Using the Forest to See the Trees: Context-based Object Recognition

Bill Freeman

Joint work with Antonio Torralba and Kevin Murphy

Computer Science and Artificial Intelligence Laboratory MIT

A computer vision goal

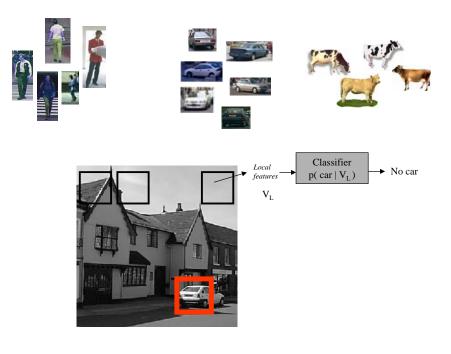
- Recognize many different objects under many viewing conditions in unconstrained settings.
- There has been progress on restricted cases:
 - one object and one pose (frontal view faces)
 - Isolated objects on uniform backgrounds.
- But the general problem is difficult and unsolved.

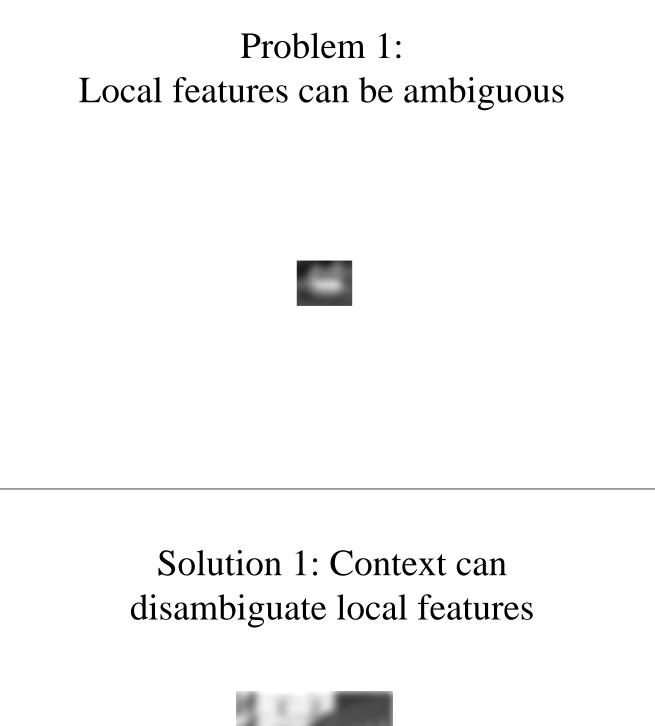
How we hope to make progress on this hard problem

- Various technical improvements
- Exploit scene context:
 - "if this is a forest, these must be trees".

Local (bottom-up) approach to object detection

Classify image patches/features at each location and scale





Effect of context on object detection

car

pedestrian

Identical local image features!

Images by Antonio Torralba

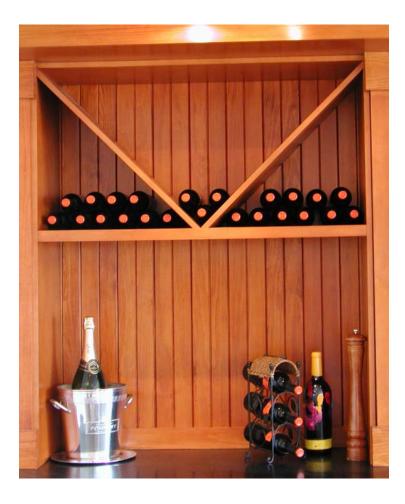
Even high-resolution images can be locally ambiguous

Object in context

(Courtesy of Fredo Durand and William Freeman. Used with permission.)

Isolated object

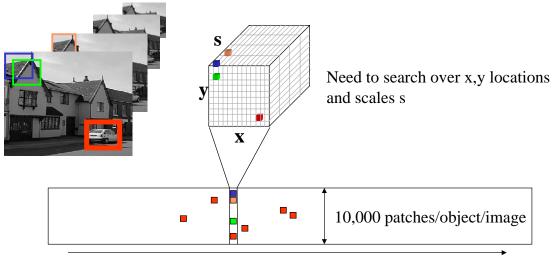
Object in context



Problem 2: search space is HUGE

"Like finding needles in a haystack"

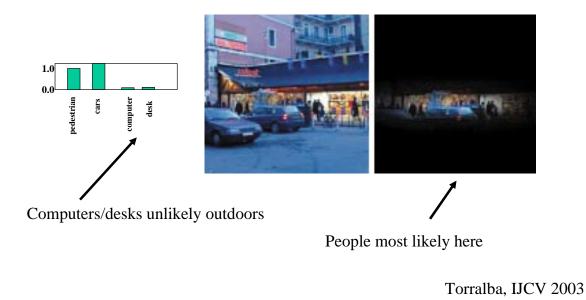
- Slow (many patches to examine)
- Error prone (classifier must have very low false positive rate)



1,000,000 images/day

Plus, we want to do this for ~ 1000 objects

Solution 2: context can provide a prior on what to look for, and where to look for it



Talk outline

- Context-based vision
- Feature-based object detection
- Graphical model to combine both sources

Talk outline

- Context-based vision
- Feature-based object detection
- Graphical model to combine both sources

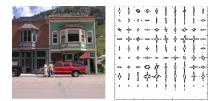
Context-based vision

- Measure overall scene context or "gist"
- Use that scene context for:
 - Location identification
 - Location categorization
 - Top-down info for object recognition
- Combine with bottom-up object detection
- Future focus: training set acquisition.

The "Visual Gist" System

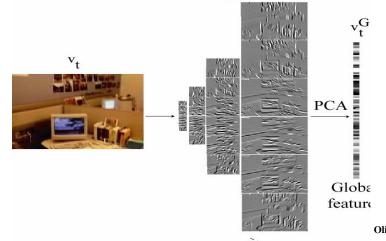
Contextual machine-vision system

- Low-dimensional representation of overall scene:
 - Gabor-filter outputs at multiple scales, orientations, locations
 - Dimensionality reduction via PCA



Feature vector for an image: the "gist" of the scene

- Compute $12 \ge 30 = 360$ dim. feature vector
- Or use steerable filter bank, 6 orientations, 4 scales, averaged over 4x4 regions = 384 dim. feature vector
- Reduce to ~ 80 dimensions using PCA



Low-dimensional representation for image context

Hardware set-up

- Wearable system
 - Gives immediate feedback to the user
 - Must handle general camera view
- Computer: Sony laptop
 - Capable of wireless link for audience display
- Designed for utility, not fashion...

Our mobile rig, version 1

(Courtesy of Kevin Murphy. Used with permission.)

Kevin Murphy

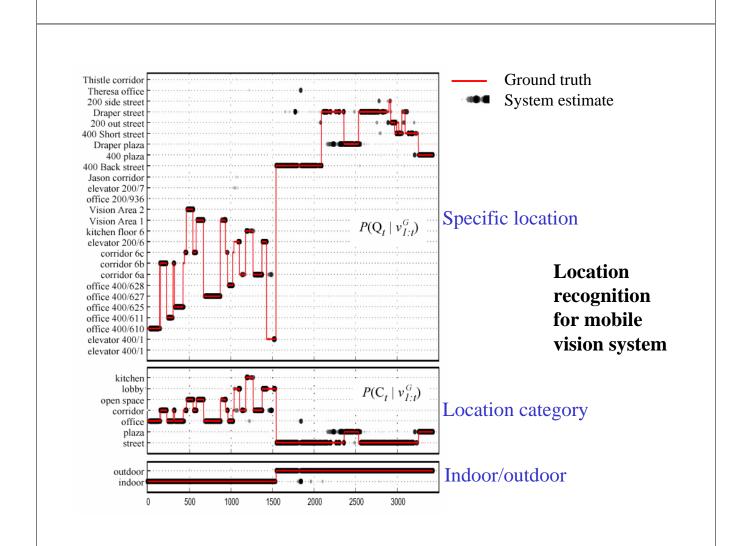
Our mobile rig, version 2.

Antonio Torralba

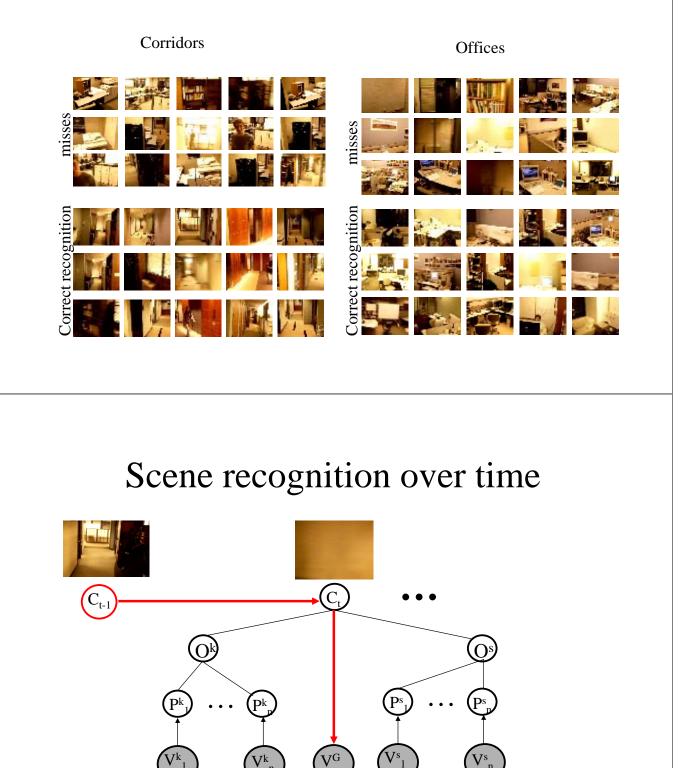
(Courtsey of Antonio Torralba. Used with permission.)

Experiments

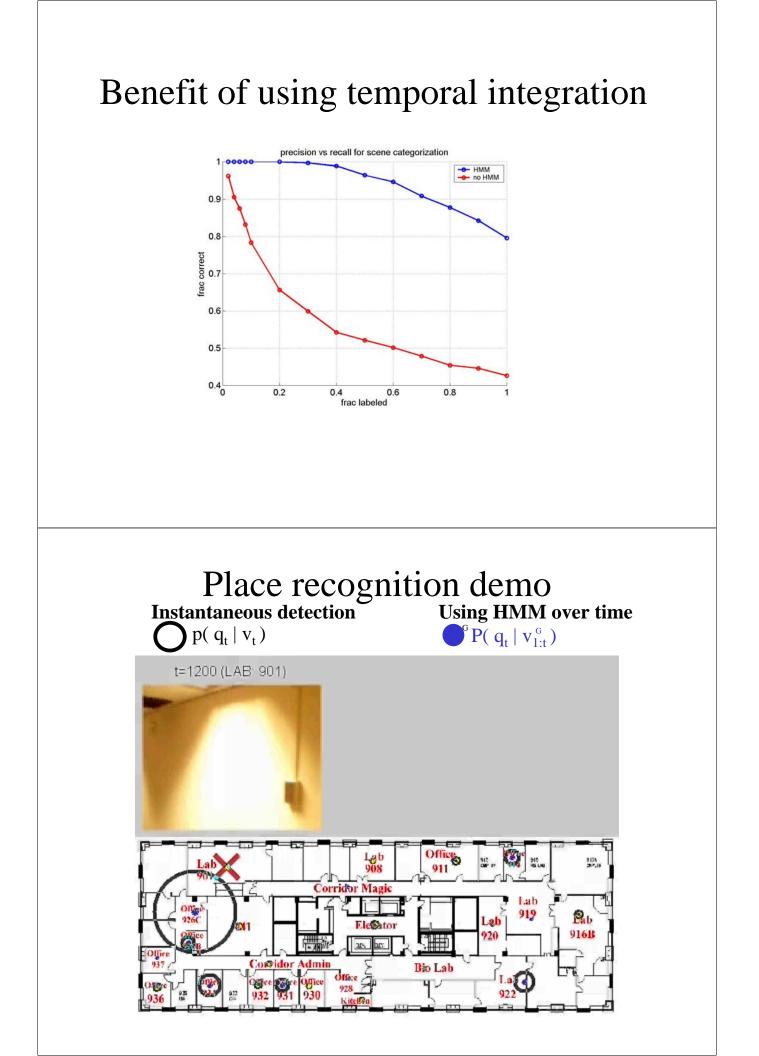
- Train:
 - Rooms and halls on 9th floor of 200 Tech. Square
 - Outdoors
- Test:
 - Interior of 200 Tech. Square, 9th floor (seen in training)
 - Interior of 400 Tech. Square (unseen)
 - Outdoors (unseen places)
- Goals:
 - Identify previously seen locations
 - Identify category of previously unseen locations

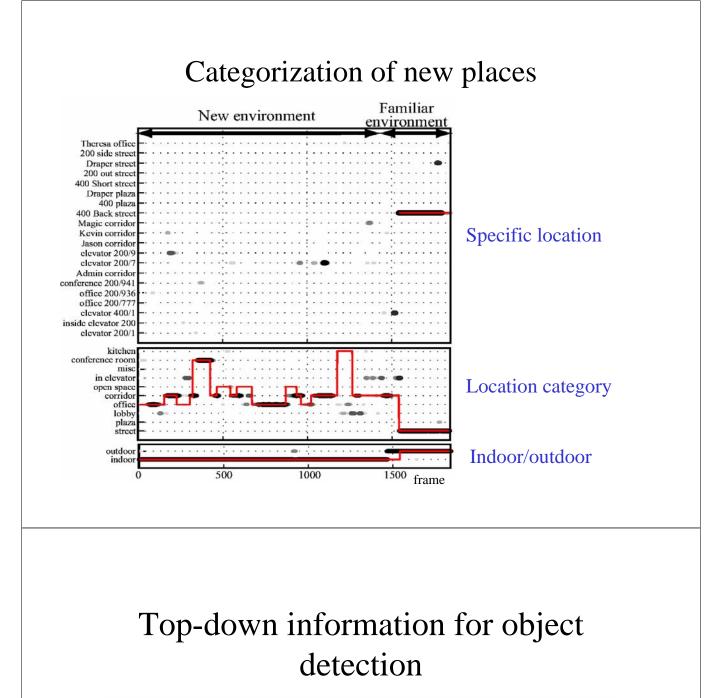


Classifying isolated scenes can be hard



 $P(C_t|C_{t-1})$ is a transition matrix, $P(v^G|C)$ is a mixture of Gaussians Cf. topological localization in robotics Torralba, Murphy, Freeman, Rubin, ICCV 2003





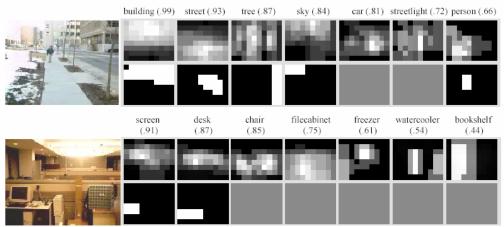


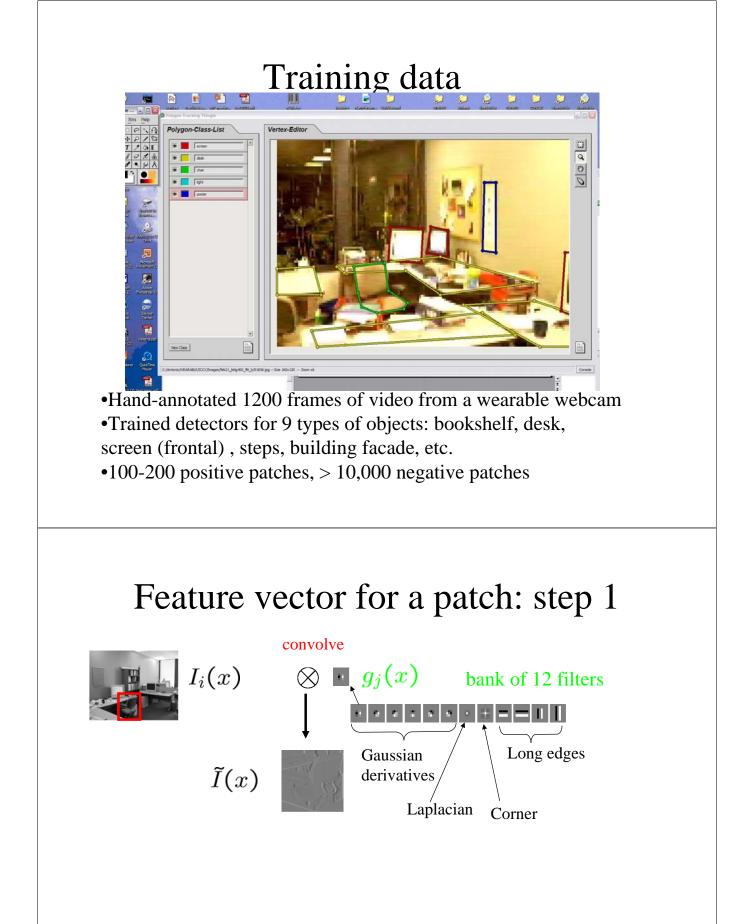
Figure 12: Some results of object localization. The gray-level images represent the probability of the objects being present at that location; the black-and-white images represent the ground truth segmentation (gray indicates absent object). Images are ordered according to $P(O_{t,i}|v_{i,t}^G)$.

Talk outline

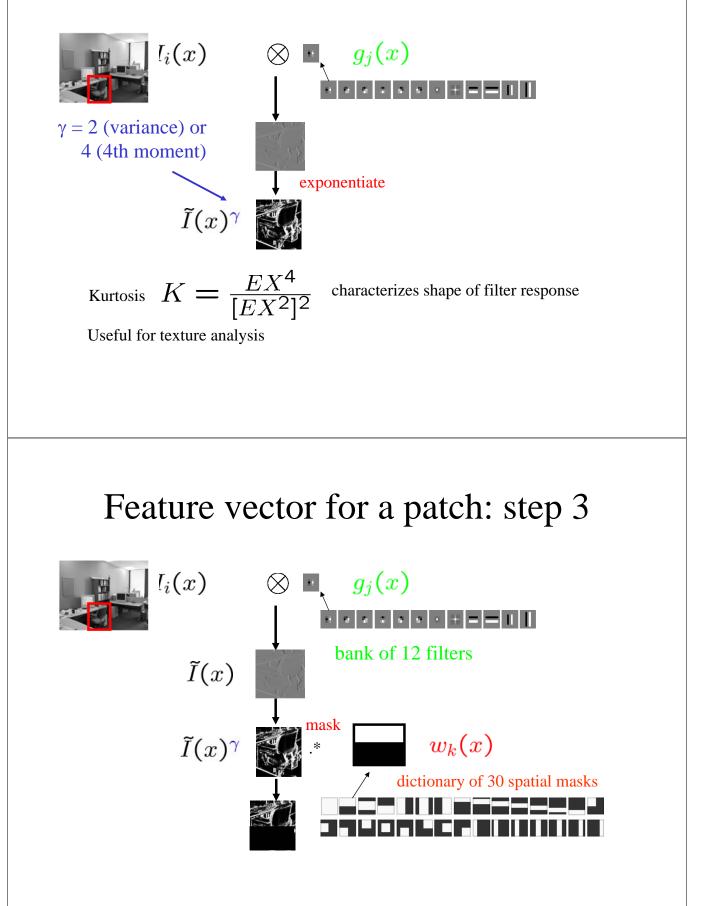
- Context-based vision
- Feature-based object detection
- Graphical model to combine both sources

Bottom-up object recognition

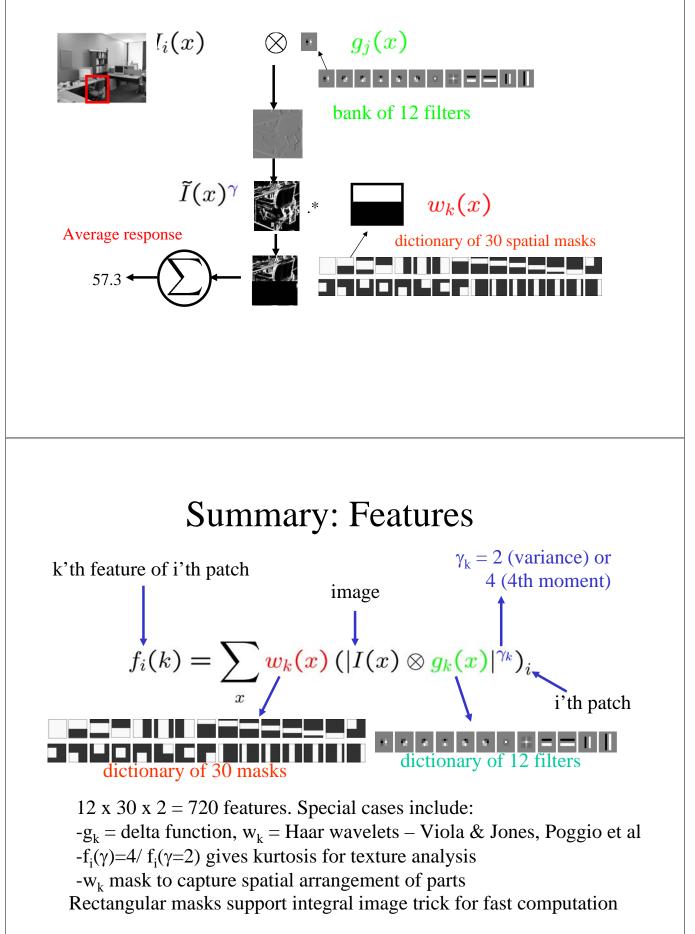
- Use labelled training set
- Use local features to categorize each object (each view of an object)



Feature vector for a patch: step 2



Feature vector for a patch: step 4



Classifier: boosted features

- Output is $b = \sum_t \alpha_t h_t(\vec{f})$ where
 - f = feature vector for patch
 - $h_t(f) =$ output of weak classifier at round t
 - $-\alpha_t$ = weight assigned by boosting
- Weak learners are single features: h_t(f) picks best feature and threshold:

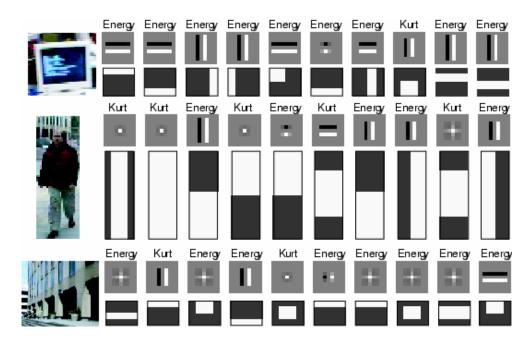
$$h_t(\vec{f}) = (f(j,k,\gamma) > \theta)$$

- ~500 rounds of boosting
- ~200 positive patches, ~ 10,000 negative patches
- No cascade (yet)

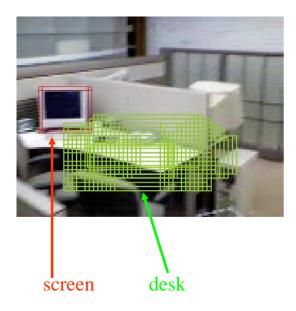
Viola & Jones, IJCV 2001

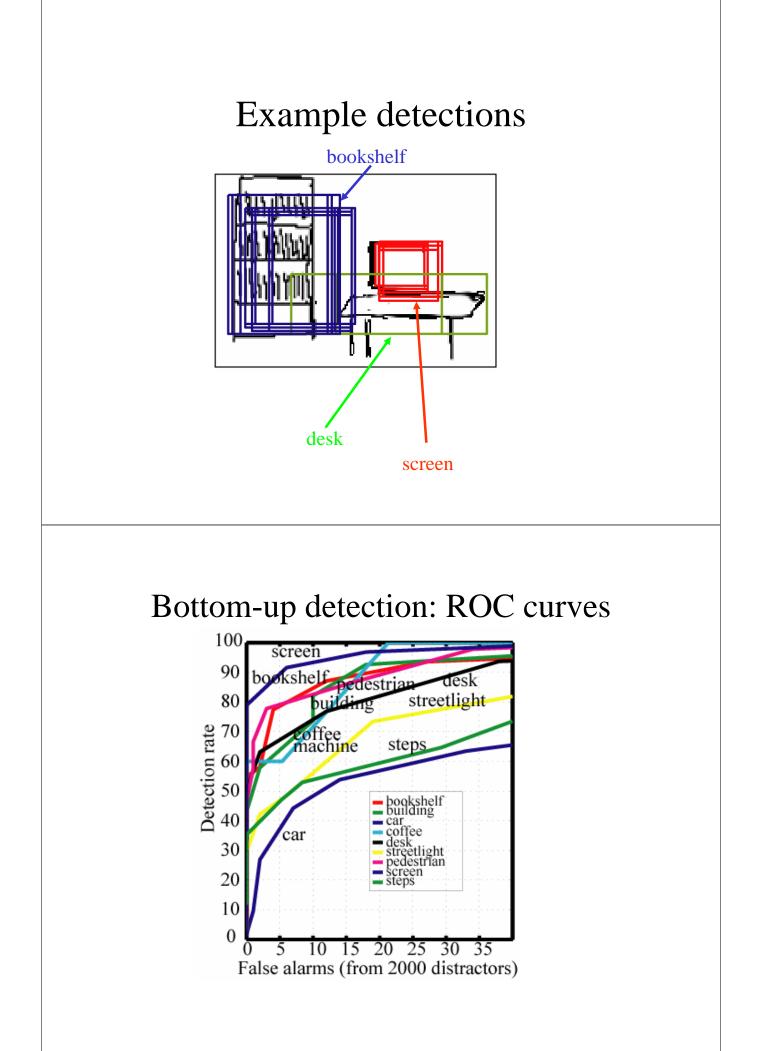
Boosting demo

Examples of learned features



Example detections



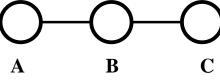


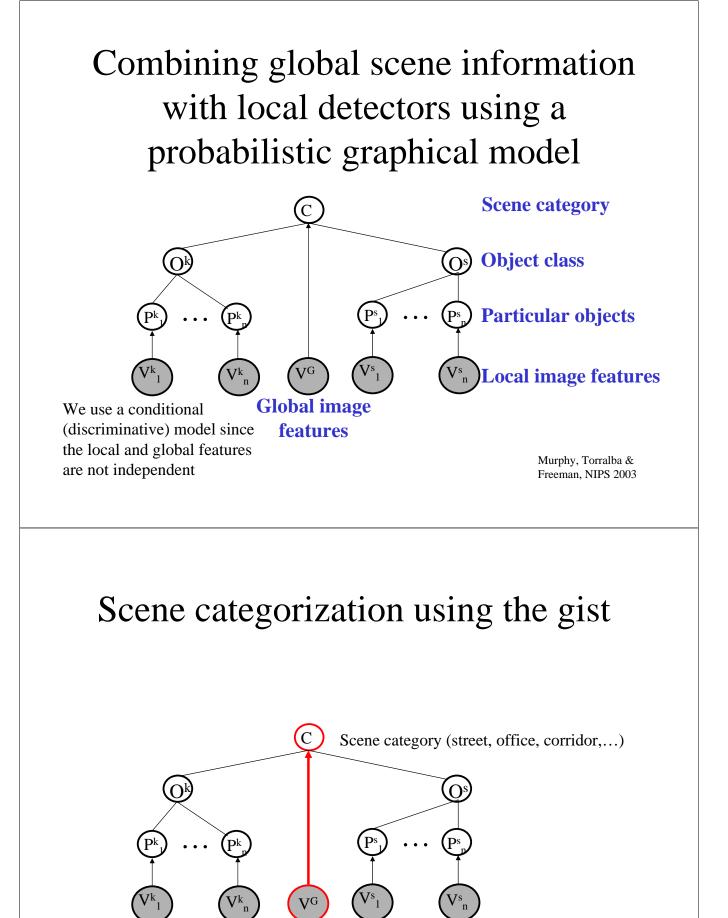
Talk outline

- Context-based vision
- Feature-based object detection
- Graphical model to combine both sources

Probabilistic models: graphical models

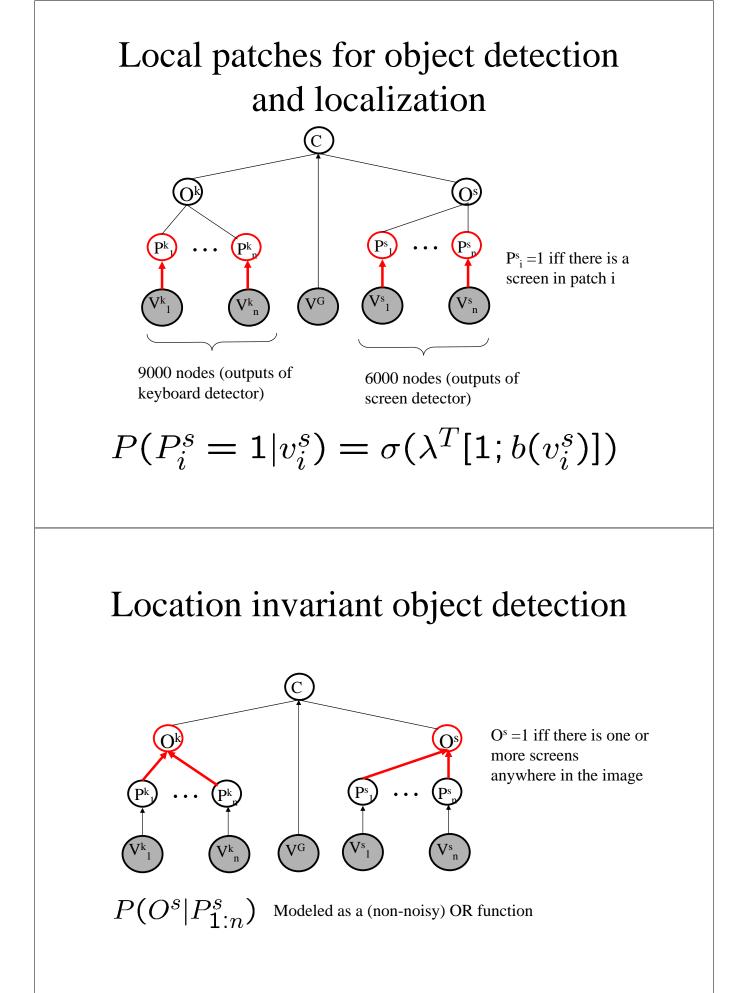
- Tinker toys for probabilistic models
- Build up complex models from simple components describing conditional independence assumptions.
- Standard inference algorithms let you combine evidence from different parts of the model.



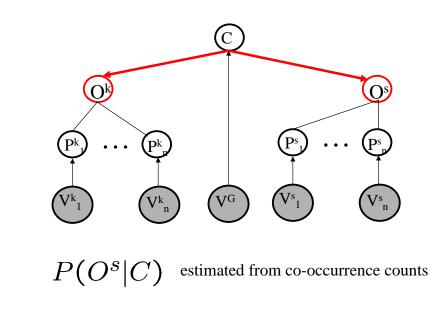


Global gist (output of PCA)

 $P(C|v^G)$ modeled using multi-class boosting or by a mixture of Gaussians

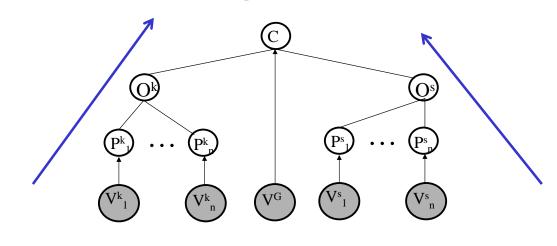


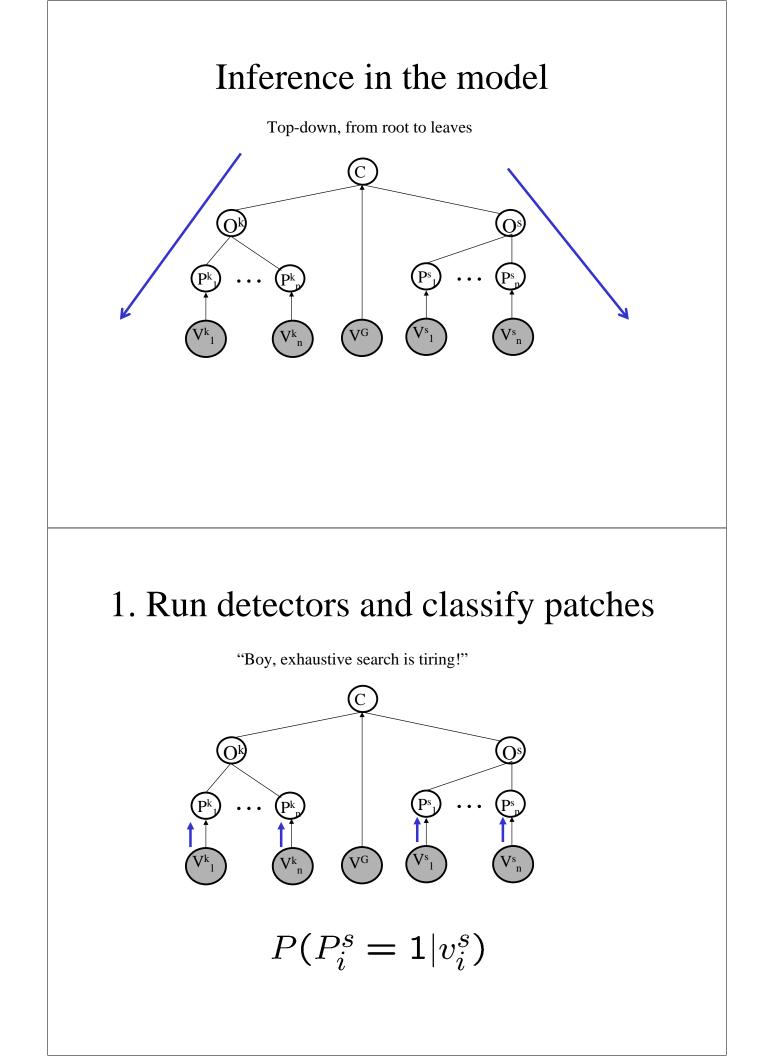
Probability of object given scene



Inference in the model

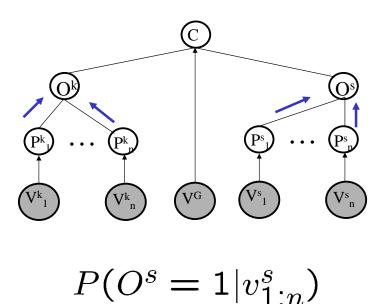
Bottom-up, from leaves to root





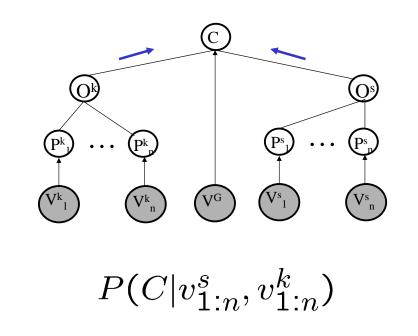
2. Infer object presence given detectors

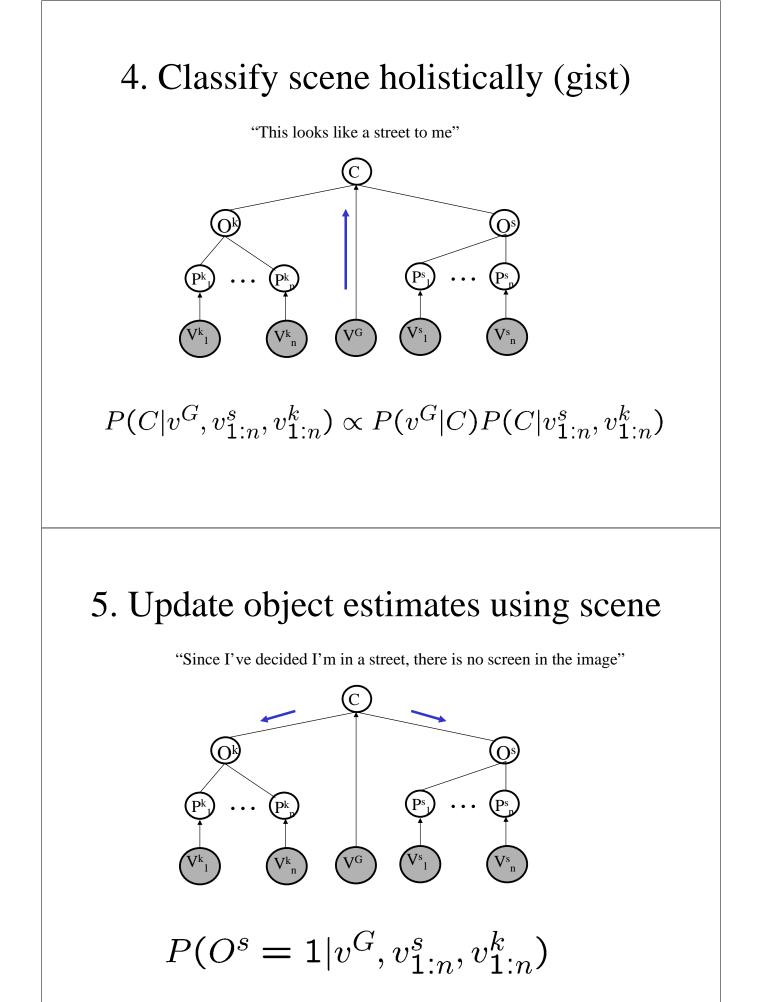
"Some screen detectors fired, so there's probably a screen somewhere"



3. Classify scene using parts (objects)

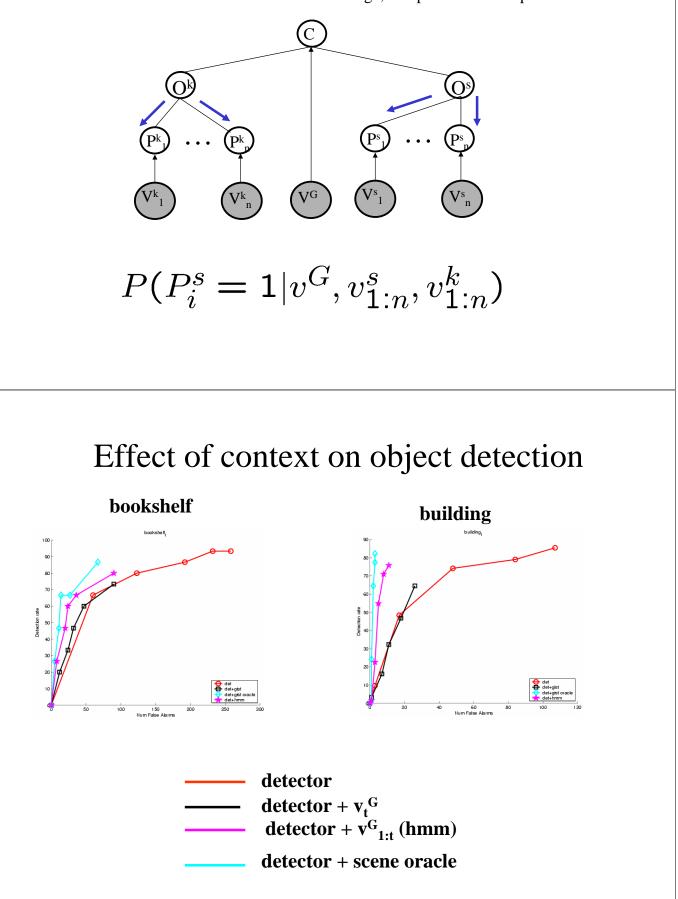
"I think I saw a screen and a car, so I may be in an office or a street"





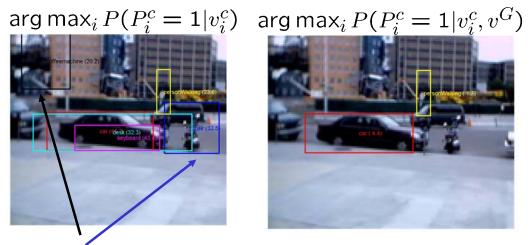
6. Update patch estimates using objects

"Since there's no screen in the image, this patch is a false positive"

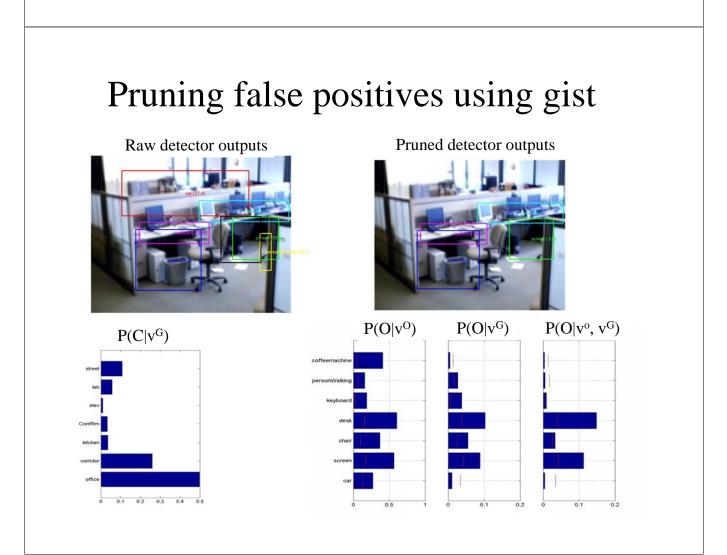


Example of object priming using gist

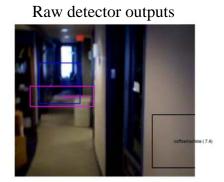
For each type of object, we plot the single most probable detection if it is above a threshold (set to give 80% detection rate)

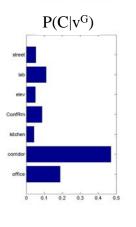


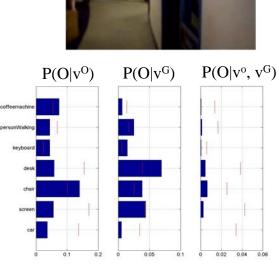
If we know we are in a street, we can prune false positives such as chair and coffee-machine (which are hard to detect, and hence must have low thresholds to get 80% hit rate)



Pruning false positives using gist







Pruned detector outputs

Top-down and bottom-up object detection

Video input

Likely location for a car, given current context

Detected car

Best training set wins

- Character recognition
- Speech recognition

Computer vision training set options

- Real world data, hand labeled
 - Example: Sowerby/BAE database
 - In general: expensive and slow.
- Real world, partially labeled
- Synthetic world, automatically labeled.
 - Will training there transfer to the real world?

Research goals

- Scale up: develop efficient system to recognize 1000 different objects, generalizing current feature detection cascades.
- Train exhaustively.
- Apply in wearable or other real-world systems – Lifelog
 - VACE

end

Future directions

- Improve local-feature-based object detection.
 - Training set
 - Efficient use of local feature information.
- Include temporal information, more than just a single HMM for the global scene context.

Overview of talk

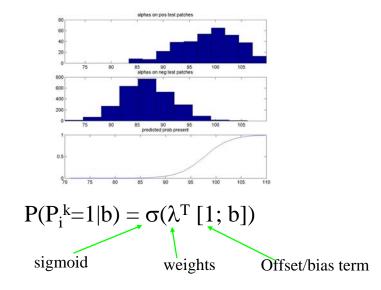
Why scene context?

- Disambiguate local features
- Reduce search space
- Data set
- Object detection
 - Features
 - Classifier
- Scene categorization and object priming
- Combining global scene information with local detectors using a probabilistic graphical model
- Scene categorization over time
- Location/scale priors using the scene and other objects
- Summary/ future work

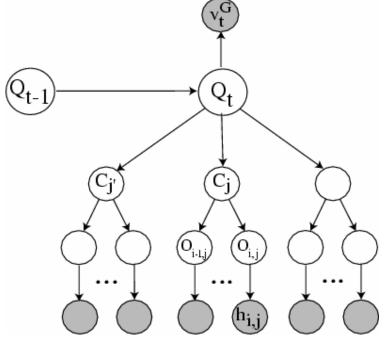
Classifier: based on boosting

- Weighted output is $h = \sum_{t} \alpha_{t} h_{t}(f)$, where -f = feature vector for patch
 - $-h_t(f) =$ output of weak classifier at round t
 - α_t = weight assigned by boosting
- h_t(f) picks best feature f_k and corresponding threshold to minimize classification error on validation set
- 100-500 rounds of boosting

Converting boosting output to a probability distribution



Combining top-down with bottom-up: graphical model showing assumed statistical relationships between variables



Visual "gist" observations

Scene category

kitchen, office, lab, conference room, open area, corridor, elevator and street.

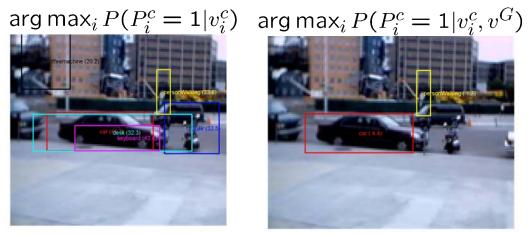
Object class

Particular objects

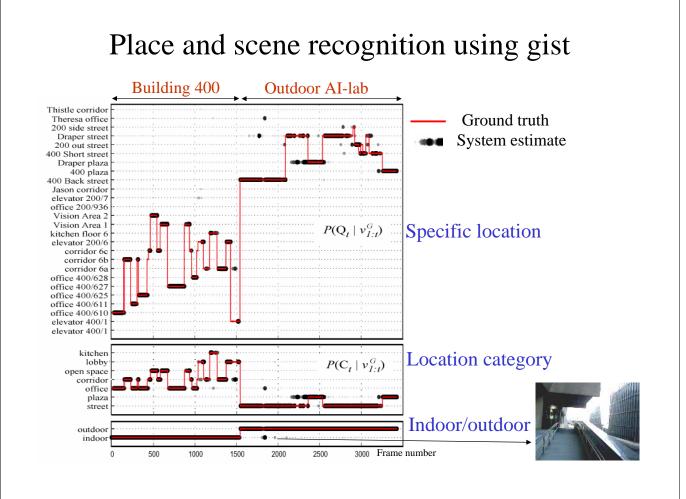
Local image features

Pruning false positives using gist

For each type of object, we plot the single most probable detection if it is above a threshold (set to give 80% detection rate)



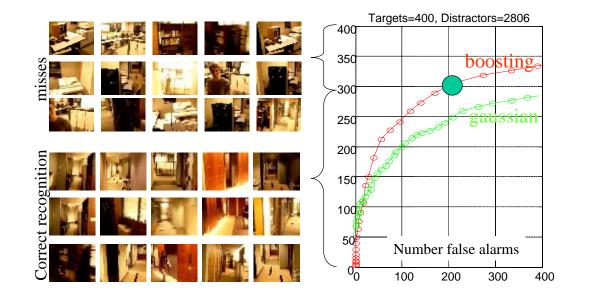
Using the gist, we figured out we're in a street, so probability of chair and coffee machine drops below threshold.



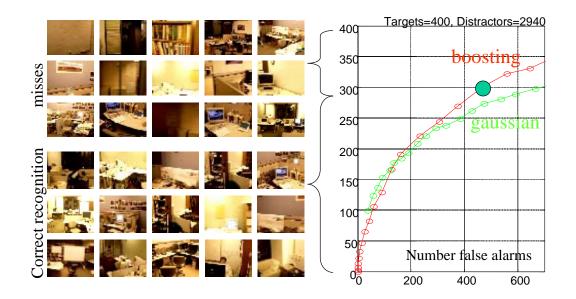
Place recognition demo

t=930, truth = 400-fl6-visionArea1

Corridor recognition



Office recognition



Scene categorization using the gist

Estimate $P(C|v^G)$ using multi-class boosting or mixture of Gaussians for 7 pre-chosen categories.

