (1 z) + (I-pIz)'

where a1, ,. • ,at are constants, and thus

[zn]S(Z) = alPn +...- + ajPn.

26 0 FUNDAMENTALS

Therefore, for i = 1, ,
ai = lim (1- piz)R(z),

z-d/P,

and using l'Hospital's rule we obtain

ai- Q(

QPr)

where Q' is the derivative of the polynomial Q.

The second theorem concerns the case of multiple roots of the denominator. For the proof, which
is more technical, see the bibliographical references.

Theorem 1.4.11 Let R(z) = p(z) where Q(z) = qo(1 - pZ)dl ... (1 - plz)dlI ,9i are distinct, and the degree

of P(z) is smaller than that of Q(z); then

[z"]R(z) =fj(n)p" +.--.f(n)p', n> 0,

where each fi(n) is a polynomial of degree di - 1, the main coefficient of which is

(-.p), P(-)dj

Q(di)(1) '
Pi

where QlA) is the i-th derivative of Q.

To apply Theorems 1.4.10 and 1.4.11 to a rational function L- with Q(z) = qo + q1z +... + qmz m,
Q(Z)

we must express Q(z) in the form Q(z) = qo(1 - pz)dl . .. (1 - pmZ)d-. The numbers I are clearly roots

of Q(z). Applying the transformation y = and then replacing y by z, we get that pi are roots of the
'reflected' polynomial

QR(z) = qm + qm-lz + "+ qOZ,

and this polynomial is sometimes easier to handle.

Examples - continuation

Let us now apply Theorems 1.4.10 and 1.4.11 to finish Examples 1.4.7,1.4.8 and 1.4.9. In Example 1.4.7
it remains to determine

[z"] Iz
-1 -z 2

The reflected polynomial z2 - z - 1 has two roots:

I1= + -- ,- I2 - v5
2 2

Theorem 1.4.10 therefore yields

F, = [zn] 1 -z-z 2

where a, = 5,a 2 =- I.

SOLUTION OF RECURRENCES - GENERATING FUNCTION METHOD * 27

To finish Example 1.4.8 we have to determine

I +z+z
2

gn = z - 3z z 2

The denominator already has the required form. Since one root has multiplicity 2, we need to use
Theorem 1.4.11. Calculations yield

g. = (ln +c)(-1)" + •-3".
n 4 f+) + 16

The constant c = 3 can be determined using the equation 1 = go = c + L. Finally, in Example 1.4.9, it

remains to determine

1 - z2 z
[zn]U(z) = [zn] 1 _

2 4 and [Zn] V(z) = [zn] 1- z 2 4 (1.23)

In order to apply our method directly, we would need to find the roots of a polynomial of degree
4. But this, and also the whole task, can be simplified by realizing that all powers in (1.23) are even.
Indeed, if we define 1

W(z)z 1-4z+z 2'

then

U(z) = (1-z 2)W(z 2), and V(z) = zW(z2).

Therefore

U2n+1 = [z2n+]LU(z) = 0, u 2n = Wn -lý'
V 2. = [z2 n]V(z) = 0, v2n+1 = W.;

where 1
Wn = [zn] 1 - 4z -

which is easier to determine.

Exercise 1.4.12 Use the generating function method to solve the recurrences in Exercises 1.2.17 and
1.2.18.

Exercise 1.4.13 Use the generating function method to solve the recurrences
(a) Uo = 0, U1 = 1, u, = u - n - 1 + Un,2 + (-1)n, n > 2;
(b) g, = 0, ifn < 0, go = I and gn = gn-1 +2gn-2+. . . +ngofor n > 0.

Exercise 1.4.14 Use the generating function method to solve the system of recurrences ao = 1, bo = 0;
an =

5 an,1 + 12
bn-,,.bn =

2 an_1 + 5 bn-1, n > 1.

Remark 1.4.15 In all previous methods for solving recurrences it has been assumed that all
components - constants and functions - are fully determined. However, this is not always the case in
practice. In general, only some estimations of them are available. In Section 1.6.2 we show how to deal
with such cases. But before doing so, we switch to a detailed treatment of asymptotic estimations.

28U FUNDAMENTALS

1.5 Asymptotics
Asymptotic estimations allow one to produce often surprisingly simple, deep, powerful, useful
and technology independent analysis of the performance or size of computing systems. They have
contributed much to the rapid development of a deep, practically relevant theory of computing.

In the asymptotic analysis of a function T(n) (from integers to reals) or A(x) (from reals to reals),
the task is to find an estimation in limit of T(n) for n , c• or A(x) for x , a, where a is a real. The
aim is to determine as good an estimation as possible, or at least good lower and upper bounds for it.

The key underlying problem is how to compare 'in a limit' the growth of two functions. The main
approaches to this problem, and the relations between them, will now be discussed. An especially
important role is played here by the 0-, Q- and O-notations and we shall discuss in detail ways of
handling them.

Because of the special importance and peculiarities of asymptotic estimations, a discussion of
their merits seems appropriate.

There is a quite widespread illusion that in science and technology exact solutions, analyses and
so on are required and to be aimed for. Estimations are often seen as substitutes, when exactness is not
available or achievable. However, this does not apply to the analysis of computing systems. Simple,
good estimations are what are really needed. There are several reasons for this.

Feasibility. Exact analyses are often not possible, even for apparently simple systems. There are
often too many factors of enormous complexity involved. For example, to make a really detailed
time analysis of even a simple program one would need to study complicated compilers, operating
systems, computers and, in the case of multi-user systems, the patterns of their interactions.

Usefulness. An exact analysis could be many pages long and therefore all but incomprehensible.
Moreover, as the results of asymptotic analysis indicate, most of it would be of negligible importance.
In addition, what we really need are results of analysis of computing systems that are independent
of the particular computer and, in general, of the underlying hardware and software technology.
What we require are estimations that are some kind of invariants of computing technologies. Various
constant factors that reflect these technologies are not of prime interest. Finally, what is most often
needed is not knowledge of the performance of particular systems for particular data, but knowledge
about the growth of the performance of systems as a function of the growth of the size of their input
data. Again, factors with negligible growth and constant factors are not of prime importance for
asymptotic analysis, even though they may be of great importance for applications.

Example 1.5.1 How much time is needed to multiply two n-digit integers (by a person or by a computer)
when a classical school algorithm is used?

The exact analysis may be quite complicated. It also depends on many factors: which of many
variants of the algorithm is used (see the one in Figure 1.6), who executes it, how it is programmed,
and the computer on which it is run. However, all these cases have one thing in common: k2 times
more time is needed to multiply k times larger integers. We can therefore say, simply and in full
generality, that the time taken to multiply two integers by a school algorithm is E (n2). Note that this
result holds no matter what kind of positional number system is used to represent integers: binary,
ternary, decimal and so on.

It is also important to realize that simple, well-understood estimations are of great importance
even when exact solutions are available. Some examples follow.

Example 1.5.2 In the analysis of algorithms one often encounters so-called harmonic numbers:

ASYMPTOTICS N 29

a, a 2.... a, , a,, x b1 b2 b bn

Figure 1.6 Integer multiplication

n

1i-Hn 1±+ 2 .+ -=3 n (1.24)

Using definition (1.24) we can determine H, exactly for any given integer n. This, however, is not
always enough. Mostly what we need to know is how big H, is in general, as a function of n, not for
a particular n. Unfortunately, no closed form for H, is known. Therefore, good approximations are
much needed. For example,

Inn < Hn < In n + 1, for n > 1.

This is often good enough, although sometimes a better approximation is required. For example,

H, = lnn+0.5772156649±+ 1n- In +-E(n-4).
2n 12n2

Example 1.5.3 The factorial n! = 1 .2... .n is another function of importance for the analysis of algorithms.
The fact that we can determine n! exactly is not always good enough for complexity analysis. The following
approximation, due to James Stirling (1692-1770),

n! = v n"(+,()

may be much more useful. For example, this approximation yields

lgn! = E(nlogn).

1.5.1 An Asymptotic Hierarchy

An important formalization of the intuitive idea that one function grows essentially faster than another
function is captured by the relation -< defined by

f (n) --< g(n) ý lim f(n) -

n-) c g(n)

Basic properties of this relation can be summarized as follows:

30 3 FUNDAMENTALS

f (n) -< g(n),g(n) -Kh(n) : f (n) -<h(n) (transitivity); (1.25)

f(n) -<g(n) < I -< (forf,g never equal zero); (1.26)

1 -- f(n) -< g(n) = f' c I_'g1
- I (if c > 1 is a constant); (1.27)

n' --< n 13 aC < 03, (if a, are positive reals). (1.28)

These properties, as well as the following hierarchy (with 0 < e < 1 < c), can be derived from the
basic definition of the relation -< using elementary methods of calculus.

1 -- lg* n -.< lgIg n -< lg n --< n' -- nc -.< n'9 - c' --< n n _< Cc". (1.29)

These results remain valid when lg is replaced by In or log.

Example 1.5.4 Where in this hierarchy does the function 2 In, m > 1, lie? Clearly; lglgn -< lg-n -< Egn,

for any e > 0, and therefore, by (1.27), 2llgn --< 2 V9n -< 21g9 . Since 2jl "glg = lg n and 2` = nW, we get

lg n -.< 2 0" -4 n --

Exercise 1.5.5 Which of thefunctions growsfaster: (a) n0"n)1 or (lnn)"; (b) (In n)! or n

In a similar way, we can formalize the intuitive idea that two functionsf(n) and g(n) have the
same rate of growth, as follows:

f(n) - g(n) # n li)m = 1. (1.30)
n,2 g(n)

It would be nice if we could say that for any two functions f(n) and g(n) one of the relations
f(n) & g(n),f(n) - g(n), or g(n) --<f(n) holds. This, however, is not the case. For example, for the pairs
f(n) n, g(n) = 2n andf(n) = 1, g(n) = sinn none of these relations holds. The relation - is simply

too strong.
There is another formalization of the intuitive idea that two functions have the same rate of

growth:

f(n) >g(n) 4* f(n)I <cjg(n)L and jg(n)(<cf(n)i (1.31)

for a constant c and every large enough n. This has the pleasing and important property that for any
two of the logarithmico-exponential functionsf(n) and g(n), exactly one of the relationsf(n) -< g(n),
f(n) : g(n) or g(n) -<f(n) holds.

The family of logarithmico-exponential functions contains practically all the functions one
encounters in asymptotic analysis. It has been introduced by G. H. Hardy (1910) and it can be defined
as the smallest family, £, of functions satisfying the following properties:

1. Functionsf(n) = n andf(n) = c (a constant) are in £.

ASYMPTOTICS • 31

2. Iff(n),g(n) are in C, then so are functionsf(n) +g(n),f(n) -g(n),f(n) .g(n), eLf(n) •(n)j
g(n) If(n) and logf(n) - iff(n) > 0 for almost all n.

Asymptotic relations such as -< and the ones to be defined later, which capture 'in limit' our
intuition about the growth of functions, require us to stretch our imagination, and to THINK BIG.
For example, if f(n) -< g(n), then this means that eventually, for all n > no for some no, f (n) < g(n).
However, such an no can be very large! For example,

log n -< n

but the smallest no such that log n < n' 00 ' for all n > no is between 10103 and 10104.

In general, asymptotic analysis results are more relevant the larger the arguments we have. This
implies that the practical importance of asymptotic analysis results increases with the growth of the
performance of computers and of the size of the problems that need to be solved.

1.52 0-, 6- and Q-notations

The main concepts of asymptotic analysis: 'to grow as fast as', 'to grow not faster than' and 'to grow
at least as fast as' seem to be captured best by the following 0-(big oh), E-(big theta) and Q-(big
omega) notations, with a function g(n) as argument.

0(g(n)) = (f(n)ý3c: •f(n)[•clg(n)(}.

O(g(n)) = ff(n) j3cj,c2 : cjjg(n)j <_ f(n)j <ý c21g(n)1}.

£l(g(n)) = {f(n) Bc>0:cjg(n)[< jf(n)j}.

0-notation was introduced in 1892 by the German mathematician P. H. Bachmann (1837-1920). It
became more widely known through the work of another German mathematician, Edmund Landau
(1877-1938) and came to be known as Landau notation. However, it was actually D. E. Knuth who
introduced the Q- and 0-notation and popularized these notations.

)(g(n)), 0(g(n)) and Q (g(n)) are sets of functions. However,

instead of f(n) e 0(g(n)), f(n) E 0(g(n)), f(n) c Q(g(n)),

we usually write f (n) = e(g(n)), f (n) = 0(g(n)), f(n) = Q (g(n)).

There are two reasons for using this notation with the 'equals' sign. The first is tradition. 0-notation
with the equals sign is well established in mathematics, especially in number theory. Moreover, we
often read '=' as 'is'. For example, we read H, = O (lg n) as 'Hn is a big theta of lg n'. The second reason
is that in asymptotic calculations, as will be illustrated later, we often need to use this notation in the
middle of an expression. Our intuition is better satisfied if we interpret the equals sign as signifying
equality rather than inclusion, as discussed later.

32 3 FUNDAMENTALS

S2 g(n)I cg(n)i
lf~n~l ZIfgfnir

C I g(n)I
f~~

f(n) = e(g(n)) f(n) = O(g(n)) f(n) = P(g(n))

Figure 1.7 Asymptotic relation between functions

Relations between functionsf(n) and g(n) such thatf(n) = e(g(n)), orf(n) = !(g(n)) orf(n)
O(g(n)) are illustrated in Figure 1.7.

Transitivity is one of the basic properties of 0-, 8- and il-notation. For example,

f(n) = O(g(n)) and g(n) = 0(h(n)) * f(n) = O(h(n)).

0-, 6- and Q-notations are also used with various restrictions on the variables. For example, the
notation

f(n) = O(g(n)) for n - c (1.32)

means that there are c1 ,c2 > 0 and no such that cl lg(n) IS _f(n) < c21g(n)I for n > no.
Note that the notation e(f(n)), and also 0- and Q-notations are very often used as in (1.32),

without writing n --- xc explicitly.

Example 1.5.6 In order to show that (n + 1)2 = E)(n 2), we look for c1,c2 > 0 such that

cin2 < In2 +2n+ 11 < C2n 2 , for n > 0,

or, after dividing by n2, cW 21+ • + • • c2. This inequality is satisfied,for example, with cl = I and c2 = 4.

Example 1.5.7 To show that !2-1 = 8(n), for n - oc, we need constants c1,c2 > 0 such that
n+1

n2 -1
c1n < < c 2n, for n > no.

For n > 1, this is equivalent to finding c1,c2 such that c1n < In - 11 < c2n, or, equivalently,

1c,_< 11-n < c2.
n

This inequality is satisfied for n > 1 with cl = ½ and c2 = 1.

Example 1.5.8 Since
n n

ik < n

ASYMPTOTICS 3 33

we get

Eik = O(nk+).

Example 1.5.9 To prove that 4n3 7 0(n 2) for n 00, let us assume that there are cl and no such that
4n 3 < cln 2,for n > no. This would imply n < cl / 4for all n > no - a contradiction.

The E(-, 0- and Q-notations are also used for functions with variables over reals and for
convergence to a real. For example, the notation

f(x) = O(g(x)) for x -* 0

means that there are constants c, e > 0 such that

ýL(x)I < clg(x)I for 0< xj <E

Example 1.5.10 x 2 = 0(x) for x -* 0.

Exercise 1.5.11 Show that (a) [xj [x] = E((x 2); (b) (x2+ 1) / (x-+ 1) e E)(x).

Exercise 1.5.12 Give as good as possible an O-estimation for the following functions:

(a) (n! + 3n)(n 2 + log(n3 + 1)); (b) (2n + n2)(n3 + 5n); (c) n2 + nn2.

The O-notation has its peculiarities, which we shall now discuss in more detail. Expressions of
the typef(n) = 0(g(n)), for example,

1n3 - 2n2 + 3n - 4 = O(n3),
2

should be seen as one-way-equalities, and should never be written with the sides reversed. Thus, we
should not write 0(n3) = ½n3 - 2n2 + 3n - 4. This could lead to incorrect conclusions. For example,
from n = 0(n 3) and 0(n 3) = n 2 one might be inclined to conclude that n = 0(n 3) = n 2 . This does not
mean that 0-notation cannot be used on the left-hand side of an equation. It has only to be dealt with
properly and interpreted consistently as a set of functions. One can also write 0 (g, (n)) + 0 (g2 (n)) or
0 (g, (n)) . 0(g 2 (n)), and so on, with the usual interpretation of operations on sets. For example,

0(g,(n)) + 0 (g2(n)) = {h(n) Ih(n) = hi(n) +h 2(n),hi(n) = 0(g,(n)),h2 (n) = 0(g2(n))}.

We can therefore write
2n + O(n

2
) + O(n

3
) = O(n

3
),

which actually means that 2n + O(n2) + 0(n 3) C 0(n 3).
If the 0-notation is used in some environment, it actually represents a set of functions over all

variables that are 'free' in that environment. Let us illustrate this by the use of 0-notation within a
sum. This often happens in the analysis of algorithms. We show the identity

Z (2k2 + O(k)) = n 3+ O(n2).
kýO

34 U FUNDAMENTALS

The expression 2k2 + (9(k) represents, in this context, a set of functions of the form 2k2 +f (k, n), for
which there is a constant c such thatf(n,k) < ck, for 0 < k < n. Therefore

Z2k2+f(k,n)<2Zk2+c k = 2(n+ +2 +)+c-+2 (1.33)
k-O k=O k-O

2 3 c 2 1 C(14= 2 n 3+(1+ c)n 2+(+ C)n (1.34)

< 23 2-cln2, forcl =c+2. (1.35)
3

In complexity analysis it often happens that estimations depend on more than one parameter. For
example, the complexity of a graph algorithm may depend on the number of nodes and also on the
number of edges. To deal with such cases, the 0-, E)- and Q-notations are generalized in a natural
way. For example,

O(f(m,n))r={g(m,n)j3c,no: ý(m,n)l<clg(m,n)I,foralln>no,m>no}.

Notation 0 is sometimes used also to relate functionsf,g : 1 -- N, where F is an arbitrary infinite set.
f(x) = O(g(x)) then means that there exists a constant c such thatf(x) < cg(x) for almost all x c r.

Exercise 1.5.13 Show that (a) na = O(ný) if 0 < a < b; (b) an = O(bn) if1 < a < b; (c) na = O(bn),for
anya > 0,b > 1.

Exercise 1.5.14 Show that (a) n! is not 0(2n); (b) n" is not O(n!).

Exercise 1.5.15 Show thatf(n) = O(nk) for some k ifand only tff(n) < knk for some k > 0.

Remark 1.5.16 One of the main uses of 19-, Q- and 0-notations is in the computational analysis of
algorithms. For example, in the case of the running time T(n) of an algorithm the notation T(n) =
e(f(n)) means thatf(n) is an asymptotically tight bound; notation T(n) = Q(f(n)) means thatf(n) is
an asymptotic lower bound; and, finally, notation T(n) = O(f(n)) means thatf(n) is an asymptotic
upper bound.

1.5.3 Relations between Asymptotic Notations

The following relations between 0-, E- and Q-notations follow directly from the basic definition:

f(n) = O(g(n)) <• g(n) = fln)),
f(n) = e)(g(n)) * f(n) = 0(g(n)) andf(n) = Q(g(n)).

In addition,

f(n) = e(g(n)) ý*f(n) -• g(n).

The following 'little oh' notation,

f(n) = o(g(n)) <=> [f(n)I < ejg(n)I for all e > 0, n > no(e),

and its inverse notation 'little omega',

ASYMPTOTICS 3 35

f (n) w(g(n)) -*, g(n) = o(f(n)),

are also sometimes used. Between the 'little oh' and × notation, there is the relation

f (n) ýý g (n) <-- f (n) g g(n) + o (g (n)) .

Exercise 1.5.17 Show that (a) x3 = o(x 4); (b) xlgx = o(x2); (c) x = o(x'+') ft > 0; (d) x2 = o(2X).

Given two functionsf(n) and g(n), it may not be obvious which of the asymptotic relations holds
between them. The following theorem contains a useful sufficient condition for determining that.

Theorem 1.5.18 If f(n),g(n) > Ofor all n > 0, then

1 . limif n =a=AO f(n)=O(g(n));

img(n)

2. lr fn) -• 0 • f(n) = O(g(n)),f(n) = o(g(n)) but notf(n) = (g(n));
n-g(n)

3. lim f(n) = _ g(n)=O(f(n))andnotg(n)=Oe(f(n)).n-- g(n)

Proof: Let lim f(n) = a #0 .Then there are e > 0 and an integer no such that for all n > no
n--ocg(n)_

f(n)-a <

g(n) -

This implies (a - E)g(n) :f(n) • (a + E)g(n). Thereforef(n) = e(g(n)). Proofs of (2) and (3) are left as
exercises.

Example 1.5.19 For a, b > 1, lim na 0, and therefore (log n)' = 0(nb).

Exercise 1.5.20 Fill out the following table with a cross whenever the pair of functions in that row is
in the relation A = 4(B), where ýb is the symbol shown by the column head. In the table we use integer
constants kc > 1 and E > 0.

A B 0 o Q w 0
lnk n nE

n k c n

nlgn ncosn
2• 3•

nlogm Mlogn

lgn! lgnn

36 3 FUNDAMENTALS

1.5.4 Manipulations with 0-notation

There are several simple rules regarding how to manipulate O-expressions, which follow easily from
the basic definition.

n' = O(nm') ifm<m'; (1.36)

f(n) = O((f(n)); (1.37)

cO(f(n)) = 0 (cf(n)) = 0(f(n)); (1.38)

O(O((f(n))) = O((f(n)); (1.39)

O(f(n)) + O(g(n)) = O(max{-f(n)1, g(n)I}); (1.40)

O((f(n))O(g(n)) = O(f(n)g(n)); (1.41)

O(f(n)g(n)) = f(n)O(g(n)). (1.42)

For example, from (1.36), (1.38) and (1.40) we get for a fixed m

rn m

-'ainml- = cO(nm) = 0(mnm) = 0(nm).
i=O i=0

The rule (1.40) is often used in the analysis of algorithms to get the overall O-estimation for the
time complexity of an algorithm from estimations of the complexity of its parts.

Manipulations with power series aimed at getting better and better estimations also play an
important role in complexity analysis. For example, if the power series

S(z) = ,anzn

n>O

converges absolutely for a complex number z0, then S(z) = 0(1) for all Izi < Izol, because

S(z)I E__ a.zjý E Z• lan zojn = c < oc
n>O n>O

for a constant c. This implies that we can truncate the power series after each term and estimate the
remainder with 0 as follows:

S(z) = ao+O(z);
S(z) = ao+alz+O(z2);

S(z) = Z=0 aiz + O(zk'+).
The following power series are of special interest in asymptotic analysis:

z 2 z
3 z

4

ez = l-iz+-.+•.+ .+O(z5); (1.43)

z2 z
3 z

4

ln(l+z) = z-2+-- 4-+O(z5). (1.44)

With the truncation method one can use these power series to show the correctness of the following
rules:

ln(I + O(f(n))) = O(f(n)) if f(n) -< 1; (1.45)

e°Ofn)) = I+O(f(n)) if f(n) = 0(1); (1.46)
(1 + O(f(n)))O(g(n)) = 1+ 0(f(n)g(n)) if f(n) -< 1,f(n)g(n) = 0(1). (1.47)

ASYMPTOTICS U 37

f(n)=O(g(n)) 4=ý]cENVf(n)•_cg(n)
n

f(n) Q(g(n)) <- g(n) = O(f (n))

S3c N V f(n) > 'g(n)
n

f(n) =o(g(n)) Vc E N V f(n) < !g(n)
n

f(n) = w(g(n)) € g(n) = o(f(n))

VC E N V f(n) > cg(n)
n

f(n) = 9(g(n)) < f(n) = ((g(n)) andf(n) = (g(n))

Table 1.3 Summary of asymptotic notations

Proof of (1.45): Sincef(n) -< 1, whenever g(n) E O(f(n)), there are constants C,c such that Ig(n)I <•
cf (n)I <• C < 1 for n > no. Hence

ln(l+g(n)) = g(n)(1-g(n)+-g2(n)....) (1.48)

Sg(n) 1l+ 1C+ 1C +.- <)g(n)=O•f(n)); (1.49)

and therefore ln(1 + O(f(n))) = O(f(n)). In a similar way we can prove (1.46). It also holds that

(1 + O(f(n)))O(g(n)) - eO(g(n)) ln(1+O(f(n))) = eO(g(n))O(f(n))

= eO(fn)g(n)) = + O(f (n)g(n)).

Exercise 1.5.21 Determine 9(f(n)) for (a)f(n) = (1 + n2) -; (b)f(n) = e-•.

1.5.5 Asymptotic Notation - Summary

In Table 1.3 we present simpler definitions for the 0-, e- and Q-notations which are often used and

are mostly sufficient. We also summarize definitions for the o- and w-notations. The notation V used
n

in the table means 'for almost all n';f(n) and g(n) are nonnegative functions from integers to integers.

In the following we say that an algorithm is a polynomial time algorithm if it runs in time O(nk)
for some constant k on a typical sequential computer. Such an algorithm will also be called feasible,

38 E FUNDAMENTALS

or even efficient. An algorithmic problem is called feasible or tractable if it can be solved by an
algorithm running in polynomial time. Otherwise it is called unfeasible or intractable. This will be
discussed more in Section 1.10, and especially in Chapters 4 and 5.

1.6 Asymptotics and Recurrences

Two basic problems concerning the use of asymptotics in solving recurrences and ways of solving
them will now be considered. First, we show a method that uses asymptotics to find solutions
of recurrences. Second, we show how to solve recurrences some terms of which are known only
asymptotically. This is the case we find most frequently in practice when attempting to analyse the
efficiency of complex recursive systems.

1.6.1 Bootstrapping

This is a quite general method for finding better and better approximations for terms of sequences
defined by recurrences. The basic idea is simple. One first guesses an approximation (after computing
some of the first values), then substitutes this approximation in the recurrence to obtain a better
approximation. The process terminates when it does not seem to provide an improvement any more.

Example 1.6.1 Find,for n -* oc, an approximation of the coefficients gn of the generating function

G(z) = exp(- -) = Ignzn. (1.50)
k-1 n-O

Differentiation of G(z), with respect to z, yields

G'(z) = Zngnz n-I = k-1

n=0 k=lI

if we compare the coefficients of Zn-I on both sides of the equation, we get

ngn = n- k' (1.51)

ký0

It is easy to see from (1.50) that go = 1, and from (1.51) that g, = 1. By induction, we can then prove
that 0 < gn _• 1 for all n. We can therefore start with the approximation g, = 0(1). From (1.51) we get

n-I0(1) n-1 1 0 (1)=Hn (1)= (logn),

"ngn = E -k nk
k=O \k=0

so we have the second approximation:

g,=O(Lon) forn > 1.

After the next step of bootstrapping,

ASYMPTOTICS AND RECURRENCES U 39

ngn = n-k n- k(nk)

0<k<n O<k<n

S_ _ 1) O(+og n. n) + - 2Hn-O(logn)
0< k< n

- aO(logn)O(logn) = 'O(logn) 2 ,

we get the third approximation:

gn-~ (l n)

We could continue with bootstrapping, but the next step does not lead to an improvement.

Exercise 1.6.2 Use bootstrapping to solve the recurrence uo = 1, u, = n + u, 1, n > 1.

1.6.2 Analysis of Divide-and-conquer Algorithms

We now present a general method for solving recurrences arising from analysis of algorithms and
systems that are designed using the divide-and-conquer method. They are recurrences

T(n) = aT(c) +f(n), (1.52)

where for f(n) only an asymptotic estimation is known. The following theorem shows how to
determine T(n) for most of the cases.

Theorem 1.6.3 Let T(n) = aT(E) +f (n) for all sufficiently large n and constants a > 1, c > 1. Let 0 mean
here either L[n or [•1. Then

1. If f(n) = O(n(ogc"a)-), E > 0, then T(n) = E(n'ogca);
2. If f(n) = O(nlgca), then T(n) = O(nlo09,logn);
3. If f(n) = Q(n(Ioc,•+E), &> 0, af(n) _ bf(n)for almost all n and some b> 1,

then T(n) = O(ftn)).

The proof of this 'master theorem' for asymptotic analysis is very technical, and can be found in
Cormen, Leiserson and Rivest (1990), pages 62-72. We present here only some remarks concerning
the theorem and its applications.

1. It is important to see that one does not have to know f(n) exactly in order to be able to
determine T(n) asymptotically exactly. For more complex systems an exact determination of
f(n) is practically impossible anyway.

2. From the asymptotic point of view, T(n) equals the maximum of e(f(n)) and O(nlogca), unless
both terms are equal. In this case T(n) = O(nlogC log n).

3. In order to apply Case 1, it is necessary thatf (n) be not only asymptotically smaller than ngloga;

but smaller by a polynomial factor - this is captured by the '-e' in the exponent. Similarly, in
Case 3,f(n) must be larger by a polynomial factor, captured by '+E' in the exponent.

40 U FUNDAMENTALS

4. Note that the theorem does not deal with all possible cases off(n).

Example 1.6.4 Consider the recurrence T(n) = T(L) + 1. We have a = 1,c = 3nlga =n . r

Case 2 applies, and yields T(n) = E(logn).

Example 1.6.5 Consider the recurrence T(n) = 3T(") + nlogn. We have a = 3, c = 4, n•'ga = O(n0 79 3),

and thereforef(n) = Q(n'°g43+±) for e = 0.2. Moreover, af(n) = 34 log(n) < 3 n log n. Therefore, Case 3 of
the theorem applies, and T (n) = E(nlog n).

Example 1.6.6 (Integer multiplication) Consider the following divide-and-conquer algorithm for an
integer multiplication. Let x and y be two n-bit integers, where n is even. Then x = x122 + x2, y = y,22 + y2
where xl, X2 , yl, y2 are i-bit integers. Then

xy = xiy12n + (xly2 +X 2yl)2i +x2y2.

This seems to mean that in order to compute x .y one needs to perform four multiplications of n-bit integers,
two additions and two shifs. There is, however, another method for computing x1yl, xlY 2 + x2y, and x 2y 2. We
first compute x1yi, x2y2, which requires three multiplications, and then

Z1 = (X1 + x2)(y 1 + y 2) = Xlyl + xly2 + x 2y1 + x 2y 2 ,

which requires the third multiplication. Finally, we compute zl - xlyl - x2y 2 = Xly 2 + X2y 1 , which requires
only two subtractions.

This means that the problem of multiplication of two n-bit integers can be reduced to the problem
of three multiplications of -bit integers and some additions, subtractions and shifts - which requires
an amount of time proportional to n. The method can easily be adjusted for the case where n is odd.
Since in this algorithm a = 3, c = 2, we have Case I of Theorem 1.6.3. The algorithm therefore requires
time E(n"9g2) = E(n'73).

Example 1.6.7 (MERGESORT) Concerning the analysis of the number of comparisons of MERGESORT,
Theorem 1.6.3 yields, on the basis of the recurrence (1.14), T(n) = e(nlgn).

Exercise 1.6.8 Find asymptotic solutions for the following recurrences: (a) T(n) = 7T(") + n2;
(b) T(n) = 7T(n) + n2; Wc T(n) = 2T(ý) + Vfn.

1.7 Primes and Congruences
Primes and congruences induced by the modulo operation on integers have been playing an important
role for more than two thousand years in perhaps the oldest mature science - number theory.
Nowadays they are the key concepts and tools in many theoretically advanced and also practically
important areas of computing, especially randomized computations, secure communications, and
the analysis of algorithms.

We start with an introduction and analysis of perhaps the oldest algorithm that still plays an
important role in modem computing and its foundations.

PRIMES AND CONGRUENCES 0 41

1.7.1 Euclid's Algorithm

If n, m are integers, then the quotient of n divided by m is Ln / mj. For the remainder the notation
'n mod m' is used - m is called the modulus. This motivation lies in the background of the following
definition, in which n and m are arbitrary integers:

d n-m[n/mj, for m$0;
n mod mr- 0, otherwise.

For example,
7 mod 5 = 2, 7 mod -5 = -3;

-7 mod 5 = 3, -7 mod -5 = -2.

The basic concepts of divisibility are closely related. We say that an integer m divides an integer
n (notation m\n) if n / m is an integer; that is:

m\n<--* (n mod m=O). (1.53)

A similar relation is 'n is a multiple of i'. Related concepts are those of the greatest common divisor
of integers m and n - gcd(m, n) - and the least common multiple of m and n - lcm(m, n) - which are
defined thus for m + n > 0, m > 0, n > 0:

gcd(m,n) = max{klk\mandk\n}; (1.54)

lcm(m,n) = min{klk>0,m\kandn\k}. (1.55)

To compute gcd(m, n), 0 < m < n, we can use the following, more than 2,300-year-old algorithm,
a recurrence.

Algorithm 1.7.1 (Euclid's algorithm) For 0 < m < n,

gcd(0,n) = n;

gcd(m,n) = gcd(n mod m,m), for m > 0.

For example, gcd(27,36) = gcd(9,27) = gcd(0,9) = 9; gcd(214,352) = gcd(138,214) =

gcd(76,138) = gcd(62, 76) = gcd(14, 62) = gcd(6,14) = gcd(2,6) = gcd(0,3) = 3.
Euclid's algorithm can also be used to compute, given m < n, integers n' and m' such that

m'm + n'n = gcd(m, n),

and this is one of its most important applications. Indeed, if m = 0, then m' = 0 and n' = 1 will do.
Otherwise, take r = n mod m, and compute recursively r", i" such that r"r + m"m = gcd(r, m). Since
r = n - Ln / m]m and gcd(r,m) = gcd(m,n), we get

r"(n - Ln / minj) + m"m = gcd(m, n) = (m" - r" [n / mj)m + r"n.

If Euclid's algorithm is used, given m, n, to determine gcd(m, n) and also integers m' and n' such
that m'm + n'n = gcd(m, n), we speak of the extended Euclid's algorithm

Example 1.7.2 For m = 57, n = 237 we have gcd(57,237) = gcd(9, 57) = gcd(3, 9) = 3. Thus

237 = 4-57+9,

57 = 6.9+3,

and therefore
3 = 57- 6.9 = 57- 6. (237- 4.57) = 25.57- 6- 237.

42 J FUNDAMENTALS

If gcd(m, n) = 1, we say that the numbers n and m are relatively prime - notation n - m. The above
result therefore implies that if m, n are relatively prime, then we can find, using Euclid's algorithm,
an integer denoted by m-1 mod n, called the multiplicative inverse of m modulo n, such that

mi(m-1 mod n) 1- (mod n)

Exercise 1.7.3 Compute a, b such that ax +by = gcd(x,y) for the following pairs x, y: (a) (34,51);
(b) (315,53); (c) (17,71).

Exercise 1.7.4 Compute (a) 17-1 mod 13; (b) 7-1 mod 19; (c) 37-1 mod 97.

Analysis of Euclid's algorithm

Let us now turn to the complexity analysis of Euclid's algorithm. In spite of the fact that we
have presented a variety of methods for complexity analysis, they are far from covering all cases.
Complexity analysis of many algorithms requires a specific approach. Euclid's algorithm is one of
them.

The basic recurrence has the form, for 0 < m < n,

gcd(m,n) = gcd(n mod m,m).

This means that after the first recursive step the new arguments are (nl, m), with nl = n mod m, and
after the second step the arguments are (ml,nj), with m, = m mod nj. Since a mod b < 2 for any

2
0 < b < a (see Exercise 49 at the end of the chapter), we have ml, < ', nj < E. This means that after two
recursion steps of Euclid's algorithm both arguments have at most half their original value. Hence
T(n) = O(lg n) for the number of steps of Euclid's algorithm if n is the largest argument.

This analysis was made more precise by E. Lucas (1884) and Lam6 (1884) in what was perhaps
the first deep analysis of algorithms.

It is easy to see that if F, is the nth Fibonacci number, then after the first recursive step with
arguments (Fn, Fr-,) we get arguments (Fn-1, F,- 2). This implies that for arguments (F,, Fr,-) Euclid's
algorithm performs n - 2 recursive steps.

Even deeper relations between Euclid's algorithm and Fibonacci numbers were established. They
are summarized in the following theorem. The first part of the theorem is easy to prove, by induction
using the fact that if m >_ Fk+ 1, n mod m > Fk, then n > m + (n mod m) >_ Fk, 1 + Fk = Fk+ 2. The second
part of theorem follows from the first part.

Theorem 1.7.5 (1) If n > m >_ 0 and the application of Euclid's algorithm to arguments n, m results in k
recursive steps, then n > Fk+ 2 ,m > Fk+ I.

(2) If n > m > 0,m < Fk+l, then application of Euclid's algorithm to the arguments n,im requires fewer
than k recursive steps.

Remark 1.7.6 It is natural to ask whether Euclid's algorithm is the fastest way to compute the greatest
common divisor. This problem was open till 1989, and is discussed in more detail in Section 4.2.4.

PRIMES AND CONGRUENCES U 43

1.7.2 Primes

A positive integer p > 1 is called prime if it has just two divisors, I and p; otherwise it is called
composite. The first 25 primes are as follows:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.

Primes play a central role among integers and also in computing. This will be demonstrated
especially in the chapter on cryptography The following, easily demonstrable theorem is the first
reason for this.

Theorem 1.7.7 (Fundamental theorem of arithmetic) Each integer n has a unique prime decomposition

of theform n = Hi= I Pi, where pi < pi, 1, i = 1,... k - 1, are primes and ei are integers.

There exist infinitely many primes. This can easily be deduced from the observation that if we
take primes pl,. •, pk, none of them divides pl •p2-. • •pk + 1. There are even infinitely many primes
of special forms. For example,

Theorem 1.7.8 There exist infinitely many primes of theform 4k + 3.

Proof: Suppose there exist only finitely many primes P1, P2. • . , ps of the form 4k + 3, that is, pi mod 4=
3, 1 < i < s. Then take N = 4. p1 • p 2 . • • .p, - 1. Clearly, N mod 4 = 3. Since N > pi, 1 < i < s, N cannot
be a prime of the form 4k + 3, and cannot be divided by a prime of such a form. Moreover, since N
is odd, N is also not divisible by a number of the type 4k + 2 or 4k. Hence N must be a product of
primes of the type 4k + 1. However, this too is impossible. Indeed, (4k + 1) (41 + 1) = 4(kl + k + 1) + 1;
for any integers k, 1, therefore any product of primes of the form 4k + 1 is again a number of such a
form - but N is of the form 4k + 3. In this way we have ruled out all possibilities for N, and therefore
our assumption, that the number of primes of the form 4k + 3 is finite, must be wrong.

The discovery of as large primes as possible is an old problem. All primes up to 107 had already
been computed by 1909. The largest discovered prime at the time this book went to press, due to D.
Slowinski and Gage in 1996: using computer Cray T94 is 2 1257787 - 1 and has 378,632 digits.6

Another important question is how many primes there are among the first n positive integers;
for this number the notation x(n) is used. The basic estimation 7r(n) = 6(") was guessed already
by Gauss 7 at the age of 15. Better estimations are

n < rn ý5 n fo n>1 4
Inn 4 Inn f

6Finding as large primes as possible is an old problem, and still a great challenge for both scientists and
technology. The first recorded method is the 'sieve method' of Eratosthenes of Cyrene (284-202 BC). Fibonacci
(C. 1200) improved the method by observing that sieving can be stopped when the square root of the number to
be tested is reached. This was the fastest general method up to 1974, when R. S. Lehman showed that primality
testing of an integer n can be done in O(n 3) time.

The previous 'world records' were 2859433 - 1 (1994) and 2756,839 - 1 (1992), both due to D. Slowinski. The largest
prime from the pre-computer era was 2127 - 1 (1876). This record lasted for 76 years. Next world records were
from 1952: 2521 -1, 260 - 1, 21,279 - 1, 22,203 -, 2 ,281 - 1. All the known very large primes have the form 2P - 1,
where p is a prime; they are called 'Mersenne primes'. It is certainly a challenge to find new, very large Mersenne
primes, especially because all numbers smaller than 2350,000 and also in the range 2430 , 0- 2520,000 have already
been checked for primality, and it is not known whether there are infinitely many Mersenne primes.7Karl Friedrich Gauss (1752-1833), German mathematician, physicist and astronomer considered to be
the greatest mathematician of his time, made fundamental contributions in algebra, number theory, complex
variables, differential geometry, approximation theory, calculation of orbits of planets and comets, electro- and
geomagnetism. Gauss developed foundations for the absolute metric system, and with W. Weber invented the
electrical telegraph.

44 U FUNDAMENTALS

and

7r(n) = + n 2!n +n 4!n (n'+ (1.56)
In (inn)2 + (inn)3 + (ln)4 + (in) +0e ~(Inn)6J

Additional information about the distribution of primes is given in the following theorem in
which 0 is the Euler phi function. O(n) is the number of positive integers smaller than n that are
relatively prime to n - for example, O(p) = p - 1 and O(pq) = (p - 1) (q - 1) if p, q are primes.

Theorem 1.7.9 (Prime number theorem)8 If gcd(b,c) = 1, then for the number 7rb,C(n) of primes of the
form bk + c we have

7rbc(n) in
O(b) Inn'

The following table shows how good the estimation 7r(n) = n /Inn is.

n 104 107 1010

7r(n) 1,229 664,579 455,052,511
n / Inn 1,089 621,118 434,782,650

wr(n) / (n /lnn) 1.128 1.070 1.046

The largest computed value of 7r(x) is 7r(10 18) = 24,739,954,287,740,860, by Deliglise and Rivat
in 1994.

We deal with the problem of how to determine whether a given integer is a prime in Section 5.6.2
and with the problem of finding large primes in Section 8.3.4. The importance of primes in
cryptography is due to the fact that we can find large primes efficiently, but are not able to
factorize large products of primes efficiently. Moreover, some important computations can be done
in polynomial time if an argument is prime, but seem to be unfeasible if the argument is an arbitrary
integer.

Exercise 1.7.10 Show that if n is composite, then so is 2" - 1.

Exercise 1.7.11** Show that there exist infinitely many primes of the type 6k + 5.

1.7.3 Congruence Arithmetic

The modulo operation and the corresponding congruence relation

a =b(modm) ' a mod m=b mod m (1.57)

defined for arbitrary integers a, b and m > 0, play an important role in producing (pseudo-)randomness
and in randomized computations and communications. We read 'a = b (mod m)' as 'a is congruent
to b modulo m'. From (1.57) we also get that a = b (mod m) if and only if a - b is a multiple of m.
This congruence defines an equivalence relation on Z, and its equivalence classes are called residue
classes modulo n. Z, is used to denote the set of all such residue classes, and Zn its subset, consisting
of those classes elements of which are relatively prime to n.

8The term 'prime number theorem' is also used for the Gauss estimation for 7r(n) or for the estimation (1.56).

PRIMES AND CONGRUENCES 5 45

The following properties of congruence can be verified using the definition (1.57):

a bandc-d (modm) • a+c=b+d (modm); (1.58)

a-bandc-d (modm) r a-c-b-d (modm); (1.59)

a bandc-d (modm) = ac-bd (modm); (1.60)

ad--bd (modm) <* a-b (modm) for diLm; (1.61)

ad-bd (mod md) # a-b (modm) for d 0; (1.62)

a=-b (mod mn) <* a-b (modm) and a=b (modn)ifm-Ln. (1.63)
k 1 ei

The property (1.63) can be used to simplify the computation of congruences as follows. If H= 1 Pi

is the prime decomposition of m, then

a-b (modm)a -- b (modpe)for 1 <i<k. (1.64)

Congruences modulo powers of primes are therefore building blocks for all congruences modulo
integers.

Exercise 1.7.12 Show that ((a mod n)(b mod n) mod n) = ab mod n for any integers a, b, n.

Exercise 1.7.13 Show that 2xy2 mod (2xy - x) = xY.

One of the main uses of the modulo operation in randomization is related to the fact that solving
'nonlinear' congruence equations is in general a computationally intractable task.

By contrast, the linear congruence equations

cx - d (mod m)

are easy to deal with. Indeed, we have the following theorem.

Theorem 1.7.14 A linear congruence cx - d (mod m) has a solution ifand only if d is a multiple ofgcd(c, m).
In this case, the equation has exactly k = gcd(c, m) distinct integer solutions

d d m d mXoT,XoT + T-,..x0T + (k- 1),

in the interval (0, m), where xo is the unique integer solution of the equation cx + ym = gcd(c, m) - which can
be found using Euclid's algorithm.

The proof is easy once we realize that the problem in solving the equation cx = d (mod m) is
equivalent to the one in finding integer solutions to the equation cx + ym = d.

Another useful fact is that if cx - d (mod m), then c(x + m) = d (mod m).

Example 1.7.15 For the congruence 27x =- 1 (mod 47) we have gcd(27, 47) = I and 7-27-4.47 = 1. Hence
x = 7 is the unique solution.

Example 1.7.16 For the congruence 51x - 9 (mod 69) we have gcd(51,69) = 3 and -4.51 + 3.69 = 3.
Hence x = -12,11,34, or, expressed using only positive integers,

x = 11,34,57.

46 FUNDAMENTALS

Exercise 1.7.17 Solve the linear congruence equations (a) 4x - 5 (mod 9); (b) 2x -_ 17 (mod 19).

There is an old method for solving special systems of linear congruences. The following result,
easy to verify, has been attributed to Sun Tsfi of China, around AD 350.

Theorem 1.7.18 (Chinese remainder theorem) Let ml, . . . ,m, be integers, mi _ mj for i - j, and
a,, ... ,at be integers with 0 < ai < mi. Then the system of congruences

x- ai (modmi) fori=1l.,t

possesses the solution (which is straightforward to verify)

t

x = ,aiMiNi, (1.65)

where M = li 1 mi,Mi = M / mi and Ni = Mil mod mi, 1 < i < t. Moreover, the solution (1.65) is unique
up to the congruence modulo M; that is, z x (mod M) for any other solution z.

The Chinese remainder theorem has numerous applications. One of them is the following modular
representation of integers.

Let mi,. .. , mn be pairwise relatively prime and M their product. It follows from Theorem 1.7.18
that each integer 0 < x < M is uniquely represented by the n-tuple

(x mod in,, .. . ,x mod mn).

For example, if m, = 2, m2 = 3, m 3 = 5, then (1,0, 2) represents 27. Such a modular representation of
integers may look artificial. However, it has its advantages, because it allows parallel, component-wise
execution of basic arithmetic operations.

Exercise 1.7.19 (a) Find modular representations of integers 7,13,20,6 and 91 with respect to the
integers m, = 2, m 2 = 1m3 = 11, m4 = 19; (b) Show that if (xi,... , x,) is a modular representation of
an integer x and (y, •.. y,y) of an integer y, both with respect to pairwise primes (ml,... , man), and o

is one of the operations addition, subtraction or multiplication, then

((xl oyi) mod ml, . .. ,(x, OYn) mod m,)

represents the number x o y - provided this number is smaller than m.

In cryptographical applications one often needs to compute modular exponentiation ab mod n,
where a, b and n can be very large; n may have between 512 and 1024 bits, and a also has about that
number of bits. Moreover, b can easily have several hundred bits. In such a case ab would have more
than 1030 bits. To compute such numbers would appear to be difficult. Fortunately, congruences have
various properties that allow one to simplify computation of modular exponentiations substantially.
For example,

a2 = (a mod n) 2 (mod n)

DISCRETE SQUARE ROOTS AND LOGARITHMS' U 47

for any a and b. This allows, together with the exponentiation Algorithm 1.1.14, computation of
ab mod n in such a way that one never has to work with numbers that have more than twice as many
bits as numbers a, b, n. For example,

a8 mod n -_ (((a mod n) 2 mod n)2 mod n)2 (mod n).

Efficient modular exponentiation is also at the heart of efficient primality testing, as shown in
Section 5.6.2. To simplify modular exponentiation, one can also use the following theorem and its
subsequent generalization. Both these results also play an important role in cryptography.

Theorem 1.7.20 (Fermat's9 little theorem, 1640) If p is a prime, a E N, then

aP_-a (modp), (1.66)

and if a is not divisible by p, then

aP-1 - 1 (mod p). (1.67)

Proof: It is true for a = 1. Assuming that it is true for a, then by induction (a + 1)P = aP + 1 - a + 1
(mod p), because (P) -- 0 (mod p) for 0 < k < p. So Theorem 1.7.20 holds for all a E N. [

A more general version of this theorem, which needs a quite different proof, the so-called Euler
totient theorem, has the form

no(') = 1 (mod m) if n _ m, (1.68)

where 0 is Euler's phi function defined on page 44.

Example 1.7.21 In order to compute 31000 mod 19 we can use the fact that by Fermat's little theorem, 3"8 -
1 mod 19. Since 1000 = 18.55 + 10, we get

31000 = 31855+0 = (31)55(35)2 -- (35 mod 19)2 - (15)2 s- 225 = 16 (mod 19).

Exercise 1.7.22 Compute (a) 2340 mod 11; (b) 31'0 mod 79; (c) 510000 mod 13.

Exercise 1.7.23 Show that E-P iP-1 -_ -1 (mod p).

1.8 Discrete Square Roots and Logarithms*

In this section we deal with two interesting and computationally intriguing problems of great
importance, especially for modem cryptography.

9pierre de Fermat, a French lawyer, who did mathematics, poetry and Greek philosophy as a hobby. At his time
one of the most famous mathematicians in Europe - in spite of the fact that he never published a scientific paper.
His results were distributed by mail. Fermat is considered as a founder of modem number theory and probability
theory.

48 U FUNDAMENTALS

1.8.1 Discrete Square Roots

The problem of solving quadratic congruence equations

x2 = a (mod m)

or, in other words, computing 'discrete' square roots modulo m, is intriguing and of importance for
various applications.

For an integer m denote

Zm = {0,1,. .. , - }

Z* {a a aEZm,gcd(a,m)=1},

and let their elements denote the corresponding residue classes. Observe that Z* has 0(n) elements.

Example 1.8.1 Z*0 = {1,3,7,9}, Z•1 = {1,2,3,4,5,6,7,8,9,10}.

An integer x G Z' is called a quadratic residue modulo m if x -y 2 (mod m) for some y

otherwise x is called a quadratic nonresidue modulo m. Notation:

QRm - the set of all quadratic residues modulo m,

QNRm - the set of all quadratic nonresidues modulo m.

Exercise 1.8.2 Show that if p is prime, then each quadratic residue modulo p has exactly two distinct
square roots.

Exercise 1.8.3* Explain why exactly half of the integers 1,... p - 1 are quadratic residues modulo p.

Exercise 1.8.4* Find all square roots of 64 modulo 105.

To deal with quadratic residues, it is useful to use the following notation, defined for any integer
m and x e Z*:

1 ifxEQRm and m is a prime;
(xim) = - if x G QNRm and m is a prime;

I (xipi) if m =]- pi,x _ m and pi are primes.

(xlm) is called the Legendre symbol if m is prime and the Legendre-Jacobil° symbol if m is
composite. It is easy to determine whether x c Zm is a quadratic residue modulo m if m is a prime -
one need only compute (xlm). This can be done in 0(1g m) time using the following identities.

Theorem 1.8.5 Let x,y E Z*m.

1. X(p-1)/
2

- (xip) (mod p) for any prime p > 2 and x E Zp-

2. If x = y (mod m), then (xjm) = (yim).

l°Adrien Marie Legendre (1752-1833), a French mathematician; Carl Gustav Jacobi (1804-51), a German
mathematician.

"This claim is also called Euler's criterion.

DISCRETE SQUARE ROOTS AND LOGARITHMS' U 49

3. (xlm)'(ylm) =(x.ylm).

4. (-1ra) = (-1)(m-1)/2 if m is odd.

5. (21m) = (-1)(M2-1)/8 if m is odd.

6. If m _ n and m,n are odd, then (nim)(mln) = (-1)(m-1)(n-1)/4 .12

Example 1.8.6

(28197) = (2197) (2197).(7197) = (7197)
= (9717)-(_l)(17-1)(7-1)/4 =- (617)

= (217).(317) = (_1)6(317) = (713) (-1)'

= -(113) = -1.

Exercise 1.8.7 Compute (a) (32157); (b) (132137); (c) (47,53); (d) (31p), where p is prime.

It is straightforward to see from Euler's criterion in Theorem 1.8.5 that if p is a prime of the form
4k + 3 and x E QRp, then ± X(p+ 1)/4 mod p are two square roots of x modulo p. For such a p and x one
can therefore efficiently compute square roots. By contrast, no efficient deterministic algorithm for
computing square roots is known when p is a prime of the form 4k + 1. However, we show now that
even in this case there is an efficient randomized algorithm for the job.

Informally, an algorithm is called random if its behaviour is determined not only by the input but
also by the values produced by a random number generator - for example, if in a computation step
a number is randomly chosen (or produced by a random number generator). Informally again, an
algorithm is called a polynomial time algorithm if it can be realized on a typical sequential computer
in such a way that the time of computation grows polynomially with respect to the size of the input
data.

The concepts of 'a randomized algorithm' and a 'polynomial time' algorithm are among the most
basic investigated in foundations of computing. As we shall see later, one of the main outcomes is
that these two concepts are very robust and practically independent of the choice of computer model
or a source of randomness. This also justifies us in starting to use them now on the basis of the above
informal description. A formal description provided later will be necessary once we try to show the
properties of these concepts or even the nonexistence of such algorithms for some problems.

Theorem 1.8.8 (Adleman-Manders-Miller's theorem) There exists a randomized polynomial time
algorithm to compute the square root of a modulo p, where a E QRp, and p is a prime.

Proof: Let us consider a decomposition p - 1 = 2ep, where P is odd. Choose randomly"3 b E QNRP, and
let us define the sequence a,, a2 ,... of elements from QRp and of integers e > k, > k2 >... > ki >...
inductively as follows:

e a, = a;

12This assertion, due to F. L. Gauss, is known as the law of quadratic reciprocity. It plays an important role in
number theory, and at least 152 different proofs of this 'law' are known to Gestemhaber (1963).

13This means that one chooses randomly b E Zp and verifies whether b E QRp. If not, one chooses another b until
a b E QNRp is found. Thanks to Exercise 1.8.3, this can be done efficiently with high probability.

50 E FUNDAMENTALS

" ki= the smallest k >0 such that a2kP -1 (modp)fori>1;

"* ai = ailb2"k- mod p for i > 1.

We show now that ki < ki- 1 for all i > 1. In doing so, we make use of the minimality of ki and the fact

that b2' 1P = b(P-1)/ 2 z (bjp) - -1 (mod p) by (6) of Theorem 1.8.5. Since

a2kiI 1p (ailba-k 1)2k_ 1p - 2 ki1
1
-,Pb 2e1p (-1)(- 1) 1 (mod p),

ki must be smaller than ki- 1. Therefore, there has to exist an n < e such that kn = 0. For such an n we
have a+ - an, mod p, which implies that a.p+t / is a square root of an.

Let us now define, by the reverse induction, the sequence r., r1,_,, r, as follows:

" rn = a(P+ 1)/2 mod p,

" ri = rT+l(b2e-k-1)-1 mod p for i < n.

It is easy to verify that ai = r 2 mod p, and therefore a = r2modp.

Clearly, n < lgp, and therefore the algorithm requires polynomial time of length p and a - plus
time to choose randomly a b such that (blp) = -1. 0

There is an algorithm to compute square roots that is conceptually much simpler. However, it
requires work with congruences on polynomials and application of Euclid's algorithm to find the
greatest common divisor of two polynomials, which can be done in a quite natural way. In other
words, a little bit more sophisticated mathematics has to be used.

Suppose that a is a quadratic residue in Z* and we want to find its square roots. Observe first that
the problem of finding an x such that x2 = a (mod p) is equivalent to the problem, for an arbitrary c E Zp,
of finding an x such that (x - c)2 = a (mod p) - in order to solve the original problem, only a shift of roots
is required. Suppose now that (x - c)2 - a (x - r) (x - s) (mod p). In such a case rs = c2 - a (mod p)
and, by (2) in Theorem 1.8.5, ((c2 -a)jp) - (rlp)(slp). So if ((c2 -a)jp) = -1, then either r or s is a
quadratic residue. On the other hand, it follows from Euler's criterion in Theorem 1.8.5 that all
quadratic residues in Zp are roots of the polynomial x(p-1)/ 2 - 1. This implies that the greatest common
divisor of the polynomials (x - c) 2 - a and x(P-)/'2 - 1 is the first-degree polynomial whose root is that
of (x - c) 2 - a, which is the quadratic residue. This leads to our second randomized algorithm.

Algorithm 1.8.9

"* Choose randomly c e ZP.

"* If ((c2 - a) Ip) = -1, then compute gcd(x(p- 1)/2 - 1, (x - c) 2 - a) = cx -at.

"* Output ±(c + a-1,Q) as the square root of a modulo p.

The efficiency of the algorithm is based on the following fundamental result from number theory:
if a is a quadratic residue from Zp and c is chosen randomly from Zp, then with a probability larger
than ' we have ((c2-a)Ip) = -1.

Another important fact is that there is an effective way to compute square roots modulo n, even
in the case where n is composite, if prime factors of n are known.

DISCRETE SQUARE ROOTS AND LOGARITHMS* 5 1

Theorem 1.8.10 If pq > 2 are distinct primes, then x E QRpq <`> x E QRp Ax G QRq. Moreover, there is
a polynomial time algorithm which, given as inputs xu,v,p,q such that x - u2 (mod p), x = v2 (mod q),
computes w such that x = w2 (mod pq).

Proof: The first claim follows directly from (3) of Theorem 1.8.5. To prove the rest of the theorem, let
us assume that x, u, v, p and q satisfy the hypothesis. Using Euclid's algorithm we can compute a, b
such that ap + bq = 1. If we now denote c = bq = 1 - ap and d = ap = 1 - bq, then

c 0 (mod q), d - 0 (mod p), c = 1(mod p), d = 1(mod q). (1.69)

This will now be used to show that for w = cu + dv we have x = w2 (mod pq). In order to do so, it is
enough, due to the first part of the theorem, to prove that x = w 2 (mod p) and x - w2 (mod q). We do
this only for p; the other case can be treated similarly. By (1.69),

W2 = (cu + dv)
2

=•c
2

u
2 + 2cduv + d2 V

2
= u

2 = x (mod p).

On the other hand, no effective algorithm is known, given an integer n and an a E QR,, for
computing a square root of a modulo n. As shown in the proof of Theorem 1.8.16, this problem is
as difficult as the problem of factorization of integers - the problem of intractability on which many
modem cryptographical techniques are based - see Chapters 8 and 9.

Before presenting the next theorem, let us look more deeply into the problem of finding square
roots modulo a composite integer n.

Lemma 1.8.11 Any quadratic residue a E QRn, n = pq, p and q are distinct odd primes, has four square roots
modulo n.

Proof: Let a E QR& and a - a' (mod n). By the Chinese remainder theorem there are integers u, v such
that

u a, (mod p), v -a, (mod q);

u a,(mod q), v -a, (mod p).

Since p, q are odd, u, v, a, and -a, must be distinct. Moreover, u2 - v2 - a2 (mod pq), and therefore
u, v, a,, -a, are four distinct square roots of a. 1

Remark 1.8.12 If an integer n has t different odd prime factors, then it has 2' square roots.

Exercise 1.8.13* Find allfour solutions of the congruences: (a) x2 =- 25 (mod 33);
(b) x2 = 11 (mod p).

Exercise 1.8.14 Determine in general the number of square roots modulo n for an a E QRn.

Of special interest is the case where n = pq and p = q = 3 (mod 4). Such integers are called Blum
integers. In this case, by Theorem 1.8.5,

(-xin) = (-xip)(-xlq) = (xip)(-1)(P-1)/2(xiq)(-1)(q-1)/2 = (xip)(xiq) = (xln).

Moreover, the following theorem holds.

52 U FUNDAMENTALS

Theorem 1.8.15 (1) If x2
= y2 (mod n) and x,y, -x, -y are distinct modulo n, then (xln) = -(yin).

(2) If n = pq is a Blum integer, then the mapping

x -* x2 mod n

is a permutation of QR,. In other words, each quadratic residue has a unique square root that is also a quadratic
residue, and is called its principal square root.

Proof: (1) Since pq divides (x2 -y 2) = (x + y)(x- y) and x,y,-x, -y are distinct modulo n, neither
x + y nor x - y can be divided by both p and q. Without loss of generality, assume that p divides (x - y)
and q divides (x + y); the other case can be dealt with similarly. Then x = y (mod p), x = -y (mod q),
and therefore (xip) = (yIp), (xiq) = -(yiq). Thus (xin) = -(yln).

(2) Let a be any quadratic residue modulo n. By Lemma 1.8.11, a has exactly four roots - say
x, -x,y, -y. By(1) (xin) = -(yIn). Letx be a square root such that (xlp) = 1. Theneither (x p) = (xiq) = 1
or (-xip) = (-xiq) = 1. Hence either x or -x is a quadratic residue modulo n. 0

For Blum integers two key algorithmic problems of modem cryptography are computationally
equivalent with respect to the existence of a polynomial time randomized algorithm.

Theorem 1.8.16 (Rabin's theorem) The following statements are equivalent:

1. There is a polynomial time randomized algorithm to factor Blum integers.

2. There is a polynomial time randomized algorithm to compute the principal square root for x E QRn
fn is a Blum integer.

Proof: (1) Assume that a polynomial time randomized algorithm A for computing principal square
roots modulo Blum integers is given. A Blum integer n can be factored as follows.

1. Choose a random y such that (yin) = -1.

2. Compute x = y2 (mod n).

3. Find, using A, a z E QR, such that x = z2 (mod n).

We now show that gcd(y + z, n) is a prime factor of n = pq. Clearly, pq divides (y - z) (y + z). Since

(-zIn)n= n) (-1)(- (zin) = 1, we have y 0 -z (mod n), and therefore gcd(y + z, n)
must be one of the prime factors of n.

(2) Assume that we can efficiently factor n to get p, q such that n = pq. We now show how to
compute principal square roots modulo n. Let x E QRn.

"* Using the Adleman-Manders-Miller algorithm, compute u G QRp and v C QRq such that x
u2 mod p,x =- v2 (mod q).

"* Using Euclid's algorithm, compute a, b such that ap + bq = 1.

"* Compute c = bq, d = ap.

We show now that w = cu + dv is in QRn and that it is a square root of x. Indeed, since
c - 1 (mod p) and d = 1 (mod q), we have w2 - u2 - x(mod p),w 2 - v2 - x(mod q), and by (1.63),
w2 - x (mod n). To show that w E QR,, we proceed as follows.

Since c = 0(mod q), d = 0(mod p), we get (wip) = (uip) = l,(wiq) = (vq) = 1, and therefore
(wlpq) = (wip)(wlq) = 1. [

PROBABILITY AND RANDOMNESS N 53

1.8.2 Discrete Logarithm Problem

This is the problem of determining, given integers a, n, x, an integer m such that am = x (mod n), if
such an m exists.

It may happen that there are two such m, for example, m = 10 and m = 4 for the equation 5m
16 (mod 21), or none, for example, for the equation 5m -_ 3 (mod 21). An important case is when g is
a generator or a principal root of Z*, that is, if

Z*, = {gi mod n10 < i < i (n)}.

In such a case, for any x E Z* there is a unique m < 0(n) such that x = gm (mod n). Such an m is called
the discrete logarithm or index of x with respect to n and g - in short, indexn,g (x).

If Zn has a principal root, then it is called cyclic. It was known already to F. L. Gauss that Z* is
cyclic if and only if n is one of the numbers 2,4, p', 2p', where p > 2 is a prime and i is a positive integer.

Example 1.8.17 The table of indices, or discrete logarithms,for Z13 and the generator 2,

x I 2 3 4 5 6 7 8 9 10 11 12]
m 0 1 4 2 9 5 11 3 8 10 7 6

No efficient deterministic algorithm is known that can compute, given a, n and x, the discrete
logarithm m such that a' =_ x (mod n). This fact plays an important role in cryptography and its
applications, and also for (perfect) random number generators (see next section). An exception is the
case in which p is a prime and factors of p - 1 are small, of the order O(log p).14

Exercise 1.8.18 Find all the principal roots in Z1I, and compute all the discrete logarithms of elements
in Z*1 with respect to these principal roots.

Exercise 1.8.19* Let g be a principal root modulo the prime p > 2. Show that for all a, b e Zp
(a) indexp~g(ab) indexp.g(a) + indexp,g(b) (mod n); (b) indexp,5 (an) = n -indexp,g(a) (mod p - 1).

1.9 Probability and Randomness
In the design of algorithms, communication protocols or even networks, an increasingly important
role is played by randomized methods, where random bits, or, less formally, coin-tossings, are used to
make decisions. The same is true for randomized methods in the analysis of computing systems- both
deterministic and randomized. Basic concepts and methods of discrete probability and randomness
are therefore introduced in this section.

1.9.1 Discrete Probability

A probability (or sample) space is a set Q (of all possible things that can happen), together with a
probability distribution Pr, that maps each element of Q onto a nonnegative real such that

E Pr(w) = 1.
wEQ

"i1n the general case of a prime p the fastest algorithm, due to Adleman (1980), runs in time 0(2 lgplggp).

However, there is a polynomial time randomized algorithm for a (potential) quantum computer to compute the
discrete logarithm due to Shor (1994).

54 U FUNDAMENTALS

A subset E C Q is called an event; its probability is defined as Pr(E) = -- EPr(w). Elements of Q are
called elementary events. If all elementary events have the same probability, we talk about a uniform
probability distribution.

For example, let Qo be the set of all possible outcomes of throwing simultaneously three dice.
I = 216, and if all the dice are perfect, then each elementary event has the probability -L

From the definition of a probability distribution, the following identities, in which A, B are events,
follow easily:

Pr(A) = 1 - Pr(A), Pr(A U B) = Pr(A) + Pr(B) - Pr(A n B).

Exercise 1.9.1 Let El,.. . , E. be events. Show:
(a) Bonferroni's inequality: Pr(E n E2N. ... nEn) > Pr(E1) + Pr(E 2) +... + Pr(E,) - (n - 1);
(b) Bode's inequality: Pr(E1 u E2u. ... UEO) < Pr(E1) +... + Pr(E,).

The conditional probability of an event A, given that another event B occurs, is defined by

Pr(AIB) - Pr(A nB) (1.70)
Pr(B)

This formalizes an intuitive idea of having a priori partial knowledge of the outcome of an experiment.
Comparing Pr(AIB) and Pr(B1IA), expressed by (1.70), we get

Theorem 1.9.2 (Bayes' theorem)

Pr(A)Pr(BIA) = Pr(B)Pr(AIB).

Two events A, B are called independent if Pr(A n B) = Pr(A) . Pr(B).

Exercise 1.9.3 What is the conditional probability that a randomly generated bit string of length four
contains at least two consecutive O's, assuming that the probabilities of 0 and I are equal and the first bit
is 1?

A random variable X is any function from a sample space Q to reals. The function Fx(x) =

Pr(X = x) is called the probability density function of X.
For example, if X(w) (w, E Qo) is the sum of numbers on dices, then its probability density function

has the form

X 3 1 4 1 5 1 6 1 7 1 8 1 9
Fx (x)

Two random variables X and Y over the same sample space Q are called independent if for any
x,y C•

Pr(X = x and Y = y) = Pr(X = x)Pr(Y = y).

PROBABILITY AND RANDOMNESS U 55

Exercise 1.9.4 (Schwartz' lemma)** Let p be a polynomial with n variables that has degree at most
k in each of its variables. Show that if p is not identically 0 and the values ai, i = 1,2, . ,n, are
chosen in the interval [0,N - 1] independently of each other according to the uniform distribution, then
Pr(p(al, . . . ,a.) 0) < k. (Use induction and the decomposition p -plXI + p2x2+.. +ptx•, where

pl... , Pt are polynomials of variables x2 , x.)

An intuitive concept of an average value of a random variable X on a probability space Q is
defined formally as the mean or expected value

EX = E X(w)Pr(w), (1.71)

provided this potentially infinite sum exists.
If X, Y are random variables, then so are X + Y, cX, X Y, where c is a constant. Directly from (1.71)

we easily get

E(X+Y) = EX+EY (1.72)

E(cX) = cE(X) (1.73)

E(X.Y) = EX.EY, if X, Y are independent. (1.74)

Exercise 1.9.5 A ship with a crew of 77 sailors sleeping in 77 cabins, one for each sailor, arrives at a
port, and the sailors go out to have fun. Late at night they return and, being in a state of inebriation,
they choose randomly a cabin to sleep in. What is the expected number of sailors sleeping in their own
cabins? (Hint: consider random variables Xi the value of which is 1 if the i-th sailor sleeps in his own
cabin and 0 otherwise. Compute E [E 7•1 Xi].)

Other important attributes of a random variable X are its variance VX and standard deviation
oX = VX, where

VX = E((X- EX)2).

Since

E((X- EX)2) = E(X 2 - 2X(EX) + (EX)2) (1.75)

= E(X2) - 2(EX)(EX) + (EX)2, (1.76)

we get another formula for VX:
VX = E(X 2) - (EX) 2. (1.77)

The variance captures the spread of values around the expected value. The standard deviation just
scales down the variance, which otherwise may take very large values.

Example 1.9.6 Let X, Y be two random variables on the sample space Q = { 1,2,..., 10}, where all elementary
events have the same probability, and X(i) = i, Y(i) = i - 1, for i < 5; Y(i) = i + 1, for i > 5. It is easy to check
that EX = EY = 5.5, E(X 2) = 1 Ell° i2 = 38.5,E(Y 2) = 44.5, and therefore VX = 8.25, VY = 14.25.

56 U FUNDAMENTALS

The probability density function of a random variable X whose values are natural numbers can
be represented by the following probability generating function:

Gx(z) = EZPr(X k)zk.

k>O

Since Zk>OPr(X = k) = 1, we get Gx(1) = 1. Probability generating functions often allow us to
compute quite easily the mean and the variance. Indeed,

EX = ZkPr(X=k) = Z Pr(X=k)(klk-1) (1.78)
k>O k>O

= G' (1); (1.79)

and since

E(X 2) = Sk2Pr(X = k) = ZPr(X = k)(k(k - 1)k-2 + klkl1) (1.80)
k>0 k>O

= G"(1) + G'(1), (1.81)

we get from (1.77)
VX = G"(1) + G'(1) - G' (1)

2 .

Two important distributions are connected with experiments called Bernoulli trials. The experiments
have two possible outcomes: success with the probability p and failure with the probability q = 1 - p.
Coin-tossing is an example of a Bernoulli trial experiment.

Let the random variable X be the number of trials needed to obtain a success. Then X has values
in the range N, and it clearly holds that Pr(X = k) = qk-lp. The probability distribution X on N with
Prx (k) = qk-lp is called the geometric distribution.

Exercise 1.9.7 Show that for the geometric distribution

EX = , VX q (1.82)
pp2

Let the random variable Y express the number of successes in n trials. Then Y has values in the
range {0,1,2,.... n}, and we have

Pr(Yk= (k=()pkq k.

The probability distribution Y on the set {1, 2, ... , n} with Pr(Y = k) = (n) pkqn-k is called the binomial
distribution.

Exercise 1.9.8 Show that for the binomial distribution

EY = np, VY = npq. (1.83)

PROBABILITY AND RANDOMNESS U 57

0.3 0.35

0.3 0.30

0.2 0.25

0.2 0.20-

0.1 0.15-

0.1 0.10

0.0 0.05

2 34 5 6 7 89 10 1 2 3 4 5 6 7 8 9 10

Geometric distribution Binomial distribution

Figure 1.8 Geometric and binomial distributions

Geometric and binomial distributions are illustrated for p = 0.35 and n = 14 in Figure 1.8.

Exercise 1.9.9 (Balls and bins)* Consider the process of randomly tossing balls into b bins in such a
way that at each toss the probability that a tossed ball falls in any given bin is 1. Answer the following
questions about this process:

1. How many balls fall on average into a given bin at n tosses?

2. How many balls must one toss, on average, until a given bin contains a ball?

3. How many balls must one toss, on average, until every bin contains a ball?

The following example illustrates a probabilistic average-case analysis of algorithms. By that we
mean the following. For an algorithm A let TA(x) denote the computation time of A for an input x,
and let Pr, be, for all integers n, a probability distribution on the set of all inputs of A of length n. By
the average-case complexity ETA(w) of A, we then mean the function

ET(n) = Pr,(x)TA(x).

Ix[=n

Example 1.9.10 Determine the average-time complexity of Algorithm 1.9.11for the following problem: given
an array X[1], X[2],.. X [n] of distinct elements, determine the maximal j such that

Xý] = max{X[iI 11 < i < n}.

Algorithm 1.9.11 (Finding the last maximum)

begin j *- n;m -- X[n];
for k -- n-1 downto 1 do if X[k] > m

then j - k; m - X[k]
end

58 U FUNDAMENTALS

The time complexity of this algorithm for a conventional sequential computer is T(n) = kin + k2A + k3,
where kj, k2, k3 are constants, and A equals the number of times the algorithm executes the statements
j - k; m - X [k]. The term kin + k2 captures here n - 1 decrement and comparison operations. The
value of A clearly does not depend on the particular values in the array X, only on the relative order
of the sequence X[1], , X[n].

Let us now analyse the above algorithm for a special case that all elements of the array are distinct.
If we also assume that all permutations of data in X have the same probability, then the average-time
complexity of the above algorithm depends on the average value An of A.

Let Pnk, for 0 < k < n, be the probability that A = k. Then

number of permutations of n elements such that A = k
pnkn!

and the following fact clearly holds:
n-1

An = ZkPnk.
k=O

Our task now is to determine Pnk. Without loss of generality we can assume that data in the array
form a permutation xj, . . . ,•,x of {1,2,.... , n}, and we need to determine the value of A for such a
permutation. If x, = n, then the value of A is 1 higher than that for x2, • • • , x. - in this case X [1] > m in
the algorithm. If x, , n, then the value of A is the same as for x2, ., X, - in this case X[1] < m. Since
the probability that xi = n is 1, and the probability that x, : n is -_--, we get the following recurrence
for pnk:

1 n-1
Pnk = P(n-1)(k-1) + n-1-P(n-)k, (1.84)

with the initial conditions

P10=1, Plk =0, for k>O; pnk=Ofork<Oork>n.

In order to determine An, let us consider the generating function

n

Gn (z) = pnkZk

k=0

Clearly, Gn(1) = 1, and from (1.84) we get

zn-I z+n-1
Gn(z) •-Gn-1(Z) + - n-1 (Z) Gn_1 (z). (1.85)

n n1 n

We know (see (1.79)) that An = G'(1). For G'(z) we get from (1.85)

z+n-1
G'(z) = Gn-i(Z) + G-n(z),

and therefore
1 -G'n(1) = -Z+' ()
n

Thus
2"1

AnZ- Z! H,n- 1,
i=2

where Hn is the nth harmonic number. [

PROBABILITY AND RANDOMNESS M 59

1.9.2 Bounds on Tails of Binomial Distributions*

It is especially the binomial distribution, expressing the probability of k successes during n Bernoulli
trials (coin-tossings), that plays an important role in randomization in computing. For the analysis of
randomized computing it is often important to know how large the tails of binomial distributions
are - the regions of the distribution far from the mean.

Several bounds are known for tails. For the case of one random variable X with a probability of
success p and of failure q = 1 - p, the following basic bounds for Pr(X > k) and for Pr(X < 1) can be
derived by making careful estimations of binomial coefficients. The first two bounds are general, the
last two are for tails far from the mean.

For any 0 < k, l < n,

Pr(X >k) < (n) pk' Pr(X<I) • (n)qn-1 (1.86)

and for n > k > np > 1 > 0,

Pr(X> k) < (n) n-k pk+lqn-k Pr(X < 1) < (n) kq k n-k+,(

k _-- p I np-k , q (1.87)

The following bound is also often used.

Lemma 1.9.12 (Markov's inequality) Pr(X > kEX) < 1 for any random variable X acquiring nonnegative
integer values and k > 0.

Proof: The lemma follows from the following inequality:

E(X) = "iPr(X = i) = Ej iPr(X = i) + E iPr(X = i) > kE(X)Pr(X > kE(X)).

iEN i< kE(X) i>kE(X)

In order to motivate the next bound, which will play an important role later, especially in
Chapter 9, let us assume that we have a biased coin-tossing, one side having the probability ½ + E,
the other side E - c. But we do not know which is which. How do we find this out? The basic idea is

2
simple. Toss the coin many times, and take the side that comes up most of the time as the one with
probability ½ + e. However, how many times does one have to toss the coin in order to make a correct
guess with a high probability?

Lemma 1.9.13 (Chernoff's bound) Suppose X1, X, are independent random variables that acquire
values 1 and 0 with probabilities p and 1 - p, respectively, and consider their sum X = En 1 Xi. Then for all
0 < <<1,

,2 P
Pr(X > (1 +O)pn) <e-Pn. (*)

Proof- Since Pr(X > (1 + E)pn) = Pr(etx > et(1+ 6)pn), for any t > 0 and E > 0, Markov's inequality yields

Pr(X > (1 + e)pn) = et(l+E)Pnet(I+ e)PnPr(etX > et(l+E)pn) <e-t(I+K)pnE(e'X).

Since X = 1Li X1, and Xi are independent, we get, making use of the inequality (1+ a)n < e"n,
which holds for any a E R, n E N,

E(etx) = (E(etXl))n = ((pe'+ (1 - p))" = (1 + p(e' - 1))n _< epn(e'-1).

60 U FUNDAMENTALS

Putting t = ln(1 + -) yields

Pr(X >_ (1 + E)pn) < (1 + E)-(1+e)pn ee•pn,

and therefore (e• Pn (el•l~~)pn

Pr(X > (1 +e)pn) < (+ E)1+6) = (e•(16)1n(1+e)) .

SinceE-(l+e)ln(1+E) = - ±e e+• 31- < _-E2 for0<e< 1, we get the inequality(,). Wl

Exercise 1.9.14 Show that (a) Pr(X > (1 + e)pn) <) - (
1-)lpn; (b) Pr(X > r) < 2-r for r > 6pn.

Exercise 1.9.15 Show that Pr(X < (1 -E)pn) < e-fpn <(<

In other words, Chernoff's bound says that a big difference from the expected value is unlikely.

1.9.3 Randomness and Pseudo-random Generators
A random number generator can be seen as a stochastic process RANDOM(a, b) which, each time
it is activated, produces an integer between a and b, inclusive, with each such integer being equally
likely, and with each new integer produced by the process RANDOM(a, b) being independent of the
integers returned on previous calls of RANDOM(a, b). For example, RANDOM(0, 1) produces 0 or 1,
both with probability ½. One can imagine RANDOM(a, b) as rolling a perfect (b - a + 1)-sided dice to
obtain its output.

The basic problem is how to realize such a random number generator. There are
quantum-mechanical processes that produce true randomness. Of course, they are not cheap. It
is therefore natural to try to use deterministic algorithms that could produce long sequences of
pseudo-random bits, given an input of a few really random bits. That would be sufficiently good for
many applications.

Intuitively, the sequence of bits

010

is less random than the sequence

100101100010111101100010011111010001110101010111;

but how does one formalize this intuition? A classical way of dealing with the problem is through
statistical tests (e.g. the so-called X2-test, the Kolmogorov-Smirnov test) or empirical tests of
frequency, uniformity, permutations, sub-sequences and so on.

An infinite sequence of bits b = (bl, b2 ,...) is said to be random with respect to a set S of (statistical
and other) tests of randomness if b passes all tests in S. There are many tests available.

Some examples of tests: A random infinite sequence of bits must be normal. For each integer k it
must hold that the frequency of occurrences of each particular subword of length k in the prefix of
length n goes to the limit 2 k for n -* cx. The number of Is minus the number of Os in the prefix of
length n must be positive for infinitely many n and also negative for infinitely many n.

PROBABILITY AND RANDOMNESS U 61

The view of randomness in terms of polynomial time indistinguishability, as discussed below,
seems to be better suited to computing. Still another approach to randomness is discussed in
Section 6.5.

Deterministic algorithms that take as an input a short random sequence and produce a longer
'almost random' sequence of bits are called pseudo-random generators. They play, surprisingly, a
fundamental role in the theory and practice of computing.

More formally, a pseudo-random generator is a deterministic polynomial time algorithm which
expands short random sequences (called seeds) into longer bit sequences (each with a certain
probability) such that the resulting probability distribution is in polynomial time indistinguishable
from the uniform probability distribution.

More specifically, a pseudo-random generator, say G, expands an n-bit sequence into a longer,
say nk-bit sequence for some k E N, such that for every polynomial time algorithm with 0-1 output -
called test, T - for any E > 0 and for sufficiently large n,

lPr(T(G(X,)) = 1) -Pr(T(Xk) = 1)1 <_ n-',

where Xm is a random variable obtaining as values strings of length m, with uniform probability
distribution. One can say that a generator of pseudo-random numbers can fool any polynomial time
algorithm T trying to check whether its outcomes are really random numbers. Observe too that what
we can do with nonpolynomial time algorithms is not of interest to us, because they cannot finish
their work in a reasonable time.

A classical proposal for a pseudo-random generator was the linear congruential generator of
D. H. Lehmer (1948). One chooses four n-bit numbers m, a, b, X0 and generates an n3-bit sequence
X 1 X2..•. X,2 of n-bit numbers by the iterative process

Xi+ I = (aXi + b) mod m.

The choice of parameters m, a, b and X0 is crucial. Although the resulting sequence X0 , X1, X2,... is
eventually periodic, it is desirable that the period be as large as possible. For example, for a = b = 7,
m = 10 and X0 = 7, we get 7,6,9,0,7,....15

Exercise 1.9.16 Show that for the linear congruential generator
(a) Xn - anxo + (a n-1 +±a"-2 +_... -+a- +1)b (mod m);
(b) f gcd(a,m) = 1, then (a - 1) \b * x,, Xo(m)+n.

It was shown that Lehmer's pseudo-random generator does not satisfy the strong requirements
stated above. For example, there is a polynomial time algorithm (with respect to 1g m) such that, given
a sufficiently long sequence Xo, X,.... Xt produced by a linear congruential generator, the algorithm
determines a, b and m used to produce this sequence. However, there are no proofs yet, although
there is already strong evidence, that pseudo-random generators satisfying the strong requirements
formulated above do exist.

The existing candidates depend on the fact that there are intractable algorithmic problems for
which no polynomial time algorithms exist. For example, the existence of pseudo-random generators
satisfying such strong requirements has been proved on the assumption that factorization of integers

'51t has turned out that for 32-bit arithmetic an appropriate choice of parameters for a linear congruential
generator is m = 231 - 1, b = 0, a = 75 = 16,807.

62 I FUNDAMENTALS

is intractable. One such candidate is called the Blum-Micali pseudo-random generator, or index
generator, and is based on the intractability of the discrete logarithm problem. It is defined as follows.

Let p be a prime such that p - I has only small factors (smaller than lgp), and let g be a principal
root of Z*. The Blum-Micali pseudo-random generator is based on the iteration

Xi+l =9gXi mod p

producing the sequence of bits
b1 ,b 2 ,b 3 ,

where ý 1, Xi < P-

0, otherwise,

satisfies the condition on polynomial time indistinguishability provided computation of the discrete
logarithm is intractable.

Another example of a simple pseudo-random generator that satisfies the requirement of
polynomial time indistinguishability on the assumption that factoring of integers is intractable is
the so-called BBS pseudo-random generator. It is based on the iteration

i= x mod n,

where x0 E QRn is randomly chosen and n is a Blum integer. It produces the pseudo-random sequence
b0, bh, b2,..., where bi = xi mod 2. We discuss the design of pseudo-random generators in more detail
in Chapter 8.

The fact that it is much cheaper for computers to produce pseudo-randomness than for
quantum-mechanical processes to produce true randomness is not the only reason for using
pseudo-random generators. We often need to repeat randomized computational processes for various
reasons, including error checking. In that case, if our source of randomness is a real one, then the
only way to use random bits again is to store them. Moreover, in many applications we actually do
not need truly random bits. For example, in cryptography pseudo-random bits are quite sufficient.

Randomness has become a computational resource. The question of how much and what quality
of randomness we really need for specific tasks is important to computing. The task of economizing
the amount of randomness needed for particular applications is also important. The concept of
randomness presented above for sequences can be transferred to other objects. For example, an
integer is said to be random if its binary representation is a random string (sequence). To generate a
random integer of n bits, therefore, means to generate an n-bit binary sequence.

A more general random generator can be used. For example, a process can be used that for
any two real numbers, a < b, as parameters, returns a rational number x randomly, uniformly and
independently, chosen from the interval a < x < b. Similarly, RANDOM(X) for a set X is expected to
return an element chosen randomly, uniformly and independently from among the elements of X.
Such random number generators can often be constructed using a RANDOM(0,1) generator as the
basic source of randomness.

A theory of pseudo-randomness is being developed that is aimed at understanding the minimum
amount of randomness which a randomized method of computation really needs.

1.9.4 Probabilistic Recurrences*

If the efficiency of recursive randomized algorithms or designs is analysed, a special type of
recurrence, the so-called probabilistic recurrence, with random variables arises.

PROBABILITY AND RANDOMNESS U 63

For example, consider a randomized algorithm A that generates, with an input x, in time a(x),
a subproblem of size S(x), where S(x) is a random variable with values in [0,xj whose probability
distribution depends on A - and then solves the subproblem recursively. The time complexity of the
algorithm is described by the (probabilistic) recurrence

T(x) = a(x) + T(S(x)). (1.88)

T(x) is therefore a random variable whose distribution depends on the distribution of S(x).
The performance of such a randomized algorithm can be characterized by various statements

regarding the distribution of the random variable T: for example, by information on the tail of the
distribution of T. We discuss two such bounds. They have a quite general character, and are easy to
apply.

Consider again the recurrence (1.88), where E(S(x)) :r m(x) for a fixed function m such that
0 < m(x) < x, and where a is a nondecreasing function. The recurrence

u(x) = a(x) + u(m(x)) (1.89)

is regarded as the deterministic counterpart of the probabilistic recurrence (1.88).
Using the iteration method to solve recurrences, we get that whenever the recurrence (1.89) has

a solution, then this solution has the form u(x) = Ei>oa(m(i) (x)), where m(°) (x) = x and m('+) (x) =

m(m(i) (x)) for i > 0.
We are now in a position to formulate two bounds on tails of T.

Theorem 1.9.17 (Karp's bound) If m(x) and a(x) are continuous functions such that m(x)/x is
nondecreasing and a(x) is increasing on {x I a(x) > 0}, then for every x c R+ and w e N+,

Pr[rT(x) > u(x) + wa(x)] <_ x

where u is the solution of the deterministic recurrence (1.89), and T of the probabilistic recurrence (1.88).

The second bound is weaker but easier to apply.

Theorem 1.9.18 If m, u and T are as in Theorem 1.9.17, then for any sufficiently large k E N,

Pr[T(x) •ku(x)J • (-x))

Proofs of both theorems are beyond the scope of this book, even though the proof of the second one
is based on Markov's inequality and a variation of Chemoff's bound (see references).

Example 1.9.19 (Maximal clique of a graph) A clique of a graph G is its subgraph, which is a complete
graph - each two of its nodes are connected by an edge. There is no polynomial time algorithm known that will
find a maximal clique in a graph. However, there is a very simple randomized algorithm for doing it. This is,
surprisingly, the fastest known randomized algorithm for this problem.

Algorithm 1.9.20 Start with the given graph G and an empty clique C, and repeat the following step
until the set of nodes of the graph under consideration is empty.

64 S FUNDAMENTALS

o Choose randomly a node from the given graph, add it to the clique C, remove from the
graph under consideration the chosen node and also all nodes that are not adjacent to it.

In order to analyse the algorithm, we need to consider its application to a random graph G,,p with
n nodes in which each edge is presented with the probability p. At a certain step of the algorithm,
when the set of vertices has size m, the expected number of vertices that do not get deleted is p(m - 1).
Denote by C(n) the size of the clique when the algorithm is applied to G,,p for any fixed p. Then

C(n) = 1 + C(S(n)),

where E(S(n)) = p(n - 1) < pn. The corresponding deterministic recurrence is therefore

u(n) = 1 + u(pn).

Using the methods of Section 1.2 we get u(n) = lg n / lg(1 / p). An application of Theorem 1.9.18 gives,
for sufficiently large k, the bound

klgn 2 ~
Pr[C(n) > klgn1/p) <-'.

Exercise 1.9.21* If C'(n) denotes the number of adjacency checks of the above randomized algorithm,
then for C'(n) we have the recurrence C'(n) = n - 1 + C'(S(n)). Find bounds for the tails of C'(n).

1.10 Asymptotic Complexity Analysis
A variety of concepts, methods and results of fundamental importance for complexity analysis was
formally introduced and demonstrated in previous sections. Now we discuss informally global
problems, paradigms, tools and methods, as well as pitfalls, of complexity investigations and
interpretations. In doing so we have three main aims in mind:

1. to complement the presentation of the technical tools introduced so far with a global view of
complexity analysis, its aims, problems, methods and merits;

2. to introduce informally concepts vital for complexity considerations that will be formally
defined and investigated later in the book, but will be used before then starting in the next
chapter;

3. to provide a rationale for the contents of the book and a summary of its main goals and topics.

1.10.1 Tasks of Complexity Analysis

The main goal of complexity analysis is to determine how good are, asymptotically, the best
possible solutions of important problems in computing and communication: for example, problems
of designing algorithms, automata, computers, networks or circuits to perform certain tasks, with
respect to various computational or communication models and computational resources. In other
words, we seek to determine the inherent complexity of computational or communication problems:
for example, the minimum number of arithmetical operations needed to multiply two matrices of
degree n.

ASYMPTOTIC COMPLEXITY ANALYSIS K 65

It is of great practical and theoretical importance to establish the inherent complexity of
computational problems. If it is known how good the best possible solution is, then a benchmark is
established with which any specific solution can be compared. Moreover, it turns out that the study of
the inherent complexity of computational, communication and design problems brings deep insights
into the nature of computing.

There are two basic approaches to determining inherent complexity. The first is a direct one, where
the inherent complexity of a specific problem is explicitly determined. For example, 9 (n lg n) is the
inherent complexity of sorting of n numbers with respect to the number of comparisons. The second
is an indirect one, in which relations between the complexities of various problems are established.
For example, it is shown that the complexity of one problem is not larger than that of another, or that
two problems have asymptotically the same complexity. Another possibility is to show that a problem
is feasible if and only if another one is too. For example, matrix multiplication has been shown to be
of the same complexity with respect to the number of arithmetical operations as matrix inversion.
Integer factorization was shown in Section 1.7 to be feasible if and only if computing square roots
of modulo an arbitrary integer is so. Methods presented in this chapter are of importance for both
these approaches. In order to develop the indirect approach, a deeper knowledge of the structure of
complexity classes and reduction methods is needed. We will deal with this in Chapter 5.

There are two basic types of computational problems: those in which we have complete
information about input and those in which we have only incomplete or contaminated information.
Problems of the first type, for example, computational problems on graphs, are typical of computing
with discrete objects, and they are of main interest in this book. Their solutions and asymptotic
complexity analyses require us to use methods of discrete mathematics, as discussed in this chapter.
Problems of the second type, for example, computing an integral of a function given by its values at
certain points only, are typical of computing with continuous objects and their solutions. Asymptotic
complexity analysis requires us to use deep methods of calculus. However, we do not deal with these
problems in this book. They are of great importance for computing, but would require us to extend
the scope of the book substantially.

There are also two basic types of computational and communication paradigms: determinism
and randomization. Randomized algorithms are those that make random choices during their
execution. Different methods are used for complexity analysis of deterministic and randomized
systems. Deterministic algorithms are further divided into those providing exact and those providing
approximate solutions. Complexity analysis of approximation algorithms requires special approaches
and tools.

Randomization seems to be very powerful. For many problems we have fast randomized
algorithms, but no fast deterministic ones. Computation of square roots modulo a prime is an
example. On the other hand, we still lack proofs that polynomial time randomized computing is
essentially more powerful than deterministic computing. This is dealt with in Chapter 5.

There are several basic types of randomized algorithms and communication protocols.

"* Las Vegas. The results are always correct, but it may happen, with small probability, that no
result is produced.

" Monte Carlo. Results of a certain type are always correct; others may be wrong, but the
probability of this is small. We talk also of one-sided Monte Carlo algorithms. (For example,
a Monte Carlo algorithm may test primality in such a way that if it says that a given integer
is composite, then this is 100% true; however, if it says that it is a prime, this may be, with a
small probability, wrong.)

"* BEP (Bounded error probability). No output is 100% correct, but in any specific case the
probability of error is small and bounded. We talk also of two-sided Monte Carlo algorithms.

66 U FUNDAMENTALS

The power and methods of randomization are discussed extensively in this book. Probabilistic finite
automata are considered in Chapter 3; randomized computations on universal computers in Chapter
4; randomized complexity classes in Chapter 5; limitations of randomness in Chapter 6. An intensive
use of randomness is found in cryptography (Chapter 8), interactive protocols (Chapter 9) and
communications (Chapter 11). Randomization also plays an important role in futuristic approaches
to computing. For example, quantum computing is in principle randomized.

It is natural to ask what makes randomization so powerful. One explanation is simple. It is
sometimes preferable to choose, during a computation, a course of actions at random rather than
spending time finding out which alternative is better or trying all of them. Such situations arise when
the time needed to determine the optimal choice is large compared with the time saved on average
by making the optimal choice.

1.10.2 Methods of Complexity Analysis

The complexity analysis of computational, communication and design problems and systems
depends on several factors:

Inputs: the way inputs are presented and their size is measured;

Computer and communication models: models of sequential computers (Turing machines, RAM, a
model of a conventional sequentialcomputer), models of parallel computers (PRAM, a parallel
version of RAM), automata, circuits, networks;

Computing and communication modes: deterministic, nondeterministic, randomized;

Complexity analysis modes: worst case, average case, expected case;

Computation resources: time, storage, programs, processors, communication, randomness.

All these problems are considered in this book. Various representations of integers, graphs and
other objects are considered in Chapter 2; several types of automata in Chapters 3 and 7; models
of universal computers in Chapter 4; networks in Chapter 10; circuits in Chapters 2, 4, 5 and 11;
interactive protocols in Chapter 9, communication models in Chapter 11.

Computational analysis is performed with respect to the size of the input data as the main
parameter. Since there are generally many inputs of the same size, two basic approaches are used to
deal with this problem: determination of the so-called worst-case complexity and determination of
the average-case complexity for inputs of a given size.

Worst-case complexity analysis is in general simpler. It is of main importance for critical real-time
applications and has been very successful in providing insights into the nature of computing. The
results of worst-case complexity analysis may be quite irrelevant for some applications, or at least
questionable, for example, for cryptography. This is due to the fact that the worst case may be achieved
only for pathologically 'bad' input data which do not normally, or often, occur, it may happen that
these 'bad' data are actually 'nice' ones. For example, QUICKSORT performs at worst for already
sorted inputs.

Average-case complexity analysis seems to be producing results that are more realistic for many
applications. The difficulty here lies in the fact that one has to know the probability distribution of
the input data, and this is rarely easily available. The usual assumption, namely that all data of a
given size have the same probability, is often easy to deal with, but rarely realistic. Moreover, it can
be shown that for an important probability distribution, the so-called a priori probability distribution
(see Section 6.5.3) the average-case complexity actually equals the worst-case complexity. Finally, for
some important algorithmic problems no good average-case analysis is known. For others there is

ASYMPTOTIC COMPLEXITY ANALYSIS U 67

size of inputs 23 25 27 29 211
function

lg* n 2 2 2 3 3

lgn 3 5 7 9 11
8n/ 26 8 2° 1 1

nlgn 3.2 52 7.27 9-2 11.211

n_ 2 26 2_ 2 14 218 22

2n 2' 232 2128 2512 2Y04

n_ ! 2 T__ _ _2_m_ 2 7 1 7 -2 3,7 6 2 19758

nn 2-'T 2160 289 24,60 222,528

Table 1.4 Growth of some functions - results for n! are shown as 2', where 21 < n! < 2x+ 1

no big difference between the worst-case and the average-case results. For example, for HEAPSORT
the worst-case and the average-case complexity are the same - E((n Ig n).

The aim is to get asymptotic analysis results in terms of 0-notation. This is in general not easily
achievable. The task is then to find the smallest possible upper bound and the largest possible lower
bound. To get a better upper bound, a better system, for example, a faster algorithm, is needed. To
improve a lower bound, a better proof technique is needed.

In the case of randomized algorithms we also speak of expected-time performance. This is the
mean time for solving a problem for the same input. This is essentially different from the concept of
the average-case complexity, which refers to deterministic algorithms and the average performance
when all inputs are considered, each with a certain probability. It is therefore meaningful to speak
about the average-case expected time and the worst-case expected time.

Asymptotic complexity analysis results are robust. In order to get them, one usually ignores
the details of the algorithm and concentrates on its loop and data structures. This robustness is the
strength, but also the weakness, of asymptotic analysis. In any case, it is this robustness, coupled
with the fact that asymptotically better systems are mostly better in practice, that makes asymptotic
complexity analysis so interesting and important.

1.10.3 Efficiency and Feasibility

Table 1.4 shows the time needed by algorithms of different complexities to solve problems with
different sizes of inputs.1 6 The table demonstrates that algorithms whose time complexity grows
exponentially cannot be used to solve larger problems, no matter how fast are the computers which
may be available.

Unfortunately, for too many practically important problems we know only algorithms
with exponential time complexity. Three of them, the travelling salesman problem, the graph
isomorphism problem, and integer factorization, will be discussed from several points of view
in this book. For example, there is no computer foreseeable that could find the shortest route for
a traveller who wants to visit 10,000 cities or to decompose a 1,000-bit-long composite integer. For
many of these problems there is still a very large gap, exponential in fact, between the best-known
upper bound (exponential) and the lower bound (sometimes even linear).

16Some numbers, according to Dyson (1979), that help us to get a more realistic feeling about how large some
numbers in Table 1.4 are: time to the next ice age - 228 sec.; the age of the universe - 248sec.; total lifetime of the
universe (if the universe is closed) - 261 sec.; time until all matter is liquid at zero temperature - 224 0sec.; number
of atoms in the universe (black matter excluded) - 226; volume of the universe 22 cm3 ; time until all matter
collapses into black holes - 101076 sec.

68 U0 FUNDAMENTALS

There are several ways of dealing with the fact that for some very important computational
problems no polynomial time sequential algorithm is known with respect to worst-case complexity.

1. One method is to design (heuristic) algorithms that have exponential worst-case complexity
but average-case polynomial complexity; or algorithms that have been experimentally verified
to be fast on data occurring in real applications.

2. Another, in the case of optimization algorithms, is to develop, if possible, a fast, good
approximation algorithm. This is an intriguing problem discussed in Chapter 5.

3. A third is to develop fast randomized algorithms, provided they exist. Computational hardness
can often be traded off for randomness, which thus becomes a precious computational resource.

The development of an understanding as to when to consider an algorithmic problem or an
algorithm as tractable (feasible) is one of the central tasks of foundations of computing. This is
discussed intensively in Chapters 4, 5 and 9. There is a general consensus that a problem should be
called tractable if it can be solved in polynomial time. However, views differ as to which computational
modes to consider: deterministic, randomized, interactive. These may give rise to very substantial

differences, as shown in Chapter 9.
It is now undoubtedly the case that consideration of sequential deterministic polynomial time

computations as those representing feasible computations has been very successful with respect to
the development of efficient computing systems. This has also brought deep insights into the nature
of computing. However, this approach is not without serious problems. Why should one consider
algorithms the time complexity of which is proportional to a very high-degree polynomial as feasible?
For example, one can hardly consider as practical an algorithm the time complexity of which is n'000.
Fortunately, it has turned out that if there is a polynomial time algorithm for a reasonable problem
that has a simple, understandable formulation, then the degree of such a polynomial is reasonably
small.

A polynomial time algorithm is in general an acceptable solution to a problem. However, we
consider as really fast only algorithms of complexity 0(n) or .(nlgn) in the case of sequential
computing, and of complexity O(lg n) or (.9(lg2 n) for parallel computing.

Algorithms for solving a problem may differ dramatically in their efficiency. This is clear for the
case in which there is an exponential time algorithm and also a polynomial time algorithm for the
same problem. It seems to be less obvious that even apparently very small time complexity differences
between algorithms, for example, EO(n2) and e (n lg n), can produce quite dramatic differences.

Assume, for example, that an 8(n 2) algorithm A1 has been cleverly programmed for a
supercomputer with 10i operations per second, to run in time T(n) = 2n 2, and that another algorithm,
A2, for the same problem, with asymptotic complexity e)(n ig n), is badly programmed for a PC with
106 operations per second, to run in time 50n log n. For n = 106, A, needs 2,000 seconds, whereas A2
needs only 100 seconds!

We see that even small asymptotic differences in time performance of algorithms may have
a larger practical impact than the difference in performance between a personal computer and a
supercomputer. Observe too that in the above example even supercomputers with a E(n2) algorithm
cannot beat a PC with a E)(nlgn) algorithm. Algorithms, networks, etc. should therefore be seen as
important technologies, and progress in these technologies can be matched with that in hardware.
Asymptotic complexity analysis, with its benchmarks and performance evaluation, is an important
factor contributing to the fast development of such technology.

1.10.4 Complexity Classes and Complete Problems

One of the important tasks in foundations of computing is to develop an understanding of the power
and structure of the main computational and communication complexity classes. What kinds of

ASYMPTOTIC COMPLEXITY ANALYSIS E 69

constant 0(1)
almost constant O(lg* n)
polylog 0(lg°t 1)

subpolynomial nO(l)
polynomial not 1)

superpolynomial npoTyl0g

subexponential 2_____

exponential 2n____

Table 1.5 Main resource bounds

problems can be solved using a particular computing model and a specific amount of computational
resources? Which relations hold between various complexity classes, and what kind of structure do
these classes have?

Table 1.5 summarizes the main resource bounds used in complexity analysis, and the following
list gives the main complexity classes.

NC Class of problems solvable by circuits of polynomial size and polylogarithmic depth; or,
alternatively, the class of problems solvable by PRAM in polynomial time with polylog number
of processors.

P Class of problems solvable in polynomial time by a sequential machine (RAM, Turing machine)."

NP Class of problems that have solutions verifiable in polynomial time on sequential computers.

PSPACE Class of problems solvable in polynomial space by a sequential computer or in polynomial
time by a parallel computer or by an interactive protocol.

One of the main results in foundations of computing is that all the complexity classes listed above
are very robust and to a large degree independent of the details of a specific computer model. The
robustness of these concepts also justifies their use in this book even before they have been formally
introduced.

Another robust and key concept is that of complete problems for a complexity class and a type of
reduction. Informally, complete problems of a complexity class are the hardest problems of that class.
All other problems in that class can be reduced to them using an 'easy' reduction. The NP-complete
problems are of special importance. They are those problems in NP that any other problem in NP
can be reduced to in polynomial time. Several thousands of (important) algorithmic problems have
already been identified as NP-complete. For none of these problems is a polynomial time deterministic
algorithm known; nor is there a proof that no such algorithm exists. Their importance lies especially
in the fact that finding a polynomial time deterministic algorithm for one of them would provide
polynomial time deterministic algorithms for all of them.

1.10.5 Pitfalls

Asymptotic complexity analysis has many pitfalls, and it is important to be aware of them. Let us
discuss some of them.

17 The distinguished role of polynomial time algorithms is underscored by the fact that some natural syntactical
conditions can be imposed on algorithms that are equivalent to the requirement that they run in polynomial time.
For example, an algorithm runs in polynomial time if and only if it can be programmed in Pascal without the
constructs goto, repeat and while and with upper bounds in the size of input for for cycles.

70 W FUNDAMENTALS

1. As already stated, the real meaning of complexity analysis results given in terms of 0-, o-, Q-, w-
and e-notation may depend very much on the way the inputs are presented, their size counted,
the computing model used, the complexity measures considered, etc. These dependencies are
not always clearly stated in papers and books.

For example, it is usually stated that the time complexity of MERGESORT is 0(n lg n). This is
true in the sense that there is a constant c such that for any n elements drawn from a totally
ordered set, at most cn lg n comparisons are needed to produce a sorted sequence. This means
that nothing else is counted except the number of comparisons; each comparison is considered
to take one time unit. Other time-consuming operations, such as transportation of elements,
are ignored, as well as the size of the elements.

2. Constant factors, which are for good reasons ignored by asymptotic complexity analysis, may
sometimes be prohibitively large. Because of this, it may turn out that an algorithm with larger
asymptotic complexity is more efficient for practical purposes.

3. Care is also needed in the interpretation of complexity results in cases where the complexity
depends, apart from the size of the input, on particular input data. For example, for complexity
T(n) of INSERTSORT we get T(n) = Q (n) and T(n) = 0(n 2). Neither the lower bound nor the
upper bound can be improved, because there are inputs requiring quadratic time and inputs
for which linear time is enough. However, if the worst-case complexity is considered, then
T.(n) = E)(n 2).

4. There is often a confusion between 0-notation and E- notation; 0-notation is often used where
actually e-notation is more appropriate, because the indicated upper bound is asymptotically
also a lower bound.

Moral: The analysis of even simple computing systems can be a challenge. Complexity analysis is an
art, a science and an engineering task. A good rule of thumb for complexity analysis is therefore, as
in life, to use common sense, exercise good taste, and listen to your conscience.

1.11 Exercises
1. Denote by u, the number of binary strings of length n that do not contain two consecutive 0's.

Construct a recurrence, and determine u, for any n.

2. Find a recurrence relation, including the initial conditions, for the number of ways to climb n
stairs if the person climbing can take one stair or two stairs at a time.

3. Find a recurrence relation, including the initial conditions, for the number of binary strings of
length n containing a pair of consecutive Os.

4. Find a recurrence for the number of bit strings of length n containing neither three consecutive
Os nor three consecutive is.

5. Express T(n) from the recurrence

T(1) = a, T(n) = kT(n / 2) +g(n),

as a function of g - for example, by a reduction to the problem in Exercise 1.2.10.

6. Find a recurrence for the number of distinct binary trees with n nodes.

EXERCISES U 71

7. Solve the recurrence ul = 1, un = aUnlb + d(n), where d(n) is a multiplicative function and b is
a constant; that is, d(xy) = d(x)d(y) for any x,y, as a consequence and, d(b') = (d(b))i for any
ie N.

8. Solve the recurrences with ul = 1 and for every n > 1: (a) un = 4un/2 + n; (b) un = 4 Un/2 + n2;

(C) Un =
4

Un/2 + nf3.

9. Solve the recurrence u0 = a, un = 3 Zk-0 Uk + 1 for n > 1. (There is a very easy solution.)

10. Show the identities (a) Fn+i = E'n (n-k); (b) F2n = En Fk.

11. Show the following properties of Fibonacci numbers:
(a) F,+m = FmFn+ 1 +-F+ Fn; (b) F2 = Enk, 1 F2k-; (c) Zk=0 F 2 -FF

12. Lucas numbers satisfy the recurrence L0 = 2, L1 = 1, Ln = Ln - + Ln-2. (a) Determine Ln. (b) Show
that Ln+l Fn +Fn+l. (c) Show that Fi= 0L? = L, Ln,+ 1 + 2.

13. Solve the recurrence ul = a,u2n = 2un + 3 ,u2,+1 = 2 Un +8 for n> 1.

14.* Show that for the recurrence

Un = alUn-1 + + akUnk + bnp(n), (1.90)

where b,al, . . . ,ak are constants and p(n) is a polynomial of degree d, the corresponding
characteristic equation has the form

(xk - axk-1 ak1X--ak)(X -- b)d+1 = 0,

and that once this equation is solved we can find the solution of the recurrence (1.90) in a similar
way as in the homogeneous case (when p(n) = 0).

15. Solve the recurrence (a) ul = 1,un = Un-1 +4n for n > 1; (b) ul = 1, Un = 3un_1 +n, for n > 1.

16. Show that IFM = I""+n for eachmEN' andn GN.

17. Show, for any integer n and reals a, b > 0, that (a) [Fn / a] / b] = Fn / abl; (b) [n/a / bj = [n / abj.

18. Letf : R -- R be a monotonically increasing function such that 0 <f(x) < x for x > 0. Define
f(0) (x) = x,f('+ 1) (x) f(f (0))(x) and, for a c > 0,f,* (x) = mini _> 0,f(i) (x) < c}. Determinefc* (x)
for (a)f(x) = 1,c = 1; (b)f(x) = v'x,c = 1.

19.** Show the inequalities (a) n! > ((•)!)2 if n is even; (b) n! > (if n is odd;

(C) (2)n3 < n! < (")" for all n > 6.

20. Show the following identities, where n, k are integers and r is a real:

(a) (-r) = (-1)k(r+kt1); (b) Em 0 (--1)k(n) = (_-)m(n-1); (C) Enk 0 (-1)k(•) = 0 n >1

21.* Show the following identities: (a) (- r1) = -2(r 2 1+ (G b _j 2 3

22. * Prove the following identities for binomial coefficients: (a) r" I k (n) = n2n-1

(b)rnk k(n)2 = n(2n-1).k=1 k n-1,

72 U FUNDAMENTALS

23. Show the inequalities (a) (k) < (r)'; (b) (-)(1)r • (elr, where e is the base of natural
logarithms.

24. Find the generating function for the sequence (F2i)%.o"

25.* Show, for example, by expressing the generating function for Fibonacci numbers properly, that

S FkFn k = 1(2nF 1 - (n+l)Fn).
k-0

26. In how many ways can one tile a 2 x n rectangle with 2 x 1 and 2 x 2 'dominoes'?

27. Use the concept of generating functions to solve the following problem: determine the number
of ways one can pay n pounds with 10p, 20p and 50p coins.

28. Show (a) Vv4 O = O (x½1); (b) (1 + x E)x =(1).

29. Show (a) x2 + 3xR x 2; (b) sin'= -1 .

30. Find two functions f(n) and g(n) such that neither of the relations f(n) = ((g(n)) or g(n) =

0(f (n)) holds.

31. Find an O-estimation for E I j(J + 1) (j + 2).

32. Show that if f(n) = a,f(n) = cf(n - 1) + p(n) for n > 1, where p(n) is a polynomial and c is a
constant, thenf(n) = 0(n).

33. Show that Z i1 k 6 O(nk+1).

34. Which of the following statements is true: (a) (n2 + 2n + 2)3 - n6; (b) n3 (lg lg n) 2
- o(n 3 lg n);

(c) sinx = Q (1); (d) /g n±+ 2 = Q (lglgn)?

35. Find a functionf such thatf(x) = O(x'+E) is true for every e > 0 butf(x) = O(x) is not true.

36. * Order the following functions according to their asymptotic growth; that is, find an ordering
fl (n), . ,f35 (n) of the functions such that, 1 (n) = Q (f] (n)).

lg(Ig* n) 21g* n Fn (V2)lIg n n 2

n! (lgn)!(4 / 3)" n3 21g8n e g n3

lg 2n lg(n!) 2 2n nlI/Inn Inlnn

lg* n n.2 2n ng IgIn Inn Hn

1 7r(n) 2 1gn (Inn)Inn e n

8 lgn (n+ 1)! lnn lg*(lgn) lg*lg*n

2 V'31g n n 2n nlgn 22±+2

37. Suppose thatf(x) = 0(g(x)). Does this imply that (a) 2f(x) = 0(29(x)); (b) lgf(x) = 0(lgg(x));

(c)fk(x) = 0(gk(x)), for k E N?

38. Show that if fi(x) = o(g(x)),f 2 (x) = o(g(x)), thenfi(x) +f 2(x) = o(g(x)).

39. Show that (a) sinx = o(x); (b) 1 = o(1); (c) 1001gx = O(x° 3).

EXERCISES UM 73

40. Show that (a) 0 O(1); (b) 1 =o(1).

41. Doesf(x) = o(g(x)) imply that 2f(x) =o(2(x))?

42. Show thatf(x) = o(g(x)) =-f(x) = O(g(x)), but not necessarily thatf(x) = O(g(x)) =tf(x) =
o(g(x)).

43. Show that if f (x) = O(g(x)),f 2 (x) = o(g(x)), thenfl(x) +f 2(x) = 0(g(x)).

44. Show that o(g(n)) nw(g(n)) is the empty set for any function g(n).

45. What is wrong with the following deduction? Let T(n) = 2T([EJ) + n, T(1) = 0. We assume
~2inductively that T(L!]) = 0([2J) and T([!J) <c[ý]. Then T(n) :_ 2c[EJ +n _< (c + 1)n = O(n).

46. Solve therecurrences (a) T(1) = a, T(n) = 2T(n /2) +nlgn; (b) T(l) = a, T(n) = 7T(n / 2) + O(n2).

47. Let T(n) = 2T([\V'nJ) + lgn. Show (using the substitution n = 2m), that T(n) = O(lgnlglgn).

48. Show that u, = O(n!) if u, is defined by recurrence u, = 1,u, = nun-1 +bn 2. Can you find a
better estimation for u,?

49. Show that if n > m, then n mod m < E.2

50. Show that d \ n =* Fd \ F,.

51. Compute the greatest common divisor for the following pairs of numbers: (a) (325,53);

(b) (2002,2339); (c) (3457,4669); (d) (143,1326); (e) (585,3660).

52. Express the greatest common divisor of each of the following pairs of integers as a linear
combination of these integers: (a) (117, 213); (b) (3454, 4666); (c) (21, 55); (d) (10001, 13422); (e)
(10233, 33341).

53. Show, by induction, that the number of steps required to compute gcd(n, m), n > m, is smaller
than log, n, where r = (1 + vf) / 2.

54. Find a prime n such that 2n - 1 is not a prime.

55. Show that the nth prime is smaller than 22n+1.

56. Show that an integer n is prime if and only if there exists an 0 < a < n such that an-1 - 1 mod n,
n-1

and for each prime q dividing n - 1 we have a- q 1 (mod n).

57. (Wilson's prime number test) Show that (p - 1)! = -1 (mod p) iff p is a prime.

58. An integer is called perfect if it equals the sum of its proper divisors. (For example, 6 and 28
are perfect integers.) (a) Find the first ten perfect numbers; (b) show that if 2n - 1 is prime, then
2n-1(2n - 1) is perfect.

59. Compute (a) 5`314 mod 26; (b) 480 mod 65; (c) 3100 mod 79; 310° mod 17; (d) 511314 mod 26; (e)
4' mod 65; (f) 2 mod 341.

60. Show that if a,b E N', then (a) (2a - 1) mod (2 b - 1) = 2 a.mod b - 1 ; (b) gcd(2a - 1,2' - 1) =

2 gcd(ab) - 1.

74 3 FUNDAMENTALS

61. Compute (a) (EZ-'0 i!) mod 12; (b) (Ei° i5) mod 4.

62. Solve the congruences (a) 32x = 6 (mod 70); (b) 7x = 3 (mod 24); (c) 32x -= 1 (mod 45);

(d) 14x = 5 (mod 54).

63. Determine the inverses (a) 4-1 mod 9; (b) 7-1 mod 17; (c) 21-1 mod 143.

64. Show that if a is odd, then a2"-2 - 1 (mod 2") for each n > 3.

65. Let n be an integer, x < 2" a prime, y < 2" a composite number. Show, by using the Chinese
remainder theorem, that there is an integer p < 2n such that x 0 y (mod p).

66. Design a multiplication table for (a) Z*; (b) Z•,.

67. Let p > 2 be a prime and g a principal root of Z*. Then, for any x E Z*, show that x c QRp 4=>
indexp,g (x) is even.

68. Show that if p is a prime, e E N, then the equation x2 1- (mod pe) has only two solutions: x - I

and x = -1.

69. Show that if g is a generator of Zn, then the equality gx - gy (mod n) holds iff x • y (mod 0(n)).

70. Show, for any constant a, b and a random variable X, (a) E(aX + b) = aEX + b; (b) V(aX + b) =

a
2
VX.

71. (Variance theorem) Show, for random variables X, Y and reals a, b, that (a) V(aX + bY) = a2 VX -
b2Vy + 2abE((X - EX)(Y - EY)); (b) V(X + Y) = VX + VY.

72. Find the probability that a Yfamily of four children does not have a girl if the sexes of children
are independent and if (a) the probability of a girl is 51%; (b) boys and girls are equally likely.

73. Find the following probabilities when n independent Bernoulli's trials are carried out with
probability p of success: (a) the probability of no failure; (b) of at least one failure; (c) of at most
one failure; (d) of at most two failures.

74. Determine the probability that exactly seven Os are generated when 10 bits are generated and
the probability that 0 is generated is 0.8, the probability that 1 is generated is 0.2, and bits are
generated independently.

75. (Birthday paradox) Birthdays are important days. (a) Determine the probability that in a group
of n persons there are at least two with the same birthday (assume that all 366 days are equally
likely as birthdays). (b) How many people are needed to make the probability that two people
have the same birthday greater than 1 / 2?

76. There are many variants of Chernoff's bound. Show the correctness of the following one:

if XI, .-. . ,Xn are independent random variables and Pr(Xi = 1) = p for all 1 < i < n, then
Pr(Z>•=Xi _pn~a)•<_e•-

77. Show Chebyshev's inequality: if X is a random variable, then Pr((X - EX) > a) < ý- for all
a >0.

78. Let p(xl, . . ,p,) be a polynomial with rational coefficients of degree d and not identically 0.
Show thatp(a) 7 0 for at leasthalf of allvectors a E {-nd, . . . , O... nd}l.

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES U 75

79. Show for the linear congruential generator xi+ 1 = (axi) mod m that if m is prime and a choice
of a yields the maximum period (of m - 1), then ak also yields the maximum period, provided
k < m and (m - 1) is not divisible by k.

80. Suppose that m, n c N+. What is the probability that a randomly chosen positive integer smaller
than mn is not divisible by either m or n?

81. Show for the iteration xi+ 1 = (axi + b) mod m, i > 0 that if a I m, then x0 repeats periodically in
X 1 ,X 2

82. Show for the linear congruential generator and Xn' = Xn+ - Xn that (a) X' - a"'-'X (mod m);

(b) Xýn = X' (m)+n"

QUESTIONS

1. Is Fn larger than (2,) n.

2. Is it true that 3n+ 2 = 0(3n) and 32n = 0(3")?

3. We know that n! -< nn. Which of the relations nn -< (n!)2 and (n!) 2 -< n" holds?

4. Are the functions [lg n]! and FIg lg n]! polynomially bounded?

5. Is it true that E(f(n) +g(n)) = e(max{f(n),g(n)})?

6. How many primes do we have of a given length n?

7. How do you interpret the equation 3n 3 + e(n 2) = 1(n3)?

8. What properties do Blum integers have?

9. In which cases is it better to use a pseudo-random generator than a true random generator?

10. Why are constant factors in the analysis of algorithms not of importance and why are they of
importance?

1.12 Historical and Bibliographical References
The history of basic concepts, methods and results used in the analysis of algorithms is deeply rooted
in the history of mathematics. The most important contribution to their introduction and further
development for computing was made by Donald E. Knuth, who received the Turing award in 1974.
His monumental work and pioneering books: Knuth (1968); Knuth (1969); Knuth (1973); Greene and
Knuth (1981); Graham, Knuth and Patashnik (1989) are also the main sources of detailed historical
and bibliographical references. Moreover, the last of these, a textbook, is a masterpiece of a quality
hardly matched in computing.

Concrete Mathematics by Graham, Knuth and Patashnik (1989) is not only the main textbook
recommended for a more detailed and deeper treatment of the subject but has also influenced the
choice of material and presentation in a large portion of this chapter. Additional books used and
recommended are Kranakis (1986); Harel (1987); Brassard and Brattey (1988); Cormen, Leiserson
and Rivest (1990); Aigner (1993); Arnold and Guessarian (1996). An extensive introduction to the
analysis of algorithms is found in Sedgewick and Flayolet (1996), and for more advanced tools see
the comprehensive book by Hofri (1995).

76 U FUNDAMENTALS

We deal in some detail with layouts of graphs and especially trees in Section 10.6. The Towers of
Hanoi problem and its accompanying myth were introduced by Lucas (1894), according to Graham,
Knuth and Patashnik (1989), where the problem and several of its modifications are analysed. Its
generalization to four rods is considered by Gedeon (1992). Methods of solving recurrences are
discussed by Bentley, Haken and Saxe (1978); Luecker (1980); Greene and Knuth (1981); Aho, Hopcroft
and Ullman (1983); Purdom and Brown (1985); Brassard and Brattey (1988); Graham, Knuth and
Patashnik (1989); Cormen, Leiserson and Rivest (1990); Aigner (1993); and Arnold and Guessarian
(1996).

The generating function concept has been intensively used since L. Euler, 1741, and L. Laplace,
1812; its use in solving recurrences is elaborated by Graham, Knuth and Patashnik (1989). The domino
problem and the bootstrapping method also come from there. A detailed proof of Theorem 1.4.11 can
be found in Aigner (1993). A survey of the 3x + 1 problem is found in Lagarias (1985).

Names and notation for the ceiling and floor functions are due to Iverson (1960). Lemma 1.3.1 is
due to Graham, Knuth and Patashnik (1989), where binomial coefficients are also discussed in detail.

The family L of logarithmico-exponential functions has been introduced by G. H. Hardy (1910)
and it has been further explored in Hardy (1924). For example, it has been shown that every function
in C is eventually monotonic and bounded from below by a function lgin for some 1. (This implied
that lg'n is not in £.)

The amazing story of primes and records of primes is nicely presented in a book by Ribenboim
(1996) and in an expository paper by Zagier (1977). Estimations of 7r(n) can be found in Rosser and
Schoenfeld (1962). For computing of 7r(x) see Lagarias, Miller and Odlyzko (1985). The prime number
theorem is due to Dirichlet, Hadamard and de la Vallde Poussin; a proof can be found in Landau (1953).

Quadratic residues, computation of discrete square roots, discrete logarithms and their
applications in pseudo-random generators and cryptography are well presented in Kranakis (1986).
Section 1.7 profited much from it and the proof of Theorem 1.8.5 can also be found there. A polynomial
time algorithm for computing square roots modulo a prime was first designed by Berlekamp (1970).
An elegant Las Vegas algorithm for computing square roots modulo a prime is found in Karp
(1991), and is credited to Lehmer (1951). A polynomial time algorithm for computing a discrete
logarithm modulo a prime p such that p - 1 has only small factors is due to Pohlig and Hellman
(1978). Theorem 1.8.16 is, like many basic results in foundations of computing, due to Michael Rabin
(1979), who received the Turing award in 1976. Gauss's characterizations of those n for which ZN
is cyclic can be found in Kranakis (1986). For a survey of algorithmic number theory see Adleman
(1994).

There are many excellent books on probability, for example, Feller (1964) and Billingsley (1986).
Exercise 1.9.5 follows Montwani and Raghavan (1995). Classical approaches to pseudo-random
generators are treated exhaustively by Knuth (1969), and the complexity-based approaches are well
presented in Kranakis (1986). The analysis of Algorithm 1.9.11 is due to Knuth (1968). For proofs of
inequalities (1.86) and (1.87) see, for example, Cormen, Rivest and Leiserson (1990). For Chernoff's
bound see Hagerup and Rub (1989). The concept of polynomial time indistinguishability is due to
Yao (1982) and Blum and Micali (1982). The BBS pseudo-random generator is due to Blum, Blum and
Shub (1986); the Blum-Micali pseudo-random generator was introduced by Blum and Micali (1982).
The result on the predictability of linear congruential generators is due to Plumstead (1982). Methods
of solving probabilistic recurrences have been worked out by Richard M. Karp, winner of the Turing
award for 1985, who has contributed significantly to the development of randomized computing.
Theorem 1.9.17 is due to Karp (1991), and Theorem 1.9.18 to Chaudhuri and Dubhashi (1995).

D. Harel's Algorithmics (1987) is another masterpiece which provides not too formal but deep
insights into computing, including complexity analysis. This is an excellent reference for additional
insights regarding the aims, methods, results and merits of complexity analysis discussed in
Section 1.10.

Foundations

INTRODUCTION
Foundations of computing are deeply rooted in mathematics, and fluency in basic mathematics is
essential for computer science. In addition, computing itself has had a strong impact on mathematics.
This chapter therefore has several aims. First, it summarizes the foundational concepts of mathematics
needed in computing and sets up terminology and notational conventions, thus serving as a reference
source. Second, it presents, illustrates and discusses new paradigms of computing brought into these
foundational areas of mathematics that are of key importance for computing. In doing so, it introduces
some basic problems, as well as basic methods for solving them. In this way the chapter provides a
rationale and introduction to various topics of the book. Third, special concepts and methods that
will be used later are introduced and illustrated.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. basic concepts, terminology and notations concerning sets, relations, functions, graphs,
languages and algebras;

2. new paradigms that computing has brought into the foundational areas of mathematics, which
are of importance for science in general and computing science in particular;

3. basic methods of representation of objects, sets, relations and graphs;

4. several methods for visualizing words and languages and for representing pictures and images
by words and languages;

5. methods to compute transitive closure of relations;

6. several classes of functions having a special importance for computing: Boolean functions,
one-way functions, hash functions;

7. methods to deal with graph matching, colouring and traversal problems;

8. special classes of graphs, for example, Cayley graphs, planar graphs, bipartitie graphs;

9. very basic concepts concerning monoids, semigroups, groups, quasi-rings, rings, and fields.

78 FOUNDATIONS

If in other sciences we should arrive at certainty without
doubt and truth without error, it behooves us to place the
foundations of knowledge on mathematics.

Roger Bacon (c.1214-94) 1

Basic mathematical structures, such as sets, relations, functions, graphs, algebras and formal
languages, play an important role in the foundations of any mature science. This alone is sufficient
reason to summarize basic concepts and results of these areas, as well as to fix terminology and
notation, in an introductory chapter of a book on foundations of computing. However, the aim
of this chapter goes further. Foundations of computing also bring into these key areas of modem
science new deep paradigms, concepts, methods and problems that are of great importance for the
whole of computing. The second aim of this chapter is to point out, motivate and illustrate these
viewpoints, concepts, problems and methods, establishing basic rationales for many subjects with
which the book deals. Complexity standpoints and asymptotic estimations play an irreplaceable role
here, providing guidance and evaluations. For this reason the chapter follows rather than precedes
that on the fundamentals of complexity analysis and randomness.

2.1 Sets
The simplest, and at the same time perhaps the richest and most complex, mathematical objects are
sets. Their position and role in computing are similarly complex and rich. They are fundamental
(discrete) structures on which other (discrete) structures are built. Many key problems in foundations
of computing can be seen as problems concerning sets.

2.1.1 Basic Concepts

A set is a collection of distinguishable objects (elements). The empty set 0 has no objects. If A is a set,
then x E A (x V A) denotes that x is (is not) an object of A. Notation A C B expresses that set A is a
subset of set B, each object of A is in B. Notation A C B (or A C B) means that A is a proper subset
of B. Sets A and B are equal, notation A = B, if A C B and B C A. Two sets are said to be disjoint
if no object is in both of them. If elements of a set A are sets, we use the term family of sets for A.
Notation x Cn A is used to denote that x is an element of the set A randomly chosen with respect to
the probability distribution D. Notation x Eu A is reserved for choosing an element of A with respect
to the uniform distribution.

Exercise 2.1.1 Find two sets A and B such that A c B and A C B.

It is often assumed that all the sets we deal with are subsets of a universal set U. With each A C U
we can then associate a characteristic function (or a membership predicate)fA : U -* {0, 1}, defined
byfA(x) = [x G A].

1An English philosopher and natural scientist sometimes considered the first theoretician of the experimental

sciences.

SETS U 79

Binary operations on sets:

unionAUB = {xixeAorxEB};
intersection A n B = {x x c A and x 1B};

difference A - B = {xIx C A and x 4 B};
symmetric difference A = BA C = A-BUB-A;

Cartesian product A x B = { (a, b) Ia c A, b E B}.

The concept of the Cartesian product can be generalized, in a natural way, to more than two sets.
Since union and intersection are commutative and associative operations, we consider also

generalized union UiI Ai = {x I Ei I, x e Ai};
generalized intersection ni,, Ai = {xIx E Ai, Vi E I};

generalized Cartesian product (i=lAi = {xlx= (xl, ... ,x),xiAi},

where I 4 0 is an index set. For the Cartesian product of a set A with itself we use the notation

A'=0/l1.=A.
Two special versions of union and difference operations are of interest in computing: insertion

A u {x} and deletion A - {x}, where A is a set and x an object. If the underlying set is clear from the
context, a simpler notation INSERT(x) and DELETE(x) is often used.

Unary operations on sets:

complement Ac = U - A; another notation: A;
powerset2A = {BIBCA};

iterations A* (A') [A-] = a set of all finite (infinite) [bi-infinitel sequences
of elements of A.

Exercise 2.1.2 Let A, B be sets. Do the following implications hold: (a) A n B = 0 • 2A n2B 2= 0;
(b) 2A = 21 : A = B?

Exercise 2.1.3 Which of the following relations hold: (a) 2A n 2B . 2AnB; (b) 2A U 2 B = 2AuB?

Partition of a set A is a family (finite or infinite) of mutually disjoint subsets Bi, i c I, of A such
that A = Ui 1 Bi. Notation C = A U B will be used to express the fact that the set C is partitioned into
two disjoint subsets A and B.

Important number sets: 0 (the empty set), N (nonnegative integers), N' (positive integers), Z (all
integers), Q (rational numbers), R (real numbers), R' (positive real numbers), C (complex numbers),
Z, (the set of residue classes modulo n) and Z* (those residue classes from Z, that contain elements
relatively prime to n). Moreover, if n E N, then [n] =0,1 n - 11}. In particular, [2] {0,1}.

The term alphabet will often be used to denote an arbitrary finite nonempty set A. In this case
elements of A are called symbols, elements of A* strings (or words), and elements of Aw w-strings.
Subsets of A* are called languages, and subsets of A' are w-languages. Elements of the set B = {O, 1}
will be interpreted, depending on the context, either as integers or (binary) symbols -bits - or Boolean
(truth) values. Elements of the set B* are often called binary strings, and elements of the set B' are
called infinite binary strings. The set B is also called the binary alphabet.

80 3 FOUNDATIONS

Exercise 2.1.4 A multiset is a collection of elements in which an element can occur more than once. Let
{ mi .a,, . . . , mk. ak } denote the multiset in which the element ai occurs mi times. Define in a natural way
operations of union, intersection and dfferencefor multisets, and determine, for A = {2. a, 4. b, 3. c},
B = {1.a,2.b,3.c},AUB,AfnBandA-B.

Cardinality: JAI denotes the cardinality of the set A. If A is finite, JAI is the number of its elements.
For infinite sets cardinality is defined indirectly. Two infinite sets A and B are said to have the same
cardinality if there is a bijection between them. Sets that have the same cardinality as N are called
countable. The set R is said to have cardinality of continuum.

Power set and iteration operations can increase cardinality by a large amount. If A is a finite set,
then clearly

12AL = 2 A, A*J = INI, IA'J = IRI. (2.1)

In addition, 12NLI = RI.

Remark 2.1.5 The description of a set as a collection of objects, based on an intuitive notion of object,
is due to G. Cantor (1895). The resulting set theory is called naive set theory, and this is what we will
use. The discovery by Russell2 (1902) that this theory leads to paradoxes, or logical inconsistencies,
at first caused a nightmare in mathematics. This was later resolved through the development of
axiomatic set theory.

Russell's paradox: Let S be the set that contains a set X if and only if X does not belong to itself- in other
words, let S = { xx V x}. Is S E S? If yes, then necessarily S V S;if not, then necessarily S c S - a contradiction
in both cases.

The existence of paradoxes looks like a negative phenomenon. However, like many other negative
results, as we shall see later, paradoxes play an important positive role in foundations of computing.
For example, they have been used to show several important results concerning the limitations of
computing and formalization. This will be discussed in detail in Chapter 6.

2.1.2 Representation of Objects by Words and Sets by Languages

By a representation of objects of a set A by objects of a set C, the term encoding is often used, a
mapping c : C --- A is understood, which maps uniquely objects of C into objects of A. c(a) is then the
object represented by the 'code' a.

It follows from (2.1) that the sets of binary strings and infinite binary strings have enough elements
to encode uniquely objects of any set that in practice we need to deal with in computing. Not only
that, for almost all sets we deal with there is a natural encoding of their elements by binary strings.
Moreover, most of the basic problems in computing have a natural formulation in terms of sets (of
strings). This is why in foundations of computing it is to a large degree sufficient to deal with sets of
(binary) strings, called languages.

2Bertrand Arthur William Russell (1872-1970), an English philosopher, logician, mathematician and social
reformer. His Principles of Mathematics and Principia Mathematica (with A. N. Whitehead) influenced modem logic.
He wrote more than 68 books, was several times imprisoned for his articles and anti-military activities, and
received the Nobel prize for literature.

SETS R 81

Example 2.1.6 (Binary number representations) There are several ways in which binary strings can be
seen as representing integers. Each finite binary word b = b, ... bn and each infinite binary word c = cic2 . ..
can be seen as representing an integer, notation bin(b), and a real number in [0,1], notation bre(c), defined by

n o

bin(b) = bi2n-i, bre(c) = Z ci2-'. (2.2)
i=1 i-1

Observe that the mapping bre : BW [0,1) is one to one if we restrict it to the set B' - B* {1}. If x < 2n,
x, n E N, then x can be uniquely represented by an n-bit string b = b,... b., notation bin)1 (x), such
that bin(bin-1 (x)) = x. (Observe that bi = L xJ rmod 2.) Notation bin l(n) will be used to denote the
binary representation of n with the left-most bit equal to 1 if n 3 0 and bin-' (0) = 0 otherwise.

Exercise 2.1.7 (Dyadic representation of integers) If w E {1,2}*, then define dya(e) = 0 and for
w = an_1... ao,ai E {1,2}, dya(w) = n-'i- ai2i. (a) Show that each nonnegative integer has a unique
dyadic representation; (b) show dyadic representations for the numbers 7,77,777,7777,777777; (c)
design an algorithm to add two integers given by their dyadic representations.

Exercise 2.1.8 (Fibonacci number representation) (a)* Show that each nonnegative integer has a

unique 'Fibonacci representation' n = Ei= 1 Fmi, where mi m1, + 2for 1 < i <k, and either n = 0 or
mk Ž_ 2; (b) determine the Fibonacci number representations of integers 2I, 1 < i K 10.

Example 2.1.9 (Universality of binary representations) Let A = {al, a. } be afinite set, the alphabet,
and 2m1 < n < 2' for some integer m. Each element of A can be uniquely encoded by a binary string of length
m. This can in turn be used to encode each element of A* and of Al by a finite or an infinite binary string -
each symbol from A is simply replaced by its binary code. This simple encoding of strings from a finite alphabet
by binary strings often allows us to deal, without loss of generality, only with sets of binary strings.
Example 2.1.10 (Binary string representation of matrices) Let M = {aij} be an n x n matrix of

nonnegative integers. M can be represented by the following word over the alphabet E = {0, 1, #1:

bin- (all)#bin-'(a12)#... #bin' (aln)##bin-
1

(a2u)#... #bin-'(a 2n)## ... ##bin- (an1)#... #bin-l(ann).

We can then use, for example, the encoding 0 -- 00, 1 -* 11 and # -* 01, to get a completely binary encoding
of M.

In special cases simpler encoding of matrices by binary strings is available. For example, an n x n symmetric
Boolean matrix can be encoded by a binary string of length n(n + 1) /2 by simply listing, one after another, all
rows of the matrix above the main diagonal.

For each set there are infinitely many ways in which its objects can be encoded by strings over an
alphabet. Which of them is best depends on the way that the set is to be dealt with.

There are also infinitely many ways in which strings and sets of strings can be interpreted. It may
also happen, as the following example indicates, that very simple sets of strings can represent quite
complex objects.

Example 2.1.11 Each string (albi), • • . ,(a,,b,) over the alphabet A = {(0,0),(0,1),(1,0)} can be
interpreted as a point in a plane with coordinates (0. a, ... an, 0. b, ... b.). On this interpretation A* represents
the set of points of the fractal structure called the Sierpifiski triangle, shown in Figure 2.1a.

82 U FOUNDATIONS

(a) (b)

Figure 2.1 Sierpifiski triangle and Cantor carpet

Exercise 2.1.12 Find a finite set A and an interpretation of strings over A such that A* represents the
fractal structure called the Cantor carpet, shown in Figure 2.1b.

Exercise 2.1.13 Find a nice, simple set description of the Sierpiriski tetrahedron whose construction is
shown in Figure 2.2.

(a) (b) (c) (d)

Figure 2.2 A stepwise design of the Sierpifiski tetrahedron

SETS I 83

2.1.3 Specifications of Sets - Generators, Recognizers and Acceptors

Basic problems concerning set specifications (descriptions) can be summarized as follows.

1. How to specify a set in a simple and useful way. For example, it is certainly not obvious that
the sets of points shown in Figure 2.1 have such a simple description.

2. How to determine, given a set description, which set it describes and which objects are in the
specified set. For example, which natural numbers are in the set described by formula (2.3) on
page 83? In particular, how do we find out, given a set specification and an object, whether this
object is in the specified set?

3. How to specify important families of sets, for example, those that can be accepted by automata
of a certain type.

4. How to determine which properties have sets specified using some particular specification
language, for example, logical formulas of a certain type, programs, automata or grammars of
a certain type.

5. How to determine which sets have specifications which allow one to find efficiently answers
to various basic questions, for example, whether a given element is in the set, or whether the
set is empty (infinite).

All these problems are among the most fundamental ones in computing, and we will deal with them
intensively in this book. There are several basic ways to specify sets.

1. Enumeration. Enumerating elements of a finite set. For example,

P = {19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689

9941,11213,19937,21701,23209,44497,86243,216091,756839, 859433}

is the set of all primes p such that 2P - 1 was for the period 1589-1996 the largest known prime.
Enumeration clearly does not work if the set is too big, and even if it is not, enumeration can be far
from the most effective way of describing a set. For example, the set of the first 263536 primes, which
has such a short description, cannot be practically enumerated. On the other hand, enumeration is
not to be forgotten as a way of describing sets because, as shown later, most finite sets are so random
that there is no shorter way to describe them.

2. Binary strings representation. If the universal set U is finite and has n elements ul.... , u,, then
each subset A C U can be uniquely represented by the binary word b = b,... bn, where bi = 1 • Ui E A.
Note that with this representation of subsets of U it is possible to perform, in one parallel step, set
union, intersection and subtraction! If U is countable, then any subset of U can be represented by an
w-string.

3. Logical formulas. A formal or informal logical formula can be used to describe a set by
specifying properties of its objects. For example,

F = InIn E N, n > 2, 3 integers xyz > Ox" +y" = z} (2.3)

used to be perhaps the most famous description of a set in mathematics.
4. Generators. A generator that produces all elements of a set A and no others can be seen as

specifying the set A. There are many forms which a generator may take. It can be a deterministic
automaton - see Figure 2.3a for a generator that generates a set of integers - or a randomized

84 U FOUNDATIONS

generate the middle point between
xand A as the new pointx

start i2x I

D generate the middle
S x point between x

S..x.... =.+l . . and C as the new
2 point x

generate the middle point between
(a) (b) x and B as the new point x

Figure 2.3 Deterministic and randomized generators

automaton - see Figure 2.3b for an automaton that can be seen as generating, given three points
A, B and C of the plane forming nodes of an equilateral triangle, a Sierpifiski triangle with nodes at
points A, B and C - with the exception of few initial points.

A generator can also take the form of a so-called rewriting system. For example, with the
(rewriting) rules

A - aAb, A - ab, (2.4)

which are used as follows, the generator starts with the symbol A and in each generation step replaces
A in the string generated in the last step, if there is an A there, by the string aAb or by the string ab. If
the string obtained at the last step does not contain A, generation terminates. In this way the rewriting
system specified in (2.4) generates the set of strings {anbn In > 1}.

Exercise 2.1.14 Are all the integers generated by the generator in Figure 2.3a primes?

Exercise 2.1.15 Design rewriting systems generating (a) the set of strings {anb"am bm In, m > 1};
(b) the set of all palindromes in the English alphabet (or in some other alphabet) - that is, those words
that read the same from the left and the right.

A generator can also be specified by some other processes: for instance, through a recurrence. The
recurrence (1.6) in Section 1.2 can be seen as a process (generator) generating Fibonacci numbers.

Example 2.1.16 (Cantor set) The sequence of sets (see Figure 2.4) defined by the recurrence

Co = {x0_<x<l}=[0,1),

Ci, i > 0, is obtained from Ci 1 by deleting, in each maximal subinterval [a, b) of Ci-1,
1 2•ba)

its middle open subinterval [a + - (b - a), a
33

is decreasing, and its intersection C = fi= o Ci is called the Cantor set.3 (Note that the Cantor set can be seen
as a diagonal of the Cantor carpet.)

3 Georg Cantor (1845-1918), a German mathematician of Russian origin, one of the founders of the modem set
theory, introduced the set that is named after him in 1889 as an example of an exceptional (monster) set.

SETS U 85

0 1Co: I 1
o 1

C l l) I I I 1

o 1
C 2 : 1 0

C3F!----) F---3 F-3-9 •• • I-- -- 3

Figure 2.4 Cantor set

Exercise 2.1.17 Determine the cardinality of (a) a set of points of the Sierpifiski triangle; (b)* a set of
numbers of the Cantor set.

Example 2.1.18 Consider the process that starts with the curve shown in Figure 2.5a and in each step of
which all edges of the curve obtained at the last step are replaced by the curve of the type shown in Figure 2.5a,
with each edge of length one-third the length of the former one. The resulting set contains the so-called Koch
curves. See Figures 2.5b, c, dfor thefirst three of them.

Exercise 2.1.19 Consider the same process as in Example 2.1.18 but starting with the equilateral
triangle. The curves obtained are called Koch snowflakes. Generate afew of them. Another possibility
is to start with a square. What do you get 'in the limit' in such a case?

Example 2.1.20 The process defined by the mapping

pI (z) = z2 + C,

and,for i > 1,
pC,(z) =(P•-1)2 + c,

where c is a complex number, defines the so-called Mandelbrot set

M = {c E C I lrn lpn(O)I is not oo},
n-Occ

where pn (0) is the result of the n-th iteration of the process with 0 as the initial value.

The resulting set of (very black) points is shown in Figure 2.6.

5. Recognizers and acceptors. A deterministic recognizer (see Figure 2.7a) for a subset S of a
universal set U is an automaton A that stops for any input x E U and says 'yes' ('no') if and only if
x E S (x V S). This way A describes, or defines, S. For example, Figure 2.8a shows a recognizer that has

86 0 FOUNDATIONS

(a) (b)

(c) (d)

Figure 2.5 Koch curves

been used to find very large Mersenne primes. It realizes the Lucas-Lehmer test to decide whether a
given prime p is in the set {pI2P - 1 is a prime}.

A Monte Carlo randomized recognizer (see Figure 2.7b) for a set S C U is an automaton that
uses a random number generator to compute and that stops for any input x E U and says either 'no',
then surely x V S, or 'maybe', which should mean that x E S, except that error is possible, though the
probability of error is less than 1

Is such a recognizer useful when we cannot be sure whether its outcome is correct? Can it be seen
as a description of a set? It can because we can find out, with as high probability as we wish, whether
a given input is in the set specified by the acceptor. Indeed, let us take the same input more times,
say 100 times. If the answer is 'no' at least once we know that the input is not in the set specified by
the acceptor. If we get the answer yes 100 times, then the probability that the input is not in the set is
less than 2--, which is practically 0.

For example, Figure 2.8b shows a recognizer that recognizes whether two input numbers x and y
are the same by first choosing randomly a prime p and then computing as in Figure 2.8b. (This may
seem to be a very complicated way of comparing two numbers, but assume, for a moment, that x and
y are given by very long strings, that their sources are far away from each other, and that sending
x and y to the place where comparison is done is very costly. In Chapter 11 we shall see another
situation in which this makes good sense. There it will be shown that if p is properly chosen, then in
this way we get a really good Monte Carlo recognizer.)

An acceptor (see Figure 2.7c) for a set S C U is an automaton that for an input x E U may stop,
and it surely stops when x E S and reports 'yes' in such a case. If x V S, the acceptor may stop and
report 'no', or it may not stop at all. This means that if the automaton 'keeps running', then one has
no idea whether it will eventually stop and report something or not.

For example, let us imagine an automaton that for an input x E N performs the Collatz process
described on page 13 and stops when it gets 1 as the outcome. According to our current knowledge,

SETS U 87

Figure 2.6 Mandelbrot set

yes

(a) (b) (c)

Figure 2.7 Automata: a recognizer, a Monte Carlo randomized recognizer and an acceptor

this is an acceptor that accepts the set of all integers for which the Collatz process stops.

Exercise 2.1.21 Design a prime recognizer.

Exercise 2.1.22* Design an acceptorfor the set {n I 3p > n, 2P - 1 is a prime}.

2.1.4 Decision and Search Problems

Computational problems can be roughly divided into two types. A decision problem for a set S C U
and an element x E U is the problem of deciding whether x E S. A search problem for a relation
R C U x U and an element x E U is the problem of finding a y E U, if such exists, such that (x,y) e R.

For example, the problem of deciding whether a given integer is a prime is a decision problem;
that of finding a Mersenne prime that is larger than a given integer is a search problem.

88 U FOUNDATIONS

p i

for i from~ 3 opd
&X--

y-

(a) (b)

Figure 2.8 Deterministic and randomized recognizers

Exercise 2.1.23 The famous Goldbach conjecture says that any even positive integer can be written as
the sum of two primes. Design an automaton that for any integer n finds two primes Pn and p',, if they
exist, such that n = p, + p'..

There are three basic decision problems concerning sets with which we deal repeatedly in this
book. In all three cases at least one of the inputs is a description of a set.

Emptiness problem: Given a description of a set, does it describe the empty set?

Membership problem: Given a description of a set and an element a, is a in the set?

Equivalence problem: Given two descriptions of sets, do they describe the same set?

At first glance the emptiness problem does not seem to be a big deal. But actually it is and some
of the most important problems in computing (and not only in computing) are of this type. For
example, perhaps the most famous problem in mathematics for the last 200 years was that of finding
out whether Fermat's last theorem4 holds. This theorem claims that the set specified by formula (2.3)
is empty. Moreover, the equivalence problem for two sets A and B can be reduced to the emptiness
problem for the sets A - B and B - A. It is clearly often of importance to find out whether two sets are
equal. For example, currently the most important problem in foundations of computing, and perhaps
also one of the most important problems in science in general, is that of determining whether P = NP.

The most interesting variants of decision and search problems occur when computational
complexity questions start to be important. Is there a (feasible) [fast] algorithm for deciding, given
a set description of a certain type, whether the specified set is empty? Or is there a (feasible) [fast]
algorithm for deciding, given two descriptions of sets from a certain set of set descriptions, whether
they describe the same set? And likewise for the set membership problem.

4Fermat wrote in the margin of the Latin translation of Diophantus's book Arithmetica that he had a truly
marvellous demonstration of the statement. The proof was not found, and numerous attempts to prove it failed
until June 1993. It is now believed by the experts that Andrew Wiles has proved Fermat's last theorem, but the
proof (more than 200 pages) is too big to fit in this note.

SETS U 89

net next nex nex

previous previous previous previous--
(a) list (b) array

Figure 2.9 A list and an array as data structures

2.1.5 Data Structures and Data Types

In computing, any manipulation with a set, or with elements of a set, even a 'look from one element
of a set to another', costs something. This is a new factor, not considered in classical set theory,
that initiated the development of a new theory, practically important and theoretically interesting,
of efficient representations of sets and multisets and efficient implementations of operations and
predicates on them.

A general scheme for representing sets by graphs of a certain type, whose nodes are used 'to
store' set elements and whose edges represent access paths to elements of the set and among these
elements, is called a data structure. For example, two basic data structures for representing sets are
lists and (sorted or unsorted) linear arrays (see Figure 2.9). We deal with various more sophisticated
data structures for representing sets in Sections 2.4, 2.5, 4.3.24 and 10.1.

Observe too that the aim of some frequently used algorithms is only to change one representation
of a set, or a multiset, into another one that is better in some sense. For example, sorting and merging
algorithms are of this type.

There are many important set operations and predicates on sets. However, any particular
algorithm uses only a few of them, though usually many times. The most basic operations are INSERT,
DELETE, MEMBER. (MEMBER(a, A) = [a E A] - if the underlying set A is clear, we use the notation
MEMBER(a).)

A set and a collection of set operations and predicates is called a data type. For example, a set
with the predicate MEMBER and operations INSERT, DELETE forms a data type called dictionary.
If a data type is defined in an implementation-independent way, we speak of an abstract data type.

One of the important tasks of computational set theory is to understand the complexity of
implementations of frequently used data types and to develop the best possible implementations
for them.

As an illustration, two simple sequential and one simple parallel implementation of the data type
dictionary will be discussed. A third, with pseudo-random features, will be dealt with in Section 2.3.4.

Example 2.1.24 (Dictionary implementations) In the following table the worst-case complexity of
dictionary operations is shown for the cases where sorted or unsorted arrays are used to represent the set.
(To simply the discussion, we consider also MEMBER as an operation.) n denotes the number of elements of
the underlying set. Observe that the linear time complexity of the operations INSERT and DELETE for the
case in which a sorted array is used is due to the need to shift part of the array when performing insertion or
deletion. In the unsorted case, linear time is needed to find out whether an element, to delete or to insert, is
actually in the array.

90 3 FOUNDATIONS

c - counter

leaf-processor

seat numberF23-- element

Figure 2.10 A binary tree implementation of dictionary data type

set representation INSERT DELETE MEMBER
sorted array G(n) e(n) E(lgn)

unsorted array E(n) 8(n) 9(n)

Using a complete binary tree representation for the underlying set, a E (Ig n) performance can be
achieved for all three dictionary operations on a normal sequential computer.

We show now that by a simple parallel implementation of dictionary operations we can achieve
not only E(lgn) performance for all dictionary operations, but also only 0(1) steps long period of
computation.5 This will now be shown on the assumption that the underlying set never has more
than n elements, and that one never tries to add (delete) an element that is (is not) in the underlying
set. For simplicity we assume that n = 2k for some k.

We use a complete binary tree network of processors with n leaf-processors (see Figure 2.10).
Each leaf-processor can be seen as having a 'seat' that is either occupied, by an element of the
to-be-represented set, or empty. At any moment all empty seats are numbered, by consecutive integers
1,2,..., k as their 'seat numbers', and the number k is stored in the counter of the root processor, which
is both the input and the output processor. All other internal processors can be seen as consisting of
two subprocessors. 0-processors are used to transmit information from the root processor to the leaf
processors. A-processors process information obtained from their children, and send the results to
their parent. Dictionary operations are implemented as follows:

MEMBER(a): The request is sent to all leaf-processors, and their responses are processed ('OR-ed')
by A-processors until, in time 2 lg n, the final answer is assembled by the root-processor.

5The period of a parallel computation is the time one must wait after an input starts to be processed until the
processing of the next input can begin.

RELATIONS U 91

INSERT(a): The triple (i, a, k), indicating that the operation is insert, the element is a, and the content
of the counter in the root processor is k, is transmitted from the root to all leaf-processors. Once
this information leaves the root, the content of its counter is decreased by 1. Once the triple
(i, a, k) reaches the leaves, a is stored 'on the seat' of the processor which has a free seat with k
as the seat number.

DELETE(a): The content of the counter in the root processor is increased by 1, and the triple (d, a, k)
is sent to all leaf-processors. The leaf-processor that contains a removes a, and labels its now
free seat k.

Observe that the root processor can start each time tick to process a new operation. It initiates
a flow of data from the root-processor to the leaf-processor and back. The key point is that at no
time does a subprocessor of an internal node have to handle more than two flows of data. (Explain
why.) Therefore, up to 2 Ig n operations can be simultaneously processed by the system. Moreover, if
handling of the root counter is done in the way described above, then all operations are implemented
correctly.

Exercise 2.1.25* The data type called priority queue has the predicate MEMBER(a) as well as the
operations INSERT(a) and DELETEMIN - to delete the smallest element from the set of concern. Find
an efficient implementation for this data type.

2.2 Relations
The intuitive concept of a relationship between objects is captured by the mathematical concept of a
relation. Its applications in computing are numerous. Relations are used to describe the structure of
complex objects.

2.2.1 Basic Concepts

Let S1, . .., Sn be sets. Any subset R C S1 x ... x S, is called an n-ary relation on S 1, x.. . xSn. If n = 2,
we speak of a binary relation.

The concept of an n-ary relation is needed in some areas of computing in its full generality, for
example, in databases. Binary relations are, however, the basic ones.

For a binary relation R C A x B, we define

domain(R) = {ai3bGB,(a,b)ER};
range(R) = {bJ~aGA,(a,b)ER}.

Two basic unary operations on relations are

R-1 - {(b,a)i(a,b) cR}, the inverse relation to R;
RC = A x B - R, the complement relation to R.

Exercise 2.2.1 Let R, R1,R2 be relations on a set A. Show that (a) (R1 UR 2)1 = Rj1 U R21;

(b) (Rc)- 1 = (R- 1)c; (c) R1 C R 2 =.> R-1 C R-1.

92 U FOUNDATIONS

The most important binary operation on relations is the composition R, o R 2 - in short, R1R2,
defined for the case that range(RI) C domain(R2) by

RIR 2 = {(x,z) I]y (x,y) E Rl,(y,z) c R 2}.

If R C S x S for a set S, then R is said to be a relation on S. The identity relation Is = {(a, a) I a E S}
is such a relation. (If S is clear from the context, we write the identity relation on S simply as I.) For
a relation R on a set S we define its powers R', transitive closure R+ and transitive and reflexive
closure R* by

R= 1, R'+' = RR', i > O;
oc o

R+ UR', R*i =UR.
i=1 i-O

Basic properties of relations: A binary relation R C S x S is called

reflexive if a c S => (a,a) e R,
symmetric if (a,b) R =* (b,a) E R,

antisymmetric if (ab) E R > (ba) 0 R,
weakly antisymmetric if (a,b) E R,a 7 b =• (b,a) V R,

transitive if (a,b) E R,(b,c) c R =ý> (a,c) e R,
a partial function if (ab) E R, (a,c) E R => b = c.

Exercise 2.2.2 Determine whether the relation R on the set of all integers is reflexive, symmetric,
antisymmetric or transitive, where (x,y) e R ýf and only if(a) x , y; (b) xy Ž 1;
(c) x is a multiple of y; (d) x > y2.

In addition, R is

an equivalence if R is reflexive, symmetric and transitive;
a partial order if R is reflexive, weakly antisymmetric and transitive;

a total order (ordering) if R is a partial order and, for every a, b G S, either (a, b) G R or (b, a) C R.

If R is an equivalence on S and a c S, then the set [a]R = {b (a, b) e R} is called an equivalence
class on S with respect to R. This definition yields the following lemma.

Lemma 2.2.3 If R is an equivalence on a set S and a, b e S, then the following statements are equivalent:

(a) (a,b) eR, (b) [a]R =[b]R, (c) [a]Rn [b]R #= 0.

This implies that any equivalence R on a set S defines a partition on S such that two elements a, b of
S are in the same set of the partition if and only if (a, b) G R. Analogically, each partition of the set S
defines an equivalence relation on S - two elements are equivalent if and only if they belong to the
same set of the partition.

Example 2.2.4 For any integer n, R. = { (a, b) Ia = b(mod n) } is an equivalence on N. This follows from the
properties of the congruence relation shown in Section 1.7.

RELATIONS U 93

01123141516 71
0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
2 0 0 0 0 1 1 0 0
3 0 0 0 0 0 0 1T 1 3
4 1 1 0 0 0 0 0 0
5 0 0 1 1 0 0 2 5 7
6 0 0 0 0 1 1 0 0 ý(

700 00 114 6

(a) (b)

Figure 2.11 A matrix and a graph representation of a binary relation

Exercise 2.2.5 Which of the following relations on the set of all people is an equivalence:
(a) {(a,b) a and b have common parents}; (b) { (a,b) I a and b share a common parent}?

Exercise 2.2.6 Which of the following relations on the set of all functions from Z to Z is an equivalence:
(a) {(f,g) If(0) = g(0) orf(1) = g(1)}; (b) {(f,g) If(0) = g(1) and f(1) = g(0)}?

Two important types of total order are lexicographical ordering on a Cartesian product of sets
and strict ordering on sets A*, where A is an alphabet (endowed with a total order).

Let (A 1,), (A2, _-2), •. • , (An, -<n) be totally ordered sets. A lexicographical ordering • on the
Cartesian product A1 x ... x A. is defined as follows: (a,, . . . ,a,) (bh, . . . , bn) if and only if either
(a,, .. . , an) = (b1 , . . . , b) or ai -_i bi for the smallest i such that ai , bi.

A strict ordering on a set A*, induced by a total order (A, _), where A is an alphabet, is defined
as follows. If a string s is shorter than a string u, then s -< u. If they have the same length, then s -< u
if and only if either they are the same or si --< ui for the smallest i such that the ith symbol of s, si, is
different from the ith symbol, ui, of u.

For example, for the alphabet A = {0, 1, 2} with the total order 0 -< 1 -< 2, we get the following
strict ordering of strings on A*:

e, 0,1,2,00,01,02,10,11,12,20,21,22,000,001,002,010,011,012,020,021,022,100,...

There is a close relationship between relations and functions. To any relation R C A x B we can
associate a functionfR : A x B -* {0, 1} - the so-called characteristic function of R defined byf(a, b) = 1
if and only if (a,b) E R. Similarly, to any function f : A x B -* {0, 1} we can associate the relation Rf
such that (a, b) E Rf if and only iff(a, b) = 1.

2.2.2 Representations of Relations

Two of the most important representations of binary relations are by Boolean matrices and directed
graphs.

A binary relation R C S x S, with ISI = n, can be represented by an n x n Boolean matrix MR, the
rows and columns of which are labelled by elements of S, such that there is 1 in the entry for a row a

94 U FOUNDATIONS

and a column b if and only if (a, b) E R. See, for example, the representation of the relation

R = {(0,0), (0,1), (1,2), (1,3), (2,4), (2,5), (3,6), (3,7), (4,0), (4,1), (5,2), (5,3), (6,4), (6,5), (7,6), (7,7)}

by the matrix in Figure 2.11a.
Similarly, any binary relation R C_ S x S can be represented by a directed graph GR = (V, E), where

V = domain(R) U range(R) and E = {(a,b) I(a,b) E R} - see the representation of the relation in
Figure 2.11a in Figure 2.11b.

There is clearly a one-to-one correspondence, up to the notation of elements, between binary
relations, Boolean matrices and directed graphs. Moreover, one can easily, in low polynomial time
with respect to the size of the relation, that is, I{ (a, b) I aRb} , transform one of these representations to
another. On the other hand, n-ary relations for n > 2 are represented by hypergraphs (see Section 2.4).

Both representations of binary relations, Boolean matrices and directed graphs, have their
advantages.

IfMai, i = 1,2, is a Boolean matrix representation of a relation Ri, then for the matrix representations
of the union and the intersection of these relations we get

MR1UR2 = MR, VMR2 , MRnR 2 = MR1 AMR2,

where V and A are component-wise disjunction and conjunction operations on the elements of Boolean
matrices.

On the other hand, if a binary relation R C S x S is represented by a directed graph GR, then
(a, b) E R' if and only if there is a path of length at most i in GR from node a to node b. Similarly,
(a,b) E R* if and only if there is a path in GR from node a to node b. Using these facts, one can in
principle easily construct from the graph GR the graphs representing the relations R', i > 1, R+ and
R*. Moreover, if ISI = n, then there is a path in GR from a node a to a node b only if there is a path
from a to b of length at most n - 1. This implies that the relations R+ and R* can be expressed using
finite unions as follows:

n n

R+=UR', R* =UR.
i=1 i-O

Exercise 2.2.7 Design a matrix and a graph representation of the relation

R = {(i, (2i) mod 16), (i, (2i + 1) mod 16) i E [16]}.

2.2.3 Transitive and Reflexive Closure

The concept of a process as a sequence of elementary steps is crucial for computing. An elementary step
is often specified by a binary relation R on the set of so-called configurations of the process. (a, b) E R*
then means that one can get from a configuration a to a configuration b after a finite number of steps.
This is one reason why computation of the transitive and reflexive closure of binary relations is of
such importance in computing. In addition, it allows us to demonstrate several techniques for the
design and analysis of algorithms.

If R C S x S is a relation, I SI = n, and MR is the Boolean matrix representing R, then it clearly holds
that

n

MR* = VMR,
i=o

RELATIONS 3 95

where M = I, M+ 1I = MR V MA, for i > 0. Therefore, in order to compute the transitive and reflexive
closure of R, it is sufficient to compute the transitive and reflexive closure of the Boolean matrix
MR that is equal to Vnjý, M' . We present three methods for doing this. The most classical one is the
so-called Warshall algorithm.

Let M = {aij}, 1 < i,j < n, aij {O, 1}, be a Boolean matrix, and GM the directed graph representing
the relation defined by M, with nodes labelled by integers 1,2, . . . n. The following algorithm
computes elements cij of the matrix C = M*.

Algorithm 2.2.8 (Warshall's algorithm)

begin for i -- 1 to n do co -- 1;
for 1 < i, j < n, i 7ý j do c° ý- aij;

fork 4- Ito n do
for I < ij < n do ck - c V (c/ AC C k-1),

for I < i,j < n do cij -- c

end

In order to demonstrate the correctness of this algorithm, it is sufficient to show that

c k 1 if and only if there is a path in the graph GM from node i to node
j that passes only through nodes of the set {1,2 ... k,

which can easily be done by induction on k.
The time complexity of this algorithm is E (n3). Indeed, for any I < k < n, the algorithm performs

n2 times statements updating c'.
The second method for computing M* is based on the equality

M* =(I VM)n,

which is easy to verify using the binomial theorem and the fact that A UA = A for any set A.
Let m(n) = (2(n 2) be the time complexity of the multiplication of Boolean matrices of degree n.

Using the repeated squaring method (see Algorithm 1.1.14) we can compute (IUM)" with lgn Boolean
matrix multiplications and at most the same number of Boolean matrix additions (each addition can
be performed in e(n 2) time). The overall complexity is therefore 0(m(n) lgn). It has been shown
that m(n) = 0(n 2

.
3 7 6

) (see also page 245) if time is counted by the number of arithmetical operations
needed, and mr(n) = 0(n 2 -

376 lg n lg lgnlg lg lg n) if only bit operations are counted. Therefore the second
algorithm is asymptotically faster than the first.

The third algorithm, asymptotically even better than the second, is based on the
divide-and-conquer method.

Algorithm 2.2.9 (Divide-and-conquer algorithm for transitive closure)

1. Divide M into four submatrices A, B, C, D, as shown below, where A is a L j x L E j matrix and
D a F•1 x [1 matrix.

2. Recursively compute D*.

3. Compute F = A + BD*C.

96 I FOUNDATIONS

4. Recursively compute F*.

5. Set

M, F* F*BD* 1[D*CF* D* +D*CF*BD* "

The correctness of this algorithm can be shown informally by the following argument. Let us
assume that nodes of the graph GM are partitioned into two sets NA and ND in such a way that A
describes edges between nodes of NA, B edges from nodes in NA to nodes in ND, C edges from nodes
in ND to nodes in NA, and D edges between nodes of ND. Then F* clearly determines all paths from
nodes in NA to nodes in NA in GM. F* BD* determines all paths that start from a node in NA and go to a
node in ND. Similarly, for other matrix expressions in the formula for M* in item 5 of Algorithm 2.2.9.

For the complexity T(n) of the algorithm we get the recurrence

T(n)= 2T()+cm(n)+d(n)2,

where c and d are constants. Since mr(n) = Q(n 2), we can assume that m(n) < 'm(2n). Therefore we
can use Case 3 of Theorem 1.6.3 to get T(n) = E(m(n)).

Similarly, we can show that if there is an algorithm to calculate M* in time T(n), then there is
an algorithm to multiply two Boolean matrices of degree n in time O(T(3n)). Indeed, if we put two
Boolean matrices A and B of degree n in a proper way as parts of a 3n x 3n Boolean matrix, we get

[0 A 0]*[A AB]
0 0 B = 0 1 B .
0 0 0 0 0 1

Exercise 2.2.10 Compute R2 , R3 , R4 , R* for
R = {(1,3), (2,4), (3,1), (3,5), (5,1), (5,2), (5,4), (2,6), (5,6), (6,3), (6,1)}

Exercise 2.2.11 Determine transitive closure for the following relations:
(a) {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}; (b) {(a, b), (a,c), (a,e), (b,a), (b,c), (c,a), (dc), (e,d)};
(c) {(1,5), (2,1), (3,4), (4,1), (5,2), (5,3)}.

Exercise 2.2.12 Compute an, bn, c,, dn defined by

Cn d, 1 0

with the matrix multiplication being: (a) ordinary matrix multiplication; (b) Boolean matrix
multiplication.

2.2.4 Posets

A set S together with a partial order relation R on S is called a partially ordered set or poset, and is
denoted by (S, R). In the case of posets one usually uses notation aRb to denote that (a, b) E R.

FUNCTIONS U 97

4

• (a) (b)

Figure 2.12 Hasse diagrams

Example 2.2.13 If \ denotes the divisibility relation among integers, then (N, \) is a poset but not a totally
ordered set. (Z, <), (Q, :) and (R, <) are totally ordered sets with respect to the relation 'smaller than or equal
to'. If A is any set, then (2A, C) is also a poset.

Posets can be represented graphically more economically by so-called Hasse diagrams. These are
based on the fact that if aRb and bRc in a poset (S, R), then certainly aRc, so this particular relationship
does not have to be shown explicitly.

Let (S, R) be a poset. Denote RH C R the relation defined as follows: aRHb if and only if aRb and
there is no a 3 c : b such that aRc and cRb. In other words, RH is the smallest subset of R such that
R* = R. The graph GRH is called the Hasse diagram for R.

For example, the Hasse diagram for the poset (2[0,1,21, C) is shown in Figure 2.12a, and the Hasse
diagram for the relation

R = {(0,1), (0,2),(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)}

in Figure 2.12b.6

The Hasse diagram for a relation R represented by a graph GR can clearly be obtained from GR
by a process in which at each step one removes an edge the existence of which can be deduced from
the transitivity or reflexivity of the relation of partial order, if there is such an edge; otherwise the
process comes to a halt.

The economy and transparency of descriptions are the main advantages of Hasse diagrams.

Exercise 2.2.14 Draw the Hasse diagramfor the divisibility relation on the set { 1, 2,3,6,12, 24, 36,48}.

Exercise 2.2.15** Show that for every n E N there is a relation which is represented by a graph with n
edges, and that the Hasse diagram for this relation has [viij edges.

2.3 Functions
The modem concept of a function, as a special type of relation, is an abstraction and a significant
generalization of the old intuitive concept of a mapping provided by a computation. To develop a

6Observe that if a set A has n elements, then the Hasse diagram for the poset (2A, C) is actually the n-dimensional
hypercube - a graph treated in detail in Section 10.1.

98 3 FOUNDATIONS

deeper understanding of which functions are computable (theoretically, practically, fast, or even very
fast) is one of the main goals in foundations of computing. Some classes of functions play a special
role in this - for example, Boolean functions.

Of increasing importance in computing are functions that exhibit randomized or chaotic
behaviour with respect to the input-output relation they represent, and thereby help to utilize the
power of randomization. These functions are actually not new; their potential for creating randomness
has been recognized only recently, for example, one-way functions and hash functions.

2.3.1 Basic Concepts

Intuitively, a (total) functionf : A - B assigns to any object from the set A an object from the set B.
Formally, f is a relation on A x B such that to any a c A there is exactly one b E B such that (a,b) Ef.
Instead of (a, b) C f, we usually writef (a) = b, to emphasize the assignment. A is called the domain
off, B its co-domain, and the set {b Ib E B, 3a c A,f(a) = b} is the range off. Iff(a) = b, then b is called
the image of a, and a is a pre-image of b. If A0 c A, thenf(Ao) = {b Ib =f(a),a e A0}. The set of all
functions from A to B is denoted by BA. The value of a functionf : A -, B for an a e A is denoted byf (a) orf (x)l

Exercise 2.3.1 Show that WA and B arefinite sets, then IB Al = JBI ýA.

A partial function f : A -- B is a mapping that assigns to some elements of A elements from B.
The set {ala c A,f(a) is defined} is called the domain off.

Example 2.3.2 Observe that

f {(a,b))a,b E N,b = a mod 2}

is afunction, but the relation

g= {(a,b)la,b c N,b =a (mod2)}

is not.

"A functionf : A -* B is called

surjective (resp. a surjection), if range(f) = B;
injective (resp. an injection), if f(a) =f(b) = a = b;
bijective (resp. a bijection), if f is surjective and injective.

"A surjection is sometimes called a mapping of A onto B, an injection a one-to-one mapping, a bijection
a one-to-one correspondence between A and B.

The inversef of a functionf is the relationf- = {(b,a) If(a) = b}. Iff is an injection, thenf - is
also a (partial) function.

For example, observe that the inverse of the functionf : N' -- Z withf(n) = (-[1)" [J is a function,
but the inverses ofg(n) = •j and h(n) = (-1) -nj are not.

Two (partial) functions f, and f2 are called equal if they have the same domain and co-domain
andf, (a) =f 2(a) for all a in the domain. The compositionfl of2 of functions f, : A --ý B and f 2 : B -* C
is a function from A to C defined by f, of2(a) =f 2(f (a)) for any a c A.

FUNCTIONS * 99

Exercise 2.3.3 (Pigeonhole principle) Show that if A and B are finite sets such that JAI > IBI and
f : A -- B, thenf is not bijective.

Exercise 2.3.4 Let f : A -* B be a function. Characterize properties "f is invective', 'f is surjective" and
'f is bijective' in terms off f({y}), where y E B.

Exercise 2.3.5 Show that for afunctionf : A --- B
(a) f is injective if and only if VX C A,f -1 (f (X)) =X

(b)f is surjective if and only if VY C B,f(f -'(Y)) =Y;

(c)f is bijective if and only if VX, Y C A,f (X B) =f(X) nf (Y).

The graph of a functionf : X -* Y is the set {(x,f(x) Ix is in the domain off }.

Iff : A -* A is a function, then any x E A such thatf(x) = x is called a fixed point of f. Any subset A0

of A such that (A0) = A0 is called an invariant of f. For example, the mappingf(x) = x3- 6x 2 + 12x -6
has three fixed points: 1,2,3.

Exercise 2.3.6** Let nodes of the Sierpifiski triangle (see Figure 2.1) be arbitrarily denoted as 1,2,3, and
for i = 1,2,3 the mappingfi be defined on the plane as mapping any point x to the middle point of the
line connecting x and the node i of the triangle. Show that for all these three mappings the set of points
of the Sierpihski triangle is an invariant.

Iterationsf (), i > 0, of a functionf : X --* X are defined by f(°) (x) = x andf('+') (x) =f(f(i) (x)) for
i> 0.

A functionf : {1,..., n} -- A is called a finite sequence, a function f : N -* A an infinite sequence,
and a function f : Z - A a doubly infinite sequence.

When the domain of a function is a Cartesian product, sayf : A, x A 2 X ... xAn -* B, then the
extra parentheses surrounding n arguments are usually omitted, and we write simply f (a,,. . , an)
instead off ((a, . . . ,)).

Two case studies in the remainder of this subsection will illustrate the basic concepts just
summarized, and introduce important functions and notions that we will deal with later.

Case study 1 - permutations

A bijectionf : S -* S is often called a permutation. A permutation of a finite set S can be seen as an
ordering of elements of S into a sequence with each element appearing exactly once. Examples of
permutations of the set {1,2,3,4} are (1,2,3,4); (2,4,3,1); (4,3,2,1). If S is a finite set, then the number
of its permutations is JSJ!.

Since elements of any finite set can be numbered by consecutive integers, it is sufficient to consider
only permutations on sets N = { 1, 2,... , n }, n E N+. A permutation 7r is then a bijection 7 : N, - N,.
Two basic notations are used for permutations:

100 U FOUNDATIONS

enumeration of elements: -r = (a,, . . . ,an) such that 7r(i) = ai, I < i < n.

Example: 7r = (3,4,1,5,2,6).
enumeration of cycles: 7r = clc2 . . . ck, Ci = (bo, . . . , b), 1 < i < k,

such that 7r(bj) = b(o+l) mod (s+l),0 <_ j < s.

Example: 7r = (1,3) (2,4,5) (6); that is,
7r(l) = 3,7r(3) = 1,7r(2) = 4,7r(4) = 5,ir(5) = 2,7r(6) = 6.

Special permutations: identity permutation, id = (1,2, ... , n); that is, id(i) = i for 1 < i < n;
transposition, 7r = [i0,j0], where 1 < io,jo < n (that is, 7r(io) = jo, 7r(jO) = i0 and 7r(i) = i, otherwise). For
example, 7r = [2,4] = (1,4,3,2,5,6).

The inverse permutation, 7r-i, to a permutation 7r is defined by 7r-1 (i) = j * 7r(j) = i. For example,
if 7r = (3,4,1,5,2,6), then 7r-1 = (3,5,1,2,4,6).

Composition of permutations 7r, and 7r2 is the permutation 7r = 7r, o 7r2, where 7r(i) = 7r2 (7r (i)),

for 1 < i < n. For example, (3,5,1,2,6,4) o (2,6,1,3,4,5) = (1,4,2,6,5,3). Clearly, 7ro71 = id for any
permutation 7r.

Powers of permutations: 7r' = 7r, 7ri'+
1 = 7T o ri, i > 1. For example,

(3,5,1,2,6,4)2 = (1,6,3,5,4,2) (3,5,1,2,6,4)4 = (1,2,3,4,5,6).

An inversion of a permutation it on {1, ,n} is any pair 1 < i < j 5 n such that 7r(j) < 7r(i).
As the following lemma indicates, powers of a permutation always lead to the identity

permutation.

Lemma 2.3.7 For any permutation 7r ofa finite set there is an integer k (the so-called degree of i) such that
7rk = id.

Proof: Clearly, there are i < j such that 7ri = -ir. Then id = ito 7r-i' = 7ri o 7r-i = 7i-i'.

Exercise 2.3.8 Determine the degree of the following permutations:
(a) (2,3,1,8,5,6,7,4); (b) (8,7,6,5,4,3,2,1); (c) (2,4,5,8,1,3,6,7).

Exercise 2.3.9* Determine the number of permutations 7r: {1 ,n} {1, n} such that 7r(i) $ i
for all i.

Case study 2 - cellular automata mappings

Informally, a one-dimensional cellular automaton A is a doubly infinite sequence of processors (see
Figure 2.13)

... • P-i,P-i+l .. . P-1,PoP1' Pi-lPh,••

and at each moment of the discrete time each processor is in one of the states of a finite set of states
Q. Processors of A work in parallel in discrete time steps. At each moment of the discrete time each
processor changes its state according to the local transition function, which takes as arguments its
current state and the states of its k neighbours on the left and also its k neighbours on the right, for a
fixed k.

Formally, a one-dimensional cellular automaton A = (Q, k, 6) is defined by a finite set Q of states,
an integer k E N - the size of the neighbourhood - and a local transition function 6 : Q2k+1 -- Q.

FUNCTIONS 1 101

2k+l neighbourhood

q are states

Figure 2.13 One-dimensional cellular automaton

A mapping c: Z --* Q is called a configuration of A. The global transition function GA maps the

set QZ of all configurations of A into itself, and is defined by

GA(c) = c', where c'(i) = 6(c(i-k),c(i-k+ 1),... ,c(i+k - 1),c(i+k)) for all i E Z.

Moreover, a cellular automaton A is called reversible (or its global transition function is called
reversible) if there is another cellular automaton A' = (Q, k',g') such that for any configuration c E QZ
we have GA'(GA(c)) = c.

Exercise 2.3.10* Show that the following one-dimensional cellular automaton A ({0, 1}, 2,g), is
reversible, where the local transition function g : {0, }15 --+{0, 1} is defined as follows:

00000--+0 00100--4+1 01000--+0 01100 - 1
10000 --+ 0 10100 --* 1 11000 ý 0 11100 -- 1

00001-0 00101-1 01001 - 0 01101--41
10001 -* 0 10101 -- 1 11001 --* 0 11101 -* 1
00010 1 00110 0 01010---+1 01110 0
10010 - 1 10110 - 0 11010 ý 1 11110 - 0

00011 -* 0 00111 -- 1 01011 --* 0 01111 --* 1
10011 0 10111 -* 1 11011 -- 0 11111 -- 1.

Cellular automata are an important model of parallel computing, and will be discussed in more
detail in Section 4.5. We mention now only some basic problems concerning their global transition
function.

The Garden of Eden problem is to determine, given a cellular automaton, whether its global
transition function is subjective: in other words, whether there is a configuration that cannot be
reached in a computational process. Problems concerning injectivity and bijectivity of the global
transition function are also of importance. The following theorem holds, for example.

Theorem 2.3.11 The following three assertions are equivalent for one-dimensional cellular automata:

1. The global transition function is injective.

2. The global transition function is bijective.

3. The global transition function is reversible.

The problem of reversibility is of special interest. Cellular automata are being considered as a
model of microscopic physics. Since the processes of microscopic physics are reversible, the existence

102 R FOUNDATIONS

of (universal) reversible cellular automata is crucial for considering cellular automata as a model of
the physical world.

2.3.2 Boolean Functions

An n-input, m-output Boolean function is any function from {0, 1}" to {0, 1}m. Let BI denote the set
of all such functions.

There are three reasons why Boolean functions play an important role in computing in general
and in foundations of computing in particular.

1. Boolean functions are precisely the functions that computer circuitry implements directly.
Boolean circuits and families of Boolean circuits (discussed in Section 4.3) form the very basic
model of computers.

2. A very close relation between Boolean functions and truth functions of propositional logic,
discussed later, allows one to see Boolean functions - formulas - and their identities as
formalizing basic rules and laws of formal reasoning.

3. String-to-string functions, which represent so well the functions we deal with in computing, are
well modelled by Boolean functions. For example, a function f : {0, 11 * -{0, 1} is sometimes
called Boolean, because f can be seen as an infinite sequence tf}if 1 of Boolean functions,
where E B13 andf (xi, ,xi) =f(xi, . .. , xi). In this way we can identify the intuitive concept
of a computational problem instance with a Boolean function from a set B1, and that of a
computational problem with an infinite sequence of Boolean functions f}• I 1' where f, BL.

A Boolean function from 3,' can be seen as a collection of m Boolean functions from B1. This is
why, in discussing the basic concepts concerning Boolean functions, it is mostly sufficient to consider
only Boolean functions from B,. So instead of B' we mostly write B,.

Boolean functions look very simple. However, their space is very large. B,, has 22" functions, and
for n = 6 this gives the number 18,446, 744, 073, 709, 551, 616 - exactly one more than the number of
moves needed to solve the 'original' Towers of Hanoi problem.

The most basic way of describing a Boolean function f E B. is to enumerate all 2" possible n-tuples
of arguments and assign to each of them the corresponding value of f. For example, the following
table describes in this way the most commonly used Boolean functions of one and two variables.

identity negation OR AND XOR equiv. NOR NAND implic.
x y x X x+y x-y XEy x-y X+y x.y x-+-y
0 0 0 1 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 0 1 1
1 0 1 0 1 0 1 0 0 1 0
1 1 1 0 1 1 0 1 0 0 1

For some of these functions several notations are used, depending on the context. For example, we
can write x V y or x ORy instead of x + y for conjunction; x A y or xANDy instead of xy for disjunction,
and -•x instead of i.

A set F of Boolean functions is said to be a base if any Boolean function can be expressed as
a composition of functions from F. From the fact that each Boolean function can be described by
enumeration it follows that the set F 0 = {-, V, A} of Boolean functions forms a base.

FUNCTIONS * 103

Exercise 2.3.12 Which of the following sets of Boolean functions forms a base: (a) {OR,NOR};
(b) {-•,NOR}; (c) {ANDNOR}; (d) {iAy,O,1}?

Exercise 2.3.13 Use the NAND function to form the following functions: (a) NOT; (b) OR; (c) AND;
(d) NOR.

The so-called monotone Boolean functions play a special role. Let --ým be the so-called montone
ordering on {0,1}n defined by (xl, . . . ,x,) -<m (yl, . .. ,y,) if and only if Vl1(X, = I = y, = 1). A
Boolean functionf : {0,1} --* {0,1} is called monotone if

(Xi...-- IXn) -x• (Yl, -),yn) =ý ff(XI, ,X0 --<f(yY1. yn).

OR and AND are examples of monotone Boolean functions; XOR is not.

Boolean expressions, or formulas

Another way to describe Boolean functions, often much more concise, is to use Boolean formulas, or
expressions. These can be defined over an arbitrary base. For example, Boolean expressions over the
base 170, described above, can be defined inductively by assuming that an infinite pool V = {x1 , x 2,... }
of Boolean variables is available, as follows.

1. 0, 1, X, x2,.. . are Boolean expressions.

2. If El, E2 are Boolean expressions, then so are -El, (El V E2), (El A E2).

An expression of the form xi or -xi (or alternatively x) is called a literal.
An inductive definition of Boolean expressions can be used to define, or to prove, various

properties of Boolean expressions and Boolean functions. For example, the Boolean function f(E)
represented by a Boolean expression E can be defined as follows.

1. f(E) =EifEc {O,1}uV;

2. f(-•E) =f(E);f(El V E2) -=f(E,) Vf(E2);f(El A E2) =f(E,) Af(E2).

Two Boolean expressions E1 and E2 are said to be equivalent, notation E1 - E2, if f(E 1) =f(E2);
that is, if E1 and E2 are two different representations of the same Boolean function.

Exercise 2.3.14 Show that each monotone Boolean function can be represented by a Boolean expression
that uses only the functions 0, 1, x V y, x A y.

Disjunctive and conjunctive normal forms

Boolean expressions are a special case of expressions in Boolean algebras, and the most basic pairs of
equivalent Boolean expressions can be obtained from column I of Table 2.1, which contains the laws
of Boolean algebras. These equivalences, especially those representing idempotence, commutativity,

104 N FOUNDATIONS

associativity, distributivity and de Morgan's laws, can be used to simplify Boolean expressions. For
example, parentheses can be removed in multiple conjunctions and disjunctions, as in (x3 V (x2 V x1)) V
((x4 V X5) V (x6 v x2)). This allows us to use the notation

k k

AEi = El AE2A. ... AEk, VEi = El VE 2V ... VEk.
i=1i=

• k kE
In the case that Ei are literals, the expressionAi= 1 Ei is called a minterm, and the expression Vi= 1 Ei
a clause. Two closely related normal forms for Boolean expressions are

n mi

V A Lij disjunctive normal form (DNF) (2.5)
i=1j=1

n mni

A V Lij conjunctive normal form (CNF) (2.6)
i=1j=1

where Li are literals. For example,

(X1 V -x 2 vx 3) A (xl Vx2 V -'X3),

(xI A -x2 Ax3) V (xI Ax2 A -X 3).

Theorem 2.3.15 Every Boolean expression is equivalent to one in a conjunctive normal form and one in a
disjunctive normal form.

Proof: By induction on the structure of Boolean expressions E. The case E G {0, } U V is trivial. Now
let

n, rl~i M1 SIA:

El AVL'cl, El L (dl)=

i=1=1 k=11=1

n2 r2,P m2 S2,u
2 -AVL(2), E2 = VA (d2)

p=lq=1 u=lv=l

be CNF and DNF for E1 and E2. Using de Morgan's laws, we get that

n1 rli mI Sli

-E, VA L(cl) an -E, (dl)

= VA L and AE1 = V -Lkt

i=lj=l k=11=1

are DNF and CNF for -•E1, where the double negation law is used, if necessary, to make a literal out

of -,L7(). Similarly,
n, rl,i nl2 r2,p M1 Sl,k M2 S2,u

AVLc) A AVLp) and VAL(V V ALv 2)
i=1 j=l p=lq=l k=11=1 u-lv= 1

are a CNF for E1 A E2 and a DNF for El V E2. Finally,

nt1 n•2 rl,i r2,k M1I M2 sl,k s2,u

AA(VL/1) vVL;2,) and VV(A L•') AA L 2)) (2.7)
i=lp=l j=1 q=1 k=lu=1 1=1 u=l

are a CNF for E1 V E2, and a DNF for E1 A E2.

FUNCTIONS U 105

The algorithm presented in Theorem 2.3.15 for the construction of a DNF or a CNF equivalent
to a given Boolean expression is simple in principle. However, the size of the Boolean expression in
step (2.7) can double with respect to that for E1 and E2. It can therefore happen that the resulting CNF
or DNF for a Boolean expression E has a size exponential with respect to a size of E.

Exercise 2.3.16 Design disjunctive normal forms for the functions
(a) x =ý- y; Wb (x + y + z) (x + y + 2) (x + y + z) (i + 9 + z),

Exercise 2.3.17 Design conjunctive normal forms for the functions
(a) x => y; (b) yz + xYz + xyz + xyz.

Satisfiability

Another important concept for Boolean expressions is that of satisfiability. The name is derived from
a close relation between Boolean expressions and expressions of the propositional calculus.

A (truth) assignment T to a set S of Boolean variables is a mapping T : S -* {0, 1}. If SE is a set
of variables occurring in a Boolean expression E, and T: SE -- {0, 1} is an initial assignment, then we
say that T satisfies E, notation T • E, or that T does not satisfy E, notation T K E, if the following
holds (using the inductive definition):

1. T 1,TO0;

2. if x E V, then T [x if and only if T(x) = 1;

3. T -E if and only if T •= E;

4. T (El v E2) if and only if either T K El or T ý E2;

5. T I(El A E2) if and only if T ý= E and T - E2.

Exercise 2.3.18 Show that two Boolean expressions E1 and E 2 are equivalent if and only
if T • E, #= T • E2for any assignment T on SE1vE 2 .

The most basic way to show the equivalence of two Boolean expressions E1 and E2 is to determine,
using the truth table with an enumeration of all initial assignments, step by step, the values of all
subexpressions of E1 and E2.For example, in order to show that x A (y V z) and x A y V x A z are equivalent
Boolean expressions, we can proceed as follows.

106 5 FOUNDATIONS

xyz yVz xA(yVz) xAy xAz xAyVxAz
000 0 0 0 0 0
001 1 0 0 0 0
010 1 0 0 0 0
011 1 0 0 0 0
100 0 0 0 0 0
101 1 1 0 1 1
110 1 1 1 0 1
111 1 1 1 1 1

A Boolean expression E is said to be satisfiable if there is a truth assignment TE such that TE E,
and it is called a tautology (or valid) if TE • E for any truth assignment to variables of E.

There is another conceptually simple algorithm for constructing a DNF equivalent to a given
Boolean expression E. For each truth assignment T • E one takes a minterm such that the literal
corresponding to a variable x is x if T(x) = 1, and x otherwise. For a Boolean expression with n
variables this gives a DNF of size O(n2l).

The problem of finding out whether a given Boolean expression E is satisfiable is called the
satisfiability problem. In spite of its simplicity, it plays an important role in complexity theory, and
we deal with it in Chapter 5. The satisfiability problem is actually the first known NP-complete
problem.

There is a close relation between Boolean formulas and formulas of propositional logic containing
only negation, conjunction and disjunction. If 0 is interpreted as the truth value false, 1 as true, and
the Boolean operations of negation, OR and AND as logical negation, conjunction and disjunction,
then a Boolean formula can be regarded as a formula of the propositional calculus and vice versa.

Arithmetization of Boolean functions

Of importance also is a representation of Boolean functions by multilinear polynomials.

Definition 2.3.19 A functiong: Rn - Rapproximates a Booleanfunctionf : {0,1}nf -- {0 1}, lff(Q) = g(a)
for every a E {0, 1}n.

It is easy to see that the basic Boolean functions have the following approximations by multilinear
polynomials:

true and false are approximated by 1 and 0; (2.8)

x A y is approximated by xy; (2.9)

xVy is approximated by 1- (1- x)(1 - y); (2.10)

9 is approximated by 1 - y. (2.11)

If a given Boolean formula is first transformed into an equivalent disjunctive normal form, and
the rules (2.8), (2.9), (2.10), (2.11) are then used, a multivariable polynomial approximatingf can be
obtained in a straightforward way Using the identities On = 0, In = I for any n, all powers xn can then
be replaced by x. In this way a multilinear polynomial approximating f is obtained. We have thereby
shown the following theorem.

Theorem 2.3.20 Any Boolean function can be approximated by a multilinear polynomial.

Example 2.3.21 The Boolean formula

f(x,y,z) = (xvyvz) A (xVYVz)

FUNCTIONS U 107

can be transformed first into the polynomial

(x + y + z - xy - xz - yz + xyz) (1 - y + xy + yz - xyz),

and then, after the multiplication and simplifcations, the following polynomial approximation is obtained:

x + z - xz.

Exercise 2.3.22 Construct multilinear polynomial approximations for the following functions:
(a) x => y; (b) x - y; (c) (x A y V z) (2 V zx); (d) XOR; (e) NOR.

2.3.3 One-way Functions

Informally, a function, say f : N -- N, is called a one-way function if it is easily computable, in
polynomial time, but a computation of its inverse is not feasible, meaning that it cannot be done in
polynomial time.

easy to compute

X f(x)

computation not feasible

This intuitively simple concept of a one-way function turns out to be deeply related to some of
the main problems in the foundations of computing and also to important applications. It plays a
central role in Chapters 8 and 9.

It is easy to give an informal example of a one-way function: write a message on a sheet of paper,
cut the paper into thousands of pieces and mix them. This is easy to do, but the resulting message is
practically unreadable.

There are several nonequivalent definitions of one-way functions. The reason is that for different
purposes more or less strong requirements on 'one-wayness' are needed. We present now the
definition of so-called strong one-wayness. Two other definitions are discussed in Chapter 5.

Definition 2.3.23 Afunctionf : {0,11* - {0, 01}* is called strongly one-way if thefollowing conditions are
satisfied:

1. f can be computed in polynomial time.

2. There are c, e > 0 such that xjs • If(x) I < Ixc. (Otherwise, any function that shrinks the input
exponentially, for example, f (n) = nlgn], could be considered one-way.)

3. For every randomized polynomial time algorithm A4 and any constant c > 0, there exists an Nc
such that for n > Nc

Pr(A(f (x)) ef -1 (f (x))) < -.

108 U FOUNDATIONS

(The probability space is that of all pairs (x, r) G S, x R,, where S, = {0, 1}" and R, denote all
possible sequences of coin-tossings of A on inputs of length n.)

Exercise 2.3.24 Explain how it can happen that f and g are one-way functions but neither of the
functionsf + g orf .g is one-way.

Note that Definition 2.3.23 allows that a polynomial time randomized algorithm can invertf, but
only for a negligibly small number of values. There are no proofs, only strong evidence, that one-way
functions exist. Some candidates:

1. Modular exponentiation: f(x) = ax mod n,
where a is a generator of Z•;

2. Modular squaring: f(x) = x2 mod n,
where n is a Blum integer;

3. Prime number multiplication: f(p, q) = pq,
where pq are primes of almost the same length.

All these functions are easy to compute, but no one knows polynomial time deterministic
algorithms for computing their inverses. As we saw in Section 1.7, in the case of modular squaring
there is a proof (Theorem 1.8.16) that the computation of square roots is exactly as hard as factoring
integers.

A proof that a one-way function exists (or not) would have a far-reaching impact on foundations
of computing, as we shall see later. One-way functions also have numerous applications. They will
be discussed especially in Chapters 8 and 9. We present now only one of them.

Example 2.3.25 (Passwords) Passwords are an important vehicle for protecting unauthorized use of
computers. After a to-be-authorized user has typed in a password, the computer must verify its correctness.
However, it is unsafe to keep in a computer a password file with entries of user and his/her password. There
are many ways in which an adversary can get in and misuse knowledge of the password. It is safer to use a
one-way function f to compute f(password) each time a user tries to identify herself and to use a file with
entries: (user, f (users's password)). Sincef is one-way, even an adversary who could get this file would not be
able to pretend that he is a user, becausefromf (password) he could not find out the password. (Unless he were
to try all possibilities for passwords and for each one check the whole password-code table.)

In spite of the simplicity of the informal definition of one-wayness, and the technicalities of the
formal definition, an additional explanation seems to be in order to make clear what makes one-way
functions so special. They actually exhibit such random or chaotic relations between pre-images and
images that from knowledge off andf(x) there is no practically realizable way to find an x' such that
f (x') = f(x). This also implies that f may map values which are close to each other in some sense to
images that are far apart, and vice versa.

2.3.4 Hash Functions

Another important family of functions that performs pseudo-random mappings is the so-called hash
functions. Informally, an ideal hash function maps elements of a large finite set into elements of a
smaller set in a maximally uniform and at the same time random way. Any element of the domain is
equally likely to be mapped into any element of the co-domain.

FUNCTIONS I 109

More formally, let h map a set U (of objects) into a set A, and let Pr(u) be the probability that u is
picked up as the argument for h. The requirement of simple uniform hashing is that for any a e A,

SPr u) = 1

fu Ih(u)-ýa)

The main problem with this definition is that, in general, the probability distribution Pr is not
known in applications. The tendency is to consider hash functions that perform reasonably well
quite independently of the pattern in which the data occur.

Let us assume that U = {0, 1, . . . ,n} for some integer n. (By a suitable coding we can usually
work it that a set of codes, or keys, of objects under consideration is such a set.) The following list
contains hash functions that have turned out to be useful:

h(u) = u mod m (division method); (2.12)

h(u) = [m(au- [auj)J (multiplication method); (2.13)

where m E N and a E R.
The choice of a suitable hash function and of its parameters, m in (2.12), a in (2.13), depends on

the application; they can also be chosen experimentally for a particular application. For example, it is
usually good to choose for m a prime not close to a power of 2 in (2.12) and a = (Vs- 1) / 2 = 0.6180339
in (2.13), by Knuth (1969).

Exercise 2.3.26 Explain why one should not use as m a power of 2 or 10 ýf the division method is used
for hashing.

Exercise 2.3.27 Show how to implement multiplication hashing efficiently on a microcomputer.

Exercise 2.3.28 Show, using hash functions, that the equality of two multisets with n elements can be
checked in 0(n) time with high probability.

Hash functions play an increasingly important role in foundations of computing and also
in various applications. However, it was for the dictionary problem (Example 2.1.24) that they
were invented by Luhn (1953) and for which they first helped obtain a surprisingly efficient
implementation.

Dictionary - a hash table implementation

Assume that any object o of a finite universe U has a unique integer key key(o), and that the set of
these keys K = {0, 1. . . ,m - 1} has m elements. Assume also that we have at our disposal a table
T[0 : m - 1] of size m. Any set S C U can easily be stored in T by storing every element o in the array
entry T[key(o)] (see Figure 2.14a). This is called the 'direct-access representation' of the set S. With
such a representation one clearly needs only 0(1) time to perform any of the dictionary operations.

A more realistic case is when the size of U is much larger than the size m of T, but the dynamically
changing set of the dictionary never has more than m elements and can be stored, in principle, in the
table T. Can we also achieve in such a case a constant time performance for dictionary operations?
Yes, but only on average, in the following way.

110 t FOUNDATIONS

T T

2]h(5)

13
4 h(I 1)

Universe 5 Universe h(3)

6
7

Realkeys Realkeys h(9)
3 5 9 3 5

6 10 9 6

12 11 11
12 h(6)

13
(a) 14 (b)

Figure 2.14 Direct-access and hash-table implementations of dictionaries

Let h : U -* {0, 1, . .. , m} be a hash function. The basic idea is to store an object o not in the table
entry T[key(o)] as before, but in T[h(key(o))] (see Figure 2.14b). If h is a good hash function, then
different elements from the dictionary set S are stored, with a large probability, in different entries of
the table T. In such a case T is usually called the hash table. If this always happened, we could hope
to get 0(1) time performance for all dictionary operations.

Unfortunately, if the size of U is larger than that of T, it may happen, no matter how good an h is
chosen, that h(x) = h(y) for the keys of two elements to be stored in T. In such a case we speak of a
collision.

On the assumption of uniform hashing, that is a uniform distribution of keys, there are simple
methods for dealing with the collision problem that lead to 0(1) time performance for all dictionary
operations, where the constant is very small. For example, if the table entry T[h(key(o))] is already
occupied at the attempt to store o, then o is stored in the first empty entry among T[h(key(o)) +
1],..., T[m - 1], T[0],..., T[h(key(o)) - 1]. Alternatively we can put all elements that hash to the same
entry of the hash table in a list; this is the chaining method. The worst-case performance is, however,
0(n), where n is the size of the dictionary set. It may happen that an adversary who knows h can
supply storage requests such that all elements to be stored are mapped, by hashing, to the same entry
of table T.

Exercise 2.3.29 Show how to implement dictionary operations efficiently when a hash table and the
chaining method for collisions are used to store the underlying set.

Exercise 2.3.30 Consider a hash table of size m = 1,000. Compute locations to which the keys 2,
1 < i < 9, and 126,127,129,130 are mapped if the multiplication method is used for hashing and
a = (v/5- a 1) / 2.

The way to avoid getting intentionally bad data is to choose the hash functions randomly, in the run

FUNCTIONS U III

time, from a carefully constructed family of hash functions. This approach is called universal hashing.
In the case of dictionary implementations, it guarantees a good average performance, provided the
set of hash functions to choose from has the following property of universality.

Definition 2.3.31 A finite family H of hash functions mapping the universe U into the set {o, 1, ... m - 1 }
is called universal if

VxycU I{hjhEh(x)=h(y)}I= In'
m

In other words, if h is randomly chosen from R, then the chance of a collision h(x) = h(y) for x 7 y
is exactly ', which is also exactly the chance of a collision when two elements h(x) and h(y) are
randomly picked from the set {0, m - 1}. The following result confirms that a universal family
of hash functions leads to a good performance for a dictionary implementation.

Theorem 2.3.32 If h is chosen randomly from a universal family R of hash functions mapping a set U to
10, ... ,m - 1}, with IUl > m, and h maps a set S c U, ISI = n < m, into {0, ... ,m - 1}, then the expected
number of collisions involving an element of S is less than 1.

Proof: For any two different elements x, y from U let X, be a random variable on 'H with value 1 if
h(x) = h(y), and 0 otherwise. By the definition of N the probability of a collision for x $ y is 1; that
is, EXX =. Since E is additive (see (1.72)), we get for the average number of collisions involving x
the estimation

EX, EXxy =n <1.
yeS

The result is fine, but does a universal family of hash functions actually exist? It does, and it can
be constructed, for example, as follows.

Assume that m, the size of T, is a prime and that a binary representation of any u E U can be
expressed as a sequence of r + 1 binary strings so.. sr such that ui = bin(si) < m for 0 < i < r.

To each (r + 1)-tuple a = (ao, a,..... a,) of elements from {f0 . . . , m - 1}, let h, be the function from
U to {0,.. .. ,m - 1} defined by

r

ha(u) = Zaui mod m, (2.14)
i=O

and let

R {hala I {0,... ,m-} 1r+1} (2.15)

Clearly InI = mr+ 1, and we get the following theorem.

Theorem 2.3.33 The family of functions N = {ha la E {,... ,m - 1}r+1}, defined by the formula

r

h,(u) = jaui mod m,
i-O

is a universal family offunctions.

112 * FOUNDATIONS

Proof: If x 5 y are from U, then there is an i such that xi $ yi, where xi,yi are the ith substrings in the
representation of x,y. Assume for simplicity that i = 0. (Other cases can be dealt with similarly.) For
any fixed a,, ... , ar, there is exactly one a0 such that

r

ao(xo - yo) ai(xi - yi) (mod m),

and therefore

h. (x) = ha (y).

Indeed, since m is prime and Ix0 - yoI < m, then Euclid's algorithm can be used to compute an inverse
of (xo - yo) mod m, and a0 does exist. Hence, each pair x,y c U collides exactly for mr values of a,
because they collide exactly once for each possible r-tuple from {0, . .. , m - 1}. Since there are mrl
possibilities for a, they collide with probability m, = I' and this proves the theorem.

In some applications the above-mentioned requirement on the quality of elements in R can be
relaxed, but the size of R may be an issue. (The fewer elements R has, the fewer random bits are
needed to choose a hash function from R.) In other applications hash functions may need to have
stronger properties, for example, that they map elements that are 'close' to each other to elements 'far
apart' from each other.

Exercise 2.3.34* Let H- be a family of hash functions mapping the universe of keys K into the set [m].
We say that R- is k-universal iffor every fixed sequence of k distinct keys (xI, • . . ,Xk) and for any h
chosen randomly from R-, the sequence (h (xi), . . . , h (xk)) is equally likely to be any of the mk sequences
of length k with elements from [in]. (a) Show that if R is 2-universal, then it is universal; (b) show that
the family offunctions defined by (2.14) is not 2- universal; (c) show that if the definition of the set h
(2.15) is modified to consider functions ha,b = Zi 0(aiui + bi) mod m, then 7H is 2-universal.

Remark 2.3.35 Of great importance for applications are those hash functions that map any (binary)
message up to a very large length n to a binary string of fixed (and small) length m, which then
serves as the authenticator (fingerprint) of the original message. Such hash functions should have
the following properties:

1. h(x) should be easy to compute, but it should be unfeasible, given a y to find an x such
that h(x) = y (in other words, h should be a one-way hash function).

2. Given x, it should be unfeasible to find a y such that h(x) = h(y), and it should also be
unfeasible to find a pair (x,y) such that h(x) = h(y).

A very simple idea, and still quite good even if it does not satisfy either of the above two conditions, is

to partition a given binary message x into substrings xj,..., Xk of length m and compute h(x) = 1 Xi.
The practical importance of such hash functions for modem communications is so great that in

1993 the National Institute of Standards and Technology (NIST) in the United States developed a
standard hash function (algorithm) called SHA (secure hash algorithm) that maps any binary string
with up to 2 ' bits to a 160-bit binary string.

GRAPHS U 113

6 7 4

4g

6(2 01)2 3

(a) (b) (c) (d)
0 1 7

Figure 2.15 A directed graph and undirected graphs

2.4 Graphs

Graph concepts are of limitless use in all areas of computing: for example, in representing
computational, communication and co-operational processes, automata, networks and circuits and
in describing relationships between objects. Graph theory concepts, methods and results and graph
algorithmic problems and algorithms play an important role in complexity theory and the design of
efficient algorithms and computing systems in general.

2.4.1 Basic Concepts

A directed (undirected) graph G = KV, E) consists of a set V of vertices, also called nodes, and a set
E C V x V of arcs (edges). A graph is finite if V is; otherwise it is infinite. In a directed graph an
arc (u, v) is depicted by an arrow from the node u to the node v (Figure 2.15a); in undirected graphs
edges are depicted by simple lines connecting the corresponding vertices (Figure 2.15b, c). An edge
(u, v) can be seen as consisting of two arcs: (u, v) and (v, u).

Incidences and degrees. If e = (u, v) is an arc or an edge, then vertices u, v are incident with e,
and e is an arc (edge) from u to v incident with both u and v. The vertex v is called adjacent to u, and u
is also called the neighbour of v. Similarly, v is adjacent to u, and is also its neighbour. An arc (u, v) is
an ingoing arc of the vertex v and an outgoing arc of the vertex u. The degree of a vertex v, notation
degree(v), in an undirected graph is the number of edges incident with v. In a directed graph, the
in-degree of a vertex v, in-degree(v), is the number of ingoing arcs of v; the out-degree, out-degree(v),
is the number of outgoing arcs of v. Finally, the degree of v is the sum of its in-degree and out-degree.
The degree of a graph G, degree(G), is the maximum of the degrees of its vertices. For example, the
graphs in Figure 2.15a, b, c have degrees 5,3 and 3, respectively.

Walks, trails, paths and cycles. A walk p of length k from a vertex u, called the origin, to a
vertex v, called the terminus, is a sequence of nodes p = (uO, u1, .. . , Uk) such that uo = u, Uk = v and

(ui,ui_1) c E for 0 < i < k. u0, ... ,Uk are vertices on the walk p, or the vertices the walk p contains.
Moreover, (ui, u/+ 1), 0 < i < k, are arcs (edges) on the walk p, or arcs (edges) p contains. If there is
a walk from a vertex u to a vertex v, then we say that v is reachable from u and that u and v are
connected. The distance(u, v) is the length of the shortest walk from u to v.

"A walk is called a trail if it contains no arc (edge) twice, and a path if it contains no vertex twice.

"A walk is closed if its origin and terminus coincide. A closed trail is called a cycle. A cycle is called
a simple cycle if the only two identical nodes are its origin and terminus. For example, the graph in
Figure 2.15b has simple cycles only, of length 4, 6 and 8. A cycle (a, a), a c V, is called a self-loop, and
a simple cycle of length 3 is called a triangle. For example, none of the graphs in Figure 2.15 has a
triangle, but the graph in Figure 2.16a has 16 triangles. (Find them!)

A graph is called acyclic if it does not contain any cycle. A directed acyclic graph is also called a
dag. For example, the graph in Figure 2.15a is acyclic.

114 * FOUNDATIONS

(a) (b) (0)

Figure 2.16 Graph isomorphism

Exercise 2.4.1 (a) Determine the number of simple cycles of the graph in Figure 2.15c; (b) determine
the number of triangles of the graph in Figure 2.16b.

Exercise 2.4.2* Show that in any group of at least two people there are always two with exactly the same
number of friends inside the group.

Connectivity. In an undirected graph the relation 'connected' is an equivalence relation on the
set of vertices, and its equivalence classes are called connected components. An undirected graph is
called connected if all pairs of its vertices are connected. A directed graph is called strongly connected
if for any two vertices u, v there is a path from u to v. The equivalence classes on the set of vertices
of a directed graph, with respect to the relation 'mutually connected', are called strongly connected
components.

In various applications it is important 'how well connected' a given graph is. Intuitively, each
successive graph in Figure 2.17 is more connected than the previous one. Indeed, the graph in
Figure 2.17a can be disconnected by removing one edge, that in Figure 2.17b by removing one vertex.
This is not the case for the graphs in Figure 2.17c, d.

There are two main quantitative measures of the connectivity of graphs. Vertex-connectivity,
v-conn(G), is the minimum number of vertices whose removal disconnects a graph G.
Edge-connectivity, e-conn(G), is the minimum number of edges whose removal disconnects G.

Exercise 2.4.3 Show that v-conn(G) • e-conn(G) < degree(G)for any graph G.

Exercise 2.4.4** Show that ife-conn(G) > 2for a graph G, then any two vertices of G are connected
by at least two edge-disjoint paths.

If a graph represents a communications network, then the vertex- connectivity (edge-connectivity)
becomes the smallest number of communication nodes (links) whose breakdown would jeopardize
communication in the network.

Isomorphism. Two graphs, G, =VI, Ei) and G2 = (V 2, E2), are called isomorphic if there is a
bijection (called isomorphism in this case) i: V1 -* V2 such that (u,v) G E1 .• (t(u),t(v)) e E2 . For
example, the graphs in Figure 2.15b, d are isomorphic, and those in Figure 2.15b, c are not. Any
isomorphism of a graph with itself is called an automorphism.

GRAPHS 3 115

(a) X 0(b) X(c) q O(dj)E)

Figure 2.17 More and more connected graphs

To show that two graphs are isomorphic, one has to show an isomorphism between them. For
example, the graphs in Figure 2.15b, d are isomorphic, and the corresponding isomorphism is given
by the mapping that maps a node labelled by an i in one graph into the node labelled by the same label
in the second graph. Two isomorphic graphs can be seen as identical; it is only their representations
that may differ. To show that two graphs are not isomorphic is in general much harder.

Exercise 2.4.5 Which pairs of graphs in Figure 2.16 are isomorphic, and why?

Exercise 2.4.6 Show that i two graphs are isomorphic, then there must exist a bijection between the
sets of their vertices such that the corresponding nodes have the same degree and lie in the same number
of cycles of any length.

Regularity. Graphs encountered in both applications and theory can be very complex and large.
In order to manage large graphs in a transparent and effective way, they must have some degree of
regularity. There are several approaches to the problem of how to define regularity of graphs. Perhaps
the simplest is to consider a graph as regular if all its vertices have the same degree; it is k-regular, k E N,
if all vertices have degree k. A stronger concept, useful especially in the case of graphs modelling
interconnection networks, is that of symmetry. A graph G = (V, E) is called vertex-symmetric if
for every pair of vertices u, v there is an automorphism a of G such that ce(u) = v. Clearly, each
vertex-symmetric graph is regular. As an example, the graph in Figure 2.15b is vertex-symmetric,
whereas that in Figure 2.15c is not, even if it is regular. A graph G is called arc-symmetric if for every
two arcs (ul,vl) and (U 2 ,V 2) there is an automorphism a of G such that a(ul) = U2 and a(v1) = v2. A
graph G is called edge-symmetric if for every two edges (uI , vi) and (u2, v2) there is an automorphism
a of G such that either a(ul) = u2 and a(v1) = v 2 or a(ul) = V2 and a (vl) = u2.

An example of a graph that is vertex-symmetric but not edge-symmetric, the so-called
cube-connected cycles, is shown in Figure 2.35b. The importance of these concepts lies in the fact
that a vertex-symmetric graph can be seen as 'looking from each node (processor) the same' and an
edge (arc)-symmetric graph as 'looking from each edge (arc) the same'.

Exercise 2.4.7 Are the graphs in Figures 2.16 and 2.18 vertex-, arc- and edge-symmetric?

Exercise 2.4.8* Show that if G is a regular graph and degree(G) > 3, then v-conn(G) = e-conn(G).

Exercise 2.4.9 Find an example ofa graph that is (a)* edge- and not vertex-symmetric; (b)* vertex- but
not edge-symmetric; (c)** vertex- and edge- but not arc-symmetric.

116 U FOUNDATIONS

(a) (b) (c)

Figure 2.18 A spanning tree and bipartite graphs

Subgraphs. A graph G, = (V', E') is a subgraph of the graph G y (V, E) if V' C V and E' C E. We
usually say also that a graph G' is a subgraph of a graph G if G' is isomorphic with a subgraph of G.
For example, the graph in Figure 2.16c is a subgraph of the graph in Figure 2.16b - show it!

Several special types of graphs are used so often that they have special names.
Complete graphs of n nodes, notation K,, are graphs with all nodes of degree n - 1; see Figure 2.19

for K5 . Another name for complete graphs is clique.
Bipartite graphs. An undirected graph is called bipartite if its set of vertices can be partitioned

into two subsets V1, V2 in such a way that each edge of G connects a vertex in V, and a vertex in V2.
The term bipartition is often used for such a partition. For example, the graphs in Figures 2.15b and
2.18b, c are bipartite, and those in Figures 2.15c, and 2.18a are not. A complete bipartite graph K.,n
is a bipartite graph of m + n nodes whose nodes can be partitioned into sets A and B with JAI = m,
IBI = n, and two vertices are connected by an edge if and only if one is from A and another from B.
Figure 2.18c shows (4,3.

Exercise 2.4.10 Show that the graphs in Figures 2.18b and 2.23d are bipartite.

Exercise 2.4.11 * Show that a graph is bipartite if and only if it contains no cycle of odd length.

Bipartite graphs may seem to be very simple. However, some of the most important and also the
most complicated graphs we shall deal with are bipartite.

Trees. An undirected acyclic graph is called a forest (see Figure 2.27b), and if it is connected, a
tree. We deal with trees in more detail in Section 2.4.36. A subgraph T = (V, E') of an undirected
graph G = (V, E) is called a spanning tree of G if T is a tree. The subgraph depicted by bold lines in
Figure 2.18a is a spanning tree of the whole graph shown in Figure 2.18a. In general, if G1 = (V, Ej),
G2 = (V, E2), El c E2, then G1 is called a spanning subgraph of G1.

Exercise 2.4.12 Design a spanning tree for the graph in Figure 2.18b. How many different spanning
trees does this graph have?

GRAPHS U 117

(a) (c) K 5

XX K 3 ,3

(b) (d)

Figure 2.19 Planar and nonplanar graphs

Planar graphs. A graph is called planar if its vertices and edges can be drawn in a plane without
any crossing of edges. Planarity is of importance in various applications: for example, in the design of
electrical circuits. Figure 2.19a shows a graph that does not look planar but is (see the other drawing
of it in Figure 2.19b).

There is a simple-to-state condition for a graph not being planar. To formulate this condition, we
define a graph G' as a topological version of G if it is obtained from G by replacing each edge of G
with an arbitrarily long, nonintersecting path.

Theorem 2.4.13 (Kuratowski's theorem) A graph is nonplanar i and only if it contains a subgraph that
is a topological version either of the graph K5 in Figure 2.19c or K3,3 in Figure 2.19d.

Exercise 2.4.14 Show that each graph G is spatial; that is, its nodes can be mapped into points of
three-dimensional space in such a way that no straight-line edges connecting the corresponding nodes of
G intersect either with other edges or with points representing nodes of G. (Hint: map the i-th node of G
into the point (i, i2P, i3).)

Graph complexity measures. Numbers of vertices, I VI, and edges, IEI, are the main size measures
of graphs G = (V,E). Clearly, JEJ < IVI2 . Other graph characteristics of a special importance in
computing are:

diameter max{distance (u, v) I u, v c V}
bisection-width the minimum number of edges one needs to remove from E to

partition V into sets of [tI] and [L.] vertices.

For example, the graph in Figure 2.15b has diameter 3 and bisection-width 4, and the graph in
Figure 2.15c has diameter 2 and bisection-width 4.

Exercise 2.4.15 Determine the bisection-width of the graphs in Figures 2.16 and 2.18.

118 * FOUNDATIONS

hn6 7

g 4

d

a 2 f2 . 3

'0

(a) e (b)

Figure 2.20 Multigraph and hypergraph

Diameter and bisection-width are of importance for graphs that model communication networks;
the longer the diameter of a graph, the more time two processor nodes may need to communicate.
The smaller the bisection-width, the narrower is the bottleneck through which node processors of
two parts of the graph may need to communicate.

Multigraphs and hypergraphs. These are several natural generalizations of the concept of an
(ordinary) graph, as introduced above. A multigraph is like a (directed or undirected) graph, but
may have multiple arcs or edges between vertices (see Figure 2.20a). Formally, a multigraph can be
modelled as G = (V, E, L), where V is a set of vertices, E C V x V x L, and L is a set of labels. An arc
(u, v, 1) c E is an arc from the vertex u to the vertex v labelled 1. Labels are used to distinguish different
arcs between the same vertices.

A walk in a multigraph G is any sequence w = voeivie2 . . . ekvk whose elements are alternatively
nodes and arcs, and ei is an arc from vi 1 to vi. On this basis we define trails and paths for multigraphs.
The concept of isomorphism is defined for multigraphs similarly to how it was defined for graphs.

Also, just as graphs model binary relations, so hypergraphs model n-ary relations for n > 2. An
edge of a hypergraph is an n-tuple of nodes (vl, . . . , v,). An edge can therefore connect more than
two vertices. In Figure 2.20b we have a hypergraph with eight nodes and four hyperedges, each with
four nodes: a = (0, 2,4,6), b = (0,1,2,3), c = (1,3,5,7) and d = (4,5,6,7).

2.4.2 Graph Representations and Graph Algorithms

There are four basic methods for providing explicit representations of graphs G = (V, E).

Adjacency lists: For each vertex u a list L[u] of all vertices v such that (u, v) e E is given.

Adjacency matrices: A Boolean matrix of size IVI x IV1, with rows and columns labelled by vertices
of V, and with I as the entry for a row u and a column v if and only if (u,v) e E. Actually, this
is a Boolean matrix representation of the relation E.

Incidence matrices: A Boolean matrix of size IVI x IEI with rows labelled by vertices and columns
by arcs of G and with 1 as the entry for a row u and a column e if and only if the vertex u is
incident with the arc e.

Words: wC is a binary word ul ... u vI, where ui is the binary word of the ith row of the adjacency
matrix for G. In the case of undirected graphs the adjacency matrix is symmetric, and therefore
it is sufficient to take for ui only the last n - i + 1 elements of the ith row of the adjacency matrix.

GRAPHS 5 119

A graph G= V, E) can be described by a list of size E((EI), an adjacency matrix of size E(•V I2),
an incidence matrix of size 0(1VII E) and a word of size e(1VI2). Lists are therefore in general the
most economical way to describe graphs. Matrix representation is advantageous when direct access
to its elements is needed.

Exercise 2.4.16 Show that there are more economical representations than those mentioned above for
the following graphs: (a) bipartite; (b) binary trees.

None of the above methods can be used to describe infinite graphs, an infinite family of graphs or
very large graphs. (This is a real problem, because in some applications it is necessary to work with
graphs having more than 107 nodes.) In such cases other methods of describing graphs have to be used:
specification of the set of nodes and edges by an (informal or formal) formula of logic, generation by
generative, for example, rewriting, systems; and in applications a variety of hierarchical descriptions
is used. Implicit methods for describing families of graphs are used, for example, in Sections 2.6
and 10.1.

Computational complexity of graph problems. It is often important to decide whether a graph
is connected or planar, whether two graphs are isomorphic, or to design a spanning tree of a graph.
In considering computational complexity of algorithmic problems on graphs, one of the above graph
representation techniques is usually used and, unless explicitly specified otherwise, we assume that
it is the adjacency matrix.

Two of the tasks mentioned above are computationally easy. Connectivity can be decided for
graphs with n nodes in O(n) time on a sequential computer. A spanning tree can be constructed in
0(n lg n) time on a sequential computer. Surprisingly, there is an 0(n) time algorithm for sequential
computers for determining planarity of graphs.

Graph isomorphism, on the other hand, seems to be a very hard problem computationally, and
(as we shall see in Section 5.6) it has a special position among algorithmic problems. No polynomial
time algorithm is known for graph isomorphism, but there is no proof that none exists. It is also not
known whether graph isomorphism is an NP-complete problem; it seems that it is not. Interestingly
enough, if two graphs are isomorphic, there is a short proof of it - just presenting an isomorphism.
On the other hand, no simple way is known in general of showing that two nonisomorphic graphs
are really nonisomorphic. However, as discussed in Chapter 9, there is a polynomial time interactive
randomized protocol to show graph nonisomorphism.

2.4.3 Matchings and Colourings

Two simple graph concepts with numerous applications are matching and colouring.

Definition 2.4.17 If G = (V, E) is a graph, then any subset M C E is called a matching in G if no two edges
of M coincide. A matching M saturates a set of nodes Vo q V if every node of Vo is incident with an edge of
M. A matching M is called perfect if it saturates V.

Figure 2.21a shows a graph and its perfect matching, and Figure 2.21b a graph that has no perfect
matching.

120 U FOUNDATIONS

(a) (b)

Figure 2.21 Graph matching

Exercise 2.4.18 Show that a binary tree has at most one perfect matching.

Exercise 2.4.19* Two people play a game on a graph G = (V, E), IVI > 2, by alternately selecting distinct
nodes to form a path. The last player able to select a node wins. Show that the first player has a winning
strategy if and only ifG has no perfect matching.

Of special interest is the matching of bipartite graphs. The following theorem contains the key
result, which says that if any subset of a set X of vertices of a bipartite graph 'expands' by edges of
the graph, then there is a matching that saturates X.

Theorem 2.4.20 (Hall's theorem) Let G = (V, E) be a bipartite graph with a bipartition (X, Y). G has a
matching that saturates X # for every S C X, JA(S)I > ISI, where A(S) = {YlY IyE Y,]x c S, (x,y) E E}.

As a corollary we get the following theorem.

Theorem 2.4.21 If G is a regular bipartite graph, then G has a perfect matching.

Proof: Let G be a k-regular bipartite graph with a bipartition (X, Y). Since G is k-regular, kIXJ = XE =

kIY1, and therefore IXI = IYI. Now let S C X, and let E1 be the set of edges incident with S, and E2 the
set of edges incident with A(S). It follows from the definition of A(S) that El C E2:

kIA(S)I = JE21 _> lE I = kSI.

We therefore have A(S)I >_I SI. By Theorem 2.4.20 there is a matching M that saturates X, and since
IXI = IYI, M is a perfect matching. a

Theorem 2.4.21 is also called the marriage theorem, because it can be restated as follows: if every
girl in a village knows exactly k boys, and every boy knows exactly k girls, then each girl can marry
a boy she knows, and each boy can marry a girl he knows.

The following fundamental result is useful, especially for proving the nonexistence of perfect
matchings.

Theorem 2.4.22 (Talle's theorem) A graph has a perfect matching if and only iffor any k, ifk vertices are
deleted, there remain at most k connected components of odd size.

GRAPHS U 121

4

a c
b 4 2

d a5

c b2 1
- a

(a) (b) 3

I 2

Figure 2.22 Edge and node colourings of graphs

Exercise 2.4.23** Let G = (V, E) be a bipartite graph with bipartition of vertices into sets A
{al, . . . ,a,}, B = {b 1 , . .. ,b,}. To each edge (ai,bj) assign a variable xq. Let MG = {mij} be an n x n
matrix such that mij = x11 if (ai,bj) E E and mij = 0 otherwise. Show that G has a perfect matching if
and only i det(M) is not identically 0.

There are two types of graph colourings: edge and vertex colouring.

Definition 2.4.24 An edge k-colouring ofa graph G = (V, E) is an assignment ofk elements (called colours)
to edges of E in such a way that no two adjacent edges are assigned the same colour. The chromatic index of
G, X'(G), is the minimal number of colours with which one can colour edges of G. (See, for example, the edge
colouring of the graph in Figure 2.22a.)

Two important results concerning edge colouring that relate the degree of a graph and its
chromatic index are now summarized.

Theorem 2.4.25 (1) (Vizing's theorem) If G has no self-loops, then either X'(G) = degree(G) or
X'(G) = degree(G) + V.7 (2) If G is a bipartite graph, then X'(G) = degree(G).

Exercise 2.4.26 Show that X'(G) = degree(G) + 1 for the Petersen graph shown in Figure 2.36.

Exercise 2.4.27 Show how to colour a bipartite graph K,,,n with degree(Kmn) colours.

Exercise 2.4.28 Show that ifMI and M2 are disjoint matchings ofa graph G with IM, > IM2 1, then there
aredisjointmatchingsM' and M2 such that IM'11 = 1M11 - 1, IM2 I = IM21 + 1 andM1 UM2 =M'UM2.

As an application of Theorem 2.4.25 we get the following.

7 Interestingly enough, deciding which of these two possibilities holds is an NP-complete problem even for
3-regular graphs (by Holyer (1981)).

122 3 FOUNDATIONS

Theorem 2.4.29 If G is a bipartite graph and p > degree(G), then there exist p disjoint matchings M 1, Mp
of G such that

P

E = UMi,
i 1

and,for I < i < p,

Proof: Let Gbe a bipartite graph. By Theorem 2.4.25 the edges of G canbe partitioned into k = degree(G)
disjoint matchings M' ,... M'. Therefore, for any p > k there exist p disjoint matchings (with M' = 0
for p > i > k). Now we use the result of Exercise 2.4.28 to get a well-balanced matching. LI

Finally, let us define a vertex colouring of graphs. A vertex k-colouring of a graph G is an
assignment of k colours to vertices of G in such a way that no incident nodes are assigned the same
colour. The chromatic number, x(G), of G is the minimum k for which G is vertex k-colourable. See
Figure 2.22b for a vertex 5- colouring of a graph (called an isocahedron).

One of the most famous problems in mathematics in this century was the so-called four-colour
problem, formulated in 1852: Is every planar graph 4-colourable? 8 The problem was solved by K.
Appel and W. Haken (1971), using ideas of B. Kempe. Their proof, made with the help of a computer,
created a lot of controversy. They used a randomized approach to perform and check a large number
of reductions. The written version takes more than 100 pages, and at that time it was expected that
one would need 300 hours of computer time for proof checking.

2.4.4 Graph Traversals

Graphs are mathematical objects. In applications vertices represent processes, processors, gates, cities,
plants, firms. Arcs or edges represent communication links, wires, roads. Numerous applications and
graph algorithms require one to traverse graphs in some thorough and efficient way so that all vertices
or edges are visited. There are several basic techniques for doing this. Two of them, perhaps the most
ideal ones, are Euler9 tours and Hamilton10 paths and cycles.

A Euler tour of a graph G is a closed walk that traverses each edge of G exactly once. A graph is
called Eulerian if it contains a Euler tour.

A path in a graph G that contains every node of G is called a Hamilton path of G; similarly, a
Hamilton cycle is a simple cycle that contains every node of G. A graph is Hamiltonian if it contains
a Hamilton cycle.

For example, the graph in Figure 2.23a is Eulerian but not Hamiltonian; the graph in Figure 2.23b
is both Eulerian and Hamiltonian; the graph in Figure 2.23c, called a dodecahedron, is Hamiltonian
but not Eulerian; and the graph in Figure 2.23d, called the Herschel graph, is neither Hamiltonian
nor Eulerian.

8The problem was proposed by a student F. Guthree, who got the idea while colouring a map of counties in
England. In 1879 B. Kempe published an erroneous proof that for ten years was believed to be correct.

9Leonhard Euler (1707-83), a German and Russian mathematician of Swiss origin, made important
contributions to many areas of mathematics and was enormously productive. He published more than 700 books
and papers and left so much unpublished material that it took 49 years to publish it. His collected works, to be
published, should run to more than 95 volumes. Euler and his wife had 13 children.

1°William Rowan Hamilton (1805-65), an Astronomer Royal of Ireland, perhaps the most famous Irish scientist
of his era, made important contributions to abstract algebra, dynamics and optics.

GRAPHS U 123

(a) (c) (e)

(b) (d) (f)

Figure 2.23 Euler tours and Hamilton cycles

Exercise 2.4.30 Show that for every n > I there is a directed graph G, with 2n + 3 nodes that has
exactly 2n Hamilton paths (and can therefore be seen as an encoding of all binary strings of length n).

Graph theory is rich in properties that are easy to define and hard to verify and problems that are
easy to state and hard to solve. For example, it is easy to see whether the graphs in Figure 2.23 do or
do not have a Euler tour or a Hamilton cycle. The problem is whether this is easily decidable for an
arbitrary graph. Euler tours cause no problem. It follows from the next theorem that one can verify
in O((EJ) time whether a multigraph with the set E of edges is Eulerian.

Theorem 2.4.31 A connected undirected multigraph is Eulerian if and only if each vertex has even degree. A
connected directed multigraph is Eulerian if and only ifin-degree(v) = out-degree(v) for any vertex v.

Proof: Let G = (V, E, L) be an undirected multigraph. If a Euler cycle enters a node, it has to leave
it unless the node is the starting node. From that the degree condition follows. Let us now assume
that the degree condition is satisfied. This implies that there is a cycle in G. (Show why!) Then there
is a maximal cycle that contains no edge twice. Take such a cycle C. If C contains all edges of G, we
are done. If not, consider a multigraph G' with V as the set of nodes and exactly those edges of G
that are not in C. Clearly, G' also satisfies the even-degree condition, and let C' be a maximal cycle in
it with no edge twice. Since G is connected, C and C' must have a common vertex. This means that
from C and C' we can create a larger cycle than C having no edge twice, which is a contradiction to
the maximality of C. The case of directed graphs is handled similarly. 0

Exercise 2.4.32 Design an algorithm to construct a Euler tour for a graph (provided it exists), and
apply it to design a Euler tour for the graph in Figure 2.23a.

Theorem 2.4.31, due to Euler (1736), is considered as founding graph theory. Interestingly enough,
the original motivation was an intellectual curiosity about whether there is such a tour for the graph

124 U FOUNDATIONS

40 4Q

54

(a) q(b) C

Figure 2.24 Breadth-first search and depth-first search

shown in Figure 2.23e. This graph models paths across seven bridges in K6nigsberg (Figure 2.23f)
along which Euler liked to walk every day

It may seem that the problem of Hamilton cycles is similar to that of Euler tours. For some classes
of graphs it is known that they have Hamilton cycles (for example, hypercubes); for others that they
do not (for example, bipartite graphs with an odd number of nodes). There is also an easy-to-describe
exponential time algorithm to solve the problem - check all possibilities. The problem of deciding
whether a graph has a Hamilton cycle or a Hamilton path is, however, NP-complete (see Section 5.4).

Exercise 2.4.33 Design a Hamilton cycle for the graph in Figure 2.23c. (This is an abstraction of the
original Hamilton puzzle called 'Round the World' that led to the concept of the Hamilton cycle - the
puzzle was, of course, three-dimensional.)

Another way to traverse a graph so that all nodes are visited is to move along the edges of a
spanning tree of the graph. To construct a spanning tree for a graph G is easy. Start with S as the
empty set. Check all edges of the graph, each once, and add the checked edge to S if and only if this
does not make out of S a cyclic graph. (The order in which this is done does not matter.)

Two other general graph traversal methods, often useful in the design of efficient algorithms (they
also design spanning trees), are the breadth-first search and the depth-first search. They allow one
to search a graph and collect data about the graph in linear time.

Given a graph G = (V, E) and a source node u, the breadth-first search first 'marks' u as the node
of distance 0 (from u), then visits all nodes reachable through an arc from u, and marks them as
nodes of distance 1. Recursively, in the ith round, the breadth-first search visits all nodes marked by
i and marks all nodes reachable from them by an arc, and not marked yet, by i + 1. The process ends
if in some round no unmarked nodes are found. See Figure 2.24a for an example of a breadth-first
traversal of a graph. This way the breadth-first search also computes for each node its distance from
the source node u.

A depth-first search also starts traversing a graph from a source node u and marks it as 'visited'.
Each time it gets through an edge to a node that has not yet been marked, it marks this node as
'visited', and tries to move out of that node through an edge to a node not yet marked. If there is no
such edge, it backtracks to the node it came from and tries again. The process ends if there is nothing
else to try. See Figure 2.24b for an example of a depth-first traversal of a graph.

The graph traversal problem gets a new dimension when to each edge a nonnegative integer -

GRAPHS P 125

32 3
1 88 78 32 < 8 1
2 -88- 65 20 8 2 32 88

-2 8 65 2 88 99 78
3 65 76 886 6694

4 78, 76 t 98 65

20 665 32 1 88

7 9996' 98 8

8 2 1.8 W

Figure 2.25 Minimal spanning tree

Figure 2.26 Minimal spanning tree

called its length - is associated (see Figure 2.25b). We then speak of a distance graph, and the task is
to find the most economical (shortest) traversal of the distance graph.

The first idea is to use a minimal spanning tree. This is a spanning tree of the distance graph
with minimal sum of the length of its edges.

There are several simple algorithms for designing a minimal spanning tree for a graph G = KV, E).
Perhaps the best known are Prim's algorithm and Kruskal's algorithm. Both start with the empty set,
say T, of edges, and both keep adding edges to T. Kruskal's algorithm takes care that edges in T
always form a forest, Prim's algorithm that they form a tree. In one step both of them remove the
shortest edge from E. Kruskal's algorithm inserts this edge in T if, after insertion, T still forms a
forest. Prim's algorithm inserts the selected edge in T if, after insertion, T still forms a tree. Since
dictionary operations can be implemented in O(lg IVI) time, both algorithms can be implemented
easily in O(IEJ lg JEJ) = O(IE lg IVI) time (Prim's algorithm even in O(JEJ + IVI lgJVJ) time, which is a
better result).

Exercise 2.4.34 Find all the distinct minimal spanning trees of the graph in Figure 2.26.

Exercise 2.4.35 Use Kruskal's and Prim's algorithms to design a minimal spanning tree of the graph
in Figure 2.26.

A closely related graph traversal problem for distance graphs is a modification of the Hamilton
cycle problem called the travelling salesman problem - TSP for short.

Given a complete graph G = (V, V x V), V = {cl, . . . c,c} and a distance d(ci,cj) for each pair of
vertices (usually called cities in this case) ci and cj, the goal is to find a Hamilton path in G with the

126 * FOUNDATIONS

minimal sum of distances of all nodes - in other words, to find a permutation 7r on {1, n} that
minimizes the quantity

n-1Sd(c,(j), c,(i+ 1)) + d(c.(,), cj)).

No polynomial time algorithm is known for this problem, but also no proof that such an algorithm
does not exist. A modification of TSP, given a graph G and an integer k, to decide whether G has a
travelling salesman cycle with total length smaller than k, is an NP-complete problem. The travelling
salesman problem is perhaps the most studied NP-complete optimization problem, because of its
importance in many applications (see Section 5.8).

2.4.5 Trees

Simple bipartite graphs very often used in computing are trees. As already mentioned (Section 2.4.1),
a tree is an undirected, connected, acyclic graph. A set of trees is called a forest. See Figure 2.27 for a
tree and a forest. The following theorem summarizes some of the basic properties of trees.

Theorem 2.4.36 The following conditions are equivalent for a graph G = (V, E):

1. G is a tree.

2. Any two vertices in G are connected by a unique simple path.

3. G is connected, and JEJ = IVI - 1.

4. G is acyclic, but adding any edge to E results in a graph with a cycle.

Exercise 2.4.37 Prove as many equivalences in Theorem 2.4.36 as you can.

Exercise 2.4.38* Determine (a) the number of binary trees with n nodes; (b) the number of labelled trees
with n nodes.

Special terminology has been developed for trees in computing. By a tree is usually meant a
rooted tree - a tree where a special node is depicted as a root. All nodes on a path from the root to a
node u, different from u, are called ancestors of u. If v is an ancestor of u, then u is a descendant of v.
By the subtree rooted in a node x we understand the subtree containing x and all its descendants.

If (y,x) is the last edge on a path from the root to a node x, then y is the parent of x, and x a child
of y. Two nodes with the same parent are called siblings. A node that has no child is called a leaf.
All other nodes are called internal.

The number of children of a node is its degree, and its distance from the root is its depth. The
degree of a tree is the maximal degree of its nodes, and the depth of a tree is the maximal depth of
its leaves. (Note that this meaning of degree is different from that of graphs in general.)

A tree is an ordered tree if to each node, except the root, a natural number is associated in such a
way that siblings always have different numbers. The number associated with a node shows which
child of its parent that node is. (Observe that a node can have only one, for example, only the fifth
child.)

The term binary tree is used in two different ways: first, as a tree in which any node has at most
two children; second, as an ordered tree in which any node has at most two children and to all nodes
numbers 1 or 2 are associated. (In such a case we can talk about the first or the second child, or about

LANGUAGES 127

Root

NN, 2

p aren't 2

2 1 2 'children

siblings

leaves

(a) Tree (b) Forest

Figure 2.27 A tree and a forest consisting of five trees

the left or the right child. Observe that in such a case a node can have only the left or only the right
child.) A complete (balanced) binary tree is a tree or an ordered tree in which each node, except
leaves, has two children. More generally, a k-nary balanced tree is a tree or an ordered tree all nodes
of which, except leaves, have k children.

Basic tree traversal algorithms are described and illustrated in Figure 2.28 by the tree-labelling
procedures, pre-order (Figure 2.28a), post-order (Figure 2.28b) and in-order (Figure 2.28c). All three
procedures assume that there is a counter available that is initiated to I before the procedures are
applied to the root, and that each time the procedure Mark(u) is used, the current number of the counter
is assigned to the node u, and the content of the counter is increased by 1. All three procedures can
be seen also as providing a labelling of tree nodes.

Representation of binary trees. A binary tree with n nodes labelled by integers from 1 to n can
be represented by three arrays, say P[1 : n], L[1 : n], R[1 : n]. For each node i, the entry P[i] contains the
number of the parent of the node i, and entries L[i] and R[i] contain numbers of the left and the right
child. With this tree representation any of the tree operations (a) go to the father; (b) go to the left son;
(c) go to the right son, can be implemented in 0(1) time. (Other, more economical, representations
are possible if not all three tree operations are used.)

2.5 Languages

The concept of a (formal) language is one that is key to computing, and also one of the fundamental
concepts of mathematics.

Formalization, as one of the essential tools of science, leads to representation of complex objects
by words and languages. Modem information-processing and communication tools are also based
on it. The understanding that complex objects, events and processes can be expressed by words and
languages developed some time ago. Newer is the discovery that even simple languages can represent
complex objects, if properly visualized.

2.5.1 Basic Concepts

An alphabet is an arbitrary (mostly finite) set of elements that is considered, in the given context, as
having no internal structure.

128 I FOUNDATIONS

pre-order(u) post-order(u) in-order(u)

begin begin begin
Mark(u); post-order(left son(u)); in-order(left son(u);
pre-order(left son(u)); post-order(right son(u)); Mark(u);
pre-order(right son(u)); Mark(u); in-order(right son(u);
end end end

18 5

2 6 4 7 38

3 5 7 2 3 6 1 4 6

4 815 2 7

(a) (b) (c)

Figure 2.28 Tree traversal algorithms

Words. A finite word (string) w over an alphabet E is a finite sequence of elements from E, with
wI denoting its length. E is the empty word of length 0.

A finite word w over E of length n can also be viewed as a mapping w: {1, .. . ,n} -*Y E, with
w(i) as its ith symbol. In a similar way, an infinite word w over E (or an w-word (w-string)) can be
seen as a mapping w: N - E, and a bi-infinite word w as a mapping Z -- E. Analogically, one can
also consider two-dimensional rectangular words. For example, w: {1 n} x {1...m} -

Two-dimensional infinite words can be defined as mappings w: N x N - E or w: Z x Z - E.
E* denotes the set of all finite words over E, and El the set of nonempty finite words over E.

ZE and Ž'w denote the sets of all infinite and doubly infinite words over E, respectively. (Z s)
denotes the set of all strings over E of length n (< n).

Concatenation of a word u, of length n1, and a word v, of length n2, denoted by u v, or simply
uv, is the word of length n, + n2 such that w(i) = u(i), for I < i < ni, and w(i) = v(i - n1), otherwise.
Analogically, we define a concatenation of a word u from E* and v from E'. Powers ui for u E E*
and i c N are defined by uo = E, ui+ I = uu', for i > 0.

Subwords. If w = xyz for some finite words x and y and a finite or w-word z, then x is a prefix of
w, y is a subword of w, and z is a suffix of w. If x is a prefix of w, we write x -_ w, and if x is a proper
prefix of w, that is, x # w and x w, we write x -< w. For a word w let Prefix(w) = {xIx -_ w}.

The reversal of a word w =a ... a,, ai E E is the word wR = a, . . a,. A finite word w is a
palindrome if w = wR.11

Projections. For a word w E E* and S C E, ws is the word obtained from w by deleting all symbols

"lExamples of palindromes in various languages (ignore spaces): RADAR, ABLE WAS I ERE I SAW ELBA,
RELIEFPFEILER, SOCORRAM ME SUBI NO ONIBUS EM MARROCOS, SAIPPUAKAUPPIAS, ANANAS OLI
ILO SANANA, REVOLTING IS ERROR RESIGN IT LOVER, ESOPE RESTE ICI ET SE REPOSE, EIN LEDER
GURT TRUG REDEL NIE, SATOR AREPO TENET OPERA ROTAS, NI TALAR BRA LATIN, ARARA, KOBYLA
MA MALY BOK, JELENOVI PIVO NELEJ.

LANGUAGES * 129

not in S. #sW denotes the number of occurrences of symbols from S in w. For example, for w = a3 b3
c

3
,

w -,,} = a3 c3 and #0 w = 3.
A morphism 0 from an alphabet E, to an alphabet E2 is a mapping 0: E, -- E. 0 is often

considered as being extended to map E* into E* as follows: for a w = a, ... a., ai c E1,O(w) =
ý6(aj) ... O(a,). 0 can also be naturally extended to map two-dimensional words, w-words and
ww-words.

Infinite words can be defined, for example, through morphisms and recurrences. Some of them
have been so intensively investigated that they have special names.

Example 2.5.1 (Thue w-word)

THUE = abbabaabbaababbabaababbaabbabaab...

is defined as lim xi, where
xo = a, xi = O(xi- I), for i > 1,

and 0: {a,b} -4 {a,b}* a morphism with

O(a) = ab 0(b) = ba.

(Since xi -< xi+, for all i > 0, we can define lim xi as the only w-word such that all xi are its prefixes.)

Example 2.5.2 (Fibonacci w-word)' 2

FIB = abaababaabaababaababa...

is defined by the recurrence yo = a,yi = p(yi-1), for i > 1, and the morphism p(a) = ab, p(b) = a.

Languages. If E is an alphabet, then any subset L C ZE* is called a language over E. Any subset
of E is called an w-language. Similarly, we define ww-languages.

Complement of a language L, notation L', is defined by E - L, where E is the smallest alphabet
such that L C_ E*.

Concatenation L1L2 of a language L1 and a language or w-language L2 is defined by

LIL 2 = {uvI u E L1,v c L2}.

If L is a language, then its powers L, i > 0, are defined by L' = {, L'+' - LL', for i > 0, and its
iterations L+, L* and L' are defined by

L+ = U L; L* = L,
i=1 i=0

and
L' = {u = uIu 2u3 ... I u is an w-word and all ui e L}.

Shuffle operation on languages L1 and L2, notation shuffle (L1 , L2), or L1 , L2 , is defined by
L, oL2 = {xly1X2y2.. xnyn IX1. • • Xn E Lj,yj .. • G L2}.

12 The Fibonacci word has been intensively investigated, and has a variety of interesting properties; see Berstel
(1985). For example, it has n + I different subwords of length n for any integer n; if x is its subword, then so is xR;

there is an x # E such that x3 is its subword, but there is no x 6 e such that x 4 is a subword of FIB.

130 U FOUNDATIONS

Morphism and inverse morphism of languages. If L C *, {C1 }E* and 0: E -- * is a
morphism, then b(L) = {1(w) jw E L} and '-1(LI) = {wlw E E*,O(w) E L1}.

Exercise 2.5.3 Which of the following identities are valid for all languages L1, L2, L3 and morphisms h:
(a) LI(L 2 nL3) = LIL 2 nLIL3; (b) (LIL 2)*L1 = LI(L 2L1)*; (c) (L1 UL2)* = L2(LIL2)*;
(d) h(h(Li)) = h(LI); (e) h(LIL2) = h(LI)h(L2); (f) h(L*) = h(L,)*?

A substitution, from an alphabet E to an alphabet El, is a mapping a: E -42'1 It can be extended

to map E* 2r -* as follows.

o-(al . .. a,) = or(al)... a(a,) if al... a, E . *,ai G E,

and for a language L

o(L) U , (w).
wCL

A left quotient of languages A, B is defined by

A-'B = {yi 3x E A,xy e B}.

For example, if L = {ab' Ii > 1}, then {a2 } 1L - {aibi+2 i > 0}.

Exercise 2.5.4 Determine A- 1 B for the following pairs of languages:
(a)A= {aibili >O},B= {a'bIj J-i>0};(b)A= {wwlwE {0,1}}, B= {wwRIwE {0,1}}.

A prefix closure of a language L, Prefix(L) = {y]3z, yz e L} = UWEL Prefix(w). A language L is said
to be a prefix-closed language if Prefix(L) = L. A language L is called prefix-free if x -< y for no two
x,y in L; that is, no word in L is a proper prefix of another word in L.

Example 2.5.5 If L = {albi I i > j > 0}, then Prefix(L) = {aibj I i > j Ž 0}. The language L is prefix-free, and
the language Prefix(L) is prefix-closed.

Exercise 2.5.6* Let L C {0, 1} * be a prefix-free language, Show that thefollowing Kraft's inequality
holds: ZwCL2-1 w < 1.

Families of languages. If £ is a family of languages, then co-£ is the family of languages whose
complement belongs to £; that is,

co-£ = {LILc Ll} = {LCIL GCj}.

Example 2.5.7 1fF is the family offinite languages, then co-F is the family of'co-finite languages' - that is,
languages whose complements are finite.

LANGUAGES 3 131

2.5.2 Languages, Decision Problems and Boolean Functions

As already discussed in Section 2.1, an intuitive concept of a computational problem can be formalized
through a language decision problem, for an L C E>*, or a search problem, for an R C E * x E *. Both
can be further 'computerized': for languages and relations over the binary alphabet, through the
concept of an infinite sequence of Boolean functions. For example, we can associate with a language
L C {0,1}* the following sequence of Boolean functions fL,iJ}i 1 defined byfL (xl,.. . ,xi) = 1 if and
only if x,... xi E L, with eachfL,i representing an instance of the given computational problem.

Example 2.5.8 The graph isomorphism problem can be modelled bya language membership problem asfollows.
Let LGI C {0,1 } * be the set of all words w such that w = xy, where x = w(Gi) and y = w(G 2)for two isomorphic
graphs. The problem of deciding whether two graphs G1 and G2 are isomorphic is then reduced to the problem
of deciding whether w(G 1)w(G 2) E LGI.

Example 2.5.9 The Boolean matrix multiplication problem can be modelled by the language LBMM = {W I W =

W(MO)w(M 2)w(M 3), where MI M2, M 3 are Boolean matrices and M, M2 = M 3 }. The problem ofmultiplying
two Boolean matrices M1 and M 2 of the same degree is then reduced to the problem of searchingfor a matrix
M 3 such that w(M1)w(M 2)w(M 3) E LBMM.

Example 2.5.10 The language L = {ww w E {0, 1}J*} is represented by the following family of Boolean
functions F = {ff }•= J, where

~n iX 1 ... A = X +i), 2 n is even;
0) , otherwise.

In order to make the above idea really well defined, a fixed representation of objects of concern
has first to be chosen, and also a fixed encoding of such a representation. Fortunately, as we shall see
in Chapters 5 and 6, for investigation of such basic questions as 'which computations are (practically)
feasible', most of the usual representations of objects we work with are 'equally good', and the
same applies to encoding methods. For example, any of the following graph representations - lists,
adjacency matrices, incidence matrices, and binary words - can easily, in low polynomial time, be
converted into each other. Naturally, there are representations that are possible and sometimes even
desirable which do not meet the condition of easy transferability to other usual representations.
An important example of two 'exponentially' different representations is the case of integers. All
representations in positional number systems can be considered as mutually transferable one to
another. However, the representation of integers in the unary number system is essentially different
because it is exponentially larger. As a result, as we shall see in Chapter 5, some algorithms that are
exponential with respect to any positional representation of input integers become polynomial with
respect to the size of unary representations of input integers.

Exercise 2.5.11 Give a Boolean function representation for the following languages:
(a) L = {www Iw E 10, 1}* ; (b) L = {w Iw E f0,1}l*, 1(w) = 3};
(c) L= {w]we 1 0,1}l*,G(w) is a graph containing a triangle}.

2.5.3 Interpretations of Words and Languages

Computational objects are not the only ones that have natural representations in terms of words
and languages. There are also various general interpretations of words and languages that provide
interesting objects.

132 U FOUNDATIONS

1 23 2

2 3 33 31

2 1

Figure 2.29 A tree representation of a language

Tree representations. Any rooted tree T, finite or infinite, of a finite degree, say k, can be
represented by a language LT _ {1, . ., k}*, using a node labelling, as follows (see Figure 2.29 for an
illustration). The root is labelled 6, and the children of each node are labelled by distinct integers from
the set {1, . .. ,k}. Let LT be the set of words over the alphabet {1, . . . ,k} that describe all possible
paths in the tree T; for each path in the tree, starting in the root, the word consisting of labels of nodes
on the path is taken into LT. For example, for the tree in Figure 2.29 the language LT contains the
following words of length at most 2: e, 1,3,11,12,32,33.

Similarly, any language L C E* such that Prefix(L) = L can be seen as a tree TL. Each word of L is
a node of TL; - is the root, and if ua E L,u E L,a E E, then the vertex ua is a child of the vertex u. For
example, the language {1,2,..., k}* describes the infinite complete13k-nary tree.

The fact that prefix-closed languages represent ordered trees can be used to define various families
of trees using language recurrences as shown below (see also Figure 2.30). Observe that in some cases
we need to use the whole set of integers as the alphabet because there is no upper bound on the
degree of trees in the family of trees that is being defined.

Balanced binary trees: BBTo = {e},
BBTi = {e} U0BBTij U 1BBTi_,,i > 1;

Fibonacci trees: FTo = {f},FTi = {e},

FTi = {e} U0FTij U 1FT1- 2, i > 1;
Fibonacci heaps: FHo = {e},FH1 = {E} U {0},

FHm = FHji- U (i - 2) FH- 2, i > 2;
Binomial heaps: BHo = {E},

BHi = BHi-j U (i - 1) BHi-1, i > 1;

Doubly-logarithmic-depth trees: DLTo = {e, 0,11},

DLTj = {e} U0DLTijU... U22'-1-1 DLTi-,.

Similarly, any w-language represents an infinite leafless tree.

Number representations. Any language L C {0,... ,k - 1}* can be seen as representing a set
of integers written in the k-nary positional system - the so-called radix notation. Similarly, any
w-language L C {0,... ,k - 1}1 can be interpreted as a set of reals in the interval [0,11.

13The term 'balanced' is also used instead of 'complete'.

LANGUAGES U 133

BBTO: F r7o: 0 FTF:@ FHo:@ FH1 :

BH 0 : DLT o:

BH i-1DT (

BH8H

Figure 2.30 Recursively defined families of trees

Exercise 2.5.12 * Show that the language {0, 2}1' can be seen as representing the Cantor set defined in
Example 2.1.2. (Since there is a trivial bijection between languages {0,1}1' and {0,2}w, and the first
can be seen as representing all reals - in the binary system - in [0,1), we get that the cardinality of the
Cantor set is exactly JRI.)

Image representations. Surprisingly, simple words and languages can represent complex curves
and images. This is again an example of how vizualisation brings a new dimension to investigations
of formal objects. Basics of several such interpretations will now be discussed.

Chain code pictures. Any word over the alphabet {l, r, u, d} can be seen as an algorithm for

r4 4 1 1ur4ul 4urluld41u41d4 r5 u41 d3r 4 2l3dr2

Figure 2.31 Chain code pictures and their drawing algorithms

134 N FOUNDATIONS

drawing a picture along the lines of the unit grid. A starting point in the grid is assumed, and
symbols 1, r, u, d are interpreted as follows:

I draw a unit-line to the left,
r draw a unit-line to the right,
u draw a unit-line up,
d draw a unit-line down.

Figure 2.31 shows two chain code pictures drawing algorithms (words) and the corresponding
pictures (arrows point to the starting points). Naturally, each language L C {1, r, u, d}* represents a
set of such pictures. For example, the language {rnuVl"dd In > 1} represents the infinite set of squares
whose sides have integer lengths.

Turtle interpretation of words is a natural generalization of the idea of the chain code pictures. It
is allowed to draw lines of various lengths, to turn through various angles, and to interrupt drawings.
This is amplified by a special choice of sets of words which serve as drawing programs.

The basic idea of a turtle representation of words is the following. At the beginning of a drawing,
and after each move, the 'turtle' is in a state (x, y, a), where (x, y) are coordinates of a point in the
plane and a is an angle, called the heading - the direction the turtle is facing at that point. The picture
that the turtle 'draws' is determined by the initial state (xo,yo, ao) of the turtle, two parameters
(d, the length, and 6, the angle), and by a drawing algorithm - a word over the alphabet {F,f , -}.
Each symbol of such a word is taken as a statement with the following semantics:

F draw a line of length d in the direction determined by the heading of the current state;
that is, move from the current state (x, y, a) to the state (x + d cos a, y + d sin a, a),
and draw a line between these two points;

f make the same change of state as in the case of statement F, but draw no line -
this allows one to interrupt a drawing;

+ turn left through the angle 6;
- turn right through the angle 6.

Figure 2.32a shows a turtle interpretation of the string 'F-F-F-F' with d = 1, 6 = 90 and with the
turtle initially facing up.

Interesting families of pictures can be obtained using turtle interpretations of strings obtained
from some string w0 by the iteration of a morphism 0 using the scheme wi = O(wi-1), i > 1.

Example 2.5.13 The interpretations of words w1 , w 2 , w3 , for wo = F - F - F - F and the morphism O(F) =
F - F + F + FF - F - F + F, 0(-) = -, and 0(+) = +, are shown in Figure 2.32b, c, d. (The resulting curves
are called Koch island figures.)

Exercise 2.5.14 Draw a turtle interpretation of w 2 for wo = F + F + F + F, O(F) = F +f - FF + F +
FF + Ff + FF -f + FF - F - FF - Ff - FFF, 0(f) =ffifff, 05(+) = +, 0(-) = -, and d = 1, 6 = 90.

Turtle interpretations and various modifications of these interpretations will be discussed in more
detail in Section 7.4.

LANGUAGES U 135

(a) (b)

() (d)

Figure 2.32 Koch island figures for n = 0, 1, 2, 3

Point representations. Let Ak = {(ij) 0 < ij < k, ij E N} be an alphabet, where pairs (ij) are
taken as symbols. Any word

(Xi,yi) ... (XnYn)

over the alphabet Ak can be interpreted as the point of the square [0,1) x [0,1) with the coordinates

(0. x,... x", 0.yj... y'),

where 0. x,. . . x, and 0. yi ... y, are interpreted as fractions expressed in the k-nary positional system.
Any language L over Ak represents, therefore, a set PL of points in the square [0,1) x [0,1).

Example 2.5.15 Points representation of languages {(0, 1), (1,0), (1, 1)}* and

{ (0, 0), (0,1), (0, 2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)}*,

with k = 3, is shown in Figure 2.1. Figure 2.33a shows the image described by the language
{(0,1),(1,0)}{(0,0),(1,1)} 2X* U {(0,0)(0,0),(1,1)(1,1)}X*, where X = {(0,0),(0,1),(1,0),(1,1)}.
Figure 2.33b shows the image described by the language A* (0, O)A* (0, 0) B*, where A = { (0,1), (1,0) } and
B = Au {(0,0),(1,1)}.

Let us now analyse the image manipulation interpretations of basic language operations. It is
clear that union and intersection of languages yield union and intersection of images. More interesting
are operations of concatenation, iteration and quotient.

Concatenation of two languages performs the placement operation on the corresponding images
in the following sense. Let L1, L2 be languages over the alphabet Ak, for some k. Then the language

136 U FOUNDATIONS

(a) (b) (c)

Figure 2.33 Fractal pictures

(0,1)(0,1)(1,0) (0,0) --- 0

S(0,) ---2

(1,0)--- 1

S(1,1) --- 3

(0,0)

Figure 2.34 Pixel representation

L = L, L2 represents the image obtained by placing, appropriately scaled down (as described below),
a copy of the image represented by the language L2, at each point of the image represented by Li.
That is, if (0...l.. x,,, O..y... y,) C PL1 , then a copy of PL2, scaled down by the factor 1, is placed in
the square of size 1 x - with its left-down comer located at the point (0. x, ... x,, 0. y.... y,).

For example, the language A* represents the whole [0,1) x [0,1) square, and
{(0, 0), (0, 2), (1,1), (2,0), (2,2)}A*' represents the picture in Figure 2.33c.

The picture-manipulation meaning of the iteration is now clear. For example, the language
{(0,0), (1, 1)}* represents the diagonal of the unit square.

The left quotient operation represents zooming - an inverse of placement. The quotient {w}I-L,
where w E A*, w = (x, yj). ... (x,,y,) can be seen as picking up the subimage of PL that is located
in the square of size - x I with its left-down comer at the point (0. x,... Xn, O.y-... Yn), enlarging
it kV times and placing it in the quadrant [0,1) x [0,1). For example, {(0,1)} 1L, for the language L
representing the image in Figure 2.33a, describes the image shown in Figure 2.33c.

Exercise 2.5.16 Draw the image obtained by the point representation of the expression
(1,1)*(0,0)I*(1,0)T*, where l = {(0,0),(1,1)} and T = IU{(0,1),(1,0)}.

LANGUAGES U 137

Pixel representations. Words w c { (0, 0), (0, 1), (1,0), (1,1) }* can also be seen as representing
pixels of the unit square - subsquares of size - x -L (see Figure 2.34). More exactly, a word

(a,,bi)... (a, b,,) represents a pixel of size - x - with the low left comer located at the point
represented by w.

To simplify the notation, symbols 0,1,2,3 are often used in place of symbols (0,0), (1,0),
(0,1), (1,1), respectively For example, {00, 03,10,13,20,23,30,33} represents the image shown in
Figure 2.33c.

Exercise 2.5.17 Describe images having the following pixel representations: (a) {0, 1,2, 3}*;
(b)•{0, 1, 2,3} *; (c) {1, 2} *{ 0,1,2,3} *; (d) O{1, 2} *{ 0,1,2,3} *; (e) {1,2,3} *O{1,2} *{ 0,1,2,3 }*.

2.5.4 Space of w-languages*

w-languages can be seen as formal counterparts of an intuitive concept of an (infinite) process. As
such they play an important role in various areas of computing: for example, in the semantics of
computational processes and in cellular automata.

The space of w-languages is naturally more complex than that of languages. On the other hand,
in order to deal with w-languages, we can use powerful tools of mathematics. In this subsection we
discuss the basic concepts of w-languages from this point of view.

For any alphabet E with at least two symbols the set El has the cardinality of the continuum, and
it is a (compact) metric space with respect to the metric d : E' x E--, R defined, for w1 , w2 e E, by

Sw 0, if W1 = W2;
11, if i is the smallest integer such that w1 (i) : w22(i).

With this metric at our disposal we can use methods and results of topology and functional analysis
to deal with w-languages. Surprisingly, the basic concepts of this approach can be expressed in terms
of (ordinary) languages over E. To show this, we define for a language L c E*

L = LE; (2.16)

L = {wjwEE,Prefix(w)fLisinfinite}; (2.17)

adherence(L) = Prefix(L . (2.18)

In the topology introduced by the metric d, a set S is open and closed simultaneously if and only

if S = L for a finite language L c E*; S is open if and only if S = L for a language L C E*; and S is
closed if and only if S = adherence(L) for a language L C Ew. Finally, a set is a countable intersection

of open sets if and only if S = L for a language L c E*.

Example 2.5.18 Let E = {a,b}. If L = {aibj 10 < i < j}, then L = {a,b}l', L = a*bw, and adherence(L) =
aw Ua*bw.

Informally, L is the set of all w-words having a prefix from L; L is the set of those w-words
that have infinitely many prefixes from L. Finally, adherence(L) is the set of those w-words that have
infinitely many prefixes that are prefixes of some words from L.

138 , FOUNDATIONS

2.6 Algebras

An algebra A = (E,oi,... ,o, is a set E (the carrier of A) and operations ol, ... ,o, defined on E
and satisfying some axioms. Elements of the carrier are also considered as 0-ary operations. From
a variety of important algebras, of special interest to us are monoids, groups, Boolean algebra and
Kleene algebra.

2.6.1 Closures

Set extensions and closures. If o is a binary operation and GD a unary operation on a set S, then we
may extend these operations to apply to subsets of S in the following way:

AoB = {aobiaEA,bE B},

OA = {OalaeA}.

A set A C S is closed under the binary operation o (the unary operation GD) if x, y E A =• x o y E A
(x E A =: G®a E A).

Example 2.6.1 For the operation + of addition and the operation .,/ of square root, on positive reals, we have,

for the sets A = {x 14 < x < 36} and B = {x 10 < x < 40}, A + B ={x 14 < x < 76}, x/A = {x 12 < x < 6}.

The closure of a set A under an operation is the least set that contains A, and it is closed under that
operation.

2.6.2 Semigroups and Monoids

A semigroup S = (S, -) is a set S (a carrier of S), with an associative operation '.' (a semigroup
multiplication). A monoid M = (S,., 1) is a semigroup (S, .), with a unit element 1 such that a. 1 =
1 a = a, for each a E S. A semigroup (monoid) is called Abelian, or commutative, if its multiplication
is such.

Example 2.6.2 (1) (N, +, 0), (Q, +,O0, (R, +,0), (C, +, 0), (N, x, 1), (Q, x, 1), (R, x, 1) are commutative
monoids.

(2) If E is an alphabet, then K>*, .,E) with '-' as the concatenation, is a noncommutative monoid, also
called a free monoid.

(3) For any fixed integer n, the set of all matrices of degree n, with elements from Z, is a commutative
monoid with respect to matrix addition and the null matrix and a noncommutative monoid with respect to
matrix multiplication and the unit matrix.

(4) (N+, +) is an example ofa semigroup that is not a monoid.

If M = (S, .,1) is a monoid, then for any A, B C S we define (multiplication) A.B = {a.bIa E A,
b E B}. Similarly, we define A',A', i > 1, and A* ,A+.

A morphism from a monoid AM1 = (S1, "1,11) to a monoid M4 2 = (S2, "2,12) is a mapping : S -1 $S2

such that M (11) = 12 and L(u.1 v) = P (u). 2 P(v) for any u,v E S1.
A congruence over a monoid M = (S,., 1) is an equivalence relation, =, on S which is compatible

with the monoid operation, that is which satisfies the implication

U1 - V1 U2 • V2 > U1 " U2 - V1 " V2"

ALGEBRAS U 139

Exercise 2.6.3 Show that tf is a congruence over a monoid A4 = (S,., 1) and for a E S we let [a]-
denote the equivalence class in which a is, then the set of all such equivalence classes forms a monoid, the
so-called quotient monoid M_, with the multiplication defined by [a] -. [b] - = [a- b]- and the unit
[1]_.

Exercise 2.6.4 Let L C E* be a language. Show that the relation =L on E* is defined by u _L v if and
only if Vx, y E E *, xuy E L ý= xvy E L is a congruence. (The corresponding quotient monoid is called
the syntactical monoid of L.)

Exercise 2.6.5 Describe the syntactical monoids for the following languages Lover the alphabet {0, 1}:
(a) the set of all words with no more than three consecutive O's; (b) L = {OT i i > 0}.

2.6.3 Groups

A group g = (C, 1) is a set C (the carrier of g), with a binary operation '.' (multiplication), a
unary operation - (inverse) and a unit I E C such that (C,., 1) is a monoid, and for any a E C

a'-1 =a-1 a=1.

g is called commutative, or Abelian, if '.' is such. Let 1g1 denote the cardinality of the carrier of g.
Two elementary properties of groups are summarized in the following theorem.

Theorem 2.6.6 If 0 = (C,., 1 1) is a group, then

1. For any a, b E C there is a unique x such that a x = b: namely, x = a-1 • b.

2. Foranya,b,cEC,a-c=b.c=ý.a=b.

Example 2.6.7 (1) (Z, +,-,0 and (Q -{0}, x, -1, 1 are commutative groups; '-' is here the unary
operation of negation.

(2) The set of all permutations of n elements is a group, for any integer n, with respect to the composition
of permutations, inversion of permutations and the identical permutation.

Exercise 2.6.8 Show that,for any integer n, the set Z, of the residual classes with addition and negation
(both modulo n) and with 0 is a commutative group. Similarly, Z4 is a commutative group with respect
to multiplication and inversion (both modulo n) and with I as the unit.

To the most basic concepts concerning groups belong those of subgroups, quotient groups and
the isomorphism of groups.

Let 9 = (C, -, -1 /be a group. If C1 is a subset of C that contains l and is closed under multiplication
and inverse, then (C 1,., -1, 1) is called a subgroup of 9.

Two groups 91 = (C1, .1-,-, 10) and 02 = (C2,'2,-12,12) are called isomorphic if there is abijection
i: C1 -* C2 such that i(11) = 12, i(a- 11) =- i(a)-12 i(a -1 b) = i(a) "2 i(b) for any a, b e C. An isomorphism
of a group 9 with itself is called an automorphism.

140 U FOUNDATIONS

Exercise 2.6.9* IfR = (S,., 1,1) is a subgroup of a group 9 = (S,.,-1 1), then the sets aS1, a E S, are
called cosets. Show that thefamily of cosets, together with the operation of multiplication, (aS1) . (bS1) =
(ab)Sl, inversion (aS 1)-1 = a-'S1, and the unit element S is a group (the quotient group ofQ modulo
H, denoted 9/M).

Two basic results concerning the relations between the size of a group and its subgroups are
summarized in the following theorem.

Theorem 2.6.10 (1)(Lagrange's' 4 theorem) If - is a subgroup ofa group 9, then IR1 is a divisor of G1.
(2) (Cauchy's15 theorem) If a prime p is a divisor of 191 for a group g, then g has a subgroup R with

IHI = p

Exercise 2.6.11 Find all subgroups of the group ofall permutations of (a)four elements; (b)five elements.

Exercise 2.6.12* Prove Lagrange's theorem.

Exercise 2.6.13** Let g be a finite Abelian group. (a) Show that all equations x 2
= a have the same

number of solutions in 9; (b) extend the previous result to equations of the form xn = a.

Example 2.6.14 (Randomized prime recognition) It follows easily from Lagrange's theorem that if the
followingfast Monte Carlo algorithm, due to Solovay and Strassen (1977) and based on the fact that computation
of Legendre-Jacobi symbols can be done fast, reports that a given number n is composite, then this is 100% true
and if it reports that it is a prime then error is at most 1

2

begin choose randomly an integer a E ... , n};
if gcd(a, n) $ 1 then return 'composite'

else if (a In) 0 aY (mod n)
then return 'composite';

return 'prime'
end

Indeed, if n is composite, then it is easy to see that all integers a E Z* such that (a n) =_ aY-i (mod n) form a
proper subgroup of the group Z*. Most of the elements a E Z* are therefore such that (a In) 0 a" (mod n)
and can 'witness' compositeness of N if n is composite.

Group theory is one of the richest mathematical theories. Proofs concerning a complete
characterization of finite groups alone are estimated to cover about 15,000 pages. A variety of
groups with very different carriers is important. However, occupying a special position are groups
of permutations, so-called permutation groups.

14joseph de Lagrange, a French mathematician (1736-1813).
15Augustin Cauchy (1789-1857), a French mathematician and one of the developers of calculus, who wrote

more than 800 papers.

ALGEBRAS m 141

2431 2143 1243
123456 123465 23

4231 2314 13240_ 1432

213456 213465 4123 4312 3412 (•3124

3241

24 2436 3214 4132

3421 4321
214356 21435 3142 4213

01342 2341

(a) (b) 1423 1234 2134 2413

Figure 2.35 Cayley graphs

Theorem 2.6.15 (Cayley (1878)) Any group is isomorphic with a permutation group.

Proof: Let g = (C,., -',1) be a group. The mapping p: C -* Cc, with p(g) = 7rg, as the mapping defined
by 7rg (x) = g x, is such an isomorphism. This is easy to show. First, the mapping 7rg is a permutation.
Indeed, 7rg(x) = 7rg(y) implies first that g. x = g .y and therefore, by (2) of Theorem 2, that x = y.
Moreover, p assigns to a product of elements the product of the corresponding permutations. Indeed,
p(g. h) = -rgh = rh o 7rxg, because rh o rxg (x) = 7rg (irh (X)) = g- h -x = 7rgh (X). Similarly, one can show that

p maps the inverse of an element to the inverse of the permutation assigned to that element and the
unit of 9 to the identity permutation. 0

Carriers of groups can be very large. It is therefore often of importance if a group can be described
by a small set of its generators.

If 9 = (C,., -, 1) is a group, then a set T C C is said to be a set of generators of 9 if any element
of C can be obtained as a product of finitely many elements of T. If I ý T and g E T => g-1 E T, then
the set T of generators is called symmetric.

Example 2.6.16 For any permutation g, T = {g,g-1} is a symmetric set of generators of the group {gi I i > 0}.

It has been known since 1878 that to any symmetric set of generators of a permutation group we
can associate a graph, the Cayley graph, that is regular and has interesting properties. It has only
recently been realized, however, that graphs of some of the most important communication networks
for parallel computing are either Cayley graphs or closely related to them.

Definition 2.6.17 A Cayley graph G(g, T),for a group g = (C,., -1,1) and its symmetric set T of generators,
is defined byG(g,T)= (C,E),whereE={(u,v)I]gET,ug=v}.

Example 2.6.18 Two Cayley graphs are shown in Figure 2.35. The first, called the three-dimensional
hypercube, has eight vertices and is associated with a permutation group of eight permutations of six
elements and three transpositions { [1,2], [3,4], [5,6] } as generators. The graph in Figure 2.35b, the so-called
three-dimensional cube-connected cycles, has 24 nodes and is the Cayley graph associated with the set of
generators {[1,2], (2,3,4), (2,4,3)}. It can be shown that this is by no means accidental. Hypercubes and
cube-connected cycles of any dimension (see Section 10.1) are Cayley graphs.

An important advantage of Cayley graphs is that their graph-theoretical characterizations allow
one to show their various properties using purely group-theoretical means. For example,

142 M FOUNDATIONS

Figure 2.36 Petersen graph

Theorem 2.6.19 Each Cayley graph is vertex-symmetric.

Proof: Let G = (V, E) be a Cayley graph defined by a symmetric set T of generators. Let u, v be two
distinct vertices of G: that is, two different elements of the group !(T) generated by T. The mapping
O(x) = vu-lx clearly maps u into v, and, as is easy to verify, it is also an automorphism on 9(T) such
that (u, v) c E if and only if (O(u), 0(v)) E E. U

Exercise 2.6.20 Show that all three graphs in Figure 2.36 are isomorphic.

In a Cayley graph all vertices have the same degree, equal to the cardinality of the generator set.
In the Petersen graph, shown in Figure 2.36, all vertices have the same degree. Yet, in spite of that, the
Petersen graph is not a Cayley graph. This can be shown using Lagrange's and Cauchy's theorems.

Exercise 2.6.21* A direct product of two graphs G, = (V1,E1) and G 2 = (V 2 ,E 2) is the graph
G = (V1 x V2,E), where ((Ul,U 2), (v1,v 2)) E E if and only if(ul,vi) E El, (u2,v2) c E2. Show that the
direct product of Cayley graphs is also a Cayley graph.

2.6.4 Quasi-rings, Rings and Fields

In this section three algebras are introduced that are a natural generalization of those properties which
basic number operations have. Their importance for computing lies in the fact that many algorithmic
problems, originally stated for numbers, can naturally be generalized to be algorithmic problems on
these more abstract algebras and then solved using a natural generalization of number algorithms.

Definition 2.6.22 An algebra A = (S, +, ., 0,1) is

* a quasi-ring if the following conditions are satisfied:

(S, +, 0) is an Abelian monoid and (S,., 1) is a monoid;
a0 = 0-a = 0, for all a c S;
the following distributive laws hold for all a, b, c E S:

a.(b+c)=(a.b)+(a.c) and (b+c).a=(b.a)+(c.a).

ALGEBRAS U 143

"* a ring if it is a quasi-ring and (S, +,0) is a group for a properly defined 'additive inverse' -1;

"* a field if it is a ring, (S,., 1) is an Abelian monoid, and (S - {0},, 1) is a group for a properly
defined multiplicative inverse -"".

Example 2.6.23 ({0,1}, V, A, 0,1) is the Boolean quasi-ring, and (N, +,0,,1) with the integer operations
of addition and multiplication is the integer quasi-ring.

We can see rings as having defined an operation of subtraction (as an inverse of the operation +),
and fields as having defined also an operation of division (as the inverse to the operation -).

Example 2.6.24 (Z, +,., 0,1) is a ring and, in addition, for any integer n, (Z,, +,, ",, 0,1) is also a ring if
+, and ., are additions and multiplications modulo n. The set of all polynomials of one variable with real
coefficients and the operations of addition and multiplication of polynomials also forms a ring.

Exercise 2.6.25 Show (a) that all matrices ofa fixed degree over a quasi-ring also form a quasi-ring;
(b) that all matrices of a fixed degree over a ring form a ring.

Example 2.6.26 (Q, +, .,0, 1) and (C, +, .,0,1) arefields, and for any primep, (Zp, +P, *p,,O, 1) is afield -an
example of a finite field.

Exercise 2.6.27 Show that ifc is a rational number, then the set of all numbers of the form a + bv/c, a, b E
Q, form a field (a quadratic field) with respect to the operations of addition and multiplication of
numbers.

2.6.5 Boolean and Kleene Algebras

Two other algebras of importance for computing are Boolean algebras, due to G. Boole,16 which
have their origin in attempts to formalize the laws of thought (and have now found applications in
computer circuits), and Kleene algebras, which are an abstraction from several algebras playing an
important role in computing.

A Boolean algebra is any algebra of the form B = (S, ., -,0,1), where S is a set with two elements
distinguished, 0 and 1, two binary operations, + (Boolean addition) and • (Boolean multiplication),
and one unary operation - (Boolean negation), satisfying the axioms listed in the first column of
Table 2.1.

The set of all propositions with the two truth values true (1) and false (0), with disjunction (+),

conjunction (.) and negation (-), is the oldest example of a Boolean algebra. Set {0, 1} with Boolean
addition, multiplication and negation is the smallest Boolean algebra. For any n the set of all Boolean
functions with n variables forms a Boolean algebra with respect to Boolean addition, multiplication
and negation of Boolean functions.

16George Boole (1815-64), an English mathematician and logician. His symbolic logic is central to the study of
the foundations of mathematics and also of computing.

144 U FOUNDATIONS

Boolean algebras Axioms Kleene algebras
x+x =x Idempotent laws x+x = x

xx = x
x+0=x Identity laws x÷0=x

xl = x xl = x
x0 = 0 Dominance laws x0 = 0

x+1=1
x+y=y+x Commutative laws x-+-y=y+x

xy = yx xy = yx
x+(y+z) = (x+y) +z Associativelaws x+(y+z) = (x+y)+z

x(yz) = (xy)z x(yz) = (xy)z
x + yz = (x + y)(x + z) Distributive laws (y + z)x = yx + zx

x(y + z) =xy + xz x(y + z) = xy + xz
(xy) = x + Y De Morgan's Laws

(x + y) =
x = x Law of double negation

Iteration law ab*c supn>0 ab"c

Table 2.1 Laws of Boolean and Kleene algebras

Exercise 2.6.28 There are infinitely many Boolean algebras. Showfor example, that (a) (2 A, U, n,', 0, A)
is a Boolean algebra for any set A, where CC = A - Cfor any C C A (this is the reason why set operations
of union, intersection and negation are called Boolean operations); (b) the set C = { 1, 2,3, 6} with binary
operations gcd, lcm and x- 1

= 6 is a Boolean algebra.
X

A Kleene algebra is any algebra of the form IC =(S, +, .,*, 0, 1), where S is a set containing two
distinguished elements 0, 1, two binary operation + (Kleene addition), • (Kleene multiplication), and
one unary operation * (Kleene iteration) satisfying the axioms shown in the third column of Table 2.1.

The 'iteration law' axiom requires an explanation. In a Kleene algebra we can define that
a < b # a + b = b. It then follows easily from the axioms that a relation such as < is a partial order.
For a set A C S we define supA to be an element y such that x < y for all x E A (that is, y is an upper
bound for A) and if x < y' for all x e A and some y', then y < y' (that is, y is the lowest upper bound).
The iteration law axiom then says that sup{ab"cI n > 0} exists and equals ab*c.

Exercise 2.6.29 Show that the set {0, 1} with Boolean operations + and . and with a* = I for any
a E {1, 1}forms a Kleene algebra.

Exercise 2.6.30* Show that for any integer n the set of all Boolean matrices of degree nforms a Kleene
algebra with respect to Boolean matrix addition, multiplication, iteration and the zero and unit matrices.

EXERCISES U 145

Exercise 2.6.31** Show that for any set S the family of all binary relations over S is a Kleene algebra
with respect to addition, composition and iteration of relations, and with respect to the empty and identity
relations.

In all the previous examples it is in principle easy to verify that all axioms are satisfied. It is more
difficult to show this for the Kleene algebra in the following example.

Example 2.6.32 For any integer n and Kleene algebra 1C, the set of all matrices of degree n with elements from
the carrier oflC forms a Kleene algebra with respect to the ordinary matrix addition and multiplication, with 0
as the zero matrix and I as the identity matrix and with the operation * defined recursively by the equation on
page 96.

Another example of a Kleene algebra, historically the first one and due to Kleene (1956), is
introduced in the following chapter.

Moral: The foundations of any mature discipline of science are based on elementary but deep and
useful ideas, concepts, models and results. A good rule of thumb for dealing with foundations in
computing is therefore, as in life, to remember and behave according to the wisdom 'Wer das ABC
recht kann, hat die schwerste Arbeit getan'.

2.7 Exercises
1. (a) Show that JAUBUCC = JAI+]B]+ ICI - lAn B - ANCI - JBn C+ JANBNCJ;

(b) generalize previous equality for the case of the union of n sets.

2. Let A, B be sets. Do the following implications hold: (a) A n B = 0 =• 2A n 2B = 0; (b) 2A = 2B

A = B?

3. Form 2A for the following sets: (a) A = { 1}; (b) A = {1,2,3,4}; (c) A = {a, b, {a, b} };

(d) A = {0,a,b,{a,b}}.

4. Determine which of the following sets is the power set of a set: (a) 0; (b) {0,{a}}; (c)
{f, {a}, {0,a}}.

5. Show how you can simply describe the set of points of the Menger sponge. This is a subset
of R3 constructed by the following infinite process. Begin with the unit cube of side 1. Divide
it into 27 subcubes of identical size. Remove the middle one and also the middle one on each
side - there remain 20 smaller cubes. Continue the process, and at each step do the same with
all remaining subcubes.

6. A multiset with dictionary operations forms the data type called bag. How can one efficiently
implement bags?

7. Let R = { (a, b) I a divides b} be the relation on the set of positive integers. Find R-1,R.

8. List 16 different relations on the set {0, 1}, and determine which of them are (a) reflexive; (b)
transitive; (c) symmetric; (d) antisymmetric.

146 3 FOUNDATIONS

9. How many relations on a set of n elements are (a) symmetric; (b) antisymmetric; (c) reflexive
and symmetric?

10. Let R be a binary relation over some set A. Show that R is an equivalence if and only if the
following conditions are satisfied: (i) R = R- 1; (ii) RR C R; (iii) IA C_ R, where IA is the identity
relation on A.

11. Let R = { (1,3), (2,4), (3,1), (3,5), (5,1), (5,2), (5,4), (2,6), (5,6), (6,3), (6,1) }. Compute R2 , R3
,

R
4
, R*.

12. Determine the transitive closure of the relations (a) {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)};
(b) {(a,b),(a,c),(a,e), (b,a),(b,c),(c,a),(d,c),(e,d)}; (c) {(1,5), (2,1), (3,4), (4,1), (5,2), (5,3)}.

13. Determine the transitive closure of the matrix

(00010 0 1 0
0 0 0 1 "
0 0 1 0

14. Which of the following relations on the set of all people or on the set of all
functions from Z to Z are equivalences? (a) f{(a, b) Ia and b have common parents}; (b)
{(a,b) Ja and b share common parents}; (c) {ff,g)if (0) = g(0) orf (1) = g(1)1; (d) {QC,g)if (0)=
g (1) and f (1) = g (0)}1.

15. Modify Warshall's algorithm in such a way that it can be used to determine the shortest path
between two nodes in edge-labelled graphs.

16. A total ordering < is said to be compatible with the partial ordering R if a < b whenever aRb.
Construction of a total order compatible with a given partial order is called topological sorting.
Design an algorithm to perform topological sorting.

17. Letf (x) = ax + b, g (x) = cx + d. Find conditions on a, b, c, d such thatf o g = g of .

18. Let a set A contain ten integers between 5 and 50. Show, for example using the pigeonhole
principle, that there are two disjoint subsets B, C of A such that E~xEA X = E-xiB X-

19. Show that the mappingf : N -- N+ x N' defined byf (21 .(2k + 1)) = (j,k) is a bijection.

20. Let gn,: Z* --+Z, be the mapping defined by g,(i) = (i +1)2 rood n. Show that the mapping g,
is a bijection if and only if n is a prime.

21. Let the composition of two functionsf : A -- B and g : B -- C be surjective. Does this mean that
f is also surjective?

22. LetfA be the characteristic function of the set A. Show that (a) fAnB (X) = fA(x).fB(x); (b) fAUB (X)=
fA (X) +fB (X) -fA (x)fB (X); (C) fA (X) = I -fA (X).

23. Let B be an n-element multiset with k distinct elements el,. . ., ek, and let mi denote the number
of occurrences of the element ei of B. Determine the number of distinct permutations of elements
of B.

EXERCISES 3 147

24. Show, using the truth table, the equivalence of the following Boolean formulas: (a) p V (q A r)
and (p V q) A (p V r); (b) (p Ag) = p and p = (p Vg).

25. Show the following implications using the truth table:

(a) [(p =ý q) A (q => r)] • (p = r); (b) [P A (p V q)] =ý q.

26. Which of the following sets of Boolean functions forms a base: (a) {ORNOR}; (b) {-, NOR};

(c) {AND,NOR}?

27. Use the NAND function to form the following functions: (a) NOT; (b) OR;
(c) AND; (d) NOR.

28. Show the following properties of the operation NOR (e): (a) x D y = xy + xy; (b) x D x = 0, x ED0 =
x,x l = x; (c) (xDy) Dz = xzPyz; (d) x+y = xDyDxy.

29. Show that the Boolean functions NOR and AND do not form a base but that Boolean functions
NOR, AND and 1 do form a base.

30. A Boolean function f(xi,... , x,) is said to depend essentially on an ith variable, xi, if there
are a ,... ,a. c {0, 1} such thatf(a,,. . . , ai--,aai+l, . . . a) 5f(a,, ... , ai1, ai+1... a,). For
1 < m < n determine the number of Boolean functions of n variables that depend essentially
on at most m variables.

31. **(Post's theorem) Show that a set 8 of Boolean formulas forms a Boolean base if and only if
the following conditions are satisfied: (1) •f E B:f(0,..., 0) = 1; (2) If e B f (1 1) = 0; (3)
3f E/3 :f is not monotone; (4) If E B1: 3xl, . ..]3Xnf(xl,... -x.) 7f(Xl, •... YX); (5)]Ef 8 3 :f
cannot be displayed as xi, (D xi2 ED... xik ED c, where c e {o, 11.

32. Given any family H of hash functions from A to B, where JAI > JBI, show that there exists
x,yEAsuchthatI{hIh(x) =h(y)}t> H I

TBI AI

33. For a, b E N, let A = [a], B = [b] and p > a be a prime. Let g map Zp into B as closely as possible;
that is, {y E Zp g(y) = i}l < FF] for all i e B. Let m,n c Zp, m $0. We define hm,n :A -* Zp by
hm.n (x) = (mx + n) mod p. Show that the family H = {frn m, n G Z, m = O,fm,, (x) = g(hmn (x))}
is universal.

34. Let G = (V, E) be a connected directed graph. For two vertices u, v define u = v, if u and v lie in
a simple cycle. Show that = is an equivalence relation on G. (The corresponding equivalence
classes are called biconnected components of G.)

35. A complement of a graph G = (V,E) is the graph G = (V, V x V - E). Show that (a) if a graph
G is self-complementary, that is, G = G, then G has either 4m or 4m + 1 vertices; (b) design all
such graphs with at most eight vertices.

36. For a graph G = (V,E) and S c V let GCs be the graph obtained from G by removing the set
S of vertices and edges incident with them. Show that G-s has fewer connected components
than IS1.

37. Determine which of the pairs of graphs shown in Figure 2.37 are isomorphic.

38. Show that if v-conn(G) > 2 for an undirected graph G, then any two vertices (or edges) of G lie
in a common cycle.

148 U FOUNDATIONS

(a(b) (C) (d)

Figure 2.37 Isomorphism of graphs

39. Show that if a graph is not 2-vertex-connected, then it is not Hamiltonian.

40. Show that if a connected graph G = (V, E) has at least three vertices and each vertex has the
degree at least i, then G is Hamiltonian.

41. The closure of a graph G = (V, E) is the graph obtained from G by recursively connecting pairs
of nonadjacent vertices whose sum of degrees is at least IVI until no such pair remains. (a)
Show that the closure of each undirected graph is uniquely defined; (b) show that a graph is
Hamiltonian if and only if its closure is Hamiltonian.

42. Knight's tour on an n x m chessboard is a sequence of legal moves by a knight starting at some
square and visiting each square exactly once. Model the chessboard by a graph with one node
per square of the board and with an edge between two nodes exactly when there is a legal
move by a knight from one of the squares to another.

(a) Show that a knight's tour exists if and only if there is a Hamilton path on the corresponding
graph; (b) design the knight's tour for a 3 x 4 board.

43. If G = (V, E) is a planar graph, then each drawing of G such that no two edges intersect partitions
the plane into a number of connected regions called faces; for example, the graph in Figure 2.19b
partitions the plane into six regions. Show Euler's formula: If iD is the number of faces of a
planar graph G = KV, E), then IVI - IEI + 4 = 2.

44.* Show that the Petersen graph, Figure 2.36, is not Hamiltonian.

45. Show that for each k there is a regular graph of degree k that has no perfect matching.

46. Show that it is impossible using 1 x 2 dominoes, to exactly cover an 8 x 8 square from which
two opposite I x I comers have been removed.

47. For the following graph write down: (a) all depth-first traversals that start in the node h; (b) all
breadth-first traversals that start in the node h.

C b

e f

EXERCISES N 149

48. Design an algorithm to solve the following personnel assignment problem: n workers are
available for n jobs, with each worker being qualified for one or more of the jobs. Can all these
workers be assigned, one worker per job, to jobs for which they are qualified?

49. Show that the Petersen graph is 4-edge chromatic.

50. Let G = (V, E) be a graph. A subset S C V is called an independent set of G if no two vertices
of S are adjacent in G. An independent set is maximal if G has no independent set S' such that
IS < IS'. A subset S C V is called a covering of G if every edge of E is incident with at least
one vertex of S. (a) Design a maximal independent set for the graphs in Figures 2.15b, c; 2.16a,
b; 2.18b; (b) show that an S C V is an independent set if and only if V - S is a covering of G.

51. Show that the four-colour problem is equivalent to the problem of determining whether regions
of each planar map can be coloured by four colours in such a way that no two neighbouring
regions have the same colour.

52. Show that if u, v are words such that uv = vu, then there is a w such that u = wm and v = w" for
some m, n.

53. Let E be an alphabet and w E E*. Show that x = w 2 is the unique solution of the equation
X 2 = WXW.

54. Two words x and z in E* are called conjugates if there exists y E E* such that xy = yz. (a) Show
that x and z are conjugates if and only if there exist u, v E E* such that x = uv and z = vu; (b)
show that the conjugate relation is an equivalence on E*; (c) show that if x is conjugate to y in
E*, then x is obtained from y by a circular permutation of symbols of y.

55. A word w is primitive if and only if it is not a nontrivial power of another word; that is, if w = V
implies n = 1. (a) Show that any word is a power of a unique primitive word; (b) show that if
u and v are conjugate and u is primitive, then so is v; (c) show that if uw = wv and u $ 6, then
there are unique primitive words u', v' and integers p 1, k > 0 such that u = (u'v')P, v = (v'u')P,
w = (u'v')ku'.

56. Show the following language identities: (a) (AUB)* = A* (BA*)*; (b) (A U B)* = (A*B)*B*;
(c) (AB)* = {f} UA(BA)*B; (d) A* = ({c} UA UA2U... UAn"-)(A")*.

57. Let E = {0, 1} and L = E* - E*{00}I*. Show that the language L satisfies the identities
(a) L = {e,0} U {01,1}L; (b) L = {e,0} UL{1,10}; (c) L = Uk=0Lk.

58. Determine a language L c {a, b}* such that (a) L = {E} U {ab}L; (b) L = {J} U L{ab}.

59. Show that there isno language L C {0, 1}* suchthat (a) LU {01}L = {e} UOL; (b) L = {1} UOLUL1.

60. DetermineL- 1L2 and L21L 1 if (a) L, = {abi i > 0},L 2 = {ai 10 < i <j}; (b) L, = {ww I w {E 0,1}* },
L2 = {ww IwE {0,1}*}; (c) L1 = {wcwIwE {0,1}*,c V {0,1}}, L2 = {wcwR Iw E {0,1}*}.

61. Draw curves generated by the turtle interpretation of words w0 , W1, w 2, w3, where wo = F - F -
F -F,w, = k(wi-1), Op(F) = F -F+F -F -F, q(-) = -, d(+) = +,d= 1, a = 90.

62. Determine L, L and adherence(L) for the languages (a) L = {ali Ij > i > 0}; (b) L = {ww Iw E
{0,1}*}; (c) L = {a'bili,j > 0}.

150 U FOUNDATIONS

63. Show that (a) shuffle({a},{b}*) = b*ab*; (b) shuffle(Li,L 2 UL 3) = shuffle(L 1,L2) Ushuffle(L1,L 3);
(c) shuffle(LI, L2) = shuffle(L 2, L).

64. Prove or disprove for any languages L, L1 and L2 and any homomorphism h that

(a) L .shuffle(L 1 , L2) = shuffle(LL1, L2); (b) h(shuffle(Li, L2)) = shuffle(h(Li), h(L 2)).

65. Solve the language equation x = L, U L2x, where L1, L2 are languages and x is a language variable.

66. Determine the language L satisfying the identities (a) L U abL = {c}U aL; (b) L U baL = {c}U aL u
bL.

67. For a language L let L, = {x Ix e L, IxI = n}. The power series gL (z) = • 0 L,]zn is called the
generating function of the language L. Show that g(z) = is the generating function for the
language of palindromes over the two-letter alphabet.

68. Let M = (S,. 1) be a monoid, A, B C S. The left quotient of A and B, notation A- 1B, is defined
by A- 1B = {cIc E S,]a G A, b C B such that c = a. b}. Show that (AB)- 1 C = B-1 (A-1 C).

69. Let A be a finite set. Denote Op2 (A) the set of all binary operations on A. For everyf,g c OP2 (A),
we define h =fog ,# (Vx,y e A) (h(x,y) =f (g(x,y) ,g(y, x)). Moreover, let IA (x, y) = x. Show that
(Op2(A), 0, IA) is a monoid for any set A.

70. The star graph S, on the set of all permutations of n elements is the Cayley graph with the set
{ [1, i] 1 < i < n} of transpositions as generators. Draw S2, S3, S4, and determine the number of
edges of S,.

71. The pancake graph Pn on the set of all permutations of n elements is the Cayley graph with
the set of generators { (i,i - 1, . . . , 1,i + 1, . n) <1 i < n}. Draw P 2, P 3, P 4, and determine
the number of edges of P,.

72. A Cayley graph is called strongly hierarchical if it has a set of generators T such that for each
ordering gi, . . ,gk of its generators and each i > 1 the generator gi is not expressible using
generators gl, . . . gi-i. Show that a strongly hierarchical Cayley graph is edge-symmetric.

73. * Show that the Petersen graph is not a Cayley graph.

74. Show that in a Boolean algebra x = y if and only if (x + y) (x + y) = 1.

75. Solve the following system of equations in a Boolean algebra: (a) x + Y + xy = x, xy = xt + y;
(b) (x+9) (x+y) = x;x+y = x.

QUESTIONS
1. What are the basic methods to specify sets, and what are the advantages of particular methods?

2. In which cases is (2A, ;) a totally ordered set?

3. Is the functionf(n) = [lg n] one-way?

4. How many concepts of regularity of graphs do you know, and what are the relations between
these concepts?

5. What is the relation between colouring the nodes of planar graphs and colouring maps?

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES U 151

6. Can one use depth-first search and breadth-first search methods to search infinite graphs?

7. How many solutions has a string equation x2 = wxw with unknown x?

8. Which languages L satisfy the equality L U abL = E U aL U bL2?

9. Can it happen that the same Cayley graph is generated by two different sets of generators? (If
yes, give an example; if not, explain why.)

10. Which chain code pictures are generated by words of the following languages:

(a) {ruirdI i > 1}; (b) {(ru)'rur(dr)i i > 1}?

2.8 Historical and Bibliographical References
The basic mathematical concepts discussed in this chapter have been in the process of development
for centuries, and are presented in many textbooks of various levels of sophistication. Some of those
basic books with a greater orientation to computing are Rosen (1981) and Arnold and Guessarian
(1996).

Georg Cantor (1845-1918), a German mathematician, and Ernst F. Zermelo (1871-1956), an Italian
mathematician, are considered to be the main fathers of modem set theory, although discoveries of
paradoxes led to a variety of additional approaches. The Sierpihiski triangle, Koch curves, Mandelbrot
sets and other fractal structures are treated in depth by Peitgen, Juirgens and Saupe (1992). Data
structures are discussed in a variety of books: for example, Cormen, Leiserson and Rivest (1990),
Gonnet (1984) and Mehlhorn (1984). The data type concept was introduced by several people: in
its most abstract form by the ADJ group, see Guogen, Thatcher, Wagner and Wright (1977). The
book by Ehrig and Mahr (1985) is currently perhaps the main reference on this topic. The binary tree
implementation of dictionaries, described in Section 2.1, is due to Song (1981). Figure 2.2 is reproduced
courtesy of Frank Drewers, and Figure 2.6 courtesy of Uwe Kriiger and Heintz Wolf.

The two main algorithms for computing the transitive closure of a relation shown in Section 2.2
are due to Warshall (1962) and Kozen (1991).

The Garden of Eden problem and Theorem 2.3.11 are due to Moore (1962), Myhill (1963) and
Richardson (1972). For a general treatment and survey of cellular automata mappings see Garzon
(1995). Boolean functions are dealt with in almost every book on discrete mathematics. There are
several definitions of one-way functions, the concept that forms the basis of modem cryptography
The one presented in Section 2.3.3 is from Goldreich (1989), in which an intensive analysis of related
concepts is also presented. The idea of hashing appeared first in an internal report of IBM in 1953 by
H. P. Luhn. Hashing is analysed in detail by Knuth (1973) and Gonnet (1984). The idea of universal
hashing is due to Carter and Wegman (1979); see also Cormen, Leiserson and Rivest (1990) for a
presentation of hashing and universal hashing.

Graph theory, initiated by Euler, has since then become a very intensively developed theory with
many applications, and there are many books about it. A careful presentation of basic concepts and
results much related to computing is, for example, Bondy and Murty (1976), in which one can also
find proofs of Theorems 2.4.21 and 2.4.25. Several graphs, examples and exercises presented here are
also from this book.

Salomaa's 'Formal languages' (1973) is still the main reference in formal language theory (see also
Harrison (1978)). Chain code languages were introduced by Maurer, Rozenberg and Welzl (1982).
Turtle interpretation of words, introduced by Prusinkiewicz, is discussed in detail by Prusinkiewicz
and Lindenmayer (1990). The examples presented in Section 2.5.3 come from this book; the drawing
programs were made by H. Fernau. The discussions of point and pixel representations of words are

152 U FOUNDATIONS

based on Culik and Dube (1993) and Culik and Kari (1993). Several of the exercises on languages are
due to Egecioglu (1995).

MacLane and Birkhoff (1967) is a standard reference on modem algebra. Theorem 1 and the
concept of the Cayley graph are due to Cayley (1878, 1889). Akers and Krishnamurthy (1986) started
to explore properties of Cayley graphs from the interconnection network point of view.

Boolean algebras are dealt with in most books on discrete mathematics. An abstract concept of
Kleene algebra is found in Kozen (1991).

Automata

INTRODUCTION
Finite state machines are the most basic model of machines, organisms and processes in technology,
nature, society, the universe and philosophy, a model that captures the essence of finite systems and
allows us to learn, demonstrate and utilize their power.

On a theoretical level, finite state machines represent the very basic model of automata to start
with in designing, learning, analysing and demonstrating components, principles and power of real
and idealized computers and also a variety of basic computation modes.

On a practical level, finite state machines approximate real machines, systems and processes
closely enough, That is why the aim of applied research and development in computing is often to
reduce idealized concepts and methods to those realizable by finite state machines.

Finite state automata are also a good model for demonstrating how finite devices working in
discrete time can be used to process infinite or continuous objects.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. the fundamental concept of finite state machine;

2. basic concepts, properties and algorithms concerning finite automata, their minimization and
main decision problems;

3. basic concepts, properties and algorithms concerning regular expressions, regular languages
and their closure properties;

4. finite transducers and their power and properties;

5. weighted finite automata and transducers and their use for image generation, transformation
and compression;

6. how to use discrete finite automata to process infinite and continuous objects;

7. various modifications of finite automata: nondeterministic, probabilistic, two-way, multihead
and linearly bounded automata and their power.

154 1 AUTOMATA

The fact is, that civilization requires slaves. The Greeks
were quite right there. Unless there are slaves to do the
ugly, horrible, uninteresting work, culture and contemplation
become almost impossible. Human slavery is wrong, insecure,
and demoralizing. On mechanical slavery, on the slavery of the
machine, the future of the world depends.

Oscar Wilde, 1895

The concept of finite state devices is one of the most basic in modem science, technology and
philosophy; one that in a strikingly simple way captures the essence of the most fundamental principle
of how machines, nature and society work. The whole process of the development of a deterministic
and mechanistic view of the world, initiated by R. Descartes whose thinking was revolutionary for
its time, culminated in a very simple, powerful model of finite state machines, due to McCulloch and
Pitts (1943), obtained from an observation of principles of neural activities.'

In this chapter we present, analyse and illustrate several models of automata, as well as some of
their (also surprising) applications. The most basic model is that of a finite state machine, which is an
abstraction of a real machine (and therefore of fixed size and finite memory machines), functioning
in discrete time steps.

Finite state machines are building blocks, in a variety of ways, for other models of computing,
generating and recognizing devices, both sequential and parallel, deterministic and randomized.
This lies behind their fundamental role in the theory and practice of computing. Because of their
simplicity, efficiency and well worked out theory, it is often a good practice to simplify sophisticated
computational concepts and methods to such an extent that they can be realized by (co-operating)
finite state machines.

Basic theoretical concepts and results concerning finite state machines are presented in the first
part of this chapter. In the second part several applications are introduced, showing the surprising
power and usefulness of the basic concepts concerning finite state machines: for example, for image
generation, transformation and compression. Finally, various modifications of the basic model of
finite state machines are considered. Some of them do not increase the power of finite state machines,
but again show how robust the basic model is. Others turn out to be more powerful. This results in
a variety of models filling the gap between finite state machines and universal computers discussed
in the following chapter.

It will also be demonstrated that though such machines are finite and work in discrete steps, they
can process, in a reasonable sense, infinite and continuous objects. For example, they can be seen as
processing infinite words and computing (even very weird) continuous functions.

3.1 Finite State Devices

The finite state machine model of a device abstracts from the technology on which the device is based.
Attention is paid only to a finite number of clearly distinguished states that the device can be in and

1Automata and automatization have for a long time been among the most exciting ideas for humankind, not
only because they offer ways to get rid of dull work, but also because they offer means by which humankind can
overcome their physical and intellectual limitations. The first large wave of fascination with automata came in the
middle of the nineteenth century, when construction of sophisticated automata, imitating functions considered
essential for living and/or intelligent creatures, flourished. The emerging automata industry, see the interesting
account in Bailey (1982), played an important role in the history of modem technology. The second wave,
apparently less mysterious but much more powerful, came with the advent of universal computers.

FINITE STATE DEVICES U 155

a finite number of clearly identified events, usually called external inputs or signals, that may cause
the device to change its current state.

A simple finite state model of a digital watch is shown in Figure 3.1a. The model abstracts from
what, how and by whom the watch is made, and shows only eight main states, depicted by boxes,
the watch can be in, from the user's point of view ('update hours', 'display date', 'display time'),
and transitions between the states caused by pushing one of four buttons a, b, c, d. Each transition is
labelled by the button causing that transition. Having such a simple state transition model of a digital
watch, it is easy to follow the sequence of states of the watch when the buttons are pushed in a given
sequence. For example, by pushing buttons a, c, d, c, a, a, in this order, the watch gets, transition by
transition, from the state 'display time' back to the same state.

The finite state model of a watch in Figure 3.Ma models watch behaviour as a process that goes
on and on (until the watch gets broken or the battery dies). Observe that this process has no other
outputs beside the states themselves - various displays. Note also that in some states, for example,
'display watch', it is not specified for all buttons what happens if the button is pressed. (This can
be utilized to make a more detailed model of a watch, with more states and actions, for example,
to manipulate the stopwatch.) Note also that neither requirements nor restrictions are made on how
often a button may be pressed and how much time a state transition takes.

There are many interesting questions one can ask/study about the model in Figure 3.Ma. For
example, given two states p and q, which sequence of buttons should one push in order to get from
state p to state q?

Exercise 3.1.1 Describe the five shortest sequences of buttons that make the watch in Figure 3.1a go
from state p to state q if(a) p = 'display alarm', q = 'display hours'; (b) p = 'display time', q = 'display
alarm'.

Two other models of finite automata are depicted in Figures 3.1b, c. In both cases the states
are depicted by circles, and transitions by arrows labelled by actions (external symbols or inputs)
causing these transitions. These two finite state machines are more abstract. We do not describe what
the states mean. Only transitions between states are depicted and states are partitioned into 'yes'-
and 'no'-states. For these two models we can also ask the question: which sequences of inputs make
the machine change from a given state p to a given state q; or a simpler question: which sequences
of inputs make the machine go from the starting state to a 'yes'-state. For example, in the case of the
model in Figure 3.1b, the sequences of letters 'the', 'thee', 'their' and 'then' have such a property;
whereas the sequence 'tha' has not. In the case of the finite state model in Figure 3.1c a sequence
of inputs makes the machine go from the initial state into the single 'yes'-state if and only if this
sequence contains an even number of a's.

As we shall soon see, the questions as to which inputs make a finite state machine go from one
state to another or to a 'yes'-state turn out to be, very important in relation to such an abstract model
of finite state machines.

In our model of finite state machines we use a very general concept of a (global) state. A digital
device is often composed of a large number of elementary devices, say n, such that each of them is
always in one of the two binary states. Any combination of these elementary states forms the so-called
'global state'. The overall number of (global) states of the device is 2" in such a case. However, in a
simple finite state model of a device, very often only a few of the global states are used.

156 P AUTOMATA

start l start

d l4 11bd

a a

no Yes

stw tc rt
r

which e \ ,a b g

udt dys no Yes) yes)

uaf o t d ae dh l

yesi no y no
(a) abcd buttons on the watch to press t m i

st ii

b T a
(C) ((e no) b (b) yes

aQT

Figure 3.1 Finite state devices

Exercise 3.1.2 Extend the finite state model of the watch in Figure 3.1 to incorporate other functions
which a watch usually has.

Exercise 3.1.3 Express in a diagram possible states and transitions for a coffee vending machine that
acts asfollows. It takes 5, 10 and 20p coins, in any order, until the overall amount is at least 90p. At the
moment this happens, the machine stops accepting coins, produces coffee and makes change. (Thke into
consideration only the money-checking activity of the machine.)

Four basic types of finite state machines are recognizers, acceptors, transducers and generators
(see Figure 3.2). A recognizer is a finite state machine A that always starts in the same initial state. Any
input causes a state change (to a different or to the same state) and only a state change - no output
is produced. States are partitioned into 'yes'-states (terminal states) and 'no'-states (nonterminal
states). A sequence of inputs is said to be recognized (rejected) by A if and only if this sequence of
inputs places the machine in a terminal state (a nonterminal state).

Example 3.1.4 The finite state machine in Figure 3.3a recognizes an input sequence
(a,b,) (an-1,b,-,)(aý,bn), with (a,,bl) as the first symbol, if and only if there is a k, 1 < k < n,
such that ak = bk = 1. (Interestingly enough, this is precisely the case if (iJ) mod 2 = 0 for the integers
i = bin(aa,_i ... a,) andj = bin(bnb, l... bl) - show that!)

An acceptor is also a finite state machine that always starts in the same initial state. An input either

FINITE AUTOMATA U 157

(a) recognizer (b) acceptor

input sutart

(c) transducer (d) generator

Figure 3.2 A recognizer, an acceptor, a transducer and a generator

causes a state transition or is not accepted at all, and again no output is produced. A sequence of inputs
is said to be accepted if and only if it puts the automaton in a terminal state. (The other possibilities
are that a sequence of inputs puts the automaton in a nonterminal state or that its processing is
interrupted at some point, because the next transition is not defined.)

Example 3.1.5 Figure 3.3d shows an acceptor that accepts exactly the words of the language a*cb*.

A transducer acts as a recognizer, but for each input an output is produced.

Example 3.1.6 The transducer shown in Figure 3.3bproducesfor each input word w = w 1cw 2c... cw,_jcwn,
wi E {0,1}* the output word w' = 0(Wl)Cw 2C0(W3)C ... CWn- 1 0(Wn) if n is odd and w' =
O(wI)cw2 cO(w 3)c ... cp(w,.l)CWn if n is even, where 0 is the morphism defined by 0(c) = c, 0(0) = 01
and 0(1) = 10. In Figure 3.3b, in each pair 'i,o', used as a transition label, the first component denotes the
input symbol, the second the output string.

A generator has no input. It starts in an initial state, moves randomly, from state to state, and at
each move an output is produced. For each state transition a probability is given that the transition
takes place.

Example 3.1.7 The generator depicted in Figure 3.3c has only one state, and all state changes have the same
probability, namely 1/3. It is easy to see that if a sequence of output symbols (x1 ,yi). . . (Xn,•yn) is interpreted as
a point of the unit square, with the coordinates (0. x ... x., 0. y....• yn) as in Section 2.1.2, then the generator
produces the Sierpifiski triangle shown in Figure 2.1.

Is it not remarkable that a one-state generator can produce such a complex fractal structure? This
is in no way an exception. As will be seen later, finite state generators can generate very complex
images indeed.

3.2 Finite Automata
So far we have used the concepts of finite state recognizers and acceptors only intuitively. These
concepts will now be formalized, generalized and analysed. The main new idea is the introduction of
nondeterminism. In some states behaviour of the automaton does not have to be determined uniquely.
We show that such a generalization is fully acceptable and, in addition, sometimes very useful.

158 3 AUTOMATA

(o0 0) (0,o) 0, 0 1 0, 0(0,1) (0,1)

(10,) (10,) 0,0 0,

(1, 1)1,1)

(a) (b)
(17,0)

rlProb = 1/3 ' n
(0,0) C7' n (0,) n e

(c) Prob = 1/3 Prob = 1/3 (d)

Figure 3.3 Examples of a recognizer, a transducer, a generator and an acceptor

3.2.1 Basic Concepts

Definition 3.2.1 A (nondeterministic) finite automaton A (for short, NFA or FA) over the (input)
alphabet E is specified by a finite set of states Q, a distinct (initial) state qo, a set QF C Q of terminal
(final) states and a transition relation 6 c Q x E x Q. Formally, A = (Z, Q, qo, QF, 6).

If6 is a function, that is 6 : Q x E - Q, we also use the notation 6(q,a) to specify the value of 6 for
arguments q, a.

Informally, a computation of A for an input word w always starts in the initial state qo and continues
by a sequence of steps (moves or transitions), one for each input symbol. In each step the automaton
moves from its current state, say p, according to the next symbol of the input word, say a, into a state q
such that (p, a, q) G 6 - if such a q exists. If there is a unique q c Q such that (p, a, q) E 6, then the transition
from the state p by the input a is uniquely determined. We usually say that it is deterministic. If there
are several q such that (p, a, q) e 6, then one of the possible transitions is chosen, and all of them are
considered as being equally likely. If, for some state p and input a, there is no q such that (p, a, q) E 6,
then we say that input a in state p leads to a termination of the computation. A computation ends
after the last symbol of w is processed or a termination occurs. We can also say that a computation
is performed in discrete time steps and the time instances are ordered 0,1,2,.... with 0 the time at
which each computation starts.

For a formal definition of computation of a FA the concept of configuration is important. A
configuration C of A is a pair (p, w) E Q x E*. Informally, the automaton A is in the configuration
(p, w), if it is in the state p and w is the part of the input word yet to be processed. A configuration
(qo, w) is called initial, and any configuration (q, e), q G QF is called final.

A computational step of A is the relation

VAC_ (Q x E*) X(qxQ E*)

between configurations defined for p,q E Q, a E E, w E E * by

(paw) •-A (q,w) ý#* (p,a,q) E 6.

Informally, (p,aw) t-A (q, w) means that A moves from state p after input a to state q. A computation of
A is the transitive and reflexive closure P- of the relation -A between configurations: that is, C [-* C'

FINITE AUTOMATA I 159

states inputs
0 1 2

6(qoO) = {q2},
6 (qo, 2) = {9q,q2}, qo q2 - ql,q2

b(ql,0) = {q3}, b(q1,1) =- {qol, q, q3 qo -

6 (q2,0) = {qo}, 6(q2,2) = {q3,qo}, q2 qo - q3,qo
6(q3,0) = {qj}, 6(q3,1) = {q2}. q3 qi q2 -

(a) (b)
2

q,

0(2 2 0 0 0

(C)

Figure 3.4 Finite automata representations

for configurations C and C' if and only if there is a sequence of configurations C1, C, such that
C = C1, Ci H-A Cj+j, for 1 < i < n, and C, = C'.

Instead of (p, w) H-* (q, E), we usually use the notation p q. A state q is called reachable in A if

there is an input word w such that qo q.
w

Exercise 3.2.2 Let A = E, Q, qo, Qr, 6) be a FA. Let us define a recurrence as follows: A0 = {q0},
Ai = {q'I (q,a,q') E bfor some q c Ai 1 ,a E Ej},for i > 1. Show that a state q is reachable in A if and
only if q c- Ajfor somej :S JQI. (This implies that it is easy to compute the set of all reachable states.)

Three basic ways of representing finite automata are illustrated in Figure 3.4 on the automaton
A = (Y,Q,qo,QF,6), where Q = {qo,ql,q2,q3}, E = {0,1}, and QF {qo,q3}: an enumeration of
transitions (Figure 3.4a), a transition matrix (Figure 3.4b) with rows labelled by states and columns
by input symbols, and a state graph or a transition diagram (Figure 3.4c) with states represented by
circles, transitions by directed edges labelled by input symbols, the initial state by an ingoing arrow,
and final states by double circles. For a finite automaton A let GA denote its state graph. Observe that
a state q is reachable in the automaton A if and only if the corresponding node is reachable in the
graph GA from its starting vertex.

To every finite automaton A = (Z, Q, q,, QF, 6) and every q c Q, we associate the language L(q) of
those words that make A move from state q to a final state. More formally,

L(q) = {wc*Iq PEQF}.

L(A) = L(qo) is then the language recognized by A. A language L is called a regular language if there
is a finite automaton A such that L = L(A). The family of languages recognizable by finite automata,
or the family of regular languages, is denoted by

C(FA) = {L(A) I A is a finite automaton}.

160 I AUTOMATA

d

Figure 3.5 Finite automaton

Exercise 3.2.3 Let L, = {uv luv E {0,1}', Jul = Iv = n,u $ v}. Design a FA accepting the language
(a) L 2; (b) L 3; (c) L 4.

Exercise 3.2.4 Describe the language accepted by the FA depicted in Figure 3.5.

Another way to define the language recognized by a finite automaton A is in terms of its state graph
GA. A path in GA is a sequence of triples (pl,al,p2)(p 2 ,a2,p 3)... (pn,an,pn+l) such that (pi,ai,pi+1) E
6, for 1 < i < n. The word a, ... an is the label of such a path, pi its origin and p,+I its terminus. A
word w e E* is recognizable by A if w is the label of a path with qo as its origin and a final state as its
terminus. L(A) is then the set of all words recognized by A.

The language recognized by a finite automaton A can be seen as the computational process that
A represents. This is why two finite automata A,, A 2 are called equivalent if L((A,) = L(A 2); that is,
if the corresponding languages (computational processes they represent) are equal.

Exercise 3.2.5 A natural generalization is to consider finite automata A = (E, Q, Qh, Qr, o0) with a set
Q, of initial states, where computation and recognition are defined similarly. Show that to each such
finite automaton A we can easily construct an equivalent ordinary finite automaton.

If two FA are equivalent, that is, if they are 'the same' insofar as the computational processes
(languages) they represent are the same, they can nevertheless look very different, and can also have
a different number of states. A stronger requirement for similarity is that they are isomorphic - they
differ only in the way their states are denoted.

Definition 3.2.6 Two FA Ai = (E, Qj, qoi, QF,, 6i), i = 1,2 are isomorphic f there is a bijection pi: Q, -ý Q2

such that /(q0,j) = qo,2, q C QF,1 if and only if t(q) E QF,2, and for any q, q' E Q1, a E E we have (q, a, q') E 61
if and only if (p(q),a, p(q')) E 62.

Exercise 3.2.7 Design a finite automaton that accepts those binary words that represent integers (with
the most significant bit as the first) divisible by three.

FINITE AUTOMATA U 161

SW3Wn-

0 states in A - path in A

w, states in A' --... path in A'

q reverse of"•' a path in A q w- ,

Figure 3.6 A path in a NFA and in an equivalent DFA obtained by the subset construction

3.2.2 Nondeterministic versus Deterministic Finite Automata

The formal definition of a FA (on page 158) allows it to have two properties that contradict our
intuition: a state transition, for a given input, does not have to be unique and does not have to be
defined. Our intuition seems to prefer that a FA is deterministic and complete in the following sense.

A finite automaton is a deterministic finite automaton if its transition relation is a partial function:
that is, for each state p c Q and input a E E there is at most one q G Q such that (p,a,q) E 6. A finite
automaton is called complete if for any p c Q, a c E there is at least one q such that (p, a, q) G 6. In the
following the notation DFA will be used for a deterministic and complete FA.

The following theorem shows that our definition of finite automata, which allows 'strange'
nondeterminism, has not increased the recognition power of DFA.

Theorem 3.2.8 To every finite automaton there is an equivalent deterministic and complete finite automaton.

Proof: Given a FA A (E, Q, qo, QF, 6), an equivalent DFA A' can be constructed, by the subset
construction, as

A- = (E, 2 Q, qo,{BIB E 2Q,BnQ 54 0},6'),

where the new transition relation 6' is defined as follows:

(A,a,B) E 6'if and onlyif B = {qL p EA,(p,a,q) E 6}.

The states of A' are therefore sets of the states of A. There is a transition in A' from a state S, a set of
states of A, to another state S1, again a set of states of A, under an input a if and only if to each state
in S1 there is a transition in A from some state in S under the input a.

A is clearly deterministic and complete. To show that A and A' are equivalent, consider the state
graphs GA and GA'. For any path in GA, from the initial state to a final state, labelled by a word
w = w,... w,, there is a unique path in GA', labelled also by w, from the initial state to a final state (see
Figure 3.6). The corresponding states of A', as the sets of states of A, can be determined, step by step,
using the transition function 6', from the initial state of A' and w. The state of A' reached by the path
labelled by a prefix of w has to contain exactly the states of A reached, in GA, by the path labelled by

162 U AUTOMATA

0 01 1 0Q 0
1 0 0

a b 0 0~P q r PA 4
(C)

b a a 1

/ b

(d) (b)

Figure 3.7 FA and equivalent DFA obtained by the subset construction

the same prefix of w. Similarly, to any path in A', from the initial to a final state, labelled by a word
w, there is a path in GA from the initial to a final state. The states on this path can be taken from the
corresponding states of the path labelled by w in GA, in such a way that they form a path in GA. To
design it, one has to start in the last state (of A') of the path in GA', to pick up a state q, (terminal in
A), from this state of A' and go backwards to pick up states q,-1, qn-2, • . • , qj. This is possible, because
whenever A B in A', then for any q' c B there is a q E A such that q q' in A. [

Example 3.2.9 Let A = (E, Q, qo, QF, •) be the nondeterministic finite automaton depicted in Figure 3.7a.
The finite automaton obtained by the subset construction has the following transition function 6':

6'(0,0) = 0; 6'(0,1) = 0;
6({p},O) = {p,q}; 6'({p},1) = {q};
6'({q},O) = {p,r}; 6'({q},1) = {q,r};
6'({r},O) = {p,r}; 6'({r},1) = 0;

6'({p,q},0) = {p,q,r}; 6'({p,q},l) = {q,r};
6'({p,r},0) = {p,q,r}; 6'({p,r},1) = {q};
6'({q,r},0) = {p,r}; 6'({q,r},1) {q,r};

6'({p,q,r},O) = {p,q,r}; 6'({p,q,r},1) = {q,r}.

The states {r} and 0 are not reachable from the initial state {p}; therefore they are not included
in the state graph GA' of A' in Figure 3.7b. The subset construction applied to the FA in Figure 3.7c
provides the DFA shown in Figure 3.7d. Other states created by the subset construction are not
reachable in this case.

Exercise 3.2.10 Design a DFA equivalent to NFA in (a) Figure 3.8a; (b) Figure 3.8b.

Since nondeterministic and incomplete FA conform less to our intuition of what a finite state
machine is and, are not more powerful than DFA, it is natural to ask why they should be considered
at all.

There are two reasons, both of which concern efficiency. The first concerns design efficiency. It
is quite often easier, even significantly easier, to design a NFA accepting a given regular language
than an equivalent DFA. For example, it is straightforward to design a NFA recognizing the language

FINITE AUTOMATA 5 163

0 a

a

1 bb
b D a,b

(a) 0 (b)

Figure 3.8 Examples of a NFA

{a,b}*a{a,b}" (see Figure 3.9a for the general case and Figure 3.9b for n = 2). On the other hand, it
is much more difficult to design a DFA for this language (see the one in Figure 3.9c for n = 2). The
second reason concerns size efficiency, and this is even 'provably important'.

The number of states of a FA A, in short state(A), is its state complexity. In the case of the NFA
in Figure 3.7c the subset construction does not provide a DFA with a larger number of states. On
the other hand, the subset construction applied to the NFA in Figure 3.7a, has significantly increased
the number of states. In general, the subset construction applied to a NFA with n states provides a
DFA with 2" states. This is the number of subsets of each set of n elements and indicates that the
subset construction can produce exponentially more states. However, some of these states may not
be reachable, as the example above shows. Moreover, it is not yet clear whether some other method
could not provide a DFA with fewer states but still equivalent to the given NFA.

In order to express exactly how much more economical a NFA may be, compared with an
equivalent DFA, the following economy function is introduced:

EconomyDFA(n) = max{min{state(3) I3 is a DFA equivalent to A}IA is NFAstate(A) = n}.

The following result shows that a DFA can be, provably, exponentially larger than an equivalent
NFA.

DFA

Theorem 3.2.11 EconomyNFA (n) = 2n.

Proof idea: The inequality EconomyN(n) < 2" follows from the subset construction. In order to
prove the opposite inequality, it is sufficient to show, which can be done, that the minimum DFA
equivalent to the one shown in Figure 3.9d must have 2" states. 5

A simpler example, though not so perfect, of the exponential growth of states provided by the

subset construction, is shown in Figure 3.9. The minimum DFA equivalent to the NFA shown in
Figure 3.9a must have 2` states. This is easy to see, because the automaton has to remember the last
n - 1 symbols. For n = 2 the equivalent DFA is shown in Figure 3.9c.

Corollary 3.2.12 Nondeterminism of a NFA does not increase its computational power, but can essentially
(exponentially) decrease the number of states (and thereby also increase the design efficiency).

Exercise 3.2.13 Design a DFA equivalent to the one in Figure 3.9d for (a) n = 4; (b) n = 5.

164 U AUTOMATA

a,b a,b

(a) (b)
0, aý,b -,

a,b a ,b

aa

a,b b

\a a aa2ba• b a\a , b

a,~

(c •b (d)

Figure 3.9 Examples showing that the subset construction can yield an exponential growth of states

aab b b

:b b a b a,b a,b a

(a) b (b)

Figure 3.10 Two equivalent DFA

3.2.3 Minimization of Deterministic Finite Automata

Once we have the task of designing a DFA that recognizes a given regular language L, it is natural to
try to find a 'minimal' DFA, with respect to the number of states, for L. Figure 3.10 shows that two
equivalent DFA may have different numbers of states.

The following questions therefore arise naturally:

" How many different but equivalent minimal DFA can exist for a given FA?

" How can a minimal DFA equivalent to a given DFA be designed?

"* How fast can one construct a minimal DFA?

In order to answer these questions, new concepts have to be introduced. Two states p, q of a FA A are
called equivalent; in short p =- q, if L(p) = L(q) in A. A FA A is called reduced if no two different
states of A are equivalent. A DFA A is called minimal if there is no DFA equivalent to A and with
fewer states.

We show two simple methods for minimizing finite automata. Both are based on the result, shown
later, that if a DFA is reduced, then it is minimal.

1. Minimization of DFA using the operations of reversal and subset construction. The first
method is based on two operations with finite automata. The operation of reversal assigns to a
DFA A = (E, Q, qo, QF, 6) the finite automaton p(A) = (E, Q, QF, {qo }, p(6)), that is, the initial and final

FINITE AUTOMATA U 165

states are exchanged, and q E p(6) (q', a) if and only if 6(q,a) = q'. The operation of subset construction
assigns to any FA A = ý(, Q, Qi, QF, 6), with a set Q, of initial states, a DFA 7r(A) obtained from A by
the subset construction (and containing only reachable states).

Theorem 3.2.14 Let A be a finite automaton, then A' = 7r(p(ir(p(A)))) is a reduced DFA equivalent to A.

Proof: Clearly A' is a DFA equivalent to A. It is therefore sufficient to prove that 7r(p(D)) is reduced
whenever D = (E, Q', q', QF, 6') is a FA and each of its states is reachable. Let Q, g Q', Q2 C Q' be two
equivalent states of 7r(p(D)). Since each state of D is reachable, for each q, C Q, there is a w E E* such
that q, = 6'(q', w). Thus q' E p(6') (Qh, w). As Q, and Q2 are equivalent, we also have q' E p(6') (Q2, w),
and therefore q2 = 6'(q, w) for some q2 c Q2. Since 6' is a mapping, we get qi = q2, and therefore
Q1 C Q2. By symmetry, Q, = Q2.

Unfortunately, there is a DFA A with n states such that 7r(p(A)) has 2n states (see the one in
Figure 3.9d). The time complexity of the above algorithm is therefore exponential in the worst case.

2. Minimization of DFA through equivalence automata. The second way of designing a reduced
DFA A' equivalent to a given DFA A is also quite simple, and leads to a much more efficient algorithm.
In the state graph GA identify nodes corresponding to the equivalent states and then identify multiple
edges with the same label between the same nodes. The resulting state graph is that of a reduced
DFA. More formally,

Definition 3.2.15 Let A = (E,Q,qo,QF,6) be a DFA. For any state q E Q let [q] be the equivalence class on
Q with respect to the relation =-A. The equivalence automaton A'for A is defined by

A' = (rQ',[qo],Q',6'),whereQ'= {[q] qc Q},Q= {[q] IqE QF},and6' ={([ql],a,[q2]) (q',a,q') c
6for some q', E [ql],q• c [q2]}.

Minimization of DFA is now based on the following result.

Theorem 3.2.16 (1) The equivalence automaton A' of a DFA A is well defined, reduced and equivalent to A.
(2) State(13) Ž state(A') for any DFA 13 equivalent to a DFA A.
(3) Any minimal DFA 13 equivalent to a DFA A is isomorphic with A'.

Proof: (1) If q =-A q', then either both q and q' are in QF, or both are not in QF. Final states of
A' are therefore well defined. Moreover, if L(q) = L(q') for some q,q' G Q, then for any a E E,
L(6(q, a)) = L(6(q',a)), and therefore all transitions of A' are well defined. If w = w ... w, C E* and
qi = 6 (qo, w,... wi), then [qi] = 6'([qo], w,... wi). This implies that L (A) = L(A'). The condition of A'
being reduced is trivially fulfilled due to the construction of A'.

(2) It is sufficient to prove (2) assuming that all states of B are reachable from the initial state. Let
13 = (E, Q", qo', Q", 6") be a DFA equivalent to A. Consider the mapping g: Q" ---* Q' defined as follows:
since all states of 13 are reachable, for any q" E Q" there is a Wq, E YD* such that 6"(q", wq,) = q". Define
now g(q") = 6"([qoj ,wq,,). From the minimality of A' and its equivalence with 13, it follows that this
mapping is well defined and subjective.

(3) In the case of minimality of 13 it is easy to verify that the mapping g defined in (2) is actually
an isomorphism.

Corollary 3.2.17 If a DFA is reduced, then it is minimal.

The task of constructing a minimal DFA equivalent to a given DFA A has therefore been reduced
to that of determining which pairs of states of A are equivalent, or nonequivalent, which seems to be
easier. This can be done as follows.

Let us call two states q, q' of A

166 U AUTOMATA

1. 0-nonequivalent, if one of them is a final state and the other is not;

2. i-nonequivalent, for i > 0, if they are either (i - 1)-nonequivalent or there is an a E •, such that
6(q,a) and 6(q',a) are (i - 1)-nonequivalent.

Let Ai be the set of pairs of i-nonequivalent states, i > 0. Clearly, Ai C Ai+ 1, for all i > 0, and one
can show that A, = A,±k for any k > 0 if n = state(A).

Two states q, q' are not equivalent if and only if there is a w = Wl... Wm c E * such that 6(q, w) E QF
and 6(q', w) ý QF. This implies that states 6(q, wi. .. wij) and 6(q',wi ... wij) are i-nonequivalent.
Hence, if q and q' are not equivalent, they are n-nonequivalent.

The recurrent definition of the sets Ai actually specifies an 0(n 2m) algorithm, m = 1 , to determine
equivalent states, and thereby the minimal DFA.

Example 3.2.18 The construction of i-nonequivalent states for the DFA in Figure 3.10a yields
A0 = {(1,5), (1,6), (2,5), (2,6), (3,5), (3,6), (4,5), (4,6)}, A 1 = A 0 U {(1,2), (1,4), (2,3), (3,4)}, A2 = A, u
{(1,3)}, A3 = A 2. The resulting minimal DFA is depicted in Figure 3.10b.

It can be shown, by using a more efficient algorithm to determine the equivalence, that one can
construct the minimal DFA in sequential time O(mn lg n), where m is the size of the alphabet and n is
the number of states of the given DFA (see references).

Exercise 3.2.19 Design the minimal DFA accepting the language (a) of all words over the alphabet
{a, b} that contain the subword 'abba' and end with the subword 'aaa'; (b) of all words over the alphabet
{0,1} that contain at least two occurrences of the subword '111';
(c) L= {wl #,w - #bw (mod 3)1} C {a, b}*.

3.2.4 Decision Problems

To decide whether two DFA, A1 and A2, are equivalent, it suffices to construct the minimal equivalent
DFA A• to A• and the minimal DFA A2 to A 2. A, and A2 are then equivalent if and only if A' and A'
are isomorphic. If n = max{state(Al), state(A 2) } and m is the size of the alphabet, then minimization
can be done in O(mn lg n) sequential time, and the isomorphism can be checked in O(nm) sequential
time.

One way to decide the equivalence of two NFA A, and A2 is to design DFA equivalent to A, and A 2

and then minimize these DFA. If the resulting DFA are isomorphic, the original NFA are equivalent;
otherwise not. However, this may take exponential time. It seems that there is no essentially better
method, because the equivalence problem for NFA is a PSPACE-complete problem (see Section 5.11.2).

Two other basic decision problems for FA A are the emptiness problem - is L(A) empty? - and
the finiteness problem - is L(A) finite? It follows from the next theorem that these two problems are
decidable; one has only to check whether there is a w G L(A) such that Iwl < n in the first case and
n < Iwl < 2n in the second case.

Theorem 3.2.20 Let A = (E,Q,qo,Qr,6) be a DFA and IQI = n.
(1) L(A) = 0 if and only if there is a w E L(A) such that IwI < n.
(2) L(A) is infinite if and only if there is a w e L(A) such that n < 1wl < 2n.

Theorem 3.2.20 is actually a corollary of the following basic result.

FINITE AUTOMATA S 167

Lemma 3.2.21 (Pumping lemma for regular languages) If A is a FA and there is a w E L(A), lwI > n =
state(A), then there are x,y,z E E* such that w = xyz, Ixzj < n,0 <]yI < n, and xy'z E L(A),for all i > 0.

Proof: Let w be the shortest word in L(A) with lwI > n and w = w,... •Wk, wi E E. Consider the following
sequence of states:

qi = 6(qo,w w . Wi),0 < i < k.

Let us now take il and i2 such that 0 < il < i2 • k, qi, = qi2 , and i2 - il is as small as possible. Such
il, i2 must exist (pigeonhole principle), and clearly i2 - il < n. Denote x = Wl... wil, y = w 1. ... wi2,
z = Wi,+1... Wk. Then 6(qo,xyi) = qil = qi2 for all i > 0, and therefore also xyiz E L((A). Because of the
minimality of w we get IxzI <_ n.

Exercise 3.2.22 Show the following modification of the pumping lemma for regular languages. Let L
be a regular language. There exists an NL E N such that fffor some strings xl, x 2, x3, x1x 2x 3 E L and

Ix21 > NL, then there exist strings u, v and w such that x 2 = uvw, v s uvI : NL and xIuviWX3 G L
for all i > 0.

Exercise 3.2.23 Show, using one of the pumping lemmas for regular languages, that the language
{wcw I w c{a, b}* } is not regular.

3.2.5 String Matching with Finite Automata

Finding all occurrences of a pattern in a text is a problem that arises in a large variety of applications,
for example, in text editing, DNA sequence searching, and so on. This problem can be solved elegantly
and efficiently using finite automata.

String matching problem. Given a string (called a pattern) x E E*, IxI = m, design an algorithm
to determine, for an arbitrary y c E*, y = y ... Y,, yj E E for 1 < j • n, all integers I < i < n such that
x is a suffix of the string y.. •yi.

A naive string matching algorithm, which checks in m steps, for all m < i < n, whether x is a suffix
of yi. ... yi, clearly requires O(mn) steps.

The problem can be reduced to that of designing, for a given x, a finite automaton Ax capable of
deciding for a given word y c E * whether y E E*x.

If x = x,... Xm, xi E E, then the NFA Ax shown for an arbitrary x in Figure 3.11a and for x = abaaaba
in Figure 3.11b accepts E*x. Ax has m + 1 states that can be identified with the elements of the set Px
of prefixes of x - that is, with the set

Px = {C,Xi,XlX 2 ,. . . ,XlX 2 ... Xm}

or with the integers from 0 to m, with i standing for x1. . . xi.
It is easy to see that the DFA A", which can be obtained from Ax by the subset construction, has

also only m + 1 states. Indeed, those states of A'" that are reachable from the initial state by a word
y form exactly the set of those elements of P. that are suffixes of y. This set is uniquely determined
by the longest of its elements, say p, since the others are those suffixes of p that are in Px. Hence, the
states of A' can also be identified with integers from 0 to m. (See Ax4 for x = abaaaba in Figure 3.11d.)

Letfx : Px - Px be the failure function that assigns to each p E Px - {e} the longest proper suffix of
p that is in Px. (For x = abaaabafx is shown in Figure 3.11c, as a mapping from {0,... , 7} to {0, 7}.)

168 U AUTOMATA

f2 pmp 1 2 3 4 5 6 7

f(p) 0 0 1 1 1 2 3

(a) (C)

a,b

3 a a , J -:7 1

b bb b b

b2 a 3 4 5 b 6 0

(d) b
a

a a

Figure 3.11 String matching automata and a failure function

Then the state of A', corresponding to the longest suffix p contains those states of A, that correspond
to the prefixes

P , fý(p), f? (p),€

To compute fx, for an x E*, we can use the following recursive rule: f.(Xl) = E, and for all p,
pa e Px - JE}:

f, (pa) { fx(p)a, iffx(p)a E P,;
fx•f(p)a), otherwise.

Oncef, is known, the transition function 6x of A', for p c Px and a c E, has the following form:

bxpa pal if pa c- Px;
6x(p,a) = {6x(fx(p),a), otherwise.

This means that we actually do not need to store 6. Indeed, we can simulate A' on any input word y
by the following algorithm, one of the pearls of algorithm design, with the input x,fx, y.

Algorithm 3.2.24 (Knuth-Morris-Pratt's string matching algorithm)

m - jxj; n - lyl, q -0;
for i - 1 to n do while 0 < q < m and Xq+i $ yi do q -fx(q) od;

if q < m and xq+1 = yi then q - q + 1;
if q = m then print 'pattern found starting with (i - m)-th symbol';

q -fý(q)
od

0(m) steps are needed to compute fx, and since q can get increased at most by 1 in an i- cycle,
the overall time of Knuth-Morris-Pratt's algorithm is 0(m + n). (Quite an improvement compared
to 0(mn) for the naive algorithm.)

REGULAR LANGUAGES U 169

'Z(c)

(a) (b) (d)

Figure 3.12 Closure of regular languages under union, concatenation and iteration

Exercise 3.2.25 Compute the failure function for the patterns (a) aabaaabaaaab; (b) aabbaaabbb.

Exercise 3.2.26 Show in detail why the overall time complexity of Knuth-Morris-Pratt's algorithm is
O(m+n).

3.3 Regular Languages
Regular languages are one of the cornerstones of formal language theory, and they have many
interesting and important properties.

3.3.1 Closure Properties

The family of regular languages is closed under all basic language operations. This fact can be utilized
in a variety of ways, especially to simplify the design of FA recognizing given regular languages.

Theorem 3.3.1 The family of regular languages is closed under the operations

1. union, concatenation, iteration, complementation and deference;

2. substitution, morphism and inverse morphism.

Proof: To simplify the proof, we assume, in some parts of the proof, that the state graphs GA of those
FA we consider are in the normal form shown in Figure 3.12a: namely, there is no edge entering the
input state i, and there is a single final statef with no outgoing edge. Given a FA A = (E, Q, qo, QF, 6)
accepting a regular language that does not contain the empty-word, it is easy to construct an equivalent
FA in the above normal form. Indeed, it is enough to add two new states, i - a new input state - and
f - a new terminal state - and the following sets of state transitions:

* {(i,a,q) I(qo,a,q) E 6};

- {(p,af) I (p,a,q) E 6,q c QF ;

- {(i,a,f)I(qo,a,q) E 6,q E QF}.

To simplify the proof of the theorem we assume, in addition, that languages we consider do not
contain the empty word. The adjustments needed to prove the theorem in full generality are minor.

170 3 AUTOMATA

a
X '_ ' yK G 'Y)

in G is replaced by in GD(L)

Figure 3.13 Closure of regular languages under substitution

For example, by taking the state i in Figure 3.12a as an additional terminal state, we add E to the
language.

Figures 3.12b, c, d show how to design a FA accepting the union, concatenation and iteration of
regular languages provided that FA in the above normal form are given for these languages. (In the
case of union, transitions from the new initial state lead exactly to those states to which transitions
from the initial states of the two automata go. In the case of iteration, each transition to the final state
is doubled, to go also to the initial state.)

Complementation. If A is a DFA over the alphabet Z accepting a regular language L, then by
exchanging final and nonfinal states in A we get a DFA accepting the complement of L - the language
Lc. More formally, if L = L(A), A = (E, Q, qo, Qr, 6), then Lc = L(A'), where A' = (E, Q, qo, Q- QF, 6).

Intersection. Let L1 = L(A 1), L2 = L(A 2), where A1 = (Z,Q1,qlo,Q1,F,6j) and A 2 =

(, Q2, q2,0, Q2,F, 62) are DFA. The intersection L1 n L2 is clearly the language accepted by the DFA

(E, Q1 x Q2, (ql,o,q2,o), QI,F X Q2,F, 6X,

where 6((p,q),a) = (61(p,a),62(q,a)) for any p E Q1, q E Q2 and a E ,.

Difference. Since L1 - L2 = L1 n L' the closure of regular languages under difference follows from
their closure under complementation and intersection.

Substitution. Let 4 : E -* 2E be a substitution such that 0(a) is a regular language for each a G E.
Let L be a regular language over E, and L = L((A), A = (E,Q, qo,Qr,6). For each a E E let G. be the
state graph in the normal form for the language 0,(a). To get the state graph for a FA accepting the
language 4,(L) from the state graph GA, it suffices to replace in GA any edge labelled by an a c E by
the state graph Ga in the way shown in Figure 3.13.

The closure of regular languages under morphism follows from the closure under substitution.

Inverse morphism. Let 4,: E --, X, be a morphism, L C E* a regular language, L = L(A) for a FA
A. As defined in Section 2.5.1,

0- 1(L) = {wc EX'*(w) EL}.

Let GA = (V, E) be the state graph for A. The state graph G,-l(L) for a FA recognizing the language

-1 (L) will have the same set of nodes (states) as GA and the same set of final nodes (states). For any

a e E, q e V there will be an edge (p,a,q) in GQ-i (L) if and only if p 4' q in A. Clearly, w is a label of a
6(a)

path in G- (L),I from the initial to a final node, if and only if O,(w) C L. [

Using the results of Theorem 3.3.1 it is now easy to see that regular languages form a Kleene
algebra. Actually, regular languages were the original motivation for the introduction and study of
Kleene algebras.

REGULAR LANGUAGES U 171

Exercise 3.3.2 Show that ýfL C E,* is a regular language, then so are the languages
(a) LR = {wlwR I wL; (b) {u}<'L, where u c E*.

3.3.2 Regular Expressions

There are various formal systems that can be used to describe exactly regular languages. (That is,
each language they describe is regular, and they can be used to describe any regular language.) The
most important is that of regular expressions. They will now be defined inductively, together with
their semantics (interpretation), a mapping that assigns a regular language to any regular expression.

Definition 3.3.3 A regular expression E, over an alphabet E, is an expression formed using the following
rules, and represents the language L(E) defined as follows:

1. 0 is a regular expression, and L(O) = 0.

2. a is a regular expression for any a E E U {E} and L(a) = {a}.

3. If El, E2 are regular expressions, then so are

(El + E2), (El -"E2), (E*)

and
L((E 1 + E2)) = L(E 1)UL(E 2), L((E1 .E2)) = L(EI) .L(E 2), L((E*)) = L(E*),

respectively.

4. There are no other regular expressions over E.

Remark 3.3.4 Several conventions are used to simplify regular expressions. First, the following
priority of operators is assumed: *, ., +. Second, the operators of concatenation are usually omitted.
This allows us to omit most of the parentheses. For example, a regular expression describing a word
w = a,... a, is usually written as ala2. . . a, and not (... ((a,.a 2).a 3)... a,). Finally, the expression
{Wl, ..•, w, } is used to denote the finite language containing the words wi,..., w,.

Example 3.3.5 {0, 1}*, {0,1}*OOO{O,1}* and {a,b}*c{a,b}*c{a,b}* are regular expressions.

Regular expressions and finite automata

The following theorem, identifying languages accepted by finite automata and described by regular
expressions, is one of the cornerstones of formal language and automata theory, as well as of their
applications.

Theorem 3.3.6 (Kleene's theorem) A language L is regular if and only if there is a regular expression E
such that L = L(E).

Proof: It follows from Theorem 3.3.1 that each language described by a regular expression is regular.
To finish the proof of the theorem, it is therefore sufficient to show how to design, given a DFA A,
a regular expression EA such that L(EA) = L(A). This is quite a straightforward task once a proper
notation is introduced.

172 U AUTOMATA

"ý"in R k-l "I k-f k'Lo"

ik in R k~k in R kj

Figure 3.14 Decomposition of a computational path for a word w e Rk w = WlW 2 ...

Let A = (Z, Q, qo, QF,6). Without loss of generality we assume that Q = {0, 1, ... ,n}, qo = 0 and
consider, for 0 < i,j < n, -1 < k < n, the set Rk defined by

Rk. = {w E E* 16(i, w) = j and 6(i, u) < k for any proper prefix u of w}.

In other words, the set R~j contains those strings that make A go from state i to state j passing
only through states in the set {0, 1, . . . , k}. Clearly,

R- 1 = {aI6(i,a) =j}u{IIifi=j} C EU{e},

and therefore there is a regular expression representing R- 1 . Since

L(A) = U

jEQF

in order to prove the theorem, it suffices to show the validity of the recurrence (3.1) for any R'.1

(0, if k = -1,i 7 j,6(i,a) j;
{a}, ifk = -1, i j,6(i,a) =j;

Rk = if k= -1,i =j,6(i,a) 5#j; (3.1)
"if k = -1,i =j,6(i,a) =j;

Rk-1 U Rk-1(Rk-•)*Rk-, if k >0.i~j i,k k,k k~j ifk> 0

Once this is done, it is straightforward to show by induction that for each language Rk there is a
regular expression representing it.

However, the validity of the recurrence (3.1) is actually easy to see. Any path in GA from a state
i to a state j that passes only through states {0, 1,. . , k} can be decomposed into subpaths that may
contain the state k only at the beginning or the end of the path (if the state k occurs on the path at all).
See Figure 3.14 for the case that the state k occurs several times. These subpaths belong to one of the
subsets Rk1k or Rk-1 or Rk7l. El

i,k k,k k~j
Two regular expressions El and E2 are said to be equivalent if they describe the same language.

Some of the most basic pairs of equivalent regular expressions are listed in the right-hand column of
Table 2.1.

Exercise 3.3.7 Determine which of the following equalities between regular languages are valid:
(a)(011 + (10)* 1 + 0)* = 011(011 + (10)* 1 + 0)*;
(b) ((1 + 0)*100(1 + 0)*)* = ((1 + 0)100(1 + 0)*100)*.

REGULAR LANGUAGES U 173

Design of finite automata from regular expressions

One of the advantages of regular expressions is that they specify a regular language in a natural way in
a linear form, by a string. Regular expressions are therefore very convenient as a specification language
for regular languages, especially for processing on computers. An important practical problem is to
design, given a regular expression E, a FA (or a DFA) that recognizes the language L(E). An elegant
way of doing this, by using the derivatives of regular expressions, will now be described. However,
in order to do so, a proper notation has to be introduced.

For a regular expression E let p(E) be a regular expression that is equal to 6 if 6 E L(E), and to 0
otherwise. (That is, p(E)F equals F if the empty word is in L(E), and 0 otherwise.) To compute p(E)
for a regular expression E, we can use the following inductive definition of p (where a GE):

p(O) = 0, p(E) = E, p(E+F) = p(E)+p(F),
p(a) = 0, p(E*) = E, p(E.F) = p(E).p(F).

Definition 3.3.8 The derivative of a regular expression E by a symbol a, notation a-1 E, is a regular expression
defined recursively by a-1 0 = 0 and

a 1E = 0, a-1 b = 0, ifa # b, a-1 (E*) = (a 1 E).E*,
a-la = E, a-I(E+F) = a-1 E+a-1 F, a-1 (E.F) = (a-IE)F+p(E)a-IF.

The extension from the derivatives by symbols to derivatives by words is defined by E- E = E
and (wa)-'E = a-1 (w-'E).

It can be shown that with respect to any regular expression E the set E* is partitioned into the
equivalence classes with respect to the relation wl= w2 if wlE = w21 E. SE = {F 3w e*: F = w-E}
has only finitely many equivalence classes with respect to the equivalence of regular expressions.

The following method can be used to design, given a regular expression E, a DFA AE recognizing
the language L(E):

1. The state set of AE is given by the set of equivalence classes with respect to the relation =. We
write w- 1 for [w].

2. For any state [w] and any symbol a G E there will be a single transition from w-'E: namely, that
into the state [wa].

3. The equivalence class for the whole expression E is the initial state. A state w 1 E is final if and
only if E c L(w 1 E).

To illustrate the method, let us consider the regular expression E = {a, b}*a{a, b}{a, b}. Using the
notation S = {a, b} we have E = S*aSS. For derivatives we get:

a-1E = E+SS, b7 1E = E,
(aa)-lE = E+SS+S, (ab)»'E = E+S,

(aaa)-'E = E+SS+S+{eJ}, (aab) 1 E = E+S+{E},
(aba)-'E = E+SS+{e}, (abb)-1 E = E+-.

It is easy to verify that no two of these regular expressions are equivalent, and that further derivations
do not provide new regular expressions. The resulting state graph is shown in Figure 3.15. Observe
that it is the same state diagram as the one in Figure 3.9c, the state diagram obtained from the one in
Figure 3.9b by the subset construction. The algorithm just presented for designing a DFA accepting
the language described by a regular expression always provides the minimal DFA with this property.

174 5 AUTOMATA

S~a

aaa

b bE•+bSSSb

Figure 3.15 A DFA accepting the language represented by the regular expression {a, b}*a{a, b}){a, b}
and designed using derivatives of regular expressions

Exercise 3.3.9 Use the method of derivatives to design a DFA equivalent to the following regular
expressions: (a) {a,b}*aba{a,b}*; (b) {a,b}*{ab,ba}{a,b}*.

Exercise 3.3.10 Show that the method of derivatives always creates the minimal DFA for a given
language. (Hint: show that for each string w, w 1E is the state of the minimal DFA that is reached
from the initial state by the input w.)

On the other hand, using the ideas presented in the proof of Theorem 3.3.1, given a regular
expression, one can design a NFA accepting the same language in linear time.

Exercise 3.3.11 Design a NFA describing the same language as the following regular expressions:
(a) {{a, b}*aaa{a, b}* }*; (b) aaa{ab, ba}* + aaa{aa, bb}*.

3.3.3 Decision Problems

Finite automata and regular expressions can be seen as two different specification tools for describing
regular languages. But how different are they really? One way of understanding the difference is
to compare the computational complexity of some main decision problems for DFA and regular
expressions.

The membership problem. This is the problem of deciding whether, given a regular expression
E, over an alphabet E, and a w E E*, w E L(E). This can be done in time 0(1(wIlE 2). Indeed, in time
O(EI) one can design a NFA AE accepting the same language as E, and then, for each symbol of w in
time O(1E 1

2), calculate the potential states when simulating acceptance of w on AE.

REGULAR LANGUAGES U 175

Exercise 3.3.12 Design in detail an algorithm that decides, given a NFA A and a word w, whether
w E L(A).

The emptiness problem and the finiteness problem are, on the other hand, very easy (here we
assume that the symbol for the empty language is not used within the expression). They require
time proportional to the length of regular expressions. Indeed, if E, contains a symbol from E, then
the language L(E) is nonempty. Similarly, if E contains a symbol from E in the scope of an iteration
operator, then the language is infinite, and only in such a case.

Exercise 3.3.13 Show how to decide, given a FA A4 over the alphabet E, whether L (A) = E*.

The equivalence problem for regular expressions is, as for NFA, PSPACE-complete.
In the rest of this section we discuss the equivalence problem for generalized regular expressions

in order to illustrate how the computational complexity of a problem can be altered by a seemingly
inessential change in the language used to describe input data. (We shall come to this problem again
in Section 5.11.)

The idea of considering some generalized regular expressions is reasonable. We have seen in
Section 3.3.1 that the family of regular languages is closed under a variety of operations. Therefore,
in principle, we could enhance the language of regular expressions with all these operations: for
example, with complementation and intersection, to be very modest. This would in no way increase
the descriptional power of such expressions, if measured solely by the family of languages they
describe.

Such generalizations of regular expressions look very natural. However, there are good reasons
for not using them, unless there are special contra-indications. Complementation and intersection
have enormous descriptive power. They can be used to describe succinctly various 'complex' regular
languages. This in turn can make working with them enormously difficult. One can see this from the
following surprising result concerning the equivalence problem for generalized regular expressions.

Theorem 3.3.14 The following lower bound holds for the sequential time complexity T(n) of any algorithm
that can decide whether two generalized regular expressions with the operations of union, concatenation and
complementation, of length n, are equivalent:

(22 }log n times)

An even higher lower bound has been obtained for algorithms deciding the equivalence of regular
expressions when the iteration operation is also allowed.

Why is this? There is a simple explanation. Using the operation of complementation, one
can enormously shorten the description of some regular expressions. Since the time for deciding
equivalence is measured with respect to the length of the input (and regular expressions with
operations of negation can be very short), the resulting time can be very large indeed.

Example 3.3.15 If E is an alphabet, ZJ 2, x $ y c V*, then {x} and (E*xE*) n (E*yr*) are simple
examples of generalized regular expressions for which the corresponding regular expressions are much more
complex.

176 U AUTOMATA

Exercise 3.3.16 Give regular expressions that describe the same language as the following generalized
regular expressions for E = {a, b,c}: (a) (E* .{abc} -'*); (b) (E* {aba}) n (*. {bcb}. -*).

3.3.4 Other Characterizations of Regular Languages

In addition to FA and regular expressions, there are many other ways in which regular languages
can be described and characterized. In this section we deal with three of them. The first concerns
syntactical monoids (see Section 2.6.2).

Let L C E * be a language. The context of a string w c E*, with respect to L, is defined by

CL(w) = {(u,v) uwv c L}.

The relation -L on E* x E*, defined by

X _yL Y CL(X) = CL(y),

is clearly an equivalence relation (the so-called syntactical equivalence). In addition, it is a congruence
in the free monoid (E*,-), because

X1 _L y1,X2 =L Y2 := XX2 =--L yly2.

This implies that the set of equivalence classes [W]L, W E EY*, with respect to the relation =L and the
operation [Wl1L. [W21L = [WlW2)L forms a monoid, the syntactical monoid of L.

Theorem 3.3.17 (Myhill's theorem) A language L is regular f and only f its syntactical monoid is finite.

Proof: Let L be a regular language and L = L(A) for a DFA A = (E, Q, qo, QF, 6). For any p E Q let
l(p) = {wI6(qo, w) = p}. Moreover, for any w E E* let S, = {(p,q) 16(p,w) = q}. Clearly,

CL(W) = U l(p) xL(q).
(p,q)ESw

Since the number of different sets Sw is finite, so is the number of contexts CL (w); therefore the
syntactical monoid of L is finite.

Now let us assume that the syntactical monoid M for a language L C E* is finite. We design
a DFA recognizing L as follows. Elements of M, that is the equivalence classes with respect to the
relation =L, will be the states, with [6]L the initial state. States of the form [W]L, W e L will be the final
states. For a state [w] and a symbol a c E there will be a transition ([W)L,a, [wa]L). Clearly, the resulting
DFA recognizes L. U

The second characterization is in terms of the prefix equivalence --P defined for a language L c E
by

W L W2 Vu E *(wlU E L <-• w 2u E L).

Theorem 3.3.18 (Nerode's theorem) A language L is regular Yfand only if its prefix equivalence has finitely
many equivalence classes. If a language L is regular, then the number of its prefix equivalence classes equals
the number of states of the minimal DFAfor L.

REGULAR LANGUAGES N 177

Proof: (1) If L is regular, then by Myhill's theorem the set of syntactical equivalence classes of L is
finite. Since u _L W =. U wL w, the set of prefix equivalence classes of L has to be finite also.

(2) Let the number of prefix equivalence classes [w]p be finite. These classes will be the states of
a DFA A that will recognize L, and is defined as follows. [E]p is the initial state and { [w]P I w E L} are
final states. The transition function 6 is defined by 6([w]P,a) = [wa]l. Since w, =P w2 =>' w1a EP w2a for
all w1 , w2 and a, 6 is therefore well defined, and A clearly recognizes L.

The resulting DFA has to be minimal, because no two of its states are equivalent; this follows
from the definition of prefix equivalence classes. fl

Exercise 3.3.19 Show that syntactical monoids of the following languages are infinite (and therefore
these languages are not regular): (a) {anb" I n > 0}; (b) {a' I i is prime}.

Exercise 3.3.20 Determine the syntax equivalence and prefix equivalence classes for the following
languages: (a) { a, b} *aa{ a, b} *; (b) {ab ij > 1}.

Nerode's theorem can also be used to derive lower bounds on the number of states of DFA for
certain regular languages.

Example 3.3.21 Consider the language L, = {a, b}*a{a, b}n-1. Let x,y be two df-erent strings in {a, b}n, and
let them differ in the i-th left-most symbol. Clearly, xb'-' E L = ybi-1 V L, because one of the strings xbi-1
and ybi-' has a and the second b in the n-th position from the right. This implies that Ln has at least 2" prefix
equivalence classes, and therefore each DFA for Ln has to have at least 2" states.

Exercise 3.3.22 Design an n + 1 state NFAfor the language Lnfrom Example 3.3.21 (and show in this
way that for Ln there is an exponential deference between the minimal number of states of NFA and DFA
recognizing Ld).

Exercise 3.3.23 Show that the minimal deterministic FA to accept the language
L = {wl#,w mod k = O} C {a,b}* has k states, and that no NFA with less than k states can
recognize L.

Example 3.3.24 (Recognition of regular languages in logarithmic time) We show now how to use the
syntactical monoid of a regular language L to design an infinite balanced-tree network of processors (see
Figure 3.16) recognizing L in parallel logarithmic time.

Since the number of syntactical equivalence classes of a regular language is finite, they can be
represented by symbols of a finite alphabet. This will be used in the following design of a tree network
of processors.

Each processor of the tree network has one external input. For a symbol a G E on its external input
the processor produces as an output symbol representing the (syntactical equivalence) class [a]L. For
the input #, a special marker, on its external input the processor produces as the output symbol
representing the class [W1L.

178 U AUTOMATA

[

a b a a b b # #

Figure 3.16 Tree automaton recognizing a regular language

The tree automaton works as follows. An input word w = a,... a,, E * is given, one symbol per
processor, to the external inputs of the left-most processors of the topmost level of processors that has at
least I wI processors. The remaining processors at that level receive, at their external inputs, the marker
(see Figure 3.16 for n = 6). All processors of the input level process their inputs simultaneously, and
send their results to their parents. (Processors of all larger levels are 'cut off' in such a computation.)
Processing in the network then goes on, synchronized, from one level to another, until the root
processor is reached. All processors of these levels process only internal inputs; no external inputs
are provided. An input word w is accepted if and only if at the end of this processing the root processor
produces a symbol from the set {[W]L W E L}.

It is clear that such a network of memory-less processors accepts the language L. It is a simple
and fast network; it works in logarithmic time, and therefore much faster than a DFA. However, there
is a price to pay for this. It can be shown that in some cases for a regular language accepted by a
NFA with n states, the corresponding syntactical monoid may have up to nn elements. The price to be
paid for recognition of regular languages in logarithmic time by a binary tree network of processors
can therefore be very high in terms of the size of the processors (they need to process a large class of
inputs), and it can also be shown that in some cases there is no way to avoid paying such a price.

Exercise 3.3.25 Design a tree automaton that recognizes the language
(a) {a2" In > 01 (note that this language is not regular); (b) {ww E {a}*{b}*, wI = 2k,k > 11.

3.4 Finite Transducers

Deterministic finite automata are recognizers. However, they can also be seen as computing
characteristic functions of regular languages - the output of a DFA A is 1 (0) for a given input w
if A comes to a terminal (nonterminal) state on the input w. In this section several models of finite
state machines computing other functions, or even relations, are considered.

FINITE TRANSDUCERS j 179

0 (0,0) 1 01
(0,0) (1,0)

(1,0) (0,1) m-
(0,0)-0 (1,1)- (0,1)-0

(1) (1,1 (0,0) (0,0) (0,1)-i (1,0)-o
(1,l) (1,0)-I (0,0)-1 (1,1)-i

(1,0)
(o, 1) _(b)

0 (0,1) (1,0)
(a)

Figure 3.17 Moore and Mealy machines for serial addition

3.4.1 Mealy and Moore Machines

Two basic models of finite transducers, as models of finite state machines computing functions,
are called the Moore machine and the Mealy machine. They formalize an intuitive idea of an
input-output mapping realized by a finite state machine in two slightly different ways.

Definition 3.4.1 In a Moore machine M = (E, Q, qo,6, p, A), the symbols E, Q, qo and 6 have the same
meaning as for DFA, A is an output alphabet, and p: Q - A an output function.

For an input word w = w... •w• w, e E, p(qo)p(qj) ... p(q,) is the corresponding output word,
where qi = 6(qo, w,... wi), < < i < n. In a Moore machine the outputs are therefore 'produced by states'.
Figure 3.17a shows a Moore machine for a serial addition of two binary numbers. (It is assumed.that
both numbers are represented by binary strings of the same length (leading zeros are appended if
necessary), and for numbers x. ... x1, Y, ... yl the input is a sequence of pairs (xi, yi), . . •, (x,, y,) in
this order. Observe also that the output always starts with one 0 which is then followed by output
bits of bin 1(bin(x xl) x bin(y,. .. . yi).

Definition 3.4.2 In a Mealy machine M = (E, Q, qo, 6, p. A), symbols E, Q, q,,, 6, A have the same meaning
as in a Moore machine, and p : Q x E -* A is an output function.

For an input word w = wl... w,, wi c Z, p(qo,wl)... p(q,-o,w,) is the corresponding output
word, where qi = 6(qo, W, ... wi). Outputs are therefore produced by transitions. Figure 3.17b shows
a Mealy machine for the serial addition of two binary numbers x = xa... X•,, Y = y... yn, with inputs
presented as above.

Let us now denote by TM (w) the output produced by a Moore or a Mealy machine M for the
input w. For a Moore machine IT" (w)I = I w + I and for a Mealy machine ITM (w)I = IwI. A Moore
machine can therefore never be fully equivalent to a Mealy machine. However, it is easy to see that
for any Moore machine there is a Mealy machine (and vice versa) such that they are equivalent in the
following slightly weaker sense.

Theorem 3.4.3 For every Mealy machine M over an alphabet E there is a Moore machine M' over E (and
vice versa) such that p(qo)TM (w) = Tm, (w),for every input w E Z*, where p is the output function of M'.

180 U AUTOMATA

Exercise 3.4.4 Design (a) a Moore machine (b) a Mealy machine, such that given an integer x in binary
form, the machine produces L[J.

Exercise 3.4.5* Design (a) a Mealy machine (b) a Moore machine that transforms a Fibonacci
representation of a number into its normal form.

Exercise 3.4.6 Design a Mealy machine .M that realizes a 3-step delay. (That is, AM outputs at time t
its input at time t - 3.)

3.4.2 Finite State Transducers

The concept of a Mealy machine will now be generalized to that of a finite state transducer. One new
idea is added: nondeterminism.

Definition 3.4.7 A finite (state) transducer (FT for short) T is described by a finite set of states Q, a
finite input alphabet E, a finite output alphabet A, the initial state qo and a finite transition relation
pC Qx E* x A* x Q. For short, T= (Q,E, A, qo,p).

A FT T can also be represented by a graph, G7-, with states from Q as vertices. There is an edge in
GT from a state p to a state q, labelled by (u, v), if and only if (p, u, v, q) G p. Such an edge is interpreted
as follows: the input u makes T transfer from state p to state q and produces v as the output.

Each finite transducer T defines a relation

RT = {(u,v)13(qo,uo,vo,ql),(ql,ul,v1,q2),...,(qn,un,vn,qn+l),

where (qi,ui,vi,qi+1) p, for 0 < i < n, and u = uo ... u,,v = Vo.. vn}.

The relation RT can also be seen as a mapping from subsets of E * into subsets of A* such that for
L C E * RT-(L) = {vI3u c L,(u,v) E RT}-}.

Perhaps the most important fact about finite transducers is that they map regular languages into
regular languages.

Theorem 3.4.8 Let T = (Q,E, A,qo,p) be a finite transducer. If L C E* is a regular language, then so is
RT-(L).

Proof: Let A' = A U {#} be a new alphabet with # as a new symbol not in A. From the relation p we
first design a finite subset Ap c Q x * x A'* x Q and then take Ap as a new alphabet. A, is designed
by a decomposition of productions of p. We start with Ap being empty, and for each production of p
we add to AP symbols defined according to the following rules:

1. If (p, u, v, q) c p, I ul 1 •1, then (p, u, v, q) is taken into Ap.

2. If r = (p,u,v,q) E p, Jul > 1, u = u 1 . . Uk, 1 < i < k, ui E E, then new symbols t', . . . ,t_ 1 are

chosen, and all quadruples

(p, Uta#,t),k(ten2#,t2), in,(t2 U.tk),(tl

are taken into At,.I

FINITE TRANSDUCERS U 181

Now let QL be the subset of A* consisting of strings of the form

(qouovoql)(qulvi,q2) . .. (qs,us,vs,qs+ 1) (3.2)

such that v, $ # and uou l . . us E L. That is, QL consists of strings that describe a computation of T
for an input u = uoul... us c L. Finally, let r- : A, ý-4 A'* be the morphism defined by

((p, q)) v, if v 7 #;
pu e, otherwise.

From the way T and QL are constructed it is readily seen that r(QL) = RT(L).
It is also straightforward to see that if L is regular, then QL is regular too. Indeed, a FA A recognizing

QL can be designed as follows. A FA recognizing L is used to check whether the second components
of symbols of a given word w form a word in L. In parallel, a check is made on whether w represents
a computation of T ending with a state in Q. To verify this, the automaton needs always to remember
only one of the previous symbols of w; this can be done by a finite automaton.

As shown in Theorem 3.3.1, the family of regular languages is closed under morphisms. This
implies that the language RT (L) is regular. 0

Mealy machines are a special case of finite transducers, as are the following generalizations of
Mealy machines.

Definition 3.4.9 In a generalized sequential machine AM = (Q, E, A, q0, , p), symbols Q, E, A and qo
have the same meaning asforfinite transducers, 6: Q x E --* Q is a transition mapping, and p: Q x E.* A*
is an output mapping.

Computation on a generalized sequential machine is defined exactly as for a Mealy machine. Let
fM : A* be the function defined by M. For L C E* andL' C A* we therefore considerfM(L) and
definef)'(L') = {uIu G E*,fm(u) E L'}.

It follows from Theorem 3.4.8 that if M is a generalized sequential machine with the input alphabet
E and the output alphabet A and L C E* is a regular language, then so isfM (L). We show now that
a reverse claim also holds: if L' C A* is a regular language, then so isfm' (L').

Indeed, let AM (Q, E, A,qO, , p). Consider the finite transducer T = (Q, A, E,qo, 6') with 6' =
{(p,u,v,q) I6(p,u) = q,p(p,u) = v} U {(p,,E, q)}. Clearly, f; 1 (L') = RT-(L') and, by Theorem 3.4.8,

f& (L') is regular. Hence

Theorem 3.4.10 If M is a generalized sequential machine, then mappings fM and f)1 both preserve regular
languages.

In Section 3.3 we have seen automata-independent characterizations of languages recognized by
FA. There exists also a machine-independent characterization of mappings defined by generalized
sequential machines.

Theorem 3.4.11 For a mapping f : * -- A*, there exists a generalized sequential machine M such that
f =fM, if and only zff satisfies the following conditions:

1. f preserves prefixes; that is, ifu is a prefix of v, then f (u) is a prefix of f(v).

2. f has a bounded output; that is, there exists an integer k such that Lf(wa)I - [(w) I < k for any w G
E*,a c E.

3. f(e) = E.

182 3 AUTOMATA

0,0.5 0,1 0,0.25 0,0.5 0,1
1,0.5 1,1 1,0.25 1,0.5 1,1

(a) (b)

Figure 3.18 Two WFA computing functions on rationals and reals

4. f - 1 (L) is a regular language i L is regular.

Exercise 3.4.12 Letf be thefunction defined byf (a) = bf (b) = a and f (x) = xfor x E {a, b}* - {a, b}.
(a) Doesf preserve regular languages? (b) Canf be realized by a generalized sequential machine?

Exercise 3.4.13* Show how to design, given a regular language R, a finite transducer TR such that
TR(L) = L o R (where o, denotes the shuffle operation introduced in Section 2.5.1).

3.5 Weighted Finite Automata and Transducers
A seemingly minor modification of the concepts of finite automata and transducers, an assignment of
weights to transitions and states, results in finite state devices with unexpected computational power
and importance for image processing. In addition, the weighted finite automata and the transducers
introduced in this section illustrate a well-known experience that one often obtains powerful practical
tools by slightly modifying and 'twisting' theoretical concepts.

3.5.1 Basic Concepts

The concept of a weighted finite automaton is both very simple and tricky at the same time. Let us
therefore start with its informal interpretation for the case in which it is used to generate images.
Each state p determines a function that assigns a greyness value to each pixel, represented by an
input word w, and therefore it represents an image. This image is computed as follows: to each path
starting in p and labelled by w a value (of greyness) is computed by multiplying the weights of all
transitions along the path and, in addition, the so-called terminal weight of the final state of the path.
These values are then added for all paths from p labelled by w. The initial weights of all nodes are
then used to form a linear combination of these functions to get the final image-generating function.
More formally,

Definition 3.5.1 A weighted finite automaton (for short WFA) A is described by a finite set of input
symbols E, afinite set of states Q, an initial distribution i : Q - R, and a terminal distribution t: Q - R
of states, as well as a weighted transition function w: Q x E x Q -- R. In short, A = (E, Q, i, t, w).

To each WFA A we first associate the following distribution function 6A : Q x E -R:

6A(p,E) = t(p); (3.3)

6A(p,au) = j-w(p,a,q)6A(q,u) for eachp E Q,a E E,u e E*. (3.4)
qeQ

WEIGHTED FINITE AUTOMATA AND TRANSDUCERS U 183

A WFA T can be represented by a graph GT (see Figures 3.18a, b) with states as vertices and transitions
as edges. A vertex representing a state q is labelled by the pair (i(q), t(q)). If w(p,a,q) = r is nonzero,
then there is, in GT, a directed edge from p to q labelled by the pair (a, r).

A WFA A can now be seen as computing a functionfA :* -r, R defined by

fA(u) = Zi(p)6A(p,u).
pEQ

Informally, 6 A(P, u) is the sum of all 'final weights' of all paths starting in p and labelled by u. The
final weight of each path is obtained by multiplying the weights of all transitions on the path and
also the final weight of the last node of the path.fA(u) is then obtained by taking a linear combination
of all 6A (p, u) defined by the initial distribution i.

Example 3.5.2 For the WFA A, in Figure 3.18a we get

6A, (q,,011) = 0.5.0.5.0.5.1 + 0.5.0.5.1- + 0.5.111 = 0. 8 75 ;6 A, (qj,011) = 1.1.1-1= 1,

and thereforefAl (011) = 1 .0.875 + 0. 1 = 0.875. Similarly, 6A (qo, 0101) = 0.625 andfAl (0101) = 0.625.
For the WFA A 2 in Figure 3.18b we get, for example,

6A2 (q,,0101) = 0.25.0.5-0.5.1.1 +0. 2 5.0.2 5.1.1.1 = 0.125,

and therefore also fA 2 (0101) = 0.125.

Exercise 3.5.3 Determine, for the WFA A, in Figure 3.18a and for A2 in Figure 3.18b:
(a) 6

A, (qo, 10101), fA, (10101); (b) 6A2 (qo, 10101),fA, (10101).

Exercise 3.5.4 DeterminefA, 3(x) and fA (x) for the WFA A 3 and A obtained from A, in Figure 3.18a
by changing the initial and terminal distributions as follows:
(a) i(qo) = 1, i(ql) = 0, t(qo) = 0, and t(ql) = 1; (b) i(qo) = i(qi) = 1, and t(qo) = t(ql) = 1.

Exercise 3.5.5 (a) Show that fT, (x) = 2bre(x) + 2-1x1 for the WFT T, depicted in Figure 3.18.
(b) determine functions computed by WFA obtained from the one in Figure 3.18a by considering several
other initial and terminal distributions.

If E = {0,1} is the input alphabet of a WFA A, then we can extend fA : *-* R to a (partial)
real function fj : [0,1] -* R defined as follows: for x E [0,1] let bre-'(x) G Ew be the unique binary
representation of x (see page 81). Then

fý (x) = limfA (Prefixn (bre 1 (x))),

provided the limit exists; otherwise fý (x) is undefined.
For the rest of this section, to simplify the presentation, a binary string x,... x,, xi E {0, 1} and

an w-string y = yly2... over the alphabet {0, 1} will be interpreted, depending on the context, either
as strings x, ... xn and yly2. .. or as reals 0.x, ... Xn and 0.yly2- ... Instead of bin(x) and bre(y), we
shall often write simply x or y and take them as strings or numbers.

184 W AUTOMATA

0,1
1,1.2 1,1

2,1.2 1,1 2,1
3,0.6 2,1 331

(a) (b) (c)

Figure 3.19 Generation of a fractal image

Exercise 3.5.6 Show, for the WFA A, in Figure 3.18a, that (a) if x e E then fA,(xO") = 2bre(x) +
2-(n+±xI); (b)fA, (x) = 2bre(x).

Exercise 3.5.7 Show that fA(x)' (x) = x2 for the WFA A 2 in Figure 3.18b.

Exercise 3.5.8 Determinefý3 (x) for the WFA obtained from WFA A 2 by taking other combinations of
values for the initial and final distributions.

Of special importance are WFA over the alphabet P = {0, 1,2, 3}. As shown in Section 2.5.3, a word
over P can be seen as a pixel in the square [0,1] x [0,1]. A functionfA : P* -* R is then considered as
a multi-resolution image withfA(u) being the greyness of the pixel specified by u. In order to have
compatibility of different resolutions, it is usually required thatfA is average-preserving. That is, it
holds that

fA(u) = Af,(u0) +fA(ul) +fA(u2) +fA(u3)1.

In other words, the greyness of a pixel is the average of the greynesses of its four main subpixels.
(One can also say that images in different resolutions look similar if fA is average-preserving -
multi-resolution images contain only more details.)

It is easy to see that with the pixel representation of words over the alphabet P the language
L = {1, 2, 3}*0{1,2 }*0{0, 1,2, 3}* represents the image shown in Figure 3.19a (see also Exercise 2.5.17).
At the same time L is the set of words w such thatfA(w) = 1 for the WFA obtained from the one in
Figure 3.19b by replacing all weights by 1. Now it is easy to see that the average-preserving WFA
shown in Figure 3.19b generates the grey-scale image from Figure 3.19c.

The concept of a WFA will now be generalized to a weighted finite transducer (for short, WFT).

Definition 3.5.9 In a WFT T = (El, E 2, Q, i, t, w), El and E2 are input alphabets; Q, i and t have the same
meaning asfor a WFA; and w: Q x (E"1 U- {}) X (E 2 U {e}) x Q -* R is a weighted transition function.

We can associate to a WFT T the state graph GT, with Q being the set of nodes and with an edge
from a node p to a node q with the label (a1,a2 : r) if w(p,aa,a 2,q) = r.

WEIGHTED FINITE AUTOMATA AND TRANSDUCERS U 185

A WFT T specifies a weighted relation RT : E* x E --- R defined as follows. For
p,q Q, u c E and v E E, let Apq(U•v) be the sum of the weights of all paths
(p1,aj,b1 ,p 2)(pl,a 2,b 2,•p2). .. (pn, an, bn, p+ 1) from the state p = p, to the state pn+ 1 = q that are labelled
by u = a,... an and v = bl... bn. Moreover, we define

RT (u, v) = i(p)Ap,q(U,v)t(q).

p,qEQ

That is, only the paths from an initial to a final state are taken into account. In this way RT relates
some pairs (u, v), namely, those for which RT-(u, v) 0 0, and assigns some weight to the relational pair
(u,v).

Observe that Ap,q(U,v) does not have to be defined. Indeed, for some p, q, u and v, it can happen
that Apq (U, v) is infinite. This is due to the fact that if a transition is labelled by (a,, a2 : r), then it may
happen that either a = E or a2 = E or a, = a2 = e. Therefore there may be infinitely many paths between
p and q labelled by u and v. To overcome this problem, we restrict ourselves to those WFT which have
the property that if the product of the weights of a cycle is nonzero, then either not all first labels or
not all second labels on the edges of the path are 5.

The concept of a weighted relation may seem artificial. However, its application to functions has
turned out to be a powerful tool. In image-processing applications, weighted relations represent an
elegant and powerful way to transform images.

Definition 3.5.10 Let p: E x E--- R be a weighted relation andf: E* -- R function. An application of
p onf, in short g = pof = p(f) :E' -- R, is defined by

g(v) = P p(uv)f(u),
UE*

for v E E*, #f the sum, which can be infinite, converges; otherwise g(u) is undefined. (The order of summation
is given by a strict ordering on E.)

Informally, an application of p onf produces a new function g. The value of this function for an
argument v is obtained by takingf-values of all u E E* and multiplying eachf(u) by the weight of
the paths that stand for the pair (u, v). This simply defined concept is very powerful. The concept
itself, as well as its power, can best be illustrated by examples.

Exercise 3.5.11 Describe the image transformation defined by the WFT shown in Figure 3.20a which
produces,for example, the image shown in Figure 3.20c from the image depicted in Figure 3.20b.

Example 3.5.12 (Derivation) The WFT T3 in Figure 3.21a defines a weighted relation R- such that for any
functionf: {0, I} * -* R, interpreted as function on fractions, we get

RT of(x) - df(x)
dx

(and therefore T3 acts as a functional), in the following sense: for any fixed n and any function f : " --+ R,
RI3 of(x) = f(x-h)-f(x) , where h = -L. (This means that if x is chosen to have n bits, then even the least

186 • AUTOMATA

E,0:1 £,31 1,1:1
(a) WW 2,2:13,3:1

(b) (c)

Figure 3.20 Image transformation

0,0:0.50,0:2 1,0:2 0,1:0.5 0,1:0.5
1,1:2 1,1:0,5 1,0:0.5

(a) (b) 1,1:0.5

Figure 3.21 WFT for derivation and integration

significant O, in a binary representation of x, matters.) Indeed, RT,(x, y) 0, for x,y c {0, 1}'* ýf and only if
either x = y and then RT3 (x, y) = - 2Ix or x = x1 1 0 k, y = xl0lk,for some k, and in such a case RT3 (x,y) = 214X.
Hence RT3 of(x) = RT 3(x,x)f (x) + RT (x + 1 ,x)f(x +) -21If(x) + 21x2f(x + L). Take now n = x1,
h=.

Example 3.5.13 (Integration) The WFT T4 in Figure 3.21b determines a weighted relation Rh, such that for
anyfunctionf : E* - R

RT, of(x)= of(t)dt

in the following sense: Rr4 of computes h(f(0) +f (h) +f (2h)+. . . +f (x)) (for any fixed resolution h = ,
for some k, and all x c {0, 1}k).

WEIGHTED FINITE AUTOMATA AND TRANSDUCERS U 187

0,0:1 2,2; 1
1,1:1 3,3;1

0,0A 0,0:1 1:1

2 '202 ,0 : 1 2 ,02,2 :

(a) 3,1:1 3,3;1 (b) 3,0:1

Figure 3.22 Two WFT

Exercise 3.5.14 Explain in detail how the WFT in Figure 3.21b determines afunctionalfor integration.

Exercise 3.5.15* Design a WFT for a partial derivation of functions of two variables with respect:
(a) to the first variable; (b) to the second variable.

The following theorem shows that the family of functions computed by WFA is closed under the
weighted relations realized by WFT.

Theorem 3.5.16 Let A1 = (El,Q1,ii,ti,wi) be a WFA and A 2 = (E 2 ,Q 2 ,i 2 ,t 2 ,w 2) be an E-loop free WFT.
Then there exists a WFA A such thatfA = RA2 ofAl.

This result actually means that to any WFA A over the alphabet {0, 1} two WFA A' and A" can

be designed such that for any x E E *,fA, (x) = (and fA,, (x) = fo'XfA(x)dx.

Exercise 3.5.17 Construct a WFT to perform (a)* a rotation by 45 degrees clockwise; (b) a circular left
shift by one pixel in two dimensions.

Exercise 3.5.18 Describe the image transformations realized by WFT in: (a) Figure 3.22a;
(b) Figure 3.22b.

Exercise 3.5.19* Prove Theorem 3.5.16.

3.5.2 Functions Computed by WFA

For a WFA A over the alphabet {0, 1}, the real function fX : [0,1] --* R does not have to be total.
However, it is always total for a special type of WFT introduced in Definition 3.5.20. As will be seen
later, even such simple WFT have unexpected power.

Definition 3.5.20 A WFA A = (E, Q, i, t, w) is called a level weighted finite automaton (for short, LWFA)

1. all weights are between 0 and 1;

2. the only cycles are self-loops;

188 U AUTOMATA

0,-8/3

00/' 2/3 ,,/,ý0

1:2/3 0 ,10 0 , /

1,-8/3

Figure 3.23 A LWFA that computes a function that is everywhere continuous and nowhere has a
derivative

3. if the weight of a self-loop is 1, then it must be a self-loop of a node that has no other outgoing edges than
self-loops.

For example, the WFA in Figure 3.18b is a LWFA; the one in Figure 3.18a is not. LWFA have unexpected
properties summarized in the following theorem.

Theorem 3.5.21 LWFA have the following properties:

1. It is decidable, given a LWFA, whether the realfunction it computes is continuous. It is also decidable,
given two LWFA, whether the realfunctions they compute are identical.

2. Any polynomial of one variable with rational coefficients is computable by a LWFA. In addition,for any
integer n there is a fixed, up to the initial distribution, LWFA An that can compute any polynomial of
one variable and degree at most n. (To compute different polynomials, only different initial distributions
are needed.)

3. If arbitrary negative weights are allowed, then there exists a simple LWFA (see Figure 3.23) computing
a real function that is everywhere continuous and has no derivatives at any point of the interval [0, 1].

Exercise 3.5.22* Design a LWFA computing all polynomials of one variable of degree 3, and show how
to fix the initial and terminal distributions to compute a particular polynomial of degree 3.

3.5.3 Image Generation and Transformation by WFA and WFT

As already mentioned, an average-preserving mapping f : P -* R can be considered as a
multi-resolution image. There is a simple way to ensure that a WFA on P defines an average-preserving
mapping and thereby a multi-resolution image.

Definition 3.5.23 A WFA A = KP, Q, i, t, w) is average-preserving if for all p E Q

E w(p,a,q)t(q) = 4t(p).
acE ,qcQ

WEIGHTED FINITE AUTOMATA AND TRANSDUCERS * 189

0,0.5 1,0.25 0,1
1,0.5 11

(a) 2:0.5 0 2,1

3,0.5 - __,0,.,2.- 3,1

0,1 0 , 1 0,1

2,1 2,1

3,1

0,1 0,1 1,0.25 0,1
11113051,1

21 2,1 2,1
231

(c) 3, 310..••5 2,0.25
1,0.5

2,0.5
3,0.5

Figure 3.24 WFA generating two images and their concatenation

Indeed, we have

Theorem 3.5.24 Let A be a WFA on P. If A is average-preserving, then so is fA.

Proof: Let u E P*,a c P. Since

fA(ua) = j 6(q,ua)t(q) (3.5)
qEQ

= j6(pu)w(paq)t(q), (3.6)
p,qeQ

we have

__fA (ua) = Y-(p,u) 1 w(p,a,q)t(q) (3.7)
aeP pEQ aEP,qEQ

= Z 6(p,u)4t(p) = 4fA(u). (3.8)
pEQ

The family of multi-resolution images generated by a WFA is closed under various operations
such as addition, multiplication by constants, Cartesian product, concatenation, iteration, various
affine transformations, zooming, rotating, derivation, integration, filtering and so on. Concatenation
of WFA (see also Section 2.5.3) is defined as follows.

Definition 3.5.25 Let A,, A2 be WFA over P and fAl ,fA 2 multi-resolution images defined by A 1 and A 2,
respectively. Their concatenation A, A 2 is defined as

fA,A(u) = E fA, (u,)fA,(u2).
U1 tU2 U

190 U AUTOMATA

'IIq

(a) (b) (c)

Figure 3.25 Concatenation of two images generated by WFA

0,0:1 0,0:1 2,2:1
1,1:1 0,1:1 1,1:1 1 3,3:1

1,0: 0,21 2,:12 011
1,0) 1,1) 1,0, 0 11,2: 1 3 0.,' 0.5,11,0: 3,1:

- 0,21

(a) (b) (c) 1,3:1

Figure 3.26 Image transformations defined by WFT: (a) circular shift left, (b) rotation, (c) vertical
squeezing

Exercise 3.5.26 (a) Show that the WFA in Figure 3.24b generates the chess board shown in Figure 3.25a;
(b) that the WFA in Figure 3.24a generates the linear slope shown in Figure 3.25b; (c) that concatenation
of the two images in Figures 3.24a, b (see the result in Figure 3.25c) generates the WFA in Figure 3.24c.

Observe that several of the WFA we have considered, for example, the one in Figure 3.24b, are
nondeterministic in the sense that if the weights are discarded, a nondeterministic FA is obtained. It
can be shown that nondeterministic WFA generate more images than deterministic ones. For example,
there is no deterministic WFA that generates the same linear slope as does the WFA in Figure 3.24a.

3.5.4 Image Compression

We have seen several examples of WFT generating images. From the application point of view, it is the
inverse problem that is of special importance: given an image, how to design a WFT generating that
image. Indeed, to store a multi-resolution image directly, a lot of memory is needed. A WFT generating
the same image usually requires much less memory. There is a simple-to-formulate algorithm that
can do image compression.

FINITE AUTOMATA ON INFINITE WORDS 3 191

Algorithm 3.5.27 (Image compression) Assume as input an image I given by a function 0 : P* -- R. (It
can also be a digitalized photo.)

1. Assign the initial state qo to the image represented by the empty word, that is, to the whole image
I, and define i(qo) = 1, t(qo) = q5(E), the average greyness of the image I.

2. Recursively, for a state q assigned to a square specified by a string u, consider four subsquares
specified by strings uO, ul,u2,u3. Denote the image in the square ua by Iua. If this image is
everywhere 0, then there will be no transition from the state q with the label a. If the image Iua can
be expressed as a linear combination of the images I,, corresponding to the states pl, . • • , Pk - that is,

lua = ZV 1 Cir , -add a new edgefrom q to each pi with label a and with weight w(q, a, pi) = c,(i =

1 , k). Otherwise, assign a new state r to the pixel ua and define w(q, a, r) = 1, t(r) = 0(lua)

- the average greyness of the image in the pixel ua.

3. Repeat step 3for each new state, and stop if no new state is created.

Since any real image has a finite resolution, the algorithm has to stop in practice. If this algorithm
is applied to the picture shown in Figure 3.19a, we get a WFA like the one shown in Figure 3.19b but
with all weights equal 1. Using the above 'theoretical algorithm' a compression of 5-10 times can be
obtained. However, when a more elaborate 'recursive algorithm' is used, a larger compression, 50-60
times for grey-scale images and 100-150 times for colour images (and still providing pictures of good
quality), has been obtained.

Of practical importance also are WFT. They can perform most of the basic image transformations,
such as changing the contrast, shifts, shrinking, rotation, vertical squeezing, zooming, filters, mixing
images, creating regular patterns of images and so on.

Exercise 3.5.28 Show that the WFT in Figure 3.26a performs a circular shft left.

Exercise 3.5.29 Show that the WFTin Figure 3.26b performs a rotation by 90 degrees counterclockwise.

Exercise 3.5.30 Show that the WFT in Figure 3.26c performs vertical squeezing, defined as the sum
of two affine transformations: x, = , yi = y and x 2 = -, y2 = y - making two copies of the original
image and putting them next to each other in the unit square.

3.6 Finite Automata on Infinite Words
A natural generalization of the concept of finite automata recognizing/accepting finite words and
languages of finite words is that of finite automata recognizing w-words and w-languages. These
concepts also have applications in many areas of computing. Many processes modelled by finite state
devices (for instance, the watch in Section 3.1) are potentially infinite. Therefore it is most appropriate
to see their inputs as w-words. Two types of FA play the basic role here.

3.6.1 Biuchi and Muller Automata

Definition 3.6.1 A Biichi automaton A = (E, Q, qo, QF, 6) is formally defined exactly like a FA, but it is used
only to process w-words, and acceptance is defined in a special way. An w-word w = wow 1w2 . . . E E, wi E E,

is accepted by A if there is an infinite sequence of states qo, qi, q2. . . such that (qj, wi, qi+ i) c 6, for all i > 0,

192 U AUTOMATA

b,c a,b

a b,c

b~c b,c

(a) (b)

Figure 3.27 Buichi automata

and a state in QF occurs infinitely often in this sequence. Let L' (A) denote the set of all w-words accepted by
A.

An w-language L is called regular if there is a Biuchi automaton accepting L.

Example 3.6.2 Figure 3.27a shows a Biichi automaton accepting the w-language over the alphabet {a, b, c}
consisting of w-words that contain infinitely many a's and between any two occurrences of a there is an odd
number of occurrences ofb and c. Figure 3.27b shows a Biichi automaton recognizing the language {a, b}*aw.

Exercise 3.6.3 Construct a Biichi automaton accepting the language L C {a, b, c} * defined as follows:
(a) w E L if and only if after any occurrence of the symbol a there is some occurrence of the symbol b
in w; (b) w c L if and only if between any two occurrences of the symbol a there is a multiple of four
occurrences of b's or c's.

The following theorem summarizes those properties of w-regular languages and Biichi automata
that are similar to those of regular languages and FA. Except for the closure under complementation,
they are easy to show.

Theorem 3.6.4 (1) The family of regular w-languages is closed under the operations of union, intersection
and complementation.

(2) An w-language L is regular if and only if there are regular languages A1 . An and B1, . . . , B, such
that L = AIBju. . . UAB".

(3) The emptiness and equivalence problems are decidable for Baichi automata.

Exercise 3.6.5 Show that (a) ifL is a regular language, then Lw is a regular w-language; (b) iLj and
L2 are regular w-languages, then so are L1 U L2 and L1 n L2; (c)** the emptiness problem is decidable for
Bfichi automata.

The result stated in point (2) of Theorem 3.6.4 shows how to define regular w- expressions in such
a way that they define exactly regular w-languages.

One of the properties of FA not shared by Biichi automata concerns the power of nondeterminism.
Nondeterministic Biichi automata are more powerful than deterministic ones. This follows easily from

FINITE AUTOMATA ON INFINITE WORDS U 193

the fact that languages accepted by deterministic Biuchi automata can be nicely characterized using
regular languages. To show this is the task of the next exercise.

Exercise 3.6.6 Show that an w-language L C El is accepted by a deterministic Baichi automaton iand
only i

L = = {w E' I Prefix,(w) c W, for infinitely many n},

for some regular language W.

Exercise 3.6.7* Show that the language {a,b}l - (b*a)* is accepted by a nondeterministic Bfichi
automaton but not by a deterministic Biuchi automaton.

There is, however, a modification of deterministic Buchi automata, with a different acceptance
mode, the so-called Muller automata, that are deterministic and recognize all regular w-languages.

Definition 3.6.8 In a Muller automaton A = (ý,Q,qo,Y,6), where E, Q, qo and 6 have the same meaning
asfor DFA, but .F C 2Q is a family of sets offinal states. A recognizes an w-word w = WoWV W2 ... Wand only
if the set of states that occur infinitely often in the sequence of states {qil} 0, qi = 6(qo, WoW 1 W2 wi), is an
element of T. (That is, the set of those states which the automaton A takes infinitely often when processing w
is an element of F.)

Exercise 3.6.9* Show the so-called McNaughton theorem: Muller automata accept exactly regular
w-languages.

Exercise 3.6.10 Showfor the regular w-language L = {0, 1}* {1}w (that is, not a deterministic regular
w-language), that there are five non-isomorphic minimal (with respect to the number of states) Muller
automata for L. (This indicates that the minimization problem has diferent features for Muller automata
than it does for DFA.)

3.6.2 Finite State Control of Reactive Systems*

In many areas of computing, for example, in operating systems, communication protocols, control
systems, robotics and so on, the appropriate view of computation is that of a nonstop interaction
between two agents or processes. They will be called controller and disturber or plant (see Figure
3..28). Each of them is supposed to be able to perform at each moment one of finitely many actions.
Programs or automata representing such agents are called reactive; their actions are modelled by
symbols from finite alphabets, and their continuous interactions are modelled by w-words.

In this section we illustrate, as a case study, that (regular) w-languages and w-words constitute
a proper framework for stating precisely and solving satisfactorily basic problems concerning such
reactive systems. A detailed treatment of the subject and methods currently being worked out is
beyond the scope of this book.

A desirable interaction of such agents can be specified through an w-language L C (EA), where
E and A are disjoint alphabets. An w-word w from L has therefore the form W = cldIc2d2 ... , where

194 3 AUTOMATA

di+2

Ci+_2_

di

di

Figure 3.28 Controller and disturber

cj G E (di e A). The symbol ci (di) denotes the ith action that the controller (disturber) performs. The
idea is that the controller tries to respond to the actions of the disturber in such a way that these
actions make the disturber 'behave accordingly'.

Three basic problems arise when such a desirable behaviour is specified by an w-language. The
verification problem is to decide, given a controller, whether it is able to interact with the disturber
in such a way that the resulting w-word is in the given w-language. The solvability problem is to
decide, given an w-language description, whether there exists a controller of a certain type capable of
achieving an interaction with the disturber resulting always in an w-word from the given w-language.
Finally, the synthesis problem is to design a controller from a given specification of an w-language
for the desired interaction with the disturber. Interestingly enough, all these problems are solvable
if the w-larfguage specifying desirable behaviour of the controller-disturber interactions is a regular
w-language.

Problems of verification and synthesis for such reactive automata can be nicely formulated, like
many problems in computing, in the framework of games - in this case in the framework of the
Gale-Stewart games of two players, who are again called controller (C) and disturber (D). Their
actions are modelled by symbols from alphabets Ec and ED, respectively. Let E = Ec U ED.

A Gale-Stewart game is specifiedby anw-language L C (EcED)w. A play of the game is an w-word
p e Ec(EDEc)'. (An interpretation is that C starts an interaction by choosing a symbol from Ec, and
then D and C keep choosing, in turn and indefinitely, symbols from their alphabets (depending, of
course, on the interactions to that moment).) Player C wins the play p if p E L, otherwise D wins.
A strategy for C is a mapping Sc : E• * Ec specifying a choice of a symbol from Ec (a move of C)
for any finite sequence of choices of symbols by D - moves of D to that moment. Any such strategy
determines a mapping sc : E -* E', defined by

Sc(dodd 2 .. .) = CoClC 2.... where ci = sc(dod1 . .. di1).

If D chooses an infinite sequence pu = dod,... of events (symbols) to act and C has a strategy sc, then
C chooses the infinite sequence "y = sc(,u) to create, together with D, the play p,,sc = codocdi

The main problem, the uniform synthesis problem, can now be described as follows. Given a
specification language for a class £ of w-languages, design an algorithm, if it exists, such that, given
any specification of an w-language L c L, the algorithm designs a (winning) strategy Sc for C such

LIMITATIONS OF FINITE STATE MACHINES U 195

that no matter what strategy D chooses, that is, no matter which sequence g disturber D chooses, the
play p,,,, will be in L.

In general the following theorem holds.

Theorem 3.6.11 (BUchi-Landweber's theorem) Let Ec, E
2D befinite alphabets. To any w-regular language

L c Zc (EDEc)- and any Muller automaton recognizing L, a Moore machine AL with ED as the input alphabet
and Ec as the output alphabet can be constructed such that AL provides the winning strategy for the controller
with respect to the language L.

The proof is quite involved. Moreover, this result has the drawback that the resulting Moore
machine may have superexponentially more states than the Muller automaton defining the game.
The problem of designing a winning strategy for various types of behaviours is being intensively
investigated.

3.7 Limitations of Finite State Machines
Once a machine model has been designed and its advantages demonstrated, an additional important
task is to determine its limitations.

In general it is not easy to show that a problem is not within the limits of a machine model.
However, for finite state machines, especially finite automata, there are several simple and quite
powerful methods for showing that a language is not regular. We illustrate some of them.

Example 3.7.1 (Proof of nonregularity of languages using Nerode's theorem) For the language
L, = {a'b l i > 0} it clearly holds that a' 0L1 a] i i • j. This implies that the syntactical monoid for the
language L1 is infinite. L1 is therefore not recognizable by a FA.

Example 3.7.2 (Proof of nonregularity of languages using the pumping lemma) Let us assume that
the language L 2 = {aP p prime} is regular. By the pumping lemma for regular languages, there exist integers
x,y, z, x + z 7 0, y 7 0, such that all words ax+ iy+z, i > 0, are in L2. However, this is impossible because, for
example, x + iy + z is not prime for i = x + z.

Example 3.7.3 (Proof of nonregularity of languages using a descriptional finiteness argument)
Let us assume that the language L3 = {aicbi l i > 1} is regular and that A is a DFA recognizing L3. Clearly,
for any state q of A, there is at most one i E N such that bV G L(q). If such an i exists, we say that q specifies
that i. Since a'cbi E L3 for each i,for any integer j there must exist a state qj (the one reachable after the input
a] c) that species j. A contradiction, because there are only finitely many states in A.

Exercise 3.7.4 Show that the following languages are not regular: {aib2i l iŽ> 0};
(b) {ai Ii is composite}; (c) {a' Ii is a Fibonacci number}; (d) {w E {0, 1}* Iw = wR}.

Example 3.7.5 We now show that neither a Moore nor a Mealy machine can multiply two arbitrary binary
integers given the corresponding pairs of bits as the input as in the case of binary adders in Figure 3.17. (To
be consistent with the model in Figure 3.17, we assume that if the largest number has n bits, then the most
significant pair of bits is followed by additional n pairs (0,0) on the input.)

If the numbers x and y to be multiplied are both equal to 22m, the 2m + 1-th input symbol will be (1,1) and
all others are (0, 0). After reading the (1,1) symbol, the machine still has to perform 2m steps before producing

196 U AUTOMATA

a 1 on the output. However, this is impossible, because during these 2m steps M has to get into a cycle. (It
has only m states, and all inputs after the input symbol (1,1) are the same - (0,0).) This means that either M
produces a I before the (4m + 1)-th step or M never produces a 1. But this is a contradiction to the assumption
that such a machine exists.

Exercise 3.7.6 Show that there is no finite state machine to compute the function (a)fl (n) = the n-th
Fibonacci number; (b)f(0"1n) = 1n mod m

Example 3.7.7 Itfollowsfrom Theorem 3.4.11 that no generalized sequential machine can compute thefunction
f: {0, 1}* - {0, 1}* defined byf(w) = wR. Indeed, the prefix condition from that theorem is notfiufilled.

Example 3.7.8 Let L c {0, 1 w be a language of w-words wfor which there is an integer k > 1 such that w has
a symbol 1 exactly in the positions kn for all integers n. We claim that L is not a regular w-language. Indeed,
since the distances between two consecutive ls are getting bigger and bigger, a finite automaton cannot check
whether they are correct.

Concerning weighted finite transducers it has been shown that they can compute neither
exponential functions nor trigonometric functions.

3.8 From Finite Automata to Universal Computers
Several natural ideas for enhancing the power of finite automata will now be explored. Surprisingly,
some of these ideas do not lead to an increase in the computational power of finite automata at
all. Some of them, also surprisingly, lead to very large increases. All these models have one thing
in common. The only memory they need to process an input is the memory needed to store the
input. One of these models illustrates an important new mode of computation - probabilistic finite
automata. The importance of others lies mainly in the fact that they can be used to represent, in an
isolated form, various techniques for designing of Turing machines, discussed in the next chapter.

3.8.1 Transition Systems

A transition system A = (E, Q, qo, QF, 6) is defined similarly to a finite automaton, except that the
finite transition relation 6 is a subset of Q x E* x Q and not of Q x E x Q as for finite automata. In
other words, in a transition system, a longer portion of an input word only can cause a single state
transition. Computation and acceptance are defined for transition systems in the same way as for
finite automata: namely, an input word w is accepted if there is a path from the initial state to a final
state labelled by w.

Each finite automaton is a transition system. On the other hand, to each transition system A it is
easy to design an equivalent FA which accepts the same language. To show this, we sketch a way to
modify the state graph GA of a transition system A in order to get a state graph of an equivalent FA.

1. Replace each transition (edge) p ===> q,w = wIw 2 ... wk, wi E E, k > 1 by k transitions p ==>
W W1

PI . .2 ... Pk-2 '=' Pk-1 ==. q, where pi, . . . pk-1 are newly created states (see the step from
W2 Wk-1 Wk

Figure 3.29a to 3.29b).

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS U 197

a c e gi kmor t v acegi kmor t v

b d f hjj 1 nps uw bdfhj 1 npsuw

(a) one tape with two tracks (b) one tape with one track

Figure 3.29 Derivation of a complete FA from a transition system

2. Remove E-transitions. This is a slightly more involved task. One needs first to compute the
transitive closure of the relation = between states. Then for any triple of states p, q, q' and
each a G E such that p q ==> q', the transition p ==:> q' is added. If, after such modifications,

E a a

q' = q for some q' E Q and q G Qr, add q' to the set of final states, and remove all e-transitions

and unreachable states (see the step from Figure 3.29b to 3.29c).

3. If we require the resulting automaton to be complete, we add a new 'sink state' to which all
missing transitions are added and directed (see the step from Figure 3.29c to 3.29d). By this
construction we have shown the following theorem.

Theorem 3.8.1 The family of languages accepted by transition systems is exactly the family of regular
languages.

The main advantage of transition systems is that they may have much shorter descriptions and
smaller numbers of states than any equivalent FA. Indeed, for any integer n a FA accepting the
one-word language {an } must have n - 1 states, but there is a two-state transition system that can do
it.

Exercise 3.8.2 Design a transition system with asfew states as possible that accepts those words over
the alphabet {a, b, c} that either begin or end with the string 'baac', or contain the substring 'abca'. Then
use the above method to design an equivalent FA.

Exercise 3.8.3 Design a minimal, with respect to number of states, transition system accepting the
language L = (a4 b3

)* U (a4 b6)*. Then transform its state graph to get a state graph for a FA accepting
the same language.

3.8.2 Probabilistic Finite Automata

We have mentioned already the power of randomization. We now explore how much randomization
can increase the power of finite automata.

Definition 3.8.4 A probabilistic finite automaton P = (E, Q,qo, QF, 0) has an input alphabet E, a set
of states Q, the initial state qo, a set of final states QF and a probability distribution mapping 0 that
assigns to each a E E a IQ] x IQ] matrix Ma of nonnegative reals with rows and columns of each MA labelled
by states and such that -qeQMa(p,q) = 1 for any a c E and p E Q. Informally, Ma(p,q) determines the

probability that the automaton P goes, under the input a,from state p to state q; Ma (p, q) = 0 means that there
is no transition from p to q under the input a.

198 U AUTOMATA

0,1 0,0.5

0, 0.5

,
x, 0.5

11,0.

1,0.51 b , 0. 5 y, 0.5 y, 0.5
1,0.5,0.5

(a X,,70.0.

yx, 0.5
b, 0.5 . b, 0.5 b, 05 y, 0.5y X,0.

b,0.0 .5 5DX

(b) a (c)

Figure 3.30 Probabilistic finite automata - missing probabilities are 1

If w = w, ... w,, wi c E, then the entry Mw(p,q) of the matrix Mw = MwMw2 . . . Mwn is exactly the
probability that P goes, under the input word w,from state p to state q. Finallyfor a w E E*, we define

Prp(w) = E Mw(qo, q).
qEQF

Prp (w) is the probability with which P recognizes w.

There are several ways to define acceptance by a probabilistic finite automaton. The most basic
one is very obvious. It is called acceptance with respect to a cut-point. For a real number 0 < c < 1
we define a language

Lc(P) = {uIPrp(u) > c}.

The language LJ(P) is said to be the language recognized by P with respect to the cut-point c.
(Informally, Lc (P) is the set of input strings that can be accepted with a probability larger than c.)

Example 3.8.5 Let E = {0,1}, Q = {qo,ql}, QF = ql},

10 1

Figure 3.30a shows the corresponding probabilistic finite automaton 'Po. Each edge is labelled by an
input symbol and by the probability that the corresponding transition takes place. By induction it
can easily be shown that for any w = w,... w, c E', the matrix Mw = MwIMw2 ... Mw, has in the right
upper comer the number 0. w. ... wl, expressed in binary notation. (Show that!)

Exercise 3.8.6 Determine, for all possible c, the language accepted by the probabilistic automaton in
Figure 3.30b with respect to the cut-point c.

Exercise 3.8.7 Determine the language accepted by the probabilistic automaton in Figure 3.30c with
respect to the cut-point 0. 5. (Don't be surprised ýf you get a nonregular language.)

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS U 199

First we show that with this general concept of acceptance with respect to a cut-point, the
probabilistic finite automata are more powerful than ordinary FA.

Theorem 3.8.8 For the probabilistic finite automaton Po in Example 3.8.5 there exists a real 0 < c < 1 such
that the language Lc(Po) is not regular.

Proof: If w = w,... wn, then (as already mentioned above) Prpo (w) = 0. w w, (because qi is the
single final state). This implies that if 0 < cl < c2 < 1 are arbitrary reals, then L,, (Po) ; L,2 (P0). The
family of languages that Po recognizes, with different cut-points, is therefore not countable. On the
other hand, the set of regular expressions over ED is countable, and so therefore is the set of regular
languages over E. Hence there exists an 0 < c < I such that L, (Po) is not a regular language. 0

The situation is different, however, for acceptance with respect to isolated cut-points. A real
0 < c < 1 is an isolated cut-point with respect to a probabilistic FA P if there is a 6 > 0 such that for
allwE E*

jPrp(w) - cl > 6. (3.9)

Theorem 3.8.9 If P = (E, Q, qo, QF, 0) is a probabilistic FA with c as an isolated cut-point, then the language
LJ(P) is regular.

To prove the theorem we shall use the following combinatorial lemma.

Lemma 3.8.10 Let P, be the set of all n-dimensional random vectors, that is, P, = {x = (x, x,), xi > 0,
1 <i <n-and E 1 xi = 1}. Let,for an E > 0, U, be such a subset ofPn thatfor any x, y UL,, x :A y implies

i=1 1 xi -- yi_> e. Then the set U, contains at most (1 + 2)-1 vectors.

Proof of the theorem: Assume that Q = {qo,ql, ... qn-1} and, for simplicity and without loss of
generality, that QF = {q,_1}. In this case the probability that P accepts some w isPrp(w) =Mw(qo,q,_j),
where Mw is an n x n matrix defined as on page 198.

Consider now the language L = L,((P), and assume that we have a set of k words v1 , ... , Vk such
that no two of them are in the same prefix equivalence class with respect to the relation =P. This
implies, by the definition of prefix equivalence, that for each pair i 7 j, 1 < ij < k there exists a word
yij such that viyij E L and vjyij 0 L - or vice versa.

Now let (si,... ,s'), 1 < i < k, be the first row of the matrix M•,, and let (ri',... ,r") be the
last column of the matrix My,,. Since M =MvMy and q,_1 is the only accepting state, we get

•r~ ii) lrj ..r .. andr
Prp(viyi1) s r'+ . +Srn and Pr-p(vyij) = ýrl+... +snr1, and therefore

s'ri-f... s'nr - 'j and slrlj-. . . ±-'4rn < c.

If we now use the inequality (3.9), we get

>(s - s•)r'j > 26. (3.10)
I--1

In addition, it holds that
En JS _ ri j < (En l(i _'11<I<k

•l__l(s' --4)rl < (Z"I(s -sI))+ max{rl 1 <_k}
n= (s'- mmnfrl I I_< 1 _< k}

- _(Z71 (maxs-s li{r)1 •lk}< 1 I <•k})

< (En~ J(Sis_))} = I En1 Si12 1= 1 n1

200 U AUTOMATA

where (...)+ denotes that only the positive numbers in the expression inside the parentheses are
taken and, similarly, (...) denotes taking only the negative numbers. In deriving these inequalities
we have used essentially the fact that Irr' I for all I, i, j.

A combination of the last inequality with the inequality 3.10 yields I1 s' - I >- 46. An

application of Lemma 3.8.10 then gives k < (1 + 1 Now we can use Myhill's theorem to show
that the language L, (P) must be regular. 0

It has been shown that from the point of view of randomized computations, acceptance with
respect to an isolated cut-point is very natural. Theorem 3.8.9 is therefore often seen as the main
theorem showing the power of probabilistic finite automata. Unfortunately, it is still an open question
whether it is decidable, given a probabilistic finite automaton P with rational probabilities of
transitions and a rational A, if A is an isolated cut-point of P.

Exercise 3.8.11 *A cut-point A is weakly isolated for a probabilistic finite automaton P if lPrp (w) - Al >
e or Prp(w) = Afor all w E E* and somefixed E. Prove that if A is a weakly isolated cut-point for P,
then the language LA (P') is regular.

Exercise 3.8.12** Two probabilisticfinite automata P, and 'P2 are called mutually isolated if Prp, (w) -
Prp2 (w) >Ž Efor all w E E*. Prove that if P1 and P2 are mutually isolated, then the language
L = {wIPrp1 (w) > Prp2 (w)} is regular.

The concept of a probabilistic finite automaton is usually generalized. Instead of a fixed initial
state an initial distribution of states is considered, that is, each state is an initial state of a given
probability. In order to get the overall probability that a word is accepted, the probability of each
path has to be multiplied by the probability that its starting state is initial. Languages accepted by
such probabilistic finite automata with respect to a cut-point c are called c-stochastic. A language is
called (finite state) stochastic if there is a probabilistic finite automaton A and a cut-point c such that
L = Lc(A).

Exercise 3.8.13 Show that any regular language is c-stochastic for any cut-point 0 < c < 1.

Exercise 3.8.14 Show that every 0-stochastic language is regular.

Of special interest are probabilistic finite automata with uniform probability distributions of
transitions - for each state q and each input symbol a all transitions from q under a have the same
probability. Such probabilistic automata are formally defined exactly like nondeterministic automata;
it is therefore natural to ask what is the difference between them. Actually, it is a very big one.
Nondeterministic automata are very convenient to deal with, but are completely unrealistic models
of computations. By contrast, probabilistic finite automata are very realistic models of computation.

Another way to regard probabilistic finite automata, often very useful for applications, is as
defining a probability distribution on the set of inputs.

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS U 201

a, a2 aý. an- a

a. a 0 I read-only head

finite-control

(a) (b)

Figure 3.31 Two ways to see a FA

3.8.3 Two-way Finite Automata

In addition to the usual view of a FA as a finite state device (see Figure 3.31a) which processes an
external input string symbol by a symbol, there is another view (see Figure 3.31b) that is the basis of
several natural generalizations of FA.

As illustrated in Figure 3.31b, a (one-way) deterministic finite automaton A = (E, Q, qo, QF, 6) can
be seen as consisting of a finite control (determined by 6) that is always in one of the states in the set
Q, a bi-infinite tape each cell of which may contain a symbol from E or a special blank symbol U not
in E, and a read-only head that always stays on a cell of the tape and can move only to the right, one
cell per move (we refer to the two directions on the tape as left and right).

At the beginning of a computation the input word w is written, one symbol per cell, in Iwj
consecutive cells, and the head is positioned on the cell with the first symbol of w. In each
computational step A reads the symbol from the cell the head is on at that moment. Depending
on the state of the finite control, A goes, according to the transition function of the finite control 6, to
a new state q, and also moves its head to the next cell. If A reaches a final state at the moment when
the head moves over the right end of the input word, then the input word is considered as accepted.
In a similar way, nondeterministic finite automata can be defined.

With such a model of a finite automaton the question naturally arises as to whether a more
powerful device could be obtained if the head were allowed to move also to the left. Let us explore
this idea.

Definition 3.8.15 A two-way finite automaton A = (>,Q,qo, QF, 6) is defined similarly to an ordinary
FA, except that the transition function has the form

6: Q X E--Q X 1-, 1,}

and 6(p,a) = (q,d), where d E {*-, J,--}, means that the automaton A in the state p moves, under the input
a, to the state q and the head moves one cell in the direction d - that is, to the right if d = -*, to the left fd =d

and does not move at all id = 1. The language L(A), accepted by A, is then defined as follows:

L(A) = {w E E* I A starting with the head on the first symbol of w and in the state qo moves,
after a finite number of steps, over the right end of w exactly when
A comes to a final state}.

Nondeterministic two-way finite automata can be defined similarly.

202 * AUTOMATA

X1, X1 --

X2 , - X2 , X 9 X2, 2 - X1,
X3-- X3,€- X ;3-- 9 X3,- X2, --

Xl 9-- O ,- .! X2 , -- XO ,--

L (X0,(x0,- x0,1 X3,-

o we X2, X1 , b i X2, -ar

X 3 , - --. I f s o, A2 - X 3s -t fa
X3 ---

Figure 3.32 An example of a two-way finite automaton

Example 3.8.16 The two-wayfinite automaton a0 in Figure 3.32 recognizes the language

L = x0(E - {x0})* nl E*xE* n E*X2E* n E*X3r,*

of all words over the alphabet E for the X2,dX3e that begin with xc , do not contain another occurrence of x0
and contain all remaining symbolsfrom E at least once. Indeed, s first verses whether the first symbol really
is x0. If so, 0 starts a move to the right to searchmfor an xe. Iffound, Ac moves back to the left end and starts a
search for an X2. tffound, q 0 again moves to the left-most end and starts w leavin p thro is found twice,
or thefirst symbol is not xo, then A0 moves to the Asinkv state q#.

Two-way finite automata appear to be more powerful than FA. This, h ow ever, is misleading.

Theorem 3.8.17 Nondeterministic two-wayfinite automata accept exactly the regular languages.

Proof: We prove the lemma only for the deterministic case. For the nondeterministic case the idea of
proof is the same but details ar ae mo technical.

The only way a prefix p of an input word w of a two-way FA As = (I,, Aqo, QF, b s can influence
the behaviour of `4 when A4 is no longer reading p is through state transitions of A4 which p causes.
Indeed, the external effect of p is completely determined by a function Tp : Q U I # I -- Q U) I # }, that
gives, for each state q E Q in which A4 re-enters p, the state A4 has when leaving p through its rightmost
symbol for the next time, or the symbol # if A leaves p at its leftmost symbol or does not leave it at
all. Moreover Tp(#) is the state in which A4 leaves for the first time the rightrnost symbol of p when
starting on the leftmost symbol in the starting state. The relation w, _= W2 if and only if Tl = Tw'2 is
finer than the prefix equivalence for L(A4). The number of functions T., w C E•*, is finite (actually at
most (jQj + 1)IQI+I)- Therefore, by Nerode's Theorem, L(A4) is a regular language.

Because there are only finitely many of such functions possible for A4 and, in addition, from a
table Tp, transitions of A4 and a tape symbol a of A4, one can construct table for Tpa, we can show that
there exists a one-way FA A4' that accepts the same language as A4. Indeed, A4' will be such that after

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS N 203

a, a 2 ai aj+j a -2 a a (a,b),

q

(a) (a,a), (,-) (b)

Figure 3.33 Multi-head finite automata

finishing reading p in a state (q, Tp), where q is the state A is after the first time A leaves p and Tp is the
corresponding transition table for the prefix p. It is now obvious that given the transition function of
A one can easily construct the transition function of A'. If we now define that A' accepts an input w
if and only if A', after reading w, comes into a state (q', T.), where q' is a final state of A, then A and
A' accept the same language. [

Informally, the theorem actually says that multiple readings do not help if writing is not allowed
and the machine has only finite memory.

On the other hand, a two-way finite automaton can be much smaller than an equivalent FA.

Example 3.8.18 Let E {ao,a,, . . . ,an} and let Lo be the set of all words over E that start with the symbol
a0, do not contain any other occurrence of a0, and contain each of the remaining symbols from E at least once.
Similarly, as in Example 3.8.16, a two-way finite automaton with 2n + 2 states can be constructed to accept
Lo. On the other hand, it can be shown that any finite automaton recognizing Lo must have at least 2n states.

One can show that even larger savings in description length can be achieved by using two-way
finite automata compared with ordinary FA. It holds, for example, that

EconomyFA (n) = ((n / 5) /s)_

where the economy function for replacing a DFA with an equivalent 2DFA is defined as on page 163.

Exercise 3.8.19 Show, given an integer n, how to design a two-way finite automaton accepting the
language

L, = 110"10i21 ... l~in2koik I1I <_ k <_ n, 1 _< ij < n, 1 < j:< n}.

3.8.4 Multi-head Finite Automata

Another natural idea for enhancing the power of finite automata is to admit a sort of parallelism
by allowing the use of several read-only heads (see Figure 3.33a). Two types of multi-head finite
automata are obvious: one-way, heads move in one direction only, two-way, heads can move in both
directions.

Informally, a k-head two-way finite automaton (for short, k-2FA) has k heads, and at the beginning
of any computation all heads stay on the cell with the first symbol of the input word. Each computation

204 U AUTOMATA

step is uniquely determined by the current state of the automaton and by the symbols the heads read.
A step consists of a state change and moves of heads as specified by the transition function.

More formally, in a k-head two-way finite automaton A = (E, Q, qo, QF, 6) the symbols E, Q, qo, QF
have the usual meaning, and

k k

where 6 (p, bi,..., bk) = (q, d, ... , dk) means that if A is in state p and the ith head reads bi, for 1 < i < k,
then A goes to state q and the jth head moves in the direction determined by di. Nondeterministic
k-head two-way finite automata are defined similarly, as are one-way multi-head FA.

The language L(A) is defined as the set of words w such that if A starts with all heads on the first
symbol of w, then, after some number of steps, A moves to a final state exactly when one of the heads
leaves the cells that are occupied by w, at the right end.

Example 3.8.20 It is easy to see that the 2-head one-way finite automaton in Figure 3.33b recognizes the
language {aicbi I i > 1} that is not regular.

Exercise 3.8.21 (a) Design a 2-head FA that will accept the language {a'bicil n > 1}; (b) design a 3-head
FA that will accept the language {aib2ic3i I i > 1.

Once we know that even one-way 2-head finite automata are more powerful than 1-head finite
automata, it is natural to ask whether any additional increase in the number of heads provides more
power. To formulate the result, let us denote by £(k-2DFA) (£(k-2NFA)) the family of languages
accepted by deterministic (nondeterministic) two-way finite automata with k heads. In an analogical
way we use notation £(k-IDFA) and £(k-1NFA).

Theorem 3.8.22 For each k > 1 and i = 1,2, C(k-iDFA) ; C((k + 1)-iDFA) and C(k-iNFA) ; L((k +
1) -iNFA).

The proofs are quite involved, and represent solutions of long-standing open problems. It follows
from Theorem 3.8.22 that k-head finite automata, for k = 1,2,..., form an infinite hierarchy of more
and more powerful machines!

How is this possible? It seems that k-head finite automata have again only finitely many states
and use only a finite amount of memory. This impression, however, is misleading. The actual state
of such a machine is determined not only by the state of its finite control but also by the positions of
the heads. If an input word w has length n, then the overall number of global states (configurations)
a k-head FA A can be in is IQInk, where Q is the set of internal states of A. The total number of global
states of a k-head FA therefore grows polynomially with respect to the length of the input.

The following two closely related families of languages,

U £(k-2DFA) and U£(k-2NFA),
k-1 k=1

play an important role in complexity theory, and are the same as two families of languages defined
with respect to space complexity, L and NL, introduced in Section 5.2.

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS U 205

read-write head

• finite control(a) (b)

Figure 3.34 A linearly bounded automaton

3.8.5 Linearly Bounded Automata

Another natural generalization of finite automata are linearly bounded automata (LBA for short).
The head of a LBA is not only allowed to move in both directions, it may also write (see Figure 3.34a).
This is an essentially new and very powerful step in the generalization of the finite automata concept.

Since the head of a LBA can move in both directions and can also write, two markers, $ and #
are used to delimit the beginning and end of the tape section on which the input word is written. A
LBA is allowed to move neither left from $ nor right from #; nor is it allowed to write these markers
on the tape or to erase them.

Formally, an LBA A is specified as A = (E, A, Q, qo, QF, $,#,6), where E, Q, qo, QF have the same
meaning as for FA, and

* A D E is a tape alphabet;

* $. # E A - E are special markers;

* 6 C Q x A x Q x A x {f-, 1, -1} is a transition relation satisfying the above-mentioned
conditions (that is, if (p,a,q,b,d) E 6, then b V {$,#},a = $ =ý d #3--,a = # =ý d #--)a = $
b = $,a = # = b =#.

A LBA A may perform a transition (p,a,b,q,d) E 6 when A is in the state p and the head reads a.
In this case the finite control of A goes to state q, the head rewrites a by b and moves in the direction
d. Of course, in general there may be more than one quintuple in 6 starting with the same p and a;
therefore a move of the head may be nondeterministic. If 6 is a function of its first two arguments,
then we have a deterministic LBA (DLBA for short).

To describe a computation on a LBA A, the concept of configuration is again useful. This is a
word of the form wjqw2 E A*QA*. A LBA A is in the configuration wjqw2 if q is its current state,
W1W2 the contents of the tape, and the head is positioned on the first symbol of w 2 (see Figure 3.34b).
A configuration is initial if it has the form qow, w G E* (the input alphabet), and final if its state is
final.

The concept of a configuration is very helpful in formally defining a computation on a LBA. In
order to do this, we first introduce the concept of a computation step. A configuration C' is a direct
successor of a configuration C; in short C ý- C', if C' is a configuration that can be obtained from
C by performing a transition, a computation step. A configuration is called terminating if there is
no configuration that would be its direct successor. (In a terminating computation the LBA 'halts'.)
If C F-* C', then C' is called a successor configuration of C, or a configuration that can be reached
from C. A computation of a LBA is a finite or infinite sequence of configurations that starts with
the initial configuration, and, for any integer i > 1, the ith configuration is a direct successor of

206 0 AUTOMATA

the (i - 1)-th configuration. A terminating computation is a finite computation that ends with a
terminating configuration.

The language accepted by a LBA A is defined as follows:

L(A) = {w E E* I computation starting in qow and ending in a final configuration}.

To describe a LBA formally, its transition relation must be specified. To do this in detail may be
tedious, but it is basically a straightforward task when a high-level algorithm describing its behaviour
is given, as in the following example.

Example 3.8.23 We describe the behaviour of a LBA which recognizes the language {aibil i > 1}.

begin Check if the input word has the form Abl - if not, then reject;
while there are at least one a and one b on the tape

do erase one a and one b;
if there is still a symbol a or b on the tape then reject else accept

end

Exercise 3.8.24 Describe a LBA which accepts the language {aibici I i > 1}.

The above examples show that DLBA can accept languages that are not regular; therefore DLBA
are more powerful than finite automata. On the other hand, it is not known whether nondeterminism
brings new power in the case of LBA.

Open problem 3.8.25 (LBA problem) Are LBA more powerful as DLBA?

This is one of the longest standing open problems in foundations of computing.
The next natural question to ask is how powerful are LBA compared with multi-head FA (because

multi-head FA have been shown to be more powerful than finite automata). It is in a sense a question
as to what provides more power: a possibility to write (and thereby to store immediate results and to
make use of memory of a size proportional to the size of the input) or a possibility to use more heads
(and thereby parallelism).

Let us denote by £(LBA) the family of languages accepted by LBA and by L(DLBA) the family
of languages accepted by DLBA. For a reason that will be made clear in Chapter 7, languages
from £(LBA) are called context-sensitive, and those from £(DLBA) are called deterministic
context-sensitive.

Theorem 3.8.26 The following relations hold between the families of languages accepted by multi-head finite
automata and LBA:

U L(k-2DFA) C £(DLBA), (3.11)
k= 1

U £(k-2NFA) • L(NLBA). (.2k (3.12)

k-1I

FROM FINITE AUTOMATA TO UNIVERSAL COMPUTERS U 207

We show here only that each multihead 2DFA can be simulated by a DLBA. Simulation of a multihead
2NFA by a NLBA can be done similarly The proof that there is a language accepted by a DLBA but
not accepted by a multihead 2DFA, and likewise for the nondeterministic case, is beyond the scope
of this book.

In order to simulate a k-head 2DFA A by a DLBA B, we need:

(a) to represent a configuration of A by a configuration of B;
(b) to simulate one transition of A by a computation on B.

(a) Representation of configurations. A configuration of A is given by a state q, a tape content
w = w,... w,, and the positions of the k heads. In order to represent this information in a configuration
of B, the jth symbol of w, that is, wj, is represented at any moment of a computation by a (k + 2)-tuple
(q, wj, si,..., sk), where si = 1 if the ith head of A stays, in the given configuration of A, on the ith cell,
and si = 0, otherwise. Moreover, in order to create the representation of the initial configuration of A,
L3 replaces the symbol w, in the given input word w by (qowl, 1, ... , 1) and all other wi, I < i < jWj
by (qo,wj,0 0).

(b) Simulation of one step of A. B reads the whole tape content, and remembers in its finite
state control the state of A and the symbols read by heads in the corresponding configuration of A.
This information is enough for B to simulate a transition of A. B3 need only make an additional pass
through the tape in order to replace the old state of A by the new one and update the positions of all
heads of A. [

It can happen that a LBA gets into an infinite computation. Indeed, the head can get into a cycle,
for example, one step right and one step left, without rewriting the tape. However, in spite of this the
following theorem holds.

Theorem 3.8.27 The membership problem for LBA is decidable.

Proof: First an observation: the number of configurations of a LBA A = (E, A, Q, qo, QF, $) #, 6)that
can be reached from an initial configuration qow is bounded by cw = IQII AIwl(IwI + 2). (Alwl is the
number of possible contents of the tape of length Iw1, 1wI + 2 is the number of cells the head can stand
on, and IQI is the number of possible states.) This implies that if A is a DLBA, then it is sufficient to
simulate cw steps of A in order to find out whether there is a terminal configuration reachable from
the initial configuration qow - that is, whether w is accepted by A. Indeed, if A does not terminate in
cw, steps, then it must be in an infinite loop. If A is not deterministic, then configurations reachable
from the initial configuration qow form a configuration tree (see Figure 3.35), and in order to find out
whether w e L(A), it is enough to check all configurations of this tree up to the depth c.. 0

The fact that a LBA may not halt is unfortunate. This makes it hard to design more complex LBA
from simpler ones, for example, by using sequential composition of LBA. The following result is
therefore of importance.

Theorem 3.8.28 For each LBA there is an equivalent LBA that always terminates.

To prove this theorem, we apply a new and often useful technique of dividing the tape into more
tracks (see Figure 3.36), in this case into two. Informally, each cell of the tape is divided into an upper
and a lower subcell. Each of these subcells can contain a symbol and the head can work on the tape in
such a way as to read and write only to a subcell of one of the tracks. Formally, this is nothing other
than using pairs 1 of symbols as symbols of the tape alphabet, and at each writing changing eithery
none or only one of them or both of them.

208 3 AUTOMATA

Figure 3.35 Configuration tree

a c e gi kmor t v a c e gi kmo r t v
bdf hj I n ps uw bdfhj-Inpsuw

(a) one tape with two tracks (b) one tape with one track

Figure 3.36 A tape with two or one tracks

Proof: Given an LBA A with input alphabet E, we design from A another LBA 3 the tape of which
consists of two tracks. At the beginning of a computation the input word w is seen as being written
in the upper track. L3 first computes the number cw = Q IA III (wl + 2), the maximum number of
possible configurations, and stores this number in the second track. (Such a computation is not a
problem with LBA power.) Space is another issue. There is, however, enough space to write cw on the
second track, because IQI A iWi (Iwl + 2) < (21QI IA)Iwl. Therefore it is enough to use a number system
with a sufficiently large base, for example, 21Q1I Al, the size of which does not depend on the input
word w. B then simulates the computation of A step by step. Whenever the simulation of a step of A
is finished, B decreases the number on the second track by 1. If A accepts before the number on the
second track is zero, then 3 accepts as well. If 3 decreases the number on the second track to zero,
then B moves to a terminating, but not a final, state. Clearly, 3 accepts an input word w if and only
if A does. [

The family of context-sensitive languages contains practically all formal languages one has to deal
with in practice. It is a rich family, and one of its basic properties is stated in the following theorem.

Theorem 3.8.29 Both families £(LBA) and £(DLBA) are closed under Boolean operations (union,
intersection and complementation).

Proof: Given two LBA (or DLBA) A 1, A 2 that always terminate, it is easy to design a LBA (or DLBA)
that for a given input w simulates first the computation of A1 on w and then the computation of A 2

on w, and accepts w if and only if both A1 and A 2 accept w (in the case of intersection) or if at least
one of them accepts it (in the case of union). This implies closure under union and intersection. To

EXERCISES U 209

show closure under complementation is fairly easy for a DLBA A = (E, A, Q, qo, QF, 6, $, #, 6), which
always terminates. It is enough to take Q - QF instead of QF as the set of the final states. The proof
that the family £(LBA) is also closed under complementation is much more involved. []

Another natural idea for enhancing the power of finite automata is to allow the head to move
everywhere on the tape and to do writing and reading everywhere, not only on cells occupied by the
input word. This will be explored in the following chapter and, as we shall see, it leads to the most
powerful concept of machines we have.

All the automata we have dealt with in this chapter can be seen as more or less restricted variants
of the Turing machines discussed in the next chapter. All the techniques used to design automata
in this chapter can be used also as techniques 'to program' Turing machines. This is also one of the
reasons why we discussed such models as LBA in detail.

Moral: Automata, like people, can look very similar and be very different, and can look very different
and be very similar. A good rule of thumb in dealing with automata is, as in life, to think twice and
explore carefully before making a final judgement.

3.9 Exercises
1. Let A be the FA over the alphabet {a, b} with the initial state 1, the final state 3, and the transition

relation 6 = {(1, a, 1), (1, b, 1), (1, a, 2), (2, b, 3) }. Design an equivalent deterministic and complete
FA.

2. Design state graphs for FA which accept the following languages: (a) L = {w w c
{a,b}*,aaa is not a subword of w}; (b) L = {wlw E {a,b}*,w = xbvIvI = 2}; (c) L = {wIw E
{a, b}*, aaa is not a subword of of w and w = xby, lyI = 2}.

3. Design a finite automaton to decide whether a given number n is divided by 3 for the cases: (a)
n is given in binary, the most significant digit first; (b) n is given in binary, the least significant
digit first; (c) n is given in decimal; (d)* n is given in Fibonacci number representation.

4. Show that if a language L1 can be recognized by a DFA with n states and L2 by a DFA with m
states, then there is a DFA with n2m states that recognizes the language LIL 2 (and in some cases
no smaller DFA for LIL 2 exists).

5.* Show that for any n-state DFA A there exists a DFA A' having at most 2n1 + 2n-2 states and
such that L(A') = (L(A))*.

6. Show that a language L C_ {a}* over a one-symbol alphabet is regular if and only if there are
two finite sets M 1,M 2 C {a}* and a w E {a}* such that L = M, UM 2{w}*.

7. Show that if R is a regular language, then so is the language RhaW = {X Iyixl = [yixy E R}.

8. Show that the following languages are not regular: (a) {ww Iw E {a, b}* };

(b) {aVb0cJi ij ? 1} ub*c*; (c) L = {w IwE {a,b}*,w contains more a's than b's}.

9. Which of the following languages is regular: (a) UNEQUAL={anb mln,m E N,n = m}; (b)
{a}*UNEQUAL; (c) {b}*UNEQUAL?

10. Show that the following languages are not regular: (a) {a2' In > 1}; (b) {a"I In > 1}.

210 I AUTOMATA

11. Let w be a string. How many states has the minimal DFA recognizing the set of all substrings
of W?

12.* Let L, = {X1#X 2 #... Xm##XlXi e {a,b}",x = xj for some 1 <1j < m}. Show that each DFA
accepting L, must have 22" states.

13. Let R1 and R 2 be regular languages recognized by DFA A 1 and A 2 with r and s states,
respectively. Show that the languages R1 U R2 and R1 n R2 can be recognized by DFA with
rs states. (Hint: take the Cartesian product of the states of A1 and A2 as the new set of states.)

14. Find two languages L1, L2 such that neither of them is regular but their union and also their
intersection are.

15. For two languages K,L c E* define the right quotient K / L = {u c E* 13v E L, uv E K}. Show
that the family of regular languages is closed under the operation of right quotient.

16. * Let us assume that there exists a morphism 0 from E* to a finite monoid .M, and let for some
L C E*, 0-1 (O(L)) = L. Prove that L is a regular language.

17.* Show that the regular language {10101}* can be expressed without the operation of iteration,
using only the operations of union, concatenation, complementation and intersection.

18. Show that the family of regular languages is closed under the shuffle operation.

19. Show that if a tree automaton has the property that for the acceptance of an input word it does
not matter which level of processors is used to start the computation with an input word w,
provided the level has at least IwI processors and the input is given to the left-most processor,
one symbol per processor, then such a tree automaton always accepts a regular language.

20. Let R c E* be a regular language. Is the language twist(R) defined by the following mapping:
TWIST: E* , E*; TWIST(x) = x if x E E U {E}, TWIST(awb) = abTWIST(w) if a, b c E, regular?

21. Design a Moore or a Mealy machine with three states which for the input 00001000100010
produces as output 01010000101001.

22. Show that the family of relations defined by finite transducers is closed under composition.

23.* Letf be a bijection between E* and A* that preserves prefixes, lengths and regular sets. Show
thatf is realized by a generalized sequential machine.

24. Which image transformations realize the WFT in Figure 3.37?

25. Construct a WFT to perform (a)** a rotation by 90 degrees counterclockwise with linear slope;
(b)* stretching defined by the mapping (x,y) -- (x, 3y).

26. ** Show that the function computed by the LWFT depicted in Figure 3.38 is continuous if and only
if the following two conditions are satisfied: (1) Ca + f3 = 1, (2) 6(1 - a) = 'y(l - 6), 0 _< <, < 1,
0 < -Y,6 .

27. * Show that the polynomial x" can be computed by a WFA with n + 1 states (q,,..., qo) with the
initial distribution (1,0, ... , 0), final distribution (1, ... , 1) and the following transitions:

(1) qi -----)forj=0,i=0,1 . ,n;(2)) qj-t,fori=)1,...,nandt= 1,...,.

EXERCISES * 211

3,3:1
e, 1:1 2,2:1
F, 3:1 1,1:1 F,2:1

0,0:1 •,1:1 0,0:1

0,0:1 1 2,2:1

2,2:1 nn 0 1 3,3:1
0,2:1

, 3 ý -)A' 1,3:1
(a) (b) 2,1:1

3,1;1

Figure 3.37 WFA

0cz 0,1
1:P 1,1, o,,

1,8

Figure 3.38 LWFT

28. Prove the second assertion of Theorem 3.6.4.

29. Show that the w-language {anbncl In > 0} is not regular.

30. Design Biichi automata that recognize the following o-languages: (a) an wAanguage consisting
of w-words over the alphabet {a, b, c} with infinitely many a's and b's and such that there is an
odd number of c's between any two symbols from {a, b}; (b) an wo-language consisting of all
w-words over {a, b, c} with infinitely many a's and b's, but with never more than three c's in a
row.

31. Determine whether the following w-languages are regular: (a) {aibi i > 0}1; (b) {ab I ij Ž 0}-;
(c) {I&b.V 1 <_ i <_j}'.

32. Show that there is no finite state machine to compute the following functionsf : N :-* N:

(a)f(n) = n2; (b)f(n) = [v/hij.

33. Design a transition system with as few states as possible to recognize the languages (a)
{a3ib4j i,j > 1}; (b)* Ln = {ai l1 < i < n}.

34. Let A = (E,,Q, Q,QF,) be a transition system with the alphabet E = {a,b,c}, states Q =

{1,2, . . . ,7}, the initial states Q, = {1,2}, the final states QF = {4,5} and the transitions
{(1,abc,5),(2,s,4), (3,b,4), (4,a,6), (4,c,7), (6,c,5)}. Transform A, step by step, into an
equivalent transition system with the following properties: (a) only one initial state; (b)
transitions only on symbols from E U {c}; (c) transitions on all symbols from all states; (d)
all states reachable from the initial state; (e) complete and deterministic FA.

35. Show that every stochastic language is c-stochastic for any 0 < c < 1.

36. * Give an example of a probabilistic finite automaton which accepts a nonregular language with
the cut-point !.

212 U AUTOMATA

37. Design a multi-head FA that recognizes the languages (a) {abicid' i,j > 14; (b) {wwR w E
{0,1}*}.

38. Design LBA that recognize the languages (a) {a' i is a prime}; (b) {wwR ,w E {0,1}*}.

39. Which of the following string-to-string functions over the alphabet {0, 1} can be realized
by a finite transducer: (a) w -* wR; (b) w1 ... wn -* Wl Wl W2W2 .. WnWn; (C) W1 .. Wn

W1 ... WnWl ... W,?

Questions
1. When does the subset construction yield the empty set of states as a new reachable state?

2. Are minimal nondeterministic finite automata always unique?

3. Is the set of regular languages closed under the shuffle operation?

4. Is the mapping 1i -* 1'i realizable by a finite transducer?

5. What is the role of initial and terminal distributions for WFA?

6. How can one define WFA generating three-dimensional images?

7. Weighted finite automata and probabilistic finite automata are defined very similarly. What
are the differences?

8. Does the power of two-way finite automata change if we assume that input is put between two
end markers?

9. Are LBA with several heads on the tape more powerful than ordinary LBA?

10. What are natural ways to define finite automata on ww- words, and how can one define in a
natural way the concept of regular ww- languages?

3.10 Historical and Bibliographical References
It is surprising that such a basic and elementary concept as that of finite state machine was discovered
only in the middle of this century. The lecture of John von Neumann (1951) can be seen as the initiative
to develop a mathematical theory of automata, though the concept of finite automata, as discussed
in this chapter, is usually credited to McCulloch and Pitts (1943). Its modem formalization is due to
Moore (1956) and Scott (1959). (Dana Scott received the Turing award in 1976.)

Finite automata are the subject of numerous books: for example, Salomaa (1969), Hopcroft and
Ullman (1969), Brauer (1984) and Floyd and Beigel (1994). (John E. Hopcroft received the Turing
award in 1986 for his contribution to data structures, Robert Floyd in 1978 for his contribution to
program correctness.) A very comprehensive but also very special treatment of the subject is due to
Eilenberg (1974). See also the survey by Perrin (1990).

Bar-Hillel and his collaborators, see Bar-Hillel (1964), were the first to deal with finite automata
in more detail. The concept of NFA and Theorem 3.2.8 are due to Rabin and Scott (1959). The
proof that there is a NFA with n states such that each equivalent DFA has 2n states can be found
in Trakhtenbrot and Barzdin (1973) and in Lupanov (1963). Minimization of finite automata and
Theorem 3.2.16 are due to Huffman (1954) and Moore (1956). The first minimization algorithm, based
on two operations, is from Brauer (1988) and credited to Brzozowski (1962). Asymptotically the fastest
known minimization algorithm, in time 0 (mn lg n), is due to Hopcroft (1971). The pumping lemma

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES * 213

for regular language has emerged in the course of time; for two variants and detailed discussion see
Floyd and Beigel (1994). For string-matching algorithms see Knuth, Morris and Pratt (1977).

The concepts of regular language and regular expression and Theorem 3.3.6 are due to Kleene
(1956). The concept of derivatives of regular languages is due to Brzozowski (1964). Very high lower
bounds for the inequivalence problem for generalized regular expressions are due to Stockmeyer
and Meyer (1973). The characterization of regular languages in terms of syntactical congruences,
Theorems 3.3.16 and 3.3.17 are due to Myhill (1957) and Nerode (1958). The recognition of regular
languages in logarithmic time using syntactical monoids is due to Culik, Salomaa, and Wood (1984).
The existence of regular languages for which each processor of the recognizing tree network of
processors has to be huge is due to Gruska, Napoli and Parente (1994).

For two main models of finite state machines see Mealy (1955) and Moore (1956), and for
their detailed analysis see Brauer (1984). The results concerning finite transducers and generalized
sequential machines, Theorems 3.4.8-11 are due to Ginsburg and Rose (1963, 1966); see also Ginsburg
(1966). (Moore and Mealy machines are also called Moore and Mealy automata and in such a case
finite automata as defined in Section 3.1 are called Rabin-Scott automata.)

The concept of a weighted finite automaton and a weighted finite transducer are due to Culik and
his collaborators: Culik and Kari (1993,1994,1995); Culik and Frig (1995); Culik and Raj~ini (1996). See
also Culik and Kari (1995) and Raj•dni (1995) for a survey. Section 3.4.2 and examples, exercises and
images are derived from these and related papers. For a more practical 'recursive image compression
algorithm' see Culik and Kari (1994). The idea of using finite automata to compute continuous
functions is due to Culik and Karhumaki (1994). The existence of a function that is everywhere
continuous, but nowhere has derivatives and is still computable by WFA is due to Derencourt,
Karhumiki, Latteux and Terlutte (1994). An interesting and powerful generalization of WFT, the
iterative WFT, has been introduced by Culik and Raj~ini (1995).

The idea of finite automata on infinite words is due to Biichi (1960) and McNaughton (1966).
Together with the concept of finite automata on infinite trees, due to Rabin (1969), this created the
foundations for areas of computing dealing with nonterminating processes. For Muller automata see
Muller (1963). A detailed overview of computations on infinite objects is due to Gale and Stewart
(1953) and Thomas (1990). For a presentation of problems and results concerning Gale-Stewart (1953)
games see Thomas (1995).

The concept of a transition system and Theorem 3.8.1 are due to Myhill (1957). Probabilistic finite
automata were introduced by Rabin (1963), Carlyle (1964) and Bucharaev (1964). Theorems 3.8.8 and
3.8.9 are due to Rabin (1963), and the proof of the second theorem presented here is due to Paz (1971).
See also Salomaa (1969), Starke (1969) and Bucharaev (1995) for probabilistic finite automata.

Two-way finite automata were introduced early on by Rabin and Scott (1959), who also made
a sketch of the proof of Theorem 3.8.17. A simpler proof is due to Shepherdson (1959); see also
Hopcroft and Ullman (1969). Example 3.8.16 is due to Barnes (1971) and Brauer (1984). For results
concerning the economy of description of regular languages with two-way FA see Meyer and Fischer
(1971). Multi-head finite automata were introduced by Rosenberg (1966), and the existence of infinite
hierarchies was shown by Yao and Rivest (1978) for the one-way case and Monien (1980) for two-way
k-head finite automata.

Deterministic linearly bounded automata were introduced by Myhill (1960), nondeterministic
ones by Kuroda (1964). The closure of DLBA under intersection and complementation was shown by
Landweber (1963), and the closure of NLBA under complementation independently by Szelepcs~nyi
(1987) and Immerman (1988).

Computers

INTRODUCTION
The discovery that there are universal computers, which in principle are very simple, is the basis of
modem computing theory and practice. The aim of this chapter is to present and demonstrate the
main models of universal computers, their properties, mutual relations and various deep conclusions
one can draw from their existence and properties. Computer models help us not only to get insights
into what computers can do and how, but also to discover tasks they cannot do.

The following computer models are considered in this chapter: several variants of Turing
machines; several variants of random access machines, including parallel random access machines;
families of Boolean circuits; and cellular automata. Each plays an important role in some theoretical
and methodological considerations in computing. On the one hand, a large variety of these models
demonstrates convincingly the robustness of the concept of universality in computing. On the other
hand, different models allow us to deal in a transparent way with different modes and aspects of
computing.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

I. several basic models of universal computers, their properties and basic programming
techniques for them;

2. basic time speed-up and space compression results;

3. methods of simulating the main models of universal computers on each other;

4. two classes of universal computers that correspond to inherently sequential and inherently
parallel computers, respectively;

5. how to derive basic undecidability and unsolvability results;

6. the main theses of computing: Church's thesis, the sequential computation thesis and the
parallel computation thesis.

216 - COMPUTERS

'There's no use in trying', she said: 'one can't believe impossible
things.'
'I daresay you haven't had much practice', said the Queen. 'When I
was your age, I always did it for half-an-hour a day. Why, sometimes
I've believed as many as six impossible things before breakfast.'

Lewis Carroll, Through the Looking-glass, 1872

The discovery of universal computers is among the most important successes of twentieth-century
science. It can be seen as a natural culmination of a centuries-long process of searching for principles
and limitations of both mind and machines. Amplified by the enormous information-processing
power of matter and advances in modern technology, the discovery of very simple universal
computers resulted very soon in the most powerful tool of mind and humankind.

Several basic models of universal computers are introduced, demonstrated and analysed in this
chapter. Mutual simulations of these models, on which we also concentrate, show a variety of methods
for transforming programs for one universal computer to programs for another. They also show that
there are actually two main classes of computer models: inherently sequential and inherently parallel.

Each model of a universal computer is essentially a universal programming language. However,
these programming languages have control and data structures which are too simple to be useful
in a practical application. However, their simplicity and elegance make them excellent tools for
discovering the laws and limitations of computing, and allow us to use exact methods to demonstrate
the correctness of our findings.

Models of sequential computers seem already to be quite satisfactorily developed. Some of them
fully correspond to the needs of theory Others model real computers sufficiently well and their
theoretical analysis provides deep insights and useful forecasts. This does not seem to be the case yet
in the area of parallel computing.

A clear tendency in computer development is to build larger and larger finite machines for larger
and larger tasks. Though the detailed structure of bigger machines is usually different from that of
smaller ones, there is some uniformity among computers of different size. Computer models therefore
consist either of an infinite family of uniformly designed finite computers, or this uniformity has to
be pushed to the limit and models infinite in size (of memory) have to be considered.

The concept of a universal computer demonstrates how little is sufficient to do everything one
can do with algorithmic methods. It has turned out that the most important/fruitful way to study
the power of various computer models and computational problems is to investigate the amount of
computational resources needed to solve problems and to simulate one computer model on another.
The main resources are time, storage, processors, programs, communication and randomness.

Time is the most natural resource, and is potentially unbounded for computers. It is therefore
natural to consider as reasonable cases in which the amount of time needed to solve a problem grows
with the size of the problem. Storage and processors, in the case of parallel computing, seem to be
qualitatively different resources because their size is clearly bounded for any real computer. In spite
of this, it has turned out to be very fruitful to consider for these resources that the amount grows with
the size of the problem.

We deal in this chapter with time, storage and processors as resources, in Chapter 6 with (the size
of) programs, and in Chapter 11 with communication.

TURING MACHINES U 217

S~tape

finite
control

Figure 4.1 One-tape Turing machine

4.1 Turing Machines

The very first (infinite) model of a computer, was invented in 1936 by A. M. Turing,1 one of the fathers
of modem computer science and technology. It is called, in his honour, a (one-tape) Turing machine,
for short, TM (see Figure 4.1). This model serves as a basis for several other basic computer and
computational models and modes, on which complexity theory is developed, and some of the key
concepts of modem science are built. The main reasons for the enormous importance of this model
are its simplicity, elegance and flexibility and the fact that the basic step of Turing machines is indeed
elementary, both from the operational and the communication point of view.

4.1.1 Basic Concepts

Informally, a one-tape TM is similar to the linearly bounded automaton discussed in Section 3.8, but
without any restriction on the moves of the head. The head can also move, write and read outside
the cells occupied by the input. This immediately implies that for Turing machines we can apply the
basic concepts and also the programming techniques introduced for various generalizations of finite
automata in Section 3.8.

Formally (see Figure 4.1), a (one-tape) TM M consists of a bi-infinite tape divided into an infinite
number of cells in both directions, with one distinctive starting cell, or 0-th cell. Cells of the tape can
contain any symbol from a finite tape alphabet F, or a symbol Li (that may also be in 1), representing an
empty cell; a read-write head positioned at any moment of the discrete time on a cell; a finite control
unit that is always in one of the states: either of a finite set Q of nonterminating states (containing
the initial state, say qo) or one of the terminal states from the set H {HALT, ACCEPT, REJECT}2 and
implementing a (partial) transition function

6: Q x F -* (QUH) x F x

Interpretation: 6(q,x) = (q', x',d) means that if M is in state q and the head reads x, then M enters
the state q', stores x' in the cell the head is currently on, and the head moves in the direction d, to the
right if d = -, to the left if d = -, and does not move at all if d = 1. Formally, M = (1, Q, qo, 6), but
sometimes, if there is a need to consider explicitly a subset E c r - {u} as the input alphabet, we
consider a TM AM of the form M = (E,F,Q,qo,6).

WAlan M. Turing (1912-54) was an English mathematician. He wrote fundamental papers on computability and
artificial intelligence. During the Second World War Turing participated in the cryptographical project ULTRA in
Bletchley Park and in the design of Colossus, the first powerful electronic computer. After the war he supervised
the design and building of ACE, a large electronic digital computer at the National Physical Laboratory. His last
and longest papers laid the foundation for mathematical biology

2 1f conciseness is very important, we use notation YES and NO to denote states ACCEPT and REJECT,
respectively.

218 F COMPUTERS

A computation of a TM A4 can be defined formally using the concept of configuration of the form
(q, w, w'), where q c Q U H, and w, w' E F*. Each configuration contains a complete description of the
current 'global' state of the computation: the state q the machine is in, the content ww' of the tape and
the position of the head - on the first symbol of w' (if w' 7 E, or on the first cell after the last symbol
of w). (We assume that only such tapes are used all but finitely many symbols of which are blanks
u, and in writing down a configuration infinitely many left-most and right-most U's are discarded.)
If AM moves in one step from a configuration C to a configuration C', we write C FM C'. By writing

m *•

C F C', (C F C'), we denote that the configuration C yields in m steps (some finite number of steps) the
M M

configuration C'. Each configuration (qo, 6, w), w E (F - {Ju})* is called initial, and each configuration
(q, w, w'), q c H is called terminating. A finite sequence of configurations C1, C2, ... , Cm is called
a terminating computation of M, if C1 is an initial configuration, Cm a terminating configuration
and Ci FM Ci,1 for i > 1. (There are two ways to interpret a terminating computation of a TM M.
The first is that M stops, and there is no next configuration - this will be called halting. The second
is that M4 keeps staying in the same configuration - this will be called an idling termination.) An
infinite sequence of configurations C1, C2, • such that Ci FM Ci+I for all i > 1, is called an infinite
computation.

There are four types of computations of aTM .M when.M starts in an initial configuration (qo, E, x),
with the first symbol of x in the cell of the tape the head is on. If AM yields a terminating configuration
with the state ACCEPT (REJECT) [HALT], then M is said to accept x (reject x) [terminate]. If the
terminating configuration is (q, w, w'), then AM is said to terminate with the output ww'; that is,
M (x) = ww'. Finally, if a computation of AM does not terminate, then we say that M4 diverges on the
input x; in short, M (x) =/. If M does not diverge, we say that .M converges; in short, .M(x) =".

4.1.2 Acceptance of Languages and Computation of Functions

Turing machines are a natural tool for studying language acceptance and decision problems, as
well as computation of string-to-string functions. This can be easily extended, as we shall soon see, to
computation of integer-to-integer functions. Since finite objects can be encoded by strings, this allows
us to deal with a variety of decision and computational problems.

Definition 4.1.1 (1) Let M = (E, r, Q, qo,) be a TM with the input alphabet Z. Then

L(M) = {wIw c E*,M(w) =ACCEPT}

is the language, over E, accepted by M. In addition, if M terminates in one of the states ACCEPT or REJECT
for any x c I*, then L(M) is said to be the language decided (recognized) by .M.

(2) A language L C E* is said to be recursively enumerable, if there is a TM .M that accepts L = L(M),
and is called recursive if there is a TM that decides (recognizes) L.

The distinction between the concepts of recursivity and recursive enumerability of languages is,
as we shall see, important and essential. For any recursive language L C E* there is a TM M that
terminates for any input x c E* and always says whether x E L or not - one only has 'to wait patiently'.
For a recursively enumerable language L C E*, it is guaranteed only that there is a TM M such that
M stops and accepts for any x E L . However, M4 may or may not stop for x V L, and one has no idea
how long to wait in order to find out if M4 halts or does not halt.

Definition 4.1.2 (1) A (partial) string-to-string function f : E* - V is said to be (partially) computable
by a TM AM = (E, F, Q, qo,6, r- C F, ýfA4M(x) = f (x) for any x c E * from the domain off and M (x) =7,
otherwise.

TURING MACHINES * 219

state U 0 1
qo YES,U,j ro, L,--* r, U,--*
ro YES, u, r', 0, -* r,, 1, -* qo 1 q' U -

ri YES, UL, r', 0, - r', 1, -* q' 0 HALT U
r$, SOUi- rl,0,-- r1,l- q' 1 q" U --

r', si, U, - r ,0,--* r,1,-* q" 0 HALT 1 J
SO 1, U, - NO, u,j q" 1 q" 1 --
S1 NO, U,• 1,U,•-

1 qo, U,-* 1,0,- l,1,*-

(a) (b)

Figure 4.2 Turing machines recognizing palindromes and computing x + y

(2) If there is a TM M that (partially) computes a function f : E* , - *, then f is called (partially)
recursive.

(3) A functionf : N' -4 N is called (partially) recursive if there is a TM M such thatf(xi, . . . ,xt) =

(yi,.. ... y,), if and only if

A4 (lXI+1OlX2+1o... 01Xt+1) = Y1+
1
0 ... O1JYI+.

Exercise 4.1.3 A TM, as defined above, can perform in one step three actions: a state change, writing
and a head move. Show that to each TM AM we can design a TM M' which performs in each step at most
two of these three elementary actions and (a) accepts the same language as M; (b) computes the same
function as M.

Exercise 4.1.4 Explore the possibility that for each TM A4 we can construct another TM M' that
behaves 'essentially as AM' and in each move performs only one of the three elementary actions.

In the following examples we illustrate three basic ways of specifying a TM. They are similar to
those used to describe finite automata: transition tables, enumeration of transition tuples and state
graphs.

Example 4.1.5 The TM .M 1 described by the transition table in Figure 4.2a decides whether an input x c
{0, 1}* is a palindrome. Informally, starting in the initial state qo, M 1 reads thefirst symbol of the word on
the tape, erases this symbol, enters one of the states ro or rl, depending on the symbol read, and moves one cell
to the right. If MA1 now reads U, then A41 accepts. Otherwise A41 goes from the state ro (rl) to the state r' (r')
and moves to the right end of the input string. When coming to the first cell with Ui, A4 1 moves one symbol
to the left and goes from the state ro (r1) to the state so (s1). If A41 reads 0 (1) in the state so (sl), then MA,
replaces the symbol being read by U, goes to the state 1, and, being in the state 1, A4 1 keeps moving left until
a u is reached. M 1 then moves the head one cell to the right, goes to the state qo, and repeats the procedure. If
.M1 reads 1(0) in the state so (sl), then A4 1 rejects. If A4 1 reads Li in the state qo, then A41 accepts.

220 U COMPUTERS

1 lolloo11Io1 1 ll loll!OlO1lol

(a) (b)

Figure 4.3 Movement of heads when recognizing palindromes

20-+ aa-
00<-- 10-+ bb(--

O~- 00+- au a b

• 22-•__ ,o- Af11•00-
bb- +

22+-
OU-*h0 O--+ A u- 0iUN- 21- ad4a Ytý

22+_- 22-4 22-+

Figure 4.4 Turing machines computing Fibonacci numbers and generating Fibonacci w-words

Exercise 4.1.6 The head movement of the TM in Figure 4.2a is depicted in Figure 4.3a. Design another
(faster) Turing machine with the head movement as shown in Figure 4.3b.

Example 4.1.7 TM M 2, described by an enumeration of transitions in Figure 4.2b, computes the function
f(x,y) = x +y. Indeed, M 2 erases in the input x+ O01Y+l thefirst 1 and also the next 0, fx 0 0. Otherwise,
M 2 erases also the second 1 in 1x-1 and moves to find thefirst 0. M 2 replaces this 0 by 1 and halts.

Example 4.1.8 TM M 3 depicted by the state diagram in Figure 4.4a produces for an input 0n+l the output
0Fn'+1, where Fo = 0, F' = 1 and F'+ 1 = F' +F' 1,for n> 1.

Example 4.1.9 TM M 4 in Figure 4.4b generates the Fibonacci w-word (see Section 2.5) defined by F(1)
ab, F(i) = h(F(i - 1)) for i > 2, where h(a) = ab, h(b) = a. (The verb 'generates' here means that M 4, starting
on the empty tape, keeps writing on its tape larger and larger words, and their prefixes from the alphabet {a, b}
form larger and larger prefixes of the Fibonacci wo-word.)

TURING MACHINES U 221

bi-infinite tape

a y q a s i o u o o u -7-6-5-4-3-2-1 0 1 2 3 4 5 6 7
x f s u a s e o a u c _ C

Ix~fs~u~~s~eo~a~~cI(c)
g w d e o u a s u e a 1 2 3 4 5 6 7 8 9 10

jj j i eooei e

(a) tape with 4 tracks (d) -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

HEADSMOVEI N
+ * A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) putting marks (e) one-way infinite tape

Figure 4.5 Tapes with tracks and a folding of a bi-infinite tape

Exercise 4.1.10 Design a TM that multiplies two integers: that is,from the input 1`101Y"' produces
the output 11Y+ 1.

Exercise 4.1.11 Design a TM that generates the Thue w-word.

Exercise 4.1.12 Design a TM that recognizes whether a given integer is a prime.

4.1.3 Programming Techniques, Simulations and Normal Forms

There are several basic techniques that are useful for the design of Turing machines. Dividing a tape
into tracks and carrying symbols in the states are perhaps the two most basic ones. (We have actually
already encountered them in Section 3.8.)

Dividing a tape into tracks. If E is a tape alphabet, then a division of a tape into k tracks (see
Figure 4.5a for k = 4) actually corresponds to using the alphabet Vk instead of E. Informally, we can
speak in such a case of 'changing a symbol of the ith track', but what this actually means is replacing
a symbol from Zk by another which differs only in the ith component. One use of this technique is to
leave markers on cells, as demonstrated in Figure 4.5b.

Carrying symbols in states. States can be used to 'carry symbols' or information about symbols
from one part of a tape to another. Formally, this is done by creating 'compound states' (q,a), where
q is an 'elementary' state, and a is a symbol to be carried out. (This technique has actually been used
in Example 4.1.5.)

Example 4.1.13 A TM with states {q,q', (q,O), (q, 1)} and transitions

q, 0, (q, 0), Li--, q',j, q', i, -- ,

q, 1, (q, 1), L,---, q',Lq,U,--,
(q, i),j, (q, i), j,--, q, c,HALT, UA, tL,
(q, i),L, i, q', - ,

222 U COMPUTERS

where i stands for any element from the set {0, 1} and j stands for any element from the set {,0 1, c}, transforms
any input of the form ucw, where uw E {O, 1}*, into the form wu.

Simulation. One of the most important concepts for dealing with various models of computers
is that of simulation of one machine AM on another machine M'. In the strong sense, this means
that A' simulates steps of M in such a way that from a sequence of configurations representing a
computation of A' one can easily obtain a sequence of configurations representing a computation
of M for the same input. A very formal and fully general definition of this intuitive concept would
be cumbersome. We shall therefore use this concept quite informally. In any particular case it will
be clear what a simulation means. More restricted and more precise versions of simulation will be
introduced later.

Turing machines with one-way infinite tapes. The 'normal form' of TM most often considered
is that with one-way infinite tape (see Figure 4.5e). Such a TM can be seen as an ordinary Turing
machine, the head of which never moves to the left from its starting position. It is easy to show that
each TM A4 can be transformed into another TM A', with one-way infinite tape only, that simulates
M in the same number of steps. The basic idea of such a construction is illustrated in Figure 4.5d: to
fold the tape and then consider the folded tape as a two-track tape.

Exercise 4.1.14 Show in detail how to transform any TM working on a bi-infinite tape into a TM
working on a one-way infinite, two-track tape.

Turing machines with end markers. To each TM A4 = (E, F, Q,q o, 6) we can easily design a TM
A4' = (E, r u { #, $ }, qo, Q', 6') which for an input #w$ with two end markers # and $ behaves in a
similar way to how AM does on w. However, each time AM' reaches an end marker and M at that
moment would write or move outside the area between markers # and $, M' first moves the marker
accordingly, and then performs the step AM would do.

Exercise 4.1.15 Show that for each TM M we can design another TM M' that simulates M and in no
state has the possibility of moving both right and left (that is, in no state does it have transitions of the
type qaq'b -- and also qcq"d --).

4.1.4 Church's Thesis

Alan Turing defined his machine model in order to formalize the intuitive concept of effective
procedure or, as we call it today, algorithm.3

3The name for this intuitive concept of algorithm is derived from the Arab astronomer and mathematician
Mohammed ibn Musa al-Khovarizmi (ninth century), considered to be the father of algebra. The term originated
from the title Al-jabr wa'l mugabalah of one of his two books that played an important role in the history of
mathematics and computing. In this particular book he provides algorithms for solving various linear and
quadratic equations. His description of algorithms is entirely rhetorical, and deals always with particular
equations. For example, the description of the procedure for solving the equation x2 + 10x = 39 goes as follows:
'Take half the number of roots, that is, in this case five, then multiply this by itself and the result is five and twenty.

TURING MACHINES 223

Intuitively, an effective procedure is a set of rules which tells us, from step to step, precisely what to do.
For example, an effective procedure for computing a functionf is a set of rules which tells us precisely
what to do, from step to step, in order to obtain, from the input arguments off, the resulting value
off after a finite number of steps.

The problem of finding an exact definition of an effective procedure becomes of crucial importance
when one needs to show that there is no effective procedure for solving a given problem. It has actually
never been a matter of major dispute whether a specific description is really an effective procedure.
This is the main reason why the attempt to formalize such a very basic concept of science became
urgent only at the beginning of this century.

The need for an exact definition of an effective procedure had already arisen in connection with
the three famous problems of antiquity: the squaring of the circle, the duplication of the cube and
the trisection of the angle using a straight edge and a compass only. However, these problems were
very special and there was actually only intellectual curiosity behind them. The need to formulate
an intuitive concept of effective procedure started to be of prime importance only at the beginning
of this century, in connection with Hilbert's famous project of formalizing all our knowledge and his
Entscheidungsproblem: given a reasonably powerful formal system, can we decide whether a given
statement has a proof?

It is evident that a TM specifies an effective procedure, and that any function computable by
a Turing machine is effectively computable in an intuitive sense. The concept of a TM is clearly a
formalization of the intuitive concept of an effective procedure. However, since this is a very simple
concept, it is natural to ask whether this formalization is not too narrow. In other words, are there
algorithms or effective procedures that cannot be carried out by a Turing machine? Are there functions
that are effectively computable, but not by a Turing machine?

One of the cornerstones not only of computing but also of modem science is the thesis which is
usually called Church's thesis (or Church-Turing's thesis).4

Church's thesis Any process which could naturally be called an effective procedure can be realized
by a Turing machine.

This thesis identifies a formal and an intuitive concept, and therefore cannot be proved formally.
There is, however, such overwhelming evidence supporting the thesis that one can think of it as
being a sort of natural law. The evidences supporting the thesis are of three types.

1. Many other formalizations of the concept of effective procedure have been developed, based
on very different ideas. All of them have turned out to be provably equivalent: the 1-recursive
functions of A. C. Kleene (1936); the A-definable functions of A. Church (1941); the rewriting
systems of E. L. Post (1936); the normal algorithms of A. A. Markov (1954) and several others.

2. The class of functions computed and the class of languages accepted or decided by Turing
machines are very robust. Numerous modifications of the concept of Turing machines have no
effect on these classes. Moreover, they are closed under all operations under which they should
intuitively be closed.

3. No effective procedure is known that would not have its formal counterpart in terms of a Turing
machine. There are no indications that there could exist an effective procedure that could not
be programmed as a Turing machine.

Add this to nine and thirty, which gives sixty four; take the square root, or eight, and subtract from it half the
number of roots, namely five, and there remains three. This is the root.'

4Alonzo Church (1903-94), an American logician.

224 U COMPUTERS

Church's thesis can be and is often used as an essential tool in proofs. We shall also use it in that
way in this book. Once something can be done by an effective procedure, we can assume that there
is a Turing machine capable of doing it (after a proper encoding of the problem). This can always be
replaced by a formal proof, though that can be a very tedious task. A formal construction of a TM
resembles designing a program in an assembly code. Arguments based on Church's thesis resemble
programming using a very high-level programming language.

Church's thesis is also an expression of the limitations of the concept of an effective procedure.
It is therefore important to look at this thesis from the point of view of modern physics, and to ask
whether there may be something beyond the Turing machine.

There is a significant physical principle underlying Church's thesis that can be formulated as
follows: Everyfinitely realizable physical system can be perfectly simulated by a model of a computing machine
operating by finite means.

Since classical physics is continuous and Turing machines are discrete, this principle is not obeyed
by them. However, it is possible to develop a quantum generalization of Turing machines such that
this machine and quantum physics are compatible with the principle.

One reason for assuming that there may be something beyond Turing machines lies in problems
encountered when trying to understand the mind. There are serious views, though not shared by
everybody, that the mind is more than a Turing machine and that current physical theories are
insufficient to comprehend the mind; see Penrose (1990).

4.1.5 Universal Turing Machines

As an illustration of the power of Church's thesis, we establish the existence of a universal Turing
machine - a specific Turing machine M4. that can simulate any other Turing machine, if properly
encoded. The existence of universal computers is one of the cornerstones on which the power
of modem computers and computing is based. An effective encoding and enumeration of Turing
machines therefore plays an important role.

There are many ways in which a TM A4 = (F, Q, qj, 6), where F = {a,, a2 an}, Q= {qj,...,q. ,
H 1 {qm+1, qm+ 2, qm+ 3}, can be encoded by a binary string. For example,

a transition 6(qi,aj) = (qk,al,d) can be encoded as 0i10110'l0'10",

where d' = I if d =-, d' = 2 if d =J, and d' = 3 if d =--. The whole TMMA4 can then be encoded by the
string

(MA4) = 10n11oml o' 10i, 10k110k1 10 d' 11 * il,
first transition other transitions

and a w c F*, w =a .. . aik can be encoded by (w) = 0'110 1I... 10'k. These encodings will be used
often.

Remark 4.1.16 The above encoding can be generalized to all Turing machines by assuming that
tape symbols are from an infinite alphabet F = {aj, a2, a3,... } and states from an infinite set Q =

{ql, q2, q3, ... } with the first three states being three halting states.

Notice that the string '11' is used as a marker between two components and '111' as the suffix end
marker. Observe also that such an encoding of TM has the self-delimiting property: no prefix of a
code of a TM is a code of another TM.

With a fixed encoding of Turing machines, such as the one above, we can use a strict ordering
of encodings of all Turing machines and enumerate all Turing machines as AM0, MM2,.... For
the rest of the book the actual details of such encodings will not usually be of importance. The only

TURING MACHINES U 225

requirement, clearly fulfilled by the above encoding, will be that there is an effective procedure for
determining the ith Turing machine TMi given i, and for determining i such that TMi = M, given M.
Any such enumeration of TM will be called a Godel (or effective) numbering of Turing machines,
and the number i such that TMi = M will be called the index or Godel number of A4 with respect
to a chosen G6del numbering. Sometimes it will be required that encodings have the self-delimiting
property.

Let us now fix an integer k and denote, for any integer i, by f the partial recursive function of k
integer variables computed by Mi, as defined in Definition 4.1.2. The number i is then referred to as
an index off,. Clearly, any partial recursive function has infinitely many indices.

We show now that for any k there is a single Turing machine M4' that is universal for computing
all partial recursive functions of k variables in the following sense. If MA4 gets on the input an index

and the values x1,.. ,Xk, then Mk computesfJ(xi,.. Xk).

Theorem 4.1.17 (The existence of a k-universal Turing machine) For every k > I there is an integer Uk

such that for any i > I and all x1, . .. ,Xk,fi(X, . .. IXk) =fu, (i,xl, . . . ,Xk).

Proof: Consider the following informal algorithm for computing a function of k + 1 variables
i, x1, ... ,Xk. Construct Mi and use it to compute with the arguments Xl, ... ,Xk as the inputs. If
the computation halts, output the final result of computation. By Church's thesis, this algorithm can
be carried out by a Turing machine .Mu, and this u is the index of the universal partial recursive
function of k + 1 variables for computing any partial recursive function of k variables.

In Section 4.1.7 we discuss another variant of the above theorem, and show in more detail how
to design a universal Turing machine capable of simulating efficiently any other Turing machine.
Complete, detailed constructions of universal Turing machines can be found in the literature - for
example, in Minsky (1967). It is interesting to see such a construction, though one does not learn from
it much more than from the above proof based on Church's thesis.

Because of the enormous power of universal Turing machines one is inclined to expect that they
must be quite complicated. Actually, just the opposite is true, and the search for minimal universal
Turing machines has demonstrated that.

Intellectual curiosity is the main, but not the only, reason why the problem of finding minimal
universal Turing machines is of interest. Extreme micro-applications, the search for principles and
the power of genetic information processing, as well as the tendency to minimize size and maximize
performance of computers, are additional reasons.

A nontrivial problem is what to choose as a complexity measure for Turing machines, with respect
to which one should try to find a minimal universal TM. Number of states? Number of tape symbols?
The following theorem indicates that this is not the way to go.

Theorem 4.1.18 There is a universal Turing machine that has only two nonterminating states, and there is
another universal Turing machine that uses only two tape symbols.

Exercise 4.1.19 * Show that for any TM AM there is another TM M' that uses only two states and
computes the same integer-to-integer functions as .M.

Exercise 4.1.20 Show that no one-state Turing machine can be universal.

226 U COMPUTERS

Is 10 2xl8

symbols _ Cases for which

a universal TM exists

10 *3x1010 3 1 Cases with decidable

halting problem

8

7

6 *4x6

5 * 5x5

4 7x4

3 10x3 24x2

2 3 4 5 6 7 8 9 10 states 24

Figure 4.6 Minimal Turing machines

A better reflection of the intuitive concept of the size of Turing machines is their product
complexity:

number of states x number of tape symbols,

or the total number of transitions. Concerning product complexity, the problem of finding a minimal
universal Turing machine is still open, and currently the best upper and lower bounds are summarized
in the following theorem.

Theorem 4.1.21 There is a universal Turing machine with product complexity 24 (4 states and 6 symbols and
22 transitions), and there is no universal Turing machine with product complexity smaller than 7.

Figure 4.6 shows, for different numbers of states (tape symbols), the current minimal number of
tape symbols (states) needed to design a universal Turing machine. Figure 4.7 contains the transition
tables of three universal Turing machines: one with 2 states and 18 symbols, one with 4 states and 6
symbols, and one with 24 states and 2 symbols. (To describe the movements of the heads, the symbols
R instead of - and L instead of s- are used.) The way Turing machines and inputs are encoded is the
key point here, in which much of the complexity is hidden. (All these machines achieve universality
by simulating a tag-system - see Section 7.1.)5

Remark 4.1.22 The existence of a universal quantum computer (universal quantum Turing machine)
Q5 has also been shown. Such a universal quantum computer has the property that for each physical
process P there is a program that makes Q, perform that process. In particular, the universal quantum
computer can, in principle, perform any physical experiments.

51n order to see the merit of these results, it is worth remembering that the first really powerful electronic
computer ENIAC had 18,000 lamps, 70,000 capacitors, 60 tons weight and 30m length.

TURING MACHINES 3 227

0 1 2 3 4 5 6 7 8

qo qo17L qo4R qo17L qoOR q03L qo7R qo9R qo5L qo5R
ql qi2R q12R q11L q14R qjOL qolOR q17R qj6L q19R

9 10 11 12 13 14 15 16 17

qo qo8L q1l1L q,8L q1IL qo14L qo15L q1 16R - qo2R
qi q16L q05R q19R q114R q14R q113L ql17R qol7L q12L

UTM(2,18), Rogozhin (1995)

qo q, q2 q3

0 qo3L q14R q20R q34R

1 qo2R q22L q33R qj5L

2 qolL q13R q21R q33R

3 qo4R q12L - -

4 qo3L qjOL qo5R qj5L

5 q34R q11R qoOR q31R

UTM(4,6), Rogozhin (1982)

qo q, q2 q3 q4 q5 q6 q7 q8 q9 qlo ql1

0 q4 0R qolR q30L q111L qolR q6 0L q70L q6 0L q1sOR q3 1L q3 0L q180R
1 q11R q21L q1OL q8OL q5OL q61L q50L q11R q31L q120R - q131L

q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 q23

0 q90R q140L q150R q140R q150R q180R q21L q171R q210R q91L q201R q120R
1 q23 1R qlolL q16 1R q9 1R q2 01R q19 1R q17 1R q170R q22 1R q201R q200R q20L

UTM(24,2), Rogozhin (1982)

Figure 4.7 Transition tables of three small universal TM

4.1.6 Undecidable and Unsolvable Problems

"A decision problem is called undecidable if there is no algorithm (Turing machine) for deciding it.
"A search problem is called unsolvable if there is no algorithm (Turing machine) for solving it.

We show first the undecidability of two basic problems concerning Turing machines. In doing
this we assume that a Godel numbering of Turing machines is fixed.

"* The self-applicability problem is to decide, given an integer i, whether the ith Turing machine
halts on the input i; that is, whether TMi (i) = \.

"* The halting problem is to decide, given a Turing machine M and an input w, whether M halts
on w; that is, whether M. = -\.

Theorem 4.1.23 The self-applicability problem and the halting problem are undecidable for Turing machines.

Proof: Let us define the function

f Mn(n)+l, if .Mn converges for the input 1;
f(n) =10, otherwise.

228 U COMPUTERS

If either the self-applicability or the halting problem is decidable, then f is computable and, by
Church's thesis, there is an m such thatf(n) = Mm(n). In such a casef(m) = Mm(m) = Mm(m) + 1, a
contradiction that implies that neither the self-applicability nor the halting problem is decidable.

5

Remark 4.1.24 The proof of Theorem 4.1.23 is based on the diagonalization method. First, an infinite
matrix M is defined, the rows and columns of which are labelled by integers, and M(i, x) is the value
of the ith Turing machine for the input 1x+1. The diagonal of the matrix M(i,j) is then considered,
and a functionf is constructed such thatf(i) 5 M(i, i), for all i.

The unsolvability case, the existence of a well-defined but not computable function, will now be
demonstrated by the busy beaver function, BB. BB(n) is the maximal number of Is that a Turing
machine with n states and a two-symbol tape alphabet {Li, 1} can write on the tape when starting
with the empty tape and terminating after a certain number of steps. Since the number of such TM is
finite, BB(n) is well defined, and BB(n) < BB(n + 1) for all n.

Theorem 4.1.25 For any total recursive function f and any sufficiently large x, the inequality f (x) < BB(x)
holds. (As a consequence, the busy beaver function is not recursive.)

Proof: Given any recursive functionf(x), let us consider the function

g(x) = max{f (2x + 2),f(2x + 3)}. (4.1)

Clearly, the function g is total, and therefore by Church's thesis and Theorem 4.1.18 there is a Turing
machine Mg with the tape alphabet {u, 1} computing g. Let Mg have m states.

For each integer x we can easily construct a Turing machine M. such that when Mx starts on
the empty tape, it first writes lx+', then moves to the left-most I and starts to work as Mg. Clearly,
M, with this property can be designed so that it has n = m + x + 2 states and uses {U, 1} as the tape
alphabet. When started on the blank tape, Mx halts with precisely g(x) symbols I on the tape. Thus,

g(x) < BB(m+ x + 2),

and for x = k > m, we get g(k) < BB(2k + 2), and therefore

f(2k+2) < BB(2k-+ 2), f(2k+3) < BB(2k+3).

Thusf(x) < BB(x), for x > m. 0

It is known that BB(1) = 1,BB(2) = 4,BB(3) = 6,BB(4) = 13, and Turing machines that achieve
these maximal values are shown in Figures 4.8a, b, c, d, where 0 is written instead of the blank
symbol. For larger n only the following lower bounds are currently known: BB(5) Ž_ 4098, BB(6) Ž
136,612, BB(8) ? 10', BB(12) > 6x44, where x0 = 4096 and xi = x1_• 6 for i > 1. TM in Figures 4.8b, c, d
and e write the indicated number of ls in 4, 11, 96 and 47,176,870 steps, respectively.

Exercise 4.1.26** Verýy that Marxen-Buntrock's TM really needs 47,176,870 steps to write 4098 Is.

Exercise 4.1.27* Get, by designing a TM, as good a lower bound for BB(6) as you can.

TURING MACHINES U 229

A A B A B C
0 1H 0 1BL lAR 0 1BR 1CR 1AL
1 1 1BR H 1 1CL 1H OBL

(a) (b) (c) Lin and Rado (1963)

A B C D A B C D E

0 1BR IAL 1H 1DL 0 1BR 1CR 1DR 1AL 1H
1 OCR 1AR 1DR OBL 1 1CL IBR OEL 1DL 0AL

(d) Weimann, Casper and Fenzl (1973) (e) Marxen, Buntrock (1990)

Figure 4.8 Turing machines computing the busy beaver function for n = 1,2,3,4,5 ('H' stands for
the halting state HALT)

inputtape - input tape -
1$ a-b b I $ abb I k 1 $

read-only head read-write headcoto ntcontrolunit 7]had
cnrlUll q khascontrol unit q ki heads

write-only ead write-only ead
outputtape memory outputtape memory

$d fg s $defg I sIII

(a) (b)

Figure 4.9 Off-line and on-line Turing machines

The existence of undecidable and unsolvable problems belongs to the main discoveries of science
of this century, with various implications concerning the limitations of our knowledge. This will be
discussed in more detail in Chapter 6, where insights into the structure of decidable and solvable
problems, as well as several examples of undecidable and unsolvable problems, are discussed.

4.1.7 Multi-tape Turing Machines

There are many generalizations of one-tape Turing machines. Two main schemas of such
generalizations are shown in Figure 4.9: off-line Turing machines (Figure 4.9a) and on-line Turing
machines (Figure 4.9b). In both cases the Turing machine has an input tape, an output tape with a
write-only head moving from left to right only, a control unit connected by heads with the input tape,
the output tape and a 'memory' (or storage). The memory S has a potentially infinite number of cells.
Each of them can contain a symbol of a finite alphabet. Cells of S are interconnected by some regular
interconnection network (graph). A configuration of such a machine is determined by its state, the
contents of the memory cells and the positions of the heads. A step is determined by the current state
and by the symbols the heads read. A step results in a change of state, a replacement of symbols in
the cells of the memory which the heads are on at that moment, and the moves of the heads to the
neighbouring cells, along the interconnection structure of S.

230 JU COMPUTERS

k tapes k heaEds

~(b)

(0 q (d)

Figure 4.10 Four types of Turing machines

Four interconnection schemes for memory are illustrated in Figure 4.10: multi-tape Turing
machines with one head on each tape (Figure 4.10a); a one-tape multi-head Turing machine
(Figure 4.10b); a multi-head Turing machine with a two-dimensional tape (Figure 4.10c); and a Turing
machine with a tree-structured memory (Figure 4.10d).

On-line and off-line versions differ only in the way in which the input tape is processed. In off-line
Turing machines the input tape head is a read-only head that can move in both directions.6 In on-line
models, the input tape has a read-write head that can move in both directions. The main advantage
of the off-line models of TM is that both input and output are completely separated from the memory.

Off-line Turing machines are of interest mostly when considering space complexity, as discussed
later. We shall use on-line multi-tape Turing machines (MTM for short) as our basic model of Turing
machines, unless it is specified explicitly that the off-line model is used. For that reason we define
basic concepts for (on-line) MTM only. The extension to off-line MTM is straightforward.

Formally, a k-tape MTM M = (F, Q, qo, 6) is specified by a tape alphabet F, a set of states Q, the
initial state q0 and a transition function

6: Q x k- (QUH) x rk x Dk,

where D = {--, L, -} are the directions in which the heads can move.
The concepts of a configuration, a computation step, yield relations FM,-l,--*, and a

computation are defined as for one-tape TM. For example, a configuration is a (2k + 1)-tuple of
the form (q, w1 , w', w2, w2, ... I Wk, Wk), where q is the current state and the ith tape contains the word
wiw' with the head on the first symbol of w'. The initial configuration with an input word w has

6Sometimes it is assumed that the head on the input tape moves only to the right.

TURING MACHINES 0 231

the form (qo, Ew, F, ... I E). The contents of the output tape at termination is the overall output of an
MTM.

Time and space bounds and complexity classes

It is straightforward to introduce basic concepts concerning time resources for computations on MTM.
If an MTM AM starts with a string w on its input tape and with all other tapes empty and yields in m
steps a terminating configuration, then m is the time of the computation of M on w. Denote TimeM (n)
the maximal number of steps of MA for inputs of length n. M is said to operate within the time
bound f(n) for a functionf : N -- N, or to bef(n)-time bounded if M terminates withinf(I w) steps,
for any input w C E*. If a language L C E* is decided by af(n)-time bounded MTM, then we write
L c Time(f (n)). Thus, Time(f(n)) is the family of those languages that can be decided by af(n)-time
bounded MTM - a time complexity class. Observe also concerning the time requirements that there
is no essential difference between on-line and off-line MTM. Sometimes we need to be more precise
and therefore we use the notation Timek (f(n)) to denote the family of languages accepted by k-tape
MTM within the time boundf (n).

Theorem 4.1.28 For any on-line f(n)-time bounded k-tape MTM M, f(n) > n, there is an off-line
O(f(n))-time bounded (k + 2)-tape MTM M' that accepts the same language.

Proof: M' first copies the input onto the second tape, moves the head on the second tape to the first
symbol of the input word, then simulates AM on k + 1 tapes numbered 2, . . , k + 2. Finally, A' writes
the output on its output tape. [

Before we define space bounds for MTM, let us consider two examples of MTM that recognize
palindromes.

Example 4.1.29 The MTM .M in Figure 4.11 first copies the input wfrom thefirst tape to the second tape,
then moves the head on thefirst tape to the left-most symbol, and,finally, moves both heads in opposite directions
while comparing, symbol by symbol, the corresponding symbols of w and wR until it either encounters a different
pair of symbols or gets safely through. The time bound is clearly O(1wl), and .M uses lIw cells of the second
tape.

Example 4.1.30 We sketch the behaviour of a 3-tape TM MA that requires only O(lgn) space on its noninput
tapes to recognize whether an input string w of length n is a palindrome. The third tape will be used to store
an integer i < ". This requires O(lgn) space. To start with, AM writes n on the third tape and I on the second2 2
tape. For each i on the third tape AM uses the counter on the second tape to find the i-th symbols from the left
and the right in the input word. (To keep the counter requires O(lgn) space.) M compares the two symbols
found, and •f they do not agree, then AM rejects; otherwise AM decreases i by 1, and the process continues until
either .A rejects, or i on the third tape reaches 1.

Exercise 4.1.31 Design an 0(nk2)-time bounded 3-tape Turing machine that lexicographically orders
strings xi e {a, b}k, 1 < i < n, given as an input string x1 #x 2 # . .. #xn.

There are three basic ways of counting space for MTM. The first is to take the maximum overall
configurations of a computation of the sum of the lengths of all strings on all tapes. The second is
again to take the maximum overall configurations, but count for each configuration only the longest

232 U COMPUTERS

qo, 0, U, qo, 0,0, 0, -* {Copying the content of the first
q0,1, u, q,1,1, -,-- tape onto the second tape.}
qo, , Lqi, LLJ, Li, f- {Reaching the right end.}
qi, 0, x, qj, 0, x, -- , J {Moving the first head to the left end.}
qi, 1, x, qj, 1, x, f-, {Moving the first head to the left end.}
qj, u, x, qc, Li, x, x, I{Left end reached, start to move right.}
qc, 0, 0, q,, U, U, -, -- {Comparison of two symbols on two tapes.}
qc, 1, 1,qc, u, U, -I- {Comparison of two symbols on two tapes.}
qc, 0, 1, REJECT, 0,1, 1, 1 f {Corresponding symbols do not agree.}
q,, 1, 0, REJECT, 1,0, 1, 1 {Corresponding symbols do not agree. }
qc, Li, u, ACCEPT, U, U, 1, 1 {Hurrah, palindrome. }

Figure 4.11 A multi-tape Turing machine for palindrome recognition (x stands here for any symbol
from {0,1})

string on a tape. For a k-tape MTM these two ways of counting the space may differ only by a constant
multiplicative factor (at most k). Therefore, we use the second one only. The third way is used only
for off-line MTM. It is actually similar to the second except that the contents of the input and output
tapes are not counted.

With the first two ways of counting, the space used during a computation for an input w is always
at least [w[. The last approach allows us to obtain the sublinear space complexity for a computation.
This is the case of the MTM in Example 4.1.30.

An MTM (or an off-line MTM) M is said to be s(n)-space bounded, where s: N -* N is a function,
if A4 uses at most s([w[) cells for any input w.

Suppose now that a language L C E* is decided by an MTM or an off-line MTM within the space
bound s(n). In such a case we say L c Space(s(n)). Space(s(n)) is therefore a family of languages, a
space complexity class.

Mutual simulations of Turing machines

Examples 4.1.29 and 4.1.30 indicate that by using more tapes we may speed up computations and
sometimes also decrease the space needed. In general, it is of interest and importance to find out
how powerful different machine models are with respect to time and space requirements. In order to
deal with this problem, a general but quite weak concept of simulation of one machine on another is
introduced

Definition 4.1.32 A machine .M simulates a machine M' for inputs from E* f M'(x) = M (x), for all
XEE*.

The following theorem shows that not much can be gained by using Turing machines with more
heads, more tapes or more dimensional tapes.

Theorem 4.1.33 Corresponding to any Turing machine M4 with several tapes or several heads or with a
two-dimensional tape that operates within the time bound t(n) > n and space bound s(n), one can effectively
construct a one-tape TM M' that simulates M and operates within the time bound O(t 2(n)) and the space
bound E(s(n)).

Proof: We carry out the proof only for MTM. In order to simplify the proof, we assume that the input
is written always between two end markers. The other cases are left to the reader (see Exercises 4.1.34
and 4.1.35).

TURING MACHINES N 233

ai-I ai ai+1 ai+2 tape 1

ai-_ ai ai+ ai+, track 1
b• 1 b__ bj+ bj+2 tape 2 bb bj+ b track 2

bj1 b jlb+ - 1 i j+2_

X -I Xr X,+i Xr+2 tape r xr Xr+2 track

(aq k- tape MTM qb'•• 1 -tape TM

(a) (b)

Figure 4.12 Simulation of a multi-tape TM by a one-tape TM

Let M be a k-tape MTM. We describe a one-tape TM M' that simulates M. To each state q of A4 a
state q' of M' will be associated in such a way that if A4 moves, in one step, from a state q, to a state
q2, then, in a number of steps proportional to t(n), M' moves from the state q' to the state q'.

In order to simulate k tapes of M, the only tape of M' is divided into k tracks, and the ith track
is used to store the contents of the ith tape of A4. Each configuration C of A4 (see Figure 4.12a) is
simulated by a configuration C' of A4' (see Figure 4.12b), where all symbols simultaneously read by
the heads of M in C are in one cell of the tape of M'. This is the key point of the whole construction.
Thus, M' can read in one step all the symbols that the k heads of M read. Therefore M' knows, by
reading one cell, how to change the contents of its tape and state in such a way that it corresponds
to the next configuration of M. The main difficulty in doing this lies in the fact that some heads of
M can move in one direction, others in the opposite direction, and some may not move at all. In
order to implement all these changes and still have all heads of M on one cell of M', M' has to move
some tracks to the left and some to the right. This is no problem because M' can store information
about which track to shift and in which direction in its state. A4' then moves to the right end of the
occupied portion of the tape, and in one scan from the right to the left, A4' can make all the necessary
adjustments - to shift some tracks to the left, some to the right. After that, the head of M' moves to
the cell that contains the contents of all the cells the heads of M will be on in the next configuration
of M. A4' also moves to the new state. It is clear that in this way the space requirement of M' may
be at most twice that for A'. Concerning the time requirements, the fact that M makes at most t(n)
moves implies that the two ends of the occupied portion of the tape are never more than n + t(n) cells
apart. In order to simulate one step of M, M' has to make at most O(t(n)) moves: moving first to one
end of the occupied tape, then to the other end, and, finally, to the cell the heads of M are on. The
overall time complexity is therefore O(t2 (n)). The space bound is clearly e(s(n)). [1

Exercise 4.1.34 Show how to simulate, as fast as possible, a TM with a two-dimensional tape by a
one-tape TM.

234 U COMPUTERS

U IFI-u v Irl-v w 111w

10....01... 10 10...0.... 10 10....01... 10

0.. .0 current state of M

a. a, a. P P coding of M

(a) -qj Uk (b)

Figure 4.13 Universal Turing machine

Exercise 4.1.35 Show how to simulate, as fast as possible, a multi-head one-tape TM by a one-head
one-tape TM.

Universal multi-tape Turing machines

We again show the existence of a universal TM, this time for the class of all k-tape MTM for a fixed
k, and the proof will be constructive this time. The main new aim is to show that a universal Turing
machine can simulate any Turing machine efficiently

Theorem 4.1.36 Let an integer k befixed and also an alphabet F D {0, 1}. Then there exists a universal k-tape
MTM Uk with the following properties:

1. If (.M) is a self-delimiting Gbdel encoding of a k-tape MTM AA with the tape alphabet r, then on the
input (.M)w, w E {0,1}*, Uk simulates M on the input w.

2. The maximal number of steps Uk needed to simulate one step of A4 is bounded by Cuk1.M) 1, where
a = 2 tk = 1, a = 1 ijk > 2, and cuk is a constant.

Proof: Let r = {al,.. .. ,am}. Given an input (M)w, Uk first makes a copy of (AM) on the third track of
its first tape (see Figure 4.13). During the simulation this string will always be positioned in such a
way that at the beginning of a simulation of a step of AM the head of Uk reads always the left-most
symbol of (AM). The current state qj of AM will be stored as 0J on the second track of the first tape of
Uk, and again in such a way that Uk reads its left-most symbol whenever starting to simulate a step of
AM. Strings on the tapes of AA are stored in the first tracks of k-tapes of Uk. Each ai is encoded by the
string 1 0oirl-i 0 . Thus, the encoding of any symbol of f takes exactly 117 + 2 bits. Whenever Uk starts
to simulate a step of M4, the heads of Uk read the first symbols of encodings of the corresponding
symbols on the tapes of AM at the beginning of that step of M.

In order to simulate one step of M, Uk reads and writes down, say on a special track of a tape, the
current state of AM and all the symbols the heads of M read in the corresponding configuration of M.
This pattern is then used to search through (M) on the third track of its first tape, for the corresponding
transition. This requires O ((M)) time. Once the transition is found, Uk replaces the old state of M by
the new one, those symbols the heads of AM would replace, and starts to realize all moves of heads of
M. Finally, Uk has to shift (A4) by at most IFj + 2 cells, depending on the move of the head of A4, on
the third track of its first tape. In order to simulate one step of A4, Uk has to make the number of steps
proportional to I (M) 1. In order to shift (M), Uk needs time c (I PI + 2 + I (KM)) < 2cI (M) 1, for a constant

TURING MACHINES U 235

M # x x2 inputtape

(a)

xI Xm+4 Xim+ $

M' a compressed input

(b) # Xm X2m Xn onthe (k+l)-thtape

Figure 4.14 Linear speed-up of Turing machines

c, ifk > 1, and therefore another tape is available for shifting (ýM. The time is c(IFIl +2)1 (M) I : I (M)4 12,
if k= 1. El

Exercise 4.1.37 Show that one can design a single universal Turing machine Mu that can simulate
any other MTM M (no matter how many tapes AM has).

Exercise 4.1.38 Show how to simulate a one-tape k-head Turing machine by a k-tape Turing machine.
Analyse the time complexity of the simulation. (It has been shown that a simulation of a k-head t(n)-time
bounded Turing machine can be performed in time O(t(n)).)

The existence of universal computers that can simulate efficiently any other computer of the
same type is the key result behind the enormous successes of computing based on classical physics.
The existence of such an efficient universality is far from obvious. For example, the existence of a
universal quantum Turing machine was shown already in 1985, but the fact that there is a universal
quantum Turing machine that can simulate any other quantum Turing machine efficiently (that is, in
polynomial time) was shown only in 1993.

4.1.8 Time Speed-up and Space Compression

In Chapter 1 we stated that multiplicative constants in the asymptotic time bounds for the
computational complexity of algorithms are clearly of large practical importance but not of deep
theoretical interest. One reason for this is that the hardware advances have been so rapid that
algorithm designers could compete only by improving the rate of growth of algorithms. Two results
of this section confirm that once MTM are taken as a computer model, then multiplicative constants
are not of importance at all, either for time or space complexity. In other words, improvements in them
can be compensated by so-called 'hardware improvements', such as by enlarging the tape alphabet.

Lemma 4.1.39 IfL c Timek(f (n)), then for any s > O, L E Timek+l(n+E(n+f (n)) +5).

Proof: Let M be an off-line k-tape MTM with time bound f(n) and m be an integer (we show later
how to choose m - the choice will depend on AM and e). We design a (k + 1)-tape MTM AM' that will
simulate M as follows. A,-' starts its simulation by reading the input of M, and, using the technique

236 U COMPUTERS

of storing symbols in the state, compresses each block of m input symbols into a single symbol (into
an m-tuple of input symbols), and writes this symbol on its (k + 1)-th tape (see Figure 4.14). This
compression corresponds to using a tape with m tracks instead of a single-track input tape. (In case
the length of the input is not a multiple of m, some U's are added.) This process takes n steps, where
n is the length of the input. M" then moves its head in [n] steps to the left-most symbol on the
(k + 1)-th tape, and the simulation of .M starts. During the simulation Am" works with such m-tuples
on all its tapes.

M' simulates M in such a way that m steps of M are simulated by four steps of MA'. At the
beginning of each simulation of a sequence of m steps of AM, the machine M"' reads an m-tuple of
symbols on each tape. This includes not only information about symbols in the corresponding cells
of M, but also information on which of these symbols are the heads of M and in which state .M is.
Observe that in the next m moves M can visit only cells of that block and one of the neighbouring
blocks of m symbols. By reading these two blocks on each tape, during two steps, MA," gathers all the
information needed to simulate m steps of M. AM" can then make the resulting changes in these two
blocks in only two additional steps.

Time estimation: Choose m = [i]. The number of steps M,, has to perform is

n + [n] +4 [f•(•)1 n+[En]+ 4 Ff (n) 1

•_ n+En+l+ 4 (f(n) +l)

< n+e(n+f(n))+5.

In the case of an on-line k-tape MTM, k > 2, any tape can be used to write down the compressed
input, and therefore the (k + 1)-th tape is superfluous. Observe that the trick which we have used,
namely, a compression of m-tuples of symbols into one symbol of a bigger alphabet, corresponds
actually to 'increasing the word length of the computer'. Iff (n) = cn, then it follows from Lemma 4.1.39
that c can be compressed to be arbitrarily close to 1. In case f(n) >- n, Lemma 4.1.39 says that the
constant factor in the leading term can be arbitrarily small. To summarize:

Theorem 4.1.40 (Speed-up theorem) For any integer k > 2 and a real - > 0, Timek(f (n)) C Timek(f,(n)),
where f, (n) • Ef(n)for sufficiently large n, iff(n) >- n, andf, (n) < n + ýf(n)for sufficiently large n, otherwise.

Theorem 4.1.40 justifies the use of asymptotic notation to express time complexity of MTM. In
particular, if a language L is decided by some MTM in polynomial time, then L C Time(nk) for some
k. From this it follows that the time complexity class

P =U Time(nk)

k=O

contains all languages that can be decided by MTM in polynomial time.

Exercise 4.1.41 Show the following modification of the speed-up theorem: For every TM M and E > 0,
there is a TM .' over the same alphabet which recognizes the same language and for which Timem, (n) <
eTime,k (n) + n. (Hint: instead of a compression requiring an enlargement of the alphabet, use more tapes.)

RANDOM ACCESS MACHINES U 237

Using the same compression technique as in the proof of Theorem 4.1.40, we can prove an
analogous result for the space compression.

Theorem 4.1.42 (Linear space compression theorem) For any function s(n) > n and any real E > 0 we
have Space(s(n)) = Space(cs(n)).

Theorem 4.1.42 allows us to define

PSPACE = U Space(nk)
k-0

as the class of all languages that can be decided by MTM with a polynomial space bound.

4.2 Random Access Machines
Turing machines are an excellent computer model for studying fundamental problems of computing.
However, the architecture of Turing machines has little in common with that of modem computers and
their programming has little in common with programming of modem computers. The most essential
clumsiness distinguishing a Turing machine from a real sequential computer is that its memory is not
immediately accessible. In order to read a memory far away, all intermediate cells also have to be read.
This difficulty is bridged by the random access machine model (RAM), introduced and analysed in
this section, which has turned out to be a simple but adequate abstraction of sequential computers
of the von Neumann type. Algorithm design methodologies for RAM and sequential computers are
basically the same. Complexity analysis of algorithms and algorithmic problems for RAM reflect and
predict the complexity analysis of programs to solve these problems on typical sequential computers.
At the same time, surprisingly, if time and space requirements for RAM are measured properly, there
are mutually very efficient simulations between RAM and Turing machines.

4.2.1 Basic Model

The memory of a RAM (see Figure 4.15a) consists of a data memory and a program memory. The
data memory is an infinite random access array of registers R0 , R, R2... each of which can store
an arbitrary integer. The register R0 is called the accumulator, and plays a special role. The program
memory is also a random access array of registers Po, P1 P2.... each capable of storing an instruction
from the instruction set shown in Figure 4.15b. A control unit (also called ALU, for 'arithmetical
logical unit') contains two special registers, an address counter AC and an instruction counter IC.
In addition, there are input and output units.

At the beginning of a computation all data memory and control unit registers are set to 0, and
a program is stored in the program memory. A configuration of a RAM is described by a i-tuple
(i, nii ni . , i., ni.), where i is the content of IC, i1,... , im are the addresses of the registers used up
to that moment during the computation, and ni, is the current content of the register Rik.

The operand of an instruction is of one of the following three types:

=i - a constant i;

i - an address, referring to the register Ri,

•i - an indirect address; referring to the registerR,(R,)

where c(Ri) denotes the contents of the register Ri. (In Figure 4.15 R,, means i, if the operand has the
form = i; Rop means Ri, if the operand is of the form i; R0p stands for RC(R.), if the operand has the form *i.)
A computation of a RAM is a sequence of computation steps. Each step leads from one configuration

238 j COMPUTERS

READ operand finput-- Rol, I
program data WRITE operand R , output
memory memory LOAD operand R op R 0 I

PO - R 0 STORE operand R0 - " R op
P1 " Rl ADD operand {R0 + Rop -R 0 }
P2 _R 2 SUB operand {R0 - Rop - R 0
P3 I C R 3 MULT operand R0 ,* R op -R 0 }I

ALU DIV operand {R0 / Ro- R 0
c JUMP label (go to label }-

JZERO label if R0= 0,thengoto label }

JGZERO label if R 0 > 0, then go to label

HALT
ACCEPT
REJECT

(a) (b)
output

Figure 4.15 Random access machine

to another. In each computational step a RAM executes the instruction currently contained in the
program register Pc,(c). In order to perform a nonjump instruction, its operand is stored in AC,
and through AC the data memory is accessed, if necessary. The READ instruction reads the next
input number; the WRITE instruction writes the next output number. The memory management
instructions (LOAD and STORE), arithmetical instructions and conditional jump instructions use the
accumulator R0 as one of the registers. The second register, if needed, is specified by the contents of
AC. After a nonjump instruction has been performed, the content of IC is increased by 1, and the same
happens if the test in a jump instruction fails. Otherwise, the label of a jump instruction explicitly
defines the new contents of IC.

A computation of a function is naturally defined for a RAM. The arguments have to be provided
at the input, and a convention has to be adopted to determine their number. Either their number is
a constant, or the first input integer determines the total number of inputs, or there is some special
number denoting the last input.7 Language recognition requires, in addition, an encoding of symbols
by integers.

Figure 4.16 depicts RAM programs to compute two functions: (a)f(n) = 22" for n > 0; (b) F, - the
nth Fibonacci number. In both cases n is given as the only input. Fixed symbolic addresses, like N, i,
Fi-1, Fi, aux and temp, are used in Figure 4.16 to make programs more readable. Comments in curly
brackets serve the same purpose.

The instruction set of a RAM, presented in Figure 4.15, is typical but not the only one possible. Any
'usual' microcomputer operation could be added. However, in order to get relevant complexity results
in the analysis of RAM programs, sometimes only a subset of the instructions listed in Figure 4.15 is
allowed - namely, those without multiplication and division. (It will soon become clear why.) Such
a model is usually called a RAM'. To this new model the instruction SHIFT, with the semantics
R0 - [Ro / 2j, is sometimes added.

Figure 4.17 shows how a RAM+ with the SHIFT operation can be used to multiply two positive
integers x and y to get z = x . y using the ordinary school method. In comments in Figure 4.17 k

7For example, the number 3 can denote the end of a binary vector.

RANDOM ACCESS MACHINES U 239

READ N {N-n} READ N {N.-n}

LOAD = 2 LOAD =1
while: STORE temp {temp - 22-N STORE i {i - 1}

LOAD N STORE Fi_1
JGZERO body {while N > 0 do) STORE Fi
WRITE temp while: SUB N
HALT JZERO print {while i < N do)

body: SUB 1 LOAD F1
STORE N {N--N-1} STORE aux
LOAD temp ADD Fi- 1
MULT 0 {R 0 o- tem p2 } STORE Fi {Fnw - Fi + Fi-1
JUMP while LOAD aux

STORE Fi_1 IF" - Fi I

LOAD i
ADD =1
STORE i
JUMP while

print: WRITE Fi
HALT

(a) (b)

Figure 4.16 RAM programs to compute (a)f(n) = 22"; (b) F,, the nth Fibonacci number.

1: READ 0 {Ro - x} 11: ADD xl
2: STORE xl {x1 - x} 12: STORE z {z x. (y rnod 2k)}
3: READ 0 {R - y} 13: LOAD xl
4: STORE yl {yl - [y / 2k1 } 14: ADD xl
5: SHIFT 15: STORE xl
6: STORE y2 {Y2- [y / 2 k+ l k} 16: LOAD y2
7: ADD y2 {R0 - 2Ly / 2k+ lJ } 17: JZERO 19 {if Ly / 2k = 0J}

8: SUB yl {Ro -- 2[yy/2k+lJ - [yy/2kJ} 18: JUMP 4
9: JZERO 13 {if the k-th bit of y is 0 19: WRITE z

10: LOAD z { zero at the start) 20: HALT

Figure 4.17 Integer multiplication on RAM+

stands for the number of cycles performed to that point. At the beginning k = 0. The basic idea of
the algorithm is simple: if the kth right-most bit of y is 1, then x2k is added to the resulting sum. The
SHIFT operation is used to determine, using the instructions numbered 4 to 9, the kth bit.

If we use complexity measures like those for Turing machines, that is, one instruction as one
time step and one used register as one space unit, the uniform complexity measures, then the
complexity analysis of the program in Figure 4.16, which computesf(n) = 22n, yields the estimations
T, (n) = 0(n) = 0(2 'gn) for time and S,(n) = 0(1) for space. Both estimations are clearly unrealistic,
because just to store these numbers one needs time proportional to their length 0(2n). One way
out is to consider only the RAM+ model (with or without the shift instruction). In a RAM' an
instruction can increase the length of the binary representations of the numbers involved at most by
one (multiplication can double it), and therefore the uniform time complexity measure is realistic.
The second more general way out is to consider the logarithmic complexity measures. The time to
perform an instruction is considered to be equal to the sum of the lengths of the binary representations
of all the numbers involved in the instruction (that is, all operands as well as all addresses). The space
needed for a register is then the maximum length of the binary representations of the numbers stored

240 U COMPUTERS

M R data
Ci-i Ci Ci+1 memory

R0

q Co
SR2

q~C 0Co

C
C3

C 4

Figure 4.18 Simulation of a TM on a RAMW

in that register during the program execution plus the length of the address of the register. The
logarithmic space complexity of a computation is then the sum of the logarithmic space complexities
of all the registers involved. With respect to these logarithmic complexity measures, the program
in Figure 4.16a, for f(n) = 22", has the time complexity T,(n) = E(2') and the space complexity
S(n) = E(2"), which corresponds to our intuition. Similarly, for the complexity of the program
in Figure 4.17, to multiply two n-bit integers we get T,(n) = 1(n), S,(n) = 1(1), T,(n) = 0(n2),
S(n) = E(n), where the subscript u refers to the uniform and the subscript I to the logarithmic
measures. In the last example, uniform and logarithmic measures differ by only a polynomial factor
with respect to the length of the input. In the first example the differences are exponential.

4.2.2 Mutual Simulations of Random Access and Turing Machines

In spite of the fact that random access machines and Turing machines seem to be very different
computer models, they can simulate each other efficiently.

Theorem 4.2.1 A one-tape Turing machine AM of time complexity t(n) and space complexity s(n) can be
simulated by a RAM+ of uniform time complexity O(t(n)) and space complexity O(s(n)), and with the
logarithmic time complexity O(t(n) lg t(n)) and space complexity 0(9s(n)).

Proof: As mentioned in Section 4.1.3, we can assume without loss of generality that AM has a one-way
infinite tape. Data memory of a RAM' 71 simulating MA is depicted in Figure 4.18. It uses the register
R1 to store the current state of M4 and the register R2 to store the current position of the head of M/.
Moreover, the contents of the jth cell of the tape of .M will be stored in the register Rj1 2, if j > 0.

71 will have a special subprogram for each instruction of M. This subprogram will simulate the
instruction using the registers R0 - R2. During the simulation the instruction LOAD *2, with indirect
addressing, is used to read the same symbol as the head of M. After the simulation of an instruction
of M is finished, the main program is entered, which uses registers R1 and R2 to determine which
instruction of M4 is to be simulated as the next one. The number of operations which 7? needs to
simulate one instruction of A4 is clearly constant, and the number of registers used is larger than the
number of cells used by M by only a factor of 2. This gives the uniform complexity time and space
estimations. The size of the numbers stored in registers (except in R2) is bounded by a constant, because
the alphabet of M is finite. This yields the O(s(n)) bound for the logarithmic space complexity. The
logarithmic factor for the logarithmic time complexity lg t(n), comes from the fact that the number
representing the head position in the register R2 may be as large as t(n). 0

RANDOM ACCESS MACHINES 1 241

input
tape # # # # # #... #.

R n AC IC aux.

tape tape tape tape

Figure 4.19 Simulation of a RAM on a TM

It is easy to see that the same result holds for a simulation of MTM on RAM+, except that slightly
more complicated mapping of k tapes into a sequence of memory registers of a RAM has to be used.

Exercise 4.2.2 Show that the same complexity estimations as in Theorem 4.2.1 can be obtained for the
simulation of k-tape MTM on RAMP.

The fact that RAM can be efficiently simulated by Turing machines is more surprising.

Theorem 4.2.3 A RAM+ of uniform time complexity t(n) and logarithmic space complexity s(n) < t(n) can
be simulated by an MTM in time 9(t4 (n)) and space O(s(n)). A RAM of logarithmic time complexity t(n)
and logarithmic space complexity s(n) can be simulated by an MTM in time 9(t3 (n)) and space 9(s(n)).

Proof: If a RAM+ has uniform time complexity t(n) and logarithmic space complexity s(n) _< t(n),
then its logarithmic time complexity is O(t(n)s(n)) or ((t 2 (n)), because each RAM+ instruction can
increase the length of integers stored in the memory at most by one, and the time needed by a Turing
machine to perform a RAM+ instruction is proportional to the length of the operands.

We show now how a RAM+ 7Z with logarithmic time complexity t(n) and logarithmic space
complexity s(n) can be simulated by a 7-tape MTM M in time O(t2 (n)). From this the first statement
of the theorem follows.

M will have a general program to pre-process and post-process all RAM instructions and a special
group of instructions for each RAM instruction. The first read-only input tape contains the inputs of
1Z, separated from one another by the marker #. Each time a RAM instruction is to be simulated, the
second tape contains the addresses and contents of all registers of 7? used by 7? up to that moment in
the form

###i 1 #cl##i 2 #c 2 ##i 3 #... ##ik-l I #Ck-l##ik#Ck###,

where # is a marker; it, i2, . . . , ik are addresses of registers used until then, stored in binary form;
and cj is the current contents of the register Ri, again in binary form. The accumulator tape contains

242 5 COMPUTERS

the current contents of the register R0. The AC tape contains the current contents of AC, and the IC
tape the current value of IC. The output tape is used to write the output of 7Z, and the last tape is an
auxiliary working tape (see Figure 4.19).

The simulation of a RAM instructionbegins with the updating of AC and IC. A special subprogram
of AM is used to search the second tape for the register RZ has to work with. If the operand of the
instruction has the form '= j', then the register is the accumulator. If the operand has the form 'j', then
j is the current contents of AC, and one scan through the second tape, together with comparison of
integers ik with the number j written on the AC tape, is enough either to locate j and cj on the second
tape or to find out that the register Rj has not been used yet. In the second case, the string ##j#O is
added at the end of the second tape just before the string ###. In the case of indirect addressing,
'*j', two scans through the second tape are needed. In the first, the register address j is found, and the
contents of the corresponding register, cp, are written on the auxiliary tape. In the second the register
address ci is found in order to get c . (In the case j or cj is not found as a register address, we insert
on the second tape a new register with 0 as its contents.)

In the case of instructions that use only the contents of the register stored on the second tape, that
is, WRITE and LOAD or an arithmetic instruction, these are copied on either the output tape or the
accumulator tape or the auxiliary tape.

Simulation of a RAM instruction for changing the contents of a register Ri found on the second
tape is a little bit more complicated. In this case A4 first copies the contents of the second tape after the
string ##i#ci# on the auxiliary tape, then replaces ci# with the contents of the AC tape, appends
#, and copies the contents of the auxiliary tape back on to the second memory tape. In the case of
arithmetical instructions, the accumulator tape (with the content of R0) and the auxiliary tape, with
the second operand, are used to perform the operation. The result is then used to replace the old
contents of the accumulator tape.

The key factor for the complexity analysis is that the contents of the tapes can never be larger
than ((s(n)). This immediately implies the space complexity bound. In addition, it implies that the
scanning of the second tape can be done in time O(t(n)). Simulations of an addition and a subtraction
also require only time proportional to the length of the arguments. This provides a time bound
O(t 2(n)). In the case of multiplication, an algorithm similar to that described in Figure 4.17 can be
used to implement a multiplication in O(t 2(n)) time. (Actually the SHIFT instruction has been used
only to locate the next bit of one of the arguments in the constant time.) This is easily implementable
on a TM. A similar time bound holds for division. This yields in total a O(t 3(n)) time estimation for
the simulation of a RAM with logarithmic time complexity t(n).

Exercise 4.2.4 Could we perform the simulation shown in the proof of Theorem 4.2.3 without a special
tape for IC?

4.2.3 Sequential Computation Thesis

Church's thesis concerns basic idealized limitations of computing. In this chapter we present
two quantitative variations of Church's thesis: the sequential computation thesis (also called the
invariance thesis) and the parallel computation thesis. Both deal with the robustness of certain
quantitative aspects of computing: namely, with mutual simulations of computer models.

Turing machines and RAM are examples of computer models, or computer architectures (in a
modest sense). For a deeper understanding of the merits, potentials and applicability of various

RANDOM ACCESS MACHINES S 243

Instruction Encoding Instruction Encoding Instruction Encoding
LOAD i 1 SUB =i 7 WRITE i 13

LOAD =i 2 MULT i 8 WRITE=i 14
STORE i 3 MULT = i 9 JUMP i 15
ADD i 4 DIV i 10 JGZERO i 16

ADD =i 5 DIV =i 11 ZERO i 17
SUB i 6 READ i 12 HALT 18

Table 4.1 Encoding of RASP instructions

computer models, the following concept of time (and space) simulation is the key.

Definition 4.2.5 We say that a computer model CA' simulates a computer model C.M with time (space)
overhead f (n), notation

CM' < C.M (timef(n)) or CM' < CAM (spacer (n))

iffor every machine Ai c CM there exists a machine .M,(i) E CA' such that M,(i) simulates AMi; that is,
for an encoding c(x) of an input x of Mi, M,5 i((c(x)) = AMi(x), and, moreover, i t(JxI) is the time (space)
needed by AMi to process x, then the time (space) needed by M,(i) on the input c(x) is bounded byf (t(lxl)). If,
in addition, the function s(i) is computable in polynomial time, then the simulation is called effective. (Another
way to consider a simulation is to admit also an encoding of outputs.)

As a corollary of Theorems 4.2.1 and 4.2.3 we get

Theorem 4.2.6 One-tape Turing machines and RAM+ with uniform time complexity and logarithmic space
complexity (or RAM with logarithmic time and space complexity) can simulate each other with a polynomial
overhead in time and a linear overhead in space.

We have introduced the RAM as a model of the von Neumann type of (sequential) computers.
However, is it really one? Perhaps the most important contribution of von Neumann was the idea
that programs and data be stored in the same memory and that programs can modify themselves
(which RAM programs cannot do).

A computer model closer to the original von Neumann idea is called a RASP (random access
stored program). A RASP is like a RAM except that RASP programs can modify themselves. The
instruction set for RASP (RASP-) is the same as for RAM (RAM'), except that indirect addressing is
not allowed. A RASP program is stored in data registers, one instruction per two registers. The first
of these two registers contains the operation, encoded numerically, for example, as in Table 4.1. The
second register contains either the operand or the label in the case of a jump instruction.

Exercise 4.2.7 * Show that RAM and RASP and also RAM+ and RASP+ can simulate each other
with linear time and space overheads, no matter whether uniform or logarithmic complexity measures
are used.

Since RAM and RASP can simulate each other with linear time and space overhead, for asymptotic
complexity investigations it is of no importance which of these two models is used. However, since
RAM programs cannot modify themselves they are usually more transparent, which is why RAM

244 U COMPUTERS

are nowadays used almost exclusively for the study of basic problems of the design and analysis of
algorithms for sequential computers. The results concerning mutual simulations of Turing machines,
RAM and RASP machines are the basis of the following thesis on which the modem ideas of feasible
computing, complexity theory and program design theory are based.

Sequential computation thesis. There exists a standard class of computer models, which includes
among others all variants of Turing machines, many variants of RAM and RASP with logarithmic time
and space measures, and also RAM+ and RASP+ with uniform time measure and logarithmic space
measure, provided only the standard arithmetical instructions of additive type are used. Machine
models in this class can simulate each other with polynomial overhead in time and linear overhead
in space.

Computer models satisfying the sequential computation thesis are said to form the first machine
class. In other words, a computer model belongs to the first machine class if and only if this model
and one-tape Turing machines can simulate each other within polynomial overhead in time and
simultaneously with linear overhead in space. The sequential computation thesis therefore becomes
a guiding rule for the determination of inherently sequential computer models that are equivalent to
other such models in a reasonable sense.

The first machine class is very robust. In spite of this, it may be far from easy to see whether
a computer model is in this class. For example, a RAM with uniform time and space complexity
measures is not in the first machine class. Such RAM cannot be simulated by MTM with a polynomial
overhead in time. Even more powerful is the RAM augmented with the operation of integer division,
as we shall see later. The following exercise demonstrates the huge power of such machines.

Exercise 4.2.8* Show that RAM with integer division can compute n! in O(lg 2 n) steps (or even in
O(lgn) steps). (Hint: use the recurrence n! = n(n - 1)! ifn is odd and n!= (n 2) ((n / 2)!)2 ýfn is even

and the identity (21 + 1)2k = E-k 0 (2
1)21j, for sufficiently large 1.)

Example 4.2.9 Another simple computer model that is a modification of RAM- but is not in thefirst machine
class is the register machine. Only nonnegative integers can be stored in the registers of a register machine.
A program for a register machine is a finite sequence of labelled instructions of one of the following types:

1: PUSH a {c(a) -- c(0) + 14;
1: POP C {c(a) ý- max{O,c(ce) - 1};
1: TEST a : 11 if c(a) = 0 then go to 11;
1: HALT,

where c(a) denotes the current content of the register a and each time a nonjumping instruction is performed
or the test in a jump instruction fails, the following instruction is performed as the next one (i there is any).

Exercise 4.2.10 Show that each one-tape Turing machine can be simulated with only linear time
overhead by a Turing machine that has two pushdown tapes. On a pushdown tape the machine can
read and remove only the left-most symbol and can write only at the left-most end of the tape (pushing
all other symbols into the tape).'

RANDOM ACCESS MACHINES 0 245

Exercise 4.2.11 Show that each pushdown tape can be simulated by a register machine with two
registers. (Hint: if F = {Z 1,. .. ,Zk-1 } is the pushdown tape alphabet, then each word Zil Zi2 ... Ziý
on the pushdown tape can be represented in one register of the register machine by the integer
il + ki2 + k2

i 3 + . .. -km lir. In order to simulate a pushdown tape operation, the contents of one
register are transferred, symbol by symbol or 1 by 1, to another register and during that process the
needed arithmetical operation is performed.)

Exercise 4.2.12 Show that each one-tape TM can be simulated by a register machine with two registers.
(Hint: according to the previous exercise, it is enough to show how to simulate a four-register machine
by a two-register machine. The basic idea is to represent contents i~j, k, 1 offour registers by one number

2 i155 k71.)

Register machines are not powerful enough to simulate TM in polynomial time, but they can
simulate any TM (see the exercises above).

4.2.4 Straight-line Programs

Of particular interest and importance are special RAM programs, the so-called straight-line programs.
Formally, they can be defined as finite sequences of simple assignment statements

X1 -- Y1I01Z1,

X2 -- Y2 02 Z2,

Xn - Yn®nZn,

where each Xt is a variable; Yi and Zi are either constants, input variables or some Xj with a j < i; and
o is one of the operations +, -, x, /. (A variable that occurs on the right-hand side of a statement and
does not occur on the left-hand side of a previous statement is called an input variable.) Figure 4.20a
shows a straight-line program with four input variables.

A straight-line program can be seen as a RAM program without jump instructions, and can be
depicted as a circuit, the leaves of which are labelled by the input variables, and internal nodes by the
arithmetical operations - an arithmetical circuit (see Figure 4.20b). The number of instructions of a
straight-line program or, equivalently, the number of internal nodes of the corresponding arithmetical
circuit is its size.

Straight-line programs look very simple, but they constitute the proper framework for formulating
some of the most basic and most difficult computational problems. For example, given two matrices
A = {aij}, B = {bij} of fixed degree n, what is the minimum number of arithmetical operations needed
to compute (a) the product C = A . B; (b) the determinant, det(A), of A; (c) the permanent, perm(A),
of A, where

det(A) = .(-I)'(.)aU(1)". af,(n), perm(A) = a,,((i) ... a()

,cperm, Eperm,
8A pushdown tape is a one-way infinite tape, but its head stays on the left-most symbol of the tape. The machine

can read only the left-most symbol or replace it by a string. If this string has more than one symbol, all symbols
on the tape are pushed to the right to make space for a new string. If the string is empty, then all tape symbols are
pushed one cell to the left.

246 M COMPUTERS

r
x *- a+b
y *- c+d

U - axc

v - b x d
r U -- V

r i- i-v

(a) (b)

Figure 4.20 Complex number multiplication

where perm, is the set of all permutations of the set {1,... n} and i(a) is the number of inversions
ino.

Exercise 4.2.13 Show that the problem of computing the permanent of a 0 - 1-matrix is equivalent to
the problem of counting the number of perfect matchings of a bipartite graph.

Let us now discuss in more detail the matrix multiplication problem. In the case n = 2k, k E N, in
order to multiply two matrices A and B of degree n, we can use the following divide-and-conquer
method: decompose matrices A and B into four matrices of degree n / 2, as shown in Figure 4.21a, then
multiply recursively A and B, as matrices of degree 2 the elements of which are matrices of degree n / 2.
The classical'school algorithm' for multiplying two matrices {aij } and { bij } of degree 2, using formulas
cij = ail bij + ai2b2j, 1 < i,j < 2, requires eight multiplications and four additions (see Figure 4.21b). There
exists, surprisingly, another algorithm for multiplying two matrices of degree 2, due to Strassen (see
Figure 4.21c), that uses only seven multiplications (and eighteen additions/subtractions).9

At first sight it seems that nothing has been gained, in fact, just the opposite, because the new
algorithm requires the performance of more operations than the old one. However, if this new
algorithm for multiplying matrices of degree 2 is used recursively with the above divide-and-conquer
method, then the following recurrence holds for the number of arithmetic operations of the resulting
algorithm:

T(n) = 7T() + OE(n2),

because E (n2) operations are needed to add/subtract two matrices of degree n / 2. By Theorem 1.6.3,
T(n) = 0(n'927) = 0(n 2 81), which is asymptotically fewer than the 1(n 3) steps required by the
'classical algorithm' (see Example 1.1.11).

91t has been shown that there is no algorithm for multiplying matrices of degree 2 with six multiplications only,
and that any straight-line program that can multiply matrices of degree 2 with seven multiplications only has to

RANDOM ACCESS MACHINES U 247

A all a12 B= bll b12
a 21 a22 - b21 b22

(a)

Z -- allxb, a - a22 i b12 - bil
Z2 -- a12 x b2l j -- b21 + b22 w +--a22 X i

c1 4 - z1 +z 2 x I i xj i *- a21 + a22

z *- all x b12 i a- l + a 22 t - i x bl
Z2 a 12 x b 2 2 j -- l + b22 i -- X+y

C12 4 - Z2 -- ixj j W--U
Zl • a21 x bil i +-- all - a12 Cli - i+j

Z2 a22 x b21 j - bll + b12 C -- U+v

C2 1 Z l+ Z2 z <-- ixj C21 -- w+t

z - a21 x b 1 2 i - all +a 12 i 4- y-z
Z - a22 xb22 u - ixb72 j -- v-t
C22 1- z2 i - b12 -b 22 c22 - i+j

V all x i
(b) (c)

Figure 4.21 Matrix multiplication

Strassen's algorithm for multiplying matrices of degree 2 (Figure 4.21b) and the resulting
asymptotically faster algorithm for multiplying two matrices were very surprising results at the time
of their discovery. They demonstrated that century-long, never challenged beliefs concerning the best
possible algorithms for basic algorithmic problems can be wrong. In addition, these results initiated
a rapid development of modem algorithm design and analysis theory, with enormous impact on the
efficiency of computation that matches the hardware successes.10

Exercise 4.2.14 A natural way to multiply two matrices of degree n = mk is to use the
divide-and-conquer method in the way that the given matrices are decomposed into m2 submatrices
of degree n / m and then use this method recursively. If wefind a way to multiply m x m matrices with
fewer than m3 operations, this will lead to an algorithm that is asymptotically faster than the classical one.
The best current algorithm for multiplying matrices of degree 3 uses 23 multiplications. Is this sufficient
to beat Strassen's algorithm? If not, how much do we need to improve the algorithm for multiplication
of 3 x 3 matrices in order to beat Strassen's algorithm? (In 1978 Pan showed how to multiply 48 x 48
matrices using only 47,216 multiplications and that led to the general matrix algorithm with 0(n 2

.78
0 14

)

arithmetical operations.)

Matrix multiplication is one of the key computational problems in scientific and
engineering applications. In addition, several other practically important algorithmic problems are

10These results also initiated an exciting competition to find the best possible algorithm (that is, with as small
a number of operations as possible) to multiply two matrices. Consequent improvements: 0(n 2

.78), Pan in 1978;
((n 2 79), Bini in 1979; 0(n 25), Sch6nhage in 1980; 0(n

2
.
5
2), Pan (1980); 0(n 2 49), Winograd (1981); 0(n

2 3 76),
Coppersmith and Winograd (1987). (Since the best known lower bound is currently 2n2, there is still plenty of
room for improvement.)

248 U COMPUTERS

computationally equivalent to matrix multiplication. For many other algorithmic problems P an
asymptotically faster algorithm for matrix multiplication immediately yields an asymptotically faster
algorithm for P. For example, matrix inversion is equivalent, with respect to the computational
complexity measured by the size of the straight-line programs, to matrix multiplication. Moreover,
each asymptotic upper bound for the number of operations for matrix multiplication is at the same
time the asymptotic upper bound for the number of operations needed to compute determinants.
The determinant of a matrix of degree n can therefore be computed within 0(n2 ' 3 76) arithmetical
operations and also in time 0(n 23 76). To compute the permanent of a matrix, which looks like a
problem very similar to that of computing the determinant, seems to be essentially more difficult.
No polynomial time algorithm is known for computing permanents (even if the computation of a
permanent can be done on a RAM with the operation of integer division in 0(n 2) steps). A special
way to compute permanents will be discussed in Chapter 9.

Observe that Strassen's algorithm works properly for any ring of matrix elements but cannot be
used directly to multiply Boolean matrices, since a Boolean quasi-ring is not a ring. However, with a
simple trick, Boolean matrix multiplication can be reduced to matrix multiplication over a ring.

Exercise 4.2.15 Show that i m(n) denotes the number of arithmetical operations needed to multiply
two matrices of degree n, then two Boolean matrices of degree n can be multiplied using 0(m(n))
arithmetical operations. (Hint: interpret 0-1 elements of Boolean matrices as integers, multiply these
integer matrices,....)

Exercise 4.2.16 Show that using Boolean matrix multiplication one can decide efficiently whether a
given undirected graph has a triangle.

Another simple example, showing how misleading our common sense can sometimes be concerning
computational complexity of algorithmic problems, deals with the complex number multiplication

(a + bi) x (c + di) = (ac - bd) + (ad + bc)i.

How many multiplications of reals are needed to multiply two complex numbers? Four, as the
common sense tells us? No. Figure 4.20a shows that it can be done with three multiplications only.
(In the case that a, b, c, d are matrices, and we actually have multiplication of two complex matrices,
this new algorithm represents a significant improvement.)

Exercise 4.2.17 Some 'innocent' arithmetical operations have surprising power. Show, in order to
demonstrate it, that multiplication of two matrices of degree n with nonnegative integers can be performed
by a straight-line program with 0(n 2) operations integer division is allowed. (Hint: in order to multiply
two matrices A = {aij}, B {bij} to get C = A. B, C = {cii}, compute

z=(= aj) (EE bij) + 1
i=1 j1 i-1 j=l ,

and A = laijz),Bj- .= 1bz- +lfor irj = 1,2, ... ,n, and use the operations of integer

division and of modulo (which can be reduced to integer division) to compute all cij in 0(n 2
) operations.)

RANDOM ACCESS MACHINES U 249

4.2.5 RRAM - Random Access Machines over Reals

RRAM are defined similarly to RAM, the only difference being that any real number can be an input,
a constant in a register, or an operand of an instruction. Moreover, any RRAM operation is supposed
to take one time unit, no matter how large the operands are or whether they are rational or irrational,
and the arithmetical operations are always performed exactly

The motivation behind the RRAM model is the desire for a computer model that will allow us
to deal well with problems of numerical mathematics, scientific computing and calculus, and bring
computational complexity paradigms into these areas of continuous mathematics.

At first sight it may seem that RRAM are not very different from RAM but this is misleading.
We present some examples illustrating the enormous power of RRAM, as well as machines with
slightly adjusted instruction sets. As we shall see, RRAM seem to go beyond even Turing machines
and violate Church's thesis because they can also 'compute' functions not computable by Turing
machines. But this only means that RRAM, in spite of being quite natural, are not in their full generality
appropriate models for studying fundamental questions of computability, even though they seem to
be quite appropriate for studying many important questions related to the efficiency and complexity
of algorithmic problems of calculus and numerical mathematics.

In the following examples RRAM programs are written in an informal high-level language, in a
way that makes their translation into proper RRAM programs straightforward.

Example 4.2.18 (Complement of the Cantor set) The following RRAM program accepts those x c [0, 1)
that are not in the Cantor set (see Example 2.1.16).

if x < 0 or x > I then REJECT fi;
cycle: x - 3x;

if 0 < x < 1 then JUMP cycle fi;
if 2 < x < 3 then x -- x - 2; JUMP cycle fi;
ACCEPT

Example 4.2.19 (Computation of [xl) The following RRAM program computes rx1 for x > 0.

if 0 < x < 1 then WRITE 1;
k - 1;
while x > k do k - k x 2 {a search for an upper bound};
I- k;r- -k;
while r >±+1 do if 1< x < L±-1 then r •- -r else I + od { binary search};
if I -x then WRITE 1 else WRITE r

Clearly, each cycle is performed O(lgx) times, and therefore O(lgx) is the total number of steps
necessary to compute [x]. Interestingly enough, it is an open problem whether one can compute [x]
on an RRAM in 0(1) steps. This may seem to be of minor interest, but actually the opposite is true.
Indeed, if it were possible to compute Fxl in 0(1) time, then we could extend the RRAM instruction
repertoire by the instruction R0 -- [R0], which does not seem to be a big deal. However, we could
then factor integers and test the satisfiability of Boolean expressions in a polynomial number of steps
on RRAM.

Our last example shows how large the computing power of RRAM is.

Example 4.2.20 (Decidability of arbitrary sets of natural numbers) Let S c N be any set of integers.
Let us define

SS = O.51S2S3, . - .

250 O COMPUTERS

to be a real number where each sic {0,1} and si = 1, if and only ifi E S. The following RRAM program with
the built-in constant Ss and the ceiling operation can decide, given an n c N', whether n G S:

if [2nSsj - 2 [2n-lssJ # 0 then ACCEPT else REJECT

More realistic RRAM models are obtained if it is required that all inputs and constants be rational
numbers. An additional useful step seems to be to restrict arithmetical operations to addition and
subtraction and/or to consider a logarithmic complexity measure for rational numbers r - to be the
minimum of [lgp] + Flgq] where r = ' and p,q are integers.

Remark 4.2.21 Since a RAM is a single machine (a RAM program is its input), the problem of
universality for RAM cannot be stated in the same way it was as for Turing machines. However,
the property of self-simulation discussed in Exercise 21 comes close to it.

4.3 Boolean Circuit Families
At the lowest level of computation, a typical computer processes bits. All numbers and characters are
represented by bits, and all basic operations are bit operations. Real bit computers are well modelled
by Boolean circuits.

Uniformly designed families of Boolean circuits constitute another very basic computer model,
very different from Turing machines and RAM. Since the structure and work of Boolean circuits are
both transparent and tractable, they play an important role in theoretical studies.

Both TM and RAM are examples of uniform and infinite computer models in the sense that each
particular computer can process inputs of an arbitrary size. For example, a single TM (or a RAM)
program can be used to multiply matrices of an arbitrary degree. On the other hand, a single Boolean
circuit computes only a single Boolean function. It can process binary strings only of a fixed size,
interpreted as an assignment of Boolean values to variables. In order to make a (universal) computer
model of the same power as Turing machines out of Boolean circuits, uniformly designed families
of Boolean circuits have to be considered. For each integer n there must be a circuit in such a family
with n inputs, and all circuits of the family must be designed in a uniform way, as described later.

4.3.1 Boolean Circuits

A Boolean circuit over a Boolean base B is a finite labelled directed acyclic graph (see Figure 4.22)
whose nodes of in-degree 0, the input nodes or leaves, are labelled by different Boolean variables,
and all other nodes, the gates, are labelled by Boolean functions (operators) from 3, always of the
same -arity as is the in-degree of the node. The nodes of out-degree 0 are called output nodes. We shall
consider mostly the base B = {NOT, OR, AND} (B3 = {f-, V, A}) unless explicitly stated otherwise.

Each Boolean circuit C with n input nodes (labelled by variables xj,... x.) and m output nodes
(labelled by variables y1, Y2, - •., y.), represents a Boolean functionfc : B - Bin. The value of fc for a
truth assignment T : {xi, . .. , x, } -4 {0, 1} is the vector of values produced by the output nodes (gates)
of C. In this computation process each input node produces the value of its variable for the given truth
assignment T, and each gate produces the value of the Boolean function (operator) assigned to that
node, for arguments obtained along the input edges from its predecessors. One such computation is
shown in Figure 4.22.

To each Boolean expression corresponds in a natural way a Boolean circuit. Each variable
corresponds to an input node, and each occurrence of an operator to a gate. See Figure 4.23b for
the circuit corresponding to the Boolean expression

((xl Vx 2) AX3 V -xl) A X2 V ((X1 VX 2) AX3 V -XI) AX 3. (4.2)

BOOLEAN CIRCUIT FAMILIES 3 251

0 1 / \

Figure 4.22 A Boolean circuit

(a) (b)

Figure 4.23 Boolean circuits

Boolean circuits often represent a more economical way of describing Boolean functions than Boolean
expressions. This is due to the fact that several identical subexpressions of a Boolean expression can
be represented by a single subcircuit. See the two Boolean circuits in Figure 4.23 which compute the
same Boolean function: namely, the one represented by the Boolean expression (4.2).

Exercise 4.3.1 Design a Boolean circuit over the base {V, A, -1} to compute the Booleanfunctionf e B,2

such thatf(O,x1,x 2) = (X1 ,X 2) and f(1,xi,x 2) = (x2, x1).

Exercise 4.3.2* Define in a natural way the concept of a Boolean circuit that is universal for the set of
all circuits with the same number of inputs.

252 U COMPUTERS

AND OR NOT NAND NOR

Figure 4.24 Basic gates

z C"

Figure 4.25 One bit adder

Exercise 4.3.3* Design a Boolean circuit over the base {V, A, -} that is universalfor the base {V, A, -}.

Boolean circuits are a natural abstraction from the sequential combinational circuits used to design
electronic digital devices. Gates in such circuits are electronic elements each of which can have on
its inputs and on the output values 0 and 1, usually represented by two different voltage levels. For
the most common gates the standard notation is used (see Figure 4.24). AND and OR may have
more inputs (they are easily replaced by subcircuits consisting of only the gates with two inputs). To
make graphical representations for sequential circuits, another convention is usually used concerning
interconnections - wires. These are not connected unless a dot is placed at a point of intersection.
Figure 4.25 shows a sequential circuit for a one-bit adder. It has two bit inputs x and y, a carry input
c, and two outputs z and co, where

z = x9cVxyýyVxyeVxyc, co = xycVXYCVxycVXyc;

that is, z is the resulting sum bit, and co is the new carry bit.

BOOLEAN CIRCUIT FAMILIES U 253

x w
y0

t S

(a) shift register (b) binary adder

Figure 4.26 A shift register and a binary adder

Exercise 4.3.4 Let a fixture have three switches such that flipping any of the switches turns the light
on (off) when it is off (on). Design a sequential circuit that accomplishes this.

Exercise 4.3.5 Construct a sequential circuit that computes the product of two 3-bit integers.

Clocked circuits versus finite state machines

The most obvious element of computation missing from Boolean circuits is repetition: timing of the
work of computing elements and storage of the results between consecutive computation steps. These
two functions are performed in computer circuitry using shift registers (also called flip-flop registers)
controlled by a central clock (usually missing from diagrams). A shift register (Figure 4.26a) has two
inputs (one, usually invisible, is from the clock), and at each clock pulse the bit value t on its ingoing
edge becomes the new value of the register, and its old value s 'jumps' on the outgoing edge and
becomes the value of the register.

A clocked circuit is a directed graph the vertices of which are either input nodes, Boolean gates,
shift registers or output nodes, with no cycle going through Boolean gates only. Computation on a
clock circuit is as follows. At the beginning initial values are written into the shift registers and on
input edges, and all computations through Boolean gates propagate within one clock cycle. Then a
clock pulse is sent to all shift registers, and new input values are submitted to inputs. This new input
assignment is then processed, and the process continues. The response of the clock circuit to inputs
depends only on those inputs and the current contents of its shift registers. If a clock circuit has n
inputs, k shift registers and m outputs, and if we denote the inputs at clock cycle t by x' = (x ,.... x),
the states of the shift register by qt = (q, ,q') and the output by y t = (y y'), then to each
clock circuit two functions are associated:

A: t0 ,1}k,-- f0,11, (4.3)

6: {0, 1 }k," 10,1k, (4.4)

such that
y' = A(qt,xt), (4.5)

qf+ = 6(qt,xt). (4.6)

From the users point of view, a clock circuit is thus a Mealy machine.

254 U COMPUTERS

Example 4.3.6 The clock circuit shown in Figure 4.26b is the binary adder whose behaviour is described by
the equations wt = x Dyt ect and ct`l = majority(x',yt, c).

The relation between clock circuits and Mealy machines also goes in the opposite direction in the
following way. Both inputs and states of any Mealy machine can be encoded in binary form. Once this
is done, each Mealy machine can be seen to be specified by mappings (4.3) and (4.4) and equations
(4.5) and (4.6). Now the following theorem holds.

Theorem 4.3.7 Let A: {O, I}k+n ý {0, 1}m and 6 : {f0,}k+n 1 {0, 11} be any two functions. Then there is a
clock circuit with input x' = (xt x'), states of clock registers qt = (q q') and output yt = (yt, yY
at time t, whose behaviour is described by equations (4.5) and (4.6).

Proof: The clock circuit will have k shift registers, which at time t will contain the string qt, n input
nodes with x' as inputs, and m output nodes with outputs y'. It contains two Boolean circuits the
inputs of which are the outputs of the shift registers and the inputs of the whole circuit. One circuit
computes the A function, and its m outputs are the overall outputs of the circuit. The second Boolean
circuit computes the function 6, and its outputs are the inputs of the shift registers.

Exercise 4.3.8 Design a clocked circuit for a memory cell (aflip-flop element).

Any real computer is at its basic logical level a clock circuit. For example, by combining flip-flop
elements with a decoder (Exercise 27), we can build a random access memory.

4.3.2 Circuit Complexity of Boolean Functions

Boolean circuits are an appropriate model for dealing in a transparent way with the three most basic
computational resources: sequential time, parallel time and space. The three basic corresponding
complexity measures for Boolean circuits are defined as follows:

Size(C) the size complexity of C; that is, the number of gates of C.
Depth(C) the depth complexity of C; that is, the maximal distance of

a gate of C from an input node.
Width(C) the width complexity of C is defined by Width(C) = maxi1Depth(c) Width(C, i),

where Width(C, i)11is the number of gates of the maximal distance i
from an input node.

Complexity measures for circuits induce in a natural way complexity measures for Boolean
functionsf, relative to a chosen Boolean base 3:

ca(f) = min{c(C) IC is a Boolean circuit forf over the base B},

where c is any of the measures size, depth or width.
Between the size and depth complexity of Boolean functions the following relations hold, the first

of which is easy to show:

Depthv(f) < Sized(f), Depth3(f) = 0 (Sizef)"

"11Width(C, i) is sometimes defined as the number of gates of C that have depth at most i and outgoing edge into
a node of depth larger than i.

BOOLEAN CIRCUIT FAMILIES I 255

Exercise 4.3.9 Show that the choice of the base is not crucial. That is, show that ifc is any of the above
complexity measures and 31, 82 are arbitrary bases, then c1, (f) = O(cS2 (f)).

Exercise 4.3.10 A Boolean circuit with only v- and A-gates is called monotone. Show that corresponding
to each Boolean circuit C over the base { V, A, -} with variables xj, . . . , xn one can construct a monotone
Boolean circuit C' with inputs xl ... Xn,Y, ,xF such that Size(C') = O(Size(C)), and that C'
computes the same function as C.

Exercise 4.3.11 Derive the following upper bounds for the size of Boolean circuits over the base of all
Booleanffunctions of two variables: (a) O(n2"); (b) 0(2n) (hint:f (x1,. . ,x,) = (xI Af(1,x 2 ... , x,)) V
(Y'lAf(0,X2, x,))); (c)* O(ýn);(d)' (1. o(.)),.

Boolean circuits can also be seen as another representation of Boolean straight-line programs that
do not use arithmetical but logical operations. Size complexity of Boolean circuits is then the same as
time complexity of the corresponding Boolean straight-line programs.

Circuit complexity of Boolean functions is an area that has been much investigated with the aim
of acquiring a fundamental understanding of the complexity of computation. We now present what
is perhaps the most basic result concerning the size complexity of Boolean functions, and in so doing
we arrive at what is perhaps the most puzzling problem in foundations of computing.

In the following lemma and theorem we consider for simplicity the base B0 = {AND, OR, NAND,
NOR}, consisting of Boolean functions of two arguments. This simplifies technical details of the
proofs, but has no essential effect on the main result. The problem we deal with is the size complexity
of Boolean functions of n arguments.

Lemma 4.3.12 At most S (b, n) - 1+ n"1)2b' Booleanfunctionsfrom Bn can be computed by Boolean circuits,b!

over the base I0, of size b.

Proof: Let us estimate the number of Boolean circuits of size b. For each node there are four Boolean
functions to choose from (AND, OR, NAND, NOR) and b - 1 + n possibilities for the starting node
of each of the two ingoing edges of the node (b - 1 other (Boolean) gates and n input nodes). Each
circuit computes at most b different Boolean functions (because there are at most b possibilities for the
choice of an output node). Finally, one must take into account that each circuit has been counted b!
times, for b! different numberings of nodes. Altogether we get the estimation claimed in the lemma.

n

Now let b = maxx{Sizev 0 (f) If E B, }. If a Boolean function can be computed by a Boolean circuit of
size k, then it can be computed by a circuit of size k + 1, and therefore, by Lemma 4.3.12, S (b, n) Ž IBn B,
an inequality we shall use to get an estimation for b. In doing this, we use the inequality b! > cbb+Ole b,

for some constant c, which follows from Stirling's approximation of b! (see page 29). Therefore,

lgS(b,n) Ž lg B,, I 2blg(b+n-1) +2b+lgb- (b+ 1)lgb+blge-lgc >Ž2. (4.7)

Since b > n - 1 for sufficiently large n, the inequality 4.7 implies that

1 n
blgb+(4+lge)b+-lgb-lgc>2 (4.8)

2

256 I COMPUTERS

Let us now assume that b < 2n n-1. In this case we get from the above inequality a new one:

2'n-1 (n- lgn + 4 + lge) + 1(n - lgn) - lgc > 2 n (4.9)

and the last inequality clearly does not hold for large n. Therefore,

b > 2n 1

must hold for sufficiently large n.
Note that the inequalities (4.7) and (4.8) hold but (4.9) does not hold for b < 2'n ' if on the

right-hand side of all these inequalities 2" is replaced by 2" - 2"n- 1 lg g n. This implies that if we take
instead of the class B, only a subclass, B', c B,, such that lg IB,, I> 2n - 2 n 1 ig lg n, we again get the
inequality b > 2"n-', for b = max{Sizeso (f) If E B'n}. Note too that for such an estimation it does not
really matter which functions are in B',; only their number is important. We can therefore take as B',
those 2(2n-2'•-1 g n g n) Boolean functions from Bn that have the smallest Boolean circuit size complexity.
By the same considerations as above, we then get that all the remaining Boolean functions in B, have

a circuit size complexity of at least 2nn--1 .Therefore 2 2" (1- 2 2',' Ig Ig n) Boolean functions must have a
circuit size complexity of at least 2nn-'. Since lim,-. 2-2"n'1g ign = 0, we have the following theorem.

Theorem 4.3.13 (Shannon's effect) For sufficiently large n, at least IB, I(1 - 2-2nn- 1 1g n) out ofIB, I = 22'

Boolean functions of n variables have circuit size complexity at least 2nn-1. (In other words, almost all Boolean
functions in B, have circuit size complexity at least 2 n n'.)

Now we have a puzzling situation. In spite of the fact that almost all Boolean functions of n
variables have, for large n, exponential complexity, nobody so far has been able to find a specific
family of Boolean functions {ff, I -,,fn E B,, for which we would be able to prove more than the linear
asymptotic lower bound for the circuit size complexity forf(n), despite the large effort of the scientific
community. This has even led to the suggestion that we start to consider as an axiom that no 'explicit
Boolean function' has a nonpolynomial Boolean circuit size complexity. Interestingly, this approach
has so far provided results that correspond well to our intuition and can therefore be considered
plausible.

An important task is to design Boolean circuits as good as possible for the key computing
problems. Size and depth are the most important criteria. For example, the school algorithm for
multiplying two n-bit integers can be turned into a Boolean circuit of size 0(n 2). A better solution is
due to Sch6nhage and Strassen: a Boolean circuit of size 0 (n lg n lg lg n).

4.3.3 Mutual Simulations of Turing Machines and Families of Circuits*

A single Boolean circuit computes only one Boolean function. In order to be able to compare Turing
machines and Boolean circuits as models of computers, we have to consider infinite families of
Boolean circuits in C = {C 1 , C2 , ... }, where Ci is a Boolean circuit with i input nodes. We say that
such a family of circuits computes a (Boolean) functionf: {O,1}* -- {0,1} if fc, ==fB; that is, the
circuit Ci computes the reduction off to the domain Bi = {0, 1}'. For example, we could have a familyof circuits C(m) . I ,(m), d(m). ..Is c th tC

ofirci2 , 2 } such that (computes the product of two Boolean matrices of
degree i.

For a family C = {fC}j of Boolean circuits, size and depth complexity bounds are defined as
follows. Let t : N -- N be a function. We say that the size complexity (depth complexity) of C is
bounded by t(n), if for all n

Size(C,) •, t(n) (Depth(C,) < t(n)).

BOOLEAN CIRCUIT FAMILIES U 257

The concept of a Boolean circuit family, as introduced above, allows us to 'compute' nonrecursive
functions. Indeed, letf : N -- B be a nonrecursive function. Then the function h: B* -* B defined by

fS 0, iff(JwI)=0;

1, iff(lWI) = 1,

is also nonrecursive, and since h(w) depends only on wI, it is easy to see that h is computable by
an infinite family of very simple circuits. In order to exclude such 'computations', only uniformly
created families of circuits will be considered.

There are several definitions of uniformity. The following one is guided by the intuition that
a circuit constructor should have no more computational power than the objects it constructs. A
family of circuits C = {Ci}i1- is called uniform if there is an off-line MTM Mc which for any input
1" constructs in O(Size(C,) lg(C,)) time and O(lgSize(C(n)) space a description C, of C, in the form
Cn = (V , Vk), where =- (v, 1(v), p(v)) is a complete description of the node v and its neighbourhood
in C.; l(v) is the variable or the Boolean operator associated with v; and p(v) is the list of predecessors
of v. Moreover, it is assumed that nodes are 'topologically sorted' in the sense that if vi precedes vj,

then i < j. For the length lc(n) of Ci we clearly have 1c (n) = O(Size(Cn) lg Size(C,)). (Observe that since
Size(Cn) = 0(2 Depth(C_)), the uniformity requirement actually demands that circuits be constructed in
O(Depth(Cn)) space.)

Our requirement of uniformity for a family of Boolean circuits therefore means that all circuits of
the family must be constructed 'in the same way', using a single TM and reasonably easily: the time
needed for their construction is proportional to the length of the description and the space needed is
logarithmic.12

In the rest of this section we present several simulations of uniform families of Boolean circuits by
Turing machines, and vice versa. In order to compare the computational power of these two computer
models, we consider the computation of functionsf : B* -* B. In addition, for s, d : N -* N let

"* Size(s(n)) denote the family of Boolean functionsf : B* -- B for which there is a uniform family
C = {Cn} of circuits such that C, computesfB, and Size(C,)•_ s(n).

"* Depth(d(n)) denote the family of functions f : B* --* B for which there is a uniform family
C = {C,} of circuits such that C,, computesfB, and Dept(C,,)S d(n).

Before going into the details of simulations, let me emphasize again that there is a one-to-one
correspondence between (Boolean) functionsf : B* - B and languages over the alphabet {0, 1}. With
each such function f a language L = {w Lw E B*,f(w) = 1} is associated, and with each language
L C {0,l}11* a functionfL : B* -- B is associated, withfL(w) = 1 if and only if w E L. The notation
Time(t(n)) and Space(s(n)) used to denote the families of languages (over the alphabet {0, 1}) can also
be used to denote families of functionsf : B* -* B accepted by MTM within the given time or space
bounds.

We start with a series of lemmas that show polynomial relations between Turing machine and
Boolean circuit complexity classes.

Lemma 4.3.14 If s(n) > n, then Size(s(n)) c Time(s2 (n) lgs(n)).

12 Notice that we assume that off-line Turing machines are used to design circuits. This implies that the space
needed to write down the description of the circuit that is being constructed does not count to the overall space
complexity (because this description is not stored and only written as the output). Because of this we take only
O(lg Size(n)) bound on the space complexity of Mc.

258 U COMPUTERS

Proof: Letf e Size(s(n)). We describe an MTM Mf which, given an input w of length n, first generates
a circuit C, that computes the functionfB., the size of which is bounded by s(n). Then Mf determines
for all nodes v of C,, the value computed by the gate in the node v, when w is processed by C,.

Mf starts by constructing, given an input w with Iwl = n, in time O(s(n) Ig s(n)) a description C, of
the circuit that computesfB , where in C, = iv,, V2 V . . . , vk} the nodes V1 , v2,• • Vk are topologically
ordered. Mf then computes in succession v, I ,.. ., vi, where v* ' Cn (vi,w), and Cn(vi,w) is the
value the gate vi outputs when the input w is processed by Cn. Since each node has at most two
predecessors, AMf needs at most O(s(n) lgs(n)) time to search through C, to find the values produced
by the gates of the predecessors of the node vi, the value of which is just being computed. Since
C,, has at most s(n) nodes, the overall time needed to compute the output value for the input w is
0O(s 2 (n) lgs(n)).

Exercise 4.3.15* If a more sophisticated divide-and-conquer algorithm is used in the previous proof to
evaluate nodes of C,, then the overall time needed can be reduced to (9(s(n) lg2 s(n)). Show this.

Lemma 4.3.16 If d(n) Ž lgn, then Depth(d(n)) c Space(d(n)).

Proof: Letf E Depth(d(n)). First we show how to design an O(d2 (n))-space bounded MTM M~f to
recognize Lf.

Sincef e Depth(d(n)), there exists an O(d(n))-space bounded off-line MTM A~f' that constructs,
for an input w of length n, a description of a circuit Cn of depth at most d(n), such that Cn computesf
restricted to B,,. Mf will often activate Mf. However, and this is essential, each time M' is used, only a
part of the description of C, is stored: namely, that corresponding to the description of a single node
of C,.

A4f starts by activating Mý and storing only the description of the output node of C,. A4f then
uses a depth-first search traversal through C, to compute, gate by gate, the values produced by the
gates of Cn for a given input w. Each time a new node of C, is visited during this depth-first search,
Mý is activated, and only the description of the node searched for is stored. Since Size(C,) = 0(21(n)),
O(d(n)) space is sufficient to store the description of a single node. In order to perform the whole
depth-first search evaluation of the circuit Cn, the descriptions of at most 9(d(n)) nodes need to
be stored simultaneously. This yields the overall space estimation (9(d2 (n)). It can be reduced to
O(d(n)) by using the following trick: to store information about which part of the tree has not yet
been processed, it is not necessary to store full descriptions of the nodes on a path, but for each node
only one or two of the numbers I and 2, specifying the successors of the node yet to be processed. This
requires 0(1) space per node. This way the overall space requirement can be reduced to 0(d(n)).

0
Let us now turn to a more complicated task: depth- and size-efficient simulations of Turing

machines by families of Boolean circuits.
In order to formulate these results, new technical terms are needed. They will be used also in the

following chapter.

Definition 4.3.17 A function f : N -* N is t(n)-time-constructible and s(n)-space-constructible
if the function f' : {1}* -- {O,1}*, defined by f'(l") = bin1'(f(n)), is computable by a t(n)-time

BOOLEAN CIRCUIT FAMILIES U 259

bounded and s(n)-space bounded 2-tape TM. f is called time-constructible (space-constructible) Y' f
is f-time-constructible (f-space-constructible). f is called linearly time- (space-)approximable if there is a
functionf' such that f (n) <•f'(n) = 0(f (n)) andf' is time- (space-)constructible.13

Practically all functions that one encounters during the analysis of computations are both time-
and space-constructible.

Exercise 4.3.18* Show that if functionsf and g are time- (space-)constructible, then so are the functions
(a)f + g; (b)f .g; (c) 2 .

Exercise 4.3.19** Show that the following functions are time- (space-)constructible: (a) n2; (b) 2n;
(c) n!; (d) n lg n].

Lemma 4.3.20 Space(s(n)) C Depth(S2 (n)), ifs(n) Ž lgn and s(n) is O(lgn)-space-constructible.

Proof: Letf E Space(s(n)) and M = (F,Q,qo,b) be an s(n)-space bounded one-tape off-line MTM
computingf. M has at most

t = n QjjFjsn) s(n) = 2-(sln))

'partial configurations' for inputs of length n - in which the position of the head on the input tape
is also taken into account. Let us assume that exactly one of them, ct, is the terminating partial
configuration, and that cl is the initial partial configuration. The behaviour of MA on input w can be
described by the transition matrix Aw = {aij I•j= 1, with

a 1 = 1, if i = j or ci j-M cj for the input w;aq= 0, otherwise.

For k = 1, ... , [lgt], we define the matrices A(k) = {a k > 1 by

A(') =Aw Aw and A(k) =A(k-1) OA(k- 1), if k> 1,

where ® stands for the Boolean product of two matrices. Clearly, aj'; = 1 if and only if there is, for

input w, a sequence of configurations c1 F-M cil ý-M ... •-M cj of length at most 2', and therefore

M accepts w if and only if a [lg t]) = 1.

A Boolean product of two matrices of the degree t can be computed by a simple Boolean circuit of
size t2 (2t - 1) and depth [lg 2t]. In order to compute A0 1), one only needs to connect sequentially
[Ilg t] such circuits. The resulting circuit has depth O(lg(2t) lg t) = O(s2(n)).

Itis easy to compute elements of matrix A(', and since s(n) is lgn-space-constructible, it is possible
to determine t and the resulting circuit using only O(lg n) space. Hence the lemma. 0

13The concept of time- and space-constructible functions is often used in the following slightly different sense;
f is time-constructible if there is a TM MA computingf and such that M halts after exactlyf(n) steps for input 1i.
s is space-constructible if there is an s(n) space bounded TM that writes 1s(n) for an input 1" (i.e. M marks exactly
s(n) cells of the tape).

260 U COMPUTERS

b d f

a C e q

Step i

b d el q

Step i+J

b' d' ell q

Figure 4.27 A Boolean circuit simulating an oblivious MTM

An efficient simulation of a t(n)-time bounded MTM M by a circuit family is more difficult. Thesource of the difficulty lies in the fact that M may behave differently for different inputs of the samelength. In order to show that a size-efficient simulation of a Turing machine by a uniform circuitfamily exists, it behoves us to use a technical result (see references), showing that each MTM can be
simulated efficiently by the oblivious MTM.

Definition 4.3.21 An MTM M is called oblivious #' the sequence of moves of the heads of M is the same
for all inputs of the same length.

Theorem 4.3.22 Let t(n) be C(t(n))-time-constructible and s(n) be 0(s(n))-space-constructible. Theneach t(n)-time and s(n)-space bounded MTM can be simulated by an ((t(n)lgs(n))-time bounded and
0((s(n))-space bounded oblivious MTM.

Equipped with the result of Theorem 4.3.22, we can handle the problem of simulation of time bounded
Turing machines by uniform families of Boolean circuits.

Lemma 4.3.23 If t(n) is ((t(n))-time- and space-constructible, then

Time(t(n)) C Size(CO(t(n) lg t(n)).

Proof: If a Boolean function f : B* - B is in Time(t(n)), then, by Theorem 4.3.22, there is an
O(t(n) lgt(n))-time bounded oblivious MTM M' computingf.

We can encode states of M', and also its tape symbols, by binary words of a fixed, equal length.
Then we can design a circuit of a fixed size CM, which implements that part of the transition functionof AM' which transfers a state and the symbols read by heads to a new state and new symbols on thetape. Since AM' is oblivious, we can now design, given a fixed n, using t(n) Ig t(n) copies of the circuit

PRAM -PARALLEL RAM * 261

RAM RA RM AMRAM RAM RAM RAM

(a) MIMD PRAM (b) SIMD PRAM

Figure 4.28 MIMD and SIMD PRAM

CM,, a Boolean circuit of size O(t(n) Ig t(n)) that computesfB, (see Figure 4.27). For each copy of CA,

its inputs are either the overall inputs or are connected with the outputs of some of the previous

copies of CM,. The same holds for outputs. They either enter inputs of some other copies of CM or
provide total outputs. To simulate the ith step of M,', the inputs of CM, are connected with the last

outputs of gates representing the cells the heads of M' are on at the end of the (i - 1)-th step. El

As a corollary of the above series of lemmas, we get the following main result concerning the

mutual simulation of Turing machines and uniform families of circuits.

Theorem 4.3.24 The following mutual simulations of Turing machines and Boolean circuits are possible for

all 'nice' bounds t(n) and s(n).

Size(s(n)) C Time(s 2(n)lgs(n)), Depth(s(n)) c Space(s(n)),
Time(t(n)) C Size(t(n)lgt(n)), Space(s(n)) c Depth(s2 (n)).

Notice that for the uniform families of Boolean circuits, as a computer model, the parallel time is

polynomially related to the space on Turing machines.

4.4 PRAM - Parallel RAM
Several random access machines sharing a common (shared or global) memory, PRAM, are from the

parallel algorithm design and analysis point of view perhaps the most attractive model of parallel
computing. The number of RAM processors used to solve an algorithmic problem depends usually
on the size of the input.

There are several variants of PRAM. Two extremes are MIMD PRAM and SIMD PRAM. In a MIMD

(multiple instruction multiple data) PRAM (see Figure 4.28a), each RAM processor may perform a

different program. In a SIMD (single instruction multiple data) PRAM (see Figure 4.28b), all RAM
perform the same program, and they can be seen as being controlled by a 'super-RAM'. We shall use
a third, 'intermediate model' described in the sequel.

There are several reasons why such models of parallel computing are important in spite of the
fact that their direct implementation can hardly be efficient with current technology.

1. PRAM programming allows us to abstract much from those levels of parallel program design

that deal with concurrency, synchronization, memory organization and contention, network

262 U COMPUTERS

Global memory

GMj R._R2 R

LM i R- LM 2 R LM.
,R tR Rý

Figure 4.29 Shared (global) memory and local memories of a PRAM

topology and routing. In designing PRAM algorithms, one does not have to be concerned with
how communication is accomplished, but only with what is to be communicated and where.

2. Parallel program design techniques developed for PRAM turn out to be of importance also for
other models of parallel computing.

3. Theoretical results indicate that an efficient simulation of PRAM, or closely related models, on
(bounded-degree) multiprocessor networks is feasible (see Section 10.5.2).

In order to be able to develop PRAM programs in a clear way and to formulate precisely
complexity results, we use the following formal model of PRAM.

4.4.1 Basic Model

A PRAM consists of an infinite sequence of processors P1, P2.... (Figure 4.29). The index i of Pi
serves as the processor identifier, and is denoted by PID. All processors are RAM enriched by the
instruction LOAD PID that loads the contents of the PID register into the accumulator. A processor Pi
has its local (potentially infinite) memory LM1, consisting of a sequence of registers Ri,o, Ri,, Ri,2, • • • ,

and Pi is the only processor with access to these registers. In addition, there is a global memory GM,
consisting of a (potentially infinite) sequence of registers R0, R1, R2, • .. Each of the registers of the
global and also the local memories can contain an arbitrary integer. Instead of Ri we write GM[i] or
GMi.

A processor Pi accesses the shared memory through the instructions READ and WRITE. The
instruction 'READ j', performed by Pi, causes the transfer R, 0 +- GMj, and the instruction 'WRITE j'
causes the transfer GMj <-- Ri,0. All other instructions that Pi performs concern its local memory.
Concerning inputs and outputs, the following convention will be used: in the case of n inputs
XI,X2,... ,xn, n is in GMo and xi in GMj, 1 < i < n; in the case of m outputs yl,... ,ym, m is in
GMo and yi in GMi, for 1 < i < m. (Other input-output conventions are, naturally, possible.) In the
case of language recognition, the state of P, - REJECT or ACCEPT - is decisive.

All processors of a PRAM perform the same program and are synchronized, and each of them
performs one instruction per time step. A computation starts with all processors performing the first

PRAM - PARALLEL RAM M 263

instruction of the program, and ends when the processor P1 stops. The contents of the shared memory
registers at that point are the output of the computation.

The fact that all processors perform the same program does not mean that at any moment all of
them perform the same instruction with the same data. This is due to the fact that each processor can
use the contents of its own PID as data. This can influence the outcomes of conditional jumps, and
therefore different processors may eventually perform at the same time different instructions of the
program. For example, it can happen that a processor Pi can read a register GMj only if j < no, for
some fixed no. As a consequence, in most naturally designed programs, at any moment only finitely
many processors can perform some meaningful computation (that is, computations having an impact
on outputs). In the examples we consider only such programs.

A PRAM with a potentially infinite number of processors and shared memory cells is an
appropriate model for investigating the most basic question concerning the efficiency of parallel
computing. Of theoretical and also practical importance is a model of PRAM with a fixed number
of processors and shared memory registers. In such a case a larger input is usually assumed to be
proportionally distributed through all the processors. Limitations on the amount of shared memory
correspond to restricting the amount of information that can be communicated between processors.

4.4.2 Memory Conflicts

The main problems with PRAM, theoretically and practically, are conflicts, read and especially write
conflicts, when more than one processor tries, concurrently, to read from the same register or to write
to the same register.

Concurrent readings of a shared memory register cause no theoretical and negligible practical
difficulty. In a PRAM reading, computation and writing are considered as being separated. One
concurrent step of PRAM is considered to consist of a reading phase (where all readings are
performed), a computational phase and, finally, a writing phase. However, concurrent writing does
create conflicts and causes major problems. Several methods are used to deal with write conflicts, and
according to these methods, several variants of PRAM are considered. The three most basic models
are

EREW PRAM (exclusive read, exclusive write)

- neither concurrent reads nor concurrent writes are allowed.

CREW PRAM (concurrent read, exclusive write)

- concurrent reads are allowed, but not concurrent writes.

CRCW PRAM (concurrent read, concurrent write)

- both concurrent reads and concurrent writes are allowed, but a fixed strategy is chosen to deal
with concurrent writes. Such a strategy specifies what the contents of the register are after a
concurrent write to the register has been executed. Different writing strategies lead to different
CRCW PRAM models. Three of the most commonly investigated models of CRCW PRAM are
the following ones.

CRCWc"m PRAM (common PRAM)

- concurrent writes are allowed if and only if all processors that try to write to the same register
try to write the same data. If this is not the case, the computation is aborted, and its results are
considered as undefined.

264 U COMPUTERS

CRCWarb PRAM (arbitrary PRAM)

- if several processors try to write to the same register, then one of them is arbitrarily chosen
to write.

CRCWPr PRAM (priority PRAM)

- from those processors trying to write to the same register, the one with the smallest (largest)
index succeeds.

Other models of CRCW PRAM are discussed in the exercises.

4.4.3 PRAM Programming

In order to describe PRAM programs in a transparent way, the following abstractions will be used.

1. Programs will be described using high-level programming language constructs that can be
translated in a straightforward way into RAM instructions.

2. Direct data transports between registers of the shared memory, or between the shared and a
local memory will be used. Going to the basic RAM level, these transports have to be realized
through transfers via accumulators. For example, a transfer A -- B in the global memory is
realized through the instruction 'READ B, WRITE A'.

3. To deal with the global memory, we use freely various higher level data structures: for example,
arrays A [1: nj, BI1 : n1. They may be implemented, for example, as segments GM [1 : ni, GM[n + 1:
2n] of the shared memory.

4. Various indexings of processors will be used that conform to the structure of the underlying
algorithm. For example, processors Pq, 1 < ij < n can be considered. This stands for using
processors Pk, 1 < k < n2 and considering decomposition of each k as k = (i - I)n +j,1 < i,j < n.
To get i and j from k, a fixed-length sequence of RAM instructions can be used.

Our first example shows an extraordinary power of concurrent writing.

Example 4.4.1 (Maximum finding on a CRCWC"m PRAM)

Input: integer n stored in GMo; integers xj,... x, stored in GM[1 : n].
Output: max{xli . . . , x, } stored in GMo.
Processors: Pip 1 < ij < n.
Auxiliary array: Y[1 : n].

Algorithm 4.4.2 For the processor Pi,

1I: Y[i] - 0;
2: if GM[i] < GM[j] then Y[i] -- 1; {Y[i] = 0 if and only if GM[i] = max{GM[1]... GM[n]}
3: if Y[i] = 0, then GM[0] ,- GM[i].

If the statement 'Y[i] -- 0' is replaced by 'if j = 1 then Y[i] •- 0', then the concurrent write in the
first statement can be avoided. By inserting the statement 'if i < jA Y[i] = 0, then Y'] -- 1' between
the second and third statements, we can achieve a situation such that after this added statement,
Y[i] = 0 if and only if i is the smallest index such that GM[i] = max{GM[i], . . . , GM[n] }. Finally, by
replacing the last statement with the statement 'if j = 1 A Y[i] = 0 then GM[0] -- GM[i]', we can also
avoid concurrent writing in the last statement. Note that in all concurrent writings all processors

PRAM - PARALLEL RAM U 265

P,

d=O

d=1

d =2 7•

a3 a a10 2 1 41 91 61 a1

Figure 4.30 Maximum finding on a EREW PRAM

try to write the same value. The same program would therefore work correctly on models CRCW"rb
PRAM and CRCWPri PRAM.

In our second example we use another method, more global at first sight, to describe PRAM
programs. Those parts of the program that can be executed with different data on different processors
will be described by the concurrent constructs

par[a < i < b]Pi: Si or par[a < i < b] : Si,

with the semantics that the statement Si is executed (by the processor Pi), concurrently, for all i between
a and b. In addition, from now on we use freely in the descriptions of PRAM programs various arrays
or sequences without referring formally to the PRAM shared memory.

Example 4.4.3 (Maximum finding on an EREW PRAM)

Input: d, n = 2 d, numbers a,,... ,a2n-l1.

Output: a, = max{a., , a2n-. }

Algorithm 4.4.4 For a EREW PRAM,

for d - d- 1 downto 0 do
par[2d < j < 2 d+I -1] : aj -- max{a 2j,a 2j+i}.

The computation process described by Algorithm 4.4.4 is depicted in Figure 4.30 for n = 8.
Note that no indication is given in the program as to which processors perform statements a1 -
max{a 2j, a2j+ 1 }. At least two implementations are natural. In the first, the processor Pj performs such
a statement, in which case we need n processors. In the second, only processors P1 , ... , P/12 are
needed (see Figure 4.30). However, in this case it takes more time for each processor to compute the
addresses of the data the processors should work with.

Exercise 4.4.5 Design an EREW PRAM program to add n numbers in O(lg n) time.

266 3 COMPUTERS

Example 4.4.6 (Matrix multiplication on an EREW PRAM)

Input: an integer d, matrices A[ij], B[i,j], 1 < ij < n = 2.
Output: matrix C[ij], 1 < ij < n, C = A .B.
Processors: Pit, 1 < i,j,l n.
Auxiliary array: D[ij, l], 1 < ij,l n.

Algorithm 4.4.7 For processor Pip,

D[i~j, I] --A[i, l]B[ljj];

for k -- 1 to d do
if /< " then D[i,j,l] -- D[i,j,21-1] +D[i,j,21];

if 1 = 1 then C[ij] - D[ij, 1].

The first statement performs, in parallel, all multiplications, and the next for cycle all additions.
The last statement forms the output. In the case of CRCWcIm PRAM, the last statement could be
simplified to C[ij] -- D[i,j, 1].

Example 4.4.8 (Boolean matrix multiplication on CRCWcOm PRAM+) Two Boolean matrices
A[ij] 1=l, B[i,j]in. , can be multiplied to get C = A.B on a CRCWC"m PRAM+ using n3 processors
{Pijk}7jk=1 in 0(1) steps. In the first step all cij can be initiated to O. Then the processor Pijk reads aik and bkj
and writes 1 in cij zf and only if aik A bkj = 1.

4.4.4 Efficiency of Parallelization

Intuitively, it seems to be clear that parallelization of computing, that is, the use of parallel
computers, is the way to go in order to increase the performance of computers. However, theoretical
considerations show and practical experience demonstrates that to harness the power of parallelism
is not at all easy.

In this section we take a closer look at the problems of efficiency of parallelization, first for PRAM
models, then on a more general level.

PRAM complexity measures

Three computational resources are of importance for PRAM computing: parallel time consumed,
number of processors employed, and the overall work done by the processors. For a PRAM 1Z and
an input x they are defined as follows:

"* TimeRz(x) = the number of concurrent steps of 7Z until 7? stops.

"* Prociz(x) = max{i I i = 1 or Pi performs a WRITE statement before 7? stops}.

"* WorkR(x) = Proc-(x) x TimeR(x).

The definition of processor complexity requires some explanations. Our intuition says that we
should count only those processors whose work really influences the outputs. The above definition
tries to capture this intuition in a simple way. The definition is clearly not perfect because it may
happen that a processor makes computations having impact on outputs but its predecessor does not.
In spite of that, this definition has turned out to be good enough to deal with not too degenerate
cases.

Work complexity is also a very natural and useful measure of efficiency of PRAM programs. It
can be used to set up the benchmarks one should aim for when designing PRAM programs. We say

PRAM - PARALLEL RAM U 267

that a PRAM 1Z is optimal for an algorithmic problem P if Workj(n) = e(t(n)), where t(n) is the
asymptotically best known sequential time complexity of P on RAM.

The ultimate goal in designing PRAM programs is to achieve work optimality. However, this
is not the end of the optimization effort. As soon as work optimality is achieved, the next aim is
to keep this optimality but minimize time; the philosophy/belief behind this being that, ultimately,
processors will be cheaper than time.

Trade-offs between time and number of processors are an important issue in parallel computing
in general, and in PRAM computing in particular. For example, with a single RAM one needs Q (n Ig n)
time to sort n numbers, whereas with O(n 2) processors, sorting can be done in 0(lg n) time. Whereas
for a RAM an algorithm is considered to be really fast if its time complexity is almost linear, O(n lg n)
or less, a PRAM algorithm is considered really fast if its time complexity is 0(lg n) or less (for example,
0(lglgn), or 0(lg* n),...).

Example 4.4.9 Let us analyse the computational complexity of our first three PRAM algorithms.
Algorithm 4.4.2 has time complexity 0(1) and uses O(n2) processors. Its work complexity is O(n2), much more
than E) (n) for the best possible sequential algorithm. Algorithm 4.4.4 needs E (lg n) time and 9 (n) processors.
Therefore its work complexity E (n lg n) is still more than the optimal one. The matrix multiplication algorithm
needs 0e(lgn) time and e9(n 3) processors. The product is larger than optimality suggests by factor of at least
Q•(n°slg n).

Remark 4.4.10 It is important to realize why a practically unrealistic assumption, namely, that of
having the quantity of processors available grow with the size of the input, does not make PRAM
computation theory either wrong or irrelevant. It means only that the application of theory is indirect.
It is fruitful to view the processor requirement for PRAM, or some other model of parallel computation,
as a growing function of the size of the problem. This is not because the machines are (or are expected
to be) so flexible, but because such a requirement allows us to focus on important intrinsic issues
like parallel decomposition of the problem, and translate insights obtained into answers to various
pragmatic questions like 'how big problems can be solved using a certain amount of time and a
certain number of processors'. Similar arguments apply to storage as a resource.

Parallelization

One of the basic general questions concerning the advantages that parallelism can bring is the
following: Given an algorithmic problem A and an integer k, how much can we speed up the solution
of A using k processors?

Two measures are used to express how much parallelization helps:

T1 (A4) Speedup(-4)
Speed up(A) :p - T(A) and Efficiency(A) : p -- P

where Ti-(A) is the best time known for solving A using i processors.
Unfortunately, there are algorithmic problems A such that T1 (A) = T, (A) for any p, and therefore

Efficiency(A)(p) = 1. In other words, parallelization does not help a bit. Exponentiation x" is one such
p

problem. No parallel algorithm can do asymptotically better than the sequential one presented on
page 7 with respect to the number of arithmetical operations.

The goal of parallel computation is to develop algorithms that use only a reasonable quantity of
processors and are very fast. The goal is fundamentally limited by the speed-up inequality:

(best known sequential time)/(number of processors) < parallel time.

268 I COMPUTERS

This inequality implies that in order to achieve a subpolynomial time parallel algorithm, a
superpolynomial number of processors must be used.

There is a simple principle that can sometimes be used to improve the performance of an almost
optimal parallel algorithm by a logarithmic factor and get a fully optimal one.

Brent's scheduling principle If a parallel computation can be performed on n = max{xi 1 i < t}
processors in time t, where xi is the number of operations in the ith parallel step, then on p < n

processors the same computation can be performed in time t + ['], where x = xi.

Exercise 4.4.11 Show the correctness of Brent's scheduling principle in detail.

By taking x = 0(n),t = O(lgn), and p = 0(n), we get the following corollary from Brent's
scheduling principle.

Lemma 4.4.12 If a computation that needs sequential time 0(n) can be performed on 0(n) processors in
O(lgn) time, then the same computation can be performed on 0(n) processors in time O(lgn). (Such a
computation is optimal because 0(lgn)0() 0(n).)

If Brent's scheduling principle and its corollary are applied to Algorithm 4.4.4, we get a
work-optimal algorithm.

Remark 4.4.13 No general and really good method for parallelization of sequential algorithms is
likely to exist. The best parallel algorithms are often designed on the basis of strikingly different
ideas from those underlying the best sequential algorithms for the same problem.

4.4.5 PRAM Programming - Continuation

We present several other PRAM algorithms to demonstrate the power of PRAM and some parallel
algorithm design methodologies.

Example 4.4.14 (Prefix sum) Given a sequence of numbers xI, ... ,xn, compute the sequence yl, • • • ,Yn of
all its prefix sums; that is,

yj = Lxi.
i-1

This problem seems to be inherently sequential. Indeed, it seems that in order to compute yi, one first needs to
compute yi-1. However, the problem has an O(lgn) parallel solution.

The prefix sum problem is so important for parallel computing that algorithms for solving it were wired
into some parallel computers. Its importance is due to the fact that fast parallel algorithms for many problems
use afast prefix sum algorithm as their key subalgorithm.

In order to make ourfirst prefix sum algorithm transparent, we assume that inputs x 1 ,.... , x, are represented
by a., . . . ,a2n-1; we then need to compute yi, .i • , yn, represented by bn, .. . ,b -

Input: n c N, n = 2 dx 1,... ,xn R.

Output: yi,•. .• y,, with yj = xi.

PRAM - PARALLEL RAM 3 269

a b.

16 16 4 0

a b a g b, a 1,1a b j b ~ p b b aj,

3 3 2 5 4 9 71 622 8 30 131 9 40

Figure 4.31 A prefix sum algorithm

Algorithm 4.4.15 (Prefix sum for EREW PRAM)

for I -- d - 1 downto 0 do par[21 <j < 2'+1] : aj - a2, + a 2,+ 1;

bi ~-a,;
for I - 1 to d - I do

par[2' <j < 2'+1] : by - ifj is odd then b(j-1)/2 else bj1 2 -aj+I

The computation of the algorithm is depicted, for n = 8, in Figure 4.31. In the first phase, the
leaves-to-root phase, described by the first for statement, all ai, 1 < i < n - 1, are computed. Each ai is
the sum of all a's in the leaves of the subtree with ai in the root. In the second phase, the root-to-leaves
phase, described by the second for statement, b's are computed, each bi being the sum of all a's from
a, to the right-most one in the subtree with bi in the root. (That is why all b's along any right-most path
of a subtree have the same value.) To compute new b's, each parent sends its b value to its children.
The right child keeps this value, but the left child subtracts from it the current a value of its sibling.

Exercise 4.4.16 Observe that the memory accesses are data-independent in both the above PRAM
algorithms for the prefix sum. Show that these algorithms and their generalizations with any associative
operation 0 instead of+ can be represented by a circuit of depth O(lgn), size 0(n) and 0-gates.

Exercise 4.4.17 Using the prefix sum algorithm, design an O(lgn) EREW PRAM algorithm for the
following variant of the knapsack problem: Given n objects ol, . . ., o,, their weights wl, ... , Wn, their
values v,.... vn and an integer k,find a vector (xl, . x,), 0 < xi < 1 such that n 1xivi is maximized
and iwi lXiWi k.

Example 4.4.18 (List ranking problem) Given a linked list of n elements a, ... , an, compute bl• bn,
where bi = _j_ i aj. (The requirement that a,, . . . ,an form a list means that access to ai+1 is only through a

pointer from ai - see Figure 4.32a.)

270 l COMPUTERS

a23 5 8 2 4 0

8 43 8 6 4 0

518 19 14 6 4 0

i22 19 14 6 4 0
(a.,

(a) (b)

Figure 4.32 List ranking algorithm execution

Assume that the linked list is specifed by the two arrays

contents array: C[l :n] and successor array: S[1 n],

where S[i] is a pointer to the successor of a[i]. (That is, if C[i] = a1, then C[S[i]] = aj, 1.) In the following
algorithm we assume that the last element is in C[n] and C[n] = 0, S[n] = n.

Program 4.4.19 (Link ranking algorithm for an EREW PRAM)

do [Ig n] times
par[1 < i < n]: begin C[i] - C[i] + C[S[i]]; S[i] *- S[S[i]] end

par[I < i < n]: WRITE C[i]

This simple program is based on the pointer jumping method, and its execution is illustrated, for
n = 6, in Figure 4.32b.

The execution time is E (lg n) and E (n) processors are needed. A work-optimal algorithm can be
obtained using a more sophisticated technique.

Example 4.4.20 (Maximum finding on doubly logarithmic depth trees) Our first CRCW PRAM
algorithm for the maximum finding has work complexity 0(n 2), the second algorithm, for EREW PRAM,
work complexity E(nlgn). Is there a better solution? Yes, there is. Consider a doubly logarithmic tree of
processors with n = 2 2k leaves, where each internal node processor performs the constant time algorithm to
find a maximum. The inductive definition of the doubly logarithmic depth trees ti is given in Figure 4.33a (see
also Section 2.5.3). The case i = 2 is depicted in Figure 4.33b. By induction we can show that the depth of tk

is lglgn + 1, the ith level of tk has 22k 2k-i nodes, and each of them has 22k-i 1 children. The total number of
operations needed to be performed on the i-th level is

E((22k-i-1)2) X 0(22k-2k-) 0(22k) E e(n).

no. of operations no. of processors

The overall work complexity is therefore E(nlglgn).

PRAM - PARALLEL RAM U 271

(a) -

2

a\

•(b)axa
m

Figure 4.33 Maximum finding on a doubly logarithmic depth tree

The examples shown above, and the way they have been presented illustrate the main
advantage of the PRAM model: the possibility of developing the basic ideas of the program on a
'machine-independent level' and not too much need to consider communication and synchronization
problems.

Exercise 4.4.21 Design an EREfW PRAM program to sort n distinct numbers on O(lgn) time.

Exercise 4.4.22 (Shortest path in a graph) Design an O(lg2 n) algorithm to determine the shortest
path between any two nodes ofan n-node complete graph whose edges are labelled by integers representing
their length.

4.4.6 Parallel Computation Thesis

Basic concepts concerning (feasible) parallel computing are very robust, and so are its main complexity
classes. In addition, these classes are closely related to the complexity classes of sequential computing.

We start with a general concept of a PRAM complexity class. If 4) is a class of PRAM, and t, p: N - N
are functions (complexity bounds), then

ia-TimeProc(t(n),p (n))

is the family of languages accepted by a t(n)-time bounded and p(n)-processor bounded PRAM of

272 U COMPUTERS

the family D. Of special importance is the class

PRAM-Time(t(n)) = CRCW+ -TimeProc(t(n), 2 t(n))),

where CRCW+ stands for PRAM CRCWpri, all RAM of which are RAM+ - that is, without
multiplication and division. The main advantage of CRCW+ is that for inputs of size 0(1), for
example, for language recognition problems, the maximal length of a register after t(n) computational
steps is 0(t(n)). This allows us to compare CRCW+ complexity classes with those of Turing machine
computations.

A relation between time complexity and processor complexity of PRAM is presented in the
following lemma. This lemma also shows the 'price of sequentialization'. In it (D stands for any
of the PRAM models considered so far.

Lemma 4.4.23 Let t,p,k: N -* N, and let k(n) be computable by a RAM+ in time t(n). Then

,P-TimeProc(t(n),p(n)) C (D- TimeProc(O(k(n)t(n)), {p(n) .

Proof: Given a PRAM 7Z E (D of processor complexity p(n), we show how to construct another PRAM
RI eD4' that uses only rP(n) I processors and simulates 7Z in 0(k(n)t(n)) time. For an input of length n,
RV first computes k(n), and then simulates 7? in such a way that each processor P' of R' simulates the
processors P(i-1)k(n) +, .. . ,Pik(n) of 7?. Each concurrent step of 7? is therefore simulated by 0(k(n))
steps of V'. To do this, the local memory of P' is so structured that it simulates local memories of all
simulated processors.

Care has to be taken that a concurrent step of 7? is simulated properly, in the sense that it does not
happen that a value is overwritten before needed by some other processor in the same parallel step.
Another problem concerns priority handling by CRCWPr PRAM. All this can easily be taken care of
if each register R of 7? is simulated by three registers of RI: one with the old contents of R, one with
new contents, and one that keeps the smallest PID of those processors of 7- that try to write into R.
To read from a register, the old contents are used. To write into a register, in the case of the CRCWPri
PRAM model, the priority stored in one of the three corresponding registers has to be checked. This
way, RI needs 0(k(n)) steps to simulate one step of 7?. E]

As a consequence we have

Theorem 4.4.24 UCRCW+ -TimeProc(nk ,nk) = P (polynomial time).
k=1

Proof: For k(n) = p(n) = t(n) = nk we get from the previous lemma

CRCW+ -TimeProc(nk, nk) C CRCW -TimeProc(0(nk), 1)

= RAM+-Time(O(n k)) C P,

and the opposite inclusion is trivial.

We are now in a position to look more closely at the problem of feasibility in the framework of
parallel computation.

It has turned out that the following propositions are to a very large degree independent of the
particular parallel computer model.

PRAM - PARALLEL RAM U 273

"* A problem is feasible if it can be solved by a parallel algorithm with polynomial worst case
time and processor complexity.

"* A problem is highly parallel if it can be solved by an algorithm with worst-case polylog time
complexity (lgo(1/n) and polynomial processor complexity.

"* A problem is inherently sequential if it is feasible but not highly parallel.

Observe that Theorem 4.4.24 implies that the class of inherently sequential problems is identical
with the class of P-complete problems.

One of the main results that justifies the introduction of the term 'highly parallel computational
problem' is now presented.

Theorem 4.4.25 A function f : {0,1}* -* {0, 1}* can be computed by a uniform family of Boolean circuits
{C1}=' with Depth(C) - lg0 (1) n, if and only iff can be computed by a CREW+ PRAM in time
t(n) = (lgn)(1/) and Proc(n) = n° 1(1 for inputs of length n.

The main result of this section concerns the relation between the space for TM computations and
the time for PRAM computations.

Lemma 4.4.26 Space(s(n)) CPRAM-Time(O(s(n))), • s(n) > lgn is a time-constructible function.

Proof: Let M be a s(n)-space bounded MTM. The basic idea of the proof is the same as that for the proof
of Lemma 4.3.20. The space bound s(n) allows us to bound the number of possible configurations
of A4 by t(n) = 20(s(n)). For each input x of length n let us consider a t(n) x t(n) Boolean transition
matrix TM (x) = {aij}Ij= with t =t(n) and

aij = 14= i = j or ci A-M cj on the input x,

where ci, c, are configurations of M, describing the potential behaviour of M.
A PRAM with t2 processors can compute all aij in one step. In order to decide whether M accepts x,

it is enough to compute T. (x) (and from the resulting matrix to read whether x is accepted). This can
be done using [lg t] Boolean matrix multiplications. By Example 4.4.8, Boolean matrix multiplication
can be done by a CRCW+ PRAM in the constant time. Since [Ig t] = O(s(n)), this implies the lemma.

Lemma 4.4.27 If t(n) > lgn is time-constructible, then PRAM-Time(t(n)) c Space(t2(n)).

Proof: The basic idea of the proof is simple, but the details are technical. First observe that addresses
and contents of all registers used to produce acceptance/rejection in a t(n)-time bounded PRAM+ 1Z
have O(t(n)) bits.

An MTM M simulating R? first computes t = t(n), where n = lwl, for an input w. M then uses
recursively two procedures state(i, r), to determine the state (the contents of the program register)
of the processor Pi after the step T, and contents(Z, 7), to determine the contents of the register Z (of
the global or local memories) after the step 7-, to verify that state(l, t) is the address of an instruction
ACCEPT or REJECT.

It is clear that by knowing state(i, 7- - 1) and contents(Z, T - 1) for all processors and registers used
by 7Z to determine state(l, t), one can determine state(i, T) and contents (Z, T) for all processors and
registers needed to derive state(l, t).

In order to determine state(i, -), AM systematically goes through all possible values of state(i, -r - 1)
and all possible contents of all registers used by the (i, 7- - 1)th instruction to find the correct value of

274 I COMPUTERS

state(l, T). For each of these possibilities A4 verifies first whether systematically chosen values indeed
produce state(i, -r) and then proceeds recursively to verify all chosen values.

In order to verify contents(Z, T), for a Z and -r, proceeds as follows: if T = 0, then contents(Z, r)
should be either an appropriate initial symbol or 0; depending on Z. In the case r > 0, AM checks both
of the following possibilities:

1. Z is not rewritten in step r. In such a case contents(Z, r) =contents(Z, T - 1) and M proceeds by
verifying contents(Z, T - 1). In addition, M verifies, for I < i < 2t, that Pi does not rewrite Z in
step 7- - this can be verified by going systematically through all possibilities for state(i, T - 1)
that do not refer to an instruction rewriting Z - and verifies state(i, r - 1).

2. Z is rewritten in step T. M then verifies for all 1 < i < 2, whether Z has been rewritten by Pi in
step r, and then moves to verify that none of processors Pj,j < i, rewrites Z in step r.

These systematic searches through all possibilities and verifications need a lot of time. However,
since the depth of recursion is O(t(n)) and all registers and their addresses have at most O(t(n))
bits, we get that the overall space requirement of AM' is O(t2(n)). []

As a corollary of the last two lemmas we have the following theorem.

Theorem 4.4.28 Turing machines with respect to space complexity and CRCW+ PRAM with the respect to
time complexity are polynomially related.

As another corollary, we get

Theorem 4.4.29 U PRAM-Time(nk) = PSPACE.
k 1

Observe that in principle the result stated in this last theorem is analogous to that in
Theorem 4.3.24. The space on MTM and the parallel time on uniform families of Boolean circuits
are polynomially related. The same results have been shown for other natural models of parallel
computers and this has led to the following thesis.

Parallel computation thesis There exists a standard class of (inherently parallel) computer models,
which includes among others several variants of PRAM machines and uniform families of Boolean
circuits, for which the polynomial time is as powerful as the polynomial space for machines of the
first machine class.

Computer models that satisfy the parallel computation thesis form the second machine class.
It seems intuitively clear that PSPACE is a much richer class than P. However, no proof is known,

and the problem
P = PSPACE

is another important open question in foundations of computing.
In order to see how subtle this problem is, notice that RAM' with uniform time and space

complexity measures are in the first machine class, but RAM with division and uniform time and space
complexity measures are in the second machine class! (So powerful are multiplication and division!)
This result also clearly demonstrates the often ignored fact that not only the overall architecture of a
computer model and its instruction repertoire, but also complexity measures, form an inherent part
of the model.

PRAM - PARALLEL RAM * 275

P2P 3 P4 P6 P8

Figure 4.34 Determination of the left-most processor

Exercise 4.4.30 Is it true that thefirst and second machine classes coincide ýf and only ifP = PSPACE?

Remark 4.4.31 Parallel computers of the second machine class are very powerful. The source of their
power lies in their capacity to activate, logically, in polynomial time an 'exponentially large hardware',
for example, the large number of processors. However, if physical laws are taken into consideration,
namely an upper bound on signal propagation and a lower bound on size of processors, then we
can show that no matter how tight we pack n processors into a spherical body its diameter has to be

Q (n 1). This implies that there must be processors at about the same distance and that a communication

between such processors has to require Q (n 3) time (as discussed in more detail in Chapter 10). This in
turn implies that an exponential number of processors cannot be physically activated in polynomial
time. A proof that a machine model belongs to the second machine class can therefore be seen as a
proof that the model is not feasible. This has naturally initiated a search for 'more realistic' models
of parallel computing that would lie, with respect to their power, between two machine classes.

4.4.7 Relations between CRCW PRAM Models

There is a natural ordering between basic PRAM computer models:

EREW PRAM -< CREW PRAM -< CRCWcO
m

PRAM -< CRCWarb PRAM -< CRCWPri PRAM

in the sense that each program for one of these models can be run on all 'higher' models, with respect
to the ordering -<. This is quite evidently true. Less easy to see is that each higher model is strictly more
powerful than the previous one. In spite of that, and this seems to be even less obvious, differences
between the powers of these models are actually not very big.

Theorem 4.4.32 A step of a CRCWP'i PRAM 7Z with p processors and m memory registers can be simulated
by an EREW PRAM VI in O(lgp) steps with p processors and mp registers.

Proof: The ith processor Pi of 7Z, 1 < i < p, will be simulated by the ith processor Pi' of I?'. To each
register GM7z'], 1 < j • m, there will correspond p registers of VI. One of them will simulate the
corresponding register of 7Z; p - 1 other registers will be used to resolve access conflicts for GMR [].

In order to perform a concurrent write to a register GM-z [], each processor of 7? has first to find
out whether it is the processor with the smallest PID wishing to write to GMR []. This can be done,
on VI, in parallel for 1 < j • m, as follows. Let us imagine for a moment that if the ith processor wants
to write to GM- Y), then it is located in the ith leaf of a binary tree Tj with p leaves (see Figure 4.34a)
for the case of processors P2, P 3, P4, P6 , P8 wanting to write to GM [Y]. The process of determining

276 U COMPUTERS

the left-most of these processors can be carried out simultaneously for all j, by having processors 'to
climb Tj trees' according to the following rules: a processor in a left-child node can always go up to
the parent node; a processor in a right-child node can go up only if there is no processor in its sibling
node. This way the left-most processor gets to the root and can then perform writing. Concurrent
reads are performed in a similar way. The left-most processor moves to the root, reads and then starts
to go down the tree to its original position. On its way down the tree, the processor distributes the
data obtained to processors 'waiting for it', and they, in turn, do the same on their way to their original
positions.

This 'tree climbing' can be simulated on V-' using p - 1 registers available for each register of 7?
in time 09(lg p), proportional to the depth of trees. 0

A CRCWPr PRAM can be simulated by a CRCWC"' PRAM without any time loss, but using a
larger number of processors.

Theorem 4.4.33 Any CRCWPri PRAM with p(n) processors and computation time t(n) can be simulated by
a CRCWC"m PRAM with (P 2)) +p(n) processors in time 0 (t(n)).

Proof: Let P1.. . , Pp(n, be the processors used by a CRCWpri PRAM 7?. A CRCWcom PRAM 7?' will
use additional processors Pip 1 < i < j < p(n), i 7 j, and new shared memory registers R1, .. . , Rp(,)
initialized to 0. In order to simulate one step of 7?, Pij writes 1 to R, if i < j, and both Pi and Pj try
to write to the same memory register. A processor Pi can then determine whether it is the processor
with the lowest PID wishing to write to a register by checking whether Ri = 0.

Finally, we present some results showing that there is a strict hierarchy between the powers
of the main models of PRAM with respect to the computational power when allowing the same
computational time.

Theorem 4.4.34 (1) CREW PRAM are strictly more powerful than EREW PRAM.
(2) To compute the function OR(xi . xn), a CREW PRAM needs Q (lgn) steps.

Theorem 4.4.35 CRCWC~m PRAMs are strictly more powerful than CREW PRAM.

Proof: By Theorem 4.4.34 it is sufficient to show that a CRCWC"m can compute OR(x 1,... ,xn) in a
constant number of steps. Indeed, GMo is first initialized to 0 and then, for 1,. . . n, the jth processor
reads xj and writes I into GMo, if and only if xj = 1. [I

Exercise 4.4.36 Show that a CRCWC"m PRAM with a polynomial number of processors can add two
n-bit integers in constant time.

Exercise 4.4.37 Show that with n2" processors a CRCWCOm PRAM can compute any Boolean function
of n variables in constant time.

Theorem 4.4.38 The CRCWpri PRAM is a strictly more powerful model than the CRCWarb PRAM, and this
model is in turn strictly more powerful than the CRCWCOm PRAM.

CELLULAR AUTOMATA U 277

N 1 7 Ll 7] 7 -] F - F -1 L _[1

N2][][][]Ne

N 4 N 5

(a) (b)

Figure 4.35 Neighbourhoods for one and two-dimensional cellular automata

4.5 Cellular Automata

One of the most intriguing scientific questions of the early 1950s was whether machines can reproduce
themselves. In an attempt to find the answer, John von Neumann,14 known today as one of the fathers
of modem (sequential) computers of 'von Neumann type', in 1953 developed a cellular automata
model of the biological world. This allowed him to get an affirmative answer to the above question.
Since then, cellular automata have become one of the basic models of information processing, not only
for the biological world but also for the world of microscopic physics (to study dynamic, complex and
chaotic systems and fractal phenomena). This fundamental model of massively parallel computing
is often called, paradoxically, 'non von Neumann type' computing.

Useful models of massive parallel computers have to be constructed in hardware, and should
be scalable. As such, they can be based on local interactions only. This is why since the early days
of modem computing a large effort has been put into trying to understand what is meaningfully
achievable, in principle and in practice, by computational devices consisting of large numbers of
simple, interacting processing units lacking a central executor that could provide global coordination
and control. Cellular automata provide a framework to deal with these problems.

4.5.1 Basic Concepts

Informally, a d-dimensional cellular automaton A with a finite set of states Q, a finite neighbourhood
N C Zd and a local transition function 6 : QN _ Q is a d-dimensional array network of identical finite
automata with Q as their set of states. For each node n C Zd, the neighbourhood N determines the
set {n} + N of 'neighbours' of the node n. Formally, A = (d, Q, N, 6), and elements (nodes) of Zd are
regarded as representing those finite automata which A consists of.

Figure 4.35a depicts three neighbourhoods of the dotted nodes for one-dimensional cellular
automata: N, = {0,1}, N 2 = {-1,0,1}, N 3 = {-2,-1,0,1,2,}. Figure 4.35b illustrates two often
used neighbourhoods (again for the dotted nodes) for two-dimensional cellular automata: the von
Neumann neighbourhood N 4 = { (- 1,0), (0, -1), (0, 0), (0,1), (1, 0)} and the Moore neighbourhood
N, = I{(-1, -1), (- 1, 0), (- 1,1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)}.

14john von Neumann (1903-57), an American mathematician and physicist of Hungarian origin, one of the
leading scientists of his period, made fundamental contributions to almost all areas of modem mathematics
and its applications as well as to theoretical physics: axiomatization of set theory, functional analysis and
quantum physics, mathematical logic, automata theory, probability theory, game theory, numerical mathematics,
mathematical methods in economics. Von Neumann was one of the leading scientists in the development of the
first very powerful electronic computer and of the first atomic bomb.

278 K COMPUTERS

All finite automata of a cellular automaton work concurrently, synchronized and in discrete time
steps. At each time moment the new state of each finite automaton is defined to be the value of the
local transition function applied to its current state and to the states of all its neighbours.

In order to describe more formally the overall behaviour of a cellular automaton A = (d, Q, N, 6),
we must again use the concept of configuration.

A configuration of A is a mapping c e Qz which assigns to each finite automaton of A (that is, to
each node of Zd) a state. The global transition function

G, : Qz' -- Qz,

GC(c)(k) = 6(c({k} + N)),

is used to define a computation (behaviour) of A as a sequence of configurations COC1, c2,... such
that cj = Gb(cjp-), forj Ž 1.

For example, if d = 1, N = {-1,0,1}, then for i E Z
Gb (c) (i) = 6 (c (i- 1), c(i), c(i + 1));

ifN= {-k,-k+ 1, . . . -1,0,1, . . . ,k - 1,k}, then for i E Z

G6(c(i)) = 6(c(i-k),c(i-k + 1),... ,c(i + k - 1),c(i +k));

if d = 2 and the von Neumann neighbourhood is considered, then for Gj G Z

Gh(c(ij)) = 6(c(i - 1,j), c(ij - 1), c(ij),c(i,j + 1), c(i + 1,j)).

It is often assumed that the set of states Q has one special state, a sleeping (or quiescent) state,
such that if a finite automaton A of A and all its neighbours are in the sleeping state, then the next
state of A is the sleeping state, too.

One of the first problems investigated in cellular automata was the question of whether there
is a configuration, called the Garden of Eden, that cannot be obtained from another configuration
by a cellular automaton step. This problem is related (as already discussed in Section 2.3.1) to the
injectivity-bijectivity-reversibility problem for global transition functions.

The basic decision problem for cellular automata is the reachability problem: given a cellular
automaton A with the global transition function G6 and two configurations c and c', is there an i such
that GQ(c) = c'?

Remark 4.5.1 Von Neumann designed a cellular automaton consisting of 29-state finite automata,
and showed that there is a configuration of about 200 such finite automata that is universal (it can
simulate a universal Turing machine) and a larger configuration, estimated to consist of several
hundred thousand finite automata that is also self-reproducible.

Exercise 4.5.2* Self-reproducibility in a trivial sense, without having a configuration that simulates
a universal Turing machine, is easy to achieve. Consider a two-state ({0,1}) two-dimensional
cellular automaton with neighbourhood N = { (-1,0), (1,0), (0,1), (0,- 1)} and transition function
f (x, y, z, u) = (x + y + z + u) mod 2, and show that for each initial distribution of the live states (states
1), with onlyfinitely many I states, there is an integer n such that the initial configuration reproduces
itselffour times after n steps.

Exercise 4.5.3 Determine the number of two-state two-dimensional cellular automata with (a) a von
Neumann neighbourhood; (b) a Moore neighbourhood.

CELLULAR AUTOMATA U 279

....... ... ,,M T, iNFG

Cellular automata with Cellular automata with Cellular automata with Cellular automata with
couvergeur behaviour periodic behaviour fractal behaviour chaotic behaviour

(a) (h) (c) (d)

Figure 4.36 Behaviour of one-dimensional cellular automata

4.5.2 Case Studies

We will illustrate the power of cellular automata with some examples.

The behaviour of two-state one-dimensional cellular automata with neighbourhood N = { -1,0O,11

Even apparently very simple one-dimensional cellular automata, with only two states and a nearest
neighbours neighbourhood, can exhibit very complex/chaotic behaviour.

Each such cellular automaton is uniquely defined by a mapping {0,1}N •-* {0, 1}. There are
therefore 28 such cellular automata, each of which is uniquely specified by the following (transition)
rule:

000 -' a0 010 --- a2 100 --- a4 110 -* a6
001 --, a1 011 --• a3 101 --- a5 111 --u a7,

and herfor byan integer i with binary representation bin•I (i) = a7a6a5a4a~a2alao. Such an automaton
can therefore be specified by an integer 0 _< i < 256, and we can speak of the cellular automaton with
the rule i. This terminology is often used in the literature about cellular automata.

Some of these 256 cellular automata are not very interesting, but others really are: for example,
those with the numbers 18, 20, 30, 52, 54, 60, 80, 90, 102, 120, 129, 150, 184, 190 and 216. The behaviour
of some of them is so complex that attempts to get a deeper and as full as possible understanding are
clearly a never-ending story. Some behaviours of these one-dimensional cellular automata are shown
in Figure 4.36, in which some of the spatio-temporal evolution patterns are depicted. The ith line
shows the states of the corresponding finite automaton at time i (counting is bottom-up). Figure 4.36a
depicts a convergent behaviour, Figure 4.36b a periodic behaviour, Figure 4.36c a fractal behaviour
and Figure 4.36d a chaotic behaviour.

280 U COMPUTERS

Exercise 4.5.4* One-dimensional cellular automata can also be considered, in several ways, as language
recognizers. For example, we say that a cellular automaton A= (1, Q, { -1,0,1}, 6) recognizes a language
L C E* c Q*, with respect to the set QF c Q - E offinal states, ýfw G L, #fand only if the automaton
A starting with the configuration w (and all other automata in the quiescent state u c Q - E) comes
to a state from QF in thefinite automaton with thefirst symbol of w at the beginning. Design a cellular
automaton recognizing the language {anb cn In >_ 1}.

LIFE game

In an attempt to develop a model of 'artificial life' in the late 1960s J. H. Conway from Cambridge,
designed a two-state, two-dimensional cellular automaton with Moore neighbourhood that has
become perhaps the most intensively investigated cellular automaton so far. It is called the LIFE game
because one of the tasks behind was to find initial configurations that would exhibit the behaviour
of 'living creatures'. The transition rule is simple.

The new state of each finite automaton is I if and only if one of the following conditions is satisfied:

1. Its old state was 1, and at least two and at most three of its neighbours were in the state 1.

2. Its old state was 0 and exactly three of its neighbours were in the state 1.

Figure 4.37a shows an initial configuration, called glider, and its four next configurations. (Black
squares are used to denote the state 1; the empty squares denote the state 0.) Figure 4.37b shows
a configuration that repeats itself on site after 15 steps. The configuration shown in Figure 4.37d is
called Gosper's glider gun, because periodically, with a period of 30 steps, it fires a glider that starts
to move 'south-east'. In addition, if the initial configuration from Figure 4.37b is properly positioned
with respect to the way gliders move, it starts 'to eat' them. The glider gun itself can be created after
174 steps from 13 gliders properly positioned. One can also position two glider guns in such a way
that the intersecting streams of gliders 'build a factory that assembles and fires a spaceship every
300 moves'. (The term 'spaceship' is used to denote a configuration that keeps moving in the plane
'throwing away some smoke'. Two of them are depicted in Figure 4.37c.) Possibilities of creating
configurations with interesting behaviour for LIFE seem to be limitless. See, for example, the 'wheel'
in Figure 4.37e that keeps 'rotating on site' in the sense that three internal ls rotate.

On the more theoretical side, the power of gliders to act as 'pulses' was used to show that there
is an initial configuration that can simulate a universal Turing machine! It has also been shown that
LIFE has a Garden of Eden configuration.

Exercise 4.5.5 Design a program to simulate LIFE, and use it (a)* to simulate several steps of the
behaviour of the spaceships, wheel and the glider gun depicted in Figure 4.37; (b)** to determine how to
position the configuration in Figure 4.37b in the way of the gliders fired from the glider gun in order to
let the configuration destroy the gliders. (c)** Let us call mosaic a configuration that contains 1 in the
automaton positioned in the node (ij) ifand only 1 < i < 17, i mod 3 = 0, 1 < j < 17, j mod 3 = 0.
The mosaic is clearly a stable configuration. We say that such a mosaic has a 'virus' if one of the automata
in the middle originally in state 0 is in state 1. Find the way to position the virus in the mosaic in such
a way that (1) the mosaic destroys the virus; (2) the virus destroys the mosaic.

CELLULAR AUTOMATA U 281

Figure4.37 LIFEame configtions I 5 g

computational4 p-rtoblms eihe onl pote gntialtniitenesi n.eteddecintacofgration hasesip

L_ . ,, .I, I

cniee.PrastemsfaospObleemfrathen late caenite frigsudynhozation]

of finite autmata networks

glider gu -m - - -:

Finputs at h deped gaon its oldnstate

received automits twoyeinto inputst fromtwork neighbourin automata. The newl sttgstensenalty thoug itse

firep istae anedafied when readyusateo wfhyichahold phaen then followsinged propderties.wthth

comutaifnal soldierms, inaseitepiongy stateandtsoare infntsenessigbus, theen it remains inithel sleepingustate.nha

2.l Ifinisoldir mary ell coneted into arwriraylntesleeping states at oroliientokffnthe beginningr
aonsderdehp the left onf(sallys calledfo the gnrl)areceiveste inputh 'fireihng reuadsy',cheonizafteroa

finiuteow numgbeurin ofustepsall the soldiers siulanouslyad haeacoghi ofathem fo theepifirstatie, com

fir stte an a ir whn ead sttewhih houd hvethefolowng roertes
1. I a older s i a leepng tat an soareits eigbous, henit emais i th slepig sate

2. I n olders re onnctedint a ow, aritrryall n te seepig sateat te bgining
and he eftone(usall caledthegenral)recive th inut fir whn rady , te fe

finie nmberof tepsallthesolderssimutanousy, ad ech o thm fr th fist tmecom

282 K COMPUTERS

Fire
when se lt~n . sopn
ready

Figure 4.38 Firing squad

into the state fire and can therefore fire simultaneously as a squad should do (see Figure 4.38).
Missing inputs of the first and last soldiers are the sleeping states.

The main point is that the soldier has to be designed as a finite automaton in such a way that the
firing squad works properly no matter how many soldiers are in the squad - that is, no matter how
big n is.

Four questions are of immediate interest. Has this problem a solution at all? If it does, what is
the minimal time the squad needs to get synchronized? How small (simple) can the soldier be (with
respect to the number of states)? Can we achieve minimality simultaneously for the time the squad
needs to fire and for the size of the soldier?

It is easy to see that the minimal time needed for synchronization is 2n - 2. Indeed, this time
is required so that the left-most soldier gets feedback that the general's order has reached all the
soldiers.15

There is a simple, divide-and-conquer solution, due to Minsky, though neither time nor size
is optimal, for n = 2k. To describe the basic idea, we start with the situation that there is exactly
one general, and he is at the left end of the array (see Figure 4.40). (Warning: in this figure not all
configurations are shown, and time flows from top to bottom.)

1. Each general (4) turns itself into a lieutenant (A), and initiates on both sides (or only on the
right-hand side if it stands at the left end) a process to create a new general between itself and
the next lieutenant or at the right end of the squad, whichever comes first.

2. A lieutenant goes into the firing state t if and only if both its neighbours are lieutenants.

It is easy to see that if step 1 is synchronized, which is not a problem for n = 2k if the method
indicated in Exercise 4.5.6 is used, then all lieutenants simultaneously enter the firing state after 3n - I
steps.

15The first minimal time solution, due to E. Goto in 1962, was estimated at that time as needing a soldier
with about a million states. Currently the state-minimal solution, due to J. Mazoyer (1987), uses a 6-state soldier,
described and demonstrated in Figure 4.39. It has been shown that no 4-state soldier can yield the minimal solution,
and the case n=5 is open.

CELLULAR AUTOMATA * 283

•C

n n t o l o ao:

oO I oo

S .oit a ln o

I I I I lc
I I I I I I I I B IC

i i 11 RA' III

nnchronization
of a line of 27 automata using"t I IMii i

azoyer's solution with 6 states A 1 1 1 i C

IB MC I

XQ:: A I.

1 111 IR C" I

Yunes' solution, a Minsky-like solution, with 7 states

State transitions of Mazoyer' s
solution

State transitions of Yunes' solution

Figure 4.39 Firing squad synchronization problem solutions

284 U COMPUTERS

A 000400& O A 0004000 ®

A 4 &ý 4 A 4

An L ZA AL A ALA A Aý A Aý
f f t t t f t t t f t t f t t t

Figure 4.40 Divide-and-conquer solution of the FSSP

Exercise 4.5.6** Design a one-dimensional cellular automaton with neighbourhood 1{-1, 0, 11 and with
states (left, right, sleeping, middle} in its set of states that is able to determine which
automaton is in the middle of the row of an odd number of finite automata bounded by one in the state
lef t and one in the state right: in other words, a cellular automaton such that when starting in
the initial configuration left, sleeping 2k-1 , right, and with all other finite automata in the
sleeping state, then after a certain number of steps the automaton in the middle, between the ones in
the initial states lef t and right comes (and for the first time) into the state middle and none of the
other automata came to that state before. (Hint: the left-most automaton sends two signals to the right,
each at dt•-erent speed, in such a way that they meet, one of them after a reflection at the right end, in the
middle.)

The first minimal time solution of FSSP, with a small, 16-state soldier, was due to Waksman (1966).
A similar 7-state soldier solution, due to J.-B. Yunes, is also described and demonstrated in Figure 4.39.
Surprisingly, the firing squad synchronization problem has a solution also in the case that soldiers
form a balanced tree or an arbitrary graph all nodes of which have the same degree, as well as the
case that some soldiers malfunction in the sense that they only let signals go through them.

The firing squad synchronization problem solutions form the basis of solutions of various
synchronization tasks for cellular automata. They also show a surprising global synchronization
power of local communications.

Exercise 4.5.7 Sketch (design) a solution of the FSSP for the more general case of one general in the
squad in an arbitrary position.

Exercise 4.5.8** Show how to solve the FSSP for an arbitrary two-dimensional array of FA.

4.5.3 A Normal Form

In the case of the cellular automaton LIFE, a new state of the cell depends on its old state and on the
number of 1-states of its neighbours; and not at all on the actual distribution of states 1 among the
neighbours. Many cellular automata, especially those used in physical applications, have a similar
property. They are totalistic in the following sense.

CELLULAR AUTOMATA U 285

Definition 4.5.9 A cellular automaton A = (1, Q, {-1, 0, 1}1, 6) is called totalistic if Q C N and there is a
function 4) : N -* N such that

6(x,y,z) = ,(x-+ y+z).

As the following theorem shows, restriction to totalistic cellular automata is not essential.

Theorem 4.5.10 For each cellular automaton A = (1, Q, { - 1,0,1}, 6), Q c N, there exists a totalistic cellular
automaton A' = (1,Q', {-1,0, 1},6') that has four times more states than A and simulates A without any
time overhead.

Proof: Assume that Q {1, .. ., n}, and denote b = n + 1. We will use b to represent all integers and
to perform all additions.

Take Q' = {q. mIq e Q, m c {1, 10,100, 1000}} (that is, all states of Q' have either the form q or qO
or q00 or q000, where q E Q and all these numbers are in the b-nary number system). A configuration
of A

a_3 a_2 a_1 a 0 a1 a2 a3

will be simulated in A' by the configuration

-a _000 a_20 al 0 a0 a|O0 a20 3
-3~ ~~~ -2 - 0 I 20 3

In other words, r0, then an is simulated by a,;

n mod 4 then an is simulated by anO00;
if2, then an is simulated by anO0;

3, then a, is simulated by aO.

If ' is now defined, for 1 < x, y,z < b, by

4)'(xyz) = 6(x,y,z)0 ,)'(xyOz) = 6(z,x,y)000
,D'(xOyz) = 6(y,z,x) ,)'(xyzo) = 6(x,y,z)00,

where xyz = xb2 + yb + z, and similar number representations are used for other arguments, and
6' (x, y, z) = 4' (x + y + z), then A' is totalistic, and simulates A, step by step, in real time.

Definition 4.5.9 and Theorem 4.5.10 can easily be extended to deal in a straightforward way with
larger neighbourhoods and multi-dimensional cellular automata.

Exercise 4.5.11 One-dimensional cellular automata with neighbourhood { -1,0}, one-way cellular
automata, can also be seen as representing a normal form for one-dimensional cellular automata.
Show that one-way, one-dimensional cellular automata can simulate in a natural way any other
one-dimensional cellular automaton.

Exercise 4.5.12 Show that for every one-dimensional CA A with neighbourhood {-1, 0,11 and k states
there is a one-dimensional cellular automaton A' with neighbourhood {-1, 0} that simulates A twice as
slowly, and that A' needs at most k2 states.

286 3 COMPUTERS

4.5.4 Mutual Simulations of Turing Machines and Cellular Automata

Time as the computational complexity measure is defined for cellular automata in a natural way -
as the number of steps of a computation. Space as the computational complexity measure is defined
only for the case that the initial configuration has finitely many finite automata in a nonsleeping state.
In this case, for one-dimensional cellular automata, the space complexity of a computation is the
maximal distance during the computation between two finite automata that have ever been (during
a computation) in a nonsleeping state. For multi-dimensional cellular automata the space complexity
is defined analogously. On this basis we can in a natural way define t(n)-time and s(n)-space bounded
computations on a cellular automaton.

Mutual simulations between Turing machines and cellular automata are in principle very easy
and they show, surprisingly, that cellular automata, as the main model of massive parallelism, are in
the first machine class.

Theorem 4.5.13 (1) Each t(n)-time and s(n)-space bounded one-tape Turing machine can be simulated by a
one-dimensional cellular automaton with neighbourhood {-1, 0 1} in time t(n) and space s(n).

(2) Each t(n)-time and s(n)-space bounded one-dimensional cellular automaton with neighbourhood
{-k 0,... , k} and t(n) > n can be simulated by a 9(kt2 (n))-time and 9(s(n))-space bounded one-tape
Turing machine.

Proof: (1) Let .M = (F, Q, qo, 6) be a t(n)-time bounded one-tape Turing machine with a set of states
Q, a tape alphabet P and a transition function 6. We show how to simulate A4 in time t(n) on a one-
dimensional cellular automaton A with neighbourhood {-1,0, 1} and set of states Q' = F U Q x F.
The overall simulation is based on the representation of a configuration a,. ... an (q, an+)an+2. ..am of
.A by the following sequence of states of the finite automata of A: a,,... ,an, (q,an,1),an+2, ... ,.
In order to simulate one transition of M4, at most two finite automata of A change their states. The
transition function 6' of A is defined as follows: if x, y, z E F, then

6'(x,y,z) = Y;

if 6(q,x) = (q',x', -*), then for y,z c F,

6'(y,z,(q,x)) =z, 6'(y,(q,x),z) =x', 6'((q,x),y,z) = (q',y).

Similarly, we can define the values of the transition function 6' for other cases.
(2) The simulation of a cellular automaton A with neighbourhood {-k, . . . ,k} by a one-tape

Turing machine A4 is straightforward once we assume that an input of A is written on a tape of M
with end markers.

The simulation of one step of A is done by M in one right-to-left or left-to-right sweep. In a
right-to-left sweep M first erases the end marker and the next 2k + 1 symbols, storing them in its
finite control. Then M4 writes the end marker and, cell by cell, the new states of the finite automata
of A. After reaching the left end marker, M keeps writing 2k + 1 new states for automata of A and
then the new left end marker. Once this has been done, a new left-to-right sweep can start. Since A
can extend the number of nonsleeping finite automata in t(n) steps maximally to kt(n) + n, M needs
((kt(n)) steps to simulate one step of A. Hence the theorem.

Exercise 4.5.14 Show that one can simulate Turing machines with several tapes and several heads per
tape in real time on cellular automata.

CELLULAR AUTOMATA IN 287

4.5.5 Reversible Cellular Automata

Let us recall the basic definition from Section 2.13.

Definition 4.5.15 A cellular automaton A = (d, Q,N, 6) is reversible i there is another cellular automaton
A' = (d, Q,N', 8') such that for each configuration c of A it holds that

GC (c) =cI if and only i G6, (cl) = c.

In other words, a cellular automaton A is reversible if there is another cellular automaton A' such
that for any sequence of configurations c1 ,c2, • . • ,c,_Cc of A, where ci I- ci+ 1, for 1 < i < n, A' can
reverse the computation to get the sequence of configurations c., c,_1, ... , c2, c1. (Note that the reverse
cellular automaton A' may use a much smaller or larger neighbourhood than A.)

There are two main reasons why the concept of reversibility of cellular automata is important.

1. The main physical reason why a computation needs energy is the loss of information that
usually occurs during a computation, each loss of information leading to energy dissipation.
(For example, a computation starting with input x and performing the statement x - x x x
causes a loss of information.) On the other hand, if a computation is reversible, then there is
no loss of information and in principle such a computation can be carried out without a loss
of energy.

2. Cellular automata are used to model phenomena in microscopic physics, especially in gas and
fluid dynamics. Since processes in microscopic physics are in principle reversible, then so must
be the cellular automata that model these microscopic processes. For this reason the problem of
deciding whether a given cellular automaton is reversible is of importance for cellular automata
models of microscopic physics.

The very basic problem is whether there are reversible cellular automata at all. They do exist, and the
following example shows one of them. It is a cellular automaton with two states, the neighbourhood
N = {- 1, 0, 1,2} and the following transition function:

0000 - 0 0100 -o 1 1000 - 0 1100 -- 1
0001 -- 0 0101 -O 1 1001 -- 0 1101 -- 1
0010 -0 1 0110 0 1010 -* 0 1110 -• 1
0011 -' 0 0111 - 1 I loll -1 0 1111 -' 1,

where the underlined digits indicate states to be changed by the transition. It is quite easy to verify
that this cellular automaton is reversible. There are only two transitions that change the state: both
have neighbourhood (0,10). It is now sufficient to observe that this neighbourhood cannot be changed
by any transition.

There do not seem to be many reversible cellular automata. For two-state automata with
neighbourhood N where IN = 2 or IN = 3 there are none. For the neighbourhood N = {-1,0,1, 2}
there are 65,536 cellular two-state automata, but only 8 of them are reversible, and all of them are
insignificant modifications of the one presented above. The following theorem, of importance for
cellular automata applications, is therefore quite a surprise.

Theorem 4.5.16 (1) Any k-dimensional CA can be simulated in real time by a (k + 1)-dimensional reversible
CA.

(2) There is a universal cellular automaton that is reversible.
(3) It is decidable whether a one-dimensional cellular automaton is reversible, but undecidable whether a

two-dimensional cellular automaton is reversible.

288 U COMPUTERS

* 0 1 2 3 * 0 1 2 3

0 0 1 1 0 0 0 0 3 3
1 2 3 3 2 1 2 2 1 1
2 0 1 1 0 2 0 0 3 3
3 2 3 3 2 3 2 2 1 1

(a) (b)

Figure 4.41 A cellular automaton and its reversible counterpart

Example 4.5.17 A simple 4-state cellular automaton with neighbourhood {0, 1} is depicted in Figure 4.41a,
and its reversible counterpart, with neighbourhood {-1, 0} in Figure 4.41b.

Exercise 4.5.18 Show that the one-dimensional cellular automaton with neighbourhood N = {0, 1},
states {0f1, . . . ,9} and transition function 6(x, y) = (5x-+[-- 1) mod 10is reversible.10il od1 i eesbe

Remark 4.5.19 The concept of reversibility applies also to other models of computers, for example, to
Turing machines. It is surprising that any one-tape TM can be simulated by a one-tape, two-symbol,
reversible TM.

Moral: There is a surprising variety of forms in which the universality of computing can exhibit itself.
A good rule of thumb in computing, as in life, is therefore to solve problems with the tools that fit
best and to apply tools to the problems that fit them best.

4.6 Exercises
1. Design a Turing machine to compute the following string-to-string functions over the alphabet

{0,1}, where wi are symbols and w strings: (a) w ý- wR; (b) w -* ww; (c) wIw 2 ... w,-
WlWlW 2 W 2 . .. Wnw.

2. Design a Turing machine that performs unary-to-binary conversion.

3. Design a Turing machine that generates binary representations of all positive integers separated
by the marker #.

4. Design a Turing machine that for an input string x takes exactly 21xi steps.

5. Design a TM that generates all well-parentheticized sequences over the alphabet {(,)}, and
each only once; that is, that generates an infinite string like ()$005(0)$0($0(()$...

6.* Show that for any Turing machine there is an equivalent two-symbol Turing machine (with
symbols Li and 1), which can replace any blank by I but never rewrite I by the blank.

7. ** Show that any computation that can be performed by a Turing machine can be simulated by a
Turing machine which has two one-way infinite tapes and can neither write nor read on these
tapes but only sense when the head comes to the end of the tape.

EXERCISES U 289

8. * Show that any TM can be simulated by a TM whose tape is always entirely empty apart from
at most three Is.

9. * Design a TM which, when started with an empty tape, writes down its own description and

halts.

10. Show that a k-tape t(n)-time bounded TM can be simulated by a 2-tape TM in O(t(n) lgt(n))
time. (Hint: move tapes, not simulated heads.)

11. Show that for any functionf E w(n) the complexity class Time(f(n)) is closed (a) under union;

(b) under intersection; (c) under complementation.

12. Define formally the concept of Turing machines with a binary-tree-like memory.

13. Show how a TM with a tree-like memory can be simulated by a two-tape ordinary TM, and
estimate the efficiency of the simulation.

14. ** Find a problem that can be solved significantly more efficiently on a TM with a tree-like
memory than on any TM with a finite-dimensional tape.

15. Design a RAM that computes a product of two polynomials if the coefficients of these
polynomials are given.

16. Design a RAM that for a given integer n computes (a) [lg n]; (b) a binary representation of n;
(c) a Fibonacci representation of n.

17. Design a RASP program to compute in 8 (n) steps g., defined by go -1, gl = 0, g2 = 1, g3 = 0,

gn = 5g,-I- 4
gn-4, for n > 4.

18. Consider a version of RAM with successor and predecessor operations as the only arithmetical
operations. Design programs for such RAM for addition and subtraction.

19.* Show that the permanent of an n x n integer matrix A = {aij} can be computed in O(n2
)

arithmetical operations if integer division is allowed. (Hint: use numbers z = (E- n jaij),

= z ,= 1, ... ,n, B = L1_ n, T - i. (r'= Iojaij) as well as integer division (and modulo)
operations.)

20. Show how to encode by an integer (p, x) a RAM program p and a RAM input x.

21. For a RAM program p and an input x let R(p,x) be the corresponding output. Show that there
is a RAM program u such that R(u, (p,x)) = R(p,x), for any p and x.

22. Design a Boolean circuit over the base {VA,-1} to compute the function f(x,y,z)=
if x then y else z.

23. Design a Boolean circuit over the base {NOR} to compute (a) x . y; (b) x =_ y.

24. Design a Boolean circuit to recognize palindromes among binary strings of length (a) 8; (b) n.

25. Design a Boolean circuit, over the base V, A, - }, of depth O(Ign), for the Boolean function
fnx1, -. •. ,Xnyl, . . . ,Yn) = 1 # ViG 1 1, .. ,n} : xi :A yi.

290 U COMPUTERS

26. Design a Boolean circuit, over the base {V, A, -}, of depth 09(lgn), for the Boolean function

g, (xn-.... ,xoy-, . . . ,yo) = 1

if and only if bin(x,_, ... xo) > bin(y,_1 ... yo).

27. (Decoder) Show how to design a Boolean circuit over the base {V, A, -1}, called decoder, with n
inputs and 2n outputs such that for an input xI, ... , x,, there is I on exactly the bin(x. ... x,)-th
output. (This is a way in which a random access memory is addressed.)

28. k-threshold function tk : {0, 1} -_* {0, 1} is the Boolean function of n arguments that has value
I if and only if at least k of its arguments have value 1. (a) Show how to design tk for 1 < k < n;
(2) design one Boolean circuit that computes all tI. . . , t, and has as small a size as possible.

29. Design a Boolean circuit that determines whether three or more of four people have a common
vote on a committee that votes yes on an issue and each committee member has a switch to
vote.

30. Let B be a base of Boolean functions that contains the identity function, and let k be the maximal
arity of functions in L3. Show that if a Boolean functionf can be computed by a Boolean circuit
C over the base S, then f can be computed by a Boolean circuit C' over the base 13 such that
each gate of C' has the out-degree at most 2 and Size(C') •_ (k + 1)Size(C).

31. Show that each Boolean functionf c B, can be computed by a Boolean circuit of size 3.21.
(Hint: use the disjunctive normal form forf.)

32. Show that every time-constructible function is space-constructible.

33. * Show that if s is a space-constructible function, then 2'(") is time-constructible.

34. (Universal Boolean circuit) Show that for each integer n there is a circuit UC, of size 0(2n)
with 2n + n inputs such that for all binary strings p of length 2n and any string x of length n the
output of the circuit UC, with the input px is the value of the Boolean function determined by
the string p for the input x.

35. Design an EREW PRAM program to compute in Ig n] + 1 time the Boolean function x, V
X2 . . . VXn.

36. Show that the following program, for an EREW PRAM, computes the function x, V X2V... Vxn,
where xi is stored in the shared memory location GM[iJ, and its computation time is strictly
less than [lg n) steps. (Fi stands here for the ith Fibonacci number):

begin f •- 0;Y[i] i- 0;
until F2t_1 < n

do if i + F2t < n then Y[i] ý- (Y[i] V GM[i + F2,]);

if (Y[i] = 1) V (i > F2t+1) then GM[i-F 2t+,] -I;
t- t+1

od
end

EXERCISES N 291

37. (Pre-emptive scheduling) Let m machines M 1,. . ,Mm and n jobs Jj, 1 j K n, with processing
times pj, 1 < j : n be given. Design an EREW PRAM algorithm to construct a feasible and
optimal pre-emptive scheduling of n jobs on m machines in time O(lgn). (A pre-emptive
schedule assigns to each job J1 a set of triples (Mi, s, t), where 1 < i < m and 0 < s < t, to denote
that Jj is to be processed by Mi from time S to time t. A pre-emptive schedule is feasible if
the processing intervals for different jobs on the same machine are nonoverlapping, and the
processing intervals of each job Jj on different machine are also nonoverlapping and have the
total length pj for the jth job. A pre-emptive schedule is optimal if the maximum completion
time is minimal.)

38. Show that one step of a CRCWPrI PRAM with p processors and m registers of shared memory
can be simulated by a CRCWC"m PRAM with p processors and m registers of shared memory in
O(lgp) steps.

39. ** Show that one step of a CRCWPr PRAM with p processors and m registers of shared memory
can be simulated by a CRCWcOr in O(lglgp) steps using p processors and m(p - 1) registers of
shared memory.

40. EROW (exclusive read owner write) PRAM is a PRAM model in which each processor has a
single register of shared memory assigned to it (it 'owns this register'), and it can write only to
that register. Show that any Boolean circuit of depth d and size s can be simulated by an EROW
PRAM in O(d) steps using s processors and s shared memory 1-bit registers.

41. Show that (a) any problem in DLOGSPACE can be solved by a EROW PRAM in O(lgn) steps
using nO(1) processors; (b) any problem in NLOGSPACE can be solved by a CRCWC"m PRAM
in O(lgn) steps using n0° 1) processors.

42.** An abstract PRAM is one in which no restriction is made on the instruction set. Show that
any Boolean function of n variables can be computed by an abstract EROW PRAM in 0(lg n)
steps using n processors on 2ng- shared memory registers, provided n input values are in n

different registers of the shared memory.

43.* Very simple 'finite cellular automata' can exhibit chaotic behaviour. Demonstrate this by
designing and running a program to simulate the following n x n array of two-state - 0 and 1
- finite automata with the following transition function:

cij t) = (cij(t - 1) A ci- ,,(t - 1)) G÷cjj_1 (t - 1) (Pcij÷ 1(t - 1)

that exhibit chaotic behaviour for almost any intitial configuration (provided the automata on
the border of the rectangle keep getting 0 along their disconnected inputs (to the environment)).

44. * Sketch (design) a solution of the firing squad synchronization problem for the case that the
squad has two generals, one at each end of the squad, and they simultaneously send the order
'fire when ready'.

45. Sketch (design) a solution of the firing squad synchronization problem for the case that the
soldiers of the squad are interconnected to form a balanced binary tree all leaves of which have
the same distance from the root - the general.

46. Show that one-dimensional cellular automata can recognize the language {a2' In > 0} in real
time (that is, in time equal to the length of the input).

292 N COMPUTERS

1 31

(a) (b) (c) (d)

Figure 4.42 A cellular automaton to simulate computational elements

47. * Show that any one-tape Turing machine with m symbols and n states can be simulated by a

one-dimensional cellular automaton with m + 2n states.

48. * Consider a two-dimensional cellular automaton with Moore neighbourhood and 4-state finite
automata with states {0, 1,2,3, 4} and the local transition function that maps the state 0 to 0, 1
to 2, 2 to 3 and 3 either to 1, if at least one and at most two neighbours are in the state 1, and to
3, otherwise. The initial configuration shown in Figure 4.42b is called 'electron' and the one in
Figure 4.42c is called 'wire with an electron' because if this configuration develops the electron
'moves along the wire'. The initial configuration shown in Figure 4.42d is called 'a diode'
because if the electron is attached to its input, indicated by the incoming arrow, then it moves
through the diode. However, if the electron is attached to the output, it does not get through.
Show that one can design initial configurations that behave like the following computational
elements: (a) an OR gate; (b) an inverter; (c) an AND gate (without using inverters); (d) an XOR
gate; (e) a one-bit memory; (fW a crossing of two wires which 'are not connected'.

49. (Universal cellular automaton) A natural way to see a universal two-dimensional cellular
automaton U (for two-dimensional cellular automata with the same neighbourhood) is that for
any other two-dimensional cellular automaton A with the same neighbourhood the plane of
U is divided into rectangular blocks Bii (of size that depends on A). With appropriate starting
conditions and a fixed k, if U is run in k steps, then each block Bij performs a step of simulation
of one cell cii of A. Show how to construct such a universal cellular automaton. (Hint: design a
cellular automaton that can simulate any Boolean circuit over the base {NOR} in such a way
that cells behave either like NOR gates or as horizontal or vertical wires or as crossings or turns
of wires. The transition function of any given CA is then expressed by a Boolean circuit and

50. (Prime recognition by one-dimensional CA) Design a one-dimensional CA that has in a fixed
cell the state I in the ith step if and only if i is a prime. (Due to I. Korec this can be done with a
14-state CA and neighbourhood {-1, 0, 1}.)

51. (Limit sets) Let G: QZ ý QZ be the global function computed by a one-way, one-dimensional
cellular automaton A with the sleeping state. Let us define a sequence of sets of configurations

-o = QZ,, 9 = G(Pi-I), for i > 0. The limit set Ql of A is defined by Ql = f i . (a) Show that

fQ is a nonempty set; (b) fl is included in its pre-images, that is, Vc E f?, Ed E Ql, G(d) = c; (c)
find an example of a cellular automaton such that fl, = Q for some i; (d) find an example of a
cellular automaton such that Ql $ Q2j for all i.

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES *R 293

QUESTIONS
1. What is the evidence that Church's thesis holds?

2. Can there be a universal Turing machine with one state only?

3. What are the differences, if any, between the laws of physics and theses such as Church's?

4. What modification of straight-line programs is suitable for studying computational complexity
of such problems as sorting, merging, and maximum or median finding?

5. What are the relations between Church's thesis, the sequential computation thesis and the
parallel computation thesis?

6. Why does Strassen's algorithm not work over the Boolean quasi-ring?

7. How many single Boolean functions of two variables form a complete base?

8. What is the relation between the length of a Boolean expression and the size of the
corresponding Boolean circuit?

9. How can one naturally generalize von Neumann and Moore neighbourhoods for
three-dimensional cellular automata?

10. Does the FSSP have a solution for reversible CA?

4.7 Historical and Bibliographical References
The history of Turing machines goes back to the seminal paper by Turing (1937). The basic results
concerning Turing machines presented in Section 4.1 can be found in any of the numerous books on
computability and computational complexity. Concerning Turing himself, an interesting biography
has been written by Hedges (1983). A survey of Turing machines and their role in computing and
science in general is found in Hopcroft (1984). For the broader and futuristic impacts of Turing
machines see the book edited by R. Merken (1988).

The fundamental original papers of Turing, Kleene, Church, Post and others are collected in
Davis (1965). For an analysis of Church's thesis see Kleene (1952) and the illuminating discussions
in Rozenberg and Salomaa (1994). Basic relations between quantum theory and Church's thesis and
the idea of a universal quantum Turing machine are analysed by Deutsch (1985).

The existence of a universal Turing machine with two nonterminating and one terminating state
was shown by Shannon (1956). Minsky (1967) with his 4-symbol, 7-state universal Turing machine,
represents the end of one period of searching for minimal universal Turing machines. See Minsky
(1962) for an older history of this competition. For newer results concerning minimal universal Turing
machines see Rogozhin (1996). Various approaches to the concept of universality are analysed by
Priese (1979).

The busy beaver problem is due to Rado (1962); for a presentation of various results on this
problem see Dewdney (1984). The concept of the off-line Turing machine and the basic results on
resource-bounded Turing machines are due to Hartmanis and Steams (1965) and Hartmanis, Lewis
and Steams (1965).

The model of the RASP machine was introduced and investigated by Shepherdson and Sturgis
(1963), Elgot and Robinson (1964) and Hartmanis (1971). Cook and Reckhow (1973) introduced the
RAM model as a simplification of RASP and showed basic simulations between RAM, RASP and
Turing machines. A detailed analysis of the computational power of various types of RAM models is

294 COMPUTERS

due to Schonhage (1979). Exercises 19 and 4.2.8 are due to Vyskoý (1983). Another natural modification
of RAM, array-processing machines (APM), due to van Leeuwen and Wiedermann (1987), represents
an extension of RAM with vectorized versions of the usual RAM instructions. APM are also in the
second machine class.

A detailed presentation and analysis of various computer models and their simulations are found
in van Emde Boas (1990) and Vollmar and Worsch (1995). Van Emde Boas also introduced the concepts
of the first and second machine classes. Our formulation of the sequential computational thesis is
from van Emde Boas (1990).

The concept of register machines, also called successor RAM or Minsky machines, is due to Minsky
(1967), who also showed that each Turing machine can be simulated by a two-register machine and
even by a one-register machine if multiplication and division are allowed.

For the history (and references) of the search for the fastest algorithms for matrix multiplication
and related problems see Winograd (1980) and Pan (1984).

Blum, Shub and Smale (1989) initiated an investigation of RRAM and my presentation is derived
from their results.

The investigation of Boolean circuit complexity goes back to Shannon (1949a), as does
Theorem 4.3.13. My proof of this theorem follows Wegener (1987). His book also contains a systematic
presentation of the 'older results' on the Boolean circuit complexity. See also Savage (1986). For a linear
lower bound of the circuit complexity of Boolean functions see Blum (1984). Basic results concerning
mutual simulations of Turing machines and uniform families of Boolean circuits are found in Schnorr
(1976), Borodin (1977) and Pippenger and Fischer (1979). The first concept of uniformity for families
of Boolean circuits was introduced by Borodin (1977). For references to other concepts of uniformity
see, for example, Greenlaw, Hoover and Ruzzo (1995). My presentation is derived from a systematic
treatment of this subject by Reischuk (1990), where one can also find a proof of the existence of
oblivious TM. The assumption that no 'explicit' Boolean function has nonpolynomial-size Boolean
circuit complexity was formulated and investigated by Lipton (1994).

PRAM models of parallel computing were introduced by Fortune and Wyllie (1978), CREW
PRAM, Goldschlager (1982), CRCW PRAM, and Shiloach and Vishkin (1981). The basic result on the
relation between parallel time on machines of the second machine class and space on machines of the
first machine class is due to Goldschlager (1977). The parallel computation thesis seems to appear first
in Chandra and Stockmeyer (1976), and became well known through the thesis of Goldschlager (1977).
Systematic presentations of various parallel complexity classes and simulations between models of
parallel and sequential computing are found in Parberry (1987) and Reischuk (1990). Basic hierarchy
results between various models of PRAM were established by Cook, Dwork and Reischuk (1986). For
a detailed overview of relations between various models of PRAM see Fich (1993). For fast circuits
for the parallel prefix sum problem and their application to fast parallel computation of mappings
computable by finite state transducers see Ladner and Fischer (1986). O(V/t(n))-time simulation
of t(n)-time bounded TM on CREW PRAM is due to Dymond and Tompa (1985). For the design of
parallel algorithms see, for example, Karp and Ramachandran (1990) and Ja'Ja (1992). A work-optimal
algorithm for the list ranking problem is due to Cole and Vishkin (1986). Algorithm 4.4.1 is due to
Ku~era (1982), and the idea of using doubly logarithmic depth trees to van Emde Boas (1975). John
von Neumann's decision, inspired by S. L. Ulam, to consider cellular automata as a model of the
biological world within which to investigate the problem of self-reproducibility, see von Neumann
(1966), started research in the area of parallelism. Since then, cellular automata have been investigated
from several other points of view: as a model of the physical world, chaotic systems and dynamical
systems and as a model of massive parallelism.

The original von Neumann solution of the self-reproducibility problem with 29-state FA has been
improved, first by E. F. Codd (1968) who found an elegant solution with an 8-state FA. (Codd received
the Turing award in 1981 for introducing an elegant, minimal and powerful model of relational data

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES W 295

bases.) The von Neumann result was further improved by E. R. Banks (1971) who found a solution
with a 4-state FA.

For an analysis of the behaviour of one-dimensional cellular automata see Wolfram (1983, 1984,
1986), Guttowitz (1990) and Garzon (1995). An exciting account of the history and achievements of
Conway's LIFE game is due to Gardner (1970, 1971, 1983). The universality of the LIFE game was
shownby Berlekamp, Conway and Guy (1983). Generalizations of the LIFE game to three-dimensional
cellular automata were suggested by Bays (1987). The first solution to the FSSP was due to Minsky
and McCarthy in time 3n, using a divide-and-conquer method. (Minsky received the Turing award in
1969 and McCarthy in 1971, both for their contributions to artificial intelligence.) A survey of results
FSSPs is due to Mazoyer (1976). The existence of the totalistic normal form for cellular automata was
shown by Culik and Karhumaki (1987).

The history of reversible computation goes back to the Garden of Eden problem of Moore and
received an explicit formulation in papers by Amoroso and Patt (1972), Richardson (1972) and Bennett
(1973). The first claim of Theorem 4.5.16 is due to Toffoli (1977). The existence of universal reversible
cellular automata was shown by Toffoli (1977) for two- and multi-dimensional cellular automata, and
by Morita and Harao (1989) for one-dimensional cellular automata. The reversible cellular automata
shown in Figure 4.41 and in Exercise 4.5.18 are due to Korec (1996). The fact that any one-tape TM can
be simulated by a one-tape, two-symbol reversible Turing machine was shown by Morita, Shirasaki
and Gono (1989). The decidability of reversibility for one-dimensional automata is due to Amoroso
and Patt (1972), and the undecidability for two-dimensional cellular automata to Kari (1990). Surveys
of results on reversibility and related problems of energy-less computations are due to Bennett (1988)
and Toffoli and Margolus (1990). For more on cellular automata see Farmer, Toffoli and Wolfram
(1984).

For critical views of models of parallel computing and approaches to a search for more realistic
models see Wiedermann (1995).

CComplexity

INTRODUCTION
Computational complexity is about quantitative laws and limitations that govern computing.
It explores the space of algorithmic problems and their structure and develops techniques to
reduce the search for efficient methods for the whole class of algorithmic problems to the search
for efficient methods for a few key algorithmic problems. Computational complexity discovers
inherent quantitative limitations to developing efficient algorithms and designs/explores methods
for coping with them by the use of randomness, approximations and heuristics. Finally, computational
complexity tries to understand what is feasible and what is efficient in sequential and parallel
computing and, in so doing, to determine practical limitations not only of computing, but also of
scientific theories and rational reasoning.

Computational complexity concepts, models, methods and results have a more general character.
As such they are conceptual tools of broader importance both within and outside computing. On
one hand, they provide deep insights into the power of computational models, modes and resources
as well as into descriptive means. On the other, they provide guidance and frameworks that have
been behind the progress achieved in the development of efficient methods and systems for practical
computing.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. the main computational complexity classes for deterministic, nondeterministic, randomized
and parallel computing, their structure and the relations between them;

2. basic resource-bounded reductions and the concept of complete problems;

3. a variety of complete problems for such complexity classes as NP, P and PSPACE and methods
for showing their completeness;

4. algorithmic problems that play a special role in complexity investigations: the graph
isomorphism problem, prime recognition and the travelling salesman problem;

5. methods for overcoming the limitations that NP-completeness imposes (using the average case
and randomized computations, approximations and heuristics) and their limitations;

6. basic relations between computational and descriptional complexity.

298 I COMPLEXITY

To find specific candidate problems on which pure
science can be expected to have the greatest impact, we
have to look among the most difficult ones where no
solutions are known, rather than the easier ones where
several alternatives already exist. Physics has had greater
influence on space travel than on violin making.

Leslie G. Valiant, 1989

Complexity theory is about quantitative laws and limitations that govern computations. The
discovery that computational problems have an intrinsic nature that obeys strong quantitative laws
and that an understanding of these laws yields deep theoretical insights, and pays practical dividends
in computing, is one of the main outcomes of computational theory and practice. Since the computing
paradigm is universal and widespread, the quantitative laws of computational complexity apply to all
information processing, from numerical simulations and computations to automatic theorem proving
and formal reasoning, and from hardware to physical and biological computations.

Classification of computational problems into complexity classes with respect to the amount
of computational resources needed to solve them has proved to be very fruitful. Computational
complexity classes have deep structure. An understanding of them allows one to develop powerful
tools for algorithm design and analysis. The concepts of resource-bounded reducibility and
completeness, presented in this chapter, are among the most useful algorithm design methodologies.

The central task of complexity theory is to search for borderlines between what is and is not
feasibly computable. With this task, the influence of complexity theory goes far beyond computing
because the search for the limits of what is feasibly computable is the search for the limits of scientific
methods, rational reasoning and the knowable.

The development of new paradigms for computing that allow satisfactory solutions to previously
unsolvable problems is another of the main aims and outcomes of complexity theory.

Complexity theory has been able to discover several algorithmic problems that are important
from both a theoretical and a practical point of view, and to concentrate on their in-depth study.
The role of these problems can be compared with the role which some differential equations play in
calculus and our ability to create mathematical models for the behaviour of nature.

The key problem of complexity theory, the P = NP problem, is simultaneously one of the most
basic problems of current science.

As is often the case with science, the negative results of complexity theory, which show that this
or that is impossible or infeasible, also have strong positive impacts on, for example, cryptography,
secure communication or random number generators (see Chapters 8 and 9). In practice these are
among the most useful outcomes of complexity theory.

5.1 Nondeterministic Turing Machines

We have seen in Chapter 3 that nondeterministic finite automata are of great importance for our
capability to harness the concept of finite state machines, in spite of the fact that they do not
constitute a realistic model of computers. This is even more true on the level of universal computers.
Nondeterministic Turing machines play an almost irreplaceable role in developing and exploring the
key concepts concerning computational complexity.

A one-tape nondeterministic Turing machine (NTM) M4 = (I, Q, qo, 6) is defined formally in a si-
milar way to a one-tape deterministic Turing machine (DTM or TM), except that instead of a transition

NONDETERMINISTIC TUNING MACHINES U 299

4 5 6 7 8 2 \1

Figure 5.1 Tree of configurations

function we have a transition relation

6 c Q x F x (QUH) x F x D, (5.1)

where H = {HALT,ACCEPT, REJECT} and D = {---, -*}. As a consequence, a configuration c of
NTM M can have several potential next configurations, and M can go nondeterministically from c to
one of them. We can therefore view the overall computational process of a NTM not as a sequence of
configurations, but as a tree of configurations (see Figure 5.1). If we use, for each state and each tape
symbol, a fixed numbering 1,2,.... of possible transitions, then we can use this numbering to label
edges of the configuration tree, as shown in Figure 5.1. Nondeterministic multi-tape TM are defined
in a similar way; in what follows the notation NTM is used to denote such TM.

We say that a NTM M accepts an input w (in time t(lwl) and space s(lwl)) if there is at least
one path in the configuration tree, with qow being the configuration at the root, which ends in the
accepting state (and the path has a length of at most t (1wj), and none of the configurations on this path
has a larger length than s(lwI)). This can be used to define in a natural way when a NTM computes a
relation or a function within certain time and space bounds. For a NTM M let L(M) be the language
accepted by M.

Exercise 5.1.1 Show that for each NTM M we can design a NTM M' that can make at least two moves
in each nonterminating configuration, and accepts the same language as .M. Moreover, AM accepts an
input w in t steps ýf and only f .' also does.

Exercise 5.1.2 Show that for each NTM A4 we can design a NTM M4' that can make exactly two moves
in each nonterminating configuration, accepts the same language as M, and there is an integer k such
that M accepts an input w in t steps if and only if AM' accepts w in kt steps.

Complexity classes for NTM: Denote by Ntime(t(n)) (Nspace(s(n))) the family of languages
accepted by t(n)-time bounded (s(n)-space bounded) NTM, and denote

NP = UNTime(nk), NPSPACE = UNSpace(nk).

k=O k=O

300 * COMPLEXITY

A computation of a NTM can be seen as a sequence of transition steps. Some are deterministic,
there is only one possibility for the next configuration, whereas others should be seen as the result
of a choice or a guess (as to how to proceed to accept the input or to solve the problem). It is exactly
this guessing potential of NTM that makes them a useful tool.

Example 5.1.3 It is easy to design a NTM that decides in 0(n 2) time whether a Boolean formula of length
n is satisfiable. Indeed, the machine first goes through the formula and replaces all variables by 0 or 1 in a
consistent way - each variable is replaced by the same value over the entire formula. Each time a new variable
is encountered, a nondeterministic choice is made as to whether to assign 0 or I to this variable. This way the
machine chooses an assignment. In the next step the formula is evaluated. Both stages can be done in 0(n 2)
time. If the formula is satisfiable, then there is a sequence of correct guesses for the assignment of values to the
variables and an accepting path of length 0(n 2) in the configuration tree.

Exercise 5.1.4 Describe the behaviour of a NTM that accepts in polynomial time encodings of graphs
with a Hamilton cycle.

We now come to one of the main reasons for dealing with NTM. For many important algorithmic
problems not known to be in P, it can easily be shown that they are in NP. Typically, they are problems
for which the only known deterministic algorithms are those making an exhaustive search through
all possibilities, but for each such possibility it is easy to verify whether it is correct or not. An NTM
just guesses one of these possibilities, and then verifies the correctness of the guess. In addition - and
this is another key point - no one has yet shown that P $ NP. It is therefore possible, though unlikely,
that P = NP.

As we shall see, and as in the case of finite automata, nondeterminism does not increase essentially
the power of Turing machines. It seems, however, that an NTM can be 'much faster'.

Theorem 5.1.5 If a language L is accepted by a t(n)-time bounded NTM, then it is accepted by a 2 0(t(n)) -time
bounded DTM.

Proof: We show how to simulate a t(n)-time bounded NTM Mo, = (1, Q, qo, 6) by a 20(1(n)) -time DTM
Maet = (F', Q', q, 6'). Let

k = max {number of transitions for q and x},
qEQ,xEr

and denote by T. the configuration tree of Mn0, for the computation with the initial configuration
qow, and assume that the edges of this tree are labelled by symbols from {1, ... , k} to specify the
transition used (as shown in Figure 5.1).

-Mdet will simply try to go through all possible computations of A4,,n, in other words, through all
possible paths in the configuration tree T,. Some of these paths may be infinite and therefore Mded

cannot use the depth-first search method to traverse the configuration tree. However, the breadth-first
search will work fine. This leads to a very simple simulation method. A strict ordering of all words
from {1,... , k }* is considered. Consequently, word by word, for each u G { 1, ... , k } *, the computation
along the path labelled by u is simulated (if there is such a path in the configuration tree). If such a
computation leads to the accepting state, then Mdet accepts. Otherwise Adet goes to the simulation
of the computation corresponding to the next word, in the strict ordering of words in {1, . ..

NONDETERMINISTIC TURING MACHINES 3 301

This way Mdaet has to check at most kt(n) paths. Simulation of a single path takes at most O(t(n)) time.
Altogether, Mdet needs ktOn) O(t(n)) = 2 0(t(n)) time.

Let us now be more technical. The tape of Mdet will be divided into three tracks. The first will
contain only the input word, the second always a word from { 1, . . . ,k }* representing the path to be
simulated. The third track will be used to do all simulations according to the following simulation
algorithm.

1. M~det starts a simulation by generating the word '1' on the second track (as the first nonempty
word of the strict ordering of {1, ... , k*).

2. M•dt simulates on the third track the sequence of configurations specified by the word on the
second tape (in the case this word really describes a sequence of computational steps). If M.0.
reaches the accepting state during this simulation, Mdet accepts; if not, .Mdet goes to step 3.

3. Mt• changes the word on the second track to the next one in the strict ordering of the words
of the set {1, . . . ,k}* and goes to the step 2. 5

In a similar way, nondeterministic versions of other models of Turing machines can be simulated
by deterministic ones, with at most an exponential increase in time. Moreover, in a similar way we
can prove the following:

Exercise 5.1.6 Show that NTime(f(n)) c Space (f (n)) for any time-constructiblefunction f.

So far, nobody has been able to come up with a polynomial time simulation of NTM by DTM.
Therefore, from the time complexity point of view, nondeterminism seems to have a huge advantage
for Turing machines. Interestingly, this is not so with regard to the space.

Theorem 5.1.7 (Savitch's theorem) NSpace(s(n)) C Space(s2(n)) for any space-constructible function
s(n) > lgn.

Proof: Let M be a s(n)-space bounded NTM and L = L(.M). We describe an algorithm that accepts L
and can easily be transformed into a s2 (n)-space bounded Turing machine accepting L.

Similarly, as in the proof of Lemma 4.3.20, we can show that there is a constant k (which depends
only on size of Q and F) such that for any input w of size n, M can be in at most O configurations,
each of which can have length at most s(n). This immediately implies that if w E L, then there is an
accepting computation with at most ksOn) = 2s/n) Ig k steps.

The following algorithm, one of the pearls of algorithm design, which uses the divide-and-conquer
procedure test presented below, recognizes whether w E L. The procedure test, with argument c, c'
and i, simply checks whether there is a way to get from a configuration c to c' in 2' steps.

Algorithm 5.1.8
compute s(n);
for all accepting configurations c, such that IcI < s(n)

do if test(qow, c,, s(n)lg k) then accept

procedure test(c, c', i)
if i = 0A [(c = c') V (c H- c')] then return true

else for all configurations c" with Ic"j < s(n)
do if test(c,c", i - 1)A test(c",c',i- 1) then return true;

return false

302 • COMPLEXITY

With respect to space complexity analysis, each call of the procedure test requires 0(s(n)) space.
The depth of the recursion is lg[2s(n)Ilk] = 9(s(n)). The total space bound is therefore O(s

2 (n)).
Moreover, s(n) can be computed in 0(s(n)) space, because s(n) is space-constructible. L

Corollary 5.1.9 PSPACE = NPSPACE.

The proof of Theorem 5.1.7 uses the reachability method to simulate space-bounded
computations. With a slight modification of this method we can show the following:

Exercise 5.1.10 NSpace(f (n)) C Time(0(1)}(n)) for any time-constructible function f (n) lg n.

Many results shown in Section 4.1 also hold for nondeterministic Turing machines, for example,
the speed-up theorem and the compression theorem.

Nondeterministic TM also form a basis for the definition of a variety of other models of
computations, for example, for randomized computations. In this, the following normal form of
NTM is often of importance.

Exercise 5.1.11 (Parallel one-tape Turing machines) Formally, they are specified as
nondeterministic Turing machines: that is, for each state and symbol read by the head a finite
number of possible transitions is given. A parallel Turing machine starts to process a given input word
with the only one ordinary Turing machine active that has its head on the first symbol of the input.
During the computation of the parallel Turing machine, several ordinary Turing machines can work
in parallel on the same tape. At every step each currently active ordinary Turing machines reads its
tape symbol and performs simultaneously all possible transitions, creating for each transition a new
(ordinary) Turing machine that has the state and head position determined by that transition. In this
way several (ordinary) Turing machines can simultaneously have their heads over the same cell. If
several of them try to write different symbols into the same cell at the same time, the computation is
interrupted.
(a) Show that the number of distinct ordinary Turing machines that can be active on the tape of a parallel
Turing machine grows only polynomially with the number of steps.
(b) Design a parallel Turing machine that can recognize palindromes in linear time.

Lemma 5.1.12 Let a NTM M accept a language L within the time boundf (n), wheref is a time-constructible
function. Then there is a NTM M' that accepts L in time 0(f(n)), and all its computations for inputs of size n
have the same length. Moreover, we can assume that A' has exactly two choices to make in each nonterminating
configuration.

Proof: In order to transform M into a NTM M' that accepts the same language as AM and for all
inputs of size n has computations of the same length 0(f (n)), we proceed as follows. M' uses first, on
an input w of size n, a TM AMf that in timef(n) produces a 'yardstick' of length exactlyf(Jw!) (we are
here making use of the time-constructibility of f). After Mf finishes its job, A' starts to simulate A4,
using the 'yardstick' to design an alarm clock. A4' advances its pointer in the 'yardstick' each time MA'

COMPLEXITY CLASSES, HIERARCHIES AND TRADE-OFFS U 303

ends its simulation of a step of M, and halts if and only if M4' comes to the end of the 'yardstick', that
is, after exactlyf(x) steps. Should M finish sooner, M' keeps going, making dummy moves, until
M' comes to the end of the yardstick, and then accepts or rejects as AM did. For the rest of the proof
we make use of the results of Exercises 5.1.1 and 5.1.2.

5.2 Complexity Classes, Hierarchies and Trade-offs
The quantity of computational resources needed to solve a problem is clearly of general importance.
This is especially so for time in such real-time applications as spacecraft and plane control, surgery
support systems and banking systems. It is therefore of prime practical and theoretical interest to
classify computational problems with respect to the resources needed to solve them. By limiting
the overall resources, the range of solvable problems gets narrower. This way we arrive at various
complexity classes. In addition to the complexity classes that have been introduced already:

P = U Time(nk), NP = UNTime(nk),
k-O k=O

PSPACE = USpace(nk), NPSPACE = UNSpace(nk),
k- 0 k=O

there are four others which play a major role in complexity theory. The first two deal with logarithmic
space complexity:

L = LOGSPACE = UJDSpace(klgn), NL = NLOGSPACE = U NSpace(klgn).
k- 1 k=1

L C NL C P are the basic inclusions between these new classes and the class P. The first is trivially
true, whereas the second follows from Exercise 5.1.10. These inclusions imply that in order to show
that a problem is solvable in polynomial time, it is enough to show that the problem can be solved
using only logarithmic space. Sometimes this is easier.

The last two main complexity classes deal with exponential time bounds:

EXP = U Time(2nk), NEXP = JNTime(2nk).
k-0 k-0

As we shall see, all these classes represent certain limits of what can be considered as feasible in
computation.

Some of the complexity classes are closed under complementation: for example, P, PSPACE and
EXP. However, this does not seem to be true for the classes NP and NEXP. Also of importance are
the classes

co-NP and co-NEXP,

which contain complements of languages in NP and NEXP, respectively.
With space complexity classes the situation is different, due to the following result.

Theorem 5.2.1 (Immerman-Szelepcs~nyi's theorem) If f(n) > lgn, then Nspace(f(n)) =

co-NSpace(f (n)).

304 U COMPLEXITY

Later we shall deal with other complexity classes that are so important that they also have special
names. However, only some of the complexity classes have broadly accepted names and special
notation. As the following deep and very technical result shows, there are infinitely many different
complexity classes. In addition, the following theorem shows that even a very small increase in
bounds on time and space resources provides an enlargement of complexity classes.

Theorem 5.2.2 (Hierarchy theorem) (1) If f, andf2 are time-constructiblefunctions, then

lirninf fi(n)gfi(n) = 0 Time(fl(n)) Time(f 2(n));
ý f2;n)

liminffl(n) = 0 = NTime(f1 (n)) ; NTime(f2(n)).n,_. f2(n)

(2) Iff 2(n) >fl(n) > lgn are space-constructible functions, then

lim inff = 0 == Space(fl(n)) g Space(f2(n)).'
n f2(n)

The following relations among the main complexity classes are a consequence of the results stated
in Exercises 5.1.6 and 5.1.10 and the obvious fact that Time(f (n)) c NTime(f(n)) and Space(S(n)) 9
Nspace(s(n)) for anyf:

L C NL C P C NP C PSPACE = NPSPACE C EXP C NEXP. (5.2)

It follows from Theorem 5.2.2 that L ; PSPACE, P ; EXP, NP ; NEXP. We therefore know for sure
that some of the inclusions in (5.2) are proper - perhaps all of them. However, no one has been able
to show which. One of the main tasks of foundations of computing is to solve this puzzle.

If f is a time-constructible function andf (n) / lgf(n) = Q (n), then the obvious relation Time(f (n)) C
Space(f (n)) can be strengthened to show that space is strictly more powerful than time. Indeed, it
holds that

Time(f (n)) c Space (f(n)

It is also interesting to observe that the requirement thatf is time-constructible is important in
Theorem 5.2.2. Without this restriction we have the following result.

Theorem 5.2.3 (Gap theorem) To every recursivefunction 0(n) > n, there is a recursivefunctionf (n) such
that Time(p(f(n))) = Time(f(n)).

For example, there is a recursive functionf(n) such that Time(22("')) = Time(f (n)).

Finally, we present a result indicating that our naive belief in the existence of the best programs is
wrong. Indeed, if a language L E Time(t1 (n)) - Time(t 2 (n)), then we say that tl (n) is the upper bound
and t2(n) the lower bound on the time complexity of L on MTM. At this point it may seem that
we can define the time complexity of a language (algorithmic problem) L as the time complexity of
the asymptotically optimal MTM (algorithm) recognizing L. Surprisingly, this is not the way to go,
because there are languages (algorithmic problems) with no best MTM (algorithms). This fact is more
precisely formulated in the following weak version of the speed-up theorem.

Theorem 5.2.4 (Blum's speed-up theorem) There exists a recursive language L such that for any MTM
M accepting L there exists another MTM M'for L such that TimeM, (n) < lg(TimeM (n))for almost all n.

'On the other hand, the class Space(0(1)) is exactly the class of regular languages, and the class Space(s(n))
with s(n) = o(lg n) contains only regular languages.

REDUCTIONS AND COMPLETE PROBLEMS U 305

ordinary tape

F_ x
oracle-tape

Figure 5.2 An oracle Turing machine

5.3 Reductions and Complete Problems

One of the main tasks and contributions of theory in general is to localize the key problems to which
other problems can be reduced 'easily', and then to investigate in depth these key problems and
reduction methods. This approach has turned out to be extraordinarily successful in the area of
algorithmic problems.

The study of the so-called complete problems for the main complexity classes and algorithmic
resource-bounded reductions has brought deep insights into the nature of computing and revealed
surprisingly neat structures in the space of algorithmic problems and unexpected relations between
algorithmic problems that seemingly have nothing in common. In this way the study of computational
complexity uncovered new unifying principles for different areas of science and technology. The
results of complexity theory for algorithmic reductions also represent a powerful methodology for
designing algorithms for new algorithmic problems by making use of algorithms for already solved
problems.

The basic tools are time- and space-bounded reductions of one algorithmic problem to another.
On the most abstract level this idea is formalized through the concept of oracle Turing machines.

A (one-tape) oracle Turing machine A4 with oracle-tape alphabet A and a language A C A*
as oracle is actually a Turing machine with two tapes, an ordinary read-write tape and a special
read-write oracle-tape (see Figure 5.2). In addition, M has three special states, say q?, q+ and q-,
such that whenever M comes to the state q?, then the next state is either q+ or q-, depending on
whether the content x of the oracle-tape at that moment is or is not in A. In other words, when M
gets into the 'query' state q?, this can be seen as A4 asking the oracle about the membership of the
word x, written on the oracle-tape, in A. In addition, and this is crucial, it is assumed that the oracle's
answer is 'free' and immediate (because the oracle is supposed to be all-powerful - as oracles should
be). In other words, a transition from the state q? to one of the states q+ or q entails one step, as for
all other transitions.

Denote by MA an oracle Turing machine M with the oracle A - the same TM can be connected
with different oracles - and let L(MA) denote the language accepted by such an oracle machine with
the oracle A.

To see how this concept can be utilized, let us assume that there is an oracle Turing machine
MA' that can solve in polynomial time an algorithmic problem P. If the oracle A is then replaced by
a polynomial time algorithm to decide membership for A, we get a polynomial time algorithm for
accepting L(AA).

306 0 COMPLEXITY

Example 5.3.1 We describe the behaviour of an oracle TM MA with oracleA = {an bn c n Ž11 that recognizes
the language L = {oiloilJO 11 O 1 i,j > 1}. AA starts by reading thefirst group of Os in the input word, and for
each 0 writes the symbol a on the oracle tape, then the symbol b for each 1 in thefirst group of ls and the symbol
cfor each 0 in the second group of Os. After encountering the first 1 in the second group of 1s, the machine asks
the oracle whether the string written on the oracle tape is in A. If not, the machine rejects the input. If yes, the
machine empties the oracle tape and then proceeds by writing on it an a for each 1 in the second group of 1s,
then a bfor each 0 in the third group of Os and,finally, a cfor each I in the third group of is. After encountering
the next 0, the machine again asks the oracle whether the content of its tape is in A. If not, the machine rejects
it. If yes, MA checks to see if there are any additional input symbols and if not accepts.

Exercise 5.3.2 Design in detail a simple oracle Turing machine with oracleA = {1i 1 i is prime} to accept
the language L = {aiblck I i +-j and i + k are primes}.

The concept of the oracle Turing machine is the basis for our most general definition of
time-bounded reducibilities.

Definition 5.3.3 A language L1 is polynomial time Turing reducible to the language L2 - in short,
L1 <' L2 - if there is a polynomial time bounded oracle Turing machine M4L2 that accepts L1 .

Very often we do not need the whole power of Turing reducibility, which puts no restriction
on how often the oracle can be consulted during a computation. The following weaker concept of
reducibility corresponds to the case when the oracle is consulted only once, at the very end of a
reduction.

Definition 5.3.4 A language L1 9 E is polynomial time (many-to-one) reducible to the language
L2 C E - in short, L1 <m L2 - if there is a polynomial time computable function f : -* -- E such that, if
x C E, then

x E L1 -#==f(x) c L2. (5.3)

A language L1 is logspace reducible to L 2 - in short, L, <•g L 2- if there is a logarithmic space computable
(on an off-line MTM)functionf such that (5.3) holds.

Exercise 5.3.5 The concept of polynomial time reduction was defined only for languages, but it is often
used in a more general sense. Showfor example, that the problem of computing the transitive closure ofa
Boolean matrix is both polynomial time and logarithmic space reducible in a natural way to the problem
of multiplication of two Boolean matrices.

The following result is crucial for a broader usefulness of all three concepts of reducibility.2

Lemma 5.3.6 Reducibilities <T, <m and <_g are transitive.

21t can be shown that all three of the above concepts of reducibilities are different in the sense that for any

pair of them there is a pair of languages L1 and L2 such that L, is reducible to L2 with respect to one of these
reducibilities but not with respect to the second one.

REDUCTIONS AND COMPLETE PROBLEMS U 307

Proof: Only the case of logspace reducibility is nontrivial. Let us first point out where the difficulties
lie. If x c L, f=•J'f(x) E L2 and y E L2 4==f2(y) c L3, where f, and f2 are computable in logarithmic
space on an off-line MTM, then clearly x E L, 4==f2 (f0 (x)) E L3. But is f2 (f, (x)) (lg n)-space computable
on an off-line MTM with n = Ix I? It may happen that to store fi (x) we need more than (lg n)-space.
(Notice that in order to computer, (x) from x we are using in the first reduction an off-line MTM the
output of which is not counted in the overall space estimation.) This implies that we cannot simply
connect sequentially two (lg n)-space bounded off-line MTM, one to computef, (x) from x, the second
to compute f2(f (x)) from f, (x), and expect automatically to get a (lg n)-space bounded MTM. The
trick to use is as follows.

Let M41 be a (lg n)-space bounded off-line Turing machine for computingf, and M2 a (lg n)-space
bounded off-line Turing machine for computing f2. We design a (lg n)-space bounded off-line Turing
machine M to compute f2(f (x)) that works as follows. M has a counter C that is used to store
information about which bit of f (x) the machine M2 needs as the next one. M starts by simulating
M2 on x. Each time M 2 needs a bit off, (x), say the ith bit, then .M writes the integer i into C and then
simulates M I on x. However, it does not produce the whole output of M1, only a single bit: namely,
the ith bit. This way AM2 needs at most (lg Icf (x) I)-space to write i. Sincef, is (lg n)-space computable,
If (x) I IxIk must hold for some k. Therefore, lg lf,(n)I = O(lgn). 0

We are now ready to introduce two additional concepts concerning resource-bounded
reducibilities that play a central role in complexity theory.

Definition 5.3.7 Let £ be a family of languages. A language Lo is called hard for £, with respect to a
reducibility 7Z, #each language L E £ is 1Z-reducible to Lo. Lo is completefor C, with respect to a reducibility
7Z, if (1) Lo is in £; (2) Lo is hard for C, with respect to 7Z.

For the main complexity classes the following types of completenesses are usually considered,
(with respect to many-to-one time reducibilities) and the following notation is used:

NLOGSPACE-completeness - completeness for NLOGSPACE w.r.t. logspace reducib.
P-completeness - completeness for P w.r.t. logspace reducib.

NP-completeness - completeness for NP w.r.t. polynomial time reducib.
PSPACE-completeness - completeness for PSPACE w.r.t. polynom. time reducib.

NEXP-completeness - completeness for NEXP w.r.t. exponential time reducib.

Directly from Definition 5.3.7 we get

Lemma 5.3.8 If L, <' L2, and L3 •lg L4 , then it holds that:3

L4 e NLOGSPACE • L3 E NLOGSPACE,

L2eP , LGEP,

L2 E NP L, E NP,

L2 e PSPACE • L, e PSPACE,

L2 E EXP L1 c EXP.

As a corollary of Lemma 5.3.8, we have the following theorem.

Theorem 5.3.9 P = NP if and only if there is an NP-complete problem that is in P. Similarly, EXP = NEXP
if and only if there is an NEXP-complete problem that is in EXP.

3Two other concepts of P-completeness are dealt with in Section 5.10.

308 N COMPLEXITY

5.4 NP-complete Problems
The concept of NP-completeness is of special theoretical and practical importance. Indeed, it is one
of the most important concepts in the theory and practice of computing. We therefore deal with it in
detail.

Proof that a problem is NP-complete has three consequences. First, it implies that currently no
polynomial time algorithm is known to solve the problem - only algorithms that essentially perform
a complete search of exponentially many possibilities. This means that an NP-complete problem
cannot be solved in practice for inputs of larger size. This is bad news because many practically
important algorithmic problems are NP-complete. Second, and this is better news, NP-completeness
of a problem implies that there is still a chance, though it is very very small, that for such a problem a
polynomial time algorithm will be constructed. Third, and this is the best news, if we were to discover
a polynomial time algorithm for one NP-complete problem, we could easily design polynomial time
algorithms for all NP-complete problems.

There are two basic methods for proving NP-completeness of a language L:

Direct method. One shows first that L is in NP, which is generally easy, and then that each language
in NP can be reduced to L in polynomial time. This means showing that for any polynomial
time bounded NTM M4 and any input x for AM we can, in polynomial time, construct a string
yM,x such that X E L(M) if and only if yM,x E L.

Reduction method. One shows that L E NP and L' <' L for an NP-complete language L'.
NP-completeness of L then follows from the transitivity of the polynomial time reducibility.

5.4.1 Direct Proofs of NP-completeness

Direct proofs of NP-completeness for three problems will now be described. All these problems have
the property that several of their modifications have been used to show the existence of complete
problems for other complexity classes as well. In addition, these problems have been used to show
NP-completeness of other problems using the reduction method.

Bounded halting problem

In our first NP-completeness result we assume (see Section 4.1) that a fixed G6del numbering (M)
of nondeterministic Turing machines M and (w) of their inputs w is given.

Theorem 5.4.1 (Time-bounded version of the halting problem) The language
= { (M) (w) # t M is a one-tape one-head NTM that accepts w in at most t steps}

is NP-complete (# represents a marker).

Proof: We design a NTM Mo that, for an input w', first checks whether w' = (•) (w) #' for some NTM
A4 and input w of M. If not, .M0 rejects w'. If yes, Mo generates, nondeterministically, the string

(M)(W)#•t coci... $ctt1

where t' < t. M' then checks whether co is the code of the initial configuration of M for input w,
whether c, is the code of a terminating configuration of .M, and whether, for all 1 < i < t', ci is the
code of a configuration of M that can be obtained from the configuration ci-i by one step of M. If all
these conditions are satisfied, M' accepts; otherwise it rejects the input.

NP-COMPLETE PROBLEMS 3 309

(a) (b) (c)

Figure 5.3 Bounded tiling

If we denote n =(M)(w)#t #, then Mo accepts L*,, in 0(n 3) time steps, because t < n, and A40
needs at most 0(n2) time to generate a new ci. Thus, L*,, c NP.

Now let L c NP; that is, there is a NTM A4L and a polynomial PL such that ML accepts L in time

PL(fl). Let L C F* and TL be a function defined on F* such that mL(w) = (ML) (W) #PL(Owl). Since PL is a
polynomial, "rL(W) can be computed in polynomial time. Moreover, w E L if and only if TL (w) E L*at,
Thus, L <r L*

Bounded tiling problem

Tiling of a plane or other geometrical objects by various types of tiles is one of the exciting, deep
and applied problems discussed in more detail in Section 6.4. Here we deal with a special bounded
version of the tiling problem.

We consider tiling an n x n quadratic grid G, with the outer sides of the boundary cells (0 x 1
squares, or unit squares) coloured from a set of colours C (see Figure 5.3a) and a finite set T of
1 x 1 tiles, also called Wang tiles (see Figure 5.3b), the sides of which are also coloured from C. The
problem is to decide whether there is such a tiling of G, with tiles from T, that satisfies the following
two conditions.

Boundary consistency condition: The colours of the outer sides of the boundary tiles match the
colours of the boundary cells of G.

Adjacency condition: The colours of adjacent sides of any two neighbouring tiles are the same.

An important restriction is that neither rotation nor reflection of tiles is allowed. However, an infinite
number of copies of tiles from T are available.

We show now how to associate a bounded tiling problem with a Turing machine computation.
In doing so we assume that a NTM M4 has the following properties.

1. M4 uses only one-way infinite tape (see Section 4.1).

2. M has a unique accepting (rejecting) configuration with the empty tape and the state ACCEPT
(REJECT).

3. In no state can M move both to the left and to the right. (In other words, there is no state q with
transitions qaq'b -- and qcq"d -.)

310 U COMPLEXITY

(a)

qq

(b)
(qx)(qx) (7q,-x)/

qX q,

X, X,

(c)

Figure 5.4 Tiles designed to simulate a TM

It is easy to show that each NTM AM can be transformed into a NTM A' that satisfies these three
conditions, accepts the same language as M, and requires only a linear time overhead compared to
M.

Let M = (17, Q, qo, 6) be a NTM satisfying the three conditions defined above. We describe a set of
tiles Tm with the following properties.

1. Each configuration c of M, can be encoded by a row of tiles from TM that satisfies the adjacency
condition. (Such a sequence of tiles can be seen as tiling a horizontal strip of height 1.)

2. Each extension of such a row tiling of a configuration c to a consistent tiling of the row below
encodes a configuration obtained from c by one step of M4.

Construction: Colours C = r U Q U (Q x F) U {L}. Tiles of TM are designed as follows. For each x E
F, q E Q, there are tiles as shown in Figure 5.4a, where shading stands for the symbol U.

The first of these tiles encodes a tape cell that contains the symbol x for the case that the head is
not on that cell. The second tile encodes a cell with x in it and with the head on that cell and with the
finite state control in the state q. Moreover, for each x E F and q E Q there is exactly one of the tiles
shown in Figure 5.4b, depending on whether AM moves, in the state q, only to the left or only to the
right. Finally, to each of the transitions

(q, x, q', x', --) (q, xq', x',) (q, x, q, x',,L

corresponds one of the tiles shown in Figure 5.4c.
For example, the encoding of the configuration aqbcdefgh and of the next three configurations

obtained by the transitions

(q, b, q',b',),(q', c, q",c',),(q , d, q"',d',l)

has the form shown in Figure 5.5.

Theorem 5.4.2 The bounded tiling problem (BTP) is NP-complete.

Proof: BTP is clearly in NP - one just guesses a tiling and verifies whether boundary consistency and
adjacency conditions are satisfied.

NP-COMPLETE PROBLEMS 3 311

Figure 5.5 Tiling simulating a computation

Now let L c NP and M, be a NTM in the normal form defined above that accepts L in time cnk for
some constant c. Finally, let w be an input word of M. We show how to design, in polynomial time,
an instance of BTP, denoted BTP~w, such that M4 accepts w in time clwlk if and only if BTPM,W, has a
solution. Once this is shown, the theorem is proved. Let TM be the set of tiles corresponding to .M and
GM,w be the N x N grid, where N =clwjk, the sides of which are coloured as follows. In the top row
there are colours determined by the word qowUiN Iwi _ that is, by the initial configuration extended by
blanks. The colours of the sides of the last row are determined by the encoding of the only accepting
configuration. Left and right sides of GM,W are coloured by blanks (depicted in the figures by shaded
areas). Clearly, M4 accepts w in time clw~k if and only if there is a tiling of GM.W, with tiles from TM.

Satisfiability of Boolean formulas

Historically, the first known NP-complete problem was the satisfiability problem for Boolean
formulas, due to S. A. Cook (1971). Since then, a number of variants of the satisfiability problem
have turned out to play an important role in complexity theory.

Each Boolean formula F can be encoded in a natural way by a binary word. If FT has length n
and m variables, one needs for encoding of formula F O(n flg ml) bits. The set of all encodings of all
satisfiable Boolean formulas in binary words will be denoted SAT. Formally, we show that SAT is an
NP-complete language. Less formally, this result is stated as follows:

Theorem 5.4.3 (Cook's theorem) The satisfiability problem for Boolean formulas is NP-complete.

Proof: It is easy to see that SAT is in NP. One first checks whether a given input string is an encoding
of a Boolean formula, then guesses a satisfying assignment and evaluates the formula. This can be
done in polynomial time (and actually in linear time on a two-tape TM, because the set of Boolean
formulas constitutes a deterministic context-free language - see Section 7.3).

Now let L E NP and M4 be a one-tape NTM that accepts L in a time bounded by a polynomial p.
We show how to design in polynomial time, given an input w for M4, a Boolean formula -M~w that is
satisfiable if and only if M4 accepts w.

Let M4 = (F,Q, qo,5), Q = {q0,•.-,qs}, where qs 2 HALT, q5-i = ACCEPT, qs = REJECT and
F = {3'1, ••. ,'m,,} with 'y1 J . If M4 accepts w, then M4 makes on the input w, with jwI n, at most

312 ; COMPLEXITY

p(n) steps, and the length of any configuration is at most p(n). (We are assuming that MA has one-way
infinite tape and an idling termination.)

In order to describe TM,w - in short, F' - we use the following variables (which are supposed to
have the value I if the attached condition is satisfied):

C(i,j, t) - ith cell contains the symbol yj at time t,
S(r, t) - Al is in state qr at time t,
H(i, t) - the head of AM stays on the ith cell at time t,

for 1 < i < p(n), 1 < j < m, 0 < t < p(n), 0 < r < s. The total number of variables is: 9(p2(n)). The
formula F' will have the form

F'= A A B A CAD A E A FAG,

where A,... , G are Boolean formulas that describe A4 and its computation on the input w. In order
to shorten the descriptions of these formulas, we use the predicate

EDa,. a7-) =(a, Va2 V .V ai-)A(-~aV -aj),

which has the value 1 if and only if ai = 1 for exactly one i. The length of this formula is O(T 2).

Descriptions of subformulas are as follows:

1. A= A•AA2 A-.. A Ap(n),

A, = ((H(1,t),H(2,t) .. H(p(n),t)),O < t < p(n);

that is, At = 1 if and only if, at time t, the head of .M stays on exactly one of the cells.

2. B = A B(ijt) with B(i,t) = (](C(i,l,t),. . .,C(i,m,t));

O<t<p(n), O<i<p(n)

that is, B(i, t) = 1 if and only if the ith cell contains exactly one symbol at the time t.

3. C= A C, with C,=(S(0,0)..,S(st));
O<_tp(n)

that is, C = 1 if and only if M is in exactly one state at each moment.

4. D = A [(C(ij,t) C(i,j,t+ 1)) VH(i,t)];
0<i, t<p(n), l<j<m

that is, D = 1 if and only if, at each moment, at most one cell changes its contents.

5. E= A Eijkt and Eijk = -C(ij,t)V-S(k,tv-H(i,tv
M<i, t<p(n), O<j<m, O<k<s

V,[C(ijj, t + 1) AAS(k, t + 1) AAH(i + ri,t + 1)];

NP-COMPLETE PROBLEMS U 313

that is, E = I if and only if each next configuration is obtained from the previous one by a valid
transition of A4. In the formula Ejkt, I runs through all possible transitions of A4 for the case
that M is in the state qk and the head reads xj. It is assumed here that an Ith transition has the
form (qk,xi,qk1 ,xj,,r,), where r, c {-1,0, 1}, depending on the direction the head moves.

6. F = S(0,0) AH(1,0) A A C(i,ji,0) A A C(i,1,0),
O<i<n n< i<p(n)

where w = xh,. . . ,x, and F = 1 if and only if at time t = 0 M is in the state qo and the tape
contains w.

7. G = S(s- 1,p(n));

that is, G = I if and only if M comes finally into the accepting state.

The overall length of the Boolean formula F' is therefore 09(pB(n)). It is now easy to verify that F' is
satisfiable if and only if A4 accepts w.

5.4.2 Reduction Method to Prove NP-completeness

The NP-completeness of many problems can been shown by a chain of reductions starting with the
satisfiability problem.

Theorem 5.4.4 The language CNFF {w I w is a satisfiable Boolean formula in CNF} is NP-complete.

Proof: Deciding if a formula is in the conjunctive normal form requires only polynomial time. Since
SAT E NP, we have immediately that CNFF c NP. To show NP-completeness of CNFF, it is now
enough to show that SAT _< CNFF, that is, that there is a polynomial time algorithm to reduce a
Boolean formula F to a Boolean formula F' in CNF such that F is satisfiable if and only if F' is. (Observe
that we do not require that formulas F and F' are equivalent.)

To design an equivalent Boolean formula in CNF we cannot use the method described in
Section 2.3.2, because this method can increase the size of a formula exponentially. However, we
can use the following polynomial time transformation.

Using de Morgan's laws we can shift all negations directly to the variables. In this way we get a
formula with literals and conjunctions and disjunctions as the only operations. Shifting all negations
can be done easily in linear time, by one pass through the formula. One has only to keep track of the
depth of the subformulas with respect to negation. The resulting formula will be at most twice as
long as the original one.

In order to transform the resulting Boolean formula into a conjunction of clauses, the following
trick can be used. If F = F1 V F2 and both F1 and F2 are already in CNF, then we choose a new variable
y that does not occur in the formulas F, and F2, and replace F with the formula F' = (F1 Vy) A (F2 Vy).
Clearly, F is satisfiable if and only if F' is. If now

Fi = G, A ... A Gk

with clauses Gj, 1 < j: <k, then

Fi Vy -- (G1 Vy) A .. A (Gk Vy),

and Gi V y are again clauses. If we continue in this way, and the original formula is of size n, then
the above construction increases its size at most by n, and the whole reduction can be performed in
0(n 2) steps. 0

314 W COMPLEXITY

Theorem 5.4.5 The language 3-CNFF = {w I w is a Boolean formula in conjunctive normal form all clauses
of which have exactly three literals (in the so-called 3-CNF form)} is NP-complete.

Proof: CNFF E NP implies 3-CNFF E NP. To show CNFF <p 3-CNFF, we describe a polynomial time
algorithm that transforms any Boolean formula in CNF into a CNF in which each clause has exactly
three literals. We now show how to transform a clause C = x, V... VXk into such a form. This is done
by introducing new variables. Let us distinguish three cases:

k=1, Cas (XIVylVy 2)A(xiV- yiVy 2)A(x1VylV- y 2)A(xV- yiV- y2);

k=2, C-(xiVx 2 Vyl)A(xVX2 V-•yl);

k>3, C--(XlVX2Vyl)A(-ylVX3Vy 2)A(-•y 2 Vx 4 Vy3)A* "A(-yk-3VXkl Vxk).

It is clear that the resulting Boolean formula is satisfiable if and only if the original one is satisfiable
and that such a transformation can be done in polynomial time.

Exercise 5.4.6 Let CNFF-k be the language consisting of those satisfiable Boolean formulas in CNF in
which each variable occurs in at most k clauses. Show that the language CNFF-3 is NP-complete,

Exercise 5.4.7* Showfor example by a reduction from the 3-CNFF problem, that the CLIQUE problem
is NP-complete. (This is the problem of deciding, given a graph G and an integer k, whether G has a
clique of size k.)

Exercise 5.4.8 Show, for example by a reduction from the 3-CNFF problem, that the
NODE-COLOURABILITY problem is NP-complete. (This is the problem of deciding, given a graph G
and an integer k, whether G is node-colourable with k colours.)

The knapsack problem, the NP-completeness of which we show next, is one that has played
an important role in modem cryptography (see Chapter 8). It is defined as follows. Given integers
w., .. ., w, and c, does there exist a Boolean vector (xl, .. , x) such that

n

Z xiwi = c?

j- 1

(The story behind this: given n objects, ol,.. .'on, with weights wl, . . . w., and a knapsack with
capacity c, is there a subset of objects with total weight exactly c to be loaded into the knapsack?) In
the following we assume that each knapsack problem instance, given by weights and a capacity, is
encoded by a binary string. Let us denote by KNAPSACK the corresponding language of instances
of solvable knapsack problems.4

Theorem 5.4.9 KNAPSACK is an NP-complete problem.

Proof: The problem is clearly in NP. One simply chooses a subset of weights and checks whether
their sum equals the given capacity. NP-completeness of KNAPSACK will be proved by showing that

4There are several variants of the knapsack problem. The one discussed in this section is often called the
SUBSET-SUM problem. Another version is discussed in Section 5.8.2.

NP-COMPLETE PROBLEMS * 315

3-CNFF <m KNAPSACK. To do this, we design an algorithm that transforms, in polynomial time, a
Boolean formula F, in 3-CNFF, into an instance of the knapsack problem that is solvable if and only
if the Boolean formula F is satisfiable.

Algorithm: Let F = F1 A ... AFk, where each F, is a clause with exactly three literals from the
set {xl , - . . ,Xm,-'xi, . . . ,-Xm}. We show now how to construct the knapsack capacity c and the
weights w, .. , w2J+22m (all in decimal - this choice of number system is of no significance because
a transformation into binary form can be done in polynomial time). Let c be an integer the decimal
representation of which has (m + k) digits, all equal to 3:

c = 3 .. 3.,

m+k

(c is chosen in this special way in order to fit the whole construction) and let wl, ... W2k+ 2m be
(m + k)-digit numbers denoted by

Xl .. ,m •X . .. ,• m Y1, . yk Y1, . A , (5.4)

and defined as follows. (The notation used in (5.4) is designed to indicate the relation of these numbers
to literals xj, . ., x, -xi, . . . , Xm or to the clauses F1 , . .. , Fk.)

(1) For i = 1,.. . , m, the ith right-most digit in xi and also in -xi is 3. For j = 1, . . . , k, the (m + j)th
right-most digit in xi (in -Yx) is 1 if Fj contains xi (if Fj contains -xi). All other digits in xi and -Yx

are 0.
Observe that in this way Ti contains, in its decimal representation, uniquely and easily decodable

information as to which of the variables it corresponds (namely xi) and which of the clauses xi occurs.
The same holds for -xi. Therefore the numbers Y1, . . • Ix, -Ix, . ..x, represent a full description
of the formula F.

(2) For j = 1, . . . ,k, the (m +j)th right-most digit in yj is 1, and all other digits are 0. Moreover,
yi = y' for all 1 < i < k.

Example 5.4.10 IfF = (x1 V x2 V -'x3) A (-xl V -x 2 V x3), then k = 2, m = 3, c=33333 and

XY = 01003 -Yi = 10003 yi = 01000 = YI
Y22 = 01030 -Y2- = 10030 Y2 = 10000 = Y2'
T3 = 10300 -T3 = 01300

Clearly, c = Tl + T2 + -3 + yl + y' + y2.

We now show that the knapsack problem KF, given by the weights wi, .. , W2k+ 2m and the capacity
c as described above, has a solution if and only if the formula F is satisfiable.

1. Let F be satisfiable. Fix a satisfying assignment a for F. For each i = 1,. .. , m, we take Yi or -'x
into the solution of KF, depending on whether xi has the value I or 0 in the assignment a. The
sum of all these numbers has the last m digits equal 3, and each of the first k digits of this sum
is either 1, 2 or 3. By adding a proper number of y's and y"s, we get exactly c.

2. Let the knapsack problem KF have a solution. In other words, assume that there is a subset of
numbers from (5.4) that is a solution of KF. This is possible only if, for each i = 1,.... Im, exactly
one of the numbers Ti or -xi is in a sum forming c. By taking exactly that one from each pair
(Ti, -Ti), we get a satisfying assignment for F.

316 3 COMPLEXITY

b ij 1j C 1 ,3

H1 H

bi'mi• ci'mi •

(a) (b) (c)

Figure 5.6 Design of a Hamiltonian graph for a satisfiable Boolean formula

The last problem, whose NP-completeness we now show, again by a reduction from 3-CNFF, is the
Hamilton cycle problem for directed graphs - one of the basic problems concerning traversal of
directed graphs. We denote by HAMILTOND the set of encodings of directed graphs that have a
Hamilton cycle.

Theorem 5.4.11 HAMILTOND is an NP-complete problem.

Proof: It is trivial to see that HAMILTOND E NP, so we concentrate on showing a polynomial time
reducibility of 3-CNFF to HAMILTOND.

Let a Boolean formula in 3-CNF have the form F = F, A... AFk, where each Fi = yil V yi2 V Yi3 is
a clause with three literals. We show how to design in polynomial time a graph GF such that F is
satisfiable if and only if GF has a Hamilton cycle.

Let x1,. .•, Xm be all the variables that occur in F, and for each I < i < m, let mi be the total number of
occurrences of the literals xi and -xi in F. First, for each variable xi we design a subgraph Hi, depicted
in Figure 5.6a, with 2mi + 4 nodes, 4mi + 6 edges and mi + 3 levels. We also design for each clause
Fj a subgraph Gj, with 6 nodes, 9 internal edges, 3 ingoing and 3 outgoing edges (see Figure 5.6c).
Moreover, let us connect all Hi graphs into a cycle, as indicated in Figure 5.6b, to get the graph H.

Observe that each Hi has exactly two edge-disjoint Hamilton paths. Each is uniquely determined
by the edge chosen at the starting node - either to bi,0 or to ci,o. Observe also that in one of these
two paths all edges from one level to the next are always from a b-node to a c-node, and that in the
second path this is exactly in the opposite direction. The key point for our reduction is that one of the
Hamilton paths through the graph Hi, say the one through bi,0, will correspond to the assignment of
1 to the variable xi and the second to the assignment of 0 to xi.

As for the next step, we connect all Gi graphs with H to get a graph that encodes the whole
formula F. For each clause Fj and each of its literals yjk, we do the following: if yjk = xi, then in the
subgraph Hi we introduce an edge from a c-node to the node rjk and an edge from the Sjk-node to
the corresponding b-node. If Yjk = -'xi, we make a similar construction, but this time a detour from a
b-node to a c-node of the next level is introduced, and the corresponding nodes are connected with
nodes rjk and Sjk. It is not important which of the not-yet-used levels of Hi is taken to make these

NP-COMPLETE PROBLEMS U 317

interconnections between Hi and Gj graphs. Since each Hi has exactly mi + 1 levels with two nodes,
the whole construction can take place. We perform this construction for all clauses and all literals in
them. As a result, all input and output edges of all Gj graphs are connected with some nodes of H.
The resulting graph GF uniquely encodes F.

It remains to show that GF has a Hamilton cycle if and only if the Boolean formula F is satisfiable.
Let us first assume that F is satisfiable.

Observe that if one enters a Gj graph through a node rjk in a Hamilton cycle through the graph
GF, then there is only one way to visit all nodes of Gj exactly once and to get out - through the node
Sjk. If one leaves through any other node, then there is a node of Gj that has not yet been visited, and
there is no other way to visit it on this to-be-Hamilton cycle.

If F is satisfied, then we pick up in each clause Fj one literal that takes the value I in the chosen
assignment. If the literal corresponds to a variable xi, this determines the way Hi should be traversed.
In addition, for this single literal we make a detour from Hi to visit Gj and to take a Hamilton path
through Gj. In this way we get a Hamilton cycle for GF.

The rest of the proof, to show that the existence of a Hamilton cycle for GF implies the existence
of a satisfying assignment, is not difficult using the above arguments and is left to the reader. f0

Exercise 5.4.12 Show that the problem of deciding for a given undirected graph G whether G is
Hamiltonian, the so-called HAMILTON problem, is NP-complete.

Exercise 5.4.13 Show that the problem of deciding whether a given graph has a Hamilton path is
NP-complete.

5.4.3 Analysis of NP-completeness

The concept of NP-completeness is one of the most important and most complex in computing. Let
us analyse various aspects of it.

NP-completeness of optimization problems

The so-called decision versions of many important optimization problems, actually almost all one
needs to solve in practice, are NP-complete in the sense discussed later. On the theoretical side, this
is, for example, the problem of determining the maximum number of satisfying assignments of a
Boolean formula - the MAXSAT problem. Perhaps the most important and most widely investigated
optimization problem is the travelling salesman problem (TSP) defined as follows.

We are given n cities, denoted by cl,.. ., c,, and a nonnegative integer distance dij between any
two cities ci and ci (assuming dij = dji, for all i,j). The task is to find the shortest tour of the cities - that
is, a permutation iron {1, ,n} such that = •(i),,(i 1 l) is as small as possible (where 7r(n + 1) is
defined to be 7r(1)).

Neither of these is a decision problem and therefore the concept of NP-completeness does not
apply formally to them. In spite of this, it is common to speak of the NP-completeness of such
problems. By this we usually understand NP-completeness of the decision versions of the problems,
where a bound b is given, as part of the input data, and the question is to decide whether there is
a solution smaller (or larger) than this bound. For example, in the case of the MAXSAT problem,
the question is whether the number of satisfying assignments is larger than b. In the case of TSP the
question is whether there is a tour through the graph shorter than b.

318 * COMPLEXITY

Theorem 5.4.14 The decision version of the travelling salesman problem is NP-complete, and the travelling
salesman problem is NP-hard.

Proof: We first show how to reduce, in polynomial time, the HAMILTON problem to a bounded
decision version of TSP. Let G be a graph with n nodes cl, . . ., c,. We design a distance matrix {dij }I
and a cost limit b such that there is a Hamilton cycle in G if and only if there is a tour in G of length at
most b. The distance dij is defined to be I if there is an edge between the nodes ci and cj in G; otherwise
di) = 2, and b is defined to be n. The rest of the proof is now straightforward. 0

Decision versions of hundreds or even thousands of various optimization problems have turned
out to be NP-complete. The rationale behind viewing optimization problems in this way is that once
we know a polynomial time algorithm for such a decision version of an optimization problem, then
it is easy to find the optimal solution using the binary search approach.

Example 5.4.15 Assume we have a polynomial time algorithm Afor the bounded version of TSP. Given a
graph G and a distance matrix { dij 1}, we can use A to compute the shortest tour of G as follows. First we take

a trivial upper bound on the length of such a tour, say b. Then we use A to decide whether G has a tour shorter
than t. If yes, we call A with ', fnot with ". Continuing this binary search, we can get, with logarithmically
many attempts, the shortest tour.

Exercise 5.4.16 Show that in the case of the TSP the task of finding the shortest tour can be reduced
in polynomial time to the problem of computing the cost of the minimal tour and to the corresponding
decision problem.

Fragility of NP-completeness

There is a simple and quite good rule of thumb for finding out whether a decision problem is
NP-complete: if checking exponentially many possibilities seems to be the only way to solve the
problem and, at the same time, it is easy to verify the correctness of any to-be-solution. However, as
Table 5.1 shows, this has its limits. There are pairs of algorithmic problems that look very similar but
one is in P and the other is NP-complete.

Isomorphism of NP-complete problems

NP-complete problems occur in all areas of computing, mathematics, science, engineering and so
on, and often at first sight one sees no relation between them. In spite of this - and this is a quite
surprising and important discovery - there are no two known NP-complete problems that are not
isomorphic in the following sense: there is a bijection, computable in polynomial time, that maps
instances of one NP-complete problem into instances of the second one; and the inverse mapping is
also computable in polynomial time. This seems to indicate that any two NP-complete problems are
actually very similar! However, there is no proof yet that this is really true. Therefore we have only
a conjecture.

Hypothesis (Berman-Hartmanis hypothesis) All NP-complete problems are mutually polynomial
time isomorphic.

NP-COMPLETE PROBLEMS • 319

POLYNOMIAL TIME NP-COMPLETE

EDGE COVER VERTEX COVER
Input: Graph G = (V, E), integer k. Input: Graph G = (V, E), integer k.
Problem: Is there a subset E' c E Problem: Is there a subset V' c V
with IE'l < k such that every vertex is with I V'l < k such that every edge is
incident with an edge in E? incident with a node in VW?

EULER CYCLE HAMILTON CYCLE
Input: Graph G = (V, E). Input: Graph G = (V, E).
Problem: Does G have a Euler tour? Problem: Does G have a Hamilton cycle?

LINEAR DIOPHANTINE EQUATIONS QUADRATIC DIOPHANTINE EQUATIONS
Input: Positive integers a, b and c. Input: Positive integers a, b and c.
Problem: Are there positive integers Problem: Are there positive integers
x and y such that ax + by = c? x and y such that ax' + by = c?

LINEAR PROGRAMMING INTEGER LINEAR PROGRAMMING
Input: k x 1 matrix A over Z, b G Zk. Input: k x I matrix A over Z, b E Zk.

Problem: Does there exist y c Q' such Problem: Does there exist y E Z' such
that Ay > b? that Ay ! b?

Table 5.1 Problems in P and NP-complete problems

Currently there seems to be more doubt than belief that the hypothesis is true. The following fact
also contributes to this: if the existence of good approximation algorithms for NP-complete problems
is considered (see Section 5.8), then we can prove that there are, from the approximation point of
view, essential differences among NP-complete problems.

NP-completeness dependence on the form of inputs

In saying that a decision problem is NP-complete, it is implicitly assumed that all numerical input
data are given in binary (or decimal) form, and that the total number of bits needed to represent all
input data is the size of the problem. This implicit assumption is sometimes essential, because an
NP-complete problem can be in P if input data are given using the unary representation, or even
outside NP if input data are given in some very compressed form!

Example 5.4.17 (Knapsack problem with input data in unary form) We recall that

n

KNAPSACK = {al, ... aancI (xl.... xn) E {O1}n0, aixic.

Now let us consider a vector B[O,1, . . . ,c], defined,for 0 < s < c, by

1, if I(x l ,X') E {0,1}n :S = E llaixi;
B~s] = 0, otherwise.

We can compute the vector B in 9(nc) time using the following algorithm:

320 4 COMPLEXITY

B[O] *- 1;
for s - 1 to c do B[s] - 0;
for i 1- 1 to n do for s -- c downto aj do

if B[s - aj] 1 then B[s] - I

If the input data for the KNAPSACK problem are given in unary form, their representation has a length of at
least n + c bits (c bits are needed to represent c, and at least one is needed for each ai). The time complexity of
the above algorithm is therefore quadratic with respect to the size of the input.

However, there are NP-complete problems that remain NP-complete even when their input data
are given in unary form. Such problems are called strongly NP-complete.

Exercise 5.4.18 Show that thefollowing NP-complete problems are strongly NP-complete: (a) CLIQUE
problem (see Exercise 5.4.7); (b) TSP problem (decision version).

Example 5.4.19 The 3-PARTITION problem is also an example that is NP-complete in the strong sense. It
is the following problem: given numbers aij 1 < i < 3m, partition these numbers into m sets in such a way

that the sum of the elements in each set is the same. (If Zr=m ai = mb, and it is required that, in addition, each
ai C (,), then each partition has to have three elements - hence the name of the problem.)

The existence of a strong dependence of the running time of some algorithms on the way inputs are
presented leads to the following concept.

Definition 5.4.20 A pseudo-polynomial time algorithm is one whose running time would be polynomial
if all inputs were expressed in unary notation.

There are also NP-complete problems that are no longer in NP if inputs are given in a very compressed
form. This has been shown for various problems on regular graphs with n nodes that can be
represented using 0 (log n) bits.

5.5 Average-case Complexity and Completeness
Most of complexity theory deals with worst-case complexity. The main reason is that worst-case
complexity is much easier to deal with than average-case complexity while still providing deep
insights into the nature of computing and paying large practical dividends.

However, in some cases average-case complexity of algorithms and algorithmic problems
provides more adequate estimations of real computational complexity. One area where it is often
insufficient for a problem to have large worst-case complexity and we need high average-case
complexity is cryptography (Chapter 8). Moreover, the average-case complexity provides a different
hierarchy of algorithmic problems. Indeed, there are pairs of algorithmic problems with the same
worst-case complexity but with very different average-case complexity.

In addition, the existence of NP-complete problems for which no efficient algorithms seem to
exist, with respect to worst-case complexity, led to the search for algorithms that are 'efficient' with
respect to some more modest criteria. A natural approach along these lines is to consider algorithms
for NP-complete problems which, although possibly exponential on some inputs, are fast on average
with respect to a given probability distribution on inputs. This approach has turned out partially

AVERAGE-CASE COMPLEXITY AND COMPLETENESS U 321

successful. Algorithms that are fast on average have been found for several NP-complete problems,
such as Hamilton path and vertex k-colouring problems. However, some NP-complete problems
resisted all 'average case attacks'; for example, bounded halting and tiling problems. They also seem
to be hard with respect to average-case complexity.

In order to get a deeper understanding and a classification of algorithmic problems with respect to
average-case complexity, several new basic concepts have to be introduced: the concept of the average
polynomial time to study 'easiness on average' and the concepts of feasible distributions, reductions
and the average-case completeness, to study 'hardness on average' of algorithmic problems.

5.5.1 Average Polynomial Time

A natural approach to measure the average efficiency of algorithms is to use expected polynomial
time. An algorithm runs in expected polynomial time t(n) over a probability distribution P if
(3k > 0)(Vn) E-'X/= n t(x)lzp(x) = 0(nk), where t(x) is the time complexity of the algorithm for input x
and I, is the conditional probability distribution of y on strings of length n. However, this definition
is much machine dependent, as the following example-shows, and therefore a more subtle approach
is needed to get suitable concepts.

Example 5.5.1 If an algorithm A runs in polynomial time on a 1 - 2-) 1 "fraction of input instances of length
n, and runs in 2`19n time on the 2-I` fraction of remaining inputs, then its expected time is bounded by a
polynomial. However, as it is easy to see, the expected time for A will be exponential on a quadratically slower
machine.

It has turned out that in order to have an algorithm polynomial on average we need a proper
balance between the fraction of hard instances and the hardness of these input instances. Actually,
only a subpolynomial fraction of inputs should require superpolynomial time.

In order to motivate the definition given below let us realize that in worst-case complexity the time
t(n) of an algorithm is measured with respect to the length of the input - we require that t(x) < jxlk,
for some k, in the case of polynomial time computations. In the case of average-case complexity, we
allow that an algorithm runs slowly on rare (less probable) inputs. In the case we have a function
r: E* - R' to measure 'rareness' of inputs from E*, we may require for the average polynomial time
that t(x) • (Ixlr(x))' for some k. In such a case t(x)i Ix-1 <_ r(x) and if 6 < 1, then EX t(x)•/k1xI l p(x) <-

Zx(t(x)P/k1xI-l)•lp(x) < Ex r'(x)r(x) < cxc. This motivates the following definition.

Definition 5.5.2 A function f : E* - N is p-average polynomial (or polynomial on p-average), with
respect to the probability distribution p. if there exists an integer k such that

xEE* X

Note that this definition is well motivated and robust. Indeed, since the outcome is not affected
by raising f(x) or jx to a constant power, the definition is to a sufficient degree machine-model
independent and is also not affected by polynomial reductions.

322 N COMPLEXITY

Exercise 5.5.3 Show that afunctionf is p-average polynomial if and only if there are constants c, k > 0
such that pf(x) > (ljxi)kJ < ý,for all 1 E R+.

Exercise 5.5.4* Show that iffunctions f and g are p-average polynomial, then so are functions f + g
and f g.

In order to extend the concept of NP-completeness to the average-case complexity, we have to
take a more general view of what a decision problem is. By that we will mean, for the rest of this
section, a pair (L, p), a distributional decision problem, where L C yj* is a language L = {x I A(x) > 0},
and p is a probability distribution over E'.

A language L is said to be decidable in the average polynomial time with respect to a distribution
p if it can be decided by a deterministic algorithm whose time complexity is bounded from above by
a p-average polynomial function. By AP we denote the class of all distributional decision problems
(L, g), where L is decidable in t-average polynomial time. Analogically, we define ANP to be the class
of distributional decision problems (L, p), where L is decidable in p-average polynomial time on a
nondeterministic Turing machine.

5.5.2 Reductions of Distributional Decision Problems

It has been shown that in order to introduce properly the concept of reducibility and completeness
among distributional decision problems we need to put some conditions on probability distributions.
A basic condition is that we consider only distributions p such that the corresponding cumulative
distribution function /p* (x) = FYsx/p(y) is polynomial time computable in the following sense:

Definition 5.5.5 Afunctionf : E'* [0, 1] is polynomial time computable if there is a MTM which for every
input x E E+ outputs a finite binary fraction y, in time polynomial in xj and k, such that f(x) - yJ <_ 2-k.

Observe that the requirement for p* to be polynomial time computable is strong, because the sum
to compute p* (x) is taken over the exponentially many substrings smaller than x, with respect to the
strict ordering.

Exercise 5.5.6 Show that if a cumulative distribution function p* is computable in polynomial time,
then so is pt.

With the last result in mind we assume in the following that if we say that a distribution p is
polynomial time computable, then this means that both p and p* are polynomially computable - all
commonly used distributions have this property.

It is not trivial to define reductions f from one distributional problem (L1 , pl) to another (L2, P2).
A natural requirement is that AP should be closed under such reductions in the sense that if (L2, p2)

is in AP, then so is (L1, pl). It has turned out that a suitable way to guarantee this is to require
that f efficiently reduces L1 to L2, as in the worst-case situation, and f does not reduces 'frequent'
instances of L1 into 'rare' instances of L2. This means that if we denote by f(pi) the distribution
defined by f(pi)(y) = Zf(x) =yf 1 (x), then the distribution f((pi) should be bounded from above,
within a polynomial factor, by the distribution P2. This leads to the following definitions:

AVERAGE-CASE COMPLEXITY AND COMPLETENESS U 323

Definition 5.5.7 (1) Let p and v be probability distributions on the same domain E*. Then p is dominated
by v, in short p -ý v, if there exists a polynomial p such that p(x) < p(jxj)V(x),for all x e F,+.

(2) Let il and t12 be distributions on strings of languages L1 and L2, respectively, andf be a reduction from
L1 to L2. Then p1 is dominated by P2, with respect tof, notation p, •_f A2, if there exists a distribution g' on
Z+ such that p1 -< 1 and Pz(y) =f(gl)(y),for all y E range(f).

Definition 5.5.8 A distributional problem (Lj,p 1) is polynomial-time reducible to (L2,Y 2) if there is a
polynomial time computable reductionf such that L1 is many-to-one reducible to L2 viaf and l -'f P2.

In other words, a polynomial reduction from a distributional decision problem (L, P), L C 1*, to
a problem (L', p'), is a polynomial reductionf of L to L' such that the following property holds: there
exists an integer I such that, for all x E Y*,

1'(x) >_ t ,
,Yf-'(x)

i.e., the distribution p' should be nowhere more than polynomially smaller than the distribution
induced by p.

Exercise 5.5.9 Show that if a distributional problem (L1, pl) is polynomial time reducible to (L2.P 2)

and (L 2 ,4 2) E AP, then also (LI,pl1) E AP.

Exercise 5.5.10" Show that polynomial time reductions on distributional decision problems are
transitive.

5.5.3 Average-case NP-completeness

Let us denote by DNP the class of distributional decision problems (L, p) such that L E NP and p u
for some polynomial time computable distribution v. The class DNP, which is a proper subclass of
ANP, seems to be the right framework to deal with average-case NP-completeness.

A distributional decision problem (L, i) is said to be average-case NP-complete (or
DNP-complete), if it is in DNP and every distributional problem in DNP is polynomial time reducible
to it.

Several natural NP-complete problems have turned out to be average case NP-complete with
respect to distributions in which each parameter of the input instances is selected uniformly and
randomly, for example, the bounded halting and tiling problems (and bounded versions of the
Post correspondence problem, Thue problem and the word problem for (finitely generated) groups,
discussed in the next chapter).

In this context, but also in many others, it is of importance to have a good concept for a 'uniform'
distribution on the set of all strings over an alphabet E. This is a nontrivial problem because it is
impossible to select strings with equal chance from an infinite sample space. The idea formulated in
the following definition has turned out to be appropriate. First choose an integer with a probability
close to 'uniform' and then select uniformly a string of that length.

Definition 5.5.11 A polynomial time computable distribution P on E+ is called uniform if there is affunction
p : N -- R such that for all x, p(x) = p(Ix1)2- Ix, where E. p(n) = 1 and there is a polynomial p such that
p(n) 1 - 1 ,for all but finitely many n.

324 U COMPLEXITY

In this way it is guaranteed that about any length gets a 'fair' amount of weight to be selected.
(sE., p(n) = 1, for example, for p(n) = '.)

The proofs of the average-case NP-completeness are in general more technical than for
NP-completeness, because probability distributions are involved. As an example of such a problem
we discuss the following randomized version of the bounded halting problem (RBHP) for a NTM
A4:

Input: A string wO1 with n > jwI.

Question: Is there a halting computation of M on jwj with at most n steps.

Probability: Proportional to n-32-Il.

(The above probability distribution for RBHP corresponds to the following experiment: randomly
choose n, then k < n and, finally, a string w of length k.)

Remark 5.5.12 Let us now summarize a variety of further results that help to see merits and properties
of the concepts introduced above.

I. Similarly as for NP-completeness, all known pairs of average-case NP-complete problems have
been shown to be polynomially isomorphic under polynomial time reductions.

2. In order to define average-case NP-completeness we could also use average polynomial time
reductions instead of polynomial time reductions. In addition, using average polynomial time
reductions one can define completeness for the class ANP. All average-case NP-complete
problems are also average polynomial time complete for ANP. However, there are
distributional problems that are not in DNP but are average polynomial time complete for
problems in ANP with polynomial time computable distributions.

3. It has been shown that there are problems not in P but in AP under any polynomial time
computable distribution. However, if a problem is in AP under every exponential time
computable distribution, then it has to be in P.

4. It seems unlikely that DNP C AP, because this has been shown not to be true if E =

Uk', Time(nk) $ NE = U- IiNtime(nk) (which is expected to be true). See also Section 5.11
for classes E and NE.

5.6 Graph Isomorphism and Prime Recognition

Two important algorithmic problems seem to have a special position in NP: graph isomorphism and
prime recognition. All efforts to show that they are either in P or NP-complete have failed.

5.6.1 Graph Isomorphism and Nonisomorphism

As we shall see in Section 5.11.1, a proof that the graph isomorphism problem is NP-complete would
have consequences that do not agree with our current intuition.

On the other hand, it is interesting to note that a seemingly small modification of the graph
isomorphism problem, the subgraph isomorphism problem, is NP-complete. This is the problem of
deciding, given two graphs G1 and G2, whether G1 is isomorphic with a subgraph of G2 .

GRAPH ISOMORPHISM AND PRIME RECOGNITION N 325

Exercise 5.6.1 Explain how it can happen that we can prove that the subgraph isomorphism problem is
NP-complete but have great difficulty in proving the same for the graph isomorphism problem?

In addition, the graph isomorphism problem is in P for various important classes of graphs, for
example, planar graphs.

Exercise 5.6.2 Show that the following graph isomorphism problems are decidable in polynomial time:
(a) for trees; (b)for planar graphs.

A complementary problem, the graph nonisomorphism problem, is even known not to be in NP.
This is the problem of deciding, given two graphs, whether they are nonisomorphic.

It is worth pointing out why there is such a difference between graph isomorphism and graph
nonisomorphism problems. In order to show that two graphs are isomorphic, it is enough to provide
and check an isomorphism. To show that two graphs are nonisomorphic, one has to prove that no
isomorphism exists. This seems to be much more difficult.

We also deal with graph isomorphism and nonisomorphism problems in Chapter 9.

5.6.2 Prime Recognition

This is an algorithmic problem par excellence - a king of algorithmic problems. For more than two
thousand years some of the best mathematicians have worked on it and the problem is still far from
being solved. Moreover, a large body of knowledge in mathematics has its origin in the study of this
problem.

There are several easy-to-state criteria for an integer being a prime. For example,

Wilson's test: n is a prime if and only if (n - 1)! - -1 (mod n).

Lucas's test: n is a prime if and only if Ig E Z* such that g"-' = 1 (mod n) but g(,-1)/p p 1 (mod n)
for all prime factors p of n - 1.

None of the known criteria for primality seems to lead to a polynomial time algorithm for primality
testing. The fastest known deterministic algorithm for testing the primality of a number n has
complexity O((lg n)cIg Ig Ig n). However, it is also far from clear that no deterministic polynomial time
primality testing algorithm exists. For example, it has been shown that primality testing of an integer
n can be done in the deterministic polynomial time O(1g 5 n) if the generalized Riemann hypothesis
holds.

5

The following reformulation of Lucas's test provides a nondeterministic polynomial time
algorithm for recognizing primes, and therefore prime recognition is in NP.

E- 1=0,wtthrelprbewn5The Riemann hypothesis says that all complex roots of the equation n=1 0, with the real part between
0 and 1, have as real part exactly 1/2. This is one of the major hypotheses of number theory, and has been
verified computationally for 1.5 .109 roots. The generalized Riemann hypothesis makes the same claim about
the roots of the equation JnOlI(n) = 0, where x(a) = Xn(a mod n) if gcd(a,n) = 1, and 0 otherwise, and Xn
is a homomorphism of the multiplicative group Z* into the multiplicative group of all complex numbers. The
generalized Riemann hypothesis has also been verified for a very large number of roots.

326 I COMPLEXITY

Algorithm 5.6.3 (Nondeterministic prime recognition)

if n = 2 then accept;
if n = 1 or n > 2 is even, then reject;
if n > 2 is odd then choose an I < x < n;

verify whether xn-1 = l(modn);
guess a prime factorization pi, Pk of n - 1;
verify that p .. pk = n - 1;
for 1 < i < k, check that pi is prime and x("-ll/Pi 0 1 mod n;
accept, if none of the checks fails.

If lgn = m, then the computation of x"-' and x(n-l'lpi takes time 0(m 4). Since pk < n / 2, one can
derive in a quite straightforward way a recurrence for time complexity of the above algorithm and
show that its computational complexity is 0(1g 5 n).

Exercise 5.6.4* Show in detail how one can derive an O(1g 5 n) time upper bound for the complexity of
the above nondeterministic implementation of Lucas's test.

Recognition of composite numbers is clearly in NP - one just guesses and verifies their
factorization - and therefore prime recognition is in NP n co-NP.

5.7 NP versus P
In spite of the fact that the complexity class NP seems to be of purely theoretical interest, because
the underlying machine model is unrealistic, it actually plays a very important role in practical
computing. This will be discussed in this section. In addition, we analyse the structure and basic
properties of the complexity classes NP and P, as well as their mutual relation.

5.7.1 Role of NP in Computing

There is another characterization of NP that allows us to see better its overall role in computing. In
order to show this characterization, two new concepts are needed.

Definition 5.7.1 A binary relation R C E* x E* is called polynomially decidable if there is a deterministic
Turing machine that decides the language {x#yI (x,y) E R}, with # being a marker not in E, in polynomial
time. Moreover, a binary relation R is called polynomially balanced if there is an integer k such that
(x,y) E R implies lyj <F Jxlk. (In other words, the size of y is polynomially bounded by the size of x, and
therefore, if (x, y) E R, then y can be only polynomially larger than x.)

Theorem 5.7.2 A language L is in NP if and only if there is a polynomially decidable and polynomially
balanced relation R such that L = {xI (x,y) E Rfor some y}.

Proof: (1) If L e NP, then there is a NTM M that decides L in polynomial time nk for some k. Let R
now be the relation defined as follows: (x,y) E R if and only if y is an accepting computation for A4
and its input x. Clearly, R is polynomially balanced and decidable. Moreover, L = {xI (x, y) E R}.

(2) Let a polynomially balanced and decidable relation R exist for a language L, and let k be such
that (x,y) E R implies Jyj < JxJk. We show how to design a polynomial time bounded NTM AM that
decides L. For an input x, M first guesses a y such that Iyl < Ixik, then decides whether (x,y) E R. Both
tasks can be performed in polynomial time, because R is polynomially balanced and decidable. 0

NP VERSUS P U 327

Note that our new characterization of NP from Theorem 5.7.2 does not use the concept of
nondeterminism at all.

Theorem 5.7.2 throws light on the substance of the class NP. If a problem (language) L is in NP,
then each 'yes' instance x of the problem (x c L) has a short, of polynomial size, certificate (witness,
proof of membership) y that x is in L. One can easily, in polynomial time, verify the correctness of a
chosen certificate for x.

In the case of the satisfiability problem, a satisfying assignment is such a certificate. In that
of the Hamilton cycle problem, it is a particular Hamilton cycle that is a certificate. In that of the
graph isomorphism problem, it is a particular isomorphism that plays the role of a certificate. Prime
recognition is an example of a problem that has a certificate, but one to show that is far from trivial.

Many important properties in NP are such that their negation is also in NP. One can demonstrate
this using witnesses. For example, it is easy to give a certificate that a graph is connected, and also
for the case that it is not connected. However, in many cases deep mathematical results have to be
used to show the existence of a witness. For example, it is not difficult to give a witness that a graph
is planar, even this is far from trivial (coordinates of nodes could have too many digits). This is based
on the result of graph theory saying that if a graph is planar, then it can be drawn in the plane in such
a way that each edge is a straight line segment and the coordinates of every vertex are integers whose
number of digits is polynomial in the size of the graph. The existence of a certificate for nonplanarity
of a graph follows from Kuratowski's theorem. To give a witness that a graph has a perfect matching
is easy; one simply presents such a matching. On the other hand, the existence of a witness for the
nonexistence of a perfect matching follows from Tutte's theorem.

NP is certainly the most important complexity class, containing most, though not all, of the natural
problems one encounters in computing. Theorem 5.7.2 can serve as a basis for explaining why. Indeed,
many computational problems require that we design objects with certain properties. Sometimes an
optimal solution is required, sometimes any solution will do. These mathematical objects are often
an abstraction of real objects. It is therefore only natural that they cannot be of enormous size, and
that it should be easy to verify whether they have the required properties. Such objects are actually
the certificates that Theorem 5.7.2 talks about.

5.7.2 Structure of NP

The study of the complexity of computational problems mostly concerns NP. The main task is
to sort out which problems have a polynomial time solution and which do not. The concept of
NP-completeness plays the key role here. If a problem is shown to be NP-complete, it is certainly
among those least likely to be in P.

What structure does NP actually have? If P = NP, we get the simple picture shown in Figure 5.7a,
and the whole theory of NP-completeness loses its merit. This, however, is very unlikely with respect
to our current knowledge. If P $ NP, we know at least two important subclasses of NP. They are P
and the class of NP-complete problems. Is that all? Two problems discussed in the previous section
indicate that it is not. Indeed, the following theorem shows that the structure of NP in such a case is
as depicted in Figure 5.7b.

Theorem 5.7.3 If P 7 NP, then (a) there is a language L E NP - P that is not NP-complete; (b) there is an
infinite hierarchy of complexity classes between P and NP.

5.7.3 P = NP Problem

A proof that P = NP could clearly have a large impact on practical computing, because it would imply
the existence of polynomial time algorithms for many algorithmic problems we greatly need to solve
efficiently.

328 U COMPLEXITY

NP graph NP prime

NPisom h'ism orplt reco nition

to be NP-complete

(a) P = NP (b) P eNP

Figure 5.7 Structure of NP

Exercise 5.7.4 Why is it not absolutely clear that a proof that P = NP would significantly affect practical
computing? What might happen?

A proof that P # NP could also have a large impact on our understanding of the nature of

computing. This is mainly due to the fact that many results of the following type are known:

P = NP if and only if holds.

For example,

P = NP if and only if every honest partial function computable in polynomial

time has an inverse computable in polynomial time.

A functionf is honest if and only if for every value y in the range of f there is an x in the domain of f
such thatf(x) = y and IxI < p(ly1) for some fixed polynomial p. The last result is sometimes interpreted
as P$ NP if and only if there is a one-way function. However, the requirement for one-way function
formulated in Section 2.3.3 is stronger than that in the above result.

Exercise 5.7.5 Show that if a function has an inverse computable in polynomial time, then it is honest.

Theorem 5.7.2 also suggests another way of viewing the P = NP problem. A certificate y for a 'yes'
instance x of an NP-complete problem can be seen as a proof for x. By Theorem 5.7.2, NP-complete
problems have proofs that are of a reasonable size and easily verifiable. However, they may not be
easy to find. P can be seen as the class of problems for which one can find the proof in polynomial
time. The problem P = NP can therefore be seen as the problem of resolving the following puzzle:
which is more difficult, to find a proof or to check a proof? The answer seems to be intuitively clear
- but only until one tries to prove it.

It is natural that much current research in foundations of computing should concentrate on areas
which could lead to the solution of the P = NP problem. One way that seems promising is by means of

NPVERSUSP U 329

circuit complexity. By Theorem 4.3.24, for each problem in P there is a uniform family of polynomial
size circuits. Hence, in order to show that an NP-complete problem is outside P, it would suffice
to show that its circuit complexity is superpolynomial. Since almost all Boolean functions have the
worst possible circuit complexity, this might not seem to be a big deal. However, currently the best
lower bound for circuit complexity of an NP-complete problem is 3n - o(n).

It could also happen that the P = NP problem is not solvable within the framework in which
current logic, mathematics and computing theory are developed. It behoves us therefore also to
explore this possibility. One attempt to do this is by means of relativized complexity theory, where
relativization is understood with respect to different oracles.

5.7.4 Relativization of the P = NP Problem*

The concept of an oracle, introduced in Section 5.3, is a formalization of an intuitive idea of computing
with advice or help from an oracle or, more plainly, with subprograms.

If we fix a language A as an oracle, and consider complexity classes relativized to this oracle, we
can speak of relativized complexity classes. If L is a complexity class, then LA denotes the relativized
complexity class: namely, the class of languages accepted by oracle Turing machines MA, where M
is a Turing machine accepting a language from L. If A is a family of languages, then LA = UAA LCA"

We show now that the solution of a relativized version of the P = NP problem, namely, the pA =

NPA problem, depends on the choice of the oracle.

Theorem 5.7.6 There are oracles A and B such that pA = NPA and PB 7 NPB.

Proof: Let A be a PSPACE-complete language. According to Savitch's theorem, we have

p4= pPSPACE = PSPACE,

NPA = NPPSPACE = NPSPACE = PSPACE;

therefore pA =NPA.
Construction of the language B is more involved, and the diagonalization method will be used

for this.
For each language B let us define a language

LB= = {f0n 3w E B, lwl = n}.

Clearly, LB E NPB. In order to prove the second statement of the theorem, it is sufficient to show that
there is a B such that LB 0 pB. This will now be done.

Let M 1 , M 2 ,... be an enumeration of polynomial time bounded deterministic oracle Turing
machines, and let pp2,•...- be their corresponding polynomial time bounds. Such an enumeration
can be obtained from an enumeration of all TM and polynomials, by putting a 'polynomial clock' to
each of them, like in Lemma 5.1.12.

We design a set B C {f0, 1}* in phases using the following method:

Phase 0. Set B *- 0, and n -- 0.
Phase k > 0.
1. Take m to be the smallest integer such that 2m > pk(m) and m is larger than the length of the

longest string that any of the machines M1, • ,Mk asks its oracle for inputs of length at most n.
(Observe that m is well defined.)

2. Set n - m.
3. if0" E L(MB)

330 3 COMPLEXITY

then go to the (k + 1)th phase
else let w be a string such that Iwj = n and Mk for the input 0' never asks

the oracle whether it contains w. (Since 2' > pk(m), such a string does exist.)
Set B -- B U {w} and go to the (k + 1)th phase.

We show now that the assumption LB E pB leads to a contradiction. Let k be such that LB = L(.MB).
(Since AM1 M, M 2 . . is an enumeration of a polynomial time bounded oracle TM, such a k must exist.)
Moreover, let nk be the integer value n receives in the kth phase. If 0"" k L(/B), then no string of
length nk is added to B in the kth phase (and therefore 0"k ý LB).

If 0"k 0 L(MA), then in the kth phase a string of length nk is added to B. Observe also that two
different phases do not mix, in the sense that they deal with different sets of strings. Thus,

0"k E LBI, 4Ok 1 L(.MB) = LB,

and this is a contradiction.

Exercise 5.7.7 Show that there are oracles A, B such that (a) NPA # PSPACEA; (b) pB = co-NP5 .

Remark 5.7.8 There are many other results showing identity or differences between various
complexity classes (not known to be either identical or different) with respect to some oracles.
For example, there are oracles A, B, C and D such that (1) NPA $ co-NpA; (2) NPB $ PSPACEB
and co-NP5 $ PSPACEB; (3) pC : NPC and NPc = co-NPc; (4) p

D : NpD and NPD = PSPACED.
Technically, these are interesting results. But what do they actually imply? This is often discussed
in the literature. The main outcome seems to be an understanding that some techniques can hardly
be used to separate some complexity classes (that is, to show they are different). For example, if a
technique 'relativizes' in the sense that a proof of P = NP by this technique would imply pA 7 NpA,
for any oracle A, then this technique cannot be used to show that P ' NP.

5.7.5 P-completeness

The original motivation for the introduction of the concept of P-completeness, by S. Cook in
1972, with respect to logspace reducibility was to deal with the (still open) problem of whether
everything computable in polynomial time is computable in polylogarithmic space. Other concepts
of P-completeness will be discussed in Section 5.10.

Many problems have been shown to be P-complete. Some of them are a natural modification of
known NP-complete problems.

Exercise 5.7.9 Show, for example by a modification of the proof of NP-completeness or the bounded
halting problem, that the following deterministic version of the bounded halting problem is P-complete:

Lhat = {(•)(w)#'IA M is a deterministic TM that accepts w in t steps}.

Some P-complete problems look surprisingly simple: for example, the circuit value problem,
an analog of the satisfiability problem for Boolean formulas. Given a Boolean circuit C and an

NPVERSUSP U 331

assignment a to its Boolean variables, decide whether C has the value 1 for the assignment oz. If
we take self-delimiting encodings (C) of circuits C, then we have

CIRCUIT VALUE = {(C)a I C has the value 1 for the assignment cZ}.

Theorem 5.7.10 The CIRCUIT VALUE problem is P-complete.

Proof: An evaluation of a circuit can clearly be made in polynomial time; therefore the problem is in
P. It has been shown in Chapter 4, Lemma 4.3.23, that for any deterministic polynomial time bounded
Turing machine that accepts a language L c E* and any x E L C E*, we can design in polynomial
time a circuit CLx such that x c L if and only if CL,x has the value 1 for the assignment determined
by x. It is not difficult to see that this construction can actually be carried out in O(lg xJ) space. This
shows P-completeness. 0

In order to demonstrate a subtle difference between NP-completeness and P-completeness, let us
mention two very important, closely related optimization problems: rational linear programming
(RLP) and integer linear programming (ILP) (see Table 5.1).

The simplex method is a widely used method for solving the RLP problem. For many practically
important inputs the method runs very fast, but its worst-case complexity is exponential. The
discovery that there is a polynomial time algorithm for solving this problem, due to Khachyian
(1983), was an important step in the development of efficient algorithms. By contrast, ILP seems to be
an essentially more difficult problem, in spite of the fact that the set of potential solutions is smaller
than that for RLP. Interestingly, these two problems have a firm place in computational complexity
classes.

Theorem 5.7.11 The rational linear programming problem is P-complete, whereas the integer linear
programming problem is NP-complete.

Exercise 5.7.12 Show that the 3-CNFF problem can be reduced in polynomial time to the integer linear
programming problem. (To show NP-completeness of ILP is a much harder task.)

5.7.6 Structure of P

As mentioned in Section 5.2, we have the inclusions LOGSPACE C NLOGSPACE C P. It is not known
which of these inclusions is proper, if any. The problem

LOGSPACE = NLOGSPACE,

or, in other notation, L = NL, is another important open question in complexity theory.
For the class NLOGSPACE various natural complete problems are known. One of them is the

2-CNFF problem: to decide whether a Boolean formula in conjunctive normal form with two literals in
each clause is satisfiable. Another NLOGSPACE-complete problem is the graph accessibility problem
(GAP): given a directed graph G and two of its nodes, s (source) and t (sink), decide whether there is
a path in G from s to t.

332 U COMPLEXITY

f 2(y)

L2

f (x)

Figure 5.8 Reducibility in FNP

5.7.7 Functional Version of the P = NP Problem

Most complexity theory deals with decision problems - how to recognize strings in a language.
However, most of computing practice deals with function problems - how to compute functions -
and the search problems.

There are two reasons for this heavy concentration of complexity theory on decision problems:
(1) the simplicity, elegance and power of such theory; (2) transfer to computational problems does
not seem to bring much more insight; moreover, it is often quite easy.

There are two natural connections between decision and computational problems. To decide
whether x E L for a language L is equivalent to computingfL(x) for the characteristic function of L.
Another important relation between decision and function problems can be formulated for languages
from NP as follows.

Definition 5.7.13 (1) Let L c NP and RL be a polynomial time-decidable and polynomially balanced relation
for L - see the proof of Theorem 5.7.2. The search problem associated with L and denoted by FL is as follows:

Given x,find a string y such that R(x,y) holds, if such a string exists, and return 'no' ýf no such y exists.
(2) Denote FNP (FP) the class of search problems associated with languages in NP (in K).

We can therefore talk about such search problems as FSAT and FKNAPSACK.
Intuitively, there should be a very close relation between P and FP, between NP and FNP, and

between the problems P = NP and FP = FNP. Indeed, this is true. However, in order to reveal such
a close relation fully, the following subtle, and tricky at first sight, definition of the polynomial time
reducibility in FNP is needed (see Figure 5.8).

Definition 5.7.14 A function problem F1 : -* , E is polynomial time reducible to a function problem
F2 : E -* - ', if there are polynomial time computable functions f : -, -- * andf 2 : -+ -- * such that
the following conditions hold:

1. If F1 is defined for some x, then F2 is defined forfi(x).

2. If y is an output of F2 for the input f (x), then f2(y) is the correct output of Fi for the input x.

Observe a subtlety of this definition:from the output of F2 for the inputfi (x), we can construct, in polynomial
time, the correct output of Fl.

A function problem F is FNP-complete if F E FNP, and each problem in FNP can be reduced to F in
polynomial time.

NPVERSUS P 3 333

It is easy to see that the SAT problem is decidable in polynomial time if and only if FSAT is
computable in polynomial time. Indeed, the only nontrivial task is to show that if there is a polynomial
algorithm for deciding SAT, then we can solve FSAT in polynomial time.

Let us assume that there is a polynomial time algorithm A to decide the SAT problem. Let F
be a Boolean function of n variables xi, . . . , x,. We can use A to decide whether F has a satisfying
assignment. If not, we retum 'no'. If 'yes', we design formulas F0 and F1 by fixing, in F, x, = 0 and
x1 = 1. We then use A to decide which of those two formulas has a satisfying assignment. One of
them must have. Assume that it is F0. This implies that there is a satisfying assignment for F with
x, = 0. We keep doing these restrictions of F and, step by step, find values for all the variables in a
satisfying assignment for F.

Remark 5.7.15 In the case of sequential computations, function problems can often be reduced with
a small time overhead to decision problems. For example, the problem of computing a function
f : N -- N can be reduced to the problem of deciding, given an n and k, whether f(n) < k, in the
case that a reasonable upper bound on f(n) is easy to establish (which is often the case). Using a
binary search in the interval [0, b], one can then determinef(n) using [1gb] times an algorithm for the
corresponding decision problem forf and k.

Using the ideas in the proof of Theorem 5.4.3, we can easily show that FSAT is an FNP-complete
problem. Therefore, we have the relation we expected:

Theorem 5.7.16 P = NP if and only fFP = FNP.

Important candidates for being in FNP - FP are one-way functions in the following sense.

Definition 5.7.17 Letf : E* -- *. We say thatf is a (weakly) one-way function ýfthefollowing hold:

1. f is injective and for all x E E*, x[: f f(x)I < xlk for some k > 0 (that is,f (x) is at most polynomially
larger or smaller than x).

2. f is in FP butf 1 is not in FP. (In other words, there is no polynomial time algorithm which, given a y,
either computes x such that f (x) = y or returns 'no' if there is no such x.)

Exercise 5.7.18 Show that if f is a one-way function, then 1 is in FNP.

In order to determine more exactly the role of one-way functions in complexity theory, let us
denote by UP the class of languages accepted by unambiguous polynomial time bounded NTM.
These are polynomial time bounded NTM such that for any input there is at most one accepting
computation.

Exercise 5.7.19 Assume a one-way function f : * --ý * Z. Define the language L J = {(x,y) I there is
a z such thatf(z) = y and z -_ x (in strict ordering of strings)}. Show that (a) LI E UP; (b) Lf V P (for
example, by showing, using a binary search, that if Lf E P, then 1 E FP); (c) P C UP C NP.

334 • COMPLEXITY

Theorem 5.7.20 P $ UP if and only f there are one-way functions.

Proof: It follows from Exercise 5.7.19 that if there is a one-way function, then P , UP. Let us now
assume that there is a language L e UP-P, and let M4 be an unambiguous polynomial time bounded
NTM accepting L. Denote byfM the function defined as follows:

X) - ly, if x is an accepting computation of M for y as an input;
(Oy, if x is not an accepting computation of M4 for y as an input.

Clearly, fM is well defined, one-to-one (because of the unambiguity of AM), and computable in
polynomial time. Moreover, the lengths of inputs and outputs are polynomially related. Finally,
werefM invertible in polynomial time, we would be able to recognize L V P in polynomial time. 0

Exercise 5.7.21 Define the class FUP, and show that P = UP if and only tf FP=FUP.

5.7.8 Counting Problems - Class #P

In a decision problem we ask whether there is a solution. In a search problem we set out to find a
solution. In a counting problem we ask how many solutions exist.

Counting problems are clearly of importance, have their own specificity and may be
computationally hard even for problems in P.

It is common to use notation #P for a counting version of a decision problem P. For example,
#SAT is the problem of determining how many satisfying assignments a given Boolean formula has.
#HAMILTON PATH is the problem of determining how many Hamilton paths a given graph has.

A 'counting analog' of the class NP is the class #P, pronounced 'sharp P' (or 'number P' or 'pond
P'), defined as follows.

Definition 5.7.22 Let Q be a polynomially balanced and polynomially decidable binary relation. The counting
problem associated with Q is the problem of determining,for a given x the number of y such that (x, y) E Q. The
output is required to be in binary form. #P is the class of all counting problems associated with polynomially
balanced and decidable relations.

The number of solutions of a counting problem can be exponentially large. This is the reason why
in the definition of #P it is required that the output be in binary form.

There is another definition of the class #P, actually the original one, considered in the following
exercise.

Exercise 5.7.23 Show that #P is the class offunctionsf for which there is a NTM Mf such that f (x)
is the number of accepting computations of AMf for the input x.

#P-completeness is defined with respect to the same reduction as FP-completeness. Actually,
a more restricted form of reduction is often sufficient to prove #P-completeness. A reduction f of

APPROXIMABILITY OF NP-COMPLETE PROBLEMS U 335

instances x of one counting problem P 1 into instances of another counting problem P 2 is called
parsimonious if x andf(x) always have the same number of solutions.

Many reductions used to prove #P-completeness are either parsimonious or can easily be modified
to make them so. This is true, for example, for the proof of Cook's theorem. This way #P-completeness
has been shown for counting versions of a variety of NP-complete problems, for example, #SAT and
#HAMILTON PATH.

Of special interest are those #P-complete problems for which the corresponding search problem
can be solved in polynomial time. Of such a type is the PERMANENT problem for Boolean matrices
(which is equivalent to the problem of counting perfect matchings in bipartite graphs).

5.8 Approximability of NP-Complete Problems

From the theoretical point of view, NP-completeness results are beautiful and powerful. The hardest
problems ('trouble-makers') have been localized and close relations between them discovered. Could
we eliminate one of them, all would be eliminated.

From the practical point of view, NP-completeness is a disastrous phenomenon, and 'practically
unacceptable'. Too many important problems are NP-complete. Computing practice can hardly accept
such a limitation. One has to look for feasible ways to get around them, if at all possible.

There are several approaches to overcoming the limitations imposed by NP-completeness:
approximation algorithms, randomized algorithms, fast average-case algorithms (with respect to
'main' probability distributions of inputs), heuristics, even exponential time algorithms that are fast
for most of the inputs we encounter in applications might do, in the absence of anything better.

In this section we deal with approximation algorithms for NP-complete optimization problems.
Perhaps the most surprising discovery in this regard is that, in spite of the isomorphism between
NP-complete problems, they can be surprisingly different from the point of view of the design of
good approximation algorithms. In addition, the existence of good approximation algorithms for
some NP-complete problems has turned out to be deeply connected with some fundamental questions
of computing.

As we shall see, the search for good approximation algorithms for NP-complete problems brought
both good news and bad news. For some NP-complete problems there are approximation algorithms
that are as good as we need and for others quite good approximations can be obtained. But for some
NP-complete problems there are good reasons to believe that no good approximation algorithms
exist, in a sense.

5.8.1 Performance of Approximation Algorithms

The issue is to understand how good approximation algorithms can exist for particular NP-complete
problems. For this we need some quantitative measures for 'goodness' of approximations. We start,
therefore, with some criteria.

For each instance x of an optimization problem P let Fp(x) be the set of feasible solutions of 7',
and for each s c Fp(x) let a c(s) > 0 - a cost of the solution s - be given. The optimal solution of P for
an instance x is then defined by

OPT(x) = miin c(s) or OPT(x) = max c(s),
s'EFp(x) sEFp(x)

depending on whether the minimal or maximal solution is required. (For example, for TSP the cost
is the length of a tour.)

336 E COMPLEXITY

We say that an approximation algorithm A, mapping each instance x of an optimization problem
P to one of its solutions in Fp(x), has the ratio bound p(n) and the relative error bound a(n) if

mar c(A(x)) c(OPT(x)) r <pn, mxf c(A(x)) - c(OPT(x)) I _ ~)ax= c(OPT(x))' c(A(x)) xl=n max c(OPT()),(A)} _<(n).

Both definitions are chosen to correspond to our intuition and to apply simultaneously to
minimization and maximization problems. Both these bounds compare an approximation solution
with the optimal one, but in two different ways.

Exercise 5.8.1 Show how one can simplify definitions of relative error bound and/or ratio bound if only
maximalization (minimalization) problems are considered.

The ratio bound is never less than 1. An optimal algorithm has the ratio bound 1. The larger the
best possible ratio bound of an approximation algorithm, the worse is the algorithm. The relative
error bound is never more than 1, and always between 0 and 1.

Exercise 5.8.2 Show that (a) an algorithm A of a maximization problem with a relative error bound a
never produces a solution more than (1 - a) times smaller than the maximum; (b) an algorithm Afor a
minimization problem with a relative error bound a never produces a solution that would be more than
(1',) times larger than the minimum.

We shall now concentrate on two problems concerning approximation of NP-complete problems.

"* The constant relative error bound problem: given an NP-complete optimization problem P
with a cost of solutions c and an a > 0, does there exist an approximation polynomial time
algorithm for P with the relative error bound -?

"* The approximation scheme problem: does there exist for a given NP-complete optimization
problem P with a cost of solutions c a polynomial time algorithm for designing, given an a > 0
and an input instance x, an approximation for P and x with the relative error bound a?

Let us first deal with the constant relative error bounds. We say that an algorithm A is an
e-approximation algorithm for an optimization problem P if a is its relative error bound. The
approximation threshold for P is the greatest lower bound of all a > 0 such that there is a polynomial
time E-approximation algorithm for P.

5.8.2 NP-complete Problems with a Constant Approximation Threshold

We show now that NP-complete optimization problems can differ very much with respect to their
approximation thresholds. Note that if an optimization problem P has an approximation threshold
0, this means that an approximation arbitrarily close to the optimum is possible, whereas an
approximation threshold of I means that essentially no universal approximation method is possible.

APPROXIMABILITY OF NP-COMPLETE PROBLEMS U 337

As a first example let us consider the following optimization version of the knapsack problem:
Given n items with weights wl, . w, and values vl, v, and a knapsack limit c, the task is to
find a bit vector (Xl, •, Xn) such that i= 1 xiwi • c and E" , x iv i is as large as possible.

Exercise 5.8.3 We get a decision version of the above knapsack problem by fixing a goal K and asking
whether there is a solution vector such that Z7 1 xivi > K. Show that this new version of the knapsack
problem is also NP-complete.

Theorem 5.8.4 The approximation threshold for the optimization version of the KNAPSACK problem is 0.

Proof: The basic idea of the proof is very simple. We take a modification of the algorithm in
Example 5.4.17 and make out of it a polynomial time algorithm by applying it to an instance with
truncated input data. The larger the truncation we make, the better the approximation we get. Details
follow.

Let a knapsack instance (w, . wn, c)V1 , v . . ,vn) be given, and let V = max{v,... ,v,n}. For
1 < i < n, 1 < v < nV we define

W(iv)= m:in {f xjwj I xjvj=v}.
x{0,1} 1

Clearly, W(i, v) can be computed using the recurrences W(0, v) = 00, and for all i > 0 and I < v < nV,

W(i+1,v) = min{ W(i,v),W(i,v-vi+±)+wi+ I}.

Finally, we take the largest v such that W(n,v) < c.
The time complexity of this algorithm is (9(n2 V). The algorithm is therefore not polynomial with

respect to the size of the input. In order to make out of it a polynomial time approximation algorithm,
we use the following 'truncation trick'.

Instead of the knapsack instance (w,... W, C, V1, .. , vn), we take a b-approximate instance

(w,.... , wn, C, V V,v,), where v' = 2'L[J; that is, vý is obtained from vi by replacing the least
significant b bits by zeros. (We show later how to choose b.)

If we now apply the above algorithm to this b-truncated instance, we get its solution in time

O0(,2v), because we can ignore the last b zeros in the via's.
The vector x b) which we obtain as the solution for this b-truncated instance may be quite different

from the vector x(°) that provides the optimal solution. However, and this is essential, as the following
inequalities show, the values that these two vectors produce cannot be too different. Indeed, it holds
that

n n n n n

v x(0)v _ (xb) Vi >_ x (b) V, > Xlb) (Vi - 2b) ?__ vi xlV- n2 b.

The first inequality holds because x(°) provides the optimal solution for the original instance; the
second holds because vi >_ v'; the third holds because x(b) is the optimal solution for the b-truncated
instance.

We can assume without loss of generality that wi < c for all i. In this case V is the lower bound on
the value of the optimal solutionThe relative error bound for the algorithm is therefore E n2

t--

338 U COMPLEXITY

Given an 0 < E < 1, we can take b = [ig L- in order to obtain an E-approximation algorithm for

the optimization version of the knapsack problem. The time complexity of the algorithm is 0(n 2
•\2b

O(1); therefore we have a polynomial time algorithm.

The second approximability problem which we will discuss is the VERTEX COVER problem.
Given a graph G = (V, E), we seek the smallest set of nodes C such that each edge of G coincides with
at least one node of C. Let us consider the following approximation algorithm for VERTEX COVER.

Algorithm 5.8.5 (VERTEX COVER approximation algorithm)

C - ; E' *-- E;
while E' , 0 do take any edge (u, v) from E';

C ,- CU{u,v};
E' , E- - { all edges in E' that are incident with one of the nodes u, v}

od.

Let CG be a vertex cover this algorithm provides for a graph G = (V, E). CG can be seen as
representing c1f edges of G, no two of which have a common vertex. This means that if OPT(G)

is an optimal node covering of G, then it must have at least 2 nodes. Thus, IOPT(G) _G 1, and
therefore

ICGI -OPT(G)I < 1
IcGI -2

We have actually proved the following theorem.

Theorem 5.8.6 The approximation threshold for the VERTEX COVER problem is < 1

Surprisingly, the above very simple approximation algorithm is the best known approximation
algorithm for the VERTEX COVER problem.

Exercise 5.8.7 Give an example of the graph for which Algorithm 5.8.5 never produces an optimal
solution.

Exercise 5.8.8 Design a good 0(1) approximation algorithm for the MAX-3-CNFF problem of
determining the maximum number of satisfying assignments for a Boolean formula in 3-CNF. (Hint:
determine how many clauses satisfy the average assignment.)

Theorem 5.8.12 in the next subsection shows, very unfortunately, that there are NP-complete
problems which do not seem to have approximation algorithms with a relative error bound smaller
than 1. Not only that: such a practically important optimization problem as the TSP problem has this
property.

APPROXIMABILITY OF NP-COMPLETE PROBLEMS U 339

Exercise 5.8.9 The BIN-PACKING problem is given by n integers a,, . . . , an (items), a capacity c and
a number b of bins. The task is to determine whether there is an assignment of integers ai into n bins
such that in no bin is the total sum of integers larger than c. This problem is NP-complete. Consider
now the minimization version of the problem, which requires us to determine, given a,, . . . a, and c,
the minimum number of bins such that bin packing is possible. Show that the approximation threshold
for the BIN-PACKING problem is at least 3"1

Exercise 5.8.10* The asymptotic approximation threshold for an optimization problem P is
the smallest integer E such that there is a 6 and an approximation algorithm Afor P such that for all
instances x

Ic(A(x)) - OPT(x)I :_ Emax{OPT(x),c(A(x))} + 6.

Show that the asymptotic approximation threshold for the BIN-PACKING problem is at most 12

Exercise 5.8.11** Optimization version of the SUBSET-SUM problem. Given afinite set Q of rational
numbers and a bound c, compute maxxcQ{ZxcxXI Exx <_ c}. Determine for the SUBSET SUM
problem (a) the approximation threshold; (b) the asymptotic approximation threshold.

5.8.3 Travelling Salesman Problem

This is one of the most studied NP-complete optimization problems. Our first result concerning its
approximation is far from encouraging.

Theorem 5.8.12 Unless P = NP, the approximation threshold for TSP is 1.6

Proof. In order to prove the theorem, it is sufficient to show that the existence of a polynomial time
approximation algorithm A for TSP with the relative error bound E < 1 implies the existence of a
polynomial time algorithm to determine whether a given graph has a Hamilton cycle (which is an
NP-complete problem). This we show now.

Given a graph G = (V, E), we first construct the following instance of TSP: let V be the set of cities,
and let the distance between two cities ci and cj be 1 if (ij) E E, and 1M. otherwise. To this instance
of TSP we now apply the algorithm A. If A returns a tour of cost IV , then we know that G has a
Hamilton cycle. If A yields a tour of greater length, then the total length of such a tour must be larger
than I v1. Since A is a polynomial E-approximation algorithm, by the assumption, we know that the
optimum is never less than (1 - E) times the solution found by A, and is therefore larger than IV1.
Thus, G has no Hamilton cycle.7 0

6Similar results have been shown for several other optimization NP-complete problems. For example, for the
CLIQUE problem: given a graph G determine the maximal k such that G has a complete subgraph with k nodes.

7
The very disappointing results of Theorems 5.4.14 and 5.8.12 do not represent the whole story concerning

our ability to solve TSP. Actually TSP is an important example of a success story in the area of combinatorial
optimization methods. A great effort has been made to solve well as many instances of TSP as possible. Advances
in technology, theory, algorithms and data structures underlie the progress in the area of achieving an optimal
solution. The largest nontrivial TSP instances solved: in 1980, 318 cities; in 1989, 2,392 cities; and in 1994, 7,397
cities (taking 3-4 years). In all cases state-of-the-art computers and methods were used.

The success story of approximations of TSP is also remarkable: with a variety of approximation algorithms
tested, including those based on the ideas of simulating annealing from physics, genetic algorithms and neural
networks.

340 U COMPLEXITY

It has also been shown that for several important special cases of TSP there are quite good
approximation algorithms.

Let us first consider the case in which all weights are 1 or 2. Observe that in such a case each
approximation algorithm is a 1 -approximation algorithm. In such a case it is even possible to prove
the existence of a '-approximation algorithm.

Exercise 5.8.13 Develop an 1/2-approximation algorithm for the following weighted vertex cover
problem: given a graph G = (V, E) and weights of all its nodes, find a vertex cover of G with minimal
sum of weights of chosen vertices. (The following method, given as a hint, represents an important
technique how to design approximation algorithms: (1) Reformulate the weighted vertex cover problem
in the following way, assuming V = {,1 . . . ,n} and wi is the weight of the node i: minimize -iZwixi
subject to constrains: xi + xj > I V(i,j) e E; xi e {f0, 1} Vi E V; (b) consider the linear program: minimize

Zi wixi subject to constrains xi + xj > I V(i,j) E E; 0 < xi < 1 Vi c V, since it includes all the)feasible
solutions of the previous formulation. (Its optimum is a lower bound on the optimum of the weighted
vertex cover problem. Moreover, its optimum can be found in polynomial time.))

A natural generalization of the above case concerns TSP instances that satisfy the triangle
inequality: d(i,j) < d(i, k) + d(k,j) for any nodes i,j, k and the distance d(x, y) between any two nodes
x,y. It has been shown that in such a case there is a -- approximation algorithm.

One elegant and successful way to attack TSP is through the Held-Karp lower bound. This approach is based
on an observation that if we use variable xii to represent the edge between cities ci and cp, 1 < i < j < n, taking
xq = 1 to mean that the edge (ci, cj) is in the optimal tour, then the TSP is equivalent to the following problem:
Minimize

n nZZdqjxij
i=1 j=i+i

subject to conditions

Sxij =2, 1<k<n

i=k or j=k

Z- xii > 2 for all S C {1, . n}
ISn{i~j}I

and xij E {10, 1, for I < i < j < n. If we relax the last condition and replace it by the condition 0 < xij !_ 1, we get
a RLP problem that is in P, solution of which provides a lower bound, the Held-Karp lower bound (HK lower
bound), for the original instance of TSP. Experience shows that for a large variety of randomly generated instances
of TSP the optimal tour length averages less than 0.8% over the HK bound, and for real-world instances this is
almost always less than 2%. However, computation of the HK bound is also a very demanding task. In 1994, a
top result was to compute the HK bound exactly for TSP instances with up to 30,000 cities and to get a good
approximation of this bound for TSP instances with up to a million cities.

For a detailed presentation of current methods and results, including Held-Karp bound computations, see
Johnson and McGeoch (1996) and Johnson, McGeoch and Rothberg (1996).

APPROXIMABILITY OF NP-COMPLETE PROBLEMS U 341

Exercise 5.8.14* Show that the approximation threshold for TSP is at most ! for graphs satisfying the
triangle inequality. (Hint: evaluate the "goodness' of thefollowing approximation algorithmfor designing
a travelling salesman tour:

1. Choose a node v, and design a minimum spanning tree with the root in the node v.

2. Label the vertices of the tree in a pre-order way and tour the graph accordingly.)

Exercise 5.8.15* Show that the decision version of the TSP is also NP-complete when restricted to
labelled graphs satisfying the triangle inequality.

5.8.4 Nonapproximability

The ideal case concerning approximability of a problem P is when there is a polynomial time algorithm
A such that, given a problem instance x and an E > 0, A returns a solution with the relative error
bound E. This motivation is behind the following concepts.

Definition 5.8.16 A polynomial time approximation scheme for an optimization problem 7P is an
algorithm A which, given an - > 0 and an instance x of P', provides a solution of P for x with the relative
error bound E in time bounded by a polynomial in IxI (which may also depend on E). If, in addition, this
polynomial depends polynomially on ' as well, then the approximation scheme is said to be a fully polynomial
approximation scheme.

Note that our approximation algorithm for the optimization version of the knapsack problem
provides a fully polynomial approximation scheme. However, surprisingly, there is a polynomial
time approximation scheme for TSP in R2, if distances are computed accordingly to the Euclidean
metric.

Another interesting optimization problem is MAXSAT, in which we are given a set of clauses and
search for an assignment that satisfies the largest number of them. A decision version of this problem
has a bound k, and the task is to decide whether there is an assignment that satisfies at least k of the
clauses.

The decision version of the MAXSAT problem is NP-complete even in the case where we
consider only clauses with two literals. MAXSAT is a surprisingly difficult problem with respect
to approximation. The following theorem holds.

Theorem 5.8.17 If there is a polynomial time approximation scheme for the MAXSAT problem, then P = NP.

Similar results hold for some other NP-complete problems: for example, for the VERTEX-COVER
and so on.

5.8.5 Complexity classes

A variety of classes of optimization problems has been introduced with respect to the degree of
approximability. In addition, approximation preserving reducibilities have been introduced and basic
hardness and complexity results established for them. Perhaps the most basic are the following classes.

342 U COMPLEXITY

1. PO: the class of optimization problems solvable in polynomial time on MTM.

2. FPTAS: the class of optimization problems for which fully polynomial time approximation
scheme exists.

3. PTAS: the class of optimization problems for which a polynomial time approximation scheme
exists.

4. APX: the class of optimization problems for which an E-approximation algorithm exists for an
0< <1.

5. NPO: the class of optimization problems whose decision version is in NP.

Basic inclusions between these classes are trivial:

PO C FTPAS C PTAS C APX C NPO

and it can be shown for each of the above inclusions that it is proper if and only if P $ NP.

5.9 Randomized Complexity Classes
Randomization seems to be a powerful methodology for overcoming limitations imposed by
deterministic computation and for speeding-up computations. In this section we explore the power
of this methodology.

5.9.1 Randomized algorithms

Before introducing the main acceptance modes and complexity classes for randomized computing,
we will discuss some examples of randomized algorithms to see their advantages and methods for
their analysis.

In some cases randomization is the only way to deal with the problem.

Example 5.9.1 (Symmetry breaking) n identical processors connected in a ring have to choose one of the
processors to be a 'leader', provided each of the processors knows n.

Algorithm 5.9.2 (Election of a leader)

1. Each processor sets its local variable m to n and becomes 'active'.

2. Each active processor chooses, randomly and independently, an integer between I and m.

3. Those processors that choose I (if any) send a one-bit message around the ring.

4. After n - 1 steps each processor knows the number I of processors that chose 1. If I = 1, the
election ends; if I = 0, the election continues by repeating Step 2; if I > 1, then only those
processors remain active that chose 1. They set their local variables m to 1, and the election
continues by Step 2.

The correctness of the algorithm is obvious, and one can show that its time efficiency is good and
the number of bits that need to be exchanged is small.

Randomized algorithms are often very simple, and their efficiency is either comparable or better
than that of deterministic ones for the same problem.

RANDOMIZED COMPLEXITY CLASSES U 343

Example 5.9.3 (Randomized QUICKSORT) To sort a sequence S = (a, ,a,) of n different elements
we can use the following algorithm.

Algorithm 5.9.4 (RQUICKSORT)

1. Choose randomly I < j _K n.

2. Partition S into sequences S and S2 of elements ai < aj and ai > aj, respectively.

3. Sort recursively S and $2.

It is again clear that RQUICKSORT correctly sorts any sequence. If all input sequences are equally
probable, then it can be shown that RQUICKSORT requires on average a(nlgn) time.

Exercise 5.9.5 Design a simple randomized algorithm to determine, given a sequence of n elements and
1 < k < n, the k-th smallest element.

Example 5.9.6 (Zero polynomial testing) In order to decide whether a polynomial p with integer
coefficients and n variables, each of degree at most k, is identically zero, we can use N times the following
simple randomized algorithm: compute p(,, . . . , ý,), with integer values 1, . . • , G chosen randomly and
independently according to the uniform distribution in the interval [0,2kn]. If once a value different from 0 is
obtained, then p is not identically 0. If all N times the value is zero, then we can consider p to be identically
zero. By Schwartz's lemma (1.9.4), the probability of error is at most 2 -N. (The algorithm can be used to test
equality of two polynomials.)

Such a randomized algorithm is of importance especially if p is given implicitly: for instance, as
the value of the determinant of a matrix of polynomials.

Example 5.9.7 (Cuts in multigraphs) The task is to determine the smallest set of edges ofa given multigraph
G whose removal disconnects G. We show that there is a simple randomized algorithm that does the job correctly,
with large probability.

The basic idea of the algorithm presented below is that an edge contraction of a multigraph does not reduce
the size of its minimal cut. (By an edge contraction of a multigraph G with respect to an edge (uv), we
understand a merging of vertices u and v into one, redirecting edges to u and v to the newly created vertex and
removing self-loops of the new vertex.)

Algorithm 5.9.8 (Minimal cut in a multigraph)

while there are more than two vertices in the multigraph
do an edge contraction with respect to a randomly choosen edge od;
Output the size of the maximal cut of the resulting two-vertex graph.

As shown in Figures 5.9a, b, c, d, e, an application of Algorithm 5.9.8 may produce the correct result
(Figure 5.9e), but may not (Figure 5.9d). Let us therefore investigate how probable it is that the above algorithm
makes an error.

Let G be a multigraph of n nodes, k the size of its minimal cut and C its particular minimal cut. G has to
have at least ' edges - otherwise G would have a vertex of degree less than k and its incidental edges would
form a minimal cut of size smaller than k.

344 U COMPLEXITY

3 4 3

>5
L

75

1 2 1 2,4

(a) (b)

(d) 3 WEEEi5 1,2,4,5

3,,41,2,3,4 @13 5 (e)(C)

Figure 5.9 Contraction in a multigraph

We derive a lower bound on the probability that no edge of C is ever contracted during an execution of the
algorithm - and therefore the edges surviving till the end are exactly those of C.

Denote by E, the event of not choosing an edge of C at the i-th step of the algorithm, for 1 < i < n - 2.
The probability that the edge randomly chosen in thefirst step is in C is at most k / (nk / 2) = ý, and therefore

Pr(E3) > 1 - Z. If El occurs, then at the second contraction step there are at least) edges, and therefore
the probability of picking an edge in C is at most -L. Hence, Pr(E2 E1) >_ 1 - 2-. Similarly, at the i-th step,
i > 2, the number of remaining vertices is n - i + 1, the size of the minimal cut is still at least k, and therefore the

multigraph has at least) edges remaining at this step. Thus Pr(Ei nI=11Ej) Ž_1- .The probability
that no edge of C is ever picked during the execution of the algorithm is therefore, by a natural generalization
of (1.70), n 2) 2

r[1 Ž y (n-i+1 n(n-1)

The probability of discovering a particular minimal cut is therefore larger than 2

A big deal? Not so. However - and this is the point - if we repeat the above algorithm n2
2 times, making

independent random decisions each time, then the probability that a minimal cut is not found in any of the L-
runs is at most n2

(1 2) 1

W e

(Observe that by repetition of the algorithm we have reduced the probability of failure from 1 - - to a more
respectable !. Further execution of the algorithm can make the failure probability arbitrarily small (by increasing
computation time of course).

Algorithm 5.9.8 is remarkably simple compared with the known deterministic ones for the same problem.

It is nowadays clear that randomization can speed up many computations. However - and this is
one of the most important questions - can randomization help also to cope with NP-completeness?

Satisfiability of Boolean formulas, as one of the basic NP-complete problems, is certainly one
of the most proper choices for exploring what we can achieve with randomization in the case of
the NP-complete problems. Surprisingly, for satisfiability too we have a very simple randomized
algorithm.

Algorithm 5.9.9 (Satisfiability of Boolean formulas)

RANDOMIZED COMPLEXITY CLASSES I 345

Choose randomly a truth assignment T.
while there is a truth assignment T' that differs from T in exactly

one variable and satisfies more clauses than T
do choose T' that satisfies the most clauses and set T -- T' od;

return T

We show now that if a Boolean formula F in 3-CNF, with n variables, is satisfiable, then
Algorithm 5.9.9 discovers, with very high probability, a satisfying assignment T' for F.

If Algorithm 5.9.9 starts with a truth assignment that agrees with T' in the values of very few
variables, then it is likely that a local maximum that is not a global optimum is found. Let us therefore
call a truth assignment bad if it agrees with T' in fewer than (I - O)n variables, for some 0 > 0, and
let us call all other assignments good. Since Algorithm 5.9.9 chooses the starting truth assignment
randomly, the probability that this assignment is bad is, by Chernoff's bound in Exercise 1.9.15, with

P 2, = 29, at most e- 2
n. This means that our algorithm usually starts with a good truth assignment.

Consider now a good truth assignment T that agrees with a satisfying assignment T' in exactly
k > (1 - 9)n variables, and let V be a fixed variable on which T and T' disagree. Suppose we change
the value of V. How many clauses do we gain, and how many do we lose? Let us denote by C+ the
set of all clauses, of three literals, on n variables, that are satisfied by T' (no matter whether they are
in F or not), and that change from false to true if the value of V is flipped. Moreover, denote by C
the set of clauses that change from true to false.

Our next task is to calculate the size of C+ and C_ In order to do this we can assume, without loss
of generality, that T' is a uniformly true assignment (otherwise we can flip literals in F, if needed). In
such a case C+ is the set of 3-clauses that contain the variable V and two other variables that occur
positively if and only if they are false in T. Hence IC, I = (n21). Similarly, C- is the set of clauses that
contain the variable V negatively (that is, V) and two other variables that occur positively if and only
if they are false in T', excluding the case that all three variables occur negatively and two of them
are among those k for which T and T' agree, because for such triples of variables T' is not satisfied.
Hence, IC_1 = (n21) - (2).

Observe that by changing the value of V we do not gain anything if and only if F has at least as
many clauses in C, as in C. Our next task is to determine an upper bound on the probability that
this happens. In order to do this, denote B(p, n) a binomial random variable the value of which gives
the number of successes in n independent trials. In such a case the probability that we do not gain
anything by changing the value of V is Pr(B(p, IC 1) > B'(p, IC, 1)), where B and B' are independent
binomial random variables. This probability is clearly at most

Pr(B(p, IC 1) >- m) + Pr(B'(p, IC+ 1) < m),

for every m. We can now apply Chernoff's bound from Lemma 1.9.13 and Exercise 1.9.15 to get that
this probability is at most

e- ((m-pjC- 1)2)/1(3p IC- J) + e-((ra-Plc+)2)/(2p1c+1) <_ e -((m-plc- 1)2)/(3plC _ 1) +- e-(((m-pjC+j))/(3pjC+ j). (5.5)

If we take m = pN/• IC c+], then, after elementary adjustments of the right side of the formula in

(5.5) we get that the probability that by flipping V we do not gain anything is at most 2e-cPn2
, where

C - (I _ V11 _ (0. 5--F)2)2.

This means that the probability that our algorithm, starting from a good truth assignment, will
ever be misled by flipping a variable is at most n2"e cpn2, because there are at most n2n`1 such possible
flippings. This yields, for p = 1, the following theorem.

346 E COMPLEXITY

Theorem 5.9.10 If O < E < 1, then there exists a constant c -* (1 - V/(1 - (1 / 2 - e) 2)) 2 /6 such thatfor all

but a fraction of at most n2ne-cn2/2 of satisfiable 3-CNF Boolean formulas with n variables the probability that
the greedy algorithm succeeds in discovering a truth assignment in each independent trial from a random start

is at least 1 - -•'".

Randomization is also of importance for the design of approximation algorithms.

Example 5.9.11 (MAX-CNF problem) The task is, given a Boolean formula F, to determine a truth
assignment that satisfies a maximum of clauses of F. This problem is NP-hard, but can be solved by just
randomly choosing an assignment.

Indeed, suppose that F has m clauses and that each of its variables is set randomly to I or 0. For I < i < m,
let Zi be a random variable the value of which is 1 if the ith clause is satisfied, and 0, otherwise. The probability
that a clause with k literals is not satisfied by a random assignment is 2-k, and the probability that it is satisfied
is 1 - 2 -k > 1. Hence EZi > 1 for all i, and therefore the expected number of clauses satisfied by a random
assignment is Em , EZ, > '. Random choice of an assignment therefore yields a very simple randomized
2-approximat ion algorithm.

Remark 5.9.12 An interesting problem with good but not arbitrarily good approximation algorithms
is that of determining the maximum number of clauses that can be satisfied by a given Boolean formula
in 3-CNF. Given a random assignment, an arbitrary clause has at least a 7 chance of being satisfied. This
implies that the average assignment satisfies at least 7 th of all clauses. Since the maximal assignment
has to satisfy more clauses than the average number, we get a very good approximation by saying

always, in 0(1)-time, that VZ - 0.935 of clauses are satisfied. However, there is a constant c < 1, but
very close to I (about 0.962) such that one can get a c-approximation only if P = NP.

In general, we talk about randomized algorithms if algorithms use 'coin-tossing' or various
RANDOM procedures to make random decisions. The corresponding formal machine model is that
of the probabilistic Turing machine - a Turing machine that can generate a random bit in one step
or, from another point of view, has a special 'random tape' filled with new random bits each time a
computation starts.

Exercise 5.9.13 Let t: N -- N be a space-constructiblefunction. Show that each probabilistic t(n)-time
bounded MTM can be simulated by a deterministic MTM in space 0(t(n)) and time 0 (2t(n)).

Randomized elements of random algorithms or probabilistic Turing machines are not so easy to
deal with, and the elegance and exactness used in studying deterministic computations and their
models are less easily attainable. Fortunately, in order to model random steps formally and to study
the power of randomization, we do not need coin-tossing or random number generators. It is enough
to consider nondeterministic Turing machines that in each configuration have just two choices to make
and all computations of which have the same length, and then to consider different acceptance modes.
By Lemma 5.1.12, this is no essential restriction on the power of NTM; each NTM with time bounded
by a polynomial can be transformed in polynomial time into one satisfying the above properties. This
means that we can consider only NTM M such that if for some input x the length of a computation
is t, then the configuration tree of M is a complete binary tree of depth t.

RANDOMIZED COMPLEXITY CLASSES 3 347

5.9.2 Models and Complexity Classes of Randomized Computing

In order to get deeper insight into the power of randomization, we need to have simple and realistic
models of randomized computation in polynomial time. The following four complexity classes
of randomized computations, ZPP, RP, PP and BPP, are closely related to four natural modes of
randomized computing. (In the following definition only those NTM are considered that have exactly
two choices to make in each nonterminating configuration and all computations of which have the
same length for inputs of the same size.)

RP A language L is in RP (random polynomial time) if there is a polynomial time bounded NTM M
such that if x E L, then at least half of all computations of M on x terminate in the accepting
state, and if x § L, then all computations of M4 on x terminate in the rejecting state (Monte Carlo
acceptance or one-sided Monte Carlo acceptance).

PP A language L is in PP (probabilistic polynomial time) if there is a polynomial time bounded NTM
M such that x e L, if and only if more than half of computations of AM on x terminate in the
accepting state (acceptance by majority).

BPP A language L is in BPP (bounded error (away from ½) probabilistic polynomial time) if there is
a polynomial time bounded NTM AM such that

1. If x E L, then at least 3 of the computations of M on x terminate in the accepting state.

2. If x 0 L, then at least 3 of the computations of M on x terminate in the rejecting state.

(Acceptance by clear majority or two-sided Monte Carlo acceptance.)

ZPP a language L is in ZPP (zero error probabilistic polynomial time) if L e RPnco-RP (Las Vegas
acceptance).

Exercise 5.9.14 Show that any constant 0 < c < I could be substituted for 1 in the definition of the
class (a) RP; (b)** PP.

Exercise 5.9.15 Show that any constant 1 < c < 1 could be substituted for ý in the definition of the
class BPP.

Las Vegas algorithms, like the one for sorting in Example 5.7.4, are ideal, because an incorrect
solution may be a disaster in some applications. The following exercise shows a way to derive a
Las Vegas algorithm from a Monte Carlo one, provided we can verify efficiently the correctness of a
to-be-solution of the problem.

Exercise 5.9.16 Let A be a t(n) average time bounded Monte Carlo algorithm for a problem P that
produces a correct solution with probability -y(n). Moreover, let the correctness of a to-be-solution to
P be verifiable in time v(n). Show how to obtain a Las Vegas algorithm for P that runs in expected
time at most (t(n) + v(n)) / -y(n). (Hint: make a use of the mean of a geometric random variable - see
Exercise 1.9.7.)

348 U COMPLEXITY

Less formally, RP, PP and BPP can be defined as classes of problems for which there is a
randomized algorithm A with the following properties:

RP x E L = Pr(A(x) accepts) > x • L r Pr(A(x) accepts) = 0
PP x E L =. Pr(A(x) accepts)> x • L =. Pr(A(x) accepts) < 1

BPP X E L = Pr(A(x) accepts) >3_ x • L => Pr(A(x) accepts) <

ZPP, RP and PP fit nicely into our basic hierarchy of complexity classes.

Theorem 5.9.17 P C ZPP C RP C NP C PP C PSPACE.

Proof: Inclusions P C ZPP C RP are trivial. If L E RP, then there is a NTM .M accepting L with Monte
Carlo acceptance. Hence x c L if and only if AM has at least one accepting computation for x. Thus,
L E NP, and this proves the inclusion RP C NP.

To show NP C PP we proceed as follows. Let L E NP, and let .M be a polynomial time bounded
NTM accepting L. Design a NTM M' such that M', for an input w, chooses nondeterministically and
performs one of the following steps:

1. M' accepts.

2. M4' simulates AM on input w.

Using the ideas presented in the proof of Lemma 5.1.12, M' can be transformed into an equivalent
NTM M" that has exactly two choices in each nonterminating configuration, all computations of
which on w have the same length bounded by a polynomial, and which accepts the same language
as A'. We show that M" accepts L by majority and therefore L e PP.

If w ' L, then exactly half the computations accept w - those that start with step 1. This, however,
is not enough and therefore M4", as a probabilistic TM, does not accept w.

If w E L, then there is at least one computation of AM that accepts w. This means that more than
half of all computations of A" accept w - all those computations that take step 1, like the first one,
and at least one of those going through step 2. Hence M" accepts w by majority.

The last inequality PP C PSPACE is again easy to show. Let L E PP, and let M be a NTM accepting
L by majority and with time bounded by a polynomial p. In such a case no configuration of AM is
longer than p(wJ) for an input w. Using the method to simulate a NTM by a DTM, as shown in the
proof of Theorem 5.1.5, we easily get that AM can be simulated in polynomial space. 0

Since there is a polynomial time Las Vegas algorithm for recognizing primes (see references),
prime recognition is in ZPP (and may be in RP-P).

Exercise 5.9.18 Denote MAJSAT the problem of deciding for a given Boolean formula F whether more
than half of all possible assignments to variables in F satisfy F. Show that (a) MAJSAT is in PP; (b)
MAISAT is PP-complete (with respect to polynomial time reducibility).

Exercise 5.9.19** Let 0 < - < 1 be a rational number. Let PP, be the class of languages L for which
there is a NTM .M such that x c L if and only if at least a fraction E of all computations are acceptances.
Show that PP, = PP.

RANDOMIZED COMPLEXITY CLASSES U 349

The main complexity classes of randomized computing have also been shown to be separated by
oracles. For example, there are oracles A, B, C, D, E, F and G such that (a) BPPA 9 NpA; (b) NP8 ; BPPB;
(c) pC 4 BPPC; (d) pD # RPD; (e) pE g ZppE; (f) RpF z ZppF; (g) RPG $ BppG.

5.9.3 The Complexity Class BPP

Acceptance by clear majority seems to be the most important concept in randomized computation.
In addition, the class BPP is often considered as a plausible formalization of the concept of feasible
computation; it therefore deserves further analysis.

First of all, the number 3, used in the definition of the class BPP, should not be taken as a magic
number. Any number strictly larger than ½ will do and results in the same class. Indeed, let us assume
that we have a machine M that decides a language by a strict majority of 1 + 6. We can use this machine
2k + 1 times and accept as the outcome the majority of outcomes. By Chernoff's bound, Lemma 1.9.13,

the probability of a false answer is at most e-262k. By taking sufficiently large k, this probability can
be reduced as much as needed. Fork = we get a probability of error at most ', as desired.

Exercise 5.9.20* Show that in the definition of the class BPP e does not have to be a constant. It can be
xc-c for any c > 0. Show also that the bound 3 can be replaced by 1 - .4 2711

The concept of decision by clear majority seems therefore to be a robust one. A few words are also
in order concerning the relation between the classes BPP and PP. BPP algorithms allow diminution,
by repeated use, of the probability of error as much as is needed. This is not true for PP algorithms.

Let us now turn to another argument which shows that the class BPP has properties indicating
that it is a reasonable extension of the class P.

In order to formulate the next theorem, we need to define when a language L C {0, 11 * has
polynomial size circuits. This is in the case where there is a family of Boolean circuits CL = fCi}=I
and a polynomial p such that the size of C, is bounded by p(n), C, has n inputs, and for all x E {0, 1}'*,
x E L if and only if the output of Cix1 is I if its ith input is the ith symbol of x.

Theorem 5.9.21 All languages in BPP have polynomial size Boolean circuits.

Proof: Let L G BPP, and let M be a polynomial time bounded NTM that decides L by clear majority.
We show that there is a family of circuits C = {C, },} L, the size of which is bounded by a polynomial,
such that C, accepts the language L restricted to {0, 1}". The proof is elegant, but not constructive,
and the resulting family of Boolean circuits is not uniform. (If certain uniformity conditions were
satisfied, this would imply P = BPP.)

Let Mh be time bounded by a polynomial p. For each n E N a circuit C, will be designed using a set
of strings A, = {a1, . . . ,an,}, where m = 12(n + 1) and ai c {0, 1}P(n). The idea behind this is that each
string ai represents a possible sequence of random choices of AM during a computation, and therefore
completely specifies a computation of M for inputs of length n.

Informally, on an input w with Iwl = n, C, simulates A4 with each sequence of choices from A,,,
and then, as the outcome, takes the majority of 12(Iwl + 1) outcomes. From the proof of Lemma 4.3.23
we know how to design a circuit simulating a polynomial time computation on TM. Using those
ideas, we can construct C, with the above property and of the polynomial size with respect to n.

The task now is to show that there exists a set An such that C, works correctly. This requires the
following lemma.

350 3 COMPLEXITY

Lemma 5.9.22 For all n > 0 there is a set A, of 12(n + 1) binary (Boolean) strings of length p(n) such that
for all inputs x of length n fewer than half of the choices in An lead M to a wrong decision (either to accept
x V L or to reject x E L).

Assume now, for a moment, that Lemma 5.9.22 holds and that the set An has the required property.
With the ideas in the proof of Lemma 4.3.23 we can design a circuit C, with polynomially many gates
that simulates AM with each of the sequences from A, and then takes the majority of outcomes. It
follows from the property of A, stated in Lemma 5.9.22 that Cn outputs I if and only if the input w is
in L n {0, 1}I. Thus, L has a polynomial size circuit. 0

Proof of Lemma 5.9.22: Let A, be a set of m = 12(n + 1) Boolean strings, taken randomly and
independently, of length p(n). We show now that the probability (which refers to the choice of An)
is at least ½ that for each x E {0, I}n more than half the choices in A, lead to M performing a correct
computation.

Since M decides L by a clear majority, for each x E {0,1 In} at most a quarter of the computations
are bad (in the sense that they either accept an x V L or reject an x E L). Since Boolean strings in
A, have been taken randomly and independently, the expected number of bad computations with
vectors from A, is at most ". By Chernoff's bound, Lemma 1.9.13, the probability that the number of
bad Boolean string choices is M or more is at most e- 1 -<• This is therefore the probability that x
is wrongly accepted by M when simulating computations specified by A,.

The last inequality holds for each x c {0, 1}'. Therefore the probability that there is an x that is not
correctly accepted at the given choice of An is at most 2" 1 = ½. This means that most of the choices
for A, lead to correct acceptance for all x c {0, }In.

This implies that there is always a choice of A, with the required property, in spite of the fact that
we have no idea how to find it.

What does this result imply? It follows from Theorem 4.3.24 that a language L is in P if and only
if there is a uniform family of polynomial size Boolean circuits for L. However, for no NP-complete
problem is a family of polynomial size Boolean circuits known! BPP seems, therefore, to be a very
small/ reasonable extension of P (if any). Since BPP does not seem to contain an NP-complete problem,
the acceptance by clear majority does not seem to help us with NP-completeness.

Exercise 5.9.23 Show the inclusions RP C BPP C PP.

Exercise 5.9.24 Show that a language L c E* is in BPP if and only if there is a polynomially decidable
and polynomially balanced (by p) relation R C E* x E* such that x c L (x ý L) •fand only if (x, y) C R
((x,y) V R)for more than ' ofwords y with y <p(JxD).

Another open question is the relation between NP and BPP. Currently, these two classes appear
to be incomparable, but no proof of this fact is known. It is also not clear whether there are complete
problems for classes RP, BPP and ZPP. (The class PP is known to have complete problems.)

As already mentioned, there is some evidence, but no proofs, that polynomial time randomized
computing is more powerful than polynomial time deterministic computing. However, this statement
is true only for computing on computers working on principles of classical physics. It has been proved
by Simon (1994) that polynomial time (randomized) computing on (potential) quantum computers
is more powerful than polynomial time randomized computing on classical computers. This again
allows us to extend our concept of feasibility.

PARALLEL COMPLEXITY CLASSES 0 351

5.10 Parallel Complexity Classes
The most important problem concerning complexity of parallel computing seems to be to find
out what can be computed in polylogarithmic time with polynomially many processors. The most
interesting complexity class for parallel computing seems to be NC. This stands for 'Nick's class' and
refers to Nicholas Pippenger, who was the first to define and explore it.

There are several equivalent definitions of NC. From the point of view of algorithm design and
analysis, a useful and natural one is in terms of PRAM computations:

NC = PRAM-TimeProc(lg°111 (n),n°(l)).

From a theoretical point of view, the following definition, in terms of uniform families of Boolean
circuits bounded by polylogarithmic depth and polynomial size, seems to be easier to work with:

NC = UCIRCUIT-DepthSize(lg°•]) (n), n'O()).

To get more detailed insight into the structure of the class NC, an appropriate question to ask is the
following one: What can be computed using different amounts of parallel computation time? This
leads to the following refinements of NC:

NCO = UCIRCUIT-DepthSize(lg'(n), no(')), i > 0.

In this way a possibly infinite family of complexity classes has been introduced that are related to the
sequential ones in the following way:

NC1 C DLOGSPACE C NLOGSPACE C NC
2 C NC

3
C_... C NC C P.

None of these inclusions is known to be strict, and the open problem

NC=P

is considered to be a parallel analog of the P=NP problem.
From the practical point of view, it is of special interest to find out which problems are in NC1

and NC
2 . These classes represent problems that can be computed very fast using parallel computers.

The following two lists present some of them.

NCO

1. Addition of two binary numbers of length m (n = 2m).

2. Multiplication of two binary numbers of length m (n = 2m).

3. Sum of m binary numbers of length m (n = m2).

4. Matrix multiplication of two m x m matrices of binary numbers of length I (n = 2mi21).

5. Prefix sum of m binary numbers of length 1 (n = ml).

6. Merging of two sequences of m binary numbers of length I (n = 2m]).

7. Regular language recognition.

352 COMPLEXITY

NC
2

1. Division of two binary numbers of length m (n = 2m).8

2. Determinant of an m x m matrix of binary numbers of length I (n = mgl).

3. Matrix inversion of an m x m matrix of binary numbers of length I (n m2l).

4. Sorting of m binary numbers of length I (n = ml).

Remark 5.10.1 In the case of parallel computing one can often reduce a function problem for f: N - N
to a decision problem with small (lgf(n)) multiplicative processor overhead. One of the techniques
for designing the corresponding well parallelized decision problem is for the case that a good upper
bound b forf(n) can be easily determined. The corresponding decision problem is one of deciding,
given an n and an integer I < i < [Igb], whether the ith least significant bit off(n) is 1.

Investigation of the class NC led to the introduction of two new concepts of reducibility:
NC-many-to-one reducibility, in short -<', and NC-Turing reducibility, in short <-], defined
analogously to many-to-one and Turing reducibility. The only difference is that reductions have to be
performed in polylogarithmic time and with a polynomial number of processors. This leads naturally
to two new concepts of P-completeness, with respect to -<m and <T reducibilities.

Exercise 5.10.2 Show that L1 <lg L2 ==' L1 <- L2 =• L1 <T7c L 2,for any languages L1 and L2 .

The advantage of P-completeness based on NC reductions is that it brings important insights into
the power of parallelism and a methodology to show that a problem is inherently sequential. For
example, as is easy to see, the following holds.

Theorem 5.10.3 If any P-complete problem is in NC, then P = NC.

Theorem 5.10.3 implies that P-complete problems are the main candidates for inherently
sequential problems. If one is able to show that a problem is P-complete, then it seems to be hopeless to
try to design for it an algorithm working in polylogarithmic time on polynomially many processors.
Similarly, if a problem withstands all effort to find a polylogarithmic parallel algorithm, then it seems
best to change the strategy and try to show that the problem is P-complete, which is currently seen as
'evidence' that no fast parallel algorithm for solving the problem can exist. The circuit value problem,
introduced in Section 5.3, is perhaps the most important P-complete problem for <'c reduction.

Exercise 5.10.4 Argue that if an P-complete problem is in the class NC, i > 1, then P NCO.

5.11 Beyond NP

There are several important complexity classes beyond NP: for example, PH, PSPACE, EXP and
NEXP. In spite of the fact that they seem to be much larger than P, there are plausible views of

81t is an open question whether division is in NC1.

BEYOND NP 3 353

polynomial time computations that coincide with them. We should therefore not rule them out as
potential candidates for one of the main goals of complexity theory: to find out what is feasible.

PH, the polynomial hierarchy class, seems to be between NP and PSPACE, and contains a variety
of naturally defined algorithmic problems. As shown in Section 4.4.6, the class PSPACE corresponds to
polynomial time computations on second class machines. In Chapter 9 it will be shown that PSPACE
corresponds to interactive proof systems with one prover and a polynomial number of interactions,
and NEXP to interactive proof systems with two provers and a polynomial number of interactions.
There are therefore good theoretical and also practical reasons for paying attention to these classes.

5.11.1 Between NP and PSPACE - Polynomial Hierarchy

With the help of oracles we can use P and NP to design various infinite sequences of potentially richer
and richer complexity classes. Perhaps the most important is the following simplified version of the
polynomial hierarchy

0=P, kI= NP' k >0

A!P= P, APP 1 pk k >>0

and the cumulative polynomial hierarchy

PH=UEPk
k=-

In other words, EPi+ 1 (APk+ 1) is the family of languages that can be accepted by the polynomially
bounded oracle NTM (DTM) with an oracle from EP. The following inclusions clearly hold:

EP C NP = EP C EP C EP C ... c PH C PSPACE. (5.6)
0 - 1 - 2 - 3 -

Exercise 5.11.1 Show that (a) EPk+1 = NP k+1 for k > 0; (b) Ak is closed under corplementationfor

k>0;(c)Pk = A'fork > 0.

Exercise 5.11.2 Denote HP = P, IIP+ = co-NP rpk. Show that (a) EP+ -=NPnk for k> 0;

(b) PUIPC for k ; (c) -kC k for k > 0; (d) if EkPCI rp, then EP =UPk;
(e) EP UrIkp C AP+, C EP +1 nriPlo _O

k+ qH~fork > 0.

In spite of the fact that polynomial hierarchy classes look as if they are introduced artificially by
a pure abstraction, they seem to be very reasonable complexity classes. This can be concluded from
the observation that they have naturally defined complete problems.

One complete problem for El, k > 0, is the following modification of the bounded halting problem:

LE = {(M)(w)#' IM is a TM with an oracle from E•_- accepting w in t steps).

Another complete problem for El is the QSATk problem. QSATk stands for 'quantified satisfiability
problem with k alternations of quantifiers', defined as follows.

354 3 COMPLEXITY

Given a Boolean formula B with Boolean variables partitioned into k sets X1,.. • Xk, is it true that
there is a partial assignment to the variables in X1 such that for all partial assignments to variables in
X 2 there is such a partial assignment to variables in X3 , that B is true by the overall assignment.
An instance of QSATk is usually presented as

3X1 VX2 3X 3 VX4 ... QXk B,

where Q is either the quantifier 3 if k is odd, or V if k is even, and B is a Boolean formula.
It is an open question whether the inclusions in (5.6) are proper. Observe that if EY = EP+1 for

some i, then EFp = EP for all k > i. In such a case we say that the polynomial hierarchy collapses.
It is not known whether the polynomial time hierarchy collapses. There are, however, various

results of the type 'if . .. , then the polynomial hierarchy collapses'. For example, the polynomial
hierarchy collapses if

1. PH has a complete problem;

2. the graph isomorphism problem is NP-complete;

3. SAT has a polynomial sizetoolean circuit.

In Section 5.9 we mentioned that the relation between BPP and NP = ET is unclear. However, it
is clear that BPP is not too high in the polynomial hierarchy.

Exercise 5.11.3* Show that BPP C E2

PH is the first major deterministic complexity class we have considered so far that is not known
to have complete problems and is very unlikely to have complete problems.

An interesting/important task in complexity theory is to determine more exactly the relation
between the class PH and other complexity classes. For example, the Toda theorem says that PH ; PPP

This result is sometimes interpreted as PH ; P# P (which would mean that counting is very powerful),
although we cannot directly compare the class PH (of decision problems) and the class #P (of function
problems). However, the class PP is 'close enough' to #P. (Indeed, problems in PP can be seen as asking
for the most significant bit concerning the number of accepting computations, and problems in #P as
asking for all bits of the number of accepting computations.)

5.11.2 PSPACE-complete Problems

There is a variety of natural computational problems that are PSPACE-complete: for example, variants
of the halting, tiling and satisfiability problems.

Theorem 5.11.4 (PSPACE-completeness of IN-PLACE-ACCEPTANCE problem) The following
problem is PSPACE-complete: given a DTM AM and an input w, does M4 accept w without having the head
ever leave w (the part of tape on which w is written)?

Proof: Given M4 = (F, Q, qo, 6) and w E F*, we simulate AM on w and keep account of the number of
steps. w is rejected if M rejects, or if the head of M4 attempts to leave cells in which the input w was
written, or if A4 takes more than `FJW0 QJ lwl steps. In order to store the number of steps, O(Iwl) bits

BEYOND NP 1 355

are needed. This can be done in the space Iwl using a proper positional number system. Hence, the
problem is in PSPACE.

Assume now that L can be accepted in space nk by a machine M. Clearly, M accepts an input w
if and only if A4 accepts w 'in place' wLn . Thus w E L if and only if (A4,wwun) is a 'yes' instance of
the IN-PLACE-ACCEPTANCE. 0

PSPACE-completeness of a problem can be shown either directly or using the reduction method:
for example, by reduction from the following modifications of NP-complete problems.

Example 5.11.5 (CORRIDOR TILING) Given a finite set T of Wang tiles and a pair of tiled horizontal
strips U and D of length n, does there exist an integer m such that it is possible to tile an m x n rectangle with
U as the top row and D as the bottom row and with the left sides of the tiles of thefirst column and the right
sides of the tiles of the last column having the same colour (m is not given)?

Example 5.11.6 (QUANTIFIED SATISFIABILITY (QSAT)) Given a Boolean formula B with variables
X, . . xn, is the following formula valid:

3X 1 VX2 3X3Vx 4 ... Qxn B,

where Q = V ifn is even, and Q = I otherwise?

A variety of game problems have been shown to be PSPACE-complete: for example:

Example 5.11.7 (GENERALIZED GEOGRAPHY game problem) Given a directed graph G = ýV, E)
and a vertex v0, does Player I have a winning strategy in the following game? Players alternate choosing new
arcs from the set E. Player I starts by choosing an arc whose tail is vo. Thereafter each player must choose an
arc whose tail equals the head of the previous chosen arc. The first player unable to choose a new arc loses.

Some other examples of PSPACE-complete problems are the word problem for context-sensitive
languages, the reachability problem for cellular automata (given two configurations cl and c2, is c2
reachable from cl?), and the existence of a winning strategy for a generalization of the game GO to
arbitrarily large grids.

5.11.3 Exponential Complexity Classes

There are various ways in which exponential complexity classes can be defined. The most useful seem
to be the following (see Section 5.2)

0c

EXP = UTime(2nk), NEXP = UNTime(2nk).
k=1 k~l

The open problem EXP = NEXP is an 'exponential version' of the P = NP problem and, interestingly,
these two problems are related.

Theorem 5.11.8 IfP = NP, then EXP = NEXP.

Proof: Let L e NEXP, L C V and P = NP. By definition, there is a NTM M4 that accepts L in time 2"n
for some k. Consider now an 'exponentially padded' version of L

L'= {wa21' -IwlI w c LI,

356 U COMPLEXITY

where a is a symbol not in E. We show how to design a polynomial time bounded NTM .M' that

decides L'. For an input y = wa21* -1w1, M' first checks whether a w is followed by exactly 2 01w - jIw

a's, and then simulates M on y, treating a's as blanks. M' works in time 0(2Iw1k) - and therefore in
polynomial time with respect to the length of the input. Thus L' is in NP and also in P, due to our
assumption P = NP. This implies that there is a DTM M" deciding L' in time In' for some 1. We can
assume, without loss of generality, that M" is an off-line TM that never writes on its input tape. The
construction M' from M can now be reversed, and we can design a DTM M" that accepts w in time

2 10' for some 1'. M" simulates, on an input w, M" on the input wa2I"1 -1w,. Since lg(2*w k - Iw) - IwIk,

M` can easily keep track of the head of M" by writing down its position in binary form.

As a corollary we get that EXP = NEXP == P $ NP. This indicates that to prove EXP $ NEXP
may be even harder than to prove P * NP.

Various natural complete problems are known for the classes EXP and NEXP. Many of them
are again modifications of known NP-complete problems. For example, the following version of the
tiling problem is EXP-complete.

Given a finite set of tiles, a string of colours w, a number n in binary form, there is a tiling of an
n x n square with a one-colour side (except for the left-most part of the top row where the string w of
colours has to be)?

Many EXP- and NEXP-complete problems can be obtained from P- and NP-complete problems
simplyby taking 'exponentially more succinct descriptions' of their inputs (graphs, circuits, formulas).

For example, a succinct description of a graph with n = 2k nodes is a Boolean circuit C with 2k
inputs. The graph Gc = (V,E) represented by C has V = {1,. . . ,n} and (ij) E E if and only if C
accepts the binary representation of i and j in its inputs. Clearly, such a circuit representation of a
graph is exponentially shorter than the usual one.

For example, the following problem is NEXP-complete: given a succinct description of a graph
(in terms of a circuit), decide whether the graph has a Hamilton cycle.

Remark 5.11.9 There is also another way to define exponential complexity classes:

E= UTime(kn), NE = UNTime(kn).
k~l k:=1

Even though these classes seem to capture better our intuition as to how exponential complexity
classes should look, they do not actually have such nice properties. For example, they are not closed
under polynomial reductions.

The overall map of the main complexity classes is depicted in Figure 5.10.

Exercise 5.11.10 Show that for any language L E NEXP there is a language L' E NE such that L <' L'.

Exercise 5.11.11* Show that P = NP implies E = NE.

BEYOND NP U 357

NEXP
EXP

PSPACE
PH
PP
NP

RPP

- - -- - - - - - - ---- ---

Figure 5.10 A map of complexity classes

5.11.4 Far Beyond NP - with Regular Expressions only

What is beyond NEWP? Two interesting classes have been defined and investigated:

2n

EXPSPACE = Space(2"'), ELEMENTARY U Time (22"

k=l k=1

where Timek denotes that there are k levels of exponentiation.
The name ELEMENTARY for such a huge class may be seen as ironical. It may be apt from

the point of view of 'P-inhabitants', but is quite justified from the point of view of recursion theory
considered in the next chapter. However, in spite of this, it is natural to ask whether it makes sense
from a computational point of view to pay attention to such esoteric complexity classes? Does one
encounter them in down-to earth computing? Unfortunately, yes.

The following theorem summarizes results which show how far we can get in the space of
complexity classes with a very simple problem such as the equivalence problem for generalized
regular expressions.

Theorem 5.11.12 (Stockmeyer-Meyer's theorem) The equivalence problem for generalized regular
expressions is:

1. co-NP-complete for ordinary regular expressions without iteration;

2. PSPACE-complete for ordinary regular expressions;

358 U COMPLEXITY

3. co-NEXP-complete for regular expressions with squaring but without iteration;

4. EXPSPACE-completefor regular expressions with squaring;

5. outside the class ELEMENTARYfor regular expressions with negation.

Exercise 5.11.13* Show NP-completeness of the inequivalence problem for regular expressions without
iteration (the star-free expressions). (Hint: use a reduction from the SAT problem.)

Exercise 5.11.14* Show that a regular language can be described by a star-free regular expression if and
only if it is accepted by a NFA with an acyclic state diagram.

Exercise 5.11.15 Explain how it can happen that the last problem in Theorem 5.11.12 is computationally
so hard.

Remark 5.11.16 Two opposing streams are noticeable in computing in the search for what is feasible.
In the pre-computing era the concept of feasibility was identified with the concept of recursive
functions discussed in the next chapter. But the more powerful the computers we have and the
more computation intensive the problems attacked, the more frustration grows as to what is really
computable. The concept of feasibility was at first restricted to the class ELEMENTARY that was
popular for a while, then to P, but nowadays there are even feelings that one should go deeper into
P, to the class L or NC. At the same time an opposing direction is acquiring momentum: to extend
the concept of feasibility beyond P, even into NEXP. This will be discussed in Chapter 9.

5.12 Computational Versus Descriptional Complexity*
The two basic classes of problems we consider in computing and its foundations can be seen as dealing
with expressiveness and with computability: how to describe (efficiently) properties, algorithms,
systems, objects, and how to perform (efficiently) checking of properties, execution of algorithms,
design of objects.

Formal logics and theories of specification, algorithmic and database languages deal with
problems of the first type. Theories of automata, computer models, algorithms and computational
complexity deal with problems of the second class. These two components of computing and its
foundations at first sight seem to be very different in respect to aims, methods and results. This
is, surprisingly, quite misleading. There are actually deep relations between these two areas of
computing. In order to recognize them we have to switch to a very abstract/theoretical level, this
time to the second order logic.

Let us summarize briefly the basic concepts from logic that we need. First order logic is a language
of formulas built up from symbols for constants, object-variables, predicates, logical connectives
and quantifiers that can be applied to object-variables only. In second order logic there are also
predicate-variables and quantifiers can be applied to such variables.

Example 5.12.1 The following formula of the first order logic represents a property of graphs (given by the
relation E), being complete: VxVy(xEy).

COMPUTATIONAL VERSUS DESCRIPTIONAL COMPLEXITY' U 359

It can be shown that to each formula of second order logic there is an equivalent in the prenex
form in which all predicate-quantifiers form a prefix of the formula. In the case where only such
formulas are allowed and with only existential quantifiers applied to predicate variables, we speak
about second order existential logic. Let us denote by SOL (SOEL) the class of problems/languages
expressible using (existential) second order logic.

Example 5.12.2 The following formula of the second order existential logic is satisfied by those and only those
graphs (given by the relation E) that are 3-colorable:

F - (3R)(3Y)(3B)(Vx)[(R(x) VY(x) VB(x))
A(Vx,y(E(x,y) =:. -(R(x) AR(y)) A -(Y(x) AY(y)) A-(B(x) AB(y))))]

The following basic result has been the first to show that important complexity classes can be
characterized in a completely different way, as classes of problems describable using certain basic
tools of logic.

Theorem 5.12.3 (Fagin's theorem) NP = SOEL

There are numerous variants of this fundamental theorem putting different lights on the power of
logic. One of them says that NP is exactly the class of all graph-theoretical properties expressible in
the second order existential logic.

The second basic result shows that the complexity class of polynomial hierarchy, which could
have been seen as being defined in an 'art pour art' way, is actually a very basic one.

Theorem 5.12.4 (Stockmeyer's theorem) PH = SOL

These two results naturally initiated a search to find out whether other basic computational
complexity classes can be seen as being nicely defined using descriptional means only. Interestingly,
this is indeed true and much can already be achieved using the first order logic. However, this time
we have to consider uniform families of first order logic formulas where the concept of uniformity is
analogous, as in the case of Boolean circuits, and as descriptional resources the size of formulas and
the number of the distinct variables are considered.

Theorem 5.12.5 (Immermann's theorem) If VAR&SIZ[v(n),s(n)] denotes the set of problemsflanguages
expressible by a uniform family offirst order logic formulas with v(n) being their number of distinct variables
and s(n) being the size offormulas, then

P = U=k VAR&SIZ[c, n'],

PSPACE = U=,k VAR&SIZ[c, 2-k].

There are various other results relating computational complexity classes with those defined
completely in terms of descriptional means and their resources. All these results again show how
very basic are the main computational complexity classes. At the same time they show how powerful,
and still far from fully explored is the very basic language of science - predicate calculus. These
results also show that many problems of complexity theory (and also databases) can be formulated
as problems of logic.

In order to prove the above results we would need to go into the formalism of predicate logic and
to introduce a variety of concepts that is beyond the scope of this book. A use of logic to characterize
important families of languages is, however, not restricted to high complexity classes. For example,
logical formulas can also be used to characterize neatly regular languages and regular w-languages.

360 U COMPLEXITY

The way logical formulas can be used to describe regular languages is simple and will
now be used to demonstrate the power and weakness of logical characterizations of families of
languages/problems.

Let us consider the so-called first order LA-formulas over an arbitrary alphabet A as the usual first
order logic formulas built from the logical connectives V, A, - =, quantifiers, variables, constants 0, 1
and symbols from the set { < } U {Ra I a E A}.

For each closed LA-formula • and each word w c A* we can check whether 0 is satisfied by w, if
in 0:

1. variables are interpreted as having integer values from the range [1, wj];

2. relation < has the usual interpretation of 'being smaller' between integers;

3. Rax is true on w if and only if the x-th letter of w is a.

With this interpretation we can associate with each LA-formula 0 the language L(O) of all words
from A that satisfy 0.

Example 5.12.6 For the formula 01 defined by

3x3y((x < y) A Rax A Ray) A Vz((x < z) A (z < y) =t RbZ)

we have L(01) = A*ab*aA*.

Second order LA-formulas are built in the same way as the first order LA-formulas, but this time
set-variables are also allowed and can be quantified. The set membership symbol c can also be used.

Example 5.12.7 For the formula

02 = X(Vm(VX-(x < m) =: M E X) {1 C X}
A(Vn(Vx-'(n < x) => n c X) {fw1 E X}
A(VxVy(Vz-•((x < z) A (z < y))) {a position is in X

=*- (x E X 4=• -•(y G X)))) iffits successor is not}
AVx(Rx) {wGA*}

we have LA(02) = a(aa)*.

The following theorem shows how powerful are the languages of LA-formulas.

Theorem 5.12.8 (Biichi's theorem) (1) A language R C A* is star-free regular (i.e. expressible by an
extended regular expression without iteration) if and only if R = LA (0) for a first order LA-formula. (2) A
language R C A* is regular if and only ifR = LA(O) for a second order LA-formula.

Moral: Experience suggests that once something has been shown to be impossible, then the next step
is to start a search for how to do it from a different point of view. A good rule of thumb in complexity
analysis is therefore, as in life, to do your best to solve the problems you need to solve. When this
turns out not to be feasible, then modify your problems.

EXERCISES U 361

5.13 Exercises
1. Suppose that the running time of a NTM is defined to be the length of the longest computation

for a given input. Show that if NP is defined accordingly, then it is the same class as defined in
the text.

2. Show that if a language L is recognized by a t(n)-time bounded TM, then L is recognized by
infinitely many t(n)-time bounded TM.

3. * Show that 2-CNF problem is in P.

4. Show that the problem of deciding whether a Boolean formula in DNF is satisfiable is in P.

5. Show that the problem of deciding whether a Boolean formula in CNF is a tautology is in P.

6. Show that the problem of deciding whether a Boolean formula in DNF is a tautology is
co-NP-complete.

7. Show that a language L E NP if and only if there is a language L0 E P (called also a witness of
L), a separator $ and a polynomial p such that x E L 4=> Ey lyI -• p(IxI), x$y c Lo.

8. A clause is called monotone if it consists entirely of variables (e.g. x V y V z) or
entirely of negations of variables. Show the NP-completeness of the following language
MONOTONE-CNFF: a set of satisfiable Boolean formulas all clauses of which are monotone.

9. Show that the following HITTING-SET problem is NP-complete: given a family F of finite sets
and a k E N, is there a set with at most k elements intersecting every set in J-?

10. Show that the problem of colouring a graph with two colours is in P.

11. Show that the CIRCUIT-SAT problem is polynomially reducible to the SAT problem, where
the CIRCUIT SAT problem is that of deciding whether a given Boolean circuit has a satisfying
assignment.

12. Show that the DOMINATING SET problem is NP-complete even for bipartite graphs.

13. * Show that the VERTEX COVER problem for a graph G = (V, E) and an integer k can be solved
in time O(9IEI + kIVjk+ 1).

14. * Show NP-completeness of the following ANAGRAM problem: given a finite multiset S of
strings and a string w, is there a sequence wl, . . w, of strings from S such that w is a
permutation of the string w,. •. w,?

15. Show that the MAX2SAT problem is NP-complete. (It is the following problem: given a set of
clauses, each with two literals, and an integer k, decide whether there is an assignment that
satisfies at least k clauses.) (Hint: consider the clauses x, y, z, w, x V 9, Y V i, 2 V x, x V uL, y V iv,
z V fv, and show that an assignment satisfies x V y V z if and only if it satisfies seven of the above
clauses.)

16. Show, for example by a reduction from the CLIQUE problem, that the VERTEX COVER problem
is NP-complete.

17. Show, for example by a reduction from the VERTEX COVER problem, that the SET COVER
problem is NP-complete. (It is the problem of deciding, given a family of finite sets $S,.. i.,

k nand an integer k whether there is a family of k subsets Sil, . . ., Si, such that Uj= 1 sij = Uj=' 1sj.

362 I COMPLEXITY

18. Denote by NAE3-CNFF the problem of deciding, given a Boolean formula in 3-CNF form
whether there is a satisfying assignment such that in none of the clauses do all three literals have
the same truth value (NAE stands for 'not-all-equal'). (a) Show that the problem NAE3-CNFF
is NP-complete. (b)** Use the NP-completeness of the NAE3-CNFF problem to show the
NP-completeness of the 3-COLOURABILITY problem (of deciding whether a given graph
is colourable with three colours).

19. Show that the INDEPENDENT SET problem is NP-complete, for example, by a reduction
from 3-CNFF. (It is the following problem: given a graph G = (V, E) and I C V, I is said to be
independent if for no ij E I, i : j, (i,j) C E. Given, in addition, an integer k, decide whether G
has an independent set of size at least k.)

20. Use the NP-completeness of the INDEPENDENT SET problem to show that (a) the CLIQUE
problem is NP-complete; (b) the VERTEX COVER problem is NP-complete.

21. Show, for example by a reduction from 3-CNFF, that the TRIPARTITE MATCHING problem is
NP-complete. (Given three sets B (boys), G (girls) and H (homes), each containing n elements,
and a ternary relation T C B x G x H, find a set of n triples from T such that no two have a
component in common. (That is, each boy is matched with a different girl and each couple has
a home of its own.)

22. Use the NP-completeness of the TRIPARTITE MATCHING problem to show the
NP-completeness of the SET COVER problem. (Hint: show this for those graphs nodes of
which can be partitioned into disjoint triangles.)

23. Show the NP-completeness of the SET PACKING problem. (Given a family of subsets of a finite
set U and an integer k, decide whether there are k pairwise disjoint sets in the family.)

24. Show that the BIN-PACKING problem is NP-complete (for example, by a reduction from the
TRIPARTITE MATCHING problem).

25. Show, for example by a reduction from the VERTEX COVER problem, the NP-completeness of
the DOMINATING SET problem: given a directed graph G = (V, E), and an integer k, is there
a set D of k or fewer nodes such that for each v E V - D there is a u e D such that (u, v) c E?

26. Show that the SUBGRAPH ISOMORPHISM problem is NP-complete (for example, by a
reduction from the CLIQUE problem).

27. Show that (a) 3-COLOURABILITY problem is NP-complete; (b) the 2-COLOURABILITY
problem is in P.

28. Show that the following Diophantine equation problem is NP-complete: decide whether a
system of equations Ax < b (with A being an integer matrix and b an integer vector) has an
integer solution. (Hint: use a reduction from the 3-CNFF problem.)

29. Show that if f is a polynomially computable and honest function, then there is a polynomial
time NTM A4 which accepts exactly the range off and such that for an input y every accepting
computation of M4 outputs a value x such thatf(x) = y.

30.* Design a linear time algorithm for constructing an optimal vertex cover for a tree.

EXERCISES U 363

31. Consider the MINIMUM VERTEX COLOURING problem (to determine the chromatic number
of the graph). (a) Show that unless P = NP the approximation threshold of the problem cannot
be larger than 1 (Hint: use the fact that 3-COLOURING is NP-complete); (b) show that the
asymptotic approximation threshold (see Exercise 5.8.10) cannot be larger than 4 (Hint: replace
each node by a clique).

32. (a)* Show that the heuristic for the VERTEX COVER problem in Section 5.8.2 never produces
a solution that is more than Ig n times the optimum; (b) find the family of graphs for which the
lg n bound can be achieved in the limit.

33. Show that the approximation threshold for the minimization version of the BIN PACKING
problem is at least 1

34. Design an approximation algorithm for the SET COVER problem, as good as you can get it,
and estimate its approximation threshold.

35. Design an O(lg(\ + ý))-time parallel !-approximation algorith for MAXSAT problem for
Boolean formulas in CNF with m clauses and n variables.

36. ** Show that a language L E RP if and only if there is a language Lo c P, called also a witness
language for L, and a polynomial p such that x c L ý= ly IyI -< p(jx), x$y E Lo and if X E L, then
at least half the words of lengthf(xl) are such that x$y E Lo.

37. Show that the following problem is in BPP: given polynomials pi(xi,... x,), I < i <
m,gj(x1, . . . ,xn), 1 j < n, decide whether I7 pi(xi, ,xn) = -jlg(x ,. x).

38. Show that NP C BPP implies NP = RP.

39. Show that the class PP is closed under (a) complementation; (b) symmetric difference;
(c) <' reducibility.

40. Show that the class BPP is cosed under (a) complementation; (b) union; (c) intersection.

41. Show that the class RP is closed under (a) union; (b) intersection.

42. Show that the classes RP and BPP are closed under <• reducibility.

43. A Boolean randomized circuit is one which has, in addition to standard inputs, so-called
random inputs. If these random inputs are drawn from a uniform distribution, the output of the
circuit is a random variable. A random Boolean circuit with standard input xi,..., x, computes
a Boolean functionf (xi,. . . , x,) if Pr(C(x1 ,... , xn) =f(xl, • • ,)) >_ for all xj, . . . , x,. Show
that if a Boolean function can be computed by a randomized circuit of size s(n), then it can be
computed by a usual (deterministic) circuit of size O(ns(n)).

44. Show that any problem in NCk can be solved by an EROW PRAM in 0 (lgn)k time using no(')

processors.

QUESTIONS
1. Why is nondeterministic space not essentially more powerful than deterministic space?

2. How can we introduce nondeterminism into circuits?

364 U COMPLEXITY

3. The main computational complexity classes have been defined in terms of Turing machines.
Could they be defined using other models of computers?

4. Can the reducibilities introduced in Section 5.3 be ordered with respect to their power?

5. Is there an essential difference between direct and indirect methods of proving
NP-completeness?

6. Which ways of attacking the P = NP problem seem to be feasible?

7. How can the existence of complete problems contribute to the design of efficient algorithms?

8. How can the main randomized complexity classes be described informally?

9. What does it imply when a complexity class has no complete problems?

10. Why is it not easy to define complexity classes NC' in terms of PRAM?

5.14 Historical and Bibliographical References
Foundations of computational complexity and a systematic investigation of time and space
complexity of Turing machine computations were laid out in papers by Hartmanis and Steams
(1965) and Hartmanis, Lewis and Steams (1965). For these contributions and further development of
computational complexity Hartmanis and Steams received the Turing award in 1993. For a personal
account of the first developments in computational complexity see Hartmanis (1979).

For the earlier attempts to pose and solve computational complexity problems, of special interest
is a letter from G6del to von Neumann in 1956 (see Sipser (1992)), in which he asked for his views
on the possibility of solving in linear or quadratic time, on a TM, a problem known today to be
NP-complete. For other less formal and direct attempts to deal with computational complexity issues
see Rabin (1960) and Trakhtenbrot (1964).

Observe that it is very natural that a systematic investigation of computational complexity should
have started in the 1960s. The boundaries between algorithmically solvable and unsolvable problems
were already quite well understood as were methods for showing unsolvability. The growing use of
more and more powerful computers for more and more complex tasks and larger and larger inputs
naturally brought the question of computational complexity and efficiency to the forefront of interest
and importance.

There is a variety of books in which computational complexity problems are presented in detail:
especially Papadimitriou (1994); Reischuk (1990); Balcizar, Diaz and Gabiro (1988); Wagner and
Wechsung (1986); Papadimitriou and Steiglitz (1982); Lewis and Papadimitriou (1981). See also
Cormen, Leiserson and Rivest (1990); Aho, Hopcroft and Ullman (1974); Hopcroft and Ullman (1969);
Lovdsz (1995) and an extensive survey of complexity classes by Johnson (1990a). A less formal but
very illuminating discussion of complexity problems and results is found in Harel (1987).

Theorem 5.1.7 is due to Savitch (1970). The time and space hierarchies summarized in
Theorem 5.2.2 were established for deterministic computations in the above-mentioned pioneering
papers by Hartmanis et al., and for nondeterministic computations by Cook (1973) and Seiferas,
Fischer and Meyer (1973). See also Aho, Hopcroft and Ullman (1974) for a presentation of proofs. The
result that space is strictly more powerful than time, presented on page 304, is due to Hopcroft, Paul
and Valiant (1975). The gap theorem is due to Trakhtenbrot (1964); see also Papadimitriou (1994). For
Blum's speed-up theorem (in much stronger form) see Blum (1971).

There are many concepts of reducibility. Some have been very intensively studied already in the
theory of recursive functions; see Rogers (1967). For the study of resource-bounded reductions see
Ladner, Lynch and Selman (1975) and Balcdzar, Diaz and Gab~rro (1988).

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES , 365

Another key idea of computational complexity, namely, to consider class P as the one that is
of both theoretical and practical importance and class NP as its natural extension for the study
of computational complexity, appeared informally in several papers, especially in Cobham (1965),
Edmonds (1965, 1966) and Rabin (1966). Several citations from these and other papers, including
the letter from G6del to von Neumann collected by Sipser (1992), demonstrate how an awareness
emerged of the importance of class P and of the need to try to solve efficiently those problems that
seem to be solvable only by brute force - through an exhaustive search.

The concept of NP-completeness, another very basic concept of computational complexity, was
introduced by Cook (1971). But it was Karp (1972) who convincingly demonstrated its true wealth.
(Both received Turing awards, Cook in 1982 and Karp in 1985.) See also Levin (1973). The book
by Garey and Johnson (1979) containing a compendium of NP-complete problems, and Johnson's
ongoing column on NP-completeness in the Journal of Algorithms have also contributed significantly
to its broad study. A variety of NP-complete problems can be found in the above references and in
many books on computational complexity and foundations of computing. Cook (1971) was the first
precisely to formulate the P = NP problem.

NP-completeness of the satisfiability problem is due to Cook (1971). The proof presented here is
due to Aho, Hopcroft and Ullman (1974). Satisfiability became the first problem to be heavily used
in deriving other NP-completeness results. The idea of using the bounded tiling problem and other
versions of tiling problems to prove NP-completeness and other types of completeness came from
Lewis (1978). This was further developed by Lewis and Papadimitriou (1981) and especially by van
Emde Boas (1982) and Savelsbergh and van Emde Boas (1984). Hartmanis-Berman hypothesis is from
Hartmanis and Berman (1988).

Strong NP-completeness is usually defined in a more general way: a problem remains
NP-complete even if any instance of length n is restricted to contain integers of size at most p(n),
where p is a fixed polynomial. For an analysis of this concept see, for example, Garey and Johnson
(1988) and Papadimitriou (1994). For results on how a compressed (succinct) description of inputs
can essentially change complexity of NP-complete problems, see Papadimitriou (1994), Galperin and
Wigderson (1983), and BalcAzar, Lozano and Toran (1992).

The concept of average-case completeness is due to Levin (1986). For a more detailed study of this
concept see Gurevich (1991), Ben-David, Chor and Goldreich (1992), Impagliazzo (1995) and Wang
(1996). Presentation here is based on Wang (1996), where one can also find references to the results
mentioned in Remark 5.5.12.

Also in the RRAM framework we can define in a natural way the concept of the complexity
class P and, using the idea of certificates, the complexity class NP (for computation over
reals). NP-completeness for computations over reals was introduced by Blum, Shub and Smale
(1989). There are also several fast randomized prime recognition algorithms: Rabin's algorithm
(Section 8.3.4); Solovay-Strassen's algorithm (1978) (both are actually Monte Carlo algorithms for
integer factorization); Rumley-Adleman's Las Vegas algorithm (see Adleman (1980)) that terminates
in time O((lgn) lg Il gn) and either provides no solution or a correct one; and a polynomial time Las
Vegas algorithm due to Adleman and Hung (1984).

The concept of certificates for NP-complete problems and Theorem 5.7.2 are implicit in Edmonds's
papers. For a rich history of the P = NP problem see Sipser (1992). For proofs and references for
various statements of the type P = NP if and only if ... see Papadimitriou (1994) and Balcdzar,
Dfaz, and Garb~irro (1988). The idea of the class FP goes back to Cobham (1964) and Edmonds
(1965). The presentation of the subject here is based on Papadimitriou (1994). The class UP was
introduced by Valiant (1976) and Theorem 5.7.20 is due to Grollman and Selman (1988). Theorem 5.7.6
on relativization of P = NP problems is due to Baker, Gill and Solovay (1975). A large body of results
on relativization currently available, including those from Remark 5.7.8, is presented by Balcizar,
Dfaz and Gabdrro (1988).

366 , COMPLEXITY

A compendium of P-complete problems and an analysis of the role that NP-completeness plays
in seeing the limitations of parallel computing are found in Greenlaw, Hoover and Ruzzo (1993).
P-completeness of the rational linear programming problem is due to Dobkin, Lipton and Reiss (1979);
NP-completeness of integer linear programming is in Garey and Johnson (1979). P-completeness of
the CIRCUIT VALUE problem is due to Ladner (1975). The connection between P-completeness and
inherently sequential problems was first explored by Goldschlager (1977).

The class of unambiguous Turing machines was introduced by Valiant (1976). Their relation to
one-way functions was established by Grollman and Selman (1988). The class #P was introduced by
Valiant (1979), and the proof of #P-completeness for PERMANENT is due to him and Zank6 (1991).
For Toda's theorem see Toda (1989). For more on #P-completeness see Papadimitriou (1994).

A systematic presentation of primality testing algorithms is found in Kranakis (1986). The proof
that prime recognition is in P provided the generalized Riemann hypothesis holds is due to Miller
(1976), and that it is in NP is due to Pratt (1975). The fastest known deterministic algorithm for
prime recognition is due to Adleman, Pomerance and Rumely (1983). For numerical verification of
the Riemann hypothesis see Odlyzko (1988); for numerical verification of the generalized Riemann
hypothesis see Rumely (1993).

Attempts to solve NP-complete problems by approximation are about as old as NP-completeness
itself. Johnson (1974) and Garey and Johnson (1979) provided the first systematic presentation of
approximation algorithms. For a more detailed presentation and analysis of some approximation
problems and newer results on nonapproximability see Cormen, Leiserson and Rivest (1990);
Papadimitriou (1994); Babai (1995) Ausiello, Crescenzi, and Protasi (1995) and the books by
Hochbaum (ed.) (1996), Ausiello, Crescenzi, Gambosi, Kann and Marchetti-Spaccamela (1997) and
Diaz, Sema, Spirakis and Tordn (1997). A polynomial time approximation scheme for TSP in R2 with
Euclidean distances is due to Arora (1996). Trevisan (1996) has shown that unless P = NP the TSP does
not admit an approximation scheme when restricted to the Euclidean space of an arbitrary dimension.

The vertex cover randomized algorithm presented on page 338 is due to Gavril (1977). The TSP
approximation algorithm sketched in Exercises 5.8.14 and 5.8.15 is due to Rosenkrantz, Steams and
Lewis (1977). Proofs of Theorems 5.8.6 and 5.8.12 follow Papadimitriou (1994). The first result, for the
SET COVER problem, showing that approximation threshold is 1 unless P = NP is found in Lund and
Yannakakis (1993). Theorem 5.8.17 is found in Arora, Lund et al. (1992). For an overview of intensive
experimental work on solving and approximation of TSP of large size see Johnson and McGeoch
(1996), and Johnson, McGeoch and Rothberg (1996). For Held-Karp's lower bound for TSP see Held
and Karp (1970).

Randomization was formally introduced by Rabin (1976) and Solovay and Strassen (1977) as
a tool to get more efficient algorithms. However, the randomized algorithms on primality testing,
found in Rabin (1976); Miller (1976) and Soloway with Strassen (1977), all invented in 1975, made
randomization a central feature in complexity theory. The formal study of randomized complexity
classes started with Gill (1977), who introduced the classes RP, PP, ZPP and BPP. For more on
randomized complexity classes see Balcdzar, Diaz and GabArro (1988), Papadimitriou (1994) and
Johnson (1990a). Theorem 5.9.10 is found in Kotsoupias and Papadimitriou (1992). For a detailed
treatment of randomized algorithms see Montwani and Raghavan (1995).

The class NC was introduced by Pippenger (1979) and in detail studied by Cook (1981, 1985). For
more about parallel complexity classes see Reischuk (1990) and Papadimitriou (1994). For a summary
of evidences that NC : P see Greenlaw, Hoover and Ruzzo (1995).

The polynomial hierarchy was introduced by Stockmeyer (1976). The proof that QSATk is a
complete problem for Ek is found in Wrathall (1976) as is the result that if PH has a complete problem
then it collapses. The collapse of the polynomial hierarchy if the graph isomorphism problem is
NP-complete is found in Goldwasser and Sipser (1986), and for the case that SAT has a polynomial
size circuit see Karp and Lipton (1980).

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES 3 367

The first PSPACE-completeness results, for the quantified satisfiability and the equivalence
of regular expressions, were due to Stockmeyer and Meyer (1973). Schafer (1978) showed
the PSPACE-completeness of some games including GENERAL GEOGRAPHY. The
PSPACE-completeness of GO is due to Lichtenstein and Sipser (1980). Papadimitriou (1985,
1994) showed the PSPACE-completeness of various problems of decision making under uncertainty.

For a survey of results on exponential complexity classes and their complete problems see
Papadimitriou (1994) and Johnson (1990a). Results on the completeness of various regular expression
equivalence problems are due to Stockmeyer and Meyer (1973).

Computability

INTRODUCTION
The search for the ultimate limitations of mind and machines gave rise to a variety of concepts,
methods and results of fundamental philosophical, theoretical and practical importance. This chapter
deals with some of them. First, it explores basic concepts and methods concerning limitations of
effective or algorithmic methods - that is, ultimate limitations of machines. We discuss which
problems are algorithmically unsolvable or undecidable (and how to show that), which functions
are computable and which sets are recognizable or acceptable. Second, it explores one of the main
products of mind, formal systems, and shows their limitations for proving correctness of statements
and the randomness of strings. Finally, a magic 'number of wisdom' is defined and analysed, which
contains in a very compressed form a huge amount of knowledge.

In this search for the limitations of mind and machines, we present various concepts and methods
of broader importance for both computing and outside it: for instance, Kolmogorov and Chaitin
concepts of descriptional complexity.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. basic concepts and relations concerning recursive and recursively enumerable sets and partial
and primitive recursive functions;

2. the fundamental concept of undecidability and the main examples of undecidable problems:
halting problem, tiling problems, the Thue problem, the Post correspondence problem, and
Hilbert's tenth problem;

3. the fundamental concepts of Kolmogorov/Chaitin complexity, their basic properties and some
applications;

4. a general concept of formal systems, and results, including Godel's incompleteness theorem
and Chaitin's theorem, showing surprising limitations of formal systems for proving
correctness of theorems and randomness of strings;

5. magic 'numbers of wisdom' and their implications.

370 * COMPUTABILITY

When you have eliminated the impossible,
whatever remains, however improbable, must
be the truth.

Arthur Conan Doyle, 1890

The search for its own limitations is one of the main characteristics of science in this century.
Discovering the power and limitations of physical systems, machines, mind, knowledge and formal
systems is an intellectually exciting and practically important task.

The concept of unsolvability is one of the cornerstones of modem science, computing and
mathematics. Its investigation leads to questions of basic philosophical importance.

In this chapter we deal with several fundamental problems concerning unsolvability and other
limitations of machines, formal systems and knowledge. Which problems are ultimately solvable by
machines or within a framework of a formal system, and which are not? How can we prove that some
problems are beyond the power of machines or formal systems, no matter how powerful or good
they are? Where is the borderline between solvability and unsolvability?

On a more technical level these fundamental philosophical problems can be reduced to those
concerning sets, functions, numbers, strings and theorems. Which sets are decidable or enumerable?
Which functions are computable? Which numbers are computable? Which strings are random?Which
theorems are provable?

All these problems are analysed in this chapter. We deal with basic concepts, methods and results
regarding unsolvability, solvability and the boundaries between them, including the basic theorems
of Godel and Chaitin concerning the limitations of formal systems.

We shall learn several surprising methods and results. For example, we shall see that self-reference
is a basic tool not only for the design of algorithms but also for determining the limitations of
computing. We shall also discover that a computer-independent view of computation is possible.

The results and methods presented in this chapter demonstrate that there are simple methods, in
principle, to grasp what is graspable and to show that one cannot embrace the unembraceable.

The results of this chapter imply that there are algorithmic problems that are not algorithmically
solvable, correct theorems that are not provable and random strings, whose randomness cannot be
proved, no matter how much humankind has in the way of computer resources and brains.

6.1 Recursive and Recursively Enumerable Sets
The concepts of recursive and recursively enumerable sets play the key role in the search for
boundaries between solvability and unsolvability. To start with we describe and analyse these
concepts for languages - sets of strings. We also discuss how to generalize them in order to deal
with recursivness of other objects.

As defined in Section 4.1.2, a language L is recursive (recursively enumerable) if there is a TM
that recognizes/decides (accepts) L. This immediately implies that each recursive language is also
recursively enumerable.

Theorem 6.1.1 shows that there is an alternative way to view recursively enumerable sets - through
a generation/enumeration. We say that an off-line TM M4 generates (enumerates) a language L C E*,
if M4, starting with the empty input tape, writes on its output tape, symbol by symbol, a word
WL = Wl#W 2 #W 3 #. . ., where wi E E*, # l E, wi : w1 , for i # j, and L = {wi11 < i}. (In short, M
generates all words of L, none twice, and no other words.)

Theorem 6.1.1 A language L is recursively enumerable if and only if L is generated by an off-line Turing
machine.

RECURSIVE AND RECURSIVELY ENUMERABLE SETS U0 371

Proof: Let L be a recursively enumerable language and L = L(M) 9 E* for a TM M. We now show
how to design an on-line TM AM' generating words of L, each of them exactly once.

M' produces, starting with the pair (0,0), all pairs (i,j) E N2 , one after another, with respect to
the ordering < defined as follows:

(il 1i) < (i2 ,j 2) i== + il l <i2 +ji2 V (i1 +]l = i2 +ij 2) A (jU < j2).

For each newly created pair (i,j), M' generates the ith word wi from E * (with respect to the strict
ordering), and then simulates exactly j steps of M on wi. If M accepts wi in exactly steps, then M'
generates wi by writing wi# on its output tape. If not, .M' does not write anything on its output tape.
In both cases, as the next step, M' generates the next pair (i',j') with respect to the ordering < and
the whole process continues. In this way M' simulates, sooner or later, each terminating computation
of A4, and generates all those words M accepts, each one exactly once.

In order to prove the opposite implication, let us assume that L C E* is a language generated by a
k-tape off-line TM M. We show how to design a TM M' that accepts L. A' will use k tapes to simulate
k work tapes of A4 and two additional work tapes to simulate the input and output tapes of M. For
a given input word w, M' begins simulation of a computation of M4 that starts with the empty input
tape. Each time M writes on its output tape a word of the type #w'#, with w' E E*, M' compares w'
with w. If they agree, AM' accepts w; otherwise, .M' keeps simulating M.

Exercise 6.1.2 Show that if an off-line TM outputs on the empty tape an infinite word w
w1 #w 2#w 3 where wi e E*, # _ E, then the language L = {wi I < i} is recursively enumerable.
(The condition that each word can be generated only once is relaxed.)

Exercise 6.1.3 Show that the set of all TM that halt on at least two inputs is recursively enumerable.

There is the following close relation between recursive and recursively enumerable sets.

Theorem 6.1.4 A language L c E* is recursive if and only i L and its complement Lc are recursively
enumerable.

Proof: If L is a recursive language, there is a TM M that recognizes L. By exchanging the accepting
and rejecting states in the description of M4, we get a TM that recognizes the complement Lc. Hence
both L and Lc are recursive, and therefore also recursively enumerable.

On the other hand, if both L and Lc are recursively enumerable, then there are TMs M, and M42
such that L(.M 1) = L and L(MA2) = L'. From these two TMs we can design in the following way a
TM M that recognizes L. M simulates, for a given input w, both M 1 and M42 in parallel - that is,
M computes, for i = 1,2, ... , the ith step of M 1 and immediately after that the ith step of M 2. One
of these two machines has to terminate and accept. If M1 accepts first, then so does M; but if .M 2
accepts first, .M rejects w.

Exercise 6.1.5 Show that the family of recursive languages is closed under Boolean set operations
(union, intersection and complementation).

372 N COMPUTABILITY

As one would expect, not every recursively enumerable set is recursive, and there are sets that
are not even recursively enumerable. We demonstrate this by two examples.

Let us consider a fixed Godel encoding of all TM into an alphabet P (see Section 4.1), and let
41 A 2, be an enumeration of all TM over the alphabet P ordered with respect to the strict

ordering of their codes. Moreover, let w1 , w2, • . be the strict ordering of all words over P. We use
these orderings to define two languages:

K = {wiIwi E L(Mi)}, KC= {wiIwi L(Ai)}.

Theorem 6.1.6 (Post's theorem) The language K is recursively enumerable but not recursive, and the
language Kc is not recursively enumerable.

Proof: We show first that K is recursively enumerable, but Kc is not. By Theorem 6.1.4, this implies
that K is not recursive.

To show that K is recursively enumerable, we design a TM AM that accepts K. For a given input
w, MA computes i such that w = wi, then designs Mi and simulates .Mi on wi. If Mi accepts wi, then
so does M.

In order to show that the language K' is not recursively enumerable, we use the diagonalization
method and consider the infinite Boolean matrix M such that bij = M(ij) = I if and only if wi E L(M,).
Hence the language K' corresponds to O's in the diagonal of M:

M41 IM 2 M43 IMA4 I..
W1 b1 ,1 b1 ,2 bl,3 bl,4 • • •

W2 b2 ,1 b2,2 b2,3 b2 ,4 ...

w 3 b3,1 b3,2 b3,3 b3 ,4 ...

w 4 b4 ,1 b 4,2 b4,3 b4 ,4 ...

If K' is recursively enumerable, there must exist a jo such that L(.M1j) = KC. There are now two
possibilities for wj0: either wjo E KC or wjo ' Kc. In both cases we derive a contradiction, as follows.

wio E Kc Wjo E L(M 1 0) wj, V K,

wj, 0 K' = wjo V L(M 1/jo) =wj E Kc.

This contradiction implies that our assumption - namely, that Kc is recursively enumerable - is false.
0

The concepts of recursiveness and recursive enumerability are often generalized and used to
characterize sets of objects other than numbers, elements of which can be encoded in a natural way
by strings. The basic idea of these generalizations is that a set is recursive (recursively enumerable)
if the set of all encodings of its elements is. For example, in this sense we can speak of recursive and
recursively enumerable relations, and we can also show that the set of all minimal solutions of the
firing squad synchronization problem is not recursively enumerable.

Exercise 6.1.7 Prove that a set L C N is recursive ýand only if it can be enumerated in an increasing
order by some TM.

Exercise 6.1.8 Show that a language L is recursively enumerable if and only #' there is a recursive
relation R such that x E L - 3y[(x,y) E R].

RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS U 373

Remark 6.1.9 There are several other types of sets encountered quite often in the theory of computing:
for example, productive, creative, immune and simple sets. Since they are easy to define, and one
should have at least a basic knowledge of them, we shall introduce these concepts even though we
shall not explore them.

In order to define these sets, let us observe that an effective enumeration of all TM induces an
effective enumeration of all recursively enumerable sets (accepted by these TM). Therefore, once a
fixed encoding and ordering of TM are adopted, we can talk about the ith recursively enumerable set
Si.

A set S is called productive if there is a recursive function g such that whenever Si ; S, then
g(i) E S - Si. AsetS C E* is creative if S is recursively enumerable and its complement SC is productive.
(For example, the set K is creative.) A set S • >* is immune if S is infinite and it has no recursively
enumerable infinite subset. A set S C_ E* is simple if it is recursively enumerable and its complement
is an immune set.

Exercise 6.1.10 Show that every infinite recursively enumerable set has an infinite recursive subset.

Exercise 6.1.11 Show that if A and B are recursively enumerable sets, then there are recursively
enumerable subsets A' C A and B' C B such that A' n B' = 0 and A' U B' = A u B.

6.2 Recursive and Primitive Recursive Functions

Two families of functions, which can be defined inductively and in a machine-independent way, play
a special role in computing: primitive recursive and partial recursive functions. They are usually
defined as functions from integers to integers. However, this can be generalized, for example to
strings-to-string functions, as will be shown later. The most important outcome of this approach is
the knowledge that all computable functions have a closed form and a method for obtaining this
closed form.

6.2.1 Primitive Recursive Functions

The family of primitive recursive functions contains practically all the functions we encounter and
can expect to encounter in practical computing. The basic tool for defining these functions is the
operation of primitive recursion - a generalization of recurrences we considered in Chapter 1.

Definition 6.2.1 The family of primitive recursive functions is the smallest family of integer-to-integer
functions with the following properties:

1. It contains the following base functions:

0 (nullary constant),
S(x) = x + 1 (successor function),
Ui(Xi, .-. . ,xn) = xi (projection functions),for 1 < i < n.

2. It is closed under the following operations:

374 U COMPUTABILITY

"* composition: if h: N' -- N, gi : N" -- N,... , gm : N" -* N are primitive recursivefunctions,
then so is thefunctionf : N" -* N defined as follows:

f(xl xIn) = h(g1 (x ,xn), . . . ,gin(X,. .. ,X).

"* primitive recursion: ifh : Nn --* N, g: Nn1 2
- N are primitive recursive functions, then so is

thefunctionf : N +1 --+ N defined as follows:

f(OAX 1 , . . . ,Xn) = h(xl, . . .,),

f(z+1,xX1, . .. ,x) = g(z,f(z,x 1 , .-. . ,xn),X 1. . xn), z>O.

The following examples illustrate how to construct a primitive recursive function using the operations
of composition and primitive recursion.

Example 6.2.2 Addition: a(x,y) = x + y:

a(O,y) = U'(y);
a(x+l,y) = S(U3(x,a(xy),y).

Example 6.2.3 Multiplication: m(x,y) = x .y :

m(O,y) = 0;
m(x+l,y) = a(m(x,y), UI(x,y)).

Example 6.2.4 Predecessor P(x) = x- 1 :

P(O) = 0;
P(x+l) = U1(x).

Example 6.2.5 Nonnegative subtraction: a (x, y) = x y

c =(x,0) = 1(x);
a(x,y+l) = P(x-y).

Exercise 6.2.6 Determinefor Examples 6.2.2- 6.2.5 what thefunctions h and g are, and explain why we
have used the function U11(y) in Examples 6.2.2 and 6.2.4 and the function U2(x,y) in Example 6.2.3.

Exercise 6.2.7 Show that the following functions are primitive recursive: (a) exponentiation;
(b)factorial.

Exercise 6.2.8 Show that if f: Nntl -_ N is a primitive recursive function, then so are the following
functions of arguments xi, . . . ,xn and z:

(a) Zf(xi,... ,xY), (b)]Jf(xi, - ,-xn,Y)-

y!ýz y!_z

RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS U 375

The concept of primitive recursivity can be extended to objects other than integer-to-integer
functions. For example, a set of integers or a predicate on integers is called primitive recursive if its
characteristic functions are primitive recursive. We can also talk about primitive recursivity of other
types of functions.

Exercise 6.2.9 Show that the following predicates are primitive recursive: (a) x < y; (b) x = y.

Exercise 6.2.10 Show that the family of primitive recursive predicates is closed under Boolean
operations.

Example 6.2.11 (Primitive recursivness of string-to-string functions) There are two ways ofgeneraliz-
ing the concept of primitive recursivityfor string-to-stringfunctions: an indirect one, in which a simple bijection
between strings over an alphabet and integers is used, and a direct one that we now use for string-to-string
functions over the alphabet {0, 1}.

Base functions: E(x) = E (the empty stringfunction) , two successorfunctions So(x) = xO and $1(x) = xl,
and the projection functions U7 (xi, . . . , x.) = xi, 1 < i < n.

Operations: composition and the primitive recursion defined as follows:

P •,xi, ... ,- Xn) = h(x, . . .x,);

f (yO,x1,..,x,) = go(y,f(y,xX1 , ..- ,), X1, xn);
f(ylxi, ,xn) = gl(yf(yXl . .. , Xn),Xl. . . Xn),

where h,go,gi are primitive recursive string-to-string functions.

Exercise 6.2.12 Show that the following string-to-string functions over the alphabet {0, 1} are
primitive recursive: (a)f(w) = ww; (b)f(w) = wR; (c)f(x,y) = xy.

There is a powerful and elegant theory of computation based heavily on primitive recursive
functions. This is to a large extent due to the fact that we can use primitive recursive pairing and
coding functions to reduce the theory of primitive recursive functions of more variables to the theory
of primitive recursive functions of one variable.

Example 6.2.13 (Pairing and de-pairing) We describe now three primitive recursive bijections:

pair: N x N -* N and r1 ,r 2 : N -* N,

with the property

ir, (pair(x,y)) = x, 7r2(pair(x,y)) = y and pair(7r (z), 7r2(z)) = z.

In order to do this, let us consider the mapping of pairs of integers into integers shown in Figure 6.1.
Observe first that the i-th counterdiagonal (counting starts with 0) contains numbers corresponding to

pairs (x, y) with x + y = i. Hence,

pair(x,y) = 1 + 2 + . .. +(x + y) + y.

376 U COMPUTABILITY

0 1 2 3 4 5

0 0 2 5 9 14 /

1 1 4 8 13

2 3 7 12

3 6 11

4 10

5

Figure 6.1 Pairing function - matrix representation

In order to define the 'de-pairing functions' 7r, and 7r2 , let us introduce an auxiliary function cd(n) = 'the
number of the counterdiagonal on which the n-th pair lies'. Clearly, n and n + 1 lie on the same counterdiagonal
if and only if n + 1 < pair(cd(n) + 1,0). Therefore, we have

cd(0) = 0;
cd(n+1) = cd(n)+((n+2) -pair(cd(n)+1,0)).

Since 7 2(n) is the position of the nth pair on the cd (n)th counterdiagonal, and 7r1 (n) + 7r2(n) = cd(n), we get

7r2 (n) = n-pa ir(cd (n),O0), 7r, (n) = cd(n) - 7r2 (n).

Exercise 6.2.14 Show formally, using the definition of primitive recursive functions, that the pairing
and de-pairing functions pair itl and 7r2 are primitive recursive.

It is now easy to extend the pairing function introduced in Example 6.2.13 to a function that
maps, in a one-to-one way, n-tuples of integers into integers, for n > 2. For example, we can define
inductively, for any n > 2,

pair(xl, . . . , xn) = pair(x1 , pair(x2 , Xn) .

Moreover, we can use the de-pairing functions 7i1 and 7i2 to defined de-pairing functions 7r,,i, 1 < i < n,
such that 7r,, (pair (xl, . . . , x)) = xi. This implies that in the study of primitive recursive functions we
can restrict ourselves without loss of generality to one-argument functions.

RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS N 377

Exercise 6.2.15 Let pair(x,y,z,u) = v. Show how to express x, y, z and u as functions of v, using
de-pairing functions 7r, and ir2.

Exercise 6.2.16 Let us consider thefollowing total ordering in N x N: (x, y) -< (x', y') Wfand only Weither
max{x, y} < max{x', y'} or max{x,y} = max{x',y'} and either x + y < x' + y' or x + y = x' + y' and
x < x'. Denote pair (x, y) the position of the pair in the ordering defined above. Show that such a pairing
function is primitive recursive, as are the de-pairing functions 7r', ir2 such that 7rm(pairm(x,y)) = x
and similarly for 7r,.

Remark 6.2.17 Primitive recursive functions can also be characterized syntactically in terms of
programming constructs. For example, they are exactly the functions that are computable by programs
written using the following statements: assignment statements, for statements of the form for N do
S (iterate S for N times), and composed statements.

6.2.2 Partial Recursive and Recursive Functions

Partial recursive functions were introduced in Definition 4.1.2, as functions computed by Turing
machines. There is also an alternative way, inductive and machine-independent, to define them, and
this is now presented.

Theorem 6.2.18 Thefamilyof partial recursivefunctions is the smallestfamily of integer-to-integerfunctions
with the following properties:

1. It contains the following base functions:

0 (nullary constant),
S(x) = x + 1 (successor function),
Ui (x, x.) = xi (projection functions), 1 < i < n.

2. It is closed under the operations composition, primitive recursion and minimalization, defined as
follows:

ifh : Nn, I--* N is a partial recursive function, then so is thefunctionf : N" -- N, wheref (xi, ... xn)
is the smallest y E N such that h(xl, . . . x,,y) = 0 and h(xl, . .. ,xn,z) is defined for all integers
0 < z < y. Otherwise, f (xi, .-. ,xn) is undefined.f is usually written in the form

fPx1, . . - ,Xn) = ~y [h(xi, ,Xn,y) = 0].

To prove Theorem 6.2.18 in one way is pretty easy. All functions constructed from the base
functions using composition and minimization are clearly computable, and therefore, by Church's
thesis, partial recursive. In a more formal way, one can design a TM for any of the base functions
and show how to design for any of the operations involved (composition, primitive recursion
and minimization) a Turing machine computing the resulting function under the assumption that
component functions are TM computable.

To prove the theorem in the opposite direction is also in principle easy and straightforward,
but this time the task is tedious. One must show that all concepts concerning Turing machine
computations can be arithmetized and expressed using the base functions and operations of

378 U COMPUTABILITY

composition, primitive recursion and minimization - in an analogical way, as it was done in the
proof of NP-completeness of the satisfiability problem for Boolean functions, where 'Booleanization'
of Turing machine computations was used. The key role is played by the generalized pairing and
de-pairing functions. For example, we can assume without loss of generality that states and tape
symbols of Turing machines are integers and that moves (left, right or none) are represented by
integers 0, 1 or 2. In this case each TM instruction can be represented by a 5-tuple of integers (q, a, i, b, q'),
and using the pairing function pair(q, a, i, b, q') = x, by a single integer x. Thus 7r5,1 (x) = q, 7s,2(x) = a
and so on. This way one can express a sequence of TM instructions by one number, and show that
the predicate TM-Program(x), which determines whether x corresponds to a valid TM program, is
primitive recursive. On this basis one can express all functions and predicates specifying Turing
machine computations as recursive functions and predicates. A detailed proof can be found, for
example, in Smith (1994).

Remark 6.2.19 Observe that the only effective way of computingf (xi, x... , X) for a functionf defined
by minimalization from h is to compute first h (x, ... , x,, 0), then h (x•, x,, 1), ... until the desired
value of y is found. Consequently, there are two ways in which f can be undefined for arguments
x.,... , x,: first, if there is no y such that h(xl, . . . , x,, y) = 0; second, if h(xj, . . . , x,,y) = 0 for some y,
but h(x, . .. , x,z) is undefined for some z smaller than the smallest y for which h(xi . . . , x,y) = 0.

Exercise 6.2.20* Show that there is no primitive recursive function U : N x N -* N such that for each
primitive recursive function h : N --+ N there is an integer ih for which U (ih, n) = h(n).

It is interesting that in the process of arithmetization of Turing machine computations it is enough
to use the operation of minimization only once. We can even obtain through such arithmetization the
following normal form for partial recursive functions (which also represents another way of showing
the existence of a universal computer).

Theorem 6.2.21 (Kleene's theorem) There exist primitive recursive functions g and h such that for each
partial recursivefunctionf of one variable there is an integer if such that

f (x) = g(p•Y [h(x, if, y) = 0]).

Kleene's theorem shows that the family of partial recursive functions has a universal function.
However, this is not the case for primitive recursive functions (see Exercise 6.2.20).

Exercise 6.2.22* Show that the following predicates are primitive recursive: (a) TM-program(x) - x is
an encoding of a TM; (b) configuration(x, t) - x is an encoding of a configuration of the Turing machine
with encoding t; (c) comp-step(x, y, t) - x and y are encodings of configurations of the Turing machine
encoded by t, and the configuration encoded by y can be obtained from the configuration encoded as x by
one step of the TM encoded by t.

With two examples we illustrate how to use minimization.

RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS - 379

Example 6.2.23 [V/x] =p y{(y+ 1)2 -x $ o}.

Example6.2.24 [j -- i{i<xA(x+1) • (i+1)y}.

It is the operation of minimization that has the power to create recursive functions that are not
primitive recursive. On the other hand, bounded minimization, discussed in the exercises below, is a
convenient tool for designing primitive recursive functions.

Exercise 6.2.25 (Bounded minimization) Show that if f : N"+1
-- N is a primitive recursive

function, then so is the function /z < y f(x1 , ,Xn,z) = 0], defined to be the smallest z < y such
that f (x, . .. ,x,,z) = 0, and y + 1 ýf such a z does not exist.

Exercise 6.2.26 (Bounded minimization) Show that if f: N"+' -_ N and b: N" -- N are primitive
recursive functions, then so is the function pz < b(xi, . .. ,xn)[f(x, ... ,xn,z) = 0], defined to be the
smallest z < b(xj, . . . ,x,) such that f (xj, . . . ,x,,z) = 0, and b(xj, . ,xn) + 1 otherwise.

Exercise 6.2.27 Show that the following functions are primitive recursive: (a) the number of divisors
of n; (b) the number of primes < n; (c) the n-th prime.

One of the main sources of difficulty in dealing with partial recursive functions is due to the fact
that partial functions may be undefined for an argument, and there is no effective way of knowing this
beforehand. The following technique, called dovetailing, can be helpful in overcoming this difficulty
in some cases.

Example 6.2.28 (Dovetailing) Suppose we are given a partial recursivefunction f : N -- N, and we wish
to find an n such that f (n) is defined. We cannot do this by computingfirstf (0), then (1) and so on, because
it may happen that f (O) is undefined even iff(1) is defined and computation off(0) never stops. (Note too
that in this case an application of the minimization operation in order to find the smallest x such that f (x) = 0

fails.) We can overcome this problem using the following approach.

1. Perform one step of the computation of f(0).

2. For i = 1,2, . . . , until a computation terminates, perform one next step in computing f(0),
f(1) ,f (i - 1), and thefirst step in computingf (i) - that is, iFi = k, the (k + 1)-th step of computation
of f(0), the k-th step of the computation of f(1), ... and, finally, the first step of the computation of
f(k).

Exercise 6.2.29 Show that afunctionf : N ý N is recursive if and only if its graph { (x,f (x) Ix E N}
is recursively enumerable.

380 U COMPUTABILITY

j=1 j=2 j=3 j=4

1 2 3 4
i=i 2 2 2 2

2
2 2

2 2 2
2 2 2 2

i=2 2 2 2 2

2 2 2 ... 21 16 ~ ~ ~ ~2 ... 2
222

16 2"2
ý1

2 2 } 2
.)16 12

2 2 }6 2 '2
i=3 2 2 2 2

Figure 6.2 Ackermann function

Ackermann function

As already defined in Section 4.1, a total partial recursive function is called recursive. An example of
a recursive function that is not primitive recursive is the Ackermann function, defined as follows:

A(1,j) = 2', ifj > 1;
A(i,1) = A(i-1,2), if i > 2;
A(ij) = A(i-1,A(i,j-1)) if i > 2,j Ž2.

Note, that the double recursion is used to define A(i,j). This is perfectly alright, because the
arguments of A on the right-hand sides of the above equations are always smaller in at least one
component than those on the left. The Ackermann function is therefore computable, and by Church's
thesis recursive. Surprisingly, this double recursion has the effect that the Ackermann function grows
faster than any primitive recursive function, as stated in the theorem below. Figure 6.2 shows the
values of the Ackermann function for several small arguments. Already A(2,j) = 22 2 {j times} is an
enormously fast-growing function, and for i > 2, A(ij) grows even faster.

Surprisingly, this exotic function has a firm place in computing. More exactly, in the analysis of
algorithms we often encounter the following 'inverse' of the Ackermann function:

a(m,n) = mini > 11 A(i, [m / nj) > lgn}.

In contrast to the Ackermann function, its inverse grows very slowly. For all feasible m and n,
we have n(m, n) <_ 4, and therefore, from the point of view of the analysis of algorithms, a (m, n)
is an 'almost constant function'. The following theorem summarizes the relation of the Ackermann
function to primitive recursive functions.

Theorem 6.2.30 For each primitive recursive function f (n) there is an integer no such that f (n) < A(n,n),
for all n > no.

RECURSIVE AND PRIMITIVE RECURSIVE FUNCTIONS W 381

Exercise 6.2.31 Show that for any fixed i thefunction f (j) = A(i,j) is primitive recursive. (Even the
predicate k = A (i,j) is primitive recursive, but this is much harder to show.)

There are also simple relations between the concepts of recursivness for sets and functions that
follow easily from the previous results and are now summarized for integer functions and sets.

Theorem 6.2.32 1. A set S is recursively enumerable if and only if S is the domain of a partial recursive
function.

2. A set is recursively enumerable Wand only ifS is the range of a partial recursivefunction.

3. A set S is recursively enumerable (recursive) Wf and only tr its characteristic function is partial recursive
(recursive).

There are also nice relations between the recursivness of a function and its graph.

Exercise 6.2.33 (Graph theorem) Show that (a) afunction is partial recursive ifand only if its graph
is recursively enumerable; (b) a function f is recursive if and only if its graph is a recursive set.

The origins of recursion theory, which go back to the 1930s, pre-date the first computers.
This theory actually provided the first basic understanding of what is computable and of basic
computational principles. It also created an intellectual framework for the design and utilization
of universal computers and for the understanding that, in principle, they can be very simple.

The idea of recursivity and recursive enumerability can be extended to real-valued functions.
In order to formulate the basic concepts let us first observe that to any integer valued function
f: N -- N, we can associate a rational-valued functionf': N x N -* Q defined byf'(xy) =, where

q
p = -r1(f (pair(x,y)), q = 7r2 (f(pair(x,y)).

Definition 6.2.34 A real-valued function f' : N x N - R is called recursively enumerable if there is a
recursive function g : N --+ N such that g'(x, k) is nondecreasing in k and limk-. g'(x, k) =f(x). A real-valued
functionf : N - R is called recursive WFthere is a recursivefunction g: N -* N such that Lf(x) - g'(x, k)I < 1,
for all k and x.

The main idea behind this definition is that a recursively enumerable function can be
approximated from one-side by a recursive function over integers but computing such a function
we may never know how close we are to the real value. Recursive real-valued functions can be
approximated to any degree of precision by recursive functions over integers.

Exercise 6.2.35 Show that afunctionf : N - R is recursively enumerable Wf the set { (x, r) I r <f (x), r E
Q} is recursively enumerable.

Exercise 6.2.36 Show thefollowingfunctionf is recursively enumerable but not recursive:f (x) = 1 if
w, E L(M,) and f (x) = 0, otherwise -for a Godel numbering of Turing machines and words over an
alphabet F.

382 N COMPUTABILITY

6.3 Recursive Reals

The concept of recursive functions can also be used to formalize the informal concept of a computable
real number.

It is intuitively clear that such numbers as 7r and e are computable in the sense that given an
integer n we can potentially compute the first n digits of its decimal expansion. 1

There are various ways of defining 'recursive real numbers'. We present and discuss two of them.
A real number a is called recursive if there are recursive functionsf and g and an integer no such that

la•I -f(n) <--I, forn>n0 .

Exercise 6.3.1 Show that a real number 0 < a < 1 is recursive ifand only f there is a recursivefunction
f:N-+{0,1, ,9}suchthatlal[= '%, f(')

A real number a is called limiting recursive if there are recursive functionsf,g, h and k such that
the sequence { a, }I - 1, where

anf(n) -g(n)Cn- h(n)

effectively converges to a in the sense that for each m > 0 there is a k(m) c N such that for n, n' > k(m),

m

It can be shown that each recursive number is limiting recursive, but not vice versa.
The set of limiting recursive numbers is clearly countable. This implies that there are real numbers

that are not limiting recursive.
The number of wisdom introduced in Section 6.5.5 is an example of a limiting recursive but not

a recursive real number.

6.4 Undecidable Problems

We have already seen in Section 4.1.6 that the halting problem is undecidable. This result certainly
does not sound positive. But at first glance, it does not seem to be a result worth bothering with in any
case. In practice, who actually needs to deal with the halting problem for Turing machines? Almost
nobody. Can we not take these undecidability results merely as an intellectual curiosity that does not
really affect things one way or another?

Unfortunately, such a conclusion would be very mistaken. In this section we demonstrate that
there are theoretically deep and practically important reasons to be concerned with the existence of
undecidable and unsolvable problems. First, such problems are much more frequent than one might
expect. Second, some of the most important practical problems are undecidable. Third, boundaries
between decidability and undecidability are sometimes unexpectedly sharp.

In this section we present some key undecidable problems and methods for showing
undecidability.

'So far 7r has been computed to 2.109 digits.

UNDECIDABLE PROBLEMS 1 383

W-_M yes
yes

Figure 6.3 Turing machine Mm 0,w,

6.4.1 Rice's Theorem

We start with a very general result, contra-intuitive and quite depressing, saying that on the most
general level of all Turing machines nothing interesting is decidable. That is, we show first that
no nontrivial property of recursively enumerable sets is decidable. This implies not only that the
number of undecidable problems is surprisingly large but that at this general level there are mostly
undecidable problems.

In order to show the main result, let us fix a Godel self-delimiting encoding (MA4), of Turing
machines MA into the alphabet {0, 1} and the corresponding encoding (w), of input words of M. The
language

Lý {(A),(w),IM accepts w}

is called the universal language. It follows from Theorem 4.1.23 that the language L, is not decidable.

Definition 6.4.1 Each family S of recursively enumerable languages over the alphabet {0,1} is said to be a
property of recursively enumerable languages. A property S is called nontrivial #fS $ 0 and S does not contain

all recursively enumerable languages (over {0, 1}).

A nontrivial property of recursively enumerable languages is therefore characterized only by the
requirement that there are recursively enumerable languages that have this property and those that
do not. For example, being a regular language is such a property.

Theorem 6.4.2 (Rice's theorem) Each nontrivial property of recursively enumerable languages is
undecidable.

Proof: We can assume without loss of generality that 0 ý S; otherwise we can take the complement
of S. Since S is a nontrivial property, there is a recursively enumerable language L' G S (that is, one
with the property S), and let MAL, be a Turing machine that accepts L.

Assume that the property S is decidable, and that therefore there is a Turing machine Ms such
that L(Ms) ={ I), I L(A4) c S}. We now use MLV and Ms to show that the universal language is
decidable. This contradiction proves the theorem.

We describe first an algorithm for designing, given a Turing machine M 0 and its input w, a
Turing machine AMm.,w such that L(MmW) e S if and only if AMo accepts w (see Figure 6.3). M.M,w
first ignores its input x and simulates Mo on w. If Mo does not accept w, then AMm,,, does not accept
x. On the other hand, if MA0 accepts w, and as a result terminates, Mow starts to simulate ML' on
x and accepts it if and only if AML, accepts it. Thus, Mm,, accepts either the empty language (not
in S) or L' (in 8), depending on whether w is not accepted by Mo or is. We can now use AMs to
decide whether or not L(MMO,w) E S. Since L(MMO,W) E S if and only if (MA,),(w)p C L, we have an
algorithm to decide the universal language L,. Hence the property S is undecidable. [

384 3 COMPUTABILITY

Corollary 6.4.3 It is undecidable whether a given recursively enumerable language is (a) empty, (b)finite, (c)
regular, (d) context-free, (e) context-sensitive, (f) in P, (g) in NP ...

It is important to realize that for Rice's theorem it is crucial that all recursively enumerable
languages are considered. Otherwise, decidability can result. For example, it is decidable (see
Theorem 3.2.4), given a DFA A, whether the language accepted by A is finite.

In the rest of this section we deal with several specific undecidable problems. Each of them plays
an important role in showing the undecidability of other problems, using the reduction method
discussed next.

6.4.2 Halting Problem

There are two basic ways to show the undecidability of a decision problem.

1. Reduction to a paradox. For example, along the lines of the Russell paradox (see Section 2.1.1)
or its modification known as the barber's paradox: In a small town there is a barber who shaves those
and only those who do not shave themselves. Does he shave himself? This approach is also behind the
diagonalization arguments used in the proof of Theorem 6.1.6.

Example 6.4.4 (Printing problem) The problem is to decide, given an off-line Turing machine AM and
an integer i, whether M4 outputs i when starting with the empty input tape. Consider an enumeration
.A4,,,, . . . of all off-line Turing machines generating sets of natural numbers, and consider the set
S = {i i is not in the set generated by Mi }. This set cannot be recursively enumerable, because otherwise
there would exist a Turing machine .Ms generating S, and therefore Ms = Mio0 for some io. Now comes the
question: is io E S? and we get a variant of the barber paradox.

2. Reduction from another problem the undecidability of which has already been shown.
In other words, to prove that a decision problem P1 is undecidable, it is sufficient to show that the
decidability of P, would imply the decidability of another decision problem, say P 2, the undecidability
of which has already been shown. All that is required is that there is an algorithmic way of
transforming (with no restriction on the resources such a transformation needs), a P 2 input into a P1
input in such a way that P 2's yes/no answer is exactly the same as 'l's answer to the transformed
input.

Example 6.4.5 We can use the undecidability of the printing problem to show the undecidability of the halting
problem as follows. For each off-line Turing machine M we can easily construct a Turing machine T' such
that M' halts for an input w ýf and only #:fM prints w. The decidability of the halting problem would therefore
imply the decidability of the printing problem.

Exercise 6.4.6 Show that the following decision problems are undecidable. (a) Does a given Turing
machine halt on the empty tape? (b) Does a given Turing machine halt for all inputs?

The main reason for the importance of the undecidability of the halting problem is the fact that
the undecidability of many decision problems can be shown by a reduction from the halting problem.

It is also worth noting that the decidability of the halting problem could have an enormous impact
on mathematics and computing. To see this, let us consider again what was perhaps the most famous

UNDECIDABLE PROBLEMS U 385

problem in mathematics in the last two centuries, Fermat's last theorem, which claims that there are
no integers x, y, z and w such that

(X + 1)w+
3 + (y + 1)w+3

= (z + 1)w+
3

. (6.1)

Given x, y, z, w, it is easy to verify whether (6.1) holds. It is therefore simple to design a Turing machine
that checks for all possible quadruples (x, y, z, w) whether (6.1) holds, and halts if such a quadruple is
found. Were we to have proof that this Turing machine never halts, we would have proved Fermat's
last theorem. In a similar way we can show that many important open mathematical questions can
be reduced to the halting problem for some specific Turing machine.

As we saw in Chapter 5, various bounded versions of the halting problem are complete problems
for important complexity classes.

Exercise 6.4.7 Show that the decidability of the halting problem could be used to solve the famous
Goldbach conjecture (1 742) that each even number greater than 2 is the sum of two primes.

Remark 6.4.8 Since the beginning of this century, a belief in the total power of formalization has
been the main driving force in mathematics. One of the key problems formulated by the leading
mathematician of that time, David Hilbert, was the Entscheidungsproblem. Is there a general mechanical
procedure which could, in principle, solve all the problems of mathematics, one after another? It was
the Entscheidungsproblem which led Turing to develop his concept of both machine and decidability,
and it was through its reduction to the halting problem that he showed the undecidability of
the Entscheidungsproblem in his seminal paper 'On computable numbers, with applications to the
Entscheidungsproblem'. Written in 1937, this was considered by some to be the most important single
paper in the modem history of computing.

Example 6.4.9 (Program verification) The fact that program equivalence and program verification are
undecidable even for very simple programming languages has very negative consequences practically. These
results in effect rule out automatic program verification and reduce the hope of obtaining fully optimizing
compilers capable of transforming a given program into an optimal one.

It is readily seen that the halting problem far Turing machines can be reduced to the program verification
problem. Let us sketch the idea. Given a Turing machine M and its input w, we can transform the pair (M, w),
which is the input for the halting problem, to a pair (P, M), as an input to the program verification problem.
The algorithm (TM) M remains the same, and P is the algorithmic problem described by specifying that w
is the only legal input for which A4 should terminate and that the output for this input is not of importance.
M4 is now correct with respect to this simple algorithmic problem P i and only ifM terminates for input w.
Consequently, the verification problem is undecidable.

6.4.3 Tiling Problems

Tiling of a plane or space by tiles from various finite sets of (proto)tiles, especially of polygonal or
polyhedral shapes, that is, a covering of a plane or space completely, without gaps and overlaps and
with matching colours on contiguous vertices, edges or faces (if they are coloured) is an old and
much investigated mathematical problem with a variety of applications. For example, it was known
already to the Pythagorian school (sixth century BC) that there is only one regular polyhedron that
can tile the space completely. However, there are infinitely many sets with more than one tile that

386 U COMPUTABILITY

H D H

Dart\

(D H

KKite '

T (

(a) (b)

Figure 6.4 Escher's figure and Penrose's tiles

can tile a plane (space). The fact that tiling can simulate Turing machine computation and that some
variants of the tiling problem are complete for the main complexity classes shows the importance of
tiling for the theory of computing.

The tiling of a plane (space) is called periodic if one can outline its finite region in such a way
that the whole tiling can be obtained by its translation, that is, by shifting the position of the region
without rotating it. M. C. Escher became famous for his pictures obtained by periodic filings with
shapes that resemble living creatures; see Figure 6.4a for a shape (tile) consisting of a white and black
bird that can be used to tile a plane periodically.

A tiling that is not periodic is called aperiodic. The problem of finding a (small) set of tiles that
can be used to tile a plane only aperiodically (with rotation and reflection of tiles allowed) has turned
out to be intriguing and to have surprising results and consequences.

Our main interest now is the following decision problem: given a set of polygon (proto)tiles with
coloured edges, is there a tiling of the plane with the given set of tiles?

Of special interest for computing is the problem of tiling a plane with unit square tiles with
coloured edges, called Wang tiles or dominoes, when neither rotation nor reflection of tiles is allowed.
This problem is closely related to decision problems in logic. Berger (1966) showed that such a tiling
problem is undecidable. His complicated proof implied that there is a set of Wang tiles which can
tile the plane, but only aperiodically. Moreover, he actually exhibited a set of 20,406 tiles with such a
property. This number has since been reduced, and currently the smallest set of Wang tiles with such
a property, due to K. Culik, is shown in Figure 6.5.2

2Around 1975, Roger Penrose designed a set of two simple polygon tiles (see Figure 6.4b), called Kite and Darf,
with coloured vertices (by colours H and T), that can tile a plane, but only aperiodically (rotation and reflection
of tiles is allowed). These two tiles are derived from a rhombus with edges of length 4) = (1 + vý) / 2 and 1
and angles 720 and 108' by a cut shown in Figure 6.4b. (Observe that the common 'internal vertex' is coloured
differently in both tiles and therefore the tiling shown in Figure 6.4b is not allowed. Note also that it is easy to
change such a set of tiles with coloured vertices into polygonal tiles that are not coloured and tile the plane only
aperiodically. Indeed, it is enough simply to put bumps and dents on the edges to make jigsaw pieces that fit
only in the manner prescribed by the colours of the vertices.) Penrose patented his tiles in the UK, USA and Japan
because of their potential for making commercial puzzles. Especially if two coloured arcs are added in the way
indicated in Figure 6.4b, one can create tilings with fascinating patterns from Penrose's tiles.

Tilings of a plane with Penrose's tiles also have many surprising properties. For example, the number of different
tilings of the plane is uncountable, yet, at the same time, any two tilings are alike in a special way - that every
finite subtiling of any tiling of the plane is contained infinitely many times within every other tiling.

In addition, R. Ammann discovered in 1976 a set of two rhombohedra which, with suitable face-matching rules,

UNDECIDABLE PROBLEMS U 387

Figure 6.5 Culik's files

The following theorem shows the undecidability of a special variant of the tiling problem with
Wang tiles.

Theorem 6.4.10 It is undecidable, given afinite set T of Wang tiles with coloured edges which includes a tile
with all edges of the same colour (say white), whether there is such a tiling of the plane that uses only finitely
many, but at least one other than the completely white tile.

Proof: We show that if such a tiling problem is decidable, then the halting problem is decidable for
one-tape Turing machines that satisfy conditions 1-3 on page 309 in Section 5.4.1: that is, for Turing
machines which have one-way infinite tape, a unique accepting configuration and no state in which
the machine can move both left and right, and, moreover, start their computation with the empty
tape.

To each such Turing machine M = (F, Q, qo, 6) we construct a set of square tiles as follows. We
take all the tiles in the proof of Theorem 5.4.1 in Section 5.4.1 and, in addition, the following sets of
tiles:

1. Tiles of the forms

that will form the topmost row containing a non-white tile. (Observe that the second of these
tiles is the only one that can be the 'top' left-most not completely white tile for a tiling with
not all tiles white.) This set of tiles will be used to encode the initial configuration of M, long
enough to create space for all configurations in the computation, starting with the empty tape.
Symbol & represents here a special colour not used in tiles of other sets.

can tile the space only aperiodically. This led to Penrose hypothesizing the existence of aperiodic structures in
nature. This was later confirmed, first by D. Schechlman in 1984 and later by many discoveries of physicists,
chemists and crystallographers.

388 N COMPUTABILITY

2. A set of tiles, two for each z E F, of the form

that keep the left and the right border of a computation fixed.

3. Tiles of the form

that will be used to create the last row with not all tiles white. In semantic terms, they will be
used to encode the last row after a halting configuration of the Turing machine is reached. The
symbol A denotes here a new colour not used in tiles of other sets.

It is now straightforward to see that there is a tiling of the plane with the set of tiles designed
as above that uses only finitely many non-white tiles and at least one such tile if and only if the
corresponding Turing machine halts on the empty tape - which is undecidable.

Exercise 6.4.11 Consider the following modification of the tiling problem with Wang tiles: the set of
tiles has a 'starting tile', and the only tilings considered are ones that use this starting tile at least once.
Is it true that the plane can be tiled by such a set of Wang tiles if and only if for each n E N, the
(2n + 1) x (2n + 1) square board can be tiled with such a set of Wang tiles with the starting tile in the
centre?

There are many variants of the tiling problem that are undecidable, and they are of interest in
themselves. In addition, the undecidability of many decision problems can be shown easily and
transparently by a reduction to one of the undecidable tiling problems.

Exercise 6.4.12 Consider the following mod ications of the tiling problem (as formulated in

Exercise 6.4.11):

P1 Tiles can be rotated through 180 degrees.

P2 Flipping around a vertical axis is allowed.

P3 Flipping around the main diagonal axis is allowed.

Show that (a) problem P1 always has a solution; (b)* problem P2 is decidable; (c)** problem P3 is
undecidable.

UNDECIDABLE PROBLEMS 1 389

6.4.4 Thue Problem
The most basic decision problem in the area of rewriting, with many variations, is the word problem
for Thue systems, considered in Section 7.1. This problem is often presented in the following form.

With any alphabet E and two lists of words over E

(E) A = (xl,... ,x.), B = (yl,... y,),

the following relation --E on V* is associated:

X =-E Y if thereareu,vE V and I < i<nsuchthat either x = uxiv and y = uyiv
or x = uyiv and y = uxiv.

In other words, y can be obtained from x by rewriting a subword xi of A as the corresponding y,
from B, or vice versa. In this way one can see the lists in (E) as a set of equations

xi = yi, 1 < i < n, (6.2)

in the free monoid over E. Let -* be the transitive and reflexive closure of the relation --E The Thue
problem for semigroups,3 for the lists (E) is the problem of deciding, given two words x,y e V,
whether x =-- y; that is, whether y can be obtained from x using equations from (6.2). In the case that
the equations reflect the property that the underlying set of words is an Abelian semigroup (there is
an equation ab = ba for each two symbols of the underlying alphabet) or a group (there is an 'inverse'
letter a-' to each letter a and equations aa-' = e and a-'a = E) or an Abelian group, we speak of a Thue
problem for Abelian semigroups or groups or Abelian groups. The following theorem then holds.

Theorem 6.4.13 The Thue problem is undecidable for semigroups and groups, and decidable for Abelian
semigroups and groups.

Example 6.4.14 For the equations

EAT = AT, LATER = LOW, CARP = ME,
(El) ATE = A, PAN = PILLOW,

we have, as it is easy to verify,
LAP 4 LEAP MAN -* CATERPILLAR;

but
ARORA-* APPLE (6.3)

does not hold.

There is an algorithm for deciding the word problem for (EI). But the word problem for the
equations

(E2) AH = HA, AT = TA, TAI = IT, THAT = ITHT,
OH=HO, OT=TO, HOI= IH.

is undecidable. (This is an example of a seemingly very simple-looking specific decision problem that
is undecidable.)

3 'Word problem' is another name used for the Thue problem.

390 N COMPUTABILITY

6.4.5 Post Correspondence Problem

Reduction from the Post4 correspondence problem (PCP) is an important method for showing the
undecidability of many decision problems, especially those concerning rewritings. This will be
illustrated in the next chapter. This is because PCP captures the essence of rewriting.

An instance of the PCP is given by the two lists

(Ul ý Un), (Vl .. •Vn) (6.4)

of words over an alphabet E, the problem being to decide whether there is a sequence of integers
ii,...., i, where 1 < ik < n and 1 < k < m, such that

uil . . uiit = Vil . . Vi,

If such a sequence (i1, . . , i.) exists, then it is called a solution of (6.4). Clearly, if an instance of
the PCP has a solution, then it has infinitely many solutions.

Example 6.4.15 For the instance of the PCP defined by the lists

(a2',b 2 ,ab2) and (a'bba, b),

the PCP has a solution (1, 2,1,3). For the instance defined by the lists

(a,b2) and (a2,b),

the PCP has no solution. (Show why.)

Exercise 6.4.16 Determinefor the following instances of the PCP whether they have a solution, and if
they do, show one: (a) (a2ba 2) and (aba2); (b) (a2ba) and (aba2); (c) (abab,ab) and (aaab,bb,ba);
(d) (ab, a, c, abca) and (ca, abac, bb, ab).

Exercise 6.4.17 Show that the PCP with the list of words over a one-letter alphabet is decidable.

The Post correspondence problem is that of deciding, given an instance of PCP, whether this
instance has a solution. The following theorem can be shown by a not easy reduction from the halting
problem.

Theorem 6.4.18 The Post correspondence problem is undecidable.

Example 6.4.19 In order to illustrate how the PCP can be used to show the undecidability of problems
concerning rewriting systems, similar to those given on page 84, let us take two rewriting systems with
each instance u = (ul Un) and v = (v1 •,. . Vn) of the PCP over the alphabet {0, 1}: S -- c is a production
in both cases and additional productions are

G1 : S -* O'1Su1 , I < i < n; G2 : S - OilSvi, 1 < i < n.
4Emil Post (1887-1954), an American mathematician and logician.

UNDECIDABLE PROBLEMS U 391

For the languages L(G 1) and L(G 2) of words over the alphabet {0, 1} generated by these two systems we have

L(G 1) = {0il... OiklCuik... uj1<ij<_n,1_j<k},
L(G 2) = {O111 ... Oiklcvik...Vil1 ij~ n,1•j~k},

and therefore L(G 1) n L(G 2) $ 0 #f and only if the PCPfor the instance u and v has a solution.

Exercise 6.4.20 There is another way, more compact, using morphisms, to view the Post Correspondence
Problem. Let g and h be two morphisms mapping A * into E *. Show that the pair (g, h) can be considered
as an instance of PCP that has a solution if there is a nonempty word w E A* such that g(w) = h(w).

Remark 6.4.21 The following bounded version of PCP is NP-complete: given an instance (ul, .. ,un),

(V1, ... , vn) of PCP and an integer b, is there a sequence of integers il,. • i., such that m < b, 1 < ik < n,
1 < k < m and ui,... ui, = vl •... viý?

6.4.6 Hilbert's Tenth Problem

The decision problem known as Hilbert's tenth problem was formulated in 1900 by David Hilbert.'
It is perhaps the most famous decision problem and can be formulated as follows: given an
arbitrary polynomial P(xi, . .. x,) with coefficients from Z, decide whether the following so-called
Diophantine equation

P(x 1 ,... ,) =0

has a solution in whole numbers.
Diophantine equations (named after Diophantus of Alexandria) represent one of the oldest areas

of science, in which deeper results have been obtained already in the third century in Greece. The
following examples illustrate how difficult it can be to find solutions to seemingly simple Diophantine
equations.

Example 6.4.22 (1) In the smallest nonnegative solution (x,y) of the so-called Pell equation

x2 - 991y 2 - 1 = 0

x has 30 and y 29 decimal digits.
(2) The smallest nonnegative solution,for x, of the Pell equation

x2 - 4729494y 2
- 1 = 0,

5David Hilbert (1862-1943) was a German mathematician and logician. Of fundamental importance are his
contributions to algebra, number theory, geometry and calculus (with relations to physics and functional analysis).
Hilbert was perhaps the most influential mathematician of his period. A representative of formalism in logic, his
school of thought produced such founders of modem computing theory as Godel, von Neumann and Turing.
For his opening talk at the World Congress of Mathematicians in 1900 in Paris, Hilbert prepared a list of 23
problems he considered to be of key importance for mathematics. His tenth problem was solved in 1970 by
the Russian mathematician Y.W. Matiyasevich. (Actually it seems that Hilbert assumed that this problem was
decidable and that it was only a question of time before an algorithm to decide it would be found. Anyway, the
concept of undecidability was unknown at his time.) English translation of the original formulation of Hilbert's
tenth problem: 'Given a Diophantine equation with any number of unknown quantities and with rational integral
numerical coefficients, devise a process according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers.'

392 M COMPUTABILITY

which can be obtained by a reduction from the system of equations, seven linear with eight variables and two
quadratic conditions, formulated by Archimedes in a letter to Eratosthenes of Cyrene in the third century, has
over 206,500 digits.

(3) Factorization of an integer n is as dificult as solution of the equation (x + 2)(y + 2) = n.

There are two additional reasons for the special importance of Hilbert's tenth problem. Since
this problem concerns integer arithmetic, it is a good starting point for showing that everyday
considerations in mathematics can lead to undecidable problems. Second, the very difficult proof of its
undecidability is actually based on a new and important characterization of recursively enumerable
sets and relations, presented in the following theorem.

Theorem 6.4.23 (Matiyasevich's theorem) A set S c N" is recursively enumerable if and only if there is a
polynomial P(al, ... ,anyl, . . ,y,) with coefficients in Z such that

S = {(xl,. .. x,x)lI(3y, E N), ... •(3ym C N)P(xi, . .. •x,,iyl.. m) = 0J.'

Matiyasevich's theorem implies that decidability of Hilbert's tenth problem would imply decidability
of the membership problem for recursively enumerable sets, but that is an undecidable problem.

As Theorem 6.4.23 says, polynomials with coefficients in Z have surprising power to represent
all recursively enumerable sets. Some examples follow.

Example 6.4.24 The set C of composite numbers has the following polynomial representation:

x c C4 3y3z(x = (y+2)(z+2)).

The second example deals with primes.

Example 6.4.25 The set of primes P has the following polynomial representation:

x' E P #. 3(a,b,c,d,e~fghijklmmnlo,p,q,r,s,t,u,v,w,x,y,z)
x'= (k+2){1-[wz+h+j-q]2 _ [(gk+2g+k+±1)(h+j) +h -Z[2

-[2n+p+q-+ z-e]2 - [16(k +1) 3(k+2)(n+1)2 +1-f 2] 2

-[e 3 (e +2)(a + 1)2 + 1 - 02]2 - [(a 2 _ 1)y2 + 1 - x212

-[16r 2y4 (a2 - 1) + 1 -U2]2

-[((a+u 2(u2 -a)) 2 -1)(n+4dy) 2 +1-(x+cu)
2]2 -[n+1+v-y] 2

-[(a 2 - 1)I2 +1 - In 92 - [ai + k + 1 - I - i]2

- [p + l(a - n - 1) + b(2an + 2a - n2 - 2n - 2) - M12

-[q +y(a - p- 1) + s(2ap + 2a _ p2 - 2p -2) __X]
2

-[z + pl(a - p) + t(2ap - p 2 - 1) - pm] 2 }. 7

61t has also been shown that in Theorem 6.4.23 it is sufficient to consider a polynomial of degree at most 4 or

at most 9 variables.
7 There is another representation of the set of all primes using due to Matiyasevich, a polynomial with only 10

variables.

UNDECIDABLE PROBLEMS N 393

Exercise 6.4.26 Design polynomial representations for the set of integers that are not powers of 2.

Exercise 6.4.27 Design polynomial representations of the predicates (a) a < b; (b) a = b(modn);
(c) a = b(modc).

Exercise 6.4.28 Show that the set of polynomials P with integer coefficients for which the equation
P = 0 has a solution in natural numbers is undecidable. (Hint: you can make use of thefact that each
integer is a sum offour squares of integers.)

As another consequence of Theorem 6.4.23 we get the following result showing the existence of
a universal polynomial.

Theorem 6.4.29 There is a polynomial Pu with coefficients in Z such that for any recursively enumerable set
S there is an integer is such that

x E S •=• (Elyi E N),.. (Iyý E N)(Pý(is,x, yj ... Yn) = 0).

Proof: Let Si, i = 1,2,.... be an enumeration of all recursively enumerable sets of integers. The binary
relation {(x, i) I x E Si} is clearly recursively enumerable. This implies the existence of the universal
polynomial.8 0

For example, the last theorem implies that there is an integer ip such that x is prime if and only if
(3y, E N),... ,(3yn E N)P5 (ip,x,yi,. . . ,y.) =0 .

Exercise 6.4.30 (a) Show that each Diophantine equation can be transformed into an equivalent system
of Diophantine equations of the type x = y + 2 or x = yz, where x,y, z are either natural numbers or
unknowns. (b) Illustrate the method on the Diophantine equation 5x2

y
2

- 6x3z + 6xy 3 - 5xz = 0.

Exercise 6.4.31 Show that in order to solve Hilbert's tenth problem positively it would be sufficient to
find a method for deciding whether Diophantine equations of degree 4 have a solution.

6.4.7 Borderlines between Decidability and Undecidability

In a few cases, quite sharp borderlines between decidability and undecidability are known. In
most other cases, it is an open problem to determine such sharp borderlines. The following table
summarizes the current state of the knowledge.

80nce the existence of a universal polynomial had been shown, the problem arose of finding such a universal
polynomial with the smallest number of variables and the smallest degree. Jones (1982) gives the following
pairs (# of variables, degree) for a universal polynomial: (58,4), (38,8), (29,16), (24,36), (19,2668), (13,6.6.1043),
(9,1.6. 1045).

394 N COMPUTABILITY

Problem Decidable cases Undecidable cases
halting prob. - one-dim. TM state-symbol prod. < 6 state-symbol prod. > 24
halting prob. - two-dim. TM 1 instruction 8 instructions
Equiv. prob. - register mach. 7 instructions 8 instructions
Halt. prob. - register mach. 8 instructions 29 instructions
tiling of plane I polyomino9 nonperiodic for 35 tiles
Word problem for groups1" I equation 3 equations
PCP two-letter alphabet two-letter alphabet

lists of length < 2 list of length > 7
Diophantine equations equations of degree < 2 equations of degree > 4

Remark 6.4.32 Simplicity of presentation is the main reason why only decision problems are
considered in this section. Each of the undecidable problems discussed here has a computational
version that requires output and is not computable. For example, this property has the problem of
computing, for a Turing machine AM and an input w, the functionf(M, w), defined to be zero if AM
does not halt for w, and to be the number of steps of M on w, otherwise.

6.4.8 Degrees of Undecidability
It is natural to ask whether all undecidable problems are equally undecidable. The answer is no, and
we approach this problem from two points of view.

First we again take a formal view of decision problems as membership problems for sets. To
classify undecidable problems, several types of reductions have been used. For example, we say that
a set A is (many-to-one) reducible to a set B (notation A -<m B), if there exists a recursive functionf
such that

x EA'f(x) E B;

and we say that the sets A and B belong to the same degree of unsolvability (with respect to the
many-to-one reduction) if A <m B and B <m A. It can be shown that there are infinitely many degrees
of unsolvability. Some of them are comparable (that is, each problem in one class can be reduced to
a problem in another class), some incomparable.

Exercise 6.4.33 Show that WfA <,m B and B is recursive, then A is recursive too.

Exercise 6.4.34 Let us fix a Godel numbering (M), of TM M in the alphabet {0, 1} and the
corresponding encoding (w), of input words of AM. Let us consider the languages

Ku = {f(KM)K(w)pAK accepts w}, (6.5)

Kd = {(AM)JM accepts (A1, (6.6)

Kp = {(.M, IM4 halts on at least one input}, (6.7)

Ke = {AM)P •,M halts on the empty tape}. (6.8)

Show that (a) Kd <-m K,; (b) Ku <m K&; (C) Ke <m K,; (d) Kp <m Kd; (e) a set L is recursively enumerable
if and only i L <,m K', where K' is any of the sets Ku, Kd, Kp and K,.

9A polyomino is a polygon formed by a union of unit squares.
I
0 A word problem over an alphabet E is said to be a word problem for groups when for any a E • there is also

an equation ab - c available.

UNDECIDABLE PROBLEMS U 395

There are two natural ways of forming infinite hierarchies of more and more undecidable
problems. The jump method is based on the concept of Turing reducibility: a set A is Turing-reducible
to B, notation A <T B, if there is an oracle TM with oracle B accepting A.

Definition 6.4.35 The language

KB = M(M ý, I.A4 is an oracle TM with oracle B that halts on (M),}

is called the halting language for TM with the oracle B.

Exercise 6.4.36 Is it true that (a) A <•T B if and only if A <m KB; (b) KB •<T B for any languages A, B?

Using the jump operator we can define the following infinite sequence of more and more
undecidable languages:

K, KK, KKK, KK, . . .

where K is any of the languages Ku, Kd, Kp, K, defined above.
In order to introduce the second very natural hierarchy of undecidable problems, two new

operators on families of languages have to be introduced. If C is a family of languages, then

E£ = {LI3R E C, x E L . 3y[(x,y) E R]},

HIL = {LI3R c C,x E L Vy[(x,y) E R]},

where (x, y) is a recursive encoding of the tuple x and y.

Definition 6.4.37 (Arithmetical hierarchy) The families Ei and I'li, i E N, are defined as follows:
(a) Eo = Ho = the class of recursive languages,
(b) Ei+I = ElHi and Ii+,, = IIEi,for i c N.

Note that El is the class of recursively enumerable languages. It can be shown that the families
E0, El - EO, E2 - El,... and 1I0, 11 - H10, H2 - III.... are nonempty, and contain more and more
undecidable languages.

The importance of the arithmetical hierarchy is also due to the fact that classes Ei and Hi contain
languages that can be defined in a very natural way, as the following exercise demonstrates.

Exercise 6.4.38 Showfor example by induction, that
(a) L e Ei, if and only #there exists a recursive language R such that

x E L 4> 3yVy2 3y 3. ... Qyi[(x,y1,y 2, . yi) E R],

where Q = 3 (V), if is odd (even).
(b) L E Hi, if and only if there exists a recursive language R such that

x E L 'V Vy13y2Vy3,... Qyi[(XY1,Y2 . yi) E R],

where Q = El (V), if is even (odd).

396 * COMPUTABILITY

hi undecidable problems Recurring dominoes

undecidable roblenis Unbounded dominoes with
white tiles

unfeasib. e . roblem.s - Bounded dominoes

feasible problems Fixed-width bounded dominoes

Figure 6.6 Structure of the space of algorithmic problems

It can be shown that such decision problems as the halting problem, the Post correspondence
problem and the tiling problem considered in this section are of the same degree of undecidability.
However, the program verification problem is 'more' undecidable, and there are even 'much more'
undecidable problems. A simple example of two closely related problems that have different degrees
of undecidability are that of deciding whether a given Diophantine equation has at least one solution
and whether it has infinitely many solutions.

Another way to look at decision problems is through certificates (see Section 5.7.1), and thereby
we come to another analogy with the NP-complete problems discussed in Chapter 5.

It is clear that 'yes' answers to such problems as the halting problem, PCP and Hilbert's tenth
problem have finite certificates that can be verified in finite time. In the case of the tiling problem
from this section it is the 'no' answer that has a finite certificate, because if the plane cannot be tiled,
then there is a finite portion of it that cannot be tiled and that can be verified in finite time.

Can it happen that both 'yes' and 'no' answers to an undecidable problem have finite certificates?
No, as it is easy to verify. This would imply decidability of the problem. Are there undecidable
problems for which neither 'yes' nor 'no' answers have certificates? Yes, for example, the problem of
deciding whether a given Turing machine halts for all inputs.

The space of algorithmic problems therefore has the structure shown in Figure 6.6. Interestingly, in
each class there is an example of the domino problem. (The Fixed-width bounded domino problem
is that of deciding, given a finite set of coloured tiles and an integer n, whether a rectangle of size n x c,
where c is fixed, can be tiled with tiles from T. The Recurring domino problem is that of deciding
whether one can tile the whole plane with a given finite set of tiles in such a way that a particular tile
occurs infinitely often.)

6.5 Limitations of Formal Systems
The proof of the existence of undecidable problems was historically the second of two main results
that demonstrated striking limitations of formal systems and algorithmic methods. The first, which
says that in each rich enough formal system there are true statements that are unprovable within the
given formal system, was due to Godeln in 1931. In this section we start with Godel's result and a
presentation of the simple idea underlying his ingenious proof. We then show how a more specific
version of Godel's theorem can be proved easily, using arguments with an information-theoretic
flavour. The result implies that in no formal system can we prove a theorem that contains more information
than a given set of axioms. In order to show this, two new complexity concepts are introduced: Chaitin

"Kurt G6del (1886-1978), an Austrian mathematician and logician of Moravian origin.

LIMITATIONS OF FORMAL SYSTEMS 6 397

and Kolmogorov descriptional complexity. They lead also to a new way of viewing randomness.
Finally, we analyse an intriguing 'number of wisdom' that encodes very compactly the cornerstones
of undecidability and can be used to show how deeply rooted randomness is, even in arithmetic.

6.5.1 G6del's Incompleteness Theorem

The following result shows unexpected limitations of formal systems. At the time of its discovery this
was a shock for scientists and caused uncertainty and depression among those who believed in the
enormous power of formalization. It shook the foundations of mathematics, and thereby all science
depending on mathematics.

Theorem 6.5.1 (Gidel's incompleteness theorem) Each formal mathematical system that contains
arithmetic and theorems of which form a recursively enumerable set is either inconsistent (that is, one can
prove in this system a theorem and also its negation) or contains theorems which are true but cannot be proved
within the system.

G6del's proof of Theorem 6.5.1 is tricky and difficult. Nowadays G6del's result is considered to
be almost obvious - as one that easily follows from the undecidability of the halting problem and
from the existence of sets that are recursively enumerable but not recursive.

G6del's proof is based on a variant of the Liar paradox: 'This statement is false'.12 G6del obtained
from this the paradox he needed, namely: 'This statement is unprovable.' Indeed, if such a statement
is unprovable, then it is true, and we have a true unprovable statement. If such a statement is provable,
then it is false, and we have inconsistency.

The basic idea of G6del's proof is simple, and we make a sketch of it. Let us consider a fixed formal
system in which theorems (statements) are formulas of the predicate calculus, over the domain of
integers, extended by basic arithmetic operations {+,-, x } and with variables being words of the
type x#', i > 0, where x e {a, b, c, . . . , z}, # is a special symbol, and where axioms are basic identities
of the predicate calculus (for example,

(PnQ) ==>P, -(-P) •=•P, -3x(R(x)) 4=• 'x(-R(x)),

where capital letters denote statements), and of arithmetics (commutativity, associativity,
distributivity, ...). Derivation rules are basic derivation rules of the predicate calculus such as modus
ponens (from P and P =* Q we can deduce Q) and so on.

Such a formal system has infinitely many formulas of one variable, and they can be enumerated
in many ways. Let us fix such an enumeration, and let us denote by F,(x) the ith formula. In this way
Fi(x) is a perfectly defined arithmetical statement with two variables.

Strings of propositions that constitute proofs in such a formal system can also be enumerated,
and let Pi denote the ith proof. Consider now the following statement, perfectly well defined, which
depends on the variable x:

-3y[P, proves Fx(x)], (6.9)

which says that there is no proof of F, (x) in the formal system under consideration.
The most ingenious part of G6del's proof shows that the predicate (6.9) can also be expressed in

the formal system under consideration; that there is an integer k such that

Fk(x) ** -'3y[Py proves F,(x)].

Details of his proof depend heavily on details of formalization, coding and enumeration of
statements and proofs. However, once all this has been done, we are ready with the proof. Indeed,

12This is a modification of the paradox of Epimenides, the Cretan, who said: 'Cretans always lie.'

398 E COMPUTABILITY

"* if Fk(k) is true, then Fk(k) is not provable, and we have incompleteness;

"* if Fk (k) is false, then Fk (k) is provable, and we have inconsistency.

This means that we have an example of a specific statement that is true but not provable within
the formal system under consideration. Godel's result concerns a particular formal system. A more
modem approach is to show the limitations of all formal systems.

6.5.2 Kolmogorov Complexity: Unsolvability and Randomness

Data compression is an important practical problem. In the 1960s Kolmogorov and Chaitin initiated
a theoretical study of compressibility in order to lay foundations for such key concepts of probability
theory as the randomness of strings.13 Their simple ideas turned out to be surprisingly powerful, and
currently represent an important methodology for showing limitations and lower bounds and for
establishing foundations of concepts in many areas, some outside computing (modelling, learning,
statistics, physics).

How much can a given string be compressed? How much information does a given string
contain? How random is a given string? All these questions are basic and closely related. They
can be approached rigorously using the concepts of Kolmogorov and Chaitin complexity.

Example 6.5.2 The string

001

is intuitively much less random than the string

0110111001101100111001011110010100100100001110101000100110,

since the first string can be written as '21 times string 001', but the second one apparently does not have a
simpler description.

The basic idea of information complexity of Kolmogorov and Chaitin is simple. The amount of
information in a string w is the length of the shortest string p (called a program) from which w can
be reconstructed (by a chosen computer C).

The above idea of information-theoretic complexity sounds natural on the one hand, but too
dependent on the choice of C, on the other. Fortunately, this problem can be overcome quite
satisfactorily, as we shall soon see, taking a universal computer for C.

Let us fix an alphabet E and consider a two-tape universal Turing machine U with the tape
alphabet Eo = E - {Ju} that can simulate any one-tape TM with the tape alphabet Eo. The Kolmogorov
complexity of an x E E * with respect to U, notation Ku (x), is the length of the shortest program p
such that if U starts with E on the first tape and p on the second tape, then it halts with x on the first
tape. In other words,

Ku(x) = min{-pj IP E E*, U(p) = x}

and Ku(x) = ec if no such p exists.
A small technical condition allows us to make the concept of Kolmogorov complexity only

inessentially dependent (by an additive constant factor) on the particular choice of the universal
computer. We assume that each TM can be simulated by a program that does not contain the 4-symbol

13Incidentally, a development of the mathematical foundations of probability was another of the famous Hilbert
problems stated in 1900 at the International Congress of Mathematicians.

LIMITATIONS OF FORMAL SYSTEMS U 399

string DATA, and that if U gets on its second tape an input word pDATAx, then U simulates TM p on
input x. It is straightforward to show that each universal TM can be modified to meet these conditions;
therefore let us assume that this is the case with the universal TM we consider.

Lemma 6.5.3 Ku(x) < JxJ + Cu, where the constant cu depends on U only.

Proof: Since U is universal, a one-tape TM that does nothing, but immediately halts, can be simulated
by a program p0 (not containing DATA). Hence, for the input p0DATAx, U writes x on the first tape and
halts. Thus Cu = po0I +4.]

The following fundamental result shows to what extent Kolmogorov complexity is independent
of the choice of the universal computer. This result also justifies us in fixing an arbitrary universal
computer U and writing K(x) instead of Ku (x).

Theorem 6.5.4 (Invariance theorem) Let U and S be universal Turing machines over E0. Then there is a
constant Cu,s such that [Ku (x) -Ks(x)1 <_ cu,s,for all x G E*0

Proof: We can consider S to be simulated by a one-tape TM M in such a way that if a program p
produces x on S, thenM also producesx for the input p. Assume thatM is simulated on Ubyaprogram
pM that does not contain DATA. Now let x E E* be an arbitrary string and qx be the shortest program
producing x on S. Then the program pMDATAqý produces x on U, and its length is IpM +± qJ + 4 = cu,s.
A similar inequality in the opposite direction can be shown analogously.

Unfortunately, Kolmogorov complexity is not computable.

Exercise 6.5.5 Show that K(xx) < K(x) + 0(1),for x E {0, 1}*.

Exercise 6.5.6 Show that for any partial recursivefunctionf : E* - E* there is a constant c such that
K(f(x)) • K(x) + c,for all x E E*.

Exercise 6.5.7* Can the Kolmogorov complexity of a string be smaller that of its substrings?

Theorem 6.5.8 The function K(x) is not recursive.

Proof: The reasoning is based on Berry's paradox: Let n be the smallest positive integer that cannot be
described with fewer than 99 symbols. n is both well defined and cannot exist.

Assume that K(x) is computable. Let c be an integer (to be specified later), and Xk be the kth word
of E* in the strict ordering, and y the first string such that K(y) > c. Consider the following algorithm:

begin k -- 0;
while K(xk) < c do k k- k+ 1;
write(xk)

end

The above algorithm produces y such that K(y) > c. The length of the algorithm is lgc + a
constant. If c is large enough, then this algorithm contains fewer than c symbols and produces x0
- a contradiction. [

400 U COMPUTABILITY

Exercise 6.5.9 Use Theorem 6.5.8 to produce a new proof of undecidability of the halting problem. (Hint:
show that given an x, we can consider in strict order all possible strings as programs, and test each of
them to see whether it halts, and if yes, then simulate it, until we come to a program producing x.)

Exercise 6.5.10* Show that for no recursivefunctionf is there a recursive function g such that K(x) •_
g(x) <f (K(x)). (That is, K cannot be approximated even in a very weak sense.)

Exercise 6.5.11** Show that there is no algorithm for constructing, for any integer n, a binary string x
of length n such that K(x) > 2lgn.

Kolmogorov complexity allows one to deal rigorously with the concept of randomness and the
degree of randomness. This is based on the intuition that a string is random if it cannot be compressed.

For finite words randomness is a matter of degree. A word w can be seen as random if the shortest
program describing w is roughly of the same length as w: for example, if the difference Iwl - K(w) is
small. Depending on the universal computer chosen, the additive constant can be larger or smaller.
We can also say, for example, that a word is fairly random if K(w) Ž Iw[- 10.

Almost all words are fairly random. This follows from this simple result:

Lemma 6.5.12 The number of binary strings x of length n with K(x) < n - k is less than 2 n-k+ 1.

Proof: The number of binary strings of length at most n - k is 1 + 2+... + 2n-k < 2n-k+ 1.

As a consequence, the Kolmogorov complexity of 99.9% of binary words of length n is at least
n - 10. This lemma also provides, in a sense, a 'counterexample' to Church's thesis. Indeed, let us
consider the following problem: for a given n, construct a binary string of length n whose Kolmogorov
complexity is greater than 1. According to Exercise 6.5.11 this problem is unsolvable. But Lemma 6.5.12
shows that a randomly chosen string with a large probability is appropriate.

One can extend the concept of Kolmogorov complexity to all objects that can be encoded in a
natural way by binary strings. For example, we define for an integer n, K(n) = K(bin- 1 (n)) and for a
graph G, K(G) = K(wG). On this basis one can talk about random numbers, graphs,

The concept of Kolmogorov complexity, capturing the degree of incompressibility, also has a
variety of unexpected applications. One of them is to show limitations of various models and methods.
For example, the following simple result is a useful tool to show non-regularity of languages.

Lemma 6.5.13 (KC-Regularity Lemma) If L C E * is a regular language, x E E * and L, {yIxy E L},
then there is a constant CL such that K(y) • K(m) + CL ify is the m-th string of L.

Proof. A string y such that xy c L can be described by giving a DFA A accepting L, the state A is
in after reading x and the order of y in L,. Since the description of the first two items requires 0(1)
bits we have the lemma. 0

Example 6.5.14 In order to show that the language L = {wwR x I x, w G {0, 1}- } is not regular, take x = {01}In,
where K(n) Ž lgn. Thefirst word in Lx with respect to the strict order is y = {01}10. Hence K(y) = Q(lgn),
contradicting the Lemma 6.5.13.

LIMITATIONS OF FORMAL SYSTEMS U 401

Exercise 6.5.15 Show that the language L = {f0'i lgcd(i,j) = 1} is not regular. (Hint: set x = O(p-ý1)
where p > 3 is a prime with sufficiently large Kolmogorov complexity.)

6.5.3 Chaitin Complexity: Algorithmic Entropy and Information

Seemingly a minor modification of Kolmogorov complexity, independently discovered by Chaitin,
leads to various concepts of fundamental importance.

In the definition of Kolmogorov complexity we have implicitly assumed that a universal computer
that simulates programs over an alphabet E0 actually needs to work also with the blanks in order
to be able to recognize the ends of programs. Surprisingly, this fact has quite a few consequences.
For example, we cannot append one program after another and expect our universal computer to
simulate their serial composition unless it is denoted somehow, for example, by a delimiter, where
one program ends and a second starts. Similarly, we need a way to separate programs and data. This
can result, as we shall see, in adding a logarithmic factor in some considerations.

Chaitin complexity, or self-delimiting complexity Hu (x), of a string x, with respect to a universal
computer U - in short, H(x) - is the length of the shortest self-delimiting program p that makes U
produce x. More formally,

Hu (x) = min { Ip! I U (p) = x, p is a self-delimiting program}.

The term 'self-delimiting' means that it is possible to recognize the end of the program by reading
all its symbols and nothing else. As a consequence, the set of self-delimiting programs must be
prefix-free.

Exercise 6.5.16 (Self-delimiting encodings of words (SD)) For a binary word w let L(w) be the
length of w written in binary form with the leading 1, and let M(w) be the word obtained from w by
writing 0 between any two bits of w and I at the end. (For example, L(01) = 10,M(01) = 0011, L(015) =
1111,M(1111) = 10101011.) SD(w) = M(L(w))w is called the self-delimiting version of w. (a) Show
that ISD(w) • wl + 2 lg wl for every w, and show the case where the equality holds. (b) Show that ýf
w = SD(wl)SD(w2), then the decomposition of w into SD(wi) and SD(w2) is unique - this property
is behind the adjective 'self-delimiting'.

Exercise 6.5.17 (Kraft's inequality)* A language L is prefix-free lf no word ofL is a prefix of another
word in L. (a) Show that words in a prefix-free language can be used to encode symbols from another
alphabet. (b) Show Kraft"s inequality: ifL C E* is a prefix-free language and I = p, then 'wEL pw <1.

In addition, it has turned out to be useful to define the concept of a conditional Chaitin complexity
of a string x, with respect to another string t and a universal computer U, as the length of the shortest
program p that makes U compute x, given in addition t*, the smallest program with respect to strict
ordering, to compute t on U. Formally,

H(x / t) = min{ Pll I U(p, t*) = x,p is a self-delimiting program}.

402 * COMPUTABILITY

H(x/x) = 0(1), I(t: x) = Q(1),
H(x) = H(x, t) + 0(1), I(t: x) = H(t) + H(x) - H(t, x) + 0(1),
H(x / t) = H(x) + 0(1), I(x: x) = H(x) + 0(1),
H(x, t) = H(x) + H(t/x) + 0(1), I(x: E) = 0(1),
H(x,t) = H(x) + H(t) + 0(1), I(E: x) = 0(1).

Table 6.1 Properties of algorithmic entropy and information

(To illustrate the concepts of Chaitin complexity and conditional Chaitin complexity we can
consider, for example, a three-tape universal Turing machine that gets, on the second tape, E in the
first case and t* in the second case, and p on the third tape and produces x on the first tape.)

Similarly, as for Kolmogorov complexity, we can show the validity of the invariance theorem for
both Chaitin and conditional Chaitin complexity and can therefore fix a universal Turing machine U
and write H(x) instead of Hu(x).

Exercise 6.5.18 Show the invariance theorem for (a) Chaitin complexity; (b) conditional Chaitin
complexity.

We denote briefly H(x) = Hu(x), and call it the algorithmic entropy, or information-theoretic
complexity, of x. Similarly, we denote H(x / t) = Hu (x / t) as the conditional Chaitin complexity of x
with respect to t. Using a pairing function on strings, that is, a bijection o: {0,1}* x {0,1}* -4 {0,1}*,
we can define how to compress a pair of strings. Let H(x, t) = H(O(x, t)) be the length of the shortest
program that outputs x and t in a way that tells them apart.

The amount by which the conditional Chaitin complexity H(x / t) is less than H(x) can be seen as
the amount of information t contains about x. This leads to the following definition of the algorithmic
information in t about x:

I(t: x) = H(x) - H(x / t).

Remark 6.5.19 Historically, the first scientific concept of information was due to Shannon (1949). It
defines the amount of information in an object as the number of bits that need to be transmitted
in order to select the object from a previously agreed upon set of elements. On the basis of such a
concept of information amount a very successful theory of data transmission has been developed.
Kolmogorov/Chaitin approach considers the amount of information in an object as the number of
bits needed to describe the object. Utilizing the concept of the universal computer it was shown that
this new concept of information amount is independent from the methods used to describe the object
because there is a universal description method that does not have to be the best in any case, but that
is best in the sense that no other description method can provide a much better description infinitely
often.

The basic properties of the algorithmic entropy, algorithmic information and the conditional
Chaitin complexity are summarized in Table 6.1. These properties can be shown in a straightforward
way, using the basic definitions only; therefore their proofs are left as exercises.

Exercise 6.5.20 Show the following properties of algorithmic entropy: (a) H (x / x) = 0(1);
(b) H(x) = H(x,t) + O(1); (c) H(x/ t) < H(x) + 0(1).

LIMITATIONS OF FORMAL SYSTEMS U 403

Exercise 6.5.21 Show the following properties of algorithmic information: (a) I(t: 6) = Q(1);
(b) I(t: x) = H(t) + H(x) -H(t,x) + 0(1).

The following lemma shows that the difference between K(x) and H(x) is not too big, and the
next exercise shows that it is essential.

Lemma 6.5.22 K(x) • H(x) < K(x) + 2 lgm K(x) + (9(1)for the case of strings x over an m-element alphabet.

Proof: It follows from Exercise 6.5.16 that each program of length n can be transformed into a
self-delimiting program of length n + lgm n. 14

Exercise 6.5.23 Consider Kolmogorov and Chaitin complexity of strings over an m-symbol alphabet E.
Use Lemma 6.5.3 and Kraft's inequality to show that (a) EXCE * m-K(x) = oc;
(b) EXC, *m-H~xl < 1.

Exercise 6.5.24 Show, considering the function f(x,E) = x and the computer C(SD(x),e) = x that
there is a constant c such that for all x E {0,1}1 *, H(x) < Ixj + 21g(jxj) +c.

Exercise 6.5.25 Show that there is a constant c such that for all natural numbers n: (a) H(n) < 2 lg n + c;
(b)H(n) <lgn+lglgn+c.

Remark 6.5.26 On the basis of the Chaitin computer and complexity, two important probability
distributions can be defined.

If U is a universal Chaitin computer, then the universal a priori probability distribution on
{0,1}* is defined as

Qu(x) W 2-I0,
u(p)-x

and (universal) algorithmic probability distribution as

m(x) = 2 -H(x).

Observe that by Kraft's inequality Qu(x) < 1 for any x. It will be shown in Section 6.5.4 that
rx 0,II* Qu (x) < 1. Note also that the algorithmic probability is larger for regular strings and smaller

for random strings. For example, if H(x) < ig IxI + 2lglg IxI + c, then m(x) > 1 , and if H(x) > n,

then m(x) < .

Remark 6.5.27 It has been shown that under algorithmic probability distribution the expected time
of any problem on strings of the same length is the same as the worst-case complexity. This implies
that any complexity hierarchy results for deterministic computations, however tight, will also apply
to the expected time complexity classes, for algorithmic probability distribution.

14A more precise relation between Kolmogorov and Chaitin complexity is: H(x) = K(x) + K(K(x)) +
O(K(K(K(x))), K(x) = H(x) - H(H(x)) - O(H(H(H(x))).

404 U COMPUTABILITY

Remark 6.5.28 For infinite words (strings) there is a sharp difference between randomness and
nonrandomness. Indeed, it has turned out that the concept of Chaitin complexity is a proper one
to define randomness of w-words, as follows: An w-word w is called random if there is a constant c
such that

H(wi) Ž i - c,

for all i, where wi is the prefix of w of length i.
It has been shown that this concept of randomness of wu-strings is equivalent to that defined by

statistical tests.

6.5.4 Limitations of Formal Systems to Prove Randomness

A general setting will now be presented in which one can introduce in a simple way such basic
concepts as formal systems, computers, Kolmogorov and Chaitin complexity, and in which it can
easily be shown that within each formal system it is possible to prove randomness only of finitely
many strings.

The key requirement for a formal axiomatic system is that there is an objective criterion for
deciding if a proof written in the language of the system is valid or not. In other words, there must be
an algorithm for checking proofs. This leads to a very general definition of a formal axiomatic system
as a recursively enumerable set.

Definition 6.5.29 A formal system is a pair KC,po), where

C: {0,1}* x N - {S C {O,1}* IS is afinite set}

is a recursive mapping and Vp, t[C(p, t) C C(p, t + 1)]. C is called an inference rule, and p an axiom.

Interpretation: C(p, t) is the set of theorems (statements) that one can prove from the axiom p by
proofs of length < t.

In formal systems as defined above, we work with binary strings only. However, the ith string
will be interpreted in the following, depending on the context, either as the ith string or the integer i
or the ith statement - an encoding of a theorem.

The following notation will be used to introduce an abstract definition of a computer. If
f: {0,1}*1 x {0,1}' -* {0,1}0 * is a partial function, then for each y E {0,1}0 * the projection of f on
the second component y is defined by

fy(x) =f (x,y)

Definition 6.5.30 A computer is a partial recursive function

C: {o,1}* x {o,1}* I} {0,1}*.

Moreover, ifthe domain of Cy is a prefix-free languageforany y E {0, 1}*, we speak about a Chaitin computer.

Interpretation: A computer C produces, for a program p and an input i, a set C(p, i). The additional
requirement for Chaitin computers is that if C(p, i) is defined and p is a prefix of p', then C(p', i) is
not defined. In other words, no program for a successful computation of C can be a prefix to another
program for a successful computation of C for the same input - which captures the idea of having only
self-delimiting programs. This special requirement will later be relaxed and its importance analysed.

Also in such a general setting, there is the concept of the universal (Chaitin) computer.

LIMITATIONS OF FORMAL SYSTEMS N 405

Definition 6.5.31 A (Chaitin) computer U is universal •f and only ýffor every (Chaitin) computer C, there is
a simulation constant sim(C) such that whenever C(u, v) is defined, then there is a program u' such that

U(u',v) = C(u,v) and lu'l < Jul + sim(C).

Theorem 6.5.32 There exists a universal (Chaitin) computer.

Proof: Let us take a fixed enumeration C1,C2 , of all computers."5 The function
F:Nx{0,1}* x {0,1}* F-{0,1}* defined by

F(i,u,v)=Ci(u,v), iEN, u,vc{O,1}*

is partial recursive, and so is the function U: {0,1}* x {0,1}* l -* {O,11* defined by

U(OIlu,v) = Ci(u,v).

In addition, the domain of U(u, v) is prefix-free for each v in the case of a Chaitin computer, since
projections of all Ci have this property. This implies that U is a universal computer with sim(Ci) = i + 1,
for each i. [l

In this general setting we can define analogously the concepts of Kolmogorov and Chaitin
complexity (using the concept of a Chaitin computer in the second case). The invariance theorem
can also be shown analogously.

Kolmogorov complexity can be used to show the limitations of formal systems to prove
randomness, as we shall now see. But first we introduce a new general concept of a generating
computer.

Definition 6.5.33 A generating computer is a pair (C, hc) of recursivefunctions

C:{0,1}*xN -- {SC{0,1}*lSisfinite},
hc:{O,1}*xN - {10,1},

such that Vp, t[C(p, t) C C(p, t + 1)], and ifhc(p, t') = 1, then also hc(p, t' + 1) = land C(p, t') = C(p, t' + 1).

Interpretation: p can be seen as a program and t as time. C(p, t) is the set of words that C generates
up to time t. If hc(p, t') = 1, then C, with program p, halts at time t'.

Observe that there is a close relation between the concept of a formal system and that of a
generating computer. Our abstract computer can therefore play the role of a formal system, and
its program the role of an axiom.

The concept of universality can also be defined for generating computers. A generating computer
U is called universal if for each other generating computer C there is a constant sim(C) such that for
every program p for C there is a program p' for U such that Ip'I •< IP + sim(C), U(p') halts if and only
if C(p) does, and U(p') = C(p).

Exercise 6.5.34 Show the existence of universal generating computers.

151n the following we encode a pair (i, w) of an integer and a binary string Oi1w.

406 N COMPUTABILITY

In the following it is assumed that there is a universal generating computer U. With respect to U
we can define Kolmogorov complexity of finite sets as follows:

K(S) = min{Ipl IU(p) = S and U halts for p}.

If S = {s}, where s is a string, then we usually write K(s) = K({s}).
A universal computer can therefore be seen as a universal formal system.
Let us now assume that we have a fixed natural encoding 'K(s) > n' of statements K(s) > n in the

binary alphabet. (Details of the encoding will not be of importance.) The following theorem implies
that in any formal system one can prove randomness of only finitely many strings.

Theorem 6.5.35 (Chaitin's theorem) For any universal computer (formal system) U there is a constant c
such that for all programs p the following holds: zffor every integer n an encoding of the statement 'K(s) > n'
(as a string) is in U(p) #f and only ifK(s) > n, then 'K(s) > n' is in U(p) only ifn < Pl + c.

Proof: Let C be a generating computer such that, for a given program p', C tries first to make the
decomposition p' = 0klp. If this is not possible, C halts, generating the empty set. Otherwise, C
simulates U onp, generates U(p) and searches U(p) to find an encoding'K(s) > n'for some n > Ip'I +k.
If the search is successful, C halts with s as the output.

Let us now consider what happens if C gets the string 0 iml(c) lp as input. If C(0sm"c) 1p) = {s}, then
from the definition of a universal generating computer it follows that

K(s) < I0 sim(c) lpI + sim(C) = lPI + 2sim(C) + 1. (6.10)

But the fact that C halts with the output {s} implies that

n > IP'I +k k osim(c)lpI +sim(C) = I +p2sim(C) + 1,

and we get
K(s) > n > IJP + 2sim(C) + 1,

which contradicts the inequality (6.10). The assumption that C can find an encoding of an assertion
'K(s) > n' leads therefore to a contradiction. Since 'K(s) > n' if and only if K(s) > n, this implies that
for the assertions (theorems) K(s) > n, n > Jlp + 2sim(C) + 1 there is no proof in the formal system
(U,p). L

Note that the proof is again based on Berry's paradox and its modification: Find a binary string
that can be proved to be of Kolmogorov complexity greater than the number of bits in the binary
version of this statement.

6.5.5 The Number of Wisdom*

We discuss now a special number that encodes very compactly the halting problem.

Definition 6.5.36 The number of wisdom, or the halting probability of the universal Chaitin
computer U, is defined by

Q= y 2-lu I

U(u,E) is defined

The following lemma is a justification for using the term 'probability' for Q.

LIMITATIONS OF FORMAL SYSTEMS U 407

Lemma 6.5.37 0 < Q < 1.

Proof: Since the domain of U, is a prefix-free language, Kraft's inequality (see Exercise 6.5.17), implies
that Ql < 1. Since U is a universal computer, there exists a ul such that U(u1 ,e) converges, and a u2
such that U(U2 ,E) does not. This implies that 0 < Q < 1. 0

Let us now analyse Q in order to see whether its catchy name is justified. In order to do so, let us
assume that

S= 0.blb2b3 ..

is the binary expansion of Q. (As shown later, this expansion is unique.)
We first show that Q encodes the halting problem of Turing machines very compactly, and that

bits of 9 have properties that justify calling them 'magic bits'.
The domain of U, - that is, the set

dom(U,) = {w wE {0,1}*, U(w,-) is defined}

is recursively enumerable. Let g : N -- dom (UL) be a bijection - a fixed enumeration of dom (UL) (such
an enumeration can be obtained, for example, by dovetailing). Denote

n

adg = E2- 9(j)1, for n > 1.

The sequence An is clearly increasing, and converges to Q. Moreover, the following lemma holds.

Lemma 6.5.38 Whenever A > Qi = 0.b1 b2 ... bi, then

Qi < ul < Q• << Q~i + 2-'.

Moreover, given any i, i we know the first i bits of Q, then we can decide the halting problem of any program
with length < i.

Proof: The inequality Q < Q• + 2` is a consequence of the inequality 2` >-j=i+ 1 bj2-J. In order to
prove the second assertion of the lemma, let us assume that we know the first i bits of Q, and therefore
Qi. We can then compute the numbers -, 1W9... until we find an n such that fi < wn. It follows from
the definition of the sequence wA, n = 1,2,.... that this is always possible.

Let u E {0,1}*, I uI = il _ i and n be such that Qi < A. We show that U(u, e) is defined if and only if
u is one of the words g(1),..., g(n). The 'if' claim is trivially true. In order to prove the 'only if' claim,
let us assume that u = g(m) for an m > n. In this case the following inequalities lead to a contradiction:

Q > wA+2-" > wgn+2-' > Qi+2-i > Q.

It now follows from the discussion at the beginning of Section 6.4.2 that knowledge of sufficiently
many bits of Q could be used to solve the halting problems of all Turing machines up to a certain size
and thereby to find an answer to many open questions of mathematics (and therefore, for example,
also of the PCP of reasonable size). The question of how many bits of Q would be needed depends
on the formal system used, and also on how the universal computer is programmed. We have used
programs of the type 0i, where i represents a computer Ci. A more compact programming of U is
possible: for example, using the technique of Exercise 6.5.16 to make words self-delimited. A more

408 U COMPUTABILITY

detailed analysis reveals that knowing 10,000 bits of Q would be sufficient to deal with the halting
problem of Turing machines looking for counter examples of practically all the famous open problems
of discrete mathematics.

Q could also be used to decide whether a well-formed formula of a formal theory is a theorem, a
negation of a theorem, or independent (that is, is unprovable within the given formal system). Indeed,
let us consider a formal system F with an axiom and rules of inference. For any well-formed formula
a, design a Turing machine TM(F, a) that checks systematically all proofs of F and halts if U finds
one for a. Similarly, for -oz. Knowing a sufficiently large portion of Q, we could decide whether a
is provable, refutable or independent. Q therefore deserves the name 'number of wisdom' - it can
help to solve many problems. Unfortunately, 'Nichts ist vollkommen' as a German proverb and the
following theorem say.

Theorem 6.5.39 If Q = 0. bb 2 b3 .•• then the w-word bb 2b 3 . . . is random.

Proof: We use the same notation as in the proof of Lemma 6.5.38. It was shown there that if U (ul, E)
is defined, w > Q•i, and Jul < i, then ul is one of the words g(1), . . . ,g(n). Therefore

{U(g(U),e) 11 <j < n and Ig(J)& i} = {wIH(w) S i}, (6.11)

because if H(w) f_ i, then w has a program of length at most i.
Now letf : {0, I} ý-* f{0, 11* be defined as follows: if x = xl. .. xt, x1 G {0, 1}, for 1 < j < t, and m

is the smallest integer such that w4> 1-,.1 xj2 ', thenf(x) is the first word, in the strict ordering, not
in the set

{g(j) 11 _ j _ m}.

Let C be the computer defined by C(x, E) =f(U(x, E)). Then for each Bi = b,.. bi we get

H(f (Bi)) < HcOf (Bi)) +sim(C)

= min{luI IC(u,e) =f (Bi)} +sim(C)

= min{tul If(U(u,e)) =f(Bi)} +sim(C)

< min{lulIU(u,E) =Bi}+sim(C)

= H(Bi)+sim(C).

Sincef (Bi) is the smallest word not in the set {g) 11 < j < m}, where , j > , we get from (6.11) that
H(f (Bi)) > i, and therefore H(Bi) > i - sim(C), which implies that Bi is random. 0

It follows from Theorem 6.5.39 that we are able to determine Bi only for finitely many i in any
formal system. It can also be shown that we can determine only finitely many bits of Q.

Remarkable properties of (1 were illustrated on exponential Diophantine equations. Chaitin (1987)
proved that there is a particular 'exponential' Diophantine equation

P(i,x1 , . . . ,x,) = Q(i,xl, . . . ,Xn), (6.12)

where P and Q are functions built from variables and integers by the operations of addition,
multiplication and exponentiation, and such that for each integer i the equation (6.12) has infinitely
many solutions if and only if bi = 1; that is, if and only if the ith bit of the binary expansion of Q equals
1. This implies, in the light of the previous discussions, that in any formal system we can decide
only for finitely many i whether the equation (6.12) has infinitely many solutions. This implies that
randomness is already deeply rooted in elementary arithmetic.

LIMITATIONS OF FORMAL SYSTEMS U 409

Remark 6.5.40 The limitations of computers and formal systems that we have derived in this chapter
would have extremely strong implications were it to turn out that our minds work algorithmically
This, however, seems not to be the case. Understanding the mind is currently one of the main problems
of science in general.

6.5.6 Kolmogorov/Chaitin Complexity as a Methodology*

Kolmogorov/Chaitin complexity ideas have also turned out to be a powerful tool in developing
scientific understanding for a variety of basic informal concepts of science in general and of computing
in particular and in creating the corresponding formal concepts. Let us illustrate this on two examples.

Example 6.5.41 (Limits on energy dissipation in computing) The ultimate limitations of miniaturiz-
ation of computing devices, and therefore also of the speed of computation, are governed by the heating problems
caused by energy dissipation. A reduction of energy dissipation per elementary computation step therefore
determines future advances in computing power. At the same time it is known that only 'logically irreversible'
operations, at which one can not deduce inputs from outputs, have to cause an energy dissipation. It is also
known, see also Section 4.5, that all computations can be performed logically reversibly- at the cost of eventually
filling up the memory with unneeded garbage information.

Using Chaitin complexity we can express the ultimate limits of energy dissipation in the number of
irreversibly erased bits as follows:

Let us consider an effective enumeration 1R = R1, R2, R3,.. . of reversible Turing machines. For each R c R?
we define the irreversibility cost function ER(x,y),for strings x,y E E*, of computing yfrom x with R by

ER(x,y) = rinF[+ Iq lR(xp) = pairs(y,q)},

where pairs is a string pairing function.
An ireversibility cost function Eu(x,y) is called universal ýffor every R E 7Z there is a constant cR such

that for all x, y
Eu(xy) •_ ER(x,y) +CR.

It can be shown that there is a reversible TM U such that the irreversibility cost function Eu(x,y) is
universal. Moreover, using similar arguments as for Kolmogorov/Chaitin complexity, we can show that two
universal ireversibility cost functions assign the same irreversibility cost to any function computable apart
from an additive constant and therefore we can define a (machine independent, apart from an additive constant)
reference cost function

E(x,y) = Eu(x,y).

Using KolmogorovIChaitin complexity concepts and methods it has been shown that up to an additive
logarithmic constant

E(x,y) = H(xly) + H(ylx).

Example 6.5.42 (Theory formation) One basic problem of many sciences is how to infer a theory that bestfits
given observational/experimental data. The Greek philosopher Epicurus (around 300 BC) proposed the multiple
explanation principle: if more than one theory is consistent with data, keep all such theories. A more
modern Occam's razor principle, attributed to William of Ockham (around AD 1200) says that the simplest
theory which fits data is the best. A new, so-called minimal length description (MLD) principle, based
on Kolmogorov complexity ideas, says that the best theory to explain a set of data is the one which
minimizes the sum of the length, in bits, of the description of the theory and of the length, in bits, of
data when encoded with the help of the theory. On this basis a variety of new basic scientifc methodologies
are being developed in various sciences.

410 U COMPUTABILITY

Exercise 6.5.43 In order to illustrate the problem of inference, design a minimal DFA that accepts all
strings from the set {al I i is a prime} and rejects all strings from the set {a1 J i is even}.

Moral: The search for borderlines between the possible and the impossible is one of the main aims
and tools of science. The discovery of such limitations and borderlines is often the beginning of a
long chain of very fruitful contributions to science. A good rule of thumb in the search for limitations
in computing is, as in life, to eliminate the impossible and take whatever remains as truth.

6.6 Exercises
1. Let A,B C_ {0, 1}. Which of the following claims are true? (Prove your statements.)

(a) If A is recursively enumerable, then so is Prefix(A).

(b) If the set {0}A U {0}B is recursive, then so are A and B.

(c) If the set A U B is recursive, then so are A and B.

2. Show that the following families of languages are closed under operations of iteration and
shuffle: (a) recursive languages; (b) recursively enumerable languages.

3. Given a functionf : N -- R, construct, using the diagonalization method, a real number that is
not in the range off.

4. Show that the following sets are not recursive: (a) {I(M), IM halts on an odd number of inputs };
(b) { (M), IAM halts on all inputs}.

5. Show that if U is a universal Turing machine for all k-tape Turing machines, then the set of
inputs for which U halts is recursively enumerable but not recursive.

6. Let f be a recursive nondecreasing function such that limnf(n) = oc. Show that there is a
primitive recursive function g such that g(n) •_f(n) for all n and lim,_-g(n) - 0o.

7.* Give an example of a partial recursive function that is not extendable to a recursive function
and whose graph is recursive. (Hint: consider the running time of a universal TM.)

8. Show that if the argument functions of operations of composition and minimization are Turing
machine computable, then so are the resulting functions.

9. Show that the following predicates (functions from N into {0, 1}) are primitive recursive:

(a) sg(x) = I if and only ifx # 0; (b) sg(x) = 0 if and only ifx : 0; (c) eq(x,y) = 1 if and only ifx =

y; (d) neq(x,y) = 1 if and only if x $ y.

10. Show that primitive recursive predicates are closed under Boolean operations.

11. Show that the following functions are primitive recursive: (a) the remainder of dividing x by
y; (b) integer division; (c) g(n) = n - [\l/H2.

12. Show that the functionf (x) = 'the largest integer less than or equal to vf' is primitive recursive.

EXERCISES U 411

13. Show, for the pairing function pair(x,y) and the de-pairing functions 7i 1 and 7r
2 introduced in1 I yx2,.,LyJ (bc) r2 =?

Section 6.2 that: (a) pair(x,y) = (x)
2+x3Y; (b) 1r(x) = x-[8

j L 1
j; (c ' 2

14. Let pair(xl,x2,x 3,x4,xs) = pair(xi,pair(x2,pair(x3,pair(x4,x5)))), and let us define 7rsi5 (x) = xi for
1 < i < 5. Express functions 7rsi5 using functions 71t, 72.

15. Show that the following general pairing function prod : N3
-- N is primitive recursive:

prod(n,i,x) = xi, where pair(xl, . .. x,x) = x.

16. * Define a primitive recursive functionf as follows:

f(x,y) = prod(y + 1, •w1 (x) + 1, -2 (x))

and a sequence di, 1 < i, of partial recursive functions

dx(y) f (x,y) -1, ifO <f(x,y) andy < 7r,(x)+1;
undefined, otherwise.

Show that the sequence of functions do, dj, . . contains all partial recursive functions with the
finite domain, each exactly once. Show that iff : N -* N is a primitive recursive, then so is the
function g(n, x) =f(n) (x).

17. Show that the Ackermann function has the following properties for any ij E N:

(a) A(i,j + 1) > A(i,j); (b) A(i + 1,j) > A(ij).

18. There are various modifications of the Ackermann function that were introduced in
Section 6.2.2: for example, the function A' defined as follows: A'(0,j) = j + 1 for j > 0,
A'(i,0) = A'(i - 1,1) for i > 1, and A'(i,j) = A'(i - 1,A'(i,j - 1)) for i > 1,j _! 1. Show that
A'(i + 1,j) Ž A'(i,j + 1), for all ij E N.

19.* (Fixed-point theorem) Letf be a recursive function that maps TM into TM. Show that there is
a TM AM such that AM and f(M) compute the same function.

20. Show that for every recursive function f(n) there is a recursive language that is not in the
complexity class Time (f (n)).

21. Determine for each of the following instances of the PCP whether they have a solution, and if
they do, find one: (a) A = (abb, a, bab, baba, aba), B = (bbab, aa, ab, aa, a); (b) A = (bb, a, bab, baba, aba),
B = (bab,aa,ab,aa,a); (c) A = (1,10111,10), B = (111,10,0); (d) A = (10,011,101), B =
(101,11,011); (e) A = (10,10,011,101), B = (101,010,11,011); (f) A = (10100, 011,01,0001), B =
(1010,101,11,0010); (g) A = (abba,ba,baa,aa,ab), B = (baa,aba,ba,bb,a); (h) A = (1,0111,10),
B = (111,0,0); (i) A = (ab,ba, b,abb,a), B = (aba,abbab, b, bab).

22. Show that the PCP is decidable for lists with (a) one element; (b) two elements.

23. * Show that the PCP with lists over a two-letter alphabet is undecidable.

24. Show that the following modification of the PCP is decidable: given two lists of words A =
(x1 , . . . ,x.), B = (yi, ,y,) over the alphabet E, Il -> 2, are there il, ... ,ik and ji, , such
that xi,.. . xi, = Y - - " , Y. ?

412 U COMPUTABILITY

25. Show that the following modifications of the PCP are undecidable: (a) given two lists
(U, U1l,. . . ,un), (V,Vl, . . . ,vn), is there a sequence of integers il, in, 1 •< ik •5 m, 1 < k < m,
such that uui, . . . uij. vvil . . vi. ? (b) given lists (u,ul, . . . , un, u'), (v, vl,. , v,v'), is there a
sequence of integers i1, . . . , ima, 1 <_ ik < n, 1 < k < m, such that uuil . . . uim u' = vvil.. vi, v'?

26.** An affine transformation on N x N is a mapping f(x,y) = (ax + by + c,dx + ey +f), where
a, b, c, d, e,f are fixed whole numbers. Show, for example by a reduction from the modified
PCP, in Exercise 25, that it is undecidable, given a pair (xo,yo) E N and a finite set S of affine
transformations, whether there is a sequence fl, . . . fk of affine transformations from S such
thatfdjf2(.. .fk(xo,yo)...)) = (x,x) for some x.

27. Given a set S of Wang tiles, we can assume that the colours used are numbered and that a set
of tiles is represented by a word over the alphabet {0, 1, #} by writing in a clockwise manner
the numbers of the colours of all tiles, one after another, and separating them by #. Denote by
TIL the set of words that describe sets of tiles (with the initial tile), for which the plane can be
tiled. Show that the language TIL is recursively enumerable.

28. Let us use quadruples (up, right, down, left) to denote the colouring of Wang tiles. Which of the
following sets of Wang tiles can be used to tile the plane: (a) (a, w, w, w), (w, w, b, c), (b, c, a, w);
(b) (a,w,w,w), (w,w,a,c), (b,c,b,w).

29. Show that the following modification of the tiling problem is also undecidable: all unit square
tiles have marked comers, and a tiling is consistent if the colours of all four tiles that meet at a
point are identical.

30. Show that Hilbert's tenth problem is equivalent to the problem of deciding for an arbitrary
polynomial P(xl,. . . , x,) with integer coefficients whether the equation P(xi,... , x,) = 0 has
a solution in integers.

31. Show, using a result presented in this chapter, that primes have short certificates.

32. Suppose that L = {xl3x,.. . ,x, E Z f(x,x1,. . . ,x,) = 01}, wheref is a polynomial. Construct

a polynomial g such that L {g(x••. .•. , x,) Ig(xi, ... , xn) > 0}.

33. Suppose that L = {xI]xj,... .,x, Z f(x,x1 ,... ,x,) = 01}, wheref is a polynomial. Construct
apolynomialg such that L = {xl3x,,. .. ,x, E N[g(x,xl, .. . ,x,) = 0]}.

34. Reduce the problem of finding rational solutions to polynomial equations to the problem of
finding integer solutions to polynomial equations.

35.* Show that there is an algorithm for solving Diophantine equations over N if and only if
there is an algorithm for solving four-degree Diophantine equations over N. (Hint: using the
distributive law, each polynomial can be written as a sum of terms, where each term is a product
of a multiset of variables; to each such multiset S associate a new variable)

36. A function f(xl, . . . ,X) is called Diophantine if there is a Diophantine equation
D(al, .. aX. Xn) such that

x =f(x1 , . . . ,xn) =- 3a,. ... anD(a1 a,,x,xi, Xn) = 0.

Show that the following functions are Diophantine: (a) gcd; (b) lcm.

37. Let A, B and C be any sets such that A <m C and B <i C. Is it true that A D B <m C?

EXERCISES U 413

38. A recursively enumerable set S is said to be m-complete if and only if S' •m S for any recursively
enumerable set S'. Show that if a recursively enumerable set S is productive and S <m S', then
S' is also productive, and that every m-complete set is creative.

39. (Properties of the arithmetical hierarchy). Show that (a) if A <m B and B E Ei, then A EEi; (b)
if A <m B and B E Ili, then A E Hi; (c) Ei C ri, Ei C IH~i, Ili C EHli and Hi g IIIIi for i E N; (d)
Ei E Ii+ 1 and 11i C 9 Ei+ for i E N; (e) Ei C Ei, 1,Ii C Ili+ 1 for i E N; (f) Ei and Ili are closed
under union and intersection.

40. Show, for each i E N, that the language 0V, obtained by applying the jump operation to 0 i times,
is complete for the class El, in the sense that it is in Ei and all languages in Ei are m-reducible
to it.

41. Show an example of a prefix-free language such that Kraft's inequality is (a) strict; (b) an
equality.

42. Show that the language S = {SD(x) Ix E {0, 1}} is prefix-free, and that every natural number
n has in S a representation with Ig n + 2 Ig lg n bits.

43. Let A be a finite alphabet. Show that (a) ifS C A*, then the following statements are equivalent:
(1) S is prefix-free, (2) S n SE + = 0; (b) for all prefix-free languages S, T it holds that if S* =T

then S = T.

44. Is the mapping f : {0,1}1* x {0,1} * -{0,1}* defined byf(x,y) = SD(x)y a bijection (and
therefore a string pairing function)?

45. Show that K(x,y) < K(x) + K(y) + O(min{K(x), K(y)}).

46. (Incompressibility Theorem) Let c E N'. Show that for each fixed string y E {0,1}*, every
finite set A C {0, 1}* of cardinality m has at least n(1 - 2-c) + 1 strings x with K(x / y) > lgm - c.

47. Show the following properties of algorithmic entropy: (a) H(w, t) = H(w) + H(t/w) + 0(1);
(b) H(w, t) = H(w) + H(t) + 0(1).

48. Show the following properties of algorithmic information: (a) I(w : w) = H(w) + 0(1); (b) I(w:
6) = 0(1); (c) I(e: w) = 0(1).

49. * Let CP = {xf* Ix E {0, 11* }. (That is, CP is the set of minimal programs.) Show that (a) there is
a constant c such that H(y) >]y - c for all y E CP; (b) the set CP is immune.

50.* Show that H(x) < xJ + 21glg xl + c, for a constant c, for all x E {0, 11*.

51. Show that the set IKC = {x E E* IK(x) > xJ} is immune, and that its complement is recursively
enumerable.

52. Show, using KC-regularity lemma, that the following languages are not regular: (a) {0nl' I m >
2n}; (b) {xcyczlxy = z E {a,b}*,c • {a,b}}.

414 U COMPUTABILITY

QUESTIONS
1. How can such concepts as recursivness and recursive enumerability be transferred to sets of

graphs?

2. The Ackermann function grows faster than any primitive recursive function. It would therefore
seem that its inverse grows more slowly than any other nondecreasing primitive recursive
function. Is it true? Justify your claim.

3. What types of problems would be solvable were the halting problem decidable?

4. Is there a set of tiles that can tile plane both periodically and aperiodically?

5. Which variants of PCP are decidable?

6. Is it more difficult to solve a system of Diophantine equations than to solve a single Diophantine
equation?

7. Why is the inequality K(x) < jxj not valid in general?

8. How is conditional Kolmogorov complexity defined?

9. How are random languages defined?

10. Is the number of wisdom unique?

6.7 Historical and Bibliographical References
Papers by Godel (1931) and Turing (1937) which showed in an indisputable way the limitations
of formal systems and algorithmic methods can be seen as marking the beginning of a new era in
mathematics, computing and science in general.

Turing's model of computability based on his concept of a machine has ultimately turned out to be
more inspiring than the computationally equivalent model of partial recursive functions introduced
by Kleene (1936). However, it was the theory of partial recursive, recursive and primitive recursive
functions that developed first, due to its elegance and more traditional mathematical framework. This
theory, which has since then had a firm place in the theory of computing, was originally considered
to be part of number theory and logic.

The origin of recursive function theory can be traced far back in the history of mathematics. For
example, Hermann Grassmann (1809-77) in his textbook of 1861 used primitive recursive definitions
for addition and multiplication. Richard Dedekind (1831-1916), known also for his saying 'Was
beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden', proved in 1881 that
primitive recursion uniquely defines a function. A systematic development of recursive functions is
due to Skolem (1887-1963) and R6zsa P~ter (1906-77) with her book published in 1951.

The results on recursively enumerable and recursive sets are from Post (1944). The exposition of
pairing and de-pairing functions is from Engeler (1973), and Exercise 16 from Smith (1994).

Nowadays there are numerous books on recursive functions, for example: Peter (1951); Malcev
(1965); Davis (1958, 1965); Rogers (1967); Minsky (1967); Machtey and Young (1978); Cohen (1987);
Odifredi (1989) and Smith (1994). The characterization of primitive recursive functions in terms of
for programs is due to Meyer and Ritchie (1967).

Various concepts of computable real numbers form bases for recursive function-based approaches
to calculus - see Weihrauch (1987) for a detailed exposition. The concept of limiting recursive real
numbers was introduced by Korec (1986).

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES N 415

Undecidability is also dealt with in many books. For a systematic presentation see, for example,
Davis (1965) and Rozenberg and Salomaa (1994), where philosophical and other broader aspects of
undecidability and unsolvability are discussed in an illuminating way.

Theorem 6.4.2 is due to Rice (1953). The undecidability of the halting problem is due to Turing
(1937). The first undecidable result on tiling is due to Berger (1966). A very thorough presentation
of various tiling problems and results is found in Grunbaum and Shephard (1987). This book and
Gardner (1989) contain detailed presentations of Penrose's tilings and their properties. Aperiodic
tiling of a plane with 13 Wang dominoes is described by Culik (1996). For the importance of tiling
for proving undecidability results see van Emde Boas (1982). The Post correspondence problem is
due to Post (1946); for the proof see Hopcroft and Ullman (1969), Salomaa (1973) and Rozenberg
and Salomaa (1994), where a detailed discussion of the problem can be found. The undecidability
of the Thue problem was shown for semigroups by Post (1947) and Markov(1947) and for groups
by Novikov (1955); the decidability of the Thue problem for Abelian semigroups is due to Malcev
(1958). The Thue problem (El) on page 389 is from Penrose (1990). The Thue problem (E2) is Penrose's
modification of the problem due to G. S. Tseitin and D. Scott, see Gardner (1958). Hilbert's tenth
problem (Hilbert (1935)) was solved with great effort and contributions by many authors (including
J. Robinson and M. Davis). The final step was done by Matiyasevich (1971). For a history of the
problem and related results see Davis (1980) and Matiyasevich (1993). For another presentation of
the problem see Cohen (1978) and Rozenberg and Salomaa (1994). The first part of Example 6.4.22
is from Rozenberg and Salomaa (1994), the second from Babai (1990); for the solution of the second
see Archibald (1918). For Diophantine representation see Jones, Sato, Wada and Wiens (1976). For
borderlines between decidability and undecidability of the halting problem for one-dimensional,
one-tape Turing machines see Rogozhin (1996); for two-dimensional Turing machines see Priese
(1979b); for undecidability of the equivalence problem for register machines see Korec (1977); for
undecidability of the halting problem for register machines see Korec (1996).

For a readable presentation of G6del's incompleteness theorem see also Rozenberg and Salomaa
(1994). The limitations of formal systems for proving randomness are due to Chaitin (1987a, 1987b). See
Rozenberg and Salomaa (1994) for another presentation of these results, as well as results concerning
the magic number of wisdom. Two concepts of descriptional complexity based on the length of
the shortest description are due to Solomonoff (1960), Kolmogorov (1965) and Chaitin (1966). For
a comprehensive presentation of Kolmogorov/Chaitin complexity and its relation to randomness,
as well as for proofs that new concepts of randomness agree with that defined using statistical
tests, see Li Ming and Vitinyi (1993) and Calude (1994).There are several names and notations used
for Kolmogorov and Chaitin complexities: for example, Li and Vitdnyi (1993) use the terms 'plain
Kolmogorov complexity' (C(x)) and 'prefix Kolmogorov complexity' (K(x)). A more precise relation
between these two types of complexity given on page 403 was established by R. M. Solovay.

See Li and Vit~nyi (1993) for properties of universal a priori and algorithmic distributions,
Kolmogorov characterization of regular languages, various approaches to theories inference problem
and limitations on energy dissipation (also Vitinyi (1995)). They also discuss how the concepts of
Kolmogorov/Chaitin complexities depend on the chosen G6del numbering of Turing machines.

Rewriting

INTRODUCTION
Formal grammars and, more generally, rewriting systems are as indispensable for describing and
recognizing complex objects, their structure and semantics, as grammars of natural languages are for
allowing us to communicate with each other. The main concepts, methods and results concerning
string and graph rewriting systems are presented and analysed in this chapter. In the first part the
focus is on Chomsky grammars, related automata and families of languages, especially context-free
grammars and languages, which are discussed in detail. Basic properties and surprising applications
of parallel rewriting systems are then demonstrated. Finally, several main techniques describing how
to define rewriting in graph grammars are introduced and illustrated.

The basic idea and concepts of rewriting systems are very simple, natural and general. It is
therefore no wonder that a large number of different rewriting systems has been developed and
investigated. However, it is often a (very) hard task to get a deeper understanding of the potentials
and the power of a particular rewriting system. The basic understanding of the concepts, methods
and power of basic rewriting systems is therefore of a broader importance.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. the aims, principles and power of rewriting;

2. basic rewriting systems and their applications;

3. the main relations between string rewriting systems and automata;

4. the basics of context-free grammars and languages;

5. a general method for recognizing and parsing context-free languages;

6. Lindenmayer systems and their use for graphical modelling;

7. the main types of graph grammar rewritings: node rewriting as well as edge and hyperedge
rewriting.

418 U REWRITING

To change your language
you must change your life.

Derek Walcott, 1965

Rewriting is a technique for defining or designing/ generating complex objects by successively
replacing parts of a simple initial object using a set of rules. The main advantage of rewriting systems
is that they also assign a structure and derivation history to the objects they generate. This can be
utilized to recognize and manipulate objects and to assign a semantics to them.

String rewriting systems, usually called grammars, have their origin in mathematical logic (due
to Thue (1906) and Post (1943)), especially in the theory of formal systems. Chomsky showed in 1957
how to use formal grammars to describe and study natural languages. The fact that context-free
grammars turned out to be a useful tool for describing programming languages and designing
compilers was another powerful stimulus for the explosion of interest by computer scientists in
rewriting systems. Biological concerns lay behind the development of so-called Lindenmayer systems.
Nowadays rewriting systems for more complex objects, such as terms, arrays, graphs and pictures,
are also of growing interest and importance.

Rewriting systems have also turned out to be good tools for investigating the objects they generate:
that is, string and graph languages. Basic rewriting systems are closely related to the basic models of
automata.

7.1 String Rewriting Systems
The basic ideas of sequential string rewriting were introduced and well formalized by semi-Thue
systems.'

Definition 7.1.1 A production system S = (E,P) overan alphabet E isdefinedbyafinitesetPC _* x V
of productions. A production (u, v) E P is usually written as u ---- v or u -- v f P is clear from the context.

P

There are many ways of using a production system to define a rewriting relation (rule), and thereby
to create a rewriting system.

A production system S = (E, P) is called a semi-Thue system if the following rewriting relation
(rule) * on E* is used:

P

w1 == w2 if and only if w1 = xuy,w 2 = xvy, and (u,v) E P.
P

A sequence of strings W1,W2,... ,w, such that wi ==> wi+, for 1 < i < n is called a derivation. The
P

transitive and reflexive closure > of the relation r=•. is called a derivation relation. If w, 1 W2,
P P P

we say that the string w2 can be derived from w, by a sequence of rewriting steps defined by P.
A semi-Thue system S = (E, P) is called a Thue system if the relation P is symmetric.

Example 7.1.2 S, = (•Z,,P1), where El = {a,Sb,} and

P,: S -* aSb, S -*ab,

is a semi-Thue system.

1Axel Thue (1863-1922), a Norwegian mathematician.

STRING REWRITING SYSTEMS U 419

Example 7.1.3 S2 = (E2,P 2), where E2 {A,C,E,I,L,M,N, O,P,R, T, W} and

EAT - AT AT - EAT ATE - A

P2 A - ATE LATER -• LOW LOW -- LATER
PAN -- PILLOW PILLOW -- PAN CARP - ME
ME -- CARP

is a Thue system.

Two basic problems for rewriting systems S = (E, P) are:

"* The word problem: given x,y E E*, is it true that x =*> y?
P

"* The characterization problem: for which strings x,y E E* does the relation x := y hold?
P

For some rewriting systems the word problem is decidable, for others not.

Example 7.1.4 For the semi-Thue system S, in Example 7.1.2 we have

S = w if and only qfw = aiSbt or w = aibifor some i > 1.

Using this result, we can easily design an algorithm to decide the word problem for S 1.

Exercise 7.1.5* (a) Show that the word problem is decidable for the Thue system S2 in Example 7.1.3.

(b) Show that ifx == y, then both x and y have to have the same number of occurrences of symbols from
P2

the set {A, W, M}. (This implies,for example, that MEAT -----CARPET - see Section 6.4.4.)

Exercise 7.1.6 Show that there is no infinite derivation, no matter which word we start with, in the
semi-Thue system with the alphabet {A,B} and the productions BA -* AAAB, AB -* B, BBB
AAAA, AA ---- A.

A production system S = (P) is called a Post normal system if

w1 =•w 2 if and onlyif W1 =uw, w 2 =wv, and (u -4-v) cP.
P

In other words, in a Post normal system, in each rewriting step a prefix u is removed from a given
word uw and a word v is added, provided (u -- v) is a production of S.

Exercise 7.1.7 Design a Post normal system that generates longer and longer prefixes of the Thue
w-word.

If the left-hand sides of all productions of a Post normal system S = (E, P), have the same length,
and the right-hand side of each production depends only on the first symbol of the left-hand side,

420 U REWRITING

we speak of a tag system. Observe that a tag system can be alternatively specified by a morphism
0: -* 2 * (a --* 0(a), a E E, is again called a production), an integer k, and the rewriting rule defined
by

Wl •= w2 ifandonlyif wj =axv,aE E,,axI =k,w2 =v4'(a).

In such a case we speak of a k-tag system.

Example 7.1.8 In the 2-tag system with the productions

a -* b, b --- bc, c -E

we have, for example, the following derivation:

bb b =4 bb c ==# cb c ==c.

Example 7.1.9 A 3-tag system with productions 0 - 00 and 1 - 1101 was investigated by Post in 1921.
The basic problem that interested Post was to find an algorithm to decide, given an initial string w z {0, 1}*,
whether a derivation from w terminates or becomes periodic after a certain number of steps. This problem seems
to be still open.

It can be shown that both semi-Thue and tag systems are as powerful as Turing machines, in that
they generate exactly recursively enumerable sets.

Exercise 7.1.10* Show that each one-tape Turing machine can be simulated by a 2-tag system.

The basic idea of string rewriting has been extended in several interesting and important ways. For
example, the idea of parallel string rewriting is well captured by the so-called context-independent
Lindenmayer systems S = (E,P), where P C E x E*, and the rewriting rule is defined by

w 1 = w 2 if and only if w, = ul.. •ukw2 = vl.. .vk, and ui = vi E P, 1 < i < k.

In other words, w, =•' w2 means that w2 is obtained from w, by replacing all symbols of wl, in parallel,
using the productions from P.

Example 7.1.11 If S3 = (E 3 ,P 3), F3 = {a}, P3 = {a -* aa}, we get a derivation

a ===> aa ==* aaaa r==> a8 ==* a 6
16

that is, in n derivation steps we obtain a2
n.

We deal with Lindenmayer systems in more detail in Section 7.4.
Another natural and powerful idea is graph rewriting systems, which have an interesting theory

and various applications. In Section 7.5 we look at them in more detail. Other approaches are
mentioned in the historical and bibliographical references.

7.2 Chomsky Grammars and Automata
Noam Chomsky introduced three simple modifications of semi-Thue systems, crucial for both
applications and theory: a specification of a start symbol; a partition of the alphabet into nonterminals
(or variables, they correspond to the syntactical categories in natural languages) and terminals; and,
finally, consideration of only those words that can be derived from the start symbol and contain
only terminal symbols. This allowed him to use such rewriting systems, usually called grammars, to
specify and study formal languages and to investigate natural languages.

CHOMSKY GRAMMARS AND AUTOMATA U 421

7.2.1 Chomsky Grammars

Chomsky also introduced four basic types of grammars. As we shall see, all of them are closely related
to the basic types of automata.

Definition 7.2.1 A phrase structure grammar, or type-0 grammar, G = (VN, VT, S. P) is speckled by

"* VN - afinite alphabet of nonterminals;

"* VT - afinite alphabet of terminals (with VN n VT = 0);

"* S - the start symbol from V,;

"* P c (VN U VT)*VN(VN U VT)* x (VN U VT)* - afinite set of productions.

(Observe that the left-hand side of each production must contain at least one nonterminal.)

Definition 7.2.2 A type-O grammar G = KVN, VT, S, P) is called

1. A context-sensitive grammar (CSG), or type-1 grammar, ifu -* v E P implies

"* either u = aA3, v = cwf, A e VN, w e (VN U VT)+, o,,3 c (VN U VT)*,

"* or u = S, v = E, and S does not occur on the right-hand side of a production in P.

2. A context-free grammar (CFG), or type-2 grammar, if

u - v c P implies u e VN.

3. A regular, or type-3, grammar if

either P C VN x (VNVT UVT) orP C_ VN x (VT VN U VT*).

With each Chomsky grammar a language is associated in the following way.

Definition 7.2.3 The language generated by a Chomsky grammar G = (VN, VT, S, P) is defined by

L(G) = {wv V* IS = w}.
P

Moreover, when S z=* x G (VT U VN) *, then x is said to be a sentential form of G. The family of languages
P

generated by the type-i Chomsky grammars will be denoted by Ci, i = 0,1.2,3. On a more general level, we

assign a language L(s) to any s E (VT U VN)* defined by L(s) = {w E V* Is ==* w}.
P

Two Chomsky grammars are said to be equivalent if they generate the same language.

Example 7.2.4 Consider the grammar G = ({S, L, K, W, B, C}, {a}, S, P), where P contains productions

(1) S - LaK, (2) aK - WCCK, (3) aW - WCC,
(4) LWC - LaB, (5) LWC -- aB, (6) BC -- aB,
(7) BK - K, (8) BK -- E.

422 U REWRITING

An example of a derivation in G is

S • LaK ==' LWCCK => LaBCK LaaBK
=LaaK = LaWCCK = LWCCCCK == aBCCCK

==' aaBCCK = aaaBCK == aaaaBK : aaaa.

We now show that L(G) = {a2' 1i > 1}. The production (1) generates LaK, (2) and (3) generate for
each 'a' two 'C's and, in addition, using the production (3), 'W moves left'. (4) and (6) exchange a 'C'
for an 'a', and with (6) 'B moves right'. (7) allows a new application of (2). A derivation leads to a
terminal word if and only if the production (5) removes 'L' and (8) removes 'BK'. Observe too that

LaiK =*. LWC
2'K =* a2" and LWC

2
iK * La2iK.

Exercise 7.2.5 Which language is generated by the grammar G = (VN, VT,S,P) with VN =

{S,X, Y,Z}, VT = {a} and the productions S - YXY, YX -- YZ, ZX -- XXZ, ZY -* XXY,
X -* a, Y -*

Exercise 7.2.6 Which language is generated by the grammar G = (VN, VT,S,P), with VN =

{S,A, B, L, R}, VT = {a, b} and the productions

S -- LR, L-* LaA, L - LbB, L-- g,

AR-* Ra, BR - Rb, R-* , Xx-- xX,

where x c {ab} and X c {AB}?

Remark 7.2.7 (1) Productions of a CSG of the form uAv - uwv, A E VN, w 5 E, can be interpreted
as follows: the nonterminal A may be replaced, in the context (u, v), by w. This is also the reason for
the attribute 'context-sensitive' for such productions and those grammars all productions of which
are of such a type.

(2) Productions of a CFG have the form A -- w, A c VN, and one can interpret them as follows:
each occurrence of the nonterminal A may be replaced by w independently of the context of A. This is
the reason for the attribute 'context-free' for such productions and grammars with such productions.

(3) Each Chomsky grammar of type-i is also of type-(i - 1) for i = 1,3. This is not, formally, true
for i = 2, because a context-free grammar can have rules of the type A - E, even if A is not the start
symbol. However, it is possible to show that for each type-2 grammar G one can effectively construct
another type-2 grammar G1 that is already of type-1 and such that L(G1) = L(G) - see Section 7.3.2.

(4) If all productions of a regular grammar have the form

A - u or-A - Bu, whereA,B c VT,U E VN,

we speak of a left-linear grammar. Similarly, if all productions of a regular grammar are of the form

A -- u or A - uB, where A, B E VN, u E VT ,

we speak of a right-linear grammar.

In the following we demonstrate that for i = 0, 1, 2,3, type-i grammars are closely related to basic
models of automata.

CHOMSKY GRAMMARS AND AUTOMATA U 423

7.2.2 Chomsky Grammars and Turing Machines

We show first that Chomsky type-0 grammars have exactly the same generating power as Turing
machines.

Theorem 7.2.8 A language is recursively enumerable if and only if it is generated by a Chomsky grammar.

Proof: (1) Let L = L(G), where G = (VN, VT, S, P) is a Chomsky grammar. We describe the behaviour of
a two-tape nondeterministic Turing machine MG that simulates derivations of G and accepts exactly
L. The first tape is used to store the input word, the second to store words a generated by G. At
the start of each simulation we have a = S. MG simulates one derivation step of G by the following
sequence of steps:

(a) MG chooses, in a nondeterministic way, a position i in a, 1 < i <]al, and a production u -- v c P.

(b) If u is a prefix of ai... aCel, MG replaces a. ... ai+ ju-11 = u by v, and starts to perform step (c);
otherwise MG goes to step (a).

(c) MG compares the contents of the two tapes. If they are identical, MG accepts w; if not, it goes to
step (a).

Clearly, MG accepts w if and only if G generates w.
(2) Let L = L(M) for a one-tape Turing machine .M = (E, F, Q, qo, 6). We show how to construct a

Chomsky grammar GM = (VN, E, qo, P) generating L. The productions of GM fall into three groups.
(a) The first group contains productions that generate from qo the set of all words of the form

$qowlw#, where w c Y* and {$, 1, #} are markers not in F U Q. (It is not difficult to design such
productions, see, for example, the grammar in Exercise 7.2.6 generating the language

{wwIwe {a,b}*}.

(b) Productions of the second group are used to simulate computations of .M on the first w. For
each transition 6(q, a) = (q', b, -*) of AM, GM contains productions

qac -- bq'c for all c E F and qal - bq'L J1.

(The last production is for the case that U, standing for the blank on the tape, is in F.) For each
transition 6(q, a) = (q', b, --), GM contains productions

cqa - q'cb for each c e F and $qa -- $q' L b.

Finally, for each transition 6(q,a) = (q', b, 1) there is a production qa - q'b.
(c) Productions of the third group transform each word '$wiqw2 Iw#', Wl. w2 E F*, q = ACCEPT}

into the word w. (If M does not halt for a w E E* or does not accept w, GM does not generate any word
from $qowzw#.) The generation of w from $w qw 2 1w# can be done, for example, by the the following
productions, where {F, Fl, F2 } are new nonterminals:

ACCEPT - F, aF - Fa, a c F,
$F - F1 Fla -* F1,aGF,
F, I -- F2 , F2a -- aF2, a E E,

F2# - Li

424 U REWRITING

Chomsky type-0 grammars may have many nonterminals and complicated productions. It is
therefore natural to ask whether these are all necessary. The following theorem summarizes several
such results, and shows that not all available means are needed, surprisingly.

Theorem 7.2.9 (1) For every Chomsky grammar an equivalent Chomsky grammar with only two nonterminals
can be constructed effectively.

(2) Chomsky grammars with only one nonterminal generate a proper subset of recursively enumerable
languages.

(3) For every Chomsky grammar an equivalent Chomsky grammar with only one noncontext-free
production can be constructed.

7.2.3 Context-sensitive Grammars and Linearly Bounded Automata

The basic idea of context-sensitive grammars is both simple and beautiful and has a good linguistic
motivation: a production uAv -- uwv replaces the nonterminal A by w in the context (u, v). (Indeed,
in natural languages the meaning of a part of a sentence may depend on the context.)

The monotonic Chomsky grammars have the same generative power as the context-sensitive
grammars. Their main advantage is that it is often easier to design a monotonic than a context-sensitive
grammar to generate a given language.

Definition 7.2.10 A Chomsky grammar G = (VN,•VT, S, P) is called monotonic iffor each production u -* v
in P, either Iu I I vI or u = S,v = E, and S does not occur on the right-hand side of any production. (The last
condition is to allow for generation of the empty word, too.)

Theorem 7.2.11 A language is generated by a context-sensitive grammar if and only #f it is generated by a
monotonic Chomsky grammar.

Proof: Each context-sensitive grammar is monotonic and therefore, in order to prove the theorem, let
us assume that we have a monotonic grammar G. At first we transform G into an equivalent grammar
that has only nonterminals on the left-hand sides of its productions. This is easy. For each terminal a we
take a new nonterminal Xa, add the production Xa -- a, and replace a by Xa on the left-hand sides of
all productions. Now it is enough to show that to each production of a monotonic Chomsky grammar
G = (VN, VT, S, P), with only nonterminals on its left-hand side, there is an equivalent context-sensitive
Chomsky grammar. In order to do this, let us assume a fixed ordering of the productions of P, and
consider an extended set of nonterminals

V,= (AI) ' A EVTUV,, 1K-k<K-IPI UVN,
k

where (') denotes a pair of symbols.
The following set of context-sensitive productions corresponds to the kth production A1... A,

B1 .. Bm, n m:

A1.~~~ . A ýIA s..An
A,)A,.. .A, ---- (A)() .. .A,k ý~k k

A,) (A,) Al) .. (A B

.. (. B.. .
BIB2 ,... 13,_I (Bkm) • I 2.

CHOMSKY GRAMMARS AND AUTOMATA N 425

In this way, to any two different productions of P, two different sets of context-sensitive productions
correspond such that productions of these two sets contain different new nonterminals. As a
consequence, if all the rules of G are replaced by the sets of context-sensitive productions designed
as shown above, then we get a set of context-sensitive productions generating the same language as
G. [

Example 7.2.12 Consider the grammar G with VN = {S, X, Y}, VT = {a, b, c}, the start symbol S and the
rules

(1) S -* aSX, (2) YX -- bYc, (3) Y - bc,
S -* aY, cX -* Xc.

We show now that L(G) c { anbncn n > 1}. Indeed, with productions (1) we derive S =rr= anYXn- 1 for

each n > 1. By induction we can prove that for each 1 < i < n

YX" 1
zZ* b YciXn-i-

1

and using the productions (3) we get that for each n c N

* n a~n-lyc,-1 n abcn.
S ===. a b"Y ' a=~ V

Hence L(G) c {a bncn n I> 1}.

Exercise 7.2.13* Show that the grammar in Example 7.2.12 generates precisely the language
{anbbnc In >_ 1}.

Exercise 7.2.14 Design a monotonic grammar generating the languages
(a) {wlw E {a,b}*, #aw = #bW}; (b) {anb 2nan In > 1}; (c) {aP Ip is a prime}.

The following relation between context-sensitive grammars and linearly bounded automata (see
Section 3.8.5) justifies the use of the attribute 'context-sensitive' for languages generated by LBA.

Theorem 7.2.15 Context-sensitive grammars generate exactly those languages which linearly bounded
automata accept.

Proof: The proof of this theorem is similar to that of Theorem 7.2.8, and therefore we concentrate on
the points where the differences lie.

Let G be a monotonic grammar. As in Theorem 7.2.8 we design a Turing machine MG that
simulates derivations of G. However, instead of two tapes, as in the proof of Theorem 7.2.8, MG
uses only one tape, but with two tracks. In addition, MG checks, each time a production should be
applied, whether the newly created word is longer than the input word w (stored on the first track).
If this is the case, such a rewriting is not performed. Here we are making use of the fact that in a
monotonic grammar a rewriting never shortens a sentential form. It is now easy to see that MG can
be changed in such a way that its head never gets outside the tape squares occupied by the input
word, and therefore it is actually a linearly bounded automaton.

426 I REWRITING

Similarly, we are able to prove that we can construct for each LBA an equivalent monotonic
grammar by a modification of the proof of Theorem 7.2.8, but a special trick has to be used to ensure
that the resulting grammar is monotonic.

Let A = (E, Q, qo, QF, 16, #, 6/ be an LBA. The productions of the equivalent monotonic grammar
fall into three groups.

Productions of the first group have the form

x A--A x ,A --
S---A A- A

where x E E, and each 4-tuple is considered to be a new nonterminal. These productions generate the
following representation of 'a two track-tape', with the initial content w = w,... w,, wi e E:

Wl1 W21 Wn1

W1 W2 Wn

1 - # •
qo

Productions of the second group, which are now easy to design, simulate A on the 'first track'. For
each transition of A there is again a new set of productions.

Finally, productions of the third group transform each nonterminal word with the accepting state
into the terminal word that is on the 'second track'. These productions can also be designed in a quite
straightforward way.

The family of context-sensitive languages contains practically all the languages one encounters
in computing. The following theorem shows the relation between context-sensitive and recursive
languages.

Theorem 7.2.16 Each context-sensitive language is recursive. On the other hand, there are recursive languages
that are not context-sensitive.

Proof: Recursivity of context-sensitive languages follows from Theorem 3.8.27. In order to define a
recursive language that is not context-sensitive, let Go, G1, . . . be a strict enumeration of encodings
of all monotonic grammars in {0, 1i*. In addition, letf : {0, 1} -*, N be a computable bijection. (For
example, f (w) = i if and only if w is the ith word in the strict ordering.)

The language L0 = {w E {0, 1}* w V L(Gf(w))} is decidable. Indeed, for a given w one computes
f(w), designs Gf(.), and tests membership of w in L(Gf(w)).

The diagonalization method will now be used to show that L0 is not a context-sensitive language.
Indeed, assuming that L0 is context-sensitive, there must exist a monotonic grammar G, 0 such that
Lo = L(G,,o).

Now let w0 be such thatf(wo) = no. A contradiction can be derived as follows.
If w0 e L0, then, according to the definition of L0, wo V L(G,,o) and therefore (by the assumption)

w0 V L0 . If w0 V L0, then, according to the definition of Lo,wo c L(G,,0), and therefore (again by the
assumption) w0 E Lo. 0

On the other hand, the following theorem shows that the difference between recursively
enumerable and context-sensitive languages is actually very subtle.

Lemma 7.2.17 If L C E* is a recursively enumerable language and $, # are symbols not in E, then there is a
context-sensitive language L1 such that

CHOMSKY GRAMMARS AND AUTOMATA U 427

1. L, C f{#$wlw c L, i> 0};

2. for each w E L there is an i > 0 such that #'$w e L1 .

Proof: Let L = L(G), G = (VN, E, S, P), and $, # be symbols not in ED. We introduce two new variables
{SO, Y} and define three sets of productions:

Pl ={u-- - vEP, Jul < v11;
P2= fu --- Viu--vP, Jul > Jv1, i= Jvl- ul};
P 3 = {So -- $S, $Y - #$} U {IaY -• Ya, a E VN U }.

The grammar

G1 = (VN U {SOY}, ", U {$, #},So,P, U P2 U P 3)

is monotonic, and the language L(G) satisfies both conditions of the theorem. [1

As a corollary we get the following theorem.

Theorem 7.2.18 For each recursively enumerable language L there is a context-sensitive language L1 and a
homomorphism h such that L = h(L1).

Proof: Take h($) = E, h(#) = E and h(a) = a for all a e.

7.2.4 Regular Grammars and Finite Automata

In order to show relations between regular grammars and finite automata, we make use of the fact
that the family of regular languages is closed under the operation of reversal.

Theorem 7.2.19 Regular grammars generate exactly those languages which finite automata accept.

Proof: (1) Let G = (VN, VT, S, P) be a right-linear grammar, that is, a grammar with productions of the
form

C--*w or C -* wB, B C VN,w E VT.

We design a transition system (see Section 3.8.1), A = (VN U {E},VTS,{E},), with a new state
E ý VN U VT, and with the transition relation

EE6(C,w) ifandonlyifC-*wEP;

BE6(C,w) ifandonlyifC---wBEP.

By induction it is straightforward to show that L(G) = L(A).
(2) Now let G = (VN, VT, S, P) be a left-linear grammar, that is, a grammar with productions

of the form C -- w and C -- Bw, where C,B e VN, w E V*. Then GR = (VN,VT,S,PR) with
p {= u - v -u--* yR e P} is a right-linear grammar. According to (1), the language L(GR) is regular.
Since L(G) = L(GR)R and the family of regular languages is closed under reversal, the language L(G)
is also regular.

(3) If A = (Q, E, qo, QF, 6) is a DFA, then the grammar G = (Q, E, q0, P) with productions

q- EweP if wE i ,6(q,w)eQF;
q- wqiEP if wEE,6(q,w)=qj,

qo -E if qO E QF

is right-linear. Clearly, qo =*- w'qi, qi e Q, if and only if 6(qo, w') = qi, and therefore L(G) = L(A). E1

428 U REWRITING

Exercise 7.2.20 Design (a) a right-linear grammar generating the language {aib' I i,j > 0}; (b) a
left-linear grammar generating the language L c {0, 1}* consisting of words that are normal forms
of the Fibonacci representations of integers. (c) Perform in detail the induction proof mentioned in part
(1) of Theorem 7.2.19.

7.3 Context-free Grammars and Languages
There are several reasons why context-free grammars are of special interest. From a practical point
of view, they are closely related to the basic techniques of description of the syntax of programming
languages and to translation methods. The corresponding pushdown automata are also closely
related to basic methods of handling recursions. In addition, context-free grammars are of interest
for describing natural languages. From the theoretical point of view, the corresponding family of
context-free languages plays an important role in formal language theory - next to the family of
regular languages.

7.3.1 Basic Concepts

Three rewriting (or derivation) relations are considered for context-free grammars G = KVN, VT, S, P).

Rewriting (derivation) relation ==#.:
P

w ==*w 2 ifandonlyif wj = uAvw 2 = uwvA -- wEP.
P

Left-most rewriting (derivation) relation ==>L:
P

Wl :L W2 ifandonlyif wl =uAvw 2 =uwv,A--*weP~ uE VE .
P

Right-most rewriting (derivation) relation ==ý.R:
P

Wl ==: W2 ifandonlyif wl = uAv,w 2 = uwv,A --- wE P,v E VT.
P

A derivation in G is a sequence of words from (VN U VT)*

W1,W2, • . -,•Wk

such that wi = wi+ 1 for 1 < i < k. If wi ===>L Wi+ 1 (Wi ==>R Wi+ 1) always holds, we speak of a left-most
P P P

(right-most) derivation. In each step of a derivation a nonterminal A is replaced by a production
A -- u from P. In the case of the left-most (right-most) derivation, always the left-most (right-most)
nonterminal is rewritten.

A language L is called a context-free language (CFL) if there is a CFG generating L.
Each derivation assigns a derivation tree to the string it derives (see the figures on pages 429

and 430). The internal nodes of such a tree are labelled by nonterminals, leaves by terminals or E. If
an internal node is labelled by a nonterminal A, and its children by x1,... Xk, counting from the left,
then A -- x, ... Xk has to be a production of the grammar.

CONTEXT-FREE GRAMMARS AND LANGUAGES U 429

Now we present two examples of context-free grammars. In so doing, we describe a CFG, as
usual, by a list of productions, with the start symbol on the left-hand side of the first production. In
addition, to describe a set of productions

A -- cz,A -* a 2, .. ,A -- k,

with the same symbol on the left-hand side, we use, as usual, the following concise description:

A ---•, 1Q I 21 ... I k-

Example 7.3.1 (Natural language description) The original motivation behind introducing CFG was to
describe derivations and structures of sentences of natural languages with such productions as,for example,

(sentence)-, (noun phrase) (verb phrase), (article)-- The, the
(noun phrase) -- (article) (noun), (noun)-- eavesdropper I message,
(verb phrase) -* (verb) (noun phrase), (verb) -* decrypted,

where the syntactical categories of the grammar (nonterminals) are denoted by words between the symbols '('
and ') 'and words like 'eavesdropper' are single terminals. An example of a derivation tree:

The eavesdropper decrypted the message

<article> <noun> <verb> <article> <noun>

<noun phrase> <noun phrase>

<verb phrase>

<sentence>

In spite of the fact that context-free grammars are not powerful enough to describe natural
languages in a completely satisfactory way, they, and their various modifications, play an important
role in (computational) linguistics.

The use of CFG to describe programming and other formal languages has been much more
successful. With CFG one can significantly simplify descriptions of the syntax of programming
languages. Moreover, CFG allowed the development of a successful theory and practice of
compilation. The reason behind this is to a large extent the natural way in which many constructs of
programming languages can be described by CFG.

Example 7.3.2 (Programming language description) The basic arithmetical expressions can be described,
for example, using productions of the form

(expression) - (expression) (+) (expression)
(expression) (-* expression 1)

(expression 1) -- (expression 1) (mult) (expression 1)
(expression 1) - ((expression))

(±) + -
(mutt) x /

expressionn) -* ajbjcI. . . ylz
and they can be used to derive, for example, a / b + c, as in Figure 7.1.

430 • REWRITING

a / b + cI I I
<expression 1> <mult> <expression 1>

<expression 1>

<expre sion> <+> <ex session>

<expression>

Figure 7.1 A derivation tree

Exercise 7.3.3 Design CFG generating (a) the language of all Boolean expressions; (b) the language of
Lisp expressions; (c) {a'b2i i,j >_ 1}; (d) {wwR I w E {0, 1}; (e) {abick i 54 j or]j k}.

It can happen that a word w c L(G) has two different derivations in a CFG G, but that the
corresponding derivation trees are identical. For example, for the grammar with two productions,
S - SS ab, we have the following two derivations of the string abab:

di: S SS ==abS == abab,

d2 : S = SS== Sab abab,

both of which correspond to the derivation tree

a b a b

S S

S

Exercise 7.3.4 Show that there is a bijection between derivation trees and left-most derivations
(right-most derivations).

It can also happen that a word w E L(G) has two derivations in G such that the corresponding
derivation trees are different. For example, in the CFG with productions S - Sa I a I aa, the word aaa
has two derivations that correspond to the derivation trees in Figure 7.2.

A CFG G with the property that some word w E L(G) has two different derivation trees is called
ambiguous. A context-free language is called (inherently) ambiguous if each context-free grammar
for L is ambiguous. For example, the language

L = {aib'aJ i,j Ž 1} U {abfai i,j > 1}

CONTEXT-FREE GRAMMARS AND LANGUAGES U 431

a a a a a a

S S

S S

S

Figure 7.2 Two different derivation trees for the same string

is ambiguous. It can be shown that in each CFG for L some words of the form akbkak have two
essentially different derivation trees.

Exercise 7.3.5 Which of the following CFG is ambiguous: (a) S - a I abSb aAb, A -- bS I aAAb;
(b) S - aSbc I c I bA, A - bA I a; (c) S -* aS I Sa I bAb, A - aAb Iacb?

Exercise 7.3.6 Consider a CFG G with the productions

S -- *bA IaB, A --- a IaS IbAA, B --- b IbS IaBB.

Show that G is ambiguous, but L(G) is not.

Even in the case of context-free grammars it is in general not easy to show which language is
generated by a given CFG, or to design a CFG generating a given language.

Example 7.3.7 The CFG G = (VN, VT, S, P) with the productions

S--aBIbA, A---*bAAlaSla, B--+aBBIbSIb

generates the language

L(G) = {w I w E {a, b}), w contains as many a's as b's}.

In order to show this, it is sufficient to prove, for example by induction on the length of w, which is
straightforward, the following assertions:

1. S• w ifand only f #,w = #bW;

2. A w wifand only if #,w = #bW + 1;

3. B = w iand only Wf]#bw = #,w+ .

(In fact, it suffices to prove thefirst claim, but it is helpful to show the assertions 2 and 3 to get 1.)

Some languages are context-free even though one would not expect them to be. For example, the
set of all satisfiable Boolean formulas is NP-complete (and therefore no polynomial time recognizing
algorithm seems to exist for them), but, as follows from the next example, the set of all satisfiable
Boolean formulas over a fixed set of variables is context-free (and, as discussed later, can be recognized
in linear time).

432 U REWRITING

Example 7.3.8 Denote by FT, the set of Boolean formulas over the variables xj, ... x, and Boolean operations
V and -. Moreover, denote by A, the set of all assignments a : {x 1 , . . . x,x} -- {0, 1}. For c G AAn and F E Tn
let a(F) denote the value ofF at the assignment a. The set of all tautologies over the variables {x1 , • ,x,,} is
defined by Tn = {F E .F, IVa c An,,a(F) = 1}. We show that T, is a context-free language.

Let Gn = (Vn, V• , Sdn , P,) be a CFG such that Vn = {SA IA C An } is the set of nonterminals, one for each
subset ofAAn; V• - {x= , Xn. I ,X}U {V, -,(,)} and Pn be the set ofproductions

SA - -(SAn-A), A cAn; (i)

SAVB - SA V SB, f A,B E An; (ii)
S, (X)= }xf x {x1, . . . ,xn}. (iii)

In order to show that L(Gn) = T,, it is sufficient to prove (which can be done in a straightforward way by

induction) that ifA E An, then SA = F ifand only rf=ala(F) = 1}. Let A E A, and SA *= F. Three

cases for O are possible. 1fF = x E {xl, . ,x,n}, then x can be derived only by rule (iii). If SA =ý> -(S,) ==** F,

then F = -_(F'), and, by the induction hypothesis, B = {a a(F') = 0}, and therefore, by (i), SB 4 F' and

A An - B = {a(j-(F')) = 1}. The last case to consider is that SA = SB VSc =* F. Then F = F1 VF 2 and

A = B uC. By (ii), B = {1f1 3(Fl) = 1}, C= {-y I -y(F2) = 1}, and thereforeA = {a Ia(F1 UF 2) = 1}.

In a similar way we can prove that WfA = {a a(F) = 1}, then SA =* F, and from that L(G,,) = T,,follows.

Exercise 7.3.9 Show that the language ofall satisfiable Booleanformulas over afixed set ofnonterminals
is context-free.

Exercise 7.3.10 Design a CFG generating the language {w E {O,I}* I w contains three times more is
than Os}.

7.3.2 Normal Forms

In many cases it is desirable that a CFG should have a 'nice form'. The following three normal forms
for CFG are of such a type.

Definition 7.3.11 Let G = (VN, VT, S,P) be a CFG.
G is in the reduced normal form tf the following conditions are satisfied:

1. Each nonterminal ofG occurs in a derivation ofG from the start symbol, and each nonterminal generates
a terminal word.

2. No production has the form A -* B, B E VN.

3. Ife V L(G), then G has no production of the form A --- s (no E-production), and if s E L(G), then
S -* E is the only 6-production.

G is in the Chomsky normal form if each production has either the form A -- BC or A - u, where
B, C E VN, u E V4", or the form S - E (and S not occurring on the right-hand side of any other production).

CONTEXT-FREE GRAMMARS AND LANGUAGES U 433

G is in the Greibach normal form if each production has either the form A -* act, a E VT, a G VN, or the
form S -* E (and S not occurring on the right-hand side of any other production).

Theorem 7.3.12 (1) For each CFG one can construct an equivalent reduced CFG.
(2) For each CFG one can construct an equivalent CFG in the Chomsky normal form and an equivalent

CFG in the Greibach normal form.

Proof: Assertion (1) is easy to verify. For example, it is sufficient to use the results of the following
exercise.

Exercise 7.3.13 Let G = (VN, VT,S,P) be a CFG and n = VT U VN1. (a) Consider the recurrence
Xo = {AIA c VN,I(A -* a) E P,cz E VT} and,for i > 0, Xi = {AIA E VN,3(A , a) c P,a c
(VT UXiI)*}. Show that A E X, i and only irA =* wfor some w E VT. (b) Consider the recurrence

Yo = {S} and,fori > 0, Yi = Yi- 1U{AIA c VN, 3(B - uAv) E P, B E Yi-1}.

Show that A E Y, if and only if there are u', v' E (VT U VN) * such that S =4 u'Av'.

(c) Consider the recurrence Zo = {A I (A - E) E PI and,for i > 0 Zi = {A 3(A - a) E P, a E Z*'1 }.

Show that A E Z, ifand only ifA * E.

We show now how to design a CFG G' in the Chomsky normal form equivalent to a given reduced
CFG G = (VN,VT,S,P).

For each terminal c let Xc be a new nonterminal. G' is constructed in two phases.

1. In each production A -* a, Ial Ž[2, each terminal c is replaced by Xc, and all productions
Xc - c, c G VT, are added into the set of productions.

2. Each production A * B1 ... Bin, m > 3, is replaced by the following set of productions:

A - BiD1,D, - B2 D2 , • . . ,Dn-3 ý Bm 2Dm-2,Dm-2 - Bm.-B.,

where {D1 ,. .D 2 } is, for each production, a new set of nonterminals. The resulting CFG is
in the Chomsky normal form, and evidently equivalent to G.

Transformation of a CFG into the Greibach normal form is more involved (see references).

Example 7.3.14 (Construction of a Chomsky normal form) For a CFG with the productions
S -* aSbbSa lab, we get, after thefirst step,

S -- XQSXbXbSXa I XaXb, X, -* a, Xb - b,

and after step 2,

S -- *XaD, D1 -- SD 2, D 2 ,---XbD 3, D 3 -- XbD 4,
D 4 - SXa, Xa - a, Xb -* b.

434 U REWRITING

Exercise 7.3.15 Design a CFG in the Chomsky normalform equivalent to the grammar in Example 7.3.7.
(Observe that this grammar is already in the Greibach normal form.)

Transformation of a CFG into a normal form not only takes time but usually leads to an increase
in size. In order to specify quantitatively how big such an increase can be in the worst case, let us
define the size of a CFG G as

Size (G) u I (+u +2).

A-uEP

It can be shown that for each reduced CFG G there exists an equivalent CFG G" in the Chomsky
normal form such that Size(G') < 7Size(G) and an equivalent CFG G" in the Greibach normal form
such that Size(G") = 0 (Size3 (G)). It is not clear whether the upper bound is tight, but for some CFG
G" which are in the Greibach normal form and equivalent to G it holds that Size(G") > Size 2 (G).

Exercise 7.3.16 Show that for each CFG G there is a CFG G' in the Chomsky normal form such that
Size(G') < 7Size(G).

In the case of type-0 grammars it has been possible to show that just two nonterminals are sufficient
to generate all recursively enumerable languages. It is therefore natural to ask whether all the available
resources of CFG - namely, potentially infinite pools of nonterminals and productions - are really
necessary to generate all CFL. For example, is it not enough to consider only CFG with a fixed number
of nonterminals or productions? No, as the following theorem says.

Theorem 7.3.17 For every integer n > 1 there is a CFL L, c {a, b}* (L" C { a, b}*) such that Ln (L,) can be
generated by a CFG with n nonterminals (productions) but not by a CFG with n - 1 nonterminals (productions).

7.3.3 Context-free Grammars and Pushdown Automata

Historically, pushdown automata (PDA) played an important role in the development of
programming and especially compiling techniques. Nowadays they are of broader importance for
computing.

Informally, a PDA is an automaton with finite control, a (potentially infinite) input tape, a
potentially infinite pushdown tape, an input tape head (read-only) and a pushdown head (see
Figure 7.3). The input tape head may move only to the right. The pushdown tape is a 'first-in, last-out'
list. The pushdown head can read only the top-most symbol of the pushdown tape and can write
only on the top of the pushdown tape. More formally:

Definition 7.3.18 A (nondeterministic) pushdown automaton (PDA or NPDA)
A.= (Q,E,,F,qo,QF, No,6) has a set of states Q, with the initial state qo and a subset QF of final
states, an input alphabet E, a pushdown alphabet r, with -Yo c F being the starting pushdown
symbol, and a transition function 6 defined by

6: Q x (E u{E}) x F - 2Qxr*.

CONTEXT-FREE GRAMMARS AND LANGUAGES * 435

input tape

a, a2 a aq an

read-only head

pushdown
tape

Figure 7.3 A pushdown automaton

A configuration of A is a triple (q, w, -y). We say that A is in a configuration (q, w, -y) if A is in the state
q, w is the not-yet-read portion of the input tape with the head on the first symbol of w, and -y is the
current contents of the pushdown tape (with the left-most symbol of -y on the top of the pushdown
tape. (qo, w, -yo) is, for any input word w, an initial configuration.

Two types of computational steps of A are considered, both of which can be seen as a relation
F-A_ (Q x E* x F*) x (Q x E* x IF*) between configurations. The E-step is defined by

(p,v1v,7Y1Y) --A (q,v,;7y-) #ý (q,;w') E 6(p,v1,7y),

where vi E E,-y F,; c F*. The 6-step is defined by

(p,v, -WYm) F-A (q,v,/-y) <-- (q, ý) E 6(p, ,

In a E-step, the input head moves to the next input symbol; in an E-step the input head does not
move. In both steps the top-most pushdown symbol 7yj is replaced by a string , E p*. If lTI = 0, this
results in removing 1-ym

There are also two natural ways of defining an acceptance by a PDA.

Acceptance by a final state:

Lf(A) = {wI (qo,w,-yo) F-A (p, ,7),p E QF,' _ F*}Y

Acceptance by the empty pushdown tape:

Le(A) = {wI (qo,w,0o) -j (p,E,E),p E Q}.

However, these two acceptance modes are not essentially different.

Exercise 7.3.19 Show that for each pushdown automaton A one can easily construct a pushdown
automaton A' such that Le(A) = Lf (A'), and vice versa.

436 U REWRITING

(a, a, aa) (b, a, e) (b, b, bb) (a, b, c)

(aa) & (b, a, 6) (b, $, b$j (a, bEr (,$e

Figure 7.4 A pushdown automaton

Example 7.3.20 PDA A, = ({qj, q2 }, {0,1, c}, {B, O, 1}, qj, 0, B, 6), with the transitions

6(qi,O,B) = (qi,OB), 6(ql,1,B) = (qi,IB), 6(ql,c,B) = (q2,B),
6(ql,0,0) = (ql,00), 6(ql,1,0) = (ql,10), 6(ql,c,O) = (q2,0),
6(ql,0,1) = (ql,01), 6(ql,1,1) = (q1,11), 6(ql,c,1) (q2,1),

6(q2,0,0) = (q2,e), 6(q2,1,1) = (q2,e), 6(q 2 , ,B) (q2,E),

accepts, through the empty pushdown tape, the language {wcwR I w c {0, 1} }. This is easy to see. Indeed, A1
first stores w on the pushdown tape. After reading c, A1 goes into the state q2 and starts to compare input
symbols with those on the top of the pushdown tape. Each time they agree, the input head moves to the next
symbol, and the top-most symbol from the pushdown tape is removed. If they do not agree once, A does not
accept.

Example 7.3.21 PDA A 2 = ({q, q2}, {0,1}, {B, O, 1}, qj, 0, B, 6) with the transitions

6(qi,O,B) = (ql,OB), 6(q9,0,0) = {(ql,00),(q2,e)},
6(qj,1,B) = (qj,1B), 6 (ql,1,1) = f(ql,ll),(q2,
6(q,0,1) = (ql,01), 6(q2,1,1) = (q2,E),
6 (qj,1,0) = (qj,10), 6(q2,0,0) = (q2,-),
6(ql,e,B) = (q2,E), 6(q 2 ,e,B) = (q2,E),

accepts, again through the empty pushdown tape, the language {wwR I w E {0, 1}* }. Indeed, the basic idea is
the same as in the previous example. In the state ql, A 2 stores w on the pushdown tape. A 2 compares, in the
state q2, the next input symbol with the symbol on the top of the pushdown tape, and if they agree, the input
tape head makes a move and the topmost pushdown symbol is removed. However, A 2 switches from state qi to
q2 nondeterministically only. A 2 'guesses' when it is in the middle of the input word.

Exercise 7.3.22 Let L be the language generated by the PDA shown in Figure 7.4 through the empty
pushdown tape. Determine L and design a CFGfor L. (In Figure 7.4 transitions are written in the form
(a, z, z') and mean that if the input symbol is a and z is on the top of the pushdown tape, then z is replaced
by z'.)

Exercise 7.3.23* Show that to each PDA A with 2n states there is a PDA A' with n states such that
Le((A) = Le((A').

Theorem 7.3.24 To every PDA A there is a one-state PDA A' such that Le (A) = Le(A').

Now we are ready to show the basic relation between context-free grammars and pushdown
automata.

CONTEXT-FREE GRAMMARS AND LANGUAGES U 437

Theorem 7.3.25 A language is generated by a CFG # and only ýf it is accepted by a PDA.

Proof: Let G = (VN, VT, S,P) be a CFG. We design a one-state PDA,

A4= ({q},VT,VNUVTU{fyo,#},q,,yo,,6),

with the transition function

6(q,E,yo) = (q,S#), 6(q,e,A) = {(q,w) A --- wCP},
6(q,aa) = (q,F), 6(qE,#) = (q,),

where a E VT. A first replaces the initial symbol -yo of the pushdown tape by the initial symbol of
the grammar and a special marker. A then simulates the left-most derivation of G. Whenever the
left-most symbol of the pushdown tape is a terminal of G, then the only way to proceed is to compare
this terminal with the next input symbol. If they agree, the top pushdown symbol is removed, and the
input head moves to the next symbol. If they do not agree, the computation stops. In this way, at any
moment of computation, the already consumed part of the input and the contents of the pushdown
tape are a sentential form of a left-most derivation. Finally, A empties its pushdown tape if the marker
is reached. (A more detailed proof can be given by induction.)

Now let A be a pushdown automaton. By Theorem 7.3.24 there is a one-state PDA
A' = ({q}, r, F, q, 0, zo,6), ZE n F 0, such that Le(A) = L, (A').

Let G = ({S} U F, E, S, P) be a CFG with the following set of productions:

S -* Zo, A - xB 1B 2. ... Bm ifandonlyif (q,B. ... Bm) E 6(q,x,A),

where x is a terminal symbol or x = E. (If m = 0, then A - aB... BBm has the form A - a.)
A derivation in G is clearly a simulation of a computation in A'. This derivation results in a

terminal word w if the input empties the pushdown tape of A'.

Exercise 7.3.26 Design a PDA accepting the languages (a) {w Iw E {a, b}*, 1#aw- #bWI mod 4 = 0};
(b) 10'l .) 0 < i < j :< 2i}.

Exercise 7.3.27 Design a PDA equivalent to CFG with the productions S - BC Is, B -- CS I b,
and C - SB Ic.

7.3.4 Recognition and Parsing of Context-free Grammars

Algorithms for recognition and/or parsing of context-free grammars form important subprograms
of many programs that receive their inputs in a natural or formal language form. In particular, they
are key elements of most of translators and compilers. Efficient recognition and parsing of CFG is
therefore an important practical task, as well as an interesting theoretical problem.

Recognition problem - for a CFG G, the problem is to decide, given a word w, whether w E L(G).

Parsing problem - for a CFG G, the problem is to construct, given a word w E L(G), a derivation tree
for w.

438 U REWRITING

The following general and beautiful recognition algorithm CYK (due to Cocke, Younger and
Kasami), one of the pearls of algorithm design, assumes that G = (VN, VT, S, P) is a CFG in Chomsky
normal form and w = W1 .. Wn,Wi E VT, is an input word. The algorithm designs an n x n
upper-triangular recognition matrix T, the elements TiJ, 1 < i < j • n, of which are subsets of VN.

begin for I < i,j < n do Tij ;
for i I- I to n do Tii - {A I A -* wi c P};
for d I- ito n - 1 do

for i <-- 1 to n - d do
begin j <- d + i;

Tij _{A I 3k, i < k < j such that
A -- BC E P, B E Ti,kI,C C TkJ}

end;
if S E T1,n then accept else reject

end

In order to show the correctness of this algorithm, it is sufficient to prove by induction that

Tiq,={AIA=*wi...wj} if 1<i<j<n,
P

and therefore w E L(G) if and only if S E T1,n.
The following table shows the values of the matrix T when the CYK algorithm is used for the

CFG with the productions

(1) S -- *SS, (2) S , AA, (3) S -- b,

(4) A -* AS, (5) A - AA, (6) A -*a,

and the word 'abbaa' is recognized:

A A A - A,S
S S - S

S - S
A A,S

A

To design the derivation tree, we can use the matrix T. Let us assume a fixed enumeration of
productions of G, and let 7ri,1 < i < P1, denote the ith production. To design the derivation tree
for a w = Wl... w,, wi c VT, we can use the program

if S E Tl,n then parse(l, n, S) else output 'error'

and the following procedure parse:

procedure parse(i,j, A)
begin

if j = i then output(m) such that 7rm = A - w i E P
else if k is the least integer such that i < k < j and there exist

7ýrm = A ---* BC e P with B e Tk-3, C e Tk,1
then begin output(m);

parse(i,k - 1, B); parse(k,j, C)
end

end

CONTEXT-FREE GRAMMARS AND LANGUAGES U 439

This procedure designs in the so-called top-down manner (that is, from S to w) the left-most
derivation of w. For example, for the grammar given above and w = abbaa, we get as the output the
sequence of productions 2,4,6,1,3,3,5,6,6 and the derivation tree.

a b b a a

AVA

Aý, S

A\

S

When implemented on a RAM, the time complexity is clearly 8(n 3) for the CYK algorithm and
9(n) for the parsing algorithm. It can be shown that both algorithms can also be implemented on
Turing machines with asymptotically the same time performance. The following theorem therefore
holds.

Theorem 7.3.28 Recognition and parsing of CFG can be done in 89(n 3) time on RAM and Turing machines.

Exercise 7.3.29 Design a CFG G' in the Chomsky normalform that generates the language L(G) - {,
where G is the grammar S -- aS I aSbS I e, and design the upper-triangular matrix that is created by
the CYK algorithm when recognizing the word 'aabba'.

Exercise 7.3.30 Implement the CYK recognition algorithm on a multi-tape Turing machine in such a
way that recognition is accomplished in (n n3)-time.

Parsing algorithms are among the most often used algorithms (they are part of any text processing
system), and therefore parsing algorithms with time complexity 8(n 3) are unacceptably slow. It is
important to find out whether there are faster parsing algorithms and, if so, to develop parsing
algorithms for CFG that are as fast as possible.

Surprisingly, the problem of fast recognition of context-free grammars seems to be still far from
being solved. Even more surprisingly, this problem has turned out to be closely related to such
seemingly different problems as Boolean matrix multiplication. The following theorem holds.

Theorem 7.3.31 (Valiant's theorem) Let A be a RAM algorithm for multiplying two Boolean matrices
of degree n with time complexity M(n) (with respect to logarithmic time complexity). Then there is an
O((M(n))-time RAM algorithm for recognizing an arbitrary context-free grammar.

Since there is an 0(n 2
"

37) RAM algorithm for Boolean matrix multiplication (see Section 4.2.4), we
have the following corollary.

Corollary 7.3.32 There is an 0(n 2
"

37) RAM algorithm for recognizing an arbitrary CFG.

440 U REWRITING

Recognition of general CFG has also been intensively investigated with respect to other complexity
measures and computational models. O(1g 2 n) is the best known result for space complexity on Turing
machines and also for time complexity on CRCW+ PRAM (and on hypercubes, see Section 10.1, with
0(n 6) processors).

Since parsing is used so extensively, a linear parsing algorithm is practically the only acceptable
solution. This does not seem to be possible for arbitrary CFG. Therefore the way out is to consider
parsing for special classes of CFG that would be rich enough for most applications.

Restrictions to unambiguous CFG or even to linear CFG, with productions of the form A -- uBv
or A -, w, where A, B are nonterminals and u, v, w are terminal words, do not seem to help. The fastest
known recognition algorithms for such grammars have time complexity 8e(n2). This has turned out
practically to be a satisfactory solution - restriction to the recognition of only deterministic context-free
languages leads to O(n) algorithms.

Definition 7.3.33 A CFL L is a deterministic context-free language (DCFL) f L = Lf(A) for a
deterministic PDA A. A PDA A = (Q, E, F, qo, 0, z, 6) is a deterministic PDA (DPDA) i."

1. qE Q, a E E U {J} andy rF implies 16(qa,-3)l < 1;

2. q eQ, yE Fand 6(q,E,-y) $ 0, then 6(q,a,'y) = O,for all a E E.

In other words in a DPDA in any global state at most one transition is possible. For example, the
PDA in Example 7.3.20 is deterministic, but that in Example 7.3.21 is not.

Exercise 7.3.34 Show that the following languages are DCFL: (a) {w w E {a, b}*, #aw = #bW};

(b) {anbm 11 < n < 3m}.

Caution: In the case of DPDA, acceptance by a final state and acceptance by an empty pushdown
tape are not equivalent.

Exercise 7.3.35 Show that every language accepted by a DPDA with respect to the empty pushdown
tape can be accepted by a DPDA with respect to afinal state.

Exercise 7.3.36** Show that the following language is acceptable by a deterministic pushdown
automaton with respect to afinal state but not with respect to the empty pushdown tape: {w E {a, b}* I w
contains the same number of occurrences of a and b}.

Due to 6-moves, a DPDA may need more than Iwj time steps to recognize an input word w. In
spite of this DCFL can be recognized in linear time.

Theorem 7.3.37 For each DPDA A there is a constant cA such that each word w c Lf(A) can be recognized
in cA1wI steps.

Proof idea: From the description of A one can determine an upper bound cA on the number of steps
A can make without being in a cycle. 0

There are also several well-defined subclasses of CFG that generate exactly deterministic CFL: for
example, the so-called LR(k) grammars. They are dealt with in any book on parsing and compilation.

CONTEXT-FREE GRAMMARS AND LANGUAGES N 441

7.3.5 Context-free Languages

Context-free languages play an important role in formal language theory and computing, next to
regular languages. We deal here with several basic questions concerning CFL: how to determine
that a language is not context-free, which closure properties the family of CFL has, which decision
problems are decidable (undecidable) for CFL, what the overall role of CFL is in formal language
theory, and whether there are some especially important (or 'complete') context-free languages.

The most basic way to determine whether a language L is context-free is to design a CFG or a
PDA for L. It is much less clear how to show that a language is not context-free (and therefore there
is no sense in trying to design a CFG or a PDA for it). One way of doing this is to use the following
result.

Lemma 7.3.38 (Bar-Hillel's pumping lemma) For every CFG G one can compute an integer nc such that
for each z E L(G), Izi > nG, there are words x, u, w, v,y such that

1. z = xuwvy, Iuvl I 1, 1uwvl I nG;

2. xuiwviy E L(G) for all i > 0.

Example 7.3.39 We show that the language L = {aibici I i > 1} is not context-free by deriving a contradiction,
using the pumping lemma,from the assumption that L is context-free.

Proof: Assume L is context-free. Then there is a CFG G generating L. Let n = nG be an integer satisfying
the conditions of the pumping lemma for G. In such a case z = anbnc" can be split as z = xuwvy such
that the conditions of pumping lemma are fulfilled, and therefore Iuwvl • n. However, then the string
uwv cannot contain both an 'a' and a 'c' (any two occurrences of such symbols have to be at least n + 1
symbols apart). Hence the word xu2 wv 2 y, which should also be in L by the pumping lemma, does not
contain the same number of a's, b's and c's: a contradiction. 0

Exercise 7.3.40 Show that the following languages are not context-free: (a) L = {ww w e {a, b}*};
(b) {a"b~cb"a" n > 1}; (c) {a'blab' li,j > 1}; (d) {an2 In > 1}; (e) {ail i is composite}.

Bar-Hillel's pumping lemma is an important but not universal tool for showing that a language
is not context-free. For example, the language {a*bc} U {aPbancan I p is prime, n > p} is not context-free,
but this cannot be shown using Bar-Hillel's pumping lemma. (Show why.)

Since each CFL is clearly also context-sensitive, it follows from Example 7.3.39 that the family of
context-free languages is a proper subfamily of context-sensitive languages. Similarly, it is evident that
each regular language is context-free. Since the syntactical monoid of the language L0 = {wwR I w E
{0, 1}1* } is infinite (see Section 3.3), L0 is an example of a context-free language that is not regular.

It can be shown that each deterministic context-free language is unambiguous, and therefore
L = {aibiak I i = j or j = k} is an example of a CFL that is not deterministic. Hence we have the hierarchy

L(NFA) L(DPDA) • L(NPDA) (; (LBA).

Another method for proving that a language L is context-free is to show that it can be designed
from another language, already known to be context-free, using operations under which the family
of CFL is closed.

442 U REWRITING

Theorem 7.3.41 The family of CFL is closed under operations of union, concatenation, iteration,
homomorphism, intersection with regular sets and difference with regular sets. It is not closed with respect to
intersection, deletion and complementation.

The family of deterministic CFL is closed under complementation, intersection with regular sets and
difference with regular sets, but not with respect to union, concatenation, iteration, homomorphism and
difference.

Proof: Closure of C(CFL) under union, concatenation, iteration and homomorphism is easy to show
using CFG. Indeed, let G1 and G2 be two CFG with disjoint sets of nonterminals and not containing
the symbol 'S', and let S1, $2 be their start symbols. If we take the productions from G, and add
productions {S -- SSI 4J, we get a CFG generating, from the new start symbol S, the language
L(G1)*. Moreover, if we take the productions from G1 and G2 and add productions {S -4 S1 IS2 (or
S -SI 1S2), we get a CFG generating the language L(G 1) U L(G2) (or L(G 1)L(G 2)). In order to get a CFG
for the language h(L(G1)), where h is a morphism, we replace, in productions of G1, each terminal a
by h(a).

In order to show the closure of the family £(CFG) under intersection with regular languages,
let us assume that L is a CFL and R a regular set. By Theorem 7.3.24, there is a one-state PDA A =
({q},, F,q, 0,yo,6p) which has the form shown on page 437 and L,(A) = L. Let A- = KQ,Eqo,QF, 60
be a DFA accepting R. A PDA A" = (Q, E, F, qo, 0, z, 6) with the following transition function, where
ql is an arbitrary state from Q and A E F,

6(qo,e,z) = {(qo,S#)}; (7.1)
6(q1,E,A) = I{(ql,wz) I(q, w) c bp (q, _, A)}1; (7.2)

65(ql,a,a) = I{(q2, E) I q2 E bf (ql, a)}1; (7.3)

(ql, E,#) = I{(q1,E) Iql C QF}; (7.4)

accepts L n R. Indeed, when ignoring states of A', we recover A, and therefore Le(A") C Le(A). On
the other hand, each word accepted by A" is also in R, due to the transitions in (7.2) and (7.3). Hence
Le (A") = LnAR.

Since L - R = L n Rc, we get that the family £(CFG) is closed also under the difference with regular
languages.

For the non context-free language L = {aibici I i > 1} we have L = L, n L2, where L = {aIbicJ I i, j 1},
L2 = {aIbVcJ i,j >Ž 1}. This implies that the family £(CFG) is not closed under intersection, and since
L, n L2 = (L U L2c)c, it is not closed under complementation either. Moreover, since the language
L3 = {aibick I i,j,k > 1} is regular and therefore context-free, and L4 = {aibick i $ j or j $ k} is also a
context-free language and L = L3 - L4, we get that the family £(CFG) is not closed under set difference.

Proofs for closure and nonclosure properties of deterministic context-free languages are more
involved and can be found in the literature (see the references). 0

Concerning decision problems, the news is not good. Unfortunately, most of the basic decision
problems for CFL are undecidable.

Theorem 7.3.42 (1) The following decision problems are decidable for a CFG G: (a) Is L(G) empty? (b) Is
L(G) infinite?

(2) The following decision problems are undecidable for CFG G and G' with the terminal alphabet E:
(c) Is L(G) = E*? (d) Is L(G) regular?
(e) Is L(G) unambiguous? (J) Is L(G)' infinite?
(g) Is L(G)c context-free? (h) Is L(G) = L(G')?
(i) Is L(G) n L(G') empty? (j) Is L(G 1) n L(G 2) context-free?

CONTEXT-FREE GRAMMARS AND LANGUAGES U 443

Sketch of the proof: Let us consider first the assertion (1). It is easy to decide whether L(G) = 0 for a
CFG G. Indeed, if G = (VN, VT, S, P), we construct the following sequence of sets:

Xo = VT, X+ I = XiU {A IA -- u E P,u E X*},i > 1.

Clearly, L(G) is empty if and only if S V XIvN,.

We now show that the question of whether L(G 1) is finite is decidable. By the pumping lemma,
we can compute n such that L(G) is infinite if and only if L(G) contains a word longer than n. Now
let L, (G) be the set of words of L(G) of length < n. Since the recognition problem is decidable for
CFG, L,(G) is computable. Therefore, by Theorem 7.3.41, L(G) - Ln(G) is a CFL, and one can design
effectively a CFG Go for L(G) - Ln(G). Now L(G) is infinite if and only if L(Go) is nonempty, which is
decidable, by (a).

It was actually shown in Example 6.4.19 that it is undecidable whether the intersection of two
context-free languages is empty. Let us now present a technique that can be used to show various
other undecidability results for CFG.

Let A = (ul, .. .-,Uk), B = (v1 , ... ,Vk) be two lists of words over the alphabet E = {0,1},
K {a, ... , ak} be a set of distinct symbols not in E, and c V E be an additional new symbol.

Let
LA = {U 11 • . . uiai, .. . aj I I < i, < k,1 < s < ml,

and let LB be a similarly defined language for the list B. The languages

RAB = {ycyRy yE E*K*}, SAB = {yCZ Ry E LA,Z e LB},

are clearly DCFL, and therefore, by Theorem 7.3.41, their complements RcAB, SAB are also CFL. Hence
LAB = R§AB U SAB is a CFL. It is now easy to see that

LAB = (E• UK U {c})* if and only if the PCP for A and B has no solution. (7.5)

The language LAB is regular, and therefore (7.5) implies not only that the equivalence problem for
CFG is undecidable, but that it is also undecidable for a CFG G and a regular language R (in particular
R = E*) whether L(G) = R.

Using the pumping lemma, we can show that the language RAB n SAB is context-free if and only
if it is empty. On the other hand, RAB n SAB is empty if and only if the Post correspondence problem
for A and B has no solution. Thus, it is undecidable whether the intersection of two CFL is a CFL.

Undecidability proofs for the remaining problems can be found in the references.

Exercise 7.3.43 Show that it is decidable, given a CFG G and a regular language R, whether L(G) C R.

Exercise 7.3.44* Show that the question whether a given CFG is (un)ambiguous is undecidable.

Interestingly, several basic decision problems for CFG, such as membership, emptiness and
infiniteness problems, are P-complete, and therefore belong to the inherently sequential problems.

Finally, we discuss the overall role played by context-free languages in formal language theory.
We shall see that they can be used, together with the operations of intersection and homomorphism,
to describe any recursively enumerable language. This illustrates the power of the operations of
intersection and homomorphism. For example, the following theorem can be shown.

444 U REWRITING

Theorem 7.3.45 For any alphabet 2 there are two fixed DCFL, Ll and L1, and a fixed homomorphism hl
such that for any recursively enumerable language L C 2" there is a regular language RL such that

L= h(LE U (Lls n RL)).

Languages Lr and Ll seem to capture fully the essence of 'context-freeness'. It would seem,
therefore, that they must be very complicated. This is not the case.

Let Ek = {ai, 1•, a2, a ... , ak, ak } be an alphabet of k pairs of symbols. They will be used to play
the role of pairs of brackets: ai (W7) will be the i th left (right) bracket. The alphabet Ek is used to define
the Dyck language Dk, k > 1. This is the language generated by the grammar

S---E I SaiS~ii, 1< i< k.

Observe that if a, = (and F, =), then D1 is just the set of all well-parenthesized strings.

Exercise 7.3.46 Let Dk be the Dyck language with k parentheses. Design a homomorphism h such that
Dk = h-l(D2).

The following theorem shows that Dyck languages reflect the structure of all CFL.

Theorem 7.3.47 (Chomsky-Schiitzenberger's theorem) (1) For each CFL L there is an integer r, a regular
language R and a homomorphism h such that

L = h(Dr f R).

(2) For each CFL L there is a regular language R and two homomorphisms hi, h2 such that

L = h2(h)l(D 2) AR).

In addition, D2 can be used to define 'the' context-free language, Greibach language,

LG = J{&} U{xicyiczid.. •xncyncz~dIn > 1,y. ... y, c yD2,

xi,zi e 2*, 1 < i < n, yi C {at,a 2,ala22}*, i > 2},

where E = {a1,a 2,al,a2,-y,c} and d E 2. (Note that words xi,zi may contain symbols 'c' and 'y'.)
A PDA that recognizes the language LG works as follows: it reads input, guesses the beginnings

of y1, y2, •. •, y,, and recognizes whether yl, . •., y,y E' D2.
There are two reasons why LG has a very special r6le among CFL.

Theorem 7.3.48 (Greibach's theorem) (1) For every CFL L there is a homomorphism h such that
L = h-1 (LG) ife E L and L = h-1 (Lc -{r}) zjt V L.

(2) LG is the hardest to recognize CFL. In other words, rf LG can be recognized in time p(n) on a TM (or a
RAM or a CA), then each CFL can be recognized in time 0(p(n)) on the same model.

This means that in order to improve the 0(n2
"
3 7

) upper bound for the time complexity of
recognition of CFL, it is enough to find a faster recognition algorithm for a single CFL LG - the
Greibach language.

LINDENMAYER SYSTEMS SI 445

7.4 Lindenmayer Systems

Lindenmayer2 systems, L-systems for short, were introduced to create a formal theory of plant
development. Their consequent intensive investigation was mainly due to their generality and
elegance and the fact that they represent the basic model of parallel context-free string rewriting
systems.

7.4.1 OL-systems and Growth Functions

There is a variety of L-systems. The most basic are OL-, DOL- and PDOL-systems.

Definition 7.4.1 A OL-system G = (E, w, h) is given by afinite alphabet E, an axiom (or an initial string)
w C E *, and a finite substitution h : E -- 2'* such that h(a) = O for no a E E. (If U E h(a), a E E, then
a -- u is called a production of L.) The OL-language generated by G is defined by

L(G) = U{hi(w)}.
i>O

If h is a morphism, that is, h(a) E E* for each a E E, we talk about a DOL-system, and if h is a nonerasing
morphism, that is, h(a) E E+ for each a G E, then G is said to be a PDOL-system.

An OL-system can be seen as given by an initial word and a set of context-free productions a -* u,
at least one for each a E E. This time, however, there is no partition of symbols into nonterminals and
terminals. A derivation step w => w' consists of rewriting each symbol of w using a production
with that symbol on the left-hand side. OL-systems can be seen as nondeterministic versions of
DOL-systems; in DOL-systems there is only one production a - u for each a E E. In a PDOL-system
(or a 'propagating DOL-system'), if a -- u, then [a[< Jul. Each derivation in an OL-system can be
depicted, as for CFG, by a derivation tree.

Example 7.4.2 In the DOL-system3 with the axiom w = ar and productions

ar - albr, a, - blar, br - ar, b, - a1 ,

we have a derivation (see Figure 7.5for the corresponding derivation tree)

ar = albr > blarar ===> aiajbraibr ==l' blarbiararblarar .

Exercise 7.4.3 Show that the PDOL-system G1 with the axiom 'a' and only one production, a -- aaa,
generates the language L(G1) = {a3" In > 0}.

Exercise 7.4.4 Show that the DOL-system G 2 with the axiom ab3a and productions P = {a -* ab3a,
b - E} generates the language L(G2) = {(ab3a)2, In > 0}.

Exercise 7.4.5 Show that the OL-system G 3 = ({a,b},a,h) with h(a) = h(b) = S =

{aabb,abab,baab,abba,baba,bbaa} generates the language L(G) = {a} U {ab}4" n S*.

2Aristid Lindenmayer (1922-90), a Dutch biologist, introduced L-systems in 1968.
3 This system is taken from modelling the development of a fragment of a multicellular filament such as that

found in the blue-green bacteria Anabaena catenula and various algae. The symbols a and b represent cytological
stages of the cells (their size and readiness to divide). The subscripts r and I indicate cell polarity, specifying the
positions in which daughter cells of type a and b will be produced.

446 U REWRITING

Sar

b br

Figure 7.5 Development of a filament simulated using a DOL-system

A derivation in a DOL-system G = Ew, h) can be seen as a sequence

w = h0 (w),h'(w),h
2(p),h

3(w).

and the function
fG(n) = h"(w)I

is called the growth function of G.
With respect to the original context, growth functions capture the development of the size of the

simulated biological system. On a theoretical level, growth functions represent an important tool for
investigating various problems concerning languages.

Example 7.4.6 For the PDOL-system G with axiom w = a and morphism h(a) = b, h(b) = ab, we have as the
only possible derivation

a, b, ab, bab, abbab, bababbab, abbabbababbab,...

and for the derivation sequence {hn(W)}InO, we have, for n > 2,

hn(a) = hn-,(h(a))= h-'(b) = hn- 2(h(b))= hn- 2(ab)

= hn-2 (a)hn- 2 (b) =hn2(a)hn-1(a),

and therefore

fc(O) = fG(1) = 1,

fG(n) = fr(n-1) +fc(n-2)for n > 2.

This implies that fG(n) = F, - the nth Fibonacci number.

Exercise 7.4.7 Show, for the PDOL-system with the axiom 'a' and the productions

a - abcc, b - bcc, c - c,

for example, using the same technique as in the previous example, that fG(n) = fG(n - 1) + 2n + 1, and
therefore fG(n) = (n+ 1)2.

LINDENMAYER SYSTEMS • 447

The growth functions of DOL-systems have a useful matrix representation. This is based on the
observation that the growth function of a DOL-system does not depend on the ordering of symbol in
axioms, productions and derived words.

Let G = (E ,,h) and E = {al ak}. The growth matrix for G is defined by

M #ah(al) ... #akh(al)
MG =

#,,lh(ak) ... Wa, h(ak)

If 7r, = (#aW I #akWj) and 7) = (1,..., 1)' are row and column vectors, then clearly

fc(n) = -,MG1.

Theorem 7.4.8 The growth functionfc of a DOL-system G satisfies the recurrence

fc(n) c ClfG(n - 1) + c2fc(n - 2)+... +ckf (n - k) (7.6)

for some constants cl, . Ck, and therefore each such function is a sum of exponential and polynomialfunctions.

Proof: It follows from linear algebra that Mc satisfies its own characteristic equation

M = cMG-' + c2MG 2+. .. +Ck 1MG G (7.7)

for some coefficients cl, ... Ck. By multiplying both sides of (7.7) by 7r, from the left and 7q from the
right, we get (7.6). Since (7.6) is a homogeneous linear recurrence, the second result follows from the
theorems in Section 1.2.3. n

There is a modification of OL-systems, the so-called EOL-systems, in which symbols are partitioned
into nonterminals and terminals.

An EOL-system is defined by G E(, A Lo,h), where G' = (E, La, h) is an OL-system and A C E.
The language generated by G is defined by

L(G) = L(G') n A*.

In other words, only strings from A*, derived from the underlying OL-system G' are taken into L(G).
Symbols from E - A (A) play the role of nonterminals (terminals).

Exercise 7.4.9 Show that the EOL-system with the alphabets E = {S,a, b}, A = {a, b}, the axiom SbS,
and productions S -- S I a, a -- aa, b - b generates the language {a2' ba2' Ij ij 0}.

The family L(EOL) of languages generated by EOL-systems has nicer properties than the family
C(OL) of languages generated by OL-systems. For example, £(OL) is not closed under union,
concatenation, iteration or intersection with regular sets, whereas £(EOL) is closed under all these
operations. On the other hand, the equivalence problem, which is undecidable for EOL- and
OL-systems, is decidable for DOL-systems.

448 K REWRITING

,
, 1, I i r-J-2C

AlA
(a) (b) (c)

n=5,6=90' n=6,6=60V n=2,6 =90'
axiom = F-F-F-F axiom = Fr axiom = -F,
F - F - FF - -F - F F1 - Fr + F1 + productions as in Fig. 7.7e

Fr,Fr - F1 - Fr - F1

Figure 7.6 Fractal and space-filling curves generated by the turtle interpretation of strings generated
by DOL-systems

7.4.2 Graphical Modelling with L-systems

The idea of using L-systems to model plants has been questioned for a long time. L-systems did not
seem to include enough details to model higher plants satisfactorily. Emphases in L-systems were
on neighbourhood relations between cells, and geometrical interpretations seemed to be beyond
the scope of the model. However, once various geometrical interpretations and modifications of
L-systems were discovered, L-systems turned out to be a versatile tool for plant modelling.

We discuss here several approaches to graphical modelling with L-systems. They also illustrate,
which is often the case, that simple modifications, twistings and interpretations of basic theoretical
concepts can lead to highly complex and useful systems. For example, it has been demonstrated that
there are various DOL-systems G over the alphabets E D (f, +, - } with the following property: if the
morphism h : E - {F,f, ±, -}, defined by h(a) = F if a 0 {f, -, -} and h(a) = a otherwise, is applied
to strings generated by G, one gets strings over the turtle alphabet {F,f, +, -} such that their turtle
interpretation (see Section 2.5.3) produces interesting fractal or space-filling curves. This is illustrated
in Figure 7.6, which includes for each curve a description of the corresponding DOL-system (an axiom
and productions), the number n of derivation steps and the degree 6 of the angle of the turtle's turns.

No well-developed methodology is known for designing, given a family C of similar curves, a
DOL-system that generates strings whose turtle interpretation provides exactly curves for C. For this
problem, the inference problem, only some intuitive techniques are available. One of them, called
'edge rewriting', specifies how an edge can be replaced by a curve, and this is then expressed by
productions of a DOL-system. For example, Figures 7.7b and d show a way in which an FI-edge
(Figure 7.7a) and an Fr-edge (Figure 7.7c) can be replaced by square grid-filling curves and also the
corresponding DOL-system (Figure 7.7e). The resulting curve, for the axiom 'F,', n = 2 and 6 = 900, is
shown in Figure 7.6c.

The turtle interpretation of a string always results in a single curve. This curve may intersect itself,

LINDENMAYER SYSTEMS U 449

En7I I IF

(a) (b) (c) (d)

F,1- F, F1 +F, +l -F -F- +Fr +FrF-Fr-FFF,+
F1 - Fr -F I1Fl - F r +F] Fr + Fr+ Fl- F I -F rF r+

F ---- FlFl+ Fr +F, -FI-F 1F r- F + FrFr+Fi+Fr-

(e) F 1 F F+ +F F -F -F1 +Fr +1 -F1 FrFr

Figure 7.7 Construction of a space-filling curve on a square grid using an edge rewriting with the
corresponding PDOL-system and its turtle interpretation

S alb Aa alb a
ba b b . aaabI

a 4

bV a

a babA
(a) a (b)

Figure 7.8 A tree OL-system, axiom and production

have invisible lines (more precisely, interruptions caused by f-statements for turtle), and segments
drawn several times, but it is always only a single curve. However, this is not the way in which plants
develop in the natural world. A branching recursive structure is more characteristic. To model this,
a slight modification of L-systems, so-called tree OL-systems, and/or of string interpretations, have
turned out to be more appropriate.

A tree OL-system T is determined by three components: a set of edge labels E; an initial (axial)
tree To, with edges labelled by labels from E (see Figure 7.8a); and a set P of tree productions
(see Figure 7.8b), at least one for each edge label, in which a labelled edge is replaced by a finite,
edge-labelled axial tree with a specified begin-node (denoted by a small black circle) and an end-node
(denoted by a small empty circle). By an axial tree is meant here any rooted tree in which any internal
node has at most three ordered successors (left, right and straight ahead - some may be missing).

An axial tree T2 is said to be directly derived from an axial tree T1 using a tree OL-system T,
notation T1 => T2, if T2 is obtained from T1 by replacing each edge of T1 by an axial tree given by a

tree production of T for that edge, and identifying the begin-node (end-node) of the axial tree with

450 M REWRITING

F[+F[-F]F] [-F]F[-F[-F]F]F[+F]F

Figure 7.9 An axial tree and its bracket representation for 6 = 45'

the starting (ending) node of the edge that is being replaced. A tree T is generated from the initial
tree To by a derivation (notation To =4 T) if there is a sequence of axial trees To, .1. .., T, such that

P

Ti==>Ti, 1 for i = 0,1 n-1, andT=T,.
P

Exercise 7.4.10 Show how the tree in Figure 7.8a can be generated using the tree OL-system shown in
Figure 7.8b for a simple tree with two nodes and the edge labelled a.

Axial trees have a simple linear 'bracket representation' that allows one to use ordinary OL-systems
to generate them. The left bracket '[' represents the beginning of a branching and the right bracket ']'
its end. Figure 7.9 shows an axial tree and its bracket representation.

In order to draw an axial tree from its bracket representation, the following interpretation of
brackets is used:

I - push the current state of the turtle into the pushdown memory;

I - pop the pushdown memory, and make the turtle's state obtained this way its current state.

(In applications the current state of the turtle may contain other information in addition to the turtle's
position and orientation: for example, width, length and colour of lines.)

Figure 7.10a, b, c shows several L-systems that generate bracket representations of axial trees and
the corresponding trees (plants).

There are various other modifications of L-systems that can be used to generate a variety of
branching structures, plants and figures: for example, stochastic and context-sensitive L-systems.

A stochastic OL-system G, = (E, w, P, 7r) is formed from a OL-system (E, uw, P) by adding a mapping
7r : P -* (0, 1], called a probability distribution, such that for any a E E, the sum of 'probabilities' of all
productions with 'a' on its left-hand side is 1. A derivation w, ==* w2 is called stochastic in G, if for

P

each occurrence of the letter a in the word w, the probability of applying a production p = a - u is
equal to 7r(p). Using stochastic OL-systems, various families of quite complex but similar branching
structures have been derived.

Context-sensitive L-systems (IL-systems). The concept of 'context-sensitiveness' can also be
applied to L-systems. Productions are of the form uav - uwv, a E E, and such a production can
be used to rewrite a particular occurrence of a by w only if (u, v) is the context of that occurrence of

LINDENMAYER SYSTEMS U 451

(a) (b) (c)

n =5, = 25.7 n =5, 6 =20 n =4,6 = 22.5*
F F F
f -*F[+F]F[-F]F F - F[+FJF[-F][F] F FF - [-F+F+FJ + [+F-F-F]

Figure 7.10 Axial trees generated by tree L-systems

a. (It may therefore happen that a symbol cannot be replaced in a derivation step if it has no suitable
context - this can be used also to handle the problem of end markers.)

It seems to be intuitively clear that IL-systems could provide richer tools for generating figures
and branching structures. One can also show that they are actually necessary in the following sense.
Growth functions of OL-systems are linear combinations of polynomial and exponential functions.
However, many of the growth processes observed in nature do not have growth functions of this
type. On the other hand, IL-systems may exhibit growth functions not achievable by OL-systems.

Exercise 7.4.11 The IL-system with the axiom 'xuax' and productions

uaa -* uua, uax -- udax, aad - add, x - x,
xad -- xud, u - a, d - a,

has a derivation

xuax = xadax = xuaax = xauax • xaadax
S* xadaax = xuaaax = xauaax • xaauax
S'xaaadax • xaadaax = xadaaax = xuaaaax.

Show that its growth function is Lv[ij + 4-not achievable by a OL-system.

452 U REWRITING

ab' b'

S S1 S

d c d c d' d'

Figure 7.11 Graph grammar productions

7.5 Graph Rewriting
Graph rewriting is a method commonly employed to design larger and more complicated graphs from
simpler ones. Graphs are often used to represent relational structures, which are then extended and
refined. For example, this is done in software development processes, in specifications of concurrent
systems, in database specifications and so on. It is therefore desirable to formalize and understand
the power of various graph rewriting methods.

The basic idea of graph rewriting systems is essentially the same as that for string rewriting.
A graph rewriting system is given by an initial graph Go (axiom), and a finite set P of rewriting
productions Gi - G', where Gi and G' are graphs. A direct rewriting relation =* between graphs isi i P
defined analogously: G =# G' if G' can be obtained from the (host) graph G by replacing a subgraph,

say Gi (a mother graph), of G, by G' (a daughter graph), where Gi --- + G' is a production of P.
To state this very natural idea more precisely and formally is far from simple. Several basic

problems arise: how to specify when Gi occurs in G and how to replace Gi by G'. The difficulty lies
in the fact that if no restriction is made, G' may be very different from Gi, and therefore it is far from
clear how to embed G' in the graph obtained from G by removing Gi.

There are several general approaches to graph rewriting, but the complexity and sophistication
of their basic concepts and the high computational complexity of the basic algorithms for dealing
with them (for example, for parsing) make these methods hard to use. More manageable are simpler
approaches based, in various ways, on an intuitive idea of 'context-free replacements'. Two of them
will now be introduced.

7.5.1 Node Rewriting

The basic idea of node rewriting is that all productions are of the form A -- G', where A is a one-node
graph. Rewriting by such a production consists of removing A and all incident edges, adding G', and
connecting (gluing) its nodes with the rest of the graph. The problem is now how to define such a
connection (gluing). The approach presented here is called 'node-label-controlled graph grammars',
NLC graph grammars for short.

Definition 7.5.1 An NLC graph grammar 0 = (VN, VT, C, Go, P) is given by a nonterminal alphabet
VN, a terminal alphabet VT, an initial graph Go with nodes labelled by elements from V = VN U VT, a
finite set P of productions of theform A - G, where A is a nonterminal (interpreted as a single-node graph
with the node labelled by A), and G is a graph with nodes labelled by labels from V. Finally, C C V x V is a
connection relation.

Example 7.5.2 Let 0 be an NLC graph grammar with VT = {a,b,c,d,a',b',c',d'}, VN = {S, S'}, the initial
graph Go consisting of a single node labelled by S, the productions shown in Figure 7.11 and the connecting
relation

GRAPH REWRITING 3 453

a b a b' b a b' b

a b

S ' a' S C, aC
P pIzz

-L
CL •

d c d d' c d' c

Figure 7.12 Derivation in an NLC

C = (a,a),(da),(a,bV),(Va),(b,bV),(Vb),(b,c'),(c',b),

(c,c'), (c',c), (c,d'), (d',c), (d,d'), (d',d), (a',d), (d,a')}.

The graph rewriting relation '==- is now defined as follows. A graph G' is obtained from a graph G byP
a production A - Gi if in the graph G a node N labelled by A is removed, together with all incident
edges, Gi is added to the resulting graph (denote it by G'), and a node N of G' - {N•} is connected to
a node N' in Gi if and only if N is a direct neighbour of N in G and (n, n') c C, where n is the label of
N and n' of N'.

Example 7.5.3 In the NLC graph grammar in Example 7.5.2 we have, for instance, the derivation shown in
Figure 7.12.

With an NLC grammar g = (VN, VT, C, Go, P) we can associate several sets of graphs (called 'graph
languages'):

"* Le(Q) = {GoG0 = G} - a set of all generated graphs;
P

"* L(9) = {G I Go G, and all nodes of G are labelled by terminals} - a set of all generated
P

'terminal graphs';

"* Lu () ={G I Go G, where G is obtained from G' by removing all node labels} - a set of all
P

generated unlabelled graphs.

In spite of their apparent simplicity, NLC graph grammars have strong generating power. For
example, they can generate PSPACE-complete graph languages. This motivated investigation of
various subclasses of NCL graph grammars: for example, boundary NLC graph grammars, where
neither the initial graph nor graphs on the right-hand side of productions have nonterminals on two
incident nodes. Graph languages generated by these grammars are in NP. Other approaches lead to
graph grammars for which parsing can be done in low polynomial time.

Results relating to decision problems for NLC graph grammars also indicate their power. It is
decidable, given an NLC graph grammar G, whether the language L(G) is empty or whether it
is infinite. However, many other interesting decision problems are undecidable: for example, the
equivalence problem and the problem of deciding whether the language L(G) contains a planar, a
Hamiltonian, or a connected graph.

454 3 REWRITING

It is also natural to ask about the limits of NLC graph grammars and how to show that a graph
language is outside their power. This can be proven using a pumping lemma for NLC graph grammars
and languages. With such a lemma it can be shown, for example, that there is no NLC graph grammar
such that L. (G) contains exactly all finite square grid graphs (such as those in the following figure).

7.5.2 Edge and Hyperedge Rewriting

The second natural idea for doing a 'context-free graph rewriting' is edge rewriting. This has been
generalized to hyperedge rewriting.

The intuitive idea of edge rewriting can be formalized in several ways: for example, by the handle
NLC graph grammars (HNLC graph grammars, for short). These are defined in a similar way to NLC
graph grammars, except that the left-hand sides of all productions have to be edges with both nodes
labelled by nonterminals (such edges are called 'handles'). The embedding mechanism is the same
as for NLC graph grammars.

Interestingly enough, this simple and natural modification of NLC graph grammars provides
graph rewriting systems with maximum generative power. Indeed, it has been shown that each
recursively enumerable graph language can be generated by an HNLC graph grammar.

Another approach along the same lines, presented below, is less powerful, but is often, especially
for applications, more handy.

A hyperedge is specified by a name (label) and sequences of incoming and outgoing 'tentacles' (see
Figure 7.13a). In this way a hyperedge may connect more than two nodes. The label of a hyperedge
plays the role of a nonterminal in a hyperedge rewriting. A hyperedge replacement will be done
within hypergraphs. Informally, hypergraphs consist of nodes and hyperedges.

Definition 7.5.4 A hypergraph G = (V, E,s, t,l, A) is given by a set V of nodes, a set E of hyperedges,
two mappings, s : E - V* and t : E -- V*, assigning a sequence of source nodes s(e) and a sequence
of target nodes t(e) to each hyperedge e, and a labelling mapping I: E -- A, where A is a set of labels.

A hyperedge e is called an (m, n)-hyperedge, or of type (m, n), ifis(e) = m, It(e) = n. A (1 1)-hyperedge
is an ordinary edge.

1 m

(a) n (b) (C)

Figure 7.13 A hyperedge and hyperedge productions

GRAPH REWRITING 3 455

A multi-pointed hypergraph 7-= (V, E, s, t, 1, A, begin, end) is given by a hypergraph (V, E, s, t, 1, A)
and two strings begin and end e V*. A multi-pointed hypergraph is a (m, n)-hypergraph or a multigraph
of type (m, n) if lbeginj = m, lendl = n. The set of external nodes oflR is the set of all symbols in the strings
begin and end.

Let 7HA denote the set of all multi-pointed hypergraphs with labels in A.

A multi-pointed hypergraph has two sequences of external nodes represented by the strings
begin and end.

Definition 7.5.5 A hyperedge rewriting graph grammar (HR (graph) grammar in short) g =

(VN, VT, Go, P) is given by a set of nonterminals VN, a set of terminals VT, an initial multi-pointed hypergraph
GO e RA, A = VN U VT, and a set P of productions. Each production of P has the form A - R, where A is a
nonterminal, R c R• A, and type(e) = type(R).

Example 7.5.6 An HR grammar is depicted in Figure 7.13. The axiom is shown in Figure 7.13b, and the
productions in Figure 7.13c. (Terminal labels of (1, 1)-hyperedges are not depicted.) The grammar has two
productions. In both cases begin= bjb2b3 and end = E, VN = {A,S} and VT = {t}.

In order to define the rewriting relation =#, for HR grammars, one needs to describe how an
P

(m, n)-hyperedge e is replaced by an (m, n)-hypergraph R in a hypergraph. This is done in two steps:

1. Remove the hyperedge e.

2. Add the hypergraph R, except its external nodes, and connect each tentacle of a hyperedge of
R which is connected to an external node of R to the corresponding source or target node of e.

Exercise 7.5.7 If we use, in the HR grammar shown in Figure 7.13b, c, the first production n times and
then the second production once, we derive from the initial graph Go the complete bipartite graph K3,,, 5.
Show in detail how to do this.

Example 7.5.8 Starting with the axiom shown in Figure 7.14a and using productions given in Figure 7.14b,
c, various flow-diagram graphs can be generated.

The graph language L(G) generated by an HR grammar G is the set of graphs generated from the
initial multi-pointed hypergraph that contain only (1, l)-hyperedges labelled by terminals.

For HR grammars there is also a pumping lemma that can be used to show for some languages
that they are outside the power of HR grammars.

Concerning decision problems, the more restricted power of HR graph grammars brings greater
decidability. In contrast to NLC graph grammars, it is decidable for HR graph grammars whether
L(G) contains a planar, Hamiltonian or connected graph.

Exercise 7.5.9 Show that the HR graph grammar with two nonterminals S, T and the productions
{(S, To), (T, T1), (T, T2)} as depicted in Figure 7.15a, b, c generates an approximation of the Sierpifiski
triangle; see,for example, Figure 7.15b.

456 U REWRITING

b b b b

C C

C -

(a) e (b)

e e e e

b b b b b

CC

(C) el e2 el e2 el e2 el e2 el e2

Figure 7.14 An HRG grammar to generate flowcharts

Remark 7.5.10 The idea of string rewriting, especially context-free rewriting, is simple and powerful,
and allows one to achieve deeper insights and interesting results. The main motivation for considering
more complex rewriting systems, such as graph rewriting systems, comes primarily from applications,
and naturally leads to less elegant and more complex (but useful) systems.

Moral: Many formal languages have been developed and many rewriting systems designed and
investigated. A good rule of thumb in rewriting is, as in real life, to learn as many languages as you
can, and master at least one of them.

7.6 Exercises

1. Design a Post normal system that generates longer and longer prefixes of the Thue w-word.

2. * Show that each one-tape Turing machine can be simulated by a Post normal system.

3. A group can be represented by a Thue system over an alphabet E U {a 1 a J E} with the set P
of productions that includes the productions aa-1 - e, a-1 a - s, • - aa 1 and E -* a- a. Show

that the word problem for groups - namely, to decide, given x and y, whether x * y - is
,

polynomial time reducible to the problem of deciding, given a z, whether z = E.

4. Design a type-0 grammar generating the language (a) {a'b"2 In > 1}; (b) {aFi I i > 0}; (c) {an2 In >

1}; (d) {aP I is a prime}.

EXERCISES U 457

TTii

3 2

T 3, 2

T0 = T)2 3 2

632
T

(a) (b)

0

\ p
(c) 3 2 (d)

Figure 7.15 Graph grammar generating an approximation of the Sierpinski triangle

5. Describe the language generated by the Chomsky grammars (a) S -- aS IaSbS E;

(b) S --- * aSAB, S - abB, BA - AB, bA - bb, bB - bc, cB - cc;

(c) S -- abc, S -- aAbc, Ab -- bA, Ac - Bbcc, bB - Bb, aB - aaA, aB -* aa.

6. Given two Chomsky grammars G1 and G2, show how to design a Chomsky grammar generating
the language (a) L(G 1) U L(G 2); (b) L(G 1) nL(G 2); (c) L(G 1)*.

7. Show that to each type-0 grammar there exists an equivalent one all rules of which have the
form A - E, A - a, A -* BC, or AB - CD, where A, B, C, D are nonterminals, a is a terminal,
and there is at most one E-rule.

8. Show that each context-sensitive grammar can be transformed into a similar normal form as
in the previous exercise.

9. Show that to each Chomsky grammar there is an equivalent Chomsky grammar that uses only
two nonterminals.

10. Show that Chomsky grammars with one nonterminal generate a proper subset of recursively
enumerable languages.

11. ** (Universal Chomsky grammar) A Chomsky grammar G. = (VT, VN, P, 0-) is called universal
if for every recursively enumerable language L c V* there exists a string WL ((VN U VT)*
such that L(WL) = L. Show that there exists a universal Chomsky grammar for every terminal
alphabet VT.

458 E REWRITING

12. Design a CSG generating the language (a) {w Iw e {a, b, c}*, w contains the same number of a's,

b's and c's}; (b) {1nl0nl" 1n,rm > 0}; (c) {an2In > 0}; (d) {aP Ip is prime}.

13. Determine languages generated by the grammar

(a) S -+ aSBC I aBC, CB - BC, aB -+ ab, bB -- bb, bC -- bc, cC -- cc; (b) S - SaBC I abC,

aB -* Ba, Ba -* aB, aC -* Ca, Ca - aC, BC -- CB, CB -* BC, B -- b, C - c.

14. Show that the family of context-sensitive languages is closed under operations (a) union;

(b) concatenation; (c) iteration; (d) reversal.

15. Show that the family of context-sensitive languages is not closed under homomorphism.

16. Show, for example, by a reduction to the PCP, that the emptiness problem for CSG is
undecidable.

17. Design a regular grammar generating the language (a) (01 + 101)* + (1 + 00)*01*0;

(b) ((a + bc)(aa* + ab)*c +a)*; (c) ((0*10 + ((01)*100)* + 0)*(101(10010)* + (01)*1(001)*)*)*.
(In the last case one nonterminal should be enough!)

18. Show that there is a Chomsky grammar which has only productions of the type A - wB,
A - Bw, A -- w, where A and B are nonterminals and w is a terminal word that generates a
nonregular language.

19. Show that an intersection of two CSL is also a CSL.

20. A nonterminal A of a CFG G is cyclic if there is in G a derivation A ==' uAv for some u, v with

uv $ E. Let G be a CFG in the reduced normal form. Show that the language L(G) is infinite if
and only if G has a cyclic nonterminal.

21. Describe a method for designing for each CFG G an equivalent CFG such that all its
nonterminals, with perhaps the exception of the initial symbol, generate an infinite language.

22. Design a CFG generating the language

L = {1ba'2b.. . aikblk _> 2,3X c {1,. ..k}, Ejexij = jvxij.

23. Design a CFG in the reduced normal form equivalent to the grammar

S -- Ab, A - Ba ablB, B -- bBa aA IC, C - ElSa.

24. Show that for every CFG G with a terminal alphabet E and each integer n, there is a CFG
G' generating the language L(G') = {u E u Ilul < n,u E L(G)} and such that I v< n for each
production A - v of G'.

25. A CFG G is self-embedded if there is a nonterminal A such that A 4 uAv, where u : E 7 v.

Show that the language L(G) is regular for every nonself-embedding CFG G.

26. A PDA A is said to be unambiguous if for each word w E /_(A) there is exactly one sequence
of moves by which A accepts w. Show that a CFL L is unambiguous if and only if there is an
unambiguous PDA A such that L = Lf (A).

EXERCISES N 459

27. Show that for every CFL L there is a PDA with two states that accepts L with respect to a final
state.

28. Which of the following problems is decidable for CFG G1 and G2, nonterminals X and Y and a
terminal a: (a) Prefix(L(GC)) = Prefix(L(G 2)); (b) Lx(G 1) = Ly(Gi); (c) L(GC)I = 1; (d) L(G 1) C a*;
(e) L(G 1) = a*?

29. Design the upper-triangular matrix which the CYK algorithm uses to recognize the string
'aabababb' generated by a grammar with the productions S - CB, S -* FB, S - FA, A - a,
B -* FS, E --- BB, B -- CE, A -* CS, B -- b, C -, a, F -- b.

30. Implement the CYK algorithm on a one-tape Turing machine in such a way that recognition is
accomplished in O(n 4)-time.

31. Design a modification of the CYK algorithm that does not require CFG to have some special
form.

32. Give a proof of correctness for the CYK algorithm.

33. Show that the following context-free language is not linear: {anbnambm In > 1}.

34. Find another example of a CFL that is not generated by a linear CFG.

35.* Show that the language {aibtckai i > 1,j Ž_ k > 1} is a DCFL that is not acceptable by a DPDA

that does not make an E-move.

36. Show that if L is a DCFL, then so is the complement of L.

37. Which of the following languages is context-free: (a) {aibick i,j > 1, k > max{i,j} }; (b) {ww w c

38. Show that the following languages are context-free:

(a) L = {wcw2c... cwccw I1I < i < n,wj E {0,1}* for 1 <•j < n};

(b) {0fol 10i2 12 ... 0'i lJ I n is even and for n/2 pairs it holds ik = 2jkI;

(c) (Goldstine language) {an lba 2b... ba'pb I p > 1, ni # 0, nj =/ j for some I < j < p};

(d) the set of those words over {a, b}* that are not prefixes of the w-word x =

aba2ba3ba4. .. a nban+1 ...

39. Show that the following languages are not context-free: (a) {anbnam m > n > 1}; (b)
{aiI i is prime}; (c) {aibJck 0 < i < j < k}; (d) {aibick I i # j'j $ k, i $ k}.

40. Show that if a language L C {0, 1}* is regular, c ý {0, 1}, then the language L' = {ucuRIu c L} is
context-free.

41. Show that every CFL over a one-letter alphabet is regular.

42. Show that if L is a CFL, then the following language is context-free:

L, = {aja3a5 . . . a2,+1 1ala2a3 . . . a2na2n+1 El L}.

43.* Show that (a) any family of languages closed under concatenation, homomorphism, inverse
homomorphism and intersection with regular sets is also closed under union; (b) any family
of languages closed under iteration, homomorphism, inverse homomorphism, union and
intersection with regular languages is also closed under concatenation.

460 U REWRITING

44. Show that if L is a CFL, then the set S = {IwI Iw E L} is an ultimately periodic set of integers
(that is, there are integers no and p such that if x E S, x > no, then (x + p) E S).

45. Design a PDA accepting Greibach's language.

46. * Show that the Dyck language can be accepted by a Turing machine with space complexity
0 (lgn).

47. * Show that every context-free language is a homomorphic image of a deterministic CFL.

48. Show that the family of OL-languages does not contain all finite languages, and that it is not
closed under the operations (a) union; (b) concatenation; (c) intersection with regular languages.

49. Show that every language generated by a OL-system is context-sensitive.

50. Determine the growth function for the following OL-systems:

(a) with axiom S and productions S - Sbd6' b -* bcd",1c - cd 6,d - d;

(b) with axiom a and productions a -- abcc, b --- bcc, c - c.

51. Design a OL-system with the growth function (n + 1)1.

52. So-called ETOL-systems have especially nice properties. An ETOL-system is defined by G =

(E,-H, w, A), where 'H is a finite set of substitutions h : -E- 2E* and for every h G R, (Y, h, W) is
a OL-system, and A C E is a terminal alphabet. The language L generated by G is defined by
L(G) = {hi(h 2(... (hk(W)). . .)) I hi e "-} n A*. (In other words, an ETOL-system consists of a
finite set of OL-systems, and at each step of a derivation one of them is used. Finally, only those
of the generated words go to the language that are in A*.)

(a) Show that the family of languages £(ETOL) generated by ETOL-systems is closed under
the operations (i) union, (ii) concatenation, (iii) intersection with regular languages, (iv)
homomorphism and (v) inverse homomorphism. (b) Design an ETOL-system generating the
language {aiba I i > 0}.

53. (Array rewriting) Just as we have string rewritings and string rewriting grammars, so we
can consider array rewritings and array rewriting grammars. An array will now be seen as a
mapping A: Z x Z --* E U {#} such that A(ij) $ # only for finitely many pairs. Informally, an
array rewriting production gives a rule describing how a connected subarray (pattern) can be
rewritten by another one of the same geometrical shape. An extension or a shortening can be
achieved by rewriting the surrounding E's, or by replacing a symbol from the alphabet E by #.
The following 'context-free' array productions generate 'T's of 'a's from the start array S:

LaR D a D a
S - D, # -- D, # -- a,
#L La, L - a, R# -* aR, R - a.

Construct context-free array grammars generating (a) rectangles of 'a's; (b) squares of 'a's.

54. (Generation of strings by graph grammars) A string a,... an can be seen as a string graph with
n + 1 nodes and n edges labelled by a,, . . , an, respectively, connecting the nodes. Similarly,
each string graph G can be seen as representing a string G, of labels of its edges. Show that a
(context-free) HR graph grammar Q can generate a noncontext-free string language L c {w I w E
{0,1}*} in the sense that L = {G, IG E L(9)}.

EXERCISES U 461

55. Design an HR graph grammar g that generates string graphs such that {G, IG G L(9)} =

{a b"c" I n > 1}.

56. An NLC graph grammar g = (VN, VT, C, Go, P) is said to be context-free if for each a E VT either
({a} x VT) AC = 0 or ({a} x VT) AC = {a} x VT. Show that it is decidable, given a context-free
NLC graph grammar g, whether L(9) contains a discrete graph (no two nodes of which are
connected by an edge).

57. * Design a handle NLC graph grammar to generate all rings with at least three nodes. Can this

be done by an NLC graph grammar?

58. * Show that if we do not use a global gluing operation in the case of handle NLC graph grammars,
but for each production a special one of the same type, then this does not increase the generative
power of HNLC grammars.

59. Show that for every recursively enumerable string language L there is an HNLC graph grammar
9 generating string graphs such that L = {G, IG c L(G) }. (Hint: design an HNLC graph grammar
simulating a Chomsky grammar for L.)

QUESTIONS

1. Production systems, as introduced in Section 7.1, deal with the rewriting of one-dimensional
strings. Can they be generalized to deal with the rewriting of two-dimensional strings? If yes,
how? If not, why?

2. The equivalence of Turing machines and Chomsky grammars implies that problems stated in
terms of one of these models of computation can be rephrased in terms of another model. Is
this always true? If not, when is it true?

3. Can every regular language be generated by an unambiguous CFG?

4. What does the undecidability of the halting problem imply for the type-0 grammars?

5. What kind of English sentences cannot be generated by a context-free grammar?

6. How much can it cost to transform a given CFG into (a) Chomsky normal form; (b) Greibach
normal form?

7. What is the difference between the two basic acceptance modes for (deterministic) pushdown
automata?

8. What kind of growth functions have different types of DOL-systems?

9. How can one show that context-sensitive L-systems are more powerful than DOL-systems?

10. What is the basic idea of (a) node rewriting (b) edge rewriting, for graphs?

462 REWRITING

7.7 Historical and Bibliographical References

Two papers by Thue (1906, 1914) introducing rewriting systems, called nowadays Thue and
semi-Thue systems, can be seen as the first contributions to rewriting systems and formal language
theory. However, it was Noam Chomsky (1956, 1957, 1959) who presented the concept of formal
grammar and basic grammar hierarchy and vigorously brought new research paradigms into
linguistics. Chomsky, together with Schuitzenberger (1963), introduced the basic aims, tools and
methods of formal language theory. The importance of context-free languages for describing
the syntax of programming languages and for compiling was another stimulus to the very fast
development of the area in the 1970s and 1980s. Books by Ginsburg (1966), Hopcroft and Ullman
(1969) and Salomaa (1973) contributed much to that development. Nowadays there is a variety of
other books available: for example, Harrison (1978) and Floyd and Beigel (1994).

Deterministic versions of semi-Thue systems, called Markov algorithms were introduced by
A. A. Markov in 1951.

Post (1943) introduced systems nowadays called by his name. Example 7.1.3 is due to Penrose
(1990) and credited to G. S. Tseitin and D. Scott. Basic relations between type-0 and type-3 grammars
and automata are due to Chomsky (1957, 1959) and Chomsky and Schutzenberger (1963). The first
claim of Theorem 7.2.9 is folklore; for the second, see Exercise 10, due to Geffert, and for the third see
Geffert (1991). Example 7.3.8 is due to Bertol and Reinhardt (1995). Greibach (1965) introduced the
normal form that now carries her name. The formal notion of a PDA and its equivalence to a CFG
are due to Chomsky (1962) and Evey (1963).

The normal form for PDA is from Maurer (1969). Kuroda (1964) has shown that NLBA and
context-sensitive grammars have the same power.

Methods of transforming a given CFG into a Greibach normal form canbe found inSalomaa (1973),
Harrison (1978) and Floyd and Beigel (1994). The original sources for the CYK parsing algorithm are
Kasami (1965) and Younger (1967). This algorithm is among those that have been often studied
from various points of view (correctness and complexity). There are many books on parsing: for
example, Aho and Ullman (1972) and Sippu and Soisalon-Soininen (1990). Reduction of parsing to
Boolean matrix multiplication is due to Valiant (1975); see Harrison (1978) for a detailed exposition.
A parsing algorithm for CFG with the space complexity 0(1g 2 n) on MTM is due to Lewis, Stearns
and Hartmanis (1965), with O(lg 2n) time complexity on PRAM to Ruzzo (1980), and on hypercubes
with O(n 6) processors to Rytter (1985). 0(n 2) algorithm for syntactical analysis of unambiguous CFG
is due to Kasami and Torii (1969). Deterministic pushdown automata and languages are dealt with
in many books, especially Harrison (1978).

The pumping lemma for context-free languages presented in Section 7.3 is due to Bar-Hillel (1964).
Several other pumping lemmas are discussed in detail by Harrison (1978) and Floyd and Beigel
(1994). Characterization results are presented by Salomaa (1973) and Harrison (1978). For results
and the corresponding references concerning closure properties, undecidability and ambiguity for
context-free grammars and languages see Ginsburg (1966). For P-completeness results for CFG see
Jones and Laaser (1976) and Greenlaw, Hoover and Ruzzo (1995). The hardest CFL is due to Greibach
(1973), as is Theorem 7.3.48. Theorem 7.3.17 is due to Gruska (1969).

The concept of an L-system was introduced by Aristid Lindenmayer (1968). The formal theory of
L-systems is presented in Rozenberg and Salomaa (1980), where one can also find results concerning
closure and undecidability properties, as well as references to earlier work in this area. The study of
growth functions was initiated by Paz and Salomaa (1973). For basic results concerning EOL-systems
see Rozenberg and Salomaa (1986). The decidability of DOL-systems is due to Culik and Frig (1977).

There have been various attempts to develop graphical modelling of L-systems. The one
developed by Prusinkiewicz is perhaps the most successful so far. For a detailed presentation of this
approach see Prusinkiewicz and Lindenmayer (1990) which is well-illustrated, with ample references.

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES U 463

Section 7.4.2 is derived from this source; the examples and pictures are drawn by the system due to
H. Femau and use specifications from Prusinkiewicz and Lindenmayer. Example 7.4.2 and Figure 7.5
are also due to them.

There is a variety of modifications of L-systems other than those discussed in this chapter that have
been successfully used to model plants and natural processes. Much more refined and sophisticated
implementations use additional parameters and features, for example, colour, and provide interesting
visual results. See Prusinkiewicz and Lindenmayer (1990) for a comprehensive treatment of the
subject.

There is a large literature on graph grammars, presented especially in the proceedings of Graph
Grammar Workshops (see LNCS 153, 291, 532). NLC graph grammars were introduced by Janssens
and Rozenberg (1980a, 1980b) and have been intensively developed since then. These papers also deal
with a pumping lemma and its applications, as well as with decidability results. For an introduction to
NLC graph grammars see Rozenberg (1987), from which my presentation and examples were derived.
Edge rewriting was introduced by H.-J. Kreowski (1977). The pumping lemma concerning edge
rewriting is due to Kreowski (1979). Hyperedge rewriting was introduced by Habel and Kreowski
(1987) and Bauderon and Courcelle (1987). The pumping lemma for HR graph grammars is due to
Habel and Kreowski (1987). Decidability results are due to Habel, Kreowski and Vogler (1989). For
an introduction to the subject see Habel and Kreowski (1987a), my presentation and examples are
derived from it, and Habel (1990a,1990b). For recent surveys on node and hyperedge replacement
grammars see Engelfriet and Rozenberg (1996) and Drewes, Habel and Kreowski (1996).

From a variety of other rewriting ideas I will mention briefly three; for some other approaches
and references see Salomaa (1973, 1985). Term rewriting, usually credited to Evans (1951), deals
with methods for transforming complex expressions/terms into simpler ones. It is an intensively
developed idea with various applications, especially in the area of formal methods for software
development. For a comprehensive treatment see Dershowitz and Jouannaud (1990) and Kirchner
(1997). Array grammars, used to rewrite two-dimensional arrays (array pictures), were introduced
by Milgram and Rosenfeld (1971). For an interesting presentation of various approaches and results
see Wang (1989). Exercise 53 is due to R. Freund. For array grammars generating squares see Freund
(1994). Co-operating grammars were introduced by Meersman and Rozenberg (1978). The basic idea
is that several rewriting systems of the same type participate, using various rules for co-operation, in
rewriting. In a rudimentary way this is true also for TOL-systems. For a survey see Pailn (1995). For
a combination of both approaches see Dassow, Freund and Pa6n (1995).

Cryptography

INTRODUCTION

A successful, insightful and fruitful search for the borderlines between the possible and the impossible
has been highlighted since the 1930s by the development in computability theory of an understanding
of what is effectively computable. Since the 1960s this has continued with the development in
complexity theory of an understanding of what is efficiently computable. The work continues with the
development in modem cryptography of an understanding of what can be securely communicated.
Cryptography was an ancient art, became a deep science, and aims to be one of the key technologies
of the information era.

Modem cryptography can be seen as an important dividend of complexity theory. The work
bringing important stimuli not only for complexity theory and foundations of computing, but also
for the whole of science. Cryptography is rich in deep ideas, interesting applications and contrasts.
It is an area with very close relations between theory and applications.

In this chapter the main ideas of classical and modem cryptography are presented, illustrated,
analysed and displayed.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. the basic aims, concepts and methods of classical and modem cryptography;

2. several basic cryptosystems of secret-key cryptography;

3. the main types of cryptoanalytic attacks;

4. the main approaches and applications of public-key cryptography;

5. knapsack and RSA cryptosystems and their analysis;

6. the key concepts of trapdoor one-way functions and predicates and cryptographically strong
pseudo-random generators;

7. the main approaches to randomized encryptions and their security;

8. methods of digital signatures, including the DSS system.

466 * CRYPTOGRAPHY

Secret de deux, secret de Dieu,
secret de trois, secret de tous.

French proverb

For thousands of years, cryptography has been the art of providing secure communication over
insecure channels. Cryptoanalysis is the art of breaking into such communications. Until the advent
of computers and the information-driven society, cryptology, the combined art of cryptography
and cryptoanalysis, lay almost exclusively in the hands of diplomats and the military Nowadays,
cryptography is a technology without which public communications could hardly exist. It is also a
science that makes deep contributions to the foundations of computing. A short modem history of
cryptography would include three milestones.

During the Second World War the needs of cryptoanalysis led the development at Bletchley Park
of Colossus, the first very powerful electronic computer. This was used to speed up the breaking of
the ENIGMA code and contributed significantly to the success of the Allies. Postwar recognition of
the potential of science and technology for society has been influenced by this achievement.

Second, the goals of cryptography were extended in order to create the efficient, secure
communication and information storage without which modem society could hardly function.
Public-key cryptography, digital signatures and cryptographical communication protocols have
changed our views of what is possible concerning secure communications.

Finally, ideas emanating from cryptography have led to new and deep concepts such as one-way
functions, zero-knowledge proofs, interactive proof systems, holographic proofs and program
checking. Significant developments have taken place in understanding of the power of randomness
and interactions for computing.

The first theoretical approach to cryptography, due to Shannon (1949), was based on information
theory. This was developed by Shannon on the basis of his work in cryptography and the belief that
cryptoanalysts should not have enough information to decrypt messages. The current approach is
based on complexity theory and the belief that cryptoanalysts should not have enough time or space
to decrypt messages. There are also promising attempts to develop quantum cryptography, whose
security is based on the laws of quantum physics.

There are various peculiarities and paradoxes connected with modem cryptology. When a
nation's most closely guarded secret is made public, it becomes more important. Positive results
of cryptography are based on negative results of complexity theory, on the existence of unfeasible
computational problems.1 Computers, which were originally developed to help cryptoanalysts, seem
now to be much more useful for cryptography. Surprisingly, cryptography that is too perfect also
causes problems. Once developed to protect against 'bad forces', it can now serve actually to protect
them.

There are very few areas of computing with such a close interplay between deep theory and
important practice or where this relation is as complicated as in modem cryptography.

Cryptography has a unique view of what it means for an integer to be 'practically large enough'.
In some cases only numbers at least 512 bits long, far exceeding the total lifetime of the universe,
are considered large enough. Practical cryptography has also developed a special view of what is

'The idea of using unfeasible problems for the protection of communication is actually very old and goes back
at least to Archimedes. He used to send lists of his recent discoveries, stated without proofs, to his colleagues
in Alexandria. In order to prevent statements like 'We have discovered all that by ourselves' as a response,
Archimedes occasionally inserted false statements or practically unsolvable problems among them. For example,
the problem mentioned in Example 6.4.22 has a solution with more than 206,500 digits.

CRYPTOSYSTEMS AND CRYPTOLOGY U 467

panet encryption } K decryption litx
c=e,(w) dcW

0
Figure 8.1 Cryptosystem

computationally unfeasible. If something can be done with a million supercomputers in a couple of
weeks, then it is not considered as completely unfeasible. As a consequence, mostly only toy examples
can be presented in any book on cryptology.

In this chapter we deal with two of the most basic problems of cryptography: secure encryptions
and secure digital signatures. In the next chapter, more theoretical concepts developed from
cryptographical considerations are discussed.

8.1 Cryptosystems and Cryptology

Cryptology can be seen as an ongoing battle, in the space of cryptosystems, between cryptography
and cryptoanalysis, with no indications so far as to which side is going to win. It is also an ongoing
search for proper trade-offs between security and efficiency

Applications of cryptography are numerous, and there is no problem finding impressive
examples. One can even say, without exaggeration, that an information era is impossible without
cryptography. For example, it is true that electronic communications are paperless. However, we still
need electronic versions of envelopes, signatures and company letterheads, and they can hardly exist
meaningfully without cryptography.

8.1.1 Cryptosystems

Cryptography deals with the problem of sending an (intelligible) message (usually called a plaintext
or cleartext) through an unsecure channel that may be tapped by an enemy (usually called an
eavesdropper, adversary, or simply cryptoanalyst) to an intended receiver. In order to increase the
likelihood that the message will not be learned by some unintended receiver, the sender encrypts
(enciphers) the plaintext to produce an (unintelligible) cryptotext (ciphertext, cryptogram), and sends
the cryptotext through the channel. The encryption has to be done in such a way that the intended
receiver is able to decrypt the cryptotext to obtain the plaintext. However, an eavesdropper should
not be able to do so (see Figure 8.1).

Encryption and decryption always take place within a specific cryptosystem. Each cryptosystem
has the following components:

Plaintext-space P - a set of words over an alphabet E, called plaintexts, or sentences in a natural
language.

Cryptotext-space C - a set of words over an alphabet A, called cryptotexts.

Key-space KC - a set of keys.

468 U CRYPTOGRAPHY

Each key k determines within a cryptosystem an encryption algorithm (function) ek and a
decryption algorithm (function) dk such that for any plaintext w, ek (w) is the corresponding cryptotext
and w E dk (ek (w)). A decryption algorithm is therefore a sort of inverse of an encryption algorithm.
Encryption algorithms can be probabilistic; that is, neither encryption nor decryption has to be unique.
However, for practical reasons, unique decryptions are preferable.

Encryption and decryption are often specified by a general encryption algorithm e and a general
decryption algorithm d such that ek (W) = e(k, w), dk (C) = d(k, c) for any plaintext w, cryptotext c and
any key k.

We start a series of examples of cryptosystems with one of the best-known classical cryptosystems.

Example 8.1.1 (CAESAR cryptosystem) We illustrate this cryptosystem, described by Julius Caesar
(100-42 BC), in a letter to Cicero, on encrypting words of the English alphabet with 26 capital letters. The
key space consists of 26 integers 0,1, . . . 25. The encryption algorithm ek substitutes any letter by the one
occurring k positions ahead (cyclically) in the alphabet; the decryption algorithm dk substitutes any letter by
that occurring k position backwards (cyclically) in the alphabet. For k = 3 the substitution has the following
form

Old: A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
New: D E F G H I J K L MN O P Q R S T U V W X Y Z A B C

Some encryptions:

e25(IBM) = HAL, el (KNAPSACK) = VYLADLNV, e20(PARIS) = JULCM.

The history of cryptography is about 4,000 years old if one includes cryptographic transformations
in tomb inscriptions. The following cryptosystem is perhaps the oldest among so-called substitution
cryptosystems.

Example 8.1.2 (POLYBIOS cryptosystem) This is the cryptosystem described by the Greek historian
Polybios (200-118 BC). It uses as keys the so-called Polybios checkerboards: for example, the one shown in
Figure 8.2a with the English alphabet of 25 letters ('J" is omitted).2 Each symbol is substituted by the pair of
symbols representing the row and the column of the checkerboard in which the symbol is placed. For example,
the plaintext 'INFORMATION' is encrypted as 'BICHBFCIDGCGAFDIBICICH'.

The cryptosystem presented in the next example was probably never used. In spite of this, it
played an important role in the history of cryptography. It initiated the development of algebraic and
combinatorial methods in cryptology and attracted mathematicians to cryptography.

Example 8.1.3 (HILL cryptosystem) In this cryptosystem, based on linear algebra and invented by L. S.
Hill (1929), an integer n is fixed first. The plaintext and cryptotext space consists of words of length n: for
example, over the English alphabet of26 letters. Keys are matrices M of degree n, elements of which are integers
from the set A = {0,1 25} such that the inverse matrix M` 1 modulo 26 exists. For a word w let Cw be
the column vector of length n consisting of codes ofn symbols in w - each symbol is replaced by its position in
the alphabet.

To encrypt a plaintext w of length n, the matrix-vector product Cc = MCw mod 26 is computed. In the
resulting vector, the integers are decoded, replaced by the corresponding letters. To decrypt a cryptotext c, at

2 1t is not by chance that the letter 'J' is omitted; it was the last letter to be introduced into the current English
alphabet. The PLAYFAIR cryptosystem with keys in the form of 'Playfair squares' (see Figure 8.2b) will be discussed
later.

CRYPTOSYSTEMS AND CRYPTOLOGY U 469

F G H I J S D Z I U
A A B C D E H A F N G
B F G H I K B MV Y W
C L M N O P
D Q R S T U R P X

F Vw x' zTO E K QE V W X Y Z

(a) Polybios checkerboard (b) Playfair square

Figure 8.2 Classical cryptosystems

first the product M->C, mod 26 is computed, and then the numbers are replaced by letters. A longer plaintext
first has to be broken into words of length n, and then each of them is encrypted separately.

For an illustration, let us consider the case n = 2 and

M 4 M (17 11
S41 1 9 16)

For the plaintext w = LONDON we have CLO (11, 1 4)T, CND = (13, 3)T, CON = (14, 1 3)T, and therefore,

MCLO = (12, 2 5)T, MCND = (2 1, 16)T, MCON = (17,1)r.

The corresponding cryptotext is then 'MZVQRB'. It is easy to check that from the cryptotext 'WWXTTX' the
plaintext 'SECRET' is obtained. Indeed,

MlCww= 17 11 22 S
9 16 22 4 E

and so on.

In most practical cryptosystems, as in the HILL cryptosystem, the plaintext-space is finite and much
smaller than the space of the messages that need to be encrypted. To encrypt a longer message, it
must be broken into pieces and each encrypted separately. This brings additional problems, discussed
later. In addition, if a message to be encrypted is not in the plaintext-space alphabet, it must first be
encoded into such an alphabet. For example, if the plaintext-space is the set of all binary strings of a
certain length, which is often the case, then in order to encrypt an English alphabet text, its symbols
must first be replaced (encoded) by some fixed-length binary codes.

Exercise 8.1.4 Encrypt the plaintext 'A GOOD PROOF MAKE US WISER' using (a) the CAESAR
cryptosystem with k = 13; (b) the POLYBIOS cryptosystem with some checkerboard; (c) the HILL
cryptosystem with some matrix.

Sir Francis R. Bacon (1561-1626) formulated the requirements for an ideal cryptosystem. Currently

we require of a good cryptosystem the following properties:

1. Given ek and a plaintext w, it should be easy to compute c = ek(w).

470 U CRYPTOGRAPHY

2. Given dk and a cryptotext c, it should be easy to compute w = dk (c).

3. A cryptotext ek(w) should be not much longer than the plaintext w.

4. It should be unfeasible to determine w from ek (w) without knowing dk.

5. The avalanche effect should hold. A small change in the plaintext, or in the key, should lead
to a big change in the cryptotext (for example, a change of one bit of a plaintext should result
in a change of all bits of the cryptotext with a probability close to 0.5).

Item (4) is the minimum we require for a cryptosystem to be considered secure. However, as discussed
later, cryptosystems with this property may not be secure enough under special circumstances.

8.1.2 Cryptoanalysis

The aim of the cryptoanalysis is to get as much information as possible about the plaintext or the
key. It is usually assumed that it is known which cryptosystem was used, or at least a small set of the
potential cryptosystems one of which was used. The main types of cryptoanalytic attacks are:

1. Cryptotexts-only attack. The cryptoanalysts get cryptotexts cl = ek(wl). c, = ek(w,) and
try to infer the key k or as many plaintexts wl,... , w,, as possible.

2. Known-plaintexts attack. The cryptoanalysts know some pairs (wi, ek (wi)), 1 < i < n, and try
to infer k, or at least to determine w,, 1, for a new cryptotext ek (w,+l).

3. Chosen-plaintexts attack. The cryptoanalysts choose plaintexts Wl, ... , wn, obtain cryptotexts
ek (wi), .• . • ek (we), and try to infer k or at least Wn+ 1 for a new cryptotext cn+I = ek (Wn+ 1).

4. Known-encryption-algorithm attack. The encryption algorithm ek is given and the
cryptoanalysts try to obtain the decryption algorithm dk before actually receiving any samples
of the cryptotext.

5. Chosen-cryptotext attack. The cryptoanalysts know some pairs (ciddk (Ci)), 1 <- i < n, where the
cryptotexts ci have been chosen by cryptoanalysts. The task is to determine the key.

Exercise 8.1.5 A spy group received information about the arrival of a new member. The secret police
discovered the message and knew that it was encrypted using the HILL cryptosystem with a matrix of
degree 2. It also learned that the code '10 3 11 21 19 5' stands for the name of the spy and '24 19 16 19 5
21'for the city, TANGER, the spy should comefrom. What is the name of the spy?

One of the standard techniques for increasing the security of a cryptosystem is double encryption.
The plaintext is encrypted with one key and the resulting cryptotext is encrypted with another key.
In other words ek2 (ek, (w)) is computed for the plaintext w and keys kj, k2. A cryptosystem is closed
under composition if for every two encryption keys kj, k2, there is a single encryption key having
the effect of these two keys applied consecutively. That is, ek (w) = ek2 (ek, (w)) for all w. Closure under
composition therefore means that a consecutive application of two keys does not increase security.
CAESAR is clearly composite. POLYBIOS is clearly not composite.

SECRET-KEY CRYPTOSYSTEMS U 471

Exercise 8.1.6* Show that the HILL cryptosystem is composite.

There are two basic types of cryptosystems: secret-key cryptosystems and public-key
cryptosystems. We deal with them in the next two sections.

8.2 Secret-key Cryptosystems

A cryptosystem is called a secret-key cryptosystem if some secret piece of information, the key, has
to be agreed upon ahead of time between two parties that want or need to communicate through the
cryptosystem. CAESAR, POLYBIOS and HILL are examples.

There are two basic types of secret-key cryptosystems: those based on substitutions where each
letter of the plaintext is replaced by another letter or word; and those based on transpositions where
the letters of the plaintext are permuted.

8.2.1 Mono-alphabetic Substitution Cryptosystems

Cryptosystems based on a substitution are either mono-alphabetic or poly-alphabetic. In
a mono-alphabetic substitution cryptosystem the substitution rule remains unaltered during
encryption, while in a poly-alphabetic substitution cryptosystem this is not the case. CAESAR and
POLYBIOS are examples of mono-alphabetic cryptosystems.

A mono-alphabetic substitution cryptosystem, with letter-by-letter substitution and with the
alphabet of plaintexts the same as that of cryptotexts, is uniquely specified by a permutation of
letters in the alphabet. Various cryptosystems differ in the way that such a permutation is specified.
The main aim is usually that the permutation should be easy to remember and use.

In the AFFINE cryptosystem (for English) a permutation is specified by two integers 1 < a, b <C
25, such that a and 26 are relatively prime and the xth letter of the alphabet is substituted by the
((ax + b) mod 26)th letter. (The condition that a and 26 are relatively prime is necessary in order for
the mapping

f(x) = (ax + b) mod 26

to be a permutation.)

Exercise 8.2.1 Determine the permutation of letters of the English alphabet obtained when the AFFINE
cryptosystem with a = 3 and b = 5 is used.

Exercise 8.2.2 For the following pairs of plaintext and cryptotext determine which cryptosystem was
used:

(a) COMPUTER-HOWEVER THE REST UNDERESTIMATES ZANINESS YOUR
JUDICIOUS WISDOM;

(b) SAUNA AND LIFE -RMEMHCZZTCEZTZKKDA.

472 U CRYPTOGRAPHY

% % % % % % %

E 13.04 N 7.07 H 5.28 C 2.79 G 1.99 V 0.92 Q 0.12
T 10.45 R 6.77 D 3.78 U 2.49 P 1.99 K 0.42 Z 0.08
A 8.56 S 6.27 L 3.39 M 2.49 W 1.49 X 0.17
0 7.97 I 6.07 F 2.89 Y 1.99 B 1.39 J 0.13

Figure 8.3 Frequency table for English letters due to A. Konheim (1981)

Exercise 8.2.3 Decrypt the following cryptotexts which have been encrypted using one of the
cryptosystems described above or some of their modifications. (Caution: not all plaintexts are in English.)

(a) WFLEUKZFEKZFEJFWTFDGLKZEX;
(b) DANVHEYD SENHGKIIAJ VQN GNULPKCNWLDEA;
(C) DHAJAHDGAJDI AIAJ AIAJDJEH DHAJAHDGAJDI AIDJ AIBIAJDJ

DHAJAHDGAJDI AIAJ DIDGCIBIDH DHAJAHDGAJDI AIAJ DICIDJDH;
(d)KLJPMYHUKV LZAL ALEAV LZ TBF MHJPS.

The decryption of a longer cryptotext obtained by a mono-alphabetic encryption from a
meaningful English text is fairly easy using a frequency table for letters: for example, the one in
Figure 8.3.'

Indeed, it is often enough to use a frequency table to determine the most frequently used letters and
then to guess the rest. (One can also use the frequency tables for pairs (digrams) and triples (trigrams)
that were published for various languages.) In case of an AFFINE cryptosystem a frequency table
can help to determine the coefficients a and b.

Exercise 8.2.4 On the basis offrequency analysis it has been guessed that the most common letter in a
cryptotext, Z, corresponds to 0 and the second most frequent letter, I, corresponds to T. If you know that
the AFFINE cryptosystem was used, determine its coefficients.

Exercise 8.2.5 Suppose the encryption is done using the AFFINE cryptosystem with c(x) = (ax +
b) mod 26. Determine the decryption function.

The fact that we can, with large probability, guess the rest of the plaintext, once several letters of
the cryptotext have been decrypted, is based on the following result. In the case of mono-alphabetic
substitution cryptosystems the expected number of potentially meaningful plaintexts for a cryptotext
of length n is 2'(K) " - 1, where H(K) is the so-called entropy of the key-space (for example, Ig 26!
for English), and D is a measure of the redundancy of the plaintext language in bits per letter (for
example, 3.5 for English). This means that for a cryptotext of length n > 25, for example, only one
meaningful English plaintext is expected.

Finally, let us illustrate with mono-alphabetic substitution cryptosystems the differences between
the first three cryptoanalytic attacks described on page 470.

3 The most frequently used symbols in some other languages, from Gaines (1939): French: E-15.87%, A-9.42%,
1-8.41%, S-7.90%, T-7.26%, N-7.15%; German: E-18.46%, N-11.42%, 1-8.02%, R-7.14%, S-7.04%; Spanish:
E-13.15%, A-12.69%, 0-9.49%, S-7.60%.

SECRET-KEY CRYPTOSYSTEMS 0 473

We have already indicated how frequency tables can be used to make cryptoanalytic attacks
under the 'cryptotexts-only' condition fairly easy, though it may require some work. Mono-alphabetic
substitution cryptosystems are trivial to break under the 'known-plaintext' attack as soon as the
known plaintexts have used all the symbols of the alphabet. These cryptosystems are even more trivial
to break in the case of the 'chosen-plaintext' attack - choose ABCDEFGHIJKLMNOPQRSTUVWXYZ
as the plaintext.

Exercise 8.2.6* Assume that the most frequent trigrams in a cryptotext obtained using the HILL
cryptosystem are LME, WRI and XYC, and that they are THE, AND and THA in the plaintext.
Determine the 3 x 3 matrix that was used.

8.2.2 Poly-alphabetic Substitution Cryptosystems

The oldest idea for a poly-alphabetic cryptosystem was to divide the plaintext into blocks of two
letters and then use a mapping 0 : E x E - E*, usually described by a table. The oldest such
cryptosystem is due to Giovanni Polleste Porta (1563). The cryptosystem shown in the next example,
due to Charles Wheatsone (1854) and named by Baron Lyon Playfair, was first used in the Crimean
War, then intensively in the field during the First World War and also in the Second World War by
the Allies.

Example 8.2.7 (PLAYFAIR cryptosystem) To illustrate the idea, we restrict ourselves again to 25 letters of
the English alphabet arranged in a 5 x 5 table (Figure 8.2b) called the 'Playfair square'. To encrypt a plaintext,
its letters are grouped into blocks of two, and it is assumed that no block contains two identical letters. (If this
is not the case, the plaintext must be modified:for example, by introducing some trivial spelling errors.)

The encryption of a pair of letters, X and Y, is done as follows. If X and Y are neither in the same row nor
in the same column, then the smallest rectangle containing X, Y is taken, and X, Y are replaced by the pair of
symbols in the remaining corners and the corresponding columns. If X and Y are in the same row (column),
then they are replaced by the pair of symbols to the right (below) of them - in a cyclic way, if necessary. An
illustration: using the square in Figure 8.2b, the plaintext PLAYFAIR is encrypted as LCMNNFCS.

Various poly-alphabetic cryptosystems are created as a modification of the CAESAR cryptosystem
using the following scheme, illustrated again on English texts. A 26 x 26 table is first designed, with
the first row containing all symbols of the alphabet and all columns representing CAESAR shifts,
starting with the symbol of the first row. Second, for a plaintext w a key k, a word of the same length
as w, is chosen. In the encryption the ith letter of the plaintext - w(i) - is replaced by the letter in the
w(i) row and the column with k(i) as the first symbol. Various such cryptosystems differ in the way
the key is determined.

In VIGENERE cryptosystems, named by the French cryptographer Blaise de Vigen&e (1523-96),
the key k for a plaintext w is created from a keyword p as Prefxixw {p, }. In the cryptosystem called
AUTOCLAVE, credited to the Italian mathematician Geronimo Gardono (1501-76), the key k is
created from a keyword p as PrefiXw {pw} - in other words, the plaintext itself is used, together
with the keyword p, to form the key. For example, for the keyword HAMBURG we get

Plaintext: INJEDEMMENSCHENGESICHTESTEHTSEINEGESCHICHTE

Key in VIGENERE HAMBURGHAMBURGHAMBURGHAMBURGHAMBURGHAMBURGH
Key in AUTOCLAVE: HAMBURGINJEDEMMENSCHENGESICHTESTEHTSEINEGES

Cryptotext in VIGENERE: PNVFXVSTEZTWYKUGQTCTNAEEUYYZZEUOYXKZCTJWYZL
Cryptotext in AUTOCLAVE: PNVFXVSURWWFLQZKRKKJLGKWLMJALIAGINXKGFVGNXW

474 U CRYPTOGRAPHY

A popular way of specifying a key used to be to fix a place in a well-known book, such as the
Bible, and to take the text starting at that point, of the length of the plaintext, as a key.

Exercise 8.2.8 Encrypt the plaintext 'EVERYTHING IS POSSIBLE ONLY MIRACLES TAKE
LONGER' using the key word OPTIMIST and (a) the VIGENFRE cryptosystem; (b) the AUTOCLAVE
cryptosystem.

In the case of poly-alphabetic cryptosystems, cryptoanalysis is much more difficult. There are
some techniques for guessing the size of the keyword that was used. Polish-British advances in
breaking ENIGMA, which performed poly-alphabetic substitutions, belong to the most spectacular
and important successes of cryptoanalysis.

In spite of their apparent simplicity, poly-alphabetic substitution cryptosystems are not to be
underestimated. Moreover, they can provide perfect secrecy, as will soon be shown.

8.2.3 Transposition Cryptosystems

The basic idea is very simple and powerful: permute the plaintext. Less clear is how to specify and
perform efficiently permutations.

The history of transposition encryptions and devices for them goes back to Sparta in about 475
BC.

Writing the plaintext backwards is a simple example of an encryption by a transposition. Another
simple method is to choose an integer n, write the plaintext in rows with n symbols in each, and then
read it by columns to get the cryptotext. This can be made more tricky by choosing a permutation of
columns, or rows, or both.

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists in the
seventeenth century. They were also used to encrypt scientific findings. For example, Newton wrote
to Leibniz:

a 7 c
2 d 2

e'
4
f

2
i
7

P m'n 8
o

4 q3
r

2 s4
t vl

2
Qx,

which stands for 'data aequatione quodcumque fluentes quantitates involvente, fluxiones invenire
et vice versa'.

Exercise 8.2.9 Decrypt the anagrams (a) INGO DILMUR, PEINE; (b) KARL SURDORT PEINE;
(c) a2 cdef 3g2 i2jkmn3 o5prs2t2u3z; (d) ro4 b2t3 e2.

Exercise 8.2.10 Consider the following transposition cryptosystem. An integer n and a permutation
7r on {1, . . . n} are chosen. The plaintext is divided into blocks of length n, and in each block the
permutation 7r is applied. Show that the same effect can be obtained by a suitable HILL cryptosystem.

Practical cryptography often combines and modifies basic encryption techniques: for example,
by adding, in various ways, a garbage text to the cryptotext.

SECRET-KEY CRYPTOSYSTEMS * 475

Exercise 8.2.11 Decrypt (a) OCORMYSPOTROSTREPXIT; (b) LIASHRYNCBXOCGNSGXC.

8.2.4 Perfect Secrecy Cryptosystems

According to Shannon4, a cryptosystem is perfect if knowledge of the cryptotext provides no
information whatsoever about the plaintext, with the possible exception of its length. It also follows
from Shannon's results that perfect secrecy is possible only if the key-space is as large as the
plaintext-space. This implies that the key must be at least as long as the plaintext and that the same
key cannot be used more than once.

A perfect cryptosystem is the ONE-TIME PAD cryptosystem, invented by Gilbert S. Vernam
(1917). When used to encode an English plaintext, it simply involves a poly-alphabetic substitution
cryptosystem of the VIGENERE type, with the key a randomly chosen English alphabet word of the
same length as the plaintext. Each symbol of the key specifies a CAESAR shift that is to be performed
on the corresponding symbol of the plaintext.

More straightforward to implement is its original bit-version due to Vemam, who also constructed
a machine and obtained a patent. In this case both plaintext and key are binary words of the same
length. Encryption and decryption are both performed simply by the bitwise XOR operation.

The proof of perfect secrecy is very simple. By proper choice of the key, any plaintext of the same
length could lead to the given cryptotext.

At first glance it seems that nothing has been achieved with the ONE-TIME PAD cryptosystem.
The problem of secure communication of a plaintext has been transformed into the problem of secure
communication of an equally long key. However, this is not altogether so.

First of all, the ONE-TIME PAD cryptosystem is indeed used when perfect secrecy is really
necessary: for example, for some hot lines. Second, and perhaps most important, the ONE-TIME
PAD cryptosystem provides an idea of how to design practically secure cryptosystems. The
method is as follows: use a pseudo-random generator to generate, from a small random seed,
a long pseudo-random word. Use this pseudo-random word as the key for the ONE-TIME PAD
cryptosystem. In such a case two parties need to agree only on a much smaller random seed than the
key really used. This idea actually underlies various modem cryptosystems.5

Exercise 8.2.12 The following example illustrates the unbreakability of the ONE-TIME PAD
cryptosystem. Consider the extended English alphabet with 27 symbols - including a space character.
Given the cryptotext ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLVYTS, find
(a) the keythat yieldstheplaintext COLONEL MUSTARD WITH THE CANDLESTICK IN THE HALL;

(b) the key that yields the plaintext MISS SCARLET WITH THE KNIFE IN THE LIBRARY;

(c) another example of this type.

4Claude E. Shannon (1917-) from MIT, Cambridge, Mass., with his seminal paper 'Communication theory of
secrecy systems' (1949), started the scientific era of cryptography.

5 1n addition, modem technology allows that a ONE-TIME PAD cryptosystem can be seen as fully practical.
It is enough to take an optical disk, with thousands of megabytes, fill it with random bits, make a copy of it and
deliver it through a secure channel. Such a source of random bits can last quite a while.

476 U CRYPTOGRAPHY

8.2.5 How to Make the Cryptoanalysts' Task Harder

Two simple but powerful methods of increasing the security of an imperfect cryptosystem are called,
according to Shannon, diffusion and confusion.

The aim of diffusion is to dissipate the source language redundancy found in the plaintext by
spreading it out over the cryptotext. For example, a permutation of the plaintext can rule out the
possibility of using frequency tables for digrams, trigrams and so on.

Another way to achieve diffusion is to make each letter of the cryptotext depend on as many
letters of the plaintext as possible. Consider, for example, the case that letters of the English alphabet
are represented by integers from 0 to 25 and as a key k = kl, . . . , ks, a sequence of such integers, is
used. Let m = m..... m, be a plaintext. Define, for 0 < i < s, mri = k,-i. The letters of the cryptotext are
then defined by

s

- (E mi-j) mod 26
j-0

for each I < i < m. (Observe that decryption is easy when the key is known.)
The aim of confusion is to make the relation between the cryptotext and the plaintext as complex

as possible. Poly-alphabetic substitutions, as a modification of mono-alphabetic substitutions, are
examples of how confusion helps. Additional examples of diffusion and confusion will be shown in
Section 8.2.6.

There is also a variety of techniques for improving the security of encryption of long plaintexts
when they have to be decomposed into fixed-size blocks. The basic idea is that two identical
blocks should not be encrypted in the same way, because this already gives some information to
cryptoanalysts. One of the techniques that can be used is to make the encryption of each block
depend on the encryption of previous blocks, as has been shown above for single letters. This will be
illustrated in Section 8.2.6.

8.2.6 DES Cryptosystem

A revolutionary step in secret-key cryptography was the acceptance, in 1977, by the US National
Bureau of Standards of the cryptosystem DES (data encryption standard), developed by IBM.
Especially revolutionary was the fact that both encryption and decryption algorithms were made
public. DES became the most widely used cryptosystem of all times.

To use DES, a user first chooses a secret 56-bit long key k56. This key is then preprocessed using
the following algorithm.

Preprocessing. 1. A fixed, publicly known permutation 7r56 is applied to k56 , to get a 56-bit string
7r5 6 (k 5 6). The first (second) part of the resulting string is then taken to form a 28-bit block Co (DO).

2. Using a fixed, publicly known sequence s., .. , s16 of integers (each is 1 or 2), 16 pairs of blocks
(Ci, Di), i = 1, ... 16, each of 28 bits, are created as follows: Ci (Di) is obtained from Ci- 1 (Di- 1) by si
left cyclic shifts.

3. Using a fixed, publicly known order (bits numbers: 14, 17, 11, ...), 48 bits are chosen from each
pair of blocks (Ci, Dj) to form a new block Ki.

The aim of this preprocessing is to make, from k56, a more random sequence of bits.

Encryption. 1. A fixed, publicly known permutation ir64 is applied to a 64-bit plaintext w to get
a new plaintext w' = 7r64(w). (This is a diffusion step in the Shannon sense.) w' is then written in the
form w' = LoRO, with each L0 and R0 consisting of 32 bits.

SECRET-KEY CRYPTOSYSTEMS U 477

2. 16 pairs of 32-bit blocks Li, Ri, 1 < i < 16, are constructed using the recurrence

Li = Ri 1 , (8.1)
Ri = Li-j 6Df(Ri I,K,), (8.2)

wheref is a fixed mapping, publicly known and easy to implement both in hardware and software.
(Computation of each pair of blocks actually represents one confusion step.)

3. The cryptotext is obtained as ir,' (L1 6R 16) (another diffusion step).

Decryption. Given a cryptotext c, 7M64(c) = L16R16 is first computed, then blocks Li,Rj, i =

15,14,... ,0, using the recurrence

Ri-1 = Li, (8.3)

Li-1 = Rji f(Li,Ki), (8.4)

and, finally, the plaintext w = 7r-1 (LoRo) is obtained.
This means that the same algorithm is used for encryption and decryption. In addition, this

algorithm can be implemented fast in both hardware and software. As a consequence, at the time this
book went to press, DES could be used to encrypt more than 200 megabits per second using special
hardware.

Because the permutations 7t5 6 and 7r64, the sequence si, . S 1, s the order to choose 48 bits out of
56, and the functionf are fixed and made public, it would be perfectly possible to present them here.
However, and this is the point, they have been designed so carefully, in order to make cryptoanalysis
very difficult, that one hardly learns more about DES from knowing these permutations than one
does from knowing that they exist and are easily available.

Since its adoption as a standard, there have been concerns about the level of security provided
by DES. They fall into two categories, concerning key size and the nature of the algorithm. Various
estimations have been made of how much it would cost to build special hardware to do decryption
by an exhaustive search through the space of 256 keys. For example, it has been estimated that a
molecular computer could be built to break DES in three months. On the other hand, none of the
cryptoanalytic attacks has turned out to be successful so far. It has also been demonstrated that the
avalanche effect holds for DES.

There are also various techniques for increasing security when using DES. The basic idea is to use
two keys and to employ the second one to encrypt the cryptotext obtained after encryption with the
first key. Since the cryptosystem DES is not composite, this increases security. Another idea, which has
been shown to be powerful, is to use three independent keys kj, k2, k3 and to compute the cryptotext
c from the plaintext w using DES three times, as follows:

c DESk1 (DES•7'(DESk3 (w))).

Various ideas have also been developed as to how to increase security when encrypting long
plaintexts. Let a plaintext w be divided into n 64-bit blocks mi, . . . , m,; that is, w = mi... Mn. Choose
a 56-bit key k and a 64-bit block co. The cryptotext ci of the block mi can then be defined as ci =

DES(mi (D ci- 1). Clearly, knowledge of k and co makes decryption easy

Exercise 8.2.13 Show that if in DES all bits of the plaintext and of the key are replaced by their
complements, then in the resulting cryptotext every bit also changes to its complement.

478 I CRYPTOGRAPHY

8.2.7 Public Distribution of Secret Keys

The need to secure the secret key distribution ahead of transmission was an unfortunate but not
impossible problem in earlier times, when only few parties needed secure communications (and time
did not matter as much). This is, however, unfeasible today, when not only the number of parties that
need to communicate securely has increased enormously, but also there is often a need for sudden and
secure communication between two totally unacquainted parties. Diffie and Hellman (1976) solved
this problem by designing a protocol for communication between two parties to achieve secure key
distribution over a public channel. This has led to a new era in cryptography. Belief in the security
of this protocol is based on the assumption that modular exponentiation is a one-way function (see
Section 2.3.3).

Two parties, call them from now on Alice and Bob, as has become traditional in cryptography,
want to agree on a secret key. First they agree on a large integer n and a g such that 1 < g < n. They
can do this over an insecure channel, or n and g may even be fixed for all users of an information
system. Then Alice chooses, randomly, some large integer x and computes X = gX mod n. Similarly,
Bob chooses, again randomly, a large y and computes Y = gY mod n. Alice and Bob then exchange X
and Y, but keep x and y secret. (In other words, only Alice knows x and only Bob knows y.) Finally,
Alice computes Yx mod n, and Bob computes Xyr mod n. Both these values aregxy mod n and therefore
equal. This value is then the key they agree on.

Note that an eavesdropper seems to need, in order to be able to determine x from X,g and n, or y
from Y,g and n, to be able to compute discrete logarithms. (However, no proof is known that such a
capability is really required in order to break the system. Since modular exponentiation is believed to
be a one-way function, the above problem is considered to be unfeasible. Currently the fastest known

algorithms for computing discrete logarithms modulo an integer n have complexity 0(2vIn "ln I n) in
1 2

the general case and 0(2(1gn) 3 tlgl n) 3) if n is prime.)
Remark: Not all values of n and g are equally good. If n is a prime, then there exists a generator

g such that gX mod n is a permutation of {1,... , n - I } and such a g is preferable.

Exercise 8.2.14 Consider the DIfie-Hellmann key exchange system with q = 1709, n = 4079 and the
secret numbers x = 2344 and y = 3420. What is the key upon which Alice and Bob agree?

Exercise 8.2.15* Extend the Dtffie-Hellman key exchange system to (a) three users; (b) more users.

There is also a way to have secure communication with secret-key cryptosystems without agreeing
beforehand on a key - that is, with no need for a key distribution.

Let each user X have its secret encryption function ex and a secret decryption function dx, and
assume that any two such functions, no matter of which user, are commutative. (In such a case we
say that we have a commutative cryptosystem.) Consider the following communication protocol in
which Alice wants to sent a plaintext w to Bob.

1. Alice sends eA(W) to Bob.

2. Bob sends eB(eA(w)) to Alice.

3. Alice sends dA(eB(eA(w))) = eB(w) to Bob.

4. Bob decrypts dB(eB(W)) = W.

PUBLIC-KEY CRYPTOSYSTEMS * 479

This, however, has a clear disadvantage, in that three communication rounds are needed. The idea
of public-key cryptosystems discussed in the next section seems to be much better.

8.3 Public-key Cryptosystems
The key observation leading to public-key cryptography is that whoever encrypts a plaintext does not
need to be able to decrypt the resulting cryptotext. Therefore, if it is not feasible from the knowledge
of an encryption algorithm ek to construct the corresponding decryption algorithm dk, the encryption
algorithm ek can be made public! As a consequence, in such a case each user U can choose a private
key ku, make the encryption algorithm eku public, and keep secret the decryption algorithm dku. In
such a case anybody can send messages to U, and U is the only one capable of decrypting them.

This basic idea can be illustrated by the following toy cryptosystem.

Example 8.3.1 (Telephone directory encryption) Each user makes public which telephone directory
should be used to encrypt messages for her. The general encryption algorithm is to take the directory, the
key, of the intended receiver and to encrypt the plaintext by replacing each of its letters by a telephone number
of a person whose name starts with that letter. To decrypt, a user is supposed to have his own reverse telephone
directory, sorted by numbers; therefore the user can easily replace numbers by letters to get the plaintext. For
example, using the telephone directory for Philadelphia, the plaintext CRYPTO can be encrypted using the
following entries:

Carden Frank 3381276, Roberts Victoria 7729094,
Yeats John 2890399, Plummer Donald 7323232,

Turne Helen 4389705, Owens Eric 3516765,

as 338127677290942890399732323243897053516765.

There is also a mechanical analogy illustrating the difference between secret-key and public-key
cryptography. Assume that information is sent in boxes. In a secret-key cryptosystem information is
put into a box, locked with a padlock, and sent, for example by post, and the key is sent by some
secure channel. In the public-key modification, anyone can get a padlock for any user U, say at the
post office, put information into a box, lock it with the padlock and send it. U is the only one who
has the key to open it - no key distribution is needed.

8.3.1 Trapdoor One-way Functions

The basic idea of public-key cryptosystems is simple, but do such cryptosystems exist? We know that
there are strong candidates for one-way functions that can easily be computed, but to compute their
inverse seems not to be feasible. This is, however, too much. Nobody, not even the sender, would be
able to decrypt a cryptotext encrypted by a one-way function. Fortunately, there is a modification of
the concept of one-way functions, so-called trapdoor one-way functions, that seems to be appropriate
for making public-key cryptosystems.

A functionf : X -- Y is a trapdoor one-way function if f and also its inverse can be computed
efficiently. Yet even a complete knowledge of the algorithm for computingf does not make it feasible
to determine a polynomial time algorithm for computing its inverse. The secret needed to obtain an
efficient algorithm for the inverse is known as the trapdoor information.

There is no proof that such functions exist, but there are several strong candidates for them.

Candidate 8.3.2 (Modular exponentiation with a fixed exponent and modulus) It is the function
f,,, : Z -* Z, defined by f. (a) = ax mod n. As already mentioned in Chapter 1, it is known that for any
fixed n and x there is an efficient algorithm for computing the inverse operation of taking the x-th root modulo

480 3 CRYPTOGRAPHY

n. However, all known algorithms for computing the x-th root modulo n require knowledge of the prime factors
of n - and such a factoring is precisely the trapdoor information. A public-key cryptosystem based on this
trapdoor one-way function will be discussed in Section 8.3.3.

Candidate 8.3.3 (Modular squaring with fixed modulus) This is another example ofa trapdoor one-way
function. As already mentioned in Section 1.7.3, computation of discrete square roots seems in general to be
unfeasible, but easy if the decomposition of the modulus into primes is known.

This second example has special cryptographical significance because, by Theorem 1.8.16,
computation of square roots is exactly as difficult as factoring of integers.

8.3.2 Knapsack Cryptosystems

The first public-key cryptosystem, based on the knapsack problem, was developed by Ralp C. Merkle
and Martin Hellmann (1978). It has been patented in ten countries and has played an important role
in the history of the public-key cryptography, as did the exciting attempts to break it.

In spite of the fact that the KNAPSACK public-key cryptosystem is not much used, it has several
features that make it a good illustration of how to design public-key cryptosystems, the difficulties
one can encounter, and ways to overcome them.

The following simple and general idea regarding how to design a trapdoor function and a
public-key cryptosystem based on it will be illustrated in this and the following sections.

1. Choose an algorithmic problem P that is provably intractable, or for which there is at least
strong evidence that this is the case.

2. Find a key-space IC, a plaintext-space P and a general encryption algorithm e that maps k x P
into instances of P in such a way that p is the solution of the instance e(k,p) of P.

3. Using the chosen (trapdoor) data t, design and make public a specific key kt such that knowing
t it is easy to solve any instance e(kt,p) of the problem P, but without knowing t this appears
to be unfeasible. (One way of doing this is to choose a key k such that anybody can easily
solve any instance e(k, p) of P, and then transform k, using some combination of diffusion and
confusion steps (as the trapdoor information), into another key k' in such a way that whenever
e(k', p) is known, this can easily be transformed, using the trapdoor information, into an easily
solvable instance of P.)

Now let us illustrate this idea on the KNAPSACK cryptosystem. Let K be the knapsack problem
with the instances (X, s), where X is a knapsack vector and s an integer. The key-space AZ will be N'
for a fixed integer n - that is, the space of n-dimensional vectors.6 The plaintext-space P will be the
set of n-dimensional bit vectors. (This means that whenever such a cryptosystem is used, the original
plaintext must be divided into blocks, and each encoded by an n-bit vector.) The encryption function
e is designed to map any knapsack vector X and any plaintext p, a binary column vector, both of the
same length, into the instance of the knapsack problem

(X, Xp),

where Xp is the scalar product of two vectors. Since the general knapsack problem is NP-complete,
no polynomial time algorithm seems to exist for computing p from X and Xp; that is, for decryption.

6Merkle and Hellman suggested using 100-dimensional vectors.

PUBLIC-KEY CRYPTOSYSTEMS K 481

Exercise 8.3.4 Assume that letters of the English alphabet are encoded by binary vectors of 5 bits (space
- 00000, A - 00001, B - 00010,) and that we use (1,2,3,5,8,21,34,55,89) as the knapsack vector.
(a) Encrypt the plaintext 'TOO HOT SUMMER'; (b) determine in how many ways one can decrypt the
cryptotext (128,126,124,122).

Exercise 8.3.5 Consider knapsack vectors X = (xj, .•. ,x,), where xi = P / pi, pi are distinct primes,
and P is their product. Show that knapsack problems with such vectors can be solved efficiently.

However, and this is the key to the KNAPSACK cryptosystem, any instance (X, s) of the knapsack
problem can be solved in linear time (that is, one can find a p c P such that s = Xp, if it exists, or show

that it does not exist) if X = (xl,... x,) is the super-increasing vector; that is, xi > _ xj holds for

each 1 < i < n. Indeed, the following algorithm does it.

Algorithm 8.3.6 (Knapsack problem with a super-increasing vector)

Input: a super-increasing knapsack vector X = (x,, x.) and an s G N.

for i ý- n downto 2 do
if s > 2xi then terminate - no solution

else if s > xi then pi -- 1;s -- s - xi;
else pi - 0;

if s = x, then p, -- I
else if s = 0 then p, -- 0

else terminate - no solution.

Example 8.3.7 For the super-increasing vector

(1,2,4,8,16,32,64,128,256,512) (8.5)

and s = 999 we get the solution (1,1,1 ,O0, 1,1,1,1,1). For X = (1,3,5,10,20,41,94,199) and s =242 there
is no solution.

Following the general idea described above, we show how any super-increasing vector X can be
transformed (using carefully chosen trapdoor information) into another vector X' in such a way that
by using the trapdoor information we can easily solve any instance of the knapsack problem with X',
but this does not seem to be the case without this trapdoor information.

Let X = (xi, . . . , xn) be a super-increasing vector. Choose an integer m > 2xn and an integer u
relatively prime to m. Compute, for example, using the extended Euclid algorithm - a u-1 such that
uu'1 = I (mod m), u and m will form the trapdoor information.

Construct now the knapsack vector X' = (x, , x') by computing

x'= uxi mod m

for I < i < n. (Multiplication by u makes a diffusion; taking values modulo m makes a confusion and
also scales the values.)

For example, taking m = 1250, u = 41, we get u-1 = 61, and from the super-increasing vector (8.5)
we get, using the above method, the vector

X'= (41,82,164,328,656,62,124,248,496,992).

482 U CRYPTOGRAPHY

Vectors X' obtained this way usually look pretty random, and therefore it seems that to solve the
knapsack problem for them can be as hard as in the general case. The following lemma guarantees
that this is not so if the trapdoor information is available. This way a public-key cryptosystem can be
created.

Lemma 8.3.8 Let X, m, u, X' be defined as above; that is, X is a super-increasing vector, and for c E N,
c' = u lc mod m. Then the knapsack problem instances (X,c') and (X',c) have at most one solution, and if
one of them has a solution, then the second has the same solution.

Proof: It follows from Algorithm 8.3.6 that if (X, c') has a solution, then it is unique. Let p' be a solution
of the knapsack instance (X',c); that is, X'p' = c. Then

C_ u-lc -u-lX'p' - u-uXp' Xp' (mod m).

Since the vector X is super-increasing and m > 2x•, we have

Xp' mod m i Xp',

and therefore,

c' = Xp1.

This means that each solution of a knapsack instance (X', c) is also a solution of the knapsack instance
(X, c). Since this knapsack instance has at most one solution, the same must hold for the instance
(X',c). 0

KNAPSACK cryptosystem design. A super-increasing vector X and numbers m, u are chosen,
and X' is computed and made public as the key. X, u and m are kept secret as the trapdoor information.

Encryption. A plaintext w' is first divided into blocks, and each block w is encoded by a binary
vector pw of length IX'I. Encryption of w is then done by computing the scalar product X'pw.

Decryption. c' = u-1c mod m is first computed for the cryptotext c, and then the instance (X, c')
of the knapsack problem is solved using Algorithm 8.3.6.

Example 8.3.9 Choosing X = (1,2,4,9,18,35,75,151,302,606), m = 1250 and u = 41, we design the public
key X' = (41,82,164,369,738,185,575,1191,1132,1096).

To encrypt an English text, we first encode its letters by 5-bit numbers: space - 00000, A - 00001, B -
00010, . . . and then divide the binary string into blocks of 10 bits. For the plaintext 'AFRIKA' we get three
plaintext vectors pi = (0000100110), P2 = (1001001001), P3 = (0101100001), which will be encrypted as

c' = X'p1 = 3061, C' = XVp 2 = 2081, =X'p3 =2285.

To decrypt the cryptotext (9133,2116,1870,3599), we first multiply all these numbers by
u-1 = 61 mod 1250 to get (693,326,320,789); then for all of them we have to solve the knapsack problem
with the vector X, which yields the binary plaintext vector

(1101001001,0110100010, 0000100010,1011100101)

and, consequently, the plaintext 'ZIMBABWE'.

PUBLIC-KEY CRYPTOSYSTEMS U 483

Exercise 8.3.10 Take the super-increasing vector

X = (103,107,211,425,863,1715,3346,6907,13807,27610)

and m = 55207, u = 25236. (a) Design for X, m and u the public knapsack vector
X'. (b) Encrypt using X' the plaintext 'A POET CAN SURVIVE EVERYTHING
BUT A MISPRINT'; (c) Decrypt the cryptotext obtained using the vector X' =

(80187,109,302,102943,113783,197914,178076,77610,117278,103967,124929).

The Merkle-Hellmann KNAPSACK cryptosystem (also called the single-iteration knapsack) was
broken by Adi Shamir (1982). Naturally the question arose as to whether there are other variants of
knapsack-based cryptosystems that are not breakable.

The first idea was to use several times the diffusion-confusion transformations that have produced
nonsuper-increasing vectors from super-increasing. More precisely, the idea is to use an iterated
knapsack cryptosystem - to design so-called hyper-reachable vectors and make them public keys.

Definition 8.3.11 A knapsack vector X' = (x x'n) is obtained from a knapsack vector X = (xl Ix)
by strong modular multiplication ifx' u. xi mod m, i = 1, ... , n, where m > 2 E=1 xi and u is relatively
prime to m. A knapsack vector X' is called hyper-reachable if there is a sequence of knapsack vectors X
X0,X1, .1..., Xk = X', where X0 is a super-increasing vector, and for i = 1, ... , k, Xi is obtained from Xi- 1 by
strong modular multiplication.

It has been shown that there are hyper-reachable knapsack vectors that cannot be obtained from
a super-increasing vector by a single strong modular multiplication. The multiple-iterated knapsack
cryptosystem with hyper-reachable vectors is therefore more secure. However, it is not secure enough
and was broken by E. Brickell (1985).

Exercise 8.3.12* Design an infinite sequence (Xi, si), i = 1,2,. of knapsack problems such that the
problem (Xi, si) has i solutions.

Exercise 8.3.13 A knapsack vector X is called injective iffor every s there is at most one solution of the
knapsack problem (X, s). Show that each hyper-reachable knapsack vector is injective.

There are also variants of the knapsack cryptosystem that have not yet been broken: for example,
the dense knapsack cryptosystem, in which two new ideas are used: dense knapsack vectors and a
special arithmetic based on so-called Galois fields. The density of a knapsack vector X = (xj, . .. , x,)
is defined as

n
d(X) = lg(max{xi 1 < i < n})"

The density of any super-increasing vector is always smaller than n / (n - 1) because the largest
element has to be at least 2 n-1. This has actually been used to break the basic, single-iteration knapsack
cryptosystem.

484 U CRYPTOGRAPHY

8.3.3 RSA Cryptosystem

The basic idea of the public-key cryptosystem of Rivest, Shamir and Adleman (1978), the most widely
investigated one, is very simple: it is easy to multiply two large primes p and q, but it appears not to be
feasible to find p, q when only the product n - pq is given and n is large.

Design of the RSA cryptosystem. Two large primes p, q are chosen. (In Section 8.3.4 we discuss
how this is done. By large primes are currently understood primes that have more than 512 bits.)
Denote

n= pq, 0(n) = (p- 1)(q- 1),

where 0(n) is Euler's totient function (see page 47). A large d < n relatively prime to •(n) is chosen,
and an e is computed such that

ed- 1 (mod 0(n)).

(As we shall see, this can also be done fast.) Then

n (modulus) and e (encryption exponent)

form the public key, and
p,q,d

form the trapdoor information.

Encryption: To get the cryptotext c, a plaintext w E N is encrypted by

c = we mod n. (8.6)

Decryption:
w = cd mod n. (8.7)

Details and correctness: A plaintext is first encoded as a word over the alphabet E = {0, 1, ... 9,
then divided into blocks of length i - 1, where 10i-' < n < 10i. Each block is then taken as an integer
and encrypted using the modular exponentiation (8.6).

The correctness of the decryption algorithm follows from the next theorem.

Theorem 8.3.14 Let c = we mod n be the cryptotext for the plaintext w, ed - 1(mod 0(n)) and d relatively
prime to 0(n). Then w - cd(modn). Hence, if the decryption is unique, w = cd mod n.

Proof: Let us first observe that since ed - 1(mod 0(n)), there exists a j E N such that ed = jo(n) + 1.
Let us now distinguish three cases.

Case 1. Neither p nor q divides w. Hence gcd(n, w) = 1, and by Euler's totient theorem,

cd - (we)d wj(n)(W w (mod n). (8.8)

Case 2. Exactly one of p, q divides w -say p. This immediately implies wed =_ w(modp). ByFermat's
little theorem, wq 1 = l(modq), and therefore,

wq-l I (mod q) : w =(n) 1 (modq) : wJ0(n)-1 (modq) # wed--w (modq); (8.9)

and therefore, by the property (1.63) of congruences on page 45, we get w wed = cd(modn).
Case 3. Both p and q divide w. This case cannot occur, because we have assumed that w < n.

PUBLIC-KEY CRYPTOSYSTEMS E 485

Example 8.3.15 Let us try to construct an example. Choosing p = 41, q = 61, we get n = 2501, 0(n) = 2400.
Taking e = 23, we get, using the extended version of Euclid's algorithm, d = 2087; the choice e = 29 yields
d = 2069. Let us stick to e = 23,d = 2087. To encrypt the plaintext 'KARLSRUHE' wefirst represent letters
by their positions in the alphabet and obtain the numerical version of the plaintext as 100017111817200704.
Since 103 < n < 104, the numerical plaintext is divided into blocks of three digits, and six plaintext integers
are obtained:

100, 017, 111, 817, 200, 704.

To encrypt the plaintext, we need to compute

10023 mod 2501, 1723 mod 2501, 11123 mod 2501,

81723 mod 2501, 20023 mod 2501, 70423 mod 2501,

which yields the cryptotexts

2306, 1893, 621, 1380, 490, 313.

To decrypt, we need to compute

20362087 mod 2501 = 100, 18932087 mod 2501 = 17, 6212087 mod 2501 = 111,

13802087 mod 2051 = 817, 4902087 mod 2501 = 200, 3132087 mod 2051 = 704.

Exercise 8.3.16 Taking small primes and large blocks can lead to a confusion. Indeed, taking p = 17,
q = 23, we get n = 391, 0(n) = 352. Fore = 29 and d = 85, the plaintexts 100, 017,111,817,200,704 are
encrypted as 104,204,314,154,064,295, and the decryption then provides 100,017,111,035,200,313.
Where is the problem?

Exercise 8.3.17 Consider the RSA cryptosystem with p = 47, q = 71 and e = 79. (a) Compute d.
(b) Encrypt the plaintext 'THE TRUTH IS MORE CERTAIN THAN PROBABLE'. (c) Decrypt 3301,
1393, 2120, 1789, 1701, 2639, 895, 1150, 742, 1633, 1572, 1550, 2668, 2375, 1643, 108.

8.3.4 Analysis of RSA

Let us first discuss several assumptions that are crucial for the design of RSA cryptosystems. The first
assumption was that we can easily find large primes.

As already mentioned in Section 1.7, no deterministic polynomial time algorithm is known for
deciding whether a given number n is a prime. The fastest known sequential deterministic algorithm
has complexity O(n0 (1) 1gg n). There are, however, several fast randomized algorithms, both of Monte
Carlo and Las Vegas type, for deciding primality. The Solovay-Strassen algorithm was presented in
Section 2.6. Rabin's Monte Carlo algorithm is based on the following result from number theory.

Lemma 8.3.18 Let n E N. Denote, for 1 < x < n, by C(x) the condition:

Either xn- 1 $ 1 (mod n), or there is an m e N, m = (n - 1) / 2ifor some i, such that gcd(n, x m - 1) #1.

If C(x) holds for some I < x < n, then n is not prime. If n is not prime, then C(x) holds for at least half of
x between 1 and n.

486 3 CRYPTOGRAPHY

Algorithm 8.3.19 (Rabin-Miller's algorithm, 1980)

Choose randomly integers xl, . •. , xm such that 1 < xj < n.
For each xj determine whether C(xj) holds;

if C(xj) holds for some xj
then n is not prime
else n is prime, with the probability of error 2-'.

To find a large prime, a large pseudo-random sequence of bits is generated to represent an odd n.
Using Rabin-Miller's or some other fast primality testing algorithm, it is then checked whether n is
prime. If not, the primality of n + 2, n + 4,... is checked until a number is found that is prime, with
very large probability.

It is not obvious that this procedure provides a prime fast enough. However, it easily follows
from the prime number theorem that there are approximately

2 d 2 d-1

ln2d ln2(d-1)

d-bit primes. If this is compared with the total number of odd d-bit integers, (2 d -22 d-1) / 2, we get
that the probability that a 512-bit number is prime is 0. 00562, and the probability that a 1024-bit
number is prime is 0.002815. This shows that the procedure described above for finding large primes
is reasonably fast.

To verify that the d chosen is relatively prime to 0(n), the extended version of Euclid's algorithm
can be used. This procedure provides e at the same time.

Exercise 8.3.20 A natural question concerns how dfficult it is to find, given an m, an integer that is
relatively prime to m. The following results show that it is fairly easy. Denote Pr(gcd(m, n) = 1) = P.
(a) Show that Pr(gcd(m,n) = d) = P. (b) Use the previous result to show: Pr(gcd(mn) = 1) ; 0.6.

The design of an RSA cryptosystem therefore seems quite simple. Unfortunately, this is not really
so. For the resulting cryptosystem to be secure enough, p, q, d and e must be chosen carefully, to satisfy
various conditions, among the following:

1. The difference lp - qj should be neither too large nor too small. (It is advisable that their bit
representations differ in length by several bits.)

2. gcd(p - 1, q - 1) should not be large.

3. Neither d nor e should be small.

For example, if]p - qI is small, and p > q, then (p + q) / 2 is only slightly larger than v/n, because
(p + q)

2 / 4-n = (p - q)2 / 4. In addition (p + q)2 / 4 - n is a square, for example, y
2

. To factorize n, it is
enough to test numbers x > v• until an x is found such that x 2 - n is square. In such a case p = x + y,
q = x - y.

PUBLIC-KEY CRYPTOSYSTEMS 3 487

Exercise 8.3.21 Explain why in designing an RSA cryptosystem (a) gcd(p - 1, q - 1) should be small;
(b) both p - 1 and q - 1 should contain large prime factors.

Exercise 8.3.22* It is evident that d should not be too small, otherwise decryption can be done by testing
all small d. In order to show that a small e can also be a security risk, let us assume that three users
A, B and C use the number 3 as the encryption exponent and that they use as the modulus nA,riB

and nc, which are relatively prime. Assume further that they transmit the messages ci = w3 mod ni,
i = A,B,C, 0 < w < min{nA,nB,nc}. Show that a cryptoanalyst can compute w using the Chinese
remainder theorem.

Exercise 8.3.23** Show that for any choice of primes p and q we can choose e • {1, 0(pq) + 1} in such
a way that we _- w mod nfor all plaintexts w.

Let us now discuss two other important questions: how hard factoring is and how important it
is for the security of RSA cryptosystems.7

At the time this book went to press, the fastest algorithm for factoring integers ran in time

n (2,fi n "I n). There is no definite answer to the second question yet. This is a tricky problem, which
can also be seen from the fact that knowledge of O(n) or d is sufficient to break RSA.

Theorem 8.3.24 (1) To factor a number n is as hard as to compute O(n).
(2) Any polynomial time algorithm for computing d can be converted into a polynomial time randomized

algorithm for factoring n.

The first claim of Theorem 8.3.24 follows easily from the identities

p+q=n-O(n)+1, p-q= V/(p+q)2 -4n.

The proof of the second statement, due to DeLaurentis (1984), is too involved to present here.
Finally, let me mention three results that indicate the strength of the security of RSA cryptosystems;

how little we know about them; and how easy it is to break into them, if the utmost care is not taken
in their design.

It has been shown that any algorithm which is able to determine one bit of the plaintext, the
right-most one, can be converted into an algorithm which can determine the whole plaintext, and

7 Factoring large numbers is another big challenge for computing theory, people and technology. In 1971,40-digit
numbers seemed to be the limit; in 1976, 80-digit numbers seemed to be the limit. In 1977, it was estimated that it

would take 40 quadrillion years to factor 125-digit numbers. But in 1990, the 155-digit number 229+ 1, the so-called
9th Fermat number, was factored, using about 1,000 computers and several hundred collaborators, by Aijen K.
Lenstra, Hendrik W. Lenstra, S. Manasse and M. Pollard, into three factors - 99-digit, 49-digit and 7-digit - with
2,424,833 as the smallest. Factoring of this number was put as the challenge in one of the first papers on RSA by
Gardner (1978) in Scientific American, and at that time this number was at the top of the list of 'most wanted to
factor numbers'. In 1994 there was another spectacular cryptographical success. Using a network of about 1,600
computers, a 96-digit cryptotext, encrypted using a 129-bit modulus and the encryption exponent e = 9007, and set
as a challenge by the RSA founders, was decrypted. See D. Atkins, M. Graff, A. K. Lenstra and P. C. Leyland (1995).
The experience led to an estimation that it is possible to set up projects that would use 100,000 computers and
require half a million mips years. Moreover, it became quite clear that the RSA cryptosystem with a 512-bit-long
modulus is breakable by anybody willing to spend a few million dollars and wait a few months. For the factoring
of a 120-digit number in 825 MIPS years see Denny, Dodson, Lenstra and Manase (1994).

488 U CRYPTOGRAPHY

that this is not of substantially larger complexity. (Actually, it is sufficient that the last bit can be
determined with probability larger than ½.)

The cryptoanalysis of any reasonable public-key cryptosystem is in both NP and co-NP, and is
therefore unlikely to be NP-complete. (In the case of deterministic encryptions, this is trivial. To find
a plaintext, one guesses it and applies the public encryption function. The same idea is used to show
that the cryptoanalysis problem is in co-NP. It is a little bit more involved to show that this is true
also for nondeterministic encryptions.)

It can also be shown that if more users employ the RSA cryptosystem with the same n, then they
are able to determine in deterministic quadratic time another user's decryption exponent - without
factoring n. This setting refers to the following hypothetical case: an agency would like to build up a
business out of making RSA cryptosystems. Therefore, it would choose one pair p, q, send n = pq to
all users, and deliver to each user a unique encryption exponent and the corresponding decryption
exponent.

Taking into account the simplicity, elegance, power and mystery which RSA provides, it is no
wonder that already in 1993 more than ten different RSA chips were produced.

Exercise 8.3.25* (RABIN cryptosystem) If a cryptoanalyst knows how to factor efficiently, he is able
to break RSA systems. However, it is not known if the converse of this statement is true. It has been
shown by Rabin (1979) that for the following cryptosystem the problem offactoring is computationally
equivalent to that of breaking the cryptosystem.

In the RABIN cryptosystem each user selects a pair p, q of distinct Blum integers, to be kept secret,
and publicizes n and a b < n. The encryption function is en,b(W) = w(w + b) mnod n. Show that the
knowledge of the trapdoor information p,q is sufficient to make decryptions effectively. (In Rabin's
original cryptosystem b = 0.)

8.4 Cryptography and Randomness*
Randomness and cryptography are closely related. The prime purpose of encryption methods is to
transform a highly nonrandom plaintext into a highly random cryptotext. For example, let ek be an
encryption mapping, x0 a plaintext, and xi, i = 1,2, ... , be a sequence of cryptotexts constructed
by encryptions xi+1 = ek (Xi). If ek is cryptographically 'secure' enough, it is likely that the sequence
X1, X2... looks quite random. Encryptions can therefore produce (pseudo)-randomness.

The other aspect of the relation is more involved. It is clear that perfect randomness combined
with the ONE-TIME PAD cryptosystem provides perfect cryptographical security. However, the price
to be paid as a result of the need to have keys as long as the plaintext is too high. Another idea is
to use, as illustrated above, a cryptosystem, or some other pseudo-random generator, to provide a
long pseudo-random string from a short random seed and then to use this long sequence as the
key for the ONE-TIME PAD cryptosystem. This brings us to the fundamental question: when is a
pseudo-random generator good enough for cryptographical purposes? The following concept has
turned out to capture this intuitive idea.

A pseudo-random generator is called cryptographically strong if the sequence of bits it produces
from a short random seed is so good for using with the ONE-TIME PAD cryptosystem that no
polynomial time algorithm allows a cryptoanalyst to learn any information about the plaintext from
the cryptotext.

Clearly, such a pseudo-random generator would provide sufficient security in a secret-key

CRYPTOGRAPHY AND RANDOMNESS* W 489

cryptosystem if both parties agree on some short seed and never use it twice. As we shall see
later, cryptographically strong pseudo-random generators could also provide perfect security for
public-key cryptography However, do they exist?

Before proceeding to a further discussion of these ideas, let me mention that the concept of
a cryptographically strong pseudo-random generator is, surprisingly, one of the key concepts of
foundations of computing. This follows, for example, from the fact that a cryptographically strong
pseudo-random generator exists if and only if a one-way function exists, which is equivalent to P :
UP and implies P 5 NP.

The key to dealing with this problem, and also with the problem of randomized encryptions, is
that of a (trapdoor) one-way predicate.

Definition 8.4.1 A one-way predicate is a Boolean function P: {0,1}* F-* {0,1} such that

1. For an input vlk, v E {0, 1}, one can choose, randomly and uniformly, in expected polynomial time, an
x G {0,1} *, xl <_ k, such that P(x) = v. (The suffix 1k is just to render meaningful the requirement of
polynomial time in the length of the input.)

2. For all c > 0 and any sufficiently large k, no polynomial time algorithm can compute P(x), given
x { 0,, II*, xJ <_ k, with a probability greater than 1. (The probability is taken over the random choices
made by the algorithm and x such that JxJ < k.)

A trapdoor one-way predicate is a one-way predicate for which there exists, for every k, a trapdoor
information tk, the size of which is bounded by a polynomial in k, that can be used to compute, in polynomial
time, P(x),for all IxJ < k.

Candidate 8.4.2 Take two large primes p, q, n = pq, a d relatively prime to 0h(n) and e such that
ed = 1 (mod 05(n)). Define P(x) to be the least significant bit of xd mod n for x E Z*. To select uniformly
an x E Z* such that P(x) = v, take a y E Z* whose least significant bit is v, and set x = ye mod n.

8.4.1 Cryptographically Strong Pseudo-random Generators

As is usual in cryptography, the existence of such generators has not yet been proved, but there are
strong candidates for them.

It has been shown, for example, that all pseudo-random number generators that are unpredictable
to the left, in the sense that a cryptoanalyst who knows the generator and sees the whole generated
sequence except its first bit has no better way to find out this first bit than coin-tossing, are
cryptographically strong. It has also been proved, that if integer factoring is intractable, then the
BBS pseudo-random generator, introduced in Section 1.9.3, is unpredictable to the left.

To analyse the BBS pseudo-random generator in more detail, we need some basic results
concerning modular squaring (see Section 1.7). Recall that computation of square roots modulo a
Blum integer n is a permutation of the quadratic residues modulo n, and the problem of computing
principal square roots has been proved to be computationally equivalent to that of factoring integers.
In addition, it has been proved that if factoring is unfeasible, then for almost all quadratic residues x
(modulo n), coin-tossing is the best possible way to estimate the least significant bit of x after seeing
x2 mod n. This fact will now be used.

Let n be a Blum integer. Choose a random quadratic residue x0. (For example, choose a
random integer x, relatively prime to n, and compute x0 = x 2 mod n.) For i > 0 let xi+1 = x2 mod
n, and bi be the least significant bit of xi. For each integer i, let BBSn,i(xo) = bo... bi- 1 be the first i bits
of the pseudo-random sequence generated from the seed x0 by the BBS pseudo-random generator.

Assume that the BBS pseudo-random generator, with a Blum integer as the modulus, is not
unpredictable to the left. Let y be a quadratic residue from Z*. Compute BBS,,il (y) for some i > 1.

490 3 CRYPTOGRAPHY

Let us now pretend that the last (i - 1) bits of BBS,. (x) are actually the first (i - 1) bits of BBS,,-_ (y),
where x is the unknown principal square root of y. Hence, if the BBS pseudo-random generator is
not unpredictable to the left, then there exists a better method than coin-tossing for determining the
least significant bit of x, which is, as mentioned above, impossible.

Observe too that the BBS pseudo-random generator has the nice property that one can determine,
directly and efficiently, for any i > 0, the ith bit of the sequence of bits generated by the generator.
Indeed, x = xo0 mod n, and using Euler's totient theorem,

2i rod •(n)

xi = x2no mod n.

There is also a general method for designing cryptographically strong pseudo-random generators.
This is based on the result that any pseudo-random generator is cryptographically strong that passes
the next-bit test: if the generator generates the sequence bo, b1,... of bits, then it is not feasible to
predict bi 1 from bo, . .. ,bi with probability greater than ±-- in polynomial time with respect to
and the size of the seed. Here, the key role is played by the following modification of the concept of
a one-way predicate.

Let D be a finite setf : D -* D a permutation. Moreover, let P: D -* {0, 1} be a mapping such that
it is not feasible to predict (to compute) P(x) with probability larger than ½, given x only, but it is
easy to compute P(x) iff-1 (x) is given. A candidate for such a predicate is D = Z*, where n is a Blum
integer, f(x) = X2 mod n, and P(x) = I if and only if the principal square root of x modulo n is even.

To get from a seed x0 a pseudo-random sequence of bits, the elements xj+1 =f(xi) are first
computed for i = 0, ... ,n, and then bi are defined by bi = P(x,-i) for i = 0, . . . ,n. (Note the reverse
order of the sequences - to determine b0, we first need to know xv.)

Suppose now that the pseudo-random generator described above does not pass the next-bit test.
We sketch how we can then compute P(x) from x. Sincef is a permutation, there must exist x0 such
that x = xi for some i in the sequence generated from x0. Compute xi+ 1, ,. •, xn, and determine the
sequence bo.... . , bn-i-1. Suppose we can predict bn-i. Since bn-i = P(xi) = P(x), we get a contradiction
with the assumption that the computation of P(x) is not feasible if only x is known.

8.4.2 Randomized Encryptions
Public-key cryptography with deterministic encryptions solves the key distribution problem quite
satisfactorily, but still has significant disadvantages. Whether its security is sufficient is questionable.
For example, a cryptoanalyst who knows the public encryption function ek and a cryptotext c can
choose a plaintext w, compute ek (w), and compare it with c. In this way, some information is obtained
about what is, or is not, a plaintext corresponding to c.

The purpose of randomized encryption, invented by S. Goldwasser and S. Micali (1984), is to
encrypt messages, using randomized algorithms, in such a way that we can prove that no feasible
computation on the cryptotext can provide any information whatsoever about the corresponding
plaintext (except with a negligible probability).

As a consequence, even a cryptoanalyst familiar with the encryption procedure can no longer
guess the plaintext corresponding to a given cryptotext, and cannot verify the guess by providing an
encryption of the guessed plaintext.

Formally, we have again a plaintext-space P, a cryptotext-space C and a key-space 1C. In addition,
there is a random-space RZ. For any k e IC, there is an encryption mapping ek : P X 7Z - C and a
decryption mapping dk : C -* P such that for any plaintext p and any randomness source r E 7Z we
have dk (ek (p, r)) = p. Given a k, both ek and dk should be easy to design and compute. However, given
ek, it should not be feasible to determine dk without knowing k. ek is a public key Encryptions and
decryptions are performed as in public-key cryptography. (Note that if a randomized encryption is
used, then the cryptotext is not determined uniquely, but the plaintext is!)

CRYPTOGRAPHY AND RANDOMNESS* * 491

Exercise 8.4.3** (Quadratic residue cryptosystem - QRS) Each user chooses primes p, q such that
n = pq is a Blum integer and makes public n and a y ý1 QR&. To encrypt a binary message w = w,. .. Wr
for a user with the public key n, the cryptotext c = (yWlx2 mod n,... ,yW.x2 mod n) is computed,

where x , Xr is a randomly chosen sequence of elements from Z4. Show that the intended receiver
can decrypt the cryptotext efficiently.

The idea of randomized encryptions has also led to various definitions of security that have turned
out to be equivalent to the following one.

Definition 8.4.4 A randomized encryption cryptosystem is polynomial-time secure iffor all c E N
and sufficiently large integer s (the so-called security parameter) any randomized polynomial time algorithm
that takes as input s (in unary) and a public key cannot distinguish between randomized encryptions, by that
key, of two given messages of length c with probability greater than ' + -"

We describe now a randomized encryption cryptosystem that has been proved to be
polynomial-time secure and is also efficient. It is based on the assumption that squaring modulo
a Blum integer is a trapdoor one-way function and uses the cryptographically strong BBS
pseudo-random generator described in the previous section. Informally, the BBS pseudo-random
generator is used to provide the key for the ONE-TIME-PAD cryptosystem. The capacity of the
intended receiver to compute the principal square roots, using the trapdoor information, allows him
or her to recover the pad and obtain the plaintext.

Formally, let p,q be two large Blum integers. Their product, n = pq, is the public key The
random-space is QR, of all quadratic residues modulo n. The plaintext-space is the set of all binary
strings - for an encryption they will not have to be divided into blocks. The cryptotext-space is the
set of pairs formed by elements of QR, and binary strings.

Encryption: Let w be a t-bit plaintext and x0 a random quadratic residue modulo n. Compute xt
and BBSn,t (xo), using the recurrence xi, 1 = x? mod n, as shown in the previous section. The cryptotext
is then the pair (xt, w e BBS,t (Xo)) .

Decryption: The intended user, who knows the trapdoor information p and q, can first compute
x0 from xt, then BBSnt(xo) and, finally, can determine w. To determine x0, one can use a brute force
method to compute, using the trapdoor information, xi = vr,/iT mod n, for i = t - 1, ... , 0, or the
following, more efficient algorithm.

Algorithm 8.4.5 (Fast multiple modular square-rooting)

Compute a, b such that ap + bq = 1;
x - ((p+1)/4)t mod (p- 1);
y - ((q + 1)/4)t mod (q - 1);
u *- (xt mod p)X mod p;
v *- (xt mod q)Y mod q;
xo *- (bqu + apv) mod n.

There is also the following general method for making randomized encryptions, based on the
concept of the trapdoor one-way predicate, that has been shown to be polynomial-time secure. Alice
chooses a one-way trapdoor predicate PA, a security parameter s E N, and makes public the description

492 U CRYPTOGRAPHY

of PA and s. The trapdoor information, needed to compute PA efficiently, is kept secret. Anybody
wishing to send a plaintext p = pi ... ps of s bits to Alice encrypts p as follows: for i = 1,... ,s, and
pi c {0, 1}, an xi, 1xiI <_ s, is randomly chosen such that PA(xi) = pi (which can be done in polynomial
time) and pi is encrypted as xi. To decrypt, Alice, who knows the trapdoor information, computes
pi = PA(xi), for i = 1, . . . s.

Observe that such a cryptotext may be up to s times longer than the plaintext; s is here a security
parameter.

8.4.3 Down to Earth and Up

In any secure randomized cryptosystem many cryptotexts have to correspond to one plaintext. Data
expansion, as we saw at the end of the last section, is therefore unavoidable. This is certainly a
drawback of randomized encryptions.

However, it has been proved that breaking the randomized encryptions described above is as
hard as factoring. Such a strong statement cannot be made for the RSA cryptosystem. Moreover,
randomized encryptions are usually faster than deterministic ones.

None of the public-key cryptosystems seems to be able to compete in speed with DES. (In 1994
DES was in software (hardware) about 1,000 (100) times faster than RSA.) Therefore, it seems currently
best to combine both of them: to use a public-key cryptosystem to transport a key and then use this
key with DES to encode messages (and change keys often). Without slowing down transmissions too
much, this can significantly increase security.

Public-key cryptography does not mean an end to secret-key cryptography. One of the main
applications of public-key encryptions are fast and secure key transmissions.

There is another drawback to public-key cryptography. Proofs of security of several public-key
cryptosystems are based on unproved assumptions from number theory. This is not the case with
quantum cryptography, based on sending photons through quantum channels, where it is impossible,
in principle, to eavesdrop without a high probability of disturbing the transition in such a way as to
be detectable.

8.5 Digital Signatures
The number of crucial applications of cryptography, as well as the basic concepts arising from it, have
already far exceeded those related to secure encryptions. Digital signatures, with which we deal in
this section, are one of the most fundamental and important inventions of modem cryptography. To
make digital signatures, we can use various techniques similar to those used for encryptions, which
is why we deal with them in this chapter. Other applications and fundamental concepts arising from
cryptographical considerations are dealt with in the following chapter.

If Alice gets a message that claims to be from Bob, she needs to be convinced that the message
really is from Bob and that nobody else, pretending to be Bob, has sent it. Moreover, for example, for
legal reasons, she may need to be able to convince a third party that the message was indeed from
Bob (and not from somebody else, or even that the message was not her own invention). For modem
business and financial interactions these are crucial concerns.

A public-key cryptosystem, in which plaintext- and cryptotext-space are the same and each user
U makes his encryption function eu public and keeps his decryption function du secret, can be used
for this purpose.

If Bob wants to send a plaintext w with his 'signature' to Alice, he sends her eA (dB (w)). Only Alice
can get out of it w, but anybody can verify, using the public key eB, that the message was sent by Bob.
Observe also that Bob is protected against someone changing the message after he has signed it.

Note too, that a 'natural, alternative or symmetric, solution', to encode a message w as c =

dB(eA(W)), is not good. An active enemy T, with his public key eT, usually called a tamperer, could

DIGITAL SIGNATURES U 493

intercept such a message, then compute dT (eB (c)) = dT (eA (w)) and send it to A pretending that it is
from him, without being able to decrypt the message.

Exercise 8.5.1 * Alice wants to sign a message for Bob using a secret-key cryptosystem through Trent, a
trusted arbitrator, with whom both Alice and Bob share secret keys. Design a secure signature protocol
to do this.

The RSA cryptosystem can be used for digital signatures in the above way. The private key then
becomes the signing exponent. However, not all public-key cryptosystems are equally good for
this. In addition, there are some signatures-only (crypto)schemes. The crucial point is that various
applications put very strong requirements on efficiency. In 1993, the National Institute of Standards
and Technology proposed the following digital signature algorithm (DSA) for use in its digital
signature standard (DSS).

Design of DSA

1. Global public-key components are chosen:

"* p - a random 1-bit prime, 512 < I < 1024, is chosen, and I is a multiple of 64;

"* q - a random 160-bit prime dividing p - 1 is chosen;

"* g = h(P-1)/q mod p is computed, where h is a random integer I < h < p - 1 such thatg $ 1.

2. User's private key is chosen:

0 x - a random integer, 0 < x < q, is chosen.

3. User's public key is computed:

o y.ggx mod p.

Signing algorithm - w is a plaintext.8

"* Choose a (pseudo)-random 0 < k < q (a user's 'per-message' secret number);

"* compute r = (gk mod p) mod q;

"* computes = k- 1 (w+xr) mod q, where kk- =1 (mod q).

"* (rs) is a signature.

Verification algorithm - (r, s) is a signature.

"* Compute z = s-1 mod q;

"* compute ul = wz mod q and u2 = rz mod q;

81n practice, one does not sign the original message w. First, a hash function h is applied to w, and then h(w) is
signed. A standard was also developed for hashing in 1993 by the National Institute of Standards and Technolog,
the so-called secure hash algorithm (SHA). This algorithm takes as an input any message that has fewer than 2M,
bits, and transforms it into a 160-bit message digest. Observe that signing algorithm uses no key.

494 N CRYPTOGRAPHY

0 compute v = (gUlyU2 mod p) mod q.

Test whether v = r. If yes, the signature is correct.

Exercise 8.5.2 Show that the DSA signature scheme is correct, and argue that it is sufficiently secure.

Moral: The history of cryptology is full of inventions of perfect ideas and unbreakable systems that
later turned out not to be so perfect and unbreakable. A good rule of thumb in cryptology is, therefore,
as in life, never to overestimate yourself, never to underestimate your opponents/enemies, and to
remember that human ingenuity cannot concoct an obstacle that human ingenuity cannot resolve.

8.6 Exercises
1. Decrypt the following messages encrypted using the CAESAR cryptosystem:

(a) EOXH MHDQV; (b) WHVW WAGOB; (c) JWUSBSFS; (d) UJQHLGYJSHZAW
HJGLGUGDK.

2. Decrypt the names of the microcomputers depicted in Figure 11.1.

3. Find a meaningful English text c, as long as possible, such that there are two meaningful
plaintexts w, and w2 that can both be encrypted by CAESAR as c.

4. Encrypt the plaintext POPOCATEPETL using the HILL cryptosystem and the matrix

/11 219) (23 7 3\
(a) 5 23 25 ; (b) 25 1 19

20 7 1 5 20 11

5. Encrypt the following plaintext using the PLAYFAIR cryptosystem: 'EVEN IN
CRYPTOGRAPHY SILENCE IS GOLDEN'.

6. Apply frequency analysis to decrypt the following cryptotexts encrypted using a CAESAR
cryptosystem: (a) ESPNLETYESPSLE; (b) SQUIQHICUJXETMQIJEEIYCFBUJERUKIUVKB.
(c) DRKYVDRKZTJTREYVCGJFCMVKYVNFICUJGIFSCVDJ;

7. Encrypt the plaintext 'ENCRYPT THE PLAINTEXT' using the AUTOCLAVE cryptosystem
and the key 'SALERNO'.

8.* Find a necessary and sufficient condition for a mapping to be realized by a Playfair square.
Show how this can be utilized in cryptoanalysis.

9. The cryptotext obtained using the AFFINE cryptosystem with c(x) = (7x + 10) mod 26 is
LJMKG MGMXF QEXMW. Determine the plaintext.

10. Decrypt the following messages obtained using an AFFINE cryptosystem:

(a) BIFUIMZLMJSVIZLZUUZD; (b) NXUSTUMFXUFJMCTGPOTGXWHOO.

EXERCISES U 495

11. Encrypt the following plaintexts using the AUTOCLAVE cryptosystem and a keyword: (a) 'THE
TRUTH IS MORE CERTAIN THAN PROBABLE' with the keyword 'OPTIMIST'; (b) 'THERE
IS NO ROYAL ROAD TO CRYPTOGRAPHY' with 'EUCLID'; (c) 'I CAME I SAW I CONQUER'
with 'CAESAR'; (d) 'THOSE WHO KNOW HOW TO WIN ARE MUCH MORE NUMEROUS
THAN THOSE WHO KNOW HOW TO MAKE A PROPER USE OF THEIR VICTORY' with
'POLYBIOS'.

12. Decrypt the following cryptotext given to the participants of EUROCRYPT '88 in Davos.

EXVILT AMSYMX EAKSSI KIRZMS
YEKDAV OSINAL PVITHE RRJMLO

OIEUSM GPLKSM ADAVOS LULRVK
SIXMTA IDAVOS

13. Among ten-letter English anagrams we have

ALGORITHMS - LOGARITHMS, ANTAGONIST - STAGNATION,

COMPRESSED - DECOMPRESS, CREATIVITY - REACTIVITY.

Find five others that make good sense.

14. Find the binary vector (bl, ... , b6), if it exists, such that s = b12 + b25 + b39 + b419 + b555 + b691,
for (a) s = 155; (b) s = 105; (c) s = 77; (d) s = 44.

15.* Show that the knapsack vector (2106,880,1320,974,2388,1617,1568, 2523,48,897) can be
obtained from a super-increasing vector by a strong modular multiplication.

16. For each n design a super-increasing vector of length n.

17. * Show that in the set of vectors { (a, b, c) I max{a, b, c} = 4} there are five super-increasing vectors.

18. Determine the following numbers: (a) 7-1 modulo 26; (b) 13-1 modulo 2436; (c) 144-' modulo
233.

19. Compute (a) 234' mod 11; (b) 2340 mod 31; (c) 2340 mod 341.

20. Factor the numbers: (a) 323; (b) 54,053; (c) 209,501; (d) 43,794,427;

21.* Estimate the number of possibilities for factoring n if n = pq and p, q are 150-bit primes.

22. Compute the secret exponent for the RSA cryptosystem with (a) p = 7, q = 11, e = 7; (b) p = 5,
q = 17, e = 3; (c) p = 7, q = 17, e = 5.

23. Let p = 11, q = 23. List all possibilities for encryption and decryption exponents for the RSA
cryptosystem.

24. Given an RSA cryptosystem with n = 43 x 59 and e = 13, (a) encrypt the plaintext
'CRYPTOGRAPHY'; (b) decrypt the cryptotext 0667 1947 0671.

25. ** Show that for every pair of primes p, q one can choose e V {1, 0(pq) + 1} such that we = w mod n
for all w and n = pq.

26. * Show that the number of blocks that are mapped into themselves with the RSA encryption is
(1 + gcd(e- 1,p - 1))(1 +gcd(e- 1,q- 1)).

496 U CRYPTOGRAPHY

27. Factor n if n and 0(n) are given as follows: (a) n = 5,767, 0(n) = 5,618; (b) n = 4,386,007,
0(n) = 4,382,136; (c) n = 3,992,003, 0(n) = 3,988,008.

28. Consider the following modification of the RSA cryptosystem. A large prime p is known to all
users. Each user chooses and keeps secret encryption and decryption exponents e and d such
that ed - 1 (mod p - 1). Communication goes as follows. A encrypts a plaintext w by computing
c = EA(W) = WeA mod p and sends it to B. B responds by sending c, = EB(c). Finally, A sends
DA (Cl) to B. Show that B is able to decrypt and analyse the security of the cryptosystem.

29. (LUC cryptosystem and Lucas numbers)** There is a whole family of Lucas numbers. They
have certain remarkable properties, and an interesting cryptosystem is based on them. Let p, q
be integers such that d = p2 - 4q = 0, and let a and j3 be such that a + f+ = p and af3 = q. Clearly,
a - 0 = V/-d. For n > 1 we define Lucas numbers Vn (p, q) as follows: Vn (p, q) = a" + 3fl. Show that
(a) V,(p,q) = pV,-lI(p,q) -qV,, 2 (p,q) for n > 2; (b) V,(p mod m,q mod m) = V,(p,q) mod m for
all m, n; (c) Vnk(p, 1) = V, (Vk(p, 1), 1) for all n,k; (d) if p,q are primes, n = pq, s(n) = lcm(p-
(dlp),q - (djp)), where (dip) is the Legendre symbol, and e,d are relatively prime to s(n), ed
1 (mod s(n)), then Ve(Vd(x, 1), 1) = Vd(Ve(x, 1), 1) = x for all x < n.

LUC cryptosystem. Encryption: c = Ve(w, 1) mod n; decryption: Vd(c, 1) mod n.

30. List all quadratic residues modulo (a) 23; (b) 37.

31. * In the El Gamal cryptosystem a large prime p is chosen, as well as an a G Zp and an x E Zp.
p, a and y = ax mod p form the public key, and x forms the trapdoor information. Zp is both
the plaintext- and the cryptotext-space. To encrypt a plaintext w, a random k is first chosen,
K =yk mod p is computed, and the pair cl = ak mod p and c2 = Kw mod p form the cryptotext.
Show how one can make decryption efficient when the trapdoor information is available.

QUESTIONS
1. Why is the PLAYFAIR cryptosystem much more secure than the CAESAR cryptosystem?

2. How can one slightly modify a mono-alphabetic substitution cryptosystem in such a way that
frequency counting does not help too much to make decryptions?

3. What is the maximum density of a knapsack vector of length n?

4. Why should the secret exponent d in the RSA cryptosystem have no common factors with p - 1
and q - 1?

5. Are the numbers 7r and e random?

6. Can we have one-way functions that cannot be inverted for any argument effectively?

7. Do you know some 'golden rule' for the design of public-key cryptosystems?

8. What are the main types of attacks that a cryptosystem has to be designed to detect, prevent
and recover from?

9. What are the advantages and disadvantages of randomized encryptions compared with
deterministic encryptions?

10. How could you formulate the properties which a good signature scheme should have?

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES E 497

8.7 Historical and Bibliographical References
Kahn (1967) is an interesting account of the exciting 4,000-year-old history of cryptology. There are
numerous books on classical cryptology. Among the older ones see Gaines (1939). Among more recent
ones see Bauer (1993) and also the introductory chapter in Salomaa (1990).

Estimations of the number of meaningful plaintexts presented in Section 8.2 are due to Hellman
(1977). To guess the size of the key-word in the case of poly-alphabetic substitution cryptosystems,
one can use the Kinski method; see Salomaa (1990).

For a more detailed description of DES see, for example, Salomaa (1990) and Schneier (1996).
DES was developed from the encryption algorithm LUCIFER; see Feistel (1973). For a history of DES
development, see Smid and Branstead (1988). The proof that the cryptosystem DES is not composite
is due to Campbell and Wiener (1992). The 0(2v" n) algorithm for computing discrete logarithms
is due to Adleman (1979).

For a detailed presentation of public-key cryptography see Salomaa (1990), Brassard (1988),
Schneier (1996); also the survey papers by Rivest (1990), Brickel and Odlyzko (1988) and Diffie (1988).
The last describes in detail the beginnings of public-key cryptography.

The knapsack cryptosystem and its variants, including the dense knapsack, and their
cryptoanalysis are presented in Salomaa (1990). Chor (1986) is the basic reference on the dense
knapsack. The whole story of the knapsack cryptosystem is described in the book by O'Connor
and Seberry (1987).

A detailed presentation and analysis of the RSA cryptosystem is in Salomaa (1990). Currently
the fastest deterministic algorithm for primality testing is due to Adleman, Pomerance and Rumely
(1983). Primality testing is discussed in detail by Kranakis (1986). The second result of Theorem 8.3.24
is due to DeLaurentis (1984). The result that any polynomial time algorithm for determining one bit
of cryptotext encrypted by RSA can be transformed into a polynomial time algorithm for breaking
RSA is due to Goldwasser, Micali and Tong (1982). In both cases see also Salomaa (1990) and Kranakis
(1986) for a presentation of these results. For the problem of how to break RSA in case several users
employ the same modulus, see Salomaa (1990). The LUC cryptosystem, discussed in Exercise 29, is
due to Smith and Lennon (1993); see Stallings (1995) for a presentation.

Basic results concerning relations between randomness and cryptography, cryptographically
strong pseudo-random generators and randomized encryptions are presented by Rivest (1990). The
result that a cryptographically strong pseudo-random generator exists if and only if a one-way
function exists is implicit in Yao (1982). The concepts of one-way predicate and polynomial-time secure
randomized encryption are due to Goldwasser and Micali (1984). Rabin's randomized cryptosystem
is taken from Rabin (1979), and the El Gamal cryptosystem from El Gamal (1985). Algorithm 8.4.5 is
from Brassard (1988). For a general method of designing cryptographically strong pseudo-random
generators, see Blum and Micali (1984). The randomized cryptosystem presented in Section 8.4 is due
to Blum and Goldwasser (1985).

The development of rigorous and sufficiently adequate definitions for the basic concepts and
primitives in cryptography is far from easy and perhaps a never ending story. For advances along
these lines see Goldreich (1989) and Luby (1996). In the last book the problem is addressed in depth for
making use of one-way functions to construct pseudo-random generators and other cryptographic
primitives.

The concept of digital signature is due to Diffie and Hellmann (1976) and discussed in detail by
Brassard (1988), Schneier (1996) and Mitchell, Pipper and Wild (1992). The DSS signature scheme was
developed on the basis of the signature schemes of El Gamal (1985) and Schnorr (1991).

For quantum cryptography see Brassard (1988) and Bennett, Bessette, Brassard and Salvail (1992).
The idea of quantum cryptography was born in the late 1960s (due to S. Wiesner). The first successful
quantum exchange took place in 1989. In 1994 British Telecom announced the completion of a fully
working prototype capable of implementing quantum key distribution along 10km of optical fibre.

Protocols

INTRODUCTION
Attempts to prove the security of cryptographic systems have given rise to a variety of important and
deep concepts and methods with surprising practical and theoretical applications and implications.
This chapter deals with these concepts and techniques. First, some examples of cryptographic
protocols are presented that solve apparently impossible communication problems. Corresponding
abstract concepts of interactive protocols and proof systems are then introduced, which give a
radically new view of how to formalize one of the key concepts of modem science - evidence.

New views of interactions allow one to see, in a sense, such powerful complexity classes as
PSPACE and NEXP as representing classes of problems having feasible solutions. The related
concept of zero-knowledge proofs is also the basis for implementing perfect security of cryptographic
protocols. One of the surprising applications of the ideas coming from the formalization of interactions
is in the area of program checking, self-testing and self-correcting. A radically new approach to these
problems, based on randomness, is suggested.

This chapter also explores how dramatic implications can be brought by a new paradigm, or a
combination of new paradigms - this time by interactions and randomization.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. several cryptographic protocols and primitives for solving apparently impossible
communication problems;

2. basic concepts of interactive proof system;

3. basic complexity results, including Shamir's theorem showing the enormous computational
power of interactions;

4. the concept of zero-knowledge proofs and methods for designing and analysing such proofs;

5. new approaches to one of the fundamental concepts of science - evidence;

6. a new randomized and interactive approach to program (results) checking, self-testing and
self-correcting.

500 U PROTOCOLS

Faith is the substance of things hoped for,
the evidence of things not seen.

Hebrews 11:1

A variety of cryptographic primitives, operators and interactive protocols has been developed that
allow two or more parties to develop trust that their communication, co-ordination/co-operation
has the desired properties, despite the best efforts of adversaries or untrusted parties. This permits
them to realize successfully a variety of important, though seemingly impossible, communication
and co-operation tasks.

Attempts to achieve perfect secrecy, minimal disclosure of knowledge or perfect protection
of co-operation in a large variety of communication and co-operation tasks have also led to the
emergence of a new methodology - the so-called interactive and zero-knowledge protocols. This has
initiated a new approach to one of the most fundamental concepts of science - evidence. Interactive,
zero-knowledge, transparent and other new types of proofs represent radical ways of formalizing
our intuitive concepts of evidence and security. New understanding has developed of the power of
interactions and randomness, with applications in such seemingly remote areas as approximation
algorithms and program checking and self-correcting.

9.1 Cryptographic Protocols

Cryptographic protocols are specifications regarding how parties should prepare themselves for a
communication/interaction and how they should behave during the process in order to achieve their
goals and be protected against adversaries. It is assumed that all the parties involved in a protocol
know and follow it fully. The parties can be friends who trust each other or adversaries who do not trust
each other. Cryptographic protocols often use some cryptographic primitives, but their goals usually
go beyond simple security. The parties participating in a protocol may want to share some of their
secrets in order to compute together some value, generate jointly random numbers, convince each
other of their identity, simultaneously sign a contract or participate in secret voting. Cryptographic
protocols that accomplish such tasks have radically changed our views of what mutually distrustful
parties can accomplish over a network.

Protocols can be described on two levels: on an abstract level, assuming the existence of basic
cryptographic operators with certain security properties (secret keys, encryptions, decryptions,
one-way functions or one-way trapdoor functions, pseudo-random generators, bit commitment
schemes, and so on); and on a lower level, with concentration on particular implementations of
these operators. We concentrate here on the abstract level.

Randomization and interactions are two essential features of interactive protocols. In designing
them, it is assumed that each party has its own private, independent source of randomness.

In order to show the potential of interactions, we present first several examples of communication
problems and protocols for two-party and multi-party communications.

Example 9.1.1 Let us consider the following simple protocol, which employs a public-key cryptosystem, for
sending and acknowledging receipts of messages. (A and B stand here for strings identifying users.)

1. Alice sends the triple (AeB(w),B) to Bob.

2. Bob decrypts w using his decryption algorithm, and acknowledges receipt of the message by sending
back the triple (B, eA(w),A).

CRYPTOGRAPHIC PROTOCOLS U 501

Is the protocol in Example 9.1.1 secure, or rather, what kinds of attack must be considered in order
to explore the problem of security of cryptographic protocols?

There are various types of attacks against cryptographic protocols. In a passive attack the attacker
tries to obtain information being transmitted without altering the communication and the protocol.
In an active attack, the attacker (tamperer or man-in-the-middle) destroys or changes information
being transmitted or starts to send and receive his own messages. In the case that the attacker is one
of the parties involved, we speak about a cheater.

For example, in the case of the protocol in Example 9.1.1 an active eavesdropper C may intercept
the triple being sent in Step 1 and forward to Bob the triple (C, eB (w), B). Not realizing the danger,
Bob responds, following the protocol, by sending (B, ec(w), C), so now C is able to learn w.

Exercise 9.1.2 Consider the following communication protocol in which Alice and Bob use a public-key
cryptosystem, with the encryption and decryption functions operating on integers, to send a message w.

1. Alice sends Bob the pair (eB(eB(w)A),B).

2. Bob uses his decryption algorithm dB to find A and w, and acknowledges receipt of the message
by sending Alice the pair (eA(eA(w)B),A).

A and B are here strings identifying Alice and Bob. eB(w)A is the message obtained by concatenating
eB(w) and A. Show how an active tamperer could intercept this protocol to learn w.

Our first problem is a variant of the identification problem.

Protocol 9.1.3 (Friend-or-foe identification) Alice, who shares a cryptosystem and a secret key with Bob,
is engaged in a communication with somebody, and wants to make sure that the person she is communicating
with really is Bob. To verify this, Alice uses the following challenge-response protocol.

1. Alice generates a random integer r and sends r to the communicating party.

2. The communicating party encrypts r using the shared secret key, and returns the resulting cryptotext c.

3. Alice compares the cryptotext c with the one she gets by her encryption of r. If they agree, she is convinced
that the other party is indeed Bob.

This protocol seems to be more secure than asking the other party to send the shared key - an
active tamperer could intercept it and later pretend to be Bob.

Example 9.1.4 (Man-in-the-middle attack) To protect a communication against an active tamperer is one
of the difficult problems of cryptography. Here is a simple way in which a tamperer, usually called Mallet (or
Mallory), can simulate Bob when communicating with Alice, and Alice when communicating with Bob. His
attacks work as follows.

1. Alice sends Bob her public key. Mallet intercepts the message and instead sends his public key to Bob.

2. Bob sends Alice his public key. Mallet intercepts, and sends Alice his public key.

Now, whenever Alice sends a message to Bob, encrypted in 'Bob's' public key, Mallet intercepts it. Since the
message is actually encrypted using his public key, he can decrypt it, change it, and send it to Bob using his
public key. In a similar way, Mallet can intercept and change messages sent by Bob to Alice.

502 U PROTOCOLS

Exercise 9.1.5 The interlock protocol has a good chance offooling the man-in-the-middle attacker.
Here are its first four steps.

1. Alice sends Bob her public key.

2. Bob sends Alice his public key.

3. Alice encrypts her message using Bob's public key, and sends half of the encrypted message to
Bob.

4. Bob encrypts his message using Alice's public key, and sends half of the message to Alice.

Finish the design of the protocol in such a way that Mallet cannot get the messages which Alice and Bob
send to each other. Explain why.

Bit commitment problem. Two parties, located far apart, want to agree without the assistance
of a trusted referee on randomly chosen bit. More precisely, Bob wants Alice to choose a bit and be
committed to it in the following sense: Bob has no way of knowing what Alice has chosen, and Alice
has no way of changing her commitment once she has made it, say after Bob announces his guess as
to what Alice has chosen.

This is a very basic communication problem with many applications. For example, two parties,
located far apart, want to agree on a random sequence. Popularly, this problem is called the
coin-flipping over the telephone problem. It was formulated by Manuel Blum (1982) with the
following sad story behind it. Alice and Bob have divorced. They do not trust each other any more
and want to decide, communicating only by telephone, by coin-tossing, who gets the car. There are
various protocols for achieving this. Two of them will now be considered.

Protocol 9.1.6 (Coin-flipping by telephone, I) Alice sends Bob encrypted messages 'head' and 'tail'. Bob,
not able to decrypt them, picks one and informs Alice of his choice. Alice then sends Bob the encryption procedure
(or a key for it).

There is a general scheme, which seems to be good enough for a protocol to solve the coin-flipping
by telephone problem, based on the assumption that both Alice and Bob know a one-way functionf.
Alice chooses a random x and sendsf(x) to Bob. He guesses some '50-50 property' of x, for example,
whether x is even, and informs Alice of his guess. She tells him whether the guess was correct. (Later,
if necessary for some reason, she can send x to Bob.)

Is this protocol secure? Can either of them cheat? The protocol looks secure, because Bob has no
way of determining x fromf(x). However, the situation is actually more complicated. The security of
the protocol depends a lot on which of the potential one-way functions is chosen. An analysis shows
the difficulties one can encounter in making communication protocols secure.

Indeed, it could happen that Alice knows two x, x, and x2, such thatf(xl) =f(x2) and one of
them is even and the second odd! In such a case Alice could easily cheat! Bob could also cheat were
he able to find out the parity of x. (Note that the fact that he cannot determine x does not imply that
he cannot determine the parity of x.)

The following secure protocol for the bit commitment problem is based on the fact that
computation of square roots modulo the product of two primes is a trapdoor function.

CRYPTOGRAPHIC PROTOCOLS U 503

Protocol 9.1.7 (Coin-flipping by telephone, II)

1. Alice chooses two large primes p, q, sends Bob n = pq , and keeps p, q secret.

2. Bob chooses a random number y c {1, . . . [j }, and sends Alice x = y2 mod n.

3. Alice computes four square roots (xi, n - xi, x2, n - x2) of x. (Alice can compute them because she knows
p and q.) Let x' = min{xi,n - x,}, x2 = min{x2,n - x2}. Since y E {1, . . . , i), either y = xi or
y = x'. Alice then guesses whether y = x' or y = x' and tells Bob her choice (for example, by reporting
the position and the value of the left-most bit in which x' and x' differ).

4. Bob tells Alice whether her guess was correct (head) or not correct (tail).

Later, if necessary, Alice can reveal p and q, and Bob can reveal y.

Observe that Alice has no way of knowing y, so her guess is a real one. Were Bob able to cheat
by changing the number y after Alice's guess, then he would have both x• and x!2; therefore he could
factorize n. To avoid this, Alice tells in Step 3 only one bit, rather than the entire x' or x'.

Exercise 9.1.8* Consider the following protocol for the bit commitment problem. (1) Alice randomly
chooses large primes p,q, computes n = pq, chooses x Eu Z*, computes y = x2 mod n,z = y2 mod n
and sends Bob n and z. (2) Bob announces his guess: that is, whether y is even or odd. (3) Alice lets Bob
know x, y, and Bob verifies that y = x2 mod n,z = y2 mod n. Is this protocol correct and secure? If not,
how can one change it so that it becomes secure?

Partial disclosure of secrets. There are k parties, P 1, . . . , Pk, and they are to compute the value
of a functionf of k arguments. Assume that the party Pi knows only the ith argument a,. The task is
to design a protocol that allows the parties to compute together f(a, ... , ak) in such a way that at
the end of the communication each party Pi knows the value (a1, ... ,ak), but no party gives away
any information whatsoever concerning his/her argument ai, except for information one can learn
knowing only ai andf(a, , ak).

There are two popular variants of the problem. Two millionaires want to engage in a conversation
that will allow them to find out who is richer (which is an understandable wish), without disclosing
any information about their wealth (which is an even more understandable wish). Another variant:
Alice and Bob want to find out who is older without disclosing any other information about their
ages.

The following protocol, based on an arbitrary public-key cryptosystem, solves the problem. We
assume, (though even this may not be very realistic) that neither Alice nor Bob is older than 100.
Again we assume again that eA is the public encryption key of Alice and dA is her secret decryption
key. Assume also that i is the age of Alice and j is that of Bob.

Protocol 9.1.9 (Age difference finding)

1. Bob chooses a large random integer x, computes k = eA(x), and sends Alice s = k -j.

2. Alice first computes numbers

yU=dA(s+u) for 1<u<100,

504 U PROTOCOLS

then chooses a large random prime p, computes numbers

zu=yu modp for 1 <u<100, (9.1)

and verifies that for all u $ v
jz, -zv Z 2 and z $ 0. (9.2)

If this is not the case, Alice chooses a new p and repeats the computations in (9.1), and checks (9.2) again.
Finally, Alice sends Bob the following sequence (the order is important!):

Zh . . . ,Zi,Zi+ I + 1,... ,Z1l0 + 1,p. (9.3)

3. Bob checks whether the j-th number in this sequence, zý, is congruent with x mod p. If yes, he knows
that i > j; otherwise he knows that i < j and informs Alice.

Correctness of the protocol: because of the condition (9.2), any two of the first 100 numbers in the
sequence (9.3) are different. Moreover,

i>j => z,=zj-yj=dA(k)=x (modp);

i<j ý z;=z)+l zj..yj-dA(k)=x (modp).

Exercise 9.1.10 Illustrate the age differencefinding protocol by considering the RSA cryptosystem with
p = 11, q = 5, e = 7, d = 23. Assume that i = 17,j = 20, and the maximum age is 21 and Bob chooses
x = 39 in Step 1.

Example 9.1.11 Of interest and importance also is an 'inverse' problem to that of partial disclosure of secrets
- a secret sharing problem. A 'secret' s E N should be 'distributed' among n parties in such a way that any
t of them, for afixed t, can determine s, but no t - 1 of them is able to do so.

The problem has a simple and elegant solution that is based on the well-known fact that a polynomial of
degree t - 1 is uniquely determined given its t points.

A solution of the above secret sharing problem: choose randomly a polynomial p of degree t - 1 such that
p(O) = s. Choose randomly n integers a,, . .. ,a,, with ai $ aj for i 5 j and such that a, $ O for all i, and send
to the party ai the pair (ai,p(ai)).

There are many other interesting communication problems for two parties that have been solved
by designing secure communication protocols: for example, contract signing (both parties sign the
contract, but no party obtains the other party's signature before giving up his own) and secret voting
(in which every voter's vote remains private and every voter can be sure that the vote-counting was
correct).

Various communication primitives have also been identified and protocols for them developed.
They can now be used to design protocols for other communication problems. The bit commitment
problem is one of them. Any solution to the following, strange-looking communication problem was
shown to be a sufficiently. strong primitive to design protocols for any two-party communication
problem.

Oblivious transfer problem. Design a protocol for sending a message from Alice to Bob in such
a way that Bob receives the message with probability ½ and garbage with probability 1. Moreover, at

CRYPTOGRAPHIC PROTOCOLS U 505

the end, Bob knows whether he got a message or garbage, but Alice has no idea which of them Bob
has received.

One popular interpretation is that Alice knows a secret and wants to send it to Bob in such a way
that he gets it with probability ½, and he knows whether he got it, but Alice has no idea whether
he really received it. A modified version of this problem is that Alice has several secrets, and Bob
wants to obtain one of them in such a way that only he knows which one he has received. (Investigate
applications!)

The following protocol is based on the fact (see Theorem 1.8.16) that knowledge of two different
square roots of an integer modulo n allows one to factor n.

Protocol 9.1.12 (Oblivious transfer)

1. Alice chooses two large primes p and q and sends n = pq to Bob.

2. Bob chooses a number x and sends y = x 2 mod n to Alice.

3. Alice computes four square roots ±x1, ±x2 of y modulo n, and sends one of them to Bob. (Since she
knows the factorization of n, she can do it. She has no idea, however, which of them is x.)

4. Bob checks whether the number he got is congruent with x. If yes, he has received no new information.
Otherwise, Bob has two different square roots modulo n, and can therefore factor n. Alice has no way of
knowing whether this is the case.

Exercise 9.1.13 * Alice knows secrets si, .. Sk - each a sequence of bits - that are answers to important
questions. Assume that Alice publicizes these questions. Bob wants to buy one of the secrets but does not
want Alice to know which. Design a protocol that achieves such a secret buying of secrets and is secure
against a passive adversary. (Hint: in the first step Alice sends Bob a trapdoor one-way function, but
keeps the trapdoor information necessary to compute its inverse secret.)

Exercise 9.1.14 ** There is another protocol for selling secrets s , Sk, in which a commutative
cryptosystem is used and the first two steps are as follows.

1. Bob sends Alice random bit sequences yi, ,yk of the same length as the secrets sj, . Sk.

2. Alice sends Bob the bit sequence zj = eA(si Byj), j = 1 k.

Finish the design of the protocol, and analyse its security.

To show the existence of powerful methods of proving security of cryptographic protocols, several
new fundamental concepts concerning interactions, protocols and proofs have been developed, with
impacts extending far beyond the original motivation. With these new concepts and related results
we deal in the next sections.

506 U PROTOCOLS

input output
tape tape input tape

haread-only head wieol

headerwrite-onlye

read-only
write-only

head • head

(a) communication tapes (b) communication tapes

Figure 9.1 An interactive Turing machine and an interactive protocol

Exercise 9.1.15 (Poker playing by telephone) Alice and Bob want to play a simple variant of poker,

with five cards, by phone, without any third party acting as an impartial judge. Both of them have at

their disposal a commutative cryptosystem for which neither decryption nor encryption functions are

published. Show how Alice and Bob can play so that the following conditions are satisfied: (a) All hands

(sets offive cards) are equally likely. (b) The hands of Alice and Bob are different. (c) Both players know

their own hands but have no information about their opponents' hands. (d) It is possible for each player

to find out eventually if the other player cheats.

9.2 Interactive Protocols and Proofs

Very often, when new fundamental ideas are developed in computing and basic problems are

investigated, Turing machines are the proper framework for setting up the corresponding formal

concepts. Formalization of the ideas concerning security and evidence, motivated by cryptographic

problems and solutions, is such a case.

Definition 9.2.1 An interactive Turing machine (ITM) is a Turing machine with a one-way, read-only

input tape, a one-way, read-only random tape, a one-way, read-only communication tape, a one-way, write-only

communication tape, a one-way, write-only output tape and several working tapes (see Figure 9.la).

At the begnninig of each computation of an ITM, the random tape is expected to be filled with

a new random infinite sequence of bits. (Coin-tossing in an ITM is simulated by reading the next

bit from its (private) random tape.) The content of the read-only (write-only) communication tape is

INTERACTIVE PROTOCOLS AND PROOFS U 507

considered to be the message which the machine receives (sends). An interactive Turing machine is
a building block for the following formal model of interactions.

Definition 9.2.2 An interactive protocol is a pair (Mp,Mv) of interactive Turing machines, with Mv
being polynomial time bounded, that have a common input tape and share communication tapes as follows: the
communication tape that is the read-only (write-only) tape for one of the machines is the write-only (read-only)
tape for the other. Me is usually called the prover or Peggy, and Mv the verifier or Vic.

In an interactive protocol the verifier and the prover work in turns, also called moves. The verifier
starts an interaction. At any moment of the discrete time, only one of the machines is active. When
one of them is active it performs, on the contents of its accessible tapes, the usual Turing machine
computations. What one of the machines writes on its write-only communication tape is considered
to be the message for the other machine. The ith message of Mv (of Mp) is the message Mv (Mp)
writes on its communication tape during its i th move. Any two consecutive moves, verifier -* prover
- verifier or prover -* verifier -* prover, are called a round. A machine terminates computation by
sending no message. Mv accepts (rejects) the initial contents of the input tape when Mv ends the
computation in the accepting (rejecting) state ACCEPT (REJECT). This is its output. The history of
a computation (communication) is the sequence h, = (vi,pi,. .. ,v,,p,), where vi (pi) denotes the
message sent from the verifier (the prover) during its ith move and p, = 6.

Both Mv and Mp are probabilistic Turing machines in the sense that the way their computations
proceed may depend also on the contents of their random tapes. The prover has unlimited
computational power. The verifier has to work in polynomial time with respect to the length of the
input. The sum of computation times during all active steps of the verifier is counted. This implies, of
course, that for the prover it makes sense to write only polynomially long messages on the common
communication tape. The verifier could not even read longer messages in the polynomial time.

Let (Mp,Mv)(x) denote the verifier's output for an input x. For every x, (Mp,Mv)(x) is a random
variable on the space of all possible computations of the protocol (Mv,Mp) with respect to private
random bits.

For any interactive protocol (Mp, Mv), we denote by (Me., Mv) the interactive protocol in which
the verifier Mv behaves exactly as in the original protocol, but the prover computes the function
specified by Mp,. This is said to be a 'cheating prover' if Mp. computes differently from My. Similarly,
we denote by (Mp, Mv*) the interactive protocol in which the prover behaves exactly as in the original
protocol but the (potentially cheating) verifier can behave differently. The potentially cheating prover
is limited only in that the messages she sends must have polynomially bounded size with respect to
the length of the input. The potentially cheating verifier is limited to randomized polynomial time
computations.

9.2.1 Interactive Proof Systems

Our formal concept of an interactive protocol, expressed in terms of Turing machines, captures an
intuitive idea of interactions, and forms a basis for investigating the power of interactions.

As usual, when a new concept of computation is developed, the most basic question to investigate
is how powerful it is for solving decision problems. This is usually formalized in terms of language
recognition. In the case of interactive protocols this leads to the following definition.

Definition 9.2.3 The interactive protocol (Mp,Mv) recognizes the language L #'for all x e L

Pr((Mp,Mv)(x) = ACCEPT) > 2.
3,

508 * PROTOCOLS

and for all x • L and all provers Mp,

Pr((M*,Mv)(x) = REJECT) > 2

If there is an interactive protocol for a language L, we say also that L has an interactive proof system.

There are several ways of viewing such an interactive protocol.

1. The goal of any prover can be seen as to convince the verifier that x c L, no matter whether this
is true. The goal of the verifier is that no prover should be able to convince him that x E L if this
is not true or that x V L if this is not true. However, he is willing to tolerate a small probability
of getting fooled. (However, this does not imply that if x E L, then for any prover the verifier
accepts with high probability.)

2. The term 'proof system' is used here in the following sense. By 'theorem' we understand a
truth statement concerning specific objects: for example, that a certain x is in a certain language
L or that a specific graph Go is 3-colourable, or that it is Hamiltonian.

A classical formal proof of a concrete statement, for example, xo G L0 for a specific x0 and
L0, is a formal reasoning showing the validity of such a theorem that can be verified (even
mechanically) without doubts. An interactive proof system for a particular language L0 can
be used for any specific x to produce statistical evidence regarding whether x E L0 or not. The
more times we apply the proof system to the same x, the more sure we can be whether x E L0
or not.

As an example, we show now a simple and fast interactive proof system for what is
computationally a very hard problem, the graph nonisomorphism problem, which is not known
to be in NP.

NONISO = {(Go,G 1)IGo= (V,Eo)0and G 1 = (V,E 1)

are nonisomorphic graphs; that is, Go t G,1

Protocol 9.2.4 (Graph nonisomorphism) 1. The verofler, Vic, reads the input (GO, G1) and s bits
bl, . . . , b, from his random tape. s is here a security parameter that guarantees, as will be shown
later, a certain probability of the correctness of the outcome. Vic then designs for 1 < i < s a graph
Hi = (V,Fi), by deriving Fi from Eb, by taking a random permutation of V, and sends all Hi to the
prover, Peggy. He asks her to determine for all I < i < s, which of the two given graphs, Go and G1 was
used to design Hi. (Observe that Gbi • Hi.)

2. Peggy also reads the input (Go, G1) and checks first whether these two graphs are isomorphic. (Since she
has unlimited computational power, this is no problem for her.) If Go and G1 are isomorphic, Peggy reads
next s bits ci, i = 1, ... , s, from her private random tape and sends them to Vic as the answer (without
even looking at the inputs Hi she got from Vic - it makes no sense for her to do so, because she has no
way offinding out which of the graphs Go or G1 was used to design Hi). If (Go, G1) are not isomorphic,
Peggy verifies for each 1 < i < s whether Hi -- Go or Hi -- G1 and reports the results to Vic as a sequence
ofs bits ci, 1 < i < s, where ci = 0 if and only #Go -- Hi.

3. Vic compares bi and ci for all i, I < i < s. If there is an io such that bio = cio, then Vic rejects the input
(GO, G1), otherwise he accepts.

INTERACTIVE PROTOCOLS AND PROOFS U 509

The correctness proof:. If Go t G1, then Peggy can determine whether Hi -2 Go or Hi - G1, and
therefore bi = ci for 1 < i < n.

If Go • G1, which Peggy can find out, there is no way for Peggy to know bi, and therefore the
probability that ci = bi is 1. The probability that in the case Go 0 - G1 there is no i such that bi 7 ci is
2-s.

Exercise 9.2.5* Design an interactive proof system for the language Q = {(x,y) Iy E QNRx} in which
the verýier can recognize Q using only one interaction with the prover. (Hint:for lxi = n, Peggy gets n
random bits bi, . . . ,b, and n random integers z, ... ,z,, 0 < zi < x, gcd(x,zi) = 1 ..)

In the following we address four basic questions about interactive protocols:

1. Which languages have interactive proofs?

2. How many interactions are needed for the prover to convince the verifier?

3. How much knowledge does the verifier get during the interaction with the prover?

4. How can we apply the idea of interactive proof systems?

9.2.2 Interactive Complexity Classes and Shamir's Theorem

Protocol 9.2.4 is very simple; it 'proves' in two rounds. The number of rounds, as we shall see, is an
important complexity measure of proof systems. The following definition gives the basic concepts.

Definition 9.2.6 (1) Let g : N -- N be a nondecreasing function. An interactive proof system (Mp,Mv) for
a language L C {0, 1}* has a round complexity bounded by g iffor every x E L the number of rounds of any
computation of (Mp,Mv) on x is bounded from above by g(IxI).

(2) Denote by IP~g(n)] the family of languages that have an interactive proof system with the round
complexity bounded by g, and denote by

IP = UlP[ni]

i>O

the family of languages acceptable by interactive proof systems with a polynomial number of rounds
(interactions) with respect to the length of the input.

For instance, IP[2] is the class of languages for which there exists an interactive proof system of the
following type. On an input x the verifier flips the coin, makes some computations on the basis of
the outcome and sends a message to the prover. The prover, after doing whatever he does, sends a
message back to the verifier - this is the first round. The verifier again flips the coin, computes and
accepts or rejects the input - the second round. Observe that for languages in NP there are certificates
verifiable in polynomial time, and therefore NP C IP[2] - the prover sends a cerificate, and the verifier
verifies it. On the other hand, clearly IP[1] = BPP.

Basic relations between these new and some old complexity classes are readily seen.

Theorem 9.2.7 For any nondecreasingfunction g: N -* N, with g(n) > 2for all n and any 1 < n,

P C NP C IP[2] C IP[g(n)] IP[g(n + 1)] C... C IP C PSPACE.

510 U PROTOCOLS

The validity of all but the last inclusion is trivial. With regard to the last inclusion, it is also fairly
easy Indeed, any interactive protocol with polynomially many rounds can be simulated by a PSPACE
bounded machine traversing the tree of all possible interactions. (No communication between the
prover and the verifier requires more than polynomial space.)

The basic problem is now to determine how powerful are the classes IP[k], IP[nk], especially the
class IP, and what relations hold between them and with respect to other complexity classes. Observe
that the graph nonisomorphism problem, which is not known to be in NP, is already in IP[2]. We
concentrate now on the power of the class IF.

Before proving the first main result of this section (Theorem 9.2.11), we present the basic idea and
some examples of so-called sum protocols. These protocols can be used to make the prover compute
computationally unfeasible sums and convince the verifier, by overwhelming statistical evidence, of
their correctness.

The key probabilistic argument used in these protocols concerns the roots of polynomials. If pi (x)
and p2 (x) are two different polynomials of degree n, and ca is a randomly chosen integer in the range
{O, . . . ,N}, then

n

Pr(pl(o,) = p2(a)) •7 :, (9.4)

because the polynomial pi (x) - p2 (x) has at most n roots.

Example 9.2.8 (Protocol to compute a permanent) The first problem we deal with is that of computing
the permanent of a matrix M = {mijI}n _,; that is,

n

perm(M) = Z mi,(i),

where a goes through all permutations of the set {1, 2, n}. (As already mentioned in Chapter 4, there is
no polynomial time algorithm known for computing the permanent.)

In order to explain the basic idea of an interactive protocol for computing perm(M), let us first consider
a 'harder problem' and assume that the verifier needs to compute permanents of two matrices A, B of degree
n. The verifier asks the prover to do it, and the prover, with unlimited computational power, sends the verifier
two numbers, PA and PB, claiming that PA = perm(A) and PB = perm(B). The basic problem now is how the
verifier can be convinced that the values PA and PB are correct. He cannot do it by direct calculation - this is
computationally unfeasible for him. The way out is for the verifier to start an interaction with the prover in
such a way that the prover will be forced to make, with large probability, sooner or later, afalse statement, easily
checkable by the verifier, if the prover cheated in one of the values PA and PB. Here is the basic trick.

Consider the linear function D(x) = (1 - x)A + xB in the space of all matrices of degree n. perm(D(x)) is
then clearly a polynomial, say d(x), of degree n and such that d(O) = perm(A) and d(1) = perm(B).

Now comes the main idea. The verifier asks the prover to send him d(x). The prover does so. However, if
the prover cheated on PA or PB, he has to cheat also on the coefficients of d(x) - otherwise the verifier could
immediately find out that either p(A) : d(O) or p(B) # d(1). In order to catch out the prover, in the case of
cheating, the verifier chooses a random number a E {O, . . . ,N}, where N > n3, and asks the prover to send
him d(ce). If the prover cheated, either on PA or on PB, the chance of the prover sending the correct values of
d(c) is, by (9.4), at most -.

In a similar way, given k matrices A 1 Ak of degree n, the verifier can design a single matrix B of degree
n such that ifthe prover has cheated on at least one of the values perm(Al) perm(Ak), then he will have
to make, with large probability, afalse statement also about perm(B).

INTERACTIVE PROTOCOLS AND PROOFS 3 5 11

Now let A be a matrix of degree n, and Al,, 1 < i < n, be submatrices obtained from A by deleting thefirst
row and the i-th column. In such a case

n

perm(A) = l,iperm(Al,i). (9.5)
=-1

Communication in the interactive protocol now goes as follows. The verifier asks for the values perm(A),
perm(Al,1), . . . ,perm(A ,n), and uses (9.5) as a first consistency check. Were the prover to cheat on perm(A),
she would also have to cheat on at least one of the values perm(Ail,), . . . perm(Al,,). Using the idea presented
above, the verifier can now choose a random number a E {O ... ,N}, and design a single matrix A' of degree
n - 1 such that ýf the prover cheated on perm(A), she would have to cheat, with large probability, also on
perm(A'). The interaction continues in an analogous way, designing matrices of smaller and smaller degree,
such that were the prover to cheat on perm(A), she would also have to cheat on permanents of all these smaller
matrices, until such a small matrix is designed that the verifier is capable of computing directly its permanent and
so becoming convinced of the correctness (or incorrectness) of the first value sent by the prover. The probability

that the prover can succeed in cheating without being caught is less than !-, and therere negligible small if
N is large enough. (Notice that in this protocol the number of rounds is not bounded by a constant; it depends
on the degree of the matrix.)

Example 9.2.9 We demonstrate now the basic ideas of the interactive protocolfor the so-called #SAT problem.
This is the problem of determining the number of satisfying assignments to a Boolean formula F(xl, . x,)
of n variables.

As the first step, using the arithmetization

xAy--xy, xVy--1 -(1-x)(1-y), xc--1-x (9.6)

(see Section 2.3.2), a polynomial p(xi, . . . ,x•) approximating F(xl, ,xn) can be constructed in linear time
(in length ofF), and the problem is thereby reduced to that of computing the sum

#SAT(F) = E 1 " . p(x, xn). (9.7)
x1 Ox2 0 Xn=O

For example, i F(x,y,z) = (x V y V z) (x V y V z), then

p (x,y, Z) X) (1- (-x)(1 y(1- Z)) (1- 1 x)y(1- Z)).

We show now the first round of the protocol that reduces computation of the expression of the type (9.7)
with n sums to a computation of another expression ofa similar type, but with n - 1 sums. The overall protocol
then consists of n - I repetitions of such a round.

The veriier's aim is again to get from the prover the resulting sum (9.7) and to be sure that it is correct.
Therefore, the verifier asks the prover not only for the resulting sum w of(9.7), but also for the polynomial

1 1

p. (x) . = E..... .p(.. x.)
x2=0 x1=O

The verifier first makes the consistency check, that is, whether w = pi (0) + pi (1). He then chooses a random
r E {0 , N}, where N > n3 , and starts another round, the task of which is to get from the prover the correct
value of pl (r) and evidence that the value supplied by the prover is correct. Note that the probability that the
prover sends a false w but the correct p, (r) is at most 2. After n rounds, either the verifier will catch out the
prover, or he will become convinced, by the overwhelming statistical evidence, that w is the correct value.

512 * PROTOCOLS

Exercise 9.2.10 Show why using the arithmetization (9.6) we can always transform a Boolean formula
in linear time into an approximating polynomial, but that this cannot be done in general in linear time
if the arithmetization x V y -- x + y - xy is used.

We are now in a position to prove an important result that gives a new view of what can be seen
as computationally feasible.

Theorem 9.2.11 (Shamir's theorem) IP = PSPACE.

Proof: Since IP C PSPACE (see Theorem 9.2.7), in order to prove the theorem, it is sufficient to show
that there exists a PSPACE-complete language that is in IP: that is, the language for which there is
an interactive proof system with the number of rounds bounded by a polynomial. We show that this
holds for the so-called quantified Boolean formulas satisfiability problem (see also Section 5.11.2).
This is the problem of deciding whether a formula

QQ ... Q F(xi, . . . ,x,) (9.8)
x1 x 2 xn

is valid, where F is a Boolean formula, and each Qi is either an existential or a universal bounded
quantifier, bounded to the values 0 and 1.

The basic idea of the proof is simple: to use an arithmetization to reduce the decision problem
(9.8) to a 'sum problem', and then to use a 'sum protocol', described above.

Unfortunately, there is a problem with this idea. A 'natural arithmetization' of the quantifiers,
namely,

VxT(x) -* T(0)T(1), 3xT(x) -* T(O) + T(1) - T(0)T(1),

can double, for each quantifier, the size of the corresponding polynomial. This can therefore produce
formulas of an exponential size, 'unreadable' for the verifier.

Fortunately, there is a trick to get around this exponential explosion. The basic idea consists of
introducing new quantifiers, notation R. If the quantifierR is applied to a polynomial p, it reduces

x x

all powers of x, xi,to x. This is equivalent to taking p mod (x2
- x). Since 0 k = 0 and 1k ' 1 for any

integer k, such a reduction does not change the values of the polynomial on the set {0,1}. Instead of
the formula (9.8), we then consider the formula

QRQRRQRRRQ... QR.. . R p(xi, ... x,,), (9.9)
X1 Xl X2X1 X2 xlX 2X 3 4 Xn X] Xn

where p(xj,. x,) is a polynomial approximation of F that can be obtained from F in linear time.
Note that the degree of p does not exceed the length of F, say m, and that after each group or

R-quantifier is applied, the degree of each variable is down to 1. Moreover, since the arithmetization of
quantifiers 3 and V can at most double the degree of each variable in the corresponding polynomials,
the degree of any polynomial obtained in the arithmetization process is never more than 2 in any
variable.

The protocol consists of two phases. The first phase has the number of rounds proportional to the
number of quantifiers in (9.9), and in each two rounds a quantifier is removed from the formula in
(9.9).

The strategy of the verifier consists of asking the prover in each round for a number or a polynomial
of one variable, of degree at most 2, in such a way that were the prover to cheat once, with large

INTERACTIVE PROTOCOLS AND PROOFS U 513

probability she would have to keep on cheating, until she gets caught. To make all computations
reasonable, a prime P is chosen at the very beginning, and both the prover and the verifier have to
perform all computations modulo P (it will be explained later how to choose P). The first phase of
the protocol starts as follows:

1. Vic asks Peggy for the value w (0 or 1) of the formula (9.9). {A stripping of the quantifier Q
X1

begins.}

2. Peggy sends w, claiming it is correct.

3. Vic wants to be sure, and therefore asks Peggy for the polynomial equivalent of

RQRRQRRRQ.. •QR. ... Rp(xl,. .. ,x)
Xl X2 Xl X2 X3 XlX2X3 X4 Xn X1 Xn

{Remember, calculations are done modulo P.}

4. Peggy sends Vic a polynomial pi (xi), claiming it is correct.

5. Vic makes a consistency check by verifying whether

"* p(O) + p(l) - p(O)p(l) = w if the left-most quantifier is 3;
"* p(O)p(l) = w if the left-most quantifier is V.

In order to become more sure that p, is correct, Vic asks Peggy for the polynomial equivalent
(congruent) to

QRRQRRRQ. .. QR. .. R p(xl,.. x,).
X2 X1X2X3 X1 X2 X3 X4 Xn X1 Xn

6. Peggy sends a polynomial p2(xl), claiming it is correct.

7. Vic chooses a random number ce and makes a consistency check by computing the number
(p2(xl) mod (x2 - xl))l0 n =I P1 (a).

In order to become more sure that P2 is correct, Vic chooses a random a 12 and asks Peggy for
the polynomial equivalent of

RRQRRRQ... QR... R p(xi ... xý) Ix, • ,"
XlX2 X3 XlX2 X3 x4 XnX1 Xn

8. Peggy returns a polynomial p3 (x2), claiming it is correct.

9. Vic checks as in Step 5.

The protocol continues until either a consistency check fails or all quantifiers are stripped off.
Then the second phase of the protocol begins, with the aim of determining the value of p for already
chosen values of variables. In each round p can be seen as being decomposed either into p'p" or
1 - (0 - p') (1 - p"). Vic asks Peggy for the values of the whole polynomial and its subpolynomials p'
and p".
Analysis: During the first phase, until n + (n - 1)n / 2 quantifiers are removed, the prover has to
supply the verifier each time with a polynomial of degree at most 2. Since each time the chance of

cheating is at most q, the total chance of cheating is clearly less than-•- 2m. The number of rounds in
the second phase, when the polynomial itself is shrunk, is at most m, and the probability of cheating

at most M. Therefore, the total probability that the prover could fool the verifier is at most L-. Now
it is clear how large P must be in order to obtain overwhelming statistical evidence.

514 U PROTOCOLS

Theorem 9.2.11 actually implies that there is a reasonable model of computation within which
we can see the whole class PSPACE as consisting of problems having feasible solutions. (This is a
significant change in the view of what is 'feasible'.)

9.2.3 A Brief History of Proofs

The history of the concept of proof, one of the most fundamental concepts not only of science but of
the whole of civilization, is both rich and interesting. Originally developed as a key tool in the search
for truth, it has since been developed as the key tool to achieve security.

There used to be a very different understanding of what a proof means. For example, in the Middle
Ages proofs 'by authority' were common. For a long time even mathematicians did not overconcern
themselves with putting their basic tool on a firm basis. 'Go on, the faith will come to you' used to
be a response to complaints of purists about lack of exactness.1

Mathematicians have long been convinced that a mathematical proof, when written out in detail,
can be checked unambiguously. Aristotle (384-322 BC) made attempts to formalize the rules of
deduction. However, the concept of a formal proof, checkable by a machine, was developed only
at the beginning of the twentieth century, by Frege (1848-1923) and Russell (1872-1970). This was a
major breakthrough and proofs 'within ZF', the Zermelo-Frankel axiomatic system, became standard
for 'working mathematicians'.

Some of the problems with such a concept of proof were discussed in Chapter 6. Another practical,
but also theoretical, difficulty lies in the fact that some proofs are too complicated to be understood.
The proof of the classification of all finite simple groups takes about 15,000 pages, and some proofs
are provably unfeasible (a theorem with fewer than 700 symbols was found, any proof of which is
longer than the number of particles in the universe).

The concept of interactive proof has been another breakthrough in proof history. This has
motivated development of several other fundamental concepts concerning proofs and led to
unexpected applications. Sections 9.3 and 9.4 deal with two of them. Two other are now briefly
discussed.

Interactive proofs with multiple provers

The first idea, theoretically obvious, was to consider interactions between one polynomial time
bounded verifier and several powerful provers. At first this seemed to be a pure abstraction, without
any deeper motivation or applications; this has turned out to be wrong.

The formal scenario goes as follows. The verifier and all provers are probabilistic Turing machines.
The verifier is again required to do all computations in polynomial time. All provers have unlimited
power. The provers can agree on a strategy before an interaction starts, but during the protocol they
are not allowed to communicate among themselves. In one move the verifier sends messages to all
provers, but each of them can read only the message addressed to her. Similarly, in one move all
provers simultaneously send messages to the verifier. Again, none of them can learn messages sent
by others. The acceptance conditions for a language L are similar to those given previously: each x E L
is accepted with probability greater than 2, and each x Z L is accepted with probability at most 1
The family of languages accepted by interactive protocols with multiple provers and a polynomial
number of rounds is denote by MIP.

It is evident that it is meaningless to have more than polynomially many provers. Not only that: it
has been shown that two provers are always sufficient. However, the second prover can significantly
increase the power of interactions, as the following theorem shows.

1For example, Fermat stated many theorems, but proved only a few.

INTERACTIVE PROTOCOLS AND PROOFS M 515

Theorem 9.2.12 MIP = NEXP.

The extraordinary power of two provers comes from the fact that the verifier can ask both provers
questions simultaneously, and they have to answer independently, without learning the answer of
the other prover. In other words, the provers are securely separated.

If we now interpret NP as the family of languages admitting efficient formal proof of membership
(formal in the sense that a machine can verify it), then MIP can be seen as the class of languages
admitting efficient proofs of membership by overwhelming statistical evidence. In this sense MIP is
like a 'randomized and interactive version' of NP.

The result IP = PSPACE can also be seen as asserting, informally, that via an interactive proof one
can verify in polynomial time any theorem admitting exponentially long formal proof, say in ZF, as
long as the proof could (in principle) be presented on a 'polynomial-size blackboard'. The result MIP
= NEXP asserts, similarly, that with two infinitely powerful and securely separated provers, one can
verify in polynomial time any theorem admitting an exponentially long proof.

Transparent proofs and limitations of approximability

Informally, a formal proof is transparent or holographic if it can be verified, with confidence, by a
small number of spot-checks. This seemingly paradoxical concept, in which randomness again plays
a key role, has also turned out to be deep and powerful.

One of the main results says that every formal proof, say in ZF, can be rewritten in a transparent
proof (proving the same theorem in a different proof system), without increasing the length of the
proof too much.

The concept of transparent proof leads to powerful and unexpected results. If we let PCP[fgl to
denote the class of languages with transparent proofs that use 0(f (n)) random bits and check ((g(n))
bits of an n bits long proof, then the following result provides a new characterization of NP.

Theorem 9.2.13 (PCP-theorem) NP = PCP[lgnO(1)].

This is indeed an amazing result that says that no matter how long an instance of an NP-problem
and how long its proof, it is to look to a fixed number of (randomly) chosen bits of the proof in order
to determine, with high probability, its validity Moreover, given an ordinary proof of membership
for an NP-language, the corresponding transparent proof can be constructed in time polynomial in
the length of the original classical proof. One can even show that it is sufficient to read only 11 bits
from proof of polynomial size in order to achieve the probability of error 1

Transparent proofs therefore have strong error-correcting properties. Basic results concerning
transparent proofs heavily use methods of designing self-correcting and self-testing programs
discussed in Section 9.4.

On a more practical note a surprising connection has been discovered between transparent proofs
and highly practical problems of approximability of NP-complete problems. It has first to be shown
how any sufficiently good approximation algorithm for the clique problem can be used to test whether
transparent proofs exist, and hence to determine membership in NP-complete languages. On this basis
it has been shown for the clique problem - and a variety of other NP-hard optimization problems,
such as graph colouring - that there is a constant E > 0 such that no polynomial time approximation
algorithm for the clique problem for a graph with a set V of vertices can have a ratio bound less than
IVI' unless P = NP,

516 U PROTOCOLS

F

Figure 9.2 A cave with a door opening on a secret word

9.3 Zero-knowledge Proofs

A special type of interactive protocols and proof systems are zero-knowlege protocols and proofs.
For cryptography they represent an elegant way of showing security of cryptographic protocols. On
a more theoretical level, zero-knowledge proofs represent a fundamentally new way to formalize the
concept of evidence. They allow, for example, the proof of a theorem so that no one can claim it.

Informally, a protocol is a zero-knowledge proof protocol for a theorem if one party does not learn
from communication anything more than whether the theorem is true or not.

Example 9.3.1 670,592,745 = 12,345 x 54,321 is not a zero-knowledge proof of the theorem '670,592,745 is
a composite integer', because the proof reveals not only that the theorem is true, but also additional information
- two factors of 670,592,745.

More formally, a zero-knowledge proof of a theorem T is an interactive two-party protocol with
a special property. Following the protocol the prover, with unlimited power, is able to convince the
verifier, who follows the same protocol, by overwhelming statistical evidence, that T is true, if this is
really so, but has almost no chance of convincing a verifier who follows the protocol that the theorem
T is true if this is not so. In addition - and this is essential - during their interactions the prover does
not reveal to the verifier any other information, not a single bit, except for whether the theorem T is
true, no matter what the verifier does. This means that for all practical purposes, whatever the verifier
can do after interacting with the prover, he can do just by believing that the claim the prover makes
is valid. Therefore 'zero-knowledge' is a property of the prover - her robustness against the attempts
of any verifier, working in polynomial time, to extract some knowledge from an interaction with the
prover.

In other words, a zero-knowledge proof is an interactive proof that provides highly convincing
(but not absolutely certain) evidence that a theorem is true and that the prover knows a proof (a
standard proof in a logical system that can in principle, but not necessarily in polynomial time, be
checked by a machine), while providing not a single additional bit of information about the proof.
In particular, the verifier who has just become convinced about the correctness of a theorem by
a zero-knowledge protocol cannot turn around and prove the theorem to somebody else without
proving it from scratch for himself.

ZERO-KNOWLEDGE PROOFS U 517

I 1 red e 1 e, (red) = y1

2 green e 2 e 2 (green) = y 2

2 Y12)3Y 3 3 blue e 3 e3 (blue)=Y3

4 red e 4 e 4 (red) = Y4

5 blue e 5 e5 (blue) = Y5

5 y6 Y, 6 6 green e 6 e6 (green)=y 6

(a) (b)

Figure 9.3 Encryption of a 3-colouring of a graph

Exercise 9.3.2 The following problem has a simple solution that well illustrates the idea of
zero-knowledge proofs. Alice knows a secret word that opens the door D in the cave in Figure 9.2.
How can she convince Bob that she really knows this word, without telling it to him, when Bob is not
allowed to see which path she takes going to the door and is not allowed to go into the cave beyond point
B? (However, the cave is small, and Alice can always hear Bob ifshe is in the cave and Bob is in position
B.)

9.3.1 Examples

Using the following protocol, Peggy can convince Vic that a particular graph G, which they both
know, is colourable with three colours, say red, blue and green, and that she knows such a colouring,
without revealing to Vic any information whatsoever about how such a colouring of G looks.

Protocol 9.3.3 (3-colourability of graphs)
Peggy colours G = (V, E) with three colours in such a way that no two neighbouring nodes are coloured by the
same colour. Then Peggy engages with Vic El2 times in the following interaction (where vl, . . .,Vn are nodes
of V):

1. Peggy chooses a random permutation of colours (red, blue, green), correspondingly recolours the graph,
and encrypts, for i = 1,... ,n, the colour ci of the node vi by an encryption procedure ei - different
for each i. Peggy removes colours from nodes and labels the i-th node of G with the cryptotext yi =

ei(ci) (see Figure 9.3a). She then designs a table Tc in which, for every i, she puts the colour of the
node i, the corresponding encryption procedure for that node, and the result of the encryption (see
Figure 9.3b). Finally, Peggy shows Vic the graph with nodes labelled by cryptotexts (for example, the
one in Figure 9.3a).

2. Vic chooses an edge, and sends Peggy a request to show him the colouring of the corresponding nodes.

3. Peggy reveals to Vic the entries in the table TG for both nodes of the edge Vic has chosen.

4. Vic performs encryptions to check that the nodes really have the colours as shown.

518 , PROTOCOLS

Vic accepts the proof ifand only if all his checks agree.

The correctness proof: If G is colourable by three colours, and Peggy knows such a colouring and
uses it, then all the checks Vic performs must agree. On the other hand, if this is not the case, then
at each interaction there is a chance - that Peggy gets caught. The probability that she does not get

caught in IE 2 interactions is (1 -1 /I E1) E
2 - negligibly small. II

The essence of a zero-knowledge proof, as demonstrated also by Protocols 9.3.3 and 9.3.5, can be
formulated as follows: the prover breaks the proof into pieces, and encrypts each piece using a new
one-way function in such a way that

1. The verifier can easily verify whether each piece of the proof has been properly constructed.

2. If the verifier keeps checking randomly chosen pieces of the proof and all are correctly designed,
then his confidence in the correctness of the whole proof increases; at the same time, this does
not bring the verifier any additional information about the proof itself.

3. The verifier knows that each prover who knows the proof can decompose it into pieces in such
a way that the verifier finds all the pieces correctly designed, but that no prover who does not
know the proof is able to do this.

The key requirement, namely, that the verifier randomly picks up pieces of the proof to check, is
taken care of by the prover! At each interaction the prover makes a random permutation of the proof,
and uses for the encryption new one-way functions. As a result, no matter what kind of strategy the
verifier chooses for picking up the pieces of the proof, his strategy is equivalent to a random choice.

Example 9.3.4 With the following protocol, Peggy can convince Vic that the graph G they both know has a
Hamilton cycle (without revealing any information about how such a cycle looks).

Protocol 9.3.5 (Existence of Hamilton cycles)

Given a graph G = (V, E) with n nodes, say V ={1,2 . n}, each round of the protocol proceeds as follows.
Peggy chooses a random permutation 7r of {1, . . . ,n}, a one-way function ej for each i e {1, ... ,n}, and

also a one-way function eijfor each pair ij c {1, . . . ,n}. Peggy then sends to Vic:

1. Pairs (i,xi), where xi = ei(7r(i)) for i = 1, . . . ,n and all ei are chosen so that all xi are different.

2. Triples (xi,xj,yi.j), where yij = eij(bij), i $ j, b1j E {0,1} and bij = 1, if and only if (r(i), 7()) is an
edge of G; eij are supposed to be chosen so that all yij are different.

Vic then gets two possibilities to choose from:

1. He can ask Peggy to demonstrate the correctness of all encryptions - that is, to reveal 7r and all encryption
functions ei,ei,j. In this way Vic can become convinced that xi and yij really represent an encryption of
G.

2. He can ask Peggy to show a Hamilton cycle in G. Peggy can do this by revealing exactly n distinct
numbers Yii 2, Yi2,i 3 -. - -Yini, such that {l,2, ... , n} = {il,. . . i,}. This proves to Vic, who knows all
triples (xi,xj,yijj), the existence ofa Hamilton cycle in whatever graph is represented by the encryptions
presented. Since the xi are not decrypted, no information is revealed concerning the sequence of nodes
defining a Hamilton cycle in G.

ZERO-KNOWLEDGE PROOFS 3 519

Vic then chooses, randomly, one of these two offers (to show either the encryption of the graph or the
Hamilton cycle), and Peggy gives the requested information.

If Peggy does not know the Hamilton cycle, then in order not to get caught, she must always make a correct
guess as to which possibility Vic will choose. This means that the probability that Peggy does not get caught in
k rounds, if she does not know the Hamilton cycle, is at most 2 -k.

Observe that the above protocol does not reveal any information whatsoever about how a
Hamilton cycle for G looks. Indeed, if Vic asks for the encryption of the encoding, he gets only a
random encryption of G. When asking for a Hamilton cycle, the verifier gets a random cycle of length
n, with any such cycle being equally probable. This is due to the fact that Peggy is required to deal
always with the same proof: that is, with the same Hamilton cycle, and 7r is a random permutation.

Exercise 9.3.6* Design a zero-knowledge proof for integer factorization.

Exercise 9.3.7* Design a zero-knowledge prooffor the knapsack problem.

Exercise 9.3.8 * Design a zero-knowledge prooffor the travelling salesman problem.

9.3.2 Theorems with Zero-knowledge Proofs*

In order to discuss in more detail when a theorem has a zero-knowledge proof, we sketch a
more formal definition of a 'zero-knowledge proof'. In doing so, the key concept is that of the
polynomial-time indistinguishability of two probability ensembles fl, = {1-1i}icN and T12 =

{f72,i,}iN - two sequences of probability distributions on {O,1}*, indexed by N, where distributions
7r1j and 7r2 i assign nonzero probabilities only to strings of length polynomial in Jbin-1 (i) 1.

Let T be a probabilistic polynomial time Turing machine with output from the set {0, 1}, called a
test or a distinguisher here, that has two inputs, i c N and a E {0, 1} *. Denote, for j = 1,2,

pT(i) = irj1,(a)Pr(T(ia) = 1);

that is, pT(i) is the probability that on inputs i and o, chosen according to the distribution 7r1, the
test T outputs 1. H, and 112 are said to be polynomial-time indistinguishable if for all probabilistic
polynomial-time tests T, all constants c > 0, and all sufficiently big k E N (k is a 'confidence parameter'),

IpT (i) _-pT (i) I < k-c.

Informally, two probability ensembles are polynomial-time indistinguishable if they assign 'about
the same probability to any efficiently recognizable set of words over {0, 1}*'.

In the following definition we use the notation hist(Mp, Mv. x) for the random variable the values
of which consist of the concatenated messages of the interaction of the protocol (Mp, Mv) on the input
x with random bits, consumed by Mv during the interaction, attached. (Such a concatenated message
is also called a history of communication.)

Definition 9.3.9 The interactive protocol (Mp,Mv) for a language L is (computationally) zero-knowledge
if, for every verifer M,*, there exists a probabilistic polynomial-time Turing machine Ms*, called a
simulator, such that the probability ensembles {hist(Mp,Mv*,x)}x1L and {Ms, (x)I}XCL are polynomial-time
indistinguishable.

520 U PROTOCOLS

We present now two main approaches to showing that an interactive proof is a zero-knowledge
proof.

1. For some interactive proofs it has been shown, on the assumption that one-way functions exist,
that the histories of their protocols are polynomial-time indistinguishable from random strings.

2. Another method is to show that the verifier can actually simulate the prover. That is, the verifier
can also take the prover's position in the interaction with the verifier. Any polynomial-time
randomized algorithm that enables the verifier to extract some information from the interaction
with the prover could be used for this process without an interaction with the prover.

Let us illustrate the last idea on the protocol proving, for a fixed graph G with n nodes, that G has
a Hamilton cycle.

A verifier V first simulates the prover P. V flips coins and, according to the outcome, encrypts
a random permutation of the whole graph (just as P would do), or encrypts a randomly chosen
permutation of nodes. Then, acting as the prover, the verifier presents the encrypted information to
the verifier, that is, to himself, and takes the position of the verifier.

V now uses his algorithm, say A, to decide whether to request a graph or a cycle. Because A has
no way of knowing what V did in the guise of P, there is a 50 per cent chance that A requests exactly
the option which V, in the guise of P, supplies. If not, V backs up the algorithm A to the state it was
in at the beginning and restarts the entire round.

This means that in the expected two passes through each round V obtains the benefit of the
algorithm A without any help from the prover. Therefore, A does not help V to do something with P
in an expected polynomial time that V could not do as well without P in expected polynomial time.

The family of theorems that has a zero-knowledge proof seems to be surprisingly large. The
following theorem holds.

Theorem 9.3.10 If one-way functions exist, then every language in PSPACE has a zero-knowledge proof.2

Idea of a proof: The proof of the theorem is too involved to present here, and I sketch only an idea
of the proof of a weaker statement for the class NP. First one shows for an NP-complete language
L0 that it has a zero-knowledge proof system. (This we have already done - see Example 9.3.4 - on
the assumption that one-way functions exist.) Second, one shows that if a language L 6 NP is in
polynomial time reducible to L0, then this reducibility can be used to transform a zero-knowledge
proof for L0 into a zero-knowledge proof for L.

9.3.3 Analysis and Applications of Zero-knowledge Proofs'

Note first that the concept of zero-knowledge proofs brings a new view of what 'knowledge' is.
Something is implicitly regarded as 'knowledge' only if there is no polynomial time computation
that can produce it.

Observe also (see the next exercise) that both randomness and interaction are essential for
nontriviality of the concept of zero-knowledge proofs.

Exercise 9.3.11 Show that zero-knowledge proofs in which the verifier either tosses no coins or does not
interact exist only for languages in BPP.

20n the other hand, if one-way functions do not exist, then the class of languages having zero-knowledge

proofs is identical with BPP.

INTERACTIVE PROGRAM VALIDATION U 521

Note too the following paradox in the concept of zero-knowledge proofs of a theorem. Such a proof
can be constructed, as described above, by the verifier himself, who only believes in the correctness
of the theorem, but in spite of that, such a proof does convince the verified! The 'paradox' is resolved
by noting that it is not the text of the 'conversation' that convinces the verifier, but rather the fact that
the conversation is held 'on-line'.

Theorem 9.3.10 and its proofs provide a powerful tool for the design of cryptographical protocols.
To see this, let us first discuss a general setting in which cryptographical protocols arise.

A cryptographical protocol can be seen as a set of interactive programs to be executed by parties
who do not trust one another. Each party has a local input unknown to others that is kept secret.
The protocol usually specifies actions that parties should take, depending on their local secrets and
previous messages exchanged. The main problem in this context is how a party can verify that the
others have really followed the protocol. Verification is difficult, because a verifier, say A, does not
know the secrets of the communicating party, say B, who does not want to reveal his secret. The way
out is to use zero-knowledge proofs. B can convince A that the message transmitted by B has been
computed according to the protocol without revealing any secret.

Now comes the main idea as to how to design cryptographical protocols. First, design a protocol
on the assumption that all parties will follow it properly. Next, transform this protocol, using already
well-known, mechanical methods for making zero-knowledge proofs from 'normal proofs', into a
protocol in which communication is based on zero-knowledge proofs, preserves both correctness
and privacy, and works even if a minority of parties displays adversary behaviour.

There are various others surprising applications of zero-knowledge proofs.

Example 9.3.12 (User identification) The idea of zero-knowledge proofs offers a radically new approach to
the user identification problem. For each user, a theorem, the proof of which only this user knows, is stored in
a directory. After login, the user starts a zero-knowledge proof of the correctness of the theorem. If the proof is
convincing, his/her access is guaranteed. The important new point is that even an adversary who could follow
the communication fully would not get any information allowing him/her to get access.

The concept of a zero-knowledge proof system can be generalized in a natural way to the case of
multiple provers, and the following theorem holds.

Theorem 9.3.13 Every language in NEXP has a zero-knowledge, two-provers, interactive proof system.

Observe that no assumption has been made here about the existence of one-way functions.

9.4 Interactive Program Validation

Program validation is one of the key problems in computing. Traditional program testing is feasible
but insufficient. Not all input data can be tested and therefore, on a particular run, the user may have
no guarantee that the result is correct. Program verification, while ideal in theory, is not currently,
and may never be, a pragmatic approach to program reliability. It is neither feasible nor sufficient.
Only programs which are not too large may be verified. Even this does not say anything about the
correctness of a particular computer run, due to possible compiler or hardware failures. Interactive
program (result) checking, especially interactive program self-correcting, as discussed in this section,
offers an alternative approach to program validation. Program checkers may provide the bases for
a debugging methodology that is more rigorous than program testing and more pragmatic than
verification.

522 * PROTOCOLS

9.4.1 Interactive Result Checkers

The basic idea is to develop, given an algorithmic problem P, a result checker for P, that is capable
of finding out, with large probability correctly, given any program P for P and any input data d
for P, whether the result P produces for d is correct - in short, whether P(d) = P(d). To do this, the
result checker may interact with P and use P to do computations for some input data other than d,
if necessary. The result checker produces the answer 'PASS' if the program P is correct for all inputs,
and therefore, also for d. It produces the output 'FAIL' if 7(d) # P(d). (The output is not specified in
the remaining cases; that is, when the program is not correct in general but P9(d) = P(d).)

Of special interest are simple (result) checkers - for an algorithmic problem P with the best
sequential time t(n). They get as an input a pair (d,y) and have to return 'YES' ('NO') if y - 79(d)
(if y $ P9(d)), in both cases with a probability (over internal randomization) close to 1. Moreover, a
simple checker is required to work in time o(t(n)). (The last condition requires that a simple checker
for P is essentially different and faster than any program to solve P.)

The idea of a (simple) checker is based on the observation that for certain functions it is much
easier to determine for inputs x and y whether y =f(x) than to determine f(x) for an input x. For
example, the problem of finding a nontrivial factor p of an integer n is computationally unfeasible.
But it is easy, one division suffices, to check whether p is a divisor of n. Let us now illustrate the idea
of simple checkers on two examples.

Example 9.4.1 (Result checker for the generalized gcd problem) Algorithmic problem)
9

GGCD:

Given integers m, n, compute d = gcd(m, n) and u, v E Z such that um + vn = d.
Program checker CGGCD takes a given program P to solve (supposedly) the problem PGGcD, and makes P

compute, given m and n, the corresponding d, u, v. After that, it performs the following check:

if d does not divide m or does not divide n
then CGCcD outputs 'FAIL'
else if mu + nv # d then CGGCD outputs 'FAIL'

else CGGCD outputs 'PASS'.

Thefirst condition checks whether d is a divisor of both m and n, the second whether it is the largest divisor.
Observe that the checker needs to perform only two divisions, two multiplications and one addition. The checker
isfar more efficient than any algorithm for computing gcd(m, n).

Example 9.4.2 (Freivald's checker for matrix multiplication) IfA, B and C are matrices of degree n and
AB = C, then A(Bv) = Cvfor any vector v of length n. To compute AB, one needs between 0(n 2

"
37 6) and E((n3)

arithmetical operations; to compute A(Bv) and Cv, 0(n 2) operations suffice. Moreover, it can be shown that if
v is a randomly chosen vector, then the probability that AB # C once A(Bv) = Cv is very small. This yields the
following e((kn2) simple checker for matrix multiplication.3 Choose k random vectors vi, . - - , Vk and compute
A(Bvi) and Cvifor i = 1, . . . ,k. If A(Bvi) and Cvi once differ, then it rejects, otherwise it accepts.

Exercise 9.4.3 Design a simple checker for multiplication of two polynomials.

Exercise 9.4.4 Design a simple checker for integer multiplication. (Hint: use Exercise 1.7.12.)

provided matrix multiplication cannot be done in 0(n2) time, which seems likely but has not yet been proved.

INTERACTIVE PROGRAM VALIDATION UM 523

The following definition deals with the general case. Probability is here considered, as usual, over
the space of all internal coin-tossings of the result checker.

Definition 9.4.5 A result checker Cp for an algorithmic problem P is a probabilistic oracle Turing machine
such that given any program P (supposedly) for P, which always terminates, any particular input data xo
for P, and any integer k, Cp works in the expected polynomial time (with respect to Ix01k1), and produces the
following result.

1. If P is correct, that is, P(x) = 7P(x) for all possible inputs x, then, with probability greater than 1-
Cp(P,xo) = 'PASS'.

2. If P(xo) :A P(xo), then Cp(P,xo) = 'FAIL' with probability greater than 1.- -.
2k

In Definition 9.4.5, k is a confidence parameter that specifies the degree of confidence in the
outcome. The time needed to prepare inputs for P and to process outputs of P is included in the
overall time complexity of Cp, but not the time P needs to compute its results.

The program checker for the graph isomorphism problem presented in the following example is
a modification of the zero-knowledge proof for the graph nonisomorphism problem in Section 9.2.1,
this time, however, without an all-powerful prover.

Example 9.4.6 (Program checker for the graph isomorphism problem)

Input: a program P to determine an isomorphism of arbitrary graphs and two graphs Go, G1, the isomorphism
of which is to be determined. The protocol for an interaction between the program checker CGI and P has the
following form:

begin
make P compute P(Go, GC);
if P(G0 ,G1) = 'YES' then

begin use P (assuming that it is 'bug-free') to find out, by the method
described below, an isomorphism between Go and G1 and to check
whether the isomorphism obtained is correct;
if not correct then return 'FAIL' else return 'PASS';

end;
if P(GO, Gj) = 'NO' then for i = 1 to k do

begin get a random bit bi;
generate a random permutation Hi of Gb, and compute P(Go,Hi);
if bi = 0 and P(GGo,H,) = 'NO'

then return 'FAIL'
else if bi = 1 and P(Go,Hi) = 'YES' then return 'FAIL'

end
return 'PASS'
end.

In order to finish the description of the protocol, we have to demonstrate how the checker CGI

can use P to construct an isomorphism between Go and G1 in case such an isomorphism exists. This
can be done as follows. A node v from Go is arbitrarily chosen, and a larger clique with new nodes
is attached to it - denote by G' the resulting graph. The same clique is then added, step by step, to
various nodes of G1, and each time this is done, P is used to check whether the resulting graph is
isomorphic with G'. If no node of G1 is found such that the modified graph is isomorphic with G',

524 U PROTOCOLS

then CGI outputs 'FAIL'. If such a node, say v', is found, then v is removed from Go and v' from G1,
and the same method is used to build further an isomorphism between Go and G1.

It is clear that the checker always produces the result 'PASS' if the program P is totally correct.
Consider the case that P sometimes produces an incorrect result. We show now that the probability
that the checker produces 'PASS' if the program P is not correct is at most 1. Examine two cases:

1. P(Go, G1) = 'YES', but Go and G1 are not isomorphic. Then the checker has to fail to produce
an isomorphism, and therefore it has to output 'FAIL'.

2. P(G0 , G1) = 'NO', but Go and G1 are isomorphic. The only way that the checker would produce
'PASS' in such a case is if P produces correct answers for all k checks P(Go,Hi). That is, P
produces the answer 'YES' if Hi is a permutation of Go and 'NO' if Hi is a permutation of G1.
However, since bi are random and permutations Hi of Go and G1 are also random, there is the
same probability that Hi is a permutation of Go as of G1. Therefore, P can correctly distinguish
whether Hi was designed by a permutation of Go or of G1 only by chance; that is, for I out of

2k possible sequences of k bits bi.

It has been shown that there are effective result checkers for all problems in PSPACE. The following
lemma implies that, given a result checker for a problem, one can effectively construct out of it a
result checker for another problem computationally equivalent to the first. This indicates that for all
practical problems there is a result checker that can be efficiently constructed.

Lemma 9.4.7 Let P9 and P 2 be two polynomial-time equivalent algorithmic problems. From any efficient
result checker Cp1 for P•1 it is possible to construct an efficient result checker C-2 for P 2.

Proof: Let r12 and r21 be two polynomial-time computable functions such that rij maps a 'YES'-instance
('NO'-instance) of 'Pi into a 'YES'-instance ('NO'-instance) of Pj. Let P2 be a program for P 2.CP2 (P2, x2)
works as follows.

1. Cp2 computes x, = r21(X2) and designs a program P, for P7 that works thus: P1 (x) = P2(r12(x)).

2. CP2 (P2, X2) checks whether
P2 (x 2) = P 2 (r12 (r 21 (x 2)) (9.10)

and whether
Pi (Xl) = P(Xl) (9.11)

(and therefore whether P2 (x2) = P2 (x 2)) by using Cp1 (Pi, xi).

If either of the conditions (9.10) and (9.11) fails, then C-2 returns 'NO'; otherwise it returns 'YES'.
If P2 is correct, then both checks are satisfied, and therefore the checker reports correctly. On the

other hand, if P2 (x2) : P2 (x2), then either the check (9.10) fails and Cp2 reports correctly 'NO' or (9.10)
holds and then

Pl(xi) = P1(r21(X2))

= P2(r 12 (r21(x2))), since Pl(x) = P2(r12(x)),

= P2(x2),because (9.10) holds,

S'P 2(x2) by assumption

= P1 (r21 (x2))
= P91(x1).

in which case the result checker Cp1 and therefore also the checker Cp2 produce 'NO' correctly, with
a probability of at least 1 2.- 1l

INTERACTIVE PROGRAM VALIDATION U 525

Exercise 9.4.8 Design an 0(n)-time result checker for sorting n integers. (Hint: use Exercise 2.3.28.)

Although a result checker Cp can be used to verify for a particular input x and program P whether
P(x) = P(x), it does not provide a method for computing P(x) in the case that P is found to be faulty.
From this point of view, self-correcting/testing programs, discussed in the next section, present
an additional step forward in program validation. To simplify the presentation, we deal only with
programs that compute functions.

Remark 9.4.9 Interest on the part of the scientific community in developing methods for result
checking is actually very old. One of the basic tools was various formulas such as ex = ex aea or
tanx = (tan(x + a) + tana) / (1 - tan(x - a) tana) that related to each other the values of a function at a
given point and a few other points. Such formulas allowed both result checking and self-correcting,
as discussed below. The desire to obtain such formulas was one of the main forces inspiring progress
in mathematics in the eighteenth and nineteenth centuries.

Exercise 9.4.10 Design a formula that relates values of the function f(x) = ex at points x, x + I andx

x+2.

9.4.2 Interactive Self-correcting and Self-testing Programs

Informally, a (randomized) program Cf is a self-correcting program for a function f if for any program
P that, supposedly, computesf, the error probability of which is sufficiently low, and any input x, Cf
can make use of P to computef(x) correctly.

The idea of self-correcting programs is based on the fact that for some functionf we can efficiently
computef(x) if we know the value of f at several other, random-looking inputs.

Example 9.4.11 To compute the product of two matrices A and B of degree n, we choose 2k random matrices
R1, R•, R2, R., ... Rk, R', all of degree n, and take as the value of AB the value that occurs most often among
values

(A - Rj)(B - Rj) + Ri(B - R') + (A - Ri)R'+ RiR'. (9.12)

Note that if a matrix multiplication algorithm P is correct and used to perform the multiplications in (9.12),
then all values in (9.12) are exactly AB. If P produces correct values with high probability, then, again, most of
the values from (9.12) are equal to AB.

The idea of self-correcting programs is attractive, but two basic questions arise immediately: their
efficiency and correctness.

The whole idea of result checkers, as well as self-correcting and self-testing programs, requires, in
order to be fully meaningful, that they are efficient in the following sense. Their proper (incremental)
running time - that is, the time the program P, which they validate, spends whenever called by a
self-testing program or a self-correcting program, is never counted - should be asymptotically smaller
than the computation time of P. The total running time - that is, the time P spends whenever called
by a self-testing program or a self-correcting program is also included - should be asymptotically of

526 3 PROTOCOLS

the same order as the computation time of P. This should be true for any program P computing f.
It is therefore clear that self-testing and self-correcting programs forf must be essentially different
from any program for computingf.

The problem of how to verify result checkers and self-correcting programs has no simple solution.
However, it is believed and confirmed by experience that all these programs can be essentially simpler
than those they must validate. Therefore, they should be easier to verify. In addition, in the case of
problems where a large amount of time is spent in finding the best algorithms, for example, number
operations and matrix operations, a larger effort to verify self-testing and self-correcting programs
should pay off. In any case, the verification problem requires that self-testing and self-correcting
programs for a functionf be essentially different from any program forf.

To simplify the presentation, a uniform probability distribution is assumed on all sets of inputs
of the same size, and error(f , P) is used to denote the probability that P(x) #f(x) when x is randomly
chosen from inputs of the same size.

Definition 9.4.12 (1) Let 0 < El < 62 <e 1. An (clE 2)-self-testing program forf is a randomized oracle
program Tf such that for any program Pforf, any integers n (the size of inputs) and k (a confidence parameter)
the following holds (e denotes the base of natural logarithms).

1. If error(fP) < e 1 for inputs of size n, then 71(P) outputs 'PASS' with probability at least 1 --- ek .

2. If error(f, P) > E2, then T (P) outputs 'FAIL' with probability at least 1

(2) Let 0 < e < 1. An E-self-correcting program forf is a randomized oracle program Cf- such that for
any program P for f, any integer n, any input x of size n and any integer k the following property holds: if
error(f, P) < E, then Cf(P, x) = f (x) with probability at least 1--- ek"

The main advantage of self-correcting programs is that they can be used to transform programs
correct for most of the inputs to programs correct, with high probability, on any input.

Remark 9.4.13 In discussing the incremental and total time, any dependence on the confidence
parameter k has been ignored. This usually adds a multiplicative factor of the order of 0(k).

The basic problem in designing self-testing and self-correcting programs is how to make them
essentially different from programs computing f directly. One idea that has turned out to be useful
is to computer indirectly by computing f on random inputs.

Definition 9.4.14 (Random self-reducibility property) Let m > 1 be an integer. A function f is called
m-random self-reducible if for any x,f(x) can be expressed as an easily computablefunction F ofx, a, ,am
and f(al) f(am), where a, am are randomly chosen from inputs of the same size as x. (By 'easily
computable' is understood that the total computation time ofa random self-reduction - that is, of computing F
from the arguments x,a,, . . . a, and f(al), . . . ,f(an) - is smaller than thatfor computing f(x).)

The first two examples are of self-correcting programs. They are easier to present and to prove
correct than self-testing programs. (We use here the notation x Eu A (see Section 2.1) to mean that X
is randomly taken from A with respect to the uniform probability distribution.)

Example 9.4.15 (Self-correcting program for mod function) Let f(x) = x mod m with x G Zm2ý for
some integer n. Assume that P is a program for computing f, for 0 < x < m2', with error(f, P) < 1. The
inputs of the following h-self-correcting program are x, m, n, k and a program Pforf, and +m denotes addition
modulo m.

INTERACTIVE PROGRAM VALIDATION U 527

Protocol 9.4.16 (Self-correcting program for mod function)

begin
N -- 12k;
for i l- ito N do

call Random-split (m2", x, x X2, e);
ai - P(xp m) +mP(x2,m);

output the most common answer among {al 1 i < N}
end,

where the procedure 'Random-split', with the output parameters z1 , z2, e, is defined as follows:

procedure Random-split(s, z, z , z2, e)
choose z, Eu Z,;
if z _< z then e -- 0 else e - 1;
Z2 - es + z - z1 .

The correctness proof: As xj EU Zm2n for j = 1,2, we get that P(xi,m) $ xi mod m with probability
at most '. Therefore, for any 1 < i < N, ai = x, mod m + x 2 mod m with probability at least 3. The
correctness of the protocol now follows from the following lemma (with N = 12k), a consequence of
Chemoff's bound (see Section 1.9.2).

Lemma 9.4.17 If x1 , . . . ,XN are independent 0/1-valued random variables such that Pr(xi = 1) > 3 for
i = 1,... N, then

Pr xi > ?;/ 2 > l-e-N/l2.

Observe that the self-correcting program presented above is essentially different from any
program for computing f. Its incremental time is linear in N, and its total time is linear in time
of P.

Example 9.4.18 (Self-correcting program for integer multiplication) In this casef (x, y) = xy, and we
assume that x,y E Z2ý for a fixed n. Let us also assume that there is a program Pfor computingf and that
error(f,P) <•-. The following program is a -L-self-correcting programforf. Inputs: n,x,y E Z2n,k and P.

Protocol 9.4.19 (Self-correcting program for integer multiplication)

begin
N - 12k
for i *- I to N do

call Random-split(21, x, X1 , x 2, c);
call Random-split(2n y, y1, Y2, d);
ai - P(x1 ,yl) +P(xiy 2) +P(x 2,yl) +P(x 2 ,y 2) - cy2' -dx2"+cd2 2n;

output the most common value from {ai 1 < i < N}
end

The correctness proof: Since xi, yj, ij = 1,2, are randomly chosen from Z2ý, we get, by the property
of P, that P(xi,yj) # xkyj with probability at most 1. Therefore the probability that all four calls to

528 U PROTOCOLS

P during a pass through the cycle return the correct value is at least 3. Since x = xI + x2 - c2", and
y = y1 + Y2 - d2n, we have

xy = Xly1 + Xly2 + X2y 1 + x2y2 - cy2" - dx2 + cd22 .

Thus, if all four calls to P are correctly answered during the ith cycle, then ai = xy. The correctness of
the protocol follows again from Lemma 9.4.17. U

Exercise 9.4.20 Show that we can construct a '-self-correcting program for modular number
multiplication f (x,y, m) = xy mod m to deal with any program Pforf with errors, P) < -1 .

Example 9.4.21 (Self-correcting program for modular exponentiation) Consider now the function
f(a,x,m) = ax mod m, where a and m are fixed and gcd(a,m) = 1. Suppose that the factorization of m is
known, and therefore 0(m) is known, where 0 is Euler's totient function. Let x G ZO(m)2. Finally, let us
assume that we have a program P to computer such that error(f ,P) < 1. The inputs to the following protocol
are n,x,k,a,m,0(m) and P.

Protocol 9.4.22 (Self-correcting program for modular exponentiation)
begin

N +- 12k;
for i -- 1 to N do

call Random-split(O(m)2, X, x 1, x 2, c);
ai - P(a,xj,m)P(a,x2,m) mod m;

output the most common value among {ai i = 1,... ,N}
end

The correctness proof: Clearly, P(a, xi, m) # axi mod m with probability at most -, and therefore the
probability that ai is computed correctly is at least 4. As x = x1 + x2 - co(m)2n, for a c E {0, 1} and, in
addition, gcd(a,m) = 1, a0m) -_ 1 (modm), we get ax = ax, .aX2 (mod m). This means that if, in the ith
pass through the cycle, both calls to P are correctly answered, then ai = ax mod m. The correctness of
the protocol now follows from Lemma 9.4.17. 0

All three self-correcting programs/protocols presented above are based on a similar idea, which
can be generalized as follows.

Theorem 9.4.23 Iff is a m-random self-reducible function, then there is a (- !)-self-correcting program forf
(to correct any program Pforf such that error(f, P) <_ 1).

Proof: Consider the following program with the inputs m, x, k and P.

Protocol 9.4.24 (Generic self-correcting program)
begin

N -- 12k;
for i -- 1 to N do

randomly choose a 1,... ,am of the same size as x;
forj -- 1 to N do aj - P(aj);
ai *- F(X,al,. ... lam•all .. I a.0•);

output the most common value among {ai I <_ i < m}
end

EXERCISES U 529

The assumption error(f , P) < 1 implies that in the i-th cycle all values aj are computed correctly
with probability at least '. Moreover, due to the self-reducibility property off, ai = f(x) also with
probability at least 3. The theorem follows, as before, from Lemma 9.4.17.

Exercise 9.4.25 Design a sef-correcting program for integer division.

Exercise 9.4.26 Design a self-correcting program for polynomial multiplication.

Exercise 9.4.27** Construct a polynomialformula that relates values of the function x + sin xfor several
arguments and which can therefore be used for result checking and self-correcting programs.

Remark 9.4.28 The concept of self-testing programs has been developed on a similar basis to result
checkers and self-correcting programs.

Moral: New interactive, holographic and other proof techniques allow one to prove otherwise
practically unprovable things. In spite of this, a good rule of thumb in dealing with the concept
of evidence in computing is, as in life, to explore all feasible concepts of evidence but to remember
that a good proof makes one wiser.

9.5 Exercises
1. Let us generalize the age difference protocol to the case that n friends want to find out who is

the oldest, without disclosing any other information about their age. (a) Show how to use the
age difference protocol for two persons to solve the general case. (b) Show the disadvantage of
such a solution, and find a better one.

2. Alice wants to sell a computer to Bob, whom she does not trust any more. Bob wants to pay
by cheque, but Alice has no way of knowing whether the cheque is valid. Alice wants Bob's
cheque to clear before she hands over the computer to him. However, Bob does not trust Alice
and does not want to give her a cheque without first receiving the computer. How to proceed?

3. (Secret voting) Design a protocol for a secret balloting system that satisfies the following
conditions: (a) only legitimate voters should cast a ballot; (b) the ballot should be kept secret;
(c) everybody is allowed to have only one vote; (d) any voter should be able to verify that
his/her vote was taken into account in the electoral outcome.

4. Design a bit commitment protocol on the basis of discrete logarithms.

5. Design a bit commitment protocol using only the oblivious transfer protocol.

6. Design a coin-flipping protocol on the basis of the oblivious transfer protocol.

530 E PROTOCOLS

7. Construct a polynomial approximation of the following Boolean formulas:
(a) (x V y V) A (v VxV 9); (b) (x V z) A (yV x) A (xV y Vz); (c) (x Vp) A ((x V) V (s At) A).

8. Show that if F is a 3-CNF Boolean formula with n variables and m clauses, then there is an
arithmetical formula of length at most 20m and degree at most 3m that approximates F.

9. Consider the following protocol for the NP-complete language L = {(Go, G1) I G0 is a subgraph
of G1}:

(1) The verifier sends Go and G1 to the prover.

(2) The prover constructs k random graphs H 1,... , Hk such that each Hi is a subgraph of G,
and contains Go as a subgraph, and sends these graphs to the verifier.

(3) The verifier chooses k random bits bi,. . . , bk and asks, for I < i < k, the prover to show
him either that Go is a subgraph of Hi (if bi = 0) or that Hi is a subgraph of G1 (if bi = 1).

(4) The prover does what the verifier asks.

(a) Show that this protocol is an interactive protocol for the language L; (b) explain why it is
not a zero-knowledge protocol for L; (c)* design a zero-knowledge protocol for L.

10. Design an interactive proof system for the following reachability problem for cellular automata.
Given is a finite two-dimensional toroidal CA A (that is, a CA whose finite automata
are connected into a toroidal interconnection structure), specified by a set of states, a
neighbourhood and an integer n (the size of the array), and an initial configuration. Assume that
the global mapping G of4 Ais injective. This means that all computational orbits c, G(c), G2(c),...
form a cycle for any configuration c. The problem is to decide, given two configurations,
whether they are in the same orbit.

11. Design a zero-knowledge proof for the 3-CNFF problem.

12. Design a zero-knowledge proof for the graph isomorphism problem.

13. (Multiset equality test) The following test plays a useful role in some result checkers. Given
two arrays of elements, X and Y, and an integer k, output 'yes', if X and Y represent the
same multiset and output 'no' otherwise. Show how to make this test in such a way that the
probability of error is 1

14. Design a result checker for the discrete logarithm problem.

15. Design a result checker for the quadratic residue problem.

16. * Design a self-correcting program for multiplication of Boolean matrices.

QUESTIONS
1. What are the main primitives of cryptographical protocols?

2. What is the essence of the bit commitment problem? How can one implement this problem?

3. What are the potential applications of the oblivious transfer problem?

4. Is the number 3 in Definition 9.2.3 magic, or can it be replaced by some other number without
an essential impact?

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES U 531

5. Can the prover and the verifier of an interactive proof system be seen as having conflicting
aims?

6. Why is it the case that more than two provers do not increase the power of polynomial
interactions?

7. What are the basic ideas of proofs that particular interactive proofs are zero-knowledge proofs?

8. What is the main advantage of using result checkers compared with other methods of program
verification?

9. In what sense must a checker be essentially different from the program to be checked?

10. What is a random self-reducibility property?

9.6 Historical and Bibliographical References
Manuel Blum (who received the Turing award for 1995) showed in his seminal paper (1982) that
apparently impossible communication problems are solvable. He provided the impetus for an
explosion of papers on cryptographical protocols. A systematic presentation of such protocols is
found, for example, in Salomaa (1990) and Schneier (1996). For the poker playing protocol see Shamir,
Rivest and Adleman (1981) and Goldwasser and Micali (1984). The age difference finding protocol
is due to Yao (1982b). The notion of the oblivious transfer protocol is due to Rabin (1981), and the
interlock protocol to Rivest and Shamir (1984).

The concept of an interactive proof system was developed by Goldwasser, Micali and Rackoff
(1985), with applications to cryptographical protocols as the main motivation. Closely related, and
more convenient for showing complexity results, is the concept of Arthur versus Merlin games due
to Babai (1985). See also Babai and Moran (1988). These games are restricted cases of the Games
Against Nature of Papadimitriou (1985). A systematic description of interactive proof systems is
found in Balcizar, Diaz and Gabirro (1988). The graph nonisomorphism protocol in Section 9.2 is
due to Goldreich, Micali and Wigderson (1986).

The protocol to compute a permanent is due to Lund, Fortnow, Karloff and Nissan (1990); that
for the #SAT problem is from Beigel (1993). The IP = PSPACE result is due to Shamir (1990). See
Babai (1990) for the history of efforts culminating in this result. The proof presented here follows
Shen (1992).

The concept of multi-prover protocols was introduced by Benn-Or, Goldwasser, Kilian and
Wigderson (1989), and the MIP = NEXP theorem is due to Babai, Fortnow and Lund (1990).

The concept of transparent proof was developed by Babai, Fortnow, Levin and Szegedy (1991).
The PCP-theorem is due to Arora, Lund, Montwani, Sudan and Szegedy (1992). In this paper the
relations between transparent proofs and nonapproximability of NP-complete problems have also
been explored; the idea came up in the paper by Feige, Goldwasser, Babai, Safra and Szegedy (1991).
For a more detailed exposition on transparent proofs see PhD theses by Sudan (1992) and Arora
(1994), an extensive paper by Bellare, Goldreich and Sudan (1995), surveys due to Johnson (1992),
Babai (1995) and a collection of papers in Hochbaum (1996). A reduction of the number of bits needed
to be checked to 11 is due to Bellare, Goldreich and Sudan (1995).

The idea of zero-knowledge proofs is due to Goldwasser, Micali and Rackoff (1985), which
since then has developed rapidly. See also Blum (1986), Goldreich (1988), Salomaa (1990) and
Feigenbaum (1992) for surveys. Another concept of zero-knowledge proofs, which are not statistically
but computationally convincing, is due to Brassard, Chaum and Cr~pau (1988). Blum, Feldman and
Micali (1988) showed that interaction in any zero-knowledge proof can be replaced by sharing a
common, short, random string. The cave example is due to Muriel, Quisquater and Guillou (1990).

532 U PROTOCOLS

Theorem 9.3.10 is a consequence of the results of Impagliazzo and Yung (1988) and Naor (1989).
Theorem 9.3.13 is due to Ben-Or, Goldwasser, Kilian and Wigderson (1988). The proof that the class
of languages with zero-knowledge proofs is identical with BPP provided one-way functions do not
exist is due to Ostrovsky and Wigderson (1993).

The first particular result checkers are due to Freivalds (1979). However, it was M. Blum (see
Blum (1988), Blum and Raghavan (1989) and Blum and Kamman (1989)) who developed the general
approach to result checking. Basic results on checking approximate numerical computations are due
to Ar, Blum, Codenotti and Gemmell (1993). The idea of self-testing/correcting programs is due to
Blum, Luby and Rubinfeld (1993), and Section 9.4 draws on their work. See also Blum and Wasserman
(1994) and (1995). The last paper investigates the possibility of building result checkers and self-testing
programs into microprocessors.

Vanstein (1991) has shown that for a broad class of functions (rational functions constructed from
x, ex, sin(ax + b) and cos(ax + b), using operations +, -, x and fractional exponentiation) an algebraic
equation can be derived which relates to each other the values of the function at a given point and
a few other points; this equation can then be used to design a result checker and a self-correcting
program.

The area of interactive protocols has developed very fast. Interestingly, to a large extent this has
been due to the extraordinary interaction power of e-mail, as has been well analysed by Babai (1990).

g Networks

INTRODUCTION
Information processing and computing are in principle distributive and parallel, whether executed
on computer networks, in society, or by nature. Many of the fundamental problems of computing are
therefore in this area.

Distribution of tasks and co-operation are the basic engines behind the power that distributiveness
and parallelism offer. Communication networks and methods for making use of them are the basic
tools for harnessing this power. However, conflicting requirements on such communication networks
with respect to their simplicity, regularity and efficiency, coupled with the complexity of many
basic communication tasks, are the main obstacles to harnessing this potential power. A deeper
understanding of basic concepts relating to networks - their characteristics, properties, algorithms,
embeddings into other networks, mutual simulations and layouts - is therefore of prime importance
for capturing the principles and laws of distributive and parallel computing. Fortunately, such an
understanding can be achieved to a large degree on a graph-theoretic level, which is what is presented
in this chapter.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. basic communication networks, their characteristics and properties, and some methods to use
such networks for parallel computing;

2. methods for solving basic information dissemination problems;

3. several embedding methods, especially for embeddings in hypercubes;

4. main routing methods, including randomized ones, their properties and limitations;

5. simulation universality of the main types of bounded-degree networks;

6. simulation of shared memory computers on bounded-degree network computers;

7. basic layout concepts and several layout methods and results;

8. fundamental physical limitations of layouts of highly regular but also randomly interconnected
networks.

534 N NETWORKS

The firm, the enduring, the simple
and the modest are near to virtue.

Confucius (551-479 BC)

Co-operation between computing elements is the basic ingredient in harnessing the power of
distributiveness and parallelism. Communication between processing/memory elements is the key
tool for making such co-operation fruitful.

The ideal case would be to have direct, fast communication lines between all co-operating
elements/memories. Thus, complete graphs would be an ideal interconnection structure.
Unfortunately, with current and foreseeable technologies it is not feasible to implement such an
ideal interconnection structure in the case of a large number of communicating elements. However,
foreseeable technologies are likely to prefer 'nearest neighbours' interconnection structures: namely,
one-, two- and three-dimensional arrays of communicating elements. A strong disadvantage of such
interconnection structures is long communication paths between some processing/memory elements.
There is therefore an urgent need to explore a variety of other interconnection structures for networks
and relations between them.

The main difficulty in designing good interconnection graphs concerns the conflicting
requirements that they should satisfy. They should be regular, so as to make it easy to design
co-operating programs for computer networks on them; networks on such graphs should be able to
simulate efficiently and be efficiently simulated by networks with other interconnection structures.
It should be easy and fast to send messages from all processing/memory elements of the network to
other processing/memory elements. Finally, networks with such interconnection structures should
be reasonably easy to implement with foreseeable technologies.

In this chapter we discuss several key problems of programming, embedding, simulation and
layout of communication networks. Fortunately, all these problems can be discussed on an abstract,
graph-theoretic level.

The main types of networks are introduced in Section 10.1, where some of their basic properties are
analysed and several techniques are demonstrated for designing algorithms to solve computational
problems for such networks of processors. Basic information dissemination problems and modes are
analysed in Section 10.2. Broadcasting, accumulation and gossiping are basic subproblems for many
tasks if the power of distributiveness and parallelism is to be utilized. Their satisfactory solution is of
key importance for effective use of particular interconnection structures. Analysis of these problems
gives rise to some general techniques of communication on networks, as well as to an understanding
of how difficult are even very simple communication tasks on commonly used networks, if one is
looking for optimal performance.

Many problems of efficient communication between elements of networks can be further reduced
to several basic routing problems: through which paths to send information from one communicating
element to another, especially if many communications are to take place concurrently. A variety of
routing problems and their solutions is presented and analysed in Section 10.4.

An efficient simulation of networks with one interconnection structure on networks with
different interconnection structures is of great importance for the overall portability and efficiency
of distributive and parallel programming. Some basic embeddings of certain networks into another
are discussed in Section 10.3. Two other key problems of this type are discussed in Section 10.5: the
existence of universal networks for simulation and the simulation of PRAMs on bounded-degree
networks and hypercubes.

Finally, some network implementation problems, namely, layout of networks in two-dimensional
grids, are discussed on graph-theoretic level in Section 10.6. Graph decomposition and separability
play the key role there.

BASIC NETWORKS 3 535

Processors Processors

Shard meoryInterconnection
network

(a) ~Shared memory(b

(a) (b)

Memory modules Memory modules

S-I Multiprocessor network

Processors

(c) Interconnection network (d)

Figure 10.1 Models of parallel computing

10.1 Basic Networks
Due to its freedom from most communication problems, the PRAM (Figure 10.1a) is an easy-to-use
model of parallel computing. However, the models depicted in Figures 10.1b, c, d, seem to be more
realistic, where a particular communication network is used to manage communications. In the last
model, Figure 10.1d, memory modules are parts of processors. In all these models the underlying
interconnection network and its graph-theoretic properties play the key role.

10.1.1 Networks

There are several properties a family of graphs should have in order to be a good model of
interconnection networks. Two basic ones are regularity and the existence of simple enough
descriptions, for example, by means of string-identifiers of nodes, that allow one to determine easily
the identifiers of neighbouring nodes from the identifier of a given node. This is of crucial importance
for the communication problems discussed in Sections 10.2 and 10.4. Other requirements for good
networks are discussed in Sections 10.3 and 10.6.

Clear and concise representation of strings, sets of strings and conversion operations between
strings and integers is of prime importance for clear and concise description of networks and
discussion of network problems. Let us therefore summarize the notation used.

For an integer n let [n] = {0, 1, . . ., n - 1} - in particular, [2] = {0, 1}. [n]' is the set of all d-tuples
of elements of [n]. A string ai e jn]d will be denoted by ai = (ad-1, .. - , a0) or a = ad-l, • . . , ao, and a0 will
be called the least significant, or the right-most, symbol of a. bin is a conversion function from binary
strings to integers and binda (n), d, n c N, [Ig n] < d, is the binary representation of n using exactly d
bits.

To simplify descriptions of networks and reasoning about networks, we often identify nodes of
networks, or of the underlying graphs, with their identifiers.

Strings a = (ad-1,... ao) and b = (bh-1 ,... b0) from [n]d and their Hamming distance
ham({t,) d-1ham~~a , b i-o Jai - bil are the fundamental elements for describing a variety of networks. The

536 U NETWORKS

most basic ones are arrays and toroids. If d,n E N, then a (n,d)-array A[ndl is the undirected graph
G = (V,E), where V = [n]d, E = {(a,b) I,b E [n]', ham(d,b) = 1}. Similarly, a (n,d)-toroid T[n,d] is
the undirected graph G = (V, E), where V = [n]d,E - {(•,b) 1,b E [n]d, ham(a,b) = 1 or ham(a,b)
n - 1 and a, b differ only in one symbol}.

Example 10.1.1 A[n, 1] is a one-dimensional array of n nodes (see Figure 10.2a); T[n, 11 is a ring (cycle)
of n nodes (see Figure 10.2b) - also notation Rn will be used; A [n, d] is a d-dimensional array of nd nodes (see
Figure 1O.2cfor n = 4, d = 2); T[n, d] is a d-dimensional toroid of nd nodes (see Figure 1O.2dfor n = 4, d = 2);
and A [2, d] is a d-dimensional hypercube, notation Hd (see Figure 1O.2efor d = 3). Another way to depict
H3 is shown in Figure 10.2j.

The hypercube is one of the basic networks, with many natural and important properties. We
shall analyse this network intensively. The following terminology will be useful. If two nodes of a
hypercube Hd differ only in the ith bit from the left, then they are said to be connected by an edge in
the ith dimension.

Exercise 10.1.2 Show that if a, b e [2]d, ham(a, b) = t, 1 < t < d, then between nodes a and b of a
hypercube Hd there are (a) t node-disjoint paths of length t; (b) d - t node-disjoint paths of length t + 2.

The following networks are closely related to the hypercube Hd: the butterfly network, Bd (see
Figure 10.2f for d = 3), the wrapped butterfly network, WBd, and the cube-connected cycles, CCCd
(see Figure 10.2g for d = 3).

The butterfly network Bd can be seen as an unfolded hypercube Hd. The ith level
of edges, 1 < i < d, of the butterfly network Bd can be seen as an unfolding of Hd
according to the edges of the ith dimension. Formally, the butterfly network Bd is an
undirected graph Bd = (Vd,Ed), where Vd = [d + 1] x [2]d, and Ed = {((i,a), (i + 1, b)) I either a =
b or a and b differ in the (i + 1)th left-most bit and in no other bit}. For any s E [2], the nodes from the
set [d + 1] x {s} form a column of the butterfly. For anyj E [d + 1], the nodes from the set {j} x [2]d form
the so-called jth level (or jth rank) of Bd. The nodes of rank 0 (the last rank) are sometimes called the
source (target) nodes. The wrapped butterfly WBd is obtained from the butterfly Bd by identifying
the first and last nodes of each column of Bd.

The cube-connected cycles CCCd can be seen as being obtained from the hypercube Hd
by first removing all nodes and then connecting all remaining edges incident with each node
of Hd by a cycle (see Figure 10. 2g). Formally, the cube-connected cycles are an undirected
graph CCCd = (Vd, Ed), where Vd = [d] x [2]d E, = { ((i, a), ((i + 1) mod d, a)) 10 < i < d, a E [2]d} U
{ ((i, a), (i, b)) [a and b differ in the (i + 1)th right-most bit, 0 < i < d}. Another way to depict CCC3
is shown in Figure 10.2k.

Exercise 10.1.3 Show that in any butterfly network Bd there is exactly one path of length d from any
node of rank zero to any node of rank d.

Exercise 10.1.4 Show that CCC3 is a subgraph of WB3. Does the same relation hold between CCCd and
WBd for any dimension d?

The de Bruijn graph DBd (see Figure 10.2h for d = 3) and the shuffle exchange graph SEd (see

BASIC NETWORKS U 537

0 1nI0,0 0,1 0,2 0.3 00 ,1 0,2 0.3

110 1,1 1,2 1,3 ,0 11 ,2 1,3
(a) Linear array A[n,1]

2,0 2,1 2,2 2,3 2, 21 22 23

I3,0 3,1 3,2 3,3

(b) Ring R. (c) Array A[4,21 (d) Toroid T[4,2]

1|0 111 000 001 010 011 100 101 110 111

00

0000 10 01 10 10 l 1

(e) Hypercube H3 (f) Butterfly B3 (g) Cube-connected cycles CCC 3

001 Oil 010 O11

C 0 0 0 0 10 10 1
0 0 1 I to7 o o i 1

100 110 100 101

(h) De Bruijn graph DB 3 (i) Shuffle exchange graph SE3

~ 2

000 001 010 Oil 100 101 110 111

()Hypercube H3 (k) Cube-connected cycles CCC 3

Figure 10.2 Basic networks

538 N NETWORKS

Figure 10.2i for d = 3) are also closely related to the hypercube Hd. The regularity of these graphs
is better seen when they are considered as directed graphs, even though their undirected versions,
UDBd and USEd, are also often used. The name 'perfect shuffle graphs' is also used for de Bruijn
graphs.

A de Bruijn graph is a directed graph DBd = (Vd,Ea), where Va = [21d, and Ed =

{(aai ... ao,aad-2 ... aob) a-1 ... ao c [2]d,b c [2]}.
The shuffle exchange graph is a directed graph SEd = (Vd,Es), where Vd = [2 ld, Ed =

{ (a-1 ... a0, aa1... a a ao)Iad-1... ao E [2] } u { (aa-1 ... a0, ad2... aoad-1)jad-1 ... a0 e [2]d} -notation
x is used here to denote a negation of bits. The edges of the first set are called the exchange edges
(depicted by dashed lines in Figure 10.2i); the edges of the second set are called the (perfect) shuffle
edges (depicted by solid lines in Figure 10.2i).

Exercise 10.1.5 Show that there is exactly one path of length d between any two nodes of DBd.

Exercise 10.1.6 Show that USE 3 is a subgraph of UDB3. Does the same relation hold between USEd
and UDBd for any d?

The neighbours of nodes in the shuffle exchange and de Bruijn graphs, and in their
undirected versions, can be easily described using the following unary operations on binary strings:
EX(ad-1 . . . ao) = ad-1 . . . aao, PS(aa 1. . . ao) = ad2. . . aoad-1 and PS- 1(ad-1 . .. ao) = aoad 1. . . a1,
DB(a-. . . ao) = (aa-2 .. aoad_-).

Example 10.1.7 The perfect shuffle connections received their name from the following fact. Take a deck of
n = 2a playing cards numbered 0, 1.... n - 1. Cut the deck exactly in half to get cards 0,1,..., E - 1 and
2' ••, n - 1 in thefirst and second halves, respectively. Shuffle the deck perfectly. The resulting order of cards
is

n n n n
0,-1 +1,2, +2,..., 1, n-1.

Observe that the ith card moved into the position bin(PS(bin d' (i)). (Exercise I illustrates how the properties
of shuffle exchange graphs can be used for a card trick.)

The perfect shuffle and de Bruijn connections are very powerful. To see this, let us assume that
the nodes of the perfect shuffle graph represent processors and that all processors send their data, in
three synchronized steps, to neighbours specified by operations PS, EX and PS-1 on binary identifiers
of their nodes. As a result, the data in the first and second halves of the processors are exchanged
- no matter how large the network. Indeed, PS-'(EX(PS(aI. . .. a0))) = aa-lad-2. . . ao. Similarly,
PS-1 (DB(aa 1. . . ao)) = aa--ad-2 ... ao.

Trees, especially complete binary trees of depth d, notation BTd, are another
important interconnection structure. More formally, BTd = (Vd,Ea), where Vd = U 0L212,
Ed = {(u,uO),(u,ul) Iu[< d}.

A hybrid network based on trees and arrays called a mesh of trees looks exotic, but is actually
very natural, fast for parallel processing and convenient for parallel programming.

Informally, the two-dimensional mesh of trees of depth d, MTd, is an n x n array, n = 2 1, of nodes,
the so-called base nodes, that are not connected among themselves, together with binary trees above
each row and column of the array; see Figure 10.3, where nodes of the basic n x n array are depicted
by filled-in circles. More formally, MTd is the graph whose nodes are pairs (u, v), where u, v are binary

BASIC NETWORKS U 539

(E,00)

(00,00) (01,00) (10,00) (11,00)

(11,0)

(11,01)

Figure 10.3 Mesh of trees, with nodes of two trees labelled

strings of length at most d, with at least one of u and v of length d, and whose node (u, v) is connected
by an edge with the nodes (u,vO) and (u,vl) if Ivl <d and with (u0,v) and (ul,v) if Iul < d.

Remark 10.1.8 In this chapter the term 'network' will sometimes be used, as in the literature, in cases
in which the term 'graph' would be technically sufficient because only the interconnection structure
is of importance and not particularly the processors. Mostly, however, the term 'network' refers to
a whole family of similar graphs. For example, the term 'hypercube network' means any network
whose underlying graph is a hypercube. Similarly the term 'bounded-degree network' refers to a
family of graphs for which there is a constant c such that degrees of all graphs of these networks are
smaller than c.

Various modifications of networks are introduced in this section. For example, directed versions
of the graphs presented above are considered, as well as their modifications where, in addition, all
nodes have self-loops. For example, we can have one-directional or two-directional rings. Self-loops
are used to denote that a graph models networks of processors with a memory.

10.1.2 Basic Network Characteristics

Table 10.1 summarizes the basic parameters of networks introduced in the previous section. Apart
from the bisection width, most of them are easy to determine.

Let us recall (see Section 2.4) that the degree of a network is the maximum number of neighbours
with which a node can be connected. The diameter of a network is the maximum distance between
nodes.

Complete graphs K, are ideal interconnection structures for multiprocessor communication.
Complete bipartite graphs K,,, are ideal interconnection structures for communication between n
processors and n memory modules. Unfortunately, these graphs have degree n - 1 and n if they have
n, respectively 2n nodes. The main advantage of hypercubes is that the degree is much smaller, namely
E) (lg n) for an n-node graph. The diameter is not increased too much, again E) (lg n), and, in addition,
regularity is preserved. The main advantage of bounded-degree networks such as complete binary

540 U NETWORKS

Network number number degree diameter bisection-
of nodes of edges width

Array A[n,d],n > 2 n n dn-1(n- 1) 2d d(n- 1) nT-
Torus T[n,dn dnar- 2d d[L2] 2nd-1

Hypercube Hd 2 d27'- d d 2
Cube-conn. cycles CCCd, d > 4 d2" 3d2- 3 1 - 2 2 -I

Shuffle exchange SEd 2 2dd+ 1 4 2d - 1 0(2)

de Bruijn graph DBd 2d 2 dl 4 d EO()
Butterfly Bd (d+1)2d d2+1 4 2d 2

Wrapped butterfly WBd d2 d2d+ 4 1 J4

Table 10.1 Characteristics of basic networks

trees, butterflies, cube-connected cycles, shuffle exchange and de Bruijn graphs is that they preserve
logarithmic diameter but have very small degree.

The bisection-width' of a network is one of the critical factors on which the speed of computation
on the network may eventually depend. It actually determines the size of the smallest bottleneck
between two (almost equal) parts of the network.

For example, as is easy to see, BW(A[n,1]) = 1,BW(A[n,2]) = n,BW(T(n,2)) = 2n,1BW(H 3) =

BW(CCC3) = BW(SE 3) = BW(DB3) = 4.

Exercise 10.1.9 Show for as many entries in Table 10.1 as you can that they are correct.

We present now an elegant proof of the upper bound BW(SEd) = O((d). The proof is based on
properties of a special mapping a of nodes of SEd = (Vd, Ed) into the complex plane.

Letwd = e-I beadthprimitiverootof1;thatis, w=1andwd' , 1for1 < i < d. For a = (ad-1,.. ,a) E

[2]d we define

() = ad-ILId + ad2Wdd +.ao

to be a complex number, a point in the complex plane, an image of the node 4 (see Figure 10.4). The
mapping a has the following properties:

1. The exchange edges of SEd are mapped into horizontal segments of length 1. Indeed,

o(ad-1 ... a,1) = adIWd-+. . . +alwd + I = o(ad-I... al0) + 1.

2. The shuffle edges of SEd form cycles (called necklaces) with the centre at the origin of the plane.
Indeed, since wL = 1, we get

wdao(ada1... ao) = ad-lWd+-• . +aowa = a d-12 l . . +aowd +ad-I

= oa(ad-2 ... aoadAl).

'Remember (see Section 2.4.1) that the bisection-width BW(G) of an n-node graph G is the minimum number
of edges one has to remove to disconnect G into two subgraphs with ["] and L ' j nodes.

BASIC NETWORKS U 541

-2 -10 1 2

2i

14 153

24 225

Figure 10.4 Mapping of a shuffle exchange graph into the complex plane

3. The length of necklaces is clearly at most d. Necklaces of length d are called full. Those with

fewer than d nodes are called degenerate (e.g. the necklace 1010 -* 0101 -- , 1010 in SE 4).
Degenerate necklaces are mapped by o into the origin of the complex plane. Indeed, for any

node ad-1. • . a 0 of a degenerate necklace there is an i such that wco-(adI. ., ao) = i(ad-l. • • a0).

Since w• € 0, it follows that a(ai 1. •. ao) = 0.

4. The number of nodes of a SEd that are mapped by a into the upper part of the complex plane

is the same as the number of nodes that are mapped into the lower part of the plane. Indeed,

d-1 d-1

a d...o+r~ To. --) + = Z =0o.
i=0 i=0

5. At most O(_ (-) nodes are mapped into the origin. Indeed, if r(adl 1. •. a0) = 0, then ur(ad_ 1.. . ai1 a)

equals I or - 1. Each such node has to be on a full necklace. This means that at most 2 •- nodes

are mapped into the nodes 1 or - 1. Hence, there are at most 2 • nodes mapped into the origin.

6. At most O(•) edges cross the real axis. Indeed, exactly two edges from each full necklace cross

the real axis, and an exchange edge can 'cross' the real edge, according to the point 1, if and

only if both its nodes lie on the real axis.

7. If we remove all edges that cross the real axis or lie on the real axis, and assign half of the nodes

lying on the real axis to the upper plane, the other half to the lower plane, we get a 'bisection' of

542 N NETWORKS

contraction

010 1O1 (a) 01

000001 10 to 11I1 001

(b) 1
100 10O(bSE3 DB 2

Figure 10.5 Contraction of SE 3 into DB 2

the graph into two parts; each with 2d-1 nodes. The number of edges that have been removed
2dis O(9(-), according to point six.

The relation between the shuffle exchange and de Bruijn graphs is very close. Indeed, if exchange
edges of the shuffle exchange graph SEd+ 1 are contracted into single nodes, we get the de Bruijn graph
DBd. Figure 10.5a shows the contraction operation, and Figure 10.5b shows how to get DB2 from SE 3
by contraction.

This close relation between shuffle exchange and de Bruijn graphs immediately implies that the

E (L) asymptotical estimation for the bisection-width also applies to de Bruijn graphs. It is an open
problem to determine more exactly the bisection-widths of shuffle exchange and de Bruijn graphs.

Exercise 10.1.10 Determine,for the two-dimensional mesh of trees of depth d, MTd: (a) the number of
nodes; (b) the number of edges; (c) the diameter; (d) the bisection-width.

Exercise 10.1.11 (Star graphs) These are graphs S, = (Vn, En), where V, is the set of all permutations
over {1,... ,n} and E, = {(a,b)Ia,b c Vn,b = a. tfor some transposition t = (1,i),2 < i < n}.
(a) Determine the number of nodes, edges and diameter Of Sn. (b) Show that S4 consists offour connected
S3 graphs.

Exercise 10.1.12 (Kautz graphs) Another family of graphs that seems to be potentially a good model
for interconnection networks are Kautz graphs, Kd = (Vd,Ed), where Vd = {a 1 a [3]d and no two
consecutive symbols of a are the same}, Ed = {(ad-1. . . a,ad-2. . . aox) Iad- I . . ao E Vd,ao # x}. (a)
Draw K1 , K2, K3, K4. (b) Determine for Kd the number of nodes, number of edges, degree and diameter.

10.1.3 Algorithms on Multiprocessor Networks

Consider the following version of the divide-and-conquer method. At the beginning one processor is
assigned a problem to solve. At each successive step, each processor involved divides its problem into
two subproblems, of approximately the same size, keeps one of them for itself and assigns the second
to a new processor. The process stops when the decomposition is complete. The interconnection graph
obtained this way after the dth step is exactly the spanning tree of the hypercube Hd (see Figure 10.6).

BASIC NETWORKS B 543

Problem

Step I Step 2 Step :3;

Figure 10.6 Divide-and-conquer method and a hypercube

In addition, we can say that at each step 'division is done along another dimension of the hypercube'.

This interpretation of the divide-and-conquer method shows that, from the algorithm design
point of view, the hypercube interconnections naturally fit what is perhaps the most important
algorithm design methodology. Moreover, it also shows how divide-and-conquer algorithms can
be implemented on hypercube networks.

In the following three examples we illustrate how to solve some basic algorithmic problems on
hypercube and butterfly networks. The first of these is called broadcasting - information must be
sent from one node to all the others. (We deal with broadcasting in more detail in Section 10.2.)

Example 10.1.13 (Broadcasting on the hypercube Ha) 2

Input: Information x is in the processor Po. .o.

Output: Each processor contains x.

Algorithm: for i ý- 1 to d do
for a, ... a-i [2]- pardo Po...0 o, - ... a1 sends x to PO. .. 01ai 1 a,

dsymbols

Illustration: Step 1: P000 sends x to P001 {notation P0o0 -x Pool1},
Step 2: P000 -, P010,P001 -X Pon,
Step 3: Pooo -x Ploo,P ool -x Plot, Polo --+x Pilo,Pou ---x Pnl,

Example 10.1.14 (Summation on the hypercube Hd)

Input: Each processor PF, 0 < i < 2', contains an ai e R.

2d 1
Output: The sum _i=0 ai is stored in Po.

Algorithm: for I -- d - 1 downto 0
for 0 < i < 2' pardo Pi: ai <-- ai + ai(1),

where i(0l is the number whose binary representation is obtained from the binary representation bin) (i) of i by
flipping the (1 + 1)th left-most bit.

2The convention [210 = 0 is used here.

544 U NETWORKS

rank 0

rank rank 2

rank 2 rank 2

rank 3 rank 1

rank 2

(a) ~rank 3)

Figure 10.7 Two ways of making two butterflies out of one

For d = 3, the first three iterations have the form

ao 0 --ao+a 4 a, -a, +a 5 a2 --a2+-a6, a3 -a 3±-a7,
a0 -a 0 +a 2, al÷-al+a3,
ao -- a0 + al.

Both algorithms belong to the class of fully normal hypercube algorithms (or ascend/descend
algorithms). At each step all processors communicate along the same dimension and all dimensions
are used either in ascending or descending order.

Exercise 10.1.15 Design a (simple) algorithm for multiplying two matrices of degree n = 2q on the
hypercube H3q in 0(lg n) time.

We show now how a butterfly network on Bd can be used to sort n = 21 numbers, stored in the
processors of Bd of rank 0, one number per processor. The output, the sorted sequence, will be stored
in the processors of the last rank, again one number per processor. The algorithm will be of a multiple
ascend/descend type. It is based on a very straightforward observation and a merging procedure
founded on a simple merging lemma.

Observe first that if the nodes of the highest rank of the butterfly Bd (see Figure 10.7a) are removed,
we get two butterflies Bd-1 (see Figure 10.7b). The same is true if nodes of rank zero are removed (see
Figure 10.7c). This allows us to use the divide-and-conquer method for sorting on Bd as follows.

Input: A sequence of 2' elements is stored in the nodes of rank 0 of the butterfly Bd.

Output: The sorted sequence is in the processors of the last rank.

Algorithm: sort(d).

Procedure: sort(k)
begin

if k = 0 then done
else copy data of processors of rank 0 into processors of rank 1;

BASIC NETWORKS U .545

for both butterflies obtained by removing rank 0 pardo sort(k - 1);
merge(k) {using processors of all ranks}

end

The procedure merge for merging two sequences is based on the following fact.

Lemma 10.1.16 Let a,, . . . ,a. and bl, . . ,b, be two sorted lists, n even. Assume that aa,a 3,a5 , . • • ,a,- 1 is

merged with b2,b4, . . . ,b, into c1 ,c 2 , c. . ,Cnand a2,a 4, ,a with bi,b 3 , . . . ,bn- 1 into dj, . . . ,d,. We get
awfully sorted sequence by taking

Cl,dl,c2,d2,... ,Cnjdn

and exchanging elements of pairs (ci, di), 1 < i < n, whenever ci > di.

We assume that the subsequence a,, a3, a5, . .. , an-1 of n /2 element is merged with the subsequence
b2, b4 , b6 , ... , b, of n / 2 elements into the sequence c1 , c2 , c3 ,. . . , c, of n elements and the subsequence
a2, a4, a6, . . . , an of n / 2 elements is merged with the subsequence bl, b3, b5, . . . , bn- 1 of n / 2 elements
into the sequence dl, d2 , d 3 , • .• , dn of n elements.

The merge procedure presented below assumes input data and produces output data in the
processors of the last rank. It has the following form (with xij denoting the number stored in the
jth processor of the rank i, and indices relate to the subbutterflies that arise at the recursion):

procedure merge(k)
begin
if k = I then

begin xo,o +- min{xi,o, x1,1}, xo,1 +- max{x1 ,o, x1j}, x1 ,o +- xo,o, x1,1 *-- xoj end
else begin

copy-exchange Xk,o, . . . Xk,'-l intoXkl,o, . . . -,-;

copy Xk,, n • Xk,n- into Xk-l,, Xk-l,-1;

for butterflies with ranks O,... ,k - 1 pardo merge(k - 1);
for 0 < i < n pardo if i is odd then Xki -- max{xk i1 -,Xk-1,i}

else Xk,i -- min{Xk-,1-1,Xk4,i}

end
end,

where the procedure copy-exchange transfers Xk,i-1 into Xk-,i for odd i, and Xk,i+ into Xk-i, for i even.
The function of the procedures copy-exchange and copy is to transfer data from nodes of rank k to
nodes of rank k - 1 in such a way that one of the butterflies obtained by removing all nodes of rank k
merges even items of the first half with odd items of the second half and the second butterfly merges
the rest - exactly as Lemma 10.1.16 requires.

The correctness of the procedure merge follows now from Lemma 10.1.16. Parallel time complexity
of the algorithm is, for n = 2', O(1g 2 n). Indeed, the number of recursive calls of the procedure sort is
9 (lg n). Each merging requires one descend and one ascend run, and this yields 0 (lg n) time.

Exercise 10.1.17 Design an algorithm for the butterfly Bd such that #, at the beginning of computation,
the i-th node of rank 0 contains an xi E R, then, after d steps, the i-th node of the final rank containsS''2d-1 i 1(a) E,= 0 xj; (b) 0j• xi"

546 3 NETWORKS

(a) Broadcasting (b) Accumulation (c) Gossiping

Figure 10.8 Basic information dissemination problems

One of the main advantages of the mesh of trees is that for many basic algorithmic problems
one can design a simple and fast algorithm. The tree interconnections of the mesh of trees play an
important role in this.

Exercise 10.1.18 Design a simple 0((d) algorithm for the two-dimensional mesh of trees of depth dfor
(a) sorting of 22d numbers with initially one number per each processor in a base node; (b) matrix-vector
multiplication.

10.2 Dissemination of Information in Networks
The ability of a network effectively to disseminate information is an important criterion of its
suitability for parallel computing.

10.2.1 Information Dissemination Problems

In this section we first introduce three basic communication problems for networks - broadcasting,
accumulation and gossiping.

Many programming strategies for networks can be reduced to these tasks, or they at least play
an important role in the overall solution. We discuss two basic communication modes and present
algorithms and lower bounds for these information dissemination problems for several types of
communication networks. In doing so, we illustrate how difficult it is to make optimal use of the
communication facilities offered by the main types of networks. We also demonstrate some techniques
for managing information dissemination problems.

1. Broadcasting problem for a graph G = (V, E) and a node v E V. Let v know a piece of
information I(v) which is unknown to other nodes of G. The problem is to find the best
communication strategy, in the sense discussed later, such that all nodes of G get I(v) (see
Figure 10.8a).

DISSEMINATION OF INFORMATION IN NETWORKS S 547

X1 2

1 2 3 4 3 2 1 4 - 1
1 1

x1 x2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

(a) (b) 0 2-
x3 X4

Figure 10.9 Communication algorithms

2. Accumulation problem for a graph G = (V, E) and a node v G V. Let each node u know some
information I(u), and for two different nodes u, w let their informations I(u),I(w) be different.
The set I(G) = {I(u) Iu E V} is called the cumulative message of G. The problem is to find
the best communication strategy such that node v learns the cumulative message I(G) (see
Figure 10.8b).

3. Gossiping problem for a graph G = (V, E). Let each node u know information I(u), and let I(u)
and I(w) be different for different nodes u, w. The problem is to find the best communication
strategy such that all nodes get the cumulative message I(G) (see Figure 10.8c).

A communication strategy, or a communication algorithm, is a specification of a sequence of
parallel communication steps (rounds), each of which specifies which nodes send their information
and to whom or which nodes exchange information. There are two basic modes in which such
communication can be carried out.

1. Telegraph mode (one-way communication). In each round each processor can either send or
receive information, and in so doing can communicate with at most one neighbouring node. This
means that a one-way communication algorithm for a graph G = (V, E) is a sequence C1,... I C,
where each Ci CC = {(v, u), (u,v) I (u,v) E E} is such that if (xi,yl) and (x2,y2) are two different pairs
from Ci, then {xl,yj} Il {x 2 ,y2} = 0. (In other words, each Ci contains ordered pairs of nodes that

communicate in the ith round, and no node can be in two such pairs.)

Example 10.2.1 The following communication algorithm for a one-dimensional array

{(Xl,X 2), (X9 ,X8)}, {(X2 ,X3), (X8 ,X7)}, {(X3 ,X4), (X7 ,X 6)}, {(X4 ,X 5)}

is depicted in Figure 10.9a, where integers specify rounds.

2. Telephone mode (two-way communication). In each round each processor can exchange
information with at most one neighbouring node. This means that a two-way communication
algorithm for a graph G = (V, E) is a sequence C1, ... , C, such that Ci c E and such that if (x1 ,yj) and
(x2,y 2) are two different pairs from Ci, then {xj,y 1 } n {x 2,y 2} = 0. (In other words, each Ci contains
pairs of nodes that communicate in the ith round, and no node can be in two such pairs.)

Example 10.2.2 A two-way gossiping algorithm { (X1, X3), (X2 , X4) }, { (X1 X2), (X3 , X4) } for a four-node ring

is depicted in Figure lO.9b (integers specify rounds).

Communication complexity of the basic information dissemination problems, with respect to two
communication modes, is defined for graphs as follows.

548 U1 NETWORKS

Definition 10.2.3 Let G = (V,E) bea graph, v e V,i -= 1,2.

1. Broadcasting complexity, bi(v, G), is the minimum number of rounds of communication algorithms
for broadcasting in Gfrom the node v in the i-way communication mode; bi(G) = max{ bi(v, G) I v G V}
is the overall broadcasting complexity of the graph G.

2. Accumulation complexity, ai(v,G), is the minimum number of rounds of any communication
algorithm for accumulation in G to the node v in the i-way communication mode; ai(G) =

max{ai (v, G) v c V} is the overall accumulation complexity of the graph G.

3. Gossiping complexity, gi (G), of the graph G is the minimum number of rounds of any communication
algorithm for gossiping in G in the i-way communication mode.

For each graph G we have introduced altogether six complexity problems of information
dissemination on G. However, as the following theorem says, only three of them are essentially
different from the complexity point of view: one broadcasting and two gossiping problems, for both
communication modes.

Theorem 10.2.4 al(G) = a 2(G) = bl(G) = b2(G)for each graph G = (V,E).

Proof: (1) If El, . .. ,Ek is a broadcasting algorithm in the telephone mode for the graph G and a
node v c V, then Ek, . . . , El is an accumulation algorithm for G and v, and vice versa. Therefore,
b2 (v, G) = a2(v, G) for every v, and so b2 (G) = a2(G). Analogously, we can show that bl (G) = a, (G).

(2) It is trivial that b2(v, G) < b, (v, G) for each v c V, and therefore in order to prove the theorem,
it is sufficient to show that b, (v, G) < b2(v, G) for each v c V.

Let El,.... . , Ek be a broadcasting algorithm in the telephone mode for G and v G V. Let R0 = {v}
and Ri, 1 < i < k, be the set of nodes that receive information I(v) in the first i rounds. Then

i-1

Vi = Ri- URj
j=l

is the set of nodes that receive I(v) exactly in the ith round. In such a case
i-1

E ,....,E'withE'= Eif{UVsxV}
S~l

is a broadcasting algorithm for G and v in the telegraph mode. Hence b, (v, G) = b2 (v, G), and b, (G) =

b2(G).

As a consequence, we can define a 'broadcasting complexity' b(G) = bi (G) = b2 (G) for any graph
G.

The following theorem summarizes the basic relations between broadcasting and gossiping
complexities.

Theorem 10.2.5 For any graph G we have b(G) < g2(G) •ý gl (G) • 2g 2 (G).

Proof: The inequalities b(G) < g2 (G) < gi (G) follow directly from the definitions. In order to show
gi (G) • 2g2 (G), let A = El , Ek be a gossiping algorithm in the telephone mode for G. Consider
any communication algorithm

B = El, E12, E21, E22, . . • Ekl, Ek2,

where Ei = Eil 0 Ei2, in the sense that for each 'exchanging edge' (u, v) in Ei one of the directed edges
(u, v) or (u, v) goes to Eil, the second to Ei2. B is then a one-way gossiping algorithm for G. 0

DISSEMINATION OF INFORMATION IN NETWORKS U 549

graph diameter broadcasting broadcasting gossiping gossiping gossiping gossiping
lower bound upper bound lower bound upper bound lower bound upper bound

telegraph mode telegraph mode telephone mode telephone mode
Hd d d d 1.44d 1.88d d d

CCCd L•J-2 [2- 2[1-1 [21-2 ,1 +- [22 ••- -2 r.L -1 2 -
SEd 2d -1 2d -1 2d- 1 2d -1 3d + 3 2d - 1 2d 4- 5
DB_ d 1 1._4404d (d + 1) 1.31d 3d + 3 1.3171d 2d + 5

Table 10.2 Bounds for complexity of broadcasting and gossiping

10.2.2 Broadcasting and Gossiping in Basic Networks

Table 10.2 summarizes the best known results for broadcasting and gossiping on hypercubes (Hd),
cube-connected cycles (CCCA), shuffle exchange graphs (SEd) and de Bruijn graphs (DBA). Some of
these results will be discussed in more detail in what follows.

Broadcasting

A lower bound on broadcasting complexity is easy to derive.

Lemma 10.2.6 Ifa graph G has n nodes, then b(G) > [lgn], and if it has diameter d, then b(G) > d.

Proof: The number of informed nodes can at most double during one communication round. For the
number t of necessary rounds we therefore get

2t > n =• t >[lg n1.

The second claim of the lemma is obvious. 5

Corollary 10.2.7 b(Hd) = d.

Proof: The inequality b(Hd) > d follows from the previous lemma, and the inequality b(Hd) !_ d from
the analysis of the broadcasting algorithm in Example 10.1.13. 0

Exercise 10.2.8 Let G be a graph of degree d. Show that b(G) < (d - 1)diam(G). What kind of upper
bounds does this inequality implyfor broadcasting on the particular bounded-degree networks introduced
in Section 10.1?

Theorem 10.2.9 b(SEd) = 2d- l ford > 2.

Proof: The lower bound follows from the fact that 2d - 1 is the diameter of SEd. The analysis of the
following algorithm shows that 2d - 1 is also an upper bound for broadcasting on SEd. In this algorithm
and its analysis the following notation is used: for any integer k and any string w = ak. .. alao E [2 1

let w, = ak - that is, w, is the first symbol of w - and w(i) = aiai-1 .. . ao for k > i > -1, where w(') is
defined to be E - that is, w(') is the suffix of w of length i + 1.

550 U NETWORKS

Algorithm 10.2.10 (Broadcasting from an arbitrary node ad- 1 ... ao)

w = ad-1. . . a0 sends its message to ad-1... a, aa 0 {exchange round};
for t -- d - 1 downto I do

for all /3 c [2]d-1-t pardo
begin
if w('t) { +3l}+ then w(') 0 sends its message to w('-1) Oat {shuffle round};

w(t-1
1)/3at sends its message to w(

t
-l) O/tf {exchange round};

end

The correctness of the algorithm follows from these two facts:

1. There is no conflict in any of the 2d - 1 rounds; that is, if a node is active in a round, then it is
active in that round only via one edge. Indeed, there can be no conflict in the exchange rounds; in the
cycle for t = i each sender has the last bit ai, and each receiver ai. Let there be a conflict in a shuffle
round: that is, let there be a node that is both a sender and a receiver; that is, w(' /3 = wI--•) yat for some
/3f,- e [2]+. In such a case atw(t-1) = w(t 1)..yi =* at = at 1 = a0 = Yl, and therefore w('1) {cI1}+.

This contradicts our assumption that the shuffle operation is performed only if w(t) • {Jyl •+
2. After 2r + 1 rounds, that is, after the initial round and r executions of the t-cycle, all nodes

W(d-r-2) 0,,3 .l [2]r+l have learned I(w). This can be proved by induction on r = d - t - l as follows.
The assertion is clearly true after the execution of the first round. Therefore let us assume that this

is true after (r - 1) executions of the loop for t, where r > 1; that is, all nodes w(d-r- 1) /, f3 E [2]r have
learned information 1(w). See now what happens after the next two rounds.

If w(a r-1) 1 {10,11, /3 e [2]r, then all W(d-r 1)/3 have learned information I(w) in the previous
rounds, according to the induction hypothesis. In the following round w(d-r-2) /aa ro1 also gets
information I (w).

If w(d-r-1) E {1i, }', / z [2]r, then w(d-r-
2
)13ad-,- 1 = W(d-rl) 0(r-

2
)ad-rI, and therefore such a node

already knows information I(w). In the next round W(d-r-2) A-,r_1 also gets this information, and so
the induction step is proved.

Previous results confirm that the broadcasting complexity for SEd and also for Hd is equal to the
diameter. This is not the case for de Bruijn graphs.

Theorem 10.2.11 1.1374d < b(DBd) < 2 (d + 1) for broadcasting on de Bruijn graphs.

Proof: We now show the upper bound; the lower bound follows from Lemma 10.2.12. In the following
algorithm any node (ad-1. . . ao) sends information to nodes (ad-2... aoad-1) and (ad2 ... aoad 1) in the
following order: first to node (ad--2... aoa(adl ... a0)), then to node (ad2. . . aoa(ad1 .. . a0)), where

a(adl. ., ao) = (Z•-ioai) mod 2. Let a = (ad1,. ao), b = (bd1,. bo) be any two nodes. Consider

the following two paths Pi, i c [2], of length d + 1 from the node i to the node b.

pi : ((ad-1, .. ,a0) (ad-2 ... ,ao,i),(a - 3 ,ao,i, bd--1),(ad-4, . . . aoIi, bd lbd-2)

... (ao,i,bdI, . . . ,b2),(i, b 1 ,. .. ,bl),(bd 1, - . . ,bi,bo)).

These two paths are node-disjoint except for the first and last nodes. Let

vo,i = (aj, ao,0, bd-1, . . . ,ba-i+2) and vri = (ad-, . . . ,ao, 1,bd 1. bd-i+2)

DISSEMINATION OF INFORMATION IN NETWORKS * 551

be the ith nodes of the paths p0 and pi, respectively. Since for any i c [d] the nodes vo,i and vij differ
in one bit, we have a(voi) # cv(vij). This means that the number of time steps needed to broadcast
from the node voj to v0,i+ 1 and from vli to vl.i+ 1 is I in one of these two cases and 2 in the other. (One
of the nodes vo,i and vl.i sends information to the next node of the path in the first round, the second
in the second round.)

Let ti denote the number of time steps to broadcast from a to b via the path pi. Clearly

to0+t = (d+ 1)(1 +2)= 3(d+1).

These paths are node-disjoint, and therefore a message from a reaches b through one of these two
paths in 3(d+ 1) rounds.

Lemma 10.2.12 If G is a graph of degree 4 with nodes, then b(G) > 1.1374 lg n.

Proof: Let v be an arbitrary node of G, and let A(t) denote the maximum number of nodes that can
be newly informed in the tth round if broadcasting starts in v. Since G has degree 4, once a node has
received a piece of information, it can inform all its neighbours in the next three steps. It therefore
holds that

A(O) = 0,A(1) = 1,A(2) = 2,A(3) = 4,A(4) = 8,

A(t) = A(t- 1) +A(t -2) +A(t-3) for t > 5.

The corresponding algebraic equation is x3
= x 2 + x + 1, and its only real root is 1. 8393. Hence, by the

results of Section 1.2, A(i) P 1.8393i.
For any broadcasting algorithm running in time t we therefore have

t

E A(i) > n,
1_o

and therefore
t

-- A(i) ;A(t) , 1.8393t > n,
i-o

which implies t > 1. 1374 g n.

Exercise 10.2.13 For a complete graph IC, with n nodes show that (a) b(KC,) < [lgn]; (b) b(iC',) >
[lgn].

Exercise 10.2.14 Show that b(G) > 1. 44041gn for each graph of degree 3 with n > 4 nodes.

Exercise 10.2.15 Denote T•") a complete m-ary balanced tree of depth d. Let v be the root of T(m)

Denote b(v, T(m)) the achievable minimum, over all nodes v, of the number of rounds of a broadcasting

algorithm for T(m). Show that b(v, Tm)) = md.

Using more sophisticated techniques, better lower bounds, shown in Table 10.2, can be derived
for gossiping on de Bruijn graphs.

552 M NETWORKS

Exercise 10.2.16* Show that b(CCCd) = ['d -2.

Exercise 10.2.17 Find as good bounds as you can for b(A[n,2]).

Gossiping

Gossiping is a much more complicated problem than broadcasting, especially in the telegraph mode.
Basic lower bounds for gossiping on a graph G with n nodes follow from Theorem 10.2.5 and

Lemma 10.2.6:
g1 (G) Ž g2 (G) > b(G) > [lgn].

Graphs G such that g2(G) = lg nj are called minimal gossip graphs. The following lemma implies
that hypercubes and any graphs for which a hypercube is a spanning graph have this property.

Lemma 10.2.18 g2(Hd) = dfor any hypercube Hd.

Proof: By induction. The case d = 1 is trivially true. Let us assume that the lemma holds for some d.
The set

E {((0,ad 1 ,ao),(1,ad-1,... ,a0))I ad ... ao c [2]d)

can be seen as specifying the first round of a gossiping algorithm for the hypercube Hd+1. The
cumulative message of Hd<l is the same after this round as the cumulative message in the two
different subhypercubes of Hd+ 1 of dimension d that can be obtained from Hd + by removing edges
from El. This means that after one round the gossiping problem for Hd+ 1 is reduced to the gossiping
problem for two hypercubes of dimension d. Their gossiping problem can be solved, by the induction
hypothesis, in d rounds.

Exercise 10.2.19 Show that graphs of no bounded-degree interconnection network G can be minimal
gossip graphs.

Rings are an example of 'almost' minimal gossip graphs.

Theorem 10.2.20 g2 (R,) = zjfn is even, and g2 (Rn) = [2] + I ýz n is odd.

Proof: We prove the theorem only for n even. The case n is odd is left as an exercise.
Since the diameter of Rn is ", we get the lower bound g2(Rn) > ý from Lemma 10.2.6.
This lower bound can be reached by the following communication scheme: El,.. E2,

where, for odd i, Ei = .(XlX2),(X3,X4), . . (Xn-3,Xn-2),(Xn1,Xn)}, and, for even i, Ei =
{ (x 2 ,x 3), (x 4 ,x 5), •• (xn--2,xn-1), (xn,x 1)}. Clearly, after k steps each node knows exactly 2k pieces
of information. 0

Exercise 10.2.21 Show for a complete graph Kn that g2 (Kn) =[lg n] ifn is even and g2 (Kn) = [lg n] + 1
if n is odd.

DISSEMINATION OF INFORMATION IN NETWORKS U 553

U• V1 U1 V2 UI,

SS ýss

Vi T. Uj Ui

Y'+l Ui Vi Ui_1

(a) 2s-1(b)

Figure 10.10 Distribution of s nodes in the ring

The case of the telegraph mode is more complicated, even for such simple networks as rings.

Theorem 10.2.22 g1 (Ri) 2 + rv/-2] - l for even n > 3.

Proof: We show here only the upper bound gl (R,) < E + [v's] - 1 and only for the case n = 2s2 and
s is even. This will be enough to present the basic idea, which can then be used to prove the upper
bound for all even n.

Let us divide the ring of n = 2s2 nodes into s parts each with 2s nodes (see Figure 10.10a) with the
node vi starting and the node ui ending the i-th part. In addition, in the ith part let u' be the node at
distance s - 1 from ui, and v' be the node distance s - 1 from vi (see Figure 10.10b).

Consider now the following gossiping algorithm, consisting of two phases.
1. Each node vi is the beginning of a communication path of length ý going through the node

ui. Along these paths information is accumulated in one direction. Simultaneously, each node ui
initializes a communication path of length ý - 1 in the opposite direction, and information is2
accumulated in the same direction. Paths from vi and ui- 1 (Vl and us) meet in the node V((i+s/ 2) mod s+1).

Since there are s such paths in both directions, there may be s - 1'collisions' in a node. In other words,
it can happen s - 1 times that two messages try to get through a node, one from the right and one
from the left. Two rounds are needed to handle each collision. The overall number of rounds needed
to perform communications along all these paths is therefore

n-+s-1.

Observe that at the end of the first phase all nodes vi know the whole cumulative message. However,
this is not true of all other nodes. The aim of the next phase is to send this cumulative message to all
other nodes.

2. For each i C {l, ... 1,

"* vi sends the cumulative message to ui- 1 (and vl to us);

"* vi sends the cumulative message to v' and ui sends the cumulative message to u', and to all
nodes on these paths.

Since the second phase needs s rounds, the overall number of rounds for this gossiping algorithm
is exactly as the theorem claims. 0

The above idea as to how to do gossiping on rings in two phases will now be applied to develop
a gossiping scheme for the wrapped butterfly.

We show only the upper bound here. First observe that for any fixed a E [2]d, all nodes of WBd of
the form (i, a), i c [d] form a ring. Denote this ring by R_. Communications along these rings play the
key role in the following gossiping algorithm for WBd.

554 3 NETWORKS

1. Use, in all rings R_, the first phase of the optimal algorithm for gossiping on rings to distribute
the cumulative message of R. into s =V [d / 2] j 'regularly distributed' nodes { (vi, 1) I I i < s}.

2. Perform, for all i - {vj 11 < j < s}, in parallel, the following algorithm (which distributes already
accumulated messages along the butterfly edges):

for j - 0 to d - 1 do
for a E [2]d pardo

begin
((i +j) mod d, a) sends message to ((i +j + 1) mod d, c,(i+j) iii o d d)

((i-+j) mod d,ca) sends message to ((i-+j + 1) mod d, a)
end

This means that equally distributed nodes vi,O i < 1, of all rings R,, received the cumulative
message of the whole butterfly.

3. As the last step, phase 2 of the optimal gossiping algorithm for rings is used to distribute the
cumulative message to all points of all rings.

The analysis of the above algorithm shows that

g, (WBd) <_ gi (Rd) + 2d- 5=d2 +

for d even, and a similar bound can be obtained for d odd.
The methods and results of this section have demonstrated that it is far from easy to design optimal

algorithms even for very basic information dissemination problems and very simple networks.
Once a new type of network is suggested, those involved with broadcasting and gossiping

problems are among the first to consider. Because of their fundamental importance for the design of
algorithms for networks, these problems are good test sites for observing the communication qualities
of networks.

Exercise 10.2.23 Design a gossiping algorithmfor the hypercube Hdfor the telegraph mode with number
of rounds at most 2d.

Exercise 10.2.24 Design, as best as you can, a gossiping algorithm in the telegraph modefor the complete
graph. (It can be shown that g1 (K,) < k + 1 ifn is even and k is such that Fk Ž! n / 2, where Fk is the
k-th Fibonacci number. Can you beat this result?)

Exercise 10.2.25* Design a gossiping algorithm in the telegraph mode for the cube-connected cycles.

10.3 Embeddings
Parallelism brings a new dimension to the problem of simulation of one computer on another. Since
the existence of (very) different networks of processors is inherent in parallel computing, the task
of developing efficient simulations of one network on another is the key problem for portability in
parallel computing and for the efficient coexistence of different parallel architectures. In addition, the
simple fact that we have more processors increases the complexity of simulation problems.

The ideal case for a simulation of networks with an interconnection graph G, by networks with
an interconnection graph G 2 is when G1 is a subgraph of G2. A simulation can then be achieved with
no time overhead. Less easy to deal with, but still quite good, is the case in which there is a small k

EMBEDDINGS 3 555

such that nodes of G1 can be mapped by an injective mapping into nodes of G2 in such a way that any
two neighbouring nodes of G1 are mapped into nodes of G2 connected by a path of length at most k.

With respect to the portability of algorithms for multiprocessor networks, embedding methods
can be viewed as high level descriptions of efficient methods of simulating algorithms for one type of
network computer on a different type of network computer. As a consequence, a network in which
others can be embedded easily and well is preferable to those without such properties.

10.3.1 Basic Concepts and Results

The basic idea of embedding is very general, simple and natural, as are the main ways of measuring
the quality of embedding.

Definition 10.3.1 Let G = (V1, El and H = (V2, E2 be connected graphs. An embedding of the 'guest
graph' G into the 'host graph' H is an injective mappingf : V1 -* V2.

The quality of an embeddingf is generally expressed using the dilation Df and the expansion Ef
defined by

Df = (x,y)EEa dH(f(x),f(y)), Ef = IV21"

In other words the dilation of an embedding is the maximum distance of the images in the host
graph of the adjacent nodes of the guest graph. The expansion of an embedding is the ratio of the
number of nodes in the host graph to the number of nodes in the guest graph.

We shall often discuss the problem of embedding graphs from a family G1 of graphs into those
from another graph family G2. In such a case a graph G' c g2 will be called optimal for a graph G G 91
if JGJ < JG'J and there is no other graph G" E G2 such that JGJ < JG"J < JG'I.

A natural way to extend the above concept of embedding is to consider a mapping of edges of
G into paths between the corresponding nodes of H. In such a case (embedding) congestion - the
maximum, over all edges e of H, of the number of edges of G that are mapped into a path in H that
includes e - is another important measure of embedding.

The ideal case is when all these factors are equal to 1. Observe that a graph G is embedded into a
graph H with dilation factor 1 if and only if G is isomorphic with a subgraph of H.

Example 10.3.2 Figure 10.11a shows an embedding of a ring with 16 nodes into a hypercube of 16 nodes with
dilation and expansion 1. Figure 10.11b shows an embedding of a ring of 10 nodes into a hypercube of 16 nodes
with dilation 1 and expansion 1.6.

Embedding problems are inherently hard computationally even in very restricted cases. For example,
the following problems are NP-complete:

1. Given a binary tree T, does there exist an embedding of T of dilation 1 into its optimal
hypercube?

2. Given a graph (or even only a tree of depth 3) G and an integer k, does there exist an embedding
of G into a complete binary tree with dilation k?

However, several important cases are easy to deal with.

Theorem 10.3.3 The following embeddings can be achieved with dilation 1:

1. The cube-connected cycles CCCd into the wrapped butterfly WBd.

556 N NETWORKS

5 00 t] 2 3

7117

(a) (b)

Figure 10.11 Embedding of rings into hypercube

z8

Shuffle exchange de Bruijn graph

Figure 10.12 Embedding of USE3 into UDBa with dilation I

2. The shuffle exchange graph USEd into the de Bruijn graph UDBd.

3. The complete binary tree Td of depth d into the de Bruijn graph UDBd.

Proof: For a word w E [2] * let

k(w) 1 if w contains an odd number of Is;k~)= 0 otherwise.

1. An embedding of CCCd in WBd of dilation 1 is given by the mapping

e((i,w)) = ((i+k(w)) mod d,wR).

It follows directly from the definition of CCCd and WBd that the mapping e is a bijection, and
maps any neighbouring nodes into neighbouring nodes.

2. The mapping
e(w) = PS-k(w) (w)

is a bijection, and maps neighbouring nodes of USEd into neighbouring nodes of UDBd for each
d. The case d = 3 is illustrated in Figure 10.12. Proof of the general case is left as an exercise.

3. The existence of a dilation I embedding of a complete binary tree Td into the de Bruijn graph
UDBd follows from the fact that in UDBd each node i < 2'-1 is connected by an edge with the
nodes labelled by 2i + 1 and 2i (see Figure 10.13). 0

EMBEDDINGS U 557

001

Z00110 0il

100 101 110 111

Figure 10.13 Embedding of trees in de Bruijn graphs

Relations between butterflies, cube-connected cycles, de Brujin and shuffle exchange graphs are
so close that with respect to ascend/descend algorithms these networks are practically of the same
quality as regards programming.

Exercise 10.3.4 Show that ascend/descend algorithms for hypercubes can be implemented with only
constant time overhead on butterflies, cube-connected cycles, perfect shuffle networks and de Bruijn
networks.

Of importance also are so-called 'many-to-one embeddings'; that is, when several nodes of a
guest graph G are mapped into one node of the host graph H. This is of interest especially if G has
more nodes than H. The additional key factor of such embeddings is the load factor, the maximum
number of nodes of G mapped into one node of H; also load balancing, how equally nodes of G are
distributed into nodes of H, the difference between the maximum and minimum number of nodes
mapped into one node of H.

Example 10.3.5 (Polymorphic arrays) One of the basic problems of many-to-one embeddings is that of
embeddings of large arrays into small array-like graphs. The folding method illustrated in Figure 10.14a is
simple. However, its disadvantages are unbalanced and unregular embeddings.

There exists a universal class of simple graphs of distinct size, the polymorphic arrays, that can be used
to map into, regularly and with a good load balancing, rectangular arrays of any size. Polymorphic arrays Pn
have F, x L, nodes, where Fn and Ln are Fibonacci and Lucas numbers and form diagonally connected toroids
in which each node (ij), 0 < i < F,, 0 < j < L. has the following four incidental edges.

up = ((i+1) modFn,(j+1)modLn)
down ((i - 1) mod Fn, (j- 1) mod Ln)
right r ((i-1) modF,,(j+1)modL,)

left ((i +1) modFn,(j-1)modLn)

The polymorphic array P5 is shown in Figures 10.14b and c by depicting its 'up' and 'right' edges.
It has been shown that any rectangular two-dimensional array A can be embedded many-to-one into any

polymorphic array P,, where n is not divisible by 3, in such a way that the following properties hold:

558 E NETWORKS

up connections right connections

__ , - ,5 5

__ __ 6 6

AO \ 0 0 4 4

7 7

_ _ __ 3 3

__ '_ __ 8 8

2 2

9 9

1 1

10 10

0 0
0 4 1 3 2 0 4 1 3 2

(a) (b) (c)

Figure 10.14 Polymorphic arrays

1. It is sufficient to choose, arbitrarily, a mapping of any node of A into P,; the mapping of all other nodes
is uniquely determined.

2. If A has less than -E nodes, m = Fn x L, then different nodes of A are mapped into different nodes of
Pn.

3. No matter how large A and how small P, are, in the natural embedding of A into Pn, described in point
(1), the numbers of nodes of A mapped into different nodes of P, can difer at most by an additive factor
of O(lgm),m = Fn x Ln.

10.3.2 Hypercube Embeddings

Many basic networks have elegant embeddings of dilation I or so into hypercubes. Hypercubes
can also be embedded elegantly and efficiently into many networks. This makes the hypercube an
attractive interconnection network.

Embeddings of rings and arrays

The Gray code representation of natural numbers is the basis of several embeddings of rings and
arrays into hypercubes.

EMBEDDINGS U1 559

i bin6(i) G6 (i) i bin 6(i) G6(i) i bin 6(i) G6(i) i bin 6(i) G6(i)
0 00000 000000 8 01000 001100 16 10000 011000 24 11000 010100
1 00001 000001 9 01001 001101 17 10001 011001 25 11001 010101
2 00010 000011 10 01010 001111 18 10010 011011 26 11010 010111
3 00011 000010 11 01011 001110 19 10011 011010 27 11011 010110
4 00100 000110 12 01100 001010 20 10100 011110 28 11100 010010
5 00101 000111 13 01101 001011 21 10101 011111 29 11101 010011
6 00110 000101 14 01110 001001 22 10110 011101 30 11110 010010
7 00111 000100 15 01111 001000 23 10111 011100 31 11111 010000

Table 10.3 Binary and Gray codes of integers

Let G, = (G,(0), . . , Gn (2 n - 1)) denote the sequence of all n-bit binary words in the so-called
Gray code ordering of binary strings, defined inductively as follows:

GC = (0,1)= =G (0),G1(1)),

and for n > 1,

Gn+ = (0Gn(0),... ,0Gn(2n - 1), 1G,(2" - 1), 1G,(0)).

Gn(i) can be viewed as the Gray code representation of the integer i with n bits. Table 10.3 shows
the binary and Gray code representations in G6 of the first 32 integers.

The following properties of the Gray code representation of integers are straightforward to verify:

1. Gn(i) and Gn(i+ 1), 0 < i < 2 - 1, differ in exactly one bit.

2. G,(i) and G,(2 - i-1), 0< i < 2n - 1, differ in exactly one bit.

3. If bin-'+y1(i) = in ... io, in = 0, ij c [2], and GC (i) = gn- .. •go, then for 0 < j < n

g) = ij 6) ij+, 1 and ij = 91+ 1 E ... I g,, 1.

Embedding of linear arrays: A linear array Po, . .. , Pk- 1 of k < 2d nodes can be embedded into
the hypercube Hd by mapping the ith node of the array into Gd(i). It follows from the first property
of Gray codes that such an embedding has dilation 1.

Embedding of rings: A ring Po,. .. , Pk-j of k nodes, k < 2', can be embedded by mapping the ith
node of the ring into the ith node of the sequence Gd(0: Fk1 -1), Gd(2d - [j : 2d - 1), where

Gd(i :j) = Gd(i), . . .G)

It follows from the second property of Gray codes that this embedding has dilation I if k is even and
dilation 2 if k is odd. Observe that Figure 10.11a, b shows such embeddings for d = 4, k = 16 and
k = 10.

560 M NETWORKS

12 02
Pi~j-, 0111

G1 (i)Gk(l ")

G1 (i)Gk (j+0) 0110 2o

(a) 10 010 00000

(b)

Figure 10.15 Embedding of arrays into hypercubes

Exercise 10.3.6 Embed with dilation I (a) a 20-node ring in the hypercube H45; (b) a 40-node ring into
the hypercube H6.

Exercise 10.3.7 Show, for example by induction, that the following graphs are Hamiltonian: (a) the
wrapped butterfly; (b) the cube-connected cycles.

Exercise 10.3.8" Under what conditions can an n-node ring be embedded with dilation I into (a) a p xq
array; (b) a p x q toroid?

Embedding of (more-dimensional) arrays: There are special cases of arrays for which an
embedding with dilation I exists and can easily be designed. A 2' x 2 k array can be embedded into
the Hll~k hypercube by mapping any array node (ifj), 0 < i < 2', 0 <j < 2k, into the hypercube node
with the identifier Gi(l)G1 (k) . Figure 10.15a shows how neighbouring nodes of the array are mapped
into neighbouring nodes of the hypercube, Figure 10.15b shows a mapping of a 4 x 4 array into a H4
hypercube.

The general case is slightly more involved.

Theorem 10.3.9 A nl x n2 x... x nk array can be embedded into its optimal hypercube with dilation 1 ijf and
only if

k 3
i~[lg ni]= = [lgl-nii~

Example 10.3.10 A 3 × 5 × 8 array is not a subgraph of its optimal hypercube because

[lg3] + flg5] ± [lg8] $ [lg120],

but 3 × 6 x 8 and 4 x 7 x 8 arrays are subgraphs of their optimal hypercubes because

[lg3] + [1g6] + [lg8] =[1g144], [lg244] = [1g4] + [lg7] + [8].

EMBEDDINGS U 561

23 14

04 24--24

01

Figure 10.16 Embedding of 3 x 5 array in H4

Two-dimensional arrays can in any case be embedded quite well in their optimal hypercubes. Indeed,
the following theorem holds.

Theorem 10.3.11 Each two-dimensional array can be embedded into its optimal hypercube with dilation 2.
Each r-dimensional array can be embedded into its optimal hypercube with dilation O(r).

Figure 10.16 shows an embedding of the 3 x 5 array into H4 with dilation 2.

Exercise 10.3.12 Embed with dilation 1: (a) an 8 x 8 x 8 array into the hypercube H9; (b) a 2 x 3 x 4
array in H5.

Embedding of trees

Trees are among the main data structures. It is therefore important to know how they can be embedded
into various networks.

Balanced binary trees can be embedded into their optimal hypercubes rather well, even though
the ideal case is not achievable.

Theorem 10.3.13 There is no embedding of dilation 1 of the complete binary tree Td of depth d into its optimal
hypercube.

Proof: Since Td has 2d+ 1 - 1 nodes, Hd± 1 is its optimal hypercube. Let us assume that an embedding
of Td into Hd+ 1 with dilation I exists; that is, Td is a subgraph of Hd+ 1. For nodes v of Hd+ 1 let us define
O(v) = 0 if bin'l+ 1 (v) has an even number of Is and O(v) = 1 otherwise. Clearly, exactly half the nodes
of the hypercube Hd+ 1 have their O-value equal to 0. In addition, if Td is a subgraph of Hd+ 1, all nodes
at the same level of Td must have the same O-value, which is different from the values of nodes at
neighbouring levels. However, this implies that more than half the nodes of Hd+ 1 have their O-value
the same as the leaves of Td - a contradiction. [

562 U NETWORKS

01117
0011 • 1011

0000 0010 0100 0110 1000 1010 1100 1110

Figure 10.17 An embedding of a complete binary tree into its optimal hypercube using the in-order
labelling of nodes; hypercube connections are shown by dotted lines

Theorem 10.3.14 The complete binary tree Td can be embedded into its optimal hypercube with dilation 2 by
labelling its nodes with an in-order labelling.

Proof: The case d = 0 is clearly true. Assume that the theorem holds for some d > 0, and label nodes
of Td±1 using the in-order labelling. (See Figure 10.17 for the case d = 3.) Such a labelling assigns
to nodes of the left subtree of the root of Td+ 1 labels that are obtained from those assigned by the
in-order labelling applied to this subtree only by appending 0 in front. The root of Td+ I is assigned
the label 011... 1. Similarly, the in-order labelling of Td, 1 assigns to nodes of the right subtree of the
root labels obtained from those assigned by the in-order labelling of this right subtree only with an
additional 1 in front. The root of the left subtree has therefore assigned as label 001... 1, and the root
of the right subtree has 101 ... 1. The root of Td, 1 and its children are therefore assigned labels that
represent hypercube nodes of distance 1 and 2. According to the induction assumption, nodes of both
subtrees are mapped into their optimal subhypercubes with dilation 2. 0

An embedding of dilation 1 of a complete binary tree into a hypercube exists if the hypercube is
next to the optimal one.

Theorem 10.3.15 The complete binary tree Td can be embedded into the hypercube Hd+2 with dilation 1.

Proof: It will actually be easier to prove a stronger claim: namely, that each generalized tree GTd
is a subgraph of the hypercube Hd+2, with GTd = KVd, Ed) defined as follows:

Vd=VdUV ' and Ed=E'UE ,

where (Vd, E') is the complete binary tree Td with 2d+ - 1 nodes and

Vd! = {s1,... ,Sd+33},E = {(si,si+ 1)11 < i < d + 3} U {(rs1),($d+3,S)},

where r is the root and s is the right-most leaf of the tree (Vd, Ed) (see Figure 10.18).
We now show by induction that generalized trees can be embedded into their optimal hypercubes

with dilation 1. From this, the theorem follows.

EMBEDDINGS U 563

d=I d=2

011 111 110 0011 0111 1111 1110

r S S2 0001 1011

S S S 3 S S4

010 001 101 100 0000 0101 1010 1001 1101 1100

Figure 10.18 Generalized trees and their embeddings

r) () (0) (I)
r()S7 s2 r S, S

(0)

(0) (0) (0) I) 5(1) (1)

(a) S S d +2 Sd+l (b) d+2 d -I

_ SO) S _S ()

(0) 2 •2--1 S(M

r (0) (,

S § •1) S d+3= Sd+2

Figure 10.19 Embedding of generalized trees

The cases d = 1 and d = 2 are clearly true (see Figure 10.18). Let us now assume that the theorem
holds for d > 3. Consider the hypercube Hd+2 as being composed of two hypercubes Hd+ 1, the nodes
of which are distinguished by the left-most bit; in the following (see Figure 10.19) they will be
distinguished by the upper index (0) or (1).

According to the induction assumption, we can embed GTdI- in Hd+ 1 with dilation 1. Therefore
let us embed GTd-1 with dilation I into both of these subhypercubes. It is clear that we can also do
these embeddings in such a way that the node rM1) is a neighbour of s(,) and s(') is a neighbour of
s(2) (see Figure 10.19a, b). This is always possible, because hypercubes are edge-symmetric graphs.
As a result we get an embedding of dilation 1, shown in Figure 10.19c. This means that by adding

edges (sO), r(1)), (s O)s(,)) and removing nodes s(°), ... ,sO) with the corresponding edges, we get
the desired embedding.

As might be expected, embedding of arbitrary binary trees into hypercubes is a more difficult
problem. It is not possible to achieve the 'optimal case' - dilation 1 and optimal expansion at the same
time. The best that can be done is characterized by the following theorem.

Theorem 10.3.16 (1) Every binary tree can be embedded into its optimal hypercube with dilation 5.
(2) Every binary tree with n nodes can be embedded with dilation 1 into a hypercube with O(nlgn) nodes.

564 U NETWORKS

DTI DTd
0 0

DT,

Figure 10.20 Doubly rooted binary tree

guest graph host] dilation

k-dim, torus k-dim, array 2
2-dim. array hypercube 2
k-dim. array hypercube 2k - 1

complete binary tree hypercube 2
comply. binary tree of depth Bd+3 6

d + Llgdj - 1

comply. bin. tree of depth d 2-dim. array (1 + E) 2[d/2--

binary tree hypercube 5
binary tree X-tree 11

CCCd Bd 1

DBd hypercube 2 [d]

Table 10.4 Embeddings

Embedding of other networks in hypercubes: What about the other networks of interest? How
well can they be embedded into hypercubes?

The case of cube-connected cycles is not difficult. They can be embedded into their optimal
hypercubes with dilation 2 (see Exercise 39). However, the situation is different for shuffle exchange
and de Bruijn graphs. It is not yet clear whether there is a constant c such that each de Bruijn graph
or shuffle exchange can be embedded into its optimal hypercube with dilation c.

Exercise 10.3.17 A doubly rooted binary tree DTd has 2 d+' nodes and is inductively defined in
Figure 10.20, where Td-1 is a complete binary tree of depth d - 1. Show that DTd can be embedded into
its optimal hypercube with dilation 1. (This is another way of showing that each complete binary tree
can be embedded into its optimal hypercube with dilation 2.)

Exercise 10.3.18 Show, for the example using the previous exercise, that the mesh of trees MTd can be
embedded into its optimal hypercube Hzd2 with (a) dilation 2; (b)* dilation 1.

Table 10.4 summarizes some of the best known results on embeddings in optimal host graphs. (An
X-tree XTd of depth d is obtained from the binary tree Td by adding edges to connect all neighbouring
nodes of the same level; that is, the edges of the form (w01k, wl0k), where w is an arbitrary internal
node of Td,0 < k < d - lwl.)

ROUTING U 565

10.4 Routing

Broadcasting, accumulation and gossiping can be seen as 'one-to-all', 'all-to-one' and 'all-to-all'
information dissemination problems, respectively. At the end of the dissemination, one message
is delivered, either to all nodes or to a particular node. Very different, but also very basic types of
communication problems, the so-called routing problems, are considered in this section. They can
be seen as one-to-one communication problems. Some (source) processors send messages, each to a
uniquely determined (target) processor.

There is a variety of routing problems. The most basic is the one-packet routing problem: how,
through which path, to send a so-called packet (i,x,j) with a message x from a processor (node)
Pi to a processor (node) Pj. It is naturally best to send the packet along the shortest path between
Pi and Pj. All the networks considered in this chapter have the important property that one-packet
routing along the shortest path can be performed by a simple greedy routing algorithm whereby
each processor can easily decide, depending on the target, which way to send a packet it has received
or wants to send.

For example, to send a packet from a node u E [2]1 to a node v E [2]d in the hypercube Hd, the
following algorithm can be used.

The left-to-right routing on hypercubes. The packet is first sent from u to the neighbour w of
u, obtained from u by flipping in u the left-most bit different from the corresponding bit in v. Then,
recursively, the same algorithm is used to send the packet from w to v.

Example 10.4.1 In the hypercube H 6 the greedy routing takes the packet from the node u = 010101 to the
node v = 110011 through the following sequence of nodes:

u = 010101 --* 110101 -- 110001 -* 110011 = v,

where the underlined bits are those that determine the edge to go through in the given routing step.

In the shuffle exchange network SEd, in order to send a packet from a processor P,, u = ud1- ... u0 , to
P,, v = vd1. ... v0 , bits of u are rotated (which corresponds to sending a packet through a shuffle edge).
After each shuffle edge routing, if necessary, the last bit is changed (which corresponds to sending a
packet through an exchange edge). This can be illustrated as follows:

U =Ud lUd-2 ... U0

PS

-+ Ud-Ud- 3... U0Ud-l

EX?

--- ud-2Ud-3 ... UoVd-.
PS

SUd_3Ud4.. . UoVd-lUd-2

EX?

Ud 3Ud4... UoVd-lVd-2

-UoVd-1 ... V1

PS

-Vd-1 . . V 1 U0
EX?

-, 7'•' 1_. ,V M 7)

566 U NETWORKS

Exercise 10.4.2 Describe a greedy one-packet routing for (a) butterfly networks; (b) de Bruijn graphs;
(c) mesh of trees; (d) toroids; (e) star graphs; (f) Kautz graphs.

More difficult, but also very basic, is the permutation routing problem: how to design a special
(permutation) network or routing protocol for a given network of processors such that all processors
(senders) can simultaneously send messages to other processors (receivers) for the case in which there
is a one-to-one correspondence between senders and receivers (given by a to-be-routed permutation
7r).

A message x from a processor Pi to a processor Pj is usually sent as a 'packet' (i,x,j). The last
component of such a packet is used, by a routing protocol, to route the packet on its way from the
processor Pi to the processor Pp. The first component is used when there is 'a need' for a response.

The main new problem is that of (routing) congestion. It may happen that several packets try to
pass through a particular processor or edge. To handle such situations, processors (and edges) have
buffers; naturally it is required that only small-size buffers be used for any routing. The buffer size of
a network, with respect to a routing protocol, is the maximum size of the buffers needed by particular
processors or edges.

A routing protocol is an algorithm which each processor executes in order to perform a routing.
In one routing step each processor P performs the following operations: chooses a packet (i, x, 7r(i))

from its buffer, chooses a neighbourhood node P' (according to ir (i)) and tries to send the packet to P',
where the packet is stored in the buffer if it is not yet full. If the buffer of P' is full, the packet remains
in the buffer of P.

Routing is on-line (without preprocessing) if the routing protocol does not depend on the
permutation to be routed; otherwise it is off-line (with preprocessing).

The permutation routing problem for a graph G, and a permutation 1I, is the problem of designing
a permutation routing protocol for networks with G as the underlying graph such that the routing,
according to 1l, is done as efficiently as possible. We can therefore talk about the computational
complexity of the permutation routing for a graph G and also about upper and lower bounds for this
complexity.

10.4.1 Permutation Networks

A permutation network connects n source nodes Pi, 1 < i < n, for example, processors, and n target
nodes Mi, 1 < i < n, for example, memory modules (see Figure 10.21a). Their elements are binary
switches (see Figure 10.21b) that can be in one of two states: on or off. Each setting of states of
switches realizes a permutation 7r in the following sense: for each i there is a path from Pi to M,(i),
and any two such paths are edge-disjoint. Permutation networks that can realize any permutation
7t: {1,... n} -* {1,... , n} are called nonblocking permutation networks (or permuters).

A very simple permutation network is an n x n crossbar switch. At any intersection of a row and
a column of an n x n grid there is a binary switch. Figure 10.22 shows a realization of the permutation
(3,5,1,6,4,2) on a 6 x 6 crossbar switch.

An n x n crossbar switch has n2 switches. Can we do better? Is there a permutation network which
can realize all permutations and has asymptotically fewer than n2 switches?

A lower bound on the number of switches can easily be established.

Theorem 10.4.3 Each permutation network with n inputs and n outputs has Q(nlgn) switches.

Proof: A permutation network with s switches has 2s global states. Each setting of switches (to an
'off' or an 'on' state) forms a global state. Since this network should implement any permutation of

ROUTING U 567

Processors Memories

SInterconnection

(a) (b)

Figure 10.21 Permutation network and switches

P (- °ff
Crossbar switch

P2 foff 6x6

P3 0 off Switches

on
PO(- - offf o

P0)_

off

MI M 2 M3 M4 M 5 M6

Figure 10.22 A crossbar switch and realization of a permutation on it

n elements, it must hold (using Stirling's approximation from page 29) that

2' > n! n"e (n+0.5)- 07

and therefore s > n ig n - cl n - c2, where c1, c2 are constants.

We show now that this asymptotic lower bound is achievable by the Beneg network BEd (also
called the Waksman network or the back-to-back butterfly). This network consists for d = 1 of a
single switch, and for d > 1 is recursively defined by the scheme in Figure 10.23a. The upper output
of the ith switch Si of the first column of switches is connected with the ith input of the top network
BEd- 1. The lower output of Si is connected with the ith input of the lower network BEd-l. For outputs
of BEd-1 networks the connections are done in the reverse way. BE2 is shown in Figure 10.23b.

From the recursive definition of BEd we get the following recurrence for the number s(n), n = 2d,
of switches of the Beneg network BEd:

s(2)= land s(n)= 2s () +n forn >2,

and therefore, using the methods of Section 1.2, we get s (n) = n lg n -
Beneg networks have an important property.

Theorem 10.4.4 (Beneg-Slepian-Duguid's theorem) Every Beneg network BEd can realize any
permutation Of n = 2' elements.

568 * NETWORKS

2- 2

3 34 4

n-i n-i
n n

(a) Benes network BEd (b) BE

Figure 10.23 Recursive description of the Beneg networks (with n = 2d) and BE2

Proof: The proof can be performed elegantly using the following theorem from combinatorics.

Theorem 10.4.5 (Hall's theorem) Let S be a finite set and C = {Ai 11 <_ i < n} a family of subsets (not
necessarily disjoint) of S such that for any 1 < k < n the union of each subfamily of k subsets from C has at
least k elements. Then there is a set of n elements {al, . . . ,a,} such that ai E Ai, 1 < i < n, and ai , aj ifi y j.

We show now by induction on d that the Beneg network BEd can realize any permutation of n = 2'
inputs. The case d = I is trivially true. Let the inductive hypothesis be true for d - 1 > 1, and let n = 2'
and 7r: {1 ,n} -* {1...,n} beapermutation.

Forl <i< let

A {[r(2i 1)] ~~2 (10.1)

Ai can be seen as containing the numbers of those switches in the last column, the target level, with
which the ith switch of the first column, the source level, should be connected when the permutation
7r is realized. (Observe that each Ai contains one or two numbers.)

kLet Ail, . . ,Aik be an arbitrary collection of k different sets of the type (10.1). The union U"..1 Ail
contains the numbers of all switches of the target level that should be connected by 7r with 2k inputs
of the source level switches il, ... ik. Since the corresponding number of outputs is 2k, the unionk Anu1j 1 must contain at least k elements. This means that the family C = {Ai 11 < i < • } satisfies theassumptions of Hall's theorem. Therefore, there is a set of " different integers a,,... a E, ai E Ai, such

2 2tgra, .,~aAscthat ai is the number of a switch of the target level with which the ith switch of the input level is
connected when the network realizes the permutation 7r.

It is therefore possible to choose ý pairs (ij,r(ij)), 1 <•j < E, in such a way that ij is the input of
the jth source-level switch and 7r(ij) are from different switches of the target level. This means, by
the induction hypothesis, that we can realize these I connections in such a way that only switches
of the upper part of the internal levels of switches are used. In this way the problem is reduced
to two permutation routing problems for Beneg networks BEa- 1 . In order to realize the remaining
interconnections, we can use, again by the induction assumption, the lower subnetwork BE--1 . n
Example 10.4.6 In order to implement the permutation

(1 2 34 56 78
8 7 6 5 4 3 2 1)'

ROUTING U 569

2 3 5 1 57 2 2 2 i 2

35 7 73 3 3 63

4 J ,_I5 4 4 6 4

5 5 5 4 5

6
3 6 6

6

7 2 7 7
8 1 8 8 8

Figure 10.24 Implementation of a permutation on a Beneg network

we first use switches of the upper internal part of the network to realize the following half of the permutation

1---8, 3 -- 6, 5 -- 4, 7 -2

(see Figure 10.24a), and then switches of the lower internal part of the network for the rest of the permutation
(see Figure 10.24b):

24-*7, 44+5, 64-*3, 8 -1.

Exercise 10.4.7 Implement the permutations (a) (3,7,8,1,4,6,5,2); (b) (8,7,6,5,4,3,2,1) on the
Beneg network BE3.

Exercise 10.4.8 (Baseline network) BNd consists for d = 1 of one binary switch, and for d > 1 is
defined recursively in a similar way to the Beneg network, except that the last column of switches in
the recursive definition in Figure 10.23 is missing. For the number S(n), n = 2d, of switches of BNd
we therefore have the recurrence S(n) = 2S(n / 2) + n / 2. (a) Show that BNd cannot implement all
permutations of n = 2d elements. (b)* Determine the upper bound on the number of permutations that
BNd can implement.

10.4.2 Deterministic Permutation Routing with Preprocessing

Permutation networks, such as the Beneg network, are an example of deterministic routing with
preprocessing.

It is easy to see that each Beneg network BEd actually consists of two back-to-back connected
butterfly networks B1 (with the corresponding nodes of the last ranks identified), from which comes
its name 'back-to-back' butterfly. In other words, the Beneg network BEd and the network consisting
of two back-to-back connected butterflies are isomorphic as graphs. Each butterfly BEd can be seen as
an unrolling of the hypercube Hd such that edges between any two neighbouring ranks represent the
edges of Hd of a fixed dimension. The previous result, namely, that Beneg networks can realize any
permutation, therefore shows that one can perform permutation routing on the hypercube Hd in time
2d - 1 and with minimal buffer size I if preprocessing is allowed. Indeed, communications between
nodes of two neighbouring columns in the Beneg network always correspond to communications
between nodes of the hypercube along a fixed dimension. Hence each node of the hypercube can
play the role of all nodes of the Beneg network in a fixed row. All 2d - 1 communication steps of the
Beneg network can therefore be realized by a proper sequence of parallel steps on the hypercube.

570 3 NETWORKS

This holds for other networks with logarithmic diameter that were introduced in Section 10.1.
Indeed, permutation routing on the butterfly is a fully normal algorithm. Therefore (see
Exercise 10.4.2) it can also run on cube-connected cycles, shuffle exchange graphs and de Bruijn
graphs with only constant time overhead. In addition, preprocessing can be done in 0(d 4) time.
Consequently we have the following theorem.

Theorem 10.4.9 Permutation routing can be done on hypercubes, butterflies, cube-connected cycles, shuffle
exhange and de Bruijn graphs in 0(d) time if (O(d4)-time) preprocessing is allowed.

10.4.3 Deterministic Permutation Routing without Preprocessing

In many important cases, for example, when the PRAM is simulated on multiprocessor networks (see
Section 10.5.2), the permutation is not known until the very moment when a permutation routing is
to be performed. In such cases the preprocessing time must be included in the overall routing time.
It is therefore important to develop permutation routing protocols that are fast and do not require
preprocessing of a permutation to be routed.

Let us first recognize that a permutation routing of packets (i,xi, 7r(i)), 1 < i < n, corresponds
to sorting all packets according to the third key. Since sorting of 2' elements can be done on the
butterfly Bd in E)(d 2

) time (see page 545) using a multiple ascend/descend algorithm, and each such
algorithm can run with only constant time overhead on the cube-connected cycles, de Bruijn and
shuffle exchange graphs, we have the following result.

Theorem 10.4.10 Permutation routing on the butterfly network Bd, hypercube Hd, cube-connected cycles
CCCd, shuffle exchange SEd and de Bruijn graphs DBd can be performed in time O(lg 2 n) time, n = 2', without
preprocessing.

Can we do asymptotically better? The first obvious idea is to consider the so-called oblivious
routing algorithms in which the way a packet (i, xi, 7r (i)) travels depends only on i and 7r (i), not on
the whole permutation 7r. For example, can we route all packets using the greedy method for one
packet routing?

It is intuitively clear that in such a case we may have congestion problems.

Example 10.4.11 Let us consider the case that the greedy method is used in the hypercube H1 0 to realize
the so-called bit-reversal permutation 7r(ag. ... ao) = ao. . . ag. In this case all 32 packets from processors

Pu, u = u 1 U 2 U 3 U4 U 500000 will try, during the first five steps, to get through the node 0000000000. To route all
these packets through this node, at least 32 steps are needed - in spite of thefact that each two nodes i and 7r(i)

are at most 10 edges apart. This can be generalized to show that time Q(-v/2d) is required in the worst case in
order to realize the bit-reversal permutation on Hd with a greedy method.

Whenever the greedy method is used for permutation routing, the basic question arises: Is there a
strategy for solving the congestion problem that gives good routing times? In some cases the answer
is yes: for example, for routing on two-dimensional arrays.

Exercise 10.4.12 Consider an n-node linear array in which each node contains an arbitrary number of
packets but from which there is at most one packet destined for each node. Show that if the edge congestion
is resolved by giving priority to the packet that needs to go farthest, then the greedy algorithm routes all
packets in n - I steps.

ROUTING * 571

Figure 10.25 A concentrator that is both a (21,1,8,4)- and 41,2,8,4)-concentrator

Exercise 10.4.13* Show that if the greedy routing is used for two-dimensional arrays - that is, at the
beginning each node contains a packet and each packet is first routed to its correct column and then to
its destination within that column - then the permutation routing on an n x n array can be performed
in 2n - 2 steps.

The following general result implies that oblivious routing cannot perform very well, in the worst
case, on hypercubes and similar networks.

Theorem 10.4.14 (Borodin-Hopcroft's theorem) Any oblivious permutation routing requires at least
S- 1 steps in the worst case in a network with n processors and degree c.

Oblivious permutation routing is therefore not the way to get around the O(1g 2 n) upper bound
for a routing without preprocessing on hypercubes. Is there some other way out? Surprisingly, yes.

We show later that the multi-butterfly network MB, with n input and n output processors - with
n(lgn + 1) processors total - can perform any permutation routing in O(lg n) time and in such a way
that the buffer size of all processors is minimal (that is, 1).

Multi-butterfly networks MBn are based on special bipartite graphs, called concentrators.

Definition 10.4.15 Let a, /3 c R', m, c E N, and let m be even. A bipartite graph G = (A u B, E), where A
and B are disjoint, is an (a, ,m, c)-concentrator •f

1. JAI = m, JBi = 2

2. Degree(v) = c if v E A and degree(v) = 2c if v G B.

3. (Expansion property) For all X CA, IXI • am, we have I{vI (x,v) E E,x E A}l> /3IXI.

That is, in an (a, 3, m, c)-concentrator, each set X of nodes in A, up to a certain size, am, has many
neighbours in B - at least /3XI. In other words, if 3 > 1, then A 'expands', and /3 is the expansion
factor (see Figure 10.25).

In a concentrator there are several edges through which one can get to B from a node in A. This will
now be used to show that it is possible to design E (lg n) permutation routing without preprocessing.
In order to be able to use concentrators for permutation routing, the basic question is whether and
when, given a and /3, a concentrator exists. For example, the following theorem holds.

T6 a 1Theorem 10.4.16 If a < -L(4,3e'+) -- , then there is a (a,,3, m, c)-eoncentrator.

572 U NETWORKS

A splitter concentratorsSA A

B B B B
0 1 0 1

Figure 10.26 Splitter

MB(1, a, P, c) MB(d, a, 3, c)
1 Sources M 2 (a, • 2d 'c-splitter

levels

d Targets

MB(d-1, a, c, c) MB(d-1, a, j, c)

Figure 10.27 Multi-butterfly network

Observe that if a, 0 and c are chosen as the conditions of Theorem 10.4.16 require, then a
(a,/3, m, c)-concentrator exists for any m.

The basic component of a multi-butterfly network is a splitter, which consists of two concentrators
(see Figure 10.26).

Definition 10.4.17 An (a/3, m, c)-splitter is a bipartite graph (A 0 (Bo u B1), Eou u E), where B0olB1 = 0
and both (A U Bo,Eo) and (A u B1,E1) are (a,/3,m,c)-concentrators.

The degree of a (a, [3, m, c)-splitter is 2c. An edge from A to B0 is called a 0-edge, and an edge from
A to B1 is called a 1-edge.

Definition 10.4.18 The multi-butterfly network MB(d,a,L3,c) has n = 2d(d + 1) nodes, degree 4c, and is
defined recursively in Figure 10.27. (The nodes of thefirst level are called sources, and the nodes of the last level
targets.)

The basic idea of routing on multi-butterfly networks is similar to the greedy strategy for
hypercubes or butterflies. In order to send a packet from a source node aa 1 . . ao of level 0 to the
target node bd-1 ... bo of the last level, the packet is first sent through a (bd-l)-edge, then through a
(bd-2)-edge and so on. In each butterfly such a route is uniquely determined, but in a multi-butterfly
there are many 0-edges and many 1-edges that can be used. (Here is the advantage of multi-butterfly
networks.)

Let L = [!], and let Ai be the set of packets with the target address j such that j rmod L = i.
Each of the sets Ai has approximately L elements. The routing algorithm described below is such

that each sub-multi-butterfly MB(d', a, /3,c), d' < d, will get on its source level at most - packets;

the corresponding concentrator has therefore to send further at most ½2d P: a2d' packets. This is,
however, exactly the amount that can still be expanded by the factor 3 according to the definition of
(a, /3,2d, c)-concentrators.

ROUTING N 573

The routing algorithm works in L sequential phases. In each phase packets from one of the
sets Ai,1 < i < L, are routed. Routing of one phase takes time O(lgn). To route L phases, time
L. O(lgn) = O(11-) = O(lgn) is needed. Each phase consists of several rounds. To perform one
round, all processors with packets at the beginning of the round are considered as being blocked.
Moreover, the edges of each splitter are divided into 2c matchings. (This is possible according to
Hall's theorem, 2.4.20.) One round consists of the following 2c steps:

for j - I to 2c do
Each processor that has a packet that should be sent through an s-edge (s C [2])
sends it along the (only one) s-edge of the matching Mj if such an edge in Mj
exists and if the edge goes to a processor that is not at that moment blocked. If
a processor receives a packet, it becomes blocked.

A very technical analysis of the above routing algorithm yields the following theorem.

Theorem 10.4.19 Let 13 > 1 be arbitrary and a, c be chosen in such a way that MB (d, ca, 3, c) exists for each d.
Then an arbitrary permutation of n = 2d packets can be routed on MB(d,a•, /, c) in time O(lg n) using buffers
of size 1.

10.4.4 Randomized Routing*

There are several ways in which randomization can lead to probabilistically good routing algorithms.
For example, randomization can be used to solve the congestion problem in the case that the greedy
method is used and several packets try to pass at the same time through a node or an edge. Another
way in which randomization can be used is to route in two phases: first to a randomly chosen
destination, then to the real target.

In this section we consider both types of randomized routings on butterflies. The first is the
so-called randomized greedy routing.

The greedy method for one-packet routing on a butterfly B4 takes a packet from a source node
(0,ad-1... a0) to the target node (d, bd-1... bo) through the only possible route

(0,ad 1 ao) - (lbd-ad-2 . . . alao) - (2,bd-lb- 2ad-3 . . . alao)
--- (3,bd-1bd-2bd-3ad-4 ... alao)
--- (d- 1, bd-lbd-2, • • bla0) -- (d,bd-+... b0).

If this method is used to route packets from all nodes according to a given permutation, it may

happen, in the worst case, as in the bit-reversal permutation on the hypercube, that E(v'-) = (2(2-)
packets have to go through the same node. However, this is clearly an extreme case. The following
theorem shows that in a 'typical' situation the congestion, that is, the maximum number of packets
that try to go simultaneously through one node, is not so big. In this theorem an average is taken over
all possible permutations.

Theorem 10.4.20 The congestion for a deterministic greedy routing on the butterfly Bd is for (1 - -1) of all

permutations 7 : [2d] , [2d] at most

C = 2e+21gn +lglgn = O(lgn),

where n = 2d, and e is the base of natural logarithms.

574 U NETWORKS

Proof: Let 7r : [2d] F, [2d] be a random permutation. Let v = (i, a) be a node at rank i of the butterfly Bd,
and let Pr, (v) denote the probability that at least s packets go through the node v when the permutation
7r is routed according to the greedy method - the probability refers to the random choice of 7r. From
the node v one can reach 2d-i 2 targets. This implies that if w is a source node, then

21

Pr(the route starting in w gets through v) = _
-- n - 2i'

Since v can be reached from 2' source nodes, there are (2') ways to choose s packets in such a way
that they go through the node v. The choice of targets of these packets is not important, and therefore
the probability that s packets go through v is ()s. Hence,

P,(V) -) (') < (2'e)s (1) I (e)S,(s 2 (se Eecse 2Y, Chpes)

where we have used the estimation (") _ _ (see Exercise 23, Chapter 1).
Observe that this probability does not depend on the choice of v at all, and therefore

Pr(there is a node v through which at least s packets get)

< Pr, (v)•:ýnlg n (e)"
v is a node

because n lg n is the number of nodes of the butterfly on all ranks except the first one. Hence, for
s = 2e+21gn+lglgn we get

Pr(there is a node v through which at least s packets get) < nlgn (e),

1 1"• nlgn. n 2
1gn n

The fact that congestion is on average not so bad for the greedy routing on butterflies can be
utilized in the following randomized greedy routing on Bd.

A k e (lg 2 n) is properly chosen, and to each packet pi = (i, x, 7r (i)) a randomly chosen number
rank(pi) e [k] is assigned. These ranks are used to order packets as follows:

pi -< pj if either rank(pi) < rank(pj) or rank(pi) = rank(pj) and i < j.

Randomized greedy routing is now performed as follows. Each packet takes its unique route as
determined by the greedy routing. If more than one packet is in the buffer of a processor, then the
smallest with respect to the ordering -< is chosen to be sent in the next step.

A detailed technical analysis shows that randomized greedy routing is, surprisingly, pretty good.

Theorem 10.4.21 Randomized greedy routing on butterflies Bd takes E0(lgn) steps, n = 2d, with probability
(1-)2 > 1-2

ROUTING , 575

Remark 10.4.22 Let us now consider a more general problem, the p-p-routing problem. In this
problem each processor has p packets. The ith processor Pi is to send the jth packet to the destination
f(ij), where f : [n] x [p] , [n], and, for all k E [n], -1 (k)[= p. A slightly modified proof of
Theorem 10.4.20 leads to a theorem which says that for 1 - 1 of all such functions the congestion
is almost the same as it was in case of the permutation routing: namely, O(lg n + p). This result will
be used in Section 10.5.2.

The basic idea of the second randomized routing algorithm is also very simple. Let us assume
that a packet has to be sent, on a butterfly, from a source node Si to the target node T,(j), where 7r is a
permutation. This can be done in three phases.

Algorithm 10.4.23 (Randomized routing on a butterfly)

1. The packet is sent from Si to a randomly chosen target node Tj.

2. The packet is sent from Tj to Sj.

3. The packet is sent from Sj to T,(j).

The randomized greedy routing is used in steps (1) and (3). The routing is straightforward in step
(2) - along the edges (i,j), i = d,d - 1, ..0.

The time taken by step (1) is O(lgn), with the probability at least 1 - a, according to Theorem
10.4.21. Step (2) also requires O(lgn) time. Step (3) is actually the reverse of step (1), but this time the
source node is 'randomly chosen'. A detailed analysis shows that for this step we also need 0 (lgn)
time, with the probability at least 1 - 1. Therefore the following theorem holds.

Theorem 10.4.24 The randomized routing on the butterfly Bd routes each permutation 7r : [n] ý- [n], n = 2d,
in time (9(lgn) with probability at least (1 - ')(1 - 2) > 1 - 3

Remark 10.4.25 We have discussed two randomized routing methods for butterflies only. However,
these methods can be used, with small modifications, for other networks. For example, the
randomized greedy routing on the hypercube Hd realizes a routing from a node A to a node B by
choosing randomly a node C and sending the packet first from A to C by the greedy method, and
then from C to B, again by the greedy method. The probability that the time needed is more than 8d
is less than 0.74'.

Exercise 10.4.26** Consider again the permutation routing on an n x n array by the greedy method and
the case that each processor sends one packet to a random target. (Hence each possible target is equally
likely to be chosen, independently from the targets of other packets, it is therefore possible that more than
one packet aims at a particular target.) Assume also that each processor handles a queue which stores
packets that want to get through but have to wait.
(a) Show that the size of any queue is at most the number of packets which in that node turn from a
row-edge to a column-edge.
(b) Show that the probability that r or more packets turn in some particular node is at most (n) (1)y.

(c) Showfor example, using the inequality in Exercise 23, that (n) (r), _ (),"

(d) Show that the probability that any particular queue exceeds size r = e is at most 0(n-
4)

576 R NETWORKS

10.5 Simulations
There are three main types of simulations of a network .K on another network KN.

Embedding: To each processor P of AK a processor P' of N' is associated that simulates P.

Dynamic embedding: At each step of a discrete computation time, each processor of AK is simulated
by a processor of K'. However, it can be dynamically changed, from step to step, which
processor of K' simulates which processor of K.

Multiple embedding: To each processor P of.K, several processors of K' are associated that simulate
P.

The main network simulation problem is as follows: given two families of (uniformly defined)
graphs, g, and g2, develop a method for simulating each network with the underlying graph from
g, by a network with the underlying graph from 9 2. For example, how can networks on rings be
simulated by networks on hypercubes?

The main network simulation problem consists actually of two subproblems. The first is on the
graph-theoretical level: how to map well the nodes of graphs from g1 into nodes (or sets of nodes) of
graphs from g2, in such a way that neighbouring nodes are mapped either into neighbouring nodes
or at least into nodes not too far from each other. This problem has been discussed in Section 10.3. The
second subproblem is to design particular processors for the network that performs simulation. In
case neighbouring nodes are not mapped into neighbouring nodes, the main issue is how to realize
communication by routing.

As we saw in Section 10.3, in many important cases there are good embeddings of graphs of
one family in graphs of another family. This is not always so and in such cases dynamic or multiple
embeddings are used.

Example 10.5.1 (Simulation of two-directional rings by one-directional rings) There is no way to
embed an n-node two-directional ring TR, with self-loops (Figure 10.28a)3 into an n-node one-directional
ring OR, also with self-loops (Figure 10.28c) in such a way that two neighbouring nodes of TR, are always
mapped into two nodes of OR, that are only 0(1) interconnections apart - in both communication directions.
On the other hand, it is evident that each network over a modified one-way ring MR, (Figure 10.28b) in which
each node i is connected with nodes (i + 1) mod n, (i + 2) mod n and itself can easily be simulated by a network
over ORn with the slowdown at most by a factor 2.

We show now that each network over TR, can easily be simulated by a network over MRn using a dynamic
embedding. In the ith simulation step the jth node of TRn is simulated by the ((j + i - 1) mod n)th node
of MR,. This means that in this simulation processors 'travel around the ring'. This fact, together with the
existence of self-loops, allows us to simulate two-directional ring communications on one-directional rings.
Figures 10.28e,f show the space-time unrolling of TRs and MR8 and the isomorphism of those two graphs that
corresponds exactly to the dynamic embedding. (A generalization to rings with an arbitrary number of nodes
is now straightforward.)

Example 10.5.2 Figure 10.28d shows a graph consisting of two one-directional rings with opposite orientation
of edges and with corresponding processors connected by undirected edges. Each network over a two-directional
ring can be simulated by a network over such a graph using a multiple embedding.

Two simulation problems are considered in this section: the existence of universal interconnection
graphs and simulation of PRAMs on bounded-degree networks.

3 Squares stand for nodes with self-loops; self-loops themselves are not explicitly depicted.

SIMULATIONS U 577

1 2 3 12 3

8 i j 4 8 4 8 4

7 6 5 '7 6 5
(a) TR 8 (b) MR 8 (c) OR8 (d)

(e) (f)

Figure 10.28 Simulation of two-directional rings on one-directional rings

10.5.1 Universal Networks

We shall see that shuffle exchange graphs and cube-connected cycles are, in a reasonable sense,,
universal communication structures for networks. The same can be shown for several others graphs
introduced in Section 10.1: de Bruijn graphs, wrapped butterflies and hypercubes. These results
again show that the graphs introduced in Section 10.1 are reasonably well chosen for modelling
network-computer interconnections.

Definition 10.5.3 A family of graphs g = {G1 ,.G2, . . . } is a family of bounded-degree graphs •f there is
a constant c such that degree(G1) s c for all Gi e g. A graph Go is k-universal, k E N, for a family g of
bounded-degree graphs f each network on a graph from g can be simulated by a network on Go with the time
overhead l(k). If is the class of all graphsofdegreecand n nodes, then we say that Go is (ec,rn,l -universal.
Ifa graph is (c, n, k) -universal far any c, then it is called (n, k)-universal.

Example 10.5.4 The following graph is (2, n, 1)-universal (for the class of all graphs with n nodes and degree

at most 2).

0 2 4 6 n-5 n-3 n-1

1 3 5 7 n-4 n-2 n

578 U NETWORKS

Indeed, all networks on linear arrays, rings and separate processors with up to n processors can be
simulated by a network on this graph, without any time overhead.

Theorem 10.5.5 If Go is a graph with n nodes on which one can route any permutation 7r : [n] --* [n] in time
t(n), then Go is (c, n, t(n))-universalfor any c (and therefore (n, t(n))-universal).

Proof: Let K be a network with n processors Po, • • • ,Pn- 1 and degree c, and let the nodes of Go be
numbered by integers from 0 to n - 1, to get No, .. N , N,- (it does not matter how the processors of
M and nodes of Go are numbered).

We describe a network Aio on Go. First we describe how to initialize processors of Nro. Note that
the time taken by this initialization does not count in the overall time overhead for simulation.

The ith processor Pi of K will be simulated by the processor P' at the node Ni of Kr0 . The processor
P1 is supposed to know the starting configuration Ki of Pi, and its task is to compute the next
configuration. To achieve this we use the routing potential of Go to distribute among processors
in Mo those data that are needed to compute the next configuration.

Since it is not clear in advance which neighbouring processors of KV want to communicate in a
particular step of discrete time, we assume the worst case - that any pair of neighbouring processors
of K want to communicate. Since the degree of Kr is c, the worst-case assumption will not cost too
much. By Vizing's theorem, 2.4.25, the underlying graph G of K is (c + 1)-colourable, and we make a
colouring of G with integers from [c + 1] as colours. To each colour j E [c + 1] we define a permutation
7rj by

'ry(i) = I if (Pi,PI) is an edge of K coloured byj.

We prepare now a network Ko on Go for routing with respect to permutations 7r10,... ,7r. This
preparation depends on KM0 only, and can therefore be done before a simulation starts. The time
for such preparation should not count in the overall simulation time. The simulation algorithm of
one step of the network has the following form for the case that all processors only send (and do not
request) data.

for j <- 0 to c do
for i - 0 to n - 1 pardo

if Pi wants to send information xi to P,,(i)
then Pi creates packet (i, ,xi, 7rj(i)), and this packet is routed to the processor P-r(i)

od
od

Observe that at this point the ith processor P' of K0 knows all the information needed to simulate
one step of Pi. Simulation time is cO(t(n)) = 0(t(n)). Note that this time estimate does not change
if processors also need to send requests for data. This can be done using the inverse permutations
7t01,..., 7rc-1. This increases the simulation time only by a constant factor.

Corollary 10.5.6 The graph CCCd is (n,lgn)-universal with n = d2d, and the graph SEd is also
(n,lgn)-universal with n = 2d.

Cube-connected cycles and shuffle exchange graphs can be used to simulate efficiently arbitrary
networks, not only families of bounded-degree networks.

Definition 10.5.7 A graph G is called a (n, k)-simulator iany network with n processors can be simulated
by a network on G with the time overhead 0(k).

SIMULATIONS U 579

000 001 010 Oil 100 101 110 111
Sources 0

Processors

ranks Routing

switches
2

Targets 3

Memories

Figure 10.29 Simulation of an EREW PRAM on a butterfly network

In a similar way to how we proved Theorem 10.5.5, we can prove the following result (sorting is
now used to perform routing).

Theorem 10.5.8 If Go is a graph such that in a network on G one can sort n numbers in time t(n), then Go
is a (n, t(n))-simulator.

Corollary 10.5.9 The cube-connected cycles CCCd are (n, 1g2 n)-simulators with n = d2d; the shuffle exchange
graphs SEd are (n, 1g2 n)-simulators with n = 2d.

10.5.2 PRAM Simulations

PRAM seems to be an ideal model of parallel computers for design and analysis of parallel algorithms
and therefore also for parallel programming. It has the potential to be (a basis for) a bridging model
for parallel computing such as RAM is for sequential computing. For this the existence of efficient
simulations of PRAM on bounded-degree networks seems to be of prime importance.

First we show how to simulate an EREW PRAM P with m processors and q cells of shared memory
on a butterfly network Bd of size n(lgn + 1) for the case that n = 2d, m = pn, p E N+ and q _ n. (Note
that both the number of processors of P and the size of the shared memory are larger than the number
of nodes of the source rank of the butterfly network.)

Let [q] be the address space of the shared memory of P. Simulation of P on the butterfly Bd can
be done as follows.

"* PRAM processors are simulated by the source-level processors of Bd. Each of these processors
simulates p processors of PRAM. Denote by pOi), i'(i) the processors of . simulated by the
ith processor of the source level of Bd.

"* A hash function h : [q] -* [n] is used to distribute cells of the shared memory of P among the
memory modules handled by the nodes of the last rank of the butterfly.

Simulation of three phases of a PRAM step is performed as follows.

1. Simulation of a computational phase: Each processor of the source rank of the butterfly
simulates the computational phase of all its PRAM processors on data locally available.

580 U NETWORKS

2. Simulation of a reading phase: For all i e [n] and s E [p] such that the processor pi) wants

to read from the memory m i, the greedy routing algorithm for a p-p-routing is realized to

the destinationf(i, s) = h(m~i'), and empty packets are sent to the corresponding target-level
memory modules. On arrival, the packets are filled with the required data and sent back, again
using a p-p-routing.

3. Simulation of a writing phase: This simulation is realized in a similar way to the reading phase
- through a p-p-routing.

The overall simulation time is the sum of the time for making internal computations, for computing
values of the hash functions, and for performing the p-p-routings (four times). As we have seen in
Section 10.4.4, such a routing can be done fast, on average, if h is a randomly chosen function from
the set A = {g I g : [q - [ni }. However, since h is random, a tabular format may be the only way to
represent h, and therefore to choose h may require 6(q) space and also 1(q) time. This would mean
that each source processor needs as much memory as all the shared memory. As a consequence, such
preprocessing would cost too much.

The way out is to use only such hash functions that are easy to compute. The whole family of
functions from which they are chosen should have good random properties. As we saw in Section 2.3.4,
there are families of universal hash functions with such a property. Their existence is the key factor
behind the following result, which refers to the above method of simulation of PRAM on butterflies.

Theorem 10.5.10 There is a probabilistic simulation of an EREW PRAM with m = np processors on the
butterfly network B[lgn] such that O(plgn + p2) steps are needed on average to simulate one step of EREW
PRAM. (For p = 1 we get time 0 (lg n).)

In principle, it is also easy to simulate a CRCW PRAM on a butterfly network. We sketch how this
can be done for the most powerful of the PRAM models introduced in Section 4.4.1 - for CRCWpri

PRAM.
It is enough to show how to simulate concurrent reads (a similar idea is used to simulate concurrent

writes), and the basic idea is the same as in the proof of Theorem 4.4.32.
To perform a concurrent read, all requests for reading are first sorted with respect to their targets.

We saw in Section 10.1 how to sort in O(1g 2 n) time on butterflies. However, when randomized
methods are used, sorting can be done on the butterfly Bd, n = 2d in O(lg n) time, as shown by Reif
and Valiant (1983). As a result of sorting, the ith processor gets the memory request mi.

One processor is then chosen as the leader from each group of processors that wants to read
from the same memory location.4 For these leaders the reading requests are implemented through
one forward routing to memory modules and one backward routing. We know already that this can
be done in O(lgn) randomized time. After all leaders have received the required data, they must
distribute them to all processors that tried to read from the same location as the leader.

The following algorithm realizes data distribution (see Figure 10.30) on the assumption that there
are 2d processors and there is a connection from any node j to any node j + 2' if j + 2i < n = 2'.

{Initially only the leaders are alive}
begin

for i --* 1 to d do

4A processor is a leader if it is the first processor or if the memory request it gets after sorting is larger than that
of its left neighbour; this can be determined in O(lg n) time on a butterfly Bd, n = 2d, as discussed in Section 4.3.24.
Names of the leaders can then be sent to all processors with the same memory requests by a modification of the
data distribution method presented above.

LAYOUTS U 581

Leaders

i=3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x y U V

Figure 10.30 Data distribution algorithm

for 0 < j < n pardo if node j is alive then
begin pass data and the leader number from nodej to node j + 2 d-i

if the leader number of the processor in node j + 2 -i

agrees with that from which data is sent
then make the node j + 2 d-i alive and store data in that node

end
end {It is assumed that all nodes know their leader.}

It can be shown that the above algorithm, which draws heavily on 'butterfly-like interconnections'
can be implemented in time 0 (lg n) on the butterfly network Bd, n = 2d. As a consequence, simulation
of one step of a CRCWpri PRAM on a butterfly network can be done in randomized time 0 (lgn).

10.6 Layouts
Of great importance are special embeddings, called layouts, of graphs in two-dimensional or,
potentially, three-dimensional grids, which model layouts of integrated circuits. Layouts of nodes
model processors (transistors), and layouts of edges model interconnections (wires).

The enormous number of nodes of circuits that often need to be laid out together with very strong
requirements on minimality, efficiency and regularity, make layout problems difficult and complex.
We can therefore present here only very basic insights, concepts, problems, methods and results and
in doing so we use the simplest model of layouts.

10.6.1 Basic Model, Problems and Layouts

A layout of a graph G of degree at most 4 in a two-dimensional grid is a mapping of nodes of G into
unit squares of the grid and edges of G into disjoint paths that cross squares of the grid in one of the
following ways only:

w ww M
squares crossed by edges empty processor

We shall be mainly concerned with layouts of graphs of degree at most 4. There are several reasons
for this. Two-dimensional grids that model layout space have degree 4; the main bounded-degree
networks introduced in Section 10.1 have degree at most 4; the methods of layout discussed here are
easily and naturally extendable to graphs of higher degree.

Two layouts of the graph in Figure 10.31a are shown in Figure 10.31b, c; full circles denote contacts.

582 3 NETWORKS

(a) (b) (c)

Figure 10.31 Layouts

Remark 10.6.1 We can consider this model as representing layouts with two physical layers on which
to run wires - which corresponds well to main layout technologies. All vertical segments of wires run
in one layer, and all horizontal segments in a second layer. This means that whenever a wire changes
direction, there must be a contact. We shall not draw contacts in general; Figure 10.31b is the only
case where they are depicted.

The most important complexity measure of layouts is the area complexity: the size of the smallest
rectangle that contains all nodes and edges of the layout. For a graph G, let area(G) be the size of the
smallest rectangle containing a layout of G. For example, two layouts of the graph in Figure 10.31a,
shown in Figure 10.31b, c, have area complexity 3 x 7 = 21 and 3 x 3 = 9, respectively. It is easy to see
that 9 is also the area complexity of the graph in Figure 10.31a.

Exercise 10.6.2 Design a layout with as small an area as possible for (a) the mesh of trees MT2; (b) the
de Bruijn graph DB4.

The fact that the error probability, and consequently the production cost, grows rapidly with the
size of the layout is the main reason why the area complexity of layouts is of such practical importance.

Remark 10.6.3 In practice, one actually needs more layers to lay out a circuit: to run power, ground,
clock, signals and so on. Our model can easily be modified to capture layouts with more layers: for
example, 2k layers - k 'horizontal' and k 'vertical' - for an arbitrary but fixed k (see Figure 10.32a
for k = 3). Indeed, let us represent each processor by a k x k square, and its ith vertical (horizontal)
layer by the ith vertical (horizontal) edge leaving or entering a processor square. This way the area
complexity is increased at most by a factor k2 . A similar technique can be used to model layouts of
graphs with degree larger than 4. Indeed, if the degree of a graph G is k, it is enough to model a layout
of a processor by a square of size [k / 4] x [k / 4]. See Figure 10.32b for a layout of the complete graph
with 6 nodes.

Two very important tasks concerning layouts are:

"* to design the best layouts for the main interconnection graphs;

"* to develop general layout methods.

Layouts of binary trees are well understood.

LAYOUTS * 583

r~~ ~ ~~ T

6~~ ~ laer 2 lyer

(a) (b)

Figure 10.32 Layout of circuits with more layers or a larger degree

Example 10.6.4 The most natural layout of the complete binary tree Td was illustrated in the very first
example in this book (Figure 1ld). Since Td has n = 2d,1 - 1 nodes, the area complexity of that layout is clearly
(-)(n lg n). As illustrated in Figure 1. l b, c, the so-called H-layout of complete binary trees has asymptotically
the best possible area complexity - On(n).

Minimal area complexity is not the only requirement which a good layout should satisfy. If a
layout of a circuit is to be made, it is often highly desirable and even necessary that input nodes be
on the boundaries and not inside the layout-rectangle. This is not so in the case of the H-layout of
binary trees if all leaves are input nodes. Inputs on boundaries are more accessible; 'chips' with inputs
on boundaries are easier to pack, combine, etc. Unfortunately, as the following result shows, such a
requirement can asymptotically increase the area complexity of layouts.

Theorem 10.6.5 Each layout of the complete binary tree Td with n = 2d leaves and all leaves on the
layout-rectangle boundaries has an area complexity Q(nlgn).

Two lemmas will be used to prove this theorem.

Lemma 10.6.6 Suppose that a complete binary tree T can be laid out in an area A with leaves on the boundaries
of the layout-rectangle. Then there is a layout ofT in area 8A with all leaves on one side of the layout-rectangle.

Proof: By enlarging the length of each side of the layout by two length units, and therefore by at most
doubling the layout area, we can ensure that no edge runs along the boundaries.

Assume now that a new layout-rectangle for T has sides h and w with h < w and h even. We
rearrange this layout as follows.

1. By extending the horizontal side of the rectangle by h, in the way shown in Figure 10.33, we
can shift all nodes representing leaves - they are of degree 1 - to two horizontal boundaries of the
layout-rectangle. Since h < w, this construction again at most doubles the area of the layout.

2. The next natural idea is to fold the layout around the fictive horizontal midline. This would
certainly bring all leaves to one side of the layout-rectangle. However, some overlaps could occur,
and therefore this idea has to be implemented with care.

584 U NETWORKS

h/2' h/2
w

Figure 10.33 Shifting leaves of a tree to horizontal boundaries

I I I I I I I i

I 4I I , L J

(a) (b) 6 7 (C)

Figure 10.34 Folding of the layout-rectangle

Double both sides of the rectangle, and move all nodes and edges from the ith row and jth column
above the horizontal midline to the (2i - 1) th row and (2j] 1) th column. Similarly, move all nodes
and edges from the ith row and jth column below this midline to the (2i)th row and (2j)th column
and adjust all connections (Figure 10.34b). Fold the layout-rectangle along the horizontal midline, and
move all nodes representing leaves that are now not at the boundary, but next to it, to the boundary
(see Figure 10.34c); this can be done because no wire runs along the boundaries.

These constructions increase the original area of the layout at most by a factor of 8.

In order to prove Theorem 10.6.5, it is now sufficient to show that any layout of the complete
binary tree with n leaves and all leaves on one side of the boundary must have an area complexity
£1 (n lg n).

The basic idea of the following proof of the lower bound for the area complexity is simple, powerful
and often used. Only the length of wires - zig-zag lines connecting nodes - is estimated. Since a wire
of length k occupies the area k, each asymptotic lower bound on the total length of wires provides an
asymptotic lower bound of the total area occupied by both wires and processors. Interestingly, we
get an asymptotically tight upper bound in this way

For an integer d let

L(d) = minimum of the total length of wires in any layout of Td,

M(d) =minimum of the total length of wires in any layout of Tid minus the sum

of the length of wires on the (geometrically) longest path in the layout from

the root to some leaf.

LAYOUTS U 585

(a) M(d- 1) L(d- 1) (b)

Figure 10.35 Estimations for M(d) and L(d)

Lemma 10.6.7 For any integer d,

1. M(d)_ L(d-1)-+M(d-1);

2. L(d) _>2M(d-1)+2d-.

Proof: Consider a layout of Td with M(d) minimal. Since any longest path from a root to a leaf must
also form a longest path from the root to a leaf in one of the subtrees of the root, we have the situation
depicted in Figure 10.35a, and therefore the first claim of the lemma clearly holds.

Let us consider a layout of Td with L(d) minimal. Let v be the left-most leaf on the boundary of
the layout of Td, and let u be the right-most node in the layout, representing a leaf of the other subtree
of Td (see Figure 10.35b). Let us now remove from the layout the (bold) path between u and v. The
remaining edges have a total length of at least 2M(d - 1). The length of the bold line is at least 2 d-1,

because of the distance between u and v. Hence the second inequality of the lemma holds. [0
Proof of Theorem 10.6.5 By Lemma 10.6.6, it is sufficient to consider layouts of complete binary trees
Td with n = 2 d leaves and all of them on a boundary of the layout-rectangle. In order to prove that
all such layouts need Q (n lg n) area, it is sufficient to show that L(d) j Q (n ig n). This can be done as
follows.

By Lemma 10.6.7,
M(d) >M(d-1)+2M(d-2)+2d2 .

In addition, M(0) = 0,M(1) = 1. By induction, we now show that M(d) > Lý. Indeed, this is clearly
true for d = 0,1. Induction step:

M~)>(d -1)2 d-1 +(d -2)2 d-2 d-a2 d2 da

6~d > 2±+2- = d
6 6 6'

and therefore
L(d) >2M(d-1)+2d-1> 2(d-1)2d-1+2 1

- - 62Md-1 d-1 +21

= 2(nlgn).

Another important criterion for the quality of layouts is the minimum length of the longest wire.
If a circuit is to compute in discrete time, then the length of the longest wire determines how large
a unit time must be - a clock cycle. An H-layout of a complete binary tree Td has a wire of length
Q (vr'). We cannot do much better, as the following result shows.

586 - NETWORKS

(a) (b)

Figure 10.36 The tree of meshes TM2 and its layout

Theorem 10.6.8 Every layout of the complete binary tree Td of depth d with n = 2 ' leaves has a wire of length
Q (v•/ I/g n).

Proof: Let £ be a layout of Td, and let I be the maximum length of its wires. Then all nodes of the tree
have to be laid out in the distance d - I from the root. The number of grid squares in such a circle is
[Trd212 j, and such a circle should contain all 2 d+1 - 1 nodes of the tree. Hence,

7rd 212 > 2 d+ 1__1

Therefore,

2d - 1 n
7rd2 Ilgn

Exercise 10.6.9* What is the best lower bound you can get for the length of the longest wire ofa layout
for (a) a mesh of trees; (b) a hypercube.

There is an interesting variation of a tree that also has nice 'H-layouts' and, in addition, plays a
role in one of the general layout techniques.

The tree of meshes, TMd, d c N, is obtained from a complete binary tree T2d as follows: the root
is replaced by an n x n array, where n = 2", its children nodes by n x " arrays, their children nodes
by " x ý arrays, and so on until the leaves of the tree are replaced by 1 x 1 arrays. In addition, the ith
node of the left (right) side of an array assigned to a node is connected with the ith node of the top
row of the array assigned to their children (see Figure 10.36a for TM2).

Also, trees of meshes have H-layouts, as illustrated in Figure 10.36b. How large are such layouts?
Let s(n) denote the length of the side of the square layout of TMd, n = 2'. Clearly, s(1) = 1, and

s(n)= 2s () + 0-(n);

LAYOUTS U 587

therefore, by Theorem 1.6.3,

s(n) = E(nlgn).

This means that TMd can be laid out in the area E(n 2 1g2 n) where n = 2d. (Observe that such a TMd
has 2n 2 Ig n ± n2 nodes.)

A natural and important question concerns the area required by layouts of such interconnection
graphs as hypercubes, butterflies, cube-connected cycles, de Bruijn graphs and shuffle exchange
graphs. Unfortunately, all of them require area E) (n2 / lg 2 n), where n is the number of nodes.

There is a variety of other layout problems and most of them, even in very restricted forms, are
computationally hard. For example, the following problems are NP-complete:

1. To determine the area complexity of a forest.

2. To determine the minimum length of the longest wire of layouts of a given graph G.

Exercise 10.6.10 Show that each X-tree XTd, with 2 d+1 - 1 nodes, can be laid out in the area e(2d).

10.6.2 General Layout Techniques

Basic general results concerning the upper bounds for layouts of graphs are easy, to obtain.

Theorem 10.6.11 (1) Each graph of degree 4 with n nodes can be laid out in the area 0(n 2).
(2) There are families of graphs of degree 4 such that each graph of n nodes from such a family needs Q(n 2

)

area for a layout.
(3) Each n node graph can be laid out in 0(n 4) area.
(4) There are families of graphs such that each n-node graph from such a family needs Q (n4) area for its

layout.

Proof: We show here only upper bounds. (1) is easy to see. Indeed, all nodes are laid out in a row with
a distance of two squares between them (see Figure 10.37). Clearly 0(n) additional rows are enough
to run all wires in the way indicated in Figure 10.37. The same technique can be used to lay out any
graph G with n nodes in area 0(n 4). Nodes of G are represented by L[J x L[J squares in a row each
two 2 squares apart. This takes 0(n 2) area. Additional 0(n 4) area is enough to wire 0(n 2) potential
edges.

It can be shown that there are graphs of degree 4 that need for their layouts Q (n2) area, and that
complete graphs need Q(n 4) area for their layouts. i0

Several general layout techniques are based on the divide-and-conquer method. It is intuitively
clear that this method is the one to try. However, there are two basic problems with applying it.

1. Is it possible, and when, to partition recursively a graph into two subgraphs of almost equal
size by removing a relatively small number of edges?

2. Provided we have layouts of two subgraphs of a graph G which have been obtained by
removing some edges from G, how can we then insert these edges 'back' into these two layouts
of subgraphs, and how much does it cost to do so?

588 N NETWORKS

0(n)

LI

0(n)

Figure 10.37 General methods to lay out graphs of degree 4

a

(a) (b) (c)

Figure 10.38 Insertion of edges in layouts: the 'corridor technique'

Let us first discuss the second problem, the easier one. Insertion of an edge in a layout can be done
in a quite straightforward way by creating corridors. Let us assume that we want to add an edge
connecting a side a of a node x with a side b of a node y (see Figure 10.38a). We create two corridors
(that is, new rows or columns) next to sides a and b, and in case they are parallel also a third one
perpendicular to these two. These corridors are then used to run the missing edge (see Figure 10.38b).
Once this is done, we just connect all disconnected wires (see Figure 10.38c). In this way an addition
of one edge to a layout-rectangle h x w, h < w, increases its size by at most 3w (or by 2w + h).

There are several approaches to the separation of graphs into two parts of almost equal size. They
are usually based on deep results from graph theory. The central concept is perhaps that of a (strong)
separation for a graph and a family of graphs.

Definition 10.6.12 Let S: N ý-+ N be afunction. An n-node graph G is called S(n)-separable if, by removing
S(n) edges, G can be disconnected into two subgraphs G, and G2, with n, and n2 nodes respectively, n = n, + n2,
in such a way that n, >_ , n2 > E, where again G, is S(ni)-separable and G2 is S (n2) -separable. (In other words,
neither of the graphs G1 and G2 has more than twice the number of nodes of the other one, and both are further
recursively separable.)

A family 9 of graphs is S(n)-separable if every n-node graph of g is S(n)-separable.

LAYOUTS U 589

An n-node graph G is called strongly S(n)-separable #, by removing S(n) edges, G can be divided into
two subgraphs G1 and G 2 such that G1 has [nj nodes and G 2 has ["I nodes, and both subgraphs are again
S(['])- and S([])-separable.

5

A family G of graphs is called strongly S(n)-separable if every graph in that family is strongly
S(n)-separable.

Example 10.6.13 Consider an vf x V array An of n nodes, n = 2k. It is clear that A, cannot be separated by
fewer than /n edges, and that it can be strongly separated by removing v•/ edges. The resulting subgraphs will

have n nodes. They can be strongly separated by removing -/I < In2 edges. The -L- x N- subgraphs obtained

in this way can be strongly separated by removing /t = edges . .. Hence the family An is strongly
vl/n-separable.

In the following we use two results from graph theory concerning graph separability.

Theorem 10.6.14 If a family of graphs is S(n)-separable, n = 3 ', then it is strongly Fs(n)-separable, where
F is the function defined asfollows:

rs(n)=S(n)+S n +S(n) ... = S((2) in

Example 10.6.15 If S(n) = n", 0 < a < 1, then

Fs(n) = n" + 2 n + .<n•'(1+ 3 + + (2 +.) 12)n_-= (nW).(3) 3 3-3(3;

If S(n) is a constant c, then F,(n) = c{rgI n] = e (lgn).

The concept of separability seems to be much weaker than that of strong separability. However,
Theorem 10.6.14 shows that once we have separability, we can also obtain good strong separability.

Example 10.6.16 The family of rooted binary trees, that is, trees with one node of degree 2 and all other nodes
of degree 1 (leaves) or 3 (with a parent and two children), is 1-separable. Indeed, let us take an arbitrary rooted
binary tree T and let n be the number of nodes of T. If one of the subtrees has its number of nodes between ½n
and 2n, then removing the edge between the root of the tree and the root of the subtree will do. If not, then one
of these subtrees must have more than 2 n of nodes. We move to this child, and repeat the argument recursively.

By Theorem 10.6.14 the family of rooted binary trees is strongly E (lg n)-separable.

As the following theorem shows, there is a simple recursive layout method for strongly separable
graphs.

Theorem 10.6.17 Let S: N -* N be a monotonically nondecreasingfunction. If an n-node graph G is strongly
S(n)-separable, n = 4 k, then G can be laid out in a square with the side e)(max(v-n, As(n))), where A is the
function defined by:

nlg 4 n

('9n16As (n) =S(n) +2S(4+4S(+ ... -=1 2'S (-)

i=O

5 Observe that the concept of strong separability is similar to that of bisection-width, though it is actually much
stronger, since it requires that it can be applied recursively to subgraphs obtained after separation. Note too that
from the computational point of view, it is desirable that the bisection-width of a network is as large as possible,
but from the layout point of view, just the opposite is the case.

590 J NETWORKS

X X

S(n) edges X

X = n/2+6 AS(n/4)

S6S(n)

G1 1 S(n/2) G 12 G 2 1 S(n/2) G22 A
(a) edges edges (b) 6S(n)

Figure 10.39 Layout of graphs using separators

Before proving the theorem, let us take a closer look at the function As.

Example 10.6.18 If S(n) = n" n = 4k, then

lg 4 n lgn

As(n) = Z2(nn2(
i-0 i-0

and let us distinguish several cases for a.

1. a < ½. Then 21-2, > 1, and therefore As(n) is approximately equal to the last term of the sum. Hence,

As(n) z E(nz2(1l4n)(1 -2)) = e(n~zl z (1-2,)) 2 e(nn½(120)) = (v(/).

2. a = 1. Then As(n) - n lg4n = E(v/nIlgn).

3. ca>1. In this case As (n) is a decreasing geometric sequence, and therefore As (n) equals approximately
the first term of the sum: As(n) = 9(n°).

Proof of Theorem 10.6.17 We assume n = 4i and make the proof by induction on i. If n is not a power
of 4, we can add isolated nodes to the graph, which does not increase the size of the set of edges that
have to be deleted.

The aim is to show that G can be laid out in a square with side of length V/n + 6As (n). The basis
of induction is easy; for i = 0 we have a one-node graph and the theorem clearly holds.

For the induction step let i > 1. According to the assumption, by removing S(n) edges, we get
two graphs G1, G2, of size ý, and by removing S(") edges, we get from G1 and G2 graphs G11 , G12 and
G21, G22, respectively (see Figure 10.39a). By the induction hypothesis, graphs Gij, ij E [2], can be laid

out in rectangles (see Figure 10.39b), with side V/n + 6As (n). Since S is nondecreasing, S () < S (n).
There are therefore at most 3S (n) edges that have to be added to these four layouts; they may require
at most 6S(n) new corridors in both directions. As the total we get a layout in the square of side

2(V/7 + 6As(4)) + 6S(n). Since As(n) = S(n) + 2As(4), we have

(en6As(i() +6S(n) = v¶+6(S(n)+2As())

= v/n +6As(n),

LAYOUTS * 591

and this completes the induction step. 0

Example 10.6.19 The family of binary trees is strongly (lgn)-separable. (See Example 10.6.18 and
Exercise 41.) Since lgn grows more slowly than vn, we have (see Example 10.6.18) Ajgn(n) < V-n
Theorem 10.6.17 therefore again implies that all binary trees can be laid out in area E(n).

Exercise 10.6.20 Determine As(n) if S(n) is constant.

Exercise 10.6.21 Suppose S(n) = na lgbn. For which values of a and b is Fs,(n) = O(S(n))? Determine
Fs(n) in other cases.

Exercise 10.6.22 Show that the family of hypercubes Hd is strongly 2d->-separable.

Let us now turn to the problem of layout of planar graphs. As we could see from Example 10.6.13,
we can hardly expect to find smaller separators than V/n edges for the family of all planar graphs of n
nodes. Surprisingly, a constant factor more is already sufficient. The key to this is the following result
from graph theory.

Theorem 10.6.23 (Tarjan-Lipton's separator theorem) If G is a planar graph with n nodes, then there is
a set of at most 4[vn] nodes whose removal disconnects G into two parts, neither of which has more than 2n
nodes.

As a consequence we get the following theorem.

Theorem 10.6.24 Every planar graph of degree 4 is E(./n)-separable, and therefore can be laid out in area
0(n lg2 n).

Proof: By Theorem 10.6.23, for any n-node planar graph G of degree 4 we can find at most4r[v'f nodes
that separate G. Since G is of degree 4, this implies that G is 16v•/--separable. By Theorem 10.6.14, G
is then strongly E (V•n)-separable, and therefore, by Theorem 10.6.17 and Example 10.6.18, G can be
laid out in a square with side 0(x/-nlgn) - hence the theorem holds. 0

It is known that there are n-node planar graphs that require Q (nlgn) area for their layout, and
even £l(n2) area if crossing of edges is not allowed. On the other hand, it is not known whether there
are planar graphs that really require Q (n 1g2 n) area for their layouts.

Any technique for a layout of planar graphs can be used to make layouts of arbitrary graphs. The
key concept here is that of the crossing number of a graph G. This is the minimum number of edge
crossings needed to draw G in the plane; planar graphs have the crossing number 0.

Theorem 10.6.25 Suppose that all planar graphs G of degree 4 and n nodes can be laid out in the area A(n).
Then every n-node graph of degree 4 and with crossing number c can be laid out in area 6(A(n + c)) - and
therefore, by Theorem 10.6.24, in area E((n + c) lg2 (n + c)).

Proof: Draw G in the plane with c edge crossings. At each crossing point introduce a new node. The
resulting graph is planar and of degree 4, and therefore can be laid out in area E(A(n + c)). [

592 - NETWORKS

An example of an interesting interconnection structure with a large crossing number is the mesh
of trees.

Remark 10.6.26 Another general technique for layout of graphs is based on the concept of a
'bifurcator' for separation of graphs. It uses tree of meshes for interconnections and, again, the
divide-and-conquer method. It can be shown that a large family of graphs can be separated in such a
way that they can be embedded in a tree of meshes. Arrays in the nodes of the tree serve as crossbar
switches to embed edges connecting nodes from two separated subgraphs.

10.7 Limitations *

For sequential computations, such as those performed by Turing machines and RAMs or on von
Neumann computers, one can quite safely ignore physical aspects of the underlying computer system
and deal with the design and analysis of programs in a purely logical fashion - as we have done so
far. This is hardly the case in parallel and distributed computing or in various new nontraditional
and nonclassical models of computers, as in quantum computing. In these areas the laws of physics
have to be applied to the design and analysis of computing systems.

In this section we consider some implications which the geometry of space and the speed of
light have on computation/communication networks and their performance in the case of massive
parallelism. We show for regular symmetric low diameter networks, as dealt with in this chapter,
and for randomly interconnected networks that length and cost of communications are prohibitively
large; they grow fast with the size of networks.

We start with the following problem: let us consider a layout of a finite graph G = (V, E) in the
3-dimensional Euclidean space. Let the layout of each node have a unit volume and, for simplicity of
argument, assume that it has the form of a sphere and is represented by a single point in the centre.
Let the distance between the layouts of two nodes be the distance between layouts of the points
representing these nodes. The length of the layout of an edge between two nodes is the distance
between these two points. The question we are going to consider is how large the average length of
edges has to be and how large the total length of all edges of the network should be. In doing so we
assume that edges have no volume and that they can go through everything without limit and in any
number. This idealized assumption implies that the reality is worse than our lower bound results will
indicate.

Let us first observe that if G has n nodes and all are packed into a sphere, then the radius R of the
sphere has to be at least

4(3n)½R= .

Because of the bounded speed of light this implies that a lower bound for the maximal time needed
for a communication within one computational step is Q (n 3) in an n-processor network on a complete
graph.

10.7.1 Edge Length of Regular Low Diameter Networks

The main drawback of networks such as hypercubes is that their physical realization has to have very
long communication lines.

Theorem 10.7.1 The average Euclidean length of edges of any 3-dimensional layout of a hypercube Hd is at
least (7R) / (16d), where R is given as above.

LIMITATIONS * * 593

Proof: Let us consider a 3-dimensional layout of Hd = (Vd, Ed), with the layout of each node as a
sphere of a unit volume, and let N be any node of Hd. Then, there are at most ý- nodes of Hd within

Eucldea nodesnc of ddwt
E of N, and layouts of at least I-' nodes have Euclidean distance from N more

than E. Now let TN be a spanning tree of Hd of depth d with N as the root. Since Hd has diameter d
such a spanning tree has to exist. TN has 2d nodes and 2d - 1 paths from N to different nodes of Hd.
Let P be such a path and]PJ the number of edges on P. Clearly, IPJ < d. Let us denote the Euclidean
length of the path of the layout of P by l(P). Since 7/8th of all nodes have Euclidean distance at least
From N, for the average of 1(P) we get

(2 d - W)1 E I(P) >_ 7R

-16
PcTN

The average Euclidean length of the layout of an edge in P is therefore bounded as follows:

(2d - 1)-1 E (iP-1 Z l(e)) > 1 (10.2)(IPK1 ~- 1-6d (02PcTN eEP

This does not yet provide a lower bound on the average Euclidean length of an edge of Ed.
However, using the edge symmetry of Hd we can establish that the average length of the edge in
the 3-dimensional layout of Hd is at least 7.

Indeed, let us represent a node a of TN by a d-bit string ad- 1 . .• ao and an edge (a, b) between nodes
a and b that differ in the ith bit by (a, i). In this way each edge has two representations.

Consider now the set A of automorphisms a,,j of Hd consisting of a modulus two addition
of a binary vector v of length d to the binary representation of a node x (which corresponds to
complementing some bits of the binary representation of x), followed by a cyclic rotation over distance
j. More formally, if x = Xdl-. . . Xd0 , xi G {0,1}, and 0 <•j < n, then av~j(a) = bj+bj.. •bobd-lbd-2.. . bj,
with bi = ai D vi, for all 0 < i < d.

Consider further the family S = {a(TN) I ca E A} of spanning trees isomorphic to TN. By the same
argument as that used to derive (10.2) we get, for each ca E A, that each path a(P) from the root a(N)
to a node in ao(TN) has also length at least 7R. The same lower bound applies if we average (10.2)16d
over all a E A and therefore

E..EA[(2d -1)-' _PEITN "P1-1 _,ecp(Oa(e))] 7R> -- (10.3)
d2d - 16d

If we now fix an edge e in TN, then by averaging 1(a(e)) over all a G A, we show that this average
equals twice the average length of an edge layout. Indeed, for eachf E Ed there are a1 and a 2 in A,
a1 =A 2, such that ai(e) = a 2 (e) =f, and a(e) $f for a E A - {•a, C2}. Therefore, for each e E Ed:

1l(a(e)) = 2Zl(f)
,2cA, fEEd

and for any path P of Hd

E E 1(a(e)) = 21PI E 1(f)). (10.4)
ecP ocA fEEd

By rearranging the summation order in (10.3) and substituting from Equation (10.4), we get the
Theorem. 1]

594 U NETWORKS

Since Hd has d2d 1 edges for the overall sum of layouts of all edges in a 3-dimensional layout of
Ed we get

E_• l(e) > 2d7-R > 37.24d/3-5
32 - 47r

ecEd

and hence we have:

Corollary10.7.2 The total sum of lengths of all edges of a hypercube Hd in the 3-dimensional space is Q(24d/3)1d

and the average length of an edge is Q(d-123).

These results throw a different light on such outcomes of the analysis of hypercube computations
as those that on a hypercube Hd we can add n = 2d numbers in O(lg n) parallel steps. Indeed, since
the results of calculations of any two processors have to interact somewhere, there have to be signal
transition paths between each pair of processors and taking the outermost ones, the distance of a path

between them has to be Q (n0)
The hypercube is not unique with respect to such high requirements on the length of

interconnections in three- and two-dimensional layouts. It has been shown that for cube-connected
cycles CCCd the average length of an edge in a 3-dimensional layout is Q(2d/3d-2/ 3) and the length
of edges is W(d4

a/
3d1/ 3). Similar results hold for de Bruijn and shuffle exchange graphs. On a more

general level, it can be shown that the average Euclidean length in a 3-dimensional layout of an
edge-symmetric graph is 7R/(16D), where D is the diameter. For example, this implies that for a
complete graph Kn the average edge length is Q(n1/ 3) and the total edge length is Q(n 7

/
3

). (We have
quite different results for some simple interconnection structures. Indeed, for an n-node ring we have
an average edge length Q(n- 2

/
3) and the total edge length Q(nl'/3). For a two-dimensional n-node

toroid the average length of an edge is Q(n-1/ 6) and the total wire length is Q(n5 /6).)

10.7.2 Edge Length of Randomly Connected Networks

Since low-diameter symmetric networks have a very high average length of edge layouts it is natural
to ask whether the situation is better for much less regular networks. The extreme along these lines
seem to be randomly interconnected networks. However, the average and total length of edges of
layouts of random graphs is also prohibitively high, as will now be shown.

As already discussed in Section 2.4.2, an undirected graph G of n nodes can be given by a

binary string wG of length n(n). Conversely, each binary string of such a length describes an n
node undirected graph.

An undirected graph G is called random if the following inequality holds for conditional
Kolmogorov complexity:

K(wG I bin-' (n)) >_ n(n-1) _c,(05
2 -cn, (10.5)

where c is an appropriate constant (c = 0.09 suffices for n large enough).

Exercise 10.7.3 Show that a fraction of at least 1 - - of all graphs has conditional Kolmogorov
complexity as in (10.5).

The main result on the length of edges of random graphs presented below is based on the following
lemma claiming that all nodes of random graphs have to have high degrees.

LIMITATIONS U 595

Lemma 10.7.4 The degree d of each node of a random graph satisfies the inequality Id - LI <

Proof: Let N be a node of a random graph G and let the deviation of degree of N from L21 be at least
k. Using Kolmogorov/Chaitin complexity reasoning, we obtain an upper bound on k as follows.

One way to describe the set of edges of G incident to N is to give an index specifying the
interconnection pattern of N from the set of

mnk= E (nd
Id-(n-1)/21>k

possible interconnection patterns for N.
As discussed in Section 1.6, Pr(Sn = d) = (a) • for the random variable Sn that expresses the

number of successes of n trials if the probability of success is ½. If we now use another slightk
2

modification of Chernoff's bound, namely that Pr(IS,- 1 - > k) < 2e -, then we get:

k
2

mk < 2"e- n-. (10.6)

On the basis of n, mk and N we can describe G as follows: we take the string mG but delete from
it those n - 1 bits describing connections of N and we prefix the resulting string by

"* [lg n] bits identifying N;

"* [lg n] bits identifying the degree of N;

"* [g mk] + [g gmink] -bits identifying the interconnection pattern of N in a self-delimiting form.

It is clear that one can reconstruct G from n and such a description. The total length of such a
description is

lgmk+21glgmk+O(lgn)+ n(n- 1) (n- 1).2

This has to be at least the length of the shortest binary program to construct G, i. e. K(wc / bin-< (n))
satisfying Equation 10.5. Hence

lgmk + 2lglgmk > n - 1 - O(lgn) - cn.

By (10.6), lg mk •ý n - (iL) lg e and therefore k < E if c = 0.09.

As a corollary we get:

Theorem 10.7.5 A random graph G of n nodes has £(n 2) edges and the total length of edges of an layout of
G in the 3-dimensional space is Q(n7/3) (and Q(n 5/2)for a layout in the two-dimensional space).

Proof: The first claim directly follows from Lemma 10.7.4 because each node of a random graph with
n nodes has at least ý edges. Moreover, from the same lemma it follows that each node of G is incident
to ± - nodes and (7/8)th of these nodes are (in the 3-dimensional space) at a distance of Q(nl/ 3).
Hence the theorem for the 3-dimensional case. The argument for the two-dimensional case is similar.

0

596 U NETWORKS

Remark 10.7.6 A more detailed analysis shows that even under a very conservative assumption that
the unit length of a wire has a volume which is a constant fraction of that of components it connects,
the total volume needed to layout an n node graph in the three-dimensional space is Q(W3

/
2) for

hypercubes and Q(n 3
/
2 lg-3/ 2 n) for cube-connected cycles. The last bound is pretty good because it

has been shown that every small degree graph can be laid out in the 3-dimensional space with volume
0(n 3/2).

Remark 10.7.7 It is well known that with modem high density technologies most of the space in any
device executing computations is taken by wires. For the ratio

volume of communication wires
volume of computing elements

we therefore have the lower bound Q (nW/3) for such networks as hypercubes and Q (n 4
/

3
) for randomly

connected networks.

Remark 10.7.8 From the practical point of view one of the most natural and important requirements
for massive parallel computing is that networks should be scalable.

A family D of abstract computational devices {fDn}ni, where each D, is capable of processing
any input of size n, is called scalable if there is a physical realization 7Z = {f7Z,}, ,> of / such that for
every n the maximal duration of any computational step (measured in any real unit of time) on 7?n
does not depend on n.

Since for regular symmetric low-diameter networks and randomly interconnected networks,
the length of interconnections rises sharply with the size of network, the only graphs scalable are
symmetric high-diameter graphs like arrays. For this reason arrays of processors are often considered
as the most appropriate computer architecture for really massive parallelism.

Remark 10.7.9 Under similar assumptions as above, for physical space and time consideration, it
has been shown that any reasonable parallel computer of time complexity t(n) can be simulated by
a MTM in time O(t' 3 (n). This implies that if physical laws are taken into consideration, then with
respect to the first machine class, only polynomial speed-up is achievable.

Moral: Communication networks are abandoned in society and nature. A good rule of thumb
for dealing with networks in parallel and distributed computing is therefore, as in life, to use
networks simple enough to be manageable and fast and reliable enough to be useful. It should
also be remembered that modem means of communication often actually accentuate and strengthen
noncommunication.

10.8 Exercises
1. (A card trick) The following card trick is based on the magician's ability to remember exactly

where in the deck of cards a volunteer has inserted a chosen card, as well as on the ability to
perform fast routing on shuffle exchange graph networks.

A volunteer is asked to pick an arbitrary card from a deck of 2d cards and to insert it back into
an arbitrary position in such a way that the magician cannot see which card was chosen. The
magician then performs a certain number of out-shuffle and in-shuffle operations, and as a
result the chosen card appears at the top of the deck (or in the kth position where k has been
announced in advance).

Explain the trick. (An out-shuffle (in-shuffle) operation gets each card from a binary position
ad-,... a0 into the position a. 2..•. aoad4l(ad-2. .. aaoad).

EXERCISES F 597

2. Prove Lemma 10.1.16.

3. Draw nicely (a) DB4; (b) CCC4; (c) SE 4.

4. Show that the following graphs are Cayley graphs: (a) wrapped butterflies; (b) toroids; (c) star
graphs.

5.** (Fast Fourier transform) The discrete Fourier transform of a sequence a0 , . a,-, is the

sequence bo, . . . b,-, where by = Z7noaiwij and w is the nth primitive root of 1. Show how
to compute the discrete Fourier transform for n = 2 1 on the butterfly Bd in time e(lgn), if
we assume that the node (i,oa) of Bd knows wexp(i'), where for a = w, . . wd, exp(i,co) =

wiwi 1 .. • w 10... 0.

6. (Fibonacci cube) For an integer i let iF denote the unique Fibonacci representation of i (see
Exercise 2.1.8). The Fibonacci cube of degree d, notation FCd, is a graph (Vd,Edý, where
Vd = {0, 1, ... ,Fd - 1} and (ij) E Ed if and only if ham(iFjF) = 1. (a) Draw FC2 ,FC3 ,FC4 ,FC5 .
(b) Determine for FCd the number of edges, degree of nodes and diameter.

7. The Fibonacci cube FCd can be decomposed in various ways into Fibonacci cubes of smaller
degrees. Find such decompositions.

8. Determine the number of nodes for hypercubes and de Bruijn, star and Kautz graphs of degree
and diameter 2,4,6,8, 10. (You will find that de Bruijn graphs, star graphs and Kautz graphs
compare very favourably with hypercubes regarding the number of nodes that can be connected
in networks of the same degree and diameter.)

9. * A set S of nodes of the de Bruijn graph DBd forms a necklace if S is the set of all those
nodes that can be obtained from one of them using the perfect shuffle operation repeatedly. (a)
Determine the number of necklaces. (b) Show that there is a linear time algorithm for producing
all necklaces.

10. Show that (a) each Euler tour for a shuffle exchange graph SEd uniquely specifies a Hamilton
cycle for DBd-1; (b) each de Bruijn graph has a Hamilton cycle.

11. The problem of determining exactly the bisection-width for de Bruijn graphs and shuffle
exchange graphs is still open. (a) Determine the bisection-width for SEd and DBd for d = 2,3,4,5.
(b) It is possible to bisect DB7 by removing 30 edges. Show this. Can you do better?

12. (Generalized de Bruijn and Kautz graphs) Let m,d E N. For generalized de Bruijn graphs
GDB(m,d) = (V,E),V = [m]d, E = {(ad1 ... ao,ad-2 . .. aox) Iad- . . . ao E [MJdnx E [m]} and

generalized Kautz graphs are defined as follows: GK(m, d) = (V, E), V = {f at E [m + 1]d and no
two consecutive symbols of a are the same}, E = {(ad-1... aoad-2... aox) I ad-1 ... ao G Vao # x}.
Determine the number of nodes, edges, degree and diameter.

13. Show that in generalized de Bruijn graphs GDB(m,d) there is exactly one path of length d
between any two nodes; therefore M(m,d)d = I, where M(md) is the adjacency matrix for
GDB(m,d).

14. * Show that in generalized Kautz graphs GK(m, d) there is exactly one path of length d or d - 1
between any two nodes. Show that M(m,d)d-1 +M(m,d)d = I, where M(m,d) is the adjacency
matrix for GK(m, d).

15. Describe greedy routing methods for generalized de Bruijn and Kautz graphs.

598 0 NETWORKS

16. (Fault tolerance) Fault tolerance of a graph is the minimum number of nodes or edges that can
be removed to disconnect the graph. It is usually defined through node- and edge-connectivity.
Node-connectivity, k(G), of a graph G is the minimum number of nodes whose removal
disconnects G. Edge-connectivity, A(G), is the minimum number of edges whose removal
disconnects G. (a)* Show that k(G) = the maximum number of node-disjoint paths p(u, v) over
all nodes u, v of G; (b)** A(G) = the maximum number of edge-disjoint paths p(u,v) over all
nodes u, v of G. Determine node- and edge-connectivity for the following graphs: (c) arrays; (d)
toroids; (e) hypercubes; (f) cube-connected cycles; (g) de Bruijn graphs; (h) shuffle exchange
graphs; (i) star graphs; (j) Kautz graphs.

17. (Mobius graphs) A 0-M6bius graph, notation 0-Md is defined by 0-Md = (V, E), V = [2]d, E =
El U E2, where E1 = {(ad-1 . . . ao,ad-1 . . . ai+1aiai-1 . . . ao), aiI = 0 or i = d - 1} E2 =

{(ad1 . . . ao,ad- I ... ai+lai±i_1 ... -o), ai+1 = 1}. (a) Depict 0-M 2, 0-M 3 , 0-M4. (b) Show that
the diameter Of 0-Md is rd 2

21 (therefore smaller than for the hypercube Hd.)

18. Show that g 2(R,) = [- + 1] for odd n.

19. Show Theorem 10.2.22 for all even n.

20. Design for star graphs (a) a greedy routing algorithm; (b) a broadcasting algorithm.

21. Show that b(FCd) = d - 2 for the Fibonacci cube FCd of degree d.

22. * Define the three-dimensional mesh of trees, and show how it can be used to multiply 2 matrices
of degree n = 2d in O(lgn) time.

23. Design a permutation routing protocol for a one-dimensional array of n processors that works
in time 0(n) and needs buffers of maximum size three.

24. Consider the following modification of the Beneg network BEd: each source-level node has
only one input and each target-level node has only one output. Show that such a network can
implement any permutation r : [2]d-1 , [2]d-1 in such a way that no two paths have a common
node.

25. Show how to simulate efficiently an ascend/ descend program for the hypercube Hd, n = 2d,d =
2k, on (a) a shuffle exchange graph SEd; (b) cube-connected cycles CCCd-k; (C)* a linear array of
n processors.

26. The following are often considered as permutation networks: the Baseline network and the
Omega network. They are defined as follows. Baseline network: BNd = (V, E), V = {(ij) 10
i < d,0 <•j < 2 d}, E = {((i,ad-] ... ao), (i + l,ada 1 ... ad-i-2Oada i ... ao)), ((i,ada-1 ... ao), (i +
l,ad-1 . . ad-i-21ad-i-1. .. ao))10 0 i < d,ad-1 ... ao E [2]d}. Omega network: ONd = (V,E),V =
I{(i,j) 10_< i_< d, 0 < j < 2ad}, E = I{((i,j) (i +1,[J), ((i,j), (i+1, 2 d-1 + [½)0_< i < d, 0 <_j < 2 dl.

(a) Draw BN4, OM4 and B 4. (b)* Show that the baseline network, Omega network and butterfly
network are isomorphic as graphs.

27. Prove the correctness of the data distribution algorithm on page 580.

28.* Show how one can implement efficiently the data distribution algorithm (page 580) on a
butterfly.

29.** Show that any n-node ring or array can be embedded in any connected n-node graph with
dilation 3.

EXERCISES 3 599

30. Use the fact that each hypercube has a Hamilton cycle determined by the Gray code to depict
nicely H 6. (Hint: depict nodes equally on a ring following Gray code numeration and add
missing edges.)

31. Design the following embeddings: (a) a 3 x 10 array into a 5 x 6 array with dilation 2; (b) a
3 x 2 x 3 array into its optimal hypercube with dilation 1.

32. Prove Theorem 10.3.9.

33. Show that the de Bruijn graph DBd can be embedded into the shuffle exchange graph SEd with
dilation 2.

34. Show that (a) a linear array of 15 nodes can be embedded into the complete binary tree T3 with
dilation 3; (b)* any linear array can be embedded into its optimal binary tree with dilation 3.

35. Show how to embed a ring with 2d nodes into the de Bruijn graph.

36. Embed a 5 x 5 x 9 array into the hypercube H 7 with dilation 2 and load factor 2.

37. Show that an X-tree can be embedded into its optimal hypercube with dilation 2.

38. Show that if d - 2k' then CCCd can be embedded into Hd+k with dilation 1.

39. Show that the cube-connected cycles can be embedded into their optimal hypercubes with
dilation 2.

40. Show that the hypercube Hd is a subgraph of the Fibonacci cube FC2d+ 1, and that the Fibonacci
cube FCd is a subgraph of Hd- 2.

41. (Separation of binary trees) Let us consider the family of all trees for which each node has
degree at most 3. (a) Show that by removing one edge of a n-node tree the nodes of the tree can
be separated into two sets A and B such that AI_< 2 n, I B I n. (b) Show that the constant is

optimal by giving a small tree in which removing one edge always produces a partition such
that one of the sets A, B has exactly 3n nodes. (c) Show that by removing 9 (lgn) edges we can
get a partition of nodes into sets A, B such that JAI = J2], B = [2j.

42. ** Show that there is an 0 < e < 1 such that for any undirected graph G of n nodes and any
almost balanced partition 7r of its edges there is a set W of at least En nodes such that each set
of the partition 7r contains, for each node from W, at least En edges incident with that node.

43. Show that the family of arrays is strongly (v/fn + 1)-separable.

44. Consider layouts of complete binary trees with all leaves at the layout-rectangle boundaries.
What is the minimum length of the longest edge for such layouts?

45.* Show that the crossing number for complete graphs is Q(n 4
).

46. Consider the following modification of hypercubes Hd, d = 2'. Remove all edges from Hd,
and replace each node by a complete binary tree with d leaves, one for each dimension of the
hypercube. For a pair of trees corresponding to nodes of Hd connected by an edge of dimension
i connect corresponding leaves of their trees. The resulting graph has degree 4. Show that this
graph can be laid out in area 0 (n2), n = 2d.

600 U NETWORKS

QUESTIONS
1. Why is the bisection-width an important characteristic of communication networks?

2. What is the difference between a mesh of trees and a tree of meshes?

3. In what lies the power of shuffle exchange interconnections?

4. Why is it the case that for many basic algorithmic problems there are simple-to-formulate
algorithms for such networks as hypercube, butterfly, shuffle exchange graphs and de Bruijn
graphs?

5. Which properties of splitters are utilized in making multi-butterfly networks efficient for
routing?

6. How can one perform randomized routing on (a) hypercubes; (b) shuffle exchange graphs; (c)
de Bruijn graphs?

7. In which cases is it proper to use dynamic or multiple embeddings?

8. What are the basic ingredients of efficient simulations of PRAMs on bounded-degree networks?

9. How many layers currently are used in integrated circuits?

10. What is the crossing number for the three-dimensional hypercube?

10.9 Historical and Bibliographical References
Communication network theory has several roots, and their offspring have merged recently. The
oldest root lies in graph theory. Cayley (1889) connected graph and group theory and created
grounds for a general, abstract treatment of regular graphs. In addition, graph theory in general
forms an important theoretical base for communication network theory The design of switching
networks, especially in connection with the first very large-scale project in parallel and distributed
communication, telephone networks, provided a significant technological impetus. Permutation and
sorting network problems, well-defined, urgent and intriguing, with pioneering works by Beneg
(1964, 1965) and Batcher (1968), created an important area of research.

Emerging ideas of parallel computing brought another impetus, and led to the study of
hypercubes and bounded-degree regular networks; see Schwartz (1980) for a survey of earlier work.
Experiences with the first designs and use of parallel computers and a search for good models
of parallel computing turned attention to problems such as routing, embedding and simulation.
VLSI technology brought the layout problem. The last root of modem network theory lies within
computational complexity theory. Attempts to understand the power and limitations of parallel
computing soon revealed communication problems as the key ones, and led to the investigation of a
variety of networks - with the aim of deriving new upper and lower bounds.

The most comprehensive treatment of hypercubes and bounded-degree networks, properties,
routing, simulations and embeddings, is found in Leighton (1992) and includes detailed historical and
bibliographical references. Inf;,7mation dissemination problems are well surveyed by Hromkoviý,
Klasing, Monien and Peine (1995). Layout problems are systematically presented by Ullman (1984)
and Lengauer (1990a, 1990b). Complexity approaches to networks are surveyed by Pippenger (1990).

Hypercubes and their properties are discussed in detail in Leighton (1992), Harary, Hayes and
Wu (1988), Lakshmivarahan and Dhall (1990). The origin of the butterfly network is found in the early
work on the fast Fourier transform, invented in the 1920s; see Press, Flannery, Teukolsky and Vetterling

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES U 601

(1986). The cube-connected cycles network was introduced by Preparata and Vuillemin (1981); shuffle
exchange graphs by Stone (1971); de Bruijn graphs were reinvented by many, especially de Bruijn
(1946). Kautz graphs, star graphs and Fibonacci cubes were introduced by Kautz (1968), Akers and
Krishnamurthy (1986) and Hsu (1993). Meshes of trees were introduced by Muller and Preparata
(1975), and trees of meshes by Leighton (1981).

The complex plane layout for the shuffle exchange graph is due to Hoey and Leiserson (1980). Full
analysis of the bisection-width for the shuffle exchange graphs is found in Leighton (1992), which my
presentation follows. A variety of algorithms for the hypercube and butterfly networks is presented
by Akl (1989), Ranka and Sahni (1990), Lakshmivarahan and Dhall (1990) and Ja'Ja (1992).

There is a rich literature on broadcasting and gossiping. My presentation, and also Table 10.2, is
an updated version from the survey by Hromkovi6, Klasing, Monien and Peine (1990). This includes
many bibliographical references on the subject and also to the results presented here. Some newer
bounds are due to S. Perennes (1996). Another survey on this subject is by Fraigniaud and Lazard
(1996).

Embeddings are covered by Leighton (1990), Monien and Sudborough (1992) and
Lakhshmivarahan and Dhall (1990).

The NP-completeness results concerning embeddings on page 555 are due to Wagner and Corneil
(1990) and Monien (1985). The first two claims in Theorem 10.3.3 are due to Greenberg, Heath and
Rosenberg (1990) and Feldman and Unger (1992); the third one is folklore. Gray code embeddings are
discussed in detail in Lakshmivarahan and Dhall (1990). Array embeddings are surveyed by Monien
and Sudborough (1990) and Leighton (1990). Theorem 10.3.11 is due to Chan (1988, 1989). See also
Chan and Chin (1988). Embeddings of complete binary trees in hypercubes were first discussed by
Havel and Liebl (1973); see also Wu (1985) for Theorems 10.3.13, 10.3.14 and 10.3.15. Results on
embedding of arbitrary trees into the hypercube, presented in Theorem 10.3.16, are due to Monien
and Sudborough (1988) and Wagner (1987).

The concept of polymorphic arrays and the result on well balanced embedding of arbitrary arrays
into polymorphic arrays are due to Fiat and Shamir (1984).

Table 10.4 is due to Ralf Klasing. The third entry in the table is due to Miller and Sudborough (1994);
the fifth to Bhatt et al. (1988); the sixth entry to Heckmann, Klasing, Monien and Unger (1991); the
seventh to Monien and Sudborough (1988); the eighth to Monien (1991); and the tenth to Heydemann,
Opatrny and Sotteau (1994).

There is an extensive literature on routing. For a variety of networks for permutation routing see
Beneg (1964, 1965), Leighton (1990), Lakshmivarahan and Dhall (1990) and Kruskal and Snir (1986).
For routing in general and also for Exercise 10.4.26 see Leighton (1990). The result that preprocessing
for a permutation routing can be done on the hypercube Hd in 0(d 4) time is due to Nassimi and
Sahni (1982). Theorem 10.4.14 is one of the improvements, due to Meyer auf der Heide (1992), of
the original result Q (-!L•) due to Borodin and Hopcroft (1985). Theorem 10.4.16 is due to Lubotzky,
Phillips and Sank (1988), and Theorem 10.4.19 to Leighton, Maggs, Ranade and Rao (1992). Valiant
(1982) and Valiant and Brebner (1981) initiated research on the average-case analysis of greedy routing
algorithms and randomized, two-stage routings. Further significant improvements are due to Upfal
(1991), Ranade (1991) and others; see Leighton (1992) for further references.

For simulations between networks and their probabilistic analysis see Bhatt et al. (1988), Koch et
al. (1989) and Meyer auf der Heide (1986). For the randomized simulation of PRAMs on hypercubes
and bounded-degree networks, see Ullman (1984), Upfal and Wigderson (1987), Valiant (1990) and
Karp, Luby and Meyer auf der Heide (1992). Fast implementation of the data distribution algorithm
on the butterfly is due to Borodin and Hopcroft (1985). My presentation of routing and simulation
owes much to Meyer auf der Heide (1992).

Layout methods and lower bound techniques are discussed in detail in Ullman (1984), Lengauer
(1990a, 1990b) and Hromkoviý (1996). H-tree embeddings are due to Browning (1980). Theorem 10.6.5

602 M NETWORKS

and O(\/ni / lg n) as the upper bound are due to Brent and Kung (1980), and Theorem 10.6.8 to Paterson,
Ruzzo and Snyder (1981). The NP-completeness results for layout problems on page 587 are due to
Dolev, Leighton and Trickey (1983) and Bhatt and Cosmadakis (1982). The general layout technique,
as presented in Section 10.6, is due to Valiant (1981) and Leiserson (1980, 1983). Its presentation here
follows Ullman (1984), as well as the proof of Theorem 10.6.14 and further references. Theorem 10.6.23
is due to Lipton and Tarjan (1979), theorems 10.6.24 and 10.6.25 to Leighton (1981); see also Ullman
(1984). For (9(n2 / lg 2 n) layouts for hypercube, butterfly, cube-connected cycles, de Bruijn and shuffle
exchange graphs see Ullman (1984). The method for layout of graphs based on bifurcators is due to
Bhatt and Leighton (1984); see also Lengauer (1990).

For the limitations that the laws of physics impose on multiprocessor architectures, see papers
by Vitinyi (1994,1995); Section 10.7 is based on them.

SCommunications

INTRODUCTION
Communication is clearly of great importance for distributive, parallel and concurrent computing,
and communication costs often dominate computation costs. Less obvious, but of equal importance,
is that communications dominate sequential computing. Moreover, communication problems have
inherent communication complexity, and the discovery of this complexity brings deep theoretical
insights.

In the previous chapter we explored a variety of communication structures (graphs) per se, no
matter what they are used to communicate. In this chapter, by contrast, we deal with communications,
no matter how powerful, computationally, the communicating parties are and which way they
communicate. We explore the power of various communication modes, especially deterministic
and randomized ones, partitions of input data, and basic relations between communication and
computational complexity.

The concepts, models, methods and results presented in this chapter allow one to understand the
essence of difficulties in communication and how to handle those tasks efficiently.

LEARNING OBJECTIVES
The aim of the chapter is to demonstrate

1. the basic concepts concerning communication protocols and their complexity;

2. a variety of communication protocols presenting methods for minimizing communication
needs;

3. lower bounds methods for fixed partitions and their relative power;

4. a method to determine the AT 2-complexity of VLSI circuits;

5. several types of nondeterministic and randomized protocols: Las Vegas, Monte Carlo and
BPPC;

6. the relations between the power of different types of communication protocols;

7. the basic relations between communication and computational complexity.

604 U COMMUNICATIONS

Genuine poetry can communicate
before it is understood.

T. S. Eliot, 1929

One of the main discoveries of the modem search for the essence of difficulties in computing is that it
is the inherent communication complexity of a problem, independent of a particular communication
structure, that is the main contributor to the computational complexity.

This understanding first emerged in parallel and distributed computing, especially after the
development of VLSI technology, where the cost of communication is the dominating factor regarding
chips production and performance. The following investigations of the so-called AT2-complexity
of VLSI circuits and Boolean functions revealed clearly the central role of communication
complexity. Problems with the performance and programming of networks of processors pointed to
communication as the critical issue. Interactive protocols have been another area where the surprising
power of communications and interactions emerged clearly, on a deep theoretical level, and with
important applications.

In the PRAM model of parallel computing, communication problems are ignored and only
computations are considered. Conversely, in the study of communication complexity, which is the
topic of this chapter, computations are completely ignored and only communications are considered.
Two communicating parties, each possessing only part of the input data, are allowed to have unlimited
computational power. We are interested only in how many bits they have to exchange in order to
solve a given problem (see Figure 11.1).

The idea of isolating communication from computation and studying it per se, which at first seems
almost absurd, is actually very fruitful and gives rise to deep insights into the nature of computation
and computational complexity. It has been revealed that communication complexity is closely related
to computational problems which initially seem to have nothing to do with communication,

11.1 Examples and Basic Model
Given a computational problem P with its input data partitioned into two sets X and Y, the basic
question is how much information two parties, A and B, both with unlimited computational power,
have to exchange in order to solve P, provided that, at the beginning of a communication, party A
knows only the input data from X and B only the input data from Y.

f(x,y) = ? g(x,y)= ?

F 1tei e

Figure 11.1 Communications between two parties to solve a problem

EXAMPLES AND BASIC MODEL U 605

Example 11.1.1 (Parityfunction) Let us assume that B is to compute the parity functions= (zn7 Iai) mod
2, where ai e {0,1}, but B knows only n - k + 1 bits ak,.• ,anfor some k > 1, and A knows the rest, al, ak-1,

of the input bits. It is easy to see that it is enoughfor A to send B a single bit, namely (Zj= 1 aj) mod 2. With
this information B can determine z. Observe too that for this communication algorithm - protocol - it is of no
importance how large k is. Also in the case that the input data are partitioned between A and B in some other
way, it is always sufficient that A sends B a single bit (provided B knows what this one bit means). In other
words, for communication during a parity function computation by two parties it is not important how the
input data are partitioned between them.

Example 11.1.2 (Palindrome recognition) Let us again assume that party A knows a prefix x = a, ... ak-1
and B knows the suffix y = ak ... an of a binary string a. . . an. This time, however, the taskfor B is to determine
whether z = xy is a palindrome. Intuitively, it seems clear that in the worst case it may happen that A needs to
send B the whole of x, and therefore the number of bits that need to be exchanged depends on how big x is. In
other words, the number of bits that need to be exchanged seems to depend very much on how the input data
are partitioned between the two communicating parties. But is our intuition correct?

Exercise 11.1.3 Party A knows bits x1, . . . ,x,, B knows bits yl, . . . ,yn. A has to compute zl =
V"- 1(xi v yi); B has to compute z 2 = An 1 (xi A yi). How many bits do they have to exchange?

Example 11.1.4 (Addition of binary numbers) Assume that parties A and B are to compute the sum of two
n-bit numbers x = an. . . a,, y = b.... bl, where n is even, and each of them knows exactly half of the input
bits. Assume also that B is to compute ý of the least significant bits of the sum, and A the rest. How many bits
do they need to exchange?

The answer greatly depends on how the input bits are divided between the two parties. Let us consider two

possible cases.
1. If B knows an .. . a,, bn ... b1, and A the rest of the input bits, then it is clearly enough if B sends A the

single bit, namely 0, if
bin (a• a,) + bin (bn . .. bi) < 2 n/2,

and 1 otherwise. A can then compute the remaining bits of the sum.
2. However, if A knows an... a, and B knows b, ... bl, then it seems to be intuitively clear that B needs

to get bits a.1 2 . . a, and A needs to get at least bits bn ... b,/ 2 and an additional bit carrying information as
to whether the sum of n/2 least significant parts of both numbers is or is not larger than 2 n/2. Again, is our
intuition correct?

Example 11.1.5 (AT2-complexity of VLSI circuits) A VLSI circuit C is a planar layout of a Boolean network
.lu (that is, a network all processors of which perform a Boolean operation on their inputs), of degree at most
4, together with a specification, for all input bits of K, at which nodes of C they enter and when, as well as a
spec ifcation of where and when one gets outputs. By a layout of K is meant a layout of the underlying graph
of K into a two-dimensional grid as defined in Section 10.6, and, in addition, an assignment to nodes of C
of Boolean functions that correspond to nodes of AK. (See, for example, Figure 11.2, in which 'id' stands for
the identity function and is used just to represent input ports. Simultaneous inputs are shown on the same
line.) Computation on a VLSI circuit C is done in the same way as on the network K, and it is assumed that
communication along an edge takes, for simplicity, one unit of time, no matter how long the edge is. The time

606 U COMMUNICATIONS

X4 X5
x 1 x 8 x 2 x 7 x 3 x 6 x 4 x 5 X6

X2 X7
x3 x6

V_ (a) (b)

Figure 11.2 VLSI circuits

h

w

Figure 11.3 Information transfer in a VLSI circuit

of computation of a VLSI circuit is then the time needed to produce all outputs. Time-counting starts when the
first input data enter the circuit.

Assume now that a VLSI circuit C, can be laid out in a w x h rectangle, h < w. Assume also that we can
cut the layout-rectangle (see Figure 11.3) by a vertical line L in such a way that it can be shown, somehow,
that during a computation on this circuit, at least I bits have to be exchanged between nodes lying in two parts
of the layout-rectangle separated by the line L. In other words, let I bits have to be transferred along the edges
(wires) crossing L.

Since h < w, we have h < VA, where A is the area of the layout-rectangle. During one time unit at most h
bits can cross L, and therefore we get for the computation time T of the VLSI circuit C, the inequality Th > I.
Since h < VA, we have the relation

T /A > I, (11.1)

which yields

AT 2 > 12. (11.2)

The product "area x time' turned out to be an important complexity measure for VLSI circuits, and thereby
also for Boolean functions. Observe that the two VLSI circuits depicted in Figure 11.2 compute the palindrome
function of eight arguments. If generalized to the case of n inputs, their AT2 -complexity is 0(n lg 3 n) and
0 (n2), respectively.

EXAMPLES AND BASIC MODEL i 607

The inequality (11.2) implies that one way to prove a lower bound 12 for AT 2-complexity of a VLSI
circuit is to cut its layout into two parts in such a way that the amount of communication between
these two parts is at least 1.

Example 11.1.6 The player A is given a prime x and the player B a composite number y, where x,y <<_ 2n,for
some integer n. Both players again have unlimited computational power. The task is for both of them to find a
prime p < 2n such that x 0 y(modp). (The existence of such a small prime follows from the Chinese remainder
theorem (see Exercise 65 in Section 1.11) and the fact that the product of all primes smaller than 2n is larger
than 2n.)

Let t(n) be the minimum number of bits both players must exchange in order to solve the problem. How
large is t(n)?

It can be shown that Q(lgn) < t(n) < n + lgn. The upper bound n + lgn can be achieved by a protocol in
which A sends x to B and then B sends p to A.

It may seem that this is a very artificial problem. Who needs to solve such a problem? Who needs to know
t(n) ?

Surprisingly, it is really important to know how big t(n) is. It can be shown that if t(n) = O(lgn), then for
every n there is a Boolean formula of polynomial size (in n) whose value is lfor those and only those assignments
of Boolean values to variables that represent, as binary numbers, primes. This implies that of t(n) = E(lgn),
primality could be tested by a deterministic polynomial time algorithm.

On the other hand, ift(n) $ e(lg n), the primality function would have no such polynomial-size formula,
and this would be thefirst known example of such a function. This would solve a long-standing problem in the
complexity of Boolean functions.

Exercise 11.1.7* Assume that each party knows a subtree of a commonly known tree of n nodes. Design
an O(lg n)-bit protocol to determine whether these two subtrees have a common vertex.

Example 11.1.8 Let X and Y be two disjoint subsets of {0, 1}n for a fixed n. Assume that party A gets an
x E X and party B gets an input y c Y. The problem is how many bits they need to exchange in order tofind
an index i such that the ith bits of x and y differ.

The following simple communication requires n + flg n] bits. A sends x to B, then B computes the index i
and sends it to A.

This can be improved to a communication requiring only n + lg* n bits as follows.

1. A sends thefirst n - [Ig n bits of x to B.

2. B sends to A the bit 1 if thefirst n - [ig n] bits of x and y coincide. Otherwise, B sends 0 and the index
of the bit in which the strings differ, and the protocol ends.

3. If A gets 1, then both parties continue recursively in communication, but this time only with the last
[Ilgn] bits of x and y.

The analysis of this recursive protocol leads to the following recursion for the number of bits that need to be
exchanged:

C(n) = n - [lgn] + max{1 + [lgnn, 1 + C([lgn])},

which can be reduced to the inequality C(n) - n < C([ig n]) - [lg n] + 1, which has a solution C(n) = n + lg* n.

608 U COMMUNICATIONS

11.1.1 Basic Model

Basic concepts concerning communication protocols and communication complexity with respect to
a fixed partition of inputs, introduced informally in the previous subsection, will now be formalized.
A more general case of arbitrary partitions will be dealt with in Section 11.3.

A problem instance is modelled by a Boolean functionf : {O, 1}1" - {0, 1}m (in short,f E 8', and
instead of L3, we write 8,). An input partition 7rin forf E B.' is a partition 7ri, = (Ain, Bin) of the set
{ 1 . , n}, and an output partition forf is a partition iro, = (Ao,, B,,) of the set {1, , m}.

A communication model forf is specified by an input partition 7rin = (Ain, Bin), an output partition
70ou = (Aou, Bou), two output functions

OUtpUtA {0t,}IA A X {O,1}-- {o,1}IA°uI,

OutputB: {0,1}IBinl X {0,1}* {0, 1}IB-1,

and a communication protocol.
A communication protocol P forf and partitions xi,, 7r,,, is an algorithm telling two parties how

to communicate in order to compute f. (We always assume that both parties know and obey the
protocol.) Such a protocol is specified by two mappings

PA : {0,1}Iin {0,1} --t {0,1}* and PB {0,1}!min x {0,1}* --* {0,1}*

with the following prefix-freeness property:

1. If z1 ,z 2 G {0, 1}1Ainl, Z, $ Z2 , C E {0,1}*, then PA(z1,c) is not a proper prefix of PA(Z 2 ,).

2. If z1 ,z2 G {0,1}I, Z1 # Z2, cc {0,1}0*, then PB(Zl, c) is not a proper prefix of PB(Z 2, C).

Two communicating parties, say A and B, are involved. For an input x c {0, 11*, A gets all inputs
xi, i E Ain, and is to compute all outputs yi, j E A,, - in short, fA (x). B gets all inputs xi, i G Bin, and is
to compute all outputs yj,j G B,, - in short, fB(x).

A communication with respect to a protocol P between two parties, A and B, for an input x - XA

for A and x8 for B - designed to compute a Boolean functionf is a word

H = mlm 2Mk,

called the composed message, or history, of the communication, where mi C {0, 1}* are messages,
and for all i > 0

PA(xA,ml ... m 2) = m2i+1, P 8 (xB,m ... m2i+I) = m 2 i+ 2 .

In other words, the message one party sends to another during a communication step is determined
by the initial input of the party and the composition of all the messages exchanged up to that
communication step. Moreover,

OutpUtA(XA,H) =fA(x), OutputB(XB, H) =fB(x).

The communication complexity C (P, 7ri,, 7ro,, x) of a protocol ?, with respect to partitions 7rin,, -Fu,

and an input x is the length IHI of the composed message.
The communication complexity C(P, 7irin,1,,o) of a protocol P for a function f E: Bm, with respect

to partitions (7ni,, ir,,), is defined by

QP, -rin, i,,n) = max{ C(P, ri,,7n,,ru,x) Ix E {0,1}n}.

LOWER BOUNDS U 609

Finally, we define the communication complexity of a Boolean functionf with respect to partitions
(rinr, 7rou) by

C f, 7ri., 7r.) = min { C (P, 7ri,, 7ro,) I P is a protocol for f and (7rin, 7ru) },

and we talk about the communication complexity of f with respect to the fixed partition (ri., 7r,,).

A protocol P is called optimal for a functionf and a partition (7ri., iroi) if

C(P, rin,7,,w,) = Cff, 7riý, ro.).

Remark 11.1.9 All the concepts introduced above are quite natural; only the prefix-freeness condition
may need some explanation. This property assures that the messages exchanged between two parties
are self-delimiting and, therefore, no extra 'end of transition' is needed. It also implies that for any
communication history H = mi... mIk the decomposition of H into messages Ml, M2, . mInk is unique
and computable, even if one does not know the inputs XA and xB.

Exercise 11.1.10 Describe formally the communication protocol presented in Example 11.1.4. (Do not
forget to pay attention to the prefix-freeness property.)

A convention regarding the output partitions will also be handy. Mostly we shall deal with the
computation of functions from B,. In such cases, unless otherwise stated, we assume that B is to
produce the result. We therefore consider, as a default, the following output partition: 7r,,, = (I, {1}).

There are two easy ways to show some upper bounds for communication complexity.

Theorem 11.1.11 (1) Iff E 53m, then C(f, 7ri,, 7r,,,) < nfor any partitions (7rin, ,rou).

(2) 1ff E B, and 7r, = (Q,{1}), then C(f, 7ri,,,r 0 ,) • min{]Ainj,],Bi, I + 1} for any input partition
7tin = (Ain, Bin).

Proof: (1) A protocol that makes party A send all its inputs to B and then B to send all its inputs to A
clearly has communication complexity n.

(2) Either A sends its inputs to B, that is, IAin I bits, or B sends its inputs to A and A computes and
sends the output bit to B.

11.2 Lower Bounds
There are several methods for showing lower bounds for communication complexity of Boolean
functions with respect to fixed input and output partitions. The basic underlying concept is that of
the communication matrix for a Boolean function and its input partition.

Definition 11.2.1 A communication matrix Mf for a Boolean function f E Bnm and a partition
7rin = (Ain,Bi.) is a 2IA. I x 2IBi1 j matrix with rows labelled by values of inputs XA from Ain and columns
by values of inputs xB from Bin, such that

M4XA,xB) =f x),

where x is the total input composed of xA and xB.
Analogously, we define matrices A and M1 as having the same dimensions and labelling of rows and

columns as Mf, and such that M•y[XA,XB] =fA(X), MB[XA,XB] = fB(X). (Of course, M• (MA) is meaningful

only ifAoý0 0 (Bou # '0).)

610 I COMMUNICATIONS

Example 11.2.2 (Identity function) For x,y e {10,1}, let

ID~n(X Y = 1, ýfx=y;
IDENn(x~y)={ , otherwise.

Consider now the input partition 7ri, = ({1, . , n},{n + 1, . . . 2n}) and labelling of the rows and columns
of MIDENý by an arbitrary but the same labelling for rows and columns. MIOEN, ' 12n, where I2n is the 2" x 2"
unit matrix (the matrix with 1 in the main diagonal and 0 outside it).

Example 11.2.3 (Comparison function) For x,y E {0,1}", let

S1 , ý x - y;
COMPn(xy) = 0, otherwise

where -< denotes the lexicographical ordering of binary strings. In the case that 7rin is the same as in
Example 11.2.2 and the labelling of rows and columns of MCOMPn by strings from {0,1}" is in lexicographical
order, the communication matrix McoMP, is the upper-triangular matrix

1 1 ... 1 1
0 1 ... 1 1

0 0 ... 1 1
0 0 ... 0 1

with 0 below the main diagonal and I otherwise.

Exercise 11.2.4 Design communication matrices for Boolean functions:
(1)f(x1 . x 8) = 1, if and only if bin(xi . . x 8) is a prime,
(2)f(xi, . . • ,X2n) = 1, if and only i x1 . .. X2n is a palindrome,
(3)f(xl, . . . ,xnyl ...)y n) = Vin1 (xi/A yi),

for input partitions ({x1, x2, x3, x4 }, {xs, x 6, x 7, x8 }) in the first case, ({xl. , xn 1}, {x , + 1, X2n)
in the second case and ({x1 , ... ,xn}1,,Jy1, y ... ,y.}) in the third case.

Exercise 11.2.5 Show that the following communication problems cannot be solved with fewer than the
trivial number of bits (n). Two parties know a subset X and Y of an n-element set. They have to decide
whether (a) X n Y = 0; (b) IX n YI is odd.

Note that the communication matrix Mf completely describes the communication problem for
computingf.

Observe too that a communication protocol actually describes a process of recursive subdivision
of Mf into smaller and smaller submatrices. The process ends with all submatrices being
monochromatic, that is, having all elements the same. Indeed, the protocol determines for each
communication bit which of the parties sends it. Let us assume that the party whose inputs label the
rows of the communication matrix starts a communication. In this case the protocol specifies for the
first bit of communication a partition of rows of Mf into two sets, creating thereby two submatrices, and
the particular bit A sends specifies only to which of these submatrices the input belongs. Similarly, for

LOWER BOUNDS ; 611

each of the next exchange bits the protocol specifies either a partition of rows of all current submatrices
(if the bit is sent by A) or a partition of columns of all current submatrices (if the bit is sent by B).

The communication complexity of the problem is therefore the smallest number of such partitions
of Mf and of the resulting submatrices that ends with all submatrices being monochromatic. For more
about such partitions see Section 11.2.2.

11.2.1 Fooling Set Method

The basic idea is simple. If any two inputs from a set F of inputs 'require' different communications,
then there must exist a communication of length flg JFJ]. The following definition explains more
precisely the phrase 'two inputs require different communications':

Definition 11.2.6 Letf - B3m and (7rj,, 7•r,) be partitionsfor f .Consider a set of positions in the communication
matrix Mf, F: - (ul,,vj),. , (uk, vk)}

such that no two positions are in the same row or column. F is said to be a fooling setforf with respect to
(7rin, wou) if for every two elements (ui, vi), (uj ,vj), i , j,from F, at least one of the following conditions holds
(wherefA (u, v) = M [u, v] andfB(u, v) = M [u, v]):

Wi fA(uivi) ?ýfA(UiVj);

(ii) fA(ui,v,) # fA(uj,vj);
(iii)fB(Ui,Vi) =AfB(Uj,Vi);
(iv)fB(ui,vj) ý'fB(uj,Vj).

Remark 11.2.7 Definition 11.2.6 captures the following reasoning: if inputs (ui, vi) and (uj, vj) yield
the same (communication) history H with the given protocol, then (ui, vj) and (uj, vi) yield the history
H too. But if the history is the same for (ui,vi), (uj,vj), (ui,vj) and (uj,vi), then fA(ui,vi) =fA(ui,vj),

fA (uj, vi) = fA (uj, vj),fB (ui, vi) = fB (uj, vi) andfB (ui, vj) = fB (uj, vj). This is explored in more detail in the
proof of the next theorem.

In the following two examples we assume that party A knows x = x, ... x., B knows y =

Y,- ,y,, and B produces the output.

Example 11.2.8 For the identity function IDENn in Example 11.2.2, with the unit matrix as the
communication matrix, the set

F = {(x,x) Ix E {0,1} } (11.3)

is a fooling set. Indeed, for any pairs (x, x) and (y,y) with x 7 y and x, y c {0,1} I both conditions (iii) and
(iv) in Definition 11.2.6 are satisfied.

Example 11.2.9 Also for the comparison function COMP, in Example 11.2.3, the set F in (11.3) is a fooling
set. Indeed, for any (x,x), (y,y),x # y, one of the inequalities (iii) and (iv) in Definition 11.2.6 is satisfied
because either x i y or y - x.

The concept of a fooling set derives its importance from the following result.

Theorem 11.2.10 Letf e 13, and (7ri, 7T0,) be its partitions. Let F be afooling set forf and partitions (7rn,, 7lýu).
Then

C(f,7ri,7r,ý) _> rIlgIFI1.

612 U COMMUNICATIONS

Proof: We are done as soon as we have shown that we get two different communications for every
two different inputs (ui, vi), (uj,vj) E F. Indeed, this implies the existence of at least IFl different
communications, and so of a communication of length at least [ig IFI].

Assume that two different inputs

(ui, vi), (uj, vj) result in the same communication history H = mi ... rp. (11.4)

We show that in such a case H is the communication history for the inputs (ui,vj) and (uj,vi).
According to our definition of communication, A starts a communication. Communication then

goes in the following way; remember that A does not know the input of B and vice versa:

Step 1 Because of (11.4) and the prefix-freeness property, A has to send the message m, no matter
whether it has as input ui or up.

Step 2 B sees ml, and because of (11.4) and the prefix-freeness property it has to respond with M2, no
matter whether its input is vi or vj .

Step 3 A sees mlm 2, and again because of (11.4) and the prefix-freeness property it has to respond

with M3 , no matter whether its input is vi or v1 .

This continues, and in general the following steps are performed for k > 1:

Step 2k: B sends the message m2k as a function of the previous messages mi... m2k-I and either of
the inputs vi or vi. (The fact that in both cases m2k is the same follows from the prefix-freeness
property.)

Step 2k + 1: A sends the message m2k+ I as a function of the messages m, . . ., m2k and either of the
inputs ui or up.

Therefore all possible combinations of inputs - (ui, vi), (ui, vj), (uj, vi) and (uj, vj) - result in the same
communication history and therefore in the same outputs by both parties. However, this contradicts
the definition of a fooling set. [

Corollary 11.2.11 For partitions 7ri, = ({1, ... ,n}, {n + 1, . . . 2n}) and 7r., = (0, {1}), we have

1. C(IDENn, 7rin,irou) = n;

2. C(COMP-, rir,,7ru) = n.

Proof. Upper bounds follows from Theorem 11.1.11, lower bounds from Examples 11.2.8 and 11.2.9,
as well as from Theorem 11.2.10.

Exercise 11.2.12 Consider the function

DIS~ (X1 Xn, 1, - Yn) 1, if i=, xjyi=O0;
D 0, otherwise,

and the partitions ri, ({1 .. , n}, {n + 1. 2n}) and 7r.. = (0, {1}). (a) Design a communication
matrix forf. (b) Design a fooling set forf. (c) Show that C(DISJn, 7rin, 7r%) = n.

LOWER BOUNDS U 613

11.2.2 Matrix Rank Method

This method is based on the concept of the rank of matrices, as defined in linear algebra. We show
that it is enough to compute the rank of the communication matrix Mf in order to get a lower bound
for the communication complexity of a Boolean functionf. This method and the one in Section 11.3
can be used directly to get lower bounds for communication complexity only for functions from B,•.

Theorem 11.2.13 Letf E 83, and (7rin, 7rou) be partitionsforf . Then

C(f!,7ri,,iro,) >! [lgrank(Mf)].

Proof: The theorem clearly holds if rank(Mf) = 0. Assume therefore that this is not the case, and let us
analyse an arbitrary protocol forf and partitions (7ri,, 7r,,,) in terms of the communication matrix Mf.
Assume that party A starts a communication by sending a bit. For some inputs - that is, for strings
by which rows of Mf are labelled - A sends 1, for others 0. On this basis we can partition rows of Mf
and consider two submatrices of Mf: M' and M), the first one with rows for the inputs for which A

sends 0 as the first bit. The remaining rows go to M1. Since

rank(Mf) < rank(M0) + rank(M)),

one of the submatrices MO and M1 must have rank at least 1 rank(Mf). Let us assume that this holds
for Mo. The other case can be treated similarly

There are again two possibilities. The first is that A also sends the second bit. In this case rows of
M0 can again be partitioned to get submatrices Moo and Mfo, with rows producing 0 or 1 as the next

f f
communication bit. In the second case, when B is to produce the next bit, we partition columns of Mo

to get submatrices M' and Mi1. In both cases it holds that

rank(M0) < rank(Mh°) + rank(Mý'),

and one of these submatrices must have rank at least 1rank(MO) Ž 1 rank(Mf). This process of
partitioning of Mf can be continued according to the chosen protocol. After k bits have been exchanged,

we get matrices M' bk, b, c {0, 1}, 1 < i < k, such that for at least one of them

rank(Ml'k) > 1-rank(My).

At the end of the communication either all rows of MSI bk must be monochromatic' (when B isft
responsible for the output), or all columns must be monochromatic (when A is responsible for the

output). In such a case the matrix Mbl' bk has rank 1, and therefore we have

1 >_ Irank(Mf).

This implies that k > Flgrank(Mf)], and therefore

C(f, irin,7o) > [lgrank(Mf)j.

'A matrix is called monochromatic if all its elements are the same and an a-matrix if all its elements are a.

614 U COMMUNICATIONS

Example 11.2.14 For the identity and comparison functions, IDEN, and COMP,, in Examples 11.2.2 and
11.2.3, the relevant communication matrices clearly have rank 2". Theorem 11.2.13 in both cases, therefore,
provides the optimal lower bounds C(f, 7Ti,, iTou) > n.

Exercise 11.2.15 Use the matrix rank method to show C(IDEN,, Ti,, 7to,,) n for the function IDEN,
and the partition 7Tin = ({X 1 ,. x- }, {Xn, .1 X2, I).

Exercise 11.2.16 Show C(DISJ,,in,, io,,ru) = nfor the partition in = ({xl . x, } , {Xn+,1 . x• " •, })
by using the matrix rank method.

Exercise 11.2.17 *Letfn (xi... x,,yi, y...,y) = I if and only if E nx, = - El 1 yi. Showlfor example
using the matrix rank method, that

C0 (f, -i, -on) = [Ig (n + 1)1

for any partition Ti, in which both parties get the same number of input bits.

11.2.3 Tiling Method

Let us perform another analysis of the communication matrix Mf from the point of view of a protocol
to compute f. Let H = mi... mk be a communication history between parties A and B, and assume
that party A starts the communication by sending mi as the first message. Denote by X,, the set of
all inputs for A for which A sends m, as the first message. Party B, receiving ml, responds with M2 ,

and let us denote by Ym.m.2 the set of all inputs of B, for which B responds with m2 after receiving ml.
In this way we can associate with H, A and any 2i + 1 < k the set Xl .2,1 of all those inputs of

A that make A send messages mI, M3, -. . , m2 i+ 1 provided B responds with M2 . m4,.... m2i. Similarly,
we can associate with H, B and 2i < k, the set Yin ... ,. Therefore, we can associate with H a submatrix
MfH of Mf with rows from XH and columns from Y,,m, n,_, if k is odd and with rows from X,,, 'Il. k I

and columns from YH if n is even. Since H is the whole history of communication, either all rows or
all columns of Mf,H must be monochromatic - depending on which party, A or B, is to produce the
result. This means that MfH can be partitioned into two monochromatic submatrices.

To each computation, consisting of a communication and the resulting output, there corresponds
a monochromatic submatrix of Mf. Clearly, for two different communications the corresponding
submatrices do not overlap.

Each protocol therefore produces a partition, called a tiling, of Mf with a certain number, say t,
of monochromatic submatrices. In order to obtain a lower bound on the length of communication H,
we have only to determine how big t is.

If the protocol used is optimal, then

t = number of communications < 2cf .'m`.)+1.

This motivates the following definition and result.

Definition 11.2.18 Letf E 8,, (Tin, ron) be partitions forf, and Mf be the communication matrix off. We
define

tiling(Mf) = min{ k I there is a tiling of Mf into k monochromatic submatrices}.

LOWER BOUNDS N 615

Theorem 11.2.19 Forf c B,, partitions (7roix-T)forf, and the communication matrix Mf, we have

C~f, 7-in, re,) >- Jig(tiling(MO))] - 1.-

Proof: Every protocol P for f and partitions (tri,, 7rou) unambiguously determines a tiling of Mf having
the cardinality at most twice the number of different communications (histories) of P. Thus, an
optimal protocol forf with respect to partitions 7Tin, and 7ru yields a tiling in at most 2cQff"i . +1
submatrices, and therefore the theorem holds. 0

As we shall soon see, the tiling method provides the best estimation of the three methods for lower
bounds presented above. However, this method is not easy to apply. Fortunately, good estimations
can sometimes be obtained by the following modification.

Denote by #1(Mf) (#o(Mf)) the number, or an upper bound on it, of Is (of Os) in Mf and by si
(so) the number of Is (of Os) in the largest monochromatic submatrix of Mf.

j(Mf) #O(Mf)Since each tiling must have at least max{ [-1], [;] } monochromatic submatrices, we getS] SO

C(f, 7ri,,r7o) > max{ flg # I(Mf) _ ig #0(M) 1}.
Sl SO

Example 11.2.20 Consider the function MOD2n E L32,, where

MOD,(xl Xn,yl, • yn) =$ (xi Ayi)
i=1

and the partition 7Ti, = ({xi..., xn }Y {Y.... y, }). It can be shown that the biggest O-submatrix of MMoo 2,
has 2" elements, and the total number of O's is 22n-1 + 2"1. Therefore

C(MOD,, in, 7ru) > [lg(22n-1 + 2` =
2n-n.

Exercise 11.2.21 Show that C(f, ,winOou) > nfor thefunctionf defined byf (x 1,... ,.x,.,yl,... , yn) =

1fand only i rn 1 xiyi = 0 and the partition 7rin = ({xl,. • x, },y, l..., y,}), 7tou = (, {11}) using
the tiling method.

11.2.4 Comparison of Methods for Lower Bounds

We show first that the tiling method never produces worse estimations than the other two methods.

Theorem 11.2.22 If Mf is a communication matrix and F is a fooling set for f e 13n and its partitions 7ri•,

7t,, = (0,{1}), then

1. rF1 < tiling(Mf);

2. rank(Myf) < tiling(Mr).

616 U COMMUNICATIONS

Proof: (1) Assume that F = { (ul, vi). (u,, v.) }. Since F is the fooling set and party B is responsible
for the output, we get thatf(ui,vi) 5f(uj,vi) orf(ui,vj) $f(uj,vj) for all i 4 j.

Let Mf,... , Mf be a tiling of Mf into the minimum number of monochromatic matrices. It follows

from the definition of the fooling set that no two elements of F lie in the same matrix M' for some 1.f
Indeed, with (uivi) and (uj,vj) c M', (ui,vj) and (uj,vi) would also lie in M', which contradicts the
definition of the fooling set. Hence FI < tiling(Mf).

(2) Let the tiling complexity of Mf be k. This means that Mf = M1 +... +Md, d < k, where in each
of the matrices Mi, 1 < i < k, all ls can be covered by one monochromatic submatrix of Mf. Therefore
rank(Mi) = 1 for every I < i < d. Since rank(B + C) < rank(B) + rank(C) for any matrices B, C, we get
rank(Mf) < d < tiling(Mf). [

Another advantage of the tiling method is that it never provides 'too bad estimations'. Indeed,
the following inequality has been proved.

Theorem 11.2.23 Iff c B3, and (ri,, 7o,) are the partitions forf, then

[ig(tiling(Mf))] -I < C(f,7rin, 7rou) < ([ig(tiling(Mf))] + 1)2.

This may not seem to be a big deal at first sight. However, compared with what the other two
methods may provide, to be discussed soon, this is indeed not too bad.

The following theorem summarizes the best known comparisons of the rank method with the
other two, and says that the rank method never provides much better estimations than the fooling
set method.

Theorem 11.2.24 Let f : {0,1}n -* {0,1}, (rin, 7o,) be partitions for f, F a fooling set for f, and Mf the
communication matrix forf and its partitions. Then it holds:

1. [ig(tiling(Mf))] - 1 < rank(Mf);

2. VF < rank(Mf).

The proof of the first inequality is easy. Indeed, if rank(M) = d for a matrix M, then M must have
at most 2d different rows. Each group of equal rows can be covered by two monochromatic matrices,
hence the first claim. The proof of the second claim is much more involved (see references).

The previous three theorems say that the tiling method provides the best estimations, which are
never too bad, and that the matrix rank method seems to be the second best. In order to get a fuller
picture of the relative power of these methods, it remains to answer the question of how big can
the differences be between estimations provided by these methods. Unfortunately, they may be very
big. Indeed, the tiling method can provide an exponentially better estimation than the matrix rank
method and the fooling set method; and the matrix rank method can provide an exponentially better
estimation than the fooling set method. In particular, the following have been shown:

1. There is a Boolean functionf E B2n such that rank(Mf) < n and tiling(Mf) > 2".

2. There is a Boolean functionf E 132n such that tiling(Mf) > 3n lgn and IFi < 21gn for any fooling
set F forf.

3. There is a Boolean functionf c B2n such that rank(Mf) = 2n and JFJ < 20n for any fooling set F
forf.

COMMUNICATION COMPLEXITY U 617

Exercise 11.2.25** Show the existence of a Booleanfunctionf such that there is an exponential difference
between the lower bounds on communication complexity off obtained by the matrix rank method and
the tiling method.

Exercise 11.2.26** Show that for the function MOD, there. is an exponential difference between the
lower bounds obtained by the fooling set and rank methods.

11.3 Communication Complexity
As indicated in Examples 11.1.2 and 11.1.4, the ways in which inputs and outputs are partitioned
may have a large impact on the communication complexity of a problem. Of principal interest is the
worst case, when we have 'almost balanced' partitions of inputs and outputs.

A partition X = A 0 B of a set X into two disjoint subsets A and B is said to be an almost balanced
partition if 1 XI : KAI _< 2 XI (and therefore also 11X1 < IBI K 2ZXI). It is called a balanced partition
if JJAl- JBIB < 1.

11.3.1 Basic Concepts and Examples

We start with the main definition of communication complexity.

Definition 11.3.1 Let f e B,, be a Boolean function. The communication complexity off with respect to an
arbitrary almost balanced, or balanced, partition of inputs is defined by

Ca(f) = min{C(f, 7rin, 7rou) 17rin is an almost balanced partition of the inputs and

7r0 u is a partition of the outputs},

C(f) = min{Cjf, 7rin, xu) 17rin is a balanced partition of the inputs and

7rou is a partition of the outputs}.

The restriction to at least almost balanced partitions of inputs captures the most important and
hardest case - two communicating parties with almost balanced amounts of input. In addition, were
we to consider the communication complexity of a function as the minimum of communication
complexity with respect to any nontrivial partition, that is, with respect to any partition such that
each communicating party gets a nonempty portion of inputs, each Boolean function would have
communication complexity equal to 1. Moreover, since we consider mainly functions from Bl, that
is, with one output bit only, it is mostly not of importance which party is charged with producing the
output bit. All Boolean functions considered in Section 11.2 - that is, functions IDENn, COMPn and
MODý - have communication complexity I with respect to some balanced partition. However, this
is not always the case.

There are Boolean functions with substantially higher communication complexity. For example,
this is true of the following functions:

1. MULT,(x,y) = bin- (bin(x). bin(y)), where xy E {0,1}" - multiplication of integers bin(x) and

bin(y).

2. SORTn(Xl, . . . ,x) (x,(1), • •.,x,(n))), where xi {E0,1k, 1 < i < n, bin(x,,(i)) < bin(x,.(i+1)), for
1 < i < n and a is a permutation on {1,..., n}; k is a constant here.

618 3 COMMUNICATIONS

L L

(a) w (b) W

Figure 11.4 Cuts to make balanced partitions of inputs of a VLSI circuit

3. CONN,(x) = 1 if and only if x E {0,1}n(n+ 1)/2 describes a connected oriented graph of n nodes,
namely, the upper triangular part of its incidence matrix.

We now apply the concept of communication complexity with respect to an arbitrary partition of
inputs to computations on VLSI circuits. The aim is to derive basic results concerning lower bounds
on AT2-complexity. Our starting point is the following claim.

Lemma 11.3.2 Let A be a layout of a graph G of degree 4 into a w x h rectangle R, h < w, in the two-dimensional
plane. For any selection of n nodes, N 1, . . . ,Nn, of G, there is a cut of R, by a vertical line of length h or a
vertical-with-one-zig-zag line (see Figure 11.4a,b) of length h + 1, which makes a balanced partition of the
images of nodes N 1, . . . , Nn.

Proof: Consider the right-most vertical cut L of R along a grid line such that the left part of the
rectangle R contains at most [2J images of selected nodes (see Figure 11.4a). This implies that the
cut along the next to the right from L vertical grid line would put more than []j nodes into the left
part. Therefore there has to be a zig-zag modification of the line L (see Figure 11.4b) to satisfy the
requirements of the lemma. 0

We are now in a position to show our main result relating VLSI complexity and communication
complexity.

Theorem 11.3.3 (AT2-theorem) Iff E B' is a Boolean function, then for any VLSI circuit Cforf such that
different inputs off enter different inputs of C we have

Area(C)Time2 (C) = f2(C2(f)).

In short, AT 2 = Q(C2 (f)).

Proof: Let C be laid out in a w x h layout-rectangle R, h < w. By Lemma 11.3.2, there is a vertical
or a vertical-with-one-zig-zag cut L of R that yields a balanced partition of input nodes of C. A
computation of C must lead to an exchange of at least C(f) bits through L. By Example 11.1.5, this
implies that Area (C) Time2 (C) = Q(C 2 (f)), hence the theorem.2

Corollary 11.3.4 Area(C) = Q(C 2(f)) for every Boolean circuit C computing a Boolean function f.

Proof: Each input node of a Boolean circuit C corresponds exactly to one input variable. Each edge of
C transfers exactly one bit during the whole computation, because A has no cycle. Thus the number
of edges crossing the vertical cut of Figure 11.4 must be at least C(f). 0

2Theorem 11.3.3 also holds for the case that more input can enter the circuit through the same input node.

COMMUNICATION COMPLEXITY U 619

circuit for a problem

circuit for a subproblem almost balanced partition
with heavy communication with light communication

Figure 11.5 An almost balanced partition that does not partition the inputs of a communication-
intensive subproblem

Exercise 11.3.5** We can generalize in a natural way the concept of layouts and VLSI circuits to deal
with three-dimensional layouts and circuits. Instead of the area complexity, we then have the volume
complexity, the volume of the smallest rectangular parallelepiped containing a three-dimensional layout.
Show that V2 T3 = Q(C 3

(f)) for any three-dimensional layout of a Boolean function f.

Remark 11.3.6 The concept of communication complexity with respect to an arbitrary (almost)
balanced partition of inputs was substantially generalized to strong communication complexity. The
basic motivation is natural and straightforward: the strong communication complexity of a problem
is defined as the maximum, taken over all subsets Z of inputs, of the minimum of communication
complexity with respect to all protocols that solve the problem and all partitions that induce almost
balanced partitions of inputs from Z. We may get a more realistic communication complexity
of a problem this way, because it is sometimes only a subproblem, with a small proportion of
input variables, solution of which requires a lot of communication. The concept of communication
complexity with respect to an arbitrary almost balanced partition of inputs may not capture this
situation well, because all input data of that trouble-making subproblem may go to one part
of an almost balanced partition (see Figure 11.5). It has been shown that the concept of strong
communication complexity is really strong: there is a language L C {0,1}* such that C(FL) = 0 and
its strong communication complexity is Q (n).

Exercise 11.3.7 (a) Define formally the concept of strong communication complexity. (b)** Construct
a Boolean function for which the strong communication complexity is much larger than the
communication complexity.

Three methods were presented in Section 11.2 for how to get lower bounds for communication
complexity with respect to a fixed partition of inputs and outputs. In principle, these methods can
also be used to get lower bounds for communication complexity with respect to an arbitrary balanced
or almost balanced partition. However, direct applications of these methods are mostly not easy.

620 U COMMUNICATIONS

11.3.2 Lower Bounds - an Application to VLSI Computing*
A powerful and quite general method will now be presented for using lower bounds for
communication complexity for fixed partitions to obtain lower bounds for communication complexity
with respect to arbitrary partitions. The starting point is the following lemma, which expresses
quantitatively the intuitively clear fact that if there is a particular input for B such that different
inputs for A result in many different outputs of B, then communication between A and B, for that
input of B, must be heavy.

Lemma 11.3.8 Letf E Bn` and 7ii, = (Ain, Bin), 7rou = (Aou, B,,), be partitionsforf . If there are yo E {f ,1}Iinl
and w e N such that

j{fB(x,yo) IX E 10,l11Ajý111 > 2 w-i,

then C(f ,rinrou) Ž w.

Proof: Let P be a protocol for computingf with respect to partitions (7ri,, iot). Assume there are inputs
(xi,yo) and (x2,yO) such thatf (xi,yo) # f(x 2,yo) and for which P has the same communication history
H. Since B gets as information for both inputs (xl,yo) and (x2,yo) only yo and H, it has to produce
the same output in both cases. The number of communications P provides must therefore be at least
as large as the number of different values fB (x, yo) - that is, at least 2 w-1 + 1. However, in order to
have such a number of different communications, at least w bits must be exchanged during some
communications.

Our next aim is to present a method that can be used to derive good lower bounds for the
communication complexity of functions whose computations require a lot of communications. In
other words, any algorithm to compute such functions must 'mix' the inputs in quite a complicated
way to get the result. Surprisingly, this intuition can be expressed well formally by using a class of
permutation groups.

Definition 11.3.9 An n-permutation group g is called transitive of the order n f for all I < i~j • n, there
is a permutation 7r E 9 such that 7r(i) = j.

Permutation groups which are transitive of the order n have an important property: for each pair
i,j, there is the same number of permutations mapping i to j.

Lemma 11.3.10 If g is a transitive group of the order n, then for all I < ij < n,

n

Proof: For a fixed i and 1 < j : n, let Gj = {1 I 7(i) = j}. G1, ... C, form a partition of the carrier of G.
Therefore, in order to prove the lemma, it is sufficient to show that IG I = ... = I G, 1. Let us assume, on
the contrary, that for some I < r, s < n, I GrI > I GI. Since 9 is transitive there is a permutation ir' E 9 such
that 7r'(r) = s. For all 7 c Gr we then have (iT' o 7r) (i) = 7r'(7r (i)) = 7r'(r) = s. Hence {f r' o 7r 17r E Gr} C G,,
and therefore IrGr = 1{1 7'oi7t1 E Gr}I _< G, - a contradiction to the assumption IGrI > G, I. 0]

A Boolean function can be used 'to compute' a permutation group in the following sense.

Definition 11.3.11 (1) Letf E B
3

nnk be a Boolean function and Q a group of permutations on {1, ... ,n}. We
say thatf computes the group 0 if and only iffor each ir E 0 there exist k bits b,,,1, . .. b,,k such that for all
X, XnE {0,1},

f(xi, . - . ,x,,nb,,, . . . ,b,k) - (Xrl), . . .X)

(2) Afunctionf E B7÷ k is transitive of the order n if there is a set X C f1 m}, lXi = n and a transitive
group g of the order n such that fx computes 0, in the sense that ff = (fl, ... ,fm), fi : {0,1}I+k _ {O,1},
X = {il,.. . ,in}, thenfx = fi fi,.

COMMUNICATION COMPLEXITY U 621

The concept of a function transitive of an order looks artificial, but actually is not. Some important
functions are of this type.

Example 11.3.12 (Cyclic shft) We show that each of the following cyclic shift functions CSn,k, k > Ig n, is
transitive of the order n:

CSk(Xl,. . ,X(,,W ... , Wk) = (y1, yn),

where yi = Xl+((i- l+l)modn) and I = bin(w1 ... wk). Informally, CS,,k makes 1 cyclic shifts of its first n
arguments, where I is specified by the last k input bits.

Indeed, CSn+k computes the group g = 17r i7r(i) = 1 + ((i - 1 + 1) mod n),for 1 such that 0 < I < n - 1}
of cyclic permutations. g is transitive of order n, because for all 1 < ij < n, there is an 1 such that
1+ ((i- 1+1) mod n) =j.

Example 11.3.13 (Sorting) Let us consider the function SORTnk(Xl ,xn) = (y,.. . ,yn), where
Xx,, are k-bit numbers and k > [lgn] + 1, that sorts numbers bin(x 1), ... ,bin(xn), and yi is the ith of
the sorted numbers - expressed again in binary using exactly k bits. More exactly, SORTnk is afunction of n . k
binary variables that has n . k Boolean values. If we now take X = {i . k 11 < i < k}, then SORT,,k(xl. Xn,)x
will denote the least significant bits of n sorted numbers.

The function SORT,,k is transitive of the order n. This follows from the fact that SORT,,k computes
all permutations of {1, . . . ,n}. To show this, let us decompose each xi as follows: xi = uizi, ui G {0,1}k-1,
zi E {0,1}.

Now let 7r be an arbitrary permutation on {1, . . . n}. Denote ui = bin-', (r- 1 (i)), define

fX(Zl,.... ,Zn,Ul , ... ,Un) = (SORTn,k(Xl, . . .X,))X

Then (SORTn,k(Xl, ... ,xn))x contains n least significant bits of y1, • ••.
We now determine fx (zi, . . . , z,,U1, U ... , u,) as follows. Since bin(xi) = 27r-1 (i) + zi, this number is

smallest if r '(i) = 1. In such a case 7r(1) = i and x,(l) is the binary representation, using k - 1 bits, of the
smallest of the numbers bin(xj), ... , bin(x,,). Analogously, we can show that x,(ji is the binary representation
of the i-th smallest number. Hencefx(zl, . . . ,z,,,u1, • • • ,Un) = (Zr1(1), • • . (n)).

Exercise 11.3.14 Show that the following functions are transitive: (a)** multiplication of two n-bit
numbers - of the order [!! J; (b)** multiplication of three Boolean matrices - of degree n of the order n2.

The main reason why we are interested in transitive functions of higher order is that they can be
shown to have relatively large AT 2-complexity.

Theorem 11.3.15 Iff G Bml k is a transitive function of order n and C is a VLSI circuit that computesf such
that different input bits enter different inputs of the circuit, then

Area(C)Time2 (C) = Q(n2).

Proof: According to the assumptions concerningf, there is a transitive group Q of order n such that
fx (XI ,.. , Xn , yl, . . yk) computes an arbitrary permutation of g when fixing 'program-bits' yl, .- • , yk

and choosing an X C {1,..., m}, 1 XI = n, as a set of output bits. In the rest of the proof of the theorem
we make essential use of the following assertion.

622 9 COMMUNICATIONS

Claim: If 7ri, is a partition of inputs that is almost balanced on inputs x,, x, and 7~,, a partition of
outputs off, then

C(f,1rn, 7ri.) = Q (n).

Proof of the claim: Assume, without loss of generality, that B has to produce at least In] of outputs,
and denote

OUT = {ili E X and B must produce the ith output};

IN = {ili e{1,.. ,n},A receives the input xi}.

We have JOUTI-> [], IINI > ", and therefore INIKOUTI > L"
Sincef computes the permutation group g, we can define for each 7r E

match(7r) = {ili E IN,ir(i) E OUT}.

An application of Lemma 11.3.10 provides

-lmatch(Tr)I = Z Z - 1
Eg -iEINjEOUT E9,rc(i)=j

= > Z 9 12_ {Lemma 11.3.10}n
iEIN jcOUT
n

> 9ý1

The average value of Imatch(7r) is therefore at least ", and this means that there is a 7r' c G such
that Imatch(7r')I > L.

We now choose program-bits yl, • ,yk in such a way thatf computes 7'. When computing 7r',

party B (for some inputs from Ain) must be able to produce 2!6 different outputs -because Imatch(ir')I >
; and all possible outcomes on Imatch(7r')I outputs are possible. According to Lemma 11.3.8, a

66communication between parties A and B, which computes u-', must exchange 6 bits. This poe

the claim.

Continuation of the proof of Theorem 11.3.15 Let C be a VLSI circuit computing f. According to
Lemma 11.3.2, we can make a vertical or a vertical-with-one-zig-zag cut of the layout-rectangle that
provides a balanced partition of n inputs corresponding to variables xj,..., x,. We can then show, as
in the proof of Theorem 11.3.3, that Area(C)Time (C) = Q(C 2(f)), where

C(f) = min{C(f, 7ni,, 7r)) 17i, is an almost balanced partition of x-bits}.

According to the claim above, C(f) = (1(n), and therefore

Area(C)Time2 (C) = Q(n 2).

Observe that Theorem 11.3.15 does not assume balanced partitions, and therefore we had to make
one in order to be able to apply Lemma 11.4.

Corollary 11.3.16 (1) AT 2 = Q(n 2) holds for the following functions: cyclic shift (CSn), binary number
multiplication (MULT,) and sorting (SORT,).

(2) AT 2 = (1(n 4) holds for multiplication of three Boolean matrices of degree n.

NONDETERMINISTIC AND RANDOMIZED COMMUNICATIONS U 623

How good are these lower bounds? It was shown that for any time bound T within the range
Q•(lgn) < T < O(/in) there is a VLSI circuit for sorting n @(Ign)-bit integers in time T such that
its AT 2-complexity is e(n 2 1g2 n). Similarly, it was shown that for any time bound T such that
Q(lgn) < T < O(V/-i) there is a VLSI circuit computing the product of two n-bit numbers in time
T with AT2-complexity equal to E (n2).

11.4 Nondeterministic and Randomized Communications
Nondeterminism and randomization may also substantially decrease the resources needed for
communications.

In order to develop an understanding of the role of nondeterminism and randomization
in communications, it is again useful to consider the computation of Boolean functions
f: {0,1} --* {0,1}, but this time interpreting such functions as language acceptors that accept the
languages L = {x x I {X , 1}n,f(x) = 11. The reason is that both nondeterminism and randomization
may have very different impacts on recognition of a language L/ and its complement /4 = L.

11.4.1 Nondeterministic Communications

Nondeterministic protocols are defined analogously to deterministic ones. However, there are two
essential differences. The first is that each party may have, at each move, a finite number of messages
to choose and send. A nondeterministic protocol P accepts an input x if there is a communication
that leads to an acceptance. The second essential difference is that in the communication complexity
of a function we take into consideration only those communications that lead to an acceptance (and
we do not care how many messages have to exchange other communications).

The nondeterministic communication complexity of a protocol P for a function f c B,, with
respect to partitions (Tri,, 7r,) and an input x such thatf(x) = 1, that is,

NC(P, Ti,, 7ro., x),

is the minimum number of bits of communications that lead to an acceptance of x.
The nondeterministic communication complexity of P, with respect to partitions 7ri, and 7r,,, in

short NC(P 7ri,, 7roz), is defined by

NC(P, 7rin, 7rou) =Imax{NC(P, 7rin, 7rou, x) If(x) = 1,x E {O, 1}n},

and the nondeterministic communication complexity off with respect to partitions (7ri,, 7ou), by

NC(f, 7ri,, 7r0) = min{NC(P, 7rim, 7ir) PIP is a nondeterministic protocol forf, 7r,, 7ro, }.

The following example shows that nondeterminism can exponentially decrease the amount of
communication needed.

Example 11.4.1 For the complement IDEN, of the identity function IDENn, that is,for the function

S1, f(xl,..., - Xn) ý(y1,... yn);
IDEN n (XI . .,X,,Y1, Y...,y) 0 , otherwise,

F = { (x, x) I x E {0, 1} }nI is afooling set of 2n elements, and therefore, by Theorem 11.2.10, C(IDEN,, 7rin, 7ru) >
nfor partitions r7, = ({1, , n}, In + 1, . ,2n}), 7r., = (0, {1}).

We now show that NC(IDEN, in,rin,, r) < [lgn] + 1. Indeed, consider the following nondeterministic
protocol. Party A chooses one of the bits of the input and sends to B the chosen bit and its position - to describe
such a position, [lg nl bits are sufficient. B compares this bit with the one in its input in the same position, and
accepts it #f these two bits are different.

624 U COMMUNICATIONS

On the other hand, NC(IDEN,,7ri, 7ri,,) = C(IDEN,, ,ri,, 7r,0) = n, as will soon be shown. Therefore
nondeterminism does not help a bit in this case. Moreover, as follows from Theorem 11.4.6,
nondeterminism can never bring more than an exponential decrease of communications.

As we could see in Example 11.4.1, nondeterminism can bring an exponential gain in
communications when computing Boolean functions. However - and this is both interesting and
important to know - if nondeterminism brings an exponential gain in communication complexity
when computing a Boolean functionf, then it cannot also bring an exponential gain when computing
the complement off. It can be shown that the following lemma holds.

Lemma 11.4.2 For any Boolean function f : {0,1} --* {0,1} and any partitions 7in, 7 u,,

C(f, ri,, o7r0) < (NC(f,•ri,, ,ir0) + 1)(NCV, 7in, (f) + 1).

It may happen that nondeterminism brings a decrease, though not an exponential one, in the
communication complexity of both a function and its complement (see Exercise 11.4.3).

Exercise 11.4.3* (Nondeterminism may help in computing a function and also its complement.)
Consider the function IDEN* (xl, Xn,xyl, • • ,yn), where xi,yi {O,1} and

IDEN*(xl,.. . ,x,,yl, .. . ,y,) = therise<i. nwithx,=yi;

Showfor 7Ti, = (x,. . . ,x,}yi, .yl,. ,yn}), 7rou = (0, {1}) that (a) NC(IDEN*, 7ri,, 7rou) < flgn] + n;

(b)* NC(ID-EN*',7ri, 7rou) < n[lgn] + n; (c)**C(IDEN*,7ri, ,xou) = 8(n').

Note that in the nondeterministic protocol of Example 11.4.1 only party A sends a message.
Communication is therefore one-way. This concept of 'one-way communication' will now be
generalized. The next result justifies this generalization: one-way communications are sufficient in
the case of nondeterministic communications.

Definition 11.4.4 Iff E 13,, and (7ri,, 7r,,) are partitions for f, then the one-way nondeterministic
communication complexity forf with respect to partitions 7ri, and 7o,, = (0, {1}) is defined by

NC, (f , 7tin, 7r.) = min{NC(P, 7ri,, •,) I7P is a protocol forf and only A sends a message}.

Theorem 11.4.5 Iff c 13,, and (7ri,, 7r,.) are partitions forf, then

NC (f, rin, 7rou) = NC l(f, 7rin• ,um) .

Proof: The basic idea of the proof is very simple. For every nondeterministic protocol P for f, 7ri,
and 7r0,, we design a one-way nondeterministic protocol P1 that simulates P as follows. A guesses
the whole communication between A and B on the basis of the input and the protocol for a
two-way communication. In other words, A guesses a communication history H = m1lm 2 ... mk as
a communication according to P as follows. Depending on the input, A chooses mi, then guesses
M2, then chooses m3 on the assumption that the guess M2 was correct, then guesses M4, and so on.
A then sends the whole message H to B. B checks whether guesses M2 , m4 ,... were correct on the
assumption that the choices A made were correct. If all guesses of A are correct, and it is an accepting
communication, then B accepts; otherwise it rejects. Clearly, in this one-way protocol the necessary
number of bits to be exchanged is the same as in the case of P. Moreover, only one message is sent.

0

NONDETERMINISTIC AND RANDOMIZED COMMUNICATIONS U 625

11111111 111]]]1 11111000

01111111 01111111 11111000
0 10111111 00111111 11111000

0001 1 1 1 1 0 0 11 1 1 11 11111000
00001111 00001 1 11111111

0 00 00 1 11 0 0 .000 0 00 01 11 1

0 00 00 0 11 0 0000 1 0 00 01 11 1

(a) 00000001 (b) 0000000 (C) 0 0 0011,11

Figure 11.6 Coverings of matrices

As already mentioned, nondeterminism cannot bring more than an exponential decrease of
communications.

Theorem 11.4.6 For each f E 3Bn and partitions (7rin, 7rou) we have

C (f, 7rin, 7roi.) __ 2Nc0•f•i-'ý°".

Proof: According to the previous theorem, it is enough to show that a one-way nondeterministic
communication which sends only one message can be simulated by a deterministic one with at most
an exponential increase in the size of communications.

If NC1 (f, 7rin, 7rou) = m, then there is a nondeterministic one-way protocol P forf, 7ri" and 7ro such
that the number of possible nondeterministic communications for all inputs is at most 2m. Let us order
lexicographically all words of length m, and let mi denote the ith word.

The following deterministic protocol can now be used to compute f. Party A sends to B the
message H = cl... C2-, where ci = 1 if and only if A could send mi according to the protocol P, and
ci = 0 otherwise. B accepts if and only if there is an i such that ci = 1, and B would accept, according
to the nondeterministic protocol, if it were to receive mi. 0

As we have seen already in Example 11.4.1, the previous upper bound is asymptotically the best
possible.

The good news is that there is an exact method for determining the nondeterministic
communication complexity in terms of the communication matrix Mf, which was not known to
be the case for deterministic communication complexity. The key concept for this method is that
of a covering of the communication matrix. The bad news is that a computation of cover(Mf) is
computationally a hard optimization problem.

Definition 11.4.7 Let M be a Boolean matrix. A covering of M is a set of 1-monochromatic submatrices of
M such that each 1-element of M is in at least one of these submatrices. The number of such submatrices is the
size of the covering. cover(M) is the minimum of the sizes of all possible coverings of M.

Example 11.4.8 For an n x n matrix M with 1 on and above the main diagonal and with 0 below the main
diagonal, we have cover(M) = n. Figures 11.6a, b show two such coverings for n = 8. Matrix M in Figure 11.6c
has cover(M) = 2. In this case it is essential that the submatrices which form a minimal covering can overlap.

Theorem 11.4.9 1f f: {0,1}n -_ {0,1} and (7ri, 7ru) are partitionsforf, then

NC(f,7in,7rou) = rlg(cover(Mf))j.

Proof: In accordance with Theorem 11.4.5, it is enough to show that NCI0f, 7tin, 7r,) = [ig(cover(Mf))].

626 U COMMUNICATIONS

(1) Let M1 , ... M, be a covering of Mf. In order to show the inequality NCl(f, ri, i7r,)

[lg(cover(Mf))], it is sufficient to design a one-way nondeterministic protocol P forf that exchanges
at most rlgsi bits. This property has, for example, the protocol P, which works as follows.

For an input (XA, XB) such thatf(x) = 1, A chooses an element i0 from the set

{i the rows labelled by XA belong to rows of Mi },

which must be nonempty, and sends B the binary representation of i0. B checks whether XB belongs
to columns of Mio. If yes, B accepts; otherwise it rejects. The protocol is correct because

B accepts #ý there is an i {1, . . . ,s} such that xA is a row and (XB) is a column of Mi
4 there is an i such that Mi covers the entry (XA, XB)
4= Mf (XA, XB) = 1
<=ý f(XA,XB) = 1.

(2) Let P be a one-way nondeterministic protocol for f. In order to prove the inequality
NC1(f,7ri,TTro) > [lgcover(Mf)], it is sufficient to show that if NC1(7,iniro,) = s, then there is a
covering of Mf with at most 2S 1-matrices.

Let H1,..., Hk, k < 2T be all possible messages (or histories, in the case of one-way communications
this is the same) during nondeterministic communications, according to P - for all possible inputs
that are accepted. For 1 < i < k, let Ri be the set of those rows of Mf and Ci the set of those columns
of Mf for which communication between parties A and B produces the history Hi and B accepts. For
1 < i < k, let us define the submatrix Mi of Mf as follows:

Mi = Mf [1, mI IeRi,mEc.

In order to finish the proof of the inequality >_, it is now sufficient to show that matrices Mi, 1 < i < k,
are 1-monochromatic and form a cover of Mf.

Indeed, if Mi covers an entry (XA, XB), then XA E Ri and XB E Ci. This means that if A sends Hi to B,
this message will be accepted by B, because B knows XB. Since P computes f, we havef(xA,XB) = 1.
Hence the matrix Mi is a 1-submatrix. On the other hand, let XA,XB be such thatf(xA,XB) = 1. Then
there is a message Hi that is sent by A and which B accepts (if its input is XB). Thus, Mi covers f(xA, xB).

0

Corollary 11.4.10 NC(IDEN,,rin,,ru) = nfor 7in = ({x 1 , X. n ,Xn},{xn+l, X 2,I).

Indeed, the matrix MIDEN, has ls only in the main diagonal, and therefore it is easy to see that
cover(MIDEN,) = 2".

Exercise 11.4.11 Show that NC(IDEN,, 7ri, 7ru) = [lg n] + l for 7ri, = ({x1 ,x},{y,. • • ,),

7riu = (0, {1}).

In order to determine the nondeterministic communication complexity of a functionf E 3,, it is
sufficient to compute cover(Mf). The bad news is that this problem is NP-complete. The good news
is that there are good approximation algorithms for it.

As an application of deterministic and nondeterministic communication complexity, we prove
a lower bound result on the number of states of deterministic (nondeterministic) finite automata
accepting a language of words of the same length over the alphabet {0, 1}.

NONDETERMINISTIC AND RANDOMIZED COMMUNICATIONS * 627

Theorem 11.4.12 Let L C {0,1}1*, 7ri, = ({1, . . .[n]},{I2 + 1,.. ,n}) and 7r,, = (0,,{1}). Each
deterministic finite automaton for L must have at least 2c(fL,-in,---)-1 states, and each nondeterministic
automaton for L at least 2NC(fL'• -1 states.

Proof: We prove only the deterministic case; the nondeterministic case is treated analogously. Let A
be a DFA accepting L with q states. Consider the following communication protocol to computeft: A
simulates A on its inputs, and after the simulation is finished, A sends to B the resulting state p using
[ig q] bits. B then finishes the simulation, starting with the state p, on its portion of the input. This
one-way communication requires at most [ig q] bits, and therefore

COfL, 7ij, 7ro) :< rlg q] < 1l+lg q.

Thus 2c(fL'•,i.....) < 21+lgq, and we have

2c(fLri.....)1 < q.

11.4.2 Randomized Communications

Randomized protocols behave like deterministic ones, except that the choice of messages sent at
any point of the communication is determined, deterministically, as a function of their inputs,
communication up to that point, and a random bit produced by a generator of random bits. In
this sense these protocols are random.

In the design of protocols it is assumed that the random bits of one party are unknown to the
other; this is the most difficult case for getting good upper bounds.

For lower bounds it is assumed that both parties have the same sequence of random bits; this is
the most difficult case for getting good lower bounds.

As in the case of randomized algorithms, the three main types of randomized protocols
are Las Vegas, Monte Carlo and BPPC. The key concept behind their definition is that of the
communication tree Tp (x) for a protocol P and an input x and its expected communication complexity.
Communication trees are defined as follows.

Communications of a protocol P form for any input x, due to the prefix-freeness property of
communications, a finite prefix-free language over the alphabet {O, 1}. The corresponding labelled
binary tree, with the root labelled by E and all other nodes labelled by 0 or 1, denoted by Tp(x),
represents all communications, and has exactly one leaf for each communication.

The basic idea behind associating probabilities with such a communication tree is the same as with
computation trees, as discussed in Section 5.1. To each node the parent of which has two children
we associate the number 1; to all other nodes the number 1. The probability of a communication
represented by a leaf w - in short, Pr(w) - is then the product of all numbers on the only path from
the root to w (see Figure 11.7).

With each leaf w of Tp,(x), an outputfx(w) is also associated, not shown in Figure 11.7.
The expected length of communication of a protocol P for an input x is defined by

E(-7,inTrouX) = E Pr(w)Depth(w).

W is a leaf

The probabilistic complexity of a protocol P is then defined by

PC(Pirti, 7ru) = max{E(P, 7ri,, 7rou, x) Ix is an input for P},

628 E COMMUNICATIONS

£
0

1/8 1/8 1/32 1/32 1/16 1/16 1/16

Figure 11.7 A communication tree and its probabilities

and the error probability for an output y E {0, 1} and a protocol P by

errory(P,7rin,7ru) = max { E Pr(w)},
x is inputf (x) = y

wis a leaf in T-p (x)
f&(x)#y

where fw(x) is the output P produces for input x after following the communication path to w. In
other words, error (P, 7tit, 7ro,, x) is the sum of probabilities of all wrong computations, with y being
the correct output.

Now we are in a position to define three main types of randomized protocols and randomized
communication complexities.

Definition 11.4.13 For a function f E L3n and partitions (Trin, 7rYo),

1. Las Vegas communication complexity:

LVC(fi, Trintr) = min{PC(P, 7tin, rou) I Pis a Las Vegas protocolforf;

that is, erroro(P, 7ri-, 7%u) = error1 (P, 7rin, 7rou) = 0}.

2. Monte Carlo communication complexity:

MCC(f,7Tit, rou) = min{PC(P, trin, tro) P is a Monte Carlo protocol for f;

that is, erroro(P, rc,,, 7rot) = O, error, (P, 7ij, 7r..) _ 1 / 2}.

3. Bounded error communication complexity (for 1 > 6 > 0):

BPPC, (P, 7ri,, 7rou) = min{PC((P, 7tin, 7ru) I P is a BPP, protocolforf with an error at most 6;

that is, erroro (P, 7rin , 7Tu) < E, error, (P, 7rin, 7ro) < E} .

NONDETERMINISTIC AND RANDOMIZED COMMUNICATIONS U 629

Observe that Las Vegas protocols always produce correct outputs. Monte Carlo protocols have
probability 0 of accepting what should not be accepted and probability at least ½ of accepting what
should be accepted. BPPC, protocols can make an error in both cases, but its probability is not larger
than E.

The main relations between the various types of randomized communication complexity are now
summarized.

Theorem 11.4.14 Letf e 13, and (Tin, 7r,,) be its partitions.

1 . NC(f ,7ri,,,,To) < MCC (f ,Tri,,,ro) < LVC(f, 7rin,,%o,) <_ COf,rTinýr7u).

2. C(f, Tri,,ir u) < (LVC(f, Tri,,7ru) +1) 2.

3. C(f Tin, 7ri,,) <_ (MCC(f ,in,,,ro,) + 1)(MCC (f , rT,,rou) + 1).

4. Monte Carlo communication complexity for f can be exponentially smaller than Las Vegas
communication complexity.

5. BPPC¼ (f , Trin, rou) <_ 2MCC (f, rTin, 7rou).-

6. BPPC communication complexity can be exponentially smaller than nondeterministic communication
complexity.

Proof: (1) Each deterministic protocol is also a Las Vegas protocol, and each Las Vegas protocol is also a
Monte Carlo protocol. From this the last two inequalities in the first statement of the theorem follow. If
P is a Monte Carlo protocol, then, no matter what f (x) is, there is at least one communication that leads
to the correct output. For a given input x, this communication can then be chosen nondeterministically.
Hence, the first inequality of item (1) of the theorem holds.

(2) C(f,rin,,,ir) <_ (NC(f,Trin,Tr,)+ 1)(NC(f,7rin,Tnu) + 1) by Lemma 11.4.2, and therefore, by
(1), C(frin,, rTon) < (LVC(f, ri,,•7r,) + 1)(LVC(f, Tinr,,o) + 1). However, as follows easily from the
definition of Las Vegas communication complexity, LVC (f , Tin, 7,n,) = LVC(f, Ti,,, rTn), and therefore
C(f, iTin, 7r,,) < (LVC(f, Tin, Tonu) + 1)2.

(3) In order to show C(f,xrin,,,r,) < (MCC(f,in,,,rou) + 1)(MCC(f,Tri,,%u) + 1), we proceed as in
point (2), applying Lemma 11.4.2, claim (1) and the inequality NC(f, ri,, 7r,ý) < MCC(f, ri,,, rou).

(4) As we have already seen for the complement of the identity function IDEN, and partitions
rrin = ({1,... ,n}, {n+ 1,... ,2n}),7rou = (0, f{1}),we have NC(IDEN,, Tin, rou) = n = C(IDEN,,Ti,,Trou).

Hence LVC(IDEN,,,i,,,rroti) = n by (1), and therefore also LVC(IDENn,rrin,,rou) = n. In order to show
that MCC(IDEN,, rji, iTon) = O(lg n), we construct a Monte Carlo protocol for IDEN, as follows.

"* Party A chooses a random prime _< n2, computes mA = bin(xA) mod p, and sends to B the binary
representations of p and mA. In order to fulfil the prefix-freeness property of communications,
both binary strings are sent in a self-delimiting form (see Section 6.5.3) and therefore the whole
message requires O(lg n) bits.

"* Party B decodes the message, gets mA, computes mB = bin(xB) mod p, and accepts if and only
if mA #m MB.

Let us now analyse the correctness of the protocol. If xA = XB, then always mA = Mi, and B always
rejects. In other words, erroro (P, Ti,, 7r,,) = 0.

If, on the other hand, xA # xB, then P' makes an error if and only if mA = MB; that is, if p divides
the difference bin(xA) -- bin(xs). Let us now count for how many p this can happen.

630 U COMMUNICATIONS

If P makes errors for primes pl, p ,ps, then also

pi. . "ps divides (bin(xA) - bin(xB)).

Since all primes are at least 2, we have p,. . . "ps > 2s. On the other hand, Ibin(xA) - bin(xB)I <_ 2n - 1.
This implies that s < n - 1 < n. P can therefore make an error for at most n primes.

According to the formula (1.56), there are asymptotically (9(2-) primes smaller than n2 , and

therefore
error, (P, ir i, ,ro) = 0 (g) =n (1gn)

(5) Each Monte Carlo protocol for a functionf can have an error probability of at most 1 for an
input x such thatf(x) = 1. For those x withf(x) = 0, no error is made. If a Monte Carlo protocol is
used twice, and we accept an input if and only if P accepts at least once, we get an error probability
of at most '. Therefore we have a BPPC_ protocol.

(6) This claim can be shown in the same way as in the proof of (4).

For randomized communications, Las Vegas is also a most peculiar protocol. It has no error.
It is therefore quite contra-intuitive that such a randomized communication can be better than
deterministic ones. We know from Theorem 11.4.14 that this improvement cannot be larger than
quadratic. However, such an improvement can be obtained. The following example shows a Las
Vegas protocol that obtains almost maximum improvement.

Example 11.4.15 Consider the function IDEN* defined in Exercise 11.4.3; that is,

IDEN* (x, x,yl, • ,yn) = 1 if and only if there is a 1 < i < n, with xi = yi,

where all xj,yj E {0,1}1. We know from Exercise 11.4.3 that C(IDEN*,7rj,,7rou) = E(n') for 7j,
({x 1 ... Xn},{y, ... ,y,}) and T.., = (0,{1}).

In order to design a Las Vegas protocol for IDEN*, we use the Monte Carlo protocol P for the function
IDEN, in the proof of Theorem 11.4.14. Our Las Vegas protocol has the following form:

1. fori-ltondo

"* Check, using the above-mentioned protocol P, whether xi = yi.

"* If P determines xi 7 yi (this is then 100% certain), go to the next cycle,for i + 1.

"* If P determines xi = yi (which does not have to be 100% certain), then party A sends xi to party B.
B checks whether xi = yi. If this is true, go to step 3; otherwise go to the next iteration for i + 1.

2. Produce 0 as the outcome and stop.

3. Produce 1 as the outcome and stop.

It is clear that this protocol always produces the correct result. We have only to determine the average number
of bits that need to be exchanged.

Denote by Ej,0 (Ei,1) the average number of bits that have to be exchanged in the i-th cycle if xi yi (if
Xi = yi).

It is easy to see that El,1 = O(lg n) + n. Indeed, the Monte Carlo protocol needs O(lg n) bits, and the sending
of xi requires n bits.

COMMUNICATION COMPLEXITY CLASSES U 631

The proof that Ei,0 = 0(lg n) is more involved. If xi $ yi, then the Monte Carlo protocol determines this
with probability at least 1 - 0(1g-) exchanging O(lg n) bits. The probability that 'P does not determine it is
0(!E-), and in such a case communication of 0(n) bits is necessary. Thus,

Ei~o = (1 - 0(Lg-n))0(lgn) + o(lg-n)o(n) = O(lgn).
n n

For inputs xa, . . . x,,yl, . • ,yn such that IDENn* (x,, - • • ,yxy,.yn) = 0, we have therefore

SZEj,o = 0(nlgn).
j~l

For inputs such that IDEN* (xi, ... , x,,yl yn) = 1, there exists ifor which xi = yi, and therefore

i-1

E = ZEj,o + Ei,1 = 09((i - 1) lgn) + 0(n) = 0(nlgn).
j=l

Hence LVC(IDEN*, 7rin, 7ou) = 0(nlgn).

Exercise 11.4.16* Show that BPPC3(COMP,,7rin,,rU)= 0(lg2n) for -in, = ({x1 ,. ,
jyl, . ,yn}1) and 7r,,u f (,1}).

11.5 Communication Complexity Classes
There are two natural approaches to defining communication complexity classes: for Boolean
functions and for languages.

Definition 11.5.1 For any integers n, m E N, m < n / 2, and any function g : N ý- N such that g(n) < n / 2
for any n E N, we define

1. COMMn (m) = {f E BI C(f) < m};

2. COMM,(g(n)) = {L C {0,1}* IC(fL1) <g(n),for each n E N}.

In a similar way we define communication complexity classes for nondeterministic communications.
They will be denoted by NCOMM. The following result shows that the complexity class

COMM, (0(1)) = COMM,(k)
k=1

of languages with constant communication complexity contains all regular languages.

Theorem 11.5.2 For every regular language R C_ {0, 1}'* there exists a constant k such that L E COMM(k).

Proof: If R is a regular language, then there exists a DFA A accepting R. Let A have s states
q, . . . , q,. For each n E N let Pn be the following protocol for computingfn for the input partition
rin, = ({x1,• ,xL~J}, {x[qj+I,... ,x,}). For an input x,. .. x,, party A simulates A on the portion of

the input x, ... x[q and then sends the resulting state, using rigsl bits, to B. Starting with this state,
B simulates A on the rest of the input. 0

632 - COMMUNICATIONS

The fact that regular languages fit nicely, and in the expected way, into the communication
complexity hierarchy may lead one to believe that the other main language families will do the
same. But this is not true. There is already a context-free language that has a linear, and therefore
asymptotically worst possible, communication complexity. As suggested in Exercise 19, an extreme
is also possible in the other direction.

The next problem to investigate is how much we need to increase communication resources in
order to get a richer complexity class. The answer is quite surprising - one bit is enough. The following
theorem holds.

Theorem 11.5.3 If nm are integers, m < n / 2, g : N -* N, g(n) < n / 2 for any integer n, then

1. COMMn(m- 1) ; COMM,(m);

2. COMMn(g(n) - 1) (; COMM,(g(n));

3. COMM, (m) - NCOMM, (m - 1) =, 0.

A Boolean function of 2n variables has for a balanced partition communication complexity at most
n. Are there many such communicationally difficult Boolean functions? Yes, the following theorem
has been shown.

Theorem 11.5.4 jCOMM2 ,(n- 1) = o(222").

Since there are 222" Boolean functions of 2n variables, this theorem says that almost all Boolean
functions have the largest possible communication complexity with respect to a balanced input
partition. This is actually an analogous result to the one presented in Section 4.3.2 saying that almost
all Boolean functions have the worst possible size complexity.

Exercise 11.5.5 Construct for every integer k a regular language Rk such that the communication
complexity of Rk is larger than k.

11.6 Communication versus Computational Complexity
In this section we show that communication and computational complexity are surprisingly closely
related.

As we saw in Chapter 4, the most basic model of computing, which actually abstracts completely
from all communications, comprises Boolean circuits. The main complexity measures for Boolean
circuits, and consequently also for Boolean functions, are Size and Depth. We saw that these measures
are closely related to time and space in other models of computers.

We shall see in this section that with any Boolean functionf we can associate an easily defined
relation Rf such that the Depth(f) is exactly the communication complexity of Rf. In order to show
this, the concepts of a 'search communication problem' and a 'communication game' are introduced.

11.6.1 Communication Games

There are many ways to generalize the concept of communication complexity. For example, one can
consider communications between more than two parties co-operating on the solution of a problem,
with each party having a unique portion of the input data. Another possibility, which will now be
introduced, is to consider the communication complexity of relations.

COMMUNICATION VERSUS COMPUTATIONAL COMPLEXITY U 633

Definition 11.6.1 A search communication problem S = (X, Y, Z, R) is given by three sets X, Y, Z, and
a relation R C X x Y x Z. The task is for two parties, A with an input x e X and B with an input y e Y, to
find, if it exists, a z E Z such that (x,y,z) E R.

Example 11.6.2 X = Y = {1O 1}I, Z is a set of primes smaller than 2n andR= { (x, y, p) Ix 0 y (mod p)} -
see Example 11.1.6.

A (deterministic) communication protocol 'P for a search communication problem
S = (X, Y,Z,R) is an algorithm which two players follow: A, who knows an x E X, and B, who
knows a y E Y - with the aim of finding a z c Z such that (x, y, z) E R. The communication complexity
of the protocol P is defined by

C(Q , X, Y, Z, R) max {the number of bits exchanged between the parties A and B
(x,y)GXxY

for inputs x and y and the protocol P},

and the communication complexity of the search communication problem S = (X, Y, Z, R) by

C(S) = min{C(P,X, Y,Z,R) I P is a protocol for S}.

Definition 11.6.3 Letf E B3, be a Boolean function. The communication game forf - in short, game(f) -
is the search problem S = (X, Y,Z,R) such that

SX=f-'(0), Y=f-'(1),

Z Z={1,...,n},

* (x,y,i) ER<-•x~ y(i),

where w(i) denotes the i-th bit of w.

In other words, the task in a communication game where party A knows an x such thatf(x) = 0
and B knows a y such thatf(y) = I is to determine, by a communication, an integer i such that x and
y differ in the ith bit.

11.6.2 Complexity of Communication Games

We shall deal now with the depth complexity, Depth(f) of Boolean functionsf, with respect to Boolean
circuits over the base B = {V, A, - }.

In order to simplify the exposition, we consider only Boolean circuits where all internal nodes are
either V-nodes or A-nodes - thus negations are not allowed - but we allow for each variable v two
input nodes, one for v itself and one for v.

It is easy to see that each Boolean circuit over the base B = {V, A, -1} can be transformed, using
de Morgan rules, into a Boolean circuit without internal nodes with negation, but with possibly two
input nodes per variable and its negation, in such a way that the depth of the circuit is not increased. 3

Surprisingly, the depth of a Boolean function f, which represents the parallel time needed to
compute f, is exactly the communication complexity of the corresponding communication game.

3Using de Morgan rules, we just push negation to leaves. In doing so, the size of circuits can increase, but not
by more than a factor of two; corresponding to each node N of the original circuit, we may now need to have two,
one computing the same function as N, the other computing its complement.

634 W COMMUNICATIONS

W W

(a)(b U V U V

Figure 11.8 Two cases for the communication game

Theorem 11.6.4 For anyfunctionf E 8,, we have

C(game(f)) = Depth(f).

Proof: (1) First we show the inequality C(game(f)) < Depth(f). In order to do this, let us assume that
C is a circuit forf, over the base {V, A, - }, with all negations in the inputs.

Let party A get as input an x such that f(x) = 0 and B a y such that f(y) = 1. We now describe
recursively a communication protocol P that finds a position in which x and y differ. Actually, the
protocol will do more; it will search for a path in C, from the root to a leaf, such that all nodes on that
path compute functions that produce different values for x and y. Starting with the root, A and B can
design such a path as follows.

First, observe that, by definition, the root has the above property. It produces different values for
x and y. Assume that such a path has already been built from the root to a node w; we show now how
to make a continuation of the path by one additional node. Once this has been shown, we know how
to get to a leaf. Let us consider two cases concerning w.

(a) w is a A-node with two children u and v (Figure 11.8a). Let f, E 1, andfv E 13, be functions
computed by nodes u and v, respectively. For each z E {0, 1}", the node w computes the function
f.(z) =f.(z) Af (z). Since f, has to produce different values for x and y, we can assume, without loss
of generality, thatfw(x) = 0 (and therefore eitherfu (x) = 0 orfv(x) = 0) andfw(y) = 1 (and therefore
both fu (y) = 1 and fv(y) = 1). This means that at least one of the nodes u and v computes different
values for x and y. Parties A and B, who know the circuit and the path chosen so far, can therefore
choose, by exchanging one bit, one of such nodes as a continuation of the path.

(b) w is a V-node. Assume that f, (x) = 0. This implies that both fu (x) and f, (x) are equal to 0, and
if fw(x) = 0, then at least one of fu (y) and fv(y) equals 1. Parties can again choose a node to continue
the path.

Both parties can arrive, after exchanging at most Depth(f) bits, at a leaf such that the values
produced by that node should be different for input x and y. This is possible, however, if and only if
x and y differ in the position represented by that variable. This proves our inequality.

(2) In order to finish the proof of the theorem, it is sufficient to show that Depth(f) < C(game(f)).
This follows from the next lemma if we take X =f '(0) and Y =f-1 (1).

Lemma 11.6.5 If X, Y cf {0,1}", X n Y = 0, then there is afunctionf E 13n such that

"o XCff (0),YCf 1(1),

"* Depth(f) : C((X, Y, {1, ... , n),R)), where (x,y,i) e R •fand only ijfx() 7 y(i).

Proof: Let X, Y satisfy the assumptions of the lemma. Let C(KX, Y, { 1, . . . , n}, R)) = t, and let P be
a protocol that solves the search problem (X, Y, {1, , n},R) with t bits. We show how to design a
Boolean circuit forf, in the form of a binary tree, that has depth at most t and computesf. The proof

COMMUNICATION VERSUS COMPUTATIONAL COMPLEXITY N 635

will be constructive, by induction, and each time A (B) exchanges a bit, we add a A-node (a V-node)
to the circuit being designed.

Induction base: t = 0. This means that both processors can agree on an i without exchanging a
single bit. There are now two possibilities:

"* x() = 1, y(i) = 0 for all x c X, y E Y;

"* x() =0, y() =lforallxEX,yEY.

In both cases the resulting circuit has a single node. In the first case this node corresponds to the ith
variable ui, in the second to ii.

Induction step: from t to t + 1. Let party A receive an x c X and party B a y E Y. Without loss of
generality we can assume that A starts communication and sends bit 0 for x E X0 C X and bit I for
x E X] = X - X0 . This way we decompose our search problem into two search subproblems:

(Xo,Y,{1 ,n},R) and (X,,Y,{,...,n},R).

Both these search problems require at most t bits. From the induction assumption it then follows that
there are two functions:

* fo such that Xo C9fo'(O),Y Cfo'(1) and Depth(fo) < t,

.f, such that X, cf) '(0),Y cfý'(1) and Depth(f1) < t.

Since Depth(fo) • t and Depth(f1) • t, there are circuits of depth at most t computing functionsfo and
fl. Let us now connect the roots of these two circuits with a A-node. The resulting circuit, of depth
t + 1, computes the functionf(z) =fo(z) Af, (z), and it holds that

"* ifz e Xo,thenfo(z) = 04f(z) = 0=z Ef-'(0);

"* ifz c X1, thenfz(z) = 0=(z) 0 =* z f-l(0).

Hence X cf- 1 (0). In a similar way we can show thatf(z) = 1 for z c Y, and therefore Y cf-' (1).

Exercise 11.6.6 Define, in an analogous way, the concepts of monotone communication games for
monotone Boolean functions and communication complexity for monotone communication games. Prove
an analogue of the last theorem for monotone Boolean functions, computed on monotone Boolean circuits,
and monotone communication games.

Moral: Communication is an engine of progress. Radically new communication tools usually lead
to new eras and new value systems. The complexity of many problems of humankind, nature and
machines lies in the complexity of the underlying communication problems. At the same time, often
very little needs to be communicated in order to achieve all that is required. A good rule of thumb for
dealing with communication problems in computing is therefore, as in life, to find out the minimum
that needs to be communicated in order to achieve all that is required and to communicate that as
efficiently as possible.

636 U COMMUNICATIONS

11.7 Exercises
1. For a set X of n elements determine (a) the number of partitions of X; (b) the number of balanced

partitions of X; (c) the number of almost balanced partitions of X.

2.* Given is an n-node graph. One party knows a complete subgraph, the other party an
independent set of vertices. Design a protocol for deciding whether these two subgraphs have
a vertex in common. (This can be done by exchanging (9(lg2 n) bits.)

3. Consider the same problem as in Exercise 11.1.8 with X = {x x e {0,1}'1* and the number # 1 x
even}, Y = {xIx c {0,1}*, #1x is odd}. Show that in this case the problem can be solved by
exchanging 2 flg n] bits.

4. Consider the problem of deciding whether an undirected graph of n nodes given by an
adjacency matrix is connected. Show that for any partition rri, of inputs there is a protocol
P such that C(P,rin,7rou) = 0(nlgn).

5. For the function
n

x ,Xn, Y1, ,yO) = A/(xi =* yi)
i=1

find an almost balanced partition 7ri, of the inputs such that the communication complexity of
f with respect to 7ri, is (a) maximum; (b) minimum.

6. Letf (!3.,f(x,yz) = (UlU 2 ,U3),wherexyz E {OI}", ul= Ainl(xi, yi),u 2 = Vi= 1(Xvyivz)
and U3 = Vn 1 yli Find the best possible communication protocol for computing f for the
input partition rri, = ({x,yl,y 2,y 3}, {y4,... ,y,,z}) and (a) 7ro, = ({ui},{u 2 ,u 3 }); (b) 7rou =

({Ul,u 2}, {u 3}).

7. Design, for any balanced input partition, a communication protocol for recognizing the
language

L = {wlw {O,1}*, #1(w)= #0(w)= ,

with communication complexity [lg(n + 1)1 for input words of length 2n.

8. Find the fooling set for the functionf E B2, n even, wheref(xl, ... ,Xn,Y,1 ... ,yn) = (Zl,Z2),

n n/2
zl, (xi Ayi), Z2R N i=(X--Xi,+•1),

i=1 i=1

and ri,,rou are partitions with 7ri, = ({xi, . . . ,Xy+ln, U yn} {Xn +... XnYl. , y . I),

7r.. = ({Z 1}, {z 2 }), and show that C(f, rri,, rro) >n + 1.

9. Consider the Boolean functionf(xl,... ,x2n) = (y1,... ,yn), where

n

yi =fi(X1 , . . . ,X2n) = A(xj =- X(n+i+j-1)modn).
j I

Show that (a) C(f) < 1 for each I < i < n; (b) for each balanced partition rin, of {X1.. x2}
there exists a 1 < < n such that CQ§, rri, fr0) > L

EXERCISES S 637

10. Show that for the functionfk E 8,,fk(xl,... ,X2,) = 1 if and only if the sequence xl, . . •, X2n has
exactly k l's, and for the partition 7ri, = ({1, . . . ,n}, {n + 1, . . . ,2n}), we have C(f, Tin,irou) Ž
[lgkj.

11. Show C (MULT,in, 7iru) = Q7 (n) for the multiplication function defined by MULTn (x, y, z) = 1,
where x,y E {0,1}1 and z E {0,1}12, if and only if bin(x) • bin(y) = bin(z), and for partitions
S= ({x,y}, {z}), 7r.ý = (0, {1}).

12. Design some Boolean functions for which the matrix rank method provides optimal lower
bounds.

13. (Tiling complexity) The concept of a communication matrix of a communication problem and
its tiling complexity gave rise to the following definition of a characteristic matrix of a language
L c E* and its tiling complexity. It is the infinite Boolean matrix ML with rows and columns
labelled by strings from E* and such that ML[X,y] = 1 if and only if xy e L. For any n E N,
let MZ be the submatrix of ML whose rows and columns are labelled by strings from E<',
and let T(Mn) be the minimum number of 1-submatrices of Mn that cover all 1-entries of M".
Tiling complexity tL of L is the mapping tL(n) = T(M"). (a) Design M' for the language of
binary palindromes of length at most 8. (b)* Show that a language L is regular if and only if
tL(n) = 0(1).

14. Show the lower bound Q (n) for the communication complexity of the problem of determining
whether a given undirected graph with n nodes is connected. (Hint: you can use Exercise 11.2.5.)

15. Show that the communication complexity equals n for the problem of determining whether
X U Y = Z, where Z is an n-element set, provided party A knows X and Z and party B knows
Y and Z.

16.* Find a language L C {0, 1i* such that C(fl) = Q (n) and Ca(fln) •_ 1.

17. ** Show that the function MULT (x, y) = z, where x, y e {0, 1}2", z E {0, 1f", bin (z) = bin (x) .bin (y),
is transitive of the order n.

18. Show that the communication complexity classes COMM2 n(m) and COMM(g(n)) are closed
under complementation for any n,m m N, and any functions : N i-* N,g(n) • 5.

19. Show that the class COMM(O) contains a language that is not recursively enumerable.

20. Show Lemma 11.4.2.

21. Let f E Bn(n-1)/ 2 be such that f(x, Xn(n-1)2)I= 1 if and only if the graph
CG(Xl ,xn(1)/2) contains a triangle. Show that NC(f,7ri-,iro) = O(lgn), if
7ri, = ({x , . • • Xin(n-1)/4]},{X[,(n-1)/4j+1, . . ,Xn(n1/12}), 7-'- = (0, {1}).

22.* A nondeterministic protocol is called unambiguous if it has exactly one communication leading
to acceptance for each input it accepts. For a Boolean functionf c 3B and partitions (7rin,, ir,,) of
its inputs, define UNC(f, 7rin, 7,u) = min{NC(PT, rin, iro) ITP computesf and is unambiguous}.
Show that (a) C(f,7rin,,r 0 •) < (UNC(f,iri,7rou) + 1)(UNC(fT, 7rin,ro) + 2);
(b) C (f , 7ri,, 7r,,) <_ (UNC (f , rin,,7ro,) + 1)'; (c) [lg (rankMf) I <_ UNC(f , 7rj,,,Tr,,) + 12

23.** Find a Boolean function f : {0,1}1 _-* {0,1} such that the inequality [lgrank(Mf)] <
NC(f , 7r,, 7) does not hold.

638 U COMMUNICATIONS

24. Let COMP,(xl,... XY.l.,yn) = I if and only if bin(xl ... x,) < bin(yl ... y,) (see
Example 11.2.3), 5ri, = (... ,,Xn},{X,1 1 , .- - ,X2n}) and 7r., = (0,{1}). Show that (a)
NC(COMP, 7rin, irou) = n; (b) NC(COMPn, 7rin, 7r) =n.

25. Consider the language STAR = {w e {0,1}1*IwI (') for some m > 2,m e N and G(w) is a
graph containing at least one star - a node adjacent to all other nodes of G(w) }. Let X = {xij i K
j, ij E {1 m}} be the set of input variables of the functionfnTA, for n = (2), and let 5Ti, be a
balanced partition of X. Show that NC1 (fSTAR) < lg n + 1.

26. Letf1 ,f2 G B3,, and 7ri, be a balanced partition of {xl, •. , x, }. Show that if NC(f1l 7i, 7rTu) < m < 2,

NC(f2,7r5i,,r0 ý) K m, then NC(fI Vf 2 ,7rin,rmto) < m+ 1.

27.* Show that there are languages L1,L2 C- {O,1}* such that NC(f/") :S 1, NC(f1") < 1 and
NC(fluL2) = Q (n).

28. Letflf2 £3,, and let iTin be a balanced partition of {x 1 ,. . . ,X}. Show that

NC(fi Af 2 ,7r in, 7,o) <_ NC(fl, rir, 7or,,) + NC(f2,7tin, trou) + 1.

29.** Letf: {0,} 1* {0,1} andfn be a restriction off to the set {0,1}n. For each n E N let 7rnm =

({Xl, . X[?! }, {xf+,...,x,n}) be the input partition forfn. Let 7ron = (0, {1}). Show that if
MA4 is an NTM that recognizes the language corresponding to f(n) in time t(n), then t(n) =

30.** For a Boolean matrix M denote by p(M) the largest t such that M has a t x t submatrix
whose rows and columns can be rearranged to get the unit matrix. Moreover, each Boolean
matrix M can be considered as a communication matrix for the function fM(i,j) = 1 if I <
i < n, 1 < j < n, and M(i,j) = 1, and for the partition of the first arguments to one party and
second arguments to second party. On this basis we can define the communication complexity
and the nondeterministic communication complexity of an arbitrary Boolean matrix M as
C(M) = CQfM) and NC(M) = NC(fM). Show that (a) p(M) < rank(M); (b) lgp(M) < NC(M); (c)
C(M) < lgp(M)(NC(M) + 1).

31. Define Las Vegas communication complexity classes, and show that they are closed under
complementation.

32. * (Choice of probabilities for Monte Carlo and BPPC protocols) Let k E N. Show that if P is a
Monte Carlo (BPP,/ 4) protocol that computes a Boolean functionf with respect to partitions
(Iri,, 7o,,,) exchanging at most s bits, then there is a Monte Carlo (BPPC2-k) protocol, that computes
f with respect to the same partitions with an error probability of at most 2-k, and exchanges
at most ks bits. (Hint: in the case of BPPC protocols use Chernoff's bound from Example 76 in
Chapter 1.)

33.** (Randomization does not always help.) Show that randomization does not help for the
problem of determining whether a given undirected graph is bipartite.

34.** (An analogy between communication and computational complexity) Let C be a set of
0-1 quadratic matrices (communication matrices). Define C E pcomm if the communication
complexity of any n x n matrix M C C is not greater than a polynomial in lg lg n (and therefore
its communication complexity is exponentially smaller than a trivial lower bound). Similarly,
let us define C c NPfOmm if the nondeterministic communication complexity of every matrix
M E C is polynomial in lg ig n. We say that C E co-NPcnmm if the complement of every matrix in
C is in NPcomm. Show that (a) pcom $ Npcormm; (b) Pcomm

= NPcomm0
-"n co-NPcom'.

HISTORICAL AND BIBLIOGRAPHICAL REFERENCES • 639

QUESTIONS
1. How can communication protocols and communication complexity for communications

between three parties be defined?

2. A party A knows an n-bit integer x and a party B knows an n-bit integer y. How many bits
must they exchange in order to compute x. y?

3. Why is it the most difficult case for lower (upper) bounds in randomized communications
when random bits of one party are known (unknown) by the other party?

4. How can you explain informally the fooling set method for proving lower bounds?

5. Is there some magic in the numbers ' and 2 used in the definition of almost balanced partitions,
or can they be replaced by some other numbers without an essential impact on the results?

6. Can we define nondeterministic communication complexity in terms of certificates, as in the
case of computational complexity?

7. What is the difference between tiling and covering communication matrices?

8. What is the basic difference between the main randomized protocols?

9. Does a communication game for a functionf always have a solution? Why?

10. For what communication problems does strong communication complexity provide more
realistic results than ordinary communication complexity?

11.8 Historical and Bibliographical References
The idea of considering communication complexity as a method for proving lower bounds came
up in various papers on distributed and parallel computing, especially in theoretical approaches to
complexity in VLSI computing. The most influential were Thompson's paper (1979) and his PhD thesis
(1980), papers by Lipton and Sedgewick (1981) and Yao (1979, 1981) and Ullman's book (1984). There
is nowadays much literature on this subject, well overviewed by Lengauer (1990a) and Hromkoviý
(1997).

A formal definition of protocols and communication complexity, deterministic and
nondeterministic, was introduced by Papadimitriou and Sipser (1982, 1984). Randomized
communications were introduced by Yao (bounded-error protocols, Monte Carlo and BPPC, 1979,
1981, 1983); Mehlhom and Schmidt (Las Vegas, 1982); Paturi and Simon (unbounded error protocols,
1986). The concept of multi-party protocols was introduced by Chandra, Furst and Lipton (1983).
The concept of communication games is due to Karchmer and Wigderson (1988), from which
Theorem 11.6.4 also comes.

A systematic presentation of communication complexity concepts, methods and results can be
found in the survey paper by Orlitsky and El Gamal (1988), lecture notes by Schnitger and Schmetzer
(1994) and the book by Hromkoviý (1997). The last two of these much influenced the presentation in
this chapter, and likewise most of the exercises.

The concept of a communication matrix and the tiling method are due to Yao (1981); the matrix
rank method is due to Mehihorn and Schmidt (1982). The fooling set concept and method were
developed by various authors and explicitly formulated by Aho, Ullman and Yannakakis (1983),
where several basic relations between methods for proving lower bounds at fixed partition were also
established, including, essentially, Theorems 11.2.19 and 11.2.22. The exponential gap between the

640 3 COMMUNICATIONS

fooling set and the tiling method, mentioned on page 616, is due to Dietzfelbinger, HromkoviR and
Schnitger (1994), as is the result showing that the fooling set method can be much weaker than the
matrix rank method - both gaps are shown in an existential way - and that the fooling set method
cannot be much better than the rank method. The exponential gap between the rank method and the
fooling set method was established by Aho, Ullman and Yannakakis (1983). The Exercise 13 is due to
Condon, Hellerstein, Potte and Widgerson (1994).

The application of communication complexity to proving bounds on AT2-complexity of circuits
presented in Section 11.3.3, which follows Schnitger and Schmetzer (1994), is due to Vuillemin
(1980). The trade-offs mentioned on page 623 between area and time complexity for sorting and
integer multiplication are due to Bilardi and Preparata (1985) and Mehlhorn and Preparata (1983),
respectively.

The lower bounds method for nondeterministic communications in Section 11.4.1 is due
to Aho, Ullman and Yannakakis (1983), where Lemma 11.4.2 is also shown. An exponential
gap between deterministic and nondeterministic communication complexity was established by
Papadimitriou and Sipser (1982). Relations between various types of randomized protocols are
summarized in Hromkoviý (1997), as well as by Schnitger and Schmetzer (1994). An exponential gap
between communication complexity and Monte Carlo complexity and between nondeterministic
communication complexity and BPPC complexity is shown by Ja'Ja, Prassana, Kamar and Simon
(1984). Another approach to randomized communications (see, for example, Hromkoviý (1997)), is to
consider BPPC communication (probability of the correct result is at least 1), one-sided Monte Carlo
communication (probability of error in the case of acceptance is E > 0) and two-sided Monte Carlo
communication (similar to BPPC, but the probability of the correct answer is at least 1 + E with s > 0).

The study of communication complexity classes was initiated by Papadimitriou and Sipser (1982,
1984), and the basic hierarchy results in Section 11.5 are due to them. The result that m + 1 bits
deterministically communicated can be more powerful than the m bits used by nondeterministic
protocols is due to 1Durig, Galil and Schnitger (1984). The claim that almost all Boolean functions
have the worst possible communication complexity is due to Papadimitriou and Sipser (1982, 1984).
Strong communication complexity was introduced by Papadimitriou and Sipser (1982) and was
worked out by HromkoviR (1997) with an example showing that strong communication complexity
can be exponentially higher than ordinary communication complexity. Hromkovi•'s book is the most
comprehensive source of historical and bibliographical references for communication complexity and
its applications.

Bibliography

Leonard M. Adleman. A subexponential algorithm for the discrete logarithm problem with
applications to cryptography. In Proceedings of 20th IEEE FOCS, pages 55-60, 1979.

Leonard M. Adleman. On distinguishing prime numbers from composite numbers. In Proceedings of
21st IEEE FOCS, pages 387-406, 1980.

Leonard M. Adleman. Algorithmic number theory-the complexity contribution. In Proceedings of
35th IEEE FOCS, pages 88-113, 1994.

Leonard M. Adleman and Ming-Deh Hung. Recognizing primes in random polynomial time. In
Proceedings of 19th ACM STOC, pages 462-466, 1987.

Leonard M. Adleman, Kenneth L. Manders, and Gary L. Miller. On taking roots in finite fields. In
Proceedings of 18th IEEE FOCS, pages 175-178, 1977.

Leonard M. Adleman, Carl Pomerance, and Robert S. Rumely. On distinguishing prime numbers
from composite numbers. Annals of Mathematics, 117:173-206, 1983.

Alfred A. Aho, John E. Hopcroft, and Jeffery D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley, Reading, Mass., 1974.

Alfred A. Aho, John E. Hopcroft, and Jeffery D. Ullman. Data structures and algorithms.
Addison-Wesley, Reading, Mass., 1983.

Alfred A. Aho and Jeffery D. Ullman. The theory of parsing, translation and compiling, L II. Prentice
Hall, Englewood Cliffs, 1972.

Alfred A. Aho, Jeffery D. Ullman, and Mihalis Yannakakis. On notions of information transfer in
VLSI circuits. In Proceedings of 15th ACM STOC, pages 133-139, 1983.

Martin Aigner. Diskrete Mathematik. Vieweg Studium, Wiesbaden, 1993.

Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretical model for symmetric
interconnection networks. In S. K. Hwang, M. Jacobs, and E. E. Swartzlander, editors,
Proceedings of International Conference on Parallel Processing, pages 216-223. IEEE Computer Press,
1986. see also IEEE Transactions on Computers, C-38, 1989, 555-566.

Selim G. Akl. The design and analysis of parallel algorithms. Prentice-Hall, Englewood Cliffs, 1989.

Serafino Amoroso and Yale N. Patt. Decision procedures for subjectivity and injectivity of parallel
maps for tessellation structures. Journal of Computer and System Sciences, 6:448-464, 1972.

Kenneth Appel and Wolfgang Haken. Every planar graph is four colorable. Part 1. Discharging, Part
2. Reducibilities. Illinois Journal of Mathematics, 21:429-567, 1971.

642 U FOUNDATIONS OF COMPUTING

Sigal Ar, Manuel Blum, Bruno Codenotti, and Peter Gemmell. Checking approximate computations
over reals. In Proceedings of 25th ACM STOC, pages 786-795, 1993.

Raymond A. Archibald. The cattle problem. American Mathematical Monthly, 25:411-414, 1918.

Andre Arnold and Irene Guessarian. Mathematics for Computer Science. Prentice Hall, London, 1996.

Sanjeev Arora. Probabilistic checking of proofs and hardness of approximation problems. PhD thesis, CS
Division, UC Berkeley, 1994. Available also as Tech. Rep. CS-TR-476-94, Princeton University.

Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric
problems. In Proceedings of 37th IEEE FOCS, 1996.

Sanjeev Arora, Carsten Lund, Rajeev Montwani, Madhu Sudan, and Mario Szegedy. Proof
verification and hardness of approximation problems. In Proceedings of 33rd IEEE FOCS, pages
2-11, 1992.

Derek Atkins, Michael Graff, Arjen K. Lenstra, and Paul C. Leyland. The magic words are squeamish
ossifrage. In J. Pieprzyk and R. Safani-Naini, editors, Proceedings of ASIACRYPT'94, pages
263-277. LNCS 917, Springer-Verlag, Berlin, New York, 1995.

Georgio Ausiello, Pierluigi Crescenzi, and Marco Protasi. Approximate solution of NP approximation
problems. Theoretical Computer Science, 150:1-55, 1995.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, and Alberto
Marchetti-Spaccamela. Approximate solution of hard optimization problems, with a compendium of
NP optimization problems. 1997 to appear.

L•Aszl6 Babai. Trading groups theory for randomness. In Proceedings of 17th ACM STOC, pages
421-429, 1985.

Liszl6 Babai. E-mail and unexpected power of interactions. In Proceedings of 5th IEEE Symposium on
Structure in Complexity Theory, pages 30-44, 1990.

Liszl6 Babai. Transparent proofs and limits to approximation. In S. D. Chatterji, editor, Proceedings
of the First European Congress of Mathematicians, pages 31-91. Birkhiuser, Boston, 1995.

Liszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In Proceedings of 23rd ACM STOC, pages 21-31, 1991.

L~szl6 Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time has two-prover
interactive protocol. In Proceedings of 31st IEEE FOCS, pages 16-25, 1990.

L~szl6 Babai and Shlomo Moran. Arthur-Merlin games: a randomized proof system and a hierarchy
of complexity classes. Journal of Computer and System Sciences, 36:254-276, 1988.

Christian Bailly. Automata - Golden age, 1848-1914. P. Wilson Publisher, London, 1982. (With Sharon
Bailey).

Theodore P. Baker, Joseph Gill, and Robert Solovay. Relativization of the P = NP question. SIAM
Journal of Computing, 4:431-442, 1975.

Josd L. Balcizar, Josep Diaz, and Joaquim Gabdrro. Structural complexity I and II. Springer-Verlag,
Berlin, New York, 1988. Second edition of the first volume in 1994 within Texts in Theoretical
Computer Science, Springer-Verlag.

Jos6 L. Balcizar, Antoni Lozano, and Jacobo Toran. The complexity of algorithmic problems in
succinct instances. In R. Baeza-Yates and V. Menber, editors, Computer Science, pages 351-377.
Plenum Press, New York, 1992.

Edwin R. Banks. Information processing and transmission in cellular automata. TR-81, Project MAC,
MIT, 1971.

BIBLIOGRAPHY U 643

Yehoshu Bar-Hillel. Language and Information. Addison Wesley, Reading, Mass., 1964.

Bruce H. Barnes. A two-way automaton with fewer states than any equivalent one-way automaton.
IEEE Transactions on Computers, TC-20:474-475, 1971.

Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint
Computing Conference, V 32, pages 307-314. Thomson Book Company, Washington, 1968.

Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewriting. Mathematical Systems
Theory, 20:83-127, 1987.

Friedrich L. Bauer. Kryptologie. Springer-Lehrbuch, 1993. English version: Decoded secrets, to appear
in 1996.

Carter Bays. Candidates for the game of LIFE in three dimensions. Complex Systems, 1(3):373-380,
1987.

Richard Beigel. Interactive proof systems. Technical Report YALEU/DCS/TR-947, Department of
Computer Science, Yale University, 1993.

Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs and non-approx-
imability-towards tight results. In Proceedings of 36th FOCS, pages 422-431,1995. Full version,
available from ECCC, Electronic Colloqium on Computational Complexity, via WWW using
http:/www.eccc.uni-trier.de/eccc/.

Shai Ben-David, Benny Z. Chor, Oded Goldreich, and Michael Luby. On the theory of average case
complexity. Journal of Computer and Systems Sciences, 44:193-219, 1992.

Michael Ben-Or, Shaffi Goldwasser, Joe Kilian, and Avi Wigderson. Multiprover interactive proof
systems: how to remove intractability assumption. In Proceedings of 20th ACM STOC, pages
86-97, 1988.

VWclav Beneg. Permutation groups, complexes and rearangeable graphs: multistage connecting
networks. Bell System Technical Journal, 43:1619-1640, 1964.

Viclav BeneL Mathematical theory of connecting networks and telephone traffic. Academic Press, New
York, 1965.

Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development,
6:525-532, 1973.

Charles H. Bennett. Notes on the history of reversible computations. IBM Journal of Research and
Development, 32(1):16-23, 1988.

Charles H. Bennett, Francois Bessette, Gilles Brassard, and Louis Salvail. Experimental quantum
cryptography. Journal of Cryptology, 5:3-28, 1992.

Jon L. Bentley, Dorothea Haken, and James B. Saxe. A general method for solving divide and conquer
recurrences. SIGACT News, 12(3):36-44, 1980.

Roger L. Berger. The undecidability of the domino problem. Memoires of American Mathematical
Society, 66, 1966.

Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of Computation,
24:713-735, 1970.

Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winnings ways for your mathematical plays,
V2. Academic Press, New York, 1982.

Jean Berstel. Fibonacci words-a survey. In G. Rozenberg and A. Salomaa, editors, BOOK of L, pages
13-28. Springer-Verlag, Berlin, New York, 1985.

644 U FOUNDATIONS OF COMPUTING

Michael Bertol and Klaus Reinhardt. The tautologies over a finite set are context-free. Bulletin of
EATCS, 57:196-197, Oct. 1995.

Sandeep N. Bhatt, Fan R. K. Chung, Jia-Wei Hong, F. Thomson Leighton, and Arnold L. Rosenberg.
Optimal simulations by butterfly networks. In Proceedings of 20th ACM STOC, pages 192-204,
1988.

Sandeep N. Bhatt and Staros Cosmadakis. The complexity of minimazing wire lengths in VLSI
layouts. Technical report, MIT, Cambridge, 1982.

Sandeep N. Bhatt and F. Thomson Leighton. A framework for solving VLSI graph layout problems.
Journal of Computer and System Sciences, 28:300-343, 1984.

Gianfranco Bilardi and Franco P. Preparata. A minimum area VLSI network for O(lg n)-time sorting.
Transactions on Computing, 34(4):336-343, 1985.

Patrick Billingsley. Probability and measure. Wiley, New York, 1986.

Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-random number
generator. SIAM Journal of Computing, 15(2):364-383, 1986.

Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real
numbers: NP-completeness recursive functions and universal machines. Bulletin of the AMS,
21(1):1-46, 1989.

Manuel Blum. On effective procedures for speeding up algorithms. Journal of the ACM, 18(2):290-305,
1971.

Manuel Blum. Coin flipping by telephone. A protocol for solving impossible problems. In Proceedings
of the 24th IEEE Computer Society Conference (CompCon), pages 133-137, 1982.

Manuel Blum. How to prove a theorem that nobody can claim it. In M. Gleason, editor, Proceedings
of the International Congress of Mathematicians, pages 1444-1451, Berkeley, 1986. American
Mathematical Society, Providence.

Manuel Blum. Designing programs to check their work. Technical Report TR-88-009, International
Computer Science Institute, Berkeley, 1988.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications.
In Proceedings of 20th ACM STOC, pages 103-131, 1988.

Manuel Blum and Shaffi Goldwasser. An efficient probabilistic public-key encryption scheme that
hides all partial information. In D. Chaum, G. R. Blakley, editors, Proceedings of CRYPTO'84,
pages 289-299. LNCS 196, Springer-Verlag, Berlin, New York, 1985.

Manuel Blum and Sampath Kamman. Designing programs that check their work. In Proceedings of
21st ACM STOC, pages 86-97, 1989.

Manuel Blum, Michael Luby, and Ronett Rubinfeld. Self-testing/correcting with applications to
numerical programs. Journal of Computer and System Sciences, 47:549-595, 1993.

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequence of
pseudo-random bits. SIAM Journal of Computing, 13(4):850-864, 1984.

Manuel Blum and Prabhakar Raghavan. Program correctness: can one test for it ?. In G. X. Ritter,
editor, Information Proceedings'89, pages 127-134. Elsevier, 1989.

Manuel Blum and Hal Wasserman. Program result-checking: a theory of testing meets a test of theory.
In Proceedings of 35th FOCS, pages 382-392, 1994.

Manuel Blum and Hal Wasserman. Software-reliability via run-time result checking. In Proceedings
of the 8th International Conference, Software Quality Week, San Francisco, 1995.

BIBLIOGRAPHY U 645

Norbert Blum. A Boolean function requiring 3n network size. Theoretical Computer Science, 28:337-345,
1984.

J. Adrean Bondy and Uppaluri S. R. Murty. Graph theory with applications. Elsevier, North Holland,
New York, 1976.

Alan Borodin. On relating time and space to size and depth. SIAM Journal of Computing, 6:733-744,
1977.

Alan Borodin and John E. Hopcroft. Routing, merging and sorting on parallel models of computation.
Journal of Computer and System Sciences, 30:130-145, 1985.

Gilles Brassard. Modern Cryptology. LNCS 325, Springer-Verlag, Berlin, New York, 1988.

Gilles Brassard and Paul Brattey. Algorithmics: theory and practice. Prentice-Hall, Englewood Cliffs,
1988.

Gilles Brassard, David Chaum, and Claude Cr~pau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37:156-189, 1988.

Wilfried Brauer. Automatentheorie. Teubner, Stuttgart, 1984.

Wilfried Brauer. On minimizing finite automata. Bulletin of EATCS, 35:113-116, 1988.

Richard P. Brent and H. T. Kung. On the area of binary-tree layouts. Information Processing Letters,
11(1):46-48, 1980.

Ernest F. Brickell. Breaking iterated knapsack. In D. Chaum, G. R. Blakley, editors, Proceedings of
CRYPTO'84, pages 342-358. LNCS 196, Springer-Verlag, 1985.

Ernest F. Brickell and Andrew M. Odlyzko. Cryptoanalysis: a survey of recent results. Proceedings of
the IEEE, 76(5):560-577, 1988.

Sally A. Browning. The tree machine: a highly concurrent computing environment. PhD thesis, Department
of Computer Science, California Institute of Technology, Pasadena, 1980.

John A. Brzozowski. Cannonical regular expressions and minimal state graphs for definite events.
In Mathematical Theory of Automata, V 12 of the MRI Symposia Series, pages 529-561.. Polytechnic
Press of the Polytechnic Institute of Brooklyn, 1962.

John A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11:481-494, 1964.

Rais G. Bucharaev. Some equivalences in the theory of probabilistic automata (in Russsian). Notes of
Kazan State University, 124(2):45-65, 1964.

Rais G. Bucharaev. Theorie der stochastischen Automaten. Teubner, Stuttgart, 1995.

J. Richard Biichi. On a decision method in restricted second order arithmetic. In E. Nagel, P. Suppes,
and A. Tarski, editors, Proceedings of International Congress on Logic, Methodology and Philosophy
of Science, pages 66-92, Standford, 1960. Standford University Press.

Arthur W. Burks. Essays on cellular automata. University of Illinois Press, 1970.

Cristian Calude. Information and randomness: an algorithmic perspective. Springer-Verlag, Berlin, New
York, 1994.

Keith W. Campbell and Michael J. Wiener. Proof that DES is not a group. In E. F. Brickell, editor,
Proceedings of CRYPTO'92, pages 518-526. LNCS 740, Springer-Verlag, Berlin, New York, 1992.

Jack W. Carlyre. Reduced forms for stochastic sequential machines. Journal of Mathematical Analysis
and Applications, 7(3):167-175, 1963.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18:143-154, 1979.

646 * FOUNDATIONS OF COMPUTING

Arthur Cayley. The theory of groups. American Journal of Mathematics, 1:50-52, 174-176, 1878.

Gregory J. Chaitin. On the length of programs for computing finite binary sequences. Journal of the
ACM, 13:547-569, 1966.

Gregory J. Chaitin. Algorithmic Information Theory. Cambridge University Press, 1987a.

Gregory J. Chaitin. Information, randomness and incompleteness. World Scientific Publisher, Singapore,
1987b.

Mee-Yee Chan. Dilation 2 embeddings of grids into hypercube. Technical report, University of Texas,
Computer Science Program, 1988.

Mee-Yee Chan. Embedding of d-dimensional grids into optimal hypercubes. In Proceedings of the
1989 ACM Symposium on Parallel Algorithms and Architectures, pages 52-57, 1989.

Mee-Yee Chan and Francis Y. L. Chin. On embedding rectangular grids in hypercubes. IEEE
Transactions on Computers, 37:1285-1288, 1988.

Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multiparty protocols. In Proceedings of
15th ACM STOC, pages 94-99, 1983.

Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In Proceedings of 17th IEEE FOCS, pages
98-108, 1976.

Shiva Chaudhuri and Devdatt Dubhashi. (Probabilistic) reccurrence relations revisited. In
R. Baeza-Yates, E. Goles, and P. Poblete, editors, Proceedings of LATIN'95, pages 207-219. LNCS
911, Springer-Verlag, 1995.

Noam Chomsky. Three models for the description of languages. IRE Transactions of Information Theory,
IT-2:113-124, 1956.

Noam Chomsky. Syntactic structures. Gravenhage, Mouton, 1957.

Noam Chomsky. On certain formal properties of grammars. Information and Control, 2:137-167, 1959.

Noam Chomsky. Context-free grammars and pushdown storage. Research Laboratory Electron,
Quarterly Progress Report 65, MIT, 1962.

Noam Chomsky and Marcel P. Schutzenberger. The algebraic theory of context-free languages. In
P. Braffort and D. Hischberg, editors, Computer Programming and Formal Systems, pages 118-161.
North Holland, Amsterdam, 1963.

Benny Z. Chor. Two issues in public key cryptography. MIT Press, Cambridge, 1986.

Alonzo Church. The calculi of lambda-conversion. Annals of Mathematical Studies, 6:77, 1941.

Alan Cobham. The intrinsic computational complexity of functions. In Y. Bar-Hillel, editor,
Proceedings of the 1964 Congress on Logic, Mathematics and the Methodology of Science, pages 24-30.
North-Holland, Amsterdam, 1965.

Edgard F. Codd. Cellular automata. Academic Press, New York, 1988.

Daniel E. Cohen. Computability and logic. Ellis Horwood Limited, Chichester, 1987.

Richard Cole and Uzi Vishkin. Deterministic coin-tossing with applications to optimal parallel list
ranking. Information and Control, 70:32-53, 1986.

Anne Condon, Lisa Hellerstein, Samuel Potte, and Avi Wigderson. On the power of finite automata
with both nondeterministic and probabilistic states. In Proceedings of 26th ACM STOC, pages
667-685, 1994.

Stephen Cook, Cynthia Dwork, and Karl R. Reischuk. Upper and lower bounds for parallel random
access machines with simultaneous writes. SIAM Journal of Computing, 15:87-97, 1986.

BIBLIOGRAPHY N 647

Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings of 3rd IEEE FOCS,
pages 151-158, 1971.

Stephen A. Cook. A hierarchy for nondeterministic time complexity. Journal of Computer and System
Sciences, 7:343-353, 1973a.

Stephen A. Cook. An observation on time-storage trade off. In Proceedings of 5th ACM STOC, pages
29-33, 1973b.

Stephen A. Cook. Towards a complete theory of synchronous parallel computations. L'enseignement
Mathdmatique, Serie II, 27:99-124, 1981.

Stephen A. Cook. A taxanomy of problems with fast parallel algorithms. Information and Control,
64:2-22, 1985.

Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. Journal of Computer
and System Sciences, 7:354-375, 1973.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. In
Proceedings of 19th ACM STOC, pages 1-6, 1987.

Thomas H. Cormen, Charles Leiserson, and Ronald L. Rivest. Introduction to algorithms. The MIT
Press - McGraw Hill, Cambridge, New York, 1990.

Karel Culik II. An aperiodic set of 13 Wang tiles. Discrete Applied Mathematics, 160:245-251, 1996.

Karel Culik II and Simant Dube. Rational and affine expressions for image description. Discrete
Applied Mathematics, 41:85-120, 1993.

Karel Culik II and Ivan Frig. The decidability of the equivalence problem for DOL systems. Information
and Control, 35:20-39, 1977.

Karel Culik II and Ivan Frig. Weighted finite transducers in image processing. Discrete Applied
Mathematics, 58:223-237, 1995.

Karel Culik II and Juhani Karhumaki. On totalistic systolic networks. Information Processing Letters,
26:231-236, 1987.

Karel Culik II and Juhani Karhumaki. Finite automata computing real functions. SIAM Journal of
Computing, 23:789-814, 1994.

Karel Culik II and Jarrko Kari. Image compression using weighted finite automata. Computers and
Graphics, 17:305-313, 1993.

Karel Culik II and Jarrko Kari. Image-data compression using edge-optimizing algorithm for WFA
inference. Journal of Information Processing and Management, 30:829-838, 1994.

Karel Culik II and Jarrko Kari. Finite state transformation of images. In F. Gdcseg Z. Fiulope, editors,
Proceedings of ICALP'95, pages 51-62. LNCS 944, Springer-Verlag, Berlin, New York, 1995.

Karel Culik II and Peter Raj~dni. Iterative weighted finite transducers. Acta Informatica, 32:681-703,
1995.

Karel Culik II, Arto Salomaa, and Derick Wood. Systolic tree acceptors. RAIRO Informatique Thdorique
et Applications, 18:53-69, 1984.

Jiirgen Dassow, Rudolf Freund, and Gheorgh Pain. Cooperating array grammars. International
Journal of Pattern Recognition and Artificial Intelligence, 9(6):1-25, 1995.

Martin Davis. Computability and Undecidability. McGraw Hill, New York, 1958.

Martin Davis. The undecidable. Raven Press, Hewlet, NY, 1965.

648 U FOUNDATIONS OF COMPUTING

Martin Davis. Hilbert's tenth problem. American Mathematical Monthly, 80:233-269, 1980.

Nicolas G. de Bruijn. A combinatorial problem. In Proceedings of the Section of Science, Appl.
Mathematical Science, Koninklijke, pages 758-764. Nederlandse Academie van Wetenshapen,
Amsterdam, 1946.

John M. DeLaurentis. A further weakness in the common modulus protocol for the RSA
cryptoalgorithm. Cryptologia, 8:253-259, 1984.

Thomas Denny, Bruce A. Dodson, Arjen K. Lenstra, and Mark S. Manasse. On the factorization of
RSA-120. In D. R. Stinson, editor, Advances in Cryptology-CRYPTO-93, pages 166-174. LNCS
773, Springer-Verlag, Berlin, New York, 1994.

Denis Derencourt, Juhani KarhumAki, Michel Latteaux, and Alen Terlutte. On continuous functions
computed by finite automata. RAIRO Informatique Th~orique et Applications, 28(3-4):387-403,
1994.

Denis Derencourt, Juhani Karhumiki, Michel Latteaux, and Alen Terlutte. On computational power
of weighted finite automata. Fundamenta Informatica, 25:285-294, 1996.

Nachum Dershowitz and Jean Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, V B, Formal Models and Semantics, pages 243-320.
Elsevier, Amsterdam, 1990.

David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer.
Proceedings of Royal Society (London), A-400:97-117, 1985.

A. K. Dewdney. A computer trap for busy beaver, the hardest working Turing machine. Scientific
American, 251:16-23, August 1984.

Josep Diaz, Maria Serna, Paul Spirakis, and Jacobo Torin. Paradigms for fast parallel approximability.
Cambridge University Press, 1997.

Martin Dietzfelbinger, Juraj Hromkoviý, and Georg Schnitger. A comparison of two lower bound
methods for communication complexity. In I. Privara, B. Rovan, and P. Ru~i~ka, editors,
Proceedings of MFCS'94, pages 326-335. LNCS 841, Springer-Verlag, Berlin, New York, 1994.

Whitfield Diffie. The first ten years of public-key cryptography. Proceedings of the IEEE, 76:560-577,
1988.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22:644-656, 1976.

David P. Dobkin, Richard J. Lipton, and Steven Reiss. Linear programming is log-space hard for P.
Information Processing Letters, 8:96-97, 1979.

Danny Dolev, F. Thomson Leighton, and Howard Trickey. Planar embeddings of planar graphs.
Technical report, MIT LCS, 1983.

Frank Drewes, Annegret Habel, and Hans-J6rg Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Rewriting, Vol. 1: Foundations, pages 95-182. World
Scientific, Singapore, 1996.

Pavol Durig, Zvi Galil, and Georg Schnitger. Lower bounds on communication complexity. In
Proceedings of 16th ACM STOC, pages 81-91, 1984.

Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous parallel
machines. Journal of Computer and System Sciences, 30(2):144-161, 1985.

Freeman Dyson. Time without end: physics and biology in an open universe. Reviews of Modern
Physics, 52(3):447-460, 1979.

BIBLIOGRAPHY U 649

John Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17(3):449-467, 1965.

John Edmonds. Systems of distinct representatives and linear algebra and optimum branching.
Journal of Research, National Burreau of Standards, Part B, 17B(4):233-245, 1966.

Omer Egecioglu. An introduction to formal language theory. Lecture notes, Dept. of Computer
Science, University of California, Santa Barbara, 1995.

Hartmut Ehrig and Bernd Mahr. Fundamentals of algebraic specifications, I. Springer-Verlag, Berlin,
New York, 1985.

Samuel Eilenberg. Automata, languages and machines. Academic Press, New York, London, 1974.

Taher E1Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, IT-31(4):469-472, 1985.

Calvin C. Elgot and Abraham Robinson. Random access stored program machines. Journal of the
ACM, 5(3):232-245, 1964.

Erwin Engeler. Introduction to the theory of computation. Academic Press, New York, London, 1973.

Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In G. Rozenberg,
editor, Handbook of Graph Rewriting, Vol. I: Foundations, pages 1-94. World Scientific, 1996.

Trevor Evans. On multiplicative systems defined by generators and relations. In Proceedings of the
Cambridge Philosophical Society, pages 637-649, Cambridge, 1951.

Robert J. Evey. The theory and applications of pushdown store machines. PhD thesis and
research report, Mathematical Linguistic and Automatic Translation Language Project, NSF-10,
Harward University, May 1963.

Doyne Farmer, Tommaso Toffoli, and Stephen Wolfram (Eds.). Cellular automata, Proceedings of an
interdisciplinary workshop. Physica D, 10(1, 2), 1984.

Uriel Feige, Shaffi Goldwasser, Liszl6 Babai, Shmuel Safra, and Mario Szegedy. Approximating
clique is almost NP-complete. In Proceedings of 32nd IEEE FOCS, pages 2-12, 1991.

Joan Feigenbaum. Overview of interactive proof systems and zero-knowledge. In G. J. Simmons,
editor, The science of information integrity, pages 424-438. Piscatoway, N. J. IEEE Press, 1992.

Horst Feistel. Cryptology and computer privacy. Scientific American, 228(5):15-23, 1973.

Rainer Feldman and Walter Unger. The cube-connected cycles. Parallel Processing Letters, 2(1):13-19,
1992.

William Feller. An introduction to probability theory. Wiley, New York, 1964.

Amos Fiat and Adi Shamir. Polymorphic arrays: a novel VLSI layout for systolic computers. In
Proceedings of the 16th ACM STOC, pages 37-45, 1984.

Faith E. Fich. The complexity of computation on parallel random access machines. In Synthesis of
parallel algorithms (I. H. Reif, editor). Morgen Kaufmann, San Mateo, Ca., 1993.

Robert Floyd and Richard Beigel. The language of machines. Computer Science Press, New York, 1994.

Steven Fortune and James Wyllie. Parallelism in RAMs. In Proceedings of 10th ACM STOC, pages
114-118, 1978.

Pierre Fraigniaud and Emmanuel Lazard. Methods and problems of communication in usual
networks. Discrete Applied Mathematics, 53(79-133), 1994.

Riashn§ Freivalds. Fast probabilistic algorithms. In J. Be~vaf, editor, Proceedings of MFCS'79, pages
57-68. LNCS 74, Springer-Verlag, 1979.

650 U FOUNDATIONS OF COMPUTING

Rudolf Freund. Control mechanisms on context-free array grammars. In G. Pdun, editor, Mathematical
Aspects of Natural and Formal Languages, pages 97-137. World Scientific Series in Computer
Science, Singapore, V 43, 1994.

Helen F. Gaines. Cryptoanalysis. Dover, New York, 1939.

David Gale and Frank M. Stewart. Infinite games with perfect information. In H. W. Kuhn and
A. W. Tucker, editors, Contributions to the theory of games, pages 1950-59, Princeton, N.J., 1953.
Princeton University Press.

Hana Galperin and Avi Wigderson. Succinct representation of graphs. Information and Control,
56:183-198, 1983.

Martin Gardner. Logic machines and diagrams. McGraw-Hill, New York, 1958.

Martin Gardner. A new kind of cipher that would take milions years to break. Scientiic American,
237(8):120-124, August 1977.

Martin Gardner. Wheels, life and other mathematical amusements. W. H. Freeman and Company, San
Francisco, 1983.

Martin Gardner. Penrose tiles to trapdoor functions. W. H. Freeman and Company, San Francisco, 1989.

Michael R. Garey and David S. Johnson. Strong NP-completeness results: motivation, examples, and
implications. Journal of the ACM, 25:499-508, 1978.

Michael R. Garey and David S. Johnson. Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

Max Garzon. Analysis of models of massive parallelism: cellular automata and neural networks.
Springer-Verlag, Berlin, New York, 1995.

FAnicA Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a choral graph. SIAM Journal of computing, 1(2):180-187,
1977.

T. D. Gedeon. The Reve's puzzle: an iterative solution produced by transformation. The Computer
Journal, 35(2):186-187, 1992.

Viliam Geffert. Normal forms for phrase-structure grammars. RAIRO Informatique Theorique et
Applications, 25(5):473-496, 1991.

Murray Gesternhaber. The 152-nd proof of the law of quadratic reciprocity. American Mathematical
Monthly, 70:397-398, 1963.

John Gill. Computational complexity of probabilistic Turing machines. SIAM Journal of Computing,
6:675-695, 1977.

Seymour Ginsburg. The mathematical theory of context-free languages. McGraw Hill, New York, London,
1966.

Seymour Ginsburg and Gene F. Rose. Operations that preserve definability in languages. Journal of
the ACM, 10:175-195, 1963.

Seymour Ginsburg and Gene F. Rose. A characterization of machine independent mappings. Canadian
Journal of Mathematics, 18:381-388, 1966.

Kurt Godel. Uber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme
I. Monatsheftefiir Mathematik und Physik, 38:173-178, 1931. English translation in: Davis (1965),
pages 4-38.

BIBLIOGRAPHY U 651

Oded Goldreich. Randomness, interactive proofs, and zero-knowledge. A survey. In R. Merken,
editor, The Universal Turing Machine: A half century survey, pages 377-405, Hamburg, 1988.
Kammer & Univerzagt.

Oded Goldreich. Foundations of cryptography. Technical report, Computer Science Department,
Technion, Haifa, 1989.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings
of 21st ACM STOC, pages 327-377, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and
a methodology for protocol design. In Proceedings of the 27th IEEE FOCS, pages 174-187, 1986.

Leslie M. Goldschlager. Synchronous parallel computations. PhD thesis, University of Toronto,
Computer Science Department, 1977.

Leslie M. Goldschlager. A unified approach to models of synchronous parallel machines. In
Proceedings of 10th ACM STOC, pages 89-94, 1978.

Leslie M. Goldschlager. A universal interconnection pattern for parallel computers. Journal of the
ACM, 29:1073-1086, 1982.

Shaffi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270-299, 1984. -

Shaffi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proofs. In Proceedings of 17th ACM STOC, pages 291-305, 1985.

Shaffi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal of Computing, 18(1):186-208, 1989.

Shaffi Goldwasser, Silvio Micali, and Po Tong. Why and how to establish a private code on a public
network. In Proceedings of 23rd IEEE FOCS, pages 134-144, 1982.

Shaffi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of 18th ACM STOC, pages 59-68, 1986.

Gaston H. Gonnet. Handbook of algorithms and data structures. Addison-Wesley, Reading, Mass., 1984.

David Gorenstein. The enormous theorem. Scientific American, 253(6):104-115, 1985.

Joseph A. Gougen, James W. Thatcher, Eric W. Wagner, and Jesse G. Wright. Initial algebra semantics
and continuous algebras. Journal of the ACM, 24:68-95, 1977.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. Addison-Wesley,
Reading, Mass., 1989.

David S. Greenberg, Lenwood Heath, and Arnold L. Rosenberg. Optimal embeddings of butterfly-like
graphs in the hypercube. Mathematical Systems Theory, 23(1):61-67, 1990.

Daniel H. Greene and Donald E. Knuth. Mathematics for the analysis of algorithms. Bikhauser, Boston,
1981.

Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to parallel computing. Oxford
University Press, New York, Oxford, 1993.

Sheila A. Greibach. A new normal form theorem for context-free phrase-structure grammars. Journal
of the ACM, 12(1):47-52, 1965.

Sheila A. Greibach. The hardest context-free language. SIAM Journal of Computing, 2:304-310, 1973.

Joachim Grollman and Alan L. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal of Computing, 17(2):309-335, 1988.

652 U FOUNDATIONS OF COMPUTING

Branko Griinbaum and G. C. Shephard. Tilings and patterns. W. H. Freeman and Company, San
Francisco, 1987.

Jozef Gruska. Some classification of context-free languages. Information and Control, 14:152-171,1969.

Jozef Gruska, Margherita Napoli, and Dominico Parente. State complexity of BSTA languages. In
B. Pehrson and I. Simon, editors, Information Processing'94, Technology and Foundations, IFIP
Transductions, pages 247-252. North-Holland, 1994.

Yuri Gurevich. Average case completeness. Journal of Computer and System Sciences, 42:346-398, 1991.

Howard Gutowitz. Cellular automata: theory and experiments. North-Holland, Amsterdam, 1990.

Annegret Habel. Graph grammars, transformational and algebraic aspects. Journal of Information
Processing and Cybernetics, ElK, 28:241-277, 1990.

Annegret Habel. Hypercube replacement: grammars and languages. LNCS 643, Springer-Verlag, Berlin,
New York, 1990a.

Annegret Habel and Hans-J6rg Kreowski. Some structural aspects of hypergraph languages
generated by hyperedge replacement. In F. J. Brandenburg, G. Vidal-Naquet, and M. Wirsing,
editors, Proceedings of STACS'87, pages 207-219. LNCS 247, Springer-Verlag, Berlin, New York,
1987.

Annegret Habel and Hans-J6rg Kreowski. May we introduce to you hyperedge replacement? In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the Graph Grammars
Workshop, pages 15-26. LNCS 291, Springer-Verlag, Berlin, New York, 1987a.

Annegret Habel, Hans-J6rg Kreowski, and Walter Vogler. Metatheorems for decision problems on
hyperedge replacement graph languages. Acta Informatica, 26:657-677, 1989.

Torben Hagerup and Christine Riub. A guided tour of Chemoff bounds. Information Processing Letters,
33:305-308, 1989.

Frank Harary, Patrick J. Hayes, and H. Jr Wu. A survey of the theory of hypercube graphs. Computers
and Mathematics with Applications, 15(4):277-289, 1988.

Godfrey H. Hardy Properties of logarithmico-exponential functions. Proceedings of London
Mathematical Society, 10:54-90, 1911.

Godfrey H. Hardy. Orders of infinity, the "infinitetarcalciil of Paul du Bois-Rymond, v. 12. In Cambridge
Tracks in Mathematics and Mathematical Physics. Cambridge University Press, 1924.

David Harel. Algorithmics. Addison-Wesley, Wokingam, Reading, Mass, 1987.

Michael A. Harrison. Introduction to formal language theory. Addison-Wesley, Reading, Mass., 1978.

Juris Hartmanis. Computational complexity of random access stored program machines.
Mathematical Systems Theory, 5(3):232-245, 1971.

Juris Hartmanis. Observations about the development of theoretical computer science. In Proceedings
of 20th IEEE FOCS, pages 224-233, 1979.

Juris Hartmanis and Leonard Berman. On isomorphism and density of NP and other complete
problems. Journal of Computer System Sciences, 16:418-422, 1978.

Juris Hartmanis, Philip M. Lewis, and Richard E. Steams. Hierarchies of memory limited
computations. In Proceedings of 6th IEEE Symposium on Switching Circuit Theory and Logic Design,
pages 179-190, 1965.

Juris Hartmanis and Richard E. Steams. On the computational complexity of algorithms. Transactions
of the ACM, 117:285-306, 1965.

BIBLIOGRAPHY U 653

Ivan Havel and Petr Liebl. Embedding the polytonic tree into the n-cube. Casopis pro pistovani
matematiky, 98:307-314, 1973.

Ralf Heckmann, Ralf Klasing, Burkhard Monien, and Walter Unger. Optimal embedding of complete
binary trees into lines and grids. In R. Berghammer and G. Schmidt, editors, Proceedings
of 17th Workshop on Graph-Theoretic Concepts in Computer Science, pages 25-35. LNCS 570,
Springer-Verlag, Berlin, New York, 1991.

Andrew Hedges. Alan Turing: The Enigma. Burnett Books Ltd., London, 1983.

Michael Held and Richard M. Karp. The traveling salesman problem and minimum spanning trees.
Operational Research, 18:1138-1162, 1970.

Martin E. Hellman. Extension of the Shannon theory approach to cryptography. Transactions on
Information Theory, IT-23(3):289-295, 1977.

Marie-Claude Heydemann, Jaroslav Opatrny, and Dominique Sotteau. Embeddings of hypercubes
and grids into de Bruijn graphs. Journal of Parallel and Distributed Computing, 23:104-111, 1991.

David Hilbert. Mathematische Probleme. Vortrag gehalten auf dem Internationalen
Mathematiker-Kongres zu Paris 1900. In Gesammelte Abhandlungen, pages 290-329. Springer,
Berlin, 1935. Reprinted by Chelsa, Bronx, 1965. English translation in Bulletin of the American
Mathematical Society, V8, 437-478, 1902.

Lester S. Hill. Cryptography in an algebraic alphabet. American Mathematical Monthly, 36:306-312,
1929.

Dorit S. Hochbaum. Approximation algorithms for set covering and vertex cover problems. SIAM
Journal of Computing, 11:555-556, 1982.

Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing, 1997.

Dan Hoey and Charles E. Leiserson. A layout for the shuffle exchange network. In Proceedings of the
1980 IEEE International Conference on Parallel Processing, pages 329-336. IEEE Computer Society,
Los Alamitos, 1980.

Micha Hofri. Analysis of algorithms. Oxford University Press, 1995.

Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal of Computing, 10:718-720, 1981.

John E. Hopcroft. An n Ig n algorithm for minimizing states in a finite automaton. In Z. Kohavi and
A. Paz, editors, Theory of Machines and Computations, pages 189-196. Academic Press, New York,
1971.

John E. Hopcroft. Turing machines. Scientific American, 250:86-98, May 1984.

John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time versus space and related problems.
In Proceedings of 16th IEEE FOCS, pages 57-64, 1975.

John E. Hopcroft and Jeffery D. Ullman. Formal languages and their relation to automata. Addison-Wesley,
Reading, Mass., 1969.

Juraj Hromkovi. Communication complexity and parallel computing. Springer-Verlag, Berlin, New York,
1997.

Juraj HromkoviR, Ralf Klasing, Burkhard Monien, and Regine Peine. Dissemination of information
in interconnection networks (broadcasting and gossiping). In F. Hsu and D-Z. Du, editors,
Combinatorial network theory, pages 125-212. Kluger Academic Publisher, 1995.

Wen-Jing Hsu. Fibonacci cubes-a new interconnection topology. IEEE Transactions on Parallel and
Distributed Systems, 4(1):3-12, 1993.

654 • FOUNDATIONS OF COMPUTING

David A. Huffman. The synthesis of sequential switching circuits. Journal of the Franklin Institute,
257(3-4):275-303, 1954.

Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal of
Computing, 17:935-938, 1988.

Russel Impagliazzo. A personal view of average-case complexity. In Proceedings of lOth IEEE Structure
in Complexity Theory, pages 134-147, 1995.

Russel Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In Proceedings
CRYPTO'87, pages 40-51. LNCS 293, Springer-Verlag, Berlin, New York, 1988.

Kenneth E. Iverson. A programming language. Wiley, New York, 1962.

Joseph Ja'Ja. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Mass., 1992.

Joseph Ja'Ja, V. K. Prassana Kamar, and Janos Simon. Information transfer under different sets of
protocols. SIAM Journal of Computing, 13:840-849, 1984.

Dirk Janssens and Grzegorz Rozenberg. On the structure of node label controlled graph languages.
Information Sciences, 20:191-216, 1980.

Dirk Janssens and Grzegorz Rozenberg. Restrictions, extensions and variations on NLC grammars.
Information Sciences, 20:217-249, 1980a.

David S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and
System Sciences, 9:256-278, 1974.

David S. Johnson. The NP-completeness column: An on-going guide. Journal ofAlgorithms, 4:393-405,
1981.

David S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume A, Algorithms and Complexity, pages 68-161. Elsevier, Amsterdam,
1990.

David S. Johnson. The NP-completeness column: an ongoing guide. Journal ofAlgorithms, 13:502-524,
1992.

David S. Johnson and Lyle McGeoch. The traveling salesman problem: a case study in local
optimization. In H. L. Aarts and J. K. Lenstra, editors, Local search in combinatorial optimization.
Wiley, Chichester, 1996.

David S. Johnson, Lyle A McGeoch, and Ed E. Rothberg. Asymptotic experimental analysis for the
Held-Karp traveling salesman bound. In Proceedings of the 7th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 341-350, 1996.

James P. Jones. Universal Diophantine equation. Journal of Symbolic Logic, 47:549-571, 1982.

James P. Jones, Daihachiro Sato, Hideo Wada, and Douglas Wiens. Diophantine representation of the
set of prime numbers. The American Mathematical Monthy, 83(6):449-464, 1976.

Neil D. Jones and William T. Laaser. Complete problems for deterministic polynomial time. Theoretical
Computer Science, 33(1):105-117, 1976.

David Kahn. The codebreaker: the story of secret writing. Macmillan, New York, 1967.

Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-logarithmic
depth. In Proceedings of 20th ACM STOC, pages 539-550, 1988.

Jarrko Kari. Reversibility of 2D cellular automata is undecidable. Physica D, 45:379-385, 1990.

Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher, editors,
Complexity of computer computations, pages 85-103. Plenum Press, New York, 1972.

BIBLIOGRAPHY U 655

Richard M. Karp. An introduction to randomized algorithms. Discrete Applied Mathematics,
34:165-201, 1991a.

Richard M. Karp. Probabilistic recurrence relations. In Proceedings of 23rd ACM STOC, pages 190-197.
ACM Press, 1991b.

Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of 12th ACM STOC, pages 303-309, 1980.

Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient PRAM simulations
in a distributed memory machine. In Proceedings of 24th ACM STOC, pages 318-326, 1992.

Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for stored memory machines. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, Algorithms and
Complexity, pages 867-941. Elsevier, Amsterdam, 1990.

Tadao Kasami. An efficient recognition and syntax-analysis for context-free languages. Research
Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, Mass, 1965.

Tadao Kasami and Koji Torii. A syntax analysis procedure for unambiguous context-free grammars.
Journal of the ACM, 16, 1969.

William H. Kautz. Bounds on directed (d, k)-graphs. In Theory of cellular logic networks and machines,
pages 20-28. SRI project 7258, AFCRL 69-0668 Final report, 1968.

Leonid G. Khachyian. A polynomial time algorithm for linear programming (in Russian). DAN
SSSR, 244:1093-1097, 1979.

H6lne Kirchner. Term rewriting. In Algebraic Foundations of Systems Specifications, 1997. In
preparation.

Stephen C. Kleene. General recursive functions of natural numbers. Mathematische Annalen,
112:727-742, 1936.

Stephen C. Kleene. An introduction to metamathematics. D. van Nostrad, Princeton, 1952.

Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and
J. McCarthy, editors, Automata studies, Princeton, 1956. Princeton Press.

Donald E. Knuth. The art of computer programming I: Fundamental algorithms. Addison Wesley, Reading,
Mass., 1968.

Donald E. Knuth. The art of computer programming II: Seminumeral algorithms. Addison Wesley, Reading,
Mass., 1969.

Donald E. Knuth. The art of computer programming III: Sorting and searching. Addison Wesley, Reading,
Mass., 1973.

Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings. SIAM
Journal of Computing, 6:323-350, 1977.

Richard Koch, F. Thomson Leighton, Bruce M. Maggs, Satish Rao, and Arnold L. Rosenberg.
Work-preserving emulations of fixed-connection networks. In Proceedings of 21st ACM STOC,
pages 227-240, 1989.

Andrei N. Kolmogorov. Three approaches to the quantitative definition of information (in Russian).
Problems Information Transmission, 1(1):1-7, 1965.

Alan G. Konheim. Cryptography: a primer. Wiley, New York, 1981.

Ivan Korec. Decidability (undecidability) of equivalence of Minsky machines with components of
at most seven (eight) components. In J. Gruska, editor, Proceedings ofMFCS'77, pages 324-332.
LNCS 53, Springer-Verlag, 1977.

656 U FOUNDATIONS OF COMPUTING

Ivan Korec. Small universal Turing machines. Theoretical Computer Science, 168:267-301, 1996.

Elias Kotsoupias and Christos H. Papadimitriou. On the greedy algorithm for satisfiability.
Information Processing Letter, 43:53-55, 1992.

Dexter C. Kozen. The design and analysis of algorithms. Springer-Verlag, Berlin, New York, 1991.

Evangelos Kranakis. Primality and Cryptography. Teubner-Wiley, Stuttgart, 1986.

Hans-J6rg Kreowski. Manipulationen von Graphmanipulationen. PhD thesis, Computer Science
Department, Technische Universitat Berlin, 1977.

Hans-J6rg Kreowski. A pumping lemma for context-free graph languages. In J. Beevaf, editor,
Proceedings of MFCS'79. 270-283, LNCS 74, Springer-Verlag, 1979.

Clyde P. Kruskal and Mare Snir. A unified theory of interconnection networks. Theoretical Computer
Science, 48:75-94, 1986.

Ludvig Ku~era. Parallel computation and conflicts in memory access. Information Processing Letters,
14:93-96, 1982.

Shige-Yuki Kuroda. Classes of languages and linear bounded automata. Information and Control,
7:207-223, 1964.

Richard E. Ladner. The circuit value problem is lg-space complete for P. SIGACT News, 7(1):18-20,
1975.

Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831-838, 1986.

Richard E. Ladner, Nancy A. Lynch, and Alan L. Selman. A comparison of polynomial time
reducibilities. Theoretical Computer Science, 1:103-124, 1975.

Jeffery C. Lagarias. The 3x + 1 problem and its generalizations. American Mathematical Monthly,
92:3-23, 1985.

Jeffery C. Lagarias, Victor S. Miller, and Andrew M. Odlyzko. Computing 7r(x): The Meissel-Lehmer
method. Mathematics and Computations, 44:537-560, 1985.

S. Lakshmivarahan and Sudarshan Dhall. Analysis and design of parallel algorithms. McGraw Hill,
New York, 1990.

Edmund Landau. Verteilung der Primzalen, volume I. Chelsa, New York, 1953. Original edition in
1909 by Teubner, Leipzig.

Peter S. Landweber. Three theorems on phrase-structure grammars of type 1. Information and Control,
6:131-136, 1963.

Derrick H. Lehmer. Mathematical methods in large-scale computing. In Proceedings of 2nd
Symposium on Large-Scale Digital Calculating Machinery, pages 141-146. Harward University
Press, Cambridge, 1951.

F. Thomson Leighton. New lower bound techniques for VLSI. In Proceedings of 22nd IEEE FOCS,
pages 1-12, 1981.

F. Thomson Leighton. Introduction to parallel algorithms and architectures. Morgan Kaufman, San Mateo,
California, 1992.

F. Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish B. Rao. Randomized routing
and sorting in fixed connection network. Journal of Algorithms, 17(1):157-205, 1992.

Charles E. Leiserson. Area efficient graph algorithms (for VLSI). In Proceedings of 21th IEEE FOCS,
pages 270-281, 1980.

BIBLIOGRAPHY U 657

Charles E. Leiserson. Area efficient VLSI computation. MIT Press, Cambridge, Mass., 1983.

Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner, Stuttgart,
Chichester, 1990a.

Thomas Lengauer. VLSI theory. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Volome A, Algorithms and Complexity, pages 835-868. Elsevier, Amsterdam, 1990b.

Arjen K. Lenstra, Hendrik W. Lenstra, Mark. S. Manasse, and John M. Pollard. The factorization of
the ninth Fermat number. Mathematics and Computation, 61:319-349, 1993.

Leonid A. Levin. Universal sequential search problems (in Russian). Problems Information Transmission,
9:265-266, 1973.

Leonid A. Levin. Average-case complete problems. SIAM Journal of Computing, 15:285-286, 1986.
(Preliminary version appeared in Proceedings of 16th ACM STOC, page 465, 1984).

Harry R. Lewis. Complexity of solvable cases of the decision problems for predicate calculus. In
Proceedings of 19th IEEE FOCS, pages 35-47, 1978.

Harry R. Lewis and Christos H. Papadimitriou. Elements of theory of computation. Prentice Hall,
Englewood Cliffs, 1981.

Philip M. Lewis, Richard E. Steams, and Juris Hartmanis. Memory bounds for recognition of
context-free and context-sensitive languages. In Proceedings of 6th IEEE, Annual Symposium
on Switching Circuits Theory and Logic Design, pages 191-202, 1965.

Ming Li and Paul Vitinyi. An introduction to Kolmogorov complexity and its applications. Springer-Verlag,
New York, Berlin, 1993.

David Lichtenstein and Michael Sipser. GO is polynomial space hard. Journal of the ACM, 27:393-401,
1980.

Shen Lin and Tibor Rado. Computer studies of Turing machine problems. Journal of the ACM,
12(2):196-212, 1965.

Aristid Lindenmayer. Mathematical models for cellular automata in development, I and II. Journal
of Theoretical Biology, 18:280-315, 1968.

Richard J. Lipton. Some consequences of our failure to prove non-linear lower bounds on explicit
functions. In Proceedings of 35th IEEE FOCS, pages 79-87, 1994.

Richard J. Lipton and Robert Sedgewick. Lower bounds for VLSI. In Proceedings of 13th ACM STOC,
pages 300-307, 1981.

Richard J. Lipton and Robert E. Tarjan. A planar graph separator. SIAM Journal ofApplied Mathematics,
36(2):177-189, 1979.

Ldszl6 Lovisz. Computational complexity. Lecture notes, Dept. of Computer Science, Princeton
University, 1995.

Alexander Lubotzky, Robert G. Phillips, and P. Sank. Ramanuyan graphs. Combinatorica, 8:261-277,
1988.

Michael Luby. Pseudorandomness and cryptographic applications. Princeton University Press, 1996.

Edouard Lucas. Ricriations mathdmatiques, volume 4. Gauthier-Villas, Paris, 1891-1894.

George S. Luecker. Some techniques for solving recurrences. Computing Surveys, 12(4):419-436, 1980.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nissan. Algebraic methods for interactive
proof systems. In Proceedings of 31th IEEE FOCS, pages 2-10, 1990.

658 U FOUNDATIONS OF COMPUTING

Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimalization problems.
In Proceedings of 25th ACM STOC, pages 286-295, 1993.

Oleg B. Lupanov. Comparison of finite sources of two types (in Russian). Problems of Cybernetics,
9:321-326, 1963.

Saunders Mac Lane and Garrett Birkhoff. Algebra. The Macmillan Company, New York, 1967.

Michael Machtey and Paul Young. An introduction to the general theory of algorithms. North Holland,
New York, 1978.

Anatolij I. Malcev. On homomorphisms of finite groups (in Russian). Ivanov. Gos. Ped. Inst. Uchen.
Zap., 18:49-60, 1958.

Anatolij I. Malcev. Algorithms and recursivefunctions (in Russian). Nauka, Moskva, 1965.

Andrei A. Markov. The impossibility of certain algorithms in the theory of associative systems (in
Russian). DAN, 55 and 58:587-590 and 353-356, 1947.

Heiner Marxen. Attacking the busy beaver 5. Bulletin of EATCS, 40:247-251, 1990.

Yuri V. Matiyasevich. Diofantine representation of enumerable predicates (in Russian). Izvestija
Akademii Nauk, seria Matematichnaja, 35:3-30, 1971.

Yuri V. Matiyasevich. Hilbert's Tenth Problem. The MIT Press, Cambridge, Massachussets, London,
1993.

Hermann A. Maurer. Theoretische Grundlagen der Programmier-Sprachen-Theorie der Syntax. BI
Hochschul-Taschenbucher Band 484, Bibl. Institut Mannheim, 1969.

Hermann A. Maurer, Grzegorz Rozenberg, and Emo Welzl. Using string languages to describe picture
languages. Information and Control, 54:155-185, 1982.

Jacques Mazoyer. A six-state minimum time solution to the firing squad synchronization problem.
Theoretical Computer Science, 50(2):183-240, 1987.

Jacques Mazoyer. An overview of the firing squad problem. In C. Choffrut, editor, Automata networks,
pages 82-93. LNCS 316, Springer-Verlag, Berlin, New York, 1988.

Warren McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activities.
Bulletin Mathematical Biophysics, 5:115-133, 1943.

Robert McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521-530, 1966.

Gregory H. Mealy. Methods for synthetizing sequential circuits. Bell System Techn. Journal,
34:1045-1079, 1955.

Robert Meersman and Grzegorz Rozenberg. Cooperating grammar systems. In J. Winkowski, editor,
Proceedings MFCS'78, pages 364-374. LNCS 78, Springer-Verlag, 1978.

Kurt Mehlhorn. Data structures and algorithms I- III. Springer-Verlag, Berlin, New York, 1984.

Kurt Mehlhorn and Franco P. Preparata. Area-time optimal VLSI integer multiplier with minimum
computation time. Information and Control, 58:137-156, 1983.

Kurt Mehlhom and Erik M. Schmidt. Las Vegas is better than determinism in VLSI and distributed
computing. In Proceedings of 14th ACM STOC, pages 330-337, 1982.

Ralf Merken, editor. The universal Turing machine: a half century survey. Kammer & Univerzagt,
Hamburg, 1988.

Ralp C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsack.
IEEE Transactions on Information Theory, 24(5):525-530, 1978.

BIBLIOGRAPHY N 659

- Albert R. Meyer and Michael J. Fischer. Economy of description by automata, grammars and formal
systems. In Proceedings of 12th IEEE FOCS, pages 188-191, 1971.

Friedhelm Meyer auf der Heide. Efficient simulations among several models of parallel computers.
Journal of Computing, 15:106-119, 1986.

Friedhelm Meyer auf der Heide. Kommunikation in parallelen Rechnenmodellen. Lecture Notes,
Fachbereich Informatik, UniversitAt-GH Paderbom, 1992.

David L. Milgram and Azriel Rosenfeld. Array automata and array languages. In Information
Proceedings'71, pages 69-74. North-Holland, 1971.

Gary L. Miller. Riemann's hypothesis and tests for primality. Journalfor Computer and System Sciences,
13:300-317, 1976.

Zevi Miller and Hal I. Sudborough. Compressing grids into small hypercubes. Networks,
24(6):327-358, 1994.

Marvin L. Minsky. Size and structure of universal Turing machines using a tag system. In Recursive
function theory, Symposia in Pure Mathematics, V 5. American Mathematical Society, 1962.

Marvin L. Minsky. Computation:finite and infinite machines. Prentice-Hall, Englewood Cliffs, 1967.

Chris J. Mitchell, Fred Pipper, and P. Wild. Digital signatures in contemporary cryptography. In G. J.
Sinnars, editor, The science of information integrity, pages 327-377. Piscatoway, N.J, IEEE Press,
1992.

Burkhard Monien. Two-way multihead automata over a one-letter alphabet. RAIRO Informatique
Thdorique et Application, 14:68-82, 1980.

Burkhard Monien. The problem of embedding trees into binary trees is NP-complete. In L. Budach,
editor, Proceedings of FCT'85, pages 300-309. LNCS 199, Springer-Verlag, Berlin, New York,
1985.

Burkhard Monien. Simulating binary trees on X-trees. In Proceedings of 3rd Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 147-158. ACM, New York, 1991.

Burkhard Monien and Hal I. Sudborough. Simulating binary trees on hypercube. In J. Reif, editor,
Proceedings ofAegearn Workshop on Computing: VLSIAlgorithms and Architectures-A WOC-88, pages
170-180. LNCS 319, Springer-Verlag, New York, Berlin, 1988.

Burkhard Monien and Hal I. Sudborough. Embedding one interconnection network in another.
Computing Supplement 7, 7:257-282, 1990.

Rajeev Montwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University Press,
1995.

Edward F. Moore. Gedanken experiments on sequential machines. In C. E. Shannon and J. Mc Carthy,
editors, Automata Studies, pages 129-153, Princeton, 1956. Princeton University Press.

Edward F. Moore. Machine models of self-reproduction. In C. E. Shannon and J. Mc. Carthy, editors,
Proceedings of Symposia in Applied Mathematics, V 14, pages 17-33, 1962.

Kenichi Morita and Masateru Harao. Computation universality of one-dimensional reversible
(injective) cellular automata. Transactions of IEICE, E 72(3):213-231, 1989.

Kenichi Morita, Akihiko Shirasaki, and Yoshifumi Gono. A 1-tape 2-symbol reversible Turing
machine. Transactions of the IEICE, E 72(3):223-228, 1989.

David E. Muller. Infinite sequences and finite machines. In Proceedings of 4th IEEE Symposium on
Switching Theory and Logical Design, pages 3-10, 1963.

660 U FOUNDATIONS OF COMPUTING

David E. Muller and Franco P. Preparata. Bound to complexities of networks for sorting and switching.
Journal of the ACM, 22(2):195-201, 1975.

Myriam Muriel, Jean-Jacques Quisquater, and Louis C. Guillou. How to explain zero-knowledge
protocols to your children. In G. Brassard, editor, Proceedings of CRYPTO'89, pages 628-631.
LNCS 435, Springer-Verlag, Berlin, New York, 1990.

John Myhill. Finite automata and the representation of events. WADD Tech. Report, 57-624, Wright
Patterson Air Force Base, 1957.

John Myhill. Linear bounded automata. WADD Tech. Report, 60-165, Wright Patterson Air Force
Base, 1960.

John Myhill. The converse to Moore's Garden-of-Eden theorem. Proceedings of American Mathematical
Society, 14:685-686, 1963.

Moni Naor. Bit commitment using pseudo-randomness. In G. Brassard, editor, Proceedings of
CRYPTO'89, pages 128-136. LNCS 435, Springer-Verlag, Berlin, New York, 1990.

David Nassimi and Sartaj Sahni. Parallel algorithms to set up the Bene6 permutation network. IEEE
Transactions on Computers, 31:148-154, 1982.

Anil Nerode. Linear automaton transformations. Proceedings of American Mathematical Society,
9:541-544, 1958.

Petr S. Novikov. Algorithmic unsolvability of word problem for groups (in Russian). Transactions of
Steklov Mathematical Institute, 44, 1955. Translation: Amer. Math. Soc. Trans. 9, 1229, 1958.

Luke J. O'Conner and Jennifer Seberry. The cryptographic significance of the knapsack problem. Aegan
Park Press, Ca., 1987.

Piorgiorgio Odifredi. Classical recursion theory. North-Holland, Amsterdam, 1989.

Andrew M. Odlyzko. The 10
2
1-th zero of the Riemann zeta function and its 175 milions of its

neighbours. Preprint, IBM, 1988. To be published in a revised form with a different title.

Alon Orlitsky and Taher El Gamal. Complexity in Information Theory, Eds. Y Abu Mostafa, chapter
Communication complexity. Springer-Verlag, Berlin, New York1988.

Rafail Ostrovsky and Avi Wigderson. One-way functions are essential for non-trivial zero-knowledge.
In Proceedings of 2nd Israel Symposium on Theory of Computing and Systems, pages 3-17. IEEE, Los
Alamitos, 1993.

Victor Ya. Pan. How to multiply matrices fast. LNCS 179, Springer-Verlag, Berlin, New York, 1984.

Christos H. Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288-301,
1985.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Mass., 1994.

Christos H. Papadimitriou and Michael Sipser. Communication complexity. In Proceedings of 14th
ACM STOC, pages 196-200, 1982.

Christos H. Papadimitriou and Michael Sipser. Communication complexity. Journal of Computer and
System Sciences, 28:260-269, 1984.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization, algorithms and complexity.
Prentice-Hall, Englewood Cliffs, 1982.

Ian Parbery. Circuit complexity and neural networks. The MIT Press, Cambridge, Mass., 1994. 270 p.

Michael S. Paterson, Walter L. Ruzzo, and Larry Snyder. Bounds in minimax edge length for complete
binary trees. In Proceedings of 13th ACM STOC, pages 293-299, 1981.

BIBLIOGRAPHY U 661

Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal of Computer
and System Sciences, 33:106-123, 1986.

Gheorgh Paim. Grammar systems. In F. G~cseg, Z. Fl6p, editors, Proceedings of ICALP'95, pages
429-443. LNCS 944, Springer-Verlag, Berlin, New York, 1995.

Azaria Paz. Introduction to probabilistic automata. Academic Press, New York, 1971.

Azaria Paz and Arto Salomaa. Integral sequential word functions and growth equivalence of
Lindenmayer systems. Information and Control, 23:313-343, 1973.

Heintz-Otto Peitgen, Hartmut Jiurgens, and Dietmar Saupe. Chaos andfractals. Springer-Verlag, New
York, 1992.

Roger Penrose. The emperor's new mind. Oxford University Press, Oxford, 1990.

St~phane Perennes. Broadcasting and gossiping on de Bruijn, shuffle-exchange and similar networks.
Technical report, UNSA, CARS-URA, Valbaine-France, 1995.

Dominique Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B, Formal Models and Semantics, pages 1-58. Elsevier, Amsterdam, 1990.

R6zsa P~ter. Recursive Funktionen. Akad~miai Kiad6, Budapest, 1951. English translation: Recursive
Functions, Academic Press, New York, London, 1967.

Nicholas Pippenger. On simultaneous resource bounds. In Proceedings of 20th IEEE FOCS, pages
307-311, 1979.

Nicholas Pippenger. Communication networks. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume A, Algorithms and Complexity, pages 805-833. Elsevier, Amsterdam,
1990.

Nicholas Pippenger and Michal Fischer. Relations among complexity measures. Journal of the ACM,
26:361-381, 1979.

Joan B. Plumstead. Inferring a sequence generator by a linear congruence. In Proceedings of23rd IEEE
FOCS, pages 153-159, 1982.

Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Transactions on Information Theory, IT-24:106-110,
1978.

Emil L. Post. Formal reductions of the general combinatorial decision problems. American Journal of
Mathematics, 65:197-215, 1943.

Emil L. Post. Recursively enumerable sets of positive integers and their decision problems. Bulletin
of the American Mathematical Society, 50:284-316, 1944.

Emil L. Post. A variant of recursively unsolvable problems. Bulletin of the American Mathematical
Society, 52:264-268, 1946.

Vaughan R. Pratt. Every prime has a succinct certificate. SIAM Journal of Computing, 4:214-220, 1975.

Franco P. Preparata and Jean-Etienne Vuillemin. The cube-connected cycles: a versatile network for
parallel computation. Communications of the ACM, 24(5):300-309, 1981.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical recipes:
the art of scientoc computing. Cambridge University Press, 1986.

Lutz Priese. Towards a precise characterization of the complexity of universal and nonuniversal
Turing machines. SIAM Journal of Computing, 8(4):508-523, 1979a.

662 3 FOUNDATIONS OF COMPUTING

Lutz Priese. Ober eine minimale universelle Turing Machine. In K. Weihrauch, editor, Proceedings of
4th GI Conference on TCS, pages 244-259. LNCS 67, Springer-Verlag, Berlin, New York, 1979b.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer-Verlag,
Berlin, New York, 1990.

Paul W. Purdom and Cynthia A. Brown. The analysis of algorithms. Holt, Rinehart and Winston, New
York, 1985.

Michael 0. Rabin. Degree of difficulties of computing a function and a partial ordering of recursive
sets. Tech. Rep. 2, Hebrew University, Jerusalem, 1960.

Michael 0. Rabin. Probabilistic automata. Information and Control, 6(3):230-244, 1963.

Michael 0. Rabin. Mathematical theory of automata. In Proceedings of Symposium in Applied
Mathematics, V 19, pages 153-175. American Mathematical Society, 1966.

Michael 0. Rabin. Decidability of second order theories and automata on infinite trees. Transactions
of American Mathematical Society, 141:1-35, 1969.

Michael 0. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity: Recent
Results and New Directions, pages 21-36, New York, 1976. Academic Press.

Michael 0. Rabin. Digital signatures and public key functions as intractable as factorization. Technical
Report TR 212, MIT Laboratory for Computer Science, January 1979.

Michael 0. Rabin. Probabilistic algorithm for primality testing. Journal of Number Theory, 12:128-138,
1980.

Michael 0. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken
Computation Laboratory, Harward University, 1981.

Michael 0. Rabin and Dana Scott. Finite automata and their decision problems. IBM Journal Research

and Development, 3(2):115-125, 1959.

Tibor Rado. On noncomputable functions. Bell System Technical Journal, 41:877-884, 1962.

Peter Raj~ani. Application of weighted finite automata and transducers to image processing. PhD thesis,
Department of Computer Science, University of Southern Carolina, 1995.

Abhiram G. Ranade. How to simulate shared memory. Journal of Computer and System Sciences,
42:307-326, 1991.

Sanjay Ranka and Sartaj Sahni. Hypercube Algorithms. Springer-Verlag, Berlin, New York, 1990.

John H. Reif and Leslie G. Valiant. A logarithmic time sort for linear size networks. In Proceedings of
15th ACM STOC, pages 10-16, 1983.

Karl R. Reischuk. Einfihrung in die Komplexitditstheorie. Teubner, Sttutgart, 1990.

Paulo Ribenboim. The new book of prime number records. Springer-Verlag, Berlin, New York, 1996.

Henry G. Rice. Classes of recursively enumerable sets and their decision problems. Transaction of the
American Mathematical Society, 74:358-366, 1953.

Daniel Richardson. Tesselation with local transformations. Journal of Computer and System Sciences,
6:373-385, 1972.

Ronald L. Rivest. Cryptography. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Volume A, Algorithms and Complexity, pages 718-755. Elsevier, Amsterdam, 1990.

Ronald L. Rivest and Adi Shamir. How to expose an eavesdropper. Communication of the ACM,
27(4):393-395, 1984.

BIBLIOGRAPHY 3 663

Ronald L. Rivest, Adi Shamir, and Leonard A. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, Febr. 1978.

Hartley Rogers. Theory of recursivefunctions and effective computability. McGraw-Hill, New York, 1967.

Yurii Rogozhin. On the notion of universality and small universal Turing machines. Theoretical
Computer Science, 168:215-240, 1996.

Keneth H. Rosen. Discrete mathematics and its applications. McGraw-Hill, New York, 1981.

Arnold L. Rosenberg. On multi-head finite automata. IBM Journal of Research and Development,
10:388-394, 1966.

Daniel J. Rosenkrantz, Richard E. Steams, and Philip M. Lewis. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal of Computing, 6:563-581, 1977.

J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6:64-94, 1962.

Grzegorz Rozenberg. An introduction to the NLC way of rewriting systems. In H. Ehrig, M. Nagl,
G. Rozenberg, and A. Rosenfeld, editors, Proceedings of 3rd Graph Grammars Workshop, pages
55-66. LNCS 291, Springer-Verlag, Berlin, New York, 1987.

Grzegorz Rozenberg and Arto Salomaa. The mathematical theory of L systems. Academic Press, New
York, London, 1980.

Grzegorz Rozenberg and Arto Salomaa. Cornerstones of undecidability. Prentice-Hall, Englewood
Cliffs, 1994.

Grzegorz Rozenberg and Emo Welzl. Boundary NLC graph grammars-basic definitions, normal
forms and complexity. Information and Control, 69:136-167, 1986.

Walter L. Ruzzo. Tree-size bounded alteration. Journal of Computer and System Sciences, 21(2):218-235,
1980.

Wojciech Rytter. On the recognition of context-free languages. In A. Skowron, editor, Proceedings of
Computation Theory, pages 318-325. LNCS 208, Springer-Verlag, Berlin, New York, 1984.

Arto Salomaa. Theory of Automata. Oxford, Pergammon Press, 1969.

Arto Salomaa. Formal languages. Academic Press, New York, London, 1973.

Arto Salomaa. Computation and Automata. Cambridge University Press, 1985.

Arto Salomaa. Public-key cryptography. Springer-Verlag, Berlin, New York, 1990.

John E. Savage. The complexity of computing. John Wiley, New York, London, 1986.

Matieu W.P. Savelsbergh and Peter van Emde Boas. Bounded tiling, an alternative to satisfiability.
In G. Wechsung, editor, Proceedings of 2nd Frege Conference, pages 354-363. Mathematische
Forschung 20, Academie Verlag, Berlin, 1984.

Walter J. Savitch. Relationship between nondeterministic and deterministic tape classes. Journal of
Computer and System Sciences, 4:177-192, 1970.

Thomas J. Schifer. Complexity of some two person perfect information games. Journal of Computer

and System Sciences, 16:185-225, 1978.

Bruce Schneier. Applied cryptography, Second Edition. Wiley, New York, Chichester, 1996.

Georg Schnitger and Christine Schmetzer. Kommunikationstheorie. Lecture Notes, Fachbereich
Informatik, Universitit-GH Paderborn, 1994.

664 3 FOUNDATIONS OF COMPUTING

Claus-Peter Schnorr. The network complexity and the Turing machine complexity of finite functions.
Acta Informatica, 7:95-107, 1976.

Claus-Peter Schnorr. Efficient signatures for smart cards. Journal.of Cryptology, 4(3):161-174, 1991.

Arnold Sch6nhage. On the power of random access machines. In H. A. Maurer, editor, Proceedings of
ICALP'79, pages 520-529. LNCS 71, Springer-Verlag, Berlin, New York, 1979.

Arnold Schonhage and Volker Strassen. Schnelle Multiplikationen grosser Zahlen. Computing,
7:281-292, 1971.

Amir Schorr. Physical parallel devices are not much faster than sequential ones. Information Processing
Letters, 17:103-106, 1983.

Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
2(4):484-521, 1980.

Robert Sedgewick and Philippe Flayolet. An introduction to the analysis of algorithms. Addison-Wesley,
Reading, Mass., 1996.

Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Refinment of nondeterministic time and space
hierarchies. In Proceedings of 14th IEEE FOCS, pages 130-137, 1973.

Adi Shamir. Factoring numbers in O(lg n) arithmetical steps. Information Processing Letters, 8(1):28-31,
1979.

Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In
Proceedings of 23rd IEEE FOCS, pages 145-152, 1982.

Adi Shamir. IP = PSPACE. Journal of the ACM, 39:869-877, 1992. Preliminary version in Proceedings
of 31th IEEE FOCS, 1990, 11-15.

Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental poker. In D. A. Klarner, editor, The
mathematical gardner, pages 37-43. Wadsworth International, Belmont, 1981.

Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,
28:656-715, 1949.

Claude E. Shannon. The synthesis of two terminals switching circuits. Bell Systems Technical Journal,

28:59-98, 1949a.

Claude E. Shannon. A universal Turing machine with two internal states. In Automata Studies, Annals
of Mathematical Studies 34, Princeton, 1956.

Alexander Shen. IP = PSPACE. Simplified proof. Journal of the ACM, 34(4):878-880, 1992.

John C. Shepherdson. The reduction of two-way automata to one-way. IBM Journal of Research,
3:198-200, 1959.

John C. Shepherdson and Howard E. Sturgis. Computability of recursive functions. Journal of the
ACM, 10(2):217-255, 1963.

Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging and sorting in parallel computation
models. Journal of Algorithms, 4:88-102, 1981.

Peter W. Shor. Algorithms for quantum computation; discrete logarithms and factoring. In Proceedings
of 35th IEEE FOCS, pages 116-123, 1994.

Daniel R. Simon. On the power of quantum computation. In Proceedings of 35th IEEE FOCS, pages
116-123, 1994.

Seppo Sippu and Eljas Soisalon-Soininen. Parsing theory, I, II. Springer-Verlag, Berlin, New York,
1990.

BIBLIOGRAPHY U 665

Michael Sipser. The history and status of the P versus NP problem. In Proceedings of24th ACM STOC,
pages 603-618, 1992.

Miles E. Smid and Dennis K. Branstead. The data encryption standards: past and future. Proceedings
of IEEE, 76(5):550-559, 1988.

Carl H. Smith. A recursive introduction to the theory of computation. Springer-Verlag, Berlin, New York,
1994.

P. Smith and M. J. J. Lennon. LUC-a new public-key system. In E. G. Dougall, editor, Proceedings
of IFIP TC11 Ninth International Conference on Information Security, IFIP Transactions, A-37, pages
103-112. Elsevier, Amsterdam, 1993.

Ray J. Solomonoff. A preliminary report on a general theory of inductive inference. Tech. Rep.
ZTB-138, Zator Company, Cambridge, November 1960.

Robert M. Solovay and Volker Strassen. A fast Monte Carlo test for primality. SIAM Journal of
Computing, 6:84-85, 1977.

Siang W. Song. On a high performance VLSI solution to database problems. PhD thesis, Department of
Computer Science, Carnegie-Mellon University, Pittsburg, 1981.

William Stallings. Network and internetwork security. Prentice Hall, Englewood Cliffs, 1995.

Peter H. Starke. Theorie der stochastischen Automaten I, II. Journal of Information processing and
Cybernetics, ElK, 1:5-32, 71-98, 1965.

Peter H. Starke. Abstrakte Automaten. VEB Deutscher Verlag der Wissenschaften, Berlin, 1969. English
translation, "Abstract Automata" published by North-Holland, Amsterdam in 1972.

Larry J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Science, 3:1-22, 1976.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time. In Proceedings
of 5th ACM STOC, pages 1-9, 1973.

Harold S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on Computers,
C-20(2):153-161, 1971.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 3:354-356, 1969.

Madhu Sudan. Efficient checking of polynomials and proofs and the hardness of approximation problems.
PhD thesis, CS Division, UC Berkeley, 1992. Available as "ACM Distinguished Theses, LNCS
1001, Springer-Verlag".

R6bert Szelepcs~nyi. The method of forcing 'for nondeterministic automata . Bulletin of EATCS,
33:96-100, 1987.

Wolfgand Thomas. Finite state strategies in regular infinite games. In P. S. Thiagarajan, editor,
Proceedings of Foundations of Software Technology and Theoretical Computer Science, pages 149-158.
LNCS 880, Springer-Verlag, 1994.

Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B, Formal Models and Semantics, pages 133-186. Elsevier, Amsterdam,
1990.

Clark D. Thompson. Area-time complexity for VLSI. In Proceedings of 11th ACM STOC, pages 81-88,
1979.

Clark D. Thompson. A complexity theory for VLSI. PhD thesis, Computer Science Department,
Carnegie-Mellon University, 1980. CMU-CS-80-140.

666 U FOUNDATIONS OF COMPUTING

Axel Thue. Uber unendliche Zeichenreihen. Skrifter utgit av Videnskapsselskapet i Kristiania 1, (1-22),
1906.

Axel Thue. Probleme iiber Veranderungen von Zeichenreihen nach gegebenen Regeln. Skrifter utgit
av Videnskapsselskapet i Kristiania I, 10:34p, 1914.

Seinosuke Toda. On the computational power of PP and eP. In Proceedings of 30th IEEE FOCS, pages
514-519, 1989.

Tommaso Toffoli. Computation and construction universality of reversible cellular automata. Journal
of Computer and System Sciences, 15:213-231, 1977.

Tommaso Toffoli and Norman Margolus. Cellular automata machines. The MIT Press, Cambridge,
Mass., 1987.

Tommaso Toffoli and Norman Margolus. Invertible cellular automata, a review. Physica D, 45:229-253,
1990.

Boris A. Trakhtenbrot. Turing computations with logarithmic delays (in Russian). Algebra and Logic,
3(4):38-48, 1964.

Boris A. Trakhtenbrot and Jan Barzdin. Finite automata: behaviour and synthesis. Fundamental Studies
in Computer Science. North-Holland, Amsterdam, 1973.

Luca Trevisan. On the approximability of the multidimensional Euclidean TSP. Tech. report
SI/RR/96/15, University of Roma 1, 1996.

Alan M. Turing. On computable numbers, with applications to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230-265, 1936.

Jeffery D. Ullman. Computational aspects of VLSI. Computer Science Press, Rockville, Mass., 1984.

Eli Upfal. Efficient schemes for parallel communication. In Proceedings of the 10th ACM-SIGACT
Symposium on Principles of Distributed Computing, pages 55-59. ACM, New York, 1991.

Eli Upfal and Avi Wigderson. How to share memory in a distributed system. Journal of the ACM,
34:116-127, 1987.

Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of Computer and
System Sciences, 10:308-315, 1975.

Leslie G. Valiant. Relative complexity of checking and evaluating. Information Processing Letters,
5:20-23, 1976.

Leslie G. Valiant. The complexity of computing the permanet. Theoretical Computer Science, 8:189-201,
1979.

Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on VLSI Circuits,
C-30(2):135-140, 1981.

Leslie G. Valiant. A scheme for fast parallel communications. SIAM Journal of Computing,
11(2):350-361, May 1982.

Leslie G. Valiant. General purpose parallel architecture. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume A, Algorithms and Complexity, pages 945-971. Elsevier,
Amsterdam, 1990.

Leslie G. Valiant and Gorden J. Brebner. Universal schemes for parallel simulations. In Proceedings of
13th ACM STOC, pages 263-277, 1981.

Bartel L. van der Warden. Erwachsende Wissenschaft. Birkhiuser, Basel, 1966.

BIBLIOGRAPHY U 667

Peter van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings of 16th
IEEE FOCS, pages 75-84, 1975.

Peter van Emde Boas. Dominoes are forever. In Proceedings of 1st GTI Workshop Paderborn, pages
75-95. UH Paderborn, Reihe Theoretische Informatik, Bericht N. 13, Oct. 11-15 1982.

Jan van Leeuwen and Juraj Wiedermann. Array processing machines: an abstract model. BIT,
27:25-43, 1987.

Paul Vitinyi. Multiprocessor architectures and physical law. In Proceedings of the 3rd Workshop on
Physics and Computation, pages 24-29. IEEE Computer Society Press, 1994.

Paul Vitinyi. Physics and the new computation. In P. Hajek and J. Wiedermann, editors, Proceedings
of MFCS'95, pages 106-128. LNCS 969, Springer-Verlag, Berlin, New York, 1995.

Roland Vollmar. Algorithmen in Zellularautomaten. Teubner, Stuttgart, 1979.

Roland Vollmar and Thomas Worsch. Modelle der Parallelverarbeitung. Teubner, Stuttgart, 1995.

John von Neumann. The general and logical theory of automata. In Cerebral Mechanisms in
Behaviour-The Nixon Symposium, pages 1-41, Pasadena, 1951. (Also in: John von Neumann,
Collected Works, Pergamon, Oxford, 1963, 288-328.)

John von Neumann. Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966.
Edited and completed by A. W. Burks.

Jean-Etienne Vuillemin. A combinatorial limit to the power of VLSI circuits. In Proceedings of 12th
ACM STOC, pages 294-300, 1980.

Jozef VyskoL A note on the power of integer division. Information Processing Letters, 17:71-72, 1983.

Alan Wagner. Embedding arbitrary trees in the hypercube. Journal of Parallel and Distributed
Computing, 7:503-520, 1987.

Alan Wagner and Dereck G. Corneil. Embedding trees in a hypercube is NP-complete. SIAM Journal
on Computing, 19(3):570-590, 1990.

Klaus Wagner and Gerd Wechsung. Computational Complexity. VEB Deutscher Verlag der
Wissenschaften, Berlin, 1986.

Abraham Waksman. An optimum solution to the firing squad problem. Information and Control,
9:66-78, 1966.

Jie Wang. Average-case computational complexity theory. In L. Hemaspandra and A. Selman, editors,
Complexity theory retrospectives II, page 34. Springer-Verlag, Berlin, New York, 1996.

Patrick S.-P. Wang, editor. Array grammars, patterns and recognizers. World Scientific Publisher Series
in Computer Science, Singapore, V 18, 1989.

Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11-12, 1962.

Ingo Wegener. The complexity of Boolean functions. Teubner-Wiley, Stuttgart, Chichester, 1987.

Klaus Weihrauch. Computability. Springer-Verlag, Berlin, 1987.

Bruno Weimann, K. Casper, and W. Fenzl. Untersuchungen uber haltende Programme fuir Turing
Machinen mit 2 Zeichen and bis zu 5 Befehlen. In 2-Jahrestagung, Lecture Notes in Economics and
Mathematical Systems, V78, pages 77-81. Springer-Verlag, Berlin, 1973.

Juraj Wiedermann. Parallel Turing machines. Tech. Rep. RUU-CS-84-11, Dept. of Computer Science,
Utrecht University, 1984.

Juraj Wiedermann. Quo vaditas, parallel machine models. In J. van Leeuwen, editor, Computer science
today, pages 101-114. LNCS 1000, Springer-Verlag, 1995.

668 U FOUNDATIONS OF COMPUTING

Shmuel Winograd. Arithmetic complexity of computation. SIAM, Philadelphia, 1980.

Stephen Wolfram. Statistical mechanics of cellular automata. Revue of Modern Physics, 55:601-644,
1983.

Stephen Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35, 1984.

Stephen Wolfram. Theory and applications of cellular automata. World Scientific Press, Singapore, 1986.

Celia Wrathall. Complete sets for polynomial time hierarchy. Theoretical Computer Science, 3:23-34,
1976.

A. Wu. Embedding of tree networks into hypercubes. Journal of Parallel and Distributed Computing,
2(3):3-12, 1985.

Andrew C. Yao. Some complexity questions related to distributed computing. In Proceedings of 11th
ACM STOC, pages 209-213, 1979.

Andrew C. Yao. The entropic limitations on VLSI computations. In Proceedings of 13th ACM STOC,
pages 308-311, 1981.

Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd ACM FOCS, pages
160-164, 1982a.

Andrew C. Yao. Theory and applications of trapdoor functions. In Proceedings of 23rd IEEE FOCS,
pages 80-91, 1982b.

Andrew C. Yao. Lower bounds by probabilistic arguments. In Proceedings of 25th IEEE FOCS, pages
420-428, 1983.

Andrew C. Yao and Ronald L. Rivest. k + 1 heads are better than k heads. Journal of the ACM,
25:337-340, 1978.

Daniel H. Younger. Recognition and parsing of context-free languages in time n3. Information and
Control, 10(189-208), 1967.

Jean-Baptiste Yunes. Seven-state solutions to the firing squad problem. Theoretical Computer Science,
127:313-332, 1994.

Don Zagier. The first 50 million prime numbers. Mathematical Intelligencer, 0:7-19, 1977.

Viktoria Zank6. #P-completeness via many-one reductions. International Journal on Foundations of
Computer Science, 2:77-82, 1991.

Index

n(generalized intersection), 79 Z. (residue class modulo n), 44
U (generalized union), 79 Z*, cyclic, 53
(& (generalized Cartesian product), 79 V (Boolean OR), 102
* (set intersection), 79 A (Boolean AND), 102
u (set union), 79 A' (polynomial hierarchy), 353
U (set partition), 79 O-estimation, 33, 36
0 (empty set), 78 O-expression, 36
E (element inclusion), 78 0-notation, 28-37, 70
eD (random selection), 78 manipulations with, 36
§ (element non-inclusion), 78 o-notation, 34, 70
C (subset notation), 78 e-notation, 3, 28, 31-37, 67, 70
C (proper subset notation), 78 (1-notation, 28, 31-35, 37, 70
C (proper subset notation), 78 IIp (polynomial hierarchy), 353
=L (prefix equivalence), 176 7r(n) (number of primes), 43, 76
-L (syntactical equivalence), 176 p(n), 336

S(satisfiability relation), 105 E* (set of words), 128
-(growth relation), 29 E' (set of w-words), 128
ý-m (step relation), 218 E" (set of ww-words), 128
[1 (ceiling function), 14 El (polynomial hierarchy), 353
[n / mj (quotient of n divided by m), 41 4-TimeProc(t(n),p(n)), 271

Li (floor function), 14 x'(G) (chromatic index), 121
_< (many-to-one reducibility), 306 X(G) (chromatic number), 122

•-4c (NC reducibility), 352 X2-test, 60
< (Turing reducibility), 306 Q (number of wisdom), 406
_<g (logspace reducibility), 306 Q (probability space), 53

lg (binary logarithm), 16 (1-notation, 28, 31-35, 37, 70
In (natural logarithm), 16 w-expression regular, 192
log (decimal logarithm), 16 w-language, 79, 129, 137, 196, 211
C (complex numbers), 79 regular, 192-194, 211
N (nonnegative integers), 79 w-string, 79, 128
N' (positive integers), 79 wwv-language, 129
Q (rationals), 79 Lw-language regular, 212
R (reals), 79
R' (positive reals), 79 0L-system, 445, 447, 449-451, 460
Z (integers), 79 stochastic, 450
Z, (residue class modulo n of integers tree, 449

relatively prime to n), 44

670 U FOUNDATIONS OF COMPUTING

2-CNF, 361 modem, 152
2-CNFF, 331 algorithm, xiii, 2, 4-6, 34, 36, 40-41, 50-53,
2-COLOURABILITY, 362 57-58, 61, 64, 67-70, 89, 95-96,

105-107, 113, 125, 131, 133, 149,
3-CNF, 314 165-168, 173, 175, 190-191, 194, 206,
3-CNFF, 314 222-227, 235, 237, 242, 246-247,
3-COLOURABILITY, 362 264-271,294, 301,304-305, 315,
3-PARTITION, 320 319-321,336-345!, 352, 358, 365-366,

370, 383, 385, 399-400, 404, 412,
AC (complement of A), 79 419-420, 438-440, 452, 462, 476-482,
A[n,d] ((n,d)-array), 536 486-493, 497, 520, 522, 526, 534,
AC (address counter), 237 543-546, 549-550, 554-555, 565-566,
ACCEPT, 217 570, 580-581,597, 600, 608, 620, 633
acceptance accumulation, 548

by a NTM, 299 approximation, 68, 319, 335-342, 346, 363,
by clear majority, 347 366, 500, 515, 626
by majority, 347 randomized, 346
Las Vegas, 347 ascend/descend, 544, 557
Monte Carlo, 348 multiple, 570

one-sided, 347 BEP, 65
two-sided, 347 broadcasting, 548-551, 598

on PDA communication, 547-548, 605
by empty pushdown tape, 435 one-way, 547
by final state, 435 two-way, 547

acceptor, 83, 85-87, 156-158, 623 cryptographic, 500
finite state, 157 CYK, 438-439, 459, 462

accumulation, 534, 546, 548, 565 data distribution, 598, 601
accumulator, 237, 241-242, 264 decryption, 468, 470, 476-479, 484, 501
adder general, 468

binary, 253 design and analysis, 298, 351
one-bit, 252 design methodology, 298

addressing indirect, 237, 240, 242 deterministic, 49, 53, 60-61, 65, 67, 300,
adherence, 149 322, 325, 366, 485, 497
Adleman, Leonard M, 53, 76, 365-366, 484, 497, polynomial time, 61, 69, 108, 485, 607

531, 641, 663 divide-and-conquer, 9-10, 40, 95, 258, 543
Adleman-Hung's algorithm, 365 analysis of, 15, 39
Adleman-Manders-Miller's theorem, 49, 52 drawing, 134
adversary, 108, 467, 500, 521 efficient, 113, 297, 320, 331, 479

passive, 505 encryption, 468, 470, 476-480, 497
Aho, Alfred A, 76, 364-365, 462, 639, 641 general, 468
Aigner, Martin, 75, 641 public, 479
Akers, Sheldon B, 152, 601, 641 6-approximation, 336, 338
Akl, Selim G, 601, 641 exponential time, 68, 124, 335
al-KhovArizmi Mohammed ibn Musa, 222 exponentiation, 47
algebra, 43, 138, 391 feasible, 37, 68, 88

abstract, 142 for EREW PRAM, 291
Boolean, see Boolean algebra for hypercube, 601
Kleene, 138, 143-145, 152, 170 for networks, 542, 554
linear, 12, 447, 468, 613 genetic, 339

INDEX U 671

gossiping, 548, 552 ALU (arithmetical logical unit), 237
two-way, 547 Ammann, Robert, 386

greedy, 346, 570 Amoroso, Serafino, 295, 641
hashing (SHA), 493 ANAGRAM, 361
hypercube anagram, 474, 495

fully normal, 544 analysis
image compression, 213 asymptotic, 1, 28-36, 39, 67
integer multiplication, 28 average-case, 66, 601
iterative, 4 computational, 66
Las Vegas, 65, 76, 365, 485 of algorithms, 2, 17, 28-29, 33, 36, 39-42,
Markov, 462 75, 244, 380
merging, 89 average-case, 57
minimization, 212 computational, 34
Monte Carlo, 65, 365, 485 of computation, 16, 259
nondeterministic, 325 of computing systems, 28, 53
normal, 223, 570 of RSA, 485
optimization, 68 probabilistic, 601
parallel, 261, 267-268, 273, 352, 579 quantitative, 2

design methodology, 268, 294 syntactical, 462
parsing, 439-440, 462 ANP, 322
polynomial time, 37, 51-52, 61, 63, 68-69, AP, 322

76, 119, 126, 248, 305, 308, 313-314, Appel, Kenneth, 122, 641
318, 325, 331, 333, 336-341,431, applications
479-480, 487-489, 497, 510 cryptographic, 46

primality testing, 366 engineering, 247
randomized, 2, 49, 63-68, 335, 342-344, image processing, 185

348, 366, 485, 487, 490, 627 real-time, 66, 303
polynomial time, 49, 52-53, 108, 491, scientific, 247

520 approximability, 335, 338, 341, 515
recursive, 62 degree of, 341

recognition, 438, 440 approximation, 29, 38-39, 297, 319, 336
recursive, 4-6, 191 of TSP, 339
routing, 572 polynomial, 107, 530

greedy, 565, 580, 598, 601 scheme
oblivious, see greedy routing fully polynomial, 341, 342
randomized, 575 polynomial, 341, 366

sequential, 267 threshold, 336-339, 341, 363
signing, 493 asymptotic, 339, 363
simulation, 301, 578 APX, 342
Strassen's, 247 Ar, Sigal, 532, 642
string-matching, 213 arc
verification, 493 ingoing, 113
work-optimal, 268, 270, 294 outgoing, 113

algorithmic Archibald, Raymond A, 415, 642
entropy, 401 Archimedes, 392, 466
information, 401 Aristotle, 514

alphabet, 79, 127 arithmetic of congruences, 44
binary, 79 arithmetization, 512
English, 84, 468-473, 476, 481 of Boolean functions, 106, 511

672 U FOUNDATIONS OF COMPUTING

of quantifiers, 512 deterministic, 83
of Turing machines, 378 equivalence, 165

Arnold, Andre, 75, 151,642 finite, 157-161, 165, 167, 171-176, 181-182,
Arora, Sanjeev, 366, 531, 642 191, 195-197, 201-206, 209, 212-213,
array, 57, 536-538, 558, 592, 596, 598 217, 219, 277-286, 291-292, 300, 427,

d-dimensional, 536 626
linear, 537, 559, 570, 578, 598 2-head one-way, 204

sorted, 89 complete, 161, 209
unsorted, 89 deterministic, 161-163, 171-178, 193,

more dimensional, 534 195, 201,210, 410, 442, 627
one-dimensional, 547, 598 k-head one-way, 204
polymorphic, 557,601 k-head two-way, 204, 213
random access, 237 level weighted, 187
rewriting, 460 minimal, 163-166, 173, 176
sorted, 89 multi-head, 203, 206, 212
two-dimensional, 284, 463, 561, 571 multi-head nondeterministic, 207
unsorted, 90 nondeterministic, 153, 158, 162-163,

artificial intelligence, 217 200-201,212, 298, 627
life, 280 nondeterministic minimal, 212

assignment, 331 on infinite trees, 213
initial, 105 on infinite words, 191, 213
satisfying, 315, 317, 327, 333-334, 341, 345, one-head, 204

361-362, 511 one-way multi-head, 204
truth, 105-106, 345 probabilistic, 66, 153, 196-200, 211

associativity, 104, 397 reduced, 164
asymptotics, 28, 38 two-way, 153, 201-203, 212
Atkins, Derek, 487, 642 two-way nondeterministic, 202
atom, 67 weighted, 182-184, 212
attack, 496, 501 linearly bounded, 153, 205-208, 212, 217,

active, 501 424
against cryptographic protocol, 501 deterministic, 205, 213
chosen-cryptotext, 470 nondeterministic, 462
chosen-plaintext, 470 Muller, see Muller automaton
cryptoanalytic, 465, 470, 472, 477 probabilistic, 198
cryptotext-only, 470 pushdown, 428, 434-436, 441,444, 458,
known-encryption algorithm, 470 460, 462
known-plaintext, 470, 473 deterministic, 440, 459, 461
man-in-the-middle, 501 one-state, 442
passive, 501 unambiguous, 458

attacker, 501 Rabin-Scott, 213
man-in-the-middle, 502 randomized, 84

AT2-complexity, 603-607, 618, 621, 623, 640 reactive, 193
AT 2-theorem, 618 stochastic, 200
Ausiello, Giorgio, 366, 642 tree, 178, 210
authenticator, 112 two-way nondeterministic, 201
automaton, xiii, 2, 64, 66, 83-88, 113, 153, 157, automorphism, 115, 593

193, 197, 417, 420-422, 434 avalanche effect, 470, 477
Buichi, see Buichi automaton axiom, 404, 445-448, 452, 455, 460
cellular, see cellular automata iteration law, 144

INDEX U 673

Bd (butterfly), 536 Bilardi, Gianfranco, 640, 644
Babai, Ldszl6, 366, 415, 531-532, 642, 649 Billingsley, Patrick, 76, 644
Bachmann, Paul H, 31 bin() (binary repres. of integers), 81
backtracking, 124 BIN-PACKING, 339, 362
Bacon, Francis R, 469 binary string, 350
Bacon, Robert, 78 Bini, Dario, 247
bag, 145 binomial heap, 132
Bailly, Christian, 154, 642 bipartition, 116, 120
Baker, Theodore P, 365, 642 Birkhoff, Garrett, 152, 658
Balcizar, Jos6 L, 364-366, 531, 642 birthday paradox, 74
Bar-Hillel, Yehoshu, 212, 462, 643 bisection, 549
Bar-Hillel's pumping lemma, 441 bisection-width, 117, 539-542, 589, 597, 600
Barnes, Bruce H, 213, 643 bit
Barzdin, Jan, 212, 666 commitment scheme, 500
Batcher, Kenneth E, 600, 643 least significant, 7
Bauderon, Michel, 463, 643 left-most, 81
Bauer, Friedrich L, 497, 643 pseudo-random, 60, 62
Bayes' theorem, 54 random, 53, 60, 62, 112, 509, 627, 639
Bays, Carter, 295, 643 private, 507
BBS pseudo-random generator, 62, 76 black hole, 67
BEd (Beneg network), 567 matter, 67
behaviour Blum, Lenore, 76, 294, 365, 644

chaotic, 98 Blum, Manuel, 76, 497, 502, 531-532, 642, 644
of nature, 298 Blum, Norbert, 294, 645
randomized, 98 Blum integers, 51-52, 62, 75, 488

behaviour of CA, 278 Blum-Micali pseudo-random generator, 62, 76
chaotic, 279, 291 Bode's inequality, 54
complex, 279 Bondy, J. Adrean, 151, 645

Beigel, Richard, 212-213, 462, 531, 643, 649 Bonferroni's inequality, 54
Bellare, Mihir, 531, 643 Boole, George, 143
Ben-David, Shai, 365, 643 Boolean
Ben-Or, Michael, 531-532, 643 algebra, 103, 138, 143, 150, 152
benchmark, 2, 65, 68, 266 base, 102, 147, 250, 254, 290
Beneg, Viclav, 600-601, 643 circuit, 102, 250-261, 289-293, 330, 356,
Beneg network, 567-569, 598 361,363, 618, 632
Beneg-Slepian-Duguid's theorem, 567 complexity, 294
Bennett, Charles H, 295, 497, 643 depth complexity, 254
Bentley, Jon L, 76, 643 monotone, 255, 635
Berger, Roger L, 386, 415, 643 polynomial size, 349, 354
Berlekamp, Elwyn R, 76, 295, 643 randomized, 363
Berman, Leonard, 365, 652 size complexity, 254, 256, 294
Berman-Hartmanis' hypothesis, 318 universal, 290
Bernoulli's trials, 56, 59, 74 width complexity, 254
Berstel, Jean, 129, 643 expression, 103-106, 249-251, 293, 430
Bertol, Michael, 462, 644 formula, 103, 106, 147, 300, 311-317,
Bessette, Franqois, 497, 643 330-331,334, 344, 346, 348, 354-355,
Bhatt, Sandeep N, 601-602, 644 361-363,432, 511-512, 530, 607
bifurcator, 592 quantified, 367
bijection, 98 satisfiability, 300, 311-317, 431

674 U0 FOUNDATIONS OF COMPUTING

satisfiable, 432 space, 231-232, 237, 257, 273, 299
function, 77, 98, 102-103, 106, 131, 143, subexponential, 69

147, 151,250-251,254-257, 260, 276, subpolynomial, 69
289-290, 293, 329, 333, 363, 378, 489, superpolynomial, 69
604-610, 613, 616-620, 623-624, time, 231-232, 242, 257, 299, 302
631-633, 636-640 upper, 28, 67-70, 255, 304, 333, 352, 434,

AND, 103 549, 553, 569, 571,584, 587, 595, 600,
equivalence, 103 607, 612, 625, 627
explicit, 256, 294 asymptotical, 34, 248
implication, 103 BPP, 347, 350
monotone, 103, 635 Branstead, Dennis K, 497, 665
NAND, 103 Brassard, Gilles, 75-76, 497, 531, 643, 645
NOR, 103 Brattey, Paul, 75-76, 645
OR, 103 Brauer, Wilfried, 212-213, 645

gate, 250, 252-253, 255 bre() (binary repres. of reals), 81
matrix, 93-96, 118, 256, 266, 335, 372, 439, breaking

625, 638 DES, 477
addition, 95 KNAPSACK, 483
multiplication, 95, 131, 266, 273, 306, multiple-iterated knapsack, 483

439, 462, 530, 621 randomized encryptions, 492
symmetric, 81 Brebner, Gorden J, 601,666
transitive closure, 306 Brent, Richard P, 602, 645

network, 605 Brent's scheduling principle, 268
operation, 250,432, 605 Brickell, Ernest F, 483, 497, 645
set operations, 371 broadcasting, 534, 543, 546-552, 565, 601
string, 350 on de Bruijn graphs, 550
value, 79, 250, 607 on hypercube, 543
variable, 103, 10, 250, 331, 354 on shuffle-exchange graphs, 549vector, 314 Brown, Cynthia A, 76, 662bootstrapping, 38-39 Browning, Sally A, 601, 645

Borodin, Alan, 294, 601, 645 Brzozowski, John A, 212-213, 645

Borodin-Hopcroft's theorem, 571 Bucharaev, Rais G, 213, 645

bound, 59 Biichi, J. Richard, 213, 645

asymptotically tight, 34 Buchi automaton, 191-192, 211

Chernoff's, 345 deterministic, 193
depth, 256 nondeterministic, 192
lower, 28, 67, 70, 175, 213, 228, 304, 340, Biichi's theorem, 360

344, 398, 546, 549, 552, 559, 566-567, Biichi-Landweber's theorem, 195
584, 586, 600-601,609, 612-620, 623, buffer, 566, 571, 574, 598
626-627, 637 Burks, Arthur W, 645

asymptotical, 34, 256, 584 busy beaver function, 228
Held-Karp's, 340 problem, 293

on tails, 63 butterfly, 536-537, 540, 544-545, 554, 557,
polylogarithmic, 69 569-580, 587, 597-600
polynomial time, 329 back-to-back, 567, 569
ratio, 336, 515 network, 536, 543, 566, 570, 579-581, 598,
relative error, 336-341 600
size, 256 wrapped, 536, 553, 555, 560, 597

INDEX U 675

Caesar, Julius, 468 Chaitin, Gregory J, 398, 401, 408, 415, 646
calculus, 12-13, 16, 21, 25, 30, 65, 249, 298, 391 Chaitin complexity, 369, 397-405, 409, 415

predicate, 359, 397 conditional, 401
propositional, 105 Chaitin's theorem, 370, 406

Calude, Cristian, 415, 645 Chan, Mee-Yee, 601, 646
Campbell, Keith W, 497, 645 Chandra, Ashok K, 294, 639, 646
Cantor, Georg, 80, 84, 151 channel
Cantor insecure, 478

carpet, 82, 84 public, 478
set, 84-85, 133, 249 quantum, 492

card trick, 596 secure, 479
cardinality, 80 characterization of NP, 326
Carlyre, Jack W, 213, 645 Chaudhuri, Shiva, 76, 646
carrier Chaum, David, 531, 645

of a group, 139 cheater, 501
of an algebra, 138 cheating, 506, 513

Carrol, Lewis, 216 checker, 524
carry bit, 252 Chernoff's bound, 59, 63, 74, 349-350, 527, 595,
Carter, J. Lawrence, 151, 645 638
Cartesian product, 79 Chin, Francis Y. L, 601, 646

generalized, 79 Chinese remainder theorem, 46, 51, 74, 487, 607
Casper, K, 228, 667 chip, 604
Cauchy, Augustin, 140 RSA, 488
Cauchy's theorem, 140 Chomsky, Noam, 418, 420,462, 646
Cayley, Arthur, 141, 152, 600, 646 Chomsky grammar
CCCd (cube-connected cycles), 536 monotonic, 424
ceiling function, 14-16, 76 type-0, 423
cell, 217 universal, 457
cellular automaton, 100-101, 137, 151, 215, Chomsky-Schiitzenberger's theorem, 444

277-288, 292, 294, 355, 530 choose randomly, 49-50, 62, 64, 78, 86, 111-112,
finite, 291 342-345, 478, 504, 510, 519, 575
multi-dimensional, 285-286, 295 Chor, Benny Z, 365, 497, 643, 646
one-dimensional, 100-101, 279-280, chromatic

284-288, 291, 295 index, 121
one-way, 285, 292 number, 122, 363
reversible, 287 Chung, Fan R. K, 601, 644

reversible, 101, 287, 293, 295 Church, Alonzo, 223, 293, 646
universal, 102, 287, 295 Church's thesis, 215, 222-225, 228, 242, 249,

rule, 279 293, 377, 380, 400
three-dimensional, 293 Church-Turing's thesis, see Church's thesis
totalistic, 284-285, 295 ciphertext, see cryptotext
two-dimensional, 278, 280, 292, 530 circle, 6, 586

reversible, 287 circuit, 2, 64, 66, 69, 269, 331, 581-582, 585, 600,
universal, 292 606, 618, 640

certificate, 327-328, 365, 396, 412, 509 arithmetical, 245
CFG (context-free grammar), 421 clocked, 253
chain code constructors, 257

languages, 151 electrical, 117
picture, 133 polynomial size, 350, 366

676 U FOUNDATIONS OF COMPUTING

sequential combinational, 252 BPPC, 640
VLSI, 603-607, 618-621 cost, 604

CIRCUIT-SAT, 361 deterministic, 630
CIRCUIT-VALUE, 331 expected length of, 627
class matrix, 638

equivalence, 139, 173, 176 mode, 546
prefix, 176, 199 multi-party, 500
syntactical, 177 multiprocessor, 539

classification nondeterministic, 623-626, 631, 640
of computational problems, 298, 303 one-way, 547, 624-626

clause, 104, 313-316, 331, 341, 345-346, 361 primitives, 504
cleartext, 467 randomized, 44, 623, 627, 630, 639
CLIQUE, 116, 314, 320, 339, 361, 363, 523 resource, 632

maximal, 63 round, 547, 549
clock scheme, 552

central, 253 secure, 1, 40, 298, 466, 475, 478
circuit, 253 strategy, 546
cycle, 253, 585 theory, 475
polynomial, 329 two-party, 500
pulse, 253 two-way, 547, 624

closure commutativity, 103, 397
transitive, 77, 92, 94, 96, 146, 306 COMPn, 610, 614
transitive and reflexive, 92, 94 comparisons, 70

CNF, see conjunctive normal form number of, 65
CNFF, 313 compiler, 7, 28, 418, 437, 521
CNFF-k, 314 fully optimizing, 385
co-NEXP, 303 complement
co-NP, 303 of a graph, 147
Cobham, Alan, 365, 646 of a language, 129
Cocke, John, 438 completeness, 298, 322
Codd, Edgard F, 294, 646 average-case, 320-323, 365
code, 81 NEXP, 307
Codenotti, Bruno, 532, 642 NLOGSPACE, 307
coefficients binomial, 17, 59, 71, 76 NP, 297, 307-308, 313-314, 316-319, 322,

identities for, 21 324, 327, 330-331,335, 350, 358,
Cohen, Daniel E, 414-415, 646 361-362, 365-366, 378, 601
coin-tossing, 53, 56, 59, 108, 346, 489-490, 506, analysis of, 317

523 in strong sense, 320
Cole, Richard, 294, 646 P, 307, 330, 352, 366, 462
Collatz, Lothar, 13 #P, 334, 366
Collatz' process, 13, 86 PF, 334
collisions, 110 PSPACE, 307, 354-355,367

number of, 111 complex plane, 540-541, 601
problem of, 110 complexity, xiii, 2, 70, 297, 327, 566, 584, 640

Colossus, 217, 466 accumulation, 548
communication, xiii, 2, 64, 66, 466, 500-501, area, 582-584, 587, 619

510-511,516, 521,535, 553, 569, 576, asymptotic, 68, 70
603-604, 607-608, 610-614, 620, average-case, 66-67, 320
622-627, 629, 631-633, 635, 637 polynomial time, 68

INDEX U 677

broadcasting, 548 inherent, 2, 64
Chaitin, see Chaitin complexity interactive class, 509
circuit, 254-255, 329 Kolmogorov, see Kolmogorov complexity
class, 65, 68-69, 231, 271-272, 303-305, measures, 239, 254, 274, 440

307-308, 326-327, 329, 342, 347, 349, for PRAM, 266
351-354, 356-357, 359, 364-365, for RAM logarithmic, 239-240, 243, 250
385-386, 411,499, 510 for RAM uniform, 239-240, 243, 274

communication, 68 for TM, 225
computational, 68, 359 Monte Carlo, 640
deterministic, 354 of algorithmic problems, 249
exponential, 355-356, 367 of algorithms, 6
of Boolean circuits, 257 of Boolean functions, 607
parallel, 294, 351, 366 of communication games, 633
polynomial hierarchy, see polynomial, of computations, 255

hierarchy, class of graph algorithms, 34
randomized, 66, 342, 364, 366 of parallel computations, 351
relativized, 329 of simulations, 554
space, 232 of VLSI computing, 639
time, 231, 236, 403 probabilistic of protocols, 627

classes processor, 266, 272
for NTM, 299 polynomial, 273
for PRAM, 271 worst-case, 273
hierarchy, 303 product, 226

communication, xiii, 547, 603-604, round, 509
608-635 self-delimiting, 401

bounded error, 628 size, 256
BPPC, 629, 640 of Boolean circuits, 255
class, 631-632, 637-638, 640 of Boolean functions, 255
deterministic, 639 space, 204, 230, 235, 240, 242, 257, 274, 364,
expected, 627 460, 462
nondeterministic, 623, 625-626, 629, 638 analysis of, 302
nondeterministic one-way, 624 logarithmic, 240-241, 243, 303
of Boolean functions, 609 of CA, 286
of protocols, 608, 633 of TM, 232, 240
of search problems, 633 sublinear, 232
randomized, 628 uniform, 240
strong, 619, 639 theory, 106, 113, 204, 217, 244, 298, 305,

computational, xiii, 88, 119, 174-175, 235, 307, 311,320, 331-332, 353, 359, 366,
248-249, 267, 293, 297-298, 305, 320, 465
326, 358, 364-365, 452, 566, 604, 632, aims and impacts, 298
638 central task, 298

class, 297-298, 331, 364 key problem, 298
measure, 286 relativized, 329
of graph problems, 119 tiling, 616, 637
theory, 600 time, 5, 10, 36, 58, 63, 68, 70, 95, 165, 233,

depth, 256, 633 235-236, 240, 267, 272, 274, 320, 322,
descriptional, 358, 369, 397, 415 337-338, 364, 439, 596, 640
gossiping, 548 average, 58
information-theoretic, 398, 402 exponential, 67

678 I FOUNDATIONS OF COMPUTING

linear, 89 of functions, 238
logarithmic, 240-242, 439 on TM, 218
of CA, 286 accepting, 218
of TM, 231, 239 converging, 218
parallel, 545 diverging, 218
polylogarithmic, 273 infinite, 218
sequential, 175 of functions, 218
uniform, 240-241, 243 rejecting, 218
worst-case, 273 terminating, 218

trade-off, 303 on two-way FA, 201
VLSI, 618 parallel, 7, 68, 267, 272
volume, 619 physical, 298
work, 267, 270 polynomial time, 321, 353, 514, 520
worst-case, 66, 68, 70, 89, 320-321, 403 randomized, 1, 40, 44, 66, 200, 297, 302, 347

exponential, 68, 165, 331 polynomial time, 507
complexity analysis, 2, 5, 16, 29, 34, 36, 42, 64, reversible, 287

66, 69-70, 76, 78, 237, 242 sequential, 68, 333, 592
asymptotic, 64-67 polynomial time, 68
average-case, 66 terminating, 206
methods of, 66 computer, 2, 7, 28, 31, 64, 108, 173, 215, 266, 404,
of approximation algorithms, 65 466, 487, 529
of deterministic systems, 65 abstract, 405
of randomized systems, 65 architecture, xiii, 242, 596
worst-case, 66 bounded-degree network, 533

components Chaitin, 404
biconnected, 147 universal, 403
connected, 114 circuitry, 253
strongly connected, 114 classical, 350

composition of relations, 92 electronic, 226
compression of symbols, 236 first powerful, 217
computability, xiii, 217, 249, 293, 358, 369, 414 first very powerful, 277, 466
computation, 208, 509-513, 604, 614, 618, 623 generating, 405

accepting, 334 universal, 405
average-case, 297 idealized, 153
biological, 298 inherently sequential, 215, 244
deterministic, 342, 364 molecular, 477
energy-less, 295 network, 555
feasible, 68, 298, 349 parallel, 69, 266, 268, 274, 351, 596, 600
nondeterministic, 364 inherently, 215
numerical approximate, 532 personal, 68
on CA, 278 quantum, 53, 350
on FA, 158 universal, 226
on infinite objects, 213 real, 216, 254
on LBA, 205 sequential, 7, 58, 69, 90, 119, 237, 244
on MTM, 230 shared memory, 533
on multi-head FA, 203 state-of-the-art, 339
on NTM, 300 universal, xiii, 66, 154, 196, 215-216, 224,
on PRAM, 262 235, 298, 378, 381, 398, 400-402, 405
on RAM, 237 von Neumann, 237, 243, 277, 592

INDEX U 679

computing, 2, 64 congestion, 555, 566, 570, 573
deterministic, 297 congruence, 40, 44-46, 51, 74, 176

polynomial time, 350 equation
distributed, 592, 596, 604, 639 linear, 45
feasible, 244 nonlinear, 45
nondeterministic, 297 quadratic, 48
parallel, 216, 267-268, 297, 352, 533, 554, on polynomials, 50

596, 600, 604, 639 over a monoid, 138
quantum, 66, 592 relation, 44, 92
randomized, 59, 65, 76, 297, 349 syntactical, 213

polynomial time, 350 congruences, 1
sequential, 579 computation of, 45
VLSI, 620, 639 properties of, 45

concatenation systems of, 46
of images, 190 conjugate words, 149
of languages, 129 conjunction, 102
of WFA, 189 conjunctive normal form, 103-105, 314
of words, 128 consistency check, 511, 513

concentrator, 571 context, 176
concurrency, 261 of a string, 176
concurrent of a variable, 422

reads, 263, 580 context-free
writes, 263-264, 275, 580 array grammar, 460

strategies, 263 grammar, 417-422, 428-445, 458,461
condition ambiguous, 430-431, 443

adjacency, 309 Chomsky normal form, 432-434,
boundary consistency, 309 438-439, 461
initial, 7, 10, 12, 23, 58, 70 Greibach normal form, 433-434,461
prefix-freeness, 609 linear, 440, 459

Condon, Anne, 640, 646 parsing, 437, 439
confidence, 523 recognition, 437, 439

parameter, 519, 523, 526 reduced, 432-433, 458
configuration, 101, 204-205, 207, 229, 278 self-embedded, 458

final, 158, 205 unambiguous, 440, 462
initial, 158, 205 language, 384, 417, 428, 431-432, 440-444,
of CA, 278 459-462, 632
of FA, 158 ambiguous, 430
of LBA, 205 deterministic, 311, 440-444, 459

terminating, 205 hardest, 462
of MTM, 230 linear, 459
of PDA, 435 unambiguous, 441-442, 458
of RAM, 237 production, 424
of TM, 218 continuum, 80

initial, 218 contract signing, 504
partial, 259 contraction, 542
terminating, 218 control

tree, 299 finite, 201
Confucius, 2 structure, 216
confusion, 476-477, 480-483 unit

680 U FOUNDATIONS OF COMPUTING

of TM, 217 classical, 497
of RAM, 237 cryptosystem, 467-475, 479-480, 486, 488, 494,

controller, 193 496, 501
convergence, 21 AFFINE, 471-472, 494

absolute, 36 AUTOCLAVE, 473-474, 495
conversion CAESAR, 468-471, 473, 494

reals-to-integers, 14 classical, 468
unary-to-binary, 288 closed under composition, 470

Conway, John H, 280, 295, 643 commutative, 478, 505
Cook, Stephen A, 293-294, 311, 330, 364-366, DES, 476-477, 492, 497

646-647 El Gamal, 496
Coppersmith, Don, 247, 647 good, 469
Cormen, Thomas H, 39, 75-76, 151, 364, 366, HILL, 468-471, 473-474, 494

647 KNAPSACK, 480
Comeil, Dereck G, 601, 667 knapsack, see knapsack cryptosystem
CORRIDOR-TILING, 355 LUC, 496
coset, 140 LUCIFER, 497
Cosmadakis, Staros, 602, 644 ONE-TIME PAD, 475, 488, 491
counter, 91 PLAYFAIR, 468, 473, 494, 496
Courcelle, Bruno, 463, 643 polyalphabetic, 473
covering, 625-626, 639 POLYBIOS, 468-471, 495
Cray, 43 public-key, 471, 479-480, 482, 484, 488,
CRCW+, 272 492-493, 496, 501,503
CRCWarb PRAM, 264 commutative, 492
CRCWC"m PRAM, 263 QRS, 491
CRCWpri PRAM, 264, 580 RABIN, 488, 497
CRCW PRAM, 263, 270, 272, 275-276, 291, 294, randomized, 491, 497

440, 580 secure, 492
models, 275 RSA, see RSA cryptosystem

Cr~pau, Claude, 531, 645 secret-key, 471, 478-479, 489, 493
Crescenzi, Pierluigi, 366, 642 secure, 475
CREW PRAM, 263, 273, 276, 294 polynomial time, 491
crossbar, 592 signature-only, 493

switch, 566 substitution, 468, 471
cryptoanalysis, 466-467, 470, 474, 477, 488, 494, monoalphabetic, 469, 471

497 polyalphabetic, 471, 473
cryptoanalyst, 466-467, 470, 476, 487 transposition, 471, 474
cryptogram, 467 VIGENERE, 473
cryptographical primitives, 500 cryptotext, 467-477, 479, 481-485, 487-488,
cryptography, xiii, 43-44, 47, 52-53, 62, 66, 76, 490-492, 494-497, 501,517

151, 298, 314, 320, 465-468, 475, 478, CSG, 421
488-489, 492, 497, 501,516 cube-connected cycles, 115, 141, 536-537, 540,

modem, 492 549, 554-555, 557, 560, 564, 570,
practical, 474 577-579, 587, 594, 596, 598-599, 601
public-key, 465-466, 479-480, 489-490, Culik II, Karel, 152, 213, 295, 386, 415, 462, 647

492, 497 curve, 133, 149, 448
quantum, 466, 492, 497 fractal, 448
secret-key, 476, 479, 492 space filling, 448

cryptology, 466-468, 494 cut-point, 198

INDEX U 681

acceptance, 198 of undecidability, 394, 396
isolated, 199 of unsolvability, 394

cycle DeLaurentis, John M, 487, 497, 648
of a graph, 113 Deleglise, Marc, 44

simple, 113 DELETE, 79, 89, 91
random, 519 deletion, 79, 89

DELETMIN, 91
DOL-system, 445-448,461 Denny, Thomas, 487, 648
dag (directed acyclic graph), 113 denominator, 26
darf, 386 depth
Dassow, Jiirgen, 463, 647 polylogarithmic, 69, 351
data Depth(C) (depth complexity), 254

base, 91, 359 Derencourt, Denis, 213, 648
compression, 398 derivation, 185-189,419-432,446, 450
distribution, 580 in rewriting systems, 418
expansion, 492 left-most, 428, 430, 437, 439
structure, 67, 89, 212, 216, 264, 339, 561 partial, 187
transmition, 402 right-most, 428, 430
type, 89, 91, 145, 151 stochastic, 450

abstract, 89 derivative, 12
dictionary, 89 of polynomials, 26
priority queue, 91 of regular expressions, 173

Davis, Martin, 293, 414-415, 647-648 of regular languages, 213
DBd (de Bruijn graph), 536 Dershowitz, Nachum, 463, 648
DCFL, 440 DES (Data Encryption Standard), 476
de Bruijn, Nicolas G, 601, 648 Descartes, Ren6, 154
de Bruijn graph, 536-542, 549-550, 556-557, description

564, 566, 570, 577, 582, 587, 594, 597 of a set, 88
generalized, 597 succinct, 356, 365

de la Valle Poussin, C. J, 76 determinant, 12, 245, 248, 343, 352
de Lagrange, Josep, 140 Deutsch, David, 293, 648
de Vigen~re, Blaise, 473 deviation, 55
decidability, 249, 384-385, 393, 396, 415 device

of reversibility for CA, 295 deterministic, 154
decoder, 254, 290 finite state, 154, 182, 191
decryption, 468, 472, 475-477, 480, 482, generating, 154

484-485, 487-488, 490-491,496, 500 parallel, 154
exponent, 488 randomized, 154
mapping, 490 recognizing, 154

Dedekind, Richard, 414 sequential, 154
definition Dewdney, A. K, 293, 648

inductive, 7 DFA, 179, 631
primitive recursive, 414 Dhall, Sudarshan, 600-601, 656

degree diameter, 117, 539-540, 542, 549-550, 552, 570,
of approximability, 341 597
of a matrix, 511 Diaz, Josep, 364-366, 531, 642, 648
of a permutation, 100 dictionary, 109, 111
of a polynomial, 25-27 data type, 89
of network, 539 implementation, 89, 111, 151

682 U FOUNDATIONS OF COMPUTING

hash table, 109 DNP, 323
operations, 89-90, 109-110, 125 Dobkin, David P, 366, 648
problem, 109 dodecahedron, 122

Dietzfelbinger, Martin, 640, 648 Dodson, Bruce A, 487, 648
differentiation, 38 Dolev, Danny, 602, 648
Diffie, Whitfield, 478, 497, 648 DOMINATING-SET, 361
Diffie-Hellmann's key exchange system, 478 domino, 24, 148, 386
diffusion, 476, 480-481, 483 problem, 24
digital signature, 465-466, 492 Wang, 386, 415

secure, 467 dovetailing, 379
digital watch, 155 Doyle, Arthur C, 370
digram, 472, 476 DPDA, 440
dilation, 555-564, 598 Drewers, Frank, 151, 463, 648
Diophantine equation, 391, 394, 396 DSA (digital signature algorithm), 493
Diophantus of Alexandria, 88, 391 DSS (digital signature stanbdard), 493
Dirichlet, Peter G. L, 76 DTM, 353
disclosure of secrets, 503 Dube, Simant, 152, 647
discrete convolution, 21 Dubhashi, Devdatt, 76, 646
DISJn, 612 Durig, Pavol, 640, 648
disjunction, 102 Dwork, Cynthia, 294, 646
disjunctive normal form, 103-106, 361 Dymond, Patrick W, 294, 648
distance of graph nodes, 113 Dyson, Freeman, 67, 648
distinguisher, 519
distribution, 59, 63, 519 e-conn(G) (edge connectivity), 114

algorithmic, 415 EOL-system, 447, 462
a priori (universal), 415 eavesdropper, 467, 478, 492
binomial, 56-57, 59 economy of descriptions, 213

tails of a, 59 edge
cumulative, 322 colouring, 121
domination, 323 connectivity, 114
feasible, 321 crossing, 591
final, 184, 210 exchange, 538, 540, 542, 565
for WFA ingoing, 113

initial, 182, 188, 212 outgoing, 113
terminal, 182, 188, 212 perfect shuffle, 538, 540

geometric, 56 rewriting, 454
initial, 183, 188, 200, 210 shuffle, 565
of keys, 110 edge contraction, 343
random, 2 EDGE-COVER, 319
tails of a, 63 Edmonds, John, 365, 649
terminal, 183 efficiency, 2, 67, 266
uniform, 78, 200, 323, 343, 363 of parallelization, 266
universal a priori, 403 of simulation, 289
universal algorithmic, 403 Egecioglu, Omer, 152

distributivity, 104, 397 Ehrig, Hartmut, 151, 649
disturber, 193 Eilenberg, Samuel, 212, 649
DLBA, 205 El Gamal, Taher, 497, 639, 649, 660
DLOGSPACE, 351 ELEMENTARY, 357
DNF, see disjunctive normal form Elgot, Calvin C, 293, 649

INDEX U 683

Elliot, Thomas S, 604 Epicurus, 409
embedding, 534, 554-564, 576, 581, 599 equality

dynamical, 576, 600 of multisets, 109
Gray code, 601 one-way, 33
hypercube, 533, 558 equation
many-to-one, 557 algebraic, 10, 532
mechanism, 454 characteristic, 11, 13, 71
multiple, 576, 600 Diophantine, 412
of arrays, 558, 560, 601 exponential, 408
of complete binary trees, 601 inductive, 10, 23
of rings, 555-556, 558 polynomial, 412
of trees, 557, 561, 601 equivalence
quality of an, 555 class, 44, 92, 114

encoding, 80-81, 131, 243, 311 of FA, 160, 164
binary, 81 of regular expressions, 172, 367
effective, 224 of states of FA, 164
of Boolean formulas, 311 prefix, 176-177, 199, 202
of graphs, 300 syntactical, 176
of matrices, 81 syntax, 177
of theorems, 404 Eratosthenes of Cyrene, 43, 392
of TM, 224 ERCW PRAM, 275
recursive, 395 EREW PRAM, 263, 270-271, 275-276, 290-291,
self-delimiting, 331, 383, 401 579

encryption, 468, 470-473, 475-476, 482, 484, EROW PRAM, 291
488, 490-492, 496, 500-501, 517 error checking, 62

by transposition, 474 Escher, Maurits C, 386
deterministic, 488, 490 estimation, 28, 34, 36, 43, 73, 239, 241, 255-256,
exponent, 484, 487 574, 615
mapping, 490 asymptotic, 2, 6, 27-28, 39, 78, 542
monoalphabetic, 472 in limit, 28
nondeterministic, 488 ETOL-system, 460
procedure, 490 Euclid's algorithm, 41-42, 45, 50-52, 112, 485
randomized, 465, 489-492, 496-497, 519 analysis of, 42

polynomial-time secure, 491, 497 extended, 41, 481
RSA, 495 Euler, Leonhard, 76, 122-123, 151
secure, 467 tour, 122-123, 319, 597
techniques, 474 Euler's criterion, 48

enemy, 467 phi function, 44,47
active, 492 totient function, 484, 528

energy dissipation, 409 totient theorem, 47, 484, 490
energy of computation, 287 Euler's formula, 148
Engeler, Erwin, 414, 649 EULER-TOUR, 319
Engelfriet, Joost, 463, 649 evaluation, 258
ENIAC, 226 Evans, Trevor, 463, 649
ENIGMA, 466, 474 events, 54, 155, 344
entropy, 472 elementary, 54

information, 413 independent, 54
Entscheidungsproblem, 223, 385 Evey, Robert J, 462, 649
enumeration, 83, 370, 372 evidence, 1, 108, 499-500, 506, 511, 516

684 U FOUNDATIONS OF COMPUTING

statistical, 510-515 of languages, 130, 204, 231-232, 257, 307,
EX (mean of X), 55 329, 359, 395, 410, 421,459, 509, 515
EXP, 303, 352, 355 accepted by LBA, 206
EXP = NEXP problem, 355 accepted by multi-head FA, 206
expansion, 555, 563 of logarithmico-exponential functions, 30

factor, 571 of pictures, 134
experiment, 54, 56 of planar graphs, 591
exponent, 39 of primitive recursive functions, 373

decryption, 495 of primitive recursive predicates, 375
encryption, 495 of recursive languages, 371
secret, 495 of regular languages, 159, 169, 181, 197,
signing, 493 210,427

exponentiation, 7, 267, 357, 374, 408 of sets, 78, 83
fractional, 532 of trees, 132
modular, 46-47, 108, 478-479, 484, 528 uniform

expression, 511 of Boolean circuits, 250, 257, 260-261,
arithmetical, 429 273-274, 294, 350
Lisp, 430 of finite computers, 216
regular, 171-176, 199, 213, 357-358, 360, of first order formulas, 359

367 of graphs, 576
generalized, 175-176, 213, 357 of polynomial size circuits, 329
star-free, 358 Farmer, Doyne, 295

expressiveness, 358 feasibility, 1, 67, 350, 358
EXPSPACE, 357 Feige, Uriel, 531, 649

Feigenbaum, Joan, 531, 649

FA, see automaton, finite Feistel, Horst, 497, 649
factoring, 51, 62, 108, 392, 480, 487-489, 492, Feldman, Paul, 531, 644

505, 528 Feldman, Rainer, 601, 649
Fagin's theorem, 359 Feller, William, 76, 649
family Fenzl, W, 228, 667

of OL-languages, 460 Fermat, Pierre, 47
of arrays, 599 Fermat's last theorem, 88, 385
of Boolean circuits, 102, 215, 250, 256-258, Fermat's little theorem, 47, 484

349 Femau, Henning, 151,463
of bounded-degree graphs, 577 Fiat, Amos, 601, 649
of bounded-degree networks, 578 Fibonacci, 10
of CFL, 428, 441-442, 458 w-word, 129, 220
of computer models cube, 597-601

inherently parallel, 216 heap, 132
inherently sequential, 216 numbers, 554

of CSL, 208, 426, 458 tree, 132
of deterministic CFL, 442 Fibonacci, Leonardo, 43
of functions, 108, 257, 373, 580 Fich, Faith E, 294, 649

comuted by WFA, 187 field, 77, 143
of graphs, 535, 539, 576-577, 587, 592 filtering, 189
of hash functions, 111 fingerprint, 112

k-universal, 112 firing squad synchronization problem, 281,
universal, 111, 147, 580 284, 291-295, 372

INDEX * 685

Fischer, Michael J, 213, 294, 364, 656, 659, 661, Ackermann, 380, 411, 414
664 inverse, 380

fixpoint, 99 bijective, 98
FKNAPSACK, 332 binomial, 14, 17
Flannery, Brian P, 600, 661 busy beaver, 228
Flayolet, Philippe, 75, 664 ceiling, see ceiling function
flip-flop element, 254 characteristic, 93, 146, 332, 381
floor function, 14-16, 76 co-domain of a, 98
flow of data, 91 coding, 375
Floyd, Robert, 212-213, 462, 649 comparison, 610-611, 614
fooling of an algorithm, 61 computable, 228, 369-370, 373, 377
fooling set, 611-612, 615-616, 623, 636, 640 in logarithmic space, 306
forest, 116, 126, 587 in polynomial time, 306, 524
formula, 513 computed by WFT, 187

logical, 83 continuous, 15, 63, 154, 188, 210, 213
Fortnow, Lance, 531, 642, 657 cyclic shift, 621
Fortune, Steven, 294, 649 decryption, 472, 478, 492, 501, 506
foundations, 77 depairing, 376, 411, 414

of computing, xiii-2, 40, 68-69, 76-78, 80, domain of a, 98
88, 98, 102, 107-109, 145, 206, 213, economy, 163, 203
255, 274, 304, 328, 358, 365, 465-466, encryption, 478, 480, 488, 490, 492, 501,506
489 everywhere continuous, 188, 213

central task of, 68 exponential, 196, 447
of knowledge, 78 failure, 167, 169
of mathematical biology, 217 floor, see floor function
of mathematics, 397 generating images, 182
of probability, 398 generating, see generating functions
of randomness, 398 growth, 446-447, 451, 460

four colour problem, 122, 149 hash, see hash function
Fourier transform honest, 328, 362

discrete, 597 identity, 610, 623, 629
fast, 597, 600 injective, 98

FPTAF, 342 integers-to-integers, 218, 373
fractal, 151 irreversibility cost, 409

picture, 136 iterated logarithmic, 17
Fraigniaud, Pierre, 601, 649 k-threshold, 290
Frege, Gottlob, 514 linearly time-constructible, 259
Freivalds, Ruging, 532, 649 space-constructible, 259
Freivalds' checker, 522 logarithmic, 16
frequency analysis, 472, 494 logarithmico-exponential, 30, 76

table, 472-473, 476 multiplication, 637
Freund, Rudolf, 463, 647, 650 multiplicative, 71
Frig, Ivan, 213, 462, 647 nonrecursive, 257, 399
FSAT, 332 nowhere with derivatives, 188, 213
FSSP, 281 numbers-to-numbers, 373

mimimal time solution, 284 of complex variables, 19
function, 503, 507, 589 one-way, 77, 98, 107-108, 151, 328,

A-definable, 223 333-334, 366, 466, 478-479, 489,
p]- recursive, 223 496-497, 500, 502, 518, 520

686 3 FOUNDATIONS OF COMPUTING

random, 491 Gage, Paul, 43
trapdoor, 465, 479-480, 500, 505 Gaines, Helen F, 472, 497, 650

output, 179 Gale, David, 213, 650
pairing, 375-378, 402, 414 Gale-Stewart game, 213
parity, 605 Galil, Zvi, 640, 648
partial, 92, 98 Galois field, 483
partial recursive, 219, 225, 369, 377-381, Galperin, Hana, 365, 650

399, 404-405, 410-411,414 Gambosi, Giorgio, 366
universal, 225 game

polynomial, 447 against nature, 531
I-average, 321 Arthur versus Merlin, 531
average, 322 communication, 632-634, 639

primality, 607 monotone, 635
primitive recursive, 369, 373-381, 410-411, Gale-Stewart, 194

414 generalized geography, 355
projection, 373 GO, 355, 367
range of a, 98 play of a, 194
rational, 25 GAP, 331
recursive, 219, 228, 304, 358, 364, 373, garden of Eden, 278, 280

379-382, 394, 400, 405,410-411,414 Gardner, Martin, 295, 415, 487, 650
recursively enumerable, 381 Gardono, Geronimo, 473
reference cost, 409 Garey, Michael R, 365-366, 650
self-reducible, 528 Garzon, Max, 151, 295, 650

random, 526 gate, see Boolean gate
set characteristic, 78 Gauss, Karl F, 43, 49, 53, 76
space-constructible, 258-260, 290, Gavril, F~nicA, 366, 650

301-304, 346 Gedeon, T. D, 76, 650
string-to-string, 102, 212, 218, 288, 373, 375 Geffert, Viliam, 462, 650
strongly one-way, 107 Gemmell, Peter, 532, 642
successor, 373, 377 GENERALIZED-GEOGRAPHY, 355
surjective, 98 generating functions, 1, 17, 19-27, 38, 58, 72, 76,
time-constructible, 258-260, 273, 290, 302, 150

304 coefficients of, 19
total, 98 discrete convolution of, 21
transition, 204 linear combination of, 20

global, 101 multiplication of, 20
local, 100 operations on, 19

transitive of order n, 620 summation rule for, 21
trapdoor, 480, 502 generation, 370
trigonometric, 196 generator, 53, 61, 83-84, 156-158, 489
universal, 378 deterministic, 84
weakly one-way, 333 finite state, 157

functional, 185, 187 index, 62
fundamental theorem of arithmetic, 43 linear congruential, 61, 75
fundamentals, 1, 78 of Z,*, 53
FUP, 334 of a group, 141
Furst, Merrick L, 639, 646 of random bits, 627

pseudo-random, 1, 60-62, 75-76, 475, 488,
Gabiro, Joaquim, 364-366, 531, 642 490, 497, 500

INDEX U 687

BBS, 489 HR, 455, 460-461, 463
cryptographically strong, 465, 488-490, hyperedge rewriting, 455

497 NLC, 452-455, 461,463
unpredictable to the left, 489 NLC context-free, 461

random, 62, 75 node-label-controlled, 452
number, 60, 86, 298 left-linear, 422, 427

unpredictable to the left, 489 LR(k), 440
geometry of space, 592 monotonic, 425
Gesternhaber, Murray, 49, 650 of a natural language, 417
Gill, Gary L, 366 phrase structure, 421
Gill, John, 366, 650 recognition of a, 417
Gill, Joseph, 365, 642 regular, 421-422, 427, 458
Ginsburg, Seymour, 213, 462, 650 rewriting, 460
glider, 280 string, 460
Godel right-linear, 422, 427

encoding, 372, 383, 394 type-0, 421, 456-457, 461
self-delimiting, 234 type-l, 421

numbering, 225, 227, 308, 381, 394, 415 type-2, 421
G6del, Kurt, 364-365, 391, 396, 414, 650 type-3, 421
G6del's incompleteness theorem, 369-370, graph, 63, 89

396-397, 415 2-vertex connected, 148
Golbach's conjecture, 88, 385 acyclic, 113
Goldreich, Oded, 151, 365, 497, 531, 643, 651 algorithm, 118, 122
Goldschlager, Leslie M, 294, 366, 651 algorithmic problems, 113
Goldwasser, Shaffi, 366, 490, 497, 531-532, arc, 113

643-644, 649, 651 arc-symmetric, 115
Gonnet, Gaston H, 151, 651 automorphism, 114
Gono, Yoshifumi, 295, 659 bipartite, 77, 116, 120-122, 126, 246, 335,
Gorenstein, David, 651 361,455, 571,638
gossiping, 534, 546, 548-549, 552, 565, 601 complete, 116, 539

on rings, 553 (c, n, k)-universal, 577
scheme, 553 Cayley, 77, 141-142, 150, 152, 597

Goto, Eliichi, 282 strongly hierarchical, 150
Gougen, Joseph A, 651 closure, 148
Graff, Michael, 487, 642 colouring, 77, 119, 361
Graham, Ronald L, 75-76, 651 complete, 116, 271, 539, 551-552, 587, 594,
grammar, xiii, 2, 83, 418-422, 425, 427, 430 599

array, 463 complexity measures, 117
Chomsky, 417, 420-424, 457-458, 461 connected, 114

monotonic, 424 connectivity, 114
context-free, see context-free grammar daughter, 452
context-sensitive, 421, 424-425, 457-458, de Bruijn, see de Bruijn graph

462 decomposition, 534
cooperating, 463 degree of a, 113
formal, 417-418, 462 directed, 93-94, 113
graph, 417, 453, 457, 460, 463 distance, 125

boundary NLC, 453 edge, 113
handle NLC, 454, 461 edge k colouring, 121
HNLC, 454, 461 edge-connectivity, 598

688 U FOUNDATIONS OF COMPUTING

edge-symmetric, 115, 594 string, 460
Eulerian, 122 strongly S(n)-separable, 589
fault tolerance, 598 connected, 114
finite, 113 separable, 589
grammar NLC, 452 theory, 113, 123, 151, 327, 588-589, 600
guest, 555, 557 concepts, 113
Hamiltonian, 122, 148, 316, 453, 455, 508, topological version of a, 117

560 trail of a, 113
Herschel, 122 traversal, 77, 122
host, 452, 555, 557 breadth-first, 148
incidence, 113 depth-first, 148
initial, 452 undirected, 113
interconnection, 542, 554, 558 vertex, 113
isomorphism, 114, 119, 147, 523 vertex k-colouring, 122

problem, 67, 131, 297, 324-325, 327, 354, vertex-symmetric, 115
366, 523, 530 walk of a, 113

k-regular, 115 graphical modelling, 448
Kautz, 542, 566, 597-598, 601 graphs

generalized, 597 isomorphic, 114, 508
matching, 77, 119 nonisomorphic, 508

perfect, 119 Grassmann, Herrmann, 414
minimal gossip, 552 Gray code, 558-559, 599, 601
Mobius, 598 greatest common divisor (GCD), 41-42, 50, 73
mother, 452 Greenberg, David S, 601, 651
node, 113 Greene, Daniel H, 75-76, 651
node-connectivity, 598 Greenlaw, Raymond, 294, 366, 462, 651
nonisomorphism, 119, 508 Greibach, Sheila A, 462, 651

problem, 324-325, 508, 510, 523 Greibach's theorem, 444
nonplanar, 117 greyness
of a function, 15 average, 191
optimal, 555 of pixels, 182, 184
pancake, 150 grid
path of a, 113 quadratic, 309
perfect shuffle, 538 three-dimensional, 581
Petersen, 121, 142, 148 two-dimensional, 3, 534, 581, 605
planar, 77, 116, 325, 327, 453, 591 Grollman, Joachim, 365-366, 651
random, 64, 400, 530, 594 group, 77, 138-139, 456
regular, 115, 148, 600 Abelian, 139, 389
representation, 131 carrier of a, 141
S(n)-separable, 588 commutative, 139
self-complementary, 147 finite, 140
separability, 534, 589 permutation, 141, 620, 622

strong, 589 transitive, 620
separator, 588 properties of a, 139
shuffle exchange, see shuffle exchange simple, 514

graph theory, 140, 600
spanning, 552 transitive, 620
star, 150, 542, 566, 597-598, 601 growth
state, 159, 219 exponential, 67, 163

INDEX U 689

of functions, 28, 31, 67 universal, 111, 151
of performance, 31 Hasse diagram, 97

Griinbaum, Branko, 415, 652 Havel, Ivan, 601, 653
Gruska, Jozef, 213, 462, 652 Hayes, Patrick J, 600, 652
Guessarian, Irene, 75, 151, 642 head
Guillou, Louis C, 531, 660 pushdown, 434
Guogen, Joseph A, 151 read-only, 201
Gurevich, Yuri, 365, 652 Heath, Lenwood, 601, 651
Guthree, Francis, 122 Heckmann, Ralf, 601, 653
Gutowitz, Howard, 295, 652 Hedges, Andrew, 293, 653
Guy, Richard K, 295, 643 Held, Michael, 366, 653

Hellerstein, Lisa, 640, 646
Hd (hypercube), 536 Hellman, Martin E, 76, 478, 480, 497, 648, 653,
H-layout, 3, 8, 583, 585-586, 601 658, 661
H(w / t) (conditional Chaitin complexity), 402 Herken, Ralf, 293
H(w) (Chaitin complexity), 401 heuristic, 297, 335
Haase diagram, 97 Heydemann, Marie-Claude, 601, 653
Habel, Annegret, 463, 648, 652 hierarchy
Hadamard, Jacques, 76 arithmetical, 395, 413
Hagerup, Torben, 76, 652 asymptotic, 29
Haken, Dorothea, 76, 643 finite, 213
Haken, Wolfgang, 122, 641 infinite, 395
Hall's theorem, 120, 568, 573 of algorithmic problems, 320
HALT, 217 of communication complexity, 632
HAMILTON, 317 of complexity classes, 348
Hamilton, William R, 122 of grammars, 462
Hamilton of PRAM models, 276

cycle, 122-125, 300, 316-319, 339, 356, of undecidable problems, 395
518-519, 597, 599 polynomial, 366

problem, 316, 327 space, 364
path, 122, 148, 316-317, 321, 334 time, 364
puzzle, 124 Hilbert, David, 223, 385, 391, 415, 653

HAMILTON-CYCLE, 319 Hilbert's problems, 398
HAMILTOND, 316 Hilbert's tenth problem, 369, 391-392, 396, 412,
Hamming distance, 535 415
handle, 454 Hill, Lester S, 468, 653
Harao, Masateru, 295 histories indistinguishable in polynomial time,
Harary, Frank, 600, 652 520
Hardy, Godfrey H, 30, 76, 652 history
Harel, David, 75-76, 364, 652 communication, 608-615, 620, 624, 626
Harrison, Michael A, 462, 652 derivation, 418
Hartmanis, Juris, 293, 364, 462, 652, 657 of computing, 222, 385
hash function, 77, 98, 108-112, 147, 493, 579 of cryptography, 468

one-way, 112 of cryptology, 494, 497
table, 110 of DES, 497

hashing, 109-110, 493 of knapsack, 497
standard SHA, 493 of mathematics, 75, 222, 414
uniform, 110 of proofs, 514

simple, 109 of reversible computation, 295

690 U FOUNDATIONS OF COMPUTING

of transposition encryption, 474 rotation, 191
HITTING-SET, 361 shrinking, 191
Hochbaum, Dorit S, 366, 531, 653 vertical squeezing, 191
Hoey, Dan, 601, 653 Immerman, Neil, 213, 654
Hofri, Micha, 75, 653 Immerman-Szelepcs~nyi's theorem, 303
Holyer, Ian, 121, 653 Immerman's theorem, 359
homomorphism, 443-444, 458 Impagliazzo, Russel, 365, 532, 654
Hong, Jia-Wei, 601, 644 implementation
Hoover, H. James, 294, 366, 462, 651 binary tree
Hopcroft, John E, 76, 212-213, 293, 364-365, of sets, 90

415, 462, 601, 641, 645, 653 parallel, 89
Hromkoviý, Juraj, 600-601, 639-640, 648, 653 sequential, 89
Hsu, Wen-Jing, 601, 653 IN-PLACE-ACCEPTANCE, 354
Huffman, David A, 212, 654 incompressibility, 400
Hung, Ming-Deh, 365, 641 inconsistency, 397
hypercube, 97, 124, 141, 440, 462, 533-544, 549, independent set, 149

552-565, 569-572, 575-577, 586-596 INDEPENDENT-SET, 362
d-dimensional, 536 index, 53
interconnection, 543 of partial recursive functions, 225
network, 539, 543 of TM, 225
optimal, 555, 560-564, 599 indexng(x) (index of x w.r.t. n), 53
three-dimensional, 600 indistinguishability

hyperedge, 454 polynomial time, 61-62, 76, 519
(m, n), 454 induction, 8, 21, 38, 47, 104,427,431-432,438

hypergraph, 94, 118, 454 reverse, 50
(m, n), 455 information, 402, 503, 516-517, 547-548, 550,
multipointed, 455 578

algorithmic, 402, 413
IC (instruction counter), 237 dissemination, 546-548
ice age, 67 garbage, 409
idempotence, 103 processing, 127, 533
IDEN', 624 genetic, 225
IDENn, 610-611, 614, 623 theory, 466
idling termination, 218, 312 transfer, 606
IL-system, 450 trapdoor, 479, 489, 491-492, 496, 505
image, 77, 133, 135, 182, 191, 213 injection, 98

colour, 191 INSERT, 79, 89, 91
complex, 157 insertion, 79, 89, 588
compression, 153-154, 190 INSERTSORT, 70
generation, 153-154, 188 instructions of RAM, 237
grey-scale, 184, 191 arithmetical, 238
multiresolution, 184, 188, 189 jump, 238
processing, 182 nonjumping, 238, 244

applications, 185 SHIFT, 238
three-dimensional, 212 integer
transformation, 154, 185, 187, 210 addition, 351

by WFT, 188, 190 composite, 43-44, 50, 65, 67, 516
contrast changing, 191 division, 529
filters, 191 factorization, 62, 65, 67, 519

INDEX U 691

multiplication, 640 Karhumaki, Juhani, 213, 295, 647
perfect, 73 Kari, Jarrko, 152, 213, 295, 647, 654
random, 62, 489, 501, 503, 509 Karloff, Howard, 531, 657

INTEGER-LINEAR-PROGRAMMING, 319 Karp, Richard M, 63, 76, 294, 365-366, 601, 653,
integral, 65 654, 655
integration, 186 Kasami, Tadao, 438, 462, 655
interaction, 2, 499-500, 505-510, 514-520, 604 Kautz, William H, 601, 655

desirable, 193 Kempe, B, 122
polynomial, 531 key, 109,475-480, 488, 491

interpretation distribution, 478
of languages, 131 quantum, 497

as images, 135 encryption, 503
as pictures, 133 private, 479, 493

of strings public, 482-484, 490-493, 496, 501
as points, 82 secret, 478, 493, 500

of words, 131 decryption, 503
by a turtle, 149, 151 distribution, 478

intractability, 51 shared, 501
invariance theorem, 399 transmission, 492

thesis, 242 keyword, 473-474,495
invariant, 28, 99 Khachyian, Leonid G, 331, 655
inverse Kilian, Joe, 531-532, 643

multiplicative, 42 Kirchner, H1lne, 463, 655
of a function, 98 kite, 386

IP, 509, 512 Klasing, Ralf, 600-601, 653
IP = PSPACE theorem, 512, 531 Kleene, Stephen C, 145, 213, 223, 293, 414, 655
isocahedron, 122 Kleene's theorem, 171, 378
isomorphism, 335, 523 KNAPSACK, 314

of FA, 160 knapsack, 314
of groups, 139 cryptosystem, 465, 480, 483, 497
of NP-complete problems, 318 dense, 483, 497

Iverson, Kenneth E, 76, 654 iterated, 483
multiple-iterated, 483

Ja'Ja, Joseph, 294, 601, 640, 654 single-iteration, 483
Jacobi, Karl G, 48 instance, 482
Janssens, Dirk, 463, 654 problem, 314-315, 337-338, 341, 480-483,
Johnson, David S, 340, 364-367, 531, 650, 654 519
Jones, James P, 393, 415, 654 general, 480
Jones, Neil D, 462, 654 with unary inputs, 319
Jouannaud, Jean P, 463, 648 vector, 480-481, 483, 495
Jiirgens, Hartmut, 151 dense, 483

density, 483
K, (complete graph), 116 hyper-reachable, 483
K,.m (complete bipartite graph), 116 knapsack cryptosystem, 465, 483
K(x) (Kolmogorov complexity), 399 knight's tour, 148
Kahn, David, 497, 654 knowledge, 509, 520
Kamman, Sampath, 532, 644 disclosure, 500
Kann, Viggo, 366 Knuth, Donald E, 31, 75-76, 109, 213, 651, 655
Karchmer, Mauricio, 639, 654 Knuth-Morris-Pratt's algorithm, 168

692 U FOUNDATIONS OF COMPUTING

Koch, Helge von, 85 Landweber, Peter S, 213, 656
Koch language, 79, 129

curve, 85-86, 151 w-regular, 192, 359
island, 134 0L, 445
snow-flakes, 85 acceptance

Koch, Richard, 601, 655 by oracle TM, 305
Kolmogorov, Andrei N, 398, 415, 655 by TM, 218
Kolmogorov complexity, 369, 397-406, 409, 415, adherance, 137

595 c-stochastic, 200
conditional, 414, 594 co-finite, 130
plain, 415 complement, 129
prefix, 415 complete, 307, 413

Konheim, Alan G, 472, 655 context-free, see context-free language
Konisberg bridges, 124 context-sensitive, 206, 355, 384, 426, 441,
Korec, Ivan, 292, 295, 414-415, 655-656 460
Kotsoupias, Elias, 366, 656 deterministic, 206
Kozen, Dexter C, 151-152, 656 decidability
Kraft's inequality, 130, 401, 403, 407, 413 by TM, 218
Kranakis, Evangelos, 75-76,366,497, 656 decidable, 383
Kreowski, Hans-Jorg, 463, 648, 652, 656 Dyck, 444, 460
Krishnamurthy, Balakrishnan, 152, 601, 641 finite-state stochastic, 200

Kriiger, Uwe, 151 formal, xiii, 127, 420, 429, 456
Kruskal, Clyde P, 601, 656 Goldstine, 459
Kruskal's algorithm, 125 graph, 418, 453
Kueera, Ludvig, 294, 656 recursively enumerable, 454
Kung, H. T, 602, 645 Greibach, 444, 460
Kuratowski's theorem, 117, 327 Gre ,4,6
Kuroda, Shige-Yuki, 213, 462, 656 hd , 307identities, 149

membership problem, 131
L, 137 natural, 418, 420, 424, 428-429, 467

L, 137 noncontext-free, 441-442, 460
L, 204, 303 nonregular, 195, 198, 441, 458
l'Hospital rule, 26 NP-complete, 308, 311, 313-314, 520, 530
L-system, 445, 448-450, 462 plaintext, 472

context-sensitive, 450, 461 prefix-closed, 130, 132
stochastic, 450 prefix-free, 130, 401, 404, 407, 413, 627

Laaser, William T, 462, 654 programming, 385, 418, 428-429, 462
labelling of trees high-level, 7, 224, 264

inorder, 127, 562 universal, 216
postorder, 127 PSPACE-complete, 329, 453, 512
preorder, 127 random, 414

Ladner, Richard E, 294, 364, 366, 656 recognition, 238, 272, 291, 507, 623
Lagarias, Jeffery C, 76, 656 recognized
Lagrange's theorem, 140, 142 by TM, 218
Lakshmivarahan, S, 600-601, 656 by FA, 159
Lam6, Gabriel, 42 recognizer, 280
Landau, Edmund, 31, 76, 656 recursive, 218, 304, 370-372, 395, 410-411,
Landau notation, 31 426

INDEX U 693

recursively enumerable, 218, 370-372, layer, 582-583, 600
383-384, 395, 410, 412, 424-427, 434, layout, 3, 533, 581-587, 590-591, 599, 602, 605,
443-444, 457, 461,637 618

regular, 159, 164, 167-182, 192-204, 2-dimensional, 594, 605
209-213, 359-360, 384, 415, 427, 3-dimensional, 592, 619
441-444, 458-460, 631-632, 637 area, 3, 583

c-stochastic, 200 complex plane, 601
complement, 170 of binary trees, 3, 582, 584, 599
morphism, 170 of circuits, 583
recognition, 177, 351 of complete binary tree, 583
star-free, 360 of graphs, 76, 581, 592
substitution, 170 of integrated circuits, 581

specification, 194 of networks, 534
stochastic, 211 of planar graphs, 591
string, 418 rectangle, 583-585, 588, 599, 606, 618, 622
undecidable, 383, 395 technique, 582
universal, 383 general, 586-587, 602

languages technology, 582
prefix closure of, 130 Lazard, Emmanuel, 601, 649
regular LBA (Linear Bounded Automaton), 205

closure properties of, 169 least common multiple, 41
intersection of, 170 left quotient
inverse morphism of, 170 of algebras, 150
union of, 170 of languages, 130

Laplace, Pierre S, 76 Legendre, Adrien M, 48, 496
Las Vegas Legendre-Jacobi symbol, 48

algorithm, 347 Legendre symbol, 48
communications, 630 Lehman, R. Sherman, 43
complexity Lehmer, Derrick H, 61, 76, 656

communication, 628 Leibniz, Gottfried, 474
protocol, 603, 627-630, 639 Leighton, F. Thomson, 600-602, 644, 648, 655

Latteaux, Michel, 213, 648 Leiserson, Charles E, 39, 75-76, 151, 364, 366,
law 601-602, 647, 653, 656-657

associative, 144 Lengauer, Thomas, 600-602, 639, 657
commutative, 144 Lennon, M. J. J, 497, 665
distributive, 144 Lenstra, Arjen K, 487, 642, 648, 657
dominance, 144 Lenstra, Hendrik W, 487, 657
idempotent, 144 Levin, Leonid A, 365, 531, 642, 651, 657
identity, 144 Lewis, Harry R, 364-365, 657
iteration, 144 Lewis, Philip M, 293, 366, 462, 652, 657, 663
of double negation, 144 Lewis, Richard F, 364
of quadratic reciprocity, 49 Leyland, Paul C, 487, 642

laws Li, Ming, 415, 657
de Morgan, 104, 144, 313 Lichtenstein, David, 367, 657
of Boolean algebra, 103 Liebl, Petr, 601, 653
of computing, 216, 297 LIFE game, 280, 284, 295
of formal reasoning, 102 three-dimensional, 295
of information processing, xiii universality, 295
of physics, 293, 592, 596, 602 limit, 183

694 U FOUNDATIONS OF COMPUTING

set, 292 first order, 358, 360
limitations, 410 formal, 358

of algorithmic methods, 369, 396, 414 mathematical, 418
of approximability, 515 predicate, 359
of computing, 80, 216, 242, 297-298, 342, propositional, 102, 106

370, 409 second order, 358
of energy dissipation, 409, 415 existential, 359
of finite state machines, 195 logical inconsistencies, 80
of formal systems, 369-370, 396-398, LOGSPACE, 303, 331

404-405, 409, 414 Lovisz, Liszl6, 364, 657
of formalization, 80 Lozano, Antoni, 365, 642
of information processing, 1 Lubotzky, Alexander, 601, 657
of knowledge, 229 Luby, Michael, 497, 532, 601, 643-644, 655, 657
of layouts, 533 Lucas, tdouard, 42, 76, 657
of machines, 369 Lucas' test, 325
of mind, 370 Luecker, George S, 76, 657
of mind and machines, 216, 369 Luhn, Hans P, 109, 151
of NP-completeness, 335 Lund, Carsten, 366, 531, 642, 657-658
of parallel computing, 366, 600 Lupanov, Oleg B, 212, 658
of physical systems, 370 LWFA, 187
of randomness, 66 Lynch, Nancy A, 364, 656
of routing methods, 533
of science, 370 m \ n (m divides n), 41

Lin, Shen, 228, 657 machine
Lindenmayer, Aristid, 151, 445, 462-463, 657, class

662 first, 244, 274-275, 286, 294, 596
Lindenmayer system, 417-418, 420, 445 second, 274-275, 294, 353
LINEAR-DIOPHANTINE-EQUATIONS, 319 finite memory, 154
LINEAR-PROGRAMMING, 319 finite state, 153-156, 179, 195-196,
linear slope, 190, 210 211-213, 298
linked list, 269 generalized sequential, 181-182, 196, 210,
Lipton, Richard J, 366, 602, 639, 646, 648, 655, 213

657 Mealy, see Mealy machine
list, 89 Minsky, 294

adjacency, 118 Moore, see Moore machine
ranking one-register, 294

algorithm, 270 random access, 237-250, 261, 289, 293, 439,
problem, 269, 294 579, 592

literal, 103-104, 106 over reals, 249
load balancing, 557 parallel, 261, 462, 534-535, 570, 576,

factor, 557 579-580, 604
logarithm, 14, 16 parallel, see PRAM

binary, 16 stored program, 243, 293
decimal, 16 random access stored program, 243
discrete, 1, 47, 53, 76, 478, 497, 529 random access, see RAM

problem, 53, 62 register, 244-245, 294, 394, 415
iterated, 16 sequential, 69, 274
natural, 16, 72, 526 two-registers, 294

logic, 414 Machtey, Michael, 414, 658

INDEX N 695

MacLane, Saunders, 152, 658 random, 525
Maggs, Bruce M, 601, 655 rank of a, 613
Mahr, Bernd, 151, 649 recognition
MAJSAT, 348 upper-triangular, 438
Malcev, Anatolij I, 414-415, 658 unit, 611
man-in-the-middle, 501 upper-triangular, 439, 459, 610
Manasse, Mark S, 487, 648, 657 Vandermond, 12
Mandelbrot set, 85, 151 Maurer, Hermann A, 151, 462, 658
Manders, Kenneth L, 641 MAX2SAT, 361
mapping, 97, 99 maximum

average-preserving, 184, 188 finding, 57, 270-271, 293
input-output, 179 on CRCWc1r PRAM, 264
one-to-one, 98 on EREW PRAM, 265
onto, 98 MAXSAT, 317, 341
probability distribution, 197 Mazoyer, Jacques, 295, 658
pseudo-random, 108 McCarthy, John, 295
recursive, 404 McCulloch, Warren, 154, 212, 658

Marchetti-Spaccamela, Alberto, 366 McGeoch, Lyle A, 340, 366, 654
Margolus, Norman, 295, 666 McNaughton, Robert, 213, 658
Marken, Ralf, 658 McNaughton's theorem, 193
Markov, Andrei A, 223, 415,462, 658 Mealy, Gregory H, 213, 658
Markov's inequality, 59, 63 Mealy automaton, see Mealy machine
Marxen, Heiner, 228, 658 Mealy machine, 179-181, 195, 210, 213, 253
matching, 573 mean, 55

perfect, 246, 327, 335 measure
mathematics, 77-78, 318, 325, 384-385, 392, 407, complexity, 70, 509, 606, 632

414 of embedding, 555
continuous, 249 of layout, 582
discrete, 65, 151 space for RAM
numerical, 249 logarithmic, 244

Matiyasevich, Yuri V, 391, 415, 658 uniform, 244
Matiyasevich's theorem, 392 time for RAM
matrix, 12, 468, 494, 510-511, 625, 629 logarithmic, 244

adjacency, 118, 131 uniform, 244
characteristic, 637 median, 293
communication, 609-616, 625, 637 Meersman, Robert, 463, 658
distance, 318 Mehlhorn, Kurt, 151, 639-640, 658
expression, 96 MEMBER, 89
growth, 447 membership, 515
incidence, 118, 131 memory, 229, 237
infinite, 228 cell, 254
integer, 362 conflicts, 263
inversion, 65, 248, 352 contention, 261
monochromatic, 613-616, 625 data, 237
multiplication, 7, 64-65, 96, 138, 145, finite, 204

246-250, 351,522 global, 262, 264
algorithm, 246, 267, 294, 525 local, 262
on ERW PRAM, 266 module, 535

of polynomials, 343 organization, 261

696 U FOUNDATIONS OF COMPUTING

program, 237 repeated squaring, 7, 95
pushdown, 450 routing, 533, 573
random access, 237, 254, 290 greedy, 597
register, 241 randomized, 533
shared, 261-264, 276, 290-291,579 scientific, 298
tree-structured, 230 sieve, 43

Menger sponge, 145 simplex, 331
MERGESORT, 6, 15, 40, 70 simulation, 300
merging, 293, 351, 545 tiling, 614-617, 640

lemma, 544 truncation, 36
Merkle, Ralp C, 480, 658 Meyer, Albert R, 213, 364, 367, 659, 664
Merkle-Hellmann's cryptosystem, 483 Meyer auf der Heide, Friedhelm, 601, 655, 659
mesh of trees, 538, 546, 564, 566, 582, 586, 600 Micali, Silvio, 76, 490, 497, 531, 644, 651

three-dimensional, 598 microcomputer, 109
two-dimensional, 538, 542, 546 Milgram, David L, 463, 659

message, 608 Miller, Gary L, 366, 641, 659
composed, 608 Miller, Victor S, 76, 656
cumulative, 547, 552 Miller, Zevi, 601, 659
self-delimiting, 609 MIMD PRAM, 261

method minimization, 378
algorithmic, 216, 369 bounded, 379
bootstrapping, 76 of DFA, 164-165, 212
chaining, 110 MINIMUM-VERTEX-COLOURING, 363
data distribution, 580 Minsky, Marvin L, 225, 282, 293-295, 414, 659
diagonalization, 228, 329, 426 minterm, 104, 106
divide-and-conquer, 5, 39, 95, 246-247, MIP, 515

301, 542-544, 587, 592 MIP = NEXP theorem, 531
division, 109 Mitchell, Chris J, 497, 659
embedding, 533,555 mod (modulus operation), 41
encryption, 488 MOD,, 615
fooling set, 611, 616-617, 639 mode
graph rewriting, 452 of communication, 66, 547
greedy, 570, 573 deterministic, 66
initialization, 410 nondeterministic, 66
jump, 395 randomized, 66
layout, 533, 581-582, 601 of complexity analysis, 66

recursive, 589 of computation, 66, 68, 153, 215, 217
lower bound, 603, 640 deterministic, 66
matrix rank, 613-614, 616-617, 637, 640 nondeterministic, 66
multiplication, 109 randomized, 66
of generating functions, 19, 27 of computing
of graph traversal, 124 randomized, 347
optimization telegraph, 547, 549, 552

combinatorial, 339 telephone, 548
pointer jumping, 270 model
randomized, 53, 62, 580 mathematical, 298
recursive, 5 of automata, 154, 418
reduction, 65, 308, 355, 384 of biological world, 277, 294

for NP-completeness, 313 of chaotic systems, 294

INDEX U 697

of communication, 64, 66, 608 moral, 70, 145, 209, 288, 360, 410, 456, 494, 529,
of computation, 6, 64, 69, 154, 200, 302, 596, 635

461, 514, 632 Moran, Shlomo, 531, 642
non von-Neumann, 277 Morita, Kenichi, 295, 659
parallel, 101, 261-262, 277, 535, 604 morphism, 391, 420, 446, 448
randomized, 347 inverse, 130

of computers, 102, 215-217,235, 237, 240, iteration of a, 134
242-244, 250, 257, 261,274, 294, 298 nonerasing, 445

infinite, 216-217, 250 of languages, 130
massively parallel, 277 of monoids, 138
parallel, 66, 272, 294, 579 of words, 129
sequential, 66, 216, 294 Morris, James H, 213, 655
uniform, 250 Motwani, Rajeev, 76
universal, 66, 215-216, 250 move

of CRCW PRAM, 263 of an interactive protocol, 507
of digital watch, 155 MTd (mesh of trees), 538
of dynamical systems, 294 MTM, 230, 304
of finite state machines, 154-155, 178 off-line, 307
of interactions, 507 Muller, David E, 213, 601, 659-660
of interconnection networks, 535, 542 Muller automaton, 191, 193, 195, 213
of layouts, 581 MULT, 617
of machines, 195 multigraph, 118, 343
of massive parallelism, 294 minimal cut of a, 343
of microscopic physics, 101, 287 multiple provers, 514
of physical world, 277, 294 multiplication

modelling graphical, 417, 462 in groups, 139
modulus, 41, 484, 487, 489, 497 matrix-vector, 546
modus ponens, 397 of Boolean matrices, 96
Monien, Burkhard, 213, 600-601, 653, 659 of complex numbers, 248
monoid, 77, 138 of integers, 28, 40, 195, 238, 351, 621

commutative, 138 modular, 528
finite, 210 of polynomials, 529
free, 138, 176, 389 strong modular, 483, 495
noncommutative, 138 multiplicity of roots, 12, 27
quotient, 139 multiset, 80, 145-146, 412
syntactical, 139, 176-177, 195, 213, 441 equality test, 530

MONOTONE-CNFF, 361 operations, 80
Monte Carlo Muriel, Myriam, 531, 660

algorithm, 347 Murty, Uppaluri S. R, 151, 645
communication, 640 Myhill, John, 151, 213, 281, 660

complexity, 628 Myhill's theorem, 176-177, 200
one-sided, 640

protocol, 603, 627-631, 638 (m) (binomial coefficient), 17
recognizer, 86 [n]{0,1,... n-1},79

randomized, 87 (n, d)-array, 536
Montwani, Rajeev, 366, 531, 642, 659 (n, d)-toroid, 536
Moore, Edward F, 151, 212-213, 295, 659 NAE3-CNFF, 362
Moore automata, see Moore machine Naor, Moni, 532, 660
Moore machine, 179-180, 195, 210, 213 Napoli, Margherita, 213, 652

698 , FOUNDATIONS OF COMPUTING

Nassimi, David, 601, 660 theory, 600
nature topology, 262

of communication, 2 tree, 177
of computational complexity, 604 universal, 534, 576
of computing, 2, 65-66, 68, 305, 604 Waksman, 567

NC (Nick's Class), 69,351 Newton, Isaac, 474
necklace, 540, 597 NEXP, 303, 352, 355-356, 358, 499, 515, 521

degenerated, 541 NFA, see automaton, finite, nondeterministic
full, 541 Nissan, Noam, 531, 657

neighbourhood, 100, 277, 279, 284-288, 530 NIST, 112
Moore, 277-278, 280, 292 NL, 204, 303
von Neumann, 277-278, 293 NLC, see graph, grammar, NLC

Nerode, Anil, 213, 660 NLOGSPACE, 303, 331,351
Nerode's theorem, 176-177, 195, 202 Nobel price, 80
network, 2, 53, 64, 66, 68, 113, 500, 533-540, 546, node

552, 554, 558, 561,564-571,576-579, ancestor of a, 126
596-600 degree of a, 126

balanced-tree, 177 depth of a, 126
baseline, 569, 598 descendant of a, 126
Bene§, see Beneg network in-degree, 113
bounded-degree, 262, 533-534, 539, 549, internal, 126

576, 579, 581,600 out-degree, 113
regular, 600 parent of a, 126

butterfly, 579 NODE-COLOURABILITY, 314
characteristics, 539 nonapproximability, 341, 366
communication, 114, 533, 535, 546, 592, nondeterminism, 623

596, 600 of NFA, 163
theory, 600 normal form

description, 535 for CA, 285
finite, 281 for CFG, 432
infinite, 281 notation
interconnection, 115, 152, 535 asymptotic, 1, 34, 236

regular, 229 e9-notation, 31
low-diameter, 592, 594, 596 !Q-notation, 31
multibutterfly, 571-572, 600 w-notation, 35
multiprocessor, 262, 555, 570 0-notation, 31
neural, 339 o-notation, 34
of computers, 533 summary, 37
of finite automata, 277, 281 radix, 132
of processors, 90, 534, 539, 554, 566 Novikov, Petr S, 415
Omega, 598 NP, 69, 297, 299, 334
parameters, 539 NPO, 342
perfect shuffle, 557 NPSPACE, 300
permutation, 566, 569, 598, 600 NSpace(s(n)), 299

nonblocking, 566 NTime(t(n)), 299
randomly interconnected, 592, 594, 596 NTM, 298
sorting, 600 number
switching, 600 complex, 19, 36
telephone, 600 composite, 607

INDEX 5 699

recognition, 326 minimization, 378
crossing, 591-592, 599 modulo, 40,44
Fibonacci, 10, 23, 42, 71-72, 84, 195-196, monoid, 138

220, 238, 290, 446, 557 of composition, 374-377, 410
G6del, 225 of minimization, 377, 410
harmonic, 28, 58 of perfect shuffle, 597
Lucas, 71, 496, 557 of primitive recursion, 373-377
of wisdom, 369, 382, 397, 406, 408, 414 on generating functions, 19
pseudo-random, 61 on relations, 91
random, 61, 400, 496, 500, 503, 510-511, on sets, 89

513 outshuffle, 596
real placement, 135

computable, 382, 414 pushdown, 245
limiting recursive, 382, 414 reversible, 409
recursive, 382 right-quotient, 210

system, 131 shuffle, 129, 182, 212, 410, 550
positional, 28, 131-132, 355 tree, 127

theory, 1-2, 31, 40, 43, 49-50, 325, 391, 414, operator
485, 492 cryptographic, 500

algorithmic, 76 jump, 395
numbers oracle, 305-306, 329, 353, 395

relatively prime, 42 ordering
lexicographical, 93, 231

O-estimation, 33,36 monotone, 103
O-expression, 36 partial, 146
0-notation, 28-37, 70 strict, 93, 224, 300, 322, 333, 372, 399

manipulations with, 36 total, 146, 377
o-notation, 34, 70 Orlitsky, Alone, 639, 660
Ockam, William of, 409 Ostrovsky, Rafael, 532
O'Connor, Luke J, 497, 660 overhead
Odifredi, Piorgiorgio, 414, 660 processor, 352
Odlyzko, Andrew M, 76, 366, 497, 645, 656, 660 space, 243
Opatrny, Jaroslav, 601, 653 linear, 243
operand, 237 time, 243, 554, 570, 577
operation constant, 570

arithmetical, 7, 46, 64-65, 95, 245-250, 255, linear, 243-245, 310
267, 289, 397, 522 polynomial, 243

associative, 16, 79, 269
Boolean, 106, 375, 410 P, 69, 297
commutative, 79 Pr (probability distribution), 53
comparison, 58 P = NP problem, 88, 298, 327-329, 332, 364
contraction, 542 relativized, 329
dictionary, 145 packet, 565-566, 570-575, 578, 580
gluing, 461 palindrome, 84, 128, 150, 219-220, 231, 289, 302,
inshuffle, 596 605-606, 610, 637
jump, 413 recognition, 605
left quotient, 136 Pan, Victor Ya, 247, 294, 660
logical, 255 Papadimitriou, Christos H, 364-367, 531,
matrix, 526 639-640, 656-657, 660

700 U FOUNDATIONS OF COMPUTING

paradigm, 64, 77-78, 249, 298 Perennes, St~phane, 601, 661
communication, 65 perfect secrecy, 474-475, 500
computational, 65 performance

paradox, 80, 151 analysis, 2
barber's, 384 evaluation, 68
Berry's, 399, 406 period of computation, 90
Epimenides', 397 permanent, 245-246, 248, 289, 510
liar's, 397 PERMANENT, 335
Russel's, 80, 384 permutation, 52, 58, 99, 141, 146, 246, 317, 471,

parallel computation thesis, 215, 242, 271, 274, 474-478, 490, 508, 510, 524, 542,
293 566-570, 573-575, 578, 598, 617, 620

parallel random access machine, see PRAM bit-reversal, 570, 573
parallelepiped, 619 cyclic, 621
parallelism, xiii, 203, 206 group, 140

massive, 286, 592, 596 identity, 100
parallelization, 266 inverse, 100, 578
parameter random, 517-520, 523, 574

confidence, 526 permutations
security, 508 composition of, 100

Parbery, Ian, 294, 660 powers of, 100
Parente, Dominico, 213, 652 permuter, 566
parsing, 417, 440, 462 Perrin, Dominique, 212, 661
partition, 79, 92, 608-624, 629, 636 P~ter, R6zsa, 414, 661

almost balanced, 599, 617, 619, 622, 636 PH (Polynomial Hierarchy), 352
balanced, 617-619, 622, 632, 636, 638 Phillips, Robert G, 601, 657

input, 636 physics, 298, 339, 391, 398
fixed, 603, 609, 619-620, 639 classical, 224, 235, 350
input, 608, 631, 638 microscopic, 101, 287
output, 608 modem, 224

party, 604 quantum, 224, 466
communicating, 501, 605-608, 617, 637 PID, 262

Pascal language, 69 pigeonhole principle, 99, 146, 167
password, 108 Pippenger, Nicholas, 294, 351, 366, 600, 661
Patashnik, Oren, 75-76, 651 Pipper, Fred, 497, 659
patent, 475 pitfall, 1, 64, 69
Paterson, Michael S, 602, 660 Pitts, Walter, 154, 212, 658
Patt, Yale N, 295, 641 plaintext, 467-490
pattern, 167 planarity, 116
Paturi, Ramamohan, 639, 661 plane, 81
Paul, Wolfgang J, 364, 653 complex, 541
Paqn, Gheorgh, 463, 647, 661 player, 607, 633
Paz, Azaria, 213, 462, 661 Playfair, Lyon, 473
PDOL-system, 445-446, 449 Playfair square, 469, 473, 494
PDA, 434 Plumstead, Joan B, 76, 661
Peine, Regine, 600-601, 653 PO, 342
Peitgen, Heinz-Otto, 151, 661 Pohlig, Stephen C, 76, 661
Pell's equation, 391 poker playing, 506
Penrose, Roger, 224, 386-387, 415, 462, 661 Pollard, John M, 487, 657
Penrose's tiles, 386 Polybios, 468

INDEX U 701

checkerboard, 468 algorithm, 262, 264-265, 267
polygon, 394 computing, 266
polyhedra, 385 optimal, 267
polynomial, 11-12, 25-27, 50, 55, 68, 71, 74, 188, programming, 261, 264, 268

210, 289, 328-329, 343, 348-349, 361, Prassana Kamar, V. K, 640, 654
363, 391-392, 412, 489, 504, 510-513, Pratt, Vaughan R, 213, 366, 655, 661
522, 638 predicate, 23

approximating, 512 membership, 78
characteristic, 11 on sets, 89
hierarchy, 353, 359 one-way, 489-490, 497

class, 353 trapdoor, 465, 489, 491
collapsing, 354 primitive recursive, 375, 378, 410
cummulative, 353 predictability, 76

multilinear, 106 prefix, 60, 128
multivariable, 106 equivalence, 177
universal, 393 proper, 128

polyomino, 394 sum, 269, 351
Pomerance, Carl, 366, 497, 641 algorithm, 268
Porta, Giovanni P, 473 algorithm for EREW PRAM, 268
portability, 534 problem, 268, 294
poset, 96 Prefix(L) (prefix of L), 130
Post, Emil L, 223, 293, 390, 414-415, 418, 420, Preparata, Franco P, 601, 640, 644, 658, 660

462, 661 preprocessing, 476, 569-571, 580
Post correspondence problem, 390-396, Press, William H, 600, 661

411-415, 443, 458 Priese, Lutz, 293, 415, 661-662
bounded, 323 Prim's algorithm, 125

Post's theorem, 147, 372 primality, 325
Potte, Samuel, 640, 646 testing, 43, 47, 325, 366, 497
power Monte Carlo algorithm, 65

computational, 163, 182, 257, 508, 604 prime, 40-53, 62, 65, 73-76, 83-87, 108, 111, 140,
of class IP, 510 177, 212, 221,306, 325, 348, 379, 392,
of distributiveness, 533 412, 441, 456, 478, 480-481, 484-487,
of finite automata, 196, 209 491, 495-496, 502-504, 513, 607, 610,
of interactions, 500, 507 630, 633
of machines, 370 decomposition, 43,45
of parallel computing, 533, 600 distribution, 44
of randomization, 98, 197, 500 factorization, 326
series, 19, 23, 36, 150 factors, 50

formal, 19-21, 36 large, 43-44, 484-485, 489, 496, 505
truncation, 36 Mersenne, 43, 86

set, 79 number theorem, 44, 76
synchronization, 281 random, 629

powers recognition, 297, 325-327, 348, 366
of languages, 129 nondeterministic, 326
of words, 128 problem, 324

PP, 347, 354 randomized, 365
PRAM, 66, 69, 215, 262-263, 266, 271-274, 294, primes, 1

579-580, 600 number of, 43
abstract, 291 records of, 76

702 * FOUNDATIONS OF COMPUTING

sieve method for, 43 unfeasable, see problem, algorithmic,
primitive, 530 intractable

cryptographic, 497, 504 approximation, 336
Principia Mathematica, 80 approximation scheme, 336
principle bit commitment, 502-504, 530

MLD (minimal length description), 409 broadcasting, 546, 554
multiple explanation, 409 characterization, 419
Occam's razor, 409 circuit value, 330, 352

Principles of Mathematics, 80 co-NEXP-complete, 358
priority of operators, 171 co-NP-complete, 357, 361
probability, 49-67, 74-76, 86, 109-112, 197-200, coin-flipping by phone, 502

343-350,400,470,472,486-492, communication, 64, 66, 499-500, 502, 504,

504-505, 508-529, 574-575, 627-631 531,535, 546, 565, 600, 604, 610, 635,

algorithmic, 403 637, 639

a priori, 66, 403 complete, 68-69, 297, 305, 308, 331, 335,

conditional, 54 350, 353-354, 364, 366-367, 385

density function, 54, 56 computational, 64-66, 87, 102, 131, 216,

discrete, 1, 53 218, 245, 247, 281,298, 327, 332, 354,

distribution, 53, 56-57, 61, 63, 78, 109, 200, 604

320-324, 450, 519, 526 unfeasible, 466

algorithmic, 403 with complete information, 65

binomial, 56 with incomplete information, 65

geometric, 56 congestion, 570, 573
constant relative error bound, 336

indistinguishable in polynomial time, counting, 334

uniform, 54-55, 61, 526 cryptoanalysis, 488
ensembles, 519 cryptographic, 506

endisem is, e 51 decision, 87-88, 131, 166, 174, 218, 227,
indistinguishable in polynomial time, 317-319, 322, 332-334, 352, 354, 384,

519 386, 388-391,394, 396, 441-442, 453,
failure, 344 455, 512
generating function, 56 distributional, 322
halting, 406 for CFG, 442
of cheating, 513 well parallelized, 352
of communication, 627, 640 design, 66
of error, 65, 86, 343, 349, 486, 515, 582, 628, Diophantine equation, 362

630, 638 discrete logarithm, 530
of transition, 157 DNP-complete, 323
space, 53, 55, 108 domino, 76, 396
theory, 2, 398 embedding, 555

problem emptiness, 88, 166, 175, 192, 443, 458
3-CNFF, 331 equivalence, 88, 192, 357, 394, 415, 453
accumulation, 547 for CFG, 443
algorithmic, 1, 4-5, 38, 66-69, 119, 142, 237, for regular expressions, 175

247-248, 261,267, 297-300, 304-305, EXP-complete, 356
308, 318-321,324-325, 353, 370, 385, feasible, 273
396, 480, 522-524, 543, 546, 600 finiteness, 166, 175

intractable, 38, 61 FNP-complete, 332
tractable, 38 function, 332-333, 354

INDEX 1 703

game, 355 permutation routing, 566, 568
garden of Eden, 101, 151, 295 personnel assignment, 149
generalized GCD, 522 PH-complete, 354
gossiping, 547-548, 552, 554 Post correspondence, see Post
graph accessability, 331 correspondence problem
halting, 227-228, 354, 369, 382-385, 390, PP-complete, 348

394-397, 400, 406-408, 414-415, 461 printing, 384
bounded, 308, 321, 323, 330, 353 PSPACE-complete, 166, 175, 354-357
bounded randomized, 324 quadratic residuocity, 530

highly parallel, 273 quantified satisfiability, 353, 512
identification, 501, 521 reachability, 530
inequivalence, 213 for CA, 278, 355
inference, 410, 448 recognition, 443
infiniteness, 443 for CFG, 437
information dissemination, 533, 534, recurring domino, 396

546-547, 554, 565, 600 routing, 534, 565
basic, 546 one-packet, 565

inherently sequential, 273, 352, 366, 443 #SAT, 511, 531
instance, 608 satisfiability, 106, 311, 313, 327, 330, 344,
intractable, 62 354, 365
key-distribution, 490 search, 87-88, 332-335, 633
knapsack, 269 communication, 632
language acceptance, 218 secret sharing, 504
layout, 581, 587, 600, 602 self-applicability, 227
linear programming self-reproducibility, 294

integer, 331, 340, 366 simulation, 554, 576
rational, 331, 340, 366 solvability, 194

MAX 3CNF, 346 synthesis, 194
maximization, 336 tiling, 354, 356, 369, 385-388, 396, 412, 415
membership, 88, 174, 392, 394, 443 bounded, 309-310, 321, 323, 365

for LBA, 207 undecidable, 388
minimization, 336 tractable, 68
NEXP-complete, 307, 356 undecidable, 227, 229, 369, 382-384, 392,
NLOGSPACE-complete, 331 394
NP-complete, 69, 106, 119, 121, 124, uniform synthesis, 194

307-308, 311,314, 316-321, 323-325, unsolvable, 227, 229, 382, 466
327-331,335-339, 341,344, 350, verification, 194, 385, 526
354-356, 361-366, 396, 480, 488, 515, vertex covering, 340
531,555, 587, 626 word, 355, 389, 419

average-case, 323 problems
optimization, 336, 339 of antiquity, 223

oblivious transfer, 504, 530 polynomial time isomorphic, 318
open, 204, 206, 331 Proc7j (x), 266
optimization, 317-318, 331, 335-336, procedure

338-339, 341-342, 515, 625 effective, 222
p-p, 575 encryption, 502, 517
P-complete, 273, 330, 352, 356, 443 merge, 545
#P-complete, 335 random-split, 527
parsing for CFG, 437 process, 122

704 U FOUNDATIONS OF COMPUTING

communication, 113 techniques, 217, 221
computational, 113, 137 projection of words, 128

randomized, 62 proof, 2, 505, 509, 514-516, 518, 531
cooperational, 113 by authority, 514
iterative, 61 checking, 122
nonterminating, 213 classical, 515
quantum-mechanical, 60, 62 efficient, 515
stochastic, 60 formal, 508, 514

processor, 2, 7, 100, 122, 177-178, 535, 539, holographic, 466, 515
542-544, 547, 565-566, 571-582, 584, interactive, 500, 506, 509, 514-516, 520, 531
598 with multiple provers, 514

identifier, 262 mathematical, 514
memory-less, 178 of membership, 515
source, 565 system, 508-509, 515
target, 565 interactive, 353, 466, 499, 507-509, 512,

production, 418-419, 421, 424 521,530
array rewriting, 460 technique, 67

context-free, 460 transparent, 500, 515, 531
context-sensitive, 424 user identification, 521
cotexsen ve, 4 24 zero-knowledge, 466, 499-500, 516-521,
hyperedge, 454 523, 530

program, 2, 28, 83, 226, 291 property
ascend/descend, 598 closure, 442
checker, 521, 523 expansion, 571
checking, 466, 499 nonclosure, 442

interactive, 521 prefix-freeness, 608-609, 612, 627, 629
for RAM, 289 self-delimiting, 224for RASP, 289 self-reducibility, 529, 531interactive, 521 random, 526randomized, 525 Protasi, Marco, 366, 642oracle, 526 protocol, 2, 499-531, 605, 607-615, 619-636, 639reactive, 193 age difference finding, 503, 529, 531

reliability, 521 bit commitment, 529
self-correcting, 499-500, 515, 525-532 bounded error, 639

interactive, 521 BPPC, 603, 627-630, 638
self-delimiting, 401, 403 coin-flipping by phone, 503, 529
self-testing, 515, 525-526, 529, 532 communication, 2, 53, 65, 193, 478,
straight-line, 245 501-502, 603, 608-610, 627, 634, 636,
testing, 521 639
validation, 521, 525 deterministic, 633

interactive, 521 cryptographic, 466, 499-500, 505, 516, 521,
verification, 385, 521, 531 530

automatic, 385 deterministic, 623, 625, 629
problem, 396 for Hamilton cycle, 518

programming for permanent, 510, 531
of networks, 534, 604 friend-or-foe identifications, 501
of TM, 237 graph 3-colourability, 517
parallel, 534, 538, 579 graph nonisomorphism, 531

INDEX U 705

interactive, xiii, 66, 69, 119, 499-500, QUICKSORT, 66
506-519, 530, 532, 604 Quisquater, Jean-Jacques, 531, 660

interlock, 502, 531 quotient, 41
Monte Carlo, 638
multi-prover, 531 R, (ring), 536
multiparty, 639 Rabin, Michael 0, 76, 212-213, 364-366, 486,
nondeterministic, 603, 623-625, 640 488, 497, 531, 662

one-way, 625 Rabin's algorithm, 485
unambiguous, 637 Rabin-Miller's algorithm, 486

oblivious transfer, 505, 529, 531 Rackoff, Charles, 531, 651
one-way, 624 Rado, Tibor, 228, 293, 657, 662
optimal, 609, 615 Raghavan, Prabhakar, 76, 366, 532, 644, 659
permutation routing, 566, 570, 598 Raj~ini, Peter, 213, 647, 662
poker-playing, 531 RAM, 66, 69, 215, 241-244, 250, 289, 579
randomized, 603, 627-628, 639 instruction, 242, 294
recursive, 607 processor, 261
routing, 566 program, 238, 243, 245
secure, 502 successor, 294
signature, 493 RAM+, 238
sum, 510, 512 Ramachandran, Vijaya, 294, 655
unbounded error, 639 Ranade, Abhiram G, 601, 656, 662
zero-knowledge, 500, 516, 519, 530 RANDOM, 60, 62

prover, 353, 507-520, 523, 530 random
cheating, 507 number generator, 53
multiple, 521 string, 370

Prusinkiewicz, Przemyslaw, 151, 462-463, 662 variable, see variable, random
pseudo-randomness, 44, 62, 488 variables independent, 54, 59, 74
PSPACE, 69, 237, 297, 352-353, 510-514, 520, randomization, xiii-2, 45, 59, 65-66, 197, 342,

524 344, 347, 366, 499-500, 573, 623, 638
Ptahhotpe, xiii internal, 522
PTAS, 342 methods of, 66
pumping lemma, 463 randomness, 1-2, 53, 60-62, 66, 68, 78, 98, 297,

for CFL, 441, 443, 462 397-400, 404-408, 415, 466, 488,
for HR graph languages, 455 497-500, 515, 520
for NLC graph languages, 454 of strings, 369-370, 398
for regular languages, 167, 195, 213 source of a, 475, 490

Purdom, Paul W, 76, 662 true, 60
Pythagorian school, 385 Ranka, Sanjay, 601, 662

Rao, Satish B, 601, 655
QNRm (quadratic nonresidue), 48 RASP, see machine, random access stored
QRm (quadratic residue), 48 program
QSATk, 353 RASP+, 243
QUADRATIC-DIOPHANTINE-EQUATIONS, RBHP, 324

319 reasoning
quadratic nonresidue, 48 formal, 298
quadratic residue, 48, 50, 52, 76, 489, 491 rational, 297
QUANTIFIED-SATISFIABILITY, 355 Reckhow, Robert A, 293, 647
quantifier, 353-354, 358, 360, 512 recognizer, 83, 85-86, 156-158, 178
quasi-ring, 77, 142 deterministic, 85

706 U FOUNDATIONS OF COMPUTING

finite state, 157 REJECT, 217
Monte Carlo, see Monte Carlo recognizer relation, 91

recurrence, 3-27, 38-42, 58, 63-64, 70-73, 76, 84, antisymmetric, 92
96, 159, 172, 244, 246, 337, 373, 433, asymptotic, 31
447, 477,491,567, 569 between PRAM models, 294

deterministic, 63 binary, 91, 94
linear homogeneous, 10-11,447 complement of a, 91
probabilistic, 62-63, 76 connection, 452
unrolling of a, 9 domain of a, 91

recurrences, 2-13 divisibility, 41
method to solve, 1 equivalence, 44, 92

algebraic equations, 10 graph rewriting, 453
basic, 8 identity, 92
generating functions, 22 input-output, 98
iteration, 9, 63 inverse, 91
substitution, 8 n-ary, 91

system of, 27 partial order, 92
recursion, 2, 4, 428 polynomially balanced, 326, 332, 334

double, 380 decidable, 326, 332, 334
primitive, 374, 377, 414 range of a, 91
theory, 357, 381 recursive, 372

recursive enumerability, 218, 381 recursively enumerable, 372, 393
recursivity, 218, 381 reflexive, 92

primitive, 375 rewriting, 455
reducibility, 69, 305-307, 313-314 322, 352, 364, symmetric, 92

394 total order, 92
algorithmic, 305 transitive, 92
approximations preserving, 341 closure of a, 151
logspace, 306-307, 330 weakly antisymmetric, 92
many-to-one, 323, 394 weighted, 185
NC-many-to-one, 352 relatively prime, 44, 46, 471
NC-Turing, 352 replacement
parsimonious, 335 context-free, 452
polynomial time, 306, 308, 316, 321, 352, hyperedge, 454

356, 520 representation
in FNP, 332 binary, 62

resource-bounded, 297, 298, 305, 307, 364 bracket
Turing, 306, 352, 395 of axial trees, 450

reduction see reducibility by binary strings, 83
register of binary trees, 127

of RAM, 237 of Boolean functions
of shared memory, 263 by polynomials, 106
shift, 253 of FA

regular expression, see expression, regular by enumeration, 159
regular language, see language, regular by state graph, 159
Reif, John H, 580, 662 by transition matrix, 159
Reinhardt, Klaus, 462, 644 of graphs, 66, 118
Reischuk, Karl R, 294, 364, 366, 646, 662 of images, 133
Reiss, Steven, 366, 648 of integers, 66, 89

INDEX * 707

binary, 7, 288 of FA, 164
dyadic, 81 of words, 128
Fibonacci, 81, 180, 209, 289, 428, 597 rewriting, 390, 417
Gray code, 559 array, 460
modular, 46 context-free, 454
positional, 131 derivation, 428

of languages edge, 448-449, 461,463
by points, 135 graph, 452

of matrices hyperedge, 454, 463
by binary strings, 81 left-most derivation, 428

of multisets, 89 node, 452, 461
of numbers, 132 relation, 418, 452

binary, 81, 239 right-most derivation, 428
of objects, 80 rule, 84, 418, 420
of permutations, 100 step, 418
of pixels, 136 string, 420, 460

by words, 137 parallel, 420
of primes sequential, 418

by polynomials, 392 system, 119, 418, 462
of relations, 93 term, 463
of sets, 80, 89 rhombohedra, 386

by complete tees, 90 rhombus, 386
of trees, 132 Ribenboim, Paulo, 76, 662
of words Rice, Henry G, 415, 662

by a turtle, 134 Rice's theorem, 383
by pixels, 151, 184 Richardson, Daniel, 151, 295, 662
by points, 135, 151 Rieman hypothesis, 325

residue classes, 48, 79 generalized, 325, 366
modulo n, 44 ring, 77, 143, 342, 536, 547, 552-554, 558-559,

resolution, 186 576, 578, 594, 598
finite, 191 one-directional, 539, 576

resources two-directional, 539, 576
bound on, 69 simulation, 576
computational, 2, 62, 64, 66, 68-69, 216, Rivat, Joel, 44

254, 266, 298, 303 Rivest, Ronald L, 39, 75-76, 151, 213, 364, 366,
communication, 2, 216 484, 497, 531, 662-664, 668
interactions, 2 Robinson, Abraham, 293, 649
parallel time, 254 Robinson, Julia, 415
processors, 2, 216 robotics, 193
program, 2, 216 Rogers, Hartley, 364, 414, 663
randonmess, 2, 216 Rogozhin, Yurii, 227, 293, 415, 663
sequential time, 254 root, 26, 510
storage, 2, 216, 254 characteristic, 11, 13
time, 2, 216 complex, 325
time and space, 304 multiple, 26

result checker, 522-526, 529 of a polynomial, 11, 25, 27, 50, 510
interactive, 522 primitive, 597
simple, 522 primitive of 1,540

reversal principal, 53, 62, 74

708 N FOUNDATIONS OF COMPUTING

of Z*, 53 de Morgan, 633
Rose, Gene F, 213, 650 deduction, 514
Rosen, Keneth H, 151, 663 derivation, 397
Rosenberg, Arnold L, 213, 601, 644, 651, 655, inference, 404

663 Rumely, Robert S, 365-366, 497, 641
Rosenfeld, Azriel, 463, 659 Rumely-Adleman's algorithm, 365
Rosenkrantz, Daniel J, 366, 663 Russell, Bertrand A. W, 80, 514
Rosser, J. Barkley, 76, 663 Ruzzo, Walter L, 294, 366, 462, 602, 651, 660, 663
rotation, 187, 189-191, 210 Rytter, Wojciech, 462, 663
Rothberg, Ed, 340, 366, 654
round, 509-512, 518, 520, 547-553 Safra, Shmuel, 531, 649

exchange, 550 Sahni, Sartaj, 601, 660, 662
shuffle, 550 Salomaa, Arto, 151, 212-213, 293, 415, 462-463,

routing, 262, 565-566, 575-580, 596, 600 497, 531,647, 661, 663
deterministic, 569 Salvail, Louis, 497, 643

with preprocessing, 569 Sank, P, 601, 657
greedy, 565, 571, 574 SAT, 311, 358

deterministic, 573, 575 satisfiability, 105, 249, 344
one-packet, 566 Sato, Daihachiro, 415, 654
randomized, 573 Saupe, Dietmar, 151, 661

left-to-right, 565 Savage, John E, 294, 663
oblivious, 571 Savelsbergh, Matieu W. P, 365, 663
off-line, 566 Savitch, Walter J, 364, 663
on 2D-arrays, 570 Savitch's theorem, 301, 329
on butterfly Saxe, James B, 76, 643

randomized, 573, 575 Schafer, Thomas J, 367, 663
on multi-butterfly, 572 Schechlman, D, 387
on-line, 566 scheduling pre-emtive, 291
one-packet, 565, 570 Schmetzer, Christine, 639-640, 663
p-p, 580 Schmidt, Erik M, 639, 658
permutation, 566, 569-571, 575, 579, 601 Schneier, Bruce, 497, 531, 663

deterministic, 570 Schnitger, Georg, 639-640, 648, 663
oblivious, 571 Schnorr, Claus-Peter, 294, 497, 664
without preprocessing, 570 Schoenfeld, Lowell, 76, 663

randomized, 573, 575, 600 Schonhage, Arnold, 247, 256, 294, 664
with preprocessing, 566, 569 Schor, Peter W, 664
without preprocessing, 566 Schorr, Amir, 664

Rozenberg, Grzegorz, 151, 293, 415, 462-463, Schiutzenberger, Marcel P, 462, 646
649, 654, 658, 663 Schwartz, Jacob T, 600, 664

RP, 347, 350 Schwartz' lemma, 55, 343
RQUICKSORT, 343 science, 28, 318
RRAM, 249, 294 basic, 298

operation, 249 experimental, 78
program, 249 mature, 78

RSA cryptosystem, 465, 484-488, 492-493, modem, 78, 154
495-497, 504 pure, 298

Riub, Christine, 76, 652 Scott, Dana, 212-213, 415, 462, 662
Rubinfeld, Ronett, 532, 644 SEd (shuffle exchange network), 536
rule search

INDEX U 709

binary, 318, 333 m-complete, 413
breadth-first, 124, 300 nonrecursive, 410
depth-first, 124, 258, 300 NP-complete, 431
exhaustive, 300, 477 operations, 79

Seberry, Jennifer, 497, 660 Cartesian product, 79
secret, 479, 505, 521 complement, 79

local, 521 difference, 79
secret voting, 500, 504, 529 generalized Cartesian product, 79
security, 465, 488, 490-492, 500, 505-506, 514 generalized intersection, 79

cryptographical perfect, 488 generalized union, 79
of cryptosystems, 470, 499 intersection, 79
of DES, 477 iteration, 79
of RSA, 487 power set, 79
parameter, 491 symmetric difference, 79
perfect, 489, 499 union, 79
polynomial time, 491 partially ordered, 96

Sedgewick, Robert, 75, 639, 657, 664 partition, 79
seed, 61,490 primitive recursive, 375

random, 475,488 productive, 373, 413
short, 488 recognizable, 369

Seiferas, Joel I, 364, 664 recursive, 369-372, 381, 394, 397, 410, 414
self-loop, 113, 576 recursively enumerable, 369-373, 381-384,

-reference, 370 392-394, 397, 404, 407, 410, 413-414,
-reproducibility, 278, 294 420

Selman, Alan L, 364-366, 651, 656 simple, 373
semantics, 137, 418 specification, 83
semigroup, 77, 138 theory

Abelian, 389 axiomatic, 80
separator, 590 classical, 89
sequence computational, 89

almost random, 61 modem, 84, 151
bi-infinite, 79, 99 naive, 80
finite, 79, 99 universal, 78
infinite, 19, 79, 99 SET-COVER, 361, 366
normal, 60 SET-PACKING, 362
pseudo-random, 60, 62, 490 sets
random, 61, 502, 505 disjoint, 78

infinite, 506 equality of, 78
sequential computation thesis, 215, 242, 244, SHA (Secure Hash Algorithm), 112, 493

293 Shamir, Adi, 483-484, 531, 601, 649, 662
Sema, Maria, 366, 648 Shamir's theorem, 509, 512
set, 78, 414 Shannon, Claude E, 293-294, 402, 466, 475-476,

acceptable, 369 664
countable, 80 Shannon's effect, 256
creative, 373, 413 Shen, Alexander, 531, 664
decidable, 370 Shephard, G. C, 415, 652
empty, 78 Shepherdson, John C, 213, 293, 664
immune, 373, 413 shift
independent, 362 circular left, 187, 190

710 I FOUNDATIONS OF COMPUTING

cyclic, 476, 621 Snyder, Larry, 602, 660
Shiloach, Yossi, 294, 664 Soisalon-Soininen, Eljas, 462, 664
Shirasaki, Akihiko, 295, 659 soldier, 281
Shor, Peter W, 53 Solomonoff, Ray M, 415
shortest path, 271 Solovay, Robert M, 365-366, 415, 642, 665
Shub, Mike, 76, 294, 365, 644 Solovay-Strassen's algorithm, 365
shuffle exchange graph, 536-542, 549, 556-557, solvability, 370

564-565, 570, 577-579, 587, 594, 596 Song, Siang W, 151, 665
siblings, 126 SORT,, 617, 621
Sierpifiski sorting, 65, 267, 293, 352, 525, 546, 570, 579-580,

tetrahedron, 82 621-623, 640
triangle, 82, 84-85, 99, 151, 157, 455 algorithms, 89

Sierphiski, Waclaw, 82 INSERTSORT, 70
signal, 155 MERGESORT, 6
signature, 493-494, 504 QUICKSORT, 66

digital, 497 RQUICKSORT, 343
El Gamal, 497 topological, 146, 257
scheme, 496 Sotteau, Dominique, 601, 653

DSS, 493-494, 497 SPACE, 499
SIMD PRAM, 261 space
Simon, Daniel R, 350, 664 bound, 302
Simon, Janos, 640, 654, 661 compression, 235
simulated annealing, 339 theorem, 237
simulation, 221-222, 235, 237, 240-243, cryptotext, 467-468, 490-492, 496

257-258, 260-261,294, 533, 554, 576, deterministic, 363
579-580, 600-601, 627 estimation, 258

efficient, 243, 260, 262, 579 key, 467, 475, 480, 490
numerical, 298 logarithmic, 303
of networks, 534, 554 metric, 137
of PRAMs, 533, 534, 579 nondeterministic, 363
polynomial time, 301 of w-languages, 137
randomized, 580, 601 of algorithmic problems, 297, 305, 396
universality of, 533 plaintext, 467-469, 475, 480, 490-492, 496

simulations polylogarithmic, 330
mutual, 244, 256, 261, 286, 294 polynomial, 69, 274, 348, 510

simulator (n, k), 578 random, 490
Sippu, Seppo, 462, 664 sample, 53
Sipser, Michael, 364-367, 639-640, 651, 657, 660, travel, 298

665 Space(s(n)), 232
size of CFG, 434 spanning

polynomial, 69, 351, 507, 607 subgraph, 116
Size(C) (size complexity), 254 tree, 116, 124
Skolem, Thoralf, 414 minimal, 125
Slowinski, David, 43 speed of light, 592
Smale, Steve, 294, 365, 644 speed-up, 215, 267
Smid, Miles E, 497, 665 linear, 235
Smith, Carl H, 414, 665 polynomial, 596
Smith, P, 497, 665 theorem, 236
Snir, Mare, 601, 656 spelling error, 473

INDEX * 711

Spirakis, Paul, 366, 648 stretching, 210
splitter, 572-573, 600 string, 79
square root binary, 70, 79

discrete, 1, 43, 47-52, 65, 76, 108, 480, infinite, 79
502-505 finite, 128

principal, 52, 489 pseudo-random, 488
squaring modular, 108, 480 random, 62, 520
squeezing vertical, 190 two-dimensional, 461
Stallings, William, 497, 665 well-parenthesized, 444
standard deviation, 55 string-matching
STAR, 638 algorithm
Starke, Peter H, 213, 665 Knuth-Morris-Pratt's, 168
state, 100, 154 naive, 167

final, 156 automaton, 168
global, 155, 218, 566 problem, 167
initial, 156, 158 structure
no, 155 aperiodic, 387
nonterminal, 156 branching, 450
quiescent, 278 communication, 604
reacheable, 159 discrete, 78
sleeping, 278 fractal, 81-82, 157
terminal, 156, 158 interconnection, 229, 530, 534, 538-539,

ACCEPT, 217 582, 592
HALT, 217 relational, 452
REJECT, 217 Sturgis, Howard E, 293, 664

transition, 169 subgraph, 63, 116
yes, 155 isomorphism problem, 324

statement, 241 SUBGRAPH-ISOMORPHISM, 362
arithmetical, 397 subgroup, 139
assignment, 245 subprogram, 240

Steams, Philip M, 364 subset, 78
Steams, Richard E, 293, 366, 462, 652, 657, 663 construction, 161-163, 165, 167, 173, 212
Steiglitz, Kenneth, 364, 660 proper, 78
Stewart, Frank M, 213, 650 SUBSET-SUM, 314
Stirling, James, 29 subsets
Stirling's approximation, 255, 567 disjoint, 79
Stockmeyer, Larry J, 213, 294, 366-367, 646, 665 mutually disjoint, 79
Stockmeyer's theorem, 359 substitution, 130, 445
Stockmeyer-Meyer's theorem, 357 monoalphabetic, 476
Stone, Harold S, 601, 665 polyalphabetic, 476
straight-line program, 248, 293 rule, 471

Boolean, 255 subtree, 126
Strassen, Volker, 246, 256, 365-366, 664 subword, 128
Strassen's algorithm, 247 Sudan, Madhu, 531, 642-643, 665
strategy Sudborough, Hal I, 601, 659

communication, 547 suffix, 128, 167
greedy, 572 summation
of a play, 194 on hypercube, 543
winning, 195 rule, 21

712 U FOUNDATIONS OF COMPUTING

Sun Tsfi, 46 Talle's theorem, 120
supercomputer, 68, 467 tamperer, 492, 501
surjection, 98 tape
switch, 566-569, 592 bi-infinite, 201, 217

binary, 566 communication, 506
symmetry breaking, 342 compression, 236
synchronization, 261, 282 finite-dimensional, 289
syntactical categories, 420 oracle, 305
syntax, 428-429, 462 pushdown, 244-245, 434-437, 440
system random, 506, 508

2-tag, 420 tree-like, 289
biological, 446 two-dimensional, 230, 232
chaotic, 277 Tarjan, Robert E, 602
complex, 2, 277 Tarjan-Lipton's separator theorem, 591
computing, 1, 113 tautology, 106, 361, 432
concurrent, 452 technique
control, 193 coin-tossing, 2
DSS, 465 compiling, 434
dynamical, 277 compression, 237
formal, 223, 369-370, 396-398, 404 corridor, 588

axiomatic, 404 cryptographic, 51
universal, 406 programming, 434

inconsistency, 397 technology, 28
information, 478 VLSI, 600, 604
k-tag, 420 Terlutte, Alen, 213, 648
Lindenmayer, see Lindenmayer system test, 61, 519
logical, 516 empirical, 60
of linear congruences, 12, 46 on frequency, 60

equations, 12 on permutations, 60
operating, 7, 28, 193 on subsequences, 60
Post normal, 419, 456 on uniformity, 60
production, 418-419, 461 Kolmogorov-Smirnov's, 60
reactive, 193 Lucas-Lehmer's, 86
recursive, 38 next-bit, 490
rewriting, 84, 223, 390, 417-419, 456, 462 of randomness, 60

graph, 417, 420, 452, 454 polynomial time, 519
parallel, 417, 445 statistical, 60, 404, 415
string, 417-418, 452 Teukolsky, Saul A, 600, 661

secrecy, 475 Thatcher, James W, 151, 651
semi-Thue, 418 theorem
tag, 226, 420 binomial, 17, 19
Thue, 456 Chinese remainder, 46
transition, 197, 427 compression, 302
unbreakable, 494 fixed-point, 411

Szegedy, Mario, 531, 642, 649 gap, 304, 364
Szelepcs~nyi, R6bert, 213, 665 incompressibility, 413

invariance, 402, 405
T[n, d] ((n, d)-toroid), 536 marriage, 120
TOL-system, 463 master

INDEX U 713

for asymptotic analysis, 39 uniform, 243
PCP, 515, 531 discrete, 100, 585
prime number, 486 estimation, 236
proving automatic, 298 expected, 67, 321, 347, 403
speed-up, 236, 302 average-case, 67
with zero-knowledge proofs, 519 worst-case, 67

theory incremental, 525
algorithm design and analysis, 247 linear, 70, 89, 174, 311, 313, 364, 440, 511
automata, 171 logarithmic, 213
computational, 298 mean, 67
formal, 408, 462 parallel, 261, 266, 274, 294, 351
formal language, 151, 169, 171, 428, 441, logarithmic, 177

443, 462 polylogarithmic, 351
formation, 409 polynomial, 38, 44, 50, 68-69, 94, 107, 131,
inference, 415 236, 243, 245, 274, 300, 303, 308-315,
of computing, 61, 154, 373, 375, 386, 414 318, 321-322, 326-336, 340, 342,
of formal systems, 418 346-349, 356, 453, 489-492, 507, 509,
of plant development, 445 515-516, 520, 523
of pseudo-randomness, 62 average, 321
of recursive functions, 414 expected, 321
quantum, 293 pt-average, 322
scientific, 297 randomized, 107, 347

Thomas, Wolfgang, 213, 665 zero error probabilistic, 347
Thompson, Clark D, 639, 665 quadratic, 70, 300, 364
Thue randomized, 580

w-word, 129, 221, 419, 456 simulation, 578, 580
problem, 323, 369, 389 speed-up, 235

for Abelian semigroups, 415 subpolynomial, 268
for groups, 415 Timep (x), 266
for semigroups, 415 Time(f(n)), 231

system, 389, 418-419, 462 TM, see Turing machine
Thue, Axel, 418, 462, 666 Toda, Seinosuke, 354, 366, 666
tile, 385, 396, 412, 414 Toda's theorem, 366

Culik, 387 Toffoli, Tommaso, 295, 666
Penrose, 386 Tompa, Martin, 294, 648
polygonal, 386 Tong, Po, 497, 651
Wang, 309, 355, 386-388, 412 Torin, Jacobo, 365-366, 642, 648

tiling, 24, 311, 356, 386, 415, 615 Torii, Koji, 462, 655
aperiodic, 386, 415 toroid, 530, 536-537, 566, 594, 597
of matrices, 614-615, 639 d-dimensional, 536
of plane, 309, 385 Towers of Hanoi problem, 4-5, 8, 76, 102
of space, 385 modified version, 5, 8
Penrose, 415 parallel version, 5
periodic, 386 Trakhtenbrot, Boris A, 212, 364, 666

time, 2 transducer, 156
bound, 242 finite, 153, 178-182, 210-213, 294

asymptotic, 235 weighted, 153, 182, 184, 196, 210, 213
complexity, 523 transformation

average, 57 affine, 189, 191, 412

714 I FOUNDATIONS OF COMPUTING

cryptographical, 468 minimum, 341
polynomial time, 313 traversal algorithm

transition, 155, 173, 179, 183, 185, 197, 299 inorder, 127
diagram, 159 postorder, 127
function, 162, 168, 177, 201, 217, 230, 260, preorder, 127

278, 286-287, 291-292, 299, 434, 437, Trevisan, Luca, 366, 666
442 triangle, 637

global, 278 equilateral, 85
local, 277 inequality, 340
weighted, 182, 184 of a graph, 113

label, 157 Trickey, Howard, 602, 648
matrix, 159, 259, 273 trigram, 472-473, 476
of states, 155, 158 TRIPARTITE-MATCHING, 362
relation, 161, 180, 196, 205, 299, 427 truth

of FA, 158 assignment, 250
system, 196-197, 211, 213 function, 102
table, 219 table, 105, 147

translator, 437 value, 106
transposition, 100 Tseitin, G. S, 415, 462
trapdoor information, 480-482, 488 TSP, 125, 317, 320, 338
travelling salesman problem, 67, 125, 297, Turing, Alan M, 217, 222, 293, 385, 391, 415,

317-318, 339, 519 666, 293, 414
tree, 116, 126, 132, 538 Turing award, 75-76, 212, 294-295, 364-365, 531

axial, 449 Turing machine, 66, 69, 196, 207, 209, 215,
binary, 70, 126, 538, 555, 563, 589 217-230, 232-233, 235, 237, 239-242,

complete, 3, 90, 127, 538, 540, 556, 244-245, 249-250, 256-258, 260-261,
561-564, 582-586, 599 272, 274, 286, 288, 292-294, 300-302,

doubly routed, 564 305, 308, 364, 377-378, 381-385,
labelled, 627 387-388, 394, 396, 398, 402, 407-408,
optimal, 599 410,414-! 415, 420, 423, 425, 439-440,
rooted, 589 460-461,506-507, 592

communication, 627 computation, 309, 377-378, 386, 507
complete, 132, 551 deterministic, 298, 326, 330
computation, 627 polynomial time, 331
degree of a, 126 interactive, 506
depth of a, 16, 126 k-tape, 235
derivation, 428-431, 437 k-universal, 225
doubly-logarithmic-depth, 132, 270, 294 multi-head, 230
generalized, 562 multi-tape, 229-236, 257-260, 273, 304,
k-nary 322, 342, 346, 439, 462, 596

balanced, see tree, complete universal, 234
leaf of a, 126 nondeterministic, 298-302, 311, 322, 334,
of configurations, see configuration tree 346, 353, 361
of interactions, 510 one-tape, 308
of meshes, 586, 592, 600 polynomial time, 326, 333, 347-349, 356,
ordered, 126 362
root of a, 126 two-tape, 423
rooted, 126 unambiguous, 333
spanning, 542, 593 oblivious, 260, 294

INDEX U 715

off-line, 229-232, 236, 257-259, 293, UP, 334
306-307, 356, 370-371,384 Upfal, Eli, 601, 666

on-line, 229-230, 371
one-tape, 217, 229, 240, 243-244, 286, 387, v-conn(G) (vertex connectivity), 114

399, 415, 423, 456, 459 Valiant, Leslie G, 298, 364-366, 462, 580,
k-head, 235 601-602, 653, 662, 666

oracle, 305-306, 329, 395 Valiant's theorem, 439
polynomial time, 329 value average, 55

parallel, 302 expected, 55
probabilistic, 346, 348, 507, 514 van de Snepscheut, Jan L. A, 212

oracle, 523 van der Warden, Bartel L, 666
polynomial time, 519 van Emde Boas, Peter, 294, 365, 415, 663, 667

quantum, 235 van Leeuwen, Jan, 294, 667
universal, 226, 235, 293 Vanstein, Fedor, 532

resource-bounded, 293 variable complex, 43
reversible, 288, 295, 409 random, 53-54, 56, 59, 61-63, 74, 111, 363,
simulation, 232 507, 519, 527, 595
space bounded, 232 binomial, 345
time bounded, 235, 260, 361 geometric, 347
two-dimesional, 415 variance, 55
unambiguous, 366 vector
universal, 224-226, 234-235, 278, 280, 293, hyper-reachable, 483

398-399, 402, 410 nonsuper-increasing, 483
minimal, 225, 227, 293 random, 199, 522

with a 2D tape, 230 super-increasing, 481-483, 495
with tree memory, 289 verification, 521

turtle, 134,448 verifier, 507-514, 516, 518, 520-521, 530
interpretation, 134, 448 cheating, 507

of words, 134 Vernam, Gilbert S, 475
Tutte's theorem, 327 vertex, 113

colouring, 121
Ulam, Stanislaw L, 294 connectivity, 114
Ullman, Jeffery D, 76, 212-213, 364-365, 415, VERTEX-COVER, 319, 338, 341,363

462, 600-602, 639-640, 641, 653, 666 Vetterling, William T, 601, 661
ULTRA, 217 Vishkin, Uzi, 294, 646, 664
undecidability, 215, 369, 382-385, 388-393, visualization, 133

396-397, 400, 415, 443, 462 of languages, 77
of CFG, 462 of words, 77
of halting problem, 384, 397, 461 Vitinyi, Paul, 415, 657, 667
of PCP, 390 Vizing's theorem, 121, 578
of printing problem, 384 VLSI circuit designs, 3
of reversibility for CA, 295 Vogler, Walter, 463, 652
of Thue problem, 389, 415 Vollmar, Roland, 294, 667
of tiling problem, 386-387, 415 von Neumann, John, 212, 243, 277-278,

Unger, Walter, 601, 649, 653 294-295, 364-365, 391, 667
uniformity, 216, 257 Vuillemin, Jean-Etienne, 601, 640, 661, 667
universe, 67, 109, 111 Vysko6, Jozef, 294, 667

of keys, 112
unsolvability, 215, 369-370, 394, 398, 415 Wada, Hideo, 415

716 U FOUNDATIONS OF COMPUTING

Wada, Siteo, 654 witness, 327, 361, 363
Wagner, Alan, 601, 667 Wolf, Heintz, 151
Wagner, Eric W, 151, 651 Wolfram, Stephen, 295, 668
Wagner, Klaus, 364, 601, 667 Wood, Derick, 213, 647
Waksman, Abraham, 284, 667 word
Walcott, Derek, 418 fairly random, 400
walk finite, 128

origin of a, 113 infinite, 128, 154, 404
terminus of a, 113 primitive, 149

Wang, D. S.-A, 463 problem
Wang, Jie, 365, 667 for groups, 394
Wang, Patrick S.-P, 667 pseudo-random, 475
Warshall, Stephen, 151, 667 two-dimensional, 128
Warshall's algorithm, 95, 146 WorkR (x), 266
Wasserman, Hal, 532, 644 work-optimality, 267
WBd (wrapped butterfly), 536 Worsch, Thomas, 294, 667
Weber, Wilhelm, 43 Wrathall, Celia, 366, 668

Wechsung, Gerd, 364, 667 Wright, Jesse G, 151, 651
Wegener, Ingo, 294, 667 write conflict, 263
Wegman, Mark N, 151, 645 Wu Jr, H, 600, 652
Weihrauch, Klaus, 414, 667 Wu, A, 601, 668
Weimann, Bruno, 228, 667 Wyllie, James, 294, 649
Welzl, Emo, 151, 658, 663
WFA, 182-191 X-tree, 599

Average-preserving, 188nondeterministic, 190 Yannakakis, Mihalis, 366, 639, 658WFT, 184-191 Yao, Andrew C, 76, 213, 497, 531, 639-640, 668for derivation, 186 yardstick, 302for integration, 185 Young, Paul, 414, 658iterative, 213 Younger, Daniel H, 438, 462, 668Wheatsone, Charles, 473 Yunes, Jean-Baptiste, 668

Whithead, Alfred N, 80 Yung, Moti, 532, 654
Widgerson, Avi, 640 Zagier, Don, 76, 668
Width(C) (width complexity), 254 Zank6, Viktoria, 366, 668
Wiedermann, Juraj, 294-295, 667 Zermelo, Ermst F, 151
Wiener, Michael J, 497, 645 Zermelo-Frankel axiomatic system, 514
Wiens, Douglas, 415, 654 zooming, 136, 189,191
Wiesner, S, 497 zo i, 36,350
Wigderson, Avi, 365, 531-532, 601, 639, 643, ZPP, 347, 350

646, 650-651,654, 666
Wild, P, 497, 659
Wilde, Oscar, 154
Willes, Andrew, 88
Wilson, John, 73
Wilson's prime number test, 73, 325
winning strategy, 120
Winograd, Shmuel, 247, 294, 647, 668
wire, 581, 584
with-a-corner-rectangle, 24

itoutn to fundamental s o. comp0in• Coe r in g

themaIin ara of iomp l 1iNil~llex llt i• "itTyii• theory computablitiy,

moel of coptes comuncaio networks,

71li• ~lllliI]ili I I .{li'! ~ii I I ll{.IIIA] I il ''D I ,,_

"0 Covers lll major aspcts of theoret"']i'ical" copue scecei

* Moiae th rede to unestn th theoret0ca

0 ncuds ve 20 xapls 1000 grde exrie an

........ . nu er u dig a sa dilsrtin oh l eno c..... 0.. . . . l l ! [i .! . * -[

...... a Is aco p ne byll onl~~•-il • • ldine.g an lire inldn regularly
....................

............... Foundati•` ions of Comput• 1ing is ideal iifor students studying

.. -

........... id a as Ia h n0k 0ionls i
..... 00....... U ,-

...... 00..&

..

............... L0

.... -j..1111111.liii.... 600d
............. 97818532243>........-

Hill- ~~~ 0SB 1-502E4- viitn prfso p acos

Not Amrc an Euoe

