

Anthony So, William So, and Zsolt Nagy

Start working with AI today, to build games,

design decision trees, and train your own

machine learning models

The
Applied
Artificial
Intelligence
Workshop

The Applied Artificial Intelligence Workshop
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Anthony So, William So, and Zsolt Nagy

Reviewers: Swanand Bagve, John Wesley Doyle, Ashish Pratik Patil,
Shantanu Shivrup Pathak, and Subhranil Roy

Managing Editor: Adrian Cardoza

Acquisitions Editors: Manuraj Nair, Sneha Shinde, Anindya Sil, and Karan Wadekar

Production Editor: Salma Patel

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First published: July 2020

Production reference: 1200720

ISBN: 978-1-80020-581-9

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introduction to Artificial Intelligence 1

Introduction .. 2

How Does AI Solve Problems? .. 3

Diversity of Disciplines in AI ... 4

Fields and Applications of AI .. 5

Simulation of Human Behavior .. 5

Simulating Intelligence – the Turing Test .. 7

What Disciplines Do We Need to Pass the Turing Test?...................................7

AI Tools and Learning Models .. 8

Intelligent Agents ... 8

The Role of Python in AI .. 8

Why Is Python Dominant in Machine Learning,
Data Science, and AI? .. 9

Anaconda in Python .. 10

Python Libraries for AI .. 10

A Brief Introduction to the NumPy Library .. 11

Exercise 1.01: Matrix Operations Using NumPy 14

Python for Game AI .. 16

Intelligent Agents in Games .. 17

Breadth First Search and Depth First Search ... 18

Breadth First Search (BFS) ..19

Depth First Search (DFS) ..20

Exploring the State Space of a Game .. 24

Estimating the Number of Possible States in a Tic-Tac-Toe Game 26

Exercise 1.02: Creating an AI with Random Behavior
for the Tic-Tac-Toe Game .. 27

Activity 1.01: Generating All Possible Sequences
of Steps in a Tic-Tac-Toe Game .. 32

Exercise 1.03: Teaching the Agent to Win ... 34

Defending the AI against Losses .. 37

Activity 1.02: Teaching the Agent to Realize Situations
When It Defends Against Losses .. 37

Activity 1.03: Fixing the First and Second Moves
of the AI to Make It Invincible .. 38

Heuristics ... 40

Uninformed and Informed Searches ... 40

Creating Heuristics .. 41

Admissible and Non-Admissible Heuristics .. 42

Heuristic Evaluation .. 43

Heuristic 1: Simple Evaluation of the Endgame ..43

Heuristic 2: Utility of a Move ..44

Exercise 1.04: Tic-Tac-Toe Static Evaluation
with a Heuristic Function .. 46

Using Heuristics for an Informed Search .. 49

Types of Heuristics ... 49

Pathfinding with the A* Algorithm ... 50

Exercise 1.05: Finding the Shortest Path Using BFS 51

Introducing the A* Algorithm .. 55

A* Search in Practice Using the simpleai Library 68

Game AI with the Minmax Algorithm and Alpha-Beta Pruning 71

Search Algorithms for Turn-Based Multiplayer Games 72

The Minmax Algorithm .. 73

Optimizing the Minmax Algorithm with Alpha-Beta Pruning 78

DRYing Up the Minmax Algorithm – the NegaMax Algorithm 81

Using the EasyAI Library .. 82

Activity 1.04: Connect Four ... 83

Summary .. 84

Chapter 2: An Introductionto Regression 87

Introduction ... 88

Linear Regression with One Variable ... 88

Types of Regression ... 89

Features and Labels ... 92

Feature Scaling ... 93

Splitting Data into Training and Testing ... 96

Fitting a Model on Data with scikit-learn ... 98

Linear Regression Using NumPy Arrays .. 99

Fitting a Model Using NumPy Polyfit ... 106

Plotting the Results in Python ...106

Predicting Values with Linear Regression ... 112

Exercise 2.01: Predicting the Student Capacity
of an Elementary School ... 113

Linear Regression with Multiple Variables 118

Multiple Linear Regression ... 118

The Process of Linear Regression .. 119

Importing Data from Data Sources ... 119

Loading Stock Prices with Yahoo Finance ... 120

Exercise 2.02: Using Quandl to Load Stock Prices 122

Preparing Data for Prediction .. 123

Exercise 2.03: Preparing the Quandl Data for Prediction 123

Performing and Validating Linear Regression 131

Predicting the Future ... 132

Polynomial and Support Vector Regression 132

Polynomial Regression with One Variable .. 132

Exercise 2.04: First-, Second-, and Third-Degree
Polynomial Regression .. 133

Polynomial Regression with Multiple Variables 138

Support Vector Regression .. 140

Support Vector Machines with a 3-Degree Polynomial Kernel 142

Activity 2.01: Boston House Price Prediction
with Polynomial Regression of Degrees 1, 2, and 3
on Multiple Variables ... 142

Summary .. 146

Chapter 3: An Introduction to Classification 149

Introduction ... 150

The Fundamentals of Classification ... 150

Exercise 3.01: Predicting Risk of Credit Card Default
(Loading the Dataset) .. 152

Data Preprocessing ... 155

Exercise 3.02: Applying Label Encoding to Transform
Categorical Variables into Numerical Variables 159

Identifying Features and Labels ... 162

Splitting Data into Training and Testing Using Scikit-Learn 164

The K-Nearest Neighbors Classifier .. 164

Introducing the K-Nearest Neighbors Algorithm (KNN) 164

Distance Metrics With K-Nearest Neighbors Classifier
in Scikit-Learn ... 166

The Euclidean Distance ..166

The Manhattan/Hamming Distance .. 168

Exercise 3.03: Illustrating the K-Nearest Neighbors
Classifier Algorithm in Matplotlib .. 169

Parameterization of the K-Nearest Neighbors Classifier
in scikit-learn .. 174

Exercise 3.04: K-Nearest Neighbors Classification in scikit-learn 175

Activity 3.01: Increasing the Accuracy of Credit Scoring 177

Classification with Support Vector Machines 178

What Are Support Vector Machine Classifiers? 178

Understanding Support Vector Machines .. 179

Support Vector Machines in scikit-learn ... 183

Parameters of the scikit-learn SVM ... 183

Activity 3.02: Support Vector Machine Optimization
in scikit-learn .. 184

Summary .. 185

Chapter 4: An Introduction to Decision Trees 187

Introduction ... 188

Decision Trees ... 188

Entropy .. 191

Exercise 4.01: Calculating Entropy ... 193

Information Gain .. 195

Gini Impurity ... 197

Exit Condition ... 198

Building Decision Tree Classifiers Using scikit-learn 199

Performance Metrics for Classifiers .. 200

Exercise 4.02: Precision, Recall, and F1 Score Calculation 203

Evaluating the Performance of Classifiers with scikit-learn 208

The Confusion Matrix ... 209

Activity 4.01: Car Data Classification ... 210

Random Forest Classifier ... 211

Random Forest Classification Using scikit-learn 212

The Parameterization of the Random Forest Classifier 213

Feature Importance ... 213

Cross-Validation ... 214

Extremely Randomized Trees ... 216

Activity 4.02: Random Forest Classification
for Your Car Rental Company ... 217

Summary .. 218

Chapter 5: Artificial Intelligence: Clustering 221

Introduction ... 222

Defining the Clustering Problem .. 223

Clustering Approaches ... 225

Clustering Algorithms Supported by scikit-learn 227

The K-Means Algorithm .. 228

Exercise 5.01: Implementing K-Means in scikit-learn 229

The Parameterization of the K-Means Algorithm in scikit-learn 235

Exercise 5.02: Retrieving the Center Points and the Labels 236

K-Means Clustering of Sales Data .. 237

Activity 5.01: Clustering Sales Data Using K-Means 238

The Mean Shift Algorithm .. 240

Exercise 5.03: Implementing the Mean Shift Algorithm 240

The Mean Shift Algorithm in scikit-learn .. 246

Hierarchical Clustering .. 248

Agglomerative Hierarchical Clustering in scikit-learn 250

Clustering Performance Evaluation .. 254

The Adjusted Rand Index .. 255

The Adjusted Mutual Information ... 256

The V-Measure, Homogeneity, and Completeness 256

The Fowlkes-Mallows Score .. 258

The Contingency Matrix .. 259

The Silhouette Coefficient .. 260

The Calinski-Harabasz Index .. 261

The Davies-Bouldin Index ... 261

Activity 5.02: Clustering Red Wine Data Using the Mean
Shift Algorithm and Agglomerative Hierarchical Clustering 262

Summary .. 264

Chapter 6: Neural Networks and Deep Learning 267

Introduction ... 268

Artificial Neurons .. 268

Neurons in TensorFlow .. 269

Exercise 6.01: Using Basic Operations and TensorFlow Constants ... 270

Neural Network Architecture .. 272

Weights .. 274

Biases .. 275

Use Cases for ANNs ... 277

Activation Functions ... 278

Sigmoid .. 278

Tanh ... 278

ReLU ... 279

Softmax ... 279

Exercise 6.02: Activation Functions ... 280

Forward Propagation and the Loss Function 284

Backpropagation ... 287

Optimizers and the Learning Rate .. 287

Exercise 6.03: Classifying Credit Approval .. 288

Regularization ... 293

Exercise 6.04: Predicting Boston House Prices
with Regularization .. 294

Activity 6.01: Finding the Best Accuracy Score
for the Digits Dataset .. 299

Deep Learning ... 300

Shallow versus Deep Networks .. 301

Computer Vision and Image Classification 302

Convolutional Neural Networks (CNNs) ... 302

Convolutional Operations ... 303

Pooling Layer .. 306

CNN Architecture ... 307

Activity 6.02: Evaluating a Fashion Image Recognition
Model Using CNNs ... 308

Recurrent Neural Networks (RNNs) ... 309

RNN Layers ... 309

The GRU Layer .. 312

The LSTM Layer .. 313

Activity 6.03: Evaluating a Yahoo Stock Model with an RNN 314

Hardware for Deep Learning .. 316

Challenges and Future Trends ... 316

Summary .. 318

Appendix 321

Index 395

Preface

ii | Preface

About the Book
You already know that Artificial Intelligence (AI) and Machine Learning (ML) are
present in many of the tools you use in your daily routine. But do you want to be able
to create your own AI and ML models and develop your skills in these domains to
kickstart your AI career?

The Applied Artificial Intelligence Workshop gets you started with applying AI with the
help of practical exercises and useful examples, all put together cleverly to help you
gain the skills to transform your career.

The book begins by teaching you how to predict outcomes using regression. You'll
then learn how to classify data using techniques such as K-Nearest Nneighbor
(KNN) and Support Vector Machine (SVM) classifiers. As you progress, you'll explore
various decision trees by learning how to build a reliable decision tree model that
can help your company find cars that clients are likely to buy. The final chapters will
introduce you to deep learning and neural networks. Through various activities, such
as predicting stock prices and recognizing handwritten digits, you'll learn how to train
and implement Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs).

By the end of this applied AI book, you'll have learned how to predict outcomes and
train neural networks, and be able to use various techniques to develop AI and
ML models.

Audience

The Applied Artificial Intelligence Workshop is designed for software developers and
data scientists who want to enrich their projects with machine learning. Although you
do not need any prior experience in AI, it is recommended that you have knowledge
of high-school-level mathematics and at least one programming language, preferably
Python. While this is a beginner's book, experienced students and programmers
can also improve their Python programming skills by focusing on the practical
applications featured in this AI book.

About the Chapters

Chapter 1, Introduction to Artificial Intelligence, introduces AI. You will also be
implementing your first AI through a simple tic-tac-toe game where you will be
teaching the program how to win against a human player.

About the Book | iii

Chapter 2, An Introduction to Regression, introduces regression. You will come across
various techniques, such as linear regression, with one and multiple variables, along
with polynomial and support vector regression.

Chapter 3, An Introduction to Classification, introduces classification. Here, you will be
implementing various techniques, including k-nearest neighbors and support
vector machines.

Chapter 4, An Introduction to Decision Trees, introduces decision trees and random
forest classifiers.

Chapter 5, Artificial Intelligence: Clustering, really starts getting you thinking in new ways
with your first unsupervised models. You will be introduced to the fundamentals
of clustering and will implement flat clustering with the k-means algorithm and
hierarchical clustering with the mean shift algorithm.

Chapter 6, Neural Networks and Deep Learning, introduces TensorFlow, Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). You will also be
implementing an image classification program using neural networks and
deep learning.

Conventions

Code words in text, folder names, filenames, file extensions, pathnames, and user
input are shown as follows: "Please note that this function is in the tensorflow
namespace, which is not referred to by default.”

A block of code is set as follows:

features_train = features_train / 255.0

features_test = features_test / 255.0

New terms and important words are shown like this: "Mean-shift is an example of
hierarchical clustering, where the clustering algorithm determines the number
of clusters.”

iv | Preface

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

 validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"””

Define a seed for the random number generator to ensure the

result will be reproducible

"””

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In
the following section, we shall see how to do that.

Installing Jupyter on Your System

To install Jupyter on Windows, MacOS, and Linux, perform the following steps:

1. Head to https://www.anaconda.com/distribution/ to install the Anaconda Navigator,
which is an interface through which you can access your local Jupyter notebook.

https://www.anaconda.com/distribution/

About the Book | v

2. Now, based on your operating system (Windows, MacOS, or Linux), you need to
download the Anaconda Installer. Have a look at the following figure where we
have downloaded the Anaconda files for Windows:

Figure 0.1: The Anaconda home screen

vi | Preface

Launching the Jupyter Notebook

To launch the Jupyter Notebook from the Anaconda Navigator, you need to perform
the following steps:

1. Once you install the Anaconda Navigator, you will see the screen shown in
Figure 0.2:

Figure 0.2: Anaconda installation screen

2. Now, click on Launch under the Jupyter Notebook option and launch the
notebook on your local system:

Figure 0.3: Jupyter Notebook launch option

About the Book | vii

You have successfully installed Jupyter Notebook on your system.

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install –r requirements.txt. You can find the requirements.txt file at
https://packt.live/3erXq0B.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries –
that is, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

A Few Important Packages

Some of the exercises in this chapter require the following packages:

• EasyAI

• Quandl

• TensorFlow 2.1.0

Install them by following this guide. On Windows, open up Command Prompt. On
macOS or Linux, open up Terminal.

To install easyAI and Quandl, type the following command:

pip install easyAI==1.0.0.4 Quandl==3.5.0 tensorflow==2.1.0

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/31biHYK. You
can also run many activities and exercises directly in your web browser by using the
interactive lab environment at https://packt.live/2Vbev7E.

We've tried to support interactive versions of all activities and exercises, but we
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us
at workshops@packt.com.

https://packt.live/3erXq0B
https://packt.live/31biHYK
https://packt.live/2Vbev7E
mailto:workshops@packt.com

Overview

In this chapter, you will be introduced to the fundamentals of Artificial
Intelligence (AI), which are the foundations of various fields of AI. You will
also come across different algorithms, including MinMax and A*, through
simple coding exercises using the Python programming language. You will
also be implementing your first AI through a simple tic-tac-toe game where
you will be teaching the program how to win against a human player. By
the end of this chapter, you will learn how to use popular Python libraries to
develop intelligent AI-driven programs.

1
Introduction to Artificial

Intelligence

2 | Introduction to Artificial Intelligence

Introduction
Before discussing the different AI techniques and algorithms, we will look at the
fundamentals of AI and machine learning and go through a few basic definitions.
Real-world examples will be used to present the basic concepts of AI in an easy-to-
digest way.

AI attempts to replicate human intelligence using hardware and software solutions. It
is based on reverse engineering. For example, artificial neural networks are modeled
after the way the human brain works. Beyond neural networks, there are many other
models in neuroscience that can be used to solve real-world problems using AI.
Companies that are known to be using AI in their fields include Google, with Google
Translate, Apple, with Face ID, Amazon, with its Alexa products, and even Uber and
Tesla, who are still working on building self-driving cars.

On the other hand, machine learning is a term that is often confused with AI. It
originates from the 1950s and was first defined by Arthur Lee Samuel in 1959.

In his book called Machine Learning, Tom Mitchell proposed a simple definition of
it: "The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience."

We can understand this as machine learning being the field where the goal is to build
a computer program capable of learning patterns from data and improve its learning
ability with more data.

He also proposed a more formal definition, which is that a computer program is said
to learn from experience, E, with respect to a task, T, and a performance measure,
P, if its performance on T, as measured by P, improves with experience, E. This can
be translated as what a computer program requires in order for it to be learning.
We can see E (the experience) as the data that needs to be fed to the machine, T, as
the type of decision that the machine needs to perform, and P as the measure of its
performance.

From these two definitions, we can conclude that machine learning is one way to
achieve AI. However, you can have AI without machine learning. For instance, if you
hardcode rules and decision trees, or you apply search techniques, you can create an
AI agent, even though your approach has little to do with machine learning.

Introduction | 3

AI and machine learning have helped the scientific community harness the explosion
of big data with more and more data being created every second. With AI and
machine learning, scientists can extract information that human eyes cannot process
fast enough on these huge datasets.

Now that we have been introduced to AI and machine learning, let's focus on AI.

How Does AI Solve Problems?

AI automates human intelligence based on the way a human brain processes information.

Whenever we solve a problem or interact with people, we go through a process. By
doing this, we limit the scope of a problem or interaction. This process can often be
modeled and automated in AI.

AI makes computers appear to think like humans.

Sometimes, it feels like the AI knows what we need. Just think about the personalized
coupons you receive after shopping online. AI knows which product we will most
likely be purchasing. Machines are able to learn your preferences through the
implementation of different techniques and models, which we will look at later in
this book.

AI is performed by computers that are executing low-level instructions.

Even though a solution may appear to be intelligent, we write code, just like with any
other software solution in AI. Even if we are simulating neurons, simple machine code
and computer hardware executes the thinking process.

Most AI applications have one primary objective. When we interact with an AI
application, it seems human-like because it can restrict a problem domain to a
primary objective. Therefore, the process whereby the AI reaches the objective can be
broken down into smaller and simpler low-level instructions.

AI may stimulate human senses and thinking processes for specialized fields.

You must be able to simulate human senses and thoughts, and sometimes trick AI
into believing that we are interacting with another human. In some special cases, we
can even enhance our own senses.

Similarly, when we interact with a chatbot, for instance, we expect the bot to
understand us. We expect the chatbot or even a voice recognition system to provide
a computer-human interface that fulfills our expectations. In order to meet these
expectations, computers need to emulate human thought processes.

4 | Introduction to Artificial Intelligence

Diversity of Disciplines in AI

A self-driving car that cannot sense other cars driving on the same highway would
be incredibly dangerous. The AI agent needs to process and sense what is around it
in order to drive the car. However, this is not enough since, without understanding
the physics of moving objects, driving the car in a normal environment would be an
almost impossible, not to mention deadly, task.

In order to create a usable AI solution, different disciplines are involved, such as
the following:

• Robotics: To move objects in space

• Algorithm theory: To construct efficient algorithms

• Statistics: To derive useful results, predict the future, and analyze the past

• Psychology: To model how the human brain works

• Software engineering: To create maintainable solutions that endure the
test of time

• Computer science or computer programming: To implement our software
solutions in practice

• Mathematics: To perform complex mathematical operations

• Control theory: To create feed-forward and feedback systems

• Information theory: To represent, encode, decode, and compress information

• Graph theory: To model and optimize different points in space and to
represent hierarchies

• Physics: To model the real world

• Computer graphics and image processing: To display and process images
and movies

In this book, we will cover a few of these disciplines, including algorithm theory,
statistics, computer science, mathematics, and image processing.

Fields and Applications of AI | 5

Fields and Applications of AI
Now that we have been introduced to AI, let's move on and see its application in
real life.

Simulation of Human Behavior

Humans have five basic senses that can be divided into visual (seeing), auditory
(listening), kinesthetic (moving), olfactory (smelling), and gustatory (tasting). However,
for the purposes of understanding how to create intelligent machines, we can
separate these disciplines as follows:

• Listening and speaking

• Understanding language

• Remembering things

• Thinking

• Seeing

• Moving

A few of these are out of scope for us because the purpose of this chapter is to
understand the fundamentals. In order to move a robot arm, for instance, we would
have to study complex university-level math to understand what's going on, but we
will only be sticking to the practical aspects in this book:

• Listening and speaking: Using a speech recognition system, AI can collect
information from a user. Using speech synthesis, it can turn internal data into
understandable sounds. Speech recognition and speech synthesis techniques
deal with the recognition and construction of human sounds that are emitted or
that humans can understand.

For instance, imagine you are on a trip to a country where you don't speak the
local language. You can speak into the microphone of your phone, expect it to
understand what you say, and then translate it into the other language. The same
can happen in reverse with the locals speaking and AI translating the sounds into
a language you understand. Speech recognition and speech synthesis make
this possible.

6 | Introduction to Artificial Intelligence

Note

An example of speech synthesis is Google Translate. You can navigate to
https://translate.google.com/ and make the translator speak words in a
non-English language by clicking the loudspeaker button below the
translated word.

• Understanding language: We can understand natural language by processing
it. This field is called natural language processing, or NLP.

When it comes to NLP, we tend to learn languages based on statistical learning
by learning the statistical relationship between syllables.

• Remembering things: We need to represent things we know about the world.
This is where creating knowledge bases and hierarchical representations called
ontologies comes into play. Ontologies categorize things and ideas in our world
and contain relations between these categories.

• Thinking: Our AI system has to be an expert in a certain domain by using an
expert system. An expert system can be based on mathematical logic in a
deterministic way, as well as in a fuzzy, non-deterministic way.

The knowledge base of an expert system is represented using different
techniques. As the problem domain grows, we create hierarchical ontologies.

We can replicate this structure by modeling the network on the building blocks
of the brain. These building blocks are called neurons, and the network itself is
called a neural network.

• Seeing: We have to interact with the real world through our senses. We have
only touched upon auditory senses so far, in regard to speech recognition and
synthesis. What if we had to see things? If that was the case, we would have to
create computer vision techniques to learn about our environment. After all,
recognizing faces is useful, and most humans are experts at that.

Computer vision depends on image processing. Although image processing is
not directly an AI discipline, it is a required discipline for AI.

https://translate.google.com/

Fields and Applications of AI | 7

• Moving: Moving and touching are natural to us humans, but they are very
complex tasks for computers. Moving is handled by robotics. This is a very math-
heavy topic.

Robotics is based on control theory, where you create a feedback loop and
control the movement of your object based on the feedback gathered. Control
theory has applications in other fields that have absolutely nothing to do with
moving objects in space. This is because the feedback loops that are required
are similar to those modeled in economics.

Simulating Intelligence – the Turing Test

Alan Turing, inventor of the Turing machine, an abstract concept that's used in
algorithm theory, suggested a way to test intelligence. This test is referred to as the
Turing test in AI literature.

Using a text interface, an interrogator chats to a human and a chatbot. The job of the
chatbot is to mislead the interrogator to the extent that they cannot tell whether the
computer is human.

What Disciplines Do We Need to Pass the Turing Test?

First, we need to understand a spoken language to know what the interrogator is
saying. We do this by using Natural Language Processing (NLP). We also must
respond to the interrogator in a credible way by learning from previous questions
and answers using AI models.

We need to be an expert of things that the human mind tends to be interested in. We
need to build an expert system of humanity, involving the taxonomy of objects and
abstract thoughts in our world, as well as historical events and even emotions.

Passing the Turing test is very hard. Current predictions suggest we won't be able to
create a system good enough to pass the Turing test until the late 2020s. Pushing this
even further, if this is not enough, we can advance to the Total Turing Test, which also
includes movement and vision.

Next, we will move on and look at the tools and learning models in AI.

8 | Introduction to Artificial Intelligence

AI Tools and Learning Models
In the previous sections, we discovered the fundamentals of AI. One of the core tasks
of AI is learning. This is where intelligent agents come into the picture.

Intelligent Agents

When solving AI problems, we create an actor in the environment that can gather
data from its surroundings and influence its surroundings. This actor is called an
intelligent agent.

An intelligent agent is as follows:

• Is autonomous

• Observes its surroundings through sensors

• Acts in its environment using actuators (which are the components that are
responsible for moving and controlling a mechanism)

• Directs its activities toward achieving goals

Agents may also learn and have access to a knowledge base.

We can think of an agent as a function that maps perceptions to actions. If the agent
has an internal knowledge base, then perceptions, actions, and reactions may alter
the knowledge base as well.

Actions may be rewarded or punished. Setting up a correct goal and implementing
a carrot and stick situation helps the agent learn. If goals are set up correctly, agents
have a chance of beating the often more complex human brain. This is because the
primary goal of the human brain is survival, regardless of the game we are playing. An
agent's primary motive is reaching the goal itself. Therefore, intelligent agents do not
get embarrassed when making a random move without any knowledge.

The Role of Python in AI
In order to put basic AI concepts into practice, we need a programming language
that supports AI. In this book, we have chosen Python. There are a few reasons why
Python is such a good choice for AI:

• Convenience and Compatibility: Python is a high-level programming language.
This means that you don't have to worry about memory allocation, pointers, or
machine code in general. You can write code in a convenient fashion and rely on
Python's robustness. Python is also cross-platform compatible.

The Role of Python in AI | 9

• Popularity: The strong emphasis on developer experience makes Python a
very popular choice among software developers. In fact, according to a 2018
developer survey by https://www.hackerrank.com, across all ages, Python ranks
as the number one preferred language of software developers. This is because
Python is easily readable and simple. Therefore, Python is great for rapid
application development.

• Efficiency: Despite being an interpreted language, Python is comparable to
other languages that are used in data science, such as R. Its main advantage is
memory efficiency, since Python can handle large, in-memory databases.

Note

Python is a multi-purpose language. It can be used to create desktop
applications, database applications, mobile applications, and games.
The network programming features of Python are also worth mentioning.
Furthermore, Python is an excellent prototyping tool.

Why Is Python Dominant in Machine Learning, Data Science, and AI?

To understand the dominant nature of Python in machine learning, data science, and
AI, we have to compare Python to other languages that are also used in these fields.

Compared to R, which is a programming language built for statisticians, Python is
much more versatile and easy as it allows programmers to build a diverse range of
applications, from games to AI applications.

Compared to Java and C++, writing programs in Python is significantly faster. Python
also provides a high degree of flexibility.

There are some languages that are similar in nature when it comes to flexibility and
convenience: Ruby and JavaScript. Python has an advantage over these languages
because of the AI ecosystem that's available for Python. In any field, open source,
third-party library support vastly determines the success of that language. Python's
third-party AI library support is excellent.

https://www.hackerrank.com

10 | Introduction to Artificial Intelligence

Anaconda in Python

We installed Anaconda in the Preface. Anaconda will be our number one tool when it
comes to experimenting with AI.

Anaconda comes with packages, IDEs, data visualization libraries, and high-
performance tools for parallel computing in one place. Anaconda hides configuration
problems and the complexity of maintaining a stack for data science, machine
learning, and AI. This feature is especially useful in Windows, where version
mismatches and configuration problems tend to arise the most.

Anaconda comes with Jupyter Notebook, where you can write code and comments in
a documentation style. When you experiment with AI features, the flow of your ideas
resembles an interactive tutorial where you run each step of your code.

Note

IDE stands for Integrated Development Environment. While a text
editor provides some functionalities to highlight and format code, an IDE
goes beyond the features of text editors by providing tools to automatically
refactor, test, debug, package, run, and deploy code.

Python Libraries for AI

The list of libraries presented here is not complete as there are more than 700
available in Anaconda. However, these specific ones will get you off to a good
start because they will give you a good foundation to be able to implement the
fundamental AI algorithms in Python:

• NumPy: NumPy is a computing library for Python. As Python does not come
with a built-in array data structure, we have to use a library to model vectors and
matrices efficiently. In data science, we need these data structures to
perform simple mathematical operations. We will use NumPy extensively in
future chapters.

The Role of Python in AI | 11

• SciPy: SciPy is an advanced library containing algorithms that are used for data
science. It is a great complementary library to NumPy because it gives you all the
advanced algorithms you need, whether it be a linear algebra algorithm, image
processing tool, or a matrix operation.

• pandas: pandas provides fast, flexible, and expressive data structures, such as
one-dimensional series and two-dimensional DataFrames. It efficiently loads,
formats, and handles complex tables of different types.

• scikit-learn: scikit-learn is Python's main machine learning library. It is based on
the NumPy and SciPy libraries. scikit-learn provides you with the functionality
required to perform both classification and regression, data preprocessing, as
well as supervised and unsupervised learning.

• NLTK: We will not deal with NLP in this book, but NLTK is still worth mentioning
because this library is the main natural language toolkit of Python. You can
perform classification, tokenization, stemming, tagging, parsing, semantic
reasoning, and many other operations using this library.

• TensorFlow: TensorFlow is Google's neural network library, and it is perfect for
implementing deep learning AI. The flexible core of TensorFlow can be used
to solve a vast variety of numerical computation problems. Some
real-world applications of TensorFlow include Google voice recognition and
object identification.

A Brief Introduction to the NumPy Library

The NumPy library will play a major role in this book, so it is worth exploring
it further.

After launching your Jupyter Notebook, you can simply import numpy as follows:

import numpy as np

Once numpy has been imported, you can access it using its alias, np. NumPy contains
the efficient implementation of some data structures, such as vectors and matrices.

Let's see how we can define vectors and matrices:

np.array([1,3,5,7])

The expected output is this:

array([1, 3, 5, 7])

12 | Introduction to Artificial Intelligence

We can declare a matrix using the following syntax:

A = np.mat([[1,2],[3,3]])

A

The expected output is this:

matrix([[1, 2],

 [3, 3]])

The array method creates an array data structure, while .mat creates a matrix.

We can perform many operations with matrices. These include addition, subtraction,
and multiplication. Let's have a look at these operations here:

Addition in matrices:

A + A

The expected output is this:

matrix([[2, 4],

 [6, 6]])

Subtraction in matrices:

A - A

The expected output is this:

matrix([[0, 0],

 [0, 0]])

Multiplication in matrices:

A * A

The expected output is this:

matrix([[7, 8],

 [12, 15]])

Matrix addition and subtraction work cell by cell.

The Role of Python in AI | 13

Matrix multiplication works according to linear algebra rules. To calculate matrix
multiplication manually, you have to align the two matrices, as follows:

Figure 1.1: Multiplication calculation with two matrices

To get the (i,j)th element of the matrix, you compute the dot (scalar) product on the ith
row of the matrix with the jth column. The scalar product of two vectors is the sum of
the product of their corresponding coordinates.

Another frequent matrix operation is the determinant of the matrix. The determinant
is a number associated with square matrices. Calculating the determinant using
NumPy's linalg function (linear algebra algorithms) can be seen in the following
line of code:

np.linalg.det(A)

The expected output is this:

-3.0000000000000004

Technically, the determinant can be calculated as 1*3 – 2*3 = -3. Notice that
NumPy calculates the determinant using floating-point arithmetic, so the accuracy of
the result is not perfect. The error is due to the way floating points are represented in
most programming languages.

We can also transpose a matrix, as shown in the following line of code:

np.matrix.transpose(A)

14 | Introduction to Artificial Intelligence

The expected output is this:

matrix([[1, 3],

 [2, 3]])

When calculating the transpose of a matrix, we flip its values over its main diagonal.

NumPy has many other important features, so we will use it in most of the chapters
in this book.

Exercise 1.01: Matrix Operations Using NumPy

We will be using Jupyter Notebook and the following matrix to solve this exercise.

We will calculate the square of the matrix, which is determinant of the matrix and the
transpose of the matrix shown in the following figure, using NumPy:

Figure 1.2: A simple matrix representation

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

2. Import the numpy library as np:

import numpy as np

3. Create a two-dimensional array called A for storing the
[[1,2,3],[4,5,6],[7,8,9]] matrix using np.mat:

A = np.mat([[1,2,3],[4,5,6],[7,8,9]])

A

The Role of Python in AI | 15

The expected output is this:

matrix([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Note

If you have created an np.array instead of np.mat, the solution for the
array multiplication will be incorrect.

4. Next, we perform matrix multiplication using the asterisk and save the result in a
variable called matmult, as shown in the following code snippet:

matmult = A * A

matmult

The expected output is this:

matrix([[30, 36, 42],

 [66, 81, 96],

 [102, 126, 150]])

5. Next, manually calculate the square of A by performing matrix multiplication. For
instance, the top-left element of the matrix is calculated as follows:

1 * 1 + 2 * 4 + 3 * 7

The expected output is this:

30

6. Use np.linalg.det to calculate the determinant of the matrix and save the
result in a variable called det:

det = np.linalg.det(A)

det

16 | Introduction to Artificial Intelligence

The expected output (might vary slightly) is this:

0.0

7. Use np.matrix.transpose to get the transpose of the matrix and save the
result in a variable called transpose:

transpose = np.matrix.transpose(A)

transpose

The expected output is this:

matrix([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

If T is the transpose of matrix A, then T[j][i] is equal to A[i][j].

Note

To access the source code for this specific section, please refer to
https://packt.live/316Vd6Z.

You can also run this example online at https://packt.live/2BrogHL. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, you have seen that NumPy comes with many useful
features for vectors, matrices, and other mathematical structures.

In the upcoming section, we will be implementing AI in an interesting tic-tac-toe game
using Python.

Python for Game AI
An AI game player is nothing but an intelligent agent with a clear goal: to win the
game and defeat all the other players. AI experiments have achieved surprising
results when it comes to games. Today, no human can defeat an AI in the game
of chess.

The game Go was the last game where human players could consistently defeat
a computer player. However, in 2017, Google's game-playing AI called AlphaGo
defeated the world number 1 ranked Go player.

https://packt.live/316Vd6Z
https://packt.live/2BrogHL

Python for Game AI | 17

Intelligent Agents in Games

An intelligent agent plays according to the rules of the game. The agent can sense the
current state of the game through its sensors and can evaluate the potential steps.
Once the agent finds the best possible step, it performs the action using its actuators.
The agent finds the best possible action to reach the goal based on the information
it has. Actions are either rewarded or punished. The carrot and stick are excellent
examples of rewards and punishment. Imagine a donkey in front of your cart. You put
a carrot in front of the eyes of the donkey, so the animal starts walking toward it. As
soon as the donkey stops, the rider may apply punishment with a stick. This is not a
human way of moving, but rewards and punishment control living organisms to some
extent. The same happens to humans at school, at work, and in everyday life as
well. Instead of carrots and sticks, we have income and legal punishment to shape
our behavior.

In most games, a good sequence of actions results in a reward. When a human player
feels rewarded, that makes the human feel happy. Humans tend to act in a way that
maximizes their happiness. Intelligent agents, on the other hand, are only interested
in their goal, which is to maximize their reward and minimize the punishment that's
affecting their performance score.

When modeling games, we must determine their state space. An action causes a
state transition. When we explore the consequences of all possible actions, we get a
decision tree. This tree goes deeper as we start exploring the possible future actions
of all players until the game ends.

The strength of AI is the execution of millions of possible steps each second.
Therefore, game AI often boils down to a search exercise. When exploring all of the
possible sequences of moves in a game, we get the state tree of a game.

Consider a chess AI. What is the problem with evaluating all possible moves by
building a state tree consisting of all of the possible sequences of moves?

Chess is an EXPTIME game complexity-wise. The number of possible moves explodes
combinatorically.

White starts with 20 possible moves: the eight pawns may move either one or two
steps, and the two knights may move either up-up-left, or up-up-right. Then, black can
make any of these 20 moves. There are already 20*20 = 400 possible combinations
after just one move per player.

18 | Introduction to Artificial Intelligence

After the second move, we get 8,902 possible board constellations, and this number
just keeps on growing. Just take seven moves, and you have to search through
10,921,506 possible constellations.

The average length of a chess game is approximately 40 moves. Some exceptional
games take more than 200 moves to finish.

As a consequence, the computer player simply does not have time to explore the
whole state space. Therefore, the search activity has to be guided with proper
rewards, punishment, and simplifications of the rules.

Breadth First Search and Depth First Search

Creating a game AI is often a search exercise. Therefore, we need to be familiar with
the two primary search techniques:

• Breadth First Search (BFS)

• Depth First Search (DFS)

These search techniques are applied on a directed rooted tree.

A tree is a data structure that has nodes, and edges connecting these nodes in such a
way that any two nodes of the tree are connected by exactly one path. Have a look at
the following figure:

Figure 1.3: A directed rooted tree

Python for Game AI | 19

When the tree is rooted, there is a special node in the tree called the root, which is
where we begin our traversal. A directed tree is a tree where the edges may only be
traversed in one direction. Nodes may be internal nodes or leaves. Internal nodes
have at least one edge, through which we can leave the node. A leaf has no edges
pointing out from the node.

In AI search, the root of the tree is the starting state. We traverse from this state
by generating the successor nodes of the search tree. Search techniques differ,
depending on the order in which we visit these successor nodes.

Breadth First Search (BFS)

BFS is a search technique that, starting from the root node (node 1), will start
exploring the closest node on the same depth (or level) before moving to the
next depth:

Figure 1.4: A BFS tree

In the preceding figure, you can see the search order of the BFS technique. Starting
from the root node (1), BFS will go to the next level and explore the closest node (2)
before looking at the other nodes on the same level (3 and 4). Then, it will move to
the next level and explore 5 and 6 as they are close to each other before going back
through to node 3, finishing on the last node (7), and so on.

20 | Introduction to Artificial Intelligence

Depth First Search (DFS)

DFS is a search technique that, starting from the root node (node 1), will start
exploring the same branch as much as possible before moving to the next
closest branch:

Figure 1.5: A DFS tree

In the preceding figure, you can see the search order of the DFS technique. Starting
from the root node (1), DFS will go to the closest node (2) and explore all the way to
the end of the branch (3) on the third depth before going back to the node (2) and
finish by exploring its second branch (4). Then, it will move back to the second depth
and start the same process with the next branch (6) before finishing with the
last branch (7).

Now, suppose we have a tree defined by its root and a function that generates all the
successor nodes from the root. In the following example, each node has a value and
a depth. We start from 1 and may either increase the value by 1 or 2. Our goal is to
reach the value 5:

Note

The code snippet shown here uses a backslash (\) to split the logic across
multiple lines. When the code is executed, Python will ignore the
backslash, and treat the code on the next line as a direct continuation of the
current line.

Python for Game AI | 21

root = {'value': 1, 'depth': 1}

def succ(node):

 if node['value'] == 5:

 return []

 elif node['value'] == 4:

 return [{'value': 5,'depth': node['depth']+1}]

 else:

 return [{'value': node['value']+1, \

 'depth':node['depth']+1}, \

 {'value': node['value']+2, \

 'depth':node['depth']+1}]

In the preceding code snippet, we have initialized the root node as having a value and
depth of 1. Then, we created a function called succ that takes a node as input. This
function will have 3 different cases:

• If the input node value is 5, then return nothing as we will have already reached
our goal (5).

• If the input node value is 4, then return the value 5 and add 1 to the
current depth.

• If the value is anything else, then add 1 to the depth and create two cases for the
value, +1 and +2.

First, we will perform BFS, as shown here:

def bfs_tree(node):

 nodes_to_visit = [node]

 visited_nodes = []

 while len(nodes_to_visit) > 0:

 current_node = nodes_to_visit.pop(0)

 visited_nodes.append(current_node)

 nodes_to_visit.extend(succ(current_node))

 return visited_nodes

bfs_tree(root)

22 | Introduction to Artificial Intelligence

In the preceding code snippet, we have implemented the bfs_tree function by
taking a node as input. This function can be broken down into three parts:

The first part is initializing the nodes_to_visit and visited_nodes variables.

The second part is where BFS is implemented:

• The current_node variable takes away the first element of the nodes_to_
visit variable.

• The visited_nodes variable adds this element to its list.

• The nodes_to_visit variable adds the newly generated nodes from the call
of succ with the current_node as input to it.

The preceding three instructions are wrapped into a loop defined by the number of
elements inside the nodes_to_visit variable. As long as nodes_to_visit has
at least one element, then the loop will keep going.

The third part, which is the end of the function, will return the entire list of values
from the visited_nodes variable.

The expected output is this:

[{'value': 1, 'depth': 1},

 {'value': 2, 'depth': 2},

 {'value': 3, 'depth': 2},

 {'value': 3, 'depth': 3},

 {'value': 4, 'depth': 3},

 {'value': 4, 'depth': 3},

 {'value': 5, 'depth': 3},

 {'value': 4, 'depth': 4},

 {'value': 5, 'depth': 4},

 {'value': 5, 'depth': 4},

 {'value': 5, 'depth': 4},

 {'value': 5, 'depth': 5}]

As you can see, BFS is searching through the values of the same depth before moving
to the next level of depth and exploring the values of it. Notice how depth and value
are increasing in sequence. This will not be the case in DFS.

If we had to traverse a graph instead of a directed rooted tree, BFS would look
different: whenever we visit a node, we would have to check whether the node had
been visited before. If the node had been visited before, we would simply ignore it.

Python for Game AI | 23

In this chapter, we will only use Breadth First Traversal on trees. DFS is surprisingly
similar to BFS. The difference between DFS and BFS is the sequence in which you
access the nodes. While BFS visits all the children of a node before visiting any other
nodes, DFS digs deep into the tree.

Have a look at the following example, where we're implementing DFS:

def dfs_tree(node):

 nodes_to_visit = [node]

 visited_nodes = []

 while len(nodes_to_visit) > 0:

 current_node = nodes_to_visit.pop()

 visited_nodes.append(current_node)

 nodes_to_visit.extend(succ(current_node))

 return visited_nodes

dfs_tree(root)

In the preceding code snippet, we have implemented the dfs_tree function by
taking a node as input. This function can be broken down into three parts:

The first part is initializing the nodes_to_visit and visited_nodes variables.

The second part is where DFS is implemented:

• The current_node variable takes away the last element of the nodes_to_
visit variable.

• The visited_nodes variable adds this element to its list.

• The nodes_to_visit variable adds the newly generated nodes from the call
of succ with current_node as input to it.

The preceding three instructions are wrapped into a loop defined by the number of
elements inside the nodes_to_visit variable. As long as nodes_to_visit has
at least one element, then the loop will keep going.

At the end, that is at the third part, the function will return the entire list of values
from visited_nodes.

As you can see, the main difference between BFS and DFS is the order in which
we took an element out of nodes_to_visit. For BFS, we take the first element,
whereas for DFS, we take the last one.

24 | Introduction to Artificial Intelligence

The expected output is this:

[{'value': 1, 'depth': 1},

 {'value': 3, 'depth': 2},

 {'value': 5, 'depth': 3},

 {'value': 4, 'depth': 3},

 {'value': 5, 'depth': 4},

 {'value': 2, 'depth': 2},

 {'value': 4, 'depth': 3},

 {'value': 5, 'depth': 4},

 {'value': 3, 'depth': 3},

 {'value': 5, 'depth': 4},

 {'value': 4, 'depth': 4},

 {'value': 5, 'depth': 5}]

Notice how the DFS algorithm digs deep fast (the depth reaches higher values faster
than BFS). It does not necessarily find the shortest path first, but it is guaranteed to
find a leaf before exploring a second path.

In game AI, the BFS algorithm is often better for the evaluation of game states
because DFS may get lost. Imagine starting a chess game, where a DFS algorithm may
easily get lost in exploring the options for a move.

Exploring the State Space of a Game

Let's explore the state space of a simple game: tic-tac-toe. A state space is the set
of all possible configurations of a game, which, in this case, means all the
possible moves.

In tic-tac-toe, a 3x3 game board is given. Two players play this game. One plays with
the sign X, while the other plays with the sign O. X starts the game, and each player
makes a move after the other. The goal of the game is to get three of your own signs
horizontally, vertically, or diagonally.

Python for Game AI | 25

Let's denote the cells of the tic-tac-toe board, as follows:

Figure 1.6: Tic-tac-toe board

In the following example, X started at position 1. O retaliated at position 5, X made a
move at position 9, and then O moved to position 3:

Figure 1.7: Tic-tac-toe board with noughts and crosses

This was a mistake by the second player, because now X is forced to place a sign on
cell 7, creating two future scenarios for winning the game. It does not matter whether
O defends by moving to cell 4 or 8 – X will win the game by selecting the other
unoccupied cell.

Note

You can try out the game at http://www.half-real.net/tictactoe/.

http://www.half-real.net/tictactoe/

26 | Introduction to Artificial Intelligence

For simplicity, we will only explore the state space belonging to the cases when the AI
player starts. We will start with an AI player who plays randomly, placing a sign in an
empty cell. After playing with this AI player, we will create a complete decision tree.
Once we generate all possible game states, you will experience their combinatorial
explosion. As our goal is to make these complexities simple, we will use several
different techniques to make the AI player smarter and reduce the size of the
decision tree.

By the end of this experiment, we will have a decision tree that has fewer than 200
different game endings and, as a bonus, the AI player will never lose a single game.

To make a random move, you will have to know how to choose a random element
from a list using Python. We will use the choice function of the random library to
do so:

from random import choice

choice([2, 4, 6, 8])

This time, the output is 6, but for you, it can be any number from the list.

The output of the choice function is a random element of the list.

Note

We will use the factorial notation in the following section. A factorial is
denoted by the "!" exclamation mark. By definition, 0! = 1, and n! = n*(n-1)!.
In our example, 9! = 9* 8! = 9*8*7! = … = 9*8*7*6*5*4*3*2*1.

Estimating the Number of Possible States in a Tic-Tac-Toe Game

Make a rough estimate of the number of possible states on each level of the state
space of the tic-tac-toe game:

• In our estimation, we will not stop until all of the cells of the board have been
filled. A player might win before the game ends, but for the sake of uniformity,
we will continue the game.

• The first player will choose one of the nine cells. The second player will choose
one out of the eight remaining cells. The first player can then choose one out of
the seven remaining cells. This goes on until either player wins the game, or the
first player is forced to make the ninth and last move.

Python for Game AI | 27

• The number of possible decision sequences is, therefore, 9! = 362,880. A few of
these sequences are invalid because a player may win the game in fewer than
nine moves. It takes at least five moves to win a game because the first player
needs to move three times.

• To calculate the exact size of the state space, we have to calculate the number of
games that are won in five, six, seven, and eight steps. This calculation is simple,
but due to its brute-force nature, it is beyond our scope. Therefore, we will settle
on the magnitude of the state space.

Note

After generating all possible tic-tac-toe games, researchers counted
255,168 possible games. Out of those games, 131,184 were won by the
first player, 77,904 were won by the second player, and 46,080 games
ended with a draw. Visit http://www.half-real.net/tictactoe/allgamesoftictactoe.
zip to download all possible tic-tac-toe games.

Even a simple game such as tic-tac-toe has a lot of states. Just imagine how hard it
would be to start exploring all possible chess games. Therefore, we can conclude that
brute-force searching is rarely ideal.

Exercise 1.02: Creating an AI with Random Behavior for the Tic-Tac-Toe Game

In this exercise, we'll create a framework for the tic-tac-toe game for experimentation.
We will be modeling the game on the assumption that the AI player always starts the
game. You will create a function that prints your internal representation, allows your
opponent to enter a move randomly, and determines whether a player has won.

Note

To ensure that this happens correctly, you will need to have completed the
previous exercise.

http://www.half-real.net/tictactoe/allgamesoftictactoe.zip
http://www.half-real.net/tictactoe/allgamesoftictactoe.zip

28 | Introduction to Artificial Intelligence

The following steps will help you to complete this exercise:

1. Begin by opening a new Jupyter Notebook file.

2. We will import the choice function from the random library:

from random import choice

3. Now, model the nine cells in a simple string for simplicity. A nine-character long
Python string stores these cells in the following order: "123456789". Let's
determine the index triples that must contain matching signs so that a player
wins the game:

combo_indices = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [0, 3, 6], \

 [1, 4, 7], [2, 5, 8], [0, 4, 8], [2, 4, 6]]

4. Define the sign constants for empty cells, the AI, and the opponent player:

EMPTY_SIGN = '.'

AI_SIGN = 'X'

OPPONENT_SIGN = 'O'

In the preceding code snippet, we have assigned a different sign for the AI and
the player.

5. Create a function that prints a board. We will add an empty row before and after
the board so that we can easily read the game state:

def print_board(board):

 print(" ")

 print(' '.join(board[:3]))

 print(' '.join(board[3:6]))

 print(' '.join(board[6:]))

 print(" ")

6. Describe a move of the human player. The input arguments are the boards, the
row numbers from 1 to 3, and the column numbers from 1 to 3. The return
value of this function is a board containing the new move:

def opponent_move(board, row, column):

 index = 3 * (row - 1) + (column - 1)

 if board[index] == EMPTY_SIGN:

 return board[:index] + OPPONENT_SIGN + board[index+1:]

 return board

Python for Game AI | 29

Here, we have defined a function called opponent_move that will help us to
calculate the index of the board based on the input (row and column). You will
be able to see the resulting position on the board.

7. Now, we need to define a random move on the part of the AI player. We will
generate all possible moves with the all_moves_from_board function, and
then select a random move from the list of possible moves:

def all_moves_from_board(board, sign):

 move_list = []

 for i, v in enumerate(board):

 if v == EMPTY_SIGN:

 move_list.append(board[:i] + sign + board[i+1:])

 return move_list

def ai_move(board):

 return choice(all_moves_from_board(board, AI_SIGN))

In the preceding code snippet, we defined a function called all_moves_from_
board that goes through all the indexes on the board and checks whether they
are empty (v == EMPTY_SIGN). If that's the case, this means that the move
can be played and that the index has been added to a list of moves (move_
list). Finally, we defined the ai_move function in order to randomly let the AI
choose an index that is equal to a move in the game.

8. Determine whether a player has won the game:

def game_won_by(board):

 for index in combo_indices:

 if board[index[0]] == board[index[1]] == \

 board[index[2]] != EMPTY_SIGN:

 return board[index[0]]

 return EMPTY_SIGN

In the preceding code snippet, we have defined the game_won_by function,
which checks whether the board contains a combo of three identical indexes
from the combo_indices variable to end the game.

30 | Introduction to Artificial Intelligence

9. Finally, create a game loop so that we can test the interaction between the
computer player and the human player. We will conduct a brute-force search in
the following examples:

def game_loop():

 board = EMPTY_SIGN * 9

 empty_cell_count = 9

 is_game_ended = False

 while empty_cell_count > 0 and not is_game_ended:

 if empty_cell_count % 2 == 1:

 board = ai_move(board)

 else:

 row = int(input('Enter row: '))

 col = int(input('Enter column: '))

 board = opponent_move(board, row, col)

 print_board(board)

 is_game_ended = game_won_by(board) != EMPTY_SIGN

 empty_cell_count = sum(1 for cell in board \

 if cell == EMPTY_SIGN)

 print('Game has been ended.')

In the preceding code snippet, we defined the function, which can be broken
down into various parts.

The first part is to initialize the board and fill it with empty signs (board =
EMPTY_SIGN * 9). Then, we create a counter of the empty cell, which will help
us to create a loop and determine the AI's turn.

The second part is to create a function for the player and the AI engine to play
the game against each other. As soon as one player makes a move, the empty_
cell_count variable will decrease by 1. The loop will keep going until either
the game_won_by function finds a winner or there are no more possible moves
on the board.

10. Use the game_loop function to run the game:

game_loop()

Python for Game AI | 31

The expected output (partially shown) is this:

Figure 1.8: Final output (partially shown) of the game

Note

To access the source code for this specific section, please refer to
https://packt.live/3fUws2l.

You can also run this example online at https://packt.live/3hVzjcT. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, you have seen that even an opponent who is playing
randomly may win from time to time if their opponent makes a mistake.

https://packt.live/3fUws2l
https://packt.live/3hVzjcT

32 | Introduction to Artificial Intelligence

Activity 1.01: Generating All Possible Sequences of Steps in a Tic-Tac-Toe Game

This activity will explore the combinatorial explosion that is possible when two players
play randomly. We will be using a program that, building on the previous results,
generates all possible sequences of moves between a computer player and a
human player.

Let's assume that the human player may make any possible move. In this example,
given that the computer player is playing randomly, we will examine the wins, losses,
and draws belonging to two randomly playing players:

The following steps will help you to complete this activity:

1. Reuse all the function codes of Steps 2–9 from the previous Exercise 1.02, Creating
an AI with Random Behavior for the Tic-Tac-Toe Game.

2. Create a function that maps the all_moves_from_board function on each
element of a list of board spaces/squares. This way, we will have all of the nodes
of a decision tree. The decision tree starts with [EMPTY_SIGN * 9] and
expands after each move.

3. Create a filter_wins function that takes finished games out of the list of
moves and appends them in an array containing the board states won by the AI
player and the opponent player.

4. Create a count_possibilities function that prints and returns the number
of decision tree leaves that ended with a draw, were won by the first player, and
were won by the second player:

5. We have up to nine steps in each state. In the 0th, 2nd, 4th, 6th, and 8th iterations,
the AI player moves. In all other iterations, the opponent moves. We create all
possible moves in all steps and take out finished games from the
move list.

6. Finally, execute the number of possibilities to experience the
combinatorial explosion.

Python for Game AI | 33

The expected output is this:

step 0. Moves: 1

step 1. Moves: 9

step 2. Moves: 72

step 3. Moves: 504

step 4. Moves: 3024

step 5. Moves: 13680

step 6. Moves: 49402

step 7. Moves: 111109

step 8. Moves: 156775

First player wins: 106279

Second player wins: 68644

Draw 91150

Total 266073

Note

The solution to this activity can be found on page 322.

So far, we've understood the significance of an intelligent agent. We also examined
the game states for a game AI. Now, we will focus on how to create and introduce
intelligence to an agent.

We will look at reducing the number of states in the state space, analyze the stages
that a game board can undergo, and make the environment work in such a way that
we win.

Have a look at the following exercise, where we'll teach an intelligent agent to win.

34 | Introduction to Artificial Intelligence

Exercise 1.03: Teaching the Agent to Win

In this exercise, we will see how the steps needed to win can be reduced. We will be
making the agent that we developed in the previous section activity detect situations
where it can win a game.

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

2. Reuse the previous code from Steps 2–6 from Activity 1, Generating All Possible
Sequences of Steps in a Tic-Tac-Toe Game.

3. Define two functions, ai_move and all_moves_from_board.

We create ai_move so that it returns a move that will consider its own previous
moves. If the game can be won in that move, ai_move will select that move:

def ai_move(board):

 new_boards = all_moves_from_board(board, AI_SIGN)

 for new_board in new_boards:

 if game_won_by(new_board) == AI_SIGN:

 return new_board

 return choice(new_boards)

In the preceding code snippet, we have defined the ai_move function, which
will make the AI choose a winning move from a list of all the possible moves
from the current state of the game if it's applicable. If not, it will still choose a
random move.

4. Next, test the code snippet with a game loop. Whenever the AI has the
opportunity to win the game, it will always place the X in the correct cell:

game_loop()

Python for Game AI | 35

The expected output is this:

Figure 1.9: The agent winning the game

36 | Introduction to Artificial Intelligence

5. Now, count all the possible moves. To do this, we must change the all_moves_
from_board function to include this improvement. We must do this so that, if
the game is won by AI_SIGN, it will return that value:

def all_moves_from_board(board, sign):

 move_list = []

 for i, v in enumerate(board):

 if v == EMPTY_SIGN:

 new_board = board[:i] + sign + board[i+1:]

 move_list.append(new_board)

 if game_won_by(new_board) == AI_SIGN:

 return [new_board]

 return move_list

In the preceding code snippet, we have defined a function to generate all
possible moves. As soon as we find a move that wins the game for the AI, we
return it. We do not care whether the AI has multiple options to win the game
in one move – we just return the first possibility. If the AI cannot win, we return
all possible moves. Let's see what this means in terms of counting all of the
possibilities at each step.

6. Enter the following function to find all the possibilities.

first_player, second_player, \

draw, total = count_possibilities()

The expected output is this:

step 0. Moves: 1

 step 1. Moves: 9

 step 2. Moves: 72

 step 3. Moves: 504

 step 4. Moves: 3024

 step 5. Moves: 8525

 step 6. Moves: 28612

 step 7. Moves: 42187

 step 8. Moves: 55888

 First player wins: 32395

 Second player wins: 23445

 Draw 35544

 Total 91384

Python for Game AI | 37

Note

To access the source code for this specific section, please refer to
https://packt.live/317pyTa.

You can also run this example online at https://packt.live/2YnLpDS.
You must execute the entire Notebook in order to get the desired result.

With that, we have seen that the AI is still not winning most of the time. This means
that we need to introduce more concepts to the AI to make it stronger. To teach the
AI how to win, we need to teach it how to make defensive moves against losses.

Defending the AI against Losses

In the next activity, we will make the AI computer player play better compared to our
previous exercise so that we can reduce the state space and the number of losses.

Activity 1.02: Teaching the Agent to Realize Situations When It Defends

Against Losses

In this activity, we will force the computer to defend against a loss if the player puts
their third sign in a row, column, or diagonal line:

1. Reuse all the code from Steps 2–6 from the previous, Exercise 1.03, Teaching the
Agent to Win.

2. Create a function called player_can_win that takes all the moves from the
board using the all_moves_from_board function and iterates over it using
a variable called next_move. On each iteration, it checks whether the game can
be won by the sign, and then it returns true or false.

3. Extend the AI's move so that it prefers making safe moves. A move is safe if the
opponent cannot win the game in the next step.

4. Test the new application. You will find that the AI has made the correct move.

5. Place this logic in the state space generator and check how well the computer
player is doing by generating all possible games.

https://packt.live/317pyTa
https://packt.live/2YnLpDS

38 | Introduction to Artificial Intelligence

The expected output is this:

step 0. Moves: 1

step 1. Moves: 9

step 2. Moves: 72

step 3. Moves: 504

step 4. Moves: 3024

step 5. Moves: 5197

step 6. Moves: 18606

step 7. Moves: 19592

step 8. Moves: 30936

First player wins: 20843

Second player wins: 962

Draw 20243

Total 42048

 Note

The solution to this activity can be found on page 325.

Once we complete this activity, we notice that despite our efforts to make the AI
better, it can still lose in 962 ways. We will eliminate all these losses in the next
activity.

Activity 1.03: Fixing the First and Second Moves of the AI to Make It Invincible

In this activity, we will be combining our previous activities by teaching the AI how to
recognize both a win and a loss so that it can focus on finding moves that are more
useful than others. We will be reducing the possible games by hardcoding the first
and second moves:

1. Reuse the code from Steps 2–4 of the previous, Activity 1.02, Teaching the Agent to
Realize Situations When It Defends Against Losses.

2. Count the number of empty fields on the board and make a hardcoded move
in case there are 9 or 7 empty fields. You can experiment with different
hardcoded moves.

3. Occupying any corner, and then occupying the opposite corner, leads to no
losses. If the opponent occupies the opposite corner, making a move in the
middle results in no losses.

Python for Game AI | 39

4. After fixing the first two steps, we only need to deal with 8 possibilities instead
of 504. We also need to guide the AI into a state where the hardcoded rules are
enough so that it never loses a game.

The expected output is this:

step 0. Moves: 1

step 1. Moves: 1

step 2. Moves: 8

step 3. Moves: 8

step 4. Moves: 48

step 5. Moves: 38

step 6. Moves: 108

step 7. Moves: 76

step 8. Moves: 90

First player wins: 128

Second player wins: 0

Draw 60

Total 188

Note

The solution to this activity can be found on page 328.

Let's summarize the important techniques that we applied to reduce the state space
so far:

• Empirical simplification: We accepted that the optimal first move is a corner
move. We simply hardcoded a move instead of considering alternatives to focus
on other aspects of the game. In more complex games, empirical moves are
often misleading. The most famous chess AI victories often contain a violation of
the common knowledge of chess grand masters.

• Symmetry: After we started with a corner move, we noticed that positions 1, 3,
7, and 9 were equivalent to the perspective of winning the game. Even though
we didn't take this idea further, we noticed that we could even rotate the table
to reduce the state space even further and consider all four corner moves as the
exact same move.

40 | Introduction to Artificial Intelligence

• Reduction in different permutations leading to the same state: Suppose we
can make the moves A or B and suppose our opponent makes move X, where
X is not equal to either move A or B. If we explore the sequence A, X, B, and we
start exploring the sequence B, X, then we don't have to consider the sequence
B, X, A. This is because the two sequences lead to the exact same game state,
and we have already explored a state containing these three moves before, that
is, A, X, and B. The order of the sequence doesn't matter as it leads to the same
result. This allows us to significantly reduce the number of possible moves.

• Forced moves for the player: When a player collects two signs horizontally,
vertically, or diagonally, and the third cell in the row is empty, we are forced to
occupy that empty cell either to win the game or to prevent the opponent from
winning the game. Forced moves may imply other forced moves, which reduces
the state space even further.

• Forced moves for the opponent: When a move from the opponent is clearly
optimal, it does not make sense to consider scenarios where the opponent does
not make the optimal move. When the opponent can win the game by occupying
a cell, it does not matter whether we go on a long exploration of the cases when
the opponent misses the optimal move. We save a lot less by not exploring cases
when the opponent fails to prevent us from winning the game. This is because
after the opponent makes a mistake, we will simply win the game.

• Random move: When we cannot decide and don't have the capacity to search,
we move randomly. Random moves are almost always inferior to a search-based
educated guess, but at times, we have no other choice.

Heuristics
In this section, we will formalize informed search techniques by defining and applying
heuristics to guide our search. We will be looking at heuristics and creating them in
the sections ahead.

Uninformed and Informed Searches

In the tic-tac-toe example, we implemented a greedy algorithm that first focused
on winning, and then focused on not losing. When it comes to winning the game
immediately, the greedy algorithm is optimal because there is never a better step
than winning the game. When it comes to not losing, it matters how we avoid the loss.
Our algorithm simply choses a random safe move without considering how many
winning opportunities we have created.

Heuristics | 41

BFS and DFS are part of uninformed searching because they consider all possible
states in the game, which can be very time-consuming. On the other hand, heuristic
informed searches will explore the space of available states intelligently in order to
reach the goal faster.

Creating Heuristics

If we want to make better decisions, we apply heuristics to guide the search in the
right direction by considering long-term benefits. This way, we can make a more
informed decision in the present based on what could happen in the future. This can
also help us solve problems faster.

We can construct heuristics as follows:

• In terms of the utility of making a move in the game

• In terms of the utility of a given game state from the perspective of a player

• In terms of the distance from our goal

Heuristics are functions that evaluate a game state or a transition to a new game
state based on their utility. Heuristics are the cornerstones of making a search
problem informed.

In this book, we will use utility and cost as negated terms. Maximizing utility and
minimizing the cost of a move are considered synonyms.

A commonly used example of a heuristic evaluation function occurs in pathfinding
problems. Suppose we are looking to reach a destination or a goal. Each step has an
associated cost symbolizing the travel distance. Our goal is to minimize the cost of
reaching the destination or goal (minimizing the travel distance).

One example of heuristic evaluation for solving this pathfinding problem will be to
take the coordinates between the current state (position) and the goal (destination)
and calculate the distance between these two points. The distance between two
points is the length of the straight line connecting the points. This heuristic is called
the Euclidean distance (as shown in the Figure 1.10).

Now, suppose we define our pathfinding problem in a maze, where we can only move
up, down, left, or right. There are a few obstacles in the maze that block our moves,
so using the Euclidean distance is not ideal. A better heuristic would be to use the
Manhattan distance, which can be defined as the sum of the horizontal and vertical
distances between the coordinates of the current state and the goal.

42 | Introduction to Artificial Intelligence

Admissible and Non-Admissible Heuristics

The two heuristics we just defined regarding pathfinding problems are called
admissible heuristics when they're used on their given problem domain.

Admissible means that we may underestimate the cost of reaching the end state
but that we never overestimate it. Later, we will explore an algorithm that finds the
shortest path between the current state and the goal state. The optimal nature of this
algorithm depends on whether we can define an admissible heuristic function.

An example of a non-admissible heuristic would be the Euclidean distance that's
applied to a real-world map.

Imagine that we want to move from point A to point B in the city of Manhattan. Here,
the Euclidean distance will be the straight line between the two points, but, as we
know, we cannot just go straight in a city such as Manhattan (unless we can fly). In this
case, the Euclidean distance is underestimating the cost of reaching the goal. A better
heuristic would be the Manhattan distance:

Figure 1.10: Euclidian distance (blue line) and Manhattan distance (red line)
in the city of Manhattan

Heuristics | 43

Note

The preceding map of Manhattan is sourced from Google Maps.

Since we overestimated the cost of traveling from the current node to the goal, the
Euclidean distance is not admissible when we cannot move diagonally.

Heuristic Evaluation

We can create a heuristic evaluation for our tic-tac-toe game state from the
perspective of the starting player by defining the utility of a move.

Heuristic 1: Simple Evaluation of the Endgame

Let's define a simple heuristic by evaluating a board. We can set the utility for the
game as one of the following:

• +1, if the state implies that the AI player will win the game

• -1, if the state implies that the AI player will lose the game

• 0, if a draw has been reached or no clear winner can be identified from the
current state

This heuristic is simple because anyone can look at a board and analyze whether a
player is about to win.

The utility of this heuristic depends on whether we can play many moves in advance.
Notice that we cannot even win the game within five steps. In Activity 1.01, Generating
All Possible Sequences of Steps in a Tic-Tac-Toe Game, we saw that by the time we reach
step five, we have 13,680 possible combinations leading to it. In most of these 13,680
cases, our heuristic returns zero as we can't identify a clear winner yet.

If our algorithm does not look deeper than these five steps, we are completely
clueless on how to start the game. Therefore, we should invent a better heuristic.

44 | Introduction to Artificial Intelligence

Heuristic 2: Utility of a Move

Let's change the utility for the game as follows:

• Two AI signs in a row, column, or diagonal, and the third cell is empty: +1000 for
the empty cell.

• The opponent has two signs in a row, column, or diagonal, and the third cell is
empty: +100 for the empty cell.

• One AI sign in a row, column, or diagonal, and the other two cells are empty: +10
for the empty cells.

• No AI or opponent signs in a row, column, or diagonal: +1 for the empty cells.

• Occupied cells get a value of minus infinity. In practice, due to the nature of the
rules, -1 will also do.

Why do we use a multiplicative factor of 10 for the first three rules compared to the
fourth one? We do this because there are eight possible ways of making three in a
row, column, and diagonal. So, even by knowing nothing about the game, we are
certain that a lower-level rule may not accumulate to overriding a higher-level rule. In
other words, we will never defend against the opponent's moves if we can win
the game.

Note

As the job of our opponent is also to win, we can compute this heuristic
from the opponent's point of view. Our task is to maximize this value, too,
so that we can defend against the optimal plays of our opponent. This is the
idea behind the Minmax algorithm as well, which will be covered later in this
chapter. If we wanted to convert this heuristic into a heuristic that describes
the current board, we could compute the heuristic value for all open cells
and take the maximum of the values for the AI character so that we can
maximize our utility.

For each board, we will create a utility matrix.

Heuristics | 45

For example, consider the following board, with O signs as the player and X signs as
the AI:

Figure 1.11: Tic-tac-toe game state

From here, we can construct its utility matrix shown in the following figure:

Figure 1.12: Tic-tac-toe game utility matrix

On the second row, the left cell is not beneficial if we were to select it. Note that if we
had a more optimal utility function, we would reward blocking the opponent.

The two cells of the third column both get a 10-point boost for two in a row.

The top-right cell also gets 100 points for defending against the diagonal of
the opponent.

From this matrix, evidently, we should choose the top-right move. At any stage of the
game, we were able to define the utility of each cell; this was a static evaluation of the
heuristic function.

We can use this heuristic to guide us toward an optimal next move or to give a more
educated score on the current board by taking the maximum of these values. We
have technically used parts of this heuristic in the form of hardcoded rules. Note,
though, that the real utility of heuristics is not the static evaluation of a board, but the
guidance it provides for limiting the search space.

46 | Introduction to Artificial Intelligence

Exercise 1.04: Tic-Tac-Toe Static Evaluation with a Heuristic Function

In this exercise, you will be performing a static evaluation on the tic-tac-toe game
using a heuristic function.

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

2. Reuse the code from Steps 2–6 of Activity 1.01, Generating All Possible Sequences of
Steps in a Tic-Tac-Toe Game.

3. Create a function that takes the board as input and returns 0 if the cell is empty,
and -1 if it's not empty:

def init_utility_matrix(board):

 return [0 if cell == EMPTY_SIGN \

 else -1 for cell in board]

4. Next, create a function that takes the utility vector of possible moves, takes three
indices inside the utility vector representing a triple, and returns a function, as
shown in the following code snippet:

def generate_add_score(utilities, i, j, k):

 def add_score(points):

 if utilities[i] >= 0:

 utilities[i] += points

 if utilities[j] >= 0:

 utilities[j] += points

 if utilities[k] >= 0:

 utilities[k] += points

 return add_score

In the preceding code snippet, the returned function will expect a points
parameter and the utilities vector as input and will add points to each cell
in (i, j, k), as long as the original value of that cell is non-negative (>=0). In other
words, we increased the utility of empty cells only.

5. Now, create the utility matrix belonging to any board constellation where you
will add the generate_add_score function defined previously to update the
score. You will also implement the rules that we discussed prior to this activity.
These rules are as follows:

Two AI signs in a row, column, or diagonal, and the third cell is empty: +1000 for
the empty cell.

Heuristics | 47

The opponent has two signs in a row, column, or diagonal, and the third cell is
empty: +100 for the empty cell.

One AI sign in a row, column, or diagonal, and the other two cells are empty: +10
for the empty cells.

No AI or opponent signs in a row, column, or diagonal: +1 for the empty cells.

Let's create the utility matrix now:

def utility_matrix(board):

 utilities = init_utility_matrix(board)

 for [i, j, k] in combo_indices:

 add_score = generate_add_score(utilities, i, j, k)

 triple = [board[i], board[j], board[k]]

 if triple.count(EMPTY_SIGN) == 1:

 if triple.count(AI_SIGN) == 2:

 add_score(1000)

 elif triple.count(OPPONENT_SIGN) == 2:

 add_score(100)

 elif triple.count(EMPTY_SIGN) == 2 and \

 triple.count(AI_SIGN) == 1:

 add_score(10)

 elif triple.count(EMPTY_SIGN) == 3:

 add_score(1)

 return utilities

6. Create a function that selects the move with the highest utility value. If multiple
moves have the same utility, the function returns both moves:

def best_moves_from_board(board, sign):

 move_list = []

 utilities = utility_matrix(board)

 max_utility = max(utilities)

 for i, v in enumerate(board):

 if utilities[i] == max_utility:

 move_list.append(board[:i] \

 + sign \

 + board[i+1:])

 return move_list

def all_moves_from_board_list(board_list, sign):

 move_list = []

48 | Introduction to Artificial Intelligence

 get_moves = best_moves_from_board if sign \

 == AI_SIGN else all_moves_from_board

 for board in board_list:

 move_list.extend(get_moves(board, sign))

 return move_list

7. Now, run the application, as shown in the following code snippet:

first_player, second_player, \

draw, total = count_possibilities()

The expected output is this:

step 0. Moves: 1

step 1. Moves: 1

step 2. Moves: 8

step 3. Moves: 24

step 4. Moves: 144

step 5. Moves: 83

step 6. Moves: 214

step 7. Moves: 148

step 8. Moves: 172

First player wins: 504

Second player wins: 12

Draw 91

Total 607

Note

To access the source code for this specific section, please refer to
https://packt.live/2VpGyAv.

You can also run this example online at https://packt.live/2YnyO3K. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, we have observed that the AI is underperforming
compared to our previous activity, Activity 1.03, Fixing the First and Second Moves of the
AI to Make It Invincible. In this situation, hardcoding the first two moves was
better than setting up the heuristic, but this is because we haven't set up the
heuristic properly.

https://packt.live/2VpGyAv
https://packt.live/2YnyO3K

Heuristics | 49

Using Heuristics for an Informed Search

We have not experienced the real power of heuristics yet as we made moves without
the knowledge of the effects of our future moves, thereby effecting reasonable play
from our opponents.

Therefore, a more accurate heuristic leads to more losses than simply hardcoding the
first two moves in the game. Note that in the previous section, we selected these two
moves based on the statistics we generated based on running the game with fixed
first moves. This approach is essentially what heuristic search should be all about.

Types of Heuristics

Static evaluation cannot compete with generating hundreds of thousands of future
states and selecting a play that maximizes our rewards. This is because our heuristics
are not exact and are likely not admissible either.

We saw in the preceding exercise that heuristics are not always optimal. We came
up with rules that allowed the AI to always win the game or finish with a draw. These
heuristics allowed the AI to win very frequently, at the expense of losing in a few
cases. A heuristic is said to be admissible if we underestimate the utility of a game
state, but we never overestimate it.

In the tic-tac-toe example, we likely overestimated the utility in a few game states,
and why is that? Because we ended up with a loss 12 times. A few of the game states
that led to a loss had a maximum heuristic score. To prove that our heuristic is not
admissible, all we need to do is find a potentially winning game state that we ignored
while choosing a game state that led to a loss.

There are two more features that describe heuristics, that is, optimal and complete:

• Optimal heuristics always find the best possible solution.

• Complete heuristics has two definitions, depending on how we define the
problem domain. In a loose sense, a heuristic is said to be complete if it always
finds a solution. In a strict sense, a heuristic is said to be complete if it finds all
possible solutions. Our tic-tac-toe heuristic is not complete because we ignored
many possible winning states on purpose, favoring a losing state.

As you can see, defining an accurate heuristic requires a lot of details and thinking in
order to obtain a perfect AI agent. If you are not correctly estimating the utility in the
game states, then you can end up with an AI underperforming hardcoded rules.

50 | Introduction to Artificial Intelligence

In the next section, we'll look at a better approach to executing the shortest
pathfinding between the current state and the goal state.

Pathfinding with the A* Algorithm
In the first two sections, we learned how to define an intelligent agent and how to
create a heuristic that guides the agent toward a desired state. We learned that this
was not perfect because, at times, we ignored a few winning states in favor of a few
losing states.

Now, we will learn about a structured and optimal approach so that we can execute
a search for finding the shortest path between the current state and the goal state by
using the A* ("A star" instead of "A asterisk") algorithm.

Have a look at the following figure:

Figure 1.13: Finding the shortest path in a maze

For a human, it is simple to find the shortest path by merely looking at the figure.
We can conclude that there are two potential candidates for the shortest path: route
one starts upward, and route two starts to the left. However, the AI does not know
about these options. In fact, the most logical first step for a computer player would be
moving to the square denoted by the number 3 in the following figure.

Pathfinding with the A* Algorithm | 51

Why? Because this is the only step that decreases the distance between the starting
state and the goal state. All the other steps initially move away from the goal state:

Figure 1.14: Shortest pathfinding game board with utilities

In the next exercise, we'll see how the BFS algorithm performs on the pathfinding
problem before introducing you to the A* algorithm.

Exercise 1.05: Finding the Shortest Path Using BFS

In this exercise, we will be finding the shortest path to our goal using the BFS
algorithm.

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

2. Begin by importing the math library:

import math

52 | Introduction to Artificial Intelligence

3. Next, describe the board, the initial state, and the final state using Python. Create
a function that returns a list of possible successors. Use tuples, where the first
coordinate denotes the row number from 1 to 7 and the second coordinate
denotes the column number from 1 to 9:

size = (7, 9)

start = (5, 3)

end = (6, 9)

obstacles = {(3, 4), (3, 5), (3, 6), (3, 7), (3, 8), \

 (4, 5), (5, 5), (5, 7), (5, 9), (6, 2), \

 (6, 3), (6, 4), (6, 5), (6, 7),(7, 7)}

4. Next, use array comprehension to generate the successor states, as shown in the
following code:

def successors(state, visited_nodes):

 (row, col) = state

 (max_row, max_col) = size

 succ_states = []

 if row > 1:

 succ_states += [(row-1, col)]

 if col > 1:

 succ_states += [(row, col-1)]

 if row < max_row:

 succ_states += [(row+1, col)]

 if col < max_col:

 succ_states += [(row, col+1)]

 return [s for s in succ_states if s not in \

 visited_nodes if s not in obstacles]

The function is generating all the possible moves from a current field that does
not end up being blocked by an obstacle. We also add a filter to exclude moves
that return to a field we have visited already to avoid infinite loops.

5. Next, implement the initial costs, as shown in the following code snippet:

def initialize_costs(size, start):

 (h, w) = size

 costs = [[math.inf] * w for i in range(h)]

 (x, y) = start

 costs[x-1][y-1] = 0

 return costs

Pathfinding with the A* Algorithm | 53

6. Now, implement the updated costs using costs, current_node, and
successor_node:

def update_costs(costs, current_node, successor_nodes):

 new_cost = costs[current_node[0]-1]\

 [current_node[1]-1] + 1

 for (x, y) in successor_nodes:

 costs[x-1][y-1] = min(costs[x-1][y-1], new_cost)

7. Finally, implement the BFS algorithm to search the state of the tree and save the
result in a variable called bfs:

def bfs_tree(node):

 nodes_to_visit = [node]

 visited_nodes = []

 costs = initialize_costs(size, start)

 while len(nodes_to_visit) > 0:

 current_node = nodes_to_visit.pop(0)

 visited_nodes.append(current_node)

 successor_nodes = successors(current_node, \

 visited_nodes)

 update_costs(costs, current_node, successor_nodes)

 nodes_to_visit.extend(successor_nodes)

 return costs

bfs = bfs_tree(start)

bfs

In the preceding code snippet, we have reused the bfs_tree function that we
looked at earlier in the Breadth First Search section of this book. However, we
added the update_costs function to update the costs.

The expected output is this:

[[6, 5, 4, 5, 6, 7, 8, 9, 10],

 [5, 4, 3, 4, 5, 6, 7, 8, 9],

 [4, 3, 2, inf, inf, inf, inf, inf, 10],

 [3, 2, 1, 2, inf, 12, 13, 12, 11],

 [2, 1, 0, 1, inf, 11, inf, 13, inf],

 [3, inf, inf, inf, inf, 10, inf, 14, 15],

 [4, 5, 6, 7, 8, 9, inf, 15, 16]]

Here, you can see that a simple BFS algorithm successfully determines the cost
from the start node to any nodes, including the target node.

54 | Introduction to Artificial Intelligence

8. Now, measure the number of steps required to find the goal node and save the
result in the bfs_v variable, as shown in the following code snippet:

def bfs_tree_verbose(node):

 nodes_to_visit = [node]

 visited_nodes = []

 costs = initialize_costs(size, start)

 step_counter = 0

 while len(nodes_to_visit) > 0:

 step_counter += 1

 current_node = nodes_to_visit.pop(0)

 visited_nodes.append(current_node)

 successor_nodes = successors(current_node, \

 visited_nodes)

 update_costs(costs, current_node, successor_nodes)

 nodes_to_visit.extend(successor_nodes)

 if current_node == end:

 print('End node has been reached in ', \

 step_counter, ' steps')

 return costs

 return costs

bfs_v = bfs_tree_verbose(start)

bfs_v

In the preceding code snippet, we have added a step counter variable in order to
print the number of steps at the end of the search.

Introducing the A* Algorithm | 55

The expected output is this:

End node has been reached in 110 steps

[[6, 5, 4, 5, 6, 7, 8, 9, 10],

 [5, 4, 3, 4, 5, 6, 7, 8, 9],

 [4, 3, 2, inf, inf, inf, inf, inf, 10],

 [3, 2, 1, 2, inf, 12, 13, 12, 11],

 [2, 1, 0, 1, inf, 11, inf, 13, inf],

 [3, inf, inf, inf, inf, 10, inf, 14, 15],

 [4, 5, 6, 7, 8, 9, inf, 15, 16]]

Note

To access the source code for this specific section, please refer to
https://packt.live/3fMYwEt.

You can also run this example online at https://packt.live/3duuLqp. You must
execute the entire Notebook in order to get the desired result.

In this exercise, we used the BFS algorithm to find the shortest path to the goal. It
took BFS 110 steps to reach the goal. Now, we will learn about an algorithm that can
find the shortest path from the start node to the goal node: the A* algorithm.

Introducing the A* Algorithm
A* is a complete and optimal heuristic search algorithm that finds the shortest
possible path between the current game state and the winning state. The definition of
complete and optimal in this state are as follows:

• Complete means that A* always finds a solution.

• Optimal means that A* will find the best solution.

https://packt.live/3fMYwEt
https://packt.live/3duuLqp

56 | Introduction to Artificial Intelligence

To set up the A* algorithm, we need the following:

• An initial state

• A description of the goal states

• Admissible heuristics to measure progress toward the goal state

• A way to generate the next steps toward the goal

Once the setup is complete, we execute the A* algorithm using the following steps on
the initial state:

1. We generate all possible next steps.

2. We store these children in the order of their distance from the goal.

3. We select the child with the best score first and repeat these three steps on the
child with the best score as the initial state. This is the shortest path to get to a
node from the starting node.

Let's take, for example, the following figure:

Figure 1.15: Tree with heuristic distance

The first step will be to generate all the possible moves from the origin, A, which is
moving from A to B (A,B) or to C (A,C).

Introducing the A* Algorithm | 57

The second step is to use the heuristic (the distance) to order the two possible moves,
(A,B), with 10, which is shorter compared to (A,C) with 100.

The third step is to choose the shortest heuristic, which is (A,B), and move to B.

Now, we will repeat the same steps with B as the origin.

At the end, we will reach the goal F with the path (A,B,D,F) with a cumulative
heuristic of 24. If we were following another path, such as (A,B,E,F), the cumulative
heuristic will be 30, which is higher than the shortest path.

We did not even look at (A,C,F) as it was already way over the shortest path.

In pathfinding, a good heuristic is the Euclidean distance. If the current node is (x, y)
and the goal node is (u, v), then we have the following:

distance_from_end(node) = sqrt(abs(x – u) ** 2 + abs(y – v) ** 2)

Here, distance_from_end(node) is an admissible heuristic estimation showing
how far we are from the goal node.

We also have the following:

• sqrt is the square root function. Do not forget to import it from the
math library.

• abs is the absolute value function, that is, abs(-2) = abs(2) = 2.

• x ** 2 is x raised to the second power.

We will use the distance_from_start matrix to store the distances from the
start node. In the algorithm, we will refer to this cost matrix as distance_from_
start(n1). For any node, n1, that has coordinates (x1, y1), this distance is
equivalent to distance_from_start[x1][y1].

We will use the succ(n) notation to generate a list of successor nodes from n.

Note

The # symbol in the code snippet below denotes a code comment.
Comments are added into code to help explain specific bits of logic. The
triple-quotes (""") shown in the code snippet below are used to denote
the start and end points of a multi-line code comment. Comments are added
into code to help explain specific bits of logic.

58 | Introduction to Artificial Intelligence

Have a look at the pseudocode of the algorithm:

frontier = [start], internal = {}

Initialize the costs matrix with each cell set to infinity.

Set the value of distance_from_start(start) to 0.

while frontier is not empty:

 """

 notice n has the lowest estimated total

 distance between start and end.

 """

 n = frontier.pop()

 # We'll learn later how to reconstruct the shortest path

 if n == end:

 return the shortest path.

 internal.add(n)

 for successor s in succ(n):

 if s in internal:

 continue # The node was already examined

 new_distance = distance_from_start(n) + distance(n, s)

 if new_distance >= distance_from_start(s):

 """

 This path is not better than the path we have

 already examined.

 """

 continue

 if s is a member of frontier:

 update the priority of s

 else:

 Add s to frontier.

Regarding the retrieval of the shortest path, we can use the costs matrix. This
matrix contains the distance of each node on the path from the start node. As cost
always decreases when walking backward, all we need to do is start with the end
node and walk backward greedily toward decreasing costs:

path = [end_node], distance = get_distance_from_start(end_node)

while the distance of the last element in the path is not 0:

 for each neighbor of the last node in path:

 new_distance = get_distance_from_start(neighbor)

Introducing the A* Algorithm | 59

 if new_distance < distance:

 add neighbor to path, and break out from the for loop

return path

A* shines when we have one start state and one goal state. The complexity of the
A* algorithm is O(E), where E stands for all possible edges in the field. In our
example, we have up to four edges leaving any node: up, down, left, and right.

Note

To sort the frontier list in the proper order, we must use a special Python
data structure: a priority queue.

Have a look at the following example:

Import heapq to access the priority queue

import heapq

Create a list to store the data

data = []

"""

Use heapq.heappush to push (priorityInt, value)

pairs to the queue

"""

heapq.heappush(data, (2, 'first item'))

heapq.heappush(data, (1, 'second item'))

"""

The tuples are stored in data in the order

of ascending priority

"""

[(1, 'second item'), (2, 'first item')]

"""

heapq.heappop pops the item with the lowest score

from the queue

"""

heapq.heappop(data)

The expected output is this:

(1, 'second item')

60 | Introduction to Artificial Intelligence

The data still contains the second item. If you type in the following command, you will
be able to see it:

data

The expected output is this:

[(2, 'first item')]

Why is it important that the heuristic being used by the algorithm is admissible?

Because this is how we guarantee the optimal nature of the algorithm. For any node
x, we are measuring the sum of the distances from the start node to x. This is the
estimated distance from x to the end node. If the estimation never overestimates the
distance from x to the end node, we will never overestimate the total distance. Once
we are at the goal node, our estimation is zero, and the total distance from the start
to the end becomes an exact number.

We can be sure that our solution is optimal because there are no other items in the
priority queue that have a lower estimated cost. Given that we never overestimate
our costs, we can be sure that all of the nodes in the frontier of the algorithm have
either similar total costs or higher total costs than the path we found.

In the following example, we can see how to implement the A* algorithm to find the
path with the lowest cost:

 Figure 1.16: Shortest pathfinding game board

Introducing the A* Algorithm | 61

We import math and heapq:

import math

import heapq

Next, we'll reuse the initialization code from Steps 2–5 of the previous, Exercise 1.05,
Finding the Shortest Path Using BFS.

Note

We have omitted the function to update costs because we will do so within
the A* algorithm:

Next, we need to initialize the A* algorithm's frontier and internal lists. For
frontier, we will use a Python PriorityQueue. Do not execute this code
directly; we will use these four lines inside the A* search function:

frontier = []

internal = set()

heapq.heappush(frontier, (0, start))

costs = initialize_costs(size, start)

Now, it is time to implement a heuristic function that measures the distance
between the current node and the goal node using the algorithm we saw in the
heuristic section:

def distance_heuristic(node, goal):

 (x, y) = node

 (u, v) = goal

 return math.sqrt(abs(x - u) ** 2 + abs(y - v) ** 2)

The final step will be to translate the A* algorithm into functioning code:

def astar(start, end):

 frontier = []

 internal = set()

 heapq.heappush(frontier, (0, start))

 costs = initialize_costs(size, start)

 def get_distance_from_start(node):

62 | Introduction to Artificial Intelligence

 return costs[node[0] - 1][node[1] - 1]

 def set_distance_from_start(node, new_distance):

 costs[node[0] - 1][node[1] - 1] = new_distance

 while len(frontier) > 0:

 (priority, node) = heapq.heappop(frontier)

 if node == end:

 return priority

 internal.add(node)

 successor_nodes = successors(node, internal)

 for s in successor_nodes:

 new_distance = get_distance_from_start(node) + 1

 if new_distance < get_distance_from_start(s):

 set_distance_from_start(s, new_distance)

 # Filter previous entries of s

 frontier = [n for n in frontier if s != n[1]]

 heapq.heappush(frontier, \

 (new_distance \

 + distance_heuristic(s, end), s))

astar(start, end)

The expected output is this:

15.0

There are a few differences between our implementation and the original algorithm.

We defined a distance_from_start function to make it easier and more
semantic to access the costs matrix. Note that we number the node indices starting
with 1, while in the matrix, indices start with zero. Therefore, we subtract 1 from the
node values to get the indices.

When generating the successor nodes, we automatically ruled out nodes that are in
the internal set. successors = succ(node, internal) makes sure that we
only get the neighbors whose examination is not closed yet, meaning that their score
is not necessarily optimal.

Therefore, we may skip the step check since internal nodes will never end up
in succ(n).

Introducing the A* Algorithm | 63

Since we are using a priority queue, we must determine the estimated priority of
nodes before inserting them. However, we will only insert the node in the frontier if
we know that this node does not have an entry with a lower score.

It may happen that nodes are already in the frontier queue with a higher score. In
this case, we remove this entry before inserting it into the right place in the priority
queue. When we find the end node, we simply return the length of the shortest path
instead of the path itself.

To follow what the A* algorithm does, execute the following example code and
observe the logs:

def astar_verbose(start, end):

 frontier = []

 internal = set()

 heapq.heappush(frontier, (0, start))

 costs = initialize_costs(size, start)

 def get_distance_from_start(node):

 return costs[node[0] - 1][node[1] - 1]

 def set_distance_from_start(node, new_distance):

 costs[node[0] - 1][node[1] - 1] = new_distance

 steps = 0

 while len(frontier) > 0:

 steps += 1

 print('step ', steps, '. frontier: ', frontier)

 (priority, node) = heapq.heappop(frontier)

 print('node ', node, \

 'has been popped from frontier with priority', \

 priority)

 if node == end:

 print('Optimal path found. Steps: ', steps)

 print('Costs matrix: ', costs)

 return priority

 internal.add(node)

 successor_nodes = successors(node, internal)

 print('successor_nodes', successor_nodes)

 for s in successor_nodes:

 new_distance = get_distance_from_start(node) + 1

64 | Introduction to Artificial Intelligence

 print('s:', s, 'new distance:', new_distance, \

 ' old distance:', get_distance_from_start(s))

 if new_distance < get_distance_from_start(s):

 set_distance_from_start(s, new_distance)

 # Filter previous entries of s

 frontier = [n for n in frontier if s != n[1]]

 new_priority = new_distance \

 + distance_heuristic(s, end)

 heapq.heappush(frontier, (new_priority, s))

 print('Node', s, \

 'has been pushed to frontier with priority', \

 new_priority)

 print('Frontier', frontier)

 print('Internal', internal)

 print(costs)

astar_verbose(start, end)

Here, we build the astar_verbose function by reusing the code from the astar
function and adding print functions in order to create a log.

The expected output is this:

Figure 1.17: Astar function logs

We have seen that the A* search returns the right values. The question is, how can we
reconstruct the whole path?

Introducing the A* Algorithm | 65

For this, we remove the print statements from the code for clarity and continue
with the A* algorithm that we implemented in the previous step. Instead of returning
the length of the shortest path, we have to return the path itself. We will write a
function that extracts this path by walking backward from the end node, analyzing
the costs matrix. Do not define this function globally yet. We define it as a local
function in the A* algorithm that we created previously:

def get_shortest_path(end_node):

 path = [end_node]

 distance = get_distance_from_start(end_node)

 while distance > 0:

 for neighbor in successors(path[-1], []):

 new_distance = get_distance_from_start(neighbor)

 if new_distance < distance:

 path += [neighbor]

 distance = new_distance

 break # for

 return path

Now that we've seen how to deconstruct the path, let's return it inside the
A* algorithm:

def astar_with_path(start, end):

 frontier = []

 internal = set()

 heapq.heappush(frontier, (0, start))

 costs = initialize_costs(size, start)

 def get_distance_from_start(node):

 return costs[node[0] - 1][node[1] - 1]

 def set_distance_from_start(node, new_distance):

 costs[node[0] - 1][node[1] - 1] = new_distance

 def get_shortest_path(end_node):

 path = [end_node]

 distance = get_distance_from_start(end_node)

 while distance > 0:

 for neighbor in successors(path[-1], []):

 new_distance = get_distance_from_start(neighbor)

 if new_distance < distance:

66 | Introduction to Artificial Intelligence

 path += [neighbor]

 distance = new_distance

 break # for

 return path

 while len(frontier) > 0:

 (priority, node) = heapq.heappop(frontier)

 if node == end:

 return get_shortest_path(end)

 internal.add(node)

 successor_nodes = successors(node, internal)

 for s in successor_nodes:

 new_distance = get_distance_from_start(node) + 1

 if new_distance < get_distance_from_start(s):

 set_distance_from_start(s, new_distance)

 # Filter previous entries of s

 frontier = [n for n in frontier if s != n[1]]

 heapq.heappush(frontier, \

 (new_distance \

 + distance_heuristic(s, end), s))

astar_with_path(start, end)

In the preceding code snippet, we have reused the a-star function defined
previously with the notable difference of adding the get_shortest_path function.
Then, we use this function to replace the priority queue since we want the algorithm
to always choose the shortest path.

Introducing the A* Algorithm | 67

The expected output is this:

Figure 1.18: Output showing the priority queue

Technically, we do not need to reconstruct the path from the costs matrix. We
could record the parent node of each node in the matrix and simply retrieve the
coordinates to save a bit of searching.

We are not expecting you to understand all the preceding script as it is quite
advanced, so we are going to use a library that will simplify it for us.

68 | Introduction to Artificial Intelligence

A* Search in Practice Using the simpleai Library

The simpleai library is available on GitHub and contains many popular AI tools
and techniques.

Note

You can access this library at https://github.com/simpleai-team/simpleai.
The documentation of the simpleai library can be accessed here: http://
simpleai.readthedocs.io/en/latest/. To access the simpleai library, first,
you have to install it.

The simpleai library can be installed as follows:

pip install simpleai

Once simpleai has been installed, you can import classes and functions from the
simpleai library into a Jupyter Notebook:

from simpleai.search import SearchProblem, astar

SearchProblem gives you a frame for defining any search problems. The astar
import is responsible for executing the A* algorithm inside the search problem.

For simplicity, we have not used classes in the previous code examples to focus on
the algorithms in a plain old style without any clutter.

Note

Remember that the simpleai library will force us to use classes.

To describe a search problem, you need to provide the following:

• constructor: This initializes the state space, thus describing the problem. We
will make the Size, Start, End, and Obstacles values available in the object
by adding it to these as properties. At the end of the constructor, do not forget to
call the super constructor, and do not forget to supply the initial state.

https://github.com/simpleai-team/simpleai
http://simpleai.readthedocs.io/en/latest/
http://simpleai.readthedocs.io/en/latest/

Introducing the A* Algorithm | 69

• actions(state): This returns a list of actions that we can perform from
a given state. We will use this function to generate new states. Semantically, it
would make more sense to create action constants such as UP, DOWN, LEFT, and
RIGHT, and then interpret these action constants as a result. However, in this
implementation, we will simply interpret an action as "move to (x, y)", and
represent this command as (x, y). This function contains more-or-less the
logic that we implemented in the succ function previously, except that we won't
filter the result based on a set of visited nodes.

• result(state0, action): This returns the new state of action that was
applied to state0.

• is_goal(state): This returns true if the state is a goal state. In our
implementation, we will have to compare the state to the end state coordinates.

• cost(self, state, action, newState): This is the cost of moving
from state to newState via action. In our example, the cost of a move is
uniformly 1.

Have a look at the following example:

import math

from simpleai.search import SearchProblem, astar

class ShortestPath(SearchProblem):

 def __init__(self, size, start, end, obstacles):

 self.size = size

 self.start = start

 self.end = end

 self.obstacles = obstacles

 super(ShortestPath, \

 self).__init__(initial_state=self.start)

 def actions(self, state):

 (row, col) = state

 (max_row, max_col) = self.size

 succ_states = []

 if row > 1:

 succ_states += [(row-1, col)]

 if col > 1:

 succ_states += [(row, col-1)]

 if row < max_row:

70 | Introduction to Artificial Intelligence

 succ_states += [(row+1, col)]

 if col < max_col:

 succ_states += [(row, col+1)]

 return [s for s in succ_states \

 if s not in self.obstacles]

 def result(self, state, action):

 return action

 def is_goal(self, state):

 return state == end

 def cost(self, state, action, new_state):

 return 1

 def heuristic(self, state):

 (x, y) = state

 (u, v) = self.end

 return math.sqrt(abs(x-u) ** 2 + abs(y-v) ** 2)

size = (7, 9)

start = (5, 3)

end = (6, 9)

obstacles = {(3, 4), (3, 5), (3, 6), (3, 7), (3, 8), \

 (4, 5), (5, 5), (5, 7), (5, 9), (6, 2), \

 (6, 3), (6, 4), (6, 5), (6, 7), (7, 7)}

searchProblem = ShortestPath(size, start, end, obstacles)

result = astar(searchProblem, graph_search=True)

result.path()

In the preceding code snippet, we used the simpleai package to simplify our code.
We also had to define a class called ShortestPath in order to use the package.

Game AI with the Minmax Algorithm and Alpha-Beta Pruning | 71

The expected output is this:

Figure 1.19: Output showing the queue using the simpleai library

The simpleai library made the search description a lot easier than the manual
implementation. All we need to do is define a few basic methods, and then we have
access to an effective search implementation.

In the next section, we will be looking at the Minmax algorithm, along with pruning.

Game AI with the Minmax Algorithm and Alpha-Beta Pruning
In the first two sections, we saw how hard it was to create a winning strategy for a
simple game such as tic-tac-toe. The previous section introduced a few structures for
solving search problems with the A* algorithm. We also saw that tools such as the
simpleai library help us to reduce the effort we put in to describe a task with code.

We will use all of this knowledge to supercharge our game AI skills and solve more
complex problems.

72 | Introduction to Artificial Intelligence

Search Algorithms for Turn-Based Multiplayer Games

Turn-based multiplayer games such as tic-tac-toe are similar to pathfinding problems.
We have an initial state and we have a set of end states where we win the game.

The challenge with turn-based multiplayer games is the combinatorial explosion of
the opponent's possible moves. This difference justifies treating turn-based games
differently to a regular pathfinding problem.

For instance, in the tic-tac-toe game, from an empty board, we can select one of
the nine cells and place our sign there, assuming we start the game. Let's denote
this algorithm with the succ function, symbolizing the creation of successor states.
Consider we have the initial state denoted by Si.

Here, we have succ(Si) returns [S1, S2, ..., Sn], where S1, S2,
..., Sn are successor states:

Figure 1.20: Tree diagram denoting the successor states of the function

Then, the opponent also makes a move, meaning that from each possible state, we
have to examine even more states:

Figure 1.21: Tree diagram denoting parent-successor relationships

The Minmax Algorithm | 73

The expansion of possible future states stops in one of two cases:

• The game ends.

• Due to resource limitations, it is not worth explaining any more moves beyond a
certain depth for the state of a certain utility.

Once we stop expanding, we have to make a static heuristic evaluation of the state.
This is exactly what we did previously with the A* algorithm, when choosing the best
move; however, we never considered future states.

Therefore, even though our algorithm became more and more complex, without
using the knowledge of possible future states, we had a hard time detecting whether
our current move would likely be a winning one or a losing one.

The only way for us to take control of the future was to change our heuristic while
knowing how many games we would win, lose, or tie in the future. We could either
maximize our wins or minimize our losses. We still did not dig deep enough to see
whether our losses could have been avoided through smarter play on the part of
the AI.

All these problems can be avoided by digging deeper into future states and
recursively evaluating the utility of the branches.

To consider future states, we will learn about the Minmax algorithm and its variant,
the NegaMax algorithm.

The Minmax Algorithm
Suppose there is a game where a heuristic function can evaluate a game state from
the perspective of the AI player. For instance, we used a specific evaluation for the
tic-tac-toe exercise:

• +1,000 points for a move that won the game

• +100 points for a move preventing the opponent from winning the game

• +10 points for a move creating two in a row, column, or diagonal

• +1 point for a move creating one in a row, column, or diagonal

This static evaluation is straightforward to implement on any node. The problem is
that as we go deep into the tree of all possible future states, we do not yet know what
to do with these scores. This is where the Minmax algorithm comes into play.

74 | Introduction to Artificial Intelligence

Suppose we construct a tree with each possible move that could be performed by
each player up to a certain depth. At the bottom of the tree, we evaluate each option.
For the sake of simplicity, let's assume that we have a search tree that appears
as follows:

Figure 1.22: Example of a search tree up to a certain depth

The AI plays with X, and the player plays with O. A node with X means that it is X's
turn to move. A node with O means it is O's turn to act.

Suppose there are all O leaves at the bottom of the tree, and we didn't compute any
more values because of resource limitations. Our task is to evaluate the utility of
the leaves:

Figure 1.23: Example of a search tree with possible moves

The Minmax Algorithm | 75

We have to select the best possible move from our perspective because our goal is
to maximize the utility of our move. This aspiration to maximize our gains represents
the Max part in the Minmax algorithm:

Figure 1.24: Example of a search tree with the best possible move

If we move one level higher, it is our opponent's turn to act. Our opponent picks
the value that is the least beneficial to us. This is because our opponent's job is
to minimize our chances of winning the game. This is the Min part of the
Minmax algorithm:

Figure 1.25: Minimizing the chances of winning the game

76 | Introduction to Artificial Intelligence

At the top, we can choose between a move with utility 101 and another move with
utility 21. Since we are maximizing our value, we should pick 101:

Figure 1.26: Maximizing the chances of winning the game

Let's see how we can implement this idea:

def min_max(state, depth, is_maximizing):

 if depth == 0 or is_end_state(state):

 return utility(state)

 if is_maximizing:

 utility = 0

 for s in successors(state):

 score = MinMax(s, depth - 1, false)

 utility = max(utility, score)

 return utility

 else:

 utility = infinity

 for s in successors(state):

 score = MinMax(s, depth - 1, true)

 utility = min(utility, score)

 return utility

This is the Minmax algorithm. We evaluate the leaves from our perspective. Then,
from the bottom up, we apply a recursive definition:

• Our opponent plays optimally by selecting the worst possible node from
our perspective.

• We play optimally by selecting the best possible node from our perspective.

The Minmax Algorithm | 77

We need a few more things in order to understand the application of the Minmax
algorithm on the tic-tac-toe game:

• is_end_state is a function that determines whether the state should be
evaluated instead of digging deeper, either because the game has ended, or
because the game is about to end using forced moves. Using our utility function,
it is safe to say that as soon as we reach a score of 1,000 or higher, we have
effectively won the game. Therefore, is_end_state can simply check the
score of a node and determine whether we need to dig deeper.

• Although the successors function only depends on the state, it is practical to
pass the information of whose turn it is to make a move. Therefore, do
not hesitate to add an argument if needed; you do not have to follow the
pseudo code.

• We want to minimize our efforts in implementing the Minmax algorithm. For this
reason, we will evaluate existing implementations of the algorithm. We will also
simplify the duality of the description of the algorithm in the remainder of
this section.

• The suggested utility function is quite accurate compared to the utility functions
that we could be using in this algorithm. In general, the deeper we go, the less
accurate our utility function has to be. For instance, if we could go nine steps
deep into the tic-tac-toe game, all we would need to do is award 1 point for a
win, 0 for a draw, and -1 point for a loss, given that, in nine steps, the board is
complete, and we have all of the necessary information to make the evaluation.
If we could only look four steps deep, this utility function would be completely
useless at the start of the game because we need at least five steps to win
the game.

• The Minmax algorithm could be optimized further by pruning the tree. Pruning
is an act where we get rid of branches that do not contribute to the result. By
eliminating unnecessary computations, we save precious resources that could be
used to go deeper into the tree.

78 | Introduction to Artificial Intelligence

Optimizing the Minmax Algorithm with Alpha-Beta Pruning

The last consideration in the previous thought process primed us to explore possible
optimizations by reducing the search space by focusing our attention on nodes
that matter.

There are a few constellations of nodes in the tree where we can be sure that the
evaluation of a subtree does not contribute to the end result. We will find, examine,
and generalize these constellations to optimize the Minmax algorithm.

Let's examine pruning through the previous example of nodes:

Figure 1.27: Search tree demonstrating pruning nodes

After computing the nodes with values 101, 23, and 110, we can conclude that two
levels above, the value 101 will be chosen. Why?

• Suppose X <= 110. Here, the maximum of 110 and X will be chosen, which is
110, and X will be omitted.

• Suppose X > 110. Here, the maximum of 110 and X is X. One level above, the
algorithm will choose the lowest value out of the two. The minimum of 101 and
X will always be 101, because X > 110. Therefore, X will be omitted a level above.

This is how we prune the tree.

On the right-hand side, suppose we computed branches 10 and 21. Their maximum
is 21. The implication of computing these values is that we can omit the computation
of nodes Y1, Y2, and Y3, and we know that the value of Y4 is less than or equal to
21. Why?

The Minmax Algorithm | 79

The minimum of 21 and Y3 is never greater than 21. Therefore, Y4 will never be
greater than 21.

We can now choose between a node with utility 101 and another node with a
maximal utility of 21. It is obvious that we have to choose the node with utility 101:

Figure 1.28: Example of pruning a tree

This is the idea behind alpha-beta pruning. We prune subtrees that we know are not
going to be needed.

Let's see how we can implement alpha-beta pruning in the Minmax algorithm.

First, we will add an alpha and a beta argument to the argument list of Minmax:

def min_max(state, depth, is_maximizing, alpha, beta):

 if depth == 0 or is_end_state(state):

 return utility(state)

 if is_maximizing:

 utility = 0

 for s in successors(state):

 score = MinMax(s, depth - 1, false, alpha, beta)

 utility = max(utility, score)

 alpha = max(alpha, score)

 if beta <= alpha:

 break

 return utility

 else:

 utility = infinity

80 | Introduction to Artificial Intelligence

 for s in successors(state):

 score = MinMax(s, depth - 1, true, alpha, beta)

 utility = min(utility, score)

 return utility

In the preceding code snippet, we added the alpha and beta arguments to the
MinMax function in order to calculate the new alpha score as being the maximum
between alpha and beta in the maximizing branch.

Now, we need to do the same with the minimizing branch:

def min_max(state, depth, is_maximizing, alpha, beta):

 if depth == 0 or is_end_state(state):

 return utility(state)

 if is_maximizing:

 utility = 0

 for s in successors(state):

 score = min_max(s, depth - 1, false, alpha, beta)

 utility = max(utility, score)

 alpha = max(alpha, score)

 if beta <= alpha: break

 return utility

 else:

 utility = infinity

 for s in successors(state):

 score = min_max(s, depth - 1, true, alpha, beta)

 utility = min(utility, score)

 beta = min(beta, score)

 if beta <= alpha: break

 return utility

In the preceding code snippet, we added the new beta score in the else branch,
which is the minimum between alpha and beta in the minimizing branch.

We are done with the implementation. It is recommended that you mentally execute
the algorithm on our example tree step by step to get a feel for the implementation.

DRYing Up the Minmax Algorithm – the NegaMax Algorithm | 81

One important piece is missing that has prevented us from doing the execution
properly: the initial values for alpha and beta. Any number that is outside the
possible range of utility values will do. We will use positive and negative infinity as
initial values to call the Minmax algorithm:

alpha = infinity

beta = -infinity

In the next section, we will look at the DRYing technique while using the
NegaMax algorithm.

DRYing Up the Minmax Algorithm – the NegaMax Algorithm
The Minmax algorithm works great, especially with alpha-beta pruning. The only
problem is that we have if and else branches in the algorithm that essentially
negates each other.

As we know, in computer science, there is DRY code and WET code. DRY stands for
Don't Repeat Yourself. WET stands for Write Everything Twice. When we write the
same code twice, we double our chance of making a mistake while writing it. We also
double our chances of each maintenance effort being executed in the future. Hence,
it is better to reuse our code.

When implementing the Minmax algorithm, we always compute the utility of a node
from the perspective of the AI player. This is why we have to have a utility-maximizing
branch and a utility-minimizing branch in the implementations that are dual in
nature. As we prefer clean code that describes the problem only once, we could get
rid of this duality by changing the point of view of the evaluation.

Whenever the AI player's turn comes, nothing changes in the algorithm.

Whenever the opponent's turn comes, we negate the perspective. Minimizing the AI
player's utility is equivalent to maximizing the opponent's utility.

82 | Introduction to Artificial Intelligence

This simplifies the Minmax algorithm:

def Negamax(state, depth, is_players_point_of_view):

 if depth == 0 or is_end_state(state):

 return utility(state, is_players_point_of_view)

 utility = 0

 for s in successors(state):

 score = Negamax(s,depth-1,not is_players_point_of_view)

 return score

There are necessary conditions for using the NegaMax algorithm; for instance, the
evaluation of the board state has to be symmetric. If a game state is worth +20 from
the first player's perspective, it is worth -20 from the second player's perspective.
Therefore, we often normalize the scores around zero.

Using the EasyAI Library

We have already looked at the simpleai library, which helped us execute searches
on pathfinding problems. Now, we will use the EasyAI library, which can easily
handle an AI search on two-player games, reducing the implementation of the
tic-tac-toe problem to writing a few functions on scoring the utility of a board and
determining when the game ends.

To install EasyAI, type the following command in Jupyter Notebook:

!pip install easyAI

Note

You can read the documentation of the library on GitHub at
https://github.com/Zulko/easyAI.

https://github.com/Zulko/easyAI

DRYing Up the Minmax Algorithm – the NegaMax Algorithm | 83

Activity 1.04: Connect Four

In this activity, we will practice using the EasyAI library and develop a heuristic. We
will be using the game Connect Four for this. The game board is seven cells wide and
seven cells high. When you make a move, you can only select the column in which
you drop your token. Then, gravity pulls the token down to the lowest possible empty
cell. Your objective is to connect four of your own tokens horizontally, vertically, or
diagonally, before your opponent does, or you run out of empty spaces.

Note

The rules of the game can be found at
https://en.wikipedia.org/wiki/Connect_Four.

1. Open a new Jupyter Notebook file.

2. Write the init method to generate all the possible winning combinations in the
game and save them for future use.

3. Write a function to enumerate all the possible moves. Then, for each column,
check whether there is an unoccupied field. If there is one, make the column a
possible move.

4. Create a function to make a move (it will be similar to the possible move
function), and then check the column of the move and find the first empty cell,
starting from the bottom.

5. Reuse the lose function from the tic-tac-toe example.

6. Implement the show method that prints the board and try out the game.

Note

The solution to this activity can be found on page 330.

https://en.wikipedia.org/wiki/Connect_Four

84 | Introduction to Artificial Intelligence

The expected output is this:

Figure 1.29: Expected output for the game Connect Four

Summary
In this chapter, we have seen how AI can be used to enhance or substitute human
abilities such as to listen, speak, understand language, store and retrieve information,
think, see, and move.

Then, we moved on to learning about intelligent agents and the way they interact with
the environment, solving a problem in a seemingly intelligent way to pursue a goal.

Then, we introduced Python and learned about its role in AI. We looked at a few
important Python libraries for developing AI and prepared data for the intelligent
agents. We then created a tic-tac-toe game based on predefined rules. We quantified
these rules into a number, a process that we call heuristics. We learned how to use
heuristics in the A* search algorithm to find an optimal solution to a problem.

Finally, we got to know about the Minmax and NegaMax algorithms so that the AI
could win two-player games. In the next chapter, you will be introduced to regression.

Overview

In this chapter, you will be introduced to regression. Regression comes in
handy when you are trying to predict future variables using historical data.
You will learn various regression techniques such as linear regression
with single and multiple variables, along with polynomial and Support
Vector Regression (SVR). You will use these techniques to predict future
stock prices from a stock price data. By the end of this chapter, you will be
comfortable using regression techniques to solve practical problems in a
variety of fields.

2
An Introduction

to Regression

88 | An Introduction to Regression

Introduction
In the previous chapter, you were introduced to the fundamentals of Artificial
Intelligence (AI), which helped you create the game Tic-Tac-Toe. In this chapter, we
will be looking at regression, which is a machine learning algorithm that can be used
to measure how closely related independent variable(s), called features, relate to a
dependent variable called a label.

Linear regression is a concept with many applications a variety of fields, ranging
from finance (predicting the price of an asset) to business (predicting the sales of a
product) and even the economy (predicting economy growth).

Most of this chapter will deal with different forms of linear regression, including linear
regression with one variable, linear regression with multiple variables, polynomial
regression with one variable, and polynomial regression with multiple variables.
Python provides lots of forms of support for performing regression operations and
we will also be looking at these later on in this chapter.

We will also use an alternative regression model, called Support Vector Regression
(SVR), with different forms of linear regression. Throughout this chapter, we will be
using a few sample datasets along with the stock price data loaded from the Quandl
Python library to predict future prices using different types of regression.

Note

Although it is not recommended that you use the models in this chapter to
provide trading or investment advice, this is a very exciting and interesting
journey that explains the fundamentals of regression.

Linear Regression with One Variable
A general regression problem can be defined with the following example. Suppose we
have a set of data points and we need to figure out the best fit curve to approximately
fit the given data points. This curve will describe the relationship between our input
variable, x, which is the data point, and the output variable, y, which is the curve.

Remember, in real life, we often have more than one input variable determining
the output variable. However, linear regression with one variable will help us to
understand how the input variable impacts the output variable.

Linear Regression with One Variable | 89

Types of Regression

In this chapter, we will work with regression on the two-dimensional plane. This
means that our data points are two-dimensional, and we are looking for a curve to
approximate how to calculate one variable from another.

We will come across the following types of regression in this chapter:

• Linear regression with one variable using a polynomial of degree 1: This
is the most basic form of regression, where a straight line approximates the
trajectory of future data.

• Linear regression with multiple variables using a polynomial of degree
1: We will be using equations of degree 1, but we will also allow multiple input
variables, called features.

• Polynomial regression with one variable: This is a generic form of the
linear regression of one variable. As the polynomial used to approximate the
relationship between the input and the output is of an arbitrary degree, we can
create curves that fit the data points better than a straight line. The regression
is still linear – not because the polynomial is linear, but because the regression
problem can be modeled using linear algebra.

• Polynomial regression with multiple variables: This is the most generic
regression problem, using higher degree polynomials and multiple features to
predict the future.

• SVR: This form of regression uses Support Vector Machines (SVMs) to predict
data points. This type of regression is included to explain SVR's usage compared
to the other four regression types.

Now we will deal with the first type of linear regression: we will use one variable, and
the polynomial of the regression will describe a straight line.

On the two-dimensional plane, we will use the Déscartes coordinate system, more
commonly known as the Cartesian coordinate system. We have an x and a y-axis, and
the intersection of these two axes is the origin. We denote points by their x and
y coordinates.

90 | An Introduction to Regression

For instance, point (2, 1) corresponds to the black point on the following
coordinate system:

Figure 2.1: Representation of point (2,1) on the coordinate system

A straight line can be described with the equation y = a*x + b, where a is the slope of
the equation, determining how steeply the equation climbs up, and b is a constant
determining where the line intersects the y-axis.

In Figure 2.2, you can see three equations:

• The straight line is described with the equation y = 2*x + 1.

• The dashed line is described with the equation y = x + 1.

• The dotted line is described with the equation y = 0.5*x + 1.

Linear Regression with One Variable | 91

You can see that all three equations intersect the y-axis at 1, and their slope is
determined by the factor by which we multiply x.

If you know x, you can solve y. Similarly, if you know y, you can solve x. This equation
is a polynomial equation of degree 1, which is the base of linear regression with
one variable:

Figure 2.2: Representation of the equations y = 2*x + 1, y = x + 1, and y = 0.5*x + 1
on the coordinate system

92 | An Introduction to Regression

We can describe curves instead of straight lines using polynomial equations; for
example, the polynomial equation 4x4-3x3-x2-3x+3 will result in Figure 2.3. This type of
equation is the base of polynomial regression with one variable:

Figure 2.3: Representation of the polynomial equation

Note

If you would like to experiment further with the Cartesian coordinate system,
you can use the following plotter: https://s3-us-west-2.amazonaws.com/
oerfiles/College+Algebra/calculator.html.

Features and Labels

In machine learning, we differentiate between features and labels. Features are
considered our input variables, and labels are our output variables.

When talking about regression, the possible value of the labels is a continuous set
of rational numbers. Think of features as the values on the x-axis and labels as the
values on the y-axis.

The task of regression is to predict label values based on feature values.

We often create a label by projecting the values of a feature in the future.

https://s3-us-west-2.amazonaws.com/oerfiles/College+Algebra/calculator.html
https://s3-us-west-2.amazonaws.com/oerfiles/College+Algebra/calculator.html

Linear Regression with One Variable | 93

For instance, if we would like to predict the price of a stock for next month using
historical monthly data, we would create the label by shifting the stock price feature
one month into the future:

• For each stock price feature, the label would be the stock price feature of the
next month.

• For the last month, prediction data would not be available, so these values are all
NaN (Not a Number).

Let's say we have data for the months of January, February, and March, and we
want to predict the price for April. Our feature for each month will be the current
monthly price and the label will be the price of the next month.

For instance, take a look at the following table:

Figure 2.4: Example of a feature and a label

This means that the label for January is the price of February and that the label
for February is actually the price of March. The label for March is unknown (NaN)
as this is the value we are trying to predict.

Feature Scaling

At times, we have multiple features (inputs) that may have values within completely
different ranges. Imagine comparing micrometers on a map to kilometers in the
real world. They won't be easy to handle because of the difference in magnitude of
nine zeros.

A less dramatic difference is the difference between imperial and metric data. For
instance, pounds and kilograms, and centimeters and inches, do not compare
that well.

Therefore, we often scale our features to normalized values that are easier to handle,
as we can compare the values of these ranges more easily.

94 | An Introduction to Regression

We will demonstrate two types of scaling:

• Min-max normalization

• Mean normalization

Min-max normalization is calculated as follows:

Here, XMIN is the minimum value of the feature and XMAX is the maximum value.

The feature-scaled values will be within the range of [0;1].

Mean normalization is calculated as follows:

Here, AVG is the average.

The feature-scaled values will be within the range of [-1;1].

Here's an example of both normalizations applied on the first 13 numbers of the
Fibonacci sequence.

We begin with finding the min-max normalization:

fibonacci = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

Min-Max normalization:

[(float(i)-min(fibonacci))/(max(fibonacci)-min(fibonacci)) \

for i in fibonacci]

The expected output is this:

[0.0,

 0.006944444444444444,

 0.006944444444444444,

 0.013888888888888888,

 0.020833333333333332,

 0.034722222222222224,

 0.05555555555555555,

 0.09027777777777778,

 0.14583333333333334,

Linear Regression with One Variable | 95

 0.2361111111111111,

 0.3819444444444444,

 0.6180555555555556,

 1.0]

Now, take a look at the following code snippet to find the mean normalization:

Mean normalization:

avg = sum(fibonacci) / len(fibonacci)

28.923076923076923

[(float(i)-avg)/(max(fibonacci)-min(fibonacci)) \

for i in fibonacci]

The expected output is this:

[-0.20085470085470086,

 -0.19391025641025642,

 -0.19391025641025642,

 -0.18696581196581197,

 -0.18002136752136752,

 -0.16613247863247863,

 -0.1452991452991453,

 -0.11057692307692307,

 -0.05502136752136752,

 0.035256410256410256,

 0.18108974358974358,

 0.4172008547008547,

 0.7991452991452992]

Note

Scaling could add to the processing time, but, often, it is an important step
to add.

In the scikit-learn library, we have access to the preprocessing.scale function,
which scales NumPy arrays:

import numpy as np

from sklearn import preprocessing

preprocessing.scale(fibonacci)

96 | An Introduction to Regression

The expected output is this:

array([-0.6925069 , -0.66856384, -0.66856384, -0.64462079,

 -0.62067773-0.57279161, -0.50096244, -0.38124715,

 -0.18970269, 0.12155706, 0.62436127, 1.43842524,

 2.75529341]

The scale method performs a standardization, which is another type of
normalization. Notice that the result is a NumPy array.

Splitting Data into Training and Testing

Now that we have learned how to normalize our dataset, we need to learn about
the training-testing split. In order to measure how well our model can generalize
its predictive performance, we need to split our dataset into a training set and a
testing set. The training set is used by the model to learn from so that it can build
predictions. Then, the model will use the testing set to evaluate the performance of
its prediction.

When we split the dataset, we first need to shuffle it to ensure that our testing set will
be a generic representation of our dataset. The split is usually 90% for the training set
and 10% for the testing set.

With training and testing, we can measure whether our model is overfitting or
underfitting.

Overfitting occurs when the trained model fits the training dataset too well. The
model will be very accurate on the training data, but it will not be usable in real life,
as its accuracy will decrease when used on any other data. The model adjusts to the
random noise in the training data and assumes patterns on this noise that yield false
predictions.

Underfitting occurs when the trained model does not fit the training data well
enough to recognize important patterns in the data. As a result, it cannot make
accurate predictions on new data. One example of this is when we attempt to do
linear regression on a dataset that is not linear. For example, the Fibonacci sequence
is not linear; therefore, a model on a Fibonacci-like sequence cannot be linear either.

We can do the training-testing split using the model_selection library of
scikit- learn.

Linear Regression with One Variable | 97

Suppose, in our example, that we have scaled the Fibonacci data and defined its
indices as labels:

features = preprocessing.scale(fibonacci)

label = np.array(range(13))

Now, let's use 10% of the data as test data, test_size=0.1, and specify random_
state parameter in order to get the exact same split every time we run the code:

from sklearn import model_selection

(x_train, x_test, y_train, y_test) = \

model_selection.train_test_split(features, \

 label, test_size=0.1, \

 random_state=8)

Our dataset has been split into test and training sets for our features (x_train and
x_test) and for our labels (y_train and y_test).

Finally, let's check each set, beginning with the x_train feature:

x_train

The expected output is this:

array([1.43842524, -0.18970269, -0.50096244, 2.75529341,

 -0.6925069 , -0.66856384, -0.57279161, 0.12155706,

 -0.66856384, -0.62067773, -0.64462079])

Next, we check for x_test:

x_test

The expected output is this:

array([-0.38124715, 0.62436127])

Then, we check for y_train:

y_train

The expected output is this:

array([11, 8, 6, 12, 0, 2, 5, 9, 1, 4, 3])

98 | An Introduction to Regression

Next, we check for y_test:

y_test

The expected output is this:

array([7, 10])

In the preceding output, we can see that our split has been properly executed; for
instance, our label has been split into y_test, which contains the 7 and 10 indexes,
and y_train which contains the remaining 11 indexes. The same logic has been
applied to our features and we have 2 values in x_test and 11 values in x_train.

Note

If you remember the Cartesian coordinate system, you know that the
horizontal axis is the x-axis and that the vertical axis is the y-axis. Our
features are on the x-axis, while our labels are on the y-axis. Therefore,
we use features and x as synonyms, while labels are often denoted by y.
Therefore, x_test denotes feature test data, x_train denotes feature
training data, y_test denotes label test data, and y_train denotes
label training data.

Fitting a Model on Data with scikit-learn

We are now going to illustrate the process of regression on an example where we
only have one feature and minimal data.

As we only have one feature, we have to format x_train by reshaping it with x_
train.reshape (-1,1) to a NumPy array containing one feature.

Therefore, before executing the code on fitting the best line, execute the
following code:

x_train = x_train.reshape(-1, 1)

x_test = x_test.reshape(-1, 1)

We can fit a linear regression model on our data with the following code:

from sklearn import linear_model

linear_regression = linear_model.LinearRegression()

model = linear_regression.fit(x_train, y_train)

model.predict(x_test)

Linear Regression with One Variable | 99

The expected output is this:

array([4.46396931, 7.49212796])

We can also calculate the score associated with the model:

model.score(x_test, y_test)

The expected output is this:

-1.8268608450379087

This score represents the accuracy of the model and is defined as the R2 or
coefficient of determination. It represents how well we can predict the features
from the labels.

In our example, an R2 of -1.8268 indicates a very bad model as the best possible
score is 1. A score of 0 can be achieved if we constantly predict the labels by using the
average value of the features.

Note

We will omit the mathematical background of this score in this book.

Our model does not perform well for two reasons:

• If we check our previous Fibonacci sequence, 11 training data points
and 2 testing data points are simply not enough to perform a proper
predictive analysis.

• Even if we ignore the number of points, the Fibonacci sequence does not
describe a linear relationship between x and y. Approximating a nonlinear
function with a line is only useful if we are looking at two very close data points.

Linear Regression Using NumPy Arrays

One reason why NumPy arrays are handier than Python lists is that they can be
treated as vectors. There are a few operations defined on vectors that can simplify
our calculations. We can perform operations on vectors of similar lengths.

Let's take, for example, two vectors, V1 and V2, with three coordinates each:

V1 = (a, b, c) with a=1, b=2, and c=3

V2 = (d, e, f) with d=2, e=0, and f=2

100 | An Introduction to Regression

The addition of these two vectors will be this:

V1 + V2 = (a+d, b+e, c+f) = (1+2, 2+0, 3+2) = (3,2,5)

The product of these two vectors will be this:

V1 + V2 = (a*d, b*e, c*f) = (1*2, 2*0, 3*2) = (2,0,6)

You can think of each vector as our datasets with, for example, the first vector as our
features set and the second vector as our labels set. With Python being able to do
vector calculations, this will greatly simplify the calculations required for our linear
regression models.

Now, let's build a linear regression using NumPy in the following example.

Suppose we have two sets of data with 13 data points each; we want to build a linear
regression that best fits all the data points for each set.

Our first set is defined as follows:

[2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62]

If we plot this dataset with the values (2,8,8,18,25,21,32,44,
32,48,61,45,62) as the y-axis, and the index of each value
(1,2,3,4,5,6,7,8,9,10,11,12,13) as the x-axis, we will get the following plot:

Figure 2.5: Plotted graph of the first dataset

We can see that this dataset's distribution seems linear in nature, and if we wanted to
draw a line that was as close as possible to each dot, it wouldn't be too hard. A simple
linear regression appears appropriate in this case.

Linear Regression with One Variable | 101

Our second set is the first 13 values scaled in the Fibonacci sequence that we saw
earlier in the Feature Scaling section:

[-0.6925069, -0.66856384, -0.66856384, -0.64462079, -0.62067773,
-0.57279161, -0.50096244, -0.38124715, -0.18970269, 0.12155706,
0.62436127, 1.43842524, 2.75529341]

If we plot this dataset with the values as the y-axis and the index of each value as the
x-axis, we will get the following plot:

Figure 2.6: Plotted graph of the second dataset

We can see that this dataset's distribution doesn't appear to be linear, and if we
wanted to draw a line that was as close as possible to each dot, our line would miss
quite a lot of dots. A simple linear regression will probably struggle in this situation.

We know that the equation of a straight line is .

In this equation, is the slope, and is the y intercept. To find the line of best fit, we
must find the coefficients of and .

In order to do this, we will use the least-squares method, which can be achieved by
completing the following steps:

1. For each data point, calculate x2 and xy.

Sum all of x, y, x2, and x * y, which gives us

102 | An Introduction to Regression

2. Calculate the slope, , as with N as the total number of
data points.

3. Calculate the y intercept, , as .

Now, let's apply these steps using NumPy as an example for the first dataset in the
following code.

Let's take a look at the first step:

import numpy as np

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

x_2 = x**2

xy = x*y

For x_2, the output will be this:

array([1, 4, 9, 16, 25, 36, 49, 64, 81,

 100, 121, 144, 169], dtype=int32)

For xy, the output will be this:

array([2, 16, 24, 72, 125, 126, 224,

 352, 288, 480, 671, 540, 806])

Now, let's move on to the next step:

sum_x = sum(x)

sum_y = sum(y)

sum_x_2 = sum(x_2)

sum_xy = sum(xy)

For sum_x, the output will be this:

91

For sum_y, the output will be this:

406

For sum_x_2, the output will be this:

819

Linear Regression with One Variable | 103

For sum_xy, the output will be this:

3726

Now, let's move on to the next step:

N = len(x)

a = (N*sum_xy - (sum_x*sum_y))/(N*sum_x_2-(sum_x)**2)

For N, the output will be this:

13

For a, the output will be this:

4.857142857142857

Now, let's move on to the final step:

b = (sum_y - a*sum_x)/N

For b, the output will be this:

-2.7692307692307647

Once we plot the line with the preceding coefficients, we get the
following graph:

Figure 2.7: Plotted graph of the linear regression for the first dataset

104 | An Introduction to Regression

As you can see, our linear regression model works quite well on this dataset, which
has a linear distribution.

Note

You can find a linear regression calculator at http://www.endmemo.com/
statistics/lr.php. You can also check the calculator to get an idea of what
lines of best fit look like on a given dataset.

We will now repeat the exact same steps for the second dataset:

import numpy as np

x = np.array(range(1, 14))

y = np.array([-0.6925069, -0.66856384, -0.66856384, \

 -0.64462079, -0.62067773, -0.57279161, \

 -0.50096244, -0.38124715, -0.18970269, \

 0.12155706, 0.62436127, 1.43842524, 2.75529341])

x_2 = x**2

xy = x*y

sum_x = sum(x)

sum_y = sum(y)

sum_x_2 = sum(x_2)

sum_xy = sum(xy)

N = len(x)

a = (N*sum_xy - (sum_x*sum_y))/(N*sum_x_2-(sum_x)**2)

b = (sum_y - a*sum_x)/N

For a, the output will be this:

0.21838173510989017

For b, the output will be this:

-1.528672146538462

http://www.endmemo.com/statistics/lr.php
http://www.endmemo.com/statistics/lr.php

Linear Regression with One Variable | 105

Once we plot the line with the preceding coefficients, we get the
following graph:

Figure 2.8: Plotted graph of the linear regression for the second dataset

Clearly, with a nonlinear distribution, our linear regression model struggles to fit
the data.

Note

We don't have to use this method to perform linear regression. Many
libraries, including scikit-learn, will help us to automate this process. Once
we perform linear regression with multiple variables, we are better off using
a library to perform the regression for us.

106 | An Introduction to Regression

Fitting a Model Using NumPy Polyfit

NumPy Polyfit can also be used to create a line of best fit for linear regression with
one variable.

Recall the calculation for the line of best fit:

import numpy as np

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

x_2 = x**2

xy = x*y

sum_x = sum(x)

sum_y = sum(y)

sum_x_2 = sum(x_2)

sum_xy = sum(xy)

N = len(x)

a = (N*sum_xy - (sum_x*sum_y))/(N*sum_x_2-(sum_x)**2)

b = (sum_y - a*sum_x)/N

The equation for finding the coefficients and is quite long. Fortunately, numpy.
polyfit in Python performs these calculations to find the coefficients of the line of
best fit. The polyfit function accepts three arguments: the array of x values, the
array of y values, and the degree of polynomial to look for. As we are looking for a
straight line, the highest power of x is 1 in the polynomial:

import numpy as np

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

[a,b] = np.polyfit(x, y, 1)

For [a,b], the output will be this:

[4.857142857142858, -2.769230769230769]

Plotting the Results in Python

Suppose you have a set of data points and a regression line; our task is to plot the
points and the line together so that we can see the results with our eyes.

Linear Regression with One Variable | 107

We will use the matplotlib.pyplot library for this. This library has two
important functions:

• scatter: This displays scattered points on the plane, defined by a list of x
coordinates and a list of y coordinates.

• plot: Along with two arguments, this function plots a segment defined by two
points or a sequence of segments defined by multiple points. A plot is like a
scatter, except that instead of displaying the points, they are connected by lines.

A plot with three arguments plots a segment and/or two points formatted according
to the third argument.

A segment is defined by two points. As x ranges between 1 and 13 (remember the
dataset contains 13 data points), it makes sense to display a segment between
0 and 15. We must substitute the value of x in the equation to get the
corresponding y values:

import numpy as np

import matplotlib.pyplot as plot

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

x_2 = x**2

xy = x*y

sum_x = sum(x)

sum_y = sum(y)

sum_x_2 = sum(x_2)

sum_xy = sum(xy)

N = len(x)

a = (N*sum_xy - (sum_x*sum_y))/(N*sum_x_2-(sum_x)**2)

b = (sum_y - a*sum_x)/N

Plotting the points

plot.scatter(x, y)

Plotting the line

plot.plot([0, 15], [b, 15*a+b])

plot.show()

108 | An Introduction to Regression

The output is as follows:

Figure 2.9: Plotted graph of the linear regression for the first dataset using matplotlib

The regression line and the scattered data points are displayed as expected.

However, the plot has an advanced signature. You can use plot to draw scattered
dots, lines, and any curves on this figure. These variables are interpreted in groups
of three:

• x values

• y values

• Formatting options in the form of a string

Let's create a function for deriving an array of approximated y values from an array
of approximated x values:

def fitY(arr):

 return [4.857142857142859 * x - 2.7692307692307843 for x in arr]

Linear Regression with One Variable | 109

We will use the fit function to plot the values:

plot.plot(x, y, 'go',x, fitY(x), 'r--o')

Every third argument handles formatting. The letter g stands for green, while the
letter r stands for red. You could have used b for blue and y for yellow, among
other examples. In the absence of a color, each triple value will be displayed using a
different color. The o character symbolizes that we want to display a dot where each
data point lies. Therefore, go has nothing to do with movement – it requests the
plotter to plot green dots. The - characters are responsible for displaying a dashed
line. If you just use -1, a straight line appears instead of the dashed line.

The output is as follows:

Figure 2.10: Graph for the plot function using the fit function

The Python plotter library offers a simple solution for most of your graphing
problems. You can draw as many lines, dots, and curves as you want on this graph.

110 | An Introduction to Regression

When displaying curves, the plotter connects the dots with segments. Also,
bear in mind that even a complex sequence of curves is an approximation that
connects the dots. For instance, if you execute the code from https://gist.github.
com/traeblain/1487795, you will recognize the segments of the batman function as
connected lines:

Figure 2.11: Graph for the batman function

There is a large variety of ways to plot curves. We have seen that the polyfit
method of the NumPy library returns an array of coefficients to describe a
linear equation:

import numpy as np

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

np.polyfit(x, y, 1)

Here the output is as follows:

[4.857142857142857, -2.769230769230768]

https://gist.github.com/traeblain/1487795
https://gist.github.com/traeblain/1487795

Linear Regression with One Variable | 111

This array describes the equation 4.85714286 * x - 2.76923077.

Suppose we now want to plot a curve, . This quadratic equation
is described by the coefficient array [-1, 3, -2] as
. We could write our own function to calculate the y values belonging to x values.
However, the NumPy library already has a feature that can do this work for us –
np.poly1d:

import numpy as np

x = np.array(range(-10, 10, 1))

f = np.poly1d([-1,3,-2])

The f function that's created by the poly1d call not only works with single values
but also with lists or NumPy arrays:

f(5)

The expected output is this:

-12

Similarly, for f(x):

f(x)

The output will be:

array ([-132. -110, -90, -72, -56, -42, -30, -20, -12, -6, -2,

 0, 0, -2, -6, -12, -20, -30, -42, -56])

We can now use these values to plot a nonlinear curve:

import matplotlib.pyplot as plot

plot.plot(x, f(x))

112 | An Introduction to Regression

The output is as follows:

Figure 2.12: Graph for a nonlinear curve

As you can see, we can use the pyplot library to easily create the plot of a
nonlinear curve.

Predicting Values with Linear Regression

Suppose we are interested in the y value belonging to the x coordinate 20. Based
on the linear regression model, all we need to do is substitute the value of 20 in the
place of x on the previously used code:

x = np.array(range(1, 14))

y = np.array([2, 8, 8, 18, 25, 21, 32, 44, 32, 48, 61, 45, 62])

Plotting the points

plot.scatter(x, y)

Plotting the prediction belonging to x = 20

plot.scatter(20, a * 20 + b, color='red')

Plotting the line

plot.plot([0, 25], [b, 25*a+b])

Linear Regression with One Variable | 113

The output is as follows:

Figure 2.13: Graph showing the predicted value using linear regression

Here, we denoted the predicted value with red. This red point is on the best line of fit.

Let's look at next exercise where we will be predicting populations based on
linear regression.

Exercise 2.01: Predicting the Student Capacity of an Elementary School

In this exercise, you will be trying to forecast the need for elementary school capacity.
Your task is to figure out 2025 and 2030 predictions for the number of children
starting elementary school.

Note

The data is contained inside the population.csv file, which you can
find on our GitHub repository: https://packt.live/2YYlPoj.

https://packt.live/2YYlPoj

114 | An Introduction to Regression

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

2. Import pandas and numpy:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plot

3. Next, load the CSV file as a DataFrame on the Notebook and read the CSV file:

Note

Watch out for the slashes in the string below. Remember that the
backslashes (\) are used to split the code across multiple lines, while the
forward slashes (/) are part of the URL.

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/The-Applied-Artificial-'\

 'Intelligence-Workshop/master/Datasets/'\

 'population.csv'

df = pd.read_csv(file_url)

df

Linear Regression with One Variable | 115

The expected output is this:

Figure 2.14: Reading the CSV file

116 | An Introduction to Regression

4. Now, convert the DataFrame into two NumPy arrays. For simplicity, we can
indicate that the year feature, which is from 2001 to 2018, is the same as 1
to 18:

x = np.array(range(1, 19))

y = np.array(df['population'])

The x output will be:

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18])

The y output will be:

array([147026, 144272, 140020, 143801, 146233,

 144539, 141273, 135389, 142500, 139452,

 139722, 135300, 137289, 136511, 132884,

 125683, 127255, 124275], dtype=int64)

5. Now, with the two NumPy arrays, use the polyfit method (with a degree of 1
as we only have one feature) to determine the coefficients of the regression line:

[a, b] = np.polyfit(x, y, 1)

The output for [a, b] will be:

[-1142.0557275541803, 148817.5294117647]

6. Now, plot the results using matplotlib.pyplot and predict the future
until 2030:

plot.scatter(x, y)

plot.plot([0, 30], [b, 30*a+b])

plot.show()

Linear Regression with One Variable | 117

The expected output is this:

Figure 2.15: Plot showing the future for 2030

As you can see, the data appears linear and our model seems to be a good fit.

7. Finally, predict the population for 2025 and 2030:

population_2025 = 25*a+b

population_2030 = 30*a+b

The output for population_2025 will be:

120266.1362229102

The output for population_2030 will be:

114555.85758513928

Note

To access the source code for this specific section, please refer to https://
packt.live/31dvuKt.

You can also run this example online at https://packt.live/317qeIc. You must
execute the entire Notebook in order to get the desired result.

https://packt.live/31dvuKt
https://packt.live/31dvuKt
https://packt.live/317qeIc

118 | An Introduction to Regression

By completing this exercise, we can now conclude that the population of children
starting elementary school is going to decrease in the future and that there is no need
to increase the elementary school capacity if we are currently meeting the needs.

Linear Regression with Multiple Variables
In the previous section, we dealt with linear regression with one variable. Now we
will learn an extended version of linear regression, where we will use multiple input
variables to predict the output.

Multiple Linear Regression

If you recall the formula for the line of best fit in linear regression, it was defined as
, where is the slope of the line, is the y intercept of the line, x is the

feature value, and y is the calculated label value.

In multiple regression, we have multiple features and one label. If we have three
features, x1, x2, and x3, our model changes to .

In NumPy array format, we can write this equation as follows:

y = np.dot(np.array([a1, a2, a3]), np.array([x1, x2, x3])) + b

For convenience, it makes sense to define the whole equation in a vector
multiplication format. The coefficient of is going to be 1:

y = np.dot(np.array([b, a1, a2, a3]) * np.array([1, x1, x2, x3]))

Multiple linear regression is a simple scalar product of two vectors, where
the coefficients , , , and determine the best fit equation in a four-
dimensional space.

To understand the formula of multiple linear regression, you will need the scalar
product of two vectors. As the other name for a scalar product is a dot product, the
NumPy function performing this operation is called dot:

import numpy as np

v1 = [1, 2, 3]

v2 = [4, 5, 6]

np.dot(v1, v2)

The output will be 32 as np.dot(v1, v2)= 1 * 4 + 2 * 5 + 3 * 6 = 32.

We simply sum the product of each respective coordinate.

Linear Regression with Multiple Variables | 119

We can determine these coefficients by minimizing the error between the data points
and the nearest points described by the equation. For simplicity, we will omit the
mathematical solution of the best-fit equation and use scikit-learn instead.

Note

In n-dimensional spaces, where n is greater than 3, the number of
dimensions determines the different variables that are in our model. In the
preceding example, we have three features (x1, x2, and x3) and one label,
y. This yields four dimensions. If you want to imagine a four-dimensional
space, you can imagine a three-dimensional space with a fourth dimension
of time. A five-dimensional space can be imagined as a four-dimensional
space, where each point in time has a temperature. Dimensions are just
features (and labels); they do not necessarily correlate with our concept of
three-dimensional space.

The Process of Linear Regression

We will follow the following simple steps to solve linear regression problems:

1. Load data from the data sources.

2. Prepare data for prediction. Data is prepared in this (normalize, format, and
filter) format.

3. Compute the parameters of the regression line. Regardless of whether we use
linear regression with one variable or with multiple variables, we will follow
these steps.

Importing Data from Data Sources

There are multiple libraries that can provide us with access to data sources. As we
will be working with stock data, let's cover two examples that are geared toward
retrieving financial data: Quandl and Yahoo Finance. Take a look at these important
points before moving ahead:

• Scikit-learn comes with a few datasets that can be used for practicing your skills.

• https://www.quandl.com provides you with free and paid financial datasets.

• https://pandas.pydata.org/ helps you load any CSV, Excel, JSON, or SQL data.

• Yahoo Finance provides you with financial datasets.

https://www.quandl.com
https://pandas.pydata.org/

120 | An Introduction to Regression

Loading Stock Prices with Yahoo Finance

The process of loading stock data with Yahoo Finance is straightforward. All you
need to do is install the yfinance package using the following command in
Jupyter Notebook:

!pip install yfinance

We will download a dataset that has an open price, high price, low price, close price,
adjusted close price, and volume values of the S&P 500 index starting from 2015 to
January 1, 2020. The S&P 500 index is the stock market index that measures the stock
performance of 500 large companies listed in the United States:

import yfinance as yahoo

spx_data_frame = yahoo.download(“^GSPC”, “2015-01-01”, “2020-01-01”)

Note

The dataset file can also be found in our GitHub repository: https://packt.
live/3fRI5Hk.

The original dataset can be found here: https://github.com/ranaroussi/
yfinance.

That's all you need to do. The DataFrame containing the S&P 500 index is ready.

You can plot the index closing prices using the plot method:

spx_data_frame.Close.plot()

https://packt.live/3fRI5Hk
https://packt.live/3fRI5Hk
https://github.com/ranaroussi/yfinance
https://github.com/ranaroussi/yfinance

Linear Regression with Multiple Variables | 121

The output is as follows:

Figure 2.16: Graph showing the S&P 500 index closing price since 2015

The data does not appear to be linear; a polynomial regression might be a better
model for this dataset.

It is also possible to save data to a CSV file using the following code:

spx_data_frame.to_csv(“yahoo_spx.csv”)

Note

https://www.quandl.com is a reliable source of financial and economic
datasets that we will be using in this chapter.

https://www.quandl.com

122 | An Introduction to Regression

Exercise 2.02: Using Quandl to Load Stock Prices

The goal of this exercise is to download data from the Quandl package and load it
into a DataFrame like we previously did with Yahoo Finance.

The following steps will help you to complete the exercise:

1. Open a new Jupyter Notebook file.

2. Install Quandl using the following command:

!pip install quandl

3. Download the data into a DataFrame using Quandl for the S&P 500. Its ticker
is “YALE/SPCOMP”:

import quandl

data_frame = quandl.get(“YALE/SPCOMP”)

4. Use the DataFrame head() method to inspect the first five rows of data in
your DataFrame:

data_frame.head()

The output is as follows:

Figure 2.17: Dataset displayed as the output

Linear Regression with Multiple Variables | 123

Note

To access the source code for this specific section, please refer to https://
packt.live/3dwDUz6.

You can also run this example online at https://packt.live/31812B6. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, we have learned how to download an external dataset
in CSV format and import it as a DataFrame. We also learned about the .head()
method, which provides a quick view of the first five rows of your DataFrame.

In the next section, we will be moving on to prepare the dataset to perform multiple
linear regression.

Preparing Data for Prediction

Before we perform multiple linear regression on our dataset, we must choose the
relevant features and the data range on which we will perform the regression.

Preparing the data for prediction is the second step in the regression process.
This step also has several sub-steps. We will go through these sub-steps in the
following exercise.

Exercise 2.03: Preparing the Quandl Data for Prediction

The goal of this exercise is to download an external dataset from the Quandl library
and then prepare it so that it is ready for use in our linear regression models.

The following steps will help you to complete this exercise:

1. Open a new Jupyter Notebook file.

Note

If the Qaundl library is not installed on your system, remember to run the
command !pip install quandl.

https://packt.live/3dwDUz6
https://packt.live/3dwDUz6
https://packt.live/31812B6

124 | An Introduction to Regression

2. Next, download the data into a DataFrame using Quandl for the S&P 500
between 1950 and 2019. Its ticker is “YALE/SPCOMP”:

import quandl

import numpy as np

from sklearn import preprocessing

from sklearn import model_selection

data_frame = quandl.get(“YALE/SPCOMP”, \

 start_date=”1950-01-01”, \

 end_date=”2019-12-31”)

3. Use the head() method to visualize the columns inside the data_frame.
head() DataFrame:

data_frame.head()

The output is as follows:

Figure 2.18: Dataset displayed as the output

A few features seem to highly correlate with each other. For instance, the Real
Dividend column grows proportionally with Real Price. The ratio between
them is not always similar, but they do correlate.

As regression is not about detecting the correlation between features, we
would rather get rid of the features that we know are correlated and perform
regression on the features that are non-correlated. In this case, we will keep the
Long Interest Rate, Real Price, and Real Dividend columns.

Linear Regression with Multiple Variables | 125

4. Keep only the relevant columns in the Long Interest Rate, Real Price,
and Real Dividend DataFrames:

data_frame = data_frame[['Long Interest Rate', \

 'Real Price', 'Real Dividend']]

data_frame

The output is as follows:

Figure 2.19: Dataset showing only the relevant columns

You can see that the DataFrame contains a few missing values NaN. As
regression doesn't work with missing values, we need to either replace them
or delete them. In the real world, we will usually choose to replace them. In this
case, we will replace the missing values by the preceding values using a method
called forward filling.

126 | An Introduction to Regression

5. We can replace the missing values with a forward filling as shown in the
following code snippet:

data_frame.fillna(method='ffill', inplace=True)

data_frame

The output is as follows:

Figure 2.20: Missing values have been replaced

Now that we have cleaned the missing data, we need to create our label. We
want to predict the Real Price column 3 months in advance using the current
Real Price, Long Interest Rate, and Real Dividend columns. In
order to create our label, we need to shift the Real Price values up by three
units and call it Real Price Label.

Linear Regression with Multiple Variables | 127

6. Create the Real Price Label label by shifting Real Price by 3 months as
shown in the following code:

data_frame['Real Price Label'] = data_frame['Real Price'].shift(-3)

data_frame

The output is as follows:

Figure 2.21: New labels have been created

The side effect of shifting these values is that missing values will appear in the
last three rows for Real Price Label, so we need to remove the last three
rows of data. However, before that, we need to convert the features into a
NumPy array and scale it. We can use the drop method of the DataFrame to
remove the label column and the preprocessing function from sklearn to scale
the features.

128 | An Introduction to Regression

7. Create a NumPy array for the features and scale it in the following code:

features = np.array(data_frame.drop('Real Price Label', 1))

scaled_features = preprocessing.scale(features)

scaled_features

The output is as follows:

array([[-1.14839975, -1.13009904, -1.19222544],

 [-1.14114523, -1.12483455, -1.18037146],

 [-1.13389072, -1.12377394, -1.17439424],

 ...,

 [-1.360812 , 2.9384288 , 3.65260385],

 [-1.32599032, 3.12619329, 3.65260385],

 [-1.29116864, 3.30013894, 3.65260385]])

The 1 in the second argument specifies that we are dropping columns. As the
original DataFrame was not modified, the label can be directly extracted from it.
Now that the features are scaled, we need to remove the last three values of the
features as they are the features of the missing values in the label column. We
will save them for later in the prediction part.

8. Remove the last three values of the features array and save them into
another array using the following code:

scaled_features_latest_3 = scaled_features[-3:]

scaled_features = scaled_features[:-3]

scaled_features

The output for scaled_features is as follows:

array([[-1.14839975, -1.13009904, -1.19222544],

 [-1.14114523, -1.12483455, -1.18037146],

 [-1.13389072, -1.12377394, -1.17439424],

 ...,

 [-1.38866935, 2.97846643, 3.57443947],

 [-1.38866935, 2.83458633, 3.6161088],

 [-1.36429417, 2.95488131, 3.65260385]])

The scaled_features variable doesn't contain the three data points
anymore as they are now in scaled_features_latest_3. Now we can
remove the last three rows with missing data from the DataFrame, then convert
the label into a NumPy array using sklearn.

Linear Regression with Multiple Variables | 129

9. Remove the rows with missing data in the following code:

data_frame.dropna(inplace=True)

data_frame

The output for data_frame is as follows:

Figure 2.22: Dataset updated with the removal of missing values

As you can see, the last three rows were also removed from the DataFrame.

10. Now let's see if we have accurately created our label. Go ahead and run the
following code:

label = np.array(data_frame['Real Price Label'])

label

130 | An Introduction to Regression

The output for the label is as follows:

Figure 2.23: Output showing the expected labels

Our variable contains all the labels and is exactly the same as the Real Price
Label column in the DataFrame.

Our next task is to separate the training and testing data from each other. As we
saw in the Splitting Data into Training and Testing section, we will use 90% of the
data as the training data and the remaining 10% as the test data.

11. Split the features data into training and test sets using sklearn with the
following code:

from sklearn import model_selection

(features_train, features_test, \

label_train, label_test) = model_selection\

 .train_test_split(scaled_features, \

 label, test_size=0.1, \

 random_state=8)

The train_test_split function shuffles the lines of our data, keeps the
correspondence, and puts approximately 10% of all data in the test variables,
keeping 90% for the training variables. We also use random_state=8 in order
to reproduce the results. Our data is now ready to be used for the multiple linear
regression model.

Linear Regression with Multiple Variables | 131

Note

To access the source code for this specific section, please refer to https://
packt.live/2zZssOG.

You can also run this example online at https://packt.live/2zW8WCH. You
must execute the entire Notebook in order to get the desired result.

By completing this exercise, we have learned all the required steps for data
preparation before performing a regression.

Performing and Validating Linear Regression

Now that our data has been prepared, we can perform our linear regression. After
that, we will measure our model performance and see how well it performs.

We can now create the linear regression model based on the training data:

from sklearn import linear_model

model = linear_model.LinearRegression()

model.fit(features_train, label_train)

Once the model is ready, we can use it to predict the labels belonging to the test
feature values and use the score method from the model to see how accurate it is:

label_predicted = model.predict(features_test)

model.score(features_test, label_test)

The output is as follows:

0.9847223874806746

With a score or R2 of 0.985, we can conclude that the model is very accurate. This is
not a surprise since the financial market grows at around 6-7% a year. This is linear
growth, and the model essentially predicts that the markets will continue growing
at a linear rate. Concluding that markets tend to increase in the long run is not
rocket science.

https://packt.live/2zZssOG
https://packt.live/2zZssOG
https://packt.live/2zW8WCH

132 | An Introduction to Regression

Predicting the Future

Now that our model has been trained, we can use it to predict future values. We will
use the scaled_features_latest_3 variable that we created by taking the last
three values of the features NumPy array and using it to predict the index price of the
next three months in the following code:

label_predicted = model.predict(scaled_features_latest_3)

The output is as follows:

array ([3046.2347327, 3171.47495182, 3287.48258298])

By looking at the output, you might think it seems easy to forecast the value of the
S&P 500 and use it to earn money by investing in it. Unfortunately, in practice, using
this model for making money by betting on the forecast is by no means better than
gambling in a casino. This is just an example to illustrate prediction; it is not enough
to be used for short-term or long-term speculation on market prices. In addition to
this, stock prices are sensitive to many external factors, such as economic recession
and government policy. This means that past patterns do not necessarily reflect any
patterns in the future.

Polynomial and Support Vector Regression
When performing a polynomial regression, the relationship between x and y, or using
their other names, features, and labels, is not a linear equation, but a polynomial
equation. This means that instead of the equation, we can have
multiple coefficients and multiple powers of x in the equation.

To make matters even more complicated, we can perform polynomial regression
using multiple variables, where each feature may have coefficients multiplying
different powers of the feature.

Our task is to find a curve that best fits our dataset. Once polynomial regression
is extended to multiple variables, we will learn the SVM model to perform
polynomial regression.

Polynomial Regression with One Variable

As a recap, we have performed two types of regression so far:

• Simple linear regression:

• Multiple linear regression:

Polynomial and Support Vector Regression | 133

We will now learn how to do polynomial linear regression with
one variable. The equation for polynomial linear regression is

.

Polynomial linear regression has a vector of coefficients, ,
multiplying a vector of degrees of x in the polynomial, .

At times, polynomial regression works better than linear regression. If the
relationship between labels and features can be described using a linear equation,
then using a linear equation makes perfect sense. If we have a nonlinear growth,
polynomial regression tends to approximate the relationship between features and
labels better.

The simplest implementation of linear regression with one variable was the polyfit
method of the NumPy library. In the next exercise, we will perform multiple
polynomial linear regression with degrees of 2 and 3.

Note

Even though our polynomial regression has an equation containing
coefficients of xn, this equation is still referred to as polynomial linear
regression in literature. Regression is made linear not because we restrict
the usage of higher powers of x in the equation, but because the coefficients
a1,a2 … and so on are linear in the equation. This means that we use the
toolset of linear algebra and work with matrices and vectors to find the
missing coefficients that minimize the error of the approximation.

Exercise 2.04: First-, Second-, and Third-Degree Polynomial Regression

The goal of this exercise is to perform first-, second-, and third-degree polynomial
regression on the two sample datasets that we used earlier in this chapter. The first
dataset has a linear distribution and the second one is the Fibonacci sequence and
has a nonlinear distribution.

The following steps will help you to complete the exercise:

1. Open a new Jupyter Notebook file.

2. Import the numpy and matplotlib packages:

import numpy as np

from matplotlib import pyplot as plot

134 | An Introduction to Regression

3. Define the first dataset:

x1 = np.array(range(1, 14))

y1 = np.array([2, 8, 8, 18, 25, 21, 32, \

 44, 32, 48, 61, 45, 62])

4. Define the second dataset:

x2 = np.array(range(1, 14))

y2 = np.array([0, 1, 1, 2, 3, 5, 8, 13, \

 21, 34, 55, 89, 144])

5. Perform a polynomial regression of degrees 1, 2, and 3 on the first dataset using
the polyfit method from numpy in the following code:

f1 = np.poly1d(np.polyfit(x1, y1, 1))

f2 = np.poly1d(np.polyfit(x1, y1, 2))

f3 = np.poly1d(np.polyfit(x1, y1, 3))

The output for f1 is as follows:

poly1d([4.85714286, -2.76923077])

As you can see, a polynomial regression of degree 1 has two coefficients.

The output for f2 is as follows:

poly1d([-0.03196803, 5.3046953, -3.88811189])

As you can see, a polynomial regression of degree 2 has three coefficients.

The output for f3 is as follows:

poly1d([-0.01136364, 0.20666833, -3.91833167, -1.97902098])

As you can see, a polynomial regression of degree 3 has four coefficients.

Now that we have calculated the three polynomial regressions, we can plot them
together with the data on a graph to see how they behave.

6. Plot the three polynomial regressions and the data on a graph in the
following code:

import matplotlib.pyplot as plot

plot.plot(x1, y1, 'ko', # black dots \

 x1, f1(x1),'k-', # straight line \

 x1, f2(x1),'k--', # black dashed line \

Polynomial and Support Vector Regression | 135

 x1, f3(x1),'k-.' # dot line

)

plot.show()

The output is as follows:

Figure 2.24: Graph showing the polynomial regressions for the first dataset

As the coefficients are enumerated from left to right in order of decreasing
degree, we can see that the higher-degree coefficients stay close to negligible. In
other words, the three curves are almost on top of each other, and we can only
detect a divergence near the right edge. This is because we are working on a
dataset that can be very well approximated with a linear model.

In fact, the first dataset was created out of a linear function. Any non-zero
coefficients for x2 and x3 are the result of overfitting the model based on the
available data. The linear model is better for predicting values outside the range
of the training data than any higher-degree polynomial.

Let's contrast this behavior with the second example. We know that the
Fibonacci sequence is nonlinear. So, using a linear equation to approximate it
is a clear case for underfitting. Here, we expect a higher polynomial degree to
perform better.

136 | An Introduction to Regression

7. Perform a polynomial regression of degrees 1, 2, and 3 on the second dataset
using the polyfit method from numpy with the following code:

g1 = np.poly1d(np.polyfit(x2, y2, 1))

g2 = np.poly1d(np.polyfit(x2, y2, 2))

g3 = np.poly1d(np.polyfit(x2, y2, 3))

The output for g1 is as follows:

poly1d([9.12087912, -34.92307692])

As you can see, a polynomial regression of degree 1 has 2 coefficients.

The output for g2 is as follows:

poly1d([1.75024975, -15.38261738, 26.33566434])

As you can see, a polynomial regression of degree 2 has 3 coefficients.

The output for g3 is as follows:

poly1d([0.2465035, -3.42632368, 14.69080919, -15.07692308])

As you can see, a polynomial regression of degree 3 has 4 coefficients.

8. Plot the three polynomial regressions and the data on a graph in the
following code:

plot.plot(x2, y2, 'ko', # black dots \

 x2, g1(x2),'k-', # straight line \

 x2, g2(x2),'k--', # black dashed line \

 x2, g3(x2),'k-.' # dot line

)

plot.show()

Polynomial and Support Vector Regression | 137

The output is as follows:

Figure 2.25: Graph showing the second dataset points and three polynomial curves

The difference is clear. The quadratic curve fits the points a lot better than the
linear one. The cubic curve is even better.

Note

To access the source code for this specific section, please refer to https://
packt.live/3dpCgyY.

You can also run this example online at https://packt.live/2B09xDN. You must
execute the entire Notebook in order to get the desired result.

If you research Binet's formula, you will find out that the Fibonacci function is an
exponential function, as the nth Fibonacci number is calculated as the nth power of a
constant. Therefore, the higher the polynomial degree we use, the more accurate our
approximation will be.

https://packt.live/3dpCgyY
https://packt.live/3dpCgyY
https://packt.live/2B09xDN

138 | An Introduction to Regression

Polynomial Regression with Multiple Variables

When we have one variable of degree n, we have n+1 coefficients in the equation as
.

Once we deal with multiple features, x1, x2, …, xm, and their powers of up to the nth
degree, we get an m * (n+1) matrix of coefficients. The math will become quite lengthy
when we start exploring the details and prove how a polynomial model works. We will
also lose the nice visualizations of two-dimensional curves.

Therefore, we will apply the concepts learned in the previous section on polynomial
regression with one variable and omit the math. When training and testing a linear
regression model, we can calculate the mean square error to see how good an
approximation a model is.

In scikit-learn, the degree of the polynomials used in the approximation is a simple
parameter in the model.

As polynomial regression is a form of linear regression, we can perform
polynomial regression without changing the regression model. All we need
to do is to transform the input and keep the linear regression model. The
transformation of the input is performed by the fit_transform method of the
PolynomialFeatures package.

First, we can reuse the code from Exercise 2.03, Preparing the Quandl Data
for Prediction, up to Step 9 and import PolynomialFeatures from the
preprocessing module of sklearn:

!pip install quandl

import quandl

import numpy as np

from sklearn import preprocessing

from sklearn import model_selection

from sklearn import linear_model

from matplotlib import pyplot as plot

from sklearn.preprocessing import PolynomialFeatures

data_frame = quandl.get(“YALE/SPCOMP”, \

 start_date=”1950-01-01”, \

 end_date=”2019-12-31”)

data_frame = data_frame[['Long Interest Rate', \

 'Real Price', 'Real Dividend']]

Polynomial and Support Vector Regression | 139

data_frame.fillna(method='ffill', inplace=True)

data_frame['Real Price Label'] = data_frame['Real Price'].shift(-3)

features = np.array(data_frame.drop('Real Price Label', 1))

scaled_features = preprocessing.scale(features)

scaled_features_latest_3 = scaled_features[-3:]

scaled_features = scaled_features[:-3]

data_frame.dropna(inplace=True)

label = np.array(data_frame['Real Price Label'])

Now, we can create a polynomial regression of degree 3 using the fit_transform
method of PolynomialFeatures:

poly_regressor = PolynomialFeatures(degree=3)

poly_scaled_features = poly_regressor.fit_transform(scaled_features)

poly_scaled_features

The output of poly_scaled_features is as follows:

array([[1. , -1.14839975, -1.13009904, ..., -1.52261953,

 -1.60632446, -1.69463102],

 [1. , -1.14114523, -1.12483455, ..., -1.49346824,

 -1.56720585, -1.64458414],

 [1. , -1.13389072, -1.12377394, ..., -1.48310475,

 -1.54991107, -1.61972667],

 ...,

 [1. , -1.38866935, 2.97846643, ..., 31.70979016,

 38.05472653, 45.66924612],

 [1. , -1.38866935, 2.83458633, ..., 29.05499915,

 37.06573938, 47.28511704],

 [1. , -1.36429417, 2.95488131, ..., 31.89206605,

 39.42259303, 48.73126873]])

Then, we need to split the data into testing and training sets:

(poly_features_train, poly_features_test, \

poly_label_train, poly_label_test) = \

model_selection.train_test_split(poly_scaled_features, \

 label, test_size=0.1, \

 random_state=8)

The train_test_split function shuffles the lines of our data, keeps the
correspondence, and puts approximately 10% of all data in the test variables, keeping
90% for the training variables. We also use random_state=8 in order to reproduce
the results.

140 | An Introduction to Regression

Our data is now ready to be used for the multiple polynomial regression model; we
will also measure its performance with the score function:

model = linear_model.LinearRegression()

model.fit(poly_features_train, poly_label_train)

model.score(poly_features_test, poly_label_test)

The output is as follows:

0.988000620369118

With a score or R2 of 0.988, our multiple polynomial regression model is slightly
better than our multiple linear regression model (0.985), which we built in Exercise
2.03, Preparing the Quandl Data for Prediction. It might be possible that both models
are overfitting the dataset.

There is another model in scikit-learn that performs polynomial regression, called the
SVM model.

Support Vector Regression
SVMs are binary classifiers and are usually used in classification problems (you will
learn more about this in Chapter 3, An Introduction to Classification). An SVM classifier
takes data and tries to predict which class it belongs to. Once the classification of a
data point is determined, it gets labeled. But SVMs can also be used for regression;
that is, instead of labeling data, it can predict future values in a series.

The SVR model uses the space between our data as a margin of error. Based on the
margin of error, it makes predictions regarding future values.

If the margin of error is too small, we risk overfitting the existing dataset. If the
margin of error is too big, we risk underfitting the existing dataset.

In the case of a classifier, the kernel describes the surface dividing the state space,
whereas, in a regression, the kernel measures the margin of error. This kernel can
use a linear model, a polynomial model, or many other possible models. The default
kernel is RBF, which stands for Radial Basis Function.

SVR is an advanced topic that is outside the scope of this book. Therefore, we will only
stick to an easy walk-through as an opportunity to try out another regression model
on our data.

Support Vector Regression | 141

We can reuse the code from Exercise 2.03, Preparing the Quandl Data for Prediction, up
to Step 11:

import quandl

import numpy as np

from sklearn import preprocessing

from sklearn import model_selection

from sklearn import linear_model

from matplotlib import pyplot as plot

data_frame = quandl.get(“YALE/SPCOMP”, \

 start_date=”1950-01-01”, \

 end_date=”2019-12-31”)

data_frame = data_frame[['Long Interest Rate', \

 'Real Price', 'Real Dividend']]

data_frame.fillna(method='ffill', inplace=True)

data_frame['Real Price Label'] = data_frame['Real Price'].shift(-3)

features = np.array(data_frame.drop('Real Price Label', 1))

scaled_features = preprocessing.scale(features)

scaled_features_latest_3 = scaled_features[-3:]

scaled_features = scaled_features[:-3]

data_frame.dropna(inplace=True)

label = np.array(data_frame['Real Price Label'])

(features_train, features_test, label_train, label_test) = \

model_selection.train_test_split(scaled_features, label, \

 test_size=0.1, \

 random_state=8)

Then, we can perform a regression with svm by simply changing the linear model to a
support vector model by using the svm method from sklearn:

from sklearn import svm

model = svm.SVR()

model.fit(features_train, label_train)

142 | An Introduction to Regression

As you can see, performing an SVR is exactly the same as performing a linear
regression, with the exception of defining the model as svm.SVR().

Finally, we can predict and measure the performance of our model:

label_predicted = model.predict(features_test)

model.score(features_test, label_test)

The output is as follows:

0.03262153550014424

As you can see, the score or R2 is quite low, our SVR's parameters need to be
optimized in order to increase the accuracy of the model.

Support Vector Machines with a 3-Degree Polynomial Kernel

Let's switch the kernel of the SVM to a polynomial function (the default degree is 3)
and measure the performance of the new model:

model = svm.SVR(kernel='poly')

model.fit(features_train, label_train)

label_predicted = model.predict(features_test)

model.score(features_test, label_test)

The output is as follows:

0.44465054598560627

We managed to increase the performance of the SVM by simply changing the kernel
function to a polynomial function; however, the model still needs a lot of tuning to
reach the same performance as the linear regression models.

Activity 2.01: Boston House Price Prediction with Polynomial Regression of

Degrees 1, 2, and 3 on Multiple Variables

In this activity, you will need to perform linear polynomial regression of degrees 1, 2,
and 3 with scikit-learn and find the best model. You will work on the Boston House
Prices dataset. The Boston House Price dataset is very famous and has been used as
an example for research on regression models.

Support Vector Regression | 143

Note

More details about the Boston House Prices dataset can be found at https://
archive.ics.uci.edu/ml/machine-learning-databases/housing/.

The dataset file can also be found in our GitHub repository: https://packt.
live/2V9kRUU.

You will need to predict the prices of houses in Boston (label) based on their
characteristics (features). Your main goal will be to build 3 linear models using
polynomial regressions of degrees 1, 2, and 3 with all the features of the dataset. You
can find the following dataset description:

Figure 2.26: Boston housing dataset description

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://packt.live/2V9kRUU
https://packt.live/2V9kRUU

144 | An Introduction to Regression

We will define our label as the MEDV field, which is the median value of the house
in $1,000s. All of the other fields will be used as our features for our models. As this
dataset does not contain any missing values, we won't have to replace missing values
as we did in the previous exercises.

The following steps will help you to complete the activity:

1. Open a Jupyter Notebook.

2. Import the required packages and load the Boston House Prices data into
a DataFrame.

3. Prepare the dataset for prediction by converting the label and features into
NumPy arrays and scaling the features.

4. Create three different sets of features by transforming the scaled features into
suitable formats for each of the polynomial regressions.

5. Split the data into training and testing sets with random state = 8.

6. Perform a polynomial regression of degree 1 and evaluate whether the model
is overfitting.

7. Perform a polynomial regression of degree 2 and evaluate whether the model
is overfitting.

8. Perform a polynomial regression of degree 3 and evaluate whether the model
is overfitting.

9. Compare the predictions of the three models against the label on the testing set.

Support Vector Regression | 145

The expected output is this:

Figure 2.27: Expected output based on the predictions

Note

The solution to this activity is available on page 334.

146 | An Introduction to Regression

Summary
In this chapter, we have learned the fundamentals of linear regression. After going
through some basic mathematics, we looked at the mathematics of linear regression
using one variable and multiple variables.

Then, we learned how to load external data from sources such as a CSV file, Yahoo
Finance, and Quandl. After loading the data, we learned how to identify features and
labels, how to scale data, and how to format data to perform regression.

We learned how to train and test a linear regression model, and how to predict the
future. Our results were visualized by an easy-to-use Python graph plotting library
called pyplot.

We also learned about a more complex form of linear regression: linear polynomial
regression using arbitrary degrees. We learned how to define these regression
problems on multiple variables and compare their performance on the Boston House
Price dataset. As an alternative to polynomial regression, we also introduced SVMs as
a regression model and experimented with two kernels.

In the next chapter, you will learn about classification and its models.

Overview

This chapter introduces you to classification. You will implement various
techniques, such as k-nearest neighbors and SVMs. You will use the
Euclidean and Manhattan distances to work with k-nearest neighbors. You
will apply these concepts to solve intriguing problems such as predicting
whether a credit card applicant has a risk of defaulting and determining
whether an employee would stay with a company for more than two years.
By the end of this chapter, you will be confident enough to work with any
data using classification and come to a certain conclusion.

3
An Introduction to

Classification

150 | An Introduction to Classification

Introduction
In the previous chapter, you were introduced to regression models and learned how
to fit a linear regression model with single or multiple variables, as well as with a
higher-degree polynomial.

Unlike regression models, which focus on learning how to predict continuous
numerical values (which can have an infinite number of values), classification, which
will be introduced in this chapter, is all about splitting data into separate groups, also
called classes.

For instance, a model can be trained to analyze emails and predict whether they are
spam or not. In this case, the data is categorized into two possible groups (or classes).
This type of classification is also called binary classification, which we will see a few
examples of in this chapter. However, if there are more than two groups (or classes),
you will be working on a multi-class classification (you will come across some
examples of this in Chapter 4, An Introduction to Decision Trees).

But what is a real-world classification problem? Consider a model that tries to predict
a given user's rating for a movie where this score can only take values: like, neutral, or
dislike. This is a classification problem.

In this chapter, we will learn how to classify data using the k-nearest neighbors
classifier and SVM algorithms. Just as we did for regression in the previous chapter,
we will build a classifier based on cleaned and prepared training data and test the
performance of our classifier using testing data.

We'll begin by looking at the fundamentals of classification.

The Fundamentals of Classification
As stated earlier, the goal of any classification problem is to separate the data into
relevant groups accurately using a training set. There are a lot of applications of such
projects in different industries, such as education, where a model can predict whether
a student will pass or fail an exam, or healthcare, where a model can assess the level
of severity of a given disease for each patient.

A classifier is a model that determines the label (output) or value (class) of any data
point that it belongs to. For instance, suppose you have a set of observations that
contains credit-worthy individuals, and another one that contains individuals that are
risky in terms of their credit repayment tendencies.

The Fundamentals of Classification | 151

Let's call the first group P and the second one Q. Here is an example of such data:

Figure 3.1: Sample dataset

With this data, you will train a classification model that will be able to correctly classify
a new observation into one of these two groups (this is binary classification). The
model can find patterns such as a person with a salary above $60,000 being less risky
or that having a mortgage/income ratio above ratio 10 makes an individual more at
risk of not repaying their debts. This will be a multi-class classification exercise.

Classification models can be grouped into different families of algorithms. The most
famous ones are as follows:

• Distance-based, such as k-nearest neighbors

• Linear models, such as logistic regression or SVMs

• Tree-based, such as random forest

In this chapter, you will be introduced to two algorithms from the first two types of
family: k-nearest neighbors (distance-based) and SVMs (linear models).

Note

We'll walk you through tree-based algorithms such as random forest in
Chapter 4, An Introduction to Decision Trees.

But before diving into the models, we need to clean and prepare the dataset that we
will be using in this chapter.

In the following section, we will work on a German credit approvals dataset and
perform all the data preparation required for the modeling stage. Let's start by
loading the data.

152 | An Introduction to Classification

Exercise 3.01: Predicting Risk of Credit Card Default (Loading the Dataset)

In this exercise, we will be loading a dataset into a pandas DataFrame and exploring
its contents. We will use the dataset of German credit approvals to determine
whether an individual presents a risk of defaulting.

Note

The CSV version of this dataset can be found on our GitHub repository:

https://packt.live/3eriWTr.

The original dataset and information regarding the dataset can be found at
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29.

The data files are located at https://archive.ics.uci.edu/ml/machine-learning-
databases/statlog/german/.

Citation - Dua, D., & Graff, C.. (2017). UCI Machine Learning Repository.

1. Open a new Jupyter Notebook file.

2. Import the pandas package as pd:

import pandas as pd

3. Create a new variable called file_url, which will contain the URL to the raw
dataset file, as shown in the following code snippet:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/german_credit.csv'

4. Import the data using the pd.read_csv() method:

df = pd.read_csv(file_url)

5. Use df.head() to print the first five rows of the DataFrame:

df.head()

https://packt.live/3eriWTr
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/

The Fundamentals of Classification | 153

The expected output is this:

Figure 3.2: The first five rows of the dataset

As you can see, the output in the preceding screenshot shows us the features of
the dataset, which can be either numerical or categorical (text).

6. Now, use df.tail() to print the last five rows of the DataFrame:

df.tail()

The expected output is this:

Figure 3.3: The last five rows of the dataset

154 | An Introduction to Classification

The last rows of the DataFrame are very similar to the first ones we saw earlier,
so we can assume the structure is consistent across the rows.

7. Now, use df.dtypes to print the list of columns and their data types:

df.dtypes

The expected output is this:

Figure 3.4: The list of columns and their data types

Note

To access the source code for this specific section, please refer to
https://packt.live/3hQXJEs.

You can also run this example online at https://packt.live/3fN0DrT. You must
execute the entire Notebook in order to get the desired result.

From the preceding output, we can see that this DataFrame has some numerical
features (int64) but also text (object). We can also see that most of these features
are either personal details for an individual, such as their age, or financial information
such as credit history or credit amount.

https://packt.live/3hQXJEs
https://packt.live/3fN0DrT

Data Preprocessing | 155

By completing this exercise, we have successfully loaded the data into the DataFrame
and had a first glimpse of the features and information it contains.

In the topics ahead, we will be looking at preprocessing this data.

Data Preprocessing
Before building a classifier, we need to format our data so that we can keep relevant
data in the most suitable format for classification and remove all the data that we are
not interested in.

The following points are the best ways to achieve this:

• Replacing or dropping values:

For instance, if there are N/A (or NA) values in the dataset, we may be better
off substituting these values with a numeric value we can handle. Recall from
the previous chapter that NA stands for Not Available and that it represents a
missing value. We may choose to ignore rows with NA values or replace them
with an outlier value.

Note

An outlier value is a value such as -1,000,000 that clearly stands out from
regular values in the dataset.

The fillna() method of a DataFrame does this type of replacement. The
replacement of NA values with an outlier looks as follows:

df.fillna(-1000000, inplace=True)

The fillna() method changes all NA values into numeric values.

This numeric value should be far from any reasonable value in the DataFrame.
Minus one million is recognized by the classifier as an exception, assuming that
only positive values are there, as mentioned in the preceding note.

• Dropping rows or columns:

The alternative to replacing missing values with extreme values is simply
dropping these rows:

df.dropna(0, inplace=True)

156 | An Introduction to Classification

The first argument (value 0) specifies that we drop rows, not columns. The
second argument (inplace=True) specifies that we perform the drop
operation without cloning the DataFrame, and will save the result in the same
DataFrame. This DataFrame doesn't have any missing values, so the dropna()
method didn't alter the DataFrame.

Note

Dropping the NA values is less desirable, as you often lose a reasonable
chunk of your dataset.

If there is a column we do not want to include in the classification, we are better
off dropping it. Otherwise, the classifier may detect false patterns in places
where there is absolutely no correlation.

For instance, your phone number itself is very unlikely to correlate with your
credit score. It is a 9 to 12-digit number that may very easily feed the classifier
with a lot of noise. So, we can drop the telephone column, as shown in the
following code snippet:

df.drop(['telephone'], 1, inplace=True)

The second argument (value 1) indicates that we are dropping columns, instead
of rows. The first argument is an enumeration of the columns we would like to
drop (here, this is ['telephone']). The inplace argument is used so that
the call modifies the original DataFrame.

• Transforming data:

Often, the data format we are working with is not always optimal for the
classification process. We may want to transform our data into a different format
for multiple reasons, such as to highlight aspects of the data we are interested
in (for example, Minmax scaling or normalization), to drop aspects of the data
we are not interested in (for example, binarization), label encoding to transform
categorical variables into numerical ones, and so on.

Minmax scaling scales each column in the data so that the lowest number in
the column becomes 0, the highest number becomes 1, and all of the values
in-between are proportionally scaled between 0 and 1.

Data Preprocessing | 157

This type of operation can be performed by the MinMaxScaler method of the
scikit-learn preprocessing utility, as shown in the following code snippet:

from sklearn import preprocessing

import numpy as np

data = np.array([[19, 65], \

 [4, 52], \

 [2, 33]])

preprocessing.MinMaxScaler(feature_range=(0,1)).fit_transform(data)

The expected output is this:

array([[1. , 1.],

 [0.11764706, 0.59375],

 [0. , 0.]])

Binarization transforms data into ones and zeros based on a condition, as shown
in the following code snippet:

preprocessing.Binarizer(threshold=10).transform(data)

The expected output is this:

array([[1, 1],

 [0, 1],

 [0, 1]])

In the preceding example, we transformed the original data ([19, 65],[4,
52],[2, 33]) into a binary form based on the condition of whether each value is
greater than 10 or not (as defined by the threshold=10 parameter). For instance,
the first value, 19, is above 10, so it is replaced by 1 in the results.

Label encoding is important for preparing your features (inputs) for the modeling
stage. While some of your features are string labels, scikit-learn algorithms expect this
data to be transformed into numbers.

158 | An Introduction to Classification

This is where the preprocessing library of scikit-learn comes into play.

Note

You might have noticed that in the credit scoring example, there were two
data files. One contained labels in string form, while the other contained
labels in integer form. We loaded the data with string labels so that you got
some experience of how to preprocess data properly with the label encoder.

Label encoding is not rocket science. It creates a mapping between string labels
and numeric values so that we can supply numbers to scikit-learn, as shown in the
following example:

from sklearn import preprocessing

labels = ['Monday', 'Tuesday', 'Wednesday', \

 'Thursday', 'Friday']

label_encoder = preprocessing.LabelEncoder()

label_encoder.fit(labels)

Let's enumerate the encoding:

[x for x in enumerate(label_encoder.classes_)]

The expected output is this:

[(0, 'Friday'),

 (1, 'Monday'),

 (2, 'Thursday'),

 (3, 'Tuesday'),

 (4, 'Wednesday')]

The preceding result shows us that scikit-learn has created a mapping for each day of
the week to a respective number; for example, Friday will be 0 and Tuesday will
be 3.

Note

By default, scikit-learn assigned the mapping number by sorting the original
values alphabetically. This is why Friday is mapped to 0.

Data Preprocessing | 159

Now, we can use this mapping (also called an encoder) to transform data.

Let's try this out on two examples, Wednesday and Friday, using the
transform() method:

label_encoder.transform(['Wednesday', 'Friday'])

The expected output is this:

array([4, 0], dtype=int64)

As expected, we got the results 4 and 0, which are the mapping values for
Wednesday and Friday, respectively.

We can also use this encoder to perform the inverse transformation with the
inverse_transform function. Let's try this with the values 0 and 4:

label_encoder.inverse_transform([0, 4])

The expected output is this:

array(['Friday', 'Wednesday'], dtype='<U9')

As expected, we got back the values Friday and Wednesday. Now, let's practice
what we've learned here on the German dataset.

Exercise 3.02: Applying Label Encoding to Transform Categorical Variables into

Numerical Variables

In this exercise, we will use one of the preprocessing techniques we just learned,
label encoding, to transform all categorical variables into numerical ones. This step is
necessary before training any machine learning model.

Note

We will be using the same dataset that we used in the previous exercise:
the German credit approval dataset: https://packt.live/3eriWTr.

The following steps will help you complete this exercise:

1. Open a new Jupyter Notebook file.

2. Import the pandas package as pd:

import pandas as pd

https://packt.live/3eriWTr

160 | An Introduction to Classification

3. Create a new variable called file_url, which will contain the URL to the
raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/german_credit.csv'

4. Load the data using the pd.read_csv() method:

df = pd.read_csv(file_url)

5. Import preprocessing from scikit-learn:

from sklearn import preprocessing

6. Define a function called fit_encoder() that takes a DataFrame and a
column name as parameters and will fit a label encoder on the values of the
column. You will use .LabelEncoder() and .fit() from preprocessing
and .unique() from pandas (this will extract all the possible values of a
DataFrame column):

def fit_encoder(dataframe, column):

 encoder = preprocessing.LabelEncoder()

 encoder.fit(dataframe[column].unique())

 return encoder

7. Define a function called encode() that takes a DataFrame, a column name, and
a label encoder as parameters and will transform the values of the column using
the label encoder. You will use the .transform() method to do this:

def encode(dataframe, column, encoder):

 return encoder.transform(dataframe[column])

8. Create a new DataFrame called cat_df that contains only non-numeric
columns and print its first five rows. You will use the .select_dtypes()
method from pandas and specify exclude='number':

cat_df = df.select_dtypes(exclude='number')

cat_df.head()

Data Preprocessing | 161

The expected output (not all columns are shown) is this:

Figure 3.5: First five rows of the DataFrame containing only non-numeric columns

9. Create a list called cat_cols that contains the column name of cat_df and
print its content. You will use .columns from pandas to do this:

cat_cols = cat_df.columns

cat_cols

The expected output is this:

Index(['account_check_status', 'credit_history', 'purpose',

 'savings', 'present_emp_since', 'other_debtors',

 'property', 'other_installment_plans', 'housing',

 'job', 'telephone', 'foreign_worker'], dtype='object')

10. Create a for loop that will iterate through each column from cat_cols, fit
a label encoder using fit_encoder(), and transform the column with the
encode() function:

for col in cat_cols:

 label_encoder = fit_encoder(df, col)

 df[col] = encode(df, col, label_encoder)

11. Print the first five rows of df:

df.head()

162 | An Introduction to Classification

The expected output is this:

Figure 3.6: First five rows of the encoded DataFrame

Note

To access the source code for this specific section, please refer to
https://packt.live/2Njh57h.

You can also run this example online at https://packt.live/2YZhtx5. You must
execute the entire Notebook in order to get the desired result.

We have successfully encoded non-numeric columns. Now, our DataFrame contains
only numeric values.

Identifying Features and Labels

Before training our model, we still have to perform two final steps. The first one
is to separate our features from the label (also known as a response variable or
dependent variable). The label column is the one we want our model to predict. For
the German credit dataset, in our case, it will be the column called default, which
tells us whether an individual will present a risk of defaulting or not.

The features are all the other columns present in the dataset. The model will use the
information contained in those columns and find the relevant patterns in order to
accurately predict the corresponding label.

The scikit-learn package requires the labels and features to be stored in two different
variables. Luckily, the pandas package provides a method to extract a column from a
DataFrame called .pop().

https://packt.live/2Njh57h
https://packt.live/2YZhtx5

Data Preprocessing | 163

We will extract the default column and store it in a variable called label:

label = df.pop('default')

label

The expected output is this:

0 0

1 1

2 0

3 0

4 1

 ..

995 0

996 0

997 0

998 1

999 0

Name: default, Length: 1000, dtype: int64

Now, if we look at the content of df, we will see that the default column is not
present anymore:

df.columns

The expected output is this:

Index(['account_check_status', 'duration_in_month',

 'credit_history', 'purpose', 'credit_amount',

 'savings', 'present_emp_since',

 'installment_as_income_perc', 'other_debtors',

 'present_res_since', 'property', 'age',

 'other_installment_plans', 'housing',

 'credits_this_bank', 'job', 'people_under_maintenance',

 'telephone', 'foreign_worker'],

 dtype='object')

Now that we have our features and labels ready, we need to split our dataset into
training and testing sets.

164 | An Introduction to Classification

Splitting Data into Training and Testing Using Scikit-Learn

The final step that's required before training a classifier is to split our data into
training and testing sets. We already saw how to do this in Chapter 2, An Introduction
to Regression:

from sklearn import model_selection

features_train, features_test, \

label_train, label_test = \

model_selection.train_test_split(df, label, test_size=0.1, \

 random_state=8)

The train_test_split method shuffles and then splits our features and labels
into a training dataset and a testing dataset.

We can specify the size of the testing dataset as a number between 0 and 1. A
test_size of 0.1 means that 10% of the data will go into the testing dataset. You
can also specify a random_state so that you get the exact same split if you run this
code again.

We will use the training set to train our classifier and use the testing set to evaluate its
predictive performance. By doing so, we can assess whether our model is overfitting
and has learned patterns that are only relevant to the training set.

In the next section, we will introduce you to the famous k-nearest neighbors classifier.

The K-Nearest Neighbors Classifier
Now that we have our training and testing data, it is time to prepare our classifier to
perform k-nearest neighbor classification. After being introduced to the k-nearest
neighbor algorithm, we will use scikit-learn to perform classification.

Introducing the K-Nearest Neighbors Algorithm (KNN)

The goal of classification algorithms is to divide data so that we can determine which
data points belong to which group.

Suppose that a set of classified points is given to us. Our task is to determine which
class a new data point belongs to.

The K-Nearest Neighbors Classifier | 165

In order to train a k-nearest neighbor classifier (also referred to as KNN), we need
to provide the corresponding class for each observation on the training set, that is,
which group it belongs to. The goal of the algorithm is to find the relevant relationship
or patterns between the features that will lead to this class. The k-nearest neighbors
algorithm is based on a proximity measure that calculates the distance between
data points.

The two most famous proximity (or distance) measures are the Euclidean and the
Manhattan distance. We will go through more details in the next section.

For any new given point, KNN will find its k nearest neighbor, see which class is the
most frequent between those k neighbors, and assign it to this new observation.
But what is k, you may ask? Determining the value of k is totally arbitrary. You will
have to set this value upfront. This is not a parameter that can be learned by the
algorithm; it needs to be set by data scientists. This kind of parameter is called
a hyperparameter. Theoretically, you can set the value of k to between 1 and
positive infinity.

There are two main best practices to take into consideration:

• k should always be an odd number. The reason behind this is that we want to
avoid a situation that ends in a tie. For instance, if you set k=4 and it so happens
that two of the neighbors of a point are from class A and the other two are from
class B, then KNN doesn't know which class to choose. To avoid this situation, it
is better to choose k=3 or k=5.

• The greater k is, the more accurate KNN will be. For example, if we compare
the cases between k=1 and k=15, the second one will give you more confidence
that KNN will choose the right class as it will need to look at more neighbors
before making a decision. On the other hand, with k=1, it only looks at the closest
neighbor and assigns the same class to an observation. But how can we be sure
it is not an outlier or a special case? Asking more neighbors will lower the risk
of making the wrong decision. But there is a drawback to this: the higher k is,
the longer it will take KNN to make a prediction. This is because it will have to
perform more calculations to get the distance between all the neighbors of an
observation. Due to this, you have to find the sweet spot that will give correct
predictions without compromising too much on the time it takes to make
a prediction.

166 | An Introduction to Classification

Distance Metrics With K-Nearest Neighbors Classifier in Scikit-Learn

Many distance metrics could work with the k-nearest neighbors algorithm. We
will present the two most frequently used ones: the Euclidean distance and the
Manhattan distance of two data points.

The Euclidean Distance

The distance between two points, A and B, with the coordinates A=(a1, a2, …,
an) and B=(b1, b2, …, bn), respectively, is the length of the line connecting
these two points. For example, if A and B are two-dimensional data points, the
Euclidean distance, d, will be as follows:

Figure 3.7: Visual representation of the Euclidean distance between A and B

The formula to calculate the Euclidean distance is as follows:

Figure 3.8: Distance between points A and B

The K-Nearest Neighbors Classifier | 167

As we will be using the Euclidean distance in this book, let's see how we can use scikit-
learn to calculate the distance of multiple points.

We have to import euclidean_distances from sklearn.metrics.
pairwise. This function accepts two sets of points and returns a matrix that
contains the pairwise distance of each point from the first and second sets of points.

Let's take the example of an observation, Z, with coordinates (4, 4). Here, we
want to calculate the Euclidean distance with 3 others points, A, B, and C, with the
coordinates (2, 3), (3, 7), and (1, 6), respectively:

from sklearn.metrics.pairwise import euclidean_distances

observation = [4,4]

neighbors = [[2,3], [3,7], [1,6]]

euclidean_distances([observation], neighbors)

The expected output is this:

array([[2.23606798, 3.16227766, 3.60555128]])

Here, the distance of Z=(4,4) and B=(3,7) is approximately 3.162, which is what we
got in the output.

We can also calculate the Euclidean distances between points in the same set:

euclidean_distances(neighbors)

The expected output is this:

array([[0. , 4.12310563, 3.16227766],

 [4.12310563, 0. , 2.23606798],

 [3.16227766, 2.23606798, 0.]])

The diagonal that contains value 0 corresponds to the Euclidean distance between
each data point and itself. This matrix is symmetric from this diagonal as it calculates
the distance of two points and its reverse. For example, the value 4.12310563 on
the first row is the distance between A and B, while the same value on the second row
corresponds to the distance between B and A.

168 | An Introduction to Classification

The Manhattan/Hamming Distance

The formula of the Manhattan (or Hamming) distance is very similar to the Euclidean
distance, but rather than using the square root, it relies on calculating the absolute
value of the difference of the coordinates of the data points:

Figure 3.9: The Manhattan and Hamming distance

You can think of the Manhattan distance as if we're using a grid to calculate the
distance rather than using a straight line:

Figure 3.10: Visual representation of the Manhattan distance between A and B

As shown in the preceding plot, the Manhattan distance will follow the path defined
by the grid to point B from A.

The K-Nearest Neighbors Classifier | 169

Another interesting property is that there can be multiple shortest paths between A
and B, but their Manhattan distances will all be equal to each other. In the preceding
example, if each cell of the grid equals a unit of 1, then all three of the shortest paths
highlighted will have a Manhattan distance of 9.

The Euclidean distance is a more accurate generalization of distance, while the
Manhattan distance is slightly easier to calculate as you only need to find the
difference between the absolute value rather than calculating the difference between
squares and then taking the root.

Exercise 3.03: Illustrating the K-Nearest Neighbors Classifier Algorithm in

Matplotlib

Suppose we have a list of employee data. Our features are the number of hours
worked per week and the yearly salary. Our label indicates whether an employee has
stayed with our company for more than 2 years. The length of stay is represented by
zero if it is less than 2 years and one if it is greater than or equal to 2 years.

We want to create a three-nearest neighbors classifier that determines whether an
employee will stay with our company for at least 2 years.

Then, we would like to use this classifier to predict whether an employee with a
request to work 32 hours a week and earning 52,000 dollars per year is going to stay
with the company for 2 years or not.

Follow these steps to complete this exercise:

Note

The aforementioned dataset is available on GitHub at
https://packt.live/2V5VaV9.

1. Open a new Jupyter Notebook file.

2. Import the pandas package as pd:

import pandas as pd

https://packt.live/2V5VaV9

170 | An Introduction to Classification

3. Create a new variable called file_url(), which will contain the URL to the
raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/employees_churned.csv'

4. Load the data using the pd.read_csv() method:

df = pd.read_csv(file_url)

5. Print the rows of the DataFrame:

df

The expected output is this:

Figure 3.11: DataFrame of the employees dataset

6. Import preprocessing from scikit-learn:

from sklearn import preprocessing

7. Instantiate a MinMaxScaler with feature_range=(0,1) and save it to a
variable called scaler:

scaler = preprocessing.MinMaxScaler(feature_range=(0,1))

The K-Nearest Neighbors Classifier | 171

8. Scale the DataFrame using .fit_transform(), save the results in a new
variable called scaled_employees, and print its content:

scaled_employees = scaler.fit_transform(df)

scaled_employees

The expected output is this:

array([[0. , 0.18518519, 0.],

 [0.2 , 0. , 0.],

 [0.6 , 0.11111111, 0.],

 [0.2 , 0.37037037, 0.],

 [1. , 0.18518519, 0.],

 [1. , 0.62962963, 1.],

 [1. , 0.11111111, 1.],

 [0.6 , 0.37037037, 1.],

 [1. , 1. , 1.],

 [0.6 , 0.55555556, 1.]])

In the preceding code snippet, we have scaled our original dataset so that all the
values range between 0 and 1.

9. From the scaled data, extract each of the three columns and save them into
three variables called hours_worked, salary, and over_two_years, as
shown in the following code snippet:

hours_worked = scaled_employees[:, 0]

salary = scaled_employees[:, 1]

over_two_years = scaled_employees[:, 2]

10. Import the matplotlib.pyplot package as plt:

import matplotlib.pyplot as plt

11. Create two scatter plots with plt.scatter using hours_worked as the
x-axis and salary as the y-axis, and then create different markers according to
the value of over_two_years. You can add the labels for the x and y axes with
plt.xlabel and plt.ylabel. Display the scatter plots with plt.show():

plt.scatter(hours_worked[:5], salary[:5], marker='+')

plt.scatter(hours_worked[5:], salary[5:], marker='o')

plt.xlabel("hours_worked")

plt.ylabel("salary")

plt.show()

172 | An Introduction to Classification

The expected output is this:

Figure 3.12: Scatter plot of the scaled data

In the preceding code snippet, we have displayed the data points of the scaled
data on a scatter plot. The + points represent the employees that stayed less
than 2 years, while the o ones are for the employees who stayed for more than
2 years.

Now, let's say we got a new observation and we want to calculate the Euclidean
distance with the data from the scaled dataset.

12. Create a new variable called observation with the coordinates [0.5,
0.26]:

observation = [0.5, 0.26]

13. Import the euclidean_distances function from sklearn.
metrics.pairwise:

from sklearn.metrics.pairwise import euclidean_distances

The K-Nearest Neighbors Classifier | 173

14. Create a new variable called features, which will extract the first two columns
of the scaled dataset:

features = scaled_employees[:,:2]

15. Calculate the Euclidean distance between observation and features using
euclidean_distances, save it into a variable called dist, and print its
value, as shown in the following code snippet:

dist = euclidean_distances([observation], features)

dist

The expected output is this:

array([[0.50556627, 0.39698866, 0.17935412, 0.3196586 ,

 0.50556627, 0.62179262, 0.52169714, 0.14893495,

 0.89308454, 0.31201456]])

Note

To access the source code for this specific section, please refer to
https://packt.live/3djY1jO.

You can also run this example online at https://packt.live/3esx7HF. You must
execute the entire Notebook in order to get the desired result.

From the preceding output, we can see that the three nearest neighbors are
as follows:

• 0.1564897 for point [0.6, 0.37037037, 1.]

• 0.17114358 for point [0.6, 0.11111111, 0.]

• 0.32150303 for point [0.6, 0.55555556, 1.]

If we choose k=3, KNN will look at the classes for these three nearest neighbors and
since two of them have a label of 1, it will assign this class to our new observation,
[0.5, 0.26]. This means that our three-nearest neighbors classifier will classify
this new employee as being more likely to stay for at least 2 years.

By completing this exercise, we saw how a KNN classifier will classify a new
observation by finding its three closest neighbors using the Euclidean distance and
then assign the most frequent class to it.

https://packt.live/3djY1jO
https://packt.live/3esx7HF

174 | An Introduction to Classification

Parameterization of the K-Nearest Neighbors Classifier in scikit-learn

The parameterization of the classifier is where you fine-tune the accuracy of
your classifier. Since we haven't learned all of the possible variations of k-nearest
neighbors, we will concentrate on the parameters that you will understand based on
this topic:

Note

You can access the documentation of the k-nearest neighbors classifier
here: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html.

• n_neighbors: This is the k value of the k-nearest neighbors algorithm. The
default value is 5.

• metric: When creating the classifier, you will see a name – Minkowski. Don't
worry about this name – you have learned about the first- and second-order
Minkowski metrics already. This metric has a power parameter. For p=1, the
Minkowski metric is the same as the Manhattan metric. For p=2, the Minkowski
metric is the same as the Euclidean metric.

• p: This is the power of the Minkowski metric. The default value is 2.

You have to specify these parameters once you create the classifier:

classifier = neighbors.KNeighborsClassifier(n_neighbors=50, p=2)

Then, you will have to fit the KNN classifier with your training data:

classifier.fit(features, label)

The predict() method can be used to predict the label for any new data point:

classifier.predict(new_data_point)

In the next exercise, we will be using the KNN implementation from scikit-learn to
automatically find the nearest neighbors and assign corresponding classes.

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

The K-Nearest Neighbors Classifier | 175

Exercise 3.04: K-Nearest Neighbors Classification in scikit-learn

In this exercise, we will use scikit-learn to automatically train a KNN classifier on the
German credit approval dataset and try out different values for the n_neighbors
and p hyperparameters to get the optimal output values. We will need to scale the
data before fitting KNN.

Follow these steps to complete this exercise:

Note

This exercise is a follow up from Exercise 3.02, Applying Label Encoding
to Transform Categorical Variables into Numerical. We already saved the
resulting dataset from Exercise 3.02, Applying Label Encoding to Transform
Categorical Variables into Numerical in the GitHub repository at https://
packt.live/2Yqdb2Q.

1. Open a new Jupyter Notebook.

2. Import the pandas package as pd:

import pandas as pd

3. Create a new variable called file_url, which will contain the URL to the
raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/german_prepared.csv'

4. Load the data using the pd.read_csv() method:

df = pd.read_csv(file_url)

5. Import preprocessing from scikit-learn:

from sklearn import preprocessing

6. Instantiate MinMaxScaler with feature_range=(0,1) and save it to a
variable called scaler:

scaler = preprocessing.MinMaxScaler(feature_range=(0,1))

https://packt.live/2Yqdb2Q
https://packt.live/2Yqdb2Q

176 | An Introduction to Classification

7. Fit the scaler and apply the corresponding transformation to the DataFrame
using .fit_transform() and save the results to a variable called
scaled_credit:

scaled_credit = scaler.fit_transform(df)

8. Extract the response variable (the first column) to a new variable called label:

label = scaled_credit[:, 0]

9. Extract the features (all the columns except for the first one) to a new variable
called features:

features = scaled_credit[:, 1:]

10. Import model_selection.train_test_split from sklearn:

from sklearn.model_selection import train_test_split

11. Split the scaled dataset into training and testing sets with test_size=0.2 and
random_state=7 using train_test_split:

features_train, features_test, \

label_train, label_test = \

train_test_split(features, label, test_size=0.2, \

 random_state=7)

12. Import neighbors from sklearn:

from sklearn import neighbors

13. Instantiate KNeighborsClassifier and save it to a variable
called classifier:

classifier = neighbors.KNeighborsClassifier()

14. Fit the k-nearest neighbors classifier on the training set:

classifier.fit(features_train, label_train)

Since we have not mentioned the value of k, the default is 5.

15. Print the accuracy score for the training set with .score():

acc_train = classifier.score(features_train, label_train)

acc_train

You should get the following output:

0.78625

The K-Nearest Neighbors Classifier | 177

With this, we've achieved an accuracy score of 0.78625 on the training set with
the default hyperparameter values: k=5 and the Euclidean distance.

Let's have a look at the score for the testing set.

16. Print the accuracy score for the testing set with .score():

acc_test = classifier.score(features_test, label_test)

acc_test

You should get the following output:

0.75

The accuracy score dropped to 0.75 on the testing set. This means our model is
overfitting and doesn't generalize well to unseen data. In the next activity, we will
try different hyperparameter values and see if we can improve this.

Note

To access the source code for this specific section, please refer to
https://packt.live/2ATeluO.

You can also run this example online at https://packt.live/2VbDTKx. You must
execute the entire Notebook in order to get the desired result.

In this exercise, we learned how to split a dataset into training and testing sets and
fit a KNN algorithm. Our final model can accurately predict whether an individual is
more likely to default or not 75% of the time.

Activity 3.01: Increasing the Accuracy of Credit Scoring

In this activity, you will be implementing the parameterization of the k-nearest
neighbors classifier and observing the end result. The accuracy of credit scoring is
currently 75%. You need to find a way to increase it by a few percentage points.

You can try different values for k (5, 10, 15, 25, and 50) with the Euclidean and
Manhattan distances.

Note

This activity requires you to complete Exercise 3.04, K-Nearest Neighbors
Classification in scikit-learn first as we will be using the previously prepared
data here.

https://packt.live/2ATeluO
https://packt.live/2VbDTKx

178 | An Introduction to Classification

The following steps will help you complete this activity:

1. Import neighbors from sklearn.

2. Create a function to instantiate KNeighborsClassifier with
hyperparameters specified, fit it with the training data, and return the accuracy
score for the training and testing sets.

3. Using the function you created, assess the accuracy score for k = (5, 10, 15, 25,
50) for both the Euclidean and Manhattan distances.

4. Find the best combination of hyperparameters.

The expected output is this:

(0.775, 0.785)

Note

The solution to this activity can be found on page 343.

In the next section, we will introduce you to another machine learning classifier: a
Support Vector Machine (SVM).

Classification with Support Vector Machines
We first used SVMs for regression in Chapter 2, An Introduction to Regression. In this
topic, you will find out how to use SVMs for classification. As always, we will use scikit-
learn to run our examples in practice.

What Are Support Vector Machine Classifiers?

The goal of an SVM is to find a surface in an n-dimensional space that separates the
data points in that space into multiple classes.

In two dimensions, this surface is often a straight line. However, in three dimensions,
the SVM often finds a plane. These surfaces are optimal in the sense that they
are based on the information available to the machine so that it can optimize the
separation of the n-dimensional spaces.

Classification with Support Vector Machines | 179

The optimal separator found by the SVM is called the best separating hyperplane.

An SVM is used to find one surface that separates two sets of data points. In other
words, SVMs are binary classifiers. This does not mean that SVMs can only be used
for binary classification. Although we were only talking about one plane, SVMs can be
used to partition a space into any number of classes by generalizing the task itself.

The separator surface is optimal in the sense that it maximizes the distance of each
data point from the separator surface.

A vector is a mathematical structure defined on an n-dimensional space that has a
magnitude (length) and a direction. In two dimensions, you draw the vector (x, y) from
the origin to the point (x, y). Based on geometry, you can calculate the length of the
vector using the Pythagorean theorem and the direction of the vector by calculating
the angle between the horizontal axis and the vector.

For instance, in two dimensions, the vector (3, -4) has the following magnitude:

np.sqrt(3 * 3 + 4 * 4)

The expected output is this:

5.0

It has the following direction (in degrees):

np.arctan(-4/3) / 2 / np.pi * 360

The expected output is this:

-53.13010235415597

Understanding Support Vector Machines

Suppose that two sets of points with two different classes, 0 and 1, are given. For
simplicity, we can imagine a two-dimensional plane with two features: one mapped
on the horizontal axis and one mapped on the vertical axis.

180 | An Introduction to Classification

The objective of the SVM is to find the best separating line that separates points A, D,
C, B, and H, which all belong to class 0, from points E, F, and G, which are of class 1:

Figure 3.13: Line separating red and blue members

But separation is not always that obvious. For instance, if there is a new point of class
0 in-between E, F, and G, there is no line that could separate all the points without
causing errors. If the points from class 0 form a full circle around the class 1 points,
there is no straight line that could separate the two sets:

Classification with Support Vector Machines | 181

Figure 3.14: Graph with two outlier points

For instance, in the preceding graph, we tolerate two outlier points, O and P.

182 | An Introduction to Classification

In the following solution, we do not tolerate outliers, and instead of a line, we create
the best separating path consisting of two half-lines:

Figure 3.15: Graph removing the separation of the two outliers

The perfect separation of all data points is rarely worth the resources. Therefore, the
SVM can be regularized to simplify and restrict the definition of the best separating
shape and allow outliers.

The regularization parameter of an SVM determines the rate of errors to allow or
forbid misclassifications.

An SVM has a kernel parameter. A linear kernel strictly uses a linear equation to
describe the best separating hyperplane. A polynomial kernel uses a polynomial,
while an exponential kernel uses an exponential expression to describe
the hyperplane.

A margin is an area centered around the separator and is bounded by the points
closest to the separator. A balanced margin has points from each class that are
equidistant from the line.

Classification with Support Vector Machines | 183

When it comes to defining the allowed error rate of the best separating hyperplane,
a gamma parameter decides whether only the points near the separator count in
determining the position of the separator, or whether the points farthest from the
line count, too. The higher the gamma, the lower the number of points that influence
the location of the separator.

Support Vector Machines in scikit-learn

Our entry point is the end result of Activity 3.02, Support Vector Machine Optimization
in scikit-learn. Once we have split the training and test data, we are ready to set up
the classifier:

features_train, features_test, \

label_train, label_test = \

model_selection.train_test_split(scaled_features, label,\

 test_size=0.2)

Instead of using the k-nearest neighbors classifier, we will use the svm.
SVC() classifier:

from sklearn import svm

classifier = svm.SVC()

classifier.fit(features_train, label_train)

classifier.score(features_test, label_test)

The expected output is this:

0.745

It seems that the default SVM classifier of scikit-learn does a slightly better job than
the k-nearest neighbors classifier.

Parameters of the scikit-learn SVM

The following are the parameters of the scikit-learn SVM:

• kernel: This is a string or callable parameter specifying the kernel that's
being used in the algorithm. The predefined kernels are linear, poly, rbf,
sigmoid, and precomputed. The default value is rbf.

• degree: When using a polynomial, you can specify the degree of the
polynomial. The default value is 3.

184 | An Introduction to Classification

• gamma: This is the kernel coefficient for rbf, poly, and sigmoid. The default
value is auto, which is computed as 1/number_of_features.

• C: This is a floating-point number with a default of 1.0 that describes the
penalty parameter of the error term.

Note

You can read about the parameters in the reference documentation at
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

Here is an example of an SVM:

classifier = svm.SVC(kernel="poly", C=2, degree=4, gamma=0.05)

Activity 3.02: Support Vector Machine Optimization in scikit-learn

In this activity, you will be using, comparing, and contrasting the different SVMs'
classifier parameters. With this, you will find a set of parameters resulting in the
highest classification data on the training and testing data that we loaded and
prepared in Activity 3.01, Increasing the Accuracy of Credit Scoring.

You must different combinations of hyperparameters for SVM:

• kernel="linear"

• kernel="poly", C=1, degree=4, gamma=0.05

• kernel="poly", C=1, degree=4, gamma=0.05

• kernel="poly", C=1, degree=4, gamma=0.25

• kernel="poly", C=1, degree=4, gamma=0.5

• kernel="poly", C=1, degree=4, gamma=0.16

• kernel="sigmoid"

• kernel="rbf", gamma=0.15

• kernel="rbf", gamma=0.25

• kernel="rbf", gamma=0.5

• kernel="rbf", gamma=0.35

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Summary | 185

The following steps will help you complete this activity:

1. Open a new Jupyter Notebook file and execute all the steps mentioned in the
previous, Exercise 3.04, K-Nearest Neighbor Classification in scikit-learn.

2. Import svm from sklearn.

3. Create a function to instantiate an SVC with the hyperparameters specified,
fit with the training data, and return the accuracy score for the training and
testing sets.

4. Using the function you created, assess the accuracy scores for the different
hyperparameter combinations.

5. Find the best combination of hyperparameters.

The expected output is this:

(0.78125, 0.775)

Note

The solution for this activity can be found on page 347.

Summary
In this chapter, we learned about the basics of classification and the difference
between regression problems. Classification is about predicting a response variable
with limited possible values. As for any data science project, data scientists need
to prepare the data before training a model. In this chapter, we learned how to
standardize numerical values and replace missing values. Then, you were introduced
to the famous k-nearest neighbors algorithm and discovered how it uses distance
metrics to find the closest neighbors to a data point and then assigns the most
frequent class among them. We also learned how to apply an SVM to a classification
problem and tune some of its hyperparameters to improve the performance of the
model and reduce overfitting.

In the next chapter, we will walk you through a different type of algorithm, called
decision trees.

Overview

This chapter introduces you to two types of supervised learning algorithms
in detail. The first algorithm will help you classify data points using decision
trees, while the other algorithm will help you classify data points using
random forests. Furthermore, you'll learn how to calculate the precision,
recall, and F1 score of models, both manually and automatically. By the
end of this chapter, you will be able to analyze the metrics that are used
for evaluating the utility of a data model and classify data points based on
decision trees and random forest algorithms.

4
An Introduction to Decision

Trees

188 | An Introduction to Decision Trees

Introduction
In the previous two chapters, we learned the difference between regression
and classification problems, and we saw how to train some of the most
famous algorithms. In this chapter, we will look at another type of algorithm:
tree-based models.

Tree-based models are very popular as they can model complex non-linear patterns
and they are relatively easy to interpret. In this chapter, we will introduce you to
decision trees and the random forest algorithms, which are some of the most widely
used tree-based models in the industry.

Decision Trees
A decision tree has leaves, branches, and nodes. Nodes are where a decision is made.
A decision tree consists of rules that we use to formulate a decision (or prediction) on
the prediction of a data point.

Every node of the decision tree represents a feature, while every edge coming out of
an internal node represents a possible value or a possible interval of values of the
tree. Each leaf of the tree represents a label value of the tree.

This may sound complicated, but let's look at an application of this.

Suppose we have a dataset with the following features and the response variable is
determining whether a person is creditworthy or not:

Figure 4.1: Sample dataset to formulate the rules

Decision Trees | 189

A decision tree, remember, is just a group of rules. Looking at the dataset in Figure
4.1, we can come up with the following rules:

• All people with house loans are determined as creditworthy.

• If debtors are employed and studying, then loans are creditworthy.

• People with income above 75,000 a year are creditworthy.

• At or below 75,000 a year, people with car loans and who are employed
are creditworthy.

Following the order of the rules we just defined, we can build a tree, as shown in
Figure 4.2 and describe one possible credit scoring method:

Figure 4.2: Decision tree for the loan type

First, we determine the loan type. House loans are automatically creditworthy
according to the first rule. Study loans are described by the second rule, resulting
in a subtree containing another decision on employment. Since we have covered
both house and study loans, there are only car loans left. The third rule describes an
income decision, while the fourth rule describes a decision on employment.

Whenever we must score a new debtor to determine whether they are creditworthy,
we have to go through the decision tree from top to bottom and observe the true or
false value at the bottom.

190 | An Introduction to Decision Trees

Obviously, a model based on seven data points is highly inaccurate because we
can't generalize rules that simply do not match reality. Therefore, rules are often
determined based on large amounts of data.

This is not the only way that we can create a decision tree. We can build decision
trees based on other sequences of rules, too. Let's extract some other rules from the
dataset in Figure 4.1.

Observation 1: Notice that individual salaries that are greater than 75,000 are all
creditworthy.

Rule 1: Income > 75,000 => CreditWorthy is true.

Rule 1 classifies four out of seven data points (IDs C, E, F, G); we need more rules for
the remaining three data points.

Observation 2: Out of the remaining three data points, two are not employed. One is
employed (ID D) and is creditworthy. With this, we can claim the following rule:

Rule 2: Assuming Income <= 75,000, the following holds true: Employed ==
true => CreditWorthy.

Note that with this second rule, we can also classify the remaining two data points
(IDs A and B) as not creditworthy. With just two rules, we accurately classified all the
observations from this dataset:

Figure 4.3: Decision tree for income

Decision Trees | 191

The second decision tree is less complex. At the same time, we cannot overlook the
fact that the model says, employed people with a lower income are less likely to pay
back their loans. Unfortunately, there is not enough training data available (there are
only seven observations in this example), which makes it likely that we'll end up with
false conclusions.

Overfitting is a frequent problem in decision trees when making a decision based on
a few data points. This decision is rarely representative.

Since we can build decision trees in any possible order, it makes sense to define
an efficient way of constructing a decision tree. Therefore, we will now explore a
measure for ordering the features in the decision process.

Entropy

In information theory, entropy measures how randomly distributed the possible
values of an attribute are. The higher the degree of randomness is, the higher the
entropy of the attribute.

Entropy is the highest possibility of an event. If we know beforehand what the
outcome will be, then the event has no randomness. So, entropy is zero.

We use entropy to order the splitting of nodes in the decision tree. Taking the
previous example, which rule should we start with? Should it be Income <= 75000
or is employed? We need to use a metric that can tell us that one specific split is
better than the other. A good split can be defined by the fact it clearly split the data
into two homogenous groups. One of these metrics is information gain, and it is
based on entropy.

Here is the formula for calculating entropy:

Figure 4.4: Entropy formula

pi represents the probability of one of the possible values of the target variable
occurring. So, if this column has n different unique values, then we will have the
probability for each of them ([p1, p2, ..., pn]) and apply the formula.

192 | An Introduction to Decision Trees

To manually calculate the entropy of a distribution in Python, we can use the
np.log2 and np.dot() methods from the NumPy library. There is no function in
numpy to automatically calculate entropy.

Have a look at the following example:

import numpy as np

probabilities = list(range(1,4))

minus_probabilities = [-x for x in probabilities]

log_probabilities = [x for x in map(np.log2, probabilities)]

entropy_value = np.dot(minus_probabilities, log_probabilities)

The probabilities are given as a NumPy array or a regular list on line 2: pi.

We need to create a vector of the negated values of the distribution in line 3: - pi.

In line 4, we must take the base two logarithms of each value in the distribution
list: logi pi.

Finally, we calculate the sum with the scalar product, also known as the dot product
of the two vectors:

Figure 4.5: Dot product of two vectors

Note

You learned about the dot product for the first time in Chapter 2, An
Introduction to Regression. The dot product of two vectors is calculated
by multiplying the ith coordinate of the first vector by the ith coordinate of
the second vector, for each i. Once we have all the products, we sum
the values:

np.dot([1, 2, 3], [4, 5, 6])

This results in 1*4 + 2*5 + 3*6 = 32.

Decision Trees | 193

In the next exercise, we will be calculating entropy on a small sample dataset.

Exercise 4.01: Calculating Entropy

In this exercise, we will calculate the entropy of the features in the dataset in Figure
4.6:

Figure 4.6: Sample dataset to formulate the rules

Note

The dataset file can also be found in our GitHub repository:

https://packt.live/2AQ6Uo9.

We will calculate entropy for the Employed, Income, LoanType, and
LoanAmount features.

The following steps will help you complete this exercise:

1. Open a new Jupyter Notebook file.

2. Import the numpy package as np:

import numpy as np

https://packt.live/2AQ6Uo9

194 | An Introduction to Decision Trees

3. Define a function called entropy() that receives an array of probabilities
and then returns the calculated entropy value, as shown in the following
code snippet:

def entropy(probabilities):

 minus_probabilities = [-x for x in probabilities]

 log_probabilities = [x for x in map(np.log2, \

 probabilities)]

 return np.dot(minus_probabilities, log_probabilities)

Next, we will calculate the entropy of the Employed column. This column
contains only two possible values: true or false. The true value appeared
four times out of seven rows, so its probability is 4/7. Similarly, the probability
of the false value is 3/7 as it appeared three times in this dataset.

4. Use the entropy() function to calculate the entropy of the Employed column
with the probabilities 4/7 and 3/7:

H_employed = entropy([4/7, 3/7])

H_employed

You should get the following output:

0.9852281360342515

This value is quite close to zero, which means the groups are quite homogenous.

5. Now, use the entropy() function to calculate the entropy of the Income
column with its corresponding list of probabilities:

H_income = entropy([1/7, 2/7, 1/7, 2/7, 1/7])

H_income

You should get the following output:

2.2359263506290326

Compared to the Employed column, the entropy for Income is higher. This
means the probabilities of this column are more spread.

6. Use the entropy function to calculate the entropy of the LoanType column
with its corresponding list of probabilities:

H_loanType = entropy([3/7, 2/7, 2/7])

H_loanType

Decision Trees | 195

You should get the following output:

1.5566567074628228

This value is higher than 0, so the probabilities for this column are quite spread.

7. Let's use the entropy function to calculate the entropy of the LoanAmount
column with its corresponding list of probabilities:

H_LoanAmount = entropy([1/7, 1/7, 3/7, 1/7, 1/7])

H_LoanAmount

You should get the following output:

2.128085278891394

The entropy for LoanAmount is quite high, so its values are quite random.

Note

To access the source code for this specific section, please refer to
https://packt.live/37T8DVz.

You can also run this example online at https://packt.live/2By7aI6.
You must execute the entire Notebook in order to get the desired result.

Here, you can see that the Employed column has the lowest entropy among the four
different columns because it has the least variation in terms of values.

By completing this exercise, you've learned how to manually calculate the entropy for
each column of a dataset.

Information Gain

When we partition the data points in a dataset according to the values of an attribute,
we reduce the entropy of the system.

To describe information gain, we can calculate the distribution of the labels. Initially,
in Figure 4.1, we had five creditworthy and two not creditworthy individuals in our
dataset. The entropy belonging to the initial distribution is as follows:

H_label = entropy([5/7, 2/7])

H_label

https://packt.live/37T8DVz
https://packt.live/2By7aI6

196 | An Introduction to Decision Trees

The output is as follows:

0.863120568566631

Let's see what happens if we partition the dataset based on whether the loan amount
is greater than 15,000 or not:

• In group 1, we get one data point belonging to the 15,000 loan amount. This data
point is not creditworthy.

• In group 2, we have five creditworthy individuals and one
non-creditworthy individual.

The entropy of the labels in each group is as follows.

For group 1, we have the following:

H_group1 = entropy([1])

H_group1

The output is as follows:

-0.0

For group 2, we have the following:

H_group2 = entropy([5/6, 1/6])

H_group2

The output is as follows:

0.6500224216483541

To calculate the information gain, let's calculate the weighted average of the
group entropies:

H_group1 * 1/7 + H_group2 * 6/7

The output is as follows:

0.5571620756985892

Now, to find the information gain, we need to calculate the difference between the
original entropy (H_label) and the one we just calculated:

Information_gain = 0.863120568566631 - 0.5572

Information_gain

Decision Trees | 197

The output is as follows:

0.30592056856663097

By splitting the data with this rule, we gain a little bit of information.

When creating the decision tree, on each node, our job is to partition the dataset
using a rule that maximizes the information gain.

We could also use Gini Impurity instead of entropy-based information gain to
construct the best rules for splitting decision trees.

Gini Impurity

Instead of entropy, there is another widely used metric that can be used to measure
the randomness of a distribution: Gini Impurity.

Gini Impurity is defined as follows:

Figure 4.7: Gini Impurity

pi here represents the probability of one of the possible values of the target
variable occurring.

Entropy may be a bit slower to calculate because of the usage of the logarithm. Gini
Impurity, on the other hand, is less precise when it comes to measuring randomness.

Note

Some programmers prefer Gini Impurity because you don't have to
calculate with logarithms. Computation-wise, none of the solutions
are particularly complex, and so both can be used. When it comes to
performance, the following study concluded that there are often just minimal
differences between the two metrics: https://www.unine.ch/files/live/sites/imi/
files/shared/documents/papers/Gini_index_fulltext.pdf.

https://www.unine.ch/files/live/sites/imi/files/shared/documents/papers/Gini_index_fulltext.pdf
https://www.unine.ch/files/live/sites/imi/files/shared/documents/papers/Gini_index_fulltext.pdf

198 | An Introduction to Decision Trees

With this, we have learned that we can optimize a decision tree by splitting the data
based on information gain or Gini Impurity. Unfortunately, these metrics are only
available for discrete values. What if the label is defined on a continuous interval such
as a price range or salary range?

We have to use other metrics. You can technically understand the idea behind
creating a decision tree based on a continuous label, which was about regression.
One metric we can reuse in this chapter is the mean squared error. Instead of
Gini Impurity or information gain, we have to minimize the mean squared error to
optimize the decision tree. As this is a beginner's course, we will omit this metric.

In the next section, we will discuss the exit condition for a decision tree.

Exit Condition

We can continuously split the data points according to more and more specific rules
until each leaf of the decision tree has an entropy of zero. The question is whether
this end state is desirable.

Often, this is not what we expect, because we risk overfitting the model. When our
rules for the model are too specific and too nitpicky, and the sample size that the
decision was made on is too small, we risk making a false conclusion, thus recognizing
a pattern in the dataset that simply does not exist in real life.

For instance, if we spin a roulette wheel three times and we get 12, 25, and 12, this
concludes that every odd spin resulting in the value 12 is not a sensible strategy.
By assuming that every odd spin equals 12, we find a rule that is exclusively due to
random noise.

Therefore, posing a restriction on the minimum size of the dataset that we can still
split is an exit condition that works well in practice. For instance, if you stop splitting
as soon as you have a dataset that's lower than 50, 100, 200, or 500 in size, you avoid
drawing conclusions on random noise, and so you minimize the risk of overfitting
the model.

Another popular exit condition is the maximum restriction on the depth of the tree.
Once we reach a fixed tree depth, we classify the data points in the leaves.

Decision Trees | 199

Building Decision Tree Classifiers Using scikit-learn

We have already learned how to load data from a .csv file, how to apply
preprocessing to data, and how to split data into training and testing datasets. If you
need to refresh yourself on this knowledge, you can go back to the previous chapters,
where you can go through this process in the context of regression and classification.

Now, we will assume that a set of training features, training labels, testing features,
and testing labels have been given as a return value of the scikit-learn train-
test-split call:

from sklearn import model_selection

features_train, features_test, \

label_train, label_test = \

model_selection.train_test_split(features, label, test_size=0.1, \

 random_state=8)

In the preceding code snippet, we used train_test_split to split the dataset
(features and labels) into training and testing sets. The testing set represents 10% of
the observation (test_size=0.1). The random_state parameter is used to get
reproducible results.

We will not focus on how we got these data points because this process is exactly the
same as in the case of regression and classification.

It's time to import and use the decision tree classifier of scikit-learn:

from sklearn.tree import DecisionTreeClassifier

decision_tree = DecisionTreeClassifier(max_depth=6)

decision_tree.fit(features_train, label_train)

We set one optional parameter in DecisionTreeClassifier, that is,
max_depth, to limit the depth of the decision tree.

Note

You can read the official documentation for the full list of parameters: http://
scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.
html.

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

200 | An Introduction to Decision Trees

Some of the more important parameters are as follows:

• criterion: Gini stands for Gini Impurity, while entropy stands for information
gain. This will define which measure will be used to assess the quality of a split at
each node.

• max_depth: This is the parameter that defines the maximum depth of the tree.

• min_samples_split: This is the minimum number of samples needed to
split an internal node.

You can also experiment with all the other parameters that were enumerated in the
documentation. We will omit them in this section.

Once the model has been built, we can use the decision tree classifier to predict data:

decision_tree.predict(features_test)

You will build a decision tree classifier in the activity at the end of this section.

Performance Metrics for Classifiers

After splitting the training and testing data, the decision tree model has a score
method to evaluate how well testing data is classified by the model (also known
as the accuracy score). We learned how to use the score method in the previous
two chapters:

decision_tree.score(features_test, label_test)

The return value of the score method is a number that's less than or equal to 1. The
closer we get to 1, the better our model is.

Now, we will learn about another way to evaluate the model.

Note

Feel free to use this method on the models you constructed in the previous
chapter as well.

Suppose we have one test feature and one test label:

predicted_label = decision_tree.predict(features_test)

Decision Trees | 201

Let's use the previous creditworthy example and assume we trained a decision tree
and now have its predictions:

Figure 4.8: Sample dataset to formulate the rules

Our model, in general, made good predictions but had few errors. It incorrectly
predicted the results for IDs A, D, and E. Its accuracy score will be 4 / 7 = 0.57.

We will use the following definitions to define some metrics that will help you
evaluate how good your classifier is:

• True positive (or TP): All the observations where the true label (the
Creditworthy column, in our example) and the corresponding predictions
both have the value Yes. In our example, IDs C, F, and G will fall under
this category.

• True negative (or TN): All the observations where the true label and the
corresponding predictions both have the value No. Only ID B will be classified as
true negative.

• False positive (or FP): All the observations where the prediction is Yes but the
true label is actually No. This will be the case for ID A.

• False negative (or FN): All the observations where the prediction is No but the
true label is actually Yes, such as for IDs D and E.

202 | An Introduction to Decision Trees

Using the preceding four definitions, we can define four metrics that describe how
well our model predicts the target variable. The #(X) symbol denotes the number
of values in X. Using technical terms, #(X) denotes the cardinality of X:

Definition (Accuracy): #(True Positives) + #(True Negatives) / #(Dataset)

Accuracy is a metric that's used for determining how many times the classifier
gives us the correct answer. This is the first metric we used to evaluate the score of
a classifier.

In our previous example (Figure 4.8), the accuracy score will be TP + TN / total = (3 + 1)
/ 7 = 4/7.

We can use the function provided by scikit-learn to calculate the accuracy of a model:

from sklearn.metrics import accuracy_score

accuracy_score(label_test, predicted_label)

Definition (Precision): #TruePositives / (#TruePositives + #FalsePositives)

Precision centers around values that our classifier found to be positive. Some of these
results are true positive, while others are false positive. High precision means that the
number of false positive results is very low compared to the true positive results. This
means that a precise classifier rarely makes a mistake when finding a positive result.

Definition (Recall): #True Positives / (#True Positives + #False Negatives)

Recall centers around values that are positive among the test data. Some of these
results are found by the classifier. These are the true positive values. Those positive
values that are not found by the classifier are false negatives. A classifier with a high
recall value finds most of the positive values.

Using our previous example (Figure 4.8), we will get the following measures:

• Precision = TP / (TP + FP) = 4 / (4 + 1) = 4/6 = 0.8

• Recall = TP / (TP + FN) = 4 / (4 + 2) = 4/6 = 0.6667

With these two measures, we can easily see where our model is performing better
or worse. In this example, we know it tends to misclassify false negative cases.
These measures are more granular than the accuracy score, which only gives you an
overall score.

Decision Trees | 203

The F1 score is a metric that combines precision and recall scores. Its value ranges
between 0 and 1. If the F1 score equals 1, it means the model is perfectly predicting
the right outcomes. On the other hand, an F1 score of 0 means the model cannot
predict the target variable accurately. The advantage of the F1 score is that it
considers both false positives and false negatives.

The formula for calculating the F1 score is as follows:

Figure 4.9: Formula to calculate the F1 score

As a final note, the scikit-learn package also provides a handy function that can show
all these measures in one go: classification_report(). A classification report
is useful to check the quality of our predictions:

from sklearn.metrics import classification_report

print(classification_report(label_test, predicted_label))

In the next exercise, we will be practicing how to calculate these scores manually.

Exercise 4.02: Precision, Recall, and F1 Score Calculation

In this exercise, we will calculate the precision, recall value, and the F1 score of two
different classifiers on a simulated dataset.

The following steps will help you complete this exercise:

1. Open a new Jupyter Notebook file.

2. Import the numpy package as np using the following code:

import numpy as np

3. Create a numpy array called real_labels that contains the values [True,
True, False, True, True]. This list will represent the true values of the
target variable for our simulated dataset. Print its content:

real_labels = np.array([True, True, False, True, True])

real_labels

204 | An Introduction to Decision Trees

The expected output will be as follows:

array([True, True, False, True, True])

4. Create a numpy array called model_1_preds that contains the values [True,
False, False, False, False]. This list will represent the predicted
values of the first classifier. Print its content:

model_1_preds = np.array([True, False, False, False, False])

model_1_preds

The expected output will be as follows:

array([True, False, False, False, False])

5. Create another numpy array called model_2_preds that contains the values
[True, True, True, True, True]. This list will represent the predicted
values of the first classifier. Print its content:

model_2_preds = np.array([True, True, True, True, True])

model_2_preds

The expected output will be as follows:

array([True, True, True, True, True])

6. Create a variable called model_1_tp_cond that will find the true positives for
the first model:

model_1_tp_cond = (real_labels == True) \

 & (model_1_preds == True)

model_1_tp_cond

The expected output will be as follows:

array([True, False, False, False, False])

7. Create a variable called model_1_tp that will get the number of true positives
for the first model by summing model_1_tp_cond:

model_1_tp = model_1_tp_cond.sum()

model_1_tp

The expected output will be as follows:

1

There is only 1 true positive case for the first model.

Decision Trees | 205

8. Create a variable called model_1_fp that will get the number of false positives
for the first model:

model_1_fp = ((real_labels == False) \

 & (model_1_preds == True)).sum()

model_1_fp

The expected output will be as follows:

0

There is no false positive for the first model.

9. Create a variable called model_1_fn that will get the number of false negatives
for the first model:

model_1_fn = ((real_labels == True) \

 & (model_1_preds == False)).sum()

model_1_fn

The expected output will be as follows:

3

The first classifier presents 3 false negative cases.

10. Create a variable called model_1_precision that will calculate the precision
for the first model:

model_1_precision = model_1_tp / (model_1_tp + model_1_fp)

model_1_precision

The expected output will be as follows:

1.0

The first classifier has a precision score of 1, so it didn't predict any
false positives.

11. Create a variable called model_1_recall that will calculate the recall for the
first model:

model_1_recall = model_1_tp / (model_1_tp + model_1_fn)

model_1_recall

The expected output will be as follows:

0.25

206 | An Introduction to Decision Trees

The recall score for the first model is only 0.25, so it is predicting quite a lot of
false negatives.

12. Create a variable called model_1_f1 that will calculate the F1 score for the
first model:

model_1_f1 = 2*model_1_precision * model_1_recall\

 / (model_1_precision + model_1_recall)

model_1_f1

The expected output will be as follows:

0.4

As expected, the F1 score is quite low for the first model.

13. Create a variable called model_2_tp that will get the number of true positives
for the second model:

model_2_tp = ((real_labels == True) \

 & (model_2_preds == True)).sum()

model_2_tp

The expected output will be as follows:

4

There are 4 true positive cases for the second model.

14. Create a variable called model_2_fp that will get the number of false positives
for the second model:

model_2_fp = ((real_labels == False) \

 & (model_2_preds == True)).sum()

model_2_fp

The expected output will be as follows:

1

There is only one false positive for the second model.

15. Create a variable called model_2_fn that will get the number of false negatives
for the second model:

model_2_fn = ((real_labels == True) \

 & (model_2_preds == False)).sum()

model_2_fn

Decision Trees | 207

The expected output will be as follows:

0

There is no false negative for the second classifier.

16. Create a variable called model_2_precision that will calculate precision for
the second model:

model_2_precision = model_2_tp / (model_2_tp + model_2_fp)

model_2_precision

The expected output will be as follows:

0.8

The precision score for the second model is quite high: 0.8. It is not making too
many mistakes regarding false positives.

17. Create a variable called model_2_recall that will calculate recall for the
second model:

model_2_recall = model_2_tp / (model_2_tp + model_2_fn)

model_2_recall

The expected output will be as follows:

1.0

In terms of recall, the second classifier did a great job and didn't misclassify
observations to false negatives.

18. Create a variable called model_2_f1 that will calculate the F1 score for the
second model:

model_2_f1 = 2*model_2_precision*model_2_recall \

 / (model_2_precision + model_2_recall)

model_2_f1

The expected output will be as follows:

0.888888888888889

208 | An Introduction to Decision Trees

The F1 score is quite high for the second model.

Note

To access the source code for this specific section, please refer to
https://packt.live/3evqbtu.

You can also run this example online at https://packt.live/2NoxLdo.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how to manually calculate the precision, recall, and F1 score
for two different models. The first classifier has excellent precision but bad recall,
while the second classifier has excellent recall and quite good precision.

Evaluating the Performance of Classifiers with scikit-learn

The scikit-learn package provides some functions for automatically calculating the
precision, recall, and F1 score for you. You will need to import them first:

from sklearn.metrics import recall_score, \

precision_score, f1_score

To get the precision score, you will need to get the predictions from your model, as
shown in the following code snippet:

label_predicted = decision_tree.predict(data)

precision_score(label_test, predicted_label, \

 average='weighted')

Calculating the recall_score can be done like so:

recall_score(label_test, label_predicted, average='weighted')

Calculating the f1_score can be done like so:

f1_score(label_test, predicted_label, average='weighted')

In the next section, we will learn how to use another tool, called the confusion matrix,
to analyze the performance of a classifier.

https://packt.live/3evqbtu
https://packt.live/2NoxLdo

The Confusion Matrix | 209

The Confusion Matrix
Previously, we learned how to use some calculated metrics to assess the performance
of a classifier. There is another very interesting tool that can help you evaluate the
performance of a multi-class classification model: the confusion matrix.

A confusion matrix is a square matrix where the number of rows and columns equals
the number of distinct label values (or classes). In the columns of the matrix, we place
each test label value. In the rows of the matrix, we place each predicted label value.

A confusion matrix looks like this:

Figure 4.10: Sample confusion matrix

In the preceding example, the first row of the confusion matrix is showing us that the
model is doing the following:

• Correctly predicting class A 88 times

• Predicting class A when the true value is B 3 times

• Predicting class A when the true value is C 2 times

We can also see the scenario where the model is making a lot of mistakes when it is
predicting C while the true value is A (16 times). A confusion matrix is a powerful tool
to quickly and easily spot which classes your model is performing well or badly for.

The scikit-learn package provides a function to calculate and display a
confusion matrix:

from sklearn.metrics import confusion_matrix

confusion_matrix(label_test, predicted_label)

In the next activity, you will be building a decision tree that will classify cars as
unacceptable, acceptable, good, and very good for customers.

210 | An Introduction to Decision Trees

Activity 4.01: Car Data Classification

In this activity, you will build a reliable decision tree model that's capable of aiding
a company in finding cars that clients are likely to buy. We will be assuming that the
car rental agency is focusing on building a lasting relationship with its clients. Your
task is to build a decision tree model that classifies cars into one of four categories:
unacceptable, acceptable, good, and very good.

Note

The dataset file can also be found in our GitHub repository:
https://packt.live/2V95I6h.

The dataset for this activity can be accessed here: https://archive.ics.uci.edu/
ml/datasets/Car+Evaluation.

Citation – Dua, D., & Graff, C.. (2017). UCI Machine Learning Repository.

It is composed of six different features: buying, maintenance, doors, persons,
luggage_boot, and safety. The target variable ranks the level of acceptability for
a given car. It can take four different values: unacc, acc, good, and vgood.

The following steps will help you complete this activity:

1. Load the dataset into Python and import the necessary libaries.

2. Perform label encoding with LabelEncoder() from scikit-learn.

3. Extract the label variable using pop() from pandas.

4. Now, separate the training and testing data with train_test_spit() from
scikit-learn. We will use 10% of the data as test data.

5. Build the decision tree classifier using DecisionTreeClassifier() and its
methods, fit() and predict().

6. Check the score of our model based on the test data with score().

7. Create a deeper evaluation of the model using classification_report()
from scikit-learn.

https://packt.live/2V95I6h
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

Random Forest Classifier | 211

Expected output:

Figure 4.11: Output showing the expected classification report

Note

The solution to this activity can be found on page 353.

In the next section we will be looking at Random Forest Classifier.

Random Forest Classifier
If you think about the name random forest classifier, it can be explained as follows:

• A forest consists of multiple trees.

• These trees can be used for classification.

• Since the only tree we have used so far for classification is a decision tree, it
makes sense that the random forest is a forest of decision trees.

• The random nature of the trees means that our decision trees are constructed in
a randomized manner.

Therefore, we will base our decision tree construction on information gain or
Gini Impurity.

212 | An Introduction to Decision Trees

Once you understand these basic concepts, you essentially know what a random
forest classifier is all about. The more trees you have in the forest, the more
accurate prediction is going to be. When performing prediction, each tree performs
classification. We collect the results, and the class that gets the most votes wins.

Random forests can be used for regression as well as for classification. When using
random forests for regression, instead of counting the most votes for a class, we
take the average of the arithmetic mean (average) of the prediction results and
return it. Random forests are not as ideal for regression as they are for classification,
though, because the models that are used to predict values are often out of control,
and often return a wide range of values. The average of these values is often
not too meaningful. Managing the noise in a regression exercise is harder than
in classification.

Random forests are often better than one simple decision tree because they
provide redundancy. They treat outlier values better and have a lower probability
of overfitting the model. Decision trees seem to behave great as long as you are
using them on the data that was used when creating the model. Once you use them
to predict new data, random forests lose their edge. Random forests are widely
used for classification problems, whether it be customer segmentation for banks or
e-commerce, classifying images, or medicine. If you own an Xbox with Kinect, your
Kinect device contains a random forest classifier to detect your body.

Random forest is an ensemble algorithm. The idea behind ensemble learning is that
we take an aggregated view of a decision of multiple agents that potentially have
different weaknesses. Due to the aggregated vote, these weaknesses cancel out, and
the majority vote likely represents the correct result.

Random Forest Classification Using scikit-learn

As you may have guessed, the scikit-learn package provides an implementation of the
RandomForest classifier with the RandomForestClassifier class. This class
provides the exact same methods as all the scikit-learn models you have seen so far
– you need to instantiate a model, then fit it with the training set with .fit(), and
finally make predictions with .predict():

from sklearn.ensemble import RandomForestClassifier

random_forest_classifier = RandomForestClassifier()

random_forest_classifier.fit(features_train, label_train)

labels_predicted = random_forest_classifier.predict\

 (features_test)

Random Forest Classifier | 213

In the next section, we will be looking at the parameterization of the random
forest classifier.

The Parameterization of the Random Forest Classifier

We will be considering a subset of the possible parameters, based on what we
already know, which is based on the description of constructing random forests:

• n_estimators: The number of trees in the random forest. The default value
is 10.

• criterion: Use Gini or entropy to determine whether you use Gini Impurity or
information gain using the entropy in each tree. This will be used to find the best
split at each node.

• max_features: The maximum number of features considered in any tree of
the forest. Possible values include an integer. You can also add some strings
such as sqrt for the square root of the number of features.

• max_depth: The maximum depth of each tree.

• min_samples_split: The minimum number of samples in the dataset in a
given node to perform a split. This may also reduce the tree's size.

• bootstrap: A Boolean that indicates whether to use bootstrapping on data
points when constructing trees.

Feature Importance

A random forest classifier gives you information on how important each feature in
the data classification process is. Remember, we used a lot of randomly constructed
decision trees to classify data points. We can measure how accurately these data
points behave, and we can also see which features are vital when it comes to
decision-making.

We can retrieve the array of feature importance scores with the following query:

random_forest_classifier.feature_importances_

In this six-feature classifier, the fourth and sixth features are clearly a lot more
important than any other features. The third feature has a very low importance score.

214 | An Introduction to Decision Trees

Feature importance scores come in handy when we have a lot of features and we
want to reduce the feature size to avoid the classifier getting lost in the details. When
we have a lot of features, we risk overfitting the model. Therefore, reducing the
number of features by dropping the least significant ones is often helpful.

Cross-Validation

Earlier, we learned how to use different metrics to assess the performance of a
classifier, such as the accuracy, precision, recall, or the F1 score on a training and
testing set. The objective is to have a high score on both sets that are very close to
each other. In that case, your model is performant and not prone to overfitting.

The test set is used as a proxy to evaluate whether your model can generalize well to
unseen data or whether it learns patterns that are only relevant to the training set.

But in the case of having quite a few hyperparameters to tune (such as for
RandomForest), you will have to train a lot of different models and test them on
your testing set. This kind of defeats the purpose of the testing set. Think of the
testing set as the final exam that will define whether you pass a subject or not. You
will not be allowed to pass and repass it over and over.

One solution for avoiding using the testing set too much is creating a validation set.
You will train your model on the training set and use the validation set to assess its
score according to different combinations of hyperparameters. Once you find your
best model, you will use the testing set to make sure it doesn't overfit too much. This
is, in general, the suggested approach for any data science project.

The drawback of this approach is that you are reducing the number of observations
for the training set. If you have a dataset with millions of rows, it is not a problem. But
for a small dataset, this can be problematic. This is where cross-validation comes in.

The following Figure 4.12, shows that this is a technique where you create multiple
splits of the training data. For each split, the training data is separated into folds
(five, in this example) and one of the folds will be used as the validation set while the
others will be used for training.

Random Forest Classifier | 215

For instance, for the top split, fold 5 will be used for validation and the four other
folds (1 to 4) will be used to train the model. You will follow the same process for each
split. After going through each split, you will have used the entire training data and
the final performance score will be the average of all the models that were trained on
each split:

Figure 4.12: Cross-validation example

With scikit-learn, you can easily perform cross-validation, as shown in the following
code snippet:

from sklearn.ensemble import RandomForestClassifier

random_forest_classifier = RandomForestClassifier()

from sklearn.model_selection import cross_val_score

cross_val_score(random_forest_classifier, features_train, \

 label_train, cv=5, scoring='accuracy')

216 | An Introduction to Decision Trees

cross_val_score takes two parameters:

• cv: Specifies the number of splits.

• scoring: Defines which performance metrics you want to use. You can find the
list of possible values here: https://scikit-learn.org/stable/modules/model_evaluation.
html#scoring-parameter.

In the next section, we will look at a specific variant of RandomForest, called
extratrees.

Extremely Randomized Trees

Extremely randomized trees increase the randomization inside random forests by
randomizing the splitting rules on top of the already randomized factors in random
forests.

Parameterization is like the random forest classifier. You can see the full list of
parameters here: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
ExtraTreesClassifier.html.

The Python implementation is as follows:

from sklearn.ensemble import ExtraTreesClassifier

extra_trees_classifier = \

ExtraTreesClassifier(n_estimators=100, \

 max_depth=6)

extra_trees_classifier.fit(features_train, label_train)

labels_predicted = extra_trees_classifier.predict(features_test)

In the following activity, we will be optimizing the classifier built in Activity 4.01,
Car Data Classification.

https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

Random Forest Classifier | 217

Activity 4.02: Random Forest Classification for Your Car Rental Company

In this activity, you will optimize your classifier so that you satisfy your clients more
when selecting future cars for your car fleet. We will be performing random forest
and extreme random forest classification on the car dealership dataset that you
worked on in the previous activity of this chapter.

The following steps will help you complete this activity:

1. Follow Steps 1 - 4 of the previous Activity 4.01, Car Data Classification.

2. Create a random forest using RandomForestClassifier.

3. Train the models using .fit().

4. Import the confusion_matrix function to find the quality of the
RandomForest.

5. Print the classification report using classification_report().

6. Print the feature importance with .feature_importance_.

7. Repeat Steps 2 to 6 with an extratrees model.

Expected output:

array([0.08844544, 0.0702334 , 0.01440408, 0.37662014,

 0.05965896, 0.39063797])

Note

The solution to this activity can be found on page 357.

By completing this activity, you've learned how to fit the RandomForest and
extratrees models and analyze their classification report and feature importance.
Now, you can try different hyperparameters on your own and see if you can improve
their results.

218 | An Introduction to Decision Trees

Summary
In this chapter, we learned how to use decision trees for prediction. Using ensemble
learning techniques, we created complex reinforcement learning models to predict
the class of an arbitrary data point.

Decision trees proved to be very accurate on the surface, but they were prone to
overfitting the model. Random forests and extremely randomized trees reduce
overfitting by introducing some random elements and a voting algorithm, where the
majority wins.

Beyond decision trees, random forests, and extremely randomized trees, we also
learned about new methods for evaluating the utility of a model. After using the
well-known accuracy score, we started using the precision, recall, and F1 score metrics
to evaluate how well our classifier works. All of these values were derived from the
confusion matrix.

In the next chapter, we will describe the clustering problem and compare and
contrast two clustering algorithms.

Overview

This chapter will introduce you to the fundamentals of clustering, an
unsupervised learning approach in contrast with the supervised learning
approaches seen in the previous chapters. You will be implementing
different types of clustering, including flat clustering with the k-means
algorithm and hierarchical clustering with the mean shift algorithm and
the agglomerative hierarchical model. You will also learn how to evaluate
the performance of your clustering model using intrinsic and extrinsic
approaches. By the end of this chapter, you will be able to analyze data
using clustering and apply this skill to solve challenges across a variety
of fields.

5
Artificial Intelligence:

Clustering

222 | Artificial Intelligence: Clustering

Introduction
In the previous chapter, you were introduced to decision trees and their applications
in classification. You were also introduced to regression in Chapter 2, An Introduction
to Regression. Both regression and classification are part of the supervised learning
approach. However, in this chapter, we will be looking at the unsupervised learning
approach; we will be dealing with datasets that don't have any labels (outputs). It is
up to the machines to tell us what the labels will be based on a set of parameters
that we define. In this chapter, we will be performing unsupervised learning by using
clustering algorithms.

We will use clustering to analyze data to find certain patterns and create groups.
Apart from that, clustering can be used for many purposes:

• Market segmentation detects the best stocks in the market you should be
focusing on.

• Customer segmentation detects customer cohorts using their consumption
patterns to recommend products better.

• In computer vision, image segmentation is performed using clustering. Using
this, we can find different objects in an image.

• Clustering can be also be combined with classification to generate a compact
representation of multiple features (inputs), which can then be fed to a classifier.

• Clustering can also filter data points by detecting outliers.

Regardless of whether we are applying clustering to genetics, videos, images, or social
networks, if we analyze data using clustering, we may find similarities between data
points that are worth treating uniformly.

For instance, consider a store manager, who is responsible for ensuring the
profitability of their store. The products in the store are divided into different
categories, and there are different customers who prefer different items. Each
customer has their own preferences, but they have some similarities between them.
You might have a customer who is interested in bio products, who tends to choose
organic products, which are also of interest to a vegetarian customer. Even if they are
different, they have similarities in their preferences or patterns as they both tend to
buy organic vegetables. This can be treated as an example of clustering.

Defining the Clustering Problem | 223

In Chapter 3, An Introduction to Classification, you learned about classification, which is
a part of the supervised learning approach. In a classification problem, we use labels
to train a model in order to be able to classify data points. With clustering, as we do
not have labels for our features, we need to let the model figure out the clusters to
which these features belong. This is usually based on the distance between each
data point.

In this chapter, you will learn about the k-means algorithm, which is the most
widely used algorithm for clustering, but first, we need to define what the clustering
problem is.

Defining the Clustering Problem
We shall define the clustering problem so that we will be able to find similarities
between our data points. For instance, suppose we have a dataset that consists of
points. Clustering helps us understand this structure by describing how these points
are distributed.

Let's look at an example of data points in a two-dimensional space in Figure 5.1:

Figure 5.1: Data points in a two-dimensional space

224 | Artificial Intelligence: Clustering

Now, have a look, at Figure 5.2. It is evident that there are three clusters:

Figure 5.2: Three clusters formed using the data points in a two-dimensional space

The three clusters were easy to detect because the points are close to one another.
Here, you can see that clustering determines the data points that are close to each
other. You may have also noticed that the data points M1, O1, and N1 do not belong
to any cluster; these are the outlier points. The clustering algorithm you build
should be prepared to treat these outlier points properly, without moving them into
a cluster.

While it is easy to recognize clusters in a two-dimensional space, we normally have
multidimensional data points, which is where we have more than two features.
Therefore, it is important to know which data points are close to one other. Also, it is
important to define the distance metrics that detect whether data points are close to
each other. One well-known distance metric is Euclidean distance, which we learned
about in Chapter 1, Introduction to Artificial Intelligence. In mathematics, we often use
Euclidean distance to measure the distance between two points. Therefore, Euclidean
distance is an intuitive choice when it comes to clustering algorithms so that we can
determine the proximity of data points when locating clusters.

Clustering Approaches | 225

However, there is one drawback to most distance metrics, including Euclidean
distance: the more we increase the dimensions, the more uniform these distances
will become compared to each other. When we only have a few dimensions or
features, it is easy to see which point is the closest to another one. However, when
we add more features, the relevant features get embedded with all the other data
and it becomes very hard to distinguish the relevant features from the others as they
act as noise for our model. Therefore, getting rid of these noisy features may greatly
increase the accuracy of our clustering model.

Note

Noise in a dataset can be irrelevant information or randomness that
is unwanted.

In the next section, we will be looking at two different clustering approaches.

Clustering Approaches
There are two types of clustering:

• Flat

• Hierarchical

In flat clustering, we specify the number of clusters we would like the machine to
find. One example of flat clustering is the k-means algorithm, where k specifies the
number of clusters we would like the algorithm to use.

In hierarchical clustering, however, the machine learning algorithm itself finds out the
number of clusters that are needed.

Hierarchical clustering also has two approaches:

• Agglomerative or bottom-up hierarchical clustering treats each point as
a cluster to begin with. Then, the closest clusters are grouped together. The
grouping is repeated until we reach a single cluster with every data point.

• Divisive or top-down hierarchical clustering treats data points as if they
were all in one single cluster at the start. Then the cluster is divided into smaller
clusters by choosing the furthest data points. The splitting is repeated until each
data point becomes its own cluster.

226 | Artificial Intelligence: Clustering

Figure 5.3 gives you a much more accurate description of these two
clustering approaches.

Figure 5.3: Figure showing the two approaches

Now that we are familiar with the different clustering approaches, let's take a look at
the different clustering algorithms supported by scikit-learn.

Clustering Approaches | 227

Clustering Algorithms Supported by scikit-learn

In this chapter, we will learn about two clustering algorithms supported by
scikit-learn:

• The k-means algorithm

• The mean shift algorithm

K-means is an example of flat clustering, where we must specify the number of
clusters in advance. k-means is a general-purpose clustering algorithm that performs
well if the number of clusters is not too high and the size of the clusters is uniform.

Mean shift is an example of hierarchical clustering, where the clustering algorithm
determines the number of clusters. Mean shift is used when we do not know the
number of clusters in advance. In contrast with k-means, mean shift supports use
cases where there may be many clusters present, even if the size of the clusters
greatly varies.

Scikit-learn contains many other algorithms, but we will be focusing on the k-means
and mean shift algorithms in this chapter.

Note

For a complete description of clustering algorithms, including performance
comparisons, visit the clustering page of scikit-learn at http://scikit-learn.org/
stable/modules/clustering.html.

http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html

228 | Artificial Intelligence: Clustering

In the next section, we begin with the k-means algorithm.

The K-Means Algorithm
The k-means algorithm is a flat clustering algorithm, as mentioned previously. It
works as follows:

• Set the value of k.

• Choose k data points from the dataset that are the initial centers of the
individual clusters.

• Calculate the distance from each data point to the chosen center points
and group each point in the cluster whose initial center is the closest to the
data point.

• Once all the points are in one of the k clusters, calculate the center point of
each cluster. This center point does not have to be an existing data point in the
dataset; it is simply an average.

• Repeat this process of assigning each data point to the cluster whose center
is closest to the data point. Repetition continues until the center points no
longer move.

To ensure that the k-means algorithm terminates, we need the following:

• A maximum threshold value at which the algorithm will then terminate

• A maximum number of repetitions of shifting the moving points

Due to the nature of the k-means algorithm, it will have a hard time dealing with
clusters that greatly vary in size.

The k-means algorithm has many use cases that are part of our everyday lives,
such as:

• Market segmentation: Companies gather all sorts of data on their customers.
Performing k-means clustering analysis on their customers will reveal customer
segments (clusters) with defined characteristics. Customers belonging to the
same segment can be seen as having similar patterns or preferences.

• Tagging of content: Any content (videos, books, documents, movies, or photos)
can be assigned tags in order to group together similar content or themes. These
tags are the result of clustering.

The K-Means Algorithm | 229

• Detection of fraud and criminal activities: Fraudsters often leave clues in
the form of unusual behaviors compared to other customers. For instance, in
the car insurance industry, a normal customer will make a claim for a damaged
car arising from an incident, whereas fraudsters will make claims for deliberate
damage. Clustering can help detect whether the damage has arisen from a real
accident or from a fake accident.

In the next exercise, we will be implementing the k-means algorithm in scikit-learn.

Exercise 5.01: Implementing K-Means in scikit-learn

In this exercise, we will be plotting a dataset in a two-dimensional plane and
performing clustering on it using the k-means algorithm.

The following steps will help you complete this exercise:

1. Open a new Jupyter Notebook file.

2. Now create an artificial dataset as a NumPy array to demonstrate the k-means
algorithm. The data points are shown in the following code snippet:

import numpy as np

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

3. Now, plot these data points in the two-dimensional plane using
matplotlib.pyplot, as shown in the following code snippet:

import matplotlib.pyplot as plot

plot.scatter(data_points.transpose()[0], \

 data_points.transpose()[1])

230 | Artificial Intelligence: Clustering

The expected output is this:

Figure 5.4: Graph showing the data points on a two-dimensional plane
using matplotlib.pyplot

Note

We used the transpose array method to get the values of the first
feature and the second feature. We could also use proper array indexing
to access these columns: dataPoints[:,0], which is equivalent to
dataPoints.transpose()[0].

Now that we have the data points, it is time to execute the k-means algorithm
on them.

The K-Means Algorithm | 231

4. Define k as 3 in the k-means algorithm. We expect a cluster in the bottom-left,
top-left, and bottom-right corners of the graph. Add random_state = 8 in
order to reproduce the same results:

from sklearn.cluster import KMeans

k_means_model = KMeans(n_clusters=3,random_state=8)

k_means_model.fit(data_points)

In the preceding code snippet, we have used the KMeans module from
sklearn.cluster. As always with sklearn, we need to define a model with
the parameter and then fit the model on the dataset.

The expected output is this:

KMeans(algorithm='auto', copy_x=True, init='k-means++',

 max_iter=300, n_clusters=3, n_init=10, n_jobs=None,

 precompute_distances='auto',

 random_state=8, tol=0.0001, verbose=0)

The output shows all the parameters for our k-means models, but the important
ones are:

max_iter: Represents the maximum number of times the k-means algorithm
will iterate through.

n_clusters: Represents the number of clusters to be formed by the
k-means algorithm.

n_init: Represents the number of times the k-means algorithm will initialize a
random point.

tol: Represents the threshold for checking whether the k-means algorithm
can terminate.

5. Once the clustering is done, access the center point of each cluster as shown in
the following code snippet:

centers = k_means_model.cluster_centers_

centers

232 | Artificial Intelligence: Clustering

The output of centers will be as follows:

array([[7.625 , 0.75],

 [3.1 , 9.6],

 [1.33333333, 1.5]])

This output is showing the coordinates of the center of our three clusters. If you
look back at Figure 5.4, you will see that the center points of the clusters appear
to be in the bottom-left, (1.3, 1.5), the top-left (3.1, 9.6), and the bottom-
right (7.265, 0.75) corners of the graph. The x coordinate of the top-left
cluster is 3.1, most likely because it contains our outlier data point at
[10, 10].

6. Next, plot the clusters with different colors and their center points. To find out
which data point belongs to which cluster, we must query the labels property
of the k-means classifier, as shown in the following code snippet:

labels = k_means_model.labels_

labels

The output of labels will be as follows:

array([2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1])

The output array shows which data point belongs to which cluster. This is all we
need to plot the data.

7. Now, plot the data as shown in the following code snippet:

plot.scatter(centers[:,0], centers[:,1])

for i in range(len(data_points)):

 plot.plot(data_points[i][0], data_points[i][1], \

 ['k+','kx','k_'][k_means_model.labels_[i]])

plot.show()

In the preceding code snippets, we used the matplotlib library to plot the
data points with the center of each coordinate. Each cluster has its marker (x, +,
and -), and its center is represented by a filled circle.

The K-Means Algorithm | 233

The expected output is this:

Figure 5.5: Graph showing the center points of the three clusters

Having a look at Figure 5.5, you can see that the center points are inside their
clusters, which are represented by the x, +, and - marks.

8. Now, reuse the same code and choose only two clusters instead of three:

k_means_model = KMeans(n_clusters=2,random_state=8)

k_means_model.fit(data_points)

centers2 = k_means_model.cluster_centers_

labels2 = k_means_model.labels_

plot.scatter(centers2[:,0], centers2[:,1])

for i in range(len(data_points)):

 plot.plot(data_points[i][0], data_points[i][1], \

 ['k+','kx'][labels2[i]])

plot.show()

234 | Artificial Intelligence: Clustering

The expected output is this:

Figure 5.6: Graph showing the data points of the two clusters

This time, we only have x and + points, and we can clearly see a bottom cluster
and a top cluster. Interestingly, the top cluster in the second try contains the
same points as the top cluster in the first try. The bottom cluster of the second
try consists of the data points joining the bottom-left and the bottom-right
clusters of the first try.

9. Finally, use the k-means model for prediction as shown in the following code
snippet. The output will be an array containing the cluster numbers belonging to
each data point:

predictions = k_means_model.predict([[5,5],[0,10]])

predictions

The output of predictions is as follows:

array([0, 1], dtype=int32)

The K-Means Algorithm | 235

This means that our first point belongs to the first cluster (at the bottom) and the
second point belongs to the second cluster (at the top).

Note

To access the source code for this specific section, please refer to
https://packt.live/2CpvMDo.

You can also run this example online at https://packt.live/2Nnv7F2.
You must execute the entire Notebook in order to get the desired result.

By completing this exercise, you were able to use a simple k-means clustering model
on sample data points.

The Parameterization of the K-Means Algorithm in scikit-learn

Like the classification and regression models in Chapter 2, An Introduction to
Regression, Chapter 3, An Introduction to Classification, and Chapter 4, An Introduction to
Decision Trees, the k-means algorithm can also be parameterized. The complete list
of parameters can be found at http://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html.

Some examples are as follows:

• n_clusters: The number of clusters into which the data points are separated.
The default value is 8.

• max_iter: The maximum number of iterations.

• tol: The threshold for checking whether we can terminate the
k-means algorithm.

We also used two attributes to retrieve the cluster center points and the
clusters themselves:

• cluster_centers_: This returns the coordinates of the cluster center points.

• labels_: This returns an array of integers representing the number of clusters
the data point belongs to. Numbering starts from zero.

https://packt.live/2CpvMDo
https://packt.live/2Nnv7F2
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

236 | Artificial Intelligence: Clustering

Exercise 5.02: Retrieving the Center Points and the Labels

In this exercise, you will be able to understand the usage of cluster_centers_
and labels_.

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Next, create the same 12 data points from Exercise 5.01, Implementing K-Means in
scikit-learn, but here, perform k-means clustering with four clusters, as shown in
the following code snippet:

import numpy as np

import matplotlib.pyplot as plot

from sklearn.cluster import KMeans

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

k_means_model = KMeans(n_clusters=4,random_state=8)

k_means_model.fit(data_points)

centers = k_means_model.cluster_centers_

centers

The output of centers is as follows:

array([[7.625 , 0.75],

 [1.375 , 9.5],

 [1.33333333, 1.5],

 [10. , 10.]])

The output of the cluster_centers_ property shows the x and y coordinates
of the center points.

From the output, we can see the 4 centers, which are bottom right (7.6,
0.75), top left (1.3, 9.5), bottom left (1.3, 1.5), and top right (10, 10).
We can also note that the fourth cluster (the top-right cluster) is only made of a
single data point. This data point can be assumed to be an outlier.

The K-Means Algorithm | 237

3. Now, apply labels_ property on the cluster:

labels = k_means_model.labels_

labels

The output of labels is as follows:

array([2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 3, 1], dtype=int32)

The labels_ property is an array of length 12, showing the cluster of each of
the 12 data points it belongs to. The first cluster is associated with the number
0, the second is associated with 1, the third is associated with 2, and so on
(remember that Python indexes always start from 0 and not 1).

Note

To access the source code for this specific section, please refer to
https://packt.live/3dmHsDX.

You can also run this example online at https://packt.live/2B0ebld.
You must execute the entire Notebook in order to get the desired result.

By completing this exercise, you were able to retrieve the coordinates of a cluster's
center. You were also able to see which label (cluster) each data point has been
assigned to.

K-Means Clustering of Sales Data

In the upcoming activity, we will be looking at sales data, and we will perform k-means
clustering on that sales data.

https://packt.live/3dmHsDX
https://packt.live/2B0ebld

238 | Artificial Intelligence: Clustering

Activity 5.01: Clustering Sales Data Using K-Means

In this activity, you will work on the Sales Transaction Dataset Weekly dataset, which
contains the weekly sales data of 800 products over 1 year. Our dataset won't contain
any information regarding the product except sales.

Your goal will be to identify products with similar sales trends using the k-means
clustering algorithm. You will have to experiment with the number of clusters in order
to find the optimal number of clusters.

Note

The dataset can be found at https://archive.ics.uci.edu/ml/datasets/Sales_
Transactions_Dataset_Weekly.

The dataset file can also be found in our GitHub repository:
https://packt.live/3hVH42v.

Citation: Tan, S., & San Lau, J. (2014). Time series clustering: A superior
alternative for market basket analysis. In Proceedings of the First
International Conference on Advanced Data and Information Engineering
(DaEng-2013) (pp. 241–248).

The following steps will help you complete this activity:

1. Open a new Jupyter Notebook file.

2. Load the dataset as a DataFrame and inspect the data.

3. Create a new DataFrame without the unnecessary columns using the drop
function from pandas (that is, the first 55 columns of the dataset) and use the
inplace parameter, which is a part of pandas.

4. Create a k-means clustering model with 8 clusters and with
random_state = 8.

5. Retrieve the labels from the first clustering model.

https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://packt.live/3hVH42v

The K-Means Algorithm | 239

6. From the first DataFrame, df, keep only the W columns and the labels as a
new column.

7. Perform the required aggregation using the groupby function from pandas in
order to obtain the yearly average sale of each cluster.

The expected output is this:

Figure 5.7: Expected output on the Sales Transaction Data using k-means

Note

The solution to this activity is available on page 363.

Now that you have seen the k-means algorithm in detail, we will move on to another
type of clustering algorithm, the mean shift algorithm.

240 | Artificial Intelligence: Clustering

The Mean Shift Algorithm
Mean shift is a hierarchical clustering algorithm that assigns data points to a cluster
by calculating a cluster's center and moving it towards the mode at each iteration.
The mode is the area with the most data points. At the first iteration, a random point
will be chosen as the cluster's center and then the algorithm will calculate the mean
of all nearby data points within a certain radius. The mean will be the new cluster's
center. The second iteration will then begin with the calculation of the mean of all
nearby data points and setting it as the new cluster's center. At each iteration, the
cluster's center will move closer to where most of the data points are. The algorithm
will stop when it is not possible for a new cluster's center to contain more data points.
When the algorithm stops, each data point will be assigned to a cluster.

The mean shift algorithm will also determine the number of clusters needed, in
contrast with the k-means algorithm. This is advantageous as we rarely know how
many clusters we are looking for.

This algorithm also has many use cases. For instance, the Xbox Kinect device
detects human body parts using the mean shift algorithm. Each main body part
(head, arms, legs, hands, and so on) is a cluster of data points assigned by the mean
shift algorithm.

In the next exercise, we will be implementing the mean shift algorithm.

Exercise 5.03: Implementing the Mean Shift Algorithm

In this exercise, we will implement clustering by using the mean shift algorithm.

We will use the scipy.spatial library in order to compute the Euclidean
distance, seen in Chapter 1, Introduction to Artificial Intelligence. This library simplifies
the calculation of distances (such as Euclidean or Manhattan) between a list of
coordinates. More details about this library can be found at https://docs.scipy.org/doc/
scipy/reference/spatial.distance.html#module-scipy.spatial.distance.

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Let's use the data points from Exercise 5.01, Implementing K-Means in scikit-learn:

import numpy as np

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance

The Mean Shift Algorithm | 241

import matplotlib.pyplot as plot

plot.scatter(data_points.transpose()[0], \

 data_points.transpose()[1])

Our task now is to find point P (x, y), for which the number of data points within
radius R from point P is maximized. The points are distributed as follows:

Figure 5.8: Graph showing the data points from the data_points array

3. Equate point P1 to the first data point, [1, 1] of our list:

P1 = [1, 1]

4. Find the points that are within a distance of r = 2 from this point. We will
use the scipy library, which simplifies mathematical calculations, including
spatial distance:

from scipy.spatial import distance

r = 2

points1 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P1) <= r])

points1

In the preceding code snippet, we used the Euclidean distance to find all the
points that fall within the r radius of point P1.

242 | Artificial Intelligence: Clustering

The output of points1 will be as follows:

array([[1. , 1.],

 [1. , 1.5],

 [2. , 2.]])

From the output, we can see that we found three points that fall within the
radius of P1. They are the three points at the bottom left of the graph we saw
earlier, in Figure 5.8 of this chapter.

5. Now, calculate the mean of the data points to obtain the new coordinates of P2:

P2 = [np.mean(points1.transpose()[0]), \

 np.mean(points1.transpose()[1])]

P2

In the preceding code snippet, we have calculated the mean of the array
containing the three data points in order to obtain the new coordinates of P2.

The output of P2 will be as follows:

[1.3333333333333333, 1.5]

6. Now that the new P2 has been calculated, retrieve the points within the given
radius again, as shown in the following code snippet:

points2 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P2) <= r])

points2

The output of points will be as follows:

array([[1. , 1.],

 [1. , 1.5],

 [2. , 2.]])

These are the same three points that we found in Step 4, so we can stop here.
Three points have been found around the mean of [1.3333333333333333,
1.5]. The points around this center within a radius of 2 form a cluster.

7. Since data points [1, 1.5] and [2, 2] are already in a cluster with [1,1],
we can directly continue with the fourth point in our list, [8, 1]:

P3 = [8, 1]

points3 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P3) <= r])

points3

The Mean Shift Algorithm | 243

In the preceding code snippet, we used the same code as Step 4 but with a
new P3.

The output of points3 will be as follows:

array([[8. , 1.],

 [8. , 0.],

 [8.5, 1.],

 [6. , 1.]])

This time, we found four points inside the radius r of P4.

8. Now, calculate the mean, as shown in the following code snippet:

P4 = [np.mean(points3.transpose()[0]), \

 np.mean(points3.transpose()[1])]

P4

In the preceding code snippet, we calculated the mean of the array containing
the four data points in order to obtain the new coordinates of P4, as in Step 5.

The output of P4 will be as follows:

[7.625, 0.75]

This mean will not change because in the next iteration, we will find the same
data points.

9. Notice that we got lucky with the selection of point [8, 1]. If we started with P
= [8, 0] or P = [8.5, 1], we would only find three points instead of four.
Let's try with P5 = [8, 0]:

P5 = [8, 0]

points4 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P5) <= r])

points4

In the preceding code snippet, we used the same code as in Step 4 but with a
new P5.

The output of points4 will be as follows:

array([[8. , 1.],

 [8. , 0.],

 [8.5, 1.]])

This time, we found three points inside the radius r of P5.

244 | Artificial Intelligence: Clustering

10. Now, rerun the distance calculation with the shifted mean as shown in Step 5:

P6 = [np.mean(points4.transpose()[0]), \

 np.mean(points4.transpose()[1])]

P6

In the preceding code snippet, we calculated the mean of the array containing
the three data points in order to obtain the new coordinates of P6.

The output of P6 will be as follows:

[8.166666666666666, 0.6666666666666666]

11. Now do the same again but with P7 = [8.5, 1]:

P7 = [8.5, 1]

points5 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P7) <= r])

points5

In the preceding code snippet, we used the same code as in Step 4 but with a
new P7.

The output of points5 will be as follows:

array([[8. , 1.],

 [8. , 0.],

 [8.5, 1.]])

This time, we found the same three points again inside the radius r of P. This
means that starting from [8,1], we got a larger cluster than starting from [8,
0] or [8.5, 1]. Therefore, we must take the center point that contains the
maximum number of data points.

12. Now, let's see what would happen if we started the discovery from the fourth
data point, that is, [6, 1]:

P8 = [6, 1]

points6 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P8) <= r])

points6

The Mean Shift Algorithm | 245

In the preceding code snippet, we used the same code as in Step 4 but with a
new P8.

The output of points6 will be as follows:

array([[8., 1.],

 [6., 1.]])

This time, we found only two data points inside the radius r of P8. We
successfully found the data point [8, 1].

13. Now, shift the mean from [6, 1] to the calculated new mean:

P9 = [np.mean(points6.transpose()[0]), \

 np.mean(points6.transpose()[1])]

P9

In the preceding code snippet, we calculated the mean of the array containing
the three data points in order to obtain the new coordinates of P9, as in Step 5.

The output of P9 will be as follows:

[7.0, 1.0]

14. Check whether you have obtained more points with this new P9:

points7 = np.array([p0 for p0 in data_points if \

 distance.euclidean(p0, P9) <= r])

points7

In the preceding code snippet, we used the same code as in Step 4 but with a
new P9.

The output of points7 will be as follows:

array([[8. , 1.],

 [8. , 0.],

 [8.5, 1.],

 [6. , 1.]])

246 | Artificial Intelligence: Clustering

We successfully found all four points. Therefore, we have successfully defined a
cluster of size 4. The mean will be the same as before: [7.625, 0.75].

Note

To access the source code for this specific section, please refer to https://
packt.live/3drUZtE.

You can also run this example online at https://packt.live/2YoSu78. You must
execute the entire Notebook in order to get the desired result.

This was a simple clustering example that applied the mean shift algorithm. We only
illustrated what the algorithm considers when finding clusters.

However, there is still one question, and that is what will the value of the radius be?

Note that if the radius of 2 was not set, we could simply start either with a huge
radius that includes all data points and then reduce the radius, or we could start with
a tiny radius, making sure that each data point is in its cluster, and then increase the
radius until we get the desired result.

In the next section, we will be looking at the mean shift algorithm but using
scikit-learn.

The Mean Shift Algorithm in scikit-learn

Let's use the same data points we used with the k-means algorithm:

import numpy as np

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

The syntax of the mean shift clustering algorithm is like the syntax for the k-means
clustering algorithm:

from sklearn.cluster import MeanShift

mean_shift_model = MeanShift()

mean_shift_model.fit(data_points)

https://packt.live/3drUZtE
https://packt.live/3drUZtE
https://packt.live/2YoSu78

The Mean Shift Algorithm | 247

Once the clustering is done, we can access the center point of each cluster:

mean_shift_model.cluster_centers_

The expected output is this:

array([[1.375 , 9.5],

 [8.16666667, 0.66666667],

 [1.33333333, 1.5],

 [10. , 10.],

 [6. , 1.]])

The mean shift model found five clusters with the centers shown in the
preceding code.

Like k-means, we can also get the labels:

mean_shift_model.labels_

The expected output is this:

array([2, 2, 2, 1, 1, 1, 4, 0, 0, 0, 3, 0], dtype=int64)

The output array shows which data point belongs to which cluster. This is all we need
to plot the data:

import matplotlib.pyplot as plot

plot.scatter(mean_shift_model.cluster_centers_[:,0], \

 mean_shift_model.cluster_centers_[:,1])

for i in range(len(data_points)):

 plot.plot(data_points[i][0], data_points[i][1], \

 ['k+','kx','kv', 'k_', 'k1']\

 [mean_shift_model.labels_[i]])

plot.show()

In the preceding code snippet, we made a plot of the data points and the centers of
the five clusters. Each data point belonging to the same cluster will have the same
marker. The cluster centers are marked as a dot.

248 | Artificial Intelligence: Clustering

The expected output is this:

Figure 5.9: Graph showing the data points of the five clusters

We can see that three clusters contain more than a single dot (the top left, the bottom
left, and the bottom right). The two single data points that are also their own cluster
can be seen as outliers, as mentioned previously, as they are too far from the other
clusters to be part of any of them.

Now that we have learned about the mean shift algorithm, we can have look at
hierarchical clustering, and more specifically at agglomerative hierarchical clustering
(the bottom-up approach).

Hierarchical Clustering

Hierarchical clustering algorithms fall into two categories:

• Agglomerative (or bottom-up) hierarchical clustering

• Divisive (or top-down) hierarchical clustering

We will only talk about agglomerative hierarchical clustering in this chapter, as it is the
most widely used and most efficient of the two approaches.

The Mean Shift Algorithm | 249

Agglomerative hierarchical clustering treats each data point as a single cluster in
the beginning and then successively merges (or agglomerates) the closest clusters
together in pairs. In order to find the closest data clusters, agglomerative hierarchical
clustering uses a heuristic such as the Euclidean or Manhattan distance to define the
distance between data points. A linkage function will also be required to aggregate
the distance between data points in clusters in order to define a unique value of the
closeness of clusters.

Examples of linkage functions include single linkage (simple distance), average
linkage (average distance), maximum linkage (maximum distance), and Ward linkage
(square difference). The pairs of clusters with the smallest value of linkage will be
grouped together. The grouping is repeated until we reach a single cluster containing
every data point. In the end, this algorithm terminates when there is only a single
cluster left.

In order to visually represent the hierarchy of clusters, a dendrogram can be used.
A dendrogram is a tree where the leaves at the bottom represent data points. Each
intersection between two leaves is the grouping of these two leaves. The root (top)
represents a unique cluster that contains all the data points. Have a look at
Figure 5.10, which represents a dendrogram.

Figure 5.10: Example of a dendrogram

250 | Artificial Intelligence: Clustering

Agglomerative Hierarchical Clustering in scikit-learn

Have a look at the following example, where we use the same data points as we used
with the k-means algorithm:

import numpy as np

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

In order to plot a dendrogram, we need to first import the scipy library:

from scipy.cluster.hierarchy import dendrogram

import scipy.cluster.hierarchy as sch

Then we can plot a dendrogram using SciPy with the ward linkage function, as it is
the most commonly used linkage function:

dendrogram = sch.dendrogram(sch.linkage(data_points, \

 method='ward'))

The output of the dendrogram will be as follows:

Figure 5.11: Dendrogram based on random data points

The Mean Shift Algorithm | 251

With the dendrogram, we can generally guess what will be a good number of clusters
by simply drawing a horizontal line as shown in Figure 5.12, in the area with the
highest vertical distance, and counting the number of intersections. In this case, it
should be two clusters, but we will go to the next biggest area as two is too small
a number.

Figure 5.12: Division on clusters in the dendrogram

The y axis represents the measure of closeness, and the x axis represents the index of
each data point. So our first three data points (0,1,2) are parts of the same cluster,
then another cluster is made of the next four points (3,4,5,6), data point 10 is a
cluster on its own, and the remaining data points (7,8,9,11) form the last cluster.

The syntax of the agglomerative hierarchical clustering algorithm is similar to the
k-means clustering algorithm except that we need to specify the number type of
affinity (here, we choose the Euclidean distance) and the linkage (here, we choose
the ward linkage):

from sklearn.cluster import AgglomerativeClustering

agglomerative_model = AgglomerativeClustering(n_clusters=4, \

 affinity='euclidean', \

 linkage='ward')

agglomerative_model.fit(data_points)

252 | Artificial Intelligence: Clustering

The output is:

AgglomerativeClustering(affinity='euclidean',

 compute_full_tree='auto',

 connectivity=None,

 distance_threshold=None,

 linkage='ward', memory=None,

 n_clusters=4, pooling_func='deprecated')

Similar to k-means, we can also get the labels as shown in the following code snippet:

agglomerative_model.labels_

The expected output is this:

array([2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 3, 1], dtype=int64)

The output array shows which data point belongs to which cluster. This is all we need
to plot the data:

import matplotlib.pyplot as plot

for i in range(len(data_points)):

 plot.plot(data_points[i][0], data_points[i][1], \

 ['k+','kx','kv', 'k_'][agglomerative_model.labels_[i]])

plot.show()

In the preceding code snippet, we made a plot of the data points and the four
clusters' centers. Each data point belonging to the same cluster will have the
same marker.

The Mean Shift Algorithm | 253

The expected output is this:

Figure 5.13: Graph showing the data points of the four clusters

We can see that, in contrast with the result from the mean shift method,
agglomerative clustering was able to properly group the data point at (6,1) with
the bottom-right cluster instead of having his own cluster. In situations like this one,
where we have a very small amount of data, agglomerative hierarchical clustering
and mean shift will work better than k-means. However, they have very expensive
computational time requirements, which will make them struggle on very large
datasets. However, k-means is very fast and is a better choice for very large datasets.

Now that we have learned about a few different clustering algorithms, we need to
start evaluating these models and comparing them in order to choose the best model
for clustering.

254 | Artificial Intelligence: Clustering

Clustering Performance Evaluation
Unlike supervised learning, where we always have the labels to evaluate our
predictions with, unsupervised learning is a bit more complex as we do not usually
have labels. In order to evaluate a clustering model, two approaches can be taken
depending on whether the label data is available or not:

• The first approach is the extrinsic method, which requires the existence of label
data. This means that in absence of label data, human intervention is required in
order to label the data or at least a subset of it.

• The other approach is the intrinsic approach. In general, the extrinsic approach
tries to assign a score to clustering, given the label data, whereas the intrinsic
approach evaluates clustering by examining how well the clusters are separated
and how compact they are.

Note

We will skip the mathematical explanations as they are quite complicated.

You can find more mathematical details on the sklearn website at this URL:
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-
evaluation

We will begin with the extrinsic approach (as it is the most widely used method) and
define the following scores using sklearn on our k-means example:

• The adjusted Rand index

• The adjusted mutual information

• The homogeneity

• The completeness

• The V-Measure

• The Fowlkes-Mallows score

• The contingency matrix

Let's have a look at an example in which we first need to import the metrics
module from sklearn.cluster:

from sklearn import metrics

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation

Clustering Performance Evaluation | 255

We will be reusing the code from our k-means example in Exercise 5.01, Implementing
K-Means in scikit-learn:

import numpy as np

import matplotlib.pyplot as plot

from sklearn.cluster import KMeans

data_points = np.array([[1, 1], [1, 1.5], [2, 2], \

 [8, 1], [8, 0], [8.5, 1], \

 [6, 1], [1, 10], [1.5, 10], \

 [1.5, 9.5], [10, 10], [1.5, 8.5]])

k_means_model = KMeans(n_clusters=3,random_state = 8)

k_means_model.fit(data_points)

k_means_model.labels_

The output of our predicted labels using k_means_model.labels_ was:

array([2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 1])

Finally, define the true labels of this dataset, as shown in the following code snippet:

data_labels = np.array([0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 3, 1])

The Adjusted Rand Index

The adjusted Rand index is a function that measures the similarity between the
cluster predictions and the labels while ignoring permutations. The adjusted Rand
index works quite well when the labels are large equal-sized clusters.

The adjusted Rand index has a range between [-1.1], where negative values are not
desirable. A negative score means that our model is performing worse than if we
were to randomly assign labels. If we were to randomly assign them, our score would
be close to 0. However, the closer we are to 1, the better our clustering model is at
predicting the right label.

With sklearn, we can easily compute the adjusted Rand index by using this code:

metrics.adjusted_rand_score(data_labels, k_means_model.labels_)

The expected output is this:

0.8422939068100358

In this case, the adjusted Rand index indicates that our k-means model is not far from
our true labels.

256 | Artificial Intelligence: Clustering

The Adjusted Mutual Information

The adjusted mutual information is a function that measures the entropy between
the cluster predictions and the labels while ignoring permutations.

The adjusted mutual information has no defined range, but negative values are
considered bad. The closer we are to 1, the better our clustering model is at
predicting the right label.

With sklearn, we can easily compute it by using this code:

metrics.adjusted_mutual_info_score(data_labels, \

 k_means_model.labels_)

The expected output is this:

0.8769185235006342

In this case, the adjusted mutual information indicates that our k-means model is
quite good and not far from our true labels.

The V-Measure, Homogeneity, and Completeness

The V-Measure is defined as the harmonic mean of homogeneity and completeness.
The harmonic mean is a type of average (other types are the arithmetic mean and
the geometric mean) using reciprocals (a reciprocal is the inverse of a number. For
example the reciprocal of 2 is , and the reciprocal of 3 is).

The formula of the harmonic mean is as follows:

Figure 5.14: The harmonic mean formula

 is the number of values and is the value of each point.

In order to calculate the V-Measure, we first need to define homogeneity
and completeness.

Perfect homogeneity refers to a situation where each cluster has data points
belonging to the same label. The homogeneity score will reflect how well each of our
clusters is grouping data from the same label.

Clustering Performance Evaluation | 257

Perfect completeness refers to the situation where all data points belonging to
the same label are clustered into the same cluster. The homogeneity score will
reflect how well, for each of our labels, its data points are all grouped inside the
same cluster.

Hence, the formula of V-Measure is as follows:

Figure 5.15: The V-Measure formula

 has a default value of 1, but it can be changed to further emphasize either
homogeneity or completeness.

These three scores have a range between [0,1], with 0 being the worst possible score
and 1 being the perfect score.

With sklearn, we can easily compute these three scores by using this code:

metrics.homogeneity_score(data_labels, k_means_model.labels_)

metrics.completeness_score(data_labels, k_means_model.labels_)

metrics.v_measure_score(data_labels, k_means_model.labels_, \

 beta=1)

The output of homogeneity_score is as follows:

0.8378758055108827

In this case, the homogeneity score indicates that our k-means model has clusters
containing different labels.

The output of completeness_score is as follows:

1.0

In this case, the completeness score indicates that our k-means model has
successfully put every data point of each label inside the same cluster.

The output of v_measure_score is as follows:

0.9117871871412709

In this case, the V-Measure indicates that our k-means model, while not being perfect,
has a good score in general.

258 | Artificial Intelligence: Clustering

The Fowlkes-Mallows Score

The Fowlkes-Mallows score is a metric measuring the similarity within a label
cluster and the prediction of the cluster, and this is defined as the geometric mean
of the precision and recall (you learned about this in Chapter 4, An Introduction to
Decision Trees).

The formula of the Fowlkes-Mallows score is as follows:

Figure 5.16: The Fowlkes-Mallows formula

Let's break this down:

• True positive (or TP): Are all the observations where the predictions are in the
same cluster as the label cluster

• False positive (or FP): Are all the observations where the predictions are in the
same cluster but not the same as the label cluster

• False negative (or FN): Are all the observations where the predictions are not in
the same cluster but are in the same label cluster

The Fowlkes-Mallows score has a range between [0, 1], with 0 being the worst
possible score and 1 being the perfect score.

With sklearn, we can easily compute it by using this code:

metrics.fowlkes_mallows_score(data_labels, k_means_model.labels_)

The expected output is this:

0.8885233166386386

In this case, the Fowlkes-Mallows score indicates that our k-means model is quite
good and not far from our true labels.

Clustering Performance Evaluation | 259

The Contingency Matrix

The contingency matrix is not a score, but it reports the intersection cardinality for
every true/predicted cluster pair and the required label data. It is very similar to
the Confusion Matrix seen in Chapter 4, An Introduction to Decision Trees. The matrix
must be the same for the label and cluster name, so we need to be careful to give
our cluster the same name as our label, which was not the case with the previously
seen scores.

We will modify our labels from this:

data_labels = np.array([0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 3, 1])

To this:

data_labels = np.array([2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 3, 0])

Then, with sklearn, we can easily compute the contingency matrix by using
this code:

from sklearn.metrics.cluster import contingency_matrix

contingency_matrix(k_means_model.labels_,data_labels)

The output of contingency_matrix is as follows:

array([[0, 4, 0, 0],

 [4, 0, 0, 1],

 [0, 0, 3, 0]])

The first row of the contingency_matrix output indicates that there are 4 data
points whose true cluster is the first cluster (0). The second row indicates that there
are also four data points whose true cluster is the second cluster (1); however, an
extra 1 was incorrectly predicted in this cluster, but it belongs to the fourth cluster
(3). The third row indicates that there are three data points whose true cluster is the
third cluster (2).

260 | Artificial Intelligence: Clustering

We will now look at the intrinsic approach, which is required when we do not have the
label. We will define the following scores using sklearn on our k-means example:

• The Silhouette Coefficient

• The Calinski-Harabasz index

• The Davies-Bouldin index

The Silhouette Coefficient

The Silhouette Coefficient is an example of an intrinsic evaluation. It measures the
similarity between a data point and its cluster when compared to other clusters.

It comprises two scores:

• a: The average distance between a data point and all other data points in the
same cluster.

• b: The average distance between a data point and all the data points in the
nearest cluster.

The Silhouette Coefficient formula is:

Figure 5.17: The Silhouette Coefficient formula

The Silhouette Coefficient has a range between [-1,1], with -1 meaning an incorrect
clustering. A score close to zero indicates that our clusters are overlapping. A score
close to 1 indicates that all the data points are assigned to the appropriate clusters.

Then, with sklearn, we can easily compute the silhouette coefficient by using
this code:

metrics.silhouette_score(data_points, k_means_model.labels_)

The output of silhouette_score is as follows:

0.6753568188872228

In this case, the Silhouette Coefficient indicates that our k-means model has some
overlapping clusters, and some improvements can be made by separating some of
the data points from one of the clusters.

Clustering Performance Evaluation | 261

The Calinski-Harabasz Index

The Calinski-Harabasz index measures how the data points inside each cluster are
spread. It is defined as the ratio of the variance between clusters and the variance
inside each cluster. The Calinski-Harabasz index doesn't have a range and starts from
0. The higher the score is, the denser our clusters are. A dense cluster is an indication
of a well-defined cluster.

With sklearn, we can easily compute it by using this code:

metrics.calinski_harabasz_score(data_points, k_means_model.labels_)

The output of calinski_harabasz_score is as follows:

19.52509172315154

In this case, the Calinski-Harabasz index indicates that our k-means model clusters
are quite spread out and suggests that we might have overlapping clusters.

The Davies-Bouldin Index

The Davies-Bouldin index measures the average similarity between clusters. The
similarity is a ratio of the distance between a cluster and its closest cluster and the
average distance between each data point of a cluster and it's cluster's center. The
Davies-Bouldin index doesn't have a range and starts from 0. The closer the score is
to 0 the better; it means the clusters are well separated, which is an indication of a
good cluster.

With sklearn, we can easily compute the Davis-Bouldin index by using this code:

metrics.davies_bouldin_score(data_points, k_means_model.labels_)

The output of davies_bouldin_score is as follows:

0.404206621415983

In this case, the Calinski-Harabasz score indicates that our k-means model has some
overlapping clusters and an improvement could be made by better separating some
of the data points in one of the clusters.

262 | Artificial Intelligence: Clustering

Activity 5.02: Clustering Red Wine Data Using the Mean Shift Algorithm and

Agglomerative Hierarchical Clustering

In this activity, you will work on the Wine Quality dataset and, more specifically, on
red wine data. This dataset contains data on the quality of 1,599 red wines and the
results of their chemical tests.

Your goal will be to build two clustering models (using the mean shift algorithm and
agglomerative hierarchical clustering) in order to identify whether wines of similar
quality also have similar physicochemical properties. You will also have to evaluate
and compare the two clustering models using extrinsic and intrinsic approaches.

Note

The dataset can be found at the following URL: https://archive.ics.uci.edu/ml/
datasets/Wine+Quality.

The dataset file can be found on our GitHub repository at
https://packt.live/2YYsxuu.

Citation: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

The following steps will help you complete the activity:

1. Open a new Jupyter Notebook file.

2. Load the dataset as a DataFrame with sep = ";" and inspect the data.

3. Create a mean shift clustering model, then retrieve the model's predicted labels
and the number of clusters created.

4. Create an agglomerative hierarchical clustering model after creating a
dendrogram and selecting the optimal number of clusters.

5. Retrieve the labels from the first clustering model.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://packt.live/2YYsxuu

Clustering Performance Evaluation | 263

6. Compute the following extrinsic approach scores for both models:

The adjusted Rand index

The adjusted mutual information

The V-Measure

The Fowlkes-Mallows score

7. Compute the following intrinsic approach scores for both models:

The Silhouette Coefficient

The Calinski-Harabasz index

The Davies-Bouldin index

The expected output is this:

The values of each score for the mean shift clustering model will be as follows:

• The adjusted Rand index: 0.0006771608724007207

• The adjusted mutual information: 0.004837187596124968

• The V-Measure: 0.021907254751144124

• The Fowlkes-Mallows score: 0.5721233634622408

• The Silhouette Coefficient: 0.32769323700400077

• The Calinski-Harabasz index: 44.62091774102674

• The Davies-Bouldin index: 0.8106334674570222

The values of each score for the agglomerative hierarchical clustering will be
as follows:

• The adjusted Rand index: 0.05358047852603172

• The adjusted mutual information: 0.05993098663692826

• The V-Measure: 0.07549735446050691

264 | Artificial Intelligence: Clustering

• The Fowlkes-Mallows score: 0.3300681478007641

• The Silhouette Coefficient: 0.1591882574407987

• The Calinski-Harabasz index: 223.5171774491095

• The Davies-Bouldin index: 1.4975443816135114

Note

The solution to this activity is available on page 368.

By completing this activity, you performed mean shift and agglomerative hierarchical
clustering on multiple columns for many products. You also learned how to evaluate
a clustering model with an extrinsic and intrinsic approach. Finally, you used the
results of your models and their evaluation to find an answer to a real-world problem.

Summary
In this chapter, we learned the basics of how clustering works. Clustering is a form
of unsupervised learning where the features are given, but not the labels. It is the
goal of the clustering algorithms to find the labels based on the similarity of the
data points.

We also learned that there are two types of clustering, flat and hierarchical, with the
first type requiring the number of clusters to find, whereas the second type finds the
optimal number of clusters itself.

The k-means algorithm is an example of flat clustering, whereas mean shift
and agglomerative hierarchical clustering are examples of a hierarchical
clustering algorithm.

We also learned about the numerous scores to evaluate the performance of a
clustering model, with the labels in the extrinsic approach or without the labels in the
intrinsic approach.

In Chapter 6, Neural Networks and Deep Learning, you will be introduced to a field that
has become popular in this decade due to the explosion of computation power and
cheap, scalable online server capacity. This field is the science of neural networks and
deep learning.

Overview

In this chapter, you will be introduced to the final topic on neural networks
and deep learning. You will be learning about TensorFlow, Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). You will
use key deep learning concepts to determine creditworthiness of individuals
and predict housing prices in a neighborhood. Later on, you will also
implement an image classification program using the skills you learned. By
the end of this chapter, you will have a firm grasp on the concepts of neural
networks and deep learning.

Neural Networks and Deep

Learning

6

268 | Neural Networks and Deep Learning

Introduction
In the previous chapter, we learned about what clustering problems are and saw
several algorithms, such as k-means, that can automatically group data points
on their own. In this chapter, we will learn about neural networks and deep
learning networks.

The difference between neural networks and deep learning networks is the
complexity and depth of the networks. Traditionally, neural networks have only one
hidden layer, while deep learning networks have more than that.

Although we will use neural networks and deep learning for supervised learning, note
that neural networks can also model unsupervised learning techniques. This kind of
model was actually quite popular in the 1980s, but because the computation power
required was limited at the time, it's only recently that this model has been widely
adopted. With the democratization of Graphics Processing Units (GPUs) and cloud
computing, we now have access to a tremendous amount of computation power.
This is the main reason why neural networks and especially deep learning are hot
topics again.

Deep learning can model more complex patterns than traditional neural networks,
and so deep learning is more widely used nowadays in computer vision (in
applications such as face detection and image recognition) and natural language
processing (in applications such as chatbots and text generation).

Artificial Neurons
Artificial Neural Networks (ANNs), as the name implies, try to replicate how a
human brain works, and more specifically how neurons work.

A neuron is a cell in the brain that communicates with other cells via electrical signals.
Neurons can respond to stimuli such as sound, light, and touch. They can also trigger
actions such as muscle contractions. On average, a human brain contains 10 to 20
billion neurons. That's a pretty huge network, right? This is the reason why humans
can achieve so many amazing things. This is also why researchers have tried to
emulate how the brain operates and in doing so created ANNs.

ANNs are composed of multiple artificial neurons that connect to each other and
form a network. An artificial neuron is simply a processing unit that performs
mathematical operations on some inputs (x1, x2, …, xn) and returns the final results
(y) to the next unit, as shown here:

Neurons in TensorFlow | 269

Figure 6.1: Representation of an artificial neuron

We will see how an artificial neuron works more in detail in the coming sections.

Neurons in TensorFlow
TensorFlow is currently the most popular neural network and deep learning
framework. It was created and is maintained by Google. TensorFlow is used for voice
recognition and voice search, and it is also the brain behind translate.google.com. Later
in this chapter, we will use TensorFlow to recognize written characters.

The TensorFlow API is available in many languages, including Python, JavaScript,
Java, and C. TensorFlow works with tensors. You can think of a tensor as a
container composed of a matrix (usually with high dimensions) and additional
information related to the operations it will perform (such as weights and biases,
which you will be looking at later in this chapter). A tensor with no dimensions (with
no rank) is a scalar. A tensor of rank 1 is a vector, rank 2 tensors are matrices, and a
rank 3 tensor is a three-dimensional matrix. The rank indicates the dimensions of a
tensor. In this chapter, we will be looking at tensors of ranks 2 and 3.

Note

Mathematicians use the terms matrix and dimension, whereas deep
learning programmers use tensor and rank instead.

http://translate.google.com

270 | Neural Networks and Deep Learning

TensorFlow also comes with mathematical functions to transform tensors, such as
the following:

• Arithmetic operations: add and multiply

• Exponential operations: exp and log

• Relational operations: greater, less, and equal

• Array operations: concat, slice, and split

• Matrix operations: matrix_inverse, matrix_determinant, and matmul

• Non-linear operations: sigmoid, relu, and softmax

We will go through them in more detail later in this chapter.

In the next exercise, we will be using TensorFlow to compute an artificial neuron.

Exercise 6.01: Using Basic Operations and TensorFlow Constants

In this exercise, we will be using arithmetic operations in TensorFlow to emulate an
artificial neuron by performing a matrix multiplication and addition, and applying a
non-linear function, sigmoid.

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Import the tensorflow package as tf:

import tensorflow as tf

3. Create a tensor called W of shape [1,6] (that is, with 1 row and 6 columns),
using tf.constant(), that contains the matrix [1.0, 2.0, 3.0, 4.0,
5.0, 6.0]. Print its value:

W = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[1, 6])

W

The expected output is this:

<tf.Tensor: shape=(1, 6), dtype=float32, numpy=array([[1., 2., 3., 4.,
5., 6.]], dtype=float32)>

Neurons in TensorFlow | 271

4. Create a tensor called X of shape [6,1] (that is, with 6 rows and 1 column),
using tf.constant(), that contains [7.0, 8.0, 9.0, 10.0, 11.0,
12.0]. Print its value:

X = tf.constant([7.0, 8.0, 9.0, 10.0, 11.0, 12.0], \

 shape=[6, 1])

X

The expected output is this:

<tf.Tensor: shape=(6, 1), dtype=float32, numpy=

array([[7.],

 [8.],

 [9.],

 [10.],

 [11.],

 [12.]], dtype=float32)>

5. Now, create a tensor called b, using tf.constant(), that contains -88. Print
its value:

b = tf.constant(-88.0)

b

The expected output is this:

<tf.Tensor: shape=(), dtype=float32, numpy=-88.0>

6. Perform a matrix multiplication between W and X using tf.matmul, save its
results in the mult variable, and print its value:

mult = tf.matmul(W, X)

mult

The expected output is this:

<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[217.]],
dtype=float32)>

7. Perform a matrix addition between mult and b, save its results in a variable
called Z, and print its value:

Z = mult + b

Z

272 | Neural Networks and Deep Learning

The expected output is this:

<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[129.]],
dtype=float32)>

8. Apply the sigmoid function to Z using tf.math.sigmoid, save its results
in a variable called a, and print its value. The sigmoid function transforms
any numerical value within the range 0 to 1 (we will learn more about this in the
following sections):

a = tf.math.sigmoid(Z)

a

The expected output is this:

<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[1.]],
dtype=float32)>

The sigmoid function has transformed the original value of Z, which was 129, to 1.

Note

To access the source code for this specific section, please refer to
https://packt.live/31ekGLM.

You can also run this example online at https://packt.live/3evuKnC. You must
execute the entire Notebook in order to get the desired result.

In this exercise, you successfully implemented an artificial neuron using TensorFlow.
This is the base of any neural network model.

In the next section, we will be looking at the architecture of neural networks.

Neural Network Architecture
Neural networks are the newest branch of Artificial Intelligence (AI). Neural
networks are inspired by how the human brain works. They were invented in the
1940s by Warren McCulloch and Walter Pitts. The neural network was a mathematical
model that was used to describe how the human brain can solve problems.

We will use ANN to refer to both the mathematical model, and the biological neural
network when talking about the human brain.

https://packt.live/31ekGLM
https://packt.live/3evuKnC

Neural Network Architecture | 273

The way a neural network learns is more complex compared to other classification
or regression models. The neural network model has a lot of internal variables,
and the relationship between the input and output variables may involve multiple
internal layers. Neural networks have higher accuracy than other supervised
learning algorithms.

Note

Mastering neural networks with TensorFlow is a complex process. The
purpose of this section is to provide you with an introductory resource to
get started.

In this chapter, the main example we are going to use is the recognition of digits from
an image. We are considering this format since each image is small, and we have
around 70,000 images available. The processing power required to process these
images is similar to that of a regular computer.

ANNs work similarly to how the human brain works. A dendroid in a human brain
is connected to a nucleus, and the nucleus is connected to an axon. In an ANN, the
input is the dendroid, where the calculations occur is the nucleus, and the output is
the axon.

An artificial neuron is designed to replicate how a nucleus works. It will transform an
input signal by calculating a matrix multiplication followed by an activation function. If
this function determines that a neuron has to fire, a signal appears in the output. This
signal can be the input of other neurons in the network:

Figure 6.2: Figure showing how an ANN works

274 | Neural Networks and Deep Learning

Let's understand the preceding figure further by taking the example of n=4. In this
case, the following applies:

• X is the input matrix, which is composed of x1, x2, x3, and x4.

• W, the weight matrix, will be composed of w1, w2, w3, and w4.

• b is the bias.

• f is the activation function.

We will first calculate Z (the left-hand side of the neuron) with matrix multiplication
and bias:

Z = W * X + b = x1*w1 + x2*w2 + x3*w3 + x4*w4 + b

Then the output, y, will be calculated by applying a function, f:

y = f(Z) = f(x1*w1 + x2*w2 + x3*w3 + x4*w4 + b)

Great – this is how an artificial neuron works under the hood. It is two matrix
operations, a product followed by a sum, and a function transformation.

We now move on to the next section – weights.

Weights

W (also called the weight matrix) refers to weights, which are parameters that are
automatically learned by neural networks in order to predict accurately the output, y.

A single neuron is the combination of the weighted sum and the activation function
and can be referred to as a hidden layer. A neural network with one hidden layer is
called a regular neural network:

Neural Network Architecture | 275

Figure 6.3: Neurons 1, 2, and 3 form the hidden layer of this sample network

When connecting inputs and outputs, we may have multiple hidden layers. A neural
network with multiple layers is called a deep neural network.

The term deep learning comes from the presence of multiple layers. When creating
an Artificial Neural Network (ANN), we can specify the number of hidden layers.

Biases

Previously, we saw that the equation for a neuron is as follows:

y = f(x1*w1 + x2*w2 + x3*w3 + x4*w4)

The problem with this equation is that there is no constant factor that depends on the
inputs x1, x2, x3, and x4. The preceding equation can model any linear function that
will go through the point 0: if all w values are equal to 0 then y will also equal to 0. But
what about other functions that don't go through the point 0? For example, imagine
that we are predicting the probability of churn for an employee by their month of
tenure. Even if they haven't worked for the full month yet, the probability of churn is
not zero.

276 | Neural Networks and Deep Learning

To accommodate this situation, we need to introduce a new parameter called bias. It
is a constant that is also referred to as the intercept. Using the churn example, the
bias b can equal to 0.5 and therefore the churn probability for a new employer during
the first month will be 50%.

Therefore, we add bias to the equation:

y = f(x1*w1 + x2*w2 + x3*w3 + x4*w4 + b)

y = f(x w + b)

The first equation is the verbose form, describing the role of each coordinate, weight
coefficient, and bias. The second equation is the vector form, where x = (x1,
x2, x3, x4) and w = (w1, w2, w3, w4). The dot operator between the
vectors symbolizes the dot or scalar product of the two vectors. The two equations
are equivalent. We will use the second form in practice because it is easier to define a
vector of variables using TensorFlow than to define each variable one by one.

Similarly, for w1, w2, w3, and w4, the bias, b, is a variable, meaning that its value can
change during the learning process.

With this constant factor built into each neuron, a neural network model becomes
more flexible in terms of fitting a specific training dataset better.

Note

It may happen that the product p = x1*w1 + x2*w2 + x3*w3 +
x4*w4 is negative due to the presence of a few negative weights. We may
still want to give the model the flexibility to execute (or fire) a neuron with
values above a given negative number. Therefore, adding a constant bias,
b = 5, for instance, can ensure that the neuron fires for values between
-5 and 0 as well.

TensorFlow provides the Dense() class to model the hidden layer of a neural
network (also called the fully connected layer):

from tensorflow.keras import layers

layer1 = layers.Dense(units=128, input_shape=[200])

Neural Network Architecture | 277

In this example, we have created a fully connected layer of 128 neurons that takes as
input a tensor of shape 200.

Note

You can find more information on this TensorFlow class at https://www.
tensorflow.org/api_docs/python/tf/keras/layers/Dense.

The Dense() class is expected to have a flattened input (only one row). For instance,
if your input is of shape 28 by 28, you will have to flatten it beforehand with the
Flatten() class in order to get a single row with 784 neurons (28 * 28):

from tensorflow.keras import layers

input_layer = layers.Flatten(input_shape=(28, 28))

layer1 = layers.Dense(units=128)

Note

You can find more information on this TensorFlow class at
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten.

In the following sections, we will learn about how we can extend this layer of neurons
with additional parameters.

Use Cases for ANNs

ANNs have their place among supervised learning techniques. They can model
both classification and regression problems. A classifier neural network seeks a
relationship between features and labels. The features are the input variables, while
each class the classifier can choose as a return value is a separate output. In the case
of regression, the input variables are the features, while there is one single output:
the predicted value. While traditional classification and regression techniques have
their use cases in AI, ANNs are generally better at finding complex relationships
between inputs and outputs.

In the next section, we will be looking at activation functions and their different types.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten

278 | Neural Networks and Deep Learning

Activation Functions
As seen previously, a single neuron needs to perform a transformation by applying
an activation function. Different activation functions can be used in neural networks.
Without these functions, a neural network would simply be a linear model that could
easily be described using matrix multiplication.

The activation function of a neural network provides non-linearity and therefore can
model more complex patterns. Two very common activation functions are sigmoid
and tanh (the hyperbolic tangent function).

Sigmoid

The formula of sigmoid is as follows:

Figure 6.4: The sigmoid formula

The output values of a sigmoid function range from 0 to 1. This activation function
is usually used at the last layer of a neural network for a binary classification problem.

Tanh

The formula of the hyperbolic tangent is as follows:

Figure 6.5: The tanh formula

The tanh activation function is very similar to the sigmoid function and was quite
popular until recently. It is usually used in the hidden layers of a neural network. Its
values range between -1 and 1.

Activation Functions | 279

ReLU

Another important activation function is relu. ReLU stands for Rectified Linear
Unit. It is currently the most widely used activation function for hidden layers. Its
formula is as follows:

Figure 6.6: The ReLU formula

There are now different variants of relu functions, such as leaky ReLU
and PReLU.

Softmax

The function shrinks the values of a list to be between 0 and 1 so that the sum of the
elements of the list becomes 1. The definition of the softmax function is as follows:

Figure 6.7: The softmax formula

The softmax function is usually used as the last layer of a neural network for multi-
class classification problems as it can generate probabilities for each of the different
output classes.

Remember, in TensorFlow, we can extend a Dense() layer with an activation
function; we just need to set the activation parameter. In the following example,
we will add the relu activation function:

from tensorflow.keras import layers

layer1 = layers.Dense(units=128, input_shape=[200], \

 activation='relu')

Let's use these different activation functions and observe how these functions
dampen the weighted inputs by solving the following exercise.

280 | Neural Networks and Deep Learning

Exercise 6.02: Activation Functions

In this exercise, we will be implementing the following activation functions using the
numpy package: sigmoid, tanh, relu, and softmax.

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Import the numpy package as np:

import numpy as np

3. Create a sigmoid function, as shown in the following code snippet, that
implements the sigmoid formula (shown in the previous section) using the
np.exp() method:

def sigmoid(x):

 return 1 / (1 + np.exp(-x))

4. Calculate the result of sigmoid function on the value -1:

sigmoid(-1)

The expected output is this:

0.2689414213699951

This is the result of performing a sigmoid transformation on the value -1.

5. Import the matplotlib.pyplot package as plt:

import matplotlib.pyplot as plt

6. Create a numpy array called x that contains values from -10 to 10 evenly
spaced by an increment of 0.1, using the np.arange() method. Print
its value:

x = np.arange(-10, 10, 0.1)

x

The expected output is this:

array([-1.00000000e+01, -9.90000000e+00, -9.80000000e+00,

 -9.70000000e+00, -9.60000000e+00, -9.50000000e+00,

 -9.40000000e+00, -9.30000000e+00, -9.20000000e+00,

 -9.10000000e+00, -9.00000000e+00, -8.90000000e+00,

 -8.80000000e+00, -8.70000000e+00, -8.60000000e+00,

 -8.50000000e+00, -8.40000000e+00, -8.30000000e+00,

Activation Functions | 281

 -8.20000000e+00, -8.10000000e+00, -8.00000000e+00,

 -7.90000000e+00, -7.80000000e+00, -7.70000000e+00,

 -7.60000000e+00, -7.50000000e+00, -7.40000000e+00,

 -7.30000000e+00, -7.20000000e+00, -7.10000000e+00,

 -7.00000000e+00, -6.90000000e+00,

Great – we generated a numpy array containing values between -10 and 10.

Note

The preceding output is truncated.

7. Plot a line chart with x and sigmoid(x) using plt.plot() and
plt.show():

plt.plot(x, sigmoid(x))

plt.show()

The expected output is this:

Figure 6.8: Line chart using the sigmoid function

We can see here that the output of the sigmoid function ranges between 0 and
1. The slope is quite steep for values around 0.

282 | Neural Networks and Deep Learning

8. Create a tanh() function that implements the Tanh formula (shown in the
previous section) using the np.exp() method:

def tanh(x):

 return 2 / (1 + np.exp(-2*x)) - 1

9. Plot a line chart with x and tanh(x) using plt.plot() and plt.show():

plt.plot(x, tanh(x))

plt.show()

The expected output is this:

Figure 6.9: Line chart using the tanh function

The shape of the tanh function is very similar to sigmoid but its slope is
steeper for values close to 0. Remember, its range is between -1 and 1.

10. Create a relu function that implements the ReLU formula (shown in the
previous section) using the np.maximum() method:

def relu(x):

 return np.maximum(0, x)

Activation Functions | 283

11. Plot a line chart with x and relu(x) using plt.plot() and plt.show():

plt.plot(x, relu(x))

plt.show()

The expected output is this:

Figure 6.10: Line chart using the relu function

The ReLU function equals 0 when values are negative, and equals the identity
function, f(x)=x, for positive values.

12. Create a softmax function that implements the softmax formula (shown in the
previous section) using the np.exp() method:

def softmax(list):

 return np.exp(list) / np.sum(np.exp(list))

13. Calculate the output of softmax on the list of values, [0, 1, 168, 8, 2]:

result = softmax([0, 1, 168, 8, 2])

result

The expected output is this:

array([1.09276566e-73, 2.97044505e-73, 1.00000000e+00,

 3.25748853e-70, 8.07450679e-73])

284 | Neural Networks and Deep Learning

As expected, the item at the third position has the highest softmax probabilities as
its original value was the highest.

Note

To access the source code for this specific section, please refer to https://
packt.live/3fJzoOU.

You can also run this example online at https://packt.live/3188pZi. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, we have implemented some of the most important
activation functions for neural networks.

Forward Propagation and the Loss Function
So far, we have seen how a neuron can take an input and perform some
mathematical operations on it and get an output. We learned that a neural network is
a combination of multiple layers of neurons.

The process of transforming the inputs of a neural network into a result is called
forward propagation (or the forward pass). What we are asking the neural network
to do is to make a prediction (the final output of the neural network) by applying
multiple neurons to the input data:

https://packt.live/3fJzoOU
https://packt.live/3fJzoOU
https://packt.live/3188pZi

Forward Propagation and the Loss Function | 285

Figure 6.11: Figure showing forward propagation

The neural network relies on the weights matrices, biases, and activation function of
each neuron to calculate the predicted output value, . For now, let's assume the
values of the weight matrices and biases are set in advance. The activation functions
are defined when you design the architecture of the neural networks.

As for any supervised machine learning algorithm, the goal is to make accurate
predictions. This implies that we need to assess how accurate the predictions are
compared to the true values. For traditional machine learning algorithms, we used
scoring metrics such as mean squared error, accuracy, or the F1 score. This can also
be applied to neural networks, but the only difference is that such scores are used in
two different ways:

• They are used by data scientists to assess the performance of a model on
training and testing sets and then tune hyperparameters if needed. This also
applies to neural networks, so nothing new here.

286 | Neural Networks and Deep Learning

• They are used by neural networks to automatically learn from mistakes and
update weight matrices and biases. This will be explained in more detail in the
next section, which is about backpropagation. So, the neural network will use a
metric (also called a loss function) to compare its predicted values, to the
true label, (y), and then learn how to make better predictions automatically.

The loss function is critical to a neural network learning to make good predictions.
This is a hyperparameter that needs to be defined by data scientists while designing
the architecture of a neural network. The choice of which loss function to use is totally
arbitrary and depending on the dataset or the problem you want to solve, you will
pick one or another. Luckily for us, though, there are some basic rules of thumb that
work in most cases:

• If you are working on a regression problem, you can use mean squared error.

• If it is a binary classification, the loss function should be binary cross-entropy.

• If it is a multi-class classification, then categorical cross-entropy should be your
go-to choice.

As a final note, the choice of loss function will also define which activation function
you will have to use on the last layer of the neural network. Each loss function expects
a certain type of data in order to properly assess prediction performance.

Here is the list of activation functions according to the loss function and type of
project/problem:

Figure 6.12: Overview of the different activation functions and their applications

With TensorFlow, in order to build your custom architecture, you can instantiate the
Sequential() class and add your layers of fully connected neurons as shown in
the following code snippet:

import tensorflow as tf

from tensorflow.keras import layers

model = tf.keras.Sequential()

input_layer = layers.Flatten(input_shape=(28,28))

layer1 = layers.Dense(128, activation='relu')

Backpropagation | 287

model.add(input_layer)

model.add(layer1)

Now it is time to have a look at how a neural network improves its predictions with
backpropagation.

Backpropagation
Previously, we learned how a neural network makes predictions by using weight
matrices and biases (we can combine them into a single matrix) from its neurons.
Using the loss function, a network determines how good or bad the predictions
are. It would be great if it could use this information and update the parameters
accordingly. This is exactly what backpropagation is about: optimizing a neural
network's parameters.

Training a neural network involves executing forward propagation and
backpropagation multiple times in order to make predictions and update the
parameters from the errors. During the first pass (or propagation), we start by
initializing all the weights of the neural network. Then, we apply forward propagation,
followed by backpropagation, which updates the weights.

We apply this process several times and the neural network will optimize its
parameters iteratively. You can decide to stop this learning process by setting the
maximum number of times the neural networks will go through the entire dataset
(also called epochs) or define an early stop threshold if the neural network's score is
not improving anymore after few epochs.

Optimizers and the Learning Rate
In the previous section, we saw that a neural network follows an iterative process to
find the best solution for any input dataset. Its learning process is an optimization
process. You can use different optimization algorithms (also called optimizers) for a
neural network. The most popular ones are Adam, SGD, and RMSprop.

One important parameter for the neural networks optimizer is the learning rate.
This value defines how quickly the neural network will update its weights. Defining
a too-low learning rate will slow down the learning process and the neural network
will take a long time before finding the right parameters. On the other hand, having
too-high a learning rate can make the neural network not learn a solution as it
is making bigger weight changes than required. A good practice is to start with a
not-too-small learning rate (such as 0.01 or 0.001), then stop the neural network
training once its score starts to plateau or get worse, and lower the learning rate (by
an order of magnitude, for instance) and keep training the network.

288 | Neural Networks and Deep Learning

With TensorFlow, you can instantiate an optimizer from tf.keras.optimizers.
For instance, the following code snippet shows us how to create an Adam optimizer
with 0.001 as the learning rate and then compile our neural network by specifying
the loss function ('sparse_categorical_crossentropy') and metrics to be
displayed ('accuracy'):

import tensorflow as tf

optimizer = tf.keras.optimizers.Adam(0.001)

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

Once the model is compiled, we can then train the neural network with the .fit()
method like this:

model.fit(features_train, label_train, epochs=5)

Here we trained the neural network on the training set for 5 epochs. Once trained,
we can use the model on the testing set and assess its performance with the
.evaluate() method:

model.evaluate(features_test, label_test)

Note

You can find more information on this TensorFlow optimizers at https://www.
tensorflow.org/api_docs/python/tf/keras/optimizers.

In the next exercise, we will be training a neural network on a dataset.

Exercise 6.03: Classifying Credit Approval

In this exercise, we will be using the German credit approval dataset, and train a
neural network to classify whether an individual is creditworthy or not.

Note

The dataset file can also be found in our GitHub repository:

https://packt.live/2V7uiV5.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
https://packt.live/2V7uiV5

Optimizers and the Learning Rate | 289

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Import the loadtxt method from numpy:

from numpy import loadtxt

3. Create a variable called file_url containing the link to the raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop'\

 '/master/Datasets/german_scaled.csv'

4. Load the data into a variable called data using loadtxt() and specify the
delimiter=',' parameter. Print its content:

data = loadtxt(file_url, delimiter=',')

data

The expected output is this:

array([[0. , 0.33333333, 0.02941176, ..., 0. , 1. ,

 1.],

 [1. , 0. , 0.64705882, ..., 0. , 0. ,

 1.],

 [0. , 1. , 0.11764706, ..., 1. , 0. ,

 1.],

 ...,

 [0. , 1. , 0.11764706, ..., 0. , 0. ,

 1.],

 [1. , 0.33333333, 0.60294118, ..., 0. , 1. ,

 1.],

 [0. , 0. , 0.60294118, ..., 0. , 0. ,

 1.]])

5. Create a variable called label that contains the data only from the first column
(this will be our response variable):

label = data[:, 0]

290 | Neural Networks and Deep Learning

6. Create a variable called features that contains all the data except for the first
column (which corresponds to the response variable):

features = data[:, 1:]

7. Import the train_test_split method from sklearn.
model_selection:

from sklearn.model_selection import train_test_split

8. Split the data into training and testing sets and save the results into four
variables called features_train, features_test, label_train, and
label_test. Use 20% of the data for testing and specify random_state=7:

features_train, features_test, \

label_train, label_test = train_test_split(features, \

 label, \

 test_size=0.2, \

 random_state=7)

9. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

10. Set 1 as the seed for numpy and tensorflow using np.random_seed() and
tf.random.set_seed():

np.random.seed(1)

tf.random.set_seed(1)

11. Instantantiate a tf.keras.Sequential() class and save it into a variable
called model:

model = tf.keras.Sequential()

12. Instantantiate a layers.Dense() class with 16 neurons,
activation='relu', and input_shape=[19], then save it into a variable
called layer1:

layer1 = layers.Dense(16, activation='relu', \

 input_shape=[19])

Optimizers and the Learning Rate | 291

13. Instantantiate a second layers.Dense() class with 1 neuron and
activation='sigmoid', then save it into a variable called final_layer:

final_layer = layers.Dense(1, activation='sigmoid')

14. Add the two layers you just defined to the model using .add():

model.add(layer1)

model.add(final_layer)

15. Instantantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it into a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the neural network using .compile() with loss='binary_
crossentropy', optimizer=optimizer, metrics=['accuracy'] as
shown in the following code snippet:

model.compile(loss='binary_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

17. Print a summary of the model using .summary():

model.summary()

The expected output is this:

Figure 6.13: Summary of the sequential model

This output summarizes the architecture of our neural networks. We can see
it is composed of three layers, as expected, and we know each layer's output
size and number of parameters, which corresponds to the weights and biases.
For instance, the first layer has 16 neurons and 320 parameters to be learned
(weights and biases).

292 | Neural Networks and Deep Learning

18. Next, fit the neural networks with the training set and specify epochs=10:

model.fit(features_train, label_train, epochs=10)

The expected output is this:

Figure 6.14: Fitting the neural network with the training set

The output provides a lot of information about the training of the neural
network. The first line tells us the training set was composed of 800
observations. Then we can see the results of each epoch:

Total processing time in seconds

Processing time by data sample in us/sample

Loss value and accuracy score

The final result of this neural network is the last epoch (epoch=10), where
we achieved an accuracy score of 0.6888. But we can see that the trend was
improving: the accuracy score was still increasing after each epoch. So, we may
get better results if we train the neural network for longer by increasing the
number of epochs or lowering the learning rate.

Regularization | 293

Note

To access the source code for this specific section, please refer to https://
packt.live/3fMhyLk.

You can also run this example online at https://packt.live/2Njghza. You must
execute the entire Notebook in order to get the desired result.

By completing this exercise, you just trained your first classifier. In traditional
machine learning algorithms, you would need to use more lines of code to achieve
this, as you would have to define the entire architecture of the neural network. Here
the neural network got 0.6888 after 10 epochs, but it could still improve if we let it
train for longer. You can try this on your own.

Next, we will be looking at regularization.

Regularization
As with any machine learning algorithm, neural networks can face the problem of
overfitting when they learn patterns that are only relevant to the training set. In such
a case, the model will not be able to generalize the unseen data.

Luckily, there are multiple techniques that can help reduce the risk of overfitting:

• L1 regularization, which adds a penalty parameter (absolute value of the
weights) to the loss function

• L2 regularization, which adds a penalty parameter (squared value of the weights)
to the loss function

• Early stopping, which stops the training if the error for the validation set
increases while the error decreases for the training set

• Dropout, which will randomly remove some neurons during training

All these techniques can be added at each layer of a neural network we create. We
will be looking at this in the next exercise.

https://packt.live/3fMhyLk
https://packt.live/3fMhyLk
https://packt.live/2Njghza

294 | Neural Networks and Deep Learning

Exercise 6.04: Predicting Boston House Prices with Regularization

In this exercise, you will build a neural network that will predict the median house
price for a suburb in Boston and see how to add regularizers to a network.

Note

The dataset file can also be found in our GitHub repository: https://packt.
live/2V9kRUU.

Citation: The data was originally published by Harrison, D. and Rubinfeld,
D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics &
Management, vol.5, 81-102, 1978.

The dataset is composed of 12 different features that provide information about the
suburb and a target variable (MEDV). The target variable is numeric and represents
the median value of owner-occupied homes in units of $1,000.

The following steps will help you complete the exercise:

1. Open a new Jupyter Notebook file.

2. Import the pandas package as pd:

import pandas as pd

3. Create a file_url variable containing a link to the raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop'\

 '/master/Datasets/boston_house_price.csv'

4. Load the dataset into a variable called df using pd.read_csv():

df = pd.read_csv(file_url)

5. Display the first five rows using .head():

df.head()

https://packt.live/2V9kRUU
https://packt.live/2V9kRUU

Regularization | 295

The expected output is this:

Figure 6.15: Output showing the first five rows of the dataset

6. Extract the target variable using .pop() and save it into a variable
called label:

label = df.pop('MEDV')

7. Import the scale function from sklearn.preprocessing:

from sklearn.preprocessing import scale

8. Scale the DataFrame, df, and save the results into a variable called scaled_
features. Print its content:

scaled_features = scale(df)

scaled_features

The expected output is this:

array([[-0.41978194, 0.28482986, -1.2879095 , ..., -0.66660821,

 -1.45900038, -1.0755623],

 [-0.41733926, -0.48772236, -0.59338101, ..., -0.98732948,

 -0.30309415, -0.49243937],

 [-0.41734159, -0.48772236, -0.59338101, ..., -0.98732948,

 -0.30309415, -1.2087274],

 ...,

 [-0.41344658, -0.48772236, 0.11573841, ..., -0.80321172,

 1.17646583, -0.98304761],

 [-0.40776407, -0.48772236, 0.11573841, ..., -0.80321172,

 1.17646583, -0.86530163],

 [-0.41500016, -0.48772236, 0.11573841, ..., -0.80321172,

In the output, you can see that all our features are now standardized.

296 | Neural Networks and Deep Learning

9. Import train_test_split from sklearn.model_selection:

from sklearn.model_selection import train_test_split

10. Split the data into training and testing sets and save the results into four
variables called features_train, features_test, label_train, and
label_test. Use 10% of the data for testing and specify random_state=8:

features_train, features_test, \

label_train, label_test = train_test_split(scaled_features, \

 label, \

 test_size=0.1, \

 random_state=8)

11. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

12. Set 8 as the seed for NumPy and TensorFlow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

13. Instantantiate a tf.keras.Sequential() class and save it into a variable
called model:

model = tf.keras.Sequential()

14. Next, create a combined l1 and l2 regularizer using tf.keras.
regularizers.l1_l2 with l1=0.01 and l2=0.01. Save it into a variable
called regularizer:

regularizer = tf.keras.regularizers.l1_l2(l1=0.1, l2=0.01)

15. Instantantiate a layers.Dense() class with 10 neurons,
activation='relu', input_shape=[12], and kernel_
regularizer=regularizer, and save it into a variable called layer1:

layer1 = layers.Dense(10, activation='relu', \

 input_shape=[12], kernel_regularizer=regularizer)

Regularization | 297

16. Instantantiate a second layers.Dense() class with 1 neuron and save it into
a variable called final_layer:

final_layer = layers.Dense(1)

17. Add the two layers you just defined to the model using .add() and add a layer
in between each of them with layers.Dropout(0.25):

model.add(layer1)

model.add(layers.Dropout(0.25))

model.add(final_layer)

We added a dropout layer in between each dense layer that will randomly
remove 25% of the neurons.

18. Instantantiate a tf.keras.optimizers.SGD() class with 0.001 as the
learning rate and save it into a variable called optimizer:

optimizer = tf.keras.optimizers.SGD(0.001)

19. Compile the neural network using .compile() with loss='mse',
optimizer=optimizer, metrics=['mse']:

model.compile(loss='mse', optimizer=optimizer, \

 metrics=['mse'])

20. Print a summary of the model using .summary():

model.summary()

The expected output is this:

Figure 6.16: Summary of the model

298 | Neural Networks and Deep Learning

This output summarizes the architecture of our neural networks. We can see it is
composed of three layers with two dense layers and one dropout layer.

21. Instantiate a tf.keras.callbacks.EarlyStopping() class with
monitor='val_loss' and patience=2 as the learning rate and save it into
a variable called callback:

callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', \

 patience=2)

We just defined a callback stating the neural network will stop its training if the
validation loss (monitor='val_loss') does not improve after 2 epochs
(patience=2).

22. Fit the neural networks with the training set and specify epochs=50,
validation_split=0.2, callbacks=[callback], and verbose=2:

model.fit(features_train, label_train, \

 epochs=50, validation_split = 0.2, \

 callbacks=[callback], verbose=2)

The expected output is this:

Figure 6.17: Fitting the neural network with the training set

Regularization | 299

In the output, we see that the neural network stopped its training after the 22nd
epoch. It stopped well before the maximum number of epochs, 50. This is due
to the callback we set earlier: if the validation loss does not improve after two
epochs, the training should stop.

Note

To access the source code for this specific section, please refer to https://
packt.live/2Yobbba.

You can also run this example online at https://packt.live/37SVSu6. You must
execute the entire Notebook in order to get the desired result.

You just applied multiple regularization techniques and trained a neural network to
predict the median value of housing in Boston suburbs.

Activity 6.01: Finding the Best Accuracy Score for the Digits Dataset

In this activity, you will be training and evaluating a neural network that will be
recognizing handwritten digits from the images provided by the MNIST dataset.
You will be focusing on achieving an optimal accuracy score.

Note

You can read more about this dataset on TensorFlow's website
at https://www.tensorflow.org/datasets/catalog/mnist.

Citation: This dataset was originally shared by Yann Lecun.

The following steps will help you complete the activity:

1. Import the MNIST dataset.

2. Standardize the data by applying a division by 255.

3. Create a neural network architecture with the following layers:

A flatten input layer using layers.Flatten(input_shape=(28,28))

A fully connected layer with layers.Dense(128, activation='relu')

A dropout layer with layers.Dropout(0.25)

https://packt.live/2Yobbba
https://packt.live/2Yobbba
https://packt.live/37SVSu6
https://www.tensorflow.org/datasets/catalog/mnist

300 | Neural Networks and Deep Learning

A fully connected layer with layers.Dense(10,
activation='softmax')

4. Specify an Adam optimizer with a learning rate of 0.001.

5. Define an early stopping on the validation loss and patience of 5.

6. Train the model.

7. Evaluate the model and find the accuracy score.

The expected output is this:

Figure 6.18: Expected accuracy score

Note

The solution for this activity can be found on page 378

In the next part, we will dive into deep learning topics.

Deep Learning
Now that we are comfortable in building and training a neural network with one
hidden layer, we can look at more complex architecture with deep learning.

Deep Learning | 301

Deep learning is just an extension of traditional neural networks but with deeper
and more complex architecture. Deep learning can model very complex patterns,
be applied in tasks such as detecting objects in images and translating text into a
different language.

Shallow versus Deep Networks

Now that we are comfortable in building and training a neural network with one
hidden layer, we can look at more complex architecture with deep learning.

As mentioned earlier, we can add more hidden layers to a neural network. This will
increase the number of parameters to be learned but can potentially help to model
more complex patterns. This is what deep learning is about: increasing the depth of a
neural network to tackle more complex problems.

For instance, we can add a second layer to the neural network we presented earlier in
the section on forward propagation and loss functions:

Figure 6.19: Figure showing two hidden layers in a neural network

302 | Neural Networks and Deep Learning

In theory, we can add an infinite number of hidden layers. But there is a drawback
with deeper networks. Increasing the depth will also increase the number of
parameters to be optimized. So, the neural network will have to train for longer. So,
as good practice, it is better to start with a simpler architecture and then steadily
increase its depth.

Computer Vision and Image Classification
Deep learning has achieved amazing results in computer vision and natural language
processing. Computer vision is a field that involves analyzing digital images. A digital
image is a matrix composed of pixels. Each pixel has a value between 0 and 255 and
this value represents the intensity of the pixel. An image can be black and white and
have only one channel. But it can also have colors, and in that case, it will have three
channels for the colors red, green, and blue. This digital version of an image that can
be fed to a deep learning model.

There are multiple applications of computer vision, such as image classification
(recognizing the main object in an image), object detection (localizing different objects
in an image), and image segmentation (finding the edges of objects in an image). In
this book, we will only look at image classification.

In the next section, we will look at a specific type of architecture: CNNs.

Convolutional Neural Networks (CNNs)

CNNs are ANNs that are optimized for image-related pattern recognition. CNNs are
based on convolutional layers instead of fully connected layers.

A convolutional layer is used to detect patterns in an image with a filter. A filter is
just a matrix that is applied to a portion of an input image through a convolutional
operation and the output will be another image (also called a feature map) with the
highlighted patterns found by the filter. For instance, a simple filter can be one that
recognizes vertical lines on a flower, such as for the following image:

Computer Vision and Image Classification | 303

Figure 6.20: Convolution detecting patterns in an image

These filters are not set in advance but learned by CNNs automatically. After the
training is over, a CNN can recognize different shapes in an image. These shapes can
be anywhere on the image, and the convolutional operator recognizes similar image
information regardless of its exact position and orientation.

Convolutional Operations

A convolution is a specific type of matrix operation. For an input image, a filter of size
n*n will go through a specific area of an image and apply an element-wise product
and a sum and return the calculated value:

Figure 6.21: Convolutional operations

304 | Neural Networks and Deep Learning

In the preceding example, we applied a filter to the top-left part of the image.
Then we applied an element-wise product that just multiplied an element from the
input image to the corresponding value on the filter. In the example, we calculated
the following:

• 1st row, 1st column: 5 * 2 = 10

• 1st row, 2nd column: 10 * 0 = 0

• 1st row, 3rd column: 15 * (-1) = -15

• 2nd row, 1st column: 10 * 2 = 20

• 2nd row, 2nd column: 20 * 0 = 0

• 2nd row, 3rd column: 30 * (-1) = -30

• 3rd row, 1st column: 100 * 2 = 200

• 3rd row, 2nd column: 150 * 0 = 0

• 3rd row, 3rd column: 200 * (-1) = -200

Finally, we perform the sum of these values: 10 + 0 -15 + 20 + 0 - 30 + 200 + 0 - 200
= -15.

Then we will perform the same operation by sliding the filter to the right by one
column from the input image. We keep sliding the filter until we have covered the
entire image:

Figure 6.22: Convolutional operations on different rows and columns

Computer Vision and Image Classification | 305

Rather than sliding column by column, we can also slide by two, three, or more
columns. The parameter defining the length of this sliding operation is called
the stride.

You may have noticed that the result of the convolutional operation is an image (or
feature map) with smaller dimensions than the input image. If you want to keep the
exact same dimensions, you can add additional rows and columns with the value 0
around the border of the input image. This operation is called padding.

This is what is behind a convolutional operation. A convolutional layer is just the
application of this operation with multiple filters.

We can declare a convolutional layer in TensorFlow with the following code snippet:

from tensorflow.keras import layers

layers.Conv2D(32, kernel_size=(3, 3), strides=(1,1), \

 padding="valid", activation="relu")

In the preceding example, we have instantiated a convolutional layer with 32 filters
(also called kernels) of size (3, 3) with stride of 1 (sliding window by 1 column or
row at a time) and no padding (padding="valid").

Note

You can read more about this Conv2D class on TensorFlow's website, at
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D.

In TensorFlow, convolutional layers expect the input to be tensors with the following
format: (rows, height, width, channel). Depending on the dataset, you may have to
reshape the images to conform to this requirement. TensorFlow provides a function
for this, shown in the following code snippet:

features_train.reshape(60000, 28, 28, 1)

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

306 | Neural Networks and Deep Learning

Pooling Layer

Another frequent layer in a CNN's architecture is the pooling layer. We have seen
previously that the convolutional layer reduces the size of the image if no padding is
added. Is this behavior expected? Why don't we keep the exact same size as for the
input image? In general, with CNNs, we tend to reduce the size of the feature maps as
we progress through different layers. The main reason for this is that we want to have
more and more specific pattern detectors closer to the end of the network.

Closer to the beginning of the network, a CNN will tend to have more generic filters,
such as vertical or horizontal line detectors, but as it goes deeper, we would, for
example, have filters that can detect a dog's tail or a cat's whiskers if we were training
a CNN to recognize cats versus dogs, or the texture of objects if we were classifying
images of fruits. Also, having smaller feature maps reduces the risk of false patterns
being detected.

By increasing the stride, we can further reduce the size of the output feature map.
But there is another way to do this: adding a pooling layer after a convolutional layer.
A pooling layer is a matrix of a given size and will apply an aggregation function to
each area of the feature map. The most frequent aggregation method is finding the
maximum value of a group of pixels:

Figure 6.23: Workings of the pooling layer

In the preceding example, we use a max pooling of size (2, 2) and stride=2. We
look at the top-left corner of the feature map and find the maximum value among the
pixels 6, 8, 1, and 2 and get the result, 8. Then we slide the max pooling by a stride of
2 and perform the same operation on the pixels 6, 1, 7, and 4. We repeat the same
operation on the bottom groups and get a new feature map of size (2,2).

Computer Vision and Image Classification | 307

In TensorFlow, we can use the MaxPool2D() class to declare a max-pooling layer:

from tensorflow.keras import layers

layers.MaxPool2D(pool_size=(2, 2), strides=2)

Note

You can read more about this Conv2D class on TensorFlow's website at
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D.

CNN Architecture

As you saw earlier, you can define your own custom CNN architecture by specifying
the type and number of hidden layers, the activation functions to be used, and so on.
But this may be a bit daunting for beginners. How do we know how many filters need
to be added at each layer or what the right stride will be? We will have to try multiple
combinations and see which ones work.

Luckily, a lot of researchers in deep learning have already done such exploratory work
and have published the architecture they designed. Currently, the most famous ones
are these:

• AlexNet

• VGG

• ResNet

• Inception

Note

We will not go through the details of each architecture as it is not in
the scope of this book, but you can read more about the different CNN
architectures implemented on TensorFlow at https://www.tensorflow.org/
api_docs/python/tf/keras/applications.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications

308 | Neural Networks and Deep Learning

Activity 6.02: Evaluating a Fashion Image Recognition Model Using CNNs

In this activity, we will be training a CNN to recognize clothing images that belong to
10 different classes from the Fashion MNIST dataset. We will be finding the accuracy
of this CNN model.

Note

You can read more about this dataset on TensorFlow's website at https://
www.tensorflow.org/datasets/catalog/fashion_mnist.

The original dataset was shared by Han Xiao.

The following steps will help you complete the activity:

1. Import the Fashion MNIST dataset.

2. Reshape the training and testing set.

3. Standardize the data by applying a division by 255.

4. Create a neural network architecture with the following layers:

Three convolutional layers with Conv2D(64, (3,3),
activation='relu') followed by MaxPooling2D(2,2)

A flatten layer

A fully connected layer with Dense(128, activation=relu)

A fully connected layer with Dense(10, activation='softmax')

5. Specify an Adam optimizer with a learning rate of 0.001.

6. Train the model.

7. Evaluate the model on the testing set.

The expected output is this:

10000/10000 [==============================] - 1s 108us/sample - loss:
0.2746 - accuracy: 0.8976
[0.27461639745235444, 0.8976]

Note

The solution for this activity can be found on page 382.

https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://www.tensorflow.org/datasets/catalog/fashion_mnist

Recurrent Neural Networks (RNNs) | 309

In the following section, we will learn about a different type of deep learning
architecture: the RNN.

Recurrent Neural Networks (RNNs)
In the last section, we learned how we can use CNNs for computer vision tasks such
as classifying images. With deep learning, computers are now capable of achieving
and sometimes surpassing human performance. Another field that is attracting a
lot of interest from researchers is natural language processing. This is a field where
RNNs excel.

In the last few years, we have seen a lot of different applications of RNN technology,
such as speech recognition, chatbots, and text translation applications. But RNNs are
also quite performant in predicting time series patterns, something that's used for
forecasting stock markets.

RNN Layers

The common point with all the applications mentioned earlier is that the inputs are
sequential. There is a time component with the input. For instance, a sentence is a
sequence of words, and the order of words matters; stock market data consists of a
sequence of dates with corresponding stock prices.

To accommodate such input, we need neural networks to be able to handle
sequences of inputs and be able to maintain an understanding of the relationships
between them. One way to do this is to create memory where the network can take
into account previous inputs. This is exactly how a basic RNN works:

Figure 6.24: Overview of a single RNN

310 | Neural Networks and Deep Learning

In the preceding figure, we can see a neural network that takes an input called Xt and
performs some transformations and gives the output results, . Nothing new so far.

But you may have noticed that there is an additional output called Ht-1 that is an
output but also an input to the neural network. This is how RNN simulates memory
– by considering its previous results and taking them in as an additional input.
Therefore, the result will depend on the input xt but also Ht-1. Now, we can
represent a sequence of four inputs that get fed into the same neural network:

Figure 6.25: Overview of an RNN

We can see the neural network is taking an input (x) and generating an output (y)
at each time step (t, t+1, …, t+3) but also another output (h), which is feeding the
next iteration.

Note

The preceding figure may be a bit misleading – there is actually only one
RNN here (all the RNN boxes in the middle form one neural network), but it
is easier to see how the sequencing works in this format.

Recurrent Neural Networks (RNNs) | 311

An RNN cell looks like this on the inside:

Figure 6.26: Internal workings of an RNN using tanh

It is very similar to a simple neuron, but it takes more inputs and uses tanh as the
activation function.

Note

You can use any activation function in an RNN cell. The default value in
TensorFlow is tanh.

This is the basic logic of RNNs. In TensorFlow, we can instantiate an RNN layer with
layers.SimpleRNN:

from tensorflow.keras import layers

layers.SimpleRNN(4, activation='tanh')

In the code snippet, we created an RNN layer with 4 outputs and the tanh activation
function (which is the most widely used activation function for RNNs).

312 | Neural Networks and Deep Learning

The GRU Layer

One drawback with the previous type of layer is that the final output takes into
consideration all the previous outputs. If you have a sequence of 1,000 input units,
the final output, y, is influenced by every single previous result. If this sequence was
composed of 1,000 words and we were trying to predict the next word, it would really
be overkill to have to memorize all of the 1,000 words before making a prediction.
Probably, you only need to look at the previous 100 words from the final output.

This is exactly what Gated Recurrent Unit (GRU) cells are for. Let's look at what is
inside them:

Figure 6.27: Internal workings of an RNN using tanh and sigmoid

Compared to a simple RNN cell, a GRU cell has a few more elements:

• A second activation function, which is sigmoid

• A multiplier operation performed before generating the outputs and Ht

The usual path with tanh is still responsible for making a prediction, but this time we
will call it the "candidate." The sigmoid path acts as an "update" gate. This will tell the
GRU cell whether it needs to discard the use of this candidate or not. Remember that
the output ranges between 0 and 1. If close to 0, the update gate (that is, the sigmoid
path) will say we should not consider this candidate.

Recurrent Neural Networks (RNNs) | 313

On the other hand, if it is closer to 1, we should definitely use the result of
this candidate.

Remember that the output Ht is related to Ht-1, which is related to Ht-2, and so on. So,
this update gate will also define how much "memory" we should keep. It tends to
prioritize previous outputs closer to the current one.

This is the basic logic of GRU (note that the GRU cell has one more component, the
reset gate, but for the purpose of simplicity, we will not look at it). In TensorFlow, we
can instantiate such a layer with layers.GRU:

from tensorflow.keras import layers

layers.GRU(4, activation='tanh', \

 recurrent_activation='sigmoid')

In the code snippet, we have created a GRU layer with 4 output units and the tanh
activation function for the candidate prediction and sigmoid for the update gate.

The LSTM Layer

There is another very popular type of cell for RNN architecture called the LSTM cell.
LSTM stands for Long Short-Term Memory. LSTM came before GRU, but the latter is
much simpler, and this is the reason why we presented it first. Here is what is under
the hood of LSTM:

Figure 6.28: Overview of LSTM

314 | Neural Networks and Deep Learning

At first, this looks very complicated. It is composed of several elements:

• Cell state: This is the concatenation of all the previous outputs. It is the
"memory" of the LSTM cell.

• Forget gate: This is responsible for defining whether we should keep or
forget a given memory.

• Input gate: This is responsible for defining whether the new memory
candidate needs to be updated or not. This new memory candidate is then
added to the previous memory.

• Output gate: This is responsible for making the prediction based on the
previous output (Ht-1), the current input (xt), and the memory.

An LSTM cell can consider previous results but also past memory, and this is the
reason why it is so powerful.

In TensorFlow, we can instantiate such a layer with layers.SimpleRNN:

from tensorflow.keras import layers

layers.LSTM(4, activation='tanh', \

 recurrent_activation='sigmoid')

In the code snippet, we have created an LSTM layer with 4 output units and the tanh
activation function for the candidate prediction and sigmoid for the update gate.

Note

You can read more about SimpleRNN implementation in TensorFlow here:
https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN.

Activity 6.03: Evaluating a Yahoo Stock Model with an RNN

In this activity, we will be training an RNN model with LSTM to predict the stock price
of Yahoo! based on the data of the past 30 days. We will be finding the optimal mean
squared error value and checking whether the model overfits. We will be using the
same Yahoo Stock dataset that we saw in Chapter 2, An Introduction to Regression.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/SimpleRNN

Recurrent Neural Networks (RNNs) | 315

Note

The dataset file can also be found in our GitHub repository:
https://packt.live/3fRI5Hk.

The following steps will help you to complete this activity:

1. Import the Yahoo Stock dataset.

2. Extract the close price column.

3. Standardize the dataset.

4. Create the previous 30 days' stock price features.

5. Reshape the training and testing sets.

6. Create the neural network architecture with the following layers:

Five LSTM layers with LSTM(50, (3,3), activation='relu')
followed by Dropout(0.2)

A fully connected layer with Dense(1)

7. Specify an Adam optimizer with a learning rate of 0.001.

8. Train the model.

9. Evaluate the model on the testing set.

The expected output is this:

1000/1000 [==============================] - 0s 279us/sample - loss:
0.0016 - mse: 0.0016
[0.00158528157370165, 0.0015852816]

Note

The solution for this activity can be found on page 387.

In the next section, we will be looking at the hardware needed for deep learning.

https://packt.live/3fRI5Hk

316 | Neural Networks and Deep Learning

Hardware for Deep Learning

As you may have noticed, training deep learning models takes longer than traditional
machine learning algorithms. This is due to the number of calculations required for
the forward pass and backpropagation. In this book, we trained very simple models
with just a few layers. But there are architectures with hundreds of layers, and some
with even more than that. That kind of network can take days or even weeks to train.

To speed up the training process, it is recommended to use a specific piece of
hardware called a GPU. GPUs specialize in performing mathematical operations and
therefore are perfect for deep learning. Compared to a Central Processing Unit
(CPU), a GPU can be up to 10X faster at training a deep learning model. You can
personally buy a GPU and set up your own deep learning computer. You just need to
get one that is CUDA-compliant (currently only NVIDIA GPUs are).

Another possibility is to use cloud providers such as AWS or Google Cloud Platform
and train your models in the cloud. You will pay only for what you use and can switch
them off as soon as you are done. The benefit is that you can scale the configuration
up or down depending on the needs of your projects – but be mindful of the cost. You
will be charged for the time your instance is up even if you are not training a model.
So, don't forget to switch things off if you're not using them.

Finally, Google recently released some new hardware dedicated to deep learning:
Tensor Processing Unit (TPUs). They are much faster than GPUs, but they are
quite costly. Currently, only Google Cloud Platform provides such hardware in their
cloud instances.

Challenges and Future Trends

As with any new technology, deep learning comes with challenges. One of them is
the big barrier to entry. To become a deep learning practitioner, you used to have to
know all the mathematical theory behind deep learning very well and be a confirmed
programmer. On top of this, you had to learn the specifics of the deep learning
framework you chose to use (be it TensorFlow, PyTorch, Caffe, or anything else).
For a while, deep learning couldn't reach a broad audience and was mainly limited
to researchers. This situation has changed, though it is not perfect. For instance,
TensorFlow now comes with a higher-level API called Keras (this is the one you saw
in this chapter) that is much easier to use than the core API. Hopefully, this trend
will keep going and make deep learning frameworks more accessible to anyone
interested in this field.

Recurrent Neural Networks (RNNs) | 317

The second challenge was that deep learning models require a lot of computation
power, as mentioned in the previous section. This was again a major blocker for
anyone who wanted to have a go at it. Even though the cost of GPUs has gone
down, deep learning still requires some upfront investment. Luckily for us, there is
now a free option to train deep learning models with GPUs: Google Colab. It is an
initiative from Google to promote research by providing temporary cloud computing
for free. The only thing you need is a Google account. Once signed up, you can
create Notebooks (similar to Jupyter Notebooks) and choose a kernel to be run on
a CPU, GPU (limited to 10 hours per day), or even a TPU (limited to ½ hour per day).
So, before investing in purchasing or renting out GPU, you can first practice with
Google Colab.

Note

You can find more information about Google Colab
at https://colab.research.google.com/.

More advanced deep learning models can be very deep and require weeks of
training. So, it is hard for basic practitioners to use such architecture. But thankfully,
a lot of researchers have embraced the open source movement and have shared not
only the architectures they have designed but also the weights of the networks. This
means you can now access state-of-the-art pre-trained models and fine-tune them to
fit your own projects. This is called transfer learning (which is out of the scope of this
book). It is very popular in computer vision, where you can find pre-trained models
on ImageNet or MS-Coco, for instance, which are large datasets of pictures. Transfer
learning is also happening in natural language processing, but it is not as developed
as it is for computer vision.

Note

You can find more information about these datasets
at http://www.image-net.org/ and http://cocodataset.org/.

https://colab.research.google.com/
http://www.image-net.org/
http://cocodataset.org/

318 | Neural Networks and Deep Learning

Another very important topic related to deep learning is the increasing need to be
able to interpret model results. Soon, these kinds of algorithms may be regulated,
and deep learning practitioners will have to be able to explain why a model is
making a given decision. Currently, deep learning models are more like black boxes
due to the complexity of the networks. There are already some initiatives from
researchers to find ways to interpret and understand deep neural networks, such as
Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014.
However, more work needs to be done in this field with the democratization of such
technologies in our day-to-day lives. For instance, we will need to make sure that
these algorithms are not biased and are not making unfair decisions affecting specific
groups of people.

Summary
We have just completed the entire book of The Applied Artificial Intelligence Workshop,
Second Edition. In this workshop, we have learned about the fundamentals of AI and
its applications. We wrote a Python program to play tic-tac-toe. We learned about
search techniques such as breadth-first search and depth-first search and how they
can help us solve the tic-tac-toe game.

In the next couple of chapters after that, we learned about supervised learning using
regression and classification. These chapters included data preprocessing, train-test
splitting, and models that were used in several real-life scenarios. Linear regression,
polynomial regression, and support vector machines all came in handy when it came
to predicting stock data. Classification was performed using k-nearest neighbor
and support vector classifiers. Several activities helped you to apply the basics of
classification in an interesting real-life use case: credit scoring.

In Chapter 4, An Introduction to Decision Trees, you were introduced to decision trees,
random forests, and extremely randomized trees. This chapter introduced different
means of evaluating the utility of models. We learned how to calculate the accuracy,
precision, recall, and F1 score of models. We also learned how to create the confusion
matrix of a model. The models of this chapter were put into practice through the
evaluation of car data.

Summary | 319

Unsupervised learning was introduced in Chapter 5, Artificial Intelligence: Clustering,
along with the k-means and hierarchical clustering algorithms. One interesting aspect
of these algorithms is that the labels are not given in advance, but they are detected
during the clustering process.

This workshop concluded with Chapter 6, Neural Networks and Deep Learning, where
neural networks and deep learning using TensorFlow was presented. We used these
techniques to achieve the best accuracy in real-life applications, such as the detection
of written digits, image classification, and time series forecasting.

Appendix

322 | Appendix

Chapter 01: Introduction to Artificial Intelligence

Activity 1.01: Generating All Possible Sequences of Steps in a Tic-Tac-Toe Game

Solution:

The following steps will help you to complete this activity:

1. Open a new Jupyter Notebook file.

2. Reuse the function codes of Steps 2–9 from the previous, Exercise 1.02, Creating
an AI with Random Behavior for the Tic-Tac-Toe Game.

3. Create a function that maps the all_moves_from_board_list function
to each element of a list of boards. This way, we will have all of the nodes of a
decision tree in each depth:

def all_moves_from_board_list(board_list, sign):

 move_list = []

 for board in board_list:

 move_list.extend(all_moves_from_board(board, sign))

 return move_list

In the preceding code snippet, we have defined the all_moves_from_board
function, which will enumerate all the possible moves from the board and add
the move to a list called move_list.

4. Create a variable called board that contains the EMPTY_SIGN * 9 decision
tree and calls the all_moves_from_board_list function with the board
and AI_SIGN. Save its output in a variable called all_moves and print
its content:

board = EMPTY_SIGN * 9

all_moves = all_moves_from_board(board, AI_SIGN)

all_moves

Chapter 01: Introduction to Artificial Intelligence | 323

The expected output is this:

['X........',

 '.X.......',

 '..X......',

 '...X.....',

 '....X....',

 '.....X...',

 '......X..',

 '.......X.',

 '........X']

5. Create a filter_wins function that takes the ended games out from the list of
moves and appends them in an array containing the board states won by the AI
player and the opponent player:

def filter_wins(move_list, ai_wins, opponent_wins):

 for board in move_list:

 won_by = game_won_by(board)

 if won_by == AI_SIGN:

 ai_wins.append(board)

 move_list.remove(board)

 elif won_by == OPPONENT_SIGN:

 opponent_wins.append(board)

 move_list.remove(board)

In the preceding code snippet, we have defined a filter_wins function, which
will add the winning state of the board for each player to a list.

6. Use the count_possibilities function, which prints and returns the
number of decision tree leaves that ended with a draw, that were won by the
first player, and that were won by the second player, as shown in the following
code snippet:

def count_possibilities():

 board = EMPTY_SIGN * 9

 move_list = [board]

 ai_wins = []

 opponent_wins = []

 for i in range(9):

 print('step ' + str(i) + '. Moves: ' \

 + str(len(move_list)))

 sign = AI_SIGN if \

324 | Appendix

 i % 2 == 0 else OPPONENT_SIGN

 move_list = all_moves_from_board_list\

 (move_list, sign)

 filter_wins(move_list, ai_wins, \

 opponent_wins)

 print('First player wins: ' + str(len(ai_wins)))

 print('Second player wins: ' + str(len(opponent_wins)))

 print('Draw', str(len(move_list)))

 print('Total', str(len(ai_wins) \

 + len(opponent_wins) + len(move_list)))

 return len(ai_wins), len(opponent_wins), \

 len(move_list), len(ai_wins) \

 + len(opponent_wins) + len(move_list)

We have up to 9 steps in each state. In the 0th, 2nd, 4th, 6th, and 8th iterations, the
AI player moves. In all the other iterations, the opponent moves. We create
all possible moves in all steps and take out the completed games from the
move list.

7. Execute the number of possibilities to experience the combinatorial explosion
and save the results in four variables called first_player, second_player,
draw, and total:

first_player, second_player, \

draw, total = count_possibilities()

The expected output is this:

step 0. Moves: 1

step 1. Moves: 9

step 2. Moves: 72

step 3. Moves: 504

step 4. Moves: 3024

step 5. Moves: 13680

step 6. Moves: 49402

step 7. Moves: 111109

step 8. Moves: 156775

First player wins: 106279

Second player wins: 68644

Draw 91150

Total 266073

Chapter 01: Introduction to Artificial Intelligence | 325

As you can see, the tree of the board states consists of a total of 266073 leaves.
The count_possibilities function essentially implements a BFS algorithm
to traverse all the possible states of the game. Notice that we count these states
multiple times because placing an X in the top-right corner in Step 1 and placing an
X in the top-left corner in Step 3 leads to similar possible states as starting with the
top-left corner and then placing an X in the top-right corner. If we implemented the
detection of duplicate states, we would have to check fewer nodes. However, at this
stage, due to the limited depth of the game, we will omit this step.

A decision tree, however, is identical to the data structure examined by
count_possibilities. In a decision tree, we explore the utility of each move by
investigating all possible future steps up to a certain extent. In our example, we could
calculate the utility of the initial moves by observing the number of wins and losses
after fixing the first few moves.

Note

The root of the tree is the initial state. An internal state of the tree is a state
in which a game has not been ended and moves are still possible. A leaf of
the tree contains a state where a game has ended.

To access the source code for this specific section, please refer to
https://packt.live/3doxPog.

You can also run this example online at https://packt.live/3dpnuIz.

You must execute the entire Notebook in order to get the desired result.

Activity 1.02: Teaching the Agent to Realize Situations When It Defends Against

Losses

Solution:

The following steps will help you to complete this activity:

1. Open a new Jupyter Notebook file.

2. Reuse all the code from Steps 2–6 from the previous, Exercise 1.03, Teaching the
Agent to Win.

3. Create a function called player_can_win that takes all the moves from the
board using the all_moves_from_board function and iterates over them
using the next_move variable.

https://packt.live/3doxPog
https://packt.live/3dpnuIz

326 | Appendix

In each iteration, it checks whether the game can be won by the player.

def player_can_win(board, sign):

 next_moves = all_moves_from_board(board, sign)

 for next_move in next_moves:

 if game_won_by(next_move) == sign:

 return True

 return False

4. Extend the AI move so that it prefers making safe moves. A move is safe if the
opponent cannot win the game in the next step:

def ai_move(board):

 new_boards = all_moves_from_board(board, AI_SIGN)

 for new_board in new_boards:

 if game_won_by(new_board) == AI_SIGN:

 return new_board

 safe_moves = []

 for new_board in new_boards:

 if not player_can_win(new_board, OPPONENT_SIGN):

 safe_moves.append(new_board)

 return choice(safe_moves) \

 if len(safe_moves) > 0 else new_boards[0]

In the preceding code snippet, we have defined the ai_move function,
which tells the AI how to move by looking at the list of all the possibilities and
choosing one where the player cannot win in the next move. If you test our new
application, you will find that the AI has made the correct move.

5. Now, place this logic in the state space generator and check how well the
computer player is doing by generating all the possible games:

def all_moves_from_board(board, sign):

 move_list = []

 for i, v in enumerate(board):

 if v == EMPTY_SIGN:

 new_board = board[:i] + sign + board[i+1:]

 move_list.append(new_board)

 if game_won_by(new_board) == AI_SIGN:

 return [new_board]

Chapter 01: Introduction to Artificial Intelligence | 327

 if sign == AI_SIGN:

 safe_moves = []

 for move in move_list:

 if not player_can_win(move, OPPONENT_SIGN):

 safe_moves.append(move)

 return safe_moves if len(safe_moves) > 0 else move_list[0:1]

 else:

 return move_list

In the preceding code snippet, we have defined a function that generates all
possible moves. As soon as we find the next move that can make the player win,
we return a move to counter it. We do not care whether the player has multiple
options to win the game in one move – we just return the first possibility. If the
AI cannot stop the player from winning, we return all possible moves.

Let's see what this means in terms of counting all of the possibilities at each step.

6. Count the options that are possible:

first_player, second_player, \

draw, total = count_possibilities()

The expected output is this:

step 0. Moves: 1

step 1. Moves: 9

step 2. Moves: 72

step 3. Moves: 504

step 4. Moves: 3024

step 5. Moves: 5197

step 6. Moves: 18606

step 7. Moves: 19592

step 8. Moves: 30936

First player wins: 20843

Second player wins: 962

Draw 20243

Total 42048

328 | Appendix

We are doing better than before. We not only got rid of almost 2/3 of possible games
again, but, most of the time, the AI player either wins or settles for a draw.

Note

To access the source code for this specific section, please refer to
https://packt.live/2B0G9xf.

You can also run this example online at https://packt.live/2V7qLpO.

You must execute the entire Notebook in order to get the desired result.

Activity 1.03: Fixing the First and Second Moves of the AI to Make It Invincible

Solution:

The following steps will help you to complete this activity:

1. Open a new Jupyter Notebook file.

2. Reuse the code from Steps 2–4 of the previous, Activity 1.02, Teaching the Agent to
Realize Situations When It Defends Against Losses.

3. Now, count the number of empty fields on the board and make a hardcoded
move in case there are 9 or 7 empty fields. You can experiment with different
hardcoded moves. We found that occupying any corner, and then occupying the
opposite corner, leads to no loss. If the opponent occupies the opposite corner,
making a move in the middle results in no losses:

def all_moves_from_board(board, sign):

 if sign == AI_SIGN:

 empty_field_count = board.count(EMPTY_SIGN)

 if empty_field_count == 9:

 return [sign + EMPTY_SIGN * 8]

 elif empty_field_count == 7:

 return [board[:8] + sign if board[8] == \

 EMPTY_SIGN else board[:4] + sign + board[5:]]

 move_list = []

 for i, v in enumerate(board):

 if v == EMPTY_SIGN:

 new_board = board[:i] + sign + board[i+1:]

 move_list.append(new_board)

 if game_won_by(new_board) == AI_SIGN:

https://packt.live/2B0G9xf
https://packt.live/2V7qLpO

Chapter 01: Introduction to Artificial Intelligence | 329

 return [new_board]

 if sign == AI_SIGN:

 safe_moves = []

 for move in move_list:

 if not player_can_win(move, OPPONENT_SIGN):

 safe_moves.append(move)

 return safe_moves if len(safe_moves) > 0 else move_list[0:1]

 else:

 return move_list

4. Now, verify the state space:

first_player, second_player, draw, total = count_possibilities()

The expected output is this:

step 0. Moves: 1

step 1. Moves: 1

step 2. Moves: 8

step 3. Moves: 8

step 4. Moves: 48

step 5. Moves: 38

step 6. Moves: 108

step 7. Moves: 76

step 8. Moves: 90

First player wins: 128

Second player wins: 0

Draw 60

Total 188

After fixing the first two steps, we only need to deal with 8 possibilities instead of 504.
We also guided the AI into a state where the hardcoded rules were sufficient enough
for it to never lose a game. Fixing the steps is not important because we would give
the AI hardcoded steps to start with, but it is important because it is a tool that is
used to evaluate and compare each step. After fixing the first two steps, we only need
to deal with 8 possibilities instead of 504. We also guided the AI into a state, where
the hardcoded rules were sufficient for never losing a game. As you can see, the AI is
now nearly invincible and will only win or make a draw.

330 | Appendix

The best that a player can hope to get against this AI is a draw.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YnUcpA.

You can also run this example online at https://packt.live/318TBtq.

You must execute the entire Notebook in order to get the desired result.

Activity 1.04: Connect Four

Solution:

1. Open a new Jupyter Notebook file.

Let's set up the TwoPlayersGame framework by writing the init method.

2. Define the board as a one-dimensional list, like the tic-tac-toe example. We could
use a two-dimensional list, too, but modeling will not get much easier or harder.
Beyond making initialization like we did in the tic-tac-toe game, we will work a bit
further ahead. We will generate all of the possible winning combinations in the
game and save them for future use, as shown in the following code snippet:

from easyAI import TwoPlayersGame, Human_Player

class ConnectFour(TwoPlayersGame):

 def __init__(self, players):

 self.players = players

 self.board = [0 for i in range(42)]

 self.nplayer = 1

 def generate_winning_tuples():

 tuples = []

 # horizontal

 tuples += [list(range(row*7+column, \

 row*7+column+4, 1)) \

 for row in range(6) \

 for column in range(4)]

 # vertical

 tuples += [list(range(row*7+column, \

 row*7+column+28, 7)) \

https://packt.live/2YnUcpA
https://packt.live/318TBtq

Chapter 01: Introduction to Artificial Intelligence | 331

 for row in range(3) \

 for column in range(7)]

 # diagonal forward

 tuples += [list(range(row*7+column, \

 row*7+column+32, 8)) \

 for row in range(3) \

 for column in range(4)]

 # diagonal backward

 tuples += [list(range(row*7+column, \

 row*7+column+24, 6)) \

 for row in range(3) \

 for column in range(3, 7, 1)]

 return tuples

 self.tuples = generate_winning_tuples()

3. Next, handle the possible_moves function, which is a simple enumeration.
Notice that we are using column indices from 1 to 7 in the move names
because it is more convenient to start a column indexing with 1 in the human
player interface than with zero. For each column, we check whether there is an
unoccupied field. If there is one, we will make the column a possible move:

 def possible_moves(self):

 return [column+1 \

 for column in range(7) \

 if any([self.board[column+row*7] == 0 \

 for row in range(6)])

]

4. Making a move is like the possible_moves function. We check the column of
the move and find the first empty cell starting from the bottom. Once we find it,
we occupy it. You can also read the implementation of the both the make_move
function: unmake_move. In the unmake_move function, we check the column
from top to down, and we remove the move at the first non-empty cell. Notice
that we rely on the internal representation of easyAI so that it does not undo
moves that it hasn't made. Otherwise, this function would remove a token of the
other player without checking whose token was removed:

 def make_move(self, move):

 column = int(move) - 1

 for row in range(5, -1, -1):

 index = column + row*7

 if self.board[index] == 0:

332 | Appendix

 self.board[index] = self.nplayer

 return

 # optional method (speeds up the AI)

 def unmake_move(self, move):

 column = int(move) - 1

 for row in range(6):

 index = column + row*7

 if self.board[index] != 0:

 self.board[index] = 0

 return

5. Since we already have the tuples that we must check, we can mostly reuse the
lose function from the tic-tac-toe example:

 def lose(self):

 return any([all([(self.board[c] == self.nopponent)

 for c in line])

 for line in self.tuples])

 def is_over(self):

 return (self.possible_moves() == []) or self.lose()

6. Our final task is to implement the show method, which prints the board.
We will reuse the tic-tac-toe implementation and just change the show and
scoring variables:

 def show(self):

 print('\n'+'\n'.join([

 ' '.join([['.', 'O', 'X']\

 [self.board[7*row+column]] \

 for column in range(7)])

 for row in range(6)]))

 def scoring(self):

 return -100 if self.lose() else 0

if __name__ == "__main__":

 from easyAI import AI_Player, Negamax

 ai_algo = Negamax(6)

 ConnectFour([Human_Player(), \

 AI_Player(ai_algo)]).play()

Chapter 01: Introduction to Artificial Intelligence | 333

7. Now that all the functions are complete, you can try out the example. Feel free to
play a round or two against your opponent.

The expected output is this:

Figure 1.30: Expected output for the Connect Four game

By completing this activity, you have seen that the opponent is not perfect, but that it
plays reasonably well. If you have a strong computer, you can increase the parameter
of the Negamax algorithm. We encourage you to come up with a better heuristic.

Note

To access the source code for this specific section, please refer to
https://packt.live/3esk2hI.

You can also run this example online at https://packt.live/3dnkfS5.

You must execute the entire Notebook in order to get the desired result.

https://packt.live/3esk2hI
https://packt.live/3dnkfS5

334 | Appendix

Chapter 02: An Introduction to Regression

Activity 2.01: Boston House Price Prediction with Polynomial Regression of

Degrees 1, 2, and 3 on Multiple Variables

Solution:

1. Open a Jupyter Notebook.

2. Import the required packages and load the Boston House Prices data from
sklearn into a DataFrame:

import numpy as np

import pandas as pd

from sklearn import preprocessing

from sklearn import model_selection

from sklearn import linear_model

from sklearn.preprocessing import PolynomialFeatures

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/boston_house_price.csv'

df = pd.read_csv(file_url)

The output of df is as follows:

Figure 2.28: Output displaying the dataset

Chapter 02: An Introduction to Regression | 335

Earlier in this chapter, you learned that most of the required packages to
perform linear regression come from sklearn. We need to import the
preprocessing module to scale the data, the linear_model module to
train linear regression, the PolynomialFeatures module to transform the
inputs for the polynomial regression, and the model_selection module to
evaluate the performance of each model.

3. Prepare the dataset for prediction by converting the label and features into
NumPy arrays and scaling the features:

features = np.array(df.drop('MEDV', 1))

label = np.array(df['MEDV'])

scaled_features = preprocessing.scale(features)

The output for features is as follows:

Figure 2.29: Labels and features converted to NumPy arrays

As you can see, our features have been converted into a NumPy array.

336 | Appendix

The output for the label is as follows:

Figure 2.30: Output showing the expected labels

As you can see, our labels have been converted into a NumPy array.

The output for scaled_features is as follows:

array([[-0.41978194, 0.28482986, -1.2879095 , ...,

 -0.66660821, -1.45900038, -1.0755623],

 [-0.41733926, -0.48772236, -0.59338101, ...,

 -0.98732948, -0.30309415, -0.49243937],

 [-0.41734159, -0.48772236, -0.59338101, ...,

 -0.98732948, -0.30309415, -1.2087274],

 ...,

 [-0.41344658, -0.48772236, 0.11573841, ...,

 -0.80321172, 1.17646583, -0.98304761],

 [-0.40776407, -0.48772236, 0.11573841, ...,

 -0.80321172, 1.17646583, -0.86530163],

 [-0.41500016, -0.48772236, 0.11573841, ...,

 -0.80321172, 1.17646583, -0.66905833]])

Chapter 02: An Introduction to Regression | 337

As you can see, our features have been properly scaled.

As we don't have any missing values and we are not trying to predict a future
value as we did in Exercise 2.03, Preparing the Quandl Data for Prediction, we can
directly convert the label ('MEDV') and features into NumPy arrays. Then, we
can scale the arrays of features using the preprocessing.scale() function.

4. Create three different set of features by transforming the scaled features into a
suitable format for each of the polynomial regressions:

poly_1_scaled_features = PolynomialFeatures(degree=1)\

 .fit_transform(scaled_features)

poly_2_scaled_features = PolynomialFeatures(degree=2)\

 .fit_transform(scaled_features)

poly_3_scaled_features = PolynomialFeatures(degree=3)\

 .fit_transform(scaled_features)

The output for poly_1_scaled_features is as follows:

array([[1. , -0.41978194, 0.28482986, ..., -0.66660821,

 -1.45900038, -1.0755623],

 [1. , -0.41733926, -0.48772236, ..., -0.98732948,

 -0.30309415, -0.49243937],

 [1. , -0.41734159, -0.48772236, ..., -0.98732948,

 -0.30309415, -1.2087274],

 ...,

 [1. , -0.41344658, -0.48772236, ..., -0.80321172,

 1.17646583, -0.98304761],

 [1. , -0.40776407, -0.48772236, ..., -0.80321172,

 1.17646583, -0.86530163],

 [1. , -0.41500016, -0.48772236, ..., -0.80321172,

 1.17646583, -0.66905833]])

Our scaled_features variable has been properly transformed for the
polynomial regression of degree 1.

338 | Appendix

The output for poly_2_scaled_features is as follows:

Figure 2.31: Output showing poly_2_scaled_features

Our scaled_features variable has been properly transformed for the
polynomial regression of degree 2.

The output for poly_3_scaled_features is as follows:

array([[1. , -0.41978194, 0.28482986, ..., -2.28953024,

 -1.68782164, -1.24424733],

 [1. , -0.41733926, -0.48772236, ..., -0.04523847,

 -0.07349928, -0.11941484],

 [1. , -0.41734159, -0.48772236, ..., -0.11104103,

 -0.4428272 , -1.76597723],

 ...,

 [1. , -0.41344658, -0.48772236, ..., -1.36060852,

 1.13691611, -0.9500001],

 [1. , -0.40776407, -0.48772236, ..., -1.19763962,

 0.88087515, -0.64789192],

 [1. , -0.41500016, -0.48772236, ..., -0.9260248 ,

 0.52663205, -0.29949664]])

Our scaled_features variable has been properly transformed for the
polynomial regression of degree 3.

We had to transform the scaled features in three different ways as each degree
of polynomial regression required a different input transformation.

Chapter 02: An Introduction to Regression | 339

5. Split the data into a training set and a testing set with random state = 8:

(poly_1_features_train, poly_1_features_test, \

poly_label_train, poly_label_test) = \

model_selection.train_test_split(poly_1_scaled_features, \

 label, \

 test_size=0.1, \

 random_state=8)

(poly_2_features_train, poly_2_features_test, \

poly_label_train, poly_label_test) = \

model_selection.train_test_split(poly_2_scaled_features, \

 label, \

 test_size=0.1, \

 random_state=8)

(poly_3_features_train, poly_3_features_test, \

poly_label_train, poly_label_test) = \

model_selection.train_test_split(poly_3_scaled_features, \

 label, \

 test_size=0.1, \

 random_state=8)

As we have three different sets of scaled transformed features but the same
set of labels, we had to perform three different splits. By using the same set of
labels and random_state in each splitting, we ensure that we obtain the same
poly_label_train and poly_label_test for every split.

6. Perform a polynomial regression of degree 1 and evaluate whether the model
is overfitting:

model_1 = linear_model.LinearRegression()

model_1.fit(poly_1_features_train, poly_label_train)

model_1_score_train = model_1.score(poly_1_features_train, \

 poly_label_train)

model_1_score_test = model_1.score(poly_1_features_test, \

 poly_label_test)

The output for model_1_score_train is as follows:

0.7406006443486721

340 | Appendix

The output for model_1_score_test is as follows:

0.6772229017901507

To estimate whether a model is overfitting or not, we need to compare the
scores of the model applied to the training set and testing set. If the score for the
training set is much higher than the test set, we are overfitting. This is the case
here where the polynomial regression of degree 1 achieved a score of 0.74 for
the training set compared to 0.68 for the testing set.

7. Perform a polynomial regression of degree 2 and evaluate whether the model
is overfitting:

model_2 = linear_model.LinearRegression()

model_2.fit(poly_2_features_train, poly_label_train)

model_2_score_train = model_2.score(poly_2_features_train, \

 poly_label_train)

model_2_score_test = model_2.score(poly_2_features_test, \

 poly_label_test)

The output for model_2_score_train is as follows:

0.9251199698832675

The output for model_2_score_test is as follows:

0.8253870684280571

Like with the polynomial regression of degree 1, our polynomial regression of
degree 2 is overfitting even more than degree 1, but has managed to achieve
better results at the end.

8. Perform a polynomial regression of degree 3 and evaluate whether the model
is overfitting:

model_3 = linear_model.LinearRegression()

model_3.fit(poly_3_features_train, poly_label_train)

model_3_score_train = model_3.score(poly_3_features_train, \

 poly_label_train)

model_3_score_test = model_3.score(poly_3_features_test, \

 poly_label_test)

Chapter 02: An Introduction to Regression | 341

The output for model_3_score_train is as follows:

0.9910498071894897

The output for model_3_score_test is as follows:

-8430.781888645262

These results are very interesting because the polynomial regression of degree 3
managed to achieve a near-perfect score with 0.99 (1 is the maximum). This is a
warning sign that our model is overfitting too much. We have the confirmation of
this warning when the model is applied to the testing set and achieves a very low
negative score of -8430. As a reminder, a score of 0 can be achieved by using
the mean of the data as a prediction. This means that our third model managed
to make worse predictions than just using the mean.

9. Compare the predictions of the 3 models against the label on the testing set:

model_1_prediction = model_1.predict(poly_1_features_test)

model_2_prediction = model_2.predict(poly_2_features_test)

model_3_prediction = model_3.predict(poly_3_features_test)

df_prediction = pd.DataFrame(poly_label_test)

df_prediction.rename(columns = {0:'label'}, inplace = True)

df_prediction['model_1_prediction'] = \

pd.DataFrame(model_1_prediction)

df_prediction['model_2_prediction'] = \

pd.DataFrame(model_2_prediction)

df_prediction['model_3_prediction'] = \

pd.DataFrame(model_3_prediction)

342 | Appendix

The output of df_prediction is as follows:

Figure 2.32: Output showing the expected predicted values

After applying the predict function for each model on their respective testing set,
in order to get the predicted values, we convert them into a single df_prediction
DataFrame with the label values. Increasing the number of degrees in polynomial
regressions does not necessarily mean that the model will perform better compared
to one with a lower degree. In fact, increasing the degree will lead to more overfitting
on the training data.

Note

To access the source code for this specific section, please refer to
https://packt.live/3eD8gAY.

You can also run this example online at https://packt.live/3etadjp.

You must execute the entire Notebook in order to get the desired result.

In this activity, we learned how to perform polynomial regressions of degrees 1 to 3
with multiple variables on the Boston House Price dataset and saw how increasing
the degrees led to overfitted models.

https://packt.live/3eD8gAY
https://packt.live/3etadjp

Chapter 03: An Introduction to Classification | 343

Chapter 03: An Introduction to Classification

Activity 3.01: Increasing the Accuracy of Credit Scoring

Solution:

1. Open a new Jupyter Notebook file and execute all the steps from the previous
exercise, Exercise 3.04, K-Nearest Neighbors Classification in Scikit-Learn.

2. Import neighbors from sklearn:

from sklearn import neighbors

3. Create a function called fit_knn that takes the following parameters: k, p,
features_train, label_train, features_test, and label_test.
This function will fit KNeighborsClassifier with the training set and print
the accuracy score for the training and testing sets, as shown in the following
code snippet:

def fit_knn(k, p, features_train, label_train, \

 features_test, label_test):

 classifier = neighbors.KNeighborsClassifier(n_neighbors=k, p=p)

 classifier.fit(features_train, label_train)

 return classifier.score(features_train, label_train), \

 classifier.score(features_test, label_test)

4. Call the fit_knn() function with k=5 and p=2, save the results in 2 variables,
and print them. These variables are acc_train_1 and acc_test_1:

acc_train_1, acc_test_1 = fit_knn(5, 2, features_train, \

 label_train, \

 features_test, label_test)

acc_train_1, acc_test_1

The expected output is this:

(0.78625, 0.75)

With k=5 and p=2, KNN achieved a good accuracy score close to 0.78. But
the score is quite different from the training and testing sets, which means the
model is overfitting.

344 | Appendix

5. Call the fit_knn() function with k=10 and p=2, save the results in 2 variables,
and print them. These variables are acc_train_2 and acc_test_2:

acc_train_2, acc_test_2 = fit_knn(10, 2, features_train, \

 label_train, \

 features_test, label_test)

acc_train_2, acc_test_2

The expected output is this:

(0.775, 0.785)

Increasing the number of neighbors to 10 has decreased the accuracy score of
the training set, but now it is very close to the testing set.

6. Call the fit_knn() function with k=15 and p=2, save the results in 2 variables,
and print them. These variables are acc_train_3 and acc_test_3:

acc_train_3, acc_test_3 = fit_knn(15, 2, features_train, \

 label_train, \

 features_test, label_test)

acc_train_3, acc_test_3

The expected output is this:

(0.76625, 0.79)

With k=15 and p=2, the difference between the training and testing sets
has increased.

7. Call the fit_knn() function with k=25 and p=2, save the results in 2 variables,
and print them. These variables are acc_train_4 and acc_test_4:

acc_train_4, acc_test_4 = fit_knn(25, 2, features_train, \

 label_train, \

 features_test, label_test)

acc_train_4, acc_test_4

The expected output is this:

(0.7375, 0.77)

Increasing the number of neighbors to 25 has a significant impact on the
training set. However, the model is still overfitting.

Chapter 03: An Introduction to Classification | 345

8. Call the fit_knn() function with k=50 and p=2, save the results in 2 variables,
and print them. These variables are acc_train_5 and acc_test_5:

acc_train_5, acc_test_5 = fit_knn(50, 2, features_train, \

 label_train, \

 features_test, label_test)

acc_train_5, acc_test_5

The expected output is this:

(0.70625, 0.775)

Bringing the number of neighbors to 50 neither improved the model's
performance or the overfitting issue.

9. Call the fit_knn() function with k=5 and p=1, save the results in 2 variables,
and print them. These variables are acc_train_6 and acc_test_6:

acc_train_6, acc_test_6 = fit_knn(5, 1, features_train, \

 label_train, \

 features_test, label_test)

acc_train_6, acc_test_6

The expected output is this:

(0.8, 0.735)

Changing to the Manhattan distance has helped increase the accuracy of the
training set, but the model is still overfitting.

10. Call the fit_knn() function with k=10 and p=1, save the results in 2 variables,
and print them. These variables are acc_train_7 and acc_test_7:

acc_train_7, acc_test_7 = fit_knn(10, 1, features_train, \

 label_train, \

 features_test, label_test)

acc_train_7, acc_test_7

The expected output is this:

(0.77, 0.785)

With k=10, the accuracy score for the training and testing sets are quite close to
each other: around 0.78.

346 | Appendix

11. Call the fit_knn() function with k=15 and p=1, save the results in 2 variables,
and print them. These variables are acc_train_8 and acc_test_8:

acc_train_8, acc_test_8 = fit_knn(15, 1, features_train, \

 label_train, \

 features_test, label_test)

acc_train_8, acc_test_8

The expected output is this:

(0.7575, 0.775)

Bumping k to 15, the model achieved a better accuracy score and is not
overfitting very much.

12. Call the fit_knn() function with k=25 and p=1, save the results in 2 variables,
and print them. These variables are acc_train_9 and acc_test_9:

acc_train_9, acc_test_9 = fit_knn(25, 1, features_train, \

 label_train, \

 features_test, label_test)

acc_train_9, acc_test_9

The expected output is this:

(0.745, 0.8)

With k=25, the difference between the training and testing sets' accuracy is
increasing, so the model is overfitting.

13. Call the fit_knn() function with k=50 and p=1, save the results in 2 variables,
and print them. These variables are acc_train_10 and acc_test_10:

acc_train_10, acc_test_10 = fit_knn(50, 1, features_train, \

 label_train, \

 features_test, label_test)

acc_train_10, acc_test_10

The expected output is this:

(0.70875, 0.78)

With k=50, the model's performance on the training set dropped significantly
and the model is definitely overfitting.

Chapter 03: An Introduction to Classification | 347

In this activity, we tried multiple combinations of hyperparameters for n_
neighbors and p. The best one we found was for n_neighbors=10 and p=2.
With these hyperparameters, the model is not overfitting much and it achieved an
accuracy score of around 78% for both the training and testing sets.

Note

To access the source code for this specific section, please refer to
https://packt.live/2V5TOtG.

You can also run this example online at https://packt.live/2Bx0yd8.

You must execute the entire Notebook in order to get the desired result.

Activity 3.02: Support Vector Machine Optimization in scikit-learn

Solution:

1. Open a new Jupyter Notebook file and execute all the steps mentioned in the
previous, Exercise 3.04, K-Nearest Neighbor Classification in scikit-learn.

2. Import svm from sklearn:

from sklearn import svm

3. Create a function called fit_knn that takes the following parameters:
features_train, label_train, features_test, label_test,
kernel="linear", C=1, degree=3, and gamma='scale'. This function will
fit an SVC with the training set and print the accuracy score for both the training
and testing sets:

def fit_svm(features_train, label_train, \

 features_test, label_test, \

 kernel="linear", C=1, \

 degree=3, gamma='scale'):

 classifier = svm.SVC(kernel=kernel, C=C, \

 degree=degree, gamma=gamma)

 classifier.fit(features_train, label_train)

 return classifier.score(features_train, label_train), \

 classifier.score(features_test, label_test)

https://packt.live/2V5TOtG
https://packt.live/2Bx0yd8

348 | Appendix

4. Call the fit_knn() function with the default hyperparameter values, save the
results in 2 variables, and print them. These variables are acc_train_1 and
acc_test_1:

acc_train_1, \

acc_test_1 = fit_svm(features_train, \

 label_train, \

 features_test, \

 label_test)

acc_train_1, acc_test_1

The expected output is this:

(0.71625, 0.75)

With the default hyperparameter values (linear model), the performance of the
model is quite different between the training and the testing set.

5. Call the fit_knn() function with kernel="poly", C=1, degree=4, and
gamma=0.05, save the results in 2 variables, and print them. These variables
are acc_train_2 and acc_test_2:

acc_train_2, \

acc_test_2 = fit_svm(features_train, label_train, \

 features_test, label_test, \

 kernel="poly", C=1, \

 degree=4, gamma=0.05)

acc_train_2, acc_test_2

The expected output is this:

(0.68875, 0.745)

With a fourth-degree polynomial, the model is not performing well on the
training set.

Chapter 03: An Introduction to Classification | 349

6. Call the fit_knn() function with kernel="poly", C=2, degree=4, and
gamma=0.05, save the results in 2 variables, and print them. These variables
are acc_train_3 and acc_test_3:

acc_train_3, \

acc_test_3 = fit_svm(features_train, \

 label_train, features_test, \

 label_test, kernel="poly", \

 C=2, degree=4, gamma=0.05)

acc_train_3, acc_test_3

The expected output is this:

(0.68875, 0.745)

Increasing the regularization parameter, C, didn't impact the model's
performance at all.

7. Call the fit_knn() function with kernel="poly", C=1, degree=4, and
gamma=0.25, save the results in 2 variables, and print them. These variables
are acc_train_4 and acc_test_4:

acc_train_4, \

acc_test_4 = fit_svm(features_train, \

 label_train, features_test, \

 label_test, kernel="poly", \

 C=1, degree=4, gamma=0.25)

acc_train_4, acc_test_4

The expected output is this:

(0.84625, 0.775)

Increasing the value of gamma to 0.25 has significantly improved the model's
performance on the training set. However, the accuracy on the testing set is
much lower, so the model is overfitting.

350 | Appendix

8. Call the fit_knn() function with kernel="poly", C=1, degree=4, and
gamma=0.5, save the results in 2 variables, and print them. These variables are
acc_train_5 and acc_test_5:

acc_train_5, \

acc_test_5 = fit_svm(features_train, \

 label_train, features_test, \

 label_test, kernel="poly", \

 C=1, degree=4, gamma=0.5)

acc_train_5, acc_test_5

The expected output is this:

(0.9575, 0.73)

Increasing the value of gamma to 0.5 has drastically improved the model's
performance on the training set, but it is definitely overfitting as the accuracy
score on the testing set is much lower.

9. Call the fit_knn() function with kernel="poly", C=1, degree=4, and
gamma=0.16, save the results in 2 variables, and print them. These variables
are acc_train_6 and acc_test_6:

acc_train_6, \

acc_test_6 = fit_svm(features_train, label_train, \

 features_test, label_test, \

 kernel="poly", C=1, \

 degree=4, gamma=0.16)

acc_train_6, acc_test_6

The expected output is this:

(0.76375, 0.785)

With gamma=0.16, the model achieved a better accuracy score than it did
for the best KNN model. Both the training and testing sets have a score of
around 0.77.

Chapter 03: An Introduction to Classification | 351

10. Call the fit_knn() function with kernel="sigmoid", save the results
in 2 variables, and print them. These variables are acc_train_7 and acc_
test_7:

acc_train_7, \

acc_test_7 = fit_svm(features_train, label_train, \

 features_test, label_test, \

 kernel="sigmoid")

acc_train_7, acc_test_7

The expected output is this:

(0.635, 0.66)

The sigmoid kernel achieved a low accuracy score.

11. Call the fit_knn() function with kernel="rbf" and gamma=0.15, save the
results in 2 variables, and print them. These variables are acc_train_8 and
acc_test_8:

acc_train_8, \

acc_test_8 = fit_svm(features_train, \

 label_train, features_test, \

 label_test, kernel="rbf", \

 gamma=0.15)

acc_train_8, acc_test_8

The expected output is this:

(0.7175, 0.765)

The rbf kernel achieved a good score with gamma=0.15. The model is
overfitting a bit, though.

12. Call the fit_knn() function with kernel="rbf" and gamma=0.25, save the
results in 2 variables, and print them. These variables are acc_train_9 and
acc_test_9:

acc_train_9, \

acc_test_9 = fit_svm(features_train, \

 label_train, features_test, \

 label_test, kernel="rbf", \

 gamma=0.25)

acc_train_9, acc_test_9

352 | Appendix

The expected output is this:

(0.74, 0.765)

The model performance got better with gamma=0.25, but it is still overfitting.

13. Call the fit_knn() function with kernel="rbf" and gamma=0.35, save the
results in 2 variables, and print them. These variables are acc_train_10 and
acc_test_10:

acc_train_10, \

acc_test_10 = fit_svm(features_train, label_train, \

 features_test, label_test, \

 kernel="rbf", gamma=0.35)

acc_train_10, acc_test_10

The expected output is this:

(0.78125, 0.775)

With the rbf kernel and gamma=0.35, we got very similar results for the training
and testing sets and the model's performance is higher than the best KNN we trained
in the previous activity. This is our best model for the German credit dataset.

Note

To access the source code for this specific section, please refer to
https://packt.live/3fPZlMQ.

You can also run this example online at https://packt.live/3hVlEm3.

You must execute the entire Notebook in order to get the desired result.

In this activity, we tried different values for the main hyperparameters of the SVM
classifier: kernel, gamma, C, and degrees. We saw how they affected the model's
performance and their tendency to overfit. With trial and error, we finally found the
best hyperparameter combination and achieved an accuracy score close to 0.78.
This process is called hyperparameter tuning and is an important step for any data
science project.

https://packt.live/3fPZlMQ
https://packt.live/3hVlEm3

Chapter 04: An Introduction to Decision Trees | 353

Chapter 04: An Introduction to Decision Trees

Activity 4.01: Car Data Classification

Solution:

1. Open a new Jupyter Notebook file.

2. Import the pandas package as pd:

import pandas as pd

3. Create a new variable called file_url that will contain the URL to the
raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/car.csv'

4. Load the data using the pd.read_csv() method.:

df = pd.read_csv(file_url)

5. Print the first five rows of df:

df.head()

The output will be as follows:

Figure 4.13: The first five rows of the dataset

354 | Appendix

6. Import the preprocessing module from sklearn:

from sklearn import preprocessing

7. Create a function called encode() that takes a DataFrame and column
name as parameters. This function will instantiate LabelEncoder(), fit it
with the unique value of the column, and transform its data. It will return the
transformed column:

def encode(data_frame, column):

 label_encoder = preprocessing.LabelEncoder()

 label_encoder.fit(data_frame[column].unique())

 return label_encoder.transform(data_frame[column])

8. Create a for loop that will iterate through each column of df and will encode
them with the encode() function:

for column in df.columns:

 df[column] = encode(df, column)

9. Now, print the first five rows of df:

df.head()

The output will be as follows:

Figure 4.14: The updated first five rows of the dataset

10. Extract the class column using .pop() from pandas and save it in a variable
called label:

label = df.pop('class')

Chapter 04: An Introduction to Decision Trees | 355

11. Import model_selection from sklearn:

from sklearn import model_selection

12. Split the dataset into training and testing sets with test_size=0.1 and
random_state=88:

features_train, features_test, label_train, label_test = \

model_selection.train_test_split(df, label, \

 test_size=0.1, \

 random_state=88)

13. Import DecisionTreeClassifier from sklearn:

from sklearn.tree import DecisionTreeClassifier

14. Instantiate DecisionTreeClassifier() and save it in a variable called
decision_tree:

decision_tree = DecisionTreeClassifier()

15. Fit the decision tree with the training set:

decision_tree.fit(features_train, label_train)

The output will be as follows:

Figure 4.15: Decision tree fit with the training set

16. Print the score of the decision tree on the testing set:

decision_tree.score(features_test, label_test)

The output will be as follows:

0.953757225433526

The decision tree is achieving an accuracy score of 0.95 for our first try.
This is remarkable.

356 | Appendix

17. Import classification_report from sklearn.metrics:

from sklearn.metrics import classification_report

18. Print the classification report of the test labels and predictions:

print(classification_report(label_test, \

 decision_tree.predict(features_test)))

The output will be as follows:

Figure 4.16: Output showing the expected classification report

From this classification report, we can see that our model is performing quite well for
the precision scores for all four classes. Regarding the recall score, we can see that it
didn't perform as well for the last class.

Note

To access the source code for this specific section, please refer to
https://packt.live/3hQDLtr.

You can also run this example online at https://packt.live/2NkEEML.

You must execute the entire Notebook in order to get the desired result.

By completing this activity, you have prepared the car dataset and trained a decision
tree model. You have learned how to get its accuracy score and a classification report
so that you can analyze its precision and recall scores.

https://packt.live/3hQDLtr
https://packt.live/2NkEEML

Chapter 04: An Introduction to Decision Trees | 357

Activity 4.02: Random Forest Classification for Your Car Rental Company

Solution:

1. Open a Jupyter Notebook.

2. Reuse the code mentioned in Steps 1 - 4 of Activity 1, Car Data Classification.

3. Import RandomForestClassifier from sklearn.ensemble:

from sklearn.ensemble import RandomForestClassifier

4. Instantiate a random forest classifier with n_estimators=100,
max_depth=6, and random_state=168. Save it to a variable called
random_forest_classifier:

random_forest_classifier = \

RandomForestClassifier(n_estimators=100, \

 max_depth=6, random_state=168)

5. Fit the random forest classifier with the training set:

random_forest_classifier.fit(features_train, label_train)

The output will be as follows:

Figure 4.17: Logs of the RandomForest classifier with its hyperparameter values

These are the logs of the RandomForest classifier with its
hyperparameter values.

358 | Appendix

6. Make predictions on the testing set using the random forest classifier and save
them in a variable called rf_preds_test. Print its content:

rf_preds_test = random_forest_classifier.fit(features_train, \

 label_train)

rf_preds_test

The output will be as follows:

Figure 4.18: Output showing the predictions on the testing set

7. Import classification_report from sklearn.metrics:

from sklearn.metrics import classification_report

8. Print the classification report with the labels and predictions from the test set:

print(classification_report(label_test, rf_preds_test))

The output will be as follows:

Figure 4.19: Output showing the classification report
with the labels and predictions from the test set

Chapter 04: An Introduction to Decision Trees | 359

The F1 score in the preceding report shows us that the random forest is
performing well on class 2 but not as good for classes 0 and 3. The model is
unable to predict accurately for class 1, but there were only 9 observations in the
testing set. The accuracy score is 0.84, while the F1 score is 0.82.

9. Import confusion_matrix from sklearn.metrics:

from sklearn.metrics import confusion_matrix

10. Display the confusion matrix on the true and predicted labels of the testing set:

confusion_matrix(label_test, rf_preds_test)

The output will be as follows:

array([[32, 0, 10, 0],

 [8, 0, 0, 1],

 [5, 0, 109, 0],

 [3, 0, 0, 5]])

From this confusion matrix, we can see that the RandomForest model is
having difficulties accurately predicting the first class. It incorrectly predicted 16
cases (8 + 5 + 3) for this class.

11. Print the feature importance score of the test set using .feature_
importance_ and save the results in a variable called rf_varimp. Print
its contents:

rf_varimp = random_forest_classifier.feature_importances_

rf_varimp

The output will be as follows:

array([0.12676384, 0.10366314, 0.02119621, 0.35266673,

 0.05915769, 0.33655239])

The preceding output shows us that the most important features are the fourth
and sixth ones, which correspond to persons and safety, respectively.

12. Import ExtraTreesClassifier from sklearn.ensemble:

from sklearn.ensemble import ExtraTreesClassifier

360 | Appendix

13. Instantiate ExtraTreestClassifier with n_estimators=100, max_
depth=6, and random_state=168. Save it to a variable called random_
forest_classifier:

extra_trees_classifier = \

ExtraTreesClassifier(n_estimators=100, \

 max_depth=6, random_state=168)

14. Fit the extratrees classifier with the training set:

extra_trees_classifier.fit(features_train, label_train)

The output will be as follows:

Figure 4.20: Output with the extratrees classifier with the training set

These are the logs of the extratrees classifier with its hyperparameter values.

15. Make predictions on the testing set using the extratrees classifier and save
them in a variable called et_preds_test. Print its content:

et_preds_test = extra_trees_classifier.predict(features_test)

et_preds_test

The output will be as follows:

Figure 4.21: Predictions on the testing set using extratrees

Chapter 04: An Introduction to Decision Trees | 361

16. Print the classification report with the labels and predictions from the test set:

print(classification_report(label_test, \

 extra_trees_classifier.predict(features_test)))

The output will be as follows:

Figure 4.22: Classification report with the labels and predictions from the test set

The F1 score shown in the preceding report shows us that the random forest is
performing well on class 2 but not as good for class 0. The model is unable to
predict accurately for classes 1 and 3, but there were only 9 and 8 observations
in the testing set, respectively. The accuracy score is 0.82, while the F1 score is
0.78. So, our RandomForest classifier performed better with extratrees.

17. Display the confusion matrix of the true and predicted labels of the testing set:

confusion_matrix(label_test, et_preds_test)

The output will be as follows:

array([[28, 0, 14, 0],

 [9, 0, 0, 0],

 [2, 0, 112, 0],

 [7, 0, 0, 1]])

From this confusion matrix, we can see that the extratrees model is having
difficulties accurately predicting the first and third classes.

362 | Appendix

18. Print the feature importance score on the test set using .feature_
importance_ and save the results in a variable called et_varimp. Print
its content:

et_varimp = extra_trees_classifier.feature_importances_

et_varimp

The output will be as follows:

array([0.08844544, 0.0702334 , 0.01440408, 0.37662014, 0.05965896,

 0.39063797])

The preceding output shows us that the most important features are the sixth
and fourth ones, which correspond to safety and persons, respectively. It is
interesting to see that RandomForest has the same two most important features
but in a different order.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YoUY5t.

You can also run this example online at https://packt.live/3eswBcW.

You must execute the entire Notebook in order to get the desired result.

https://packt.live/2YoUY5t
https://packt.live/3eswBcW

Chapter 05: Artificial Intelligence: Clustering | 363

Chapter 05: Artificial Intelligence: Clustering

Activity 5.01: Clustering Sales Data Using K-Means

Solution:

1. Open a new Jupyter Notebook file.

2. Load the dataset as a DataFrame and inspect the data:

import pandas as pd

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/'\

 'Sales_Transactions_Dataset_Weekly.csv'

df = pd.read_csv(file_url)

df

The output of df is as follows:

Figure 5.18: Output showing the contents of the dataset

364 | Appendix

If you look at the output, you will notice that our dataset contains 811 rows, with
each row representing a product. It also contains 107 columns, with the first
column being the product code, then 52 columns starting with W representing
the sale quantity for each week, and finally, the normalized version of the 52
columns, starting with the Normalized columns. The normalized columns will
be a better choice to work with rather than the absolute sales columns, W, as
they will help our k-means algorithms to find the center of each cluster faster.
Since we are going to work on the normalized columns, we can remove every W
column plus the Product_Code column. We can also remove the MIN and MAX
columns as they do not bring any value to our clustering. Also notice that the
weeks run from 0 to 51 and not 1 to 52.

3. Next, create a new DataFrame without the unnecessary columns, as shown in
the following code snippet (the first 55 columns of the dataset). You should use
the inplace parameter to help you:

df2 = df.drop(df.iloc[:, 0:55], inplace = False, axis = 1)

The output of df2 is as follows:

Figure 5.19: Modified DataFrame

In the preceding code snippet, we used the drop function of the pandas
DataFrame in order to remove the first 55 columns. We also set the inplace
parameter to False in order to not remove the column of our original df
DataFrame. As a result, we should only have the normalized columns from 0 to
51 in df2 and df should still be unchanged.

Chapter 05: Artificial Intelligence: Clustering | 365

4. Create a k-means clustering model with 8 clusters and with
random state = 8:

from sklearn.cluster import KMeans

k_means_model = KMeans(n_clusters=8, random_state=8)

k_means_model.fit(df2)

We build a k-means model with the default value for every parameter except
for n_clusters=8 with random_state=8 in order to obtain 8 clusters and
reproducible results.

5. Retrieve the labels from the clustering algorithm:

labels = k_means_model.labels_

labels

The output of labels will be as follows:

Figure 5.20: Output array of labels

It is very hard to make sense out of this output, but each index of labels
represents the cluster that the product has been assigned, based on
similar weekly sales trends. We can now use these cluster labels to group
products together.

366 | Appendix

6. Now, from the first DataFrame, df, keep only the W columns and add the labels
as a new column, as shown in the following code snippet:

df.drop(df.iloc[:, 53:], inplace = True, axis = 1)

df.drop('Product_Code', inplace = True, axis = 1)

df['label'] = labels

df

In the preceding code snippet, we removed all the unneeded columns and added
labels as a new column in the DataFrame.

The output of df will be as follows:

Figure 5.21: Updated DataFrame with the new labels as a new column

Now that we have the label, we can perform aggregation on the label column
in order to calculate the yearly average sales of each cluster.

7. Perform the aggregation (use the groupby function from pandas) in order
to obtain the yearly average sale of each cluster, as shown in the following
code snippet:

df_agg = df.groupby('label').sum()

df_final = df[['label','W0']].groupby('label').count()

df_final=df_final.rename(columns = {'W0':'count_product'})

df_final['total_sales'] = df_agg.sum(axis = 1)

df_final['yearly_average_sales']= \

Chapter 05: Artificial Intelligence: Clustering | 367

df_final['total_sales'] / df_final['count_product']

df_final.sort_values(by='yearly_average_sales', \

 ascending=False, inplace = True)

df_final

In the preceding code snippet, we first used the groupby function with the
sum() method of the DataFrame to calculate the sum of every product's sales
for each W column and cluster, and stored the results in df_agg. We then
used the groupby function with the count() method on a single column (an
arbitrary choice) of df to obtain the total number of products per cluster (note
that we also had to rename the W0 column after the aggregation). The next step
was to sum all the sales columns of df_agg in order to obtain the total sales
for each cluster. Finally, we calculated the yearly_average_sales for each
cluster by dividing total_sales by count_product. We also included a final
step to sort out the cluster by the highest yearly_average_sales.

The output of df_final will be as follows:

Figure 5.22: Expected output on the sales transaction dataset

368 | Appendix

Now, with this output, we see that our k-means model has managed to put similarly
performing products together. We can easily see that the 115 products in cluster 3
are the best-selling products, whereas the 123 products of cluster 1 are performing
very badly. This is very valuable for any business, as it helps them automatically
identify and group together a number of similarly performing products without
having any bias in the product name or description.

Note

To access the source code for this specific section, please refer to
https://packt.live/3fVpSbT.

You can also run this example online at https://packt.live/3hW24Gk.

You must execute the entire Notebook in order to get the desired result.

By completing this activity, you have learned how to perform k-means clustering on
multiple columns for many products. You have also learned how useful clustering can
be for a business, even without label data.

Activity 5.02: Clustering Red Wine Data Using the Mean Shift Algorithm and

Agglomerative Hierarchical Clustering

Solution:

1. Open a new Jupyter Notebook file.

2. Load the dataset as a DataFrame with sep = ";" and inspect the data:

import pandas as pd

import numpy as np

from sklearn import preprocessing

from sklearn.cluster import MeanShift

from sklearn.cluster import AgglomerativeClustering

from scipy.cluster.hierarchy import dendrogram

import scipy.cluster.hierarchy as sch

from sklearn import metrics

https://packt.live/3fVpSbT
https://packt.live/3hW24Gk

Chapter 05: Artificial Intelligence: Clustering | 369

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/winequality-red.csv'

df = pd.read_csv(file_url,sep=';')

df

The output of df is as follows:

Figure 5.23: df showing the dataset as the output

Note

The output from the preceding screenshot is truncated.

Our dataset contains 1599 rows, with each row representing a red wine. It also
contains 12 columns, with the last column being the quality of the wine. We can
see that the remaining 11 columns will be our features, and we need to scale
them in order to help the accuracy and speed of our models.

370 | Appendix

3. Create features, label, and scaled_features variables from the initial
DataFrame, df:

features = df.drop('quality', 1)

label = df['quality']

scaled_features = preprocessing.scale(features)

In the preceding code snippet, we separated the label (quality) from the
features. Then we used preprocessing.scale function from sklearn in
order to scale our features, as this will improve our models.

4. Next, create a mean shift clustering model, then retrieve the model's predicted
labels and the number of clusters created:

mean_shift_model = MeanShift()

mean_shift_model.fit(scaled_features)

n_cluster_mean_shift = len(mean_shift_model.cluster_centers_)

label_mean_shift = mean_shift_model.labels_

n_cluster_mean_shift

The output of n_cluster_mean_shift will be as follows:

10

Our mean shift model has created 10 clusters, which is already more than the
number of groups that we have in our quality label. This will probably affect
our extrinsic scores and might be an early indicator that wines sharing similar
physicochemical properties don't belong in the same quality group.

Chapter 05: Artificial Intelligence: Clustering | 371

The output of label_mean_shift will be as follows:

Figure 5.24: Output array of label_mean_shift

This is a very interesting output because it clearly shows that most wines in
our dataset are very similar; there are a lot more wines in cluster 0 than in the
other clusters.

5. Now create an agglomerative hierarchical clustering model after creating a
dendrogram and selecting the optimal number of clusters for it:

dendrogram = sch.dendrogram(sch.linkage(scaled_features, \

 method='ward'))

agglomerative_model = \

AgglomerativeClustering(n_clusters=7, \

 affinity='euclidean', \

 linkage='ward')

agglomerative_model.fit(scaled_features)

label_agglomerative = agglomerative_model.labels_

372 | Appendix

The output of dendrogram will be as follows:

Figure 5.25: Output showing the dendrogram for the clusters

From this output, we can see that seven clusters seems to be the optimal
number for our model. We get this number by searching for the highest
difference on the y axis between the lowest branch and the highest branch. In
our case, for seven clusters, the lowest branch has a value of 29 and the highest
branch has a value of 41.

Chapter 05: Artificial Intelligence: Clustering | 373

The output of label_agglomerative will be as follows:

Figure 5.26: Array showing label_agglomerative

We can see that we have a predominant cluster, 1, but not as much as was the
case in the mean shift model.

6. Now, compute the following extrinsic approach scores for both models:

a. Begin with the adjusted Rand index:

ARI_mean=metrics.adjusted_rand_score(label, label_mean_shift)

ARI_agg=metrics.adjusted_rand_score(label, label_agglomerative)

ARI_mean

The output of ARI_mean will be as follows:

0.0006771608724007207

374 | Appendix

Next, enter ARI_agg to get the expected values:

ARI_agg

The output of ARI_agg will be as follows:

0.05358047852603172

Our agglomerative model has a much higher adjusted_rand_score than
the mean shift model, but both scores are very close to 0, which means that
neither model is performing very well with regard to the true labels.

b. Next, calculate the adjusted mutual information:

AMI_mean = metrics.adjusted_mutual_info_score(label, \

 label_mean_shift)

AMI_agg = metrics.adjusted_mutual_info_score(label, \

 label_agglomerative)

AMI_mean

The output of AMI_mean will be as follows:

0.004837187596124968

Next, enter AMI_agg to get the expected values:

AMI_agg

The output of AMI_agg will be as follows:

0.05993098663692826

Our agglomerative model has a much higher adjusted_mutual_info_
score than the mean shift model, but both scores are very close to 0, which
means that neither model is performing very well with regard to the true labels.

c. Calculate the V-Measure:

V_mean = metrics.v_measure_score(label, \

 label_mean_shift, beta=1)

V_agg = metrics.v_measure_score(label, \

 label_agglomerative, beta=1)

V_mean

Chapter 05: Artificial Intelligence: Clustering | 375

The output of V_mean will be as follows:

0.021907254751144124

Next, enter V_agg to get the expected values:

V_agg

The output of V_agg will be as follows:

0.07549735446050691

Our agglomerative model has a higher V-Measure than the mean shift model,
but both scores are very close to 0, which means that neither model is
performing very well with regard to the true labels.

d. Next, find the Fowlkes-Mallows score:

FM_mean = metrics.fowlkes_mallows_score(label, \

 label_mean_shift)

FM_agg= metrics.fowlkes_mallows_score(label, \

 label_agglomerative)

FM_mean

The output of FM_mean will be as follows:

0.5721233634622408

Next, enter FM_agg to get the expected values:

FM_agg

The output of FM_agg will be as follows:

0.3300681478007641

This time, our mean shift model has a higher Fowlkes-Mallows score than the
agglomerative model, but both scores are still on the lower range of the score,
which means that neither model is performing very well with regard to the
true labels.

In conclusion, with the extrinsic approach evaluation, neither of our models
were able to find clusters containing wines of a similar quality based on their
physicochemical properties. We will confirm this by using the intrinsic approach
evaluation to ensure that our models' clusters are well defined and are properly
grouping similar wines together.

376 | Appendix

7. Now, compute the following intrinsic approach scores for both models:

a. Begin with the Silhouette Coefficient:

Sil_mean = metrics.silhouette_score(scaled_features, \

 label_mean_shift)

Sil_agg = metrics.silhouette_score(scaled_features, \

 label_agglomerative)

Sil_mean

The output of Sil_mean will be as follows:

0.32769323700400077

Next, enter Sil_agg to get the expected values:

Sil_agg

The output of Sil_agg will be as follows:

0.1591882574407987

Our mean shift model has a higher Silhouette Coefficient than the agglomerative
model, but both scores are very close to 0, which means that both models have
overlapping clusters.

b. Next, find the Calinski-Harabasz index:

CH_mean = metrics.calinski_harabasz_score(scaled_features, \

 label_mean_shift)

CH_agg = metrics.calinski_harabasz_score(scaled_features, \

 label_agglomerative)

CH_mean

The output of CH_mean will be as follows:

44.62091774102674

Next, enter CH_agg to get the expected values:

CH_agg

The output of CH_agg will be as follows:

223.5171774491095

Chapter 05: Artificial Intelligence: Clustering | 377

Our agglomerative model has a much higher Calinski-Harabasz index than the
mean shift model, which means that the agglomerative model has much more
dense and well-defined clusters than the mean shift model.

c. Finally, find the Davies-Bouldin index:

DB_mean = metrics.davies_bouldin_score(scaled_features, \

 label_mean_shift)

DB_agg = metrics.davies_bouldin_score(scaled_features, \

 label_agglomerative)

DB_mean

The output of DB_mean will be as follows:

0.8106334674570222

Next, enter DB_agg to get the expected values:

DB_agg

The output of DB_agg will be as follows:

1.4975443816135114

Our agglomerative model has a higher David-Bouldin index than the mean
shift model, but both scores are close to 0, which means that both models are
performing well with regard to the definition of their clusters.

Note

To access the source code for this specific section, please refer to
https://packt.live/2YXMl0U.

You can also run this example online at https://packt.live/2Bs7sAp.

You must execute the entire Notebook in order to get the desired result.

In conclusion, with the intrinsic approach evaluation, both our models were
well defined and confirm our intuition on the red wine dataset, that is, similar
physicochemical properties are not associated with similar quality. We were also able
to see that in most of our scores, the agglomerative hierarchical model performs
better than the mean shift model.

https://packt.live/2YXMl0U
https://packt.live/2Bs7sAp

378 | Appendix

Chapter 06: Neural Networks and Deep Learning

Activity 6.01: Finding the Best Accuracy Score for the Digits Dataset

Solution:

1. Open a new Jupyter Notebook file.

2. Import tensorflow.keras.datasets.mnist as mnist:

import tensorflow.keras.datasets.mnist as mnist

3. Load the mnist dataset using mnist.load_data() and save the results
into (features_train, label_train), (features_test,
label_test):

(features_train, label_train), \

(features_test, label_test) = mnist.load_data()

4. Print the content of label_train:

label_train

The expected output is this:

array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

The label column contains numeric values that correspond to the 10
handwritten digits: 0 to 9.

5. Print the shape of the training set:

features_train.shape

The expected output is this:

(60000, 28, 28)

The training set is composed of 60,000 observations of shape 28 by 28. We will
need to flatten the input for our neural network.

6. Print the shape of the testing set:

features_test.shape

The expected output is this:

(10000, 28, 28)

The testing set is composed of 10,000 observations of shape 28 by 28.

Chapter 06: Neural Networks and Deep Learning | 379

7. Standardize features_train and features_test by dividing them
by 255:

features_train = features_train / 255.0

features_test = features_test / 255.0

8. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

9. Set 8 as the seed for NumPy and TensorFlow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

10. Instantiate a tf.keras.Sequential() class and save it into a variable
called model:

model = tf.keras.Sequential()

11. Instantiate layers.Flatten() with input_shape=(28,28) and save it
into a variable called input_layer:

input_layer = layers.Flatten(input_shape=(28,28))

12. Instantiate a layers.Dense() class with 128 neurons and
activation='relu', then save it into a variable called layer1:

layer1 = layers.Dense(128, activation='relu')

13. Instantiate a second layers.Dense() class with 1 neuron and
activation='softmax', then save it into a variable called final_layer:

final_layer = layers.Dense(10, activation='softmax')

14. Add the three layers you just defined to the model using .add() and add
a layers.Dropout(0.25) layer in between each of them (except for the
flatten layer):

model.add(input_layer)

model.add(layer1)

model.add(layers.Dropout(0.25))

model.add(final_layer)

380 | Appendix

15. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as learning
rate and save it into a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

16. Compile the neural network using .compile() with loss='sparse_
categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy']:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, \

 metrics=['accuracy'])

17. Print a summary of the model using .summary():

model.summary()

The expected output is this:

Figure 6.29: Summary of the model

This output summarizes the architecture of our neural networks. We can see
it is composed of four layers with one flatten layer, two dense layers, and one
dropout layer.

Chapter 06: Neural Networks and Deep Learning | 381

18. Instantiate the tf.keras.callbacks.EarlyStopping() class with
monitor='val_loss' and patience=5 as the learning rate and save it into
a variable called callback:

callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', \

 patience=5)

19. Fit the neural networks with the training set and specify epochs=10,
validation_split=0.2, callbacks=[callback], and verbose=2:

model.fit(features_train, label_train, epochs=10, \

 validation_split = 0.2, \

 callbacks=[callback], verbose=2)

The expected output is this:

Figure 6.30: Fitting the neural network with the training set

382 | Appendix

We achieved an accuracy score of 0.9825 for the training set and 0.9779 for the
validation set for recognizing hand-written digits after just 10 epochs. These are
amazing results. In this section, you learned how to build and train a neural network
from scratch using TensorFlow to classify digits.

Note

To access the source code for this specific section, please refer to
https://packt.live/37UWf7E.

You can also run this example online at https://packt.live/317R2b3.

You must execute the entire Notebook in order to get the desired result.

Activity 6.02: Evaluating a Fashion Image Recognition Model Using CNNs

Solution:

1. Open a new Jupyter Notebook.

2. Import tensorflow.keras.datasets.fashion_mnist as
fashion_mnist:

import tensorflow.keras.datasets.fashion_mnist as fashion_mnist

3. Load the Fashion MNIST dataset using fashion_mnist.load_data()
and save the results into (features_train, label_train),
(features_test, label_test):

(features_train, label_train), \

(features_test, label_test) = fashion_mnist.load_data()

4. Print the shape of the training set:

features_train.shape

The expected output is this:

(60000, 28, 28)

The training set is composed of 60,000 images of size 28*28.

https://packt.live/37UWf7E
https://packt.live/317R2b3

Chapter 06: Neural Networks and Deep Learning | 383

5. Print the shape of the testing set:

features_test.shape

The expected output is this:

(10000, 28, 28)

The testing set is composed of 10,000 images of size 28*28.

6. Reshape the training and testing sets with the dimensions (number_rows, 28,
28, 1), as shown in the following code snippet:

features_train = features_train.reshape(60000, 28, 28, 1)

features_test = features_test.reshape(10000, 28, 28, 1)

7. Standardize features_train and features_test by dividing them
by 255:

features_train = features_train / 255.0

features_test = features_test / 255.0

8. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

9. Set 8 as the seed for numpy and tensorflow using np.random_seed()
and tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

10. Instantiate a tf.keras.Sequential() class and save it into a variable
called model:

model = tf.keras.Sequential()

11. Instantiate layers.Conv2D() with 64 kernels of shape (3,3),
activation='relu' and input_shape=(28,28) and save it into a
variable called conv_layer1:

conv_layer1 = layers.Conv2D(64, (3,3), \

 activation='relu', input_shape=(28, 28, 1))

384 | Appendix

12. Instantiate layers.Conv2D() with 64 kernels of shape (3,3),
activation='relu' and save it into a variable called conv_layer2:

conv_layer2 = layers.Conv2D(64, (3,3), activation='relu')

13. Instantiate layers.Flatten() with 128 neurons and
activation='relu', then save it into a variable called fc_layer1:

fc_layer1 = layers.Dense(128, activation='relu')

14. Instantiate layers.Flatten() with 10 neurons and
activation='softmax', then save it into a variable called fc_layer2:

fc_layer2 = layers.Dense(10, activation='softmax')

15. Add the four layers you just defined to the model using .add() and
add a MaxPooling2D() layer of size (2,2) in between each of the
convolutional layers:

model.add(conv_layer1)

model.add(layers.MaxPooling2D(2, 2))

model.add(conv_layer2)

model.add(layers.MaxPooling2D(2, 2))

model.add(layers.Flatten())

model.add(fc_layer1)

model.add(fc_layer2)

16. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it into a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

17. Compile the neural network using .compile() with loss='sparse_
categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy']:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

18. Print a summary of the model using .summary():

model.summary()

Chapter 06: Neural Networks and Deep Learning | 385

The expected output is this:

Figure 6.31: Summary of the model

The summary shows us that there are more than 240,000 parameters to be
optimized with this model.

19. Fit the neural network with the training set and specify epochs=5,
validation_split=0.2, and verbose=2:

model.fit(features_train, label_train, \

 epochs=5, validation_split = 0.2, verbose=2)

386 | Appendix

The expected output is this:

Figure 6.32: Fitting the neural network with the training set

After training for 5 epochs, we achieved an accuracy score of 0.925 for the
training set and 0.9042 for the validation set. Our model is overfitting a bit.

20. Evaluate the performance of the model on the testing set:

model.evaluate(features_test, label_test)

The expected output is this:

10000/10000 [==============================] - 1s 108us/sample -
loss: 0.2746 - accuracy: 0.8976
[0.27461639745235444, 0.8976]

We achieved an accuracy score of 0.8976 on the testing set for predicting images
of clothing from the Fashion MNIST dataset. You can try on your own to improve this
score and reduce the overfitting.

Note

To access the source code for this specific section, please refer to
https://packt.live/2Nzt6pn.

You can also run this example online at https://packt.live/2NlM5nd.

You must execute the entire Notebook in order to get the desired result.

In this activity, we designed and trained a CNN architecture for recognizing images of
clothing from the Fashion MNIST dataset.

https://packt.live/2Nzt6pn
https://packt.live/2NlM5nd

Chapter 06: Neural Networks and Deep Learning | 387

Activity 6.03: Evaluating a Yahoo Stock Model with an RNN

Solution:

1. Open a Jupyter Notebook.

2. Import pandas as pd and numpy as np:

import pandas as pd

import numpy as np

3. Create a variable called file_url containing a link to the raw dataset:

file_url = 'https://raw.githubusercontent.com/'\

 'PacktWorkshops/'\

 'The-Applied-Artificial-Intelligence-Workshop/'\

 'master/Datasets/yahoo_spx.csv'

4. Load the dataset using pd.read_csv() into a new variable called df:

df = pd.read_csv(file_url)

5. Extract the values of the second column using .iloc and .values and save
the results in a variable called stock_data:

stock_data = df.iloc[:, 1:2].values

6. Import MinMaxScaler from sklearn.preprocessing:

from sklearn.preprocessing import MinMaxScaler

7. Instantiate MinMaxScaler() and save it to a variable called sc:

sc = MinMaxScaler()

8. Standardize the data with .fit_transform() and save the results in a
variable called stock_data_scaled:

stock_data_scaled = sc.fit_transform(stock_data)

9. Create two empty arrays called X_data and y_data:

X_data = []

y_data = []

10. Create a variable called window that will contain the value 30:

window = 30

388 | Appendix

11. Create a for loop starting from the window value and iterate through the
length of the dataset. For each iteration, append to X_data the previous rows
of stock_data_scaled using window and append the current value of
stock_data_scaled:

for i in range(window, len(df)):

 X_data.append(stock_data_scaled[i - window:i, 0])

 y_data.append(stock_data_scaled[i, 0])

y_data will contain the opening stock price for each day and X_data will
contain the last 30 days' stock prices.

12. Convert X_data and y_data into NumPy arrays:

X_data = np.array(X_data)

y_data = np.array(y_data)

13. Reshape X_data as (number of rows, number of columns, 1):

X_data = np.reshape(X_data, (X_data.shape[0], \

 X_data.shape[1], 1))

14. Use the first 1,000 rows as the training data and save them into two variables
called features_train and label_train:

features_train = X_data[:1000]

label_train = y_data[:1000]

15. Use the rows after row 1,000 as the testing data and save them into two
variables called features_test and label_test:

features_test = X_data[:1000]

label_test = y_data[:1000]

16. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

17. Set 8 as seed for NumPy and TensorFlow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

Chapter 06: Neural Networks and Deep Learning | 389

18. Instantiate a tf.keras.Sequential() class and save it into a variable
called model:

model = tf.keras.Sequential()

19. Instantiate layers.LSTM() with 50 units, return_sequences='True',
and input_shape=(X_train.shape[1], 1), then save it into a variable
called lstm_layer1:

lstm_layer1 = layers.LSTM(units=50,return_sequences=True,\

 input_shape=(features_train.shape[1], 1))

20. Instantiate layers.LSTM() with 50 units and return_
sequences='True', then save it into a variable called lstm_layer2:

lstm_layer2 = layers.LSTM(units=50,return_sequences=True)

21. Instantiate layers.LSTM() with 50 units and return_
sequences='True', then save it into a variable called lstm_layer3:

lstm_layer3 = layers.LSTM(units=50,return_sequences=True)

22. Instantiate layers.LSTM() with 50 units and save it into a variable called
lstm_layer4:

lstm_layer4 = layers.LSTM(units=50)

23. Instantiate layers.Dense() with 1 neuron and save it into a variable
called fc_layer:

fc_layer = layers.Dense(1)

24. Add the five layers you just defined to the model using .add() and add a
Dropout(0.2) layer in between each of the LSTM layers:

model.add(lstm_layer1)

model.add(layers.Dropout(0.2))

model.add(lstm_layer2)

model.add(layers.Dropout(0.2))

model.add(lstm_layer3)

model.add(layers.Dropout(0.2))

model.add(lstm_layer4)

model.add(layers.Dropout(0.2))

model.add(fc_layer)

390 | Appendix

25. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it into a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

26. Compile the neural network using .compile() with loss='mean_
squared_error', optimizer=optimizer, metrics=[mse]:

model.compile(loss='mean_squared_error', \

 optimizer=optimizer, metrics=['mse'])

27. Print a summary of the model using .summary():

model.summary()

The expected output is this:

Figure 6.33: Summary of the model

Chapter 06: Neural Networks and Deep Learning | 391

The summary shows us that there are more than 71,051 parameters to be
optimized with this model.

28. Fit the neural network with the training set and specify epochs=10,
validation_split=0.2, verbose=2:

model.fit(features_train, label_train, epochs=10, \

 validation_split = 0.2, verbose=2)

The expected output is this:

Figure 6.34: Fitting the neural network with the training set

After training for 10 epochs, we achieved a mean squared error score of
0.0025 for the training set and 0.0033 for the validation set. Our model is
overfitting a little bit.

29. Finally, evaluate the performance of the model on the testing set:

model.evaluate(features_test, label_test)

The expected output is this:

1000/1000 [==============================] - 0s 279us/sample - loss:
0.0016 - mse: 0.0016
[0.00158528157370165, 0.0015852816]

392 | Appendix

We achieved a mean squared error score of 0.0017 on the testing set, which means
we can quite accurately predict the stock price of Yahoo using the last 30 days' stock
price data as features.

Note

To access the source code for this specific section, please refer to
https://packt.live/3804U8P.

You can also run this example online at https://packt.live/3hWtU5l.

You must execute the entire Notebook in order to get the desired result.

In this activity, we designed and trained an RNN model to predict the Yahoo stock
price from the previous 30 days of data.

https://packt.live/3804U8P
https://packt.live/3hWtU5l

Index

A
agents: 8, 17, 84, 212
amazon: 2
amazonaws: 92

B
binary: 140, 150-151,

157, 179, 278,
286, 291

C
calinski: 261
chatbot: 3, 7
cloning: 156
cluster: 224-225, 228,

231-237, 239-240,
242, 244, 246-261

console: 63

D
database: 9
dataframe: 114, 116,

120, 122-125,
127-130, 144,
152-156, 160-162,
170-171, 176,
238-239, 262, 295

dataset: 96-97,
100-105, 107-108,
120-125, 129,
132-137, 140,
142-144, 146,
151-153, 155-156,
159-160, 162-164,
169-173, 175-177,
188-190, 193-199,

201-203, 210,
213-214, 217, 223,
225, 228-229, 231,
238, 255, 262,
276, 286-289,
294-295, 299, 305,
308, 314-315

decode: 4
dendrogram:

249-251, 262
dropna: 129, 139,

141, 155-156

E
easyai: 82-83
encode: 4, 160-161
epochs: 287-288,

292-293, 298-299

F
fillna: 126, 139,

141, 155
framework: 27,

269, 316

G
github: 68, 82, 110,

113, 120, 143, 152,
169, 175, 193,
210, 238, 262,
288, 294, 315

groupby: 239

H
heappop: 59, 62-63, 66
heappush: 59, 61-66

K
kernel: 140, 142,

182-184, 296,
305, 317

k-means: 221, 223,
225, 227-232,
234-240, 246-247,
250-261, 264,
268, 319

k-nearest: 149-151,
164-166, 169,
174-177, 183,
185, 318

L
labels: 92, 97-100, 119,

127, 130-133, 146,
157-158, 162-164,
171, 195-196, 199,
203-206, 212,
216, 222-223,
232-233, 235-239,
247, 252, 254-262,
264, 277, 319

linalg: 13, 15
linkage: 249-252

M
matmul: 270-271
matplotlib: 107-108,

111, 114, 116,
133-134, 138, 141,
169, 171, 229-230,
232, 236, 241, 247,
252, 255, 280

meanshift: 246

P
package: 10, 70, 120,

122, 138, 152, 159,
162, 169, 171, 175,
193, 203, 208-209,
212, 270, 280, 294

pandas: 11, 114,
119, 152, 159-162,
169, 175, 210,
238-239, 294

pyplot: 107, 111-112,
114, 116, 133-134,
138, 141, 146, 171,
229-230, 236, 241,
247, 252, 255, 280

pytorch: 316

Q
qaundl: 123

S
sigmoid: 183-184, 270,

272, 278, 280-282,
291, 312-314

softmax: 270, 279-280,
283-284, 300, 308

T
tuples: 52, 59
turing: 7

V
validation: 214-215,

293, 298-300
verbose: 54, 63-64,

231, 276, 298

W
whiskers: 306

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introduction to Artificial Intelligence
	Introduction
	How Does AI Solve Problems?
	Diversity of Disciplines in AI

	Fields and Applications of AI
	Simulation of Human Behavior
	Simulating Intelligence – the Turing Test
	What Disciplines Do We Need to Pass the Turing Test?

	AI Tools and Learning Models
	Intelligent Agents

	The Role of Python in AI
	Why Is Python Dominant in Machine Learning, Data Science, and AI?
	Anaconda in Python
	Python Libraries for AI
	A Brief Introduction to the NumPy Library
	Exercise 1.01: Matrix Operations Using NumPy

	Python for Game AI
	Intelligent Agents in Games
	Breadth First Search and Depth First Search
	Breadth First Search
	Depth First Search (DFS)

	Exploring the State Space of a Game
	Estimating the Number of Possible States in a Tic-Tac-Toe Game
	Exercise 1.02: Creating an AI with Random Behavior for the Tic-Tac-Toe Game
	Activity 1.01: Generating All Possible Sequences of Steps in a Tic-Tac-Toe Game
	Exercise 1.03: Teaching the Agent to Win
	Defending the AI against Losses
	Activity 1.02: Teaching the Agent to Realize Situations When It Defends Against Losses
	Activity 1.03: Fixing the First and Second Moves of the AI to Make It Invincible

	Heuristics
	Uninformed and Informed Searches
	Creating Heuristics
	Admissible and Non-Admissible Heuristics
	Heuristic Evaluation
	Heuristic 1: Simple Evaluation of the Endgame
	Heuristic 2: Utility of a Move

	Exercise 1.04: Tic-Tac-Toe Static Evaluation with a Heuristic Function
	Using Heuristics for an Informed Search
	Types of Heuristics

	Pathfinding with the A* Algorithm
	Exercise 1.05: Finding the Shortest Path Using BFS

	Introducing the A* Algorithm
	A* Search in Practice Using the simpleai Library

	Game AI with the Minmax Algorithm and Alpha-Beta Pruning
	Search Algorithms for Turn-Based Multiplayer Games

	The Minmax Algorithm
	Optimizing the Minmax Algorithm with Alpha-Beta Pruning

	DRYing Up the Minmax Algorithm – the NegaMax Algorithm
	Using the EasyAI Library
	Activity 1.04: Connect Four

	Summary

	Chapter 2: An Introductionto Regression
	Introduction
	Linear Regression with One Variable
	Types of Regression
	Features and Labels
	Feature Scaling
	Splitting Data into Training and Testing
	Fitting a Model on Data with scikit-learn
	Linear Regression Using NumPy Arrays
	Fitting a Model Using NumPy Polyfit
	Plotting the Results in Python

	Predicting Values with Linear Regression
	Exercise 2.01: Predicting the Student Capacity of an Elementary School

	Linear Regression with Multiple Variables
	Multiple Linear Regression
	The Process of Linear Regression
	Importing Data from Data Sources
	Loading Stock Prices with Yahoo Finance
	Exercise 2.02: Using Quandl to Load Stock Prices
	Preparing Data for Prediction
	Exercise 2.03: Preparing the Quandl Data for Prediction
	Performing and Validating Linear Regression
	Predicting the Future

	Polynomial and Support Vector Regression
	Polynomial Regression with One Variable
	Exercise 2.04: First-, Second-, and Third-Degree Polynomial Regression
	Polynomial Regression with Multiple Variables

	Support Vector Regression
	Support Vector Machines with a 3-Degree Polynomial Kernel
	Activity 2.01: Boston House Price Prediction with Polynomial Regression of Degrees 1, 2, and 3 on Multiple Variables

	Summary

	Chapter 3: An Introduction to Classification
	Introduction
	The Fundamentals of Classification
	Exercise 3.01: Predicting Risk of Credit Card Default (Loading the Dataset)

	Data Preprocessing
	Exercise 3.02: Applying Label Encoding to Transform Categorical Variables into Numerical variables
	Identifying Features and Labels
	Splitting Data into Training and Testing Using Scikit-Learn

	The K-Nearest Neighbors Classifier
	Introducing the K-Nearest Neighbors Algorithm (KNN)
	Distance Metrics With K-Nearest Neighbors Classifier in Scikit-Learn
	The Euclidean Distance

	The Manhattan/Hamming Distance
	Exercise 3.03: Illustrating the K-Nearest Neighbors Classifier Algorithm in Matplotlib
	Parameterization of the K-Nearest Neighbors Classifier in scikit-learn
	Exercise 3.04: K-Nearest Neighbors Classification in scikit-learn
	Activity 3.01: Increasing the Accuracy of Credit Scoring

	Classification with Support Vector Machines
	What Are Support Vector Machine Classifiers?
	Understanding Support Vector Machines
	Support Vector Machines in scikit-learn
	Parameters of the scikit-learn SVM
	Activity 3.02: Support Vector Machine Optimization in scikit-learn

	Summary

	Chapter 4: An Introduction to Decision Trees
	Introduction
	Decision Trees
	Entropy
	Exercise 4.01: Calculating Entropy
	Information Gain
	Gini Impurity
	Exit Condition
	Building Decision Tree Classifiers Using scikit-learn
	Performance Metrics for Classifiers
	Exercise 4.02: Precision, Recall, and F1 Score Calculation
	Evaluating the Performance of Classifiers with scikit-learn

	The Confusion Matrix
	Activity 4.01: Car Data Classification

	Random Forest Classifier
	Random Forest Classification Using scikit-learn
	The Parameterization of the Random Forest Classifier
	Feature Importance
	Cross-Validation
	Extremely Randomized Trees
	Activity 4.02: Random Forest Classification for Your Car Rental Company

	Summary

	Chapter 5: Artificial Intelligence: Clustering
	Introduction
	Defining the Clustering Problem
	Clustering Approaches
	Clustering Algorithms Supported by scikit-learn

	The K-Means Algorithm
	Exercise 5.01: Implementing K-Means in scikit-learn
	The Parameterization of the K-Means Algorithm in scikit-learn
	Exercise 5.02: Retrieving the Center Points and the Labels
	K-Means Clustering of Sales Data
	Activity 5.01: Clustering Sales Data Using K-Means

	The Mean Shift Algorithm
	Exercise 5.03: Implementing the Mean Shift Algorithm
	The Mean Shift Algorithm in scikit-learn
	Hierarchical Clustering
	Agglomerative Hierarchical Clustering in scikit-learn

	Clustering Performance Evaluation
	The Adjusted Rand Index
	The Adjusted Mutual Information
	The V-Measure, Homogeneity, and Completeness
	The Fowlkes-Mallows Score
	The Contingency Matrix
	The Silhouette Coefficient
	The Calinski-Harabasz Index
	The Davies-Bouldin Index
	Activity 5.02: Clustering Red Wine Data Using the Mean Shift Algorithm and Agglomerative Hierarchical Clustering

	Summary

	Chapter 6: Neural Networks and Deep Learning
	Introduction
	Artificial Neurons
	Neurons in TensorFlow
	Exercise 6.01: Using Basic Operations and TensorFlow Constants

	Neural Network Architecture
	Weights
	Biases
	Use Cases for ANNs

	Activation Functions
	Sigmoid
	Tanh
	ReLU
	Softmax
	Exercise 6.02: Activation Functions

	Forward Propagation and the Loss Function
	Backpropagation
	Optimizers and the Learning Rate
	Exercise 6.03: Classifying Credit Approval

	Regularization
	Exercise 6.04: Predicting Boston House Prices with Regularization
	Activity 6.01: Finding the Best Accuracy Score for the Digits Dataset

	Deep Learning
	Shallow versus Deep Networks

	Computer Vision and Image Classification
	Convolutional Neural Networks (CNNs)
	Convolutional Operations
	Pooling Layer
	CNN Architecture
	Activity 6.02: Evaluating a Fashion Image Recognition Model Using CNNs

	Recurrent Neural Networks (RNNs)
	RNN Layers
	The GRU Layer
	The LSTM Layer
	Activity 6.03: Evaluating a Yahoo Stock Model with an RNN
	Hardware for Deep Learning
	Challenges and Future Trends

	Summary

	Appendix
	Index

