

Artificial Intelligence By
Example
Second Edition

Acquire advanced AI, machine learning, and deep
learning design skills

Denis Rothman

BIRMINGHAM - MUMBAI

Artificial Intelligence By Example
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Divya Mudaliar
Content Development Editor: Dr. Ian Hough
Technical Editor: Saby D'silva
Project Editor: Kishor Rit
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Presentation Designer: Pranit Padwal

First published: May 2018
Second edition: February 2020

Production reference: 1270220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-153-9

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Contributors

About the author
Denis Rothman graduated from Sorbonne University and Paris-Diderot
University, writing one of the very first word2matrix embedding solutions. He began
his career authoring one of the first AI cognitive natural language processing (NLP)
chatbots applied as a language teacher for Moët et Chandon and other companies.
He authored an AI resource optimizer for IBM and apparel producers. He then
authored an advanced planning and scheduling (APS) solution used worldwide.

"I want to thank the corporations who trusted me from the start to deliver
artificial intelligence solutions and share the risks of continuous innovation.
I also thank my family, who believed I would make it big at all times."

About the reviewers
Carlos Toxtli is a human-computer interaction researcher who studies the impact
of artificial intelligence in the future of work. He studied a Ph.D. in Computer
Science at the University of West Virginia and a master's degree in Technological
Innovation and Entrepreneurship at the Monterrey Institute of Technology and
Higher Education. He has worked for some international organizations such as
Google, Microsoft, Amazon, and the United Nations. He has also created companies
that use artificial intelligence in the financial, educational, customer service, and
parking industries. Carlos has published numerous research papers, manuscripts,
and book chapters for different conferences and journals in his field.

"I want to thank all the editors who helped make this book a masterpiece."

Kausthub Raj Jadhav graduated from the University of California, Irvine,
where he specialized in intelligent systems and founded the Artificial Intelligence
Club. In his spare time, he enjoys powerlifting, rewatching Parks and Recreation,
and learning how to cook. He solves hard problems for a living.

[i]

Table of Contents
Preface xiii
Chapter 1: Getting Started with Next-Generation Artificial
Intelligence through Reinforcement Learning 1

Reinforcement learning concepts 2
How to adapt to machine thinking and become an adaptive thinker 4
Overcoming real-life issues using the three-step approach 5

Step 1 – describing a problem to solve: MDP in natural language 7
Watching the MDP agent at work 8

Step 2 – building a mathematical model: the mathematical
representation of the Bellman equation and MDP 10

From MDP to the Bellman equation 10
Step 3 – writing source code: implementing the solution in Python 14

The lessons of reinforcement learning 16
How to use the outputs 18

Possible use cases 20
Machine learning versus traditional applications 23

Summary 24
Questions 24
Further reading 25

Chapter 2: Building a Reward Matrix – Designing Your Datasets 27
Designing datasets – where the dream stops and the hard work begins 28

Designing datasets 29
Using the McCulloch-Pitts neuron 29
The McCulloch-Pitts neuron 31
The Python-TensorFlow architecture 35

Table of Contents

[ii]

Logistic activation functions and classifiers 35
Overall architecture 35
Logistic classifier 36
Logistic function 37
Softmax 38

Summary 42
Questions 43
Further reading 43

Chapter 3: Machine Intelligence – Evaluation Functions and
Numerical Convergence 45

Tracking down what to measure and deciding how to measure it 46
Convergence 48

Implicit convergence 49
Numerically controlled gradient descent convergence 49

Evaluating beyond human analytic capacity 56
Using supervised learning to evaluate a result that surpasses human
analytic capacity 60
Summary 64
Questions 65
Further reading 65

Chapter 4: Optimizing Your Solutions with K-Means Clustering 67
Dataset optimization and control 68

Designing a dataset and choosing an ML/DL model 69
Approval of the design matrix 70

Implementing a k-means clustering solution 74
The vision 74

The data 75
The strategy 76

The k-means clustering program 77
The mathematical definition of k-means clustering 78
The Python program 80

Saving and loading the model 84
Analyzing the results 85

Bot virtual clusters as a solution 86
The limits of the implementation of the k-means clustering algorithm 87

Summary 88
Questions 88
Further reading 89

Chapter 5: How to Use Decision Trees to Enhance
K-Means Clustering 91

Unsupervised learning with KMC with large datasets 92

Table of Contents

[iii]

Identifying the difficulty of the problem 94
NP-hard – the meaning of P 94
NP-hard – the meaning of non-deterministic 95

Implementing random sampling with mini-batches 95
Using the LLN 96
The CLT 96

Using a Monte Carlo estimator 97
Trying to train the full training dataset 98
Training a random sample of the training dataset 98
Shuffling as another way to perform random sampling 100
Chaining supervised learning to verify unsupervised learning 102

Preprocessing raw data 103
A pipeline of scripts and ML algorithms 103

Step 1 – training and exporting data from an unsupervised ML algorithm 105
Step 2 – training a decision tree 106
Step 3 – a continuous cycle of KMC chained to a decision tree 110

Random forests as an alternative to decision trees 114
Summary 118
Questions 118
Further reading 119

Chapter 6: Innovating AI with Google Translate 121
Understanding innovation and disruption in AI 123

Is AI disruptive? 123
AI is based on mathematical theories that are not new 124
Neural networks are not new 124

Looking at disruption – the factors that are making AI disruptive 125
Cloud server power, data volumes, and web sharing of the early 21st century 125
Public awareness 126

Inventions versus innovations 126
Revolutionary versus disruptive solutions 127
Where to start? 127

Discover a world of opportunities with Google Translate 128
Getting started 128
The program 128

The header 128
Implementing Google's translation service 129

Google Translate from a linguist's perspective 130
Playing with the tool 131
Linguistic assessment of Google Translate 131

AI as a new frontier 135
Lexical field and polysemy 135
Exploring the frontier – customizing Google Translate with a
Python program 137

Table of Contents

[iv]

k-nearest neighbor algorithm 138
Implementing the KNN algorithm 139
The knn_polysemy.py program 142
Implementing the KNN function in Google_Translate_Customized.py 144
Conclusions on the Google Translate customized experiment 152
The disruptive revolutionary loop 153

Summary 153
Questions 154
Further reading 154

Chapter 7: Optimizing Blockchains with Naive Bayes 157
Part I – the background to blockchain technology 158

Mining bitcoins 159
Using cryptocurrency 160

PART II – using blockchains to share information in a supply chain 161
Using blockchains in the supply chain network 164
Creating a block 165
Exploring the blocks 166

Part III – optimizing a supply chain with naive Bayes in a blockchain
process 167

A naive Bayes example 167
The blockchain anticipation novelty 169
The goal – optimizing storage levels using blockchain data 170

Implementation of naive Bayes in Python 173
Gaussian naive Bayes 173

Summary 177
Questions 177
Further reading 178

Chapter 8: Solving the XOR Problem with a Feedforward
Neural Network 179

The original perceptron could not solve the XOR function 180
XOR and linearly separable models 181

Linearly separable models 181
The XOR limit of a linear model, such as the original perceptron 182

Building an FNN from scratch 184
Step 1 – defining an FNN 184
Step 2 – an example of how two children can solve the XOR
problem every day 185
Implementing a vintage XOR solution in Python with an FNN and
backpropagation 189

A simplified version of a cost function and gradient descent 191
Linear separability was achieved 194

Table of Contents

[v]

Applying the FNN XOR function to optimizing subsets of data 196
Summary 202
Questions 203
Further reading 203

Chapter 9: Abstract Image Classification with Convolutional
Neural Networks (CNNs) 205

Introducing CNNs 206
Defining a CNN 207
Initializing the CNN 209
Adding a 2D convolution layer 210

Kernel 210
Shape 215
ReLU 215

Pooling 218
Next convolution and pooling layer 219
Flattening 220
Dense layers 220

Dense activation functions 221
Training a CNN model 221

The goal 222
Compiling the model 223

The loss function 223
The Adam optimizer 225
Metrics 226

The training dataset 226
Data augmentation 227
Loading the data 227

The testing dataset 228
Data augmentation on the testing dataset 228
Loading the data 228

Training with the classifier 229
Saving the model 230

Next steps 230
Summary 231
Questions 231
Further reading and references 231

Chapter 10: Conceptual Representation Learning 233
Generating profit with transfer learning 234

The motivation behind transfer learning 235
Inductive thinking 235
Inductive abstraction 235
The problem AI needs to solve 236

Table of Contents

[vi]

The 𝚪𝚪 gap concept 237
Loading the trained TensorFlow 2.x model 238

Loading and displaying the model 238
Loading the model to use it 242
Defining a strategy 245
Making the model profitable by using it for another problem 246

Domain learning 247
How to use the programs 247

The trained models used in this section 248
The trained model program 248

Gap – loaded or underloaded 249
Gap – jammed or open lanes 251
Gap datasets and subsets 253

Generalizing the 𝚪𝚪 (the gap conceptual dataset) 253
The motivation of conceptual representation learning
metamodels applied to dimensionality 254

The curse of dimensionality 254
The blessing of dimensionality 255

Summary 256
Questions 257
Further reading 257

Chapter 11: Combining Reinforcement Learning
and Deep Learning 259

Planning and scheduling today and tomorrow 260
A real-time manufacturing process 262

Amazon must expand its services to face competition 262
A real-time manufacturing revolution 263

CRLMM applied to an automated apparel manufacturing process 266
An apparel manufacturing process 267
Training the CRLMM 269

Generalizing the unit training dataset 269
Food conveyor belt processing – positive p𝜸𝜸 and negative n𝜸𝜸 gaps 270
Running a prediction program 274

Building the RL-DL-CRLMM 274
A circular process 275
Implementing a CNN-CRLMM to detect gaps and optimize 276
Q-learning – MDP 277

MDP inputs and outputs 278
The optimizer 281

The optimizer as a regulator 281
Finding the main target for the MDP function 284

A circular model – a stream-like system that never starts nor ends 286

Table of Contents

[vii]

Summary 291
Questions 291
Further reading 292

Chapter 12: AI and the Internet of Things (IoT) 293
The public service project 294
Setting up the RL-DL-CRLMM model 295

Applying the model of the CRLMM 297
The dataset 298
Using the trained model 300

Adding an SVM function 301
Motivation – using an SVM to increase safety levels 302
Definition of a support vector machine 303
Python function 305

Running the CRLMM 307
Finding a parking space 307
Deciding how to get to the parking lot 310

Support vector machine 311
The itinerary graph 313
The weight vector 314

Summary 315
Questions 316
Further reading 316

Chapter 13: Visualizing Networks with TensorFlow 2.x
and TensorBoard 317

Exploring the output of the layers of a CNN in two steps
with TensorFlow 318

Building the layers of a CNN 319
Processing the visual output of the layers of a CNN 323

Analyzing the visual output of the layers of a CNN 327
Analyzing the accuracy of a CNN using TensorBoard 334

Getting started with Google Colaboratory 334
Defining and training the model 336
Introducing some of the measurements 339

Summary 341
Questions 342
Further reading 342

Chapter 14: Preparing the Input of Chatbots with Restricted
Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA) 343

Defining basic terms and goals 344

Table of Contents

[viii]

Introducing and building an RBM 345
The architecture of an RBM 346
An energy-based model 347
Building the RBM in Python 350

Creating a class and the structure of the RBM 350
Creating a training function in the RBM class 350
Computing the hidden units in the training function 351
Random sampling of the hidden units for the reconstruction and contractive
divergence 352
Reconstruction 353
Contrastive divergence 354
Error and energy function 354

Running the epochs and analyzing the results 355
Using the weights of an RBM as feature vectors for PCA 357

Understanding PCA 362
Mathematical explanation 363

Using TensorFlow's Embedding Projector to represent PCA 367
Analyzing the PCA to obtain input entry points for a chatbot 370

Summary 372
Questions 373
Further reading 373

Chapter 15: Setting Up a Cognitive NLP UI/CUI Chatbot 375
Basic concepts 376

Defining NLU 376
Why do we call chatbots "agents"? 376
Creating an agent to understand Dialogflow 377
Entities 378
Intents 382
Context 387

Adding fulfillment functionality to an agent 392
Defining fulfillment 393
Enhancing the cogfilmdr agent with a fulfillment webhook 394
Getting the bot to work on your website 397

Machine learning agents 398
Using machine learning in a chatbot 398
Speech-to-text 398
Text-to-speech 399
Spelling 401
Why are these machine learning algorithms important? 403

Summary 404
Questions 405
Further reading 405

Table of Contents

[ix]

Chapter 16: Improving the Emotional Intelligence
Deficiencies of Chatbots 407

From reacting to emotions, to creating emotions 408
Solving the problems of emotional polysemy 408

The greetings problem example 409
The affirmation example 410
The speech recognition fallacy 410
The facial analysis fallacy 411

Small talk 412
Courtesy 412
Emotions 415

Data logging 415
Creating emotions 418
RNN research for future automatic dialog generation 423

RNNs at work 424
RNN, LSTM, and vanishing gradients 425

Text generation with an RNN 426
Vectorizing the text 426
Building the model 427
Generating text 429

Summary 431
Questions 432
Further reading 432

Chapter 17: Genetic Algorithms in Hybrid Neural Networks 433
Understanding evolutionary algorithms 434

Heredity in humans 434
Our cells 435
How heredity works 435

Evolutionary algorithms 436
Going from a biological model to an algorithm 437
Basic concepts 437

Building a genetic algorithm in Python 440
Importing the libraries 440
Calling the algorithm 441
The main function 441
The parent generation process 442
Generating a parent 442
Fitness 443
Display parent 444
Crossover and mutation 445
Producing generations of children 447
Summary code 450

Unspecified target to optimize the architecture of a neural network
with a genetic algorithm 451

Table of Contents

[x]

A physical neural network 451
What is the nature of this mysterious S-FNN? 452
Calling the algorithm cell 453
Fitness cell 454
ga_main() cell 455

Artificial hybrid neural networks 456
Building the LSTM 457
The goal of the model 458

Summary 459
Questions 460
Further reading 460

Chapter 18: Neuromorphic Computing 461
Neuromorphic computing 462
Getting started with Nengo 463

Installing Nengo and Nengo GUI 464
Creating a Python program 466
A Nengo ensemble 466

Nengo neuron types 467
Nengo neuron dimensions 468
A Nengo node 468

Connecting Nengo objects 470
Visualizing data 470
Probes 475

Applying Nengo's unique approach to critical AI research areas 479
Summary 482
Questions 483
References 483
Further reading 483

Chapter 19: Quantum Computing 485
The rising power of quantum computers 486

Quantum computer speed 487
Defining a qubit 490
Representing a qubit 490
The position of a qubit 491

Radians, degrees, and rotations 492
The Bloch sphere 493

Composing a quantum score 494
Quantum gates with Quirk 494
A quantum computer score with Quirk 496
A quantum computer score with IBM Q 497

A thinking quantum computer 500
Representing our mind's concepts 500

Table of Contents

[xi]

Expanding MindX's conceptual representations 500
The MindX experiment 501

Preparing the data 501
Transformation functions – the situation function 501
Transformation functions – the quantum function 504
Creating and running the score 504
Using the output 506

Summary 507
Questions 507
Further reading 508

Appendix: Answers to the Questions 509
Chapter 1 – Getting Started with Next-Generation Artificial
Intelligence through Reinforcement Learning 509
Chapter 2 – Building a Reward Matrix – Designing Your Datasets 511
Chapter 3 – Machine Intelligence – Evaluation Functions and
Numerical Convergence 512
Chapter 4 – Optimizing Your Solutions with K-Means Clustering 513
Chapter 5 – How to Use Decision Trees to Enhance K-Means
Clustering 515
Chapter 6 – Innovating AI with Google Translate 516
Chapter 7 – Optimizing Blockchains with Naive Bayes 518
Chapter 8 – Solving the XOR Problem with a Feedforward
Neural Network 519
Chapter 9 – Abstract Image Classification with Convolutional
Neural Networks (CNNs) 521
Chapter 10 – Conceptual Representation Learning 522
Chapter 11 – Combining Reinforcement Learning and Deep Learning 524
Chapter 12 – AI and the Internet of Things 525
Chapter 13 – Visualizing Networks with TensorFlow 2.x and
TensorBoard 527
Chapter 14 – Preparing the Input of Chatbots with Restricted
Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA) 528
Chapter 15 – Setting Up a Cognitive NLP UI/CUI Chatbot 529
Chapter 16 – Improving the Emotional Intelligence Deficiencies
of Chatbots 530
Chapter 17 – Genetic Algorithms in Hybrid Neural Networks 531
Chapter 18 – Neuromorphic Computing 532
Chapter 19 – Quantum Computing 534

Other Books You May Enjoy 537
Index 541

[xiii]

Preface
This second edition of Artificial Intelligence By Example will take you through the
main aspects of present-day artificial intelligence (AI) and beyond!

This book contains many revisions and additions to the key aspects of AI
described in the first edition:

• The theory of machine learning and deep learning including hybrid and
ensemble algorithms.

• Mathematical representations of the main AI algorithms including natural
language explanations making them easier to understand.

• Real-life case studies taking the reader inside the heart of e-commerce:
manufacturing, services, warehouses, and delivery.

• Introducing AI solutions that combine IoT, convolutional neural networks
(CNN), and Markov decision process (MDP).

• Many open source Python programs with a special focus on the
new features of TensorFlow 2.x, TensorBoard, and Keras. Many modules
are used, such as scikit-learn, pandas, and more.

• Cloud platforms: Google Colaboratory with its free VM, Google Translate,
Google Dialogflow, IBM Q for quantum computing, and more.

• Use of the power of restricted Boltzmann machines (RBM) and principal
component analysis (PCA) to generate data to create a meaningful
chatbot.

• Solutions to compensate for the emotional deficiencies of chatbots.

Preface

[xiv]

• Genetic algorithms, which run faster than classical algorithms in specific
cases, and genetic algorithms used in a hybrid deep learning neural
network.

• Neuromorphic computing, which reproduces our brain activity
with models of selective spiking ensembles of neurons in models that
reproduce our biological reactions.

• Quantum computing, which will take you deep into the tremendous
calculation power of qubits and cognitive representation experiments.

This second edition of Artificial Intelligence By Example will take you to the cutting
edge of AI and beyond with innovations that improve existing solutions. This
book will make you a key asset not only as an AI specialist but a visionary. You
will discover how to improve your AI skills as a consultant, developer, professor,
a curious mind, or any person involved in artificial intelligence.

Who this book is for
This book contains a broad approach to AI, which is expanding to all areas of our
lives.

The main machine learning and deep learning algorithms are addressed
with real-life Python examples extracted from hundreds of AI projects and
implementations.

Each AI implementation is illustrated by an open source program available on
GitHub and cloud platforms such as Google Colaboratory.

Artificial Intelligence By Example, Second Edition is for developers who wish to build
solid machine learning programs that will optimize production sites, services, IoT
and more.

Project managers and consultants will learn how to build input datasets that will
help the reader face the challenges of real-life AI.

Teachers and students will have an overview of the key aspects of AI, along with
many educational examples.

Artificial Intelligence By Example, Second Edition will help anybody interested in
AI to understand how systems to build solid, productive Python programs.

Preface

[xv]

What this book covers
Chapter 1, Getting Started with Next-Generation Artificial Intelligence through
Reinforcement Learning, covers reinforcement learning through the Bellman
equation based on the MDP. A case study describes how to solve a delivery route
problem with a human driver and a self-driving vehicle. This chapter shows how
to build an MDP from scratch in Python.

Chapter 2, Building a Reward Matrix – Designing Your Datasets, demonstrates the
architecture of neural networks starting with the McCulloch-Pitts neuron. The
case study describes how to use a neural network to build the reward matrix
used by the Bellman equation in a warehouse environment. The process will be
developed in Python using logistic, softmax, and one-hot functions.

Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence,
shows how machine evaluation capacities have exceeded human decision-making.
The case study describes a chess position and how to apply the results of an AI
program to decision-making priorities. An introduction to decision trees in Python
shows how to manage decision-making processes.

Chapter 4, Optimizing Your Solutions with K-Means Clustering, covers a k-means
clustering program with Lloyd's algorithm and how to apply it to the optimization
of automatic guided vehicles. The k-means clustering program's model will be
trained and saved.

Chapter 5, How to Use Decision Trees to Enhance K-Means Clustering, begins with
unsupervised learning with k-means clustering. The output of the k-means
clustering algorithm will provide the labels for the supervised decision tree
algorithm. Random forests will be introduced.

Chapter 6, Innovating AI with Google Translate, explains the difference between a
revolutionary innovation and a disruptive innovation. Google Translate will be
described and enhanced with an innovative k-nearest neighbors-based Python
program.

Chapter 7, Optimizing Blockchains with Naive Bayes, is about mining blockchains and
describes how blockchains function. We use naive Bayes to optimize the blocks
of supply chain management (SCM) blockchains by predicting transactions to
anticipate storage levels.

Preface

[xvi]

Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, is about
building a feedforward neural network (FNN) from scratch to solve the XOR
linear separability problem. The business case describes how to group orders for a
factory.

Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs),
describes CNN in detail: kernels, shapes, activation functions, pooling, flattening,
and dense layers. The case study illustrates the use of a CNN using a webcam on a
conveyor belt in a food-processing company.

Chapter 10, Conceptual Representation Learning, explains conceptual representation
learning (CRL), an innovative way to solve production flows with a CNN
transformed into a CRL metamodel (CRLMM). The case study shows how to
use a CRLMM for transfer and domain learning, extending the model to other
applications.

Chapter 11, Combining Reinforcement Learning and Deep Learning, combines a CNN
with an MDP to build a solution for automatic planning and scheduling with an
optimizer with a rule-based system.

The solution is applied to apparel manufacturing showing how to apply AI to
real-life systems.

Chapter 12, AI and the Internet of Things (IoT), explores a support vector machine
(SVM) assembled with a CNN. The case study shows how self-driving cars can
find an available parking space automatically.

Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, extracts
information of each layer of a CNN and displays the intermediate steps
taken by the neural network. The output of each layer contains images of the
transformations applied.

Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM)
and Principal Component Analysis (PCA), explains how to produce valuable
information using an RBM and a PCA to transform raw data into chatbot-input
data.

Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, describes how to build
a Google Dialogflow chatbot from scratch using the information provided by
an RBM and a PCA algorithm. The chatbot will contain entities, intents, and
meaningful responses.

Preface

[xvii]

Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explains the
limits of a chatbot when dealing with human emotions. The Emotion options of
Dialogflow will be activated along with Small Talk to make the chatbot friendlier.

Chapter 17, Genetic Algorithms in Hybrid Neural Networks, enters our chromosomes,
finds our genes, and helps you understand how our reproduction process works.
From there, it is shown how to implement an evolutionary algorithm in Python,
a genetic algorithm (GA). A hybrid neural network will show how to optimize a
neural network with a GA.

Chapter 18, Neuromorphic Computing, describes what neuromorphic computing is
and then explores Nengo, a unique neuromorphic framework with solid tutorials
and documentation.

This neuromorphic overview will take you into the wonderful power of our brain
structures to solve complex problems.

Chapter 19, Quantum Computing, will show quantum computers are superior
to classical computers, what a quantum bit is, how to use it, and how to build
quantum circuits. An introduction to quantum gates and example programs will
bring you into the futuristic world of quantum mechanics.

Appendix, Answers to the Questions, provides answers to the questions listed in
the Questions section in all the chapters.

To get the most out of this book
Artificial intelligence projects rely on three factors:

• Understanding the subject the AI project will be applied to. To do so,
go through a chapter to pick up the key ideas. Once you understand
the key ideas of a case study described in the book, try to see how an
AI solution can be applied to real-life examples around you.

• The mathematical foundations of the AI algorithms. Do not skip the
mathematics equations if you have the energy to study them. AI relies
heavily on mathematics. There are plenty of excellent websites that
explain the mathematics used in this book.

• Development. An artificial intelligence solution can be directly used on
an online cloud platform machine learning site such as Google. We
can access these platforms with APIs. In the book, Google Cloud is
used several times. Try to create an account of your own to explore
several cloud platforms to understand their potential and their limits.
Development remains critical for AI projects.

Preface

[xviii]

Even with a cloud platform, scripts and services are necessary. Also, sometimes,
writing an algorithm is mandatory because the ready-to-use online algorithms are
insufficient for a given problem. Explore the programs delivered with the book.
They are open source and free.

Technical requirements
The following is a non-exhaustive list of the technical requirements for running
the codes in this book. For a more detailed chapter-wise list, please refer to this
link: https://github.com/PacktPublishing/Artificial-Intelligence-By-
Example-Second-Edition/blob/master/Technical%20Requirements.csv.

Package Website
Python https://www.python.org/

NumPy https://pypi.org/project/numpy/

Matplotlib https://pypi.org/project/matplotlib/

pandas https://pypi.org/project/pandas/

SciPy https://pypi.org/project/scipy/

scikit-learn https://pypi.org/project/scikit-learn/

PyDotPlus https://pypi.org/project/pydotplus/

Google API https://developers.google.com/docs/api/
quickstart/python

html https://pypi.org/project/html/

TensorFlow 2 https://pypi.org/project/tensorflow/

Keras https://pypi.org/project/Keras/

Pillow https://pypi.org/project/Pillow/

Imageio https://pypi.org/project/imageio/

Pathlib https://pypi.org/project/pathlib/

OpenCV-Python https://pypi.org/project/opencv-python/

Google Dialogflow https://dialogflow.com/

DEAP https://pypi.org/project/deap/

bitstring https://pypi.org/project/bitstring/

nengo https://pypi.org/project/nengo/

nengo-gui https://pypi.org/project/nengo-gui/

IBM Q https://www.research.ibm.com/ibm-q/

Quirk http://algassert.com/2016/05/22/quirk.html

Preface

[xix]

Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839211539_ColorImages.pdf.

http://www.packt.com/
http://www.packt.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839211539_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839211539_ColorImages.pdf

Preface

[xx]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "The decision tree program, decision_tree.py, reads the
output of the KMC predictions, ckmc.csv."

A block of code is set as follows:

load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
 print(df.head())

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

for i in range(0,1000):
 xf1=dataset.at[i,'Distance']
 xf2=dataset.at[i,'location']
 X_DL = [[xf1,xf2]]
 prediction = kmeans.predict(X_DL)

Any command-line input or output is written as follows:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time
Difference: 0:00:00.000198

Bold: Indicates a new term, an important word, or words that you see on the
screen, for example, in menus or dialog boxes, also appear in the text like this. For
example: "When you click on SAVE, the Emotions progress bar will jump up."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xxi]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be
grateful if you would report this to us. Please visit, www.packtpub.com/support/
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packt.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://packt.com

[1]

1
Getting Started with

Next-Generation Artificial
Intelligence through

Reinforcement Learning
Next-generation AI compels us to realize that machines do indeed think. Although
machines do not think like us, their thought process has proven its efficiency in
many areas. In the past, the belief was that AI would reproduce human thinking
processes. Only neuromorphic computing (see Chapter 18, Neuromorphic Computing),
remains set on this goal. Most AI has now gone beyond the way humans think, as
we will see in this chapter.

The Markov decision process (MDP), a reinforcement learning (RL) algorithm,
perfectly illustrates how machines have become intelligent in their own unique way.
Humans build their decision process on experience. MDPs are memoryless. Humans
use logic and reasoning to think problems through. MDPs apply random decisions
100% of the time. Humans think in words, labeling everything they perceive. MDPs
have an unsupervised approach that uses no labels or training data. MDPs boost the
machine thought process of self-driving cars (SDCs), translation tools, scheduling
software, and more. This memoryless, random, and unlabeled machine thought
process marks a historical change in the way a former human problem was solved.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[2]

With this realization comes a yet more mind-blowing fact. AI algorithms and
hybrid solutions built on IoT, for example, have begun to surpass humans in
strategic areas. Although AI cannot replace humans in every field, AI combined
with classical automation now occupies key domains: banking, marketing, supply
chain management, scheduling, and many other critical areas.

As you will see, starting with this chapter, you can occupy a central role in this
new world as an adaptive thinker. You can design AI solutions and implement them.
There is no time to waste. In this chapter, we are going to dive quickly and directly
into reinforcement learning through the MDP.

Today, AI is essentially mathematics translated into source code, which makes it
difficult to learn for traditional developers. However, we will tackle this approach
pragmatically.

The goal here is not to take the easy route. We're striving to break complexity into
understandable parts and confront them with reality. You are going to find out right
from the outset how to apply an adaptive thinker's process that will lead you from
an idea to a solution in reinforcement learning, and right into the center of gravity
of the next generation of AI.

Reinforcement learning concepts
AI is constantly evolving. The classical approach states that:

• AI covers all domains
• Machine learning is a subset of AI, with clustering, classification, regression,

and reinforcement learning
• Deep learning is a subset of machine learning that involves neural networks

However, these domains often overlap and it's difficult to fit neuromorphic
computing, for example, with its sub-symbolic approach, into these categories
(see Chapter 18, Neuromorphic Computing).

In this chapter, RL clearly fits into machine learning. Let's have a brief look into the
scientific foundations of the MDP, the RL algorithm we are going to explore. The
main concepts to keep in mind are the following:

• Optimal transport: In 1781, Gaspard Monge defined transport optimizing
from one location to another using the shortest and most cost-effective path;
for example, mining coal and then using the most cost-effective path to a
factory. This was subsequently generalized to any form of path from point
A to point B.

Chapter 1

[3]

• Boltzmann equation and constant: In the late 19th century, Ludwig
Boltzmann changed our vision of the world with his probabilistic
distribution of particles beautifully summed up in his entropy formula:

S = k * log W
S represents the entropy (energy, disorder) of a system expressed. k
is the Boltzmann constant, and W represents the number of microstates.
We will explore Boltzmann's ideas further in Chapter 14, Preparing the
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal
Component Analysis (PCA).

• Probabilistic distributions advanced further: Josiah Willard Gibbs took the
probabilistic distributions of large numbers of particles a step further. At
that point, probabilistic information theory was advancing quickly. At the
turn of the 19th century, Andrey Markov applied probabilistic algorithms to
language, among other areas. A modern era of information theory was born.

• When Boltzmann and optimal transport meet: 2011 Fields Medal winner,
Cédric Villani, brought Boltzmann's equation to yet another level. Villani
then went on to unify optimal transport and Boltzmann. Cédric Villani
proved something that was somewhat intuitively known to 19th century
mathematicians but required proof.

Let's take all of the preceding concepts and materialize them in a real-world example
that will explain why reinforcement learning using the MDP, for example, is so
innovative.

Analyzing the following cup of tea will take you right into the next generation of AI:

Figure 1.1: Consider a cup of tea

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[4]

You can look at this cup of tea in two different ways:

1. Macrostates: You look at the cup and content. You can see the volume of
tea in the cup and you could feel the temperature when holding the cup
in your hand.

2. Microstates: But can you tell how many molecules are in the tea, which
ones are hot, warm, or cold, their velocity and directions? Impossible right?

Now, imagine, the tea contains 2,000,000,000+ Facebook accounts, or 100,000,000+
Amazon Prime users with millions of deliveries per year. At this level, we simply
abandon the idea of controlling every item. We work on trends and probabilities.

Boltzmann provides a probabilistic approach to the evaluation of the features of our
real world. Materializing Boltzmann in logistics through optimal transport means
that the temperature could be the ranking of a product, the velocity can be linked
to the distance to delivery, and the direction could be the itineraries we will study
in this chapter.

Markov picked up the ripe fruits of microstate probabilistic descriptions and applied
it to his MDP. Reinforcement learning takes the huge volume of elements (particles
in a cup of tea, delivery locations, social network accounts) and defines the probable
paths they take.

The turning point of human thought occurred when we simply could not analyze
the state and path of the huge volumes facing our globalized world, which generates
images, sounds, words, and numbers that exceed traditional software approaches.

With this in mind, we can start exploring the MDP.

How to adapt to machine thinking and
become an adaptive thinker
Reinforcement learning, one of the foundations of machine learning, supposes
learning through trial and error by interacting with an environment. This sounds
familiar, doesn't it? That is what we humans do all our lives—in pain! Try things,
evaluate, and then continue; or try something else.

In real life, you are the agent of your thought process. In reinforcement learning,
the agent is the function calculating randomly through this trial-and-error process.
This thought process function in machine learning is the MDP agent. This form of
empirical learning is sometimes called Q-learning.

Chapter 1

[5]

Mastering the theory and implementation of an MDP through a three-step method
is a prerequisite.

This chapter will detail the three-step approach that will turn you into an AI expert,
in general terms:

1. Starting by describing a problem to solve with real-life cases
2. Then, building a mathematical model that considers real-life limitations
3. Then, writing source code or using a cloud platform solution

This is a way for you to approach any project with an adaptive attitude from the
outset. This shows that a human will always be at the center of AI by explaining
how we can build the inputs, run an algorithm, and use the results of our code.
Let's consider this three-step process and put it into action.

Overcoming real-life issues using the
three-step approach
The key point of this chapter is to avoid writing code that will never be used.
First, begin by understanding the subject as a subject matter expert. Then, write
the analysis with words and mathematics to make sure your reasoning reflects the
subject and, most of all, that the program will make sense in real life. Finally, in step
3, only write the code when you are sure about the whole project.

Too many developers start writing code without stopping to think about how the
results of that code are going to manifest themselves within real-life situations. You
could spend weeks developing the perfect code for a problem, only to find out that
an external factor has rendered your solution useless. For instance, what if you coded
a solar-powered robot to clear snow from the yard, only to discover that during
winter, there isn't enough sunlight to power the robot!

In this chapter, we are going to tackle the MDP (Q function) and apply it to
reinforcement learning with the Bellman equation. We are going to approach it a
little differently to most, however. We'll be thinking about practical application, not
simply code execution. You can find tons of source code and examples on the web.
The problem is, much like our snow robot, such source code rarely considers the
complications that come about in real-life situations. Let's say you find a program that
finds the optimal path for a drone delivery. There's an issue, though; it has many limits
that need to be overcome due to the fact that the code has not been written with real-
life practicality in mind. You, as an adaptive thinker, are going to ask some questions:

• What if there are 5,000 drones over a major city at the same time? What
happens if they try to move in straight lines and bump into each other?

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[6]

• Is a drone-jam legal? What about the noise over the city? What about
tourism?

• What about the weather? Weather forecasts are difficult to make, so how
is this scheduled?

• How can we resolve the problem of coordinating the use of charging and
parking stations?

In just a few minutes, you will be at the center of attention among theoreticians
who know more than you, on one hand, and angry managers who want solutions
they cannot get on the other. Your real-life approach will solve these problems. To
do that, you must take the following three steps into account, starting with really
getting involved in the real-life subject.

In order to successfully implement our real-life approach, comprised of the three
steps outlined in the previous section, there are a few prerequisites:

• Be a subject matter expert (SME): First, you have to be an SME. If a
theoretician geek comes up with a hundred TensorFlow functions to solve
a drone trajectory problem, you now know it is going to be a tough ride in
which real-life parameters are constraining the algorithm. An SME knows
the subject and thus can quickly identify the critical factors of a given field.
AI often requires finding a solution to a complex problem that even an expert
in a given field cannot express mathematically. Machine learning sometimes
means finding a solution to a problem that humans do not know how to
explain. Deep learning, involving complex networks, solves even more
difficult problems.

• Have enough mathematical knowledge to understand AI concepts: Once
you have the proper natural language analysis, you need to build your
abstract representation quickly. The best way is to look around and find an
everyday life example and make a mathematical model of it. Mathematics is
not an option in AI, but a prerequisite. The effort is worthwhile. Then, you
can start writing a solid piece of source code or start implementing a cloud
platform ML solution.

• Know what source code is about as well as its potential and limits: MDP
is an excellent way to go and start working on the three dimensions that
will make you adaptive: describing what is around you in detail in words,
translating that into mathematical representations, and then implementing
the result in your source code.

With those prerequisites in mind, let's look at how you can become a problem-
solving AI expert by following our practical three-step process. Unsurprisingly,
we'll begin at step 1.

Chapter 1

[7]

Step 1 – describing a problem to solve: MDP
in natural language
Step 1 of any AI problem is to go as far as you can to understand the subject you are
asked to represent. If it's a medical subject, don't just look at data; go to a hospital
or a research center. If it's a private security application, go to the places where they
will need to use it. If it's for social media, make sure to talk to many users directly.
The key concept to bear in mind is that you have to get a "feel" for the subject, as if
you were the real "user."

For example, transpose it into something you know in your everyday life (work or
personal), something you are an SME in. If you have a driver's license, then you are
an SME of driving. You are certified. This is a fairly common certification, so let's
use this as our subject matter in the example that will follow. If you do not have a
driver's license or never drive, you can easily replace moving around in a car by
imagining you are moving around on foot; you are an SME of getting from one place
to another, regardless of what means of transport that might involve. However, bear
in mind that a real-life project would involve additional technical aspects, such as
traffic regulations for each country, so our imaginary SME does have its limits.

Getting into the example, let's say you are an e-commerce business driver delivering
a package in a location you are unfamiliar with. You are the operator of a self-driving
vehicle. For the time being, you're driving manually. You have a GPS with a nice
color map on it. The locations around you are represented by the letters A to F, as
shown in the simplified map in the following diagram. You are presently at F. Your
goal is to reach location C. You are happy, listening to the radio. Everything is going
smoothly, and it looks like you are going to be there on time. The following diagram
represents the locations and routes that you can cover:

Figure 1.2: A diagram of delivery routes

The guidance system's state indicates the complete path to reach C. It is telling you
that you are going to go from F to B to D, and then to C. It looks good!

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[8]

To break things down further, let's say:

• The present state is the letter s. s is a variable, not an actual state. It can be
one of the locations in L, the set of locations:

L = {A, B, C, D, E, F}
We say present state because there is no sequence in the learning process. The
memoryless process goes from one present state to another. In the example in
this chapter, the process starts at location F.

• Your next action is the letter a (action). This action a is not location A. The
goal of this action is to take us to the next possible location in the graph. In
this case, only B is possible. The goal of a is to take us from s (present state)
to s' (new state).

• The action a (not location A) is to go to location B. You look at your guidance
system; it tells you there is no traffic, and that to go from your present state,
F, to your next state, B, will take you only a few minutes. Let's say that the
next state B is the letter B. This next state B is s'.

At this point, you are still quite happy, and we can sum up your situation with the
following sequence of events:

s, a, s'

The letter s is your present state, your present situation. The letter a is the action
you're deciding, which is to go to the next location; there, you will be in another
state, s'. We can say that thanks to the action a, you will go from s to s'.

Now, imagine that the driver is not you anymore. You are tired for some reason.
That is when a self-driving vehicle comes in handy. You set your car to autopilot.
Now, you are no longer driving; the system is. Let's call that system the agent.
At point F, you set your car to autopilot and let the self-driving agent take over.

Watching the MDP agent at work
The self-driving AI is now in charge of the vehicle. It is acting as the MDP agent. This
now sees what you have asked it to do and checks its mapping environment, which
represents all the locations in the previous diagram from A to F.

In the meantime, you are rightly worried. Is the agent going to make it or not? You
are wondering whether its strategy meets yours. You have your policy P—your way
of thinking—which is to take the shortest path possible. Will the agent agree? What's
going on in its machine mind? You observe and begin to realize things you never
noticed before.

Chapter 1

[9]

Since this is the first time you are using this car and guidance system, the agent is
memoryless, which is an MDP feature. The agent doesn't know anything about what
went on before. It seems to be happy with just calculating from this state s at location
F. It will use machine power to run as many calculations as necessary to reach
its goal.

Another thing you are watching is the total distance from F to C to check whether
things are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s1; B is state 2, which
we can simplify by writing s2; D is s3; and C is s4. The agent is calculating all of these
possible states to make a decision.

The agent knows that when it reaches D, C will be better because the reward will
be higher for going to C than anywhere else. Since it cannot eat a piece of cake to
reward itself, the agent uses numbers. Our agent is a real number cruncher. When
it is wrong, it gets a poor reward or nothing in this model. When it's right, it gets
a reward represented by the letter R, which we'll encounter during step 2. This
action-value (reward) transition, often named the Q function, is the core of many
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets
a reward. For example, the transition can be from F to B, state 1 to state 2, or s1 to s2.

You are feeling great and are going to be on time. You are beginning to understand
how the machine learning agent in your self-driving car is thinking. Suddenly, you
look up and see that a traffic jam is building up. Location D is still far away, and now
you do not know whether it would be good to go from D to C or D to E, in order to
take another road to C, which involves less traffic. You are going to see what your
agent thinks!

The agent takes the traffic jam into account, is stubborn, and increases its reward to
get to C by the shortest way. Its policy is to stick to the initial plan. You do not agree.
You have another policy.

You stop the car. You both have to agree before continuing. You have your opinion
and policy; the agent does not agree. Before continuing, your views need to
converge. Convergence is the key to making sure that your calculations are correct,
and it's a way to evaluate the quality of a calculation.

A mathematical representation is the best way to express this whole process at this
point, which we will describe in the following step.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[10]

Step 2 – building a mathematical model: the
mathematical representation of the Bellman
equation and MDP
Mathematics involves a whole change in your perspective of a problem. You are
going from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost
in academic math to the point of never writing a single line of code. Just use
mathematics to get a job done efficiently. Skipping mathematical representation
will fast-track a few functions in the early stages of an AI project. However, when
the real problems that occur in all AI projects surface, solving them with source
code alone will prove virtually impossible. The goal here is to pick up enough
mathematics to implement a solution in real-life companies.

It is necessary to think through a problem by finding something familiar around us,
such as the itinerary model covered early in this chapter. It is a good thing to write it
down with some abstract letters and symbols as described before, with a meaning an
action, and s meaning a state. Once you have understood the problem and expressed
it clearly, you can proceed further.

Now, mathematics will help to clarify the situation by means of shorter descriptions.
With the main ideas in mind, it is time to convert them into equations.

From MDP to the Bellman equation
In step 1, the agent went from F, or state 1 or s, to B, which was state 2 or s'.

A strategy drove this decision—a policy represented by P. One mathematical
expression contains the MDP state transition function:

Pa(s, s')

P is the policy, the strategy made by the agent to go from F to B through action a.
When going from F to B, this state transition is named the state transition function:

• a is the action
• s is state 1 (F), and s' is state 2 (B)

The reward (right or wrong) matrix follows the same principle:

Ra(s, s')

Chapter 1

[11]

That means R is the reward for the action of going from state s to state s'. Going from
one state to another will be a random process. Potentially, all states can go to any
other state.

Each line in the matrix in the example represents a letter from A to F, and each
column represents a letter from A to F. All possible states are represented. The 1
values represent the nodes (vertices) of the graph. Those are the possible locations.
For example, line 1 represents the possible moves for letter A, line 2 for letter B, and
line 6 for letter F. On the first line, A cannot go to C directly, so a 0 value is entered.
But, it can go to E, so a 1 value is added.

Some models start with -1 for impossible choices, such as B going directly to C, and
0 values to define the locations. This model starts with 0 and 1 values. It sometimes
takes weeks to design functions that will create a reward matrix (see Chapter 2,
Building a Reward Matrix – Designing Your Datasets).

The example we will be working on inputs a reward matrix so that the program can
choose its best course of action. Then, the agent will go from state to state, learning
the best trajectories for every possible starting location point. The goal of the MDP
is to go to C (line 3, column 3 in the reward matrix), which has a starting value of
100 in the following Python code:

Markov Decision Process (MDP) - The Bellman equations adapted to
Reinforcement Learning
import numpy as ql
R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Somebody familiar with Python might wonder why I used ql instead of np. Some
might say "convention," "mainstream," "standard." My answer is a question. Can
somebody define what "standard" AI is in this fast-moving world! My point here
for the MDP is to use ql as an abbreviation of "Q-learning" instead of the "standard"
abbreviation of NumPy, which is np. Naturally, beyond this special abbreviation for
the MDP programs, I'll use np. Just bear in mind that conventions are there to break
so as to set ourselves free to explore new frontiers. Just make sure your program
works well!

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[12]

There are several key properties of this decision process, among which there is the
following:

• The Markov property: The process does not take the past into account. It is
the memoryless property of this decision process, just as you do in a car with
a guidance system. You move forward to reach your goal.

• Unsupervised learning: From this memoryless Markov property, it is safe
to say that the MDP is not supervised learning. Supervised learning would
mean that we would have all the labels of the reward matrix R and learn
from them. We would know what A means and use that property to make
a decision. We would, in the future, be looking at the past. MDP does not
take these labels into account. Thus, MDP uses unsupervised learning to
train. A decision has to be made in each state without knowing the past
states or what they signify. It means that the car, for example, was on its
own at each location, which is represented by each of its states.

• Stochastic process: In step 1, when state D was reached, the agent
controlling the mapping system and the driver didn't agree on where to
go. A random choice could be made in a trial-and-error way, just like a coin
toss. It is going to be a heads-or-tails process. The agent will toss the coin
a significant number of times and measure the outcomes. That's precisely
how MDP works and how the agent will learn.

• Reinforcement learning: Repeating a trial-and-error process with feedback
from the agent's environment.

• Markov chain: The process of going from state to state with no history
in a random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

• Pa(s, s'): A policy, P, or strategy to move from one state to another
• Ta(s, s'): A T, or stochastic (random) transition, function to carry out that

action
• Ra(s, s'): An R, or reward, for that action, which can be negative, null,

or positive

T is the transition function, which makes the agent decide to go from one point
to another with a policy. In this case, it will be random. That's what machine power
is for, and that is how reinforcement learning is often implemented.

Chapter 1

[13]

Randomness
Randomness is a key property of MDP, defining it as a stochastic process.

The following code describes the choice the agent is going to make:

next_action = int(ql.random.choice(PossibleAction,1))
return next_action

The code selects a new random action (state) at each episode.

The Bellman equation
The Bellman equation is the road to programming reinforcement learning.

The Bellman equation completes the MDP. To calculate the value of a state, let's
use Q, for the Q action-reward (or value) function. The pseudo source code of the
Bellman equation can be expressed as follows for one individual state:

𝑄𝑄(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾 ∗ max(𝑠𝑠′)

The source code then translates the equation into a machine representation, as in the
following code:

The Bellman equation
 Q[current_state, action] = R[current_state, action] +
 gamma * MaxValue

The source code variables of the Bellman equation are as follows:

• Q(s): This is the value calculated for this state—the total reward. In step 1,
when the agent went from F to B, the reward was a number such as 50 or 100
to show the agent that it's on the right track.

• R(s): This is the sum of the values up to that point. It's the total reward at that
point.

• 𝛾𝛾 = gamma : This is here to remind us that trial and error has a price. We're
wasting time, money, and energy. Furthermore, we don't even know whether
the next step is right or wrong since we're in a trial-and-error mode. Gamma
is often set to 0.8. What does that mean? Suppose you're taking an exam. You
study and study, but you don't know the outcome. You might have 80 out
of 100 (0.8) chances of clearing it. That's painful, but that's life. The gamma
penalty, or learning rate, makes the Bellman equation realistic and efficient.

• max(s'): s' is one of the possible states that can be reached with Pa(s, s');
max is the highest value on the line of that state (location line in the
reward matrix).

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[14]

At this point, you have done two-thirds of the job: understanding the real-life
(process) and representing it in basic mathematics. You've built the mathematical
model that describes your learning process, and you can implement that solution
in code. Now, you are ready to code!

Step 3 – writing source code: implementing
the solution in Python
In step 1, a problem was described in natural language to be able to talk to experts
and understand what was expected. In step 2, an essential mathematical bridge
was built between natural language and source coding. Step 3 is the software
implementation phase.

When a problem comes up—and rest assured that one always does—it will be
possible to go back over the mathematical bridge with the customer or company
team, and even further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python
3.x. It is a reinforcement learning program using the Q function with the following
reward matrix:

import numpy as ql
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Q = ql.matrix(ql.zeros([6,6]))

gamma = 0.8

R is the reward matrix described in the mathematical analysis.

Q inherits the same structure as R, but all values are set to 0 since this is a learning
matrix. It will progressively contain the results of the decision process. The gamma
variable is a double reminder that the system is learning and that its decisions have
only an 80% chance of being correct each time. As the following code shows, the
system explores the possible actions during the process:

agent_s_state = 1

The possible "a" actions when the agent is in a given state

Chapter 1

[15]

def possible_actions(state):
 current_state_row = R[state,]
 possible_act = ql.where(current_state_row >0)[1]
 return possible_act

Get available actions in the current state
PossibleAction = possible_actions(agent_s_state)

The agent starts in state 1, for example. You can start wherever you want because
it's a random process. Note that the process only takes values > 0 into account.
They represent possible moves (decisions).

The current state goes through an analysis process to find possible actions (next
possible states). You will note that there is no algorithm in the traditional sense with
many rules. It's a pure random calculation, as the following random.choice function
shows:

def ActionChoice(available_actions_range):
 if(sum(PossibleAction)>0):
 next_action = int(ql.random.choice(PossibleAction,1))
 if(sum(PossibleAction)<=0):
 next_action = int(ql.random.choice(5,1))
 return next_action

Sample next action to be performed
action = ActionChoice(PossibleAction)

Now comes the core of the system containing the Bellman equation, translated into
the following source code:

def reward(current_state, action, gamma):
 Max_State = ql.where(Q[action,] == ql.max(Q[action,]))[1]

 if Max_State.shape[0] > 1:
 Max_State = int(ql.random.choice(Max_State, size = 1))
 else:
 Max_State = int(Max_State)
 MaxValue = Q[action, Max_State]

 # Q function
 Q[current_state, action] = R[current_state, action] +
 gamma * MaxValue

Rewarding Q matrix
reward(agent_s_state,action,gamma)

You can see that the agent looks for the maximum value of the next possible state
chosen at random.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[16]

The best way to understand this is to run the program in your Python environment
and print() the intermediate values. I suggest that you open a spreadsheet and note
the values. This will give you a clear view of the process.

The last part is simply about running the learning process 50,000 times, just to
be sure that the system learns everything there is to find. During each iteration,
the agent will detect its present state, choose a course of action, and update the Q
function matrix:

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)

Displaying Q before the norm of Q phase
print("Q :")
print(Q)

Norm of Q
print("Normed Q :")
print(Q/ql.max(Q)*100)

The process continues until the learning process is over. Then, the program will print
the result in Q and the normed result. The normed result is the process of dividing
all values by the sum of the values found. print(Q/ql.max(Q)*100) norms Q by
dividing Q by q1.max(Q)*100. The result comes out as a normed percentage.

You can run the process with mdp01.py.

The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as the MDP-driven Bellman
equation, is toppling traditional decision-making software location by location.
Memoryless reinforcement learning requires few to no business rules and, thus,
doesn't require human knowledge to run.

Being an adaptive next-generation AI thinker involves three prerequisites: the
effort to be an SME, working on mathematical models to think like a machine,
and understanding your source code's potential and limits.

Chapter 1

[17]

Machine power and reinforcement learning teach us two important lessons:

• Lesson 1: Machine learning through reinforcement learning can beat human
intelligence in many cases. No use fighting! The technology and solutions are
already here in strategic domains.

• Lesson 2: A machine has no emotions, but you do. And so do the people
around you. Human emotions and teamwork are an essential asset. Become
an SME for your team. Learn how to understand what they're trying to say
intuitively and make a mathematical representation of it for them. Your job
will never go away, even if you're setting up solutions that don't require
much development, such as AutoML. AutoML, or automated machine
learning, automates many tasks. AutoML automates functions such as the
dataset pipeline, hyperparameters, and more. Development is partially or
totally suppressed. But you still have to make sure the whole system is well
designed.

Reinforcement learning shows that no human can solve a problem the way a
machine does. 50,000 iterations with random searching is not an option for a human.
The number of empirical episodes can be reduced dramatically with a numerical
convergence form of gradient descent (see Chapter 3, Machine Intelligence – Evaluation
Functions and Numerical Convergence).

Humans need to be more intuitive, make a few decisions, and see what happens,
because humans cannot try thousands of ways of doing something. Reinforcement
learning marks a new era for human thinking by surpassing human reasoning power
in strategic fields.

On the other hand, reinforcement learning requires mathematical models to function.
Humans excel in mathematical abstraction, providing powerful intellectual fuel to
those powerful machines.

The boundaries between humans and machines have changed. Humans' ability to
build mathematical models and ever-growing cloud platforms will serve online
machine learning services.

Finding out how to use the outputs of the reinforcement learning program we just
studied shows how a human will always remain at the center of AI.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[18]

How to use the outputs
The reinforcement program we studied contains no trace of a specific field, as in
traditional software. The program contains the Bellman equation with stochastic
(random) choices based on the reward matrix. The goal is to find a route to C
(line 3, column 3) that has an attractive reward (100):

Markov Decision Process (MDP) – The Bellman equations adapted to
Reinforcement Learning with the Q action-value(reward) matrix
import numpy as ql
R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

That reward matrix goes through the Bellman equation and produces a result in
Python:

Q :
[[0. 0. 0. 0. 258.44 0.]
 [0. 0. 0. 321.8 0. 207.752]
 [0. 0. 500. 321.8 0. 0.]
 [0. 258.44 401. 0. 258.44 0.]
 [207.752 0. 0. 321.8 0. 0.]
 [0. 258.44 0. 0. 0. 0.]]
Normed Q :
[[0. 0. 0. 0. 51.688 0.]
 [0. 0. 0. 64.36 0. 41.5504]
 [0. 0. 100. 64.36 0. 0.]
 [0. 51.688 80.2 0. 51.688 0.]
 [41.5504 0. 0. 64.36 0. 0.]
 [0. 51.688 0. 0. 0. 0.]]

The result contains the values of each state produced by the reinforced learning
process, and also a normed Q (the highest value divided by other values).

As Python geeks, we are overjoyed! We made something that is rather difficult work,
namely, reinforcement learning. As mathematical amateurs, we are elated. We know
what MDP and the Bellman equation mean.

However, as natural language thinkers, we have made little progress. No customer
or user can read that data and make sense of it. Furthermore, we cannot explain
how we implemented an intelligent version of their job in the machine. We didn't.

Chapter 1

[19]

We hardly dare say that reinforcement learning can beat anybody in the company,
making random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work, but hardly know what to do with the
result ourselves. The consultant on the project cannot help because of the matrix
format of the solution.

Being an adaptive thinker means knowing how to be good in all steps of a project.
To solve this new problem, let's go back to step 1 with the result. Going back
to step 1 means that if you have problems either with the results themselves
or understanding them, it is necessary to go back to the SME level, the real-life
situation, and see what is going wrong.

By formatting the result in Python, a graphics tool, or a spreadsheet, the result can
be displayed as follows:

A B C D E F

A - - - - 258.44 -
B - - - 321.8 - 207.752
C - - 500 321.8 - -
D - 258.44 401. - 258.44 -
E 207.752 - - 321.8 - -
F - 258.44 - - - -

Now, we can start reading the solution:

• Choose a starting state. Take F, for example.
• The F line represents the state. Since the maximum value is 258.44 in the B

column, we go to state B, the second line.
• The maximum value in state B in the second line leads us to the D state in

the fourth column.
• The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes
the maximum value, which will lead you back to C. However, the MDP will never
do this naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of
departure, you can obtain other sequences by simply sorting the table.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[20]

A useful way of putting it remains the normalized version in percentages, as shown
in the following table:

A B C D E F

A - - - - 51.68% -
B - - - 64.36% - 41.55%
C - - 100% 64.36% - -
D - 51.68% 80.2% - 51.68% -
E 41.55% - - 64.36% - -
F - 51.68% - - - -

Now comes the very tricky part. We started the chapter with a trip on the road. But I
made no mention of it in the results analysis.

An important property of reinforcement learning comes from the fact that we are
working with a mathematical model that can be applied to anything. No human
rules are needed. We can use this program for many other subjects without writing
thousands of lines of code.

Possible use cases
There are many cases to which we could adapt our reinforcement learning model
without having to change any of its details.

Case 1: optimizing a delivery for a driver, human or not
This model was described in this chapter.

Case 2: optimizing warehouse flows
The same reward matrix can apply to go from point F to C in a warehouse, as shown
in the following diagram:

Figure 1.3: A diagram illustrating a warehouse flow problem

Chapter 1

[21]

In this warehouse, the F->B->D->C sequence makes visual sense. If somebody goes
from point F to C, then this physical path makes sense without going through walls.

It can be used for a video game, a factory, or any form of layout.

Case 3: automated planning and scheduling (APS)
By converting the system into a scheduling vector, the whole scenery changes. We
have left the more comfortable world of physical processing of letters, faces, and
trips. Though fantastic, those applications are social media's tip of the iceberg. The
real challenge of AI begins in the abstract universe of human thinking.

Every single company, person, or system requires automatic planning and
scheduling (see Chapter 12, AI and the Internet of Things (IoT)). The six A to F steps in
the example of this chapter could well be six tasks to perform in a given unknown
order represented by the following vector x:

𝑥𝑥 =

[

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6]

The reward matrix then reflects the weights of constraints of the tasks of vector x
to perform. For example, in a factory, you cannot assemble the parts of a product
before manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing
process.

Cases 4 and more: your imagination
By using physical layouts or abstract decision-making vectors, matrices, and tensors,
you can build a world of solutions in a mathematical reinforcement learning model.
Naturally, the following chapters will enhance your toolbox with many other
concepts.

Before moving on, you might want to imagine some situations in which you could
use the A to F letters to express some kind of path.

To help you with these mind experiment simulations, open mdp02.py and go to
line 97, which starts with the following code that enables a simulation tool. nextc
and nextci are simply variables to remember where the path begins and will end.
They are set to -1 so as to avoid 0, which is a location.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[22]

The primary goal is to focus on the expression "concept code." The locations have
become any concept you wish. A could be your bedroom, and C your kitchen. The
path would go from where you wake up to where you have breakfast. A could be
an idea you have, and F the end of a thinking process. The path would go from A
(How can I hang this picture on the wall?) to E (I need to drill a hole) and, after a few
phases, to F (I hung the picture on the wall). You can imagine thousands of paths like
this as long as you define the reward matrix, the "concept code," and a starting point:

"""# Improving the program by introducing a decision-making process"""
nextc=-1
nextci=-1
conceptcode=["A","B","C","D","E","F"]

This code takes the result of the calculation, labels the result matrix, and accepts an
input as shown in the following code snippet:

origin=int(input(
 "index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

The input only accepts the label numerical code: A=0, B=1 … F=5. The function then
runs a classical calculation on the results to find the best path. Let's takes an example.

When you are prompted to enter a starting point, enter 5, for example, as follows:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 5

The program will then produce the optimal path based on the output of the MDP
process, as shown in the following output:

Concept Path

-> F

-> B

-> D

-> C

Try multiple scenarios and possibilities. Imagine what you could apply this to:

• An e-commerce website flow (visit, cart, checkout, purchase) imagining that
a user visits the site and then resumes a session at a later time. You can use
the same reward matrix and "concept code" explored in this chapter. For
example, a visitor visits a web page at 10 a.m., starting at point A of your
website. Satisfied with a product, the visitor puts the product in a cart, which
is point E of your website. Then, the visitor leaves the site before going to
the purchase page, which is C. D is the critical point. Why didn't the visitor
purchase the product? What's going on?

Chapter 1

[23]

You can decide to have an automatic email sent after 24 hours saying: "There
is a 10% discount on all purchases during the next 48 hours." This way, you
will target all the visitors stuck at D and push them toward C.

• A sequence of possible words in a sentence (subject, verb, object). Predicting
letters and words was one of Andrey Markov's first applications 100+ years
ago! You can imagine that B is the letter "a" of the alphabet. If D is "t," it is
much more probable than F if F is "o," which is less probable in the English
language. If an MDP reward matrix is built such as B leads to D or F, B can
thus either go to D or to F. There are thus two possibilities, D or F. Andrey
Markov would suppose, for example, that B is a variable that represents the
letter "a," D is a variable that represents the letter "t" and F is a variable that
represents the letter "o." After studying the structure of a language closely,
he would find that the letter "a" would more likely be followed by "t" than
by "o" in the English language. If one observes the English language, it is
more likely to find an "a-t" sequence than an "a-o" sequence. In a Markov
decision process, a higher probability will be awarded to the "a-t" sequence
and a lower one to "a-o." If one goes back to the variables, the B-D sequence
will come out as more probable than the B-F sequence.

• And anything you can find that fits the model that works is great!

Machine learning versus traditional
applications
Reinforcement learning based on stochastic (random) processes will evolve beyond
traditional approaches. In the past, we would sit down and listen to future users to
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of
thinking. Those days are over. We need proper datasets and ML/DL equations to
move forward. Applied mathematics has taken reinforcement learning to the next
level. In my opinion, traditional software will soon be in the museum of computer
science. The complexity of the huge volumes of data we are facing will require AI
at some point.

An artificial adaptive thinker sees the world through applied mathematics translated
into machine representations.

Use the Python source code example provided in this chapter in different ways.
Run it and try to change some parameters to see what happens. Play around with
the number of iterations as well. Lower the number from 50,000 down to where you
find it fits best. Change the reward matrix a little to see what happens. Design your
reward matrix trajectory. This can be an itinerary or decision-making process.

Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[24]

Summary
Presently, AI is predominantly a branch of applied mathematics, not of
neurosciences. You must master the basics of linear algebra and probabilities. That's
a difficult task for a developer used to intuitive creativity. With that knowledge,
you will see that humans cannot rival machines that have CPU and mathematical
functions. You will also understand that machines, contrary to the hype around you,
don't have emotions; although we can represent them to a scary point in chatbots
(see Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots).

A multi-dimensional approach is a prerequisite in an AI/ML/DL project. First, talk
and write about the project, then make a mathematical representation, and finally
go for software production (setting up an existing platform or writing code). In real
life, AI solutions do not just grow spontaneously in companies as some hype would
have us believe. You need to talk to the teams and work with them. That part is the
real fulfilling aspect of a project—imagining it first and then implementing it with
a group of real-life people.

MDP, a stochastic random action-reward (value) system enhanced by the Bellman
equation, will provide effective solutions to many AI problems. These mathematical
tools fit perfectly in corporate environments.

Reinforcement learning using the Q action-value function is memoryless (no past)
and unsupervised (the data is not labeled or classified). MDP provides endless
avenues to solve real-life problems without spending hours trying to invent rules
to make a system work.

Now that you are at the heart of Google's DeepMind approach, it is time to go to
Chapter 2, Building a Reward Matrix – Designing Your Datasets, and discover how to
create the reward matrix in the first place through explanations and source code.

Questions
The answers to the questions are in Appendix B, with further explanations:

1. Is reinforcement learning memoryless? (Yes | No)
2. Does reinforcement learning use stochastic (random) functions? (Yes | No)
3. Is MDP based on a rule base? (Yes | No)
4. Is the Q function based on the MDP? (Yes | No)
5. Is mathematics essential to AI? (Yes | No)

Chapter 1

[25]

6. Can the Bellman-MDP process in this chapter apply to many problems?
(Yes | No)

7. Is it impossible for a machine learning program to create another program by
itself? (Yes | No)

8. Is a consultant required to enter business rules in a reinforcement learning
program? (Yes | No)

9. Is reinforcement learning supervised or unsupervised?
(Supervised | Unsupervised)

10. Can Q-learning run without a reward matrix? (Yes | No)

Further reading
• Andrey Markov: https://www.britannica.com/biography/Andrey-

Andreyevich-Markov

• The Markov process: https://www.britannica.com/science/Markov-
process

https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process

[27]

2
Building a Reward Matrix –

Designing Your Datasets
Experimenting and implementation comprise the two main approaches of artificial
intelligence. Experimenting largely entails trying ready-to-use datasets and black
box, ready-to-use Python examples. Implementation involves preparing a dataset,
developing preprocessing algorithms, and then choosing a model, the proper
parameters, and hyperparameters.

Implementation usually involves white box work that entails knowing exactly how
an algorithm works and even being able to modify it.

In Chapter 1, Getting Started with Next-Generation Artifcial Intelligence through
Reinforcement Learning, the MDP-driven Bellman equation relied on a reward matrix.
In this chapter, we will get our hands dirty in a white box process to create that
reward matrix.

An MDP process cannot run without a reward matrix. The reward matrix determines
whether it is possible to go from one cell to another, from A to B. It is like a map of
a city that tells you if you are allowed to take a street or if it is a one-way street, for
example. It can also set a goal, such as a place that you would like to visit in a city,
for example.

To achieve the goal of designing a reward matrix, the raw data provided by other
systems, software, and sensors needs to go through preprocessing. A machine
learning program will not provide efficient results if the data has not gone
through a standardization process.

Building a Reward Matrix – Designing Your Datasets

[28]

The reward matrix, R, will be built using a McCulloch-Pitts neuron in TensorFlow.
Warehouse management has grown exponentially as e-commerce has taken over
many marketing segments. This chapter introduces automated guided vehicles
(AGVs), the equivalent of an SDC in a warehouse to store and retrieve products.

The challenge in this chapter will be to understand the preprocessing phase in detail.
The quality of the processed dataset will influence directly the accuracy of any
machine learning algorithm.

This chapter covers the following topics:

• The McCulloch-Pitts neuron will take the raw data and transform it
• Logistic classifiers will begin the neural network process
• The logistic sigmoid will squash the values
• The softmax function will normalize the values
• The one-hot function will choose the target for the reward matrix
• An example of AGVs in a warehouse

The topics form a list of tools that, in turn, form a pipeline that will take raw data
and transform it into a reward matrix—an MDP.

Designing datasets – where the dream
stops and the hard work begins
As in the previous chapter, bear in mind that a real-life project goes through a three-
dimensional method in some form or other. First, it's important to think and talk
about the problem in need of solving without jumping onto a laptop. Once that is
done, bear in mind that the foundation of machine learning and deep learning relies
on mathematics. Finally, once the problem has been discussed and mathematically
represented, it is time to develop the solution.

First, think of a problem in natural language. Then, make
a mathematical description of a problem. Only then should
you begin the software implementation.

Chapter 2

[29]

Designing datasets
The reinforcement learning program described in the first chapter can solve a variety
of problems involving unlabeled classification in an unsupervised decision-making
process. The Q function can be applied to drone, truck, or car deliveries. It can also
be applied to decision making in games or real life.

However, in a real-life case study problem (such as defining the reward matrix in
a warehouse for the AGV, for example), the difficulty will be to produce an efficient
matrix using the proper features.

For example, an AGV requires information coming from different sources: daily
forecasts and real-time warehouse flows.

The warehouse manages thousands of locations and hundreds of thousands of
inputs and outputs. Trying to fit too many features into the model would be
counterproductive. Removing both features and worthless data requires careful
consideration.

A simple neuron can provide an efficient way to attain the standardization of the
input data.

Using the McCulloch-Pitts neuron
To create the reward matrix, R, a robust model for processing the inputs of the
huge volumes in a warehouse must be reduced to a limited number of features.

In one model, for example, the thousands to hundreds of thousands of inputs can
be described as follows:

• Forecast product arrivals with a low priority weight: w1 = 10
• Confirmed arrivals with a high priority weight: w2 = 70
• Unplanned arrivals decided by the sales department: w3 = 75
• Forecasts with a high priority weight: w4 = 60
• Confirmed arrivals that have a low turnover and so have a low weight:

w5 = 20

Machine learning and deep learning are frequently used to
preprocess input data for standardization purposes, normalization,
and feature reduction.

Building a Reward Matrix – Designing Your Datasets

[30]

The weights have been provided as constants. A McCulloch-Pitts neuron does not
modify weights. A perceptron neuron does as we will see beginning with Chapter
8, Solving the XOR Problem with a Feedforward Neural Network. Experience shows that
modifying weights is not always necessary.

These weights form a vector, as shown here:

𝑥𝑥 =

[

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4
𝑤𝑤5]

=

[

 10
70
75
60
20]

Each element of the vector represents the weight of a feature of a product stored in
optimal locations. The ultimate phase of this process will produce a reward matrix,
R, for an MDP to optimize itineraries between warehouse locations.

Let's focus on our neuron. These weights, used through a system such as this one,
can attain up to more than 50 weights and parameters per neuron. In this example,
5 weights are implemented. However, in real-life case, many other parameters come
into consideration, such as unconfirmed arrivals, unconfirmed arrivals with a high
priority, confirmed arrivals with a very low priority, arrivals from locations that
probably do not meet security standards, arrivals with products that are potentially
dangerous and require special care, and more. At that point, humans and even
classical software cannot face such a variety of parameters.

The reward matrix will be size 6×6. It contains six locations, A to F. In this example,
the six locations, l1 to l6, are warehouse storage and retrieval locations.

A 6×6 reward matrix represents the target of the McCulloch-Pitts layer implemented
for the six locations.

When experimenting, the reward matrix, R, can be invented for testing purposes. In
real-life implementations, you will have to find a way to build datasets from scratch.
The reward matrix becomes the output of the preprocessing phase. The following
source code shows the input of the reinforcement learning program used in the first
chapter. The goal of this chapter describes how to produce the following reward
matrix that we will be building in the next sections.

R is The Reward Matrix for each location in a warehouse (or any
other problem)
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Chapter 2

[31]

For the warehouse example that we are using as for any other domain, the
McCulloch-Pitts neuron sums up the weights of the input vector described
previously to fill in the reward matrix.

Each location will require its neuron, with its weights.

INPUTS -> WEIGHTS -> BIAS -> VALUES

• Inputs are the flows in a warehouse or any form of data.
• Weights will be defined in this model.
• Bias is for stabilizing the weights. Bias does exactly what it means. It will tilt

weights. It is very useful as a referee that will keep the weights on the right
track.

• Values will be the output.

The McCulloch-Pitts neuron
The McCulloch-Pitts neuron dates back to 1943. It contains inputs, weights, and an
activation function. Part of the preprocessing phase consists of selecting the right
model. The McCulloch-Pitts neuron can represent a given location efficiently.

The following diagram shows the McCulloch-Pitts neuron model:

Figure 2.1: The McCulloch-Pitts neuron model

There are as many ways as you can imagine to create reward
matrices. This chapter describes one way of doing it that works.

Building a Reward Matrix – Designing Your Datasets

[32]

This model contains several input x weights that are summed to either reach
a threshold that will lead, once transformed, to the output, y = 0, or 1. In this
model, y will be calculated in a more complex way.

MCP.py written with TensorFlow 2 will be used to illustrate the neuron.

In the following source code, the TensorFlow variables will contain the input values
(x), the weights (W), and the bias (b). Variables represent the structure of your graph:

The variables
x = tf.Variable([[0.0,0.0,0.0,0.0,0.0]], dtype = tf.float32)
W = tf.Variable([[0.0],[0.0],[0.0],[0.0],[0.0]], dtype =
 tf.float32)
b = tf.Variable([[0.0]])

In the original McCulloch-Pitts artificial neuron, the inputs (x) were multiplied by
the following weights:

𝑤𝑤1𝑥𝑥1 +⋯+𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 =∑𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗
𝑛𝑛

𝑗𝑗=1

The mathematical function becomes a function with the neuron code triggering
a logistic activation function (sigmoid), which will be explained in the second part
of the chapter. Bias (b) has been added, which makes this neuron format useful even
today, shown as follows:

The Neuron
def neuron(x, W, b):
 y1=np.multiply(x,W)+b
 y1=np.sum(y1)
 y = 1 / (1 + np.exp(-y1))
 return y

Before starting a session, the McCulloch-Pitts neuron (1943) needs an operator
to set its weights. That is the main difference between the McCulloch-Pitts neuron
and the perceptron (1957), which is the model for modern deep learning neurons.
The perceptron optimizes its weights through optimizing processes. Chapter 8,
Solving the XOR Problem with a Feedforward Neural Network, describes why a modern
perceptron was required.

Chapter 2

[33]

The weights are now provided, and so are the quantities for each input value, which
are stored in the x vector at l1, one of the six locations of this warehouse example:

𝑥𝑥 =

[

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4
𝑤𝑤5]

=

[

 10
70
75
60
20]

The weight values will be divided by 100, to represent percentages in terms of 0 to
1 values of warehouse flows in a given location. The following code deals with the
choice of one location, l1 only, its values, and parameters:

The data
x_1 = [[10, 2, 1., 6., 2.]]
w_t = [[.1, .7, .75, .60, .20]]
b_1 = [1.0]

The neuron function is called, and the weights (w_t) and the quantities (x_1) of the
warehouse flow are entered. Bias is set to 1 in this model. No session needs to be
initialized; the neuron function is called:

Computing the value of the neuron
value=neuron(x_1,w_t,b_1)

The neuron function neuron will calculate the value of the neuron. The program
returns the following value:

value for threshold calculation:0.99999

This value represents the activity of location l1 at a given date and a given time.
This example represents only one of the six locations to compute. For this location,
the higher the value, the closer to 1, the higher the probable saturation rate of this
area. This means there is little space left to store products at that location. That is
why the reinforcement learning program for a warehouse is looking for the least
loaded area for a given product in this model.

Each location has a probable availability:

A = Availability = 1 – load

The probability of a load of a given storage point lies between 0 and 1.

Building a Reward Matrix – Designing Your Datasets

[34]

High values of availability will be close to 1, and low probabilities will be close to 0,
as shown in the following example:

>>> print("Availability of location x:{0:.5f}".format(

... round(availability,5)))

Availability of location x:0.00001

For example, the load of l1 has a probable rounded load of 0.99, and its probable
availability is 0.002 maximum. The goal of the AGV is to search and find the closest
and most available location to optimize its trajectories. l1 is not a good candidate at
that day and time. Load is a keyword in production or service activities. The less
available resources have the highest load rate.

When all six locations' availabilities have been calculated by the McCulloch-Pitts
neuron—each with its respective quantity inputs, weights, and bias—a location
vector of the results of this system will be produced. Then, the program needs to
be implemented to run all six locations and not just one location through a recursive
use of the one neuron model:

A(L) = {a(l1),a(l2),a(l3),a(l4),a(l5),a(l6)}

The availability, 1 – output value of the neuron, constitutes a six-line vector. The
following vector, lv, will be obtained by running the previous sample code on all
six locations.

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

As shown in the preceding formula, lv is the vector containing the value of each
location for a given AGV to choose from. The values in the vector represent
availability. 0.0002 means little availability; 0.9 means high availability. With this
choice, the MDP reinforcement learning program will optimize the AGV's trajectory
to get to this specific warehouse location.

The lv is the result of the weighing function of six potential locations for the AGV.
It is also a vector of transformed inputs.

Chapter 2

[35]

The Python-TensorFlow architecture
Implementation of the McCulloch-Pitts neuron can best be viewed as shown in the
following graph:

Figure 2.2: Implementation of the McCulloch-Pitts neuron

A data flow graph will also help optimize a program when things go wrong as in
classical computing.

Logistic activation functions and
classifiers
Now that the value of each location of L = {l1, l2, l3, l4, l5, l6} contains its availability
in a vector, the locations can be sorted from the most available to the least available
location. From there, the reward matrix, R, for the MDP process described
in Chapter 1, Getting Started with Next-Generation Artifcial Intelligence through
Reinforcement Learning, can be built.

Overall architecture
At this point, the overall architecture contains two main components:

1. Chapter 1: A reinforcement learning program based on the value-action
Q function using a reward matrix that will be finalized in this chapter.
The reward matrix was provided in the first chapter as an experiment, but
in the implementation phase, you'll often have to build it from scratch.
It sometimes takes weeks to produce a good reward matrix.

Building a Reward Matrix – Designing Your Datasets

[36]

2. Chapter 2: Designing a set of 6×1 neurons that represents the flow of
products at a given time at six locations. The output is the availability
probability from 0 to 1. The highest value indicates the highest availability.
The lowest value indicates the lowest availability.

At this point, there is some real-life information we can draw from these two main
functions through an example:

• An AGV is automatically moving in a warehouse and is waiting to receive its
next location to use an MDP, to calculate the optimal trajectory of its mission.

• An AGV is using a reward matrix, R, that was given during the experimental
phase but needed to be designed during the implementation process.

• A system of six neurons, one per location, weighing the real quantities
and probable quantities to give an availability vector, lv, has been calculated.
It is almost ready to provide the necessary reward matrix for the AGV.

To calculate the input values of the reward matrix in this reinforcement learning
warehouse model, a bridge function between lv and the reward matrix, R, is missing.

That bridge function is a logistic classifier based on the outputs of the n neurons
that all perform the same tasks independently or recursively with one neuron.

At this point, the system:

• Took corporate data
• Used n neurons calculated with weights
• Applied an activation function

The activation function in this model requires a logistic classifier, a commonly
used one.

Logistic classifier
The logistic classifier will be applied to lv (the six location values) to find the best
location for the AGV. This method can be applied to any other domain. It is based on
the output of the six neurons as follows:

input × weight + bias

What are logistic functions? The goal of a logistic classifier is to produce a probability
distribution from 0 to 1 for each value of the output vector. As you have seen so far,
artificial intelligence applications use applied mathematics with probable values, not
raw outputs.

Chapter 2

[37]

The main reason is that machine learning/deep learning works best with
standardization and normalization for workable homogeneous data distributions.
Otherwise, the algorithms will often produce underfitted or overfitted results.

In the warehouse model, for example, the AGV needs to choose the best, most
probable location, li. Even in a well-organized corporate warehouse, many
uncertainties (late arrivals, product defects, or some unplanned problems) reduce the
probability of a choice. A probability represents a value between 0 (low probability)
and 1 (high probability). Logistic functions provide the tools to convert all numbers
into probabilities between 0 and 1 to normalize data.

Logistic function
The logistic sigmoid provides one of the best ways to normalize the weight of a
given output. The activation function of the neuron will be the logistic sigmoid. The
threshold is usually a value above which the neuron has a y = 1 value; or else it has a
y = 0 value. In this model, the minimum value will be 0.

The logistic function is represented as follows:

1
1 + 𝑒𝑒−𝑥𝑥

• e represents Euler's number, or 2.71828, the natural logarithm.
• x is the value to be calculated. In this case, s is the result of the logistic

sigmoid function.

The code has been rearranged in the following example to show the reasoning
process that produces the output, y, of the neuron:

 y1=np.multiply(x,W)+b
 y1=np.sum(y1)
 y = 1 / (1 + np.exp(-y1)) #logistic Sigmoid

Thanks to the logistic sigmoid function, the value for the first location in the model
comes out squashed between 0 and 1 as 0.99, indicating a high probability that this
location will be full.

To calculate the availability of the location once the 0.99 value has been taken into
account, we subtract the load from the total availability, which is 1, as follows:

Availability = 1 – probability of being full (value)

Or

availability = 1 – value

Building a Reward Matrix – Designing Your Datasets

[38]

As seen previously, once all locations are calculated in this manner, a final
availability vector, lv, is obtained.

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

When analyzing lv, a problem has stopped the process. Individually, each line
appears to be fine. By applying the logistic sigmoid to each output weight and
subtracting it from 1, each location displays a probable availability between 0 and 1.
However, the sum of the lines in lv exceeds 1. That is not possible. A probability
cannot exceed 1. The program needs to fix that.

Each line produces a [0, 1] solution, which fits the prerequisite of being a valid
probability.

In this case, the vector lv contains more than one value and becomes a probability
distribution. The sum of lv cannot exceed 1 and needs to be normalized.

The softmax function provides an excellent method to normalize lv. Softmax is widely
used in machine learning and deep learning.

Bear in mind that mathematical tools are not rules. You can adapt them to your problem
as much as you wish as long as your solution works.

Softmax
The softmax function appears in many artificial intelligence models to normalize
data. Softmax can be used for classification purposes and regression. In our example,
we will use it to find an optimized goal for an MDP.

In the case of the warehouse example, an AGV needs to make a probable choice
between six locations in the lv vector. However, the total of the lv values exceeds
1. lv requires normalization of the softmax function, S. In the source code, the lv
vector will be named y.

𝑆𝑆(𝑦𝑦𝑖𝑖) =
𝑒𝑒𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑦𝑦𝑖𝑖𝑛𝑛
𝑗𝑗=1

Chapter 2

[39]

The following code used is SOFTMAX.py.

1. y represents the lv vector:
y is the vector of the scores of the lv vector in the warehouse
example:
y = [0.0002, 0.2, 0.9,0.0001,0.4,0.6]

2. 𝑒𝑒𝑦𝑦𝑖𝑖 is the exp(i) result of each value in y (lv in the warehouse example),
as follows:
y_exp = [math.exp(i) for i in y]

3. ∑ 𝑒𝑒𝑦𝑦𝑖𝑖
𝑛𝑛

𝑗𝑗=1
 is the sum of 𝑒𝑒𝑦𝑦𝑖𝑖 as shown in the following code:

sum_exp_yi = sum(y_exp)

Now, each value of the vector is normalized by applying the following function:

softmax = [round(i / sum_exp_yi, 3) for i in y_exp]

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

→ softmax(𝑙𝑙𝑣𝑣) →

[

 0.111
0.135
0.273
0.111
0.165
0.202]

softmax(lv) provides a normalized vector with a sum equal to 1, as shown in
this compressed version of the code. The vector obtained is often described
as containing logits.

The following code shows one version of a softmax function:

def softmax(x):
 return np.exp(x) / np.sum(np.exp(x), axis=0)

lv is now normalized by softmax(lv) as follows.

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

→ softmax(𝑙𝑙𝑣𝑣) →

[

 0.111
0.135
0.273
0.111
0.165
0.202]

Building a Reward Matrix – Designing Your Datasets

[40]

The last part of the softmax function requires softmax(lv) to be rounded to 0 or
1. The higher the value in softmax(lv), the more probable it will be. In clear-cut
transformations, the highest value will be close to 1, and the others will be closer to 0.
In a decision-making process, the highest value needs to be established as follows:

print("7C.
Finding the highest value in the normalized y vector : ",ohot)

The output value is 0.273 and has been chosen as the most probable location. It is
then set to 1, and the other, lower values are set to 0. This is called a one-hot function.
This one-hot function is extremely helpful for encoding the data provided. The
vector obtained can now be applied to the reward matrix. The value 1 probability
will become 100 in the R reward matrix, as follows:

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

→ softmax(𝑙𝑙𝑣𝑣) →

[

 0.111
0.135
0.273
0.111
0.165
0.202]

→ one-hot(𝑙𝑙𝑣𝑣) →

[

 00
1
0
0
0]

→ 𝑅𝑅 →

[

 0

0
100
0
0
0]

The softmax function is now complete. Location l3 or C is the best solution for the
AGV. The probability value is multiplied by 100, and the reward matrix, R, can now
receive the input.

We now have the data for the reward matrix. The best way to understand the
mathematical aspect of the project is to draw the result on a piece of paper using
the actual warehouse layout from locations A to F.

Locations={l1-A, l2-B, l3-C, l4-D, l5-E, l6-F}

Line C of the reward matrix ={0, 0, 100, 0, 0, 0}, where C (the third value) is now the
target for the self-driving vehicle, in this case, an AGV in a warehouse.

Figure 2.3: Illustration of a warehouse transport problem

Before continuing, take some time to play around with the values
in the source code and run it to become familiar with the softmax
function.

Chapter 2

[41]

We obtain the following reward matrix, R, described in Chapter 1, Getting Started with
Next-Generation Artificial Intelligence through Reinforcement Learning:

State/values A B C D E F
A - - - - 1 -
B - - - 1 - 1
C - - 100 1 - -
D - 1 1 - 1 -
E 1 - - 1 - -
F - 1 - - - -

This reward matrix is exactly the one used in the Python reinforcement learning
program using the Q function from Chapter 1. The output of this chapter is thus
the input of the R matrix. The 0 values are there for the agent to avoid those values.
The 1 values indicate the reachable cells. The 100 in the C×C cell is the result of the
softmax output. This program is designed to stay close to probability standards with
positive values, as shown in the following R matrix taken from the mdp01.py of
Chapter 1:

R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

At this point:

• The output of the functions in this chapter generated a reward matrix, R,
which is the input of the MDP described in Chapter 1, Getting Started with
Next-Generation Artificial Intelligence through Reinforcement Learning.

• The MDP process was set to run for 50,000 episodes in Chapter 1.
• The output of the MDP has multiple uses, as we saw in this chapter and

Chapter 1.

The building blocks are in place to begin evaluating the execution and performances
of the reinforcement learning program, as we will see in Chapter 3, Machine
Intelligence – Evaluation Functions and Numerical Convergence.

Building a Reward Matrix – Designing Your Datasets

[42]

Summary
Using a McCulloch-Pitts neuron with a logistic activation function in a one-layer
network to build a reward matrix for reinforcement learning shows one way to
preprocess a dataset.

Processing real-life data often requires a generalization of a logistic sigmoid function
through a softmax function, and a one-hot function applied to logits to encode the
data.

Machine learning functions are tools that must be understood to be able to use
all or parts of them to solve a problem. With this practical approach to artificial
intelligence, a whole world of projects awaits you.

This neuronal approach is the parent of the multilayer perceptron that will be
introduced starting in Chapter 8, Solving the XOR Problem with a Feedforward Neural
Network.

This chapter went from an experimental black box machine learning and deep
learning to white box implementation. Implementation requires a full understanding
of machine learning algorithms that often require fine-tuning.

However, artificial intelligence goes beyond understanding machine learning
algorithms. Machine learning or deep learning require evaluation functions.
Performance or results cannot be validated without evaluation functions, as
explained in Chapter 3, Machine Intelligence – Evaluation Functions and Numerical
Convergence.

In the next chapter, the evaluation process of machine intelligence will be
illustrated by examples that show the limits of human intelligence and the rise
of machine power.

Chapter 2

[43]

Questions
1. Raw data can be the input to a neuron and transformed with weights.

(Yes | No)
2. Does a neuron require a threshold? (Yes | No)
3. A logistic sigmoid activation function makes the sum of the weights larger.

(Yes | No)
4. A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)
5. A logistic sigmoid function is a log10 operation. (Yes | No)
6. A logistic softmax is not necessary if a logistic sigmoid function is applied to

a vector. (Yes | No)
7. A probability is a value between –1 and 1. (Yes | No)

Further reading
• The original McCulloch-Pitts neuron 1943 paper: http://www.cse.

chalmers.se/~coquand/AUTOMATA/mcp.pdf

• TensorFlow variables: https://www.tensorflow.org/beta/guide/
variables

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
https://www.tensorflow.org/beta/guide/variables
https://www.tensorflow.org/beta/guide/variables

[45]

3
Machine Intelligence –

Evaluation Functions and
Numerical Convergence

Two issues appear when a reward matrix (R)-driven MDP produces results.
These issues can be summed up in two principles.

Principle 1: AI algorithms often surpass humans in classification, prediction,
and decision-making areas.

The key executive function of human intelligence, decision-making, relies on the
ability to evaluate a situation. No decision can be made without measuring the pros
and cons and factoring the parameters.

Humanity takes great pride in its ability to evaluate. However, in many cases,
a machine can do better. Chess represents our pride in our thinking ability.
A chessboard is often present in movies to symbolize human intelligence.

Today, not a single chess player can beat the best chess engines. One of the
extraordinary core capabilities of a chess engine is the evaluation function; it takes
many parameters into account more precisely than humans.

Principle 2: Principle 1 leads to a very tough consequence. It is sometimes possible
and other times impossible for a human to verify the results that an AI algorithm
produces, let alone ensemble meta-algorithms.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[46]

Principle 1 has been difficult to detect because of the media hype surrounding face
and object recognition. It is easy for a human to check whether the face or object the
ML algorithm was supposed to classify was correctly classified.

However, in a decision-making process involving many features, principle 2 rapidly
appears. In this chapter, we will identify what results and convergence to measure
and decide how to measure it. We will also explore measurement and evaluation
methods.

This chapter covers the following topics:

• Evaluation of the episodes of a learning session
• Numerical convergence measurements
• An introduction to numerical gradient descent
• Decision tree supervised learning as an evaluation method

The first thing is to set evaluation goals. To do this, we will decide what to measure
and how.

Tracking down what to measure and
deciding how to measure it
We will now tackle the tough task of finding the factors that can make a system
go wrong.

The model built in the previous chapters can be summed up as follows:

𝑙𝑙𝑣𝑣 =

[

 0.0002

0.2
0.9

0.0001
0.4
0.6]

→ softmax(𝑙𝑙𝑣𝑣) →

[

 0.111
0.135
0.273
0.111
0.165
0.202]

→ one-hot →

[

 00
1
0
0
0]

→ 𝑅𝑅 →

[

 0

0
100
0
0
0]

→ gamma → 𝑄𝑄 → Results

From lv, the availability vector (capacity in a warehouse, for example), to R, the
process creates the reward matrix from the raw data (Chapter 2, Building a Reward
Matrix – Designing Your Datasets) required for the MDP reinforcement learning
program (Chapter 1, Getting Started with Next-Generation Artificial Intelligence through
Reinforcement Learning). As described in the previous chapter, a softmax(lv) function
is applied to lv. In turn, a one-hot(softmax(lv)) is applied, which is then converted
into the reward value R, which will be used for the Q (Q-learning) algorithm.

Chapter 3

[47]

The MDP-driven Bellman equation then runs from reading R (the reward matrix) to
the results. Gamma is the learning parameter, Q is the Q-learning function, and the
results represent the final value of the states of the process.

The parameters to be measured are as follows:

• The company's input data. Ready-to-use datasets such as MNIST are
designed to be efficient for an exploration phase. These ready-made datasets
often contain some noise (unreliable data) to make them realistic. The same
process must be achieved with raw company data. The only problem is that
you cannot download a corporate dataset from somewhere. You have to
build time-consuming datasets.

• The weights and biases that will be applied.
• The activation function (a logistic function or other).
• The choices to make after the one-hot process.
• The learning parameter.
• Episode management through convergence.
• A verification process through interactive random checks and independent

algorithms such as supervised learning to control unsupervised algorithms.

In real-life company projects, a system will not be approved until tens of thousands
of results have been produced. In some cases, a corporation will approve the
system only after hundreds of datasets with millions of data samples have been
tested to be sure that all scenarios are accurate. Each dataset represents a scenario
that consultants can work on with parameter scripts. The consultant introduces
parameter scenarios that are tested by the system and measured. In decision-making
systems with up to 200 parameters, a consultant will remain necessary for months
in an industrial environment. A reinforcement learning program will be on its own
to calculate events. However, even then, consultants are needed to manage the
hyperparameters. In real-life systems, with high financial stakes, quality control
will always remain essential.

Measurement should thus apply to generalization more than simply applying to a
single or few datasets. Otherwise, you will have a natural tendency to control the
parameters and overfit your model in a too-good-to-be-true scenario.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[48]

For example, say you wake up one morning and look at the sky. The weather is clear,
the sun is shining, and there are no clouds. The next day, you wake up and you see
the same weather. You write this down in a dataset and send it off to a customer
for weather prediction. Every time the customer runs the program, it predicts clear
sunny skies! That what overfitting leads to! This explains why we need large datasets
to fully understand how to use an algorithm or illustrate how a machine learning
program works.

Beyond the reward matrix, the reinforcement program in the first chapter had
a learning parameter 𝜆𝜆 = 0.8 , shown in mdp03.py, which is used for this section:

Gamma: It's a form of penalty or uncertainty for learning
If the value is 1, the rewards would be too high.
This way the system knows it is learning.
gamma = 0.8

The 𝜆𝜆 learning parameter in itself needs to be closely monitored because it introduces
uncertainty into the system. This means that the learning process will always remain
a probability, never a certainty. One might wonder why this parameter is not just
taken out. Paradoxically, that will lead to even more global uncertainty. The more
the 𝜆𝜆 learning parameter tends to 1, the more you risk overfitting your results.
Overfitting means that you are pushing the system to think it's learning well when
it isn't. It's exactly like a teacher who gives high grades to everyone in the class all
the time. The teacher would be overfitting the grade-student evaluation process,
and nobody would know whether the students have learned anything.

The results of the reinforcement program need to be measured as they go through
episodes. The range of the learning process itself must be measured.

All of these measurements will have a significant effect on the results obtained.

The best way to start is by measuring the quality of convergence of the system.

If the system provides good convergence, you might avoid the headache of having
to go back and check everything.

Convergence
Convergence measures the distance between the present state of a training session
and the goal of the training session. In a reinforcement learning program, an MDP,
for example, there is no training data, so there is no target data to compare to.

Chapter 3

[49]

However, two methods are available:

1. Implicit convergence: In this case, we run the training for a large number
of episodes, 50,000, for example. We know through trial and error that the
program will reach a solution by then.

2. Numerically controlled gradient descent: We measure the training progress
at each episode and stop when it is safe to do so.

Implicit convergence
In the last part of mdp01.py in the first chapter, a range of 50,000 was implemented.
In this chapter, we will run mdp03.py.

In the last part of mdp01.py, the idea was to set the number of episodes at such
a level that meant that convergence was certain. In the following code, the range
(50000) is a constant:

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)

Convergence, in this case, will be defined as the point at which no matter how long
you run the system, the Q result matrix will not change anymore.

By setting the range to 50000, you can test and verify this. As long as the reward
matrices remain homogeneous, this will work. If the reward matrices strongly vary
from one scenario to another, this model will produce unstable results.

Try to run the program with different ranges. Lower the ranges until you see that the
results are not optimal.

Numerically controlled gradient descent
convergence
In this section, we will use mdp03.py, a modified version of mdp01.py explored in
Chapter 1, with an additional function: numerically controlled gradient descent.

Letting the MDP train for 50,000 will produce a good result but consume
unnecessary CPU. Using a numerically controlled gradient descent evaluation
function will save a lot of episodes. Let's see how many.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[50]

First, we need to define the gradient descent function based on a derivative. Let's
have a quick review of what a derivative is.

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ

h is the value of the step of the function. Imagine that h represents each line of a bank
account statement. If we read the statement line by line, h = 1. If we read two lines
at a time, h = 2.

Reading the present line of the bank account statement = f(x) = a certain amount.

When you read the next line of the bank account, the function is (f + h) = the amount
after f(x). If you had 100 units of currency in your bank account at f(x) and spent
10 units of currency, on the next line, x + h, you would have f(x + h) = 90 units of
currency left.

The gradient provides the direction of your slope: up, down, or constant. In this
case, we can say that the slope, the gradient, is doing downward, as shown in the
following graph, which illustrates the decreasing values of y(cost, loss) as x increases
(training episodes):

Figure 3.1: Plotting the decreasing cost/loss values as training episodes increase

We also need to know by how much your bank account is changing – how much the
derivative is worth. In this case, derivative means by how much the balance of your
bank account is changing on each line of your bank statement. In this case, you spent
10 units of currency in one bank statement line, so the derivative at this value of x
(line in your bank account) = –10.

Chapter 3

[51]

In the following code of the Bellman equation as seen in Chapter 1, Getting Started
with Next-Generation Artifcial Intelligence through Reinforcement Learning, the step of
the loop is 1 as well:

for i in range(sec):

Since i = 1, h = 1 in our gradient descent calculation can be simplified:

𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥)
1 = 𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥)

We now define f(x) in the following code:

conv=Q.sum()

conv is the sum of the 6×6 Q matrix that is slowly filling up as the MDP training
progresses. Thus f(x) = conv=Q.sum() = sum of Q. The function adds up all the
values in Q to have a precise value of the state of the system at each i.

f(x) = the state of the system at i – 1

f(x + 1) is the value of the system at i:

Q.sum()

We must remember that the Q matrix is increasing progressively as the MDP process
continues to train. We measure the distance between two steps, h. This distance will
decrease. Now we have:

f(x + 1) – f(x) = -Q.sum()+conv

• First we implement additional variables for our evaluation function, which
uses gradient descent at line 83 of mdp01.py:
ci=0 # convergence counter which counts the number of
episodes
conv=0 # sum of Q at state 1 and then every x episodes
nc=1 # numerical convergence activated to perform
numerical-controlled gradient descent
xi=100 # xi episode optimizer: stop as soon as convergence
reached + xi-x(unknown)
sec=2500 # security number of episodes for this matrix size
brought down from 50,000 to 2,500
cq=ql.zeros((2500, 1))

• nc=1 activates the evaluation function, and ci begins to count the episodes
it will take with this function:
for i in range(sec):

Machine Intelligence – Evaluation Functions and Numerical Convergence

[52]

 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)
 ci+=1 # convergence counter
incremented by 1 at each state
 if(nc==1): # numerical convergence
activated

• At the first episode, i==1, f(x)= Q.sum() as planned:
 if(i==1): # at state one, conv is activated
 conv=Q.sum() # conv= the sum of Q

• f(x + 1) = -Q.sum()+conv is applied:
 print("Episode",i,"Local derivative:",-Q.sum()+conv,...

• The distance, the absolute value of the derivative, is displayed and stored
because we will be using it to plot a figure with Matplotlib:
 print(... "Numerical Convergence value estimator",
 Q.sum()-conv)
 cq[i][0]=Q.sum()-conv

• xi=100 plays a critical role in this numerically controlled gradient descent
function. Every xi, the process stops to check the status of the training
process:
 if(ci==xi): # every 100 episodes the system checks to see...

There are two possible cases: a) and b).

Case a) As long as the local derivative is >0 at each episode, the MDP continues its
training process:

 if(conv!=Q.sum()): # if the sum of Q changes...
 conv=Q.sum() # ...the training isn't over, conv is
updated
 ci=0 # ...the convergence counter is set to
O

Chapter 3

[53]

The output will display varying local derivatives:

Episode 1911 Local derivative: -9.094947017729282e-13 Numerical
Convergence value estimator 9.094947017729282e-13

Episode 1912 Local derivative: -9.094947017729282e-13 Numerical
Convergence value estimator 9.094947017729282e-13

Episode 1913 Local derivative: -1.3642420526593924e-12 Numerical
Convergence value estimator 1.3642420526593924e-12

Case b) When the derivative value reaches a constant value for xi episodes, the MDP
has been trained and the training can now stop:

 if(conv==Q.sum()): # ...if the sum of Q has changed
 print(i,conv,Q.sum()) # ...if it hasn't the training
is over
 break # ...the system stops training

The output will display a constant derivate, xi, before the training stops:

Episode 2096 Local derivative: 0.0 Numerical Convergence value estimator
0.0

Episode 2097 Local derivative: 0.0 Numerical Convergence value estimator
0.0

Episode 2098 Local derivative: 0.0 Numerical Convergence value estimator
0.0

Episode 2099 Local derivative: 0.0 Numerical Convergence value estimator
0.0

When the training is over, the number of training episodes is displayed:

number of episodes: 2099

2,099 is a lot less than the 50,000 implicit convergence episodes, which proves the
efficiency of this numerically controlled gradient descent method.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[54]

At the end of the learning process, you can display a Matplotlib figure containing the
convergence level of each episode that we had stored in cq=ql.zeros((2500, 1)):

 cq[i][0]=Q.sum()-conv

The figure is displayed with a few lines of code:

import matplotlib.pyplot as plt
plt.plot(cq)
plt.xlabel('Episodes')
plt.ylabel('Convergence Distances')
plt.show()

Figure 3.2: A plot demonstrating numerical convergence

This graph shows the numerical convergence. As you can see in the graph, the cost
or loss decreases as the number of training episodes increases, as explained earlier
in this chapter.

Please note the following properties of this gradient descent method:

• The number of episodes will vary from one training session to another
because the MDP is a random process.

• The training curve at local episodes is sometimes erratic because of the
random nature of the training process. Sometimes, the curve will go up
instead of down locally. In the end, it will reach 0 and stay there.

Chapter 3

[55]

• If the training curve increases locally, there is nothing you can do. An MDP
does no backpropagation to modify weights, parameters, or strategies, as
we will see when we look at artificial neural networks (ANNs), for example,
in Chapter 8, Solving the XOR Problem with a Feedforward Neural Network. No
action is required in an MDP process. You can try to change the learning
rate or go back and check your reward matrix and the preprocessing phase
implemented on the raw datasets.

• If the training curve does not reach 0 and stay there, check the learning
parameters, the reward matrix, and the preprocessing phase implemented
on the raw datasets. You might even have to go back and check the noise
(defective data or missing data) in the initial datasets.

Once the MDP training is over, do some random tests using the functionality
provided at line 145 and explained in Chapter 1:

origin=int(input("index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

For example, when prompted for an input, enter 1 and see if the result is correct,
as shown in the following output:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 1
…/…
print("Path:")
-> B
-> D
-> C

This random test verification method will work efficiently with a relatively small
reward matrix.

However, this approach will prove difficult with a size 25×25 reward matrix, for
example. The machine easily provides a result. But how can we evaluate it? In that
case, we have reached the limit of human analytic capacity. In the preceding code,
we entered a starting point and obtained an answer. With a small reward matrix, it is
easy to visually check and see if the answer is correct. When analyzing 25 × 25 = 625
cells, it would take days to verify the results. For the record, bear in mind that when
Andrey Markov invented his approach over 100 years ago, he used a pen and paper!
However, we have computers, so we must use an evaluation algorithm to evaluate
the results of our MDP process.

The increasing volumes of data and parameters in a global world have made it
impossible for humans to outperform the ever-growing intelligence of machines.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[56]

Evaluating beyond human analytic
capacity
An efficient manager has a high evaluation quotient. A machine often has a better
one in an increasing number of fields. The problem for a human is to understand the
evaluation machine intelligence has produced.

Sometimes a human will say "that's a good machine thinking result" or "that's a bad
result," without being able to explain why or determine whether there is a better
solution.

Evaluation is one of the major keys to efficient decision-making in all fields: from
chess, production management, rocket launching, and self-driving cars to data center
calibration, software development, and airport schedules.

We'll explore a chess scenario to illustrate the limits of human evaluation.

Chess engines are not high-level deep learning-based software. They rely heavily on
evaluations and calculations. They evaluate much better than humans, and there is
a lot to learn from them. The question now is to know whether any human can beat
a chess engine or not. The answer is no.

To evaluate a position in chess, you need to examine all the pieces, their quantitative
value, their qualitative value, the cooperation between pieces, who owns each of the
64 squares, the king's safety, the bishop pairs, the knight positioning, and many other
factors.

Evaluating a position in a chess game shows why machines are surpassing humans
in quite a few decision-making fields.

The following scenario is after move 23 in the Kramnik-Bluebaum 2017 game.
It cannot be correctly evaluated by humans. It contains too many parameters
to analyze and too many possibilities.

Chapter 3

[57]

Figure 3.3: Chess example scenario

It is white's turn to play, and a close analysis shows that both players are lost at this
point. In a tournament like this, they must each continue to keep a poker face. They
often look at their position with a confident face to hide their dismay. Some even
shorten their thinking time to make their opponent think they know where they
are going.

These unsolvable positions for humans are painless to solve with chess engines, even
for cheap, high-quality chess engines on a smartphone. This can be generalized to all
human activity that has become increasingly complex, unpredictable, and chaotic.
Decision-makers will increasingly rely on AI to help them make the right choices.

No human can play chess and evaluate the way a chess engine does by simply
calculating the positions of the pieces, their squares of liberty, and many other
parameters. A chess engine generates an evaluation matrix with millions of
calculations.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[58]

The following table is the result of an evaluation of only one position among many
others (real and potential).

Position
evaluated

0,3

White 34
Initial
position

Position Value Quality
Value

Total
Value

Pawn a2 a2 1 a2-b2 small pawn island 0,05 1,05
Pawn b2 b2 1 a2-b2 small pawn island 0,05 1,05
Pawn c2 x 0 Captured 0 0
Pawn d2 d4 1 Occupies center, defends

Be5
0,25 1,25

Pawn e2 e2 1 Defends Qf3 0,25 1,25
Pawn f2 x 0 Captured 0 0
Pawn g2 g5 1 Unattacked, attacking 2

squares
0,3 1,3

Pawn h2 h3 1 Unattacked, defending g4 0,1 1,1
Rook a1 c1 5 Occupying c-file, attacking

b7 with Nd5-Be5
1 6

Knight b1 d5 3 Attacking Nb6, 8 squares 0,5 3,5
BishopDS c1 e5 3 Central position, 10

squares, attacking c7
0,5 3,5

Queen d1 f3 9 Battery with Bg2,
defending Ne5, X-Ray b7

1 11

King e1 h1 0 X-rayed by Bb6 on a7-g1
diagonal

-0,5 -0,5

BishopWS f1 g2 3 Supporting Qf3 in defense
and attack

0,5 3,5

Knight g1 x 0 Captured 0 0
Rook h1 x 0 Captured 0 0

29 5 34
White: 34

The value of the position of white is 34.

White 34
Black 33,7

Chapter 3

[59]

Initial
position

Position Value Quality
Value

Total
Value

Pawn a7 a7 1 a7-b7 small pawn island 0,05 1,05
Pawn b7 b7 1 a7-b7 small pawn island 0,05 1,05
Pawn c7 x 0 Captured 0 0
Pawn d7 x 0 Captured 0 0
Pawn e7 f5 1 Doubled, 2 squares 0 1
Pawn f7 f7 1 0 1
Pawn g7 g6 1 Defending f5 but

abandoning Kg8
0 1

Pawn h7 h5 1 Well advanced with
f5,g6

0,1 1,1

Rook a8 d8 5 Semi-open d-file
attacking Nd5

2 7

Knight b8 x 0 Captured 0 0
BishopDS c8 b6 3 Attacking d4, 3 squares 0,5 3,5
Queen d8 e6 9 Attacking d4,e5, a bit

cramped
1,5 10,5

King e8 g8 0 f6,h6, g7,h8 attacked -1 -1
BishopWS f8 x 0 Captured, white lost

bishop pair
0,5 0,5

Knight g8 e8 3 Defending c7,f6,g7 1 4
Rook h8 f8 5 Out of play -2 3

31 2,7 Black:
33,7

The value of black is 33.7.

So white is winning by 34 – 33.7 = 0.3.

The evaluation system can easily be represented with two McCulloch-Pitts neurons,
one for black and one for white. Each neuron would have 30 weights = {w1,w2 …
w30}, as shown in the previous table. The sum of both neurons requires an activation
function that converts the evaluation into 1/100th of a pawn, which is the standard
measurement unit in chess. Each weight will be the output of squares and piece
calculations. Then the MDP can be applied to Bellman's equation with a random
generator of possible positions.

Present-day chess engines contain this type of brute calculation approach. They don't
need more to beat humans.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[60]

No human, not even world champions, can calculate these positions with this
accuracy. The number of parameters to take into account overwhelms them each
time they reach positions like these. They then play more or less randomly with
a possibly good idea in mind. The chances of success against a chess engine resemble
a lottery sometimes. Chess experts discover this when they run human-played
games with powerful chess engines to see how the game plays out. The players
themselves now tend to reveal their incapacity to provide a deep analysis when
asked why they made a questionable move. It often takes hours to go through a
game, its combinations and find the reasons of a bad move. In the end, the players
will often use a machine to help them understand what happened.

The positions analyzed here represent only one possibility. A chess engine will test
millions of possibilities. Humans can test only a few.

Measuring a result like this has nothing to do with natural human thinking. Only
machines can think like that. Not only do chess engines solve the problem, but they
are also impossible to beat.

Principle 1: At one point, there are problems humans face that only machines can solve.

Principle 2: Sometimes, it will be possible to verify the result of an ML system, sometimes
not. However, we must try to find ways to check the result.

One solution to solve the problem of principle 2 is to verify an unsupervised
algorithm with a supervised algorithm through random samples.

Using supervised learning to evaluate
a result that surpasses human analytic
capacity
More often than not, an AI solution exceeds a human's capacity to analyze a
situation in detail. It is often too difficult for a human to understand the millions
of calculations a machine made to reach a conclusion and explain it. To solve that
problem, another AI, ML, or DL algorithm will provide assisted AI capability.

Let's suppose the following:

• The raw data preprocessed by the neural approach of Chapter 2, Building
a Reward Matrix – Designing Your Datasets, works fine. The reward matrix
looks fine.

Chapter 3

[61]

• The MDP-driven Bellman equation provides good reinforcement training
results.

• The convergence function and values work.
• The results on this dataset look satisfactory but the results are questioned.

A manager or user will always come up with a killer question: how can you prove
that this will work with other datasets in the future and confirm 100% that the
results are reliable?

The only way to be sure that this whole system works is to run thousands of datasets
with hundreds of thousands of product flows.

The idea now is to use supervised learning to create an independent way of checking
the results. One method is to use a decision tree to visualize some key aspects of the
solution and be able to reassure the users and yourself that the system is reliable.

Decision trees provide a white box approach with powerful functionality. In this
section, we will limit the exploration to an intuitive approach. In Chapter 5, How
to Use Decision Trees to Enhance K-Means Clustering, we will go into the theory of
decision trees and random trees and explore more complex examples.

In this model, the features of the input are analyzed so that we can classify them.
The analysis can be transformed into decision trees depending on real-time data,
to create a distribution representation to predict future outcomes.

For this section, you can run the following program:

Decision_Tree_Priority_classifier.py

Or the following Jupyter notebook on Google Colaboratory:

DTCH03.ipynb

Google Colaboratory might have the two following packages installed:

import collections # from Python library container datatypes
import pydotplus # a Python Interface to Graphviz's Dot
language.(dot-V command line

This could help you avoid installing them locally, which might take some time if
you get a Graphviz requirement message.

Machine Intelligence – Evaluation Functions and Numerical Convergence

[62]

Both programs produce the same decision tree image:

warehouse_example_decision_tree.png

The intuitive description of this decision tree approach runs in 5 steps:

Step 1: Represent the features of the incoming orders to store in a warehouse –
for example:

features = ['Priority/location', 'Volume', 'Flow_optimizer']

In this case, we will limit the model to three properties:

• Priority/location, which is the most important property in a warehouse flow
in this model

• Volumes to transport
• Optimizing priority – the financial and customer satisfaction property

Step 2: Provide priority labels for the learning dataset:

Y = ['Low', 'Low', 'High', 'High', 'Low', 'Low']

Step 3: Providing the dataset input matrix, which is the output matrix of the
reinforcement learning program. The values have been approximated but are
enough to run the model. They simulate some of the intermediate decisions and
transformations that occur during the decision process (ratios applied, uncertainty
factors added, and other parameters). The input matrix is X:

X = [[256, 1,0],
 [320, 1,0],
 [500, 1,1],
 [400, 1,0],
 [320, 1,0],
 [256, 1,0]]

The features in step 1 apply to each column.

The values in step 2 apply to every line.

The values of the third column [0,1] are discrete indicators for the training session.

Step 4: Run a standard decision tree classifier. This classifier will distribute the
representations (distributed representations) into two categories:

• The properties of high-priority orders
• The properties of low-priority orders

Chapter 3

[63]

There are many types of algorithms. In this case, a standard sklearn function is
called to do the job, as shown in the following source code:

classify = tree.DecisionTreeClassifier()
classify = classify.fit(X,Y)

Step 5: Visualization separates the orders into priority groups. Visualizing the tree
is optional but provides a trendy white box approach. You will have to use:

• import collections, a Python container library.
• import pydotplus, a Python interface to Graphviz's dot language. You can

choose to use Graphviz directly with other variations of this source code.

The source code will take the nodes and edges of the decision tree, draw them,
and save the image in a file as follows:

info = tree.export_graphviz(classify,feature_names=features,
 out_file=None, filled=True,rounded=True)
graph = pydotplus.graph_from_dot_data(info)

edges = collections.defaultdict(list)
for edge in graph.get_edge_list():
 edges[edge.get_source()].append(int(edge.get_destination()))

for edge in edges:
 edges[edge].sort()
 for i in range(2):
 dest = graph.get_node(str(edges[edge][i]))[0]

graph.write_png(<your file name here>.png)

The file will contain this intuitive decision tree:

Figure 3.3: A decision tree

Machine Intelligence – Evaluation Functions and Numerical Convergence

[64]

The image produces the following information:

• A decision tree represented as a graph that has nodes (the boxes) and edges
(the lines).

• When gini=0, this box is a leaf; the tree will grow no further.
• gini means Gini impurity. At an intuitive level, Gini impurity will focus on

the highest values of Gini impurity to classify the samples. We will go into
the theory of Gini impurity in Chapter 5, How to Use Decision Trees to Enhance
K-Means Clustering.

• samples = 6. There are six samples in the training dataset:
 ° Priority/location <=360.0 is the largest division point that can be

visualized:
X = [[256, 1,0],
 [320, 1,0],
 [500, 1,1],
 [400, 1,0],
 [320, 1,0],
 [256, 1,0]]

 ° The false arrow points out the two values that are not <=360. The
ones that are classified as True are considered as low-priority values.

After a few runs, the user will get used to visualizing the decision process as a white
box and trust the system.

Each ML tool suits a special need in a specific situation. In the next chapter,
Optimizing Your Solutions with K-Means Clustering, we will explore another machine
learning algorithm: k-means clustering.

Summary
This chapter drew a distinction between machine intelligence and human
intelligence. Solving a problem like a machine means using a chain of mathematical
functions and properties. Machine intelligence surpasses humans in many fields.

The further you get in machine learning and deep learning, the more you will find
mathematical functions that solve the core problems. Contrary to the astounding
amount of hype, mathematics relying on CPUs is replacing humans, not some form
of mysterious conscious intelligence.

Chapter 3

[65]

The power of machine learning reaches beyond human mathematical reasoning. It
makes ML generalization to other fields easier. A mathematical model, without the
complexity of humans entangled in emotions, makes it easier to deploy the same
model in many fields. The models of the first three chapters of this book can be used
for self-driving vehicles, drones, robots in a warehouse, scheduling priorities, and
much more. Try to imagine as many fields you can apply these to as possible.

Evaluation and measurement are at the core of machine learning and deep learning.
The key factor is constantly monitoring convergence between the results the system
produces and the goal it must attain. The door is open to the constant adaptation
of the parameters of algorithms to reach their objectives.

When a human is surpassed by an unsupervised reinforcement learning algorithm,
a decision tree, for example, can provide invaluable assistance to human intelligence.

The next chapter, Optimizing Your Solutions with K-Means Clustering, goes a step
further into machine intelligence.

Questions
1. Can a human beat a chess engine? (Yes | No)
2. Humans can estimate decisions better than machines with intuition when

it comes to large volumes of data. (Yes | No)
3. Building a reinforcement learning program with a Q function is a feat in

itself. Using the results afterward is useless. (Yes | No)
4. Supervised learning decision tree functions can be used to verify that the

result of the unsupervised learning process will produce reliable, predictable
results. (Yes | No)

5. The results of a reinforcement learning program can be used as input to
a scheduling system by providing priorities. (Yes | No)

6. Can artificial intelligence software think like humans? (Yes | No)

Further reading
• For more on decision trees: https://youtu.be/NsUqRe-9tb4
• For more on chess analysis by experts such as Zoran Petronijevic, with whom

I discussed this chapter: https://chessbookreviews.wordpress.com/tag/
zoran-petronijevic/, https://www.chess.com/fr/member/zoranp

• For more on AI chess programs: https://deepmind.com/blog/article/
alphazero-shedding-new-light-grand-games-chess-shogi-and-go

https://youtu.be/NsUqRe-9tb4
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://www.chess.com/fr/member/zoranp
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

[67]

4
Optimizing Your Solutions

with K-Means Clustering
No matter how much we know, the key point is the ability to deliver an artificial
intelligence (AI) solution. Implementing a machine learning (ML) or deep learning
(DL) program remains difficult and will become more complex as technology
progresses at exponential rates.

There is no such thing as a simple or easy way to design AI systems. A system
is either efficient or not, beyond being either easy or not. Either the designed AI
solution provides real-life practical uses, or it builds up into a program that fails
to work in various environments beyond the scope of its training sets.

This chapter doesn't deal with how to build the most difficult system possible to
show off our knowledge and experience. It faces the hard truth of real-life delivery
and ways to overcome obstacles. For example, without the right datasets, your
project will never take off. Even an unsupervised ML program requires reliable
data in some form or other.

Transportation itineraries on the road, on trains, in the air, in warehouses, and
increasingly in outer space require well-tuned ML algorithms. The staggering
expansion of e-commerce generates huge warehouse transportation needs with
automated guided vehicles (AGVs), then endless miles on the road, by train, or
by air to deliver the products. Distance calculation and optimization is now a core
goal in many fields. An AGV that optimizes its warehouse distance to load or
unload trucks will make the storage and delivery processes faster for customers
that expect their purchases to arrive immediately.

Optimizing Your Solutions with K-Means Clustering

[68]

This chapter provides the methodology and tools needed to overcome everyday
AI project obstacles with k-means clustering, a key ML algorithm.

This chapter covers the following topics:

• Designing datasets
• The design matrix
• Dimensionality reduction
• Determining the volume of a training set
• k-means clustering
• Unsupervised learning
• Data conditioning management for the training dataset
• Lloyd's algorithm
• Building a Python k-means clustering program
• Hyperparameters
• Test dataset and prediction
• Saving and using an ML model with Pickle

We'll begin by talking about how to optimize and manage datasets.

Dataset optimization and control
At one point, a manager or customer will inevitably ask an AI expert about the
exact data required for an ML project, and in which format it's needed. Providing
an answer will take some hard thinking and work.

One might wonder why the data is not open, like when we download ready-
to-use datasets to learn AI algorithms. In corporate life, there are security rules
and processes. Often the data required is on one or more servers. You will not
be granted permission to do anything you want. You will have to specify your
needs and requests. Obtaining data in the way required for AI comes at a cost
for a corporation. You will have to justify your requests.

Start by properly designing the dataset and choosing the right ML model. The
dataset and ML model will fit the fundamental requirement to optimize AGV
distances. Each AGV in a given warehouse must reduce the distance it takes to go
from a pier (where boats might drop off cargo) to a storage area, from one storage
area to another area (packaging, for example), and from a storage area to a pier.
This will bring the overall costs of a warehouse down and maximize profit.

Chapter 4

[69]

Designing a dataset and choosing an ML/DL
model
On paper, finding a good model for an AGV comes down to minimizing the distance
it takes to move something from point A to point B. Let's consider a scenario where
we want to move products from a warehouse over to a pier. The sum of the distances
D could be a way to measure the process:

𝐷𝐷 =∑𝑓𝑓(𝑝𝑝)
𝑝𝑝𝑛𝑛

𝑝𝑝1

f(p) represents the action of going from a warehouse location to a pier and the
distance it represents. It takes you from the location in a shop where you picked
something up, (p), and the door of the shop on your way out. You can imagine that
if you go straight from that location, pay, and go out, then that is the shortest way.
But if you pick the product up, wander around the shop first, and then go out,
the distance (and time) is longer. The sum of all of the distances of all the people
wandering in this shop, for example, is D.

The concept of the problem to solve in any self-guided bot system can be summed
up as follows:

find the wanderers
How can a bot wander? It is automatic and is often guided by efficient ML programs.
But a bot, like any other form of transportation, often encounters obstacles.

We now have a paradigm to investigate and implement:

• Detect the wanderers
• Optimize the choice of bots

We all know that the shortest point from location A to location B is a straight line.
Right? Well, in a warehouse, as in life, it is not always true! Suppose you are in your
car going in a straight line from A to B but there is a huge traffic jam. It could take
a very long time to go a relatively short distance. If you took a right turn and drove
around the jam, you might save a lot of time. You end up consuming more gas, and
the cost of driving from A to B goes up. You are a wanderer.

When a bot encounters an obstacle, either it stops, waits, or takes
another route.

Optimizing Your Solutions with K-Means Clustering

[70]

In real-life traffic, there is not much you can do. You cannot decide that cars can
only drive at certain hours on a road going from A to B. You cannot decide to send
the cars to the locations that minimize traffic. In real life, this would mean telling
the driver to go to another mall, another restaurant, or any other similar location
to avoid building up traffic. That would not work!

But if you are a warehouse manager that can control all of the AGVs, there is a
lot you can do about this. You can make sure that AGVs make it quickly to their
locations over a very short distance and come back to make room for other AGVs
and thus reduce costs. You can detect the wanderers and configure your schedule
and AGVs so that they minimize cost and maximize profit. No profit, no warehouse.

Approval of the design matrix
The plan is to first obtain as much data as possible and then choose an ML/DL
model. The dataset must contain all locations the bots (the AGVs) come from on their
way to the piers on a given day. It's a location-to-pier analysis. Their distances are
recorded in their system to provide the basis of an excellent design matrix. A design
matrix contains a different example on each row, and each column is a feature. The
following format fits the need:

Index Bot #
(AGV)

Start (from location)
Timestamp:
yyyy,mm,dd,
hh,mm

End (at the pier)
Timestamp:
yyyy,mm,dd,
hh,mm

Location Pier
number

Distance
Meters

001 1 year-month-day-
hour-minute

year-month-
day-hour-
minute

80 7 92

002 2

003 3

004 4

005 5

The design matrix is one of the best ways to design an ML solution. In this case:

• Index: The mission number of the bot
• Bot #: Identifies the vehicle

Chapter 4

[71]

• Start: Timestamp when the bot left a location
• End: Timestamp when the bot reaches a pier where a truck is waiting to be

loaded
• Location: The location in the warehouse where a product should be retrieved
• Distance: The distance from the location to the pier in meters

Distance is expressed in meters in the metric system. The metric system is the world's
most reliable measurement system because it works in base 10 without having to
resort to conversions.

A yard has to be divided by 3 to obtain feet. A foot has to be divided into 12 to
obtain inches. To work in smaller units, a 1/16th of an inch may be necessary.

A meter is 100 centimeters, and a centimeter is 10 millimeters, then we can use
1/100 of a millimeter, and so on.

Run your calculations with the metric system even if you have to produce reports
in other units of measurement.

Getting approval on the format of the design matrix
Real-life implementations differ from experimenting with ready-to-use
downloadable datasets. Information does not come easy in corporations.

In this example, in a real-life situation, let's suppose:

• The bot number is not stored in the mainframe, but in the local system that
manages the AGVs.

• In the mainframe, there is a start time, which is when an AGV picks up its
load at the location, and an end time when it reaches the pier.

• The location can be obtained in the mainframe as well as the pier.
• No distance is recorded.

It would be necessary to have access to the data in the AGV's local system to
retrieve the AGV number and correlate it with the data in the mainframe.

However, things are not so simple in a large organization. For example:

• Retrieving data from the AGV guiding system might not be possible this
fiscal year. Those vehicles are expensive, and no additional budget can be
allocated.

• Nobody knows the distance from a location to a pier. As long as the AGVs
deliver the right products on time at the right piers, nobody so far has been
interested in distances.

Optimizing Your Solutions with K-Means Clustering

[72]

• The AGV mission codes in the mainframe are not the same as in the local
AGV guiding system, so they cannot be merged into a dataset without
development.

An AI project, like any other project, can slip away in no time. If a project comes to
a standstill, it might just be shelved. Designing datasets requires imagination and
responsiveness.

If the project does not move quickly, it will lose momentum. The actors of the project
will turn to other projects that are moving more quickly for their company and their
careers.

Suppose your project stops because nobody can provide the distances you need to
build your model. If you have the start time, end time, and speed, then you can work
around the problem and calculate the distances yourself. If your team does not find
this solution quickly, then the project will be at a standstill. The top management will
say that the team costs too much to be focused on a project that is not moving ahead,
no matter what. The project can be shelved right then and there.

Dimensionality reduction will not only help the AI model; it will also make it easier
to gather information.

Dimensionality reduction
Dimensionality reduction can be applied to reduce the number of features in, for
example, an image. Each pixel of a 3D image, for example, is linked to a neuron,
which in turn brings the representation down to a 2D view with some form of
function. For example, converting a color image into shades of a now-gray image
can do the trick. Once that is done, simply reducing the values to, for example,
1 (light) or 0 (dark), makes it even easier for the network. Using an image converted
to 0 and 1 pixels makes some classification processes more efficient, just like when
we avoid a car on the road. We just see the object and avoid it.

We perform dimensionality reduction all day long. When you walk from one office
to another on the same floor of a building requiring no stairs or an elevator, you are
not thinking that the Earth is round and that you're walking over a slight curve.

Keeping an AI project alive means moving quickly.

Chapter 4

[73]

You have performed a dimensionality reduction. You are also performing a
manifold operation. It means that locally, on that floor, you do not need to worry
about the global roundness of the Earth. Your manifold view of the Earth in your
dimensionality reduction representation is enough to get you from your office
to another one on that floor.

When you pick up your cup of coffee, you focus on not missing it and aiming
for the edges of it. You don't think about every single feature of that cup, such
as its size, color, decoration, diameter, and the exact volume of coffee in it. You
identify the edge of the cup and pick it up. That is dimensionality reduction.
Without dimensionality reduction, nothing can be accomplished. It would take
you 10 minutes to analyze the cup of coffee and pick it up in that case!

When you pick that cup of coffee up, you test to see whether it is too hot, too
cold, or just fine. You don't put a thermometer in the cup to obtain the precise
temperature. You have again performed a dimensionality reduction of the features
of that cup of coffee. Furthermore, when you picked it up, you computed a manifold
representation by just observing the little distance around the cup, reducing the
dimension of information around you. You are not worrying about the shape of
the table, whether it was dirty on the other side, and other features.

Although we often relate dimensionality reduction to ML and DL, dimensionality
reduction is as old as mathematics and even humanity! Somebody, long ago, went
to a beach and saw that the sun was beautiful. That person, for the first time in
humanity, drew a circle in the sand. The circle was not in 3D like the sun, nor did
it have color, but the humans around that person were astonished:

• A group of humans were watching the sun
• A human took the color out
• The human also took the 3D view out
• They represented the sun with a circle in a much smaller dimensional space
• The first mathematician was born!

A k-means clustering algorithm provides an efficient way to represent the bot
example we are dealing with in this chapter. Each location will form a cluster, as
explained in the next section.

ML and DL techniques such as dimensionality reduction can be
viewed as tools and can be used in any field to speed up calculation
times.

Optimizing Your Solutions with K-Means Clustering

[74]

A workaround to the missing data problem would be to run the k-means clustering
algorithm with the following data format:

Index Location Start from location:
Timestamp:
yyyy,mm,dd,hh,mm

End at location:
Timestamp:
yyyy,mm,dd,hh,mm

001

The volume of a training dataset
In this model, we will focus on six locations to analyze. Six locations are chosen
in the main warehouse with a group of truck loading points. Taking around 5,000
examples into account, that should represent the work of all the 25 AGVs purchased
by AGI-AI running 24 hours a day.

Now that we've talked about optimizing and controlling a dataset, let's move on to
coming up with actual solutions. In the next section, we'll talk about implementing
k-means clustering.

Implementing a k-means clustering
solution
The dataset requires preprocessing to be converted into a prototype to prove the
financial value of the project.

The vision
The primary goal of an ML project involving bots can be summed up in one
sentence: finding profit by optimizing bot activity. Achieving that goal will lead to
obtaining a budget for a full-scale project.

The data provided does not contain distances. However, an estimation can be made
per location as follows:

distance = (end time – start time)/average speed of a bot

Never implement an ML solution in a corporate environment
without knowing how much profit it represents and the cost
of getting the job done. Without profit, a company will not
survive. ML, like any other investment, must provide a return
on investment (ROI). In our case, ML will reduce the cost of
transportation in the warehouse by reducing AGV distances.

Chapter 4

[75]

The start location is usually a loading point near a pier in this particular warehouse
configuration.

The data
The data provided contains start times st, end times endt, and delivery locations.
To calculate distances, we can use the following equation:

di(ll) = (endt – st)/v

• v = velocity of the AGV per minute
• endt – st is expressed in minutes
• di = estimated distance an AGV has gone in a given time

A preprocessing program will read the initial file format and data and output a new
file, data.csv, in the following reduced dimensionality format with two features:

Distance Location
55 53
18 17

Conditioning management
Data conditioning means preparing the data that will become the input of the
system. Poor conditioning can have two outcomes:

• Bad data containing noise that makes no difference (large volumes and
minor errors)

• Bad data containing noise that makes a difference (regardless of volumes,
the data influences the outcome)

In this particular case, let's suppose that out of the 5,000 records provided for the
dataset, 25 distances are not reliable. A 0.005% noise level should not be a problem.
The amount of acceptable noise depends on each project. It cannot be an arbitrary
figure.

Sometimes, noise will have a profound effect, and sometimes it will not. Suppose
2,500 records out of 5,000 records contained noise. Maybe the 2,500 remaining
records provide a sufficient variety of samples to produce a reliable result. In
another case, maybe, 10 missing samples out of 5,000 records will stop a project
because those 10 samples were the only ones of a special kind that could critically
change the calculations.

Optimizing Your Solutions with K-Means Clustering

[76]

You will have to experiment and determine the level of acceptable noise for a given
project.

Let's get our hands dirty and analyze the data.

The location numbers start at #1. #1 is near the loading point of the products. The
bot has to bring the products to this point. To be more precise, in this warehouse
configuration, the bot goes and gets a box (or crate) of products and brings them
back to location 1. At location 1, humans check the products and package them.
After that, humans carefully load the products in the delivery trucks.

The distance from one location to the next is about 1 meter. For example, from
location 1 to location 5, the distance is about 5 meters, or 5 m. Also, since all
locations lead to location 1 for the AGVs in this model, the theoretical distances
will be calculated from location 1. To generalize the rule and define a distance di
for a location lj the calculation can be simplified:

di(lj)=lj

di is expressed in meters. Since the locations start at number 1 through n, the location
number is equal to the approximate distance from the first location from which the
bots depart.

Let us suppose that, looking at the data, it quickly appears that many distances
are superior to their location numbers. That is strange because the distance should
be about equal to the location. Thus, by reducing the number of dimensions and
focusing on approximations of the main features, key concepts can be represented.

The time has come to build a strategy and a program.

The strategy
As in all ML projects, there are key standard corporate guidelines that should not be
avoided:

• Quickly write a proof of concept (POC). A POC will prove that the ML
solution will be efficient. In this case, bot activity will be visualized.

• Check the results in detail.
• Calculate the potential optimized profit with a solution that is yet to be

found. Profit will justify the investment. The cost can be an indicator. But
then cost reduction must be sufficient to increase profit by a significant rate
for a given corporation.

• Obtain approval with a solid case and obtain a green light for the project.

Chapter 4

[77]

Now that our strategy is clear, we can choose a model. k-means clustering is
a good algorithm to start with for this project. It will create clusters that almost
literally represent the areas in which the AGVs should be located. By choosing
simple dimensions, the visual representation is close enough to reality for a user
to understand the calculations.

The k-means clustering program
k-means clustering is a powerful unsupervised learning algorithm. We often perform
k-means clustering in our lives. Take, for example, a lunch you want to organize for
a team of about 50 people in an open space that can just fit those people.

Your friend and another friend first decide to set up a table in the middle. Your
friend points out that the people in that room will form a big cluster k, and with only
one table in the geometric center (or centroid) c, it will not be practical. The people
near the wall will not have access to the main table, as shown in the following figure.

Figure 4.1: A scenario where people try to cluster around a single table

The people not close to the table (the rectangle in the middle) will not have easy
access to the table.

You now try two tables (centroids) c1 and c2 in various places for two clusters of
people k1 and k2.

The people x1 to xn form a dataset X. When imagining X, it appears that the table is
not in the right place.

The best thing to do is to move a table c, and then estimate that the mean distance of
the people (a subset of X) to the table will be about the same in their group or cluster
k. The same is done for the other table. You draw a line with chalk on the floor to
make sure that each group or cluster is at about the mean distance from its table.

Optimizing Your Solutions with K-Means Clustering

[78]

This intuitive approach to k-means clustering can be summed up as follows:

• Step 1: You have been drawing lines with chalk to decide which group
(cluster k) each person x will be in, by looking at the mean distance from
the table c.

• Step 2: You have been moving the tables around accordingly to optimize
step 1.

A Python program simulating a three-table model computed using k-means
clustering would produce the following result:

Figure 4.2: A three-table model computed by k-means clustering

Having provided an intuitive example, let's talk about the mathematical definition of
k-means clustering.

The mathematical definition of k-means clustering
Dataset X provides N points. These points or data points are formed by using
distance as the x-axis in a Cartesian representation and the location as the y-axis in
a Cartesian representation. This low-level representation is a white box approach,
even if the data is processed and transformed by the algorithm. A white box
approach is when the process is transparent, and we can actually see what the
algorithm is doing. A black box is when an input goes into a system, and we
will not be able to understand what the system did by just looking at the result.

However, high-level representations are required to represent more features through
clusters. In that case, it will not be possible to see a direct link between the actual
meanings and their ML representation. We will explore these high-dimensional
representations in the chapters to come.

Chapter 4

[79]

If you have one bot in location 1 as the first record of your file, it will be represented
as x axis = 1 and y axis = 1 by the black dot, which is the data point, as shown in the
following diagram:

Figure 4.3: Cartesian representation

In this example, 5,000 records are loaded from data.csv, which is in the same
directory as the program. The data is unlabeled with no linear separation. The goal
is to allocate the X data points to K clusters. The number of clusters is an input value.
Each cluster will have its geometric center or centroid. If you decide to have three
clusters K, then the result will be as follows:

• Three clusters K in three colors in a visual representation
• Three geometric centers or centroids representing the center of the mean

of the sum of distances of x data points of that cluster

If you decide on six clusters, then you will obtain six centroids, and so on.

Described in mathematical terms, the formula in respect of 𝐾𝐾𝑘𝑘 , 𝜇𝜇𝑘𝑘 is as follows:

min∑ ∑ ‖𝑥𝑥 − 𝜇𝜇𝑘𝑘‖2
𝑥𝑥𝑛𝑛∈𝐾𝐾𝑘𝑘

𝐾𝐾

𝑘𝑘=1

The sum of each k (cluster) from 1 to the number of clusters K of the sum of all
distances of members xi to xn of each cluster K from their position to the geometric
center (centroid) 𝜇𝜇 must be minimized.

The smaller the distance from each member x to centroid 𝜇𝜇 , the more the system is
optimized. Note that the distance is squared each time because this is a Euclidean
distance in this version of the algorithm.

The Euclidean distance, in one dimension, is the distance between two points, x and
y, for example, expressed as follows:

√(𝑥𝑥 − 𝑦𝑦)22

Optimizing Your Solutions with K-Means Clustering

[80]

The distance between x and y expressed in Euclidean distance is not the real distance
that an AGV will actually travel inside a warehouse. The model in the chapter was
built so that the distances would remain sufficiently realistic to make good clusters
and improve the organization of the warehouse. It's sufficient because an AGV will
often go in nearly straight lines from a pier to the closest aisle and then to a storage
point, for example.

To calculate the actual distances, we often use Manhattan distances. Manhattan
distances are taxi-cab distances. You calculate the distance up a block then to the
left, for example, another block and so on, adding the distances along the way. This
is because you can't drive through the buildings.

In our case, it would be like saying that a taxi-cab can only, more or less, drive up
and down a given avenue, like a bus, and avoid turning right or left.

We will use Lloyd's algorithm with Euclidean distances to estimate the clusters that
AGVs will have to stay in to avoid wandering.

Lloyd's algorithm
There are several variations of Lloyd's algorithm. But all of them follow a common
philosophy.

For a given xn (data point), the distance from the centroid 𝜇𝜇 in its cluster must be less
than going to another center, just like how a person in the lunch example wants to
be closer to one table rather than having to go far to get a sandwich because of the
crowd.

The best centroid 𝜇𝜇 for a given xn is as follows:

𝑥𝑥𝑛𝑛: ‖𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘‖

This calculation is done for all 𝜇𝜇 (centroids) in all the clusters from k1 to K.

Once each xi has been allocated to a Kk, the algorithm recomputes 𝜇𝜇 by calculating
the means of all the points that belong to each cluster and readjusts the centroid 𝜇𝜇𝑘𝑘 .

We've now covered all of the concepts that we need to begin coding. Let's get into
the Python program!

The Python program
k-means_clustering_1.py, the Python program, uses the sklearn library, pandas
for data analysis (only used to import the data in this program), and matplotlib to
plot the results as data points (the coordinates of the data) and clusters (data points
classified in each cluster with a color). First, the following models are imported:

Chapter 4

[81]

from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt

Next, we'll go through the stages of implementing k-means clustering.

1 – The training dataset
The training dataset consists of 5,000 lines. The first line contains a header for
maintenance purposes (data checking), which is not used. k-means clustering is
an unsupervised learning algorithm, meaning that it classifies unlabeled data into
cluster-labeled data to make future predictions. The following code displays the
dataset:

#I. The training Dataset
dataset = pd.read_csv('data.csv')
print(dataset.head())
print(dataset)

The print(dataset) line can be useful (though not necessary) to check the training
data during a prototype phase or for maintenance purposes. The following output
confirms that the data was correctly imported:

'''Output of print(dataset)
Distance location
0 80 53
1 18 8
2 55 38
...
'''

2 – Hyperparameters
Hyperparameters determine the behavior of the computation method. In this case,
two hyperparameters are necessary:

• The k number of clusters that will be computed. This number can and will
be changed during the case study meetings to find out the best organization
process, as explained in the next section. After a few runs, we will intuitively
set k to 6.

• The f-number of features that will be taken into account. In this case, there
are two features: distance and location.

The program implements a k-means function, as shown in the following code:

#II.Hyperparameters
Features = 2

Optimizing Your Solutions with K-Means Clustering

[82]

k = 6
kmeans = KMeans(n_clusters=k)

Note that the Features hyperparameter is commented. In this case, the number
of features is implicit and determined by the format of the training dataset, which
contains two columns.

3 – The k-means clustering algorithm
sklearn now does the job using the training dataset and hyperparameters in the
following lines of code:

#III.k-means clustering algorithm
kmeans = kmeans.fit(dataset) #Computing k-means clustering

The gcenters array contains the geometric centers or centroids and can be printed
for verification purposes, as shown in this snippet:

gcenters = kmeans.cluster_centers_
print("The geometric centers or centroids:")
print(gcenters)
'''Ouput of centroid coordinates
[[48.7986755 85.76688742]
[32.12590799 54.84866828]
[96.06151645 84.57939914]
[68.84578885 55.63226572]
[48.44532803 24.4333996]
[21.38965517 15.04597701]]
'''

These geometric centers need to be visualized with labels for decision-making
purposes.

4 – Defining the result labels
The initial unlabeled data can now be classified into cluster labels, as shown in the
following code:

#IV.Defining the Result labels
labels = kmeans.labels_
colors = ['blue','red','green','black','yellow','brown','orange']

Colors can be used for semantic purposes beyond nice display labels. A color for
each top customer or leading product can be assigned, for example.

Chapter 4

[83]

5 – Displaying the results – data points and clusters
To make sense to a team or management, the program now prepares to display
the results as data points and clusters. The data will be represented as coordinates
and the clusters as colors with a geometric center or centroid, as implemented in
this code:

#V.Displaying the results : datapoints and clusters
y = 0
for x in labels:
 plt.scatter(dataset.iloc[y,0], dataset.iloc[y,1],color=colors[x])
 y+=1
for x in range(k):
 lines = plt.plot(gcenters[x,0],gcenters[x,1],'kx')

title = ('No of clusters (k) = {}').format(k)
plt.title(title)
plt.xlabel('Distance')
plt.ylabel('Location')
plt.show()

The dataset is now ready to be analyzed. The data has been transformed into
data points (Cartesian points) and clusters (the colors). The x points represent
the geometric centers or centroids, as shown in the following screenshot:

Figure 4.4: Output (data points and clusters)

Optimizing Your Solutions with K-Means Clustering

[84]

Test dataset and prediction
In this case, the test dataset has two main functions. First, some test data confirms the
prediction level of the trained and now-labeled dataset. The input contains random
distances and locations. The following code implements the output that predicts
which cluster the data points will be in:

#VI.Test dataset and prediction
x_test = [[40.0,67],[20.0,61],[90.0,90],
 [50.0,54],[20.0,80],[90.0,60]]
prediction = kmeans.predict(x_test)
print("The predictions:")
print (prediction)
'''
Output of the cluster number of each example
[3 3 2 3 3 4]
'''

The second purpose, in the future, will be to enter data for decision-making
purposes, as explained in the next section.

Saving and loading the model
In this section, k-means_clustering_1.py will save the model using Pickle. Pickle,
a Python library, saves the model in a serialized file, as shown at the end of the
program:

save model
filename="kmc_model.sav"
pickle.dump(kmeans, open(filename, 'wb'))

The Python Pickle module is imported in the header of the program:

import pickle

Now, the model, kmeans, is saved in a file named kmc_model.sav.

To test this model, we will now open k-means_clustering_2.py to load the model
without any training involved and make predictions:

#load model
filename="kmc_model.sav"
kmeans = pickle.load(open(filename, 'rb'))

kmc_model.save is loaded and plugged into a classifier called kmeans.

Chapter 4

[85]

x_test same test data as in k-means_clustering_1.py:

#test data
x_test = [[40.0,67],[20.0,61],[90.0,90],
 [50.0,54],[20.0,80],[90.0,60]]

We now run and display the predictions:

#prediction
prediction = kmeans.predict(x_test)
print("The predictions:")
print (prediction)

The predictions are the same as in k-means_clustering_1.py:

The predictions:
[0 0 4 0 0 1]

Each prediction is an output cluster number from 0 to 5 of the corresponding
coordinates used as input. For example, [40.0,67] is a part of cluster #0.

The next step is to analyze the results.

Analyzing the results
The following image shows the gain zone. The gain zone is the zone in which the
distances exceed the value 80.

Figure 4.5: Gain zone area

Optimizing Your Solutions with K-Means Clustering

[86]

The gain zone area provides useful information.

From the computations made, that gain zone shows the losses made on the locations
displayed. It takes a sample of the possible locations into account. 10% of the total
distance could be saved.

The cause is that the bots are not going directly to the right locations, but are
wandering around unplanned obstacles.

The average distance from one location to another is 1 meter. The AGVs all start
from location 0 or 1. So the distance is strictly proportional to the locations in this
particular example.

To find the gain zone of a location, you draw a red horizontal line from location 80,
for example, and a vertical line from a distance 80 (add a couple of meters to take
small variances into account).

Data analysis is made easier by data visualization. Visualizing the clusters makes
it easier for management to understand the outputs and make decisions.

None of the data points on the 80-location line should be beyond the maximum limit.
The limit is 80 meters + a small variance of a few meters. Beyond that line, on the
right-hand side of the figure, is where the company is losing money, and something
must be done to optimize the distances. This loss zone is the gain zone for a project.
The gain zone on the k-means cluster results shows that some of the locations of
40 to 60 exceed a distance of 80 meters.

Bot virtual clusters as a solution
Planners anticipate bot tasks. They send them to probable locations from which they
will have to pick up products and bring them back to the truck-loading points.

In the following example, we will take the example of AGVs that are assigned to
a cluster area for locations 40 to 60. If an AGV goes further, up to location 70, for
example, a penalty of 10 virtual (estimated) meters is added to its performance.
It is easy to check. If an AGV is detected at location 70, it is out of its area.

The business rule for the AGV assigned to locations 40 to 60 is that it must never
exceed location 60. If the software planning the events works well, it will never
assign the AGV to an area exceeding location 60. Business rules must thus be
provided to the planners.

One of the solutions is to provide AGV virtual clusters as a business rule, as shown
in the following screenshot:

Chapter 4

[87]

Figure 4.6: AGV virtual clusters

The rules are as follows:

• Rule 1: The line in the middle represents a new business rule. In phase 1 of
the project, an AGV used for locations 40 to 60 cannot go beyond 60 meters
plus a small variance line.

• Rule 2: A cluster will represent the pick-up zone for an AGV. The centroid
will now be its parking zone. Distances will be optimized until all the clusters
respect rule 1. If rule 1 is not followed, the AGVs will travel unnecessary
distances, increasing the overall cost of transporting goods in the warehouse.

The limits of the implementation of the k-means
clustering algorithm
In this chapter, an example was explored. When the volumes increase, the features
reach high-level abstract representations, and noise pollutes the data, humans face
several problems:

• How do we analyze a result that surpasses human analytical capacity?
• Is the algorithm reliable for larger datasets that may contain features that

were overlooked?

In Chapter 5, How to Use Decision Trees to Enhance k-Means Clustering, we will explore
these problems and find solutions.

Optimizing Your Solutions with K-Means Clustering

[88]

Summary
Up to this point, we have explored Python with the NumPy, TensorFlow, scikit-
learn, pandas, and Matplotlib libraries. More platforms and libraries will be used
in this book. In the months and years to come, even more languages, libraries,
frameworks, and platforms will appear on the market.

However, AI is not only about development techniques. Building a k-means clustering
program from scratch requires careful planning. The program relies on data that
is rarely available as we expect it. That's where our imagination comes in handy
to find the right features for our datasets.

Once the dataset has been defined, poor conditioning can compromise the project.
Some small changes in the data will lead to incorrect results.

Preparing the training dataset from scratch takes much more time than we would
initially expect. AI was designed to make life easier, but that's after a project has
been successfully implemented. The problem is that building a solution requires
major dataset work and constant surveillance.

Then comes the hard work of programming a k-means clustering solution that must
be explained to a team. Lloyd's algorithm comes in very handy to that effect by
reducing development time.

In the next chapter, When and How to Use Artificial Intelligence, we will seek solutions
to the limits of k-means clustering problems through dataset techniques. We will also
explore random forests and enter the world of ensemble meta-algorithms, which will
provide assisted AI to humans to analyze machine thinking.

Questions
1. Can a prototype be built with random data in corporate environments?

(Yes | No)
2. Do design matrices contain one example per matrix? (Yes | No)
3. AGVs can never be widespread. (Yes | No)
4. Can k-means clustering be applied to drone traffic? (Yes | No)
5. Can k-means clustering be applied to forecasting? (Yes | No)
6. Lloyd's algorithm is a two-step approach. (Yes | No)
7. Do hyperparameters control the behavior of the algorithm? (Yes | No)
8. Once a program works, the way it is presented does not matter. (Yes | No)
9. k-means clustering is only a classification algorithm. It's not a prediction

algorithm. (Yes | No)

Chapter 4

[89]

Further reading
• The scikit-learn website contains additional information on k-means

clustering: http://scikitlearn.org/stable/modules/generated/
sklearn.cluster.KMeans.html

• You can find Python's data analysis library here: https://pandas.pydata.
org/

http://scikitlearn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikitlearn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://pandas.pydata.org/
https://pandas.pydata.org/

[91]

5
How to Use Decision Trees to
Enhance K-Means Clustering

This chapter addresses two critical issues. First, we will explore how to implement
k-means clustering with dataset volumes that exceed the capacity of the given
algorithm. Second, we will implement decision trees that verify the results of an
ML algorithm that surpasses human analytic capacity. We will also explore the use
of random forests.

When facing such difficult problems, choosing the right model for the task often
proves to be the most difficult task in ML. When we are given an unfamiliar set
of features to represent, it can be a somewhat puzzling prospect. Then we have to
get our hands dirty and try different models. An efficient estimator requires good
datasets, which might change the course of the project.

This chapter builds on the k-means clustering (or KMC) program developed in
Chapter 4, Optimizing Your Solutions with K-Means Clustering. The issue of large
datasets is addressed. This exploration will lead us into the world of the law of
large numbers (LLN), the central limit theorem (CLT), the Monte Carlo estimator,
decision trees, and random forests.

Human intervention in a process such as the one described in this chapter is not only
unnecessary, but impossible. Not only does machine intelligence surpass humans
in many cases, but the complexity of a given problem itself often surpasses human
ability, due to the complex and ever-changing nature of real-life systems. Thanks to
machine intelligence, humans can deal with increasing amounts of data that would
otherwise be impossible to manage.

How to Use Decision Trees to Enhance K-Means Clustering

[92]

With our toolkit, we will build a solution to analyze the results of an algorithm
without human intervention.

This chapter covers the following topics:

• Unsupervised learning with KMC
• Determining if AI must or must not be used
• Data volume issues
• Defining the NP-hard characteristic of KMC
• Random sampling concerning LLN, CLT, and the Monte Carlo estimator
• Shuffling a training dataset
• Supervised learning with decision trees and random forests
• Chaining KMC to decision trees

This chapter begins with unsupervised learning with KMC. We will explore methods
to avoid running large datasets through random sampling. The output of the KMC
algorithm will provide the labels for the supervised decision tree algorithm. The
decision tree will verify the results of the KMC process, a task no human could do
with large volumes of data.

Unsupervised learning with KMC with
large datasets
KMC takes unlabeled data and forms clusters of data points. The names (integers) of
these clusters provide a basis to then run a supervised learning algorithm such as a
decision tree.

In this section, we will see how to use KMC with large datasets.

All the Python programs and files in this chapter are available at
https://github.com/PacktPublishing/Artificial-
Intelligence-By-Example-Second-Edition/tree/
master/CH05.

There is also a Jupyter notebook named COLAB_CH05.ipynb that
contains all of the Python programs in one run. You can upload it
directly to Google Colaboratory (https://colab.research.
google.com/) using your Google Account.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://colab.research.google.com/
https://colab.research.google.com/

Chapter 5

[93]

When facing a project with large unlabeled datasets, the first step consists of
evaluating if machine learning will be feasible or not. Trying to avoid AI in a book
on AI may seem paradoxical. However, in AI, as in real life, you should use the right
tools at the right time. If AI is not necessary to solve a problem, do not use it.

Use a proof of concept (POC) approach to see if a given AI project is possible or not.
A POC costs much less than the project itself and helps to build a team that believes
in the outcome. Or, the POC might show that it is too risky to go forward with an ML
solution. Intractable problems exist. It's best to avoid spending months on something
that will not work.

The first step is exploring the data volume and the ML estimator model that will
be used.

If the POC proves that a particular ML algorithm will solve the problem at hand,
the next thing to do is to address data volume issues. The POC shows that the model
works on a sample dataset. Now, the implementation process can begin.

Anybody who has run a machine learning algorithm with a large dataset on a laptop
knows that it takes some time for a machine learning program to train and test these
samples. A machine learning program or a deep learning convolutional neural
network consumes a large amount of machine power. Even if you run an ANN using
a GPU (short for graphics processing unit) hoping to get better performance than
with CPUs, it still takes a lot of time for the training process to run through all the
learning epochs. An epoch means that we have tried one set of weights, for example,
to measure the accuracy of the result. If the accuracy is not sufficient, we run another
epoch, trying other weights until the accuracy is sufficient.

If you go on and you want to train your program on datasets exceeding 1,000,000
data points, for example, you will consume significant local machine power.

Suppose you need to use a KMC algorithm in a corporation with hundreds of
millions to billions of records of data coming from multiple SQL Server instances,
Oracle databases, and a big data source. For example, suppose that you are working
for the phone operating activity of a leading phone company. You must apply a
KMC program to the duration of phone calls in locations around the world over a
year. That represents millions of records per day, adding up to billions of records in
a year.

A machine learning KMC training program running billions of records will consume
too much CPU/GPU and take too much time even if it works. On top of that, a
billion records might only represent an insufficient amount of features. Adding more
features will dramatically increase the size of such a dataset.

How to Use Decision Trees to Enhance K-Means Clustering

[94]

The question now is to find out if KMC will even work with a dataset this size.
A KMC problem is NP-hard. The P stands for polynomial and the N for non-
deterministic.

The solution to our volume problem requires some theoretical considerations.
We need to identify the difficulty of the problems we are facing.

Identifying the difficulty of the problem
We first need to understand what level of difficulty we are dealing with. One of the
concepts that come in handy is NP-hard.

NP-hard – the meaning of P
The P in NP-hard means that the time to solve or verify the solution of a P problem
is polynomial (poly=many, nomial=terms). For example, x3 is a polynomial. The
N means that the problem is non-deterministic.

Once x is known, then x3 will be computed. For x = 3,000,000,000 and only 3
elementary calculations, this adds up to:

log x3 = 28.43

It will take 1028.43 calculations to compute this particular problem.

It seems scary, but it isn't that scary for two reasons:

• In the world of big data, the number can be subject to large-scale randomized
sampling.

• KMC can be trained in mini-batches (subsets of the dataset) to speed up
computations.

Polynomial time means that this time will be more or less proportional to the size of
the input. Even if the time it takes to train the KMC algorithm remains a bit fuzzy, as
long as the time it will take to verify the solution remains proportional thanks to the
batch size of the input, the problem remains a polynomial.

Chapter 5

[95]

An exponential algorithm increases with the amount of data, not the number of
calculations. An exponential function of this example would be f(x) = 3x = 33,000,000,000
calculations. Such functions can often be broken down into multiple classical
algorithms. Functions of this type exist in the corporate world, but they are out
of the scope of this book.

NP-hard – the meaning of non-deterministic
Non-deterministic problems require a heuristic approach, which implies some form
of heuristics, such as a trial and error approach. We try a set of weights, for example,
evaluate the result, and then go on until we find a satisfactory solution.

The meaning of hard
NP-hard can be transposed into an NP problem with some optimization. This means
that NP-hard is as hard or harder than an NP problem.

For example, we can use batches to control the size of the input, the calculation time,
and the size of the outputs. That way, we can bring an NP-hard problem down to an
NP problem.

One way of creating batches to avoid running an algorithm on a dataset that will
prove too large for it is to use random sampling.

Implementing random sampling with mini-
batches
A large portion of machine learning and deep learning contains random sampling
in various forms. In this case, a training set of billions of elements will prove difficult,
if not impossible, to implement without random sampling.

Random sampling is used in many methods: Monte Carlo, stochastic gradient
descent, random forests, and many algorithms. No matter what name the sampling
takes, they share common concepts to various degrees, depending on the size of the
dataset.

Random sampling on large datasets can produce good results, but it requires relying
on the LLN, which we will explore in the next section.

How to Use Decision Trees to Enhance K-Means Clustering

[96]

Using the LLN
In probability, the LLN states that when dealing with very large volumes of data,
significant samples can be effective enough to represent the whole dataset. For
example, we are all familiar with polls that use small datasets.

This principle, like all principles, has its merits and limits. But whatever the
limitations, this law applies to everyday machine learning algorithms.

In machine learning, sampling resembles polling. A smaller number of individuals
represent a larger overall dataset.

Sampling mini-batches and averaging them can prove as efficient as calculating
the whole dataset as long as a scientific method is applied:

• Training with mini-batches or subsets of data
• Using an estimator in one form or another to measure the progression

of the training session until a goal has been reached

You may be surprised to read "until a goal has been reached" and not "until the
optimal solution has been reached."

The optimal solution may not represent the best solution. All the features and all
the parameters are often not expressed. Finding a good solution will often be enough
to classify or predict efficiently.

The LLN explains why random functions are widely used in machine learning and
deep learning. Random samples provide efficient results if they respect the CLT.

The CLT
The LLN applied to the example of the KMC project must provide a reasonable set
of centroids using random sampling. If the centroids are correct, then the random
sample is reliable.

A centroid is the geometrical center of a set of datasets, as explained
in Chapter 4, Optimizing Your Solutions with K-Means Clustering.

Chapter 5

[97]

This approach can now be extended to the CLT, which states that when training
a large dataset, a subset of mini-batch samples can be sufficient. The following two
conditions define the main properties of the CLT:

• The variance between the data points of the subset (mini-batch) remains
reasonable.

• The normal distribution pattern with mini-batch variances remains close
to the variance of the whole dataset.

A Monte Carlo estimator, for example, can provide a good basis to see if the samples
respect the CLT.

Using a Monte Carlo estimator
The name Monte Carlo comes from the casinos in Monte Carlo and gambling.
Gambling represents an excellent memoryless random example. No matter what
happens before a gambler plays, prior knowledge provides no insight. For example,
the gambler plays 10 games, losing some and winning some, creating a distribution
of probabilities.

The sum of the distribution of f(x) is computed. Then random samples are extracted
from a dataset, for example, x1, x2, x3,..., xn.

f(x) can be estimated through the following equation:

�̂�𝑒 = 1
𝑛𝑛∑𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

The estimator �̂�𝑒 represents the average of the result of the predictions of a KMC
algorithm or any implemented model.

We have seen that a sample of a dataset can represent a full dataset, just as a group
of people can represent a population when polling for elections, for example.

Knowing that we can safely use random samples, just like in polling a population
for elections, we can now process a full large dataset directly, or preferably with
random samples.

How to Use Decision Trees to Enhance K-Means Clustering

[98]

Trying to train the full training dataset
In Chapter 4, Optimizing Your Solutions with K-Means Clustering, a KMC algorithm
with a six-cluster configuration produced six centroids (geometric centers), as shown
here:

Figure 5.1: Six centroids

The problem is now how to avoid costly machine resources to train this KMC dataset
when dealing with large datasets. The solution is to take random samples from the
dataset in the same way polling is done on a population for elections, for example.

Training a random sample of the training
dataset
The sampling/k-means_clustering_minibatch.py program provides a way to
verify the mini-batch solution.

The program begins by loading the data in the following lines of code:

dataset = pd.read_csv('data.csv')
print (dataset.head())
print(dataset)

Chapter 5

[99]

Loading the dataset might create two problems:

• The dataset is too large to be loaded in the first place. In this case, load the
datasets batch by batch. Using this method, you can test the model on many
batches to fine-tune your solution.

• The dataset can be loaded, but the KMC algorithm chosen cannot absorb
the volume of data. A good choice for the size of the mini-batch will solve
this problem.

Once a dataset has been loaded, the program will start the training process.

A mini-batch dataset called dataset1 will be randomly created using Monte Carlo's
large data volume principle with a mini-batch size of 1,000. Many variations of the
Monte Carlo method apply to machine learning. For our example, it will be enough
to use a random function to create the mini-batch:

n=1000
dataset1=np.zeros(shape=(n,2))

for i in range (n):
 j=randint(0,4998)
 dataset1[i][0]=dataset.iloc[j,0]
 dataset1[i][1]=dataset.iloc[j,1]

Finally, the KMC algorithm runs on a standard basis, as shown in the following
snippet:

#II.Hyperparameters
Features = 2 :implicit through the shape of the dataset (2 columns)
k = 6
kmeans = KMeans(n_clusters=k)

#III.K-means clustering algorithm
kmeans = kmeans.fit(dataset1) #Computing k-means clustering
gcenters = kmeans.cluster_centers_ # the geometric centers or
centroids
print("The geometric centers or centroids:")
print(gcenters)

How to Use Decision Trees to Enhance K-Means Clustering

[100]

The following screenshot, displaying the result produced, resembles the full dataset
trained by KMC in Chapter 4, Optimizing Your Solutions with K-Means Clustering:

Figure 5.2: Output (KMC)

The centroids obtained are consistent, as shown here:

The geometric centers or centroids:

[[19.6626506 14.37349398]

 [49.86619718 86.54225352]

 [65.39306358 54.34104046]

 [29.69798658 54.7852349]

 [48.77202073 23.74611399]

 [96.14124294 82.44067797]]

The output will vary slightly at each run since this is a stochastic process. In this
section, we broke the dataset down into random samples to optimize the training
process. Another way to perform random sampling is to shuffle the dataset before
training it.

Shuffling as another way to perform random
sampling
The sampling/k-means_clustering_minibatch_shuffling.py program provides
another way to solve a random sampling approach.

Chapter 5

[101]

KMC is an unsupervised training algorithm. As such, it trains unlabeled data.
A single random computation does not consume a large amount of machine
resources, but several random selections in a row can.

Shuffling can reduce machine consumption costs. Proper shuffling of the data
before starting training, just like shuffling cards before a poker game, will avoid
repetitive and random mini-batch computations. In this model, the loading data
phase and training phase do not change. However, instead of one or several random
choices for dataset1, the mini-batch dataset, we shuffle the complete dataset once
before starting the training. The following code shows how to shuffle datasets:

sn=4999
shuffled_dataset=np.zeros(shape=(sn,2))
for i in range (sn):
 shuffled_dataset[i][0]=dataset.iloc[i,0]
 shuffled_dataset[i][1]=dataset.iloc[i,1]

Then we select the first 1,000 shuffled records for training, as shown in the following
code snippet:

n=1000
dataset1=np.zeros(shape=(n,2))
for i in range (n):
 dataset1[i][0]=shuffled_dataset[i,0]
 dataset1[i][1]=shuffled_dataset[i,1]

The result in the following screenshot corresponds to the one with the full dataset
and the random mini-batch dataset sample:

Figure 5.3: Full and random mini-batch dataset sample

How to Use Decision Trees to Enhance K-Means Clustering

[102]

The centroids produced can provide first-level results to confirm the model,
as shown in the following output.

The geometric centers or centroids:

[[29.51298701 62.77922078]

 [57.07894737 84.21052632]

 [20.34337349 15.48795181]

 [45.19900498 23.95024876]

 [96.72262774 83.27737226]

 [63.54210526 51.53157895]]

Random sampling and shuffling helped to solve one part of the dataset volume
problem.

However, now we must explore the other aspect of the implementation of a large
dataset ML algorithm: verifying the results.

Chaining supervised learning to verify
unsupervised learning
This section explores how to verify the output of an unsupervised KMC algorithm
with a supervised algorithm: a decision tree.

KMC takes an input with no labels and produces an output with labels. The
unsupervised process makes sense out of the chaos of incoming data.

The example in this chapter focuses on two related features: location and distance.
The clusters produced are location-distance subsets of data within the dataset. The
input file contains two columns: distance and location. The output file contains three
columns: distance, location, and a label (cluster number).

Using shuffling instead of random mini-batches has two
advantages: limiting the number of mini-batch calculations and
preventing training the same samples twice. If your shuffling
algorithm works, you will only need to shuffle the dataset once.
If not, you might have to go back and use random sampling, as
explained in the previous section.

Chapter 5

[103]

The output file can thus be chained to a supervised learning algorithm, such as a
decision tree. The decision tree will use the labeled data to produce a visual, white-
box, machine thought process. Also, a decision tree can be trained to verify the results
of the KMC algorithm. The process starts with preprocessing raw data.

Preprocessing raw data
Earlier, it was shown that with large datasets, mini-batches will be necessary.
Loading billions of records of data in memory is not an option. A random selection
was applied in sampling/k-means_clustering_minibatch.py as part of the KMC
algorithm.

However, since we are chaining our algorithms in a pipeline and since we are not
training the model, we could take the random sampling function from sampling/k-
means_clustering_minibatch.py and isolate it:

n=1000
dataset1=np.zeros(shape=(n,2))
li=0
for i in range (n):
 j=randint(0,4999)
 dataset1[li][0]=dataset.iloc[j,0]
 dataset1[li][1]=dataset.iloc[j,1]
 li+=1

The code could be applied to datasets extracted in a preprocessing phase from packs
of data retrieved from a big data environment, for example. The preprocessing phase
would be repeated in cycles. We will now explore the pipeline that goes from raw
data to the output of the chained ML algorithms.

A pipeline of scripts and ML algorithms
An ML pipeline will take raw data and perform dimension reduction or other
preprocessing tasks that are not in the scope of this book. Preprocessing the data
sometimes requires more than ML algorithms such as SQL scripts. Our exploration
starts right after when ML algorithms such as KMC take over. However, a pipeline
can run from raw data to ML using classical non-AI scripting as well.

How to Use Decision Trees to Enhance K-Means Clustering

[104]

The pipeline described in the following sections can be broken down into three major
steps, preceded by classical preprocessing scripting:

• Step 0: A standard process performs a random sampling of a training dataset
with classical preprocessing scripts before running the KMC program. This
aspect is out of the scope of the ML process and this book. By doing this, we
avoid overloading the ML Python programs. The training data will first be
processed by a KMC algorithm and sent to the decision tree program.

• Step 1: A KMC multi-ML program, kmc2dt_chaining.py, reads the
training dataset produced by step 0 using a saved model from Chapter 4,
Optimizing Your Solutions with K-Means Clustering. The KMC program takes
the unlabeled data, makes predictions, and produces a labeled output in a
file called ckmc.csv. The output label is the cluster number of a line of the
dataset containing a distance and location.

• Step 2: The decision tree program, decision_tree.py, reads the output of
the KMC predictions, ckmc.csv. The decision tree algorithm trains its model
and saves the trained model in a file called dt.sav.

 ° Step 2.1: The training phase is over. The pipeline now takes raw data
retrieved by successive equal-sized datasets. This batch process will
provide a fixed amount of data. Calculation time can be planned and
mastered. This step is out of the scope of the ML process and this
book.

 ° Step 2.2: A random sampling script processes the batch and produces
a prediction dataset for the predictions.

• Step 3: kmc2dt_chaining.py will now run a KMC algorithm that is
chained to a decision tree that will verify the results of the KMC. The KMC
algorithm produces predictions. The decision tree makes predictions on those
predictions. The decision tree will also provide a visual graph in a PNG for
users and administrators.

Steps 2.1 to 3 can run on a twenty-four seven basis in a continuous process.

It is important to note that random forests are an interesting alternative to the
decision tree component. It can replace the decision tree algorithm in kmc2dt_
chaining.py. In the next section, we will explore random forests in this context
with random_forest.py.

Chapter 5

[105]

Step 1 – training and exporting data from an
unsupervised ML algorithm
kmc2dt_chaining.py can be considered as the chaining of a KMC program to a
decision tree program that will verify the results. Each program forms a link of the
chain.

From a decision tree project's perspective, kmc2dt_chaining.py can be considered
as a pipeline taking unlabeled data and labeling it for the supervised decision tree
program. A pipeline takes raw data and transforms it using more than one ML
program.

During the training phase of the chained model, kmc2dt_chaining.py runs to
provide datasets for the training of the decision tree. The parameter adt=0 limits
the process to the KMC function, which is the first link of the chain. The decision tree
in this program will thus not be activated in this phase.

kmc2dt_chaining.py will load the dataset, load the saved KMC mode, make
predictions, and export the labeled result:

• Load the dataset: data.csv, the dataset file, is the same one used in
Chapter 4, Optimizing Your Solutions with K-Means Clustering. The two
features, location and distance, are loaded:
dataset = pd.read_csv('data.csv')

• Load the KMC model: The k-means cluster model, kmc_model.sav, was
saved by k-means_clustering_2.py in Chapter 4, Optimizing Your Solutions
with K-Means Clustering. It is now loaded using the pickle module to save it:
kmeans = pickle.load(open('kmc_model.sav', 'rb'))

• Make predictions: No further training of the KMC model is required at this
point. The model can run predictions on the mini-batches it receives. We can
use an incremental process to verify the results on a large scale.
If the data is not sufficiently scaled, other algorithms could be applied. In this
case, the dataset does not require additional scaling. The KMC algorithm will
make predictions on the sample and produce an output file for the decision
tree.
For this example, the predictions will be generated line by line:
 for i in range(0,1000):
 xf1=dataset.at[i,'Distance']
 xf2=dataset.at[i,'location']
 X_DL = [[xf1,xf2]]
 prediction = kmeans.predict(X_DL)

How to Use Decision Trees to Enhance K-Means Clustering

[106]

The results are stored in a NumPy array:
 p=str(prediction).strip('[]')
 p=int(p)
 kmcpred[i][0]=int(xf1)
 kmcpred[i][1]=int(xf2)
 kmcpred[i][2]=p;

• Export the labeled data: The predictions are saved in a file:
np.savetxt('ckmc.csv', kmcpred, delimiter=',', fmt='%d')

This output file is special; it is now labeled:
80,53,5
18,8,2
55,38,0

The output file contains three columns:
 ° Column 1 = feature 1 = location; 80, for example, on the first line
 ° Column 2 = feature 2 = distance; 53, for example, on the first line
 ° Column 3 = label = cluster calculated; 5, for example, on the first line

In our chained ML algorithms, this output data will become the input data of
the next ML algorithm, the decision tree.

Step 2 – training a decision tree
In Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence,
a decision tree was described and used to visualize a priority process. Decision_
Tree_Priority.py produced the following graph:

Figure 5.4: Decision tree priorities

Chapter 5

[107]

The tree starts with a node with a high Gini value. The node is split into two, and
each node below is a "leaf" in this case because Gini=0.

The decision tree algorithm implemented in this book uses Gini impurity.

Gini impurity represents the probability of a data point being incorrectly classified.

A decision tree will start with the highest impurities. It will split the probability into
two branches after having calculated a threshold.

When a branch reaches a Gini impurity of 0, it reaches its leaf.

Let's state that k is the probability of a data point being incorrectly classified.

The dataset X from Chapter 3, Machine Intelligence – Evaluation Functions and Numerical
Convergence, contains six data points. Four data points are low, and two data points
are high:

X = {Low, Low, High, High, Low, Low}

The equation of Gini impurity calculates the probability of each feature occurring
and multiplies the result by 1—the probability of each feature occurring on the
remaining values—as shown in the following equation:

𝐺𝐺(𝑘𝑘) =∑𝑃𝑃𝑖𝑖 ∗ (1 − 𝑃𝑃𝑖𝑖)
𝑖𝑖=𝑛𝑛

𝑖𝑖=1

Applied to the X dataset with four lows out of six and two highs out of six, the result
will be:

G(k) = (4/6) * (1 – 4/6) + (2/6) * (1 – 2/6)

G(k)=(0.66 * 0.33) + (0.33 * 0.66)

G(k)=0.222 + 0.222=0.444

The probability that a data point will be incorrectly predicted is 0.444, as shown in
the graph.

The decision train is built on the gain of information on the features that contain the
highest Gini impurity value.

We will now explore the Python implementation of a decision tree to prepare it to be
chained to the KMC program.

How to Use Decision Trees to Enhance K-Means Clustering

[108]

Training the decision tree
To train the decision tree, decision_tree.py will load the dataset, train the model,
make predictions, and save the model:

• Load the dataset: Before loading the dataset, you will need to import the
following modules:
import pandas as pd #data processing
from sklearn.tree import DecisionTreeClassifier #the dt classifier
from sklearn.model_selection import train_test_split #split the
data into training data and testing data
from sklearn import metrics #measure prediction performance
import pickle #save and load estimator models

The dataset is loaded, labeled, and split into training and test datasets:
#loading dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
print(df.head())
#defining features and label (classes)
feature_cols = ['f1', 'f2']
X = df[feature_cols] # Features
y = df.label # Target variable
print(X)
print(y)
splitting df (dataset) into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.3, random_state=1) # 70% training and 30%
test

The data in this example will contain two features (location and distance)
and a label (cluster number) provided by the output of the KMC algorithm.
The following header shows how the dataset is structured:
 f1 f2 label

0 80 53 5

1 18 8 2

2 55 38 0

The versions of the modules will vary as the editors produce
them and also depend on how often you update the versions and
the code. For example, you might get a warning when you try to
unpickle a KMC model from version 0.20.3 when using version
0.21.2. As long as it works, it is fine for educational purposes.
However, in production, an administrator should have a database
with the list of packages used and their versions.

Chapter 5

[109]

3 74 74 5

4 17 4 2

• Training the model: Once the datasets are ready, the decision tree classifier
is created and the model is trained:
create the decision tree classifier
dtc = DecisionTreeClassifier()
train the decision tree
dtc = dtc.fit(X_train,y_train)

• Making predictions: Once the model is trained, predictions are made on the
test dataset:
#predictions on X_test
print("prediction")
y_pred = dtc.predict(X_test)
print(y_pred)

The predictions use the features to predict a cluster number in the test
dataset, as shown in the following output:
prediction

[4 2 0 5 0...]

• Measuring the results with metrics: A key part of the process is to measure
the results with metrics. If the accuracy approaches 1, then the KMC output
chained to the decision tree algorithm is reliable:
model accuracy
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

In this example, the accuracy was 0.97. The model can predict the cluster of a
distance and location with a 0.97 probability, which proves its efficiency. The
training of the chained ML solution is over, and a prediction cycle begins.

You can generate a PNG file of the decision tree with decision_tree.py.
Uncomment the last paragraph of the program, which contains the export function:

from sklearn import tree
import pydotplus
graph=1
if(graph==1):
 # Creating the graph and exporting it
 dot_data = tree.export_graphviz(dtc, out_file=None,
 filled=True, rounded=True,
 feature_names=feature_cols,
 class_names=['0','1','2',

How to Use Decision Trees to Enhance K-Means Clustering

[110]

 '3','4','5'])
 #creating graph
 graph = pydotplus.graph_from_dot_data(dot_data)
 #save graph
 image=graph.create_png()
 graph.write_png("kmc_dt.png")

Note that once you have implemented this function, you can activate or deactivate it
with the graph parameter.

The following image produced for this example can help you understand the
thought process of the whole chained solution (KMC and the decision tree).

Figure 5.5: Image output from the code example

The image file, dt_kmc.png, is available on GitHub in CH05.

Step 3 – a continuous cycle of KMC chained to a
decision tree
The training of the chained KMC algorithm chained to a decision tree algorithm is
over.

The preprocessing phase using classical big data batch retrieval methods will
continuously provide randomly sampled datasets with a script.

Chapter 5

[111]

kmc2dt_chaining.py can focus on running KMC predictions and passing them on
to decision tree predictions for white-box checking. The continuous process imports
a dataset, loads saved models, predicts, and measures the results at the decision tree
level.

The chained process can run on a twenty-four seven basis if necessary.

The modules used are required for both the KMC and the decision trees
implemented in the training programs:

from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt
import pickle
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

Let's run through the process:

• Loading the KMC dataset and model: The KMC dataset has been prepared
in the preprocessing phase. The trained model has been previously saved.
The dataset is loaded with pandas and the model is loaded with pickle:
#I.KMC. The prediction dataset and model
dataset = pd.read_csv('data.csv')
kmeans = pickle.load(open('kmc_model.sav', 'rb'))

• Predicting and saving: The goal is to predict the batch dataset line by line
and save the result in an array in a white-box approach that can be verified
by the administrator of the system:
 for i in range(0,1000):
 xf1=dataset.at[i,'Distance']
 xf2=dataset.at[i,'location']
 X_DL = [[xf1,xf2]]
 prediction = kmeans.predict(X_DL)
 #print (i+1, "The prediction for",X_DL," is:",
 str(prediction).strip('[]'))
 #print (i+1, "The prediction for",
 str(X_DL).strip('[]'), " is:",
 str(prediction).strip('[]'))
 p=str(prediction).strip('[]')
 p=int(p)
 kmcpred[i][0]=int(xf1)
 kmcpred[i][1]=int(xf2)

How to Use Decision Trees to Enhance K-Means Clustering

[112]

 kmcpred[i][2]=p
np.savetxt('ckmc.csv', kmcpred, delimiter=',', fmt='%d')

The ckmc.csv file generated is the entry point of the next link of the chain:
the decision tree.
The two lines containing the print instruction are commented for standard
runs. However, you may wish to explore the outputs in detail if your code
requires maintenance. That is why I recommend adding maintenance lines
in the code.

• Loading the dataset for the decision tree: The dataset for the decision tree is
loaded in the same way as in decision_tree.py. A parameter activates the
decision tree part of the code: adt=1. The white-box quality control approach
can thus be activated or deactivated.
The program loads the dataset, loads the model, and splits the data:
if adt==1:
 #I.DT. The prediction dataset and model
 col_names = ['f1', 'f2','label']
 # load dataset
 ds = pd.read_csv('ckmc.csv', header=None,
 names=col_names)

 #split dataset in features and target variable
 feature_cols = ['f1', 'f2']
 X = ds[feature_cols] # Features
 y = ds.label # Target variable

 # Split dataset into training set and test set
 X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.3, random_state=1) # 70% training and
30% test

 # Load model
 dt = pickle.load(open('dt.sav', 'rb'))

Although the dataset has been split, only the test data is used to verify the
predictions of the decision tree and the quality of the KMC outputs.

• Predicting and measuring the results: The decision tree predictions are
made and the accuracy of the results is measured:
 #Predict the response for the test dataset
 y_pred = dt.predict(X_test)

 # Model Accuracy

Chapter 5

[113]

 acc=metrics.accuracy_score(y_test, y_pred)
 print("Accuracy:",round(acc,3))

Once again, in this example, as in decision_tree.py, the accuracy is 0.97.
• Double-checking the accuracy of the predictions: In the early days of a

project or for maintenance purposes, double-checking is recommended. The
function is activated or deactivated with a parameter named doublecheck.
The prediction results are checked line by line against the original labels and
measured:
#Double Check the Model's Accuracy
 doublecheck=1 #0 deactivated, 1 activated
 if doublecheck==1:
 t=0
 f=0
 for i in range(0,1000):
 xf1=ds.at[i,'f1']
 xf2=ds.at[i,'f2']
 xclass=ds.at[i,'label']
 X_DL = [[xf1,xf2]]
 prediction =clf.predict(X_DL)
 e=False
 if(prediction==xclass):
 e=True
 t+=1
 if(prediction!=xclass):
 e=False
 f+=1
 print (i+1,"The prediction for",X_DL," is:",
 str(prediction).strip('[]'),
 "the class is",xclass,"acc.:",e)

 print("true:", t, "false", f, "accuracy",
 round(t/(t+f),3))

The program will print out the predictions line by line, stating if they are
True or False:
995 The prediction for [[85, 79]] is: 4 the class is 4 acc.: True

996 The prediction for [[103, 100]] is: 4 the class is 4 acc.:
True

997 The prediction for [[71, 82]] is: 5 the class is 1 acc.:
False

998 The prediction for [[50, 44]] is: 0 the class is 0 acc.: True

999 The prediction for [[62, 51]] is: 5 the class is 5 acc.: True

How to Use Decision Trees to Enhance K-Means Clustering

[114]

In this example, the accuracy is 0.99, which is high. Only 9 out of 1,000 predictions
were False. This result is not the same as the metrics function because it is a simple
calculation that does not take mean errors or other factors into account. However,
it shows that the KMC produced good results for this problem.

Decision trees provide a good approach for the KMC. However, random forests take
machine learning to another level and provide an interesting alternative, if necessary,
to the use of decision trees.

Random forests as an alternative to decision
trees
Random forests open mind-blowing ML horizons. They are ensemble meta-
algorithms. As an ensemble, they contain several decision trees. As meta-algorithms,
they go beyond having one decision tree making predictions.

To run an ensemble (several decision trees) as a meta-algorithm (several algorithms
training and predicting the same data), the following module is required:

from sklearn.ensemble import RandomForestClassifier

To understand how a random forest works as a meta-algorithm, let's focus on three
key parameters in the following classifier:

clf = RandomForestClassifier(n_estimators=25, random_state=None,
bootstrap=True)

• n_estimators=25: This parameter states the number of trees in the forest.
Each tree will run its prediction. The main method to reach the final
prediction is obtained by averaging the predictions of each tree.
At each split of each tree, features are randomly permuted. The trees use
different feature approaches.

• bootstrap=True: When bootstrap is activated, a smaller sample is
bootstrapped from the sample provided. Each tree thus bootstraps its own
samples, adding more variety.

• random_state=None: When random_state=None is activated, the random
function uses np.random.
You can also use the other methods by consulting the scikit-learn
documentation (see Further reading at the end of the chapter). My preference
is to use np.random. Note that to split the training state, I use scikit-learn's
default random generator example with random_state=0.

Chapter 5

[115]

This shows the importance of these small changes in parameters. After many
tests, this is what I preferred. But maybe, in other cases, other random_state
values are preferable.

Beyond these key concepts and parameters, random_forest.py can be built in
a clear, straightforward way.

random_forest.py is built with the same structure as the KMC or decision tree
program. It loads a dataset, prepares the features and target variables, splits the
dataset into training and testing sub-datasets, predicts, and measures. random_
forest.py also contains a custom double-check function that will display each
prediction, its status (True or False), and provide an independent accuracy rate.

• Loading the dataset: ckmc.csv was generated by the preceding KMC
program. This time, it will be read by random_forest.py instead of
decision_tree.py. The dataset is loaded, and the features and target
variables are identified. Note the pp variable, which will trigger the print
function or not. This is useful for switching from production mode to
maintenance mode with a single variable change. Change pp=0 to pp=1
if you wish to switch to maintenance mode. In this case pp is activated:
pp=1 # print information
load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
 print(df.head())
#loading features and label (classes)
feature_cols = ['f1', 'f2']
X = df[feature_cols] # Features
y = df.label # Target variable
if pp==1:
 print(X)
 print(y)

The program prints the labeled data:
 f1 f2 label

0 80 53 5

1 18 8 2

2 55 38 0

3 74 74 5

4 17 4 2

How to Use Decision Trees to Enhance K-Means Clustering

[116]

The program prints the target cluster numbers to predict:
[1 5 5 5 2 1 3 3…]

• Splitting the data, creating the classifier, and training the model: The
dataset is split into training and testing data. The random forest classifier
is created with 25 estimators. Then the model is trained:
#Divide the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=0)

#Creating Random Forest Classifier and training
clf = RandomForestClassifier(n_estimators=25,
 random_state=0)
clf.fit(X_train, y_train)

The program is ready to predict.
• Predicting and measuring the accuracy of the trained model:

#Predictions
y_pred = clf.predict(X_test)

if pp==1:
 print(y_pred)

#Metrics
ae=metrics.mean_absolute_error(y_test, y_pred)
print('Mean Absolute Error:', round(ae,3))

The output results and metrics are satisfactory:
predictions:

[1 5 5 5 2 1 3 3 0 5 3 5 3 2 2 4 3 1 3 2 2 …]

Mean Absolute Error: 0.165

A mean error approaching 0 is an efficient result.
• Double-checking: A double-checking function is recommended in the

early stages of an ML project and for maintenance purposes. The function
is activated by the doublecheck parameter as in kmc2dt_chaining.py. Set
doublecheck=1 if you wish to activate the maintenance mode. It is in fact,
the same template:
#Double Check the Model's Accuracy
doublecheck=0 # 1=yes, 0=no
if doublecheck==1:
 t=0

Chapter 5

[117]

 f=0
 for i in range(0,1000):
 xf1=df.at[i,'f1']
 xf2=df.at[i,'f2']
 xclass=df.at[i,'label']
 X_DL = [[xf1,xf2]]
 prediction =clf.predict(X_DL)
 e=False
 if(prediction==xclass):
 e=True
 t+=1
 if(prediction!=xclass):
 e=False
 f+=1
 if pp==1:
 print (i+1,"The prediction for",X_DL," is:",
 str(prediction).strip('[]'),"the class is",
 xclass,"acc.:",e)

 acc=round(t/(t+f),3)
 print("true:",t,"false",f,"accuracy",acc)
 print("Absolute Error",round(1-acc,3))

The accuracy of the random forest is efficient. The output of the measurement is:

Mean Absolute Error: 0.085

true: 994 false 6 accuracy 0.994

Absolute Error 0.006

The absolute error is a simple arithmetic approach that does not take mean errors
or other factors into account. The score will vary from one run to another because
of the random nature of the algorithm. However, in this case, 6 errors out of 1,000
predictions is a good result.

Ensemble meta-algorithms such as random forests can replace the decision tree in
kmc2dt_chaining.py with just a few lines of code, as we just saw in this section,
tremendously boosting the whole chained ML process.

Chained ML algorithms using ensemble meta-algorithms are extremely powerful
and efficient. In this chapter, we used a chained ML solution to deal with large
datasets and perform automatic quality control on machine intelligence predictions.

How to Use Decision Trees to Enhance K-Means Clustering

[118]

Summary
Although it may seem paradoxical, try to avoid AI before jumping into a project that
involves millions to billions of records of data (such as SQL, Oracle, and big data).
Try simpler classical solutions like big data methods. If the AI project goes through,
LLN will lead to random sampling over the datasets, thanks to CLT.

A pipeline of classical and ML processes will solve the volume problem, as well as
the human analytic limit problem. The random sampling function does not need to
run a mini-batch function included in the KMC program. Batches can be generated
as a preprocessing phase using classical programs. These programs will produce
random batches of equal size to the KMC NP-hard problem, transposing it into an
NP problem.

KMC, an unsupervised training algorithm, will transform unlabeled data into a
labeled data output containing a cluster number as a label.

In turn, a decision tree, chained to the KMC program, will train its model using the
output of the KMC. The model will be saved just as the KMC model was saved. The
random forests algorithm can replace the decision tree algorithm if it provides better
results during the training phase of the pipeline.

In production mode, a chained ML program containing the KMC trained model and
the decision tree trained model can make classification predictions on fixed random
sampled batches. Real-time metrics will monitor the quality of the process. The
chained program, being continuous, can run twenty-four seven, providing reliable
real-time results without human intervention.

The next chapter explores yet another ML challenge: the increasing amount of
language translations generated by global business and social communication.

Questions
1. The number of k clusters is not that important. (Yes | No)
2. Mini-batches and batches contain the same amount of data. (Yes | No)
3. K-means can run without mini-batches. (Yes | No)
4. Must centroids be optimized for result acceptance? (Yes | No)
5. It does not take long to optimize hyperparameters. (Yes | No)
6. It sometimes takes weeks to train a large dataset. (Yes | No)
7. Decision trees and random forests are unsupervised algorithms. (Yes | No)

Chapter 5

[119]

Further reading
• Decision trees: https://scikit-learn.org/stable/modules/tree.html
• Random forests: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[121]

6
Innovating AI with
Google Translate

In this chapter, we will illustrate how to innovate existing AI through Google
Translate. First, we will start by understanding the difference between inventions,
innovations, disruption, high-priced products, and revolutions, and how we can
create an impact on an AI innovation.

Sometimes, a developer will confuse an invention with innovation, leading to
a major failure in a key AI project. Some AI designers take a revolution to mean
a disruption, leading to early sales and then nothing.

Once we have defined the key concepts of innovation, we will use Google Translate
to understand the linguistic principles that surround natural language processing
(NLP).

Google Translate entered the market in 2006 and was enhanced by neural networks
in 2016, but still, it often produces bad answers. Is that good news or bad news? We
will implement Google's API in a Python program to find out how to uncover false
translations from one language to another.

Once we have found Google Translate's limits, we will finally find out how to
transcend those limits with our own adaptations, by exploring Google's API in
a Python program, adding a k-nearest neighbors (KNN) algorithm, and measuring
the results statistically.

Innovating AI with Google Translate

[122]

Contrary to media hype, artificial intelligence has only just begun to innovate
human processes. A huge amount of work remains to be done. To achieve progress,
everybody must get involved, as we'll discuss in this chapter. Even if Google,
Amazon, Microsoft, IBM, and others offer a solution, this does not mean it cannot
be improved by third parties as add-ons to existing solutions or new standalone
products. After all, once Ford invented the Model T over a hundred years ago,
this did not preclude the development of even better cars. On the contrary, look
around you!

To take advantage of the AI adventure, we will go from understanding disruption
in AI to Google Translate, and then innovate.

The following topics will be covered in this chapter:

• Understanding the key concepts of AI innovation before starting to
implement Google Translate

• The difference between inventions and innovations
• The difference between revolutionary and disruptive AI
• Google Translate API implementation in Python
• Introducing linguistics as a prerequisite to building any natural language

processing (NLP) algorithm
• The KNN algorithm
• How to customize Google Translate with a KNN in Python

We will start by exploring the key concepts of AI innovation and disruption.

All the Python programs and files in this chapter are available at
https://github.com/PacktPublishing/Artificial-
Intelligence-By-Example-Second-Edition/tree/
master/CH06.

There is also a Jupyter notebook named COLAB_Translate.
ipynb that contains all of the Python programs in one run. You
can upload it directly to Google Colaboratory using your Google
account: https://colab.research.google.com/.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://colab.research.google.com/

Chapter 6

[123]

Understanding innovation and disruption
in AI
The first question we must ask ourselves when starting a project such as a translation
solution is to find out where we fit in. Is what we are going to do an invention or an
innovation? Is our work disruptive or revolutionary? We will explore these concepts
in this chapter to understand the broad pragmatic picture before going any further.

Is AI disruptive?
The word "disruptive" is more often than not associated with artificial intelligence.
Media hype tells us that AI robots will soon have replaced humans around the
world. Although media hype made it much easier to obtain AI budgets, we need
to know where we stand if we want to implement an AI solution. If we want to
innovate, we need to find the cutting edge and build new ideas from there.

Why not just plunge into the tools and see what happens? Is that a good idea or
a risky one? Unlike corporations with huge budgets, a single human has limited
resources. If you spend time learning in the wrong direction, it will take months
to gather enough experience in another, better direction to reach your goal.
For example, suppose you have trouble classifying large amounts of data, as we
explored in Chapter 4, Optimizing Your Solutions with K-means Clustering. You will
spend months on a project in your company and fail. It could cost you your job.
Conversely, if you find the right model and learn the key concepts, your project
can take off in a few days.

Before diving into a project, find out where we stand in terms of innovation and
disruption. This doesn't seem important at the start of a project, but it will mean
a lot during the production and distribution phases. This section will clarify these
concepts.

Nothing is new under the sun—not even when considering AI. Most AI theory
and mathematical tools have been around for decades, if not centuries. We often
tend to think that since something appears new to us, it has just been invented or
discovered. This mistake can prove fatal in many projects. If you know that a theory
or function has been around for decades or centuries, you can do some deep research
and use solutions found 100+ years ago to solve your present problems. If you do,
you will save a lot of time using equations that have been proven and are reliable.
If you do not, you might spend useless vital time reinventing equations that exist.

Innovating AI with Google Translate

[124]

Finding out what is new and what is not will make a major difference in your
personal or professional AI projects.

AI is based on mathematical theories that are
not new
AI theory presently relies heavily on applied mathematics. In Chapter 1, Getting
Started with Next-Generation Artifcial Intelligence through Reinforcement Learning,
the Markov decision process (MDP), a reinforcement learning (RL) approach
was described. Google has been successfully combining RL with neural networks
in AlphaGo Zero.

Andrey Markov was a Russian mathematician born in 1856 who invented the MDP.
He successfully applied the algorithm to letter predictions in a word sequence in
a given language, for example. Richard Bellman published an enhanced version
of the MDP in 1957.

Bellman also coined the expression "curse of dimensionality" and published
books on mathematical tools widely used today in AI. It is now well known that
dimensionality reduction can be performed to avoid facing thousands of dimensions
(features, for example) in an algorithm.

The logistic function (see Chapter 2, Building a Reward Matrix – Designing Your
Datasets) can be traced back to Pierre François Verhulst (1844-1845), a Belgian
mathematician. The logistic function uses e, the natural logarithm base, which is
also named Euler's number. Leonhard Euler (1707-1783) is a Swiss mathematician
who worked on this natural logarithm.

Thomas Bayes (1701-1761) invented the theorem that bears his name: Bayes'
Theorem. It is widely used in AI. We will be using it in Chapter 7, Optimizing
Blockchains with Naive Bayes.

Almost all of the applied mathematics in artificial intelligence, machine learning, and
deep learning can be traced from 17th century to 20th century mathematicians. We
must look elsewhere for 21st century AI innovations. We need to find what is truly
new in AI, which is also what helped it expand so rapidly in the early 21st century.

Neural networks are not new
Neural networks, as described by contemporary experts, date back to the 1940s and
1950s. Even convolutional neural networks (CNNs) date back to the 20th century.
Yann LeCun, a French computer scientist, laid down the basics of a CNN (see Chapter
9, Abstract Image Classifcation with Convolutional Neural Networks (CNNs)) in the 1980s;
he successfully applied them as we know them today in the 1990s.

Chapter 6

[125]

We must again look elsewhere for 21st century AI innovations.

If neural networks are not new either, we must find the real new factors in our
environment that produced the success of present-day AI.

Looking at disruption – the factors that are
making AI disruptive
Although the foundations of AI find their roots long before computers existed or
were widespread, it is only recently that we have seen AI truly begin to cause waves
within our society. In the following sections, we'll look at factors that have come
together to make AI a powerful force of disruption in recent years.

Cloud server power, data volumes, and web sharing
of the early 21st century
It's important to understand what has driven the emergency of AI in recent years.

Data volumes drive the emergence of AI in the 21st century. Processing data,
classifying data, and making predictions and decisions would be impossible without
AI driving the entire computer science market.

If you leave the fantasy surrounding AI behind you and bear this key necessity for
AI in mind, you will perfectly understand why AI has emerged and is here to stay.

The first sign of AI's innovative disruption appeared between the years 2000 and
2010. Before then, the internet existed, and servers existed. But, starting from around
2005, cloud servers were made widely available. With that kind of computing
power, developers around the world could try using the highly greedy resources
required by machine learning and deep learning. They could finally solve otherwise
impossible big data problems using AI.

At the same time, as powerful servers became available, the internet provided the
largest library of knowledge in the history of humanity.

On top of that, social networking became widely used. Sharing discoveries and
source code became commonplace. The World Wide Web (WWW) encouraged
open source software, boosting local research and development.

The era of artificial intelligence became possible for local experts starting from the
middle of the first decade of the 21st century.

What makes AI appear as an innovation today is the conjunction of more powerful
machines and the availability of intellectual resources.

Innovating AI with Google Translate

[126]

Public awareness
Public awareness of AI remained dim for several years after the cloud architectural
revolution occurred from around 1995 to 2005.

AI hit us hard by around 2015 when we all woke up realizing that AI could
massively replace humans and create job displacement at levels never before seen
in human history.

Worse, we realized that machines could beat us in fields we took pride in, such
as chess (Chapter 3, Machine Intelligence – Evaluation Functions and Numerical
Convergence), the game of Go, and video games. We see manufacturing jobs
increasingly performed by robots, office jobs being done by bots, and more fields
that are appearing every day.

For the first time in human history, the human species can be surpassed by a
new "species": smart bots. As developers, we thought we were safe until Google
presented AutoML, a solution that could create machine learning solutions better
than humans. At the same time, ready-to-use machine learning platforms have
spread that can reduce and even replace AI software development.

Artificial intelligence inspires both awe and fear. How far will machines go? Will
we simply experience job displacement, or will it go as far as species replacement?

Could this be an opportunity for many? Who knows? In any case, this chapter
provides some guidance to help you to think in a way that drives you to be
constantly innovating and being useful. In the age of Big Data, where we are often
faced with huge datasets, AI is here to stay; we won't be able to cope without it. Let's
make the most of it!

Before we begin to look into the incredible opportunities provided by AI, let's clarify
in our minds what exactly the differences are, first between invention and innovation,
and then revolution versus disruption. It is important to understand the impact that
what we are developing and implementing will have on the AI market.

Inventions versus innovations
Some AI programs, especially deep learning algorithms, remained inventions and
not innovations until Google and other major players used them on a large scale.

If you have invented a better algorithm than Google for some applications, it remains
an invention until it actually changes something in your corporation or on the web.

Suppose you find a quicker way to recognize an image through an optimized
number of neurons and a new activation function. If nobody uses it, then that
invention remains a personal theoretical finding no matter how good it appears.

Chapter 6

[127]

When others begin to use this new algorithm, then it becomes an innovation. An
invention becomes an innovation only when it changes a process within a company
or by a sufficient number of private users.

Revolutionary versus disruptive solutions
Suppose a new image recognition algorithm becomes an innovation in a significant
corporation. This new algorithm has gone from being an invention (not used) to
an innovation (a solution making a difference).

The corporation now widely uses the algorithm. Every subsidiary has access
to it. For this corporation, the new image recognition algorithm has attained a
revolutionary status. Corporate sales have gone up, and profit margins have as well.

But maybe this corporation does not dominate the market, and nobody has followed
its example. The innovation remains revolutionary but has not become disruptive.

Then, let's say the person who created the algorithm decides to leave the company
and start a business with the algorithm. It appears on GitHub as an open source
program. Everybody wants it and the number of downloads increases daily
until 1,000,000+ users have begun to implement it. Some very low-priced add-
ons are provided on the company website. Within a year, it becomes a new way
of recognizing images. All companies must follow suit or lag behind. The solution
has become disruptive because it has changed its market on a global scale.

Where to start?
We have now explored the basic concepts of creating AI. The first step in a
translation project using Google Translate is to take the algorithm as far as possible
using Google's API. As we will see in the next section, we will explore the limits
of Google Translate. Once the limit is found, creativity kicks in when we customize
Google Translate using AI.

We will discover that even if a solution exists, it has limits and can be improved,
customized, packaged, and sold. If there is a limit, there is a market.

Never criticize the flaws you find in an AI solution; they are gold mines!

Where there is a limit, there is an opportunity.

Let's go to the cutting edge and then over the border into uncharted territory
using Google Translate to illustrate this.

Innovating AI with Google Translate

[128]

Discover a world of opportunities with
Google Translate
Starting with Google Translate to explore NLP is a good way to prepare to use NLP
in web solutions. Any disruptive web-based solution must be able to run in at least
a few languages. You will need to master NLP in several languages to implement
a chatbot, a translation solution, and online information sites such as Wikipedia.

Google provides many resources to use, explore, or improve Google Translate.
Getting a Python code to run and then assess the quality of the results will prove
vital before implementing it for crucial translations in a company. Let's get Google
Translate running.

Getting started
Google's developers' API client library page is as follows: https://developers.
google.com/api-client-library/. On this page, you will see libraries for many
languages: Java, PHP, .NET, JavaScript, Objective-C, Dart, Ruby and more.

Then, go to the Python resources and follow the instructions to sign up, create
a project in the Google API Console, and install the library.

If you encounter problems doing this part or do not wish to install anything yet,
this chapter is self-contained. The source code is described in the chapter.

You are now ready to go, irrespective of whether you installed the tools.

The program
The goal of this section is to implement Google Translate functionality. You can
implement and run the program or first simply read the self-contained section.

The header
The standard Google header provided by Google should be enough to get the API
to work, as shown in the following code:

from googleapiclient.discovery import build

Considering the many languages Google manages, special characters are a major
problem to handle. Many forums and example programs on the web struggle with
the UTF-8 header when using Google Translate. Many solutions are suggested, such
as the following source code header.

-*- coding: utf-8 -*-

https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/

Chapter 6

[129]

Then, when Google Translate returns the result, more problems occur, and many
develop their own functions. They work fine, but I was looking for a straightforward
one-line solution. The goal here was not to have many lines of code but focus on the
limit of Google Translate to discover the cutting-edge interpreting languages in AI.

So, I did not use the UTF-8 header, but implemented it using the HTML library.

import html

When confronted with a result, the following one-line HTML parser code did the job.

print("result:", html.unescape(result))

It works well because Google will return an HTML string or a text string depending
on what option you implement. This means that the HTML module can do the job.

Implementing Google's translation service
Google's translation service needs at least three values to return a result:

• developerKey: This is the API key obtained at the end of the getting-started
process described previously.

• q="text to translate": In my code, I used source.
• target="abbreviation of the translated text": en for English, fr for

French, and so on.

More options are available, as described in the following sections.

With this in mind, the translation function will work as follows:

def g_translate(source,targetl):
 service = build('translate', 'v2',developerKey='your Key')
 request = service.translations().list(q=source,
 target=targetl)
 response = request.execute()
 return response['translations'][0]['translatedText']

In the Google_translate.py program, q and target will be sent to the function
to obtain a parsed result:

source="your text"
targetl="abbreviation of the target language"
result = g_translate(source,targetl)
print(result)

Innovating AI with Google Translate

[130]

To sum up the program, let's translate Google Translate into French, which contains
accents parsed by the HTML parser:

from googleapiclient.discovery import build
import html

def g_translate(source,targetl):
 service = build('translate', 'v2',developerKey='your key')
 request = service.translations().list(q=source,
 target=targetl)
 response = request.execute()
 return response['translations'][0]['translatedText']

source='Google Translate is great!'

targetl="fr"
result = g_translate(source,targetl)
print("result:", html.unescape(result))

Google_Translate.py works fine. The result will come out with the correct answer
and the parsed accent:

Google Translate est génial!

At this point, Google Translate satisfies a black box exploration approach. It is
disruptive, has changed the world, and can replace translators in many corporations
for all corporate needs.

In fact, we could end the chapter here, go to our favorite social network, and build
some hype on our translation project.

Happy ending?

Well, not yet!

We need to explore Google Translate from a linguist's perspective.

Google Translate from a linguist's perspective
A linguist's approach to the program will involve a deeper, white box sort of
exploration. The method will reveal many areas to improve.

By the time this book is published, perhaps Google will have improved the examples
in this chapter. But don't worry; in this case, you will quickly find hundreds of other
examples that are incorrect. The journey has just begun!

Chapter 6

[131]

Playing with the tool
Playing with a tool with random examples can lead to surprising results. This
exploratory source code is saved as Google_translate_a_few_test_expressions.
py.

The program simulates a dialog created by a person named Usty as follows:

source='Hello. My name is Usty!'

 >>>result:Bonjour. Je m'appelle Usty!

source='The weather is nice today'

 >>>result: Le temps est beau aujourd'hui

source='Ce professor me chercher des poux.'

 >>>result: This professor is looking for lice!

The first two examples look fine in French, although the second translation is a bit
strange. But in the third test, the expression chercher des poux means looking for trouble
in English, and not looking for lice, as translated into French.

A linguistic assessment of Google Translate will now be made.

Linguistic assessment of Google Translate
Assessing Google Translate correctly will lead directly to its limits.

Limits are the boundaries researchers crave! We are frontiersmen!

An expert-level assessment will lead the project team to the frontier and beyond.
To do this, we will first explore some linguistic methods.

Lexical field theory
Lexical fields describe word fields. A word only acquires its full meaning when
interpreted within a context. This context often goes beyond a few other words
or even a sentence.

Chercher des poux translated as such means look for lice. But in French, it can mean
looking for trouble or literally looking for lice. The result that Google Translate comes
up with contains three basic problems.

source='chercher des poux'

>>result: look for lice

Innovating AI with Google Translate

[132]

Problem 1 – the lexical field: There is no way of knowing whether this means
looking for lice or looking for trouble without a context.

Problem 2 – metaphors or idiomatic expressions: Suppose you have to translate this
is giving you a headache. There is no way of knowing whether it is a physical problem
or a metaphor meaning this is driving you crazy. These two idiomatic expressions
happen to have the same metaphors when translated into French. But the lice
metaphor in French means nothing in English.

Problem 3: chercher is an infinitive in French, and the result should have been looking
for lice in English. But entering chercher des limites est intéressant provides the right
verb form, which is looking for:

source='Chercher des limites est intéressant.'

>>>result:Looking for boundaries is interesting.

The answer is correct because is splits the sentence into two, making it easier for
Google Translate to identify chercher as the first part of a sentence, thus using looking
in English.

Lexical fields vary from language to language, but so does jargon.

Jargon
Jargon arises when fields specialize. In AI, the expression hidden neurons is jargon.
This expression means nothing to a lawyer, for example. A lawyer may think
you have hidden intelligence on the subject somewhere or are hiding money
in a cryptocurrency named hidden neuron.

In the same way, if somebody asks an AI expert to explain the exact meaning of filing
a motion, that would prove difficult.

In a corporate legal environment, beyond using Google Translate as a dictionary,
translating sentences might be risky if only a random number of results prove to be
correct.

If we add the jargon variations to the lexical variations from one language to another,
we can see that word-to-word translation does not work when a word is in a context.
Translating is thus more than just finding the most similar words in the language we
are translating to.

Translating is not just translating but interpreting
Sometimes, translating requires interpreting, as shown with the following sentence
taken from a standard description of French commercial law:

Chapter 6

[133]

source='Une SAS ne dispense pas de suivre les recommandations en vigueur
autour des pratiques commerciales.'

>>>result:An SAS does not exempt from following the recommendations in
force around commercial practices.

The French sentence refers to a type of company; SAS is similar to company types
like inc., ltd., and so on. In English, SAS means Special Air Service. Then comes the
grammar, which does not sound right.

A translator would write better English and also specify what an SAS is:

An SAS (a type of company in France) must follow the recommendations that cover
commercial practices.

Translating often means interpreting, and not simply translating words.

In this case, a legal translator may interpret the text in a contract and go as far as
writing:

The COMPANY must respect the legal obligation to treat all customers fairly.

The legal translator will suggest that COMPANY be defined at the beginning of the
contract to avoid confusion, such as the one Google Translate just made.

When reading about NLP, chatbots, and translation, everything seems easy.
However, working on Google Translate can easily turn into a nightmare!

Let's take one last example:

The project team is all ears

Google Translate provides the output in French:

source:"The project team is all ears".

>>>result: L'équipe de projet est tout ouïe.

In French, as in English, it is better to say project team and not use of to say the team
of the project. In French, we have équipe projet (équipe (team) appears before project).

From our examples so far, we can see that Google Translate is:

• Sometimes correct
• Sometimes wrong
• Sometimes partly correct and partly wrong

The problem now is how to know which category a translation is in.

Innovating AI with Google Translate

[134]

How to know whether a translation is correct
How can you check a translation if you do not know the language?

Be careful. If Google Translate provides randomly correct answers in another
language, then you have no way of knowing whether the translation is reliable
or not.

If you can't be confident that Google Translate is going to be correct, you may find
yourself in difficult situations; even sending the opposite of what you mean to
somebody important to you. You may misunderstand a sentence you are trying
to understand.

In a transportation company, for example, you could write an email stating that the
coach stopped and people were complaining:

source='The coach stopped and everybody was complaining.'

Google Translate, for lexical field reasons, got it wrong and translated coach as
a sports trainer in French, which would give a completely different meaning to
the sentence:

result: L'entraîneur s'est arrêté et tout le monde se plaignait..

Now, the situation can get worse. To help Google Translate, let's add some context.

source='The coach broke down and stopped and everybody was complaining.'

This answer is worse. Google Translate translates broke down correctly with the
French expression en panne but still translates coach as entraineur (trainer) in French,
meaning the trainer broke down, not the coach (bus).

result: L'entraîneur est tombé en panne et s'est arrêté et tout le monde
se plaignait.

Google will no doubt continue to improve the program as it has done since 2006.
For now, however, a human translator will find hundreds of expressions Google
Translate cannot deal with yet.

Understanding a sentence in your native language can prove difficult when a word
or an expression has several meanings. Adding a translation function to the issue
makes it even more difficult to provide a reliable answer.

And that is where we reach the frontier, just beyond the cutting edge, as we have
established the limits of Google Translate.

Chapter 6

[135]

In the next section, we'll look at some ways we could improve standard Google
Translate results. Although no silver bullet exists to verify a translation, we will
explore methods to improve the process. We will find a way to improve Google
Translate and implement it.

AI as a new frontier
Google has a great, but limited, translation program. Use the flaws to innovate! AI
research and development has just scratched the surface of the innovations to come.

First, implement an AI solution. Then, use it for what it is. But don't accept its limits.
Don't be negative about it. Innovate! Imagine ideas or listen to other ideas you like
and build solutions in a team! Google might even publish your solutions!

Improving Google Translate for any translation is impossible. A realistic approach
is to focus on customizing Google Translate for a given domain, such as the
transportation company in this example. In the next section, we will focus on ways
to customize Google Translate.

Lexical field and polysemy
Google_Translate_Customized.py will provide ideas on how to improve Google
Translate in a specific area. This section focuses on the transportation vocabulary
error Google Translate made. Once again, Google may rapidly correct this error,
but the method can be applied to the many remaining errors.

A lexical field contains words that form sets and subsets. They differ from one
language to another. A language itself forms a set and contains subsets of lexical
fields.

Colder countries have more words describing water in its frozen form than tropical
countries where snow hardly ever falls. A lexical field of cold could be a subset of C:

C = {ice, hail, snowflakes, snowman, slushy, powder, flake, snowball, blizzard, melting,
crunch … n}

The curse of dimensionality applies here. Words contain an incredible number
of dimensions and definitions. To translate certain expressions, Google Translate
suppresses their dimensions and reduces them.

Google Translate often uses n-grams to translate. An n-gram is a fixed-length
sequence of tokens. Tokens can be a word, a character, or even a numerical
representation of words and characters.

Innovating AI with Google Translate

[136]

The probability that token n means something is calculated given the preceding/
following n – x or n + x tokens. x is a variable depending on the algorithm applied.

For example, slushy has a special meaning in the expression slushy snow. The snow
is partly melting, it's watery and making a slushing sound when we walk through it.
Melting is only one component of the meaning of slush.

Google Translate, at this point, will only translate slushy snow in French by:

neige (snow) fondante (melting)

Google Translate will also translate melting snow by:

neige (snow) fondante (melting)

To translate slushy into French, you have to use a phrase. To find that phrase, you
need some imagination or have some parsed (searched) novels or other forms of
speech representations. That takes time and resources. It will most probably take
years before Google Translate reaches an acceptable native level in all the languages
publicized.

Another dimension to take into account is polysemy.

Polysemy means a word can have several very different meanings in a language.
The equivalent word in another language may simply have one meaning or other,
very different meanings.

"Go + over" in English can mean go over a bridge or go over some notes. At this point
(hopefully it will improve by the time you read this book), it is translated in both
cases in French by aller sur. This means to go on (not over), which is incorrect in
both cases. Prepositions in English constitute a field in themselves, generating many
meanings with the same word. The verb go can have a wide list of meanings: go up
(upstairs), go up (stock market), go down (downstairs), go down (fall apart), and many
more possibilities besides.

The prototype customized program starts with defining X. A small dataset
to translate that will be more than enough to get things going:

X=['Eating fatty food can be unhealthy.',
 'This was a catch-22 situation.',
 'She would not lend me her tote bag',
 'He had a chip on his shoulder',
 'The market was bearish yesterday',
 'That was definitely wrong',
 'The project was compromised but he pulled a rabit out of his hat',
 'So just let the chips fall where they may',
 'She went the extra mile to satisfy the customer',

Chapter 6

[137]

 'She bailed out when it became unbearable',
 'The term person includes one or more individuals, labor unions,
partnerships, associations, corporations, legal representatives,
mutual companies, joint-stock companies, trusts, unincorporated
organizations, trustees, trustees in bankruptcy, or receivers.',
 'The coach broke down, stopped and everybody was complaining']

Google Translate will automatically translate these sentences.

X1, as implemented in the following code, defines some keywords statistically related
to the sentences; it applies the n-gram probability theory described previously.

X1=['grasse',
 'insoluble',
 'sac',
 'aggressif',
 'marché',
 'certainement',
 'chapeau',
 'advienne',
 'supplémentaire',
 'parti',
 'personne',
 'bus']

Each line in X1 goes with the corresponding line in X. As explained, this only remains
a probability and may not be correct.

We are not seeking perfection at this point but an improvement.

Let's explore how we can improve Google Translate by customizing translations by
implementing a KNN in a Python program.

Exploring the frontier – customizing Google
Translate with a Python program
Now it's time to add some customized novelties. The use of the vectors in this section
will be explained in the next section, again through the source code that uses them.

If you find spelling mistakes or minor mistakes, do not correct them
during the training phase. Some amount of noise is required to
reproduce human and machine errors to avoid overfitting.

Innovating AI with Google Translate

[138]

A trigger vector will force the program to try an alternate method to translate
a mistranslated sentence. When the sentence has been identified, and if its value
in X2 is equal to 1, it triggers a deeper translation function, as implemented here:

X2=[0,0,0,1,0,0,0,0,0,0,0,1]

0 and 1 are flags. Each value represents a line in X.

The example is taken from a transportation business. A transportation phrase
dictionary should be built. In this case, a general phrase_translation dictionary
has been implemented with one expression, as shown in the following array.

phrase_translation=['','','','Il est
agressif','','','','','','','','']

What remains to be done in order to fill up this dictionary?

• Scan all the documents of the company—emails, letters, contracts, and every
form of written documents.

• Store the embedded words and sentences.
• Train the team to use the program to improve it by providing feedback

(the right answer) in a learning interface when the system returns incorrect
answers.

What Google Translate cannot do on a global scale, you can implement at a local
scale to improve the system significantly.

Now that we have defined a method, we will dig into the KNN algorithm.

k-nearest neighbor algorithm
No matter how you address a linguistic problem, it will always boil down to the
concept of context. When somebody does not understand somebody else, they
say: "you took my words out of their context," or "that is not what I meant; let me
explain."

Note for developers: To use this method correctly, all the values
of this vector should be set to 1. That will automatically trigger
several alternate methods to translate Google Translate errors.
A lot of work remains to be done here!

Chapter 6

[139]

As explained before, in many cases, you cannot translate a word or expression
without a lexical field. The difficulty remains proportional to the polysemy property,
as the program will show.

Using the KNN algorithm as a classification method can prove extremely useful.
Any language interpretation (translation or chatbot) will have to use a context-
oriented algorithm.

By finding the words closest (neighbors) to each other, KNN will create the
lexical fields required to interpret a language. Even better, when provided
with the proper datasets, it will solve the polysemy problem, as shown in the
upcoming sections.

Implementing the KNN algorithm
Generally, a word requires a context to mean something. Looking for "neighbors"
close by provides an efficient way to determine where the word belongs.

KNN is supervised because it uses the labels of the data provided to train its
algorithm. KNN, in this case, is used for classification purposes. For a given point p,
KNN will calculate the distances to all other points. Then, k represents the k-nearest
neighbors to take into account.

Let's clear this up by means of an example. In English, the word "coach" can mean
a trainer on a football field, a bus, or a railroad passenger car. In a transportation
company, "coach" will mostly be a bus that should not be confused with a trainer:

• Step 1: Parsing (examining in a detailed manner) texts with "coach" as a
bus and "coach" as a trainer. Thus, the program is searching for three target
words: trainer, bus, and coach.

• Step 2: Finding some words that appear close to the target words we are
searching for. As recommended, do the following:

 ° Parse all the company documents you can use with a standard
program.

 ° Use a Python function such as if(n-gram in the source) then
store the data.

Innovating AI with Google Translate

[140]

In this case, the V1.csv file shown in the following output excerpt provided with the
source code contains the result of such a parsing function:

broke,road,stopped,shouted,class

1,3.5,6.4,9,trainer

1,3.0,5.4,9,trainer

1,3.2,6.3,9,trainer

...

6.4,6.2,9.5,1.5,bus

2,3.2,9,1,bus

6.4,6.2,9.5,1.5,bus

...

3.3,7.3,3.0,2.5,coach

4.7,5.7,3.1,3.7,coach

2.0,6.0,2.7,3.1,coach

Generating files such as V1.csv is not in the scope of this chapter or book.
However, you can start, among other sites, by exploring scikit-learn's text document
functionality at the following link:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_
text_data.html

The program parsed emails, documents, and contracts. Each line represents the
result of parsing one document. The numbers represent the occurrences (number of
times the word was present). The numbers have been "squashed" (divided again and
again) to remain small and manageable. For more on how to work with text data,
please click on the scikit-learn link in the previous paragraph.

Progressively, the words that came out with "trainer" were "shouted" more than
"stopped." For a bus, "broke" (broken down as in breaking down), "road," and
"stopped" appeared more than "shout."

"Coach" appeared on an average of "shouted," "stopped," "road," and "broke" because
it could be either a trainer or a bus, hence the problem we face when translating this
word. The polysemy (several meanings) of "coach" can lead to poor translations.

The KNN algorithm loaded the V1.csv file that contains the data to be trained and
finds the following result:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

Chapter 6

[141]

Figure 6.1: Result from the KNN algorithm

The knn_polysemy.py program determined the following:

• The verb "broke" in blue has a better chance of applying to a bus (x axis value
> 6) than to a trainer (x axis value < 4). However, "coach" remains above
"trainer" and below "bus" because it can be both.

• The word "road" follows the same logic as the blue chart.
• The verb "stopped" can apply to a trainer and more to a bus. "Coach" remains

undecided again.
• The verb "shouted" applies clearly to a trainer more than a bus. "Coach"

remains undecided again.

Note that the coordinates of each point in these charts are as follows:

• y axis: bus = 1, coach = 2, and trainer = 3.
• x axis: The value represents the "squashed" occurrence (the number of times

the word appeared) values.

This is the result of the search for those words in many sources.

Innovating AI with Google Translate

[142]

When a new point, a data point named Pn is introduced into the system, it will find
its nearest neighbor(s) depending on the value of k.

The KNN algorithm will calculate the Euclidean distance between Pn and all the
other points from P1 to Pn – 1 using the Euclidean distance formula. The k in KNN
represents the number of "nearest neighbors" the algorithm will take into account
for classification purposes. The Euclidean distance (d1) between two given points,
for example, between Pn(x1, y1) and P1(x2, y2), is:

𝑑𝑑1(𝑃𝑃𝑛𝑛, 𝑃𝑃1) = √(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)22

Considering the number of distances to calculate, a function such as the one
provided by sklearn.neighbors proves necessary.

The knn_polysemy.py program
The program imports the V1.csv file described previously, prints a few lines, and
prepares the labels in the correct arrays in their respective x axis and y axis, as shown
in this source code example:

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
Import data
df = pd.read_csv('V1.csv')
print (df.head())
KNN Classification labels
X = df.loc[:,'broke':'shouted']
Y = df.loc[:,'class']

Then the model is trained, as shown in the following code:

Trains the model
knn = KNeighborsClassifier()
knn.fit(X,Y)

Once the model is trained, a prediction is requested and is provided by the following
code:

Requesting a prediction
#broke and stopped are
#activated to see the best choice of words to fit these features.
brock and stopped were found in the sentence to be interpreted.
In X_DL as in X, the labels are : broke, road, stopped,shouted.
X_DL = [[9,0,9,0]]

Chapter 6

[143]

prediction = knn.predict(X_DL)
print ("The prediction is:",str(prediction).strip('[]'))

This is the result displayed:

The prediction is: 'bus'

The initial data is plotted for visualization purposes, as implemented in the following
code:

#Uses the same V1.csv because the parsing has
been checked and is reliable as "dataset lexical rule base".
df = pd.read_csv('V1.csv')
Plotting the relation of each feature with each class
figure,(sub1,sub2,sub3,sub4) = plt.subplots(
 4,sharex=True,sharey=True)
plt.suptitle('k-nearest neighbors')
plt.xlabel('Feature')
plt.ylabel('Class')
X = df.loc[:,'broke']
Y = df.loc[:,'class']
sub1.scatter(X, Y,color='blue',label='broke')
sub1.legend(loc=4, prop={'size': 5})
sub1.set_title('Polysemy')
X = df.loc[:,'road']
Y = df.loc[:,'class']
sub2.scatter(X, Y,color='green',label='road')
sub2.legend(loc=4, prop={'size': 5})
X = df.loc[:,'stopped']
Y = df.loc[:,'class']
sub3.scatter(X, Y,color='red',label='stopped')
sub3.legend(loc=4, prop={'size': 5})
X = df.loc[:,'shouted']
Y = df.loc[:,'class']
sub4.scatter(X, Y,color='black',label='shouted')
sub4.legend(loc=4, prop={'size': 5})
figure.subplots_adjust(hspace=0)
plt.show()

A compressed version of this program has been introduced in Google_Translate_
Customized.py, as shown here:

def knn(polysemy,vpolysemy,begin,end):
 df = pd.read_csv(polysemy+'.csv')
 X = df.loc[:,'broke':'shouted']
 Y = df.loc[:,'class']

Innovating AI with Google Translate

[144]

 knn = KNeighborsClassifier()
 knn.fit(X,Y)
 prediction = knn.predict(vpolysemy)
 return prediction

The description is as follows:

• polysemy is the name of the file to read because it can be any file.
• vpolysemy is the vector that needs to be predicted.
• In future, in the to-do list, begin should replace broke and end should

replace shouted so that the function can predict the values of any vector.
• The KNN classifier is called and the prediction returned.

Now that we have prepared the KNN classifier function, we can customize Google
Translate.

Implementing the KNN function in Google_
Translate_Customized.py
This program requires more time and research because of the concepts of linguistics
involved. The best way to grasp the algorithm is to run it in order.

Google Translate offers various translation methods. We will focus on two of them in
the following code:

#print('Phrase-Based Machine Translation(PBMT)model:base'): #m='base'
print('Neural Machine Translation model:nmt')

These are explained as follows:

• Phrase-based machine translation (PBMT): This translates the whole
sequence of words. The phrase, or rather phraseme (multi-word expression),
is not always quite a sentence.

• Neural machine translation (NMT): This uses neural networks such as a
recurrent neural network (RNN), which will be detailed later in this book.
This method goes beyond the phraseme and takes the whole sentence into
account. In terms of the dataset presented in this chapter, this neural network
method provides slightly better results.

Both methods and Google's other approaches are interesting, but Google Translate
still requires additional customized algorithms to reach an acceptable level of quality
in many cases. In this chapter, we are exploring one approach with a KNN, but you
can use others as long as they work.

Chapter 6

[145]

As you have seen so far, the subject is extremely complex if you take the lexical
fields and structures of the many languages, their regional variations, and jargon
into account.

Step 1 – translating the X dataset line by line from English
into French
The following code calls the translation function:

for xi in range(len(X)):
 source=X[xi]
 targetl="fr";m='nmt'
 result = g_translate(source,targetl,m)

The code is explained as follows:

• xi is the line number in X.
• source is the xi line in X.
• targetl is the target language, in this case, fr (French).
• m is the method (PBMT or NMT), as described previously. In this case, nmt

is applied.
• Then, the Google Translate function is called as described earlier in this

chapter. The result is stored in the result variable.

Step 2 – backtranslation
How can somebody know the correctness of a translation from language L1
to language L2 if L1 is the person's native language, and L2 is a language the person
does not understand at all?

This is one of the reasons, among others, that translators often use backtranslation
to check translations:

Translation = Initial translation from L1 to L2

Backtranslation = Translation back from L2 to L1

If the initial text is not obtained, then there is probably a problem. In this case, the
length of the initial sentence L1 can be compared to the length of the same sentence
translated back to L1. The following code calls backtranslation:

 back_translate=result
 back_translate = g_translate(back_translate,targetl,m)
 print("source:",source,":",len(source))
 print("result:",result)
 print("target:",back_translate,":",len(back_translate))

Innovating AI with Google Translate

[146]

Length comparison can be used to improve the algorithm:

Length of the initial n-gram = Length of the backtranslation

If it's equal, then the translation may be correct. If not, it could be incorrect. Of
course, more methods must be applied during each translation. However, a method
that leads to improvement is already a good step. In this case, the source (initial
sentence) is compared to the backtranslation in the following code:

 if(source == back_translate):
 print("true")
 if((term not in words)and (xi!=4)):
 t+=1
 else:
 f+=1;print("false")

• t is a True counter.
• f is a False counter.

The first line of X runs as follows:

source: Eating fatty food can be unhealthy. : 35

result: Manger de la nourriture grasse peut être malsain.

target: Eating fat food can be unhealthy. : 33

false

Eating fatty food is backtranslated as eating fat food, which is slightly wrong.
Something may be wrong.

The French sentence sounds wrong, too. Fatty food cannot be translated as such.
Usually, the common sentence is manger gras, meaning eating (manger) fatty (gras),
which cannot be translated into English as such.

Several phrases come back with a false translation, for example, X[4], 'He had a
chip on his shoulder'. I programmed a phrase-based translation using a trigger
in the False condition in the following code.

The X array referred to in this section starts at line 8:

X=['Eating fatty food can be unhealthy.',
 'This was a catch-22 situation.',
 'She would not lend me her tote bag',
 'He had a chip on his shoulder',
....]

Chapter 6

[147]

 else:
 f+=1;print("false")
 if(X2[xi]>0):
 DT=deeper_translate(source,xi)
 dt+=1

Since I did not write a complete application for this book, but just some examples
that can be extended in the future, I used X2 as a trigger. If X2[x1]>0, then the
deeper_translate function is activated.

Step 3 – deeper translation with phrase-based translations
deeper_translate has two arguments:

• source: The initial sentence to translate
• x1: The target sentence

In this case, the problem to solve is an idiomatic expression that exists in English but
does not exist in French:

source: He had a chip on his shoulder : 29

result: Il avait une puce sur son épaule

target: He had a chip on his shoulder : 29

false

To have a chip on the shoulder means to have an issue with something or somebody.
It expresses some form of tension.

Google translated chip by assuming computer chip, or puce in French, which means
both computer chip and flea. The translation is meaningless.

Chip enters three categories and should be labeled as such:

• Idiomatic expression
• Jargon
• Polysemy

At this point, the following function I created simulates the phrase-based solution
to implement deeper translations.

def deeper_translate(source,index):
 dt=source
 deeper_response=phrase_translation[index]
 if(len(deeper_response)<=0):
 print("deeper translation program result:",
 deeper_response,":Now true")

Innovating AI with Google Translate

[148]

The deeper_translate function looks for the translated sentence containing chip
in the following phrase_translation array (list, vector, or whatever is necessary).

phrase_translation=['','','','Il est
agressif','','','','','','','','']

The final result comes out with a translation, backtranslation, term search, and
phrase translation. The following is the result produced, with comments added
here before each line:

Initial sentence:

source: He had a chip on his shoulder : 29

Wrong answer:

result: Il avait une puce sur son épaule

The back-translation works:

target: He had a chip on his shoulder : 29

term: aggressif

false

deeper translation program result: Il est agressif

The question is, where did term come from?

term comes from X1, a list of keywords that should be in the translation. X1 has been
entered manually, but it should be a list of possibilities resulting from an automatic
search conducted on the words in the sentence viewed as classes. This means that the
sentence to be translated should have several levels of meaning, not just the literal
one that is being calculated.

The actual True/False conditions contain the following deeper translation-level
words to check:

 if(source == back_translate):
 print("true")
 if((term not in words) and (xi!=4)):
 t+=1
 else:
 f+=1;print("false")
 if(X2[xi]>0):
 DT=deeper_translate(source,xi)
 dt+=1

In the present state of the prototype, only example four activates a phrase-based
translation. Otherwise, True is accepted. If False is the case, the deeper translation
is only activated for two cases in this sample code. The flag is in X2 (0 or 1).

Chapter 6

[149]

deeper_translate is called for either the phrase-based translation (described
previously) or the KNN routine, which is activated if the phrase-based translation
did not work.

If the translation did not work, an n-gram is prepared for the KNN algorithm,
as shown in the following code:

 if(len(deeper_response)<=0):
 v1=0
 for i in range(4):
 ngram=V1[i]
 if(ngram in source):
 vpolysemy[0][i]=9
 v1=1

V1[i] contains the keywords (n-grams) described in the preceding KNN algorithm
for the transport lexical field, as shown in the following code:

V1=['broke','road','stopped','shouted','coach','bus','car',
 'truck','break','broke','roads','stop']

The source (sentence to translate) is parsed for each n-gram. If the n-gram is found,
the polysemy vector is activated for that n-gram. The initial values are set to 0,
as shown in the following code:

vpolysemy=[[0,0,0,0]]

The variable v1 is activated, which informs the program that V1.csv must be read
for this case. An unlimited number of KNN references should be automatically
created, as described previously in the KNN section.

In this case, only v1 is activated. But after several months of working on the project
for the company to customize their local needs, many other files should be created.

In this case, when v1 is activated, it fills out the variables as follows.

 if(v1>0):
 polysemy='V1'
 begin=str(V1[0]).strip('[]');end=str(V1[3]).strip('[]')
 sememe=knn(polysemy,vpolysemy,begin,end)

• polysemy indicates the KNN file to open.
• begin is the first label of the V1 vector and end is the last label of the V1

vector.
• sememe is the prediction we expect.

Innovating AI with Google Translate

[150]

Now, a condensed version of the KNN algorithm is called, as described previously
for knn_polysemy.py, in the following code:

def knn(polysemy,vpolysemy,begin,end):
 df = pd.read_csv(polysemy+'.csv')
 X = df.loc[:,begin:end]
 Y = df.loc[:,'class']
 knn = KNeighborsClassifier()
 knn.fit(X,Y)
 prediction = knn.predict(vpolysemy)
 return prediction

The example, in this case, is the polysemy feature of a coach, as explained in the KNN
section. The output will be produced as follows:

Source: The coach broke down, stopped and everybody was complaining : 59

result: L'entraîneur est tombé en panne, s'est arrêté et tout le monde se
plaignait

target: The coach broke down, stopped, and everyone was complaining : 59

term: bus

false

The translation is false because Google Translate returns trainer instead of bus.

The term bus is identical in English and French.

The KNN routine returned bus in English as the correct word to use when broke down
and stopped were found, as shown in the KNN section.

The goal of the rest of the source code in the deeper_translate function is to
replace coach—the word increasing the polysemy feature to translate—with a better
word (limited polysemy) to translate: sememe.

The sememe variable is initialized by the KNN function in the following code:

 sememe=knn(polysemy,vpolysemy,begin,end)
 for i in range(2):
 if(V1_class[i] in source):
 replace=str(V1_class[i]).strip('[]')
 sememe=str(sememe).strip('[]')
 dtsource = source.replace(replace,sememe)
 targetl="fr";m='base'
 result = g_translate(dtsource,targetl,m)
 print('polysemy narrowed result:',result,
 ":Now true")

Chapter 6

[151]

The function replaces coach by bus found by the KNN algorithm in the English
sentence and then asks Google Translate to try again. The correct answer is returned.

Instead of trying to translate a word with too many meanings (polysemy),
the deeper_translate function first replaces the word with a better word
(less polysemy). Better results will often be attained.

Step 3.1 – adding a frequentist error probability function
A frequentist error probability function is added to measure performance, as shown
in the following code:

def frequency_p(tnumber,cnumber):
 ff=cnumber/tnumber #frequentist interpretation and probability
 return ff

• cnumber is the number of false answers returned by Google Translate.
• tnumber is the number of sentences translated.
• ff gives a straightforward error (translation) probability, ETP.

The function is called when a translation is false, or f>0, as implemented in the
following code:

 if(f>0):
 B1=frequency_p(xi+1,f) #error detection probability before
deep translation
 B2=frequency_p(xi+1,f-dt) #error detection probability after
deep translation
 if(f>0):
 print("ETP before DT",round(B1,2),
 "ETP with DT",round(B2,2))
 else:
 print('Insufficient data in probability distribution')

• B1 is the error (translation) probability (ETP) before the deeper_translate
function is called.

• B2 is the ETP after the deeper_translate function is called.

At the end of the program, a summary is displayed, as shown in the following
output:

print("------Summary------")
print('Neural Machine Translation model:nmt')
print('Google Translate:',"True:",t,"False:",f,'ETP',round(f/
len(X),2))
print('Customized Google Translate:',"True:",t,"False:",f-

Innovating AI with Google Translate

[152]

dt,'ETP',round((f-dt)/len(X),2))
a=2.5;at=t+a;af=f-a #subjective acceptance of an approximate result
print('Google Translate acceptable:',"True:",at,"False:",af,'ETP',roun
d(af/len(X),2))
#The error rate should decrease and be stabilized as the KNN knowledge
base increases
print('Customized Google Translate acceptable:',"True:",at,"False:",
af-dt,'ETP',round((af-dt)/len(X),2))

• A subjective acceptance of an approximate result has been added to increase
the true probability.

• The error rate should decrease as the quality of the KNN knowledge
base increases. In frequent probability theory, this means that a stabilized
prediction rate should be reached.

We've come to the end of our attempts to improve Google Translate. Let's consider
some of the conclusions following our experiment.

Conclusions on the Google Translate customized
experiment
The final error (translation) probability produced is interesting, as shown in the
following output:

>>------Summary------

>>Neural Machine Translation model:nmt

>>Google Translate: True: 2 False: 8 ETP 0.67

>>Customized Google Translate: True: 2 False: 7 ETP 0.58

>>Google Translate acceptable: True: 4.5 False: 5.5 ETP 0.46

>>Customized Google Translate acceptable: True: 4.5 False: 4.5 ETP 0.38

Even with its NMT model, Google Translate is still struggling.

This provides great opportunities for AI linguists, as shown with some of the
methods presented to improve Google Translate at a local level that could go even
further.

This experiment with Google Translate shows that Google has just scratched the
surface of real-life translations that sound right to the native speakers that receive
these translations. It would take a real company project to get this on track with
a financial analysis of its profitability before consuming resources.

Chapter 6

[153]

The disruptive revolutionary loop
As you can now see, Google Translate, like all AI solutions, has its limits. Once this
limit has been reached, you are at the cutting edge.

Cross the border into AI Frontierland; innovate on your own or with a team.

If you work for a corporation, you can create a revolutionary customized solution for
hundreds of users. It does not have to go public. It can remain a strong asset to your
company.

At some point or other, the revolutionary add-on will reach beyond the company,
and others will use it. It will become disruptive.

Finally, others will reach the limit of your now-disruptive solution. They will then
innovate and customize it in their corporation as a revolutionary solution. This is
what I call the disruptive revolutionary loop. It is challenging and exciting because it
means that AI developers will not all be replaced in the near future by AutoAI bots!

Designing a solution does not mean it will be an invention, an innovation,
revolutionary, or disruptive. But that does not really matter. What a company earns
with a solution represents more than the novelty of what it sells as long as it is
profitable. That is rule number 1. That said, without innovating in its market, that
company will not survive through the years.

If a product requires quality for security reasons, it should remain in its invention
state as long as necessary. If a product can produce sales at the low end of the
market before its total completion, then the company should sell it. The company
will acquire a reputation for innovation, get more money to invest, and take over
the territory of its competitors.

Summary
Google Translate is a good example of disruptive marketing. As shown, the theory,
the model, and even the cloud architecture are over 10 years old. But each time one
of the hundreds of millions of users stumbles across it, it creates more disruption by
hooking the user onto Google solutions. The user will come back again and again to
view more advertisements, and everyone is happy!

AI has only just begun. Google Translate has been around since 2006. However,
the results still leave room for developers, linguists, and mathematicians to improve
upon. Google has added a neural network and offers other models to improve
translations by analyzing whole sentences. How long will it take to be really reliable?
In the meantime, the world community is moving AI forward beyond the cutting
edge into Frontierland.

Innovating AI with Google Translate

[154]

In this chapter, we first carefully explored the difference between inventing and
innovation. An innovation has an impact on the rest of the market. An invention
is just the starting point of an innovation. We saw that a revolutionary solution
could be a technical breakthrough. But that revolutionary solution will only
become disruptive when it spreads out to the rest of the market.

We then studied some basic linguistics principles that could help us understand
Google Translate, its limits, and how to improve translation errors.

We finally implemented a customized translation tool using a KNN to work around
Google Translate errors.

In the next chapter, Chapter 7, Optimizing Blockchains with Naive Bayes, we will go
further in our investigation of the new frontier of AI by using blockchains to make
predictions in corporate environments.

Questions
1. Is it better to wait until you have a top-quality product before putting it on

the market? (Yes | No)
2. Considering the investment made, a new product should always be priced

high to reach the top segment of the market. (Yes | No)
3. Inventing a new solution will make it known in itself. (Yes | No)
4. AI can solve most problems without using standard non-learning algorithms.

(Yes | No)
5. Google Translate can satisfactorily translate all languages. (Yes | No)
6. If you are not creative, it is no use trying to innovate. (Yes | No)
7. If you are not a linguist, it is no use bothering with trying to improve Google

Translate. (Yes | No)
8. Translating is too complicated to understand. (Yes | No)
9. AI has already reached its limits. (Yes | No)

Further reading
• The Harvard Business Review on disruptive innovations can be found here:

https://hbr.org/2015/12/what-is-disruptive-innovation

• Google Translate documentation can be found here: https://cloud.
google.com/translate/docs/

https://hbr.org/2015/12/what-is-disruptive-innovation
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/

Chapter 6

[155]

• Google AlphaGo Zero: https://deepmind.com/blog/article/alphago-
zero-starting-scratch

• KNN documentation: http://scikit-learn.org/stable/modules/
neighbors.html#neighbors

• Insights on translation ANNs: https://research.googleblog.
com/2016/09/a-neural-network-for-machine.html

• Insights on English-French translations: http://www.oneskyapp.com/blog/
french-translation-challenges/

• More on how to work with text data to build datasets for your algorithms:
https://scikit-learn.org/stable/tutorial/text_analytics/
working_with_text_data.html

https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://deepmind.com/blog/article/alphago-zero-starting-scratch
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

[157]

7
Optimizing Blockchains

with Naive Bayes
In this three-part chapter, we will use blockchains to optimize a supply chain
using naive Bayes. To achieve this goal, we will first start by understanding how
a blockchain is generated using cryptocurrency as an example.

Blockchains have entered corporations and are here to stay. Hundreds of major
corporations have implemented IBM Hyperledger. Suppliers of these corporations
will gradually join the network. Corporate blockchains will provide work for many
years to come thanks to the millions of lines of code to update with new features
and maintain.

Mining cryptocurrency represents the most known use of blockchains.
Cryptocurrencies are growing around the world. This chapter starts by explaining
how the mining aspect of blockchains works, using bitcoins as an example.

We will then move on and analyze how to use blockchains for a different purpose
than generating cryptocurrency. Corporations use blockchains to record transactions
between companies, for example.

IBM was founded in 1911, making it the most experienced company in its field
today. Google, Amazon, and Microsoft also offer history-making machine learning
platforms. However, IBM offers machine learning platforms that are supported by
the 100+ years of experience that the company can bring to bear.

Optimizing Blockchains with Naive Bayes

[158]

Some of IBM's many years in the computer and software market were bumpy.
Some terrible decisions caused the company a lot of problems across the world.
IBM learned from those mistakes and now offers robust solutions, including IBM
Hyperledger for blockchain solutions. IBM advocates using blockchains for corporate
transactions.

We will finally move to the third part of this chapter, which explains what
blockchains mean for companies around the world and how to use the information
blockchains to provide optimizing algorithms with artificial intelligence. Naive
Bayes will be applied to a blockchain sample to optimize stock levels.

The following topics will be covered in this chapter:

• The background of blockchain
• Using blockchains to mine bitcoins
• Using blockchains for business transactions
• How the blocks of a blockchain provide a unique way to share information

between companies
• Applying artificial intelligence to the blocks of a blockchain to predict and

suggest transactions
• Naive Bayes
• How to use naive Bayes on blocks of a blockchain to predict further

transactions and blocks

Let's begin with a short introduction to blockchain.

Part I – the background to blockchain
technology
In this section, we will go through cryptocurrency mining with blockchains.
Producing bitcoins with blockchains made the technology disruptive. The purpose
of this section is to understand how the blockchain adventure started before moving
on to subsequent uses of blockchain technology.

Blockchain technology will transform transactions in every field. Blockchains
appeared in 2008. Nobody knows for sure who invented them. Each block contains
an encrypted hash of its predecessor (previous block), the DateTime (timestamp)
data, and the information regarding the transaction.

Chapter 7

[159]

For more than 1,000 years, transactions have been mostly local book-keeping
systems. For the past 100 years, even though the computer age changed the way
information was managed, things did not change that much. Each company
continued to keep its transactions to itself, only sharing some information through
tedious systems.

Blockchain makes a transaction block visible to the global network it has been
generated in.

The fundamental concepts to keep in mind are sharing and privacy control. The two
ideas seem to create a cognitive dissonance, something impossible to solve. Yet it has
been solved, and it will change the world.

When a block (a transaction of any kind) is generated, it is shared with the entire
network. Permissions to read the information within that block remain manageable
and thus private if the regulator of that block wants the information to stay private.

Whether the goal is to mine bitcoins through blocks or use blocks for transactions,
artificial intelligence will enhance this innovation shortly.

In the coming sections, we'll talk about blockchain and its applications in some
further detail. Understanding how to produce blocks for cryptocurrency will enable
us to grasp blockchain technology. Once we understand blockchain technology,
it is easier to see how this secure encrypted method can be applied to any type
of business transaction beyond cryptocurrencies. Let's go mining first!

Mining bitcoins
Creating a block in a blockchain does not necessarily have to generate a bitcoin,
which is a form of transaction like any other. But understanding how to mine
cryptocurrency provides a good way to understand blockchains and how to
apply them to many other fields.

Mining a bitcoin means creating a mathematical block for a valid transaction
and adding this block to the chain; the blockchain:

Blockchain = {block1, block2, the block just added … blockn}

The blockchain cannot go back in time. It is like a time-dating feature in life. At
minute m, you do something, at minute m + 1 something else, at minute m + n
something else, and so on. You cannot travel back in time. What is done is done.

When a block is added to the bitcoin chain, there is no way of undoing the
transaction.

Optimizing Blockchains with Naive Bayes

[160]

The global network of bitcoin mining consists of nodes. With the appropriate
software, you leave a port open, allocate around 150+ GB of disk space, and generate
new blocks. The nodes communicate with each other, and the information is relayed
to the other nodes around the whole network.

For a node to be a miner, it must solve complex mathematical puzzles that are part
of the bitcoin program.

To solve the puzzle, the software must find a number that fits in a specific range
when combined with the data in the block being generated. The number is passed
through a hash function.

You can call the number a nonce, and it is used only once. For example, an integer
between 0 and 4,294,967,296 for a bitcoin must be generated.

The process is random. The software generates a number, passes it through the hash
function, and sends it out to the network. The first miner who produces a number
in the expected range informs the whole network that that particular block has been
generated. The rest of the network stops working on that block and moves on to
another one.

The reward for the miner is naturally paid out in bitcoins. It represents a lot
of money, but it's hard to get, considering the competition in the network and the
cost required (CPU, electricity, disk space, and time) to produce correct results.

Having talked about mining bitcoin, we'll briefly discuss actually using
cryptocurrency.

Using cryptocurrency
Be very careful with cryptocurrency. There are now 1,500+ cryptocurrencies.
The concept sounds fascinating, but the result remains currency. Currency can be
volatile, and you can lose your life's savings in less than an hour if a crash occurs.

A constant balance must be maintained between the cost of mining
a bitcoin, or any other cryptocurrency, and the amount received for
mining it.

Golden rule: If you cannot resist investing in cryptocurrencies,
do not invest more than you can afford to lose.

Chapter 7

[161]

That being said, to use cryptocurrency, first set up a wallet to store your bitcoins,
for example. The wallet can be online, through a provider, or even offline.

Once that is done, you will be able to purchase bitcoins as you wish in hard cash
or using credit cards, debit cards, and transfers.

Remember, you are buying these currencies like any other currency with all the
potential, but also all the risks involved.

In this section, we saw how the blockchain era began with bitcoin production to
understand how to mine cryptocurrencies through bitcoins using a blockchain. With
the original way blockchains are created in mind, we can apply blockchains to many
other fields.

In the second part of our three-part chapter, we will see how to use blockchains
beyond cryptocurrencies. We will apply them to supply chains.

PART II – using blockchains to share
information in a supply chain
In Part I – the background to blockchain technology, we saw how to use blockchains
to mine cryptocurrencies. That prerequisite to entering the world of blockchains
having been achieved, this section will show how to use blockchains in a supply
chain. This will not involve cryptocurrencies. It opens the path to innovating
blockchains with AI.

A supply chain is a chain of production and service that gets a product from
a starting point to the consumer. For example, take a roll of fabric (cloth) that
is shipped from India to Tunisia. In Tunisia, the fabric is cut into patterns and
assembled as clothing. Then the clothing is shipped to France where it is packaged
in a box with a brand printed on it. It then goes on to be stored in a warehouse to be
shipped to a physical shop or directly to an online customer. We can sum this supply
chain up as follows:

Cloth from India -> cut and assembled in Tunisia -> shipped to France -> packaged ->
stored -> shipped to a shop or directly to a consumer

A supply chain process such as an apparel production and delivery system involves
thousands of people along the way: production sites, transport personnel, warehouse
employees, and management teams for each step of the chain.

This is where a modern blockchain technology comes in handy to track all of the
transactions down in one system.

Optimizing Blockchains with Naive Bayes

[162]

In the following example, we will take six companies named A, B, C, D, E, and
F. In Chapter 1, Getting Started with Next-Generation Artificial Intelligence through
Reinforcement Learning, we used a size six reward matrix. In that chapter, we
used A, B, C, D, E, and F to represent locations in a Markov decision process for
reinforcement learning. At the end of the chapter, we saw that the reward matrix
could be applied to many different domains. In our case, we will refer to the six
items (A, B, C, D, E, and F) as companies and their locations (one per company
in this example) in a supply chain process.

Each company, A to F, that is a member of the supply chain using blockchains can
optimize its activity. Instead of each company having separate transaction ledgers,
one central blockchain will contain all of the transactions (blocks):

• How much and when the cloth left India
• When it got on a ship and how long it took
• When the ship got to Tunisia
• … all of the intermediate activities right down to the consumer

With such data, the blocks (records of the transactions) of a blockchain have
become machine learning goldmines to detect information and make predictions.
One profitable reason for using this system is to reduce stock levels. Piling up unsold
goods to anticipate sales is costly and can ruin a company's profit. On the contrary, if
each company in the supply chain can see the stock levels and real needs of the other
partners through the blocks of the blockchain, they can fit their stock levels to the
exact need and save huge amounts of money!

Let's see how this works using IBM software as an example.

IBM Blockchain, based on Hyperledger Fabric, provides a way for companies around
the world to share a blockchain transaction network without worrying about mining
or using cryptocurrencies.

The system is based on the Linux Foundation project. Hyperledger is an open source
collaborative project hosted by the Linux Foundation.

At this level, Hyperledger uses blockchains to guarantee secure transactions without
trying to optimize the cryptocurrency aspect. The software generates blocks in
a blockchain network shared by all the parties involved, but they do not have to
purchase cryptocurrencies in the currency sense—only in the technological sense.

In the following graph, we will use the six nodes (companies A to F) to illustrate
how the Markov decision process we studied in Chapter 1, Getting Started with Next-
Generation Artificial Intelligence through Reinforcement Learning, can be applied to
a blockchain:

Chapter 7

[163]

Figure 7.1: Markov decision process graph

Each node represents a company that takes part in an IBM Hyperledger network set
up for those six companies, as described in the following table:

Company Activity ML weight
A buys and sells clothing and
also other products in this
network.

Provide goods to the network but
keep stock levels down Stock levels

B buys and sells fabric and also
other products in this network.

Provide goods to the network but
keep stock levels down Stock levels

C buys and sells buttons and also
other products in this network.

Provide goods to the network but
keep stock levels down Stock levels

D buys and sells printed fabric
and also other products in this
network.

Provide goods to the network but
keep stock levels down Stock levels

E buys and sells accessories
(belts, bracelets) and also other
products in this network.

Provide goods to the network but
keep stock levels down Stock levels

F buys and sells packaging boxes
and also other products in this
network.

Provide goods to the network but
keep stock levels down Stock levels

The structure of the table is as follows:

• Company contains six companies, {A, B, C, D, E, F}, that have different
activities. Each company, in this example, only has one location, so A to F are
company locations as well.

Optimizing Blockchains with Naive Bayes

[164]

• Activity: Part of this group of companies to supply their members,
but making sure the costly stock levels are kept down.

• ML weight represents a classification by ML of the stock levels to make
predictions. The key to profit generation, in our example, is to track the
stock levels of each member (A to F) of the supply chain. If the stock levels
of company F go down, for example, the other members of the network
(A to E) can anticipate and deliver only the limited necessary amount for
F's stock levels to reach an acceptable level again.

With millions of commercial transactions per year with a huge amount of
transportation (truck, train, boat, air), it is increasingly complicated to manage
this type of network effectively in the 21st century without a solution like IBM
Hyperledger.

The transactions are secure; they can be private or public among the members of
the network, and they provide real-time optimization information for an artificial
intelligence solution.

Using blockchains in the supply chain
network
IBM Hyperledger provides artificial intelligence developers with a unique advantage over
any other dataset—a 100% reliable dataset updated in real time.

Each company member (A to F) of the network will create a block for each
transaction so that an AI analyst can have access to the data to make forecasts. To
make the system work, each member of the network (A to F) will create blocks in the
blockchain so that others can view the information recorded and use the information
to make decisions.

With IBM Hyperledger, the companies have one online transaction
ledger with smart contracts (online) and real-time tracking.

Chapter 7

[165]

Creating a block
A block is formed using the method described for mining a bitcoin, except that this
time, currency is not a goal. The goal is a secure transaction with a smart contract
when necessary. The following screenshot is a standard IBM interface that can be
customized:

Figure 7.2: Standard IBM interface

You can see the individual and unique blocks that make up a blockchain. Each block
in IBM Hyperledger has a unique number. In this example, it is 111 with a zoom on
block 103.

A block in the supply chain network in our graph (A to F) can be the purchase of
a product X with a contract. The transaction can be between companies A and B, for
example. The next block can be the transportation of that product to another location
from A to B, for example, within the blockchain network.

The information attached to that block is in the Hyperledger repository: company
name (A to F), address, phone number, transaction description, and any other type
of data required by the network of companies. Each block can be viewed by all or
some depending on the permission properties attached to it.

Optimizing Blockchains with Naive Bayes

[166]

Exploring the blocks
Exploring the blocks provides an artificial intelligence program with a gold mine:
a real-life, and 100% reliable, dataset.

The interesting part for AI optimization is the block information, as described in
the following screenshot. The present block was added to the chain along with the
previous block and the transaction code:

Figure 7.3: Exploring the blockchain

Notice that the block hash (see the preceding mining section) of a given block is
linked to the previous block hash and possesses a unique transaction code.

Once we have our set of blocks as data (the type of transaction, date, amount), we
can start to build an AI prediction algorithm. IBM provides extraction possibilities
through scripts and other tools.

The blocks of the blockchain provide data that can be used to predict the type of
stock levels that the network will be facing after each transaction. Each company
will be able to run a prediction algorithm that uses the existing data to predict the
potential replenishing required. For example, company A might detect that company
B needs more of its cloth.

Once we have a dataset containing blocks of the blockchain, the
goal of the prediction will be to determine the stock level category
to see whether a fellow member of the supply chain network
(A to F) needs to be replenished.

Chapter 7

[167]

Considering the amount of data, a prediction algorithm such as naive Bayes can do
the job.

Part III – optimizing a supply chain with
naive Bayes in a blockchain process
Naive Bayes will use some of the critical information as features to optimize
warehouse storage and product availability in a real-time process.

The Naive Bayes learning function will learn from the previous blocks on how to
predict the next blocks (supplying another company that needs more stock) that
should be inserted in the blockchain. The blocks will be inserted in a dataset just
like any other form of timestamped data to make predictions.

Naive Bayes is based on Bayes' theorem. Bayes' theorem applies conditional
probability, defined as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

• P(A|B) is a posterior probability, the probability of A after having observed
some events (B). It is also a conditional probability: the likelihood of
A happening given B has already happened.

• P(B|A) is the probability of B given the prior observations A. It is also
a conditional probability: the likelihood of B happening given A has already
happened.

• P(A) is the probability of A prior to the observations.
• P(B) is the probability of the predictions.

Naive Bayes, although based on Bayes' theorem, assumes that the features in a class
are independent of each other. In many cases, this makes predictions more practical
to implement. The statistical presence of features, related or not, will produce a
prediction. As long as the prediction remains sufficiently efficient, naive Bayes
provides a good solution.

A naive Bayes example
In this section, we will first illustrate naive Bayes with a mathematical example
before writing the Python program. The goal of this section is just to understand
the concepts involved in naive Bayes.

Optimizing Blockchains with Naive Bayes

[168]

This section is not a development chapter but a chapter to understand the underlying
concepts of the real-life example and the mathematics used to make predictions.

The blockchains in this chapter represent information on the stock levels based on
manufactured goods in the apparel industry. For more, read Chapter 12, AI and the
Internet of Things (IoT), which describes an AI-optimized apparel manufacturing
process in detail.

In this section, we will focus on storage. The load of a sewing station in the apparel
industry is expressed in quantities in stock keep units (SKUs). An SKU, for example,
can be product P: a pair of jeans of a given size.

Once the garment has been produced, it goes into storage. At that point, a block in
a blockchain can represent that transaction with two useful features for a machine
learning algorithm:

• The day the garment was stored
• The total quantity of that SKU garment now in storage

A block in a blockchain contains both the day (timestamp) and quantity stored in the
transaction information.

Since the blockchain contains the storage blocks of all A, B, C, D, E, and F corporate
locations that are part of the network, a machine learning program can access the
data and make predictions.

The goal is to spread the stored quantities of the given product evenly over the six
locations, as represented in the following histogram:

Figure 7.4: Histogram of the storage level of the product distributed over six locations

Chapter 7

[169]

This screenshot shows the storage level of product P distributed over six locations.
Each location in this blockchain network is a hub. A hub in supply chain
management (SCM) is often an intermediate storage warehouse. For example,
to cover the area of these six locations, the same product will be stored at each
location. This way, local trucks can come and pick the goods for delivery.

The goal is to have an available product P at point location L (A to F) when needed.

For example, the delivery time from a location L to a location point a1 (a store
or home) will only take a few hours. If A did not store P, then the finer consumer
would have to wait for the product to travel from C to A, for example.

If the blockchain network is well organized, one location can specialize in producing
product P (best production costs) and evenly distribute the quantity stored in the six
locations, including itself.

By having evenly balanced storage quantities at all locations, the system will flow in
a continuous delivery process.

In our example, a company = its location (A to F). Using the blocks of the blockchain
of these six members, we can predict when a given storage point (A to F) requires
replenishing to reduce waiting times, for example.

Using blockchains to optimize the storage levels is an efficient new approach to
reducing costs while delivering to customers faster.

The blockchain anticipation novelty
In former days, all the warehouses at those six locations (A to F) had to ensure
the minimum storage level for each location. Since they did not know what was
happening in their supply chain network in real time, they often stored more
products than required, which increased their costs, or did not store enough,
leading to delivery problems.

In a world of real-time production and selling, distributors need to predict demand.
The system needs to be demand-driven. Naive Bayes can solve that problem.

It will take the first two features into account:

• DAY: The day the garment was stored
• STOCK: The total quantity of that SKU garment now in storage

Then it will add a novelty—the number of blocks related to product P.

Optimizing Blockchains with Naive Bayes

[170]

A high number of blocks at a given date means that this product was in demand in
general (production, distribution). The more blocks there are, the more transactions
there are. Also, if the storage levels (the STOCK feature) are diminishing, this is an
indicator; it means storage levels must be replenished. The DAY feature timestamps
the history of the product.

The block feature is named BLOCKS. Since all share the blockchain, a machine
learning program can access reliable global data in seconds. The dataset reliability
provided by blockchains constitutes a motivation in itself to optimize storage levels
using the blocks of the blockchains as datasets.

The goal – optimizing storage levels using
blockchain data
The goal is to maintain stock at low levels by providing fast delivery when product
requests are made. To make a decision, the ML solution will analyze the blocks
of a blockchain in real time.

The program will take the DAY, STOCK, and BLOCKS (number of) features for
a given product P and produce a result. The result predicts whether this product
P will be in demand. If the answer is yes (or 1), the demand for this product requires
anticipation.

Step 1 – defining the dataset
The dataset contains raw data from prior events in a sequence, which makes it
perfect for prediction algorithms. Blocks can be extracted using scripts from IBM
Hyperledger, for example. This constitutes a unique opportunity to see the data of
all companies without having to build a database. The raw dataset will look like the
following list:

Figure 7.5: Raw dataset

Chapter 7

[171]

This dataset contains the following:

• Blocks of product P present in the blockchain on day x having scanned the
blockchain back by 30 days. No means no significant amounts of blocks have
been found. Yes means a significant number of blocks have been found. If
blocks have been found, this means that there is a demand for this product
somewhere along the blockchain.

• Some_blocks means that blocks have been found, but they are too sparse
to be taken into account without overfitting the prediction. However, Yes
will contribute to the prediction as well as No.

• No_blocks means there is no demand at all, sparse or otherwise (Some_
blocks), numerous (Blocks) or not. This means trouble for this product, P.

The goal is to avoid predicting demand on sparse (Some_blocks) or absent (No_
blocks) products. This example is trying to predict a potential Yes for numerous
blocks for this product P. Only if Yes is predicted can the system trigger the
automatic demand process (see the Implementation of naive Bayes in Python section
later in the chapter).

Step 2 – calculating the frequency
Looking at the following frequency table provides additional information:

Figure 7.6: Frequency table

The Yes and No statuses of each feature (Blocks, Some_blocks, or No_blocks) for
a given product P for a given period (past 30 days) have been grouped by frequency.

The sum is on the bottom line for each No feature and Yes feature. For example, Yes
and No_blocks add up to 2.

Optimizing Blockchains with Naive Bayes

[172]

Some additional information will prove useful for the final calculation:

• The total number of samples = 10.
• The total number of Yes samples = 8.
• The total number of No samples = 2.

Step 3 – calculating the likelihood
Now that the frequency table has been calculated, the following likelihood table
is produced using that data:

Figure 7.7: Likelihood table

The table contains the following statistics:

• No = 2 = 20% = 0.2
• Yes = 8 = 80%=0.8
• Some_blocks = 2 = 20%=0.2
• No_blocks = 3 = 30%=0.3
• Blocks = 5 = 50%=0.5

Blocks represent an important proportion of the samples, which means that along
with Some_blocks, the demand looks good.

Step 4 – applying the naive Bayes equation
The goal now is to represent each variable of the Bayes' theorem in a naive Bayes
equation to obtain the probability of having demand for product P and trigger
a purchase scenario for the blockchain network. Bayes' theorem can be expressed
as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

• P(Yes|Blocks) = P(Blocks|Yes) * P(Yes)/P(Blocks)
• P(Yes) = 8/10 = 0.8
• P(Blocks) = 5/10 = 0.5
• P(Blocks|Yes) = 4/8 = 0.5
• P(Yes|Blocks) = (0.5*0.8)/0.5 = 0.8

Chapter 7

[173]

The demand looks acceptable. However, penalties are necessary, and other factors
must be considered as well (transportation availability through other block
exploration processes).

This example and method show the concept of the naive Bayes approach. This
example is meant to be nothing other than a simplified mathematical explanation
of the philosophy of Bayes' theorem.

By doing this calculation from scratch, we now know the basic concepts of Bayes'
theorem: using prior values to predict future events taking several features into
account.

We will now move from this theoretical approach to the implementation phase.
We will build a program using naive Bayes in Python.

Implementation of naive Bayes in Python
This section shows how to use a stock level optimizer version of naive Bayes.
Blockchains provide exceptionally reliable datasets for ML miners looking for areas
to optimize and generate profit. Choosing the right model remains the key challenge.

Gaussian naive Bayes
We will be implementing Gaussian naive Bayes because it fits the apparel industry.
For example, if you sell dresses, there will be a target middle size S. The marketing
department knows that this size S will represent most of the sales. The larger S + n
sizes and small S – n will generate fewer sales, creating a Gaussian curve.

In implementation mode, a dataset with raw data from the blockchain will be used
without the feature interpretation function of naive Bayes in the following table:

DAY STOCK BLOCKS DEMAND
10 1455 78 1
11 1666 67 1
12 1254 57 1
14 1563 45 1
15 1674 89 1
10 1465 89 1
12 1646 76 1
15 1746 87 2
12 1435 78 2

Optimizing Blockchains with Naive Bayes

[174]

Each line represents a block:

• DAY: The day of the period analyzed in the dataset. In this case, we are
analyzing the days of a given month, which represents a financial period. No
other information is required to run a calculation. In other cases, a dd/mm/
yyyy format can be used. You can also just use a counter (1 to n) from day
1 of the start of a period and run it over several weeks, months, or years.

• STOCK: The total inputs in a given location (A, B, or … F) found in the blocks
and totaled on that day. Since this represents the inputs of one location and
only one, no location information is required. In other cases, the location can
be added.

• BLOCKS: The number of blocks containing product P for location A,
for example.
A high number of blocks in the BLOCK column and a low number
of quantities in the STOCK column mean that demand is high.

• DEMAND = 1. The proof of demand is a transaction block that contains
a purchase in the past. These transaction blocks provide vital information.
A low number of blocks in the BLOCK column, and a high number of
quantities in the STOCK column, mean that the demand is low.

• DEMAND = 2. Proof that no transaction was found.

In this section, we described the dataset and features that will be taken into account
to write a naive Bayes program with ready-to-use algorithms.

The Python program
We now know what a blockchain is and how to use the blocks of a blockchain to
optimize the stock levels of the locations of a network of companies (A to F). We also
know the basic concepts of Bayes' theorem and naive Bayes.

The limit of naive Bayes

In some cases, DEMAND = 1 when the stock is high and the blocks
are low. That's why strict correlation is not so useful. This would be
the limit of naive Bayes, which just analyzes the statistics and learns
how to predict, ignoring the actual conditional probabilities, the
interactions between features.

Chapter 7

[175]

With this in mind, we can build a Python program to predict the stock level
categories of incoming blocks of a blockchain. These predictions will help
local managers increase their stock levels to meet the demand of their partners
(companies A to F) in the supply chain they are part of.

The Python naive_bayes_blockchains.py program uses a sklearn class. Consider
the following snippet:

import numpy as np
import pandas as pd
from sklearn.naive_bayes import GaussianNB

It reads the dataset into the data structure. The following code reads data_BC.csv
into df:

#Reading the data
df = pd.read_csv('data_BC.csv')
print("Blocks of the Blockchain")
print(df.head())

It prints the top of the file in the following output:

Blocks of the Blockchain

DAY STOCK BLOCKS DEMAND

0 10 1455 78 1

1 11 1666 67 1

2 12 1254 57 1

3 14 1563 45 1

4 15 1674 89 1

It prepares the training set, using X to find and predict Y in the following code:

Prepare the training set
X = df.loc[:,'DAY':'BLOCKS']
Y = df.loc[:,'DEMAND']

It chooses the class and trains the following clfG model:

#Choose the class
clfG = GaussianNB()
Train the model
clfG.fit(X,Y)

Optimizing Blockchains with Naive Bayes

[176]

The program then takes some blocks of the blockchain, makes predictions, and prints
them using the following clfG.predict function:

Predict with the model(return the class)
print("Blocks for the prediction of the A-F blockchain")
blocks=[[14,1345,12],
 [29,2034,50],
 [30,7789,4],
 [31,6789,4]]
print(blocks)
prediction = clfG.predict(blocks)
for i in range(4):
 print("Block #",i+1," Gauss Naive Bayes Prediction:",
 prediction[i])

The blocks are displayed, and the following predictions are produced. 2 means no
demand for the moment; 1 will trigger a purchase block:

Blocks for the prediction of the A-F blockchain

[[14, 1345, 12], [29, 2034, 50], [30, 7789, 4], [31, 6789, 4]]

Block # 1 Gauss Naive Bayes Prediction: 1

Block # 2 Gauss Naive Bayes Prediction: 2

Block # 3 Gauss Naive Bayes Prediction: 2

Block # 4 Gauss Naive Bayes Prediction: 2

This is a replenishment program. It will mimic the demand. When no demand is
found, nothing happens; when demand is found, it triggers a purchase block. Some
chain stores know the number of garments purchased on a given day (or week or
another unit) and automatically purchase that amount. Others have other purchasing
rules. Finding business rules is part of the consulting aspect of a project.

In this section, we implemented naive Bayes to predict the categories of the incoming
blocks. If the demand is high, then a supply chain manager will know that more
products need to be stored.

If the demand is low, the manager will avoid storing more products. Blocks in a
blockchain provide reliable datasets for a program that scans the blocks 24/7 and
generates recommendations in real time.

Chapter 7

[177]

Summary
The reliable sequence of blocks in a blockchain has opened the door to endless
machine learning algorithms. Naive Bayes appears to be a practical way to
start optimizing the blocks of a blockchain. It calculates correlations and makes
predictions by learning the independent features of a dataset, irrespective of
whether the relationship is conditional or not.

This freestyle prediction approach fits the open-minded spirit of blockchains that
are being propagated by the millions today with limitless resources.

IBM Hyperledger takes blockchain's "Frontierland" development to another level
with the Linux Foundation project. IBM also offers a cloud platform and services.

IBM, Microsoft, Amazon, and Google provide cloud platforms with an arsenal of
disruptive machine learning algorithms. This provides a smooth approach to your
market or department, along with the ability to set up a blockchain prototype online
in a short space of time. With this approach, you can enter some additional prototype
data in the model, export the data, or use an API to read the block sequences. Then,
you will be able to apply machine learning algorithms to these reliable datasets. The
only limit is our imagination.

The next chapter will lead us into more AI power as we explore the world of neural
networks.

Questions
1. Cryptocurrency is the only use of blockchains today. (Yes | No)
2. Mining blockchains can be lucrative. (Yes | No)
3. Blockchains for companies cannot be applied to sales. (Yes | No)
4. Smart contracts for blockchains are more accessible to write than standard

offline contracts. (Yes | No)
5. Once a block is in a blockchain network, everyone in the network can read

the content. (Yes | No)
6. A block in a blockchain guarantees that absolutely no fraud is possible.

(Yes | No)
7. There is only one way of applying Bayes' theorem. (Yes | No)
8. Training a naive Bayes dataset requires a standard function. (Yes | No)
9. Machine learning algorithms will not change the intrinsic nature of the

corporate business. (Yes | No)

Optimizing Blockchains with Naive Bayes

[178]

Further reading
• For more on naive Bayes on scikit-learn's website: https://scikit-learn.

org/stable/modules/naive_bayes.html

• To explore IBM's Hyperledger solution: https://www.ibm.com/
blockchain/hyperledger.html

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html

[179]

8
Solving the XOR Problem

with a Feedforward
Neural Network

In the course of a corporate project, there always comes the point when a
problem that seems impossible to solve hits you. At that point, you try everything
you've learned, but it doesn't work for what's asked of you. Your team or customer
begins to look elsewhere. It's time to react.

In this chapter, an impossible-to-solve business case regarding material optimization
will be resolved successfully with a hand-made version of a feedforward neural
network (FNN) with backpropagation.

Feedforward networks are one of the key building blocks of deep learning. The
battle around the XOR function perfectly illustrates how deep learning regained
popularity in corporate environments. XOR is an exclusive OR function that we will
explore later in this chapter. The XOR FNN illustrates one of the critical functions of
neural networks: classification. Once information becomes classified into subsets, it
opens the doors to prediction and many other functions of neural networks, such as
representation learning.

An XOR FNN will be built from scratch to demystify deep learning from the start. A
vintage, start-from-scratch method will be applied, blowing the deep learning hype
off the table.

Solving the XOR Problem with a Feedforward Neural Network

[180]

The following topics will be covered in this chapter:

• Explaining the XOR problem
• How to hand-build an FNN
• Solving XOR with an FNN
• Classification
• Backpropagation
• A cost function
• Cost function optimization
• Error loss
• Convergence

Before we begin building an FNN, we'll first introduce XOR and its limitations in the
first artificial neural model.

The original perceptron could not solve
the XOR function
The original perceptron was designed in the 1950s and improved in the late 1970s.
The original perceptron contained one neuron that could not solve the XOR function.

An XOR function means that you have to choose an exclusive OR (XOR).

This can be difficult to grasp, as we're not used to thinking about the way in which
we use or in our everyday lives. In truth, we use or interchangeably as either
inclusive or exclusive all of the time. Take this simple example:

If a friend were to come and visit me, I may ask them, "Would you like tea or coffee?"
This is basically the offer of tea XOR coffee; I would not expect my friend to ask for
both tea and coffee! My friend will choose one or the other.

Chapter 8

[181]

I may follow up my question with, "Would you like milk or sugar?" In this case,
I would not be surprised if my friend wanted both. This is an inclusive or.

XOR, therefore, means "You can have one or the other, but not both."

We will develop these concepts in the chapter through more examples.

To solve this XOR function, we will build an FNN.

Once the feedforward network for solving the XOR problem is built, it will be
applied to an optimization example. The material optimizing example will choose
the best combinations of dimensions among billions to minimize the use of corporate
resources with the generalization of the XOR function.

First, a solution to the XOR limitation of a perceptron must be clarified.

XOR and linearly separable models
In the late 1960s, it was mathematically proven that a perceptron could not solve an
XOR function. Fortunately, today, the perceptron and its neocognitron version form
the core model for neural networking.

You may be tempted to think, so what? However, the entire field of neural networks
relies on solving problems such as this to classify patterns. Without pattern
classification, images, sounds, and words mean nothing to a machine.

Linearly separable models
The McCulloch-Pitts 1943 neuron (see Chapter 2, Building a Reward Matrix – Designing
Your Datasets) led to Rosenblatt's 1957-59 perceptron and the 1960 Widrow-Hoff
adaptive linear element (Adaline).

These models are linear models based on an f(x, w) function that requires a line to
separate results. A perceptron cannot achieve this goal and thus cannot classify
many objects it faces.

Solving the XOR Problem with a Feedforward Neural Network

[182]

A standard linear function can separate values. Linear separability can be
represented in the following graph:

Figure 8.1: Linearly separable patterns

Imagine that the line separating the preceding dots and the part under it represent
a picture that needs to be represented by a machine learning or deep learning
application. The dots above the line represent clouds in the sky; the dots below
the line represent trees on a hill. The line represents the slope of that hill.

To be linearly separable, a function must be able to separate the clouds from the
trees to classify them. The prerequisite to classification is separability of some sort,
linear or nonlinear.

The XOR limit of a linear model, such as the original
perceptron
A linear model cannot solve the XOR problem expressed as follows in a table:

Value of x1 Value of x2 Output
1 1 0
0 0 0
1 0 1
0 1 1

Chapter 8

[183]

Lines 3 and 4 show an exclusive OR (XOR). Imagine that you are offering a child
a piece of cake OR a piece of candy (1 or 1):

• Case 1: The child answers: "I want candy or nothing at all!" (0 or 1). That's
exclusive OR (XOR)!

• Case 2: The child answers: "I want a cake or nothing at all!" (1 or 0). That's an
exclusive OR (XOR) as well!

The following graph shows the linear inseparability of the XOR function represented
by one perceptron:

Figure 8.2: Linearly inseparable patterns

The values of the table represent the Cartesian coordinates in this graph. The circles
with a cross at (1, 1) and (0, 0) cannot be separated from the circles at (1, 0) and (0,
1). That's a huge problem. It means that Frank Rosenblatt's f(x, w) perceptron cannot
separate, and thus can not classify, these dots into clouds and trees. Thus, in many
cases, the perceptron cannot identify values that require linear separability.

Having invented the most powerful neural concept of the twentieth century—a
neuron that can learn—Frank Rosenblatt had to bear with this limitation through the
1960s.

As explained with the preceding cake-OR-candy example, the absence of an
XOR function limits applications in which you must choose exclusively between
two options. There are many "it's-either-that-or-nothing" situations in real-
life applications. For a self-driving car, it could be either turn left or turn right,
but don't swerve back and forth while making the decision!

We will solve this limitation with a vintage solution, starting by building, and later
implementing, an FNN.

Solving the XOR Problem with a Feedforward Neural Network

[184]

Building an FNN from scratch
Let's perform a mind experiment. Imagine we are in 1969. We have today's
knowledge but nothing to prove it. We know that a perceptron cannot implement
the exclusive OR function XOR.

We have an advantage because we now know a solution exists. To start our
experiment, we only have a pad, a pencil, a sharpener, and an eraser waiting for us.
We're ready to solve the XOR problem from scratch on paper before programming
it. We have to find a way to classify those dots with a neural network.

Step 1 – defining an FNN
We have to be unconventional to solve this problem. We must forget the complicated
words and theories of the twenty-first century.

We can write a neural network layer in high-school format. A hidden layer will be:

h1 = x * w

OK. Now we have one layer. A layer is merely a function. This function can be
expressed as:

f(x, w)

In which x is the input value, and w is some value to multiply x by. Hidden means
that the computation is not visible, just as x = 2 and x + 2 is the hidden layer that
leads to 4.

At this point, we have defined a neural network in three lines:

• Input x.
• Some function that changes its value, like 2 × 2 = 4, which transformed 2.

That is a layer. And if the result is superior to 2, for example, then great! The
output is 1, meaning yes or true. Since we don't see the computation, this is
the hidden layer.

• An output.

f(x, w) is the building block of any neural network. "Feedforward" means that we will
be going from layer 1 to layer 2, moving forward in a sequence.

Now that we know that basically any neural network is built with values
transformed by an operation to become an output of something, we need some
logic to solve the XOR problem.

Chapter 8

[185]

Step 2 – an example of how two children can
solve the XOR problem every day
An example follows of how two children can solve the XOR problem using a
straightforward everyday example. I strongly recommend this method. I have taken
very complex problems, broken them down into small parts to a child's level, and
often solved them in a few minutes. Then, you get the sarcastic answer from others
such as "Is that all you did?" But, the sarcasm vanishes when the solution works over
and over again in high-level corporate projects.

First, let's convert the XOR problem into a candy problem in a store. Two children go
to the store and want to buy candy. However, they only have enough money to buy
one pack of candy. They have to agree on a choice between two packs of different
candy. Let's say pack one is chocolate and the other is chewing gum. Then, during
the discussion between these two children, 1 means yes, 0 means no. Their budget
limits the options of these two children:

• Going to the store and not buying any chocolate or chewing gum = (no, no) =
(0, 0). That's not an option for these children! So the answer is false.

• Going to the store and buying both chocolate and chewing gum = (yes, yes)
= (1, 1). That would be fantastic, but that's not possible. It's too expensive.
So, the answer is, unfortunately, false.

• Going to the store and either buying chocolate or chewing gum = (1, 0 or 0, 1)
= (yes or no) or (no or yes). That's possible. So, the answer is true.

Imagine the two children. The eldest one is reasonable. The younger one doesn't
really know how to count yet and wants to buy both packs of candy.

We express this on paper:

• x1 (eldest child's decision, yes or no, 1 or 0) * w1 (what the elder child thinks).
The elder child is thinking this, or:

x1 * w1 or h1 = x1 * w1

The elder child weighs a decision like we all do every day, such as
purchasing a car (x = 0 or 1) multiplied by the cost (w1).

• x2 (the younger child's decision, yes or no, 1 or 0) * w3 (what the younger
child thinks). The younger child is also thinking this, or:

x2 * w3 or h2 = x2 * w3

Solving the XOR Problem with a Feedforward Neural Network

[186]

Now imagine the two children talking to each other.

Hold it a minute! This means that now, each child is communicating with the other:

• x1 (the elder child) says w2 to the younger child. Thus, w2 = this is what I think
and am telling you:

x1 * w2

• x2 (the younger child) says, "please add my views to your decision," which is
represented by w4:

x2 * w4

We now have the first two equations expressed in high-school-level code. It's what
one thinks plus what one says to the other, asking the other to take that into account:

h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

h1 sums up what is going on in one child's mind: personal opinion + the other child's
opinion.

h2 sums up what is going on in the other child's mind and conversation: personal
opinion + the other child's opinion.

Theory: x1 and x2 are the inputs. h1 and h2 are neurons (the result
of a calculation). Since h1 and h2 contain calculations that are not
visible during the process, they are hidden neurons. h1 and h2 thus
form a hidden layer. w1 and w3 are weights that represent how we
"weigh" a decision, stating that something is more important than
something else.

Theory: The calculation now contains two input values and
one hidden layer. Since, in the next step, we are going to apply
calculations to h1 and h2, we are in a feedforward neural network.
We are moving from the input to another layer, which will lead us
to another layer, and so on. This process of going from one layer to
another is the basis of deep learning. The more layers you have, the
deeper the network is. The reason h1 and h2 form a hidden layer is
that their output is just the input of another layer.

Chapter 8

[187]

For this example, we don't need complicated numbers in an activation function such
as logistic sigmoid, so we state whether the output values are less than 1 or not:

if h1 + h2 >= 1 then y1 = 1

if h1 + h2 < 1 then y2 = 0

Now, a problem comes up. Who is right? The elder child or the younger child?

The only way seems to be to play around, with the weights W representing all the
weights. Weights in a neural network work like weights in our everyday lives. We
weigh decisions all the time. For example, there are two books to purchase, and we
will "weigh" our decisions. If one is interesting and cheaper, it will weigh more
or less in our decision, for example.

The children in our case agree on purchasing at least something, so from now on,
w3 = w2, w4 = w1. The younger and elder child will thus share some of the decision
weights.

Now, somebody has to be an influencer. Let's leave this hard task to the elder child.
The elder child, being more reasonable, will continuously deliver the bad news.
You have to subtract something from your choice, represented by a minus (–) sign.

Each time they reach the point hi, the eldest child applies a critical negative view on
purchasing packs of candy. It's –w of everything comes up to be sure not to go over
the budget. The opinion of the elder child is biased, so let's call the variable a bias, b1.
Since the younger child's opinion is biased as well, let's call this view a bias too, b2.
Since the eldest child's view is always negative, –b1 will be applied to all of the eldest
child's thoughts.

When we apply this decision process to their view, we obtain:

h1 = y1 * –b1

h2 = y2 * b2

Then, we just have to use the same result. If the result is >=1, then the threshold has
been reached. The threshold is calculated as shown in the following function:

y = h1 + h2

Theory: y1 and y2 form a second hidden layer. These variables can
be scalars, vectors, or matrices. They are neurons.

Solving the XOR Problem with a Feedforward Neural Network

[188]

We will first start effectively finding the weights, starting by setting the weights and
biases to 0.5, as follows:

w1 = 0.2; w2 = 0.5; b1 = 0.5

w3 = w2; w4 = w1; b2 = b1

It's not a full program yet, but its theory is done.

Only the communication going on between the two children is making the
difference; we will focus on only modifying w2 and b1 after a first try. It works
on paper after a few tries.

We now write the basic mathematical function, which is, in fact, the program itself
on paper:

#Solution to the XOR implementation with
#a feedforward neural network(FNN)

#I.Setting the first weights to start the process
w1=0.5;w2=0.5;b1=0.5
w3=w2;w4=w1;b2=b1

#II.hidden layer #1 and its output
h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I, hidden layer 2
if(h1>=1): h1=1
if(h1<1): h1=0
if(h2>=1): h2=1
if(h2<1): h2=0
h1= h1 * -b1
h2= h2 * b2

#IV.Threshold II and Final OUTPUT y
y=h1+h2
if(y>=1): y=1
if(y<1): y=0

#V.Change the critical weights and try again until a solution is found
w2=w2+0.5
b1=b1+0.5

Chapter 8

[189]

Let's go from the solution on paper to Python.

In the next section, we'll stick with the solution proposed here, and implement it in
Python.

Implementing a vintage XOR solution in
Python with an FNN and backpropagation
To stay in the spirit of a 1969 vintage solution, we will not use NumPy, TensorFlow,
Keras, or any other high-level library. Writing a vintage FNN with backpropagation
written in high-school mathematics is fun.

If you break a problem down into very elementary parts, you understand it better
and provide a solution to that specific problem. You don't need to use a huge truck
to transport a loaf of bread.

Furthermore, by thinking through the minds of children, we went against running
20,000 or more episodes in modern CPU-rich solutions to solve the XOR problem.
The logic used proves that both inputs can have the same parameters as long as
one bias is negative (the elder reasonable critical child) to make the system provide
a reasonable answer.

The basic Python solution quickly reaches a result in a few iterations, approximately
10 iterations (epochs or episodes), depending on how we think it through. An epoch
can be related to a try. Imagine looking at somebody practicing basketball:

• The person throws the ball toward the hoop but misses. That was an epoch
(an episode can be used as well).

• The person thinks about what happened and changes the way the ball will
be thrown.
This improvement is what makes it a learning epoch (or episode). It is
not a simple memoryless try. Something is really happening to improve
performance.

• The person throws the ball again (next epoch) and again (next epochs)
until the overall performance has improved. This is how a neural network
improves over epochs.

Why wasn't this deceivingly simple solution found in 1969?
Because it seems simple today but wasn't so at that time, like all
inventions found by our genius predecessors. Nothing is easy
at all in artificial intelligence and mathematics.

Solving the XOR Problem with a Feedforward Neural Network

[190]

FNN_XOR_vintage_tribute.py contains (at the top of the code) a result matrix with
four columns.

Each element of the matrix represents the status (1 = correct, 0 = false) of the four
predicates to solve:

#FEEDFORWARD NEURAL NETWORK(FNN) WITH BACK PROPAGATION SOLUTION FOR
XOR
result=[0,0,0,0] #trained result
train=4 #dataset size to train

The train variable is the number of predicates to solve: (0, 0), (1, 1), (1, 0), (0, 1). The
variable of the predicate to solve is pred.

The core of the program is practically a copy of the sheet of paper we wrote, as in the
following code:

#II hidden layer 1 and its output
def hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result):
 h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
 h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
 if(h1>=1):h1=1;
 if(h1<1):h1=0;
 if(h2>=1):h2=1
 if(h2<1):h2=0

 h1= h1 * -b1
 h2= h2 * b2

#IV. threshold II and OUTPUT y
 y=h1+h2
 if(y<1 and pred>=0 and pred<2):
 result[pred]=1

 if(y>=1 and pred>=2 and pred<4):
 result[pred]=1

pred is an argument of the function from 1 to 4. The four predicates are represented
in the following table:

Predicate (pred) x1 x2 Expected result
0 1 1 0

Chapter 8

[191]

1 0 0 0
2 1 0 1
3 0 1 1

That is why y must be <1 for predicates 0 and 1. Then, y must be >=1 for predicates
2 and 3.

Now, we have to call the following function limiting the training to 50 epochs,
which are more than enough:

#I Forward and backpropagation
for epoch in range(50):
 if(epoch<1):
 w1=0.5;w2=0.5;b1=0.5
 w3=w2;w4=w1;b2=b1

At the first epoch, the weights and biases are all set to 0.5. No use thinking! Let the
program do the job. As explained previously, the weight and bias of x2 are equal.

Now, the hidden layers and y calculation function are called four times, one for each
predicate to train, as shown in the following code snippet:

#I.A forward propagation on epoch 1 and IV.backpropagation starting
epoch 2
 for t in range (4):
 if(t==0):x1 = 1;x2 = 1;pred=0
 if(t==1):x1 = 0;x2 = 0;pred=1
 if(t==2):x1 = 1;x2 = 0;pred=2
 if(t==3):x1 = 0;x2 = 1;pred=3
 #forward propagation on epoch 1
 hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result)

Now, the system must train. To do that, we need to measure the number of
predictions, 1 to 4, that are correct at each iteration and decide how to change the
weights/biases until we obtain proper results. We'll do that in the following section.

A simplified version of a cost function and gradient
descent
Slightly more complex gradient descent will be described in the next chapter. In this
chapter, only a one-line equation will do the job. The only thing to bear in mind as
an unconventional thinker is: so what? The concept of gradient descent is minimizing
loss or errors between the present result and a goal to attain.

First, a cost function is needed.

Solving the XOR Problem with a Feedforward Neural Network

[192]

There are four predicates (0-0, 1-1, 1-0, 0-1) to train correctly. We need to find out
how many are correctly trained at each epoch.

The cost function will measure the difference between the training goal (4) and the
result of this epoch or training iteration (result).

When 0 convergence is reached, it means the training has succeeded.

result[0,0,0,0] contains a 0 for each value if none of the four predicates have been
trained correctly. result[1,0,1,0] means two out of the four predicates are correct.
result[1,1,1,1] means that all four predicates have been trained and that the training can
stop. 1, in this case, means that the correct training result was obtained. It can be 0 or
1. The result array is the result counter.

The cost function will express this training by having a value of 4, 3, 2, 1, or 0 as the
training goes down the slope to 0.

Gradient descent measures the value of the descent to find the direction of the slope:
up, down, or 0. Then, once you have that slope and the steepness of it, you can
optimize the weights. A derivative is a way to know whether you are going up or
down a slope.

Each time we move up or down the slope, we check to see whether we are moving in
the right direction. We will assume that we will go one step at a time. So if we change
directions, we will change our pace by one step. That one step value is our learning
rate. We will measure our progression at each step. However, if we feel comfortable
with our results, we might walk 10 steps at a time and only check to see if we are on
the right track every 10 steps. Our learning rate will thus have increased to 10 steps.

In this case, we hijacked the concept and used it to set the learning rate to 0.05 with
a one-line function. Why not? It helped to solve gradient descent optimization in
one line:

 if(convergence<0):w2+=training_step;b1=w2

By applying the vintage children-buying-candy logic to the whole XOR problem, we
found that only w2 needed to be optimized. That's why b1=w2. That's because b1 is
doing the tough job of saying something negative (-) all the time, which completely
changes the course of the resulting outputs.

The rate is set at 0.05, and the program finishes training in 10 epochs:

epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0

Chapter 8

[193]

This is a logical yes or no problem. The way the network is built is pure logic.
Nothing can stop us from using whatever training rates we wish. In fact, that's what
gradient descent is about. There are many gradient descent methods. If you invent
your own and it works for your solution, that is fine.

This one-line code is enough, in this case, to see whether the slope is going down.
As long as the slope is negative, the function is going downhill to cost = 0:

 convergence=sum(result)-train #estimating the direction of the
slope
 if(convergence>=-0.00000001): break

The following diagram sums up the whole process:

Figure 8.3: A feedforward neural network model (FNN)

We can see that all of the arrows of the layers go forward in this "feedforward"
neural network. However, the arrow that stems from the y node and goes backward
can seem confusing. This line represents a change in weights to train the model. This
means that we go back to changing the weights and running the network for another
epoch (or episode). The system is adjusting its weights epoch by epoch until the
overall result is correct.

Too simple? Well, it works, and that's all that counts in real-life development. If your
code is bug-free and does the job, then that's what matters.

Finding a simple development tool means nothing more than that. It's just another
tool in the toolbox. We can get this XOR function to work on a neural network and
generate income.

Solving the XOR Problem with a Feedforward Neural Network

[194]

A company's survival relies on multiple constraints: delivering on time, offering
good prices, providing a product with a reasonable quality level, and many more
factors besides.

When we come up with a solution, it is useless to show how smart we can be
writing tons of code. Our company or customers expect an efficient solution that
will run well and is easy to maintain. In short, focus on efficiency. Once we have
a good solution, we need to show that it works. In this case, we proved that linear
separability was achieved.

Linear separability was achieved
Bear in mind that the whole purpose of this feedforward network with
backpropagation through a cost function was to transform a linear non-separable
function into a linearly separable function to implement the classification of features
presented to the system. In this case, the features had a 0 or 1 value.

One of the core goals of a layer in a neural network is to make the input make sense,
meaning to be able to separate one kind of information from another.

h1 and h2 will produce the Cartesian coordinate linear separability training axis,
as implemented in the following code:

 h1= h1 * -b1
 h2= h2 * b2
 print(h1,h2)

Running the program provides a view of the nonlinear input values once the hidden
layers have trained them. The nonlinear values then become linear values in a
linearly separable function:

linearly separability through cartesian training -1.0000000000000004
1.0000000000000004

linearly separability through cartesian training -0.0 0.0

linearly separability through cartesian training -0.0 1.0000000000000004

linearly separability through cartesian training -0.0 1.0000000000000004

epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0

Companies are not interested in how smart you are but how
efficient (profitable) you can be.

Chapter 8

[195]

The intermediate result and goal are not a bunch of numbers on a screen to show that
the program works. The result is a set of Cartesian values that can be represented in
the following linearly separated graph:

Figure 8.4: Linearly separable patterns

We have now obtained a separation between the top values, representing
the intermediate values of the (1, 0) and (0, 1) inputs, and the bottom values,
representing the (1, 1) and (0, 0) inputs. The top values are separated from the
bottom values by a clear line. We now have clouds on top and trees below the line
that separates them.

The layers of the neural network have transformed nonlinear values into linearly
separable values, making classification possible through standard separation
equations, such as the one in the following code:

#IV. threshold II and OUTPUT y
 y=h1+h2 # logical separation
 if(y<1 and pred>=0 and pred<2):
 result[pred]=1

 if(y>=1 and pred>=2 and pred<4):
 result[pred]=1

The ability of a neural network to make non-separable information separable and
classifiable represents one of the core powers of deep learning. From this technique,
many operations can be performed on data, such as subset optimization.

In the next section, we'll look at a practical application for our FNN XOR solution.

Solving the XOR Problem with a Feedforward Neural Network

[196]

Applying the FNN XOR function to
optimizing subsets of data
There are more than 7.5 billion people breathing air on this planet. In 2050, there
might be 2.5 billion more of us. All of these people need to wear clothes and eat.
Just those two activities involve classifying data into subsets for industrial purposes.

Grouping is a core concept for any production. Production relating to producing
clothes and food requires grouping to optimize production costs. Imagine not
grouping and delivering one T-shirt at a time from one continent to another instead
of grouping T-shirts in a container and grouping many containers (not just two on
a ship). Let's focus on clothing, for example.

A chain of stores needs to replenish the stock of clothing in each store as the
customers purchase their products. In this case, the corporation has 10,000 stores.
The brand produces jeans, for example. Their average product is a faded jean. This
product sells a slow 50 units a month per store. That adds up to 10,000 stores × 50
units = 500,000 units or stock-keeping units (SKUs) per month. These units are sold
in all sizes, grouped into average, small, and large. The sizes sold per month are
random.

The main factory for this product has about 2,500 employees producing those jeans
at an output of about 25,000 jeans per day. The employees work in the following
main fields: cutting, assembling, washing, lasering, packaging, and warehousing.

The first difficulty arises with the purchase and use of fabric. The fabric for this
brand is not cheap. Large amounts are necessary. Each pattern (the form of pieces
of the pants to be assembled) needs to be cut by wasting as little fabric as possible.

Imagine you have an empty box you want to fill up to optimize the volume. If you
only put soccer balls in it, there will be a lot of space. If you slip tennis balls in the
empty spaces, space will decrease. If, on top of that, you fill the remaining empty
spaces with ping pong balls, you will have optimized the available space in the box.

In the apparel business, if 1% to 10% of the fabric is wasted while manufacturing
jeans, the company will survive the competition. At over 10%, there is a real problem
to solve. Losing 20% of all the fabric consumed in manufacturing jeans can bring the
company down and force it into bankruptcy.

Building optimized subsets can be applied to containers, warehouse
flows and storage, truckload optimizing, and almost all human
activities.

Chapter 8

[197]

Optimization of space through larger and smaller objects can be applied to cutting
the forms, which are the patterns of the jeans, for example. Once they are cut, they
will be assembled at the sewing stations.

The problem can be summed up as:

• Creating subsets of the 500,000 SKUs to optimize the cutting process for the
month to come in a given factory

• Making sure that each subset contains smaller sizes and larger sizes to
minimize the loss of fabric by choosing 6 sizes per day to build 25,000 unit
subsets per day

• Generating cut plans of an average of 3 to 6 sizes per subset per day for a
production of 25,000 units per day

In mathematical terms, this means trying to find subsets of sizes among 500,000 units
for a given day.

The task is to find 6 well-matched sizes among 500,000 units, as shown in the
following combination formula:

𝐶𝐶(𝑛𝑛, 𝑟𝑟) = 𝑛𝑛!
𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! =

500000!
6! (500000 − 6)! = log10 1031.33

At this point, most people abandon the idea and find some easy way out of this,
even if it means wasting fabric.

The first reaction we all have is that this is more than the number of stars in the
universe and all that hype. However, that's not the right way to look at it at all.
The right way is to look exactly in the opposite direction.

The key to this problem is to observe the particle at a microscopic level, at the bits
of information level. Analyzing detailed data is necessary to obtain reliable results.
This is a fundamental concept of machine learning and deep learning. Translated
into our field, it means that to process an image, ML and DL process pixels.

The main rule is to combine larger pieces and smaller pieces to
make optimized cutting patterns.

Solving the XOR Problem with a Feedforward Neural Network

[198]

So, even if the pictures to process represent large quantities, it will come down to
small units of information to analyze:

yottabyte (YB) 1024 yobibyte (YiB) 280

It might be surprising to see these large numbers appear suddenly! However, when
trying to combine thousands of elements, the combinations become exponential.
When you extend this to the large population that major apparel brands have to
deal with, it becomes rapidly exponential as well.

Today, Google, Facebook, Amazon, and others have yottabytes of data to classify
and make sense of. Using the term big data doesn't mean much. It's just a lot of data,
and so what?

You do not need to analyze the individual positions of each data point in a dataset
but use the probability distribution.

To understand that, let's go to a store to buy some jeans for a family. One of the
parents wants a pair of jeans, and so does a teenager in that family. They both go
and try to find their size in the pair of jeans they want. The parent finds 10 pairs of
jeans in size x. All of the jeans are part of the production plan. The parent picks one
at random, and the teenager does the same. Then they pay for them and take them
home.

Some systems work fine with random choices: random transportation (taking jeans
from the store to home) of particles (jeans, other product units, pixels, or whatever
is to be processed), making up that fluid (a dataset).

Translated into our factory, this means that a stochastic (random) process can be
introduced to solve the problem.

All that was required is that small and large sizes were picked at random among the
500,000 units to produce. If 6 sizes from 1 to 6 were to be picked per day, the sizes
could be classified as follows in a table:

Smaller sizes = S = {1, 2, 3}

Larger sizes = L = {4, 5, 6}

Converting this into numerical subset names, S = 1 and L = 6. By selecting large and
small sizes to produce at the same time, the fabric will be optimized, as shown in the
following table:

Chapter 8

[199]

Size of choice 1 Size of choice 2 Output
6 6 0
1 1 0
1 6 1
6 1 1

You will notice that the first two lines contain the same value. This will not optimize
fabric consumption. If you put only large size 6 products together, there will be
"holes" in the pattern. If you only put small size 1 products together, then they
will fill up all of the space and leave no room for larger products. Fabric cutting is
optimal when large and small sizes are present on the same roll of fabric.

Doesn't this sound familiar? It looks exactly like our vintage FNN, with 1 instead
of 0 and 6 instead of 1.

All that has to be done is to stipulate that subset S = value 0, and subset L = value 1;
and the previous code can be generalized.

FFN_XOR_generalization.py is the program that generalizes the previous code,
as shown in the following snippet.

If this works, then smaller and larger sizes will be chosen to send to the cut planning
department, and the fabric will be optimized. Applying the randomness concept of
Bellman's equation, a stochastic process is applied, choosing customer unit orders
at random (each order is one size and a unit quantity of 1):

 w1=0.5;w2=1;b1=1
 w3=w2;w4=w1;b2=b1
 s1=random.randint(1,500000)#choice in one set s1
 s2=random.randint(1,500000)#choice in one set s2

The weights and bias are now constants obtained by the result of the XOR training
FNN. The training is over; the FNN is now used to provide results. Bear in mind that
the word learning in machine learning and deep learning doesn't mean you have to
train systems forever. In stable environments, training is run only when the datasets
change. At one point in a project, you are hopefully using deep trained systems and
not simply exploring the training phase of a deep learning process. The goal is not
to spend all corporate resources on learning but on using trained models.

Deep learning architecture must rapidly become deep trained
models to produce a profit.

Solving the XOR Problem with a Feedforward Neural Network

[200]

For this prototype validation, the size of a given order is random. 0 means the
order fits in the S subset; 1 means the order fits in the L subset. The data generation
function reflects the random nature of consumer behavior in the following six-size
jeans consumption model:

 x1=random.randint(0, 1)#property of choice:size smaller=0
 x2=random.randint(0, 1)#property of choice :size bigger=1
 hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result)

Once two customer orders have been chosen at random in the correct size category,
the FNN is activated and runs like the previous example. Only the result array has
been changed since we are using the same core program. Only a yes (1) or no (0) is
expected, as shown in the following code:

#II hidden layer 1 and its output
def hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result):
 h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
 h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
 if(h1>=1):h1=1
 if(h1<1):h1=0
 if(h2>=1):h2=1
 if(h2<1):h2=0
 h1= h1 * -b1
 h2= h2 * b2

#IV. threshold II and OUTPUT y
 y=h1+h2
 if(y<1):
 result[0]=0
 if(y>=1):
 result[0]=1

The number of subsets to produce needs to be calculated to determine the volume of
positive results required.

The choice is made of 6 sizes among 500,000 units. But, the request is to produce a
daily production plan for the factory. The daily production target is 25,000. Also,
each subset can be used about 20 times. There is always, on average, 20 times the
same size in a given pair of jeans available.

Six sizes are required to obtain good fabric optimization. This means that after three
choices, the result represents one subset of potential optimized choices:

R = 120 × 3 subsets of two sizes = 360

Chapter 8

[201]

The magic number has been found. For every 3 choices, the goal of producing 6 sizes
multiplied by a repetition of 20 will be reached.

The production-per-day request is 25,000:

The number of subsets requested = 25000/3=8333. 333

The system can run 8,333 products as long as necessary to produce the volume of
subsets requested. In this case, the range is set to a sample of 1,000,000 products. It
can be extended or reduced when needed. The system is filtering the correct subsets
through the following function:

for element in range(1000000):
 ...(a block of code is here in the program)...
 if(result[0]>0):
 subsets+=1
 print("Subset:",subsets,"size subset #",x1," and ","size
subset #",x2,"result:",result[0],"order #"," and ",s1,"order #",s2)
 if(subsets>=8333):
 break

When the 8,333 subsets have been found respecting the smaller-larger size
distribution, the system stops, as shown in the following output:

Subset: 8330 size subset # 1 and size subset # 0 result: 1 order # and
53154 order # 14310

Subset: 8331 size subset # 1 and size subset # 0 result: 1 order # and
473411 order # 196256

Subset: 8332 size subset # 1 and size subset # 0 result: 1 order # and
133112 order # 34827

Subset: 8333 size subset # 0 and size subset # 1 result: 1 order # and
470291 order # 327392

This example proves the point. Simple solutions can solve very complex problems.

Two main functions, among some minor ones, must be added:

• After each choice, the orders chosen must be removed from the 500,000-order
dataset. When an order has been selected, processing it again will generate
errors in the global results. This will preclude choosing the same order twice
and reduce the number of choices to be made.

• An optimization function to regroup the results for production purposes,
for example. The idea is not to run through the records randomly, but to
organize them by sets. This way, each set can be controlled independently.

Solving the XOR Problem with a Feedforward Neural Network

[202]

Application information:

• The core calculation part of the application is fewer than 50 lines long.
• With a few control functions and arrays, the program might reach 200 lines

maximum. The goal of the control functions is to check and see whether the
results reach the overall goal. For example, every 1,000 records, a local result
could be checked to see whether it fits the overall goal.

• This results in easy maintenance for a team.

Optimizing the number of lines of code to create a powerful application can prove to
be very efficient for many business problems.

Summary
Building a small neural network from scratch provides a practical view of the
elementary properties of a neuron. We saw that a neuron requires an input that can
contain many variables. Then, weights are applied to the values with biases. An
activation function then transforms the result and produces an output.

Neural networks, even one- or two-layer networks, can provide real-life solutions in
a corporate environment. A real-life business case was implemented using complex
theory broken down into small functions. Then, these components were assembled
to be as minimal and profitable as possible.

It takes talent to break a problem down into elementary parts and find a simple,
powerful solution. It requires more effort than just typing hundreds to thousands of
lines of code to make things work. A well-thought through algorithm will always be
more profitable, and software maintenance will prove more cost-effective.

Customers expect quick-win solutions. Artificial intelligence provides a large variety
of tools that satisfy that goal. When solving a problem for a customer, do not look for
the best theory, but the simplest and fastest way to implement a profitable solution,
no matter how unconventional it seems.

In this case, an enhanced FNN perceptron solved a complex business problem. In the
next chapter, we will explore a convolutional neural network (CNN). We will build a
CNN with TensorFlow 2.x, layer by layer, to classify images.

Chapter 8

[203]

Questions
1. Can the perceptron alone solve the XOR problem? (Yes | No)
2. Is the XOR function linearly non-separable? (Yes | No)
3. One of the main goals of layers in a neural network is classification.

(Yes | No)
4. Is deep learning the only way to classify data? (Yes | No)
5. A cost function shows the increase in the cost of a neural network. (Yes | No)
6. Can simple arithmetic be enough to optimize a cost function? (Yes | No)
7. A feedforward network requires inputs, layers, and an output. (Yes | No)
8. A feedforward network always requires training with backpropagation.

(Yes | No)

9. In real-life applications, solutions are only found by following existing
theories. (Yes | No)

Further reading
• Linear separability: http://www.ece.utep.edu/research/webfuzzy/

docs/kk-thesis/kk-thesis-html/node19.html

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

[205]

9
Abstract Image Classification

with Convolutional Neural
Networks (CNNs)

The invention of convolutional neural networks (CNNs) applied to vision
represents by far one of the most innovative achievements in the history of applied
mathematics. With their multiple layers (visible and hidden), CNNs have brought
artificial intelligence from machine learning to deep learning.

In Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, we saw
that f(x, w) is the building block of any neural network. A function f will transform
an input x with weights w to produce an output. This output can be used as such
or fed into another layer. In this chapter, we will generalize this principle and
introduce several layers. At the same time, we will use datasets with images.
We will have a dataset for training and a dataset for validation to confirm that
our model works.

A CNN relies on two basic tools of linear algebra: kernels and functions, applying
them to convolutions as described in this chapter. These tools have been used in
mathematics for decades.

However, it took the incredible imagination of Yann LeCun, Yoshua Bengio,
and others—who built a mathematical model of several layers—to solve real-life
problems with CNNs.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[206]

This chapter describes the marvels of CNNs, one of the pillars of artificial neural
networks (ANNs). A CNN will be built from scratch, trained, and saved. The
classification model described will detect production failures on a food-processing
production line. Image detection will go beyond object recognition and produce
abstract results in the form of concepts.

A Python TensorFlow 2 program will be built layer by layer and trained. Additional
sample programs will illustrate key functions.

The following topics will be covered in this chapter:

• The differences between 1D, 2D, and 3D CNNs
• Adding layers to a convolutional neural network
• Kernels and filters
• Shaping images
• The ReLU activation function
• Kernel initialization
• Pooling
• Flattening
• Dense layers
• Compiling the model
• The cross-entropy loss function
• The Adam optimizer
• Training the model
• Saving the model
• Visualizing the PNG of a model

We'll begin by introducing CNNs and defining what they are.

Introducing CNNs
This section describes the basic components of a CNN. CNN_SRATEGY_MODEL.
py will illustrate the basic CNN components used to build a model for abstract
image detection. For machines, as for humans, concepts are the building blocks
of cognition. CNNs constitute one of the pillars of deep learning (multiple layers
and neurons).

In this chapter, TensorFlow 2 with Python will be running using Keras libraries
that are now part of TensorFlow. If you do not have Python or do not wish to
follow the programming exercises, the chapter is self-contained, with graphs
and explanations.

Chapter 9

[207]

Defining a CNN
A convolutional neural network processes information, such as an image, for
example, and makes sense out of it.

For example, imagine you have to represent the sun with an ordinary pencil and a
piece of paper. It is a sunny day, and the sun is shining very brightly—too brightly.
You put on a special pair of very dense sunglasses. Now you can look at the sun
for a few seconds. You have just applied a color reduction filter, one of the first
operations of a convolutional network.

Then, you try to draw the sun. You draw a circle and put some gray in the middle.
You have just applied an edge filter. Finally, you go over the circle several times to
make it easy to recognize, progressively reducing what you saw into a representation
of it. Now, with the circle, some gray in the middle, and a few lines of rays around
it, anybody can see you drew the sun. You smile; you did it! You took a color image
of the sun and made a mathematical representation of it as a circle, which would
probably look something like this:

Figure 9.1: Mathematical representation of a circle

You just went through the basic processes of a convolutional network.

The word convolutional means that you transformed the sun you were looking
at into a drawing, area by area. But, you did not look at the whole sky at once.
You made many eye movements to capture the sun, area by area, and you did the
same when drawing. If you made a mathematical representation of the way you
transformed each area from your vision to your paper abstraction, it would be a
kernel. You can see that the convolutional operation converts an object into a more
abstract representation. This is not limited to images but can apply to any type of
data (words, sounds and video) we want to draw patterns from.

With that concept in mind, the following graph shows the successive mathematical
steps to follow in this chapter's model for a machine to process an image just as you
did. A convolutional network is a succession of steps that will transform what you
see into a classification status.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[208]

In the graph, each box represents a layer. Each layer has an input that comes from
the previous layer. Each layer will then transform the input and then produce an
output that will become the input of the next layer. At each layer, the key features
that are necessary to classify the images will be isolated.

In your example, it would serve to find out whether your drawing represents the
sun or not. This falls under a binary classification model (yes or no, or 1 or 0).

Figure 9.2: Architecture of a CNN

Chapter 9

[209]

Notice that the size of the outputs diminishes progressively until the outputs reach
1, the binary classification status that will return (1 or 0). These successive steps, or
layers, represent what you did when you went from observing the sun to drawing
it. In the end, if we draw poorly and nobody recognizes the sun, it means that we'll
have to go back to step 1 and change some parameters (weights in this case). That
way, we train to represent the sun better until somebody says, "Yes, it is a sun!"
That is probability = 1. Another person may say that it is not a sun (probability = 0).
In that case, more training would be required.

If you carry out this experiment of drawing the sun, you will notice that, as a human,
you transform one area at a time with your eye and pencil. You repeat the way you
do it in each area. The mathematical repetition you perform is your kernel. Using a
kernel per area is the fastest way to draw. For us humans, in fact, it is the only way
we can draw. A CNN is based on this process.

In this section, we looked at some key aspects of a CNN model, using the analogy
of representing the sun as a drawing. This is just one way to start a convolutional
neural network, and there are hundreds of different ways to do so. However,
once you understand one model, you will have the understanding necessary to
implement other variations.

In the following section, we'll see how to initialize and build our own CNN.

Initializing the CNN
CNN_SRATEGY_MODEL.py builds the CNN using TensorFlow 2. TensorFlow 2 has
made tremendous improvements in terms of development. The Keras datasets,
layers, and models are now part of the TensorFlow instance:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

The CNN only requires two lines of headers to build the layers! In TensorFlow 2,
for each layer, we simply have to call layers.<add your layer here> and that's it!

The model used is a Keras sequential() called from the TensorFlow from
tensorflow.keras instance:

classifier = models.Sequential()

And that's it. We have just started to build our own CNN in just a few lines of code.
TensorFlow 2 has simplified the whole process of creating a CNN, making it an easy,
intuitive process, as we will see throughout this chapter.

Let's begin to build upon the foundations of our CNN in the following section and
add a convolutional layer.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[210]

Adding a 2D convolution layer
In this chapter, we will be using a two-dimensional model as our example. Two-
dimensional relationships can be real-life images and also many other objects,
as described in this chapter. This chapter describes a two-dimensional network,
although others exist:

• A one-dimensional CNN mostly describes a temporal mode, for example, a
sequence of sounds (phonemes = parts of words), words, numbers, and any
other type of sequence.

• A volumetric module is a 3D convolution, such as recognizing a cube or
a video. For example, for a self-driving car, it is critical to recognize the
difference between a 2D picture of a person in an advertisement near a road
and a real 3D image of a pedestrian that is starting to cross the same road!

In this chapter, a spatial 2D convolution module will be applied to images of
different kinds. The main program, CNN_STRATEGY_MODEL.py, will describe how to
build and save a model.

classifier.add will add a layer to the model. The name classifier does not
represent a function but simply the arbitrary name that was given to this model in
this particular program. The model will end up with n layers. Look at the following
line of code:

classifier.add(layers.Conv2D(32, (3, 3),input_shape = (64, 64, 3),
activation = 'relu'))

This line of code contains a lot of information: the filters (applied with kernels), the
input shape, and an activation function. The function contains many more options.
Once you understand these in-depth, you can implement other options one by one,
as you deem necessary, for each project you have to work on.

Kernel
Just to get started, intuitively, let's take another everyday model. This model is a
bit more mathematical and closer to a CNN's kernel representation. Imagine a floor
of very small square tiles in an office building. You would like each floor tile to be
converted from dirty to clean, for example.

Chapter 9

[211]

You can imagine a cleaning machine capable of converting 3×3 small tiles (pixels)
one at a time from dirty to clean. You would laugh if you saw somebody come
with one enormous cleaning machine to clean all of the 32×32 tiles (pixels) at the
same time. You know it would be very bulky, slow, and difficult to use, intuitively.
On top of that, you would need one big machine per surface size! Not only is a
kernel an efficient way to filter, but a kernel convolution is also a time-saving
resource process. The small cleaning machine is the kernel (dirty-to-clean filter),
which will save you time performing the convolution (going over all of the tiles
to clean a 3×3 area), transforming the floor from dirty to clean.

In this case, 32 different filters have been added with 3×3 sized kernels:

classifier.add(layers.Conv2D(32, (3, 3)...

The use of kernels as filters is the core of a convolutional network. (32, (3,3))
means (number of filters, (size of kernels)).

An intuitive approach
To understand a kernel intuitively, keep the sun and cleaning tiles examples in mind.
In this section, a photograph of a cat will show how kernels work.

In a model analyzing cats, the initial photograph would look like this:

Figure 9.3: Cat photograph for model analysis

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[212]

On the first run of this layer, even with no training, an untrained kernel would
transform the photograph:

Figure 9.4: Cat photograph transformation

The first layer has already begun isolating the features of the cat. The edges have
begun to appear: the cat's body, ears, nose, and eyes. In itself, this first filter (one
of 32) with a size 3×3 kernel—in the first layer and with no training—already
produces effective results. The size of a kernel can vary according to your needs.
A 3×3 kernel will require a larger number of weights than a 1×1 kernel, for example.
A 1×1 kernel will have only one weight, which restricts the size of the features to
represent. The rule is that the smaller the kernel, the fewer weights we have to
find. It will also perform a feature reduction. When the size of the kernel increases,
the number of weights and features to find increases as well as the number of
features represented.

Each subsequent layer will make the features stand out much better, with smaller
and smaller matrices and vectors, until the program obtains a clear mathematical
representation.

Now that we have an intuitive view of how a filter works, let's explore a developer's
approach.

The developers' approach
Developers like to see the result first to decide how to approach a problem.

Let's take a quick, tangible shortcut to understand kernels through Edge_detection_
Kernel.py with an edge detection kernel:

#I.An edge detection kernel
kernel_edge_detection = np.array([[0.,1.,0.],
[1.,-4.,1.],
[0.,1.,0.]])

Chapter 9

[213]

The kernel is a 3×3 matrix, like the cat example. But the values are preset, and not
trained with weights. There is no learning here; only a matrix needs to be applied.
The major difference with a CNN is that it will learn how to optimize kernels itself
through weights and biases.

img.bmp is loaded, and the 3×3 matrix is applied to the pixels of the loaded image,
area by area:

#II.Load image and convolution
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape

The image before the convolution applying the kernel is the letter A (letter
recognition):

Figure 9.5: The letter "A"

Now the convolution transforms the image, as shown in the following code:

#III.Convolution
image_after_kernel = filter.convolve(image,kernel_edge_
detection,mode='constant', cval=0)

The edges of A now appear clearly in white, as shown in the following graph:

Figure 9.6: The white edges of A are visible

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[214]

The original image on top displayed a very thick A. The preceding graph displays
a thin, identifiable A feature through thin edges that a neural network can classify
within a few mathematical operations. The first layers of a convolutional network
train to find the right weights to generate the right kernel automatically.

Now that we have an intuitive and practical developer's view of a filter, let's add
some mathematics to our approach.

A mathematical approach
The initial image has a set of values you can display, as follows:

#II.Load image
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape
print("image shape",shape)

The code will print a numerical output of the image, as follows:

image shape (100, 100)

image before convolution

[[255 255 255 ..., 255 255 255]

 [255 255 255 ..., 255 255 255]

 [255 255 255 ..., 255 255 255]

 ...,

The convolution filter is applied using filter.convolve, a mathematical function,
to transform the image and filter it.

The convolution filter function uses several variables:

• The spatial index for the 3×3 kernel to apply; in this case, it must know
how to access the data. This is performed through a spatial index, j, which
manages data in grids. Databases also use spatial indexes to access data. The
axes of those grids determine the density of a spatial index. Kernels and the
image are convolved using j over W, the weights kernel.

• W is the weights kernel.
• I is the input image.
• k is the coordinate of the center of W. The default value is 0 in this case.

Chapter 9

[215]

These variables then enter the filter.convolve function as represented by the
following equation:

𝐶𝐶𝑖𝑖 =∑𝐼𝐼𝑖𝑖=𝑗𝑗−𝑘𝑘𝑊𝑊𝑗𝑗
𝑗𝑗

A CNN relies on kernels. Take all the time you need to explore convolutions
through the three dimensions required to master AI: an intuitive approach,
development testing, and mathematical representation.

Now that we have a mathematical idea on how a convolutional filter works, let's
determine the shape and the activation function to the convolutional layer.

Shape
input_shape defines the size of the image, which is 64×64 pixels (height×width),
as shown here:

classifier.add(...input_shape = (64, 64, 3)...)

3 indicates the number of channels. In this case, 3 indicates the three parameters
of an RGB color. Each channel can have a given value of 0 to 255.

ReLU
Activation functions provide useful ways to influence the transformation of
weighted data calculations. Their output will change the course of classification,
a prediction, or whatever goal the network was built for. This model applies a
rectified linear unit (ReLU), as shown in the following code:

classifier.add(..., activation = 'relu'))

ReLU activation functions apply variations of the following function to an input
value:

f(x) = max{0, x}

The function returns 0 for negative values; it returns positive values as x; it returns
0 for 0 values. Half of the domain of the function will return zeros. This means that
when you provide positive values, the derivative will always be 1. ReLU avoids the
squashing effect of the logistic sigmoid function, for example. However, the decision
to use one activation function rather than another will depend on the goal of each
ANN model.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[216]

In mathematical terms, a rectified linear unit (ReLU) function will take all the
negative values and apply 0 to them. And all the positive values remain unchanged.

The ReLU.py program provides some functions, including a NumPy function, to
test how ReLU works.

You can enter test values or use the ones in the source code:

import numpy as np
nx=-3
px=5

nx expects a negative value, and px expects a positive value for testing purposes
for the relu(x) and lrelu(x) functions. Use the f(x) function if you wish to
include zeros in your testing session.

The relu(x) function will calculate the ReLU value:

def relu(x):
 if(x<=0):ReLU=0
 if(x>0):ReLU=x
 return ReLU

In this case, the program will return the following result:

negative x= -3 positive x= 5

ReLU nx= 0

ReLU px= 5

The result of a negative value becomes 0, and a positive value remains unchanged.
The derivative or slope is thus always 1, which is practical in many cases and
provides good visibility when debugging a CNN or any other ANN.

The NumPy function, defined as follows, will provide the same results:

def f(x):
 vfx=np.maximum(0.1,x)
 return vfx

Through trial and error, ANN research has come up with several variations of ReLU.

One important example occurs when many input values are negative. ReLU will
constantly produce zeros, making gradient descent difficult, if not impossible.

Chapter 9

[217]

A clever solution was found using a leaky ReLU. A leaky ReLU does not return 0 for
a negative value but a small value you can choose, 0.1 instead of 0, for example. See
the following equation:

f(x) = max{0.1, x}

The leaky ReLU fixes the problem of "dying" neurons. Suppose you have a layer that
keeps returning negative values when activating neurons. The ReLU activation will
always return 0 in this case. That means that these neurons are "dead." They will
never be activated. To avoid these "dying" neurons, a leaky ReLU provides the small
positive value seen previously (0.1) that makes sure that a neuron does not "die."

Now gradient descent will work fine. In the sample code, the function is
implemented as follows:

def lrelu(x):
 if(x<0):lReLU=0.01
 if(x>0):lReLU=x
 return lReLU

Although many other variations of ReLU exist, with this in mind, you have an idea
of what it does.

Enter some values of your own, and the program will display the results, as shown
here:

print("negative x=",nx,"positive x=",px)
print("ReLU nx=",relu(nx))
print("ReLU px=",relu(px))
print("Leaky ReLU nx=",lrelu(nx))
print("f(nx) ReLu=",f(nx))
print("f(px) ReLu=",f(px))
print("f(0):",f(0))

The results will display the ReLU results as follows:

negative x= -3 positive x= 5

ReLU nx= 0

ReLU px= 5

Leaky ReLU nx= 0.01

We have processed a large representation of the input image. We now need to
reduce the size of our representation to obtain a better, more abstract representation.
By pooling some of the pixels we will also reduce the calculations of the subsequent
layers.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[218]

Pooling
A CNN contains hidden layers. The input is visible. Then as the layers work to
transform the data, "hidden" work goes on. The output layer is visible again.
Let's continue to explore the "hidden" layers! Pooling reduces the size of an input
representation, in this case, an image. Max pooling consists of applying a max
pooling window to a layer of the image:

classifier.add(layers.MaxPooling2D(pool_size = (2, 2)))

This pool_size 2×2 window will first find the maximum value of the 2×2 matrix
at the top left of the image matrix. This first maximum value is 4. It is thus the first
value of the pooling window on the right.

Then, the max pooling window hops over 2 squares and finds that 5 is the highest
value. 5 is written in the max pooling window. The hop action is called a stride. A
stride value of 2 will avoid overlapping, although some CNN models have strides
that overlap. It all depends on your goal. Look at the following diagram:

Figure 9.7: Pooling example

The output size has now gone from a 62×62×32 (number of filters) to a 31×31×32, as
shown in the following diagram:

Figure 9.8: Output size changes (pooling)

Chapter 9

[219]

Other pooling methods exist, such as average pooling, which uses the average of
the pooling window and not the maximum value. This depends on the model and
shows the hard work that needs to be put in to train a model.

Next convolution and pooling layer
The next two layers of the CNN repeat the same method as the first two described
previously, and it is implemented as follows in the source code:

Step 3 Adding a second convolutional layer and pooling layer
print("Step 3a Convolution")
classifier.add(layers.Conv2D(32, (3, 3), activation = 'relu'))

print("Step 3b Pooling")
classifier.add(layers.MaxPooling2D(pool_size = (2, 2)))

These two layers have drastically downsized the input to 14×14×32, as shown in
this diagram:

Figure 9.9: Convolution and pooling layer

It is possible to insert a padding layer on a CNN. As we shrink our image layer
by layer, the filters in a convolutional network will impact the center pixels more
than the outer pixels. Suppose you start drawing on a piece of paper. You tend to fill
the center of the paper and avoid the edges. The edges of the piece of paper contain
less information. If you decide to apply padding to the edges, the image will be more
complete. In a neural network, padding has the same function. It makes sure the
edges are taken into account by adding values. Padding can be implemented before
or after pooling, for example. We will implement an example of padding in Chapter
13, Visualizing Networks with TensorFlow 2.x and TensorBoard.

The next layer can apply flattening to the output of the pooling of this section, as
we'll see in the next section.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[220]

Flattening
The flattening layer takes the output of the max pooling layer and transforms the
vector of size x * y * z into a flattened vector, as shown in the following code:

Step 4 – Flattening
print("Step 4 Flattening")
classifier.add(layers.Flatten())

In this case, the layer vector will be 14 × 14 × 32 = 6,272, as shown in the following
diagram:

Figure 9.10: Flattening layer

This operation creates a standard layer with 6,272 very practical connections for the
dense operations that follow. After flattening has been carried out, a fully connected
dense network can be implemented.

Dense layers
Dense layers are fully connected. Full connections are possible through the size
reductions calculated so far, as shown before.

The successive layers in this sequential model have brought the size of the image
down enough to use dense layers to finish the job. dense_1 comes first, as shown
here:

Figure 9.11: Dense layer

The flattening layer produced a 14×14×32 size 6,272 layer with a weight for each
input. If it had not gone through the previous layers, the flattening would have
produced a much larger layer, slowing feature extractions down. The result
would produce nothing effective.

Chapter 9

[221]

With the main features extracted by the filters through successive layers and size
reduction, the dense operations will lead directly to a prediction using ReLU on
the dense operation and then the logistic sigmoid function to produce the final result:

print("Step 5 Dense")
classifier.add(layers.Dense(units = 128, activation = 'relu'))
classifier.add(layers.Dense(units = 1, activation = 'sigmoid'))

Now that we have the dense layer, let's explore the dense layer's activation functions.

Dense activation functions
The ReLU activation function can be applied to a dense layer as in other layers.

The domain of the ReLU activation function is applied to the result of the first dense
operation. The ReLU activation function will output the initial input for values >=0
and will output 0 for values <0:

f(input_value) = max{0, input_value)

The logistic activation function is applied to the second dense operation, as described
in Chapter 2, Building a Reward Matrix – Designing Your Datasets.

It will produce a value between 0 and 1:

LS(x)={0,1}

We have now built the last dense layer after the LS activation function.

The last dense layer is of size 1 and will classify the initial input—an image in this
case:

Figure 9.12: Dense layer 2

The layers of the model have now been added. Training can begin.

Training a CNN model
Training a CNN model involves four phases: compiling the model, loading the
training data, loading the test data, and running the model through epochs of loss
evaluation and parameter-updating cycles.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[222]

In this section, the choice of theme for the training dataset will be an example from
the food-processing industry. The idea here is not only to recognize an object but to
form a concept. We will explore concept learning neural networks further in Chapter
10, Conceptual Representation Learning. For the moment, let's train our model.

The goal
The primary goal of this model consists of detecting production efficiency flaws
on a food-processing conveyor belt. The use of CIFAR-10 (images) and MNIST
(a handwritten digit database) proves useful to understand and train some models.
However, in this example, the goal is not to recognize objects but a concept.

The following image shows a section of the conveyor belt that contains an
acceptable level of products, in this case, portions of chocolate cake:

Figure 9.13: Portions of chocolate cake example

The images can represent anything from chocolate cakes, cars on a road or any
other type of object. The main point is to detect when there are "gaps" or "holes" in
the rows of objects. To train the CNN, I used images containing objects I sometimes
drew just to train the system to "see" gaps.

However, sometimes production slows down, and the output goes down to an alert
level, as shown in the following photograph:

Figure 9.14: Portions of chocolate cake example

Chapter 9

[223]

The alert-level image shows a gap that will slow down the packaging section of
the factory dramatically. There are three lines of objects in the preceding image.
On line one, you can see five little objects (here pieces of cake), on line two, only
three. On line three, you can only see two objects. There are thus objects missing
on lines two and three. This constitutes a gap in this case that is a real problem
on production lines. The level of the number of acceptable objects in a frame is
a parameter.

Now that we have our goal, let's begin compiling the model.

Compiling the model
Compiling a TensorFlow 2 model requires a minimum of two options: a loss
function and an optimizer. You evaluate how much you are losing and then
optimize your parameters, just as in real life. A metric option has been added
to measure the performance of the model. With a metric, you can analyze your
losses and optimize your situation, as shown in the following code:

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',
metrics = ['accuracy'])

Let's take a look at some specific aspects of model compiling, starting with the loss
function.

The loss function
The loss function provides information on how far the state of the model y1
(weights and biases) is from its target state y.

A description of the quadratic loss function precedes that of the binary cross-
entropy functions applied to the case study model in this chapter.

The quadratic loss function
Let's refresh the concept of gradient descent. Imagine you are on a hill and want
to walk down that hill. Your goal is to get to y, the bottom of the hill. Presently,
you are at location a. Google Maps shows you that you still have to go a certain
distance:

y – a

That formula is great for the moment. But now suppose you are almost at the
bottom of the hill, and the person walking in front of you has dropped a coin.
You have to slow down now, and Google Maps is not helping much because at
this zoom level.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[224]

You must then zoom into smaller distances with a quadratic objective (or cost)
function:

O = (y – a)2

To make it more comfortable to analyze, O is divided by 2, producing a standard
quadratic cost function:

Cost =
(𝑦𝑦 − 𝑎𝑎)2

2

y is the goal. a is the result of the operation of applying the weights, biases, and
finally, the activation functions.

With the derivatives of the results, the weights and biases can be updated. In our
hill example, if you move one meter (y) per step (x), that is much more than moving
0.5 meters (y) per step. Depending on your position on the hill, you can see that
you cannot apply a constant learning rate (conceptually, the length of your step);
you adapt it just like Adam, the optimizer, does.

Binary cross-entropy
Cross-entropy comes in handy when the learning slows down. In the hill example,
it slowed down at the bottom. But, remember, a path can lead you sideways,
meaning you are momentarily stuck at a given height. Cross-entropy solves that
by being able to function well with very small values (steps on the hill).

Suppose you have the following structure:

• Inputs = {x1, x2, …, xn}
• Weights = {w1, w2, …, wn}
• A bias (or sometimes more) is b
• An activation function (ReLU, logistic sigmoid, or other)

Before the activation, z represents the sum of the classical operations:

𝑧𝑧 =∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏
𝑥𝑥𝑖𝑖

Now the activation function is applied to z to obtain the present output of the model.

y1 = act(z)

Chapter 9

[225]

With this in mind, the cross-entropy loss formula can be explained:

Loss = 1
𝑛𝑛∑[𝑦𝑦 log𝑦𝑦1 + (1 − 𝑦𝑦) log(1 − 𝑦𝑦1)]

𝑥𝑥

In this function:

• n is the total number of items of the input training, with multiclass data.
The choice of the logarithm base (2, e, 10) will produce different effects.

• y is the output goal.
• y1 is the present value, as described previously.

This loss function is always positive; the values have a minus sign in front of them,
and the function starts with a minus. The output produces small numbers that tend
to zero as the system progresses.

The loss function uses this basic concept with more mathematical inputs to update
the parameters.

A binary cross-entropy loss function is a binomial function that will produce a
probability output of 0 or 1 and not a value between 0 and 1 as in standard cross-
entropy. In the binomial classification model, the output will be 0 or 1.

In this case, the sum ∑ is not necessary when M (number of classes) = 2. The binary
cross-entropy loss function is then as follows:

Loss = –y log y1 + (1 – y) log (1 – y1)

The whole concept of this loss function method is for the CNN network to provide
information for the optimizer to adapt the weights accordingly and automatically.

The Adam optimizer
In the hill example, you first walked with big strides down the hill using momentum
(larger strides because you are going in the right direction). Then, you had to take
smaller steps to find the object. You adapted your estimation of your moment to
your need; hence, the name adaptive moment estimation (Adam).

Adam constantly compares mean past gradients to present gradients. In the hill
example, it compares how fast you were going.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[226]

The Adam optimizer represents an alternative to the classical gradient descent
method. Adam goes further by applying its optimizer to random (stochastic) mini-
batches of the dataset. This approach is an efficient version of stochastic gradient
descent.

Then, with even more inventiveness, Adam adds root-mean-square deviation
(RMSprop) to the process by applying per-parameter learning weights. It analyzes
how fast the means of the weights are changing (such as the gradients in our hill
slope example) and adapts the learning weights.

Metrics
Metrics are there to measure the performance of your model during the training
process. The metric function behaves like a loss function. However, it is not used
to train the model.

In this case, the accuracy parameter was this:

...metrics = ['accuracy'])

Here, a value that descends toward 0 shows whether the training is on the right
track and moves up to 1 when the training requires Adam function optimizing to set
the training on track again.

With this, we have compiled our model. We can now consider our training dataset.

The training dataset
The training dataset is available on GitHub. The dataset contains the image shown
previously for the food-processing conveyor belt example. I created a training
dataset with a repetition of a few images that I used to illustrate the architecture
of a CNN simply. In a real-life project, it will take careful designing with a trial-and-
error approach to create a proper dataset that represents all of the cases that the CNN
will face.

The class A directory contains the acceptable level images of a production line that
is producing acceptable levels of products. The class B directory contains the alert-
level images of a production line that is producing unacceptable levels of products.

The number of images in the dataset is limited because of the following:

• For experimental training purposes, the images produced good results
• The training-testing phase runs faster to study the program

The goal of the model is to detect the alert levels, an abstract conceptual application
of a CNN.

Chapter 9

[227]

Data augmentation
Data augmentation increases the size of the dataset by generating distorted versions
of the images provided.

The ImageDataGenerator function generates batches of all images found in tensor
formats. It will perform data augmentation by distorting the images (shear range,
for example). Data augmentation is a fast way to use the images you have and
create more virtual images through distortions:

train_datagen =
tf.compat.v2.keras.preprocessing.image.ImageDataGenerator(
rescale = 1./255,shear_range = 0.2,zoom_range = 0.2,
horizontal_flip = True)

The code description is as follows:

• rescale will rescale the input image if not 0 (or None). In this case, the data
is multiplied by 1/255 before applying any other operation.

• shear_range will displace each value in the same direction, determined in
this case by the 0.2. It will slightly distort the image at one point, giving
some more virtual images to train.

• zoom_range is the value of zoom.
• horizontal_flip is set to True. This is a Boolean that randomly flips

inputs horizontally.

ImageDataGenerator provides many more options for real-time data augmentation,
such as rotation range, height shift, and others.

Loading the data
Loading the data goes through the train_datagen preprocessing image function
(described previously) and is implemented in the following code:

print("Step 7b training set")
training_set = train_datagen.flow_from_directory(directory+'training_
set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

The flow in this program uses the following options:

• flow_from_directory sets the directory + 'training_set' to the path
where the two binary classes to train are stored.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[228]

• target_size will be resized to that dimension. In this case, it is 64×64.
• batch_size is the size of the batches of data. The default value is 32, and it's

set to 10 in this case.
• class_mode determines the label arrays returned: None or 'categorical'

will be 2D one-hot encoded labels. In this case, 'binary' returns 1D binary
labels.

Having looked at the training dataset, let's move on to the testing dataset.

The testing dataset
The testing dataset flow follows the same structure as the training dataset flow
described previously. However, for testing purposes, the task can be made easier
or more difficult, depending on the choice of the model. To make the task more
difficult, add images with defects or noise. This will force the system to train more
and the project team to do more hard work to fine-tune the model. I chose to use
a small dataset to illustrate the architecture of a CNN. In a real-life project choosing
the right data that contains all of the cases that the CNN will face takes time and a
trial-and-error approach.

Data augmentation provides an efficient way of producing distorted images
without adding images to the dataset. Both methods, among many others, can
be applied at the same time when necessary.

Data augmentation on the testing dataset
In this model, the data only goes through rescaling. Many other options could be
added to complicate the training task to avoid overfitting, for example, or simply
because the dataset is small:

print("Step 8a test")
test_datagen = tf.compat.v2.keras.preprocessing.image.
ImageDataGenerator(rescale = 1./255)

Building datasets is one of the most difficult tasks in an artificial intelligence
project. Data augmentation can be a solution if the results are efficient. If not, other
techniques must be used. One technique is to gather very large datasets when that
is possible and then use data augmentation just to distort the data a bit for training
purposes.

Loading the data
Loading the testing data remains limited to what is necessary for this model. Other
options can fine-tune the task at hand:

Chapter 9

[229]

print("Step 8b testing set")
test_set = test_datagen.flow_from_directory(directory+'test_set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

Never underestimate dataset fine-tuning. Sometimes, this phase can last weeks
before finding the right dataset and arguments.

Once the data is loaded, the CNN classifier is ready to be trained. Let's now see
how this is done.

Training with the classifier
The classifier has been built and can be run:

print("Step 9 training")
print("Classifier",classifier.fit_generator(training_set,
steps_per_epoch = estep,
epochs = ep,
validation_data = test_set,
validation_steps = vs,verbose=2))

You will notice that, in this chapter, we have a directory for the training data and
a separate directory for the test data. In Chapter 5, How to Use Decision Trees to
Enhance K-Means Clustering, we split the datasets into training subsets and testing
subsets. This can be applied to a CNN's dataset as well. This is a decision you will
need to make, depending on the situation.

For example, sometimes, the test set will be more difficult than the training set,
which justifies a separate directory. In other cases, splitting the data can be the
most efficient method.

The fit_generator function, which fits the model generated batch by batch,
contains the main hyperparameters to run the training session through the following
arguments in this model. The hyperparameter settings determine the behavior of
the training algorithm:

• training_set is the training set flow described previously.
• steps_per_epoch is the total number of steps (batches of samples) to yield

from the generator. The variable used in the following code is estep.
• epochs is the variable of the total number of iterations made on the data

input. The variable used is ep in the preceding code.

Abstract Image Classification with Convolutional Neural Networks (CNNs)

[230]

• validation_data=test_set is the testing data flow.
• validation_steps=vs is used with the generator and defines the number

of batches of samples to test as defined by vs in the following code at the
beginning of the program:
estep=100 #10000
vs=1000 #8000->100
ep=3 #25->2

While the training runs, measurements are displayed: loss, accuracy, epochs,
information on the structure of the layers, and the steps calculated by the algorithm.

Here is an example of the loss and accuracy data displayed:

Epoch 1/2

 - 23s - loss: 0.1437 - acc: 0.9400 - val_loss: 0.4083 - val_acc: 0.5000

Epoch 2/2

 - 21s - loss: 1.9443e-06 - acc: 1.0000 - val_loss: 0.3464 - val_acc:
0.5500

Now that we have built and trained the model, we need to save it. Saving the model
will avoid having to train the model each time we wish to use it.

Saving the model
By saving the model, we will not have to train it again every time to use it. We will
only go back to training when it's required to fine-tune it.

TensorFlow 2 provides a method to save the structure of the model and the weights
in a single line of code and a single serialized file:

model3.h5 saved in the following code, contains serialized data with the model
structure and weights. It contains the parameters and options of each layer. This
information is very useful to fine-tune the model:

print("Step 10: Saving the model")
classifier.save(directory+"model/model3.h5")

The model has been built, trained, and saved.

Next steps
The model has been built and trained. In Chapter 10, Conceptual Representation
Learning, we will explore how to load and run it with no training.

Chapter 9

[231]

Summary
Building and training a CNN will only succeed with hard work, choosing the model,
the right datasets, and hyperparameters. The model must contain convolutions,
pooling, flattening, dense layers, activation functions, and optimizing parameters
(weights and biases) to form solid building blocks to train and use a model.

Training a CNN to solve a real-life problem can help sell AI to a manager or a sales
prospect. In this case, using the model to help a food-processing factory solve a
conveyor belt productivity problem takes AI a step further into everyday corporate
life.

A CNN that recognizes abstract concepts within an image takes deep learning one
step closer to powerful machine thinking. A machine that can detect objects in an
image and extract concepts from the results represents the true final level of AI.

Once the training is over, saving the model provides a practical way to use it by
loading it and applying it to new images to classify them. This chapter concluded
after we had trained and saved the model.

Chapter 10, Conceptual Representation Learning, will dive deeper into how to design
symbolic neural networks.

Questions
1. A CNN can only process images. (Yes | No)
2. A kernel is a preset matrix used for convolutions. (Yes | No)
3. Does pooling have a pooling matrix, or is it random?
4. The size of the dataset always has to be large. (Yes | No)
5. Finding a dataset is not a problem with all the available image banks on the

web. (Yes | No)
6. Once a CNN is built, training it does not take much time. (Yes | No)
7. A trained CNN model applies to only one type of image. (Yes | No)
8. A quadratic loss function is not very efficient compared to a cross-entropy

function. (Yes | No)
9. The performance of a deep learning CNN does not present a real issue with

modern CPUs and GPUs. (Yes | No)

Further reading and references
• TensorFlow 2: https://www.tensorflow.org/beta

https://www.tensorflow.org/beta

[233]

10
Conceptual Representation

Learning
Understanding cutting-edge machine learning and deep learning theory only
marks the beginning of your adventure. The knowledge you have acquired should
help you become an AI visionary. Take everything you see as opportunities and see
how AI can fit into your projects. Reach the limits and skydive beyond them.

This chapter focuses on decision-making through visual representations and
explains the motivation that led to conceptual representation learning (CRL) and
metamodels (MM), which form CRLMMs.

Concept learning is our human ability to partition the world from chaos to
categories, classes, sets, and subsets. As a child and young adult, we acquire many
classes of things and concepts. For example, once we understand what a "hole" is,
we can apply it to anything we see that is somewhat empty: a black hole, a hole in
the wall, a hole in a bank account if money is missing or overspent, and hundreds
of other cases.

By performing concept learning, we humans do not have to learn the same concept
over and over again for each case. For example, a hole is a hole. So when we see
a new situation such as a crater, we know it's just a "big" hole. I first registered a
word2vector patent early in my career. Then I rapidly applied it to concept2vector
algorithms. I then designed and developed the CRLMM method successfully for
automatic planning and scheduling (APS) software, cognitive chatbots, and more,
as we will see in the following chapters. The metamodel term means that I applied
one single model to many different domains, just as we humans do.

Conceptual Representation Learning

[234]

Conceptual representations also provide visual images of concepts. To plan,
humans need to visualize necessary information (events, locations, and so on)
and more critical visual dimensions such as image concepts. A human being thinks
in mental images. When we think, mental images flow through our minds with
numbers, sounds, odors, and sensations, transforming our environment into
fantastic multidimensional representations similar to video clips.

The following topics will be covered in this chapter:

• An approach to CRLMM in three steps:
 ° Transfer learning to avoid developing a new program for each

variation of a similar case
 ° Domain learning to avoid developing a new program each time

the domain changes
 ° The motivation for using CRLMM

Over the years, I've successfully implemented CRL in C++, Java, and logic
programming (Prolog) in various forms on corporate sites. In this chapter,
I'll use Python to illustrate the approach with TensorFlow 2.x with the
convolutional neural network (CNN) built in Chapter 9, Abstract Image
Classification with Convolutional Neural Networks (CNNs).

• Transfer learning using a CNN model trained to generalize image
recognition

• Domain learning to extend image recognition trained in one field to
another field

We'll begin this chapter by looking at the benefits of transfer learning and how
concept learning can boost this process.

Generating profit with transfer learning
Transfer learning means that we can use a model we designed and trained in another
similar case. This will make the model very profitable since we do not have to design
a new model and write a new program for every new case. You will thus generate
profit for your company or customer by lowering the cost of new implementations
of your trained model. Think of a good AI model as a reusable tool when applied
to similar cases. This is why concept learning, being more general and abstract, is
profitable. That is how we humans adapt.

When it comes to reasoning and thinking in general, we use mental images with
some words. Our thoughts contain concepts, on which we build solutions.

Chapter 10

[235]

The trained model from Chapter 9, Abstract Image Classification with Convolutional
Neural Networks (CNNs), can now classify images of a certain type. In this section,
the trained model will be loaded and then generalized through transfer learning
to classify similar images.

The motivation behind transfer learning
Transfer learning provides a cost-effective way of using trained models for other
purposes within the same company, such as the food processing company described
in Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs).

This chapter describes how the food processing company used the model for other
similar purposes.

The company that succeeds in doing this will progressively generalize the use
of the solution. By doing so, inductive abstraction will take place and lead to other
AI projects, which will prove gratifying to the management of a corporation and
the teams providing the solutions.

Inductive thinking
Induction uses inferences to reach a conclusion. For example, a food processing
conveyor belt with missing products will lead to packaging productivity problems.
If an insufficient amount of products reaches the packaging section, this will slow
down the whole production process.

By observing similar problems in other areas of the company, inferences from
managers will come up, such as if insufficient amounts of products flow through the
process, production will slow down.

Inductive abstraction
The project team in charge of improving efficiency in any company needs to find
an abstract representation of a problem to implement a solution through organization
or software. This book deals with the AI side of solving problems. Organizational
processes need to define how AI will fit in, with several on-site meetings.

You will notice that I did not use many images for the example.
My goal was to explain the process, not to go into building large
datasets, which is a task in itself. The primary goal is to understand
CNNs and conceptual learning representations.

Conceptual Representation Learning

[236]

The problem AI needs to solve
In this particular example, each section of the factory has an optimal production
rate (OPR) defined per hour or per day, for example. The equation of an OPR per
hour can be summed up as follows:

OPR : min(p(s)) <= OPR <= max(p(s))

Where:

• p is the production rate of a given section (the different production
departments of a factory) s.

• p(s) is the production rate of the section.
• min(p(s)) is the historical minimum (trial and error over months of analysis).

Under that level, the whole production process will slow down.
• max(p(s)) is the historical maximum. Over that level, the whole production

process will slow down as well.
• OPR is the optimal production rate.

The first time somebody sees this equation, it seems difficult to understand. The
difficulty arises because you have to visualize the process, which is the goal of
this chapter. Every warehouse, industry, and service uses production rates as a
constraint to reach profitable levels.

Visualization requires representation at two levels:

• Ensuring that if a packaging department is not receiving enough products,
it will have to slow down or even stop sometimes.

• Ensuring that if a packaging department receives too many products, it
will not be able to package them. If the input is a conveyor belt with no
intermediate storage (present-day trends), then it will have to be slowed
down, slowing down or stopping the processes before that point.

In both cases, slowing down production leads to bad financial results and critical
sales problems through late deliveries.

In both cases, an OPR gap is a problem. To solve this problem, another level of
abstraction is required. First, let's break down the OPR equation into two parts:

OPR >= min(p(s))

OPR <= max(p(s))

Chapter 10

[237]

Now let's find a higher control level through variance variable v:

vmin = |OPR – min(p(s))|

vmax = |OPR – max(p(s))|

vmin and vmax are the absolute values of the variance in both situations (not enough
products to produce and too many to produce respectively).

The final representation is through a single control, detection, and learning rate
(the Greek letter gamma):

Γ = max(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚)

The variance between the optimal production rate of a given section of a company
and its minimum speed (products per hour) will slow the following section
down. If too few cakes (vmin), for example, are produced, then the cake packaging
department will be waiting and will have to stop. If too many cakes are produced
(vmax), then the section will have to slow down or stop. Both variances would create
problems in a company that cannot manage intermediate storage easily, which is
the case with the food processing industry.

With this single Γ concept, introduced in Chapter 9, Abstract Image Classification with
Convolutional Neural Networks (CNNs), the TensorFlow 2.x CNN can start learning a
fundamental production concept: what a physical gap is. Let's go back to humans.
Once we understand that a gap is some kind of hole or empty space, we can
identify and represent thousands of situations with that one gap concept that is here
converted into a parameter named gamma (Γ). Let's explore the concept and then
implement it.

The 𝚪𝚪 gap concept
Teaching the CNN the gap concept will help it extend its thinking power to many
fields:

• A gap in production, as explained before
• A gap in a traffic lane for a self-driving vehicle to move into
• Any incomplete, deficient area
• Any opening or window

Conceptual Representation Learning

[238]

Let's teach a CNN the Γ gap concept, or simply, Γ . The symbol Γ of a gap is the
Greek letter "gamma," so it is simply pronounced "gamma." We thus lead to
teaching a CNN how to recognize a gap we will call gamma (Γ). The goal is for
a CNN to understand the abstract concept of an empty space, a hole represented
by the word gap and the Greek letter gamma (Γ).

To achieve that goal, the CNN model that was trained and saved in Chapter 9,
Abstract Image Classification with Convolutional Neural Networks (CNNs), now needs
to be loaded and used. To grasp the implications of the Γ concept, imagine the cost
of not producing enough customer orders or having piles of unfinished products
everywhere. The financial transposition of the physical gap is a profit variance on
set goals. We all know the pain those variances lead to.

Loading the trained TensorFlow 2.x model
The technical goal is to load and use the trained CNN model and then use the same
model for other similar areas. The practical goal is to teach the CNN how to use
the 𝚪𝚪 concept to enhance the thinking abilities of the scheduling, chatbot, and other
applications.

Loading the model has two main functions:

• Loading the model to compile and classify new images without training
the model

• Displaying the parameters used layer by layer and displaying the weights
reached during the learning and training phase

In the following section, we will load and display the model without training it.

Loading and displaying the model
A limited number of headers suffice to read a saved model with READ_MODEL.py, as
implemented in the following lines:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import numpy as np
from PIL import Image

#Directory

Chapter 10

[239]

directory='dataset/'
print("directory",directory)

The model3.h5 model saved is now loaded from its file, as shown here:

#____________________LOAD MODEL____________________________

loaded_model = keras.models.load_model(directory+"model/model3.h5")
print(loaded_model.summary())

The loaded model needs to be compiled:

__________________compile loaded model
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

Reading and displaying the model is not a formality.

Printing the structure provides useful information:

print("GLOBAL MODEL STRUCTURE")
print(loaded_model.summary())

The trained model might or might not work on all datasets. In that case, the
following output would point to problems that can be fixed through its structure, for
example, as follows:

MODEL STRUCTURE

Model: "sequential"

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 62, 62, 32) 896

max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0

conv2d_1 (Conv2D) (None, 29, 29, 32) 9248

max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32) 0

flatten (Flatten) (None, 6272) 0

dense (Dense) (None, 128) 802944

Conceptual Representation Learning

[240]

dense_1 (Dense) (None, 1) 129

===

Total params: 813,217

Trainable params: 813,217

Non-trainable params: 0

Once the global structure has been displayed, it is possible to look into the structure
of each layer. For example, we can peek into the conv2d layer:

DETAILED MODEL STRUCTURE

{'name': 'conv2d', 'trainable': True, 'batch_input_shape': (None, 64,
64, 3), 'dtype': 'float32', 'filters': 32, 'kernel_size': (3, 3),
'strides': (1, 1), 'padding': 'valid', 'data_format': 'channels_last',
'dilation_rate': (1, 1), 'activation': 'relu', 'use_bias': True, 'kernel_
initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}},
'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_
regularizer': None, 'bias_regularizer': None, 'activity_regularizer':
None, 'kernel_constraint': None, 'bias_constraint': None}

{'name': 'max_pooling2d', 'trainable': True, 'dtype': 'float32', 'pool_
size': (2, 2), 'padding': 'valid', 'strides': (2, 2), 'data_format':
'channels_last'}

Each parameter contains very useful information. For example, 'padding':'valid'
means that padding has not been applied. In this model, the number and size of
the kernels provide satisfactory results without padding, and the shape decreases
to the final status layer (classification), as shown here:

initial shape (570, 597, 4)

lay: 1 filters shape (568, 595, 3)

lay: 2 Pooling shape (113, 119, 3)

lay: 3 filters shape (111, 117, 3)

lay: 4 pooling shape (22, 23, 3)

lay: 5 flatten shape (1518,)

lay: 6 dense shape (128,)

lay: 7 dense shape (1,)

However, suppose you want to control the output shape of a layer so that the spatial
dimensions do not decrease faster than necessary. One reason could be that the next
layer will explore the edges of the image and that we need to explore them with
kernels that fit the shape.

Chapter 10

[241]

In that case, padding of size 1 can be added with 0 values, as shown in the following
matrix:

0 0 0 0 0 0
0 1 3 24 4 0
0 3 7 8 5 0
0 6 4 5 4 0
0 5 4 3 1 0
0 0 0 0 0 0

A padding of size 2 would add two rows and columns around the initial shape.

With that in mind, fine-tuning your training model by adding as many options as
necessary will improve the quality of the results. The weights can be viewed by
extracting them from the saved model file layer by layer, as shown in the following
code snippet:

print("WEIGHTS")
for layer in loaded_model.layers:
 weights = layer.get_weights() # list of numpy arrays
 print(weights)

Analyzing the weights used by the program will provide useful information about
the way the optimization process was carried out by the program. Sometimes, a
program will get stuck, and the weights might seem off track. After all, a CNN
can contain imperfections like any other program.

A look at the following output, for example, can help understand where the system
went wrong:

WEIGHTS

[array([[6.25981949e-03, 2.35006157e-02, -1.28920656e-02, ...,

 -8.34930502e-03, 2.00010985e-02, -1.84428487e-02],

 [-1.01672988e-02, 1.87084991e-02, 2.49958578e-02, ...,

 -2.92361379e-02, -2.33592112e-02, -1.64737436e-03],

 [-2.71108598e-02, 2.53492035e-03, -2.90711448e-02, ...,

We can now use the loaded and checked model.

Conceptual Representation Learning

[242]

Loading the model to use it
Loading the model with CNN_CONCEPT_STRATEGY.py requires a limited number of
headers, as follows:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import numpy as np
from PIL import Image

Loading the model is done by using the same code as in READ_MODEL.py, described
previously. Once you load it, compile the model with the model.compile function,
as follows:

__________________compile loaded model
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

The model used for this example and the image identification function has been
implemented in two parts. First, we're loading and resizing the image with the
following function, for example:

def identify(target_image):
 filename = target_image
 original = load_img(filename, target_size=(64, 64))
 #print('PIL image size',original.size)
 if(display==1):
 plt.imshow(original)
 plt.show()
 numpy_image = img_to_array(original)
 inputarray = numpy_image[np.newaxis,...] # extra dimension to fit
model
 arrayresized=np.resize(inputarray,(64,64))
 #print('Resized',arrayresized)

The model expects another dimension in the input array to predict, so one is added
to fit the model. In this example, one image at a time needs to be identified.

I added the following two prediction methods and returned one:

Chapter 10

[243]

#___PREDICTION___
 prediction = loaded_model.predict_proba(inputarray)
 return prediction

There are two prediction methods because, basically, every component needs to be
checked in a CNN during a project's implementation phase, to choose the best and
fastest ones. To test prediction2, just change the return instruction.

The following example detects product 𝚪𝚪 gaps on a conveyor belt in a food
processing factory. The program loads the first image stored in the classify
directory to predict its value. The program describes the prediction:

MS1='productive'
MS2='gap'

s=identify(directory+'classify/img1.jpg')
if (int(s)==0):
 print('Classified in class A')
 print(MS1)

The program displays (optional) the shaped image, as follows, which shows that
the conveyor belt has a sufficient number of products at that point:

Figure 10.1: Output (shaped image)

Once a CNN is running, it can prove difficult to find out what went
wrong. Checking the output of each layer and component while
building the network saves fine-tuning time once the full-blown
model produces thousands of results.

Conceptual Representation Learning

[244]

The program then makes and displays its prediction 0, meaning no real gap has
been found on the conveyor belt on this production line:

directory dataset/

Strategy model loaded from training repository.

image dataset/classify/img1.jpg predict_proba: [[0.]] predict: [[0.]]

Classified in class A

Productive

Seeking...

Seeking... means it is going to analyze the second image in the classify direction.
It loads, displays, and predicts its value as shown in the following frame:

Figure 10.2: Output (shaped image)

The prediction (value = 1) correctly detected gaps on the conveyor belt, as shown in
the following output:

image dataset/classify/img2.jpg predict_proba: [[1.]] predict: [[1.]]

Classified in class B

gap

Now that the predictions of the CNN have been verified, the implementation
strategy needs approval. A CNN contains marvels of applied mathematics. CNNs
epitomize deep learning themselves. A researcher could easily spend hundreds of
hours studying them.

However, applied mathematics in the business world requires profitability. As
such, the components of CNNs appear to be ever-evolving concepts. Added kernels,
activation functions, pooling, flattening, dense layers, and compiling and training
methods act as a starting point for architectures, not as a finality.

Chapter 10

[245]

Using transfer learning to be profitable or see a project
stopped
At some point, a company will demand results and may shelve a project if those
results are not delivered. If a spreadsheet represents a faster sufficient solution, a
deep learning project will face potential competition and rejection. Many engineers
learning artificial intelligence have to assume the role of standard SQL reporting
experts before accessing real AI projects. Transfer learning is a profitable solution
that can boost the credibility of an IT department.

Transfer learning appears to be a solution to the present cost of building and
training a CNN program. Your model might just pay off that way. The idea is to
get a basic AI model rolling profits in fast for your customer and management.
Then, you will have everybody's attention. To do that, you must define a strategy.

Defining a strategy
If a deep learning CNN expert comes to a top manager saying that this CNN model
can classify CIFAR-10 images of dogs, cats, cars, plants, and more, the answer will
be, so what? My 3-year-old child can too. In fact, so can my dog!

The IT manager in that meeting might even blurt out something like, "We have all
the decision tools we need right now, and our profits are increasing. Why would we
invest in a CNN?"

The core problem of marketing AI to real-world companies is that it relies upon
a belief in the necessity of a CNN in the first place. Spreadsheets, SQL queries,
standard automation, and software do 99% of the job. Most of the time, it does
not take a CNN to replace many jobs; just an automated spreadsheet, a query, or
standard, straightforward software is enough. Jobs have been sliced into simple-
enough parts to replace humans with basic software for decades.

Before presenting a CNN, a data scientist has to find out how much the company
can earn using it.

Understanding, designing, building, and running a CNN does not
mean much regarding business. All the hard work we put into
understanding and running these complex programs will add up
to nothing if we cannot prove that a solution will generate profit.
Without profit, the implementation costs cannot be recovered, and
nobody will listen to a presentation about even a fantastic program.

Conceptual Representation Learning

[246]

Applying a model efficiently means implementing it in one area of a company and
then other domains for a good return on investment.

Applying the model
In a food processing company, for example, one of the packaging lines has a
performance problem. Sometimes, randomly, some of the cakes are missing on the
conveyor belt, as shown in the following frame:

Figure 10.3: Food processing company example

To start a cost-effective project, a cheap webcam could be installed over the
conveyor belt. It'll take a random sample picture every 10 seconds and process it
to find the holes shown in the interval in the center of the image. We can clearly
see an empty space, a gap, a hole. If a hole is detected, it means some cakes have
not made it to the conveyor belt (production errors).

A 2% to 5% productivity rate increase could be obtained by automatically sending
a signal to the production robot when some cakes are missing. The production robot
will then send a signal to the production line to increase production to compensate
for the missing units in real-time. This type of automatic control already exists in
various forms of automated food production lines. However, this provides a low-
cost way to start implementing this on a production line.

Making the model profitable by using it for another
problem
Let's say that the food processing experiment on the conveyor belt turns out to work
well enough with dataset type d1 and the CNN model M to encourage generalization
to another dataset, d2, in the same company.

Transfer learning consists of going from M(d1) to M(d2) using the same CNN model
M, with some limited, cost-effective additional training. Variations will appear,
but they can be solved by shifting a few parameters and working on the input
data following some basic dataset preparation rules:

Chapter 10

[247]

• Overfitting: When the model fits the training data quickly with 100%
accuracy, this may or may not be a problem. In the case of classifying
holes on the conveyor belt, overfitting might not prove critical. The shapes
are always the same, and the environment remains stable. However, in
an unstable situation with all sorts of different images or products, then
overfitting will limit the effectiveness of a system.

• Underfitting: If the accuracy drops down to low levels, such as 20%, then
the CNN will not work. The datasets and parameters need optimizing.
Maybe the number of samples needs to be increased for M(d2), or reduced,
or split into different groups.

• Regularization: Regularization, in general, involves the process of finding
how to fix the generalization problem of M(d2), not the training errors of
M(d2). Maybe an activation function needs some improvements, or the way
the weights have been implemented requires attention.

There is no limit to the number of methods you can apply to find a solution, just
like standard software program improvements.

Where transfer learning ends and domain learning begins
Transfer learning can be used for similar types of objects or images in this example,
as explained. The more similar images you can train within a company with the
same model, the more return on investment (ROI) it will produce, and the more
this company will ask you for more AI innovations.

Domain learning takes a model such as the one described in Chapter 9, Abstract
Image Classification with Convolutional Neural Networks (CNNs), and can generalize it.
The generalization process will lead us to domain learning.

Domain learning
This section on domain learning builds a bridge between classic transfer learning,
as described previously, and another use of domain learning I have found profitable
on corporate projects: teaching a machine a concept (CRLMM). In this chapter, we
are focusing on teaching a machine to learn how to recognize a gap in situations
other than at the food processing company.

How to use the programs
You can read this whole chapter first to grasp the concepts or play with the programs
first. Do as you feel is best for you. In any case, CNN_TDC_STRATEGY.py loads trained
models (you do not have to train them again for this chapter) and CNN_CONCEPT_
STRATEGY.py trains the models.

Conceptual Representation Learning

[248]

The trained models used in this section
This section uses CNN_TDC_STRATEGY.py to apply the trained models to the target
concept images. READ_MODEL.py (as shown previously) was converted into CNN_
TDC_STRATEGY.py by adding variable directory paths (for the model3.h5 files and
images) and classification messages, as shown in the following code:

#loads,traffic,food processing
A=['dataset_O/','dataset_traffic/','dataset/']
MS1=['loaded','jammed','productive']
MS2=['unloaded','change','gap']

#____________________LOAD MODEL____________________________
loaded_model = keras.models.load_model(directory+"model/model3.
h5")....")

The loaded model now targets the images to classify:

s=identify(directory+'classify/img1.jpg')

Each subdirectory of the model contains four subdirectories:

• classify: Contains the images to classify
• model: The trained model3.h5 used to classify the images
• test_set: The test set of conceptual images
• training_set: The training set of conceptual images

Now that we have explored the directory structure of our model, let's see how to
use it in different situations.

The trained model program
For this chapter, you do not need to train a model. It was already trained in Chapter 9,
Abstract Image Classification with Convolutional Neural Networks (CNNs). The directory
paths have become variables to access the subdirectories described previously. The
paths can be called, as shown in the following code:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=3 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)

Chapter 10

[249]

You do not need to run training for this chapter. The models were trained and
automatically stored in their respective subdirectories on the virtual machine
delivered with the book. This means that when you need to detect gaps for various
types of images, you can simply change the scenario to fit the type of images you
will be receiving from the frames of a webcam: cakes, cars, fabric, or abstract
symbols.

We have loaded the model and a scenario. Now, we are going to use our trained
model to detect if a production line is loaded or underloaded.

Gap – loaded or underloaded
The gap concept has just become a polysemy image-concept (polysemy means
different meanings, as explained in Chapter 6, Innovating AI with Google Translate).

In the cake situation, the Γ gap was negative in its g1 subset of meaning and concepts
applied to a CNN, relating it to negative images n + g1:

ng1 = {missing, not enough, slowing production down … bad}

The full-of-products image was positive, p + g2:

pg2 = {good production flow, no gap}

In this example, the CNN is learning how to distinguish an abstract representation,
not simply an image, like for the cakes. Another subset of Γ (the conceptual gap
dataset) is loaded/underloaded. A "gap" is not a specific object but a general
concept that can be applied to hundreds of different cases. This is why I use the term
"conceptual gap dataset."

The following abstract image is loaded. The squares represent production machines,
and the arrows represent the load-in time.

For this chapter, focus on understanding the concepts. You can
read the chapter without running the programs, open them without
running them, or run them—whatever makes you comfortable. The
main goal is to grasp the concepts to prepare for the subsequent
chapters.

Conceptual Representation Learning

[250]

This means that the x axis represents time and the y axis represents machine
production resources:

Figure 10.4: Abstract image 1

The CNN model runs and produces the following result:

directory dataset_O/

Strategy model loaded from training repository.

image dataset_O/classify/img1.jpg predict_proba: [[0.]] predict: [[0.]]

Classified in class A

loaded

Seeking...

The CNN recognizes this as a correctly loaded model. The task goes beyond
classifying. The system needs to recognize this to make a decision.

Another image produces a different result. In this case, an underloaded gap appears
in the following screenshot:

Figure 10.5: Abstract image 2

Chapter 10

[251]

And the CNN has a different output, as shown here:

Seeking...

image dataset_O/classify/img2.jpg predict_proba: [[1.]] predict: [[1.]]

Classified in class

unloaded

Read "unloaded" as "underloaded." Unloaded or underloaded represents empty
spaces in any case. The gap concept Γ has added two other subsets, g3 and g4, to its
dataset. We now have:

Γ = {𝑛𝑛𝑛𝑛1, 𝑛𝑛2, 𝑛𝑛3, 𝑛𝑛4 …𝑛𝑛𝑛𝑛}

The four g1 to g4 subsets of Γ are:

ng1 = {missing, not enough, slowing production down … bad}

pg2 = pg2 = {good production flow, no gap}

g3 = {loaded}

g4 = {unloaded}

The remaining problem will take some time to solve. g4 (gap) can sometimes
represent an opportunity for a machine that does not have a good workload to
be open to more production. In some cases, g4 becomes pg4 (p = positive). In other
cases, it will become ng4 (n = negative) if production rates go down.

In this section, we saw how to identify a "gap" in production lines. As explained, a
"gap" is a generic concept for spaces everywhere. We will now explore jammed or
"open" traffic lanes.

Gap – jammed or open lanes
The model in this chapter can be extended to other domains. A self-driving car
needs to recognize whether it is in a traffic jam or not. Also, a self-driving car has
to know how to change lanes when it detects enough space (a gap) to do that.

This produces two new subsets:

g5 = {traffic jam, heavy traffic … too much traffic}

g6 = {open lane, light traffic … normal traffic}

Conceptual Representation Learning

[252]

The model now detects g5 (a traffic jam), as shown in the following screenshot:

Figure 10.6: Traffic jam example

The following output appears correctly:

directory dataset_traffic/

Strategy model loaded from training repository.

image dataset_traffic/classify/img1.jpg predict_proba: [[0.]] predict:
[[0.]]

Classified in class A

jammed

g6 comes out right as well, as shown in this screenshot:

Figure 10.7: Traffic jam example

Chapter 10

[253]

A potential lane change has become possible, as detected by the following code:

Seeking...

image dataset_traffic/classify/img2.jpg predict_proba: [[1.]] predict:
[[1.]]

Classified in class B

change

We have applied our CNN "gap" detection model to several types of images. We
can now go deeper into the theory of conceptual datasets using "gaps" as an example.

Gap datasets and subsets
At this point, the Γ (the gap conceptual dataset) has begun to learn several subsets:

Γ = {𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4, 𝑔𝑔5, 𝑔𝑔6}

In which:

ng1 = {missing, not enough, slowing production down … bad}

pg2 = pg2 = {good production flow, no gap}

g2 = {loaded}

g3 = {unloaded}

pg4 = {traffic jam, heavy traffic … too much traffic}

ng5 = {open lane, light traffic … normal traffic}

Notice that g2 and g3 do not have labels yet. The food processing context provided the
labels. Concept detection requires a context, which CRLMMs will provide.

Generalizing the 𝚪𝚪 (the gap conceptual dataset)
The generalization of Γ (the gap conceptual dataset) will provide a conceptual tool
for metamodels.

Γ (the gap conceptual dataset) refers to negative, positive, or
undetermined space between two elements (objects, locations, or
products on a production line).

Conceptual Representation Learning

[254]

Γ (gamma) also refers to a gap in time: too long, not long enough, too short, or not
short enough.

Γ represents the distance between two locations: too far or too close.

Γ can represent a misunderstanding or an understanding between two parties: a
divergence of opinions or a convergence.

All of these examples refer to gaps in space and time viewed as space.

The motivation of conceptual representation
learning metamodels applied to
dimensionality
A CRLMM converts images into concepts. These abstract concepts will then be
embedded in vectors that become logits for a softmax function, and in turn, will be
converted into parameters for complex artificial intelligence programs' automatic
scheduling, cognitive chatbots, and more.

The advantage of a concept is that it can apply to many different areas. With just
one concept, "gap" (a hole, empty space, and so on), you can describe hundreds if
not thousands of cases.

In some artificial intelligence projects, dimensionality reduction does not produce
good results at all. When scheduling maintenance of airplanes, rockets, and
satellite launchers, for example, thousands of features enter the system without
leaving any out. A single missing screw in a rocket in the wrong place could cause
a disaster. A single mistake in the engine of an airplane can cause an accident, a
single component of a satellite can impair its precision.

Dimensionality must be taken into account. Some use the expression "curse of
dimensionality" and I often prefer the "blessing" of dimensionality. Let's have a
look at both approaches.

The curse of dimensionality
The number of features for a given project can reach large numbers. The following
example contains 1,024 dimensions:

Chapter 10

[255]

Figure 10.8: The curse of dimensionality

Each dot in the preceding representation represents a dimension that can be the
features in an image for example.

Asking a CNN to analyze thousands of features in an image, for example, might
make it impossible to reach an accurate result. Since each layer is supposed to
reduce the size of the data analyzed to extract important features, too many
dimensions might make the training of the model impossible. Remember, each
dimension can contain a feature that requires weights to be trained. If there are
too many, the training becomes either too long or too difficult to calculate.

Following standard CNN designs provides a good starting point. The limit of this
approach occurs when the result does not meet expectations, such as in some of
the cases we will look at in the upcoming chapters. In those cases, CRLMMs will
increase the productivity of the solution, providing a useful abstract model.

When a solution requires a large number of unreduced dimensions, kernels, pooling,
and other dimension reduction methods cannot be applied, CRLMMs will provide
a pair of glasses for the system. That's when the "blessing" of dimensionality comes
in handy.

The blessing of dimensionality
In some projects, when the model reaches limits that comprise a project,
dimensionality is a blessing.

Conceptual Representation Learning

[256]

Let's take an example of rocket manufacturing using our CNN model. We want
to identify gaps on a surface. This surface contains tiles to protect the rocket from
overheating when it goes through the atmosphere. A gap in those tiles could cause
a fatal accident.

If we take a few tiles out, take a picture and run it through our CNN model, it will
probably detect a gap. The difference between that probability and an error could
mean a critical failure of the rocket.

This means that we might not want to reduce the number of features, which in turn
need weights and add up to high numbers of dimensions.

We could decide not to use pooling, which groups several dimensions into one
as we saw. That could create calculations problems as we saw in the previous
paragraph. Either there would be too many weights to calculate or the calculation
could take too long.

In that case, we could reduce the size of the frame to the smallest portion of the
rocket component we are examining. We could decide that our camera will only
scan the smallest surface possible at a time sending minimal-sized frames to our
CNN.

In that case, even with no pooling, the layers would contain more data, but the
calculation would remain reasonable.

The "blessing" of dimensionality, in this case, resides in the fact that by avoiding
pooling (grouping), we are examining more details that can make our model much
more reliable to detect small cracks since we would train it to see very small gaps.

The curse of dimensionality usually leads to dimensionality reduction. But as we
have just seen, it doesn't have to be so.

Summary
In this chapter, the CNN architecture built in Chapter 9, Abstract Image Classification
with Convolutional Neural Networks (CNNs), was loaded to classify physical gaps in a
food processing company. The model uses image concepts, taking CNNs to another
level. Neural networks can tap into their huge cognitive potential, opening the doors
to the future of AI.

Then, the trained models were applied to transfer learning by identifying similar
types of images. Some of those images represented concepts that led the trained
CNN to identify Γ concept gaps. Image concepts represent an avenue of innovative
potential adding cognition to neural networks.

Chapter 10

[257]

Γ concept gaps were applied to different fields using the CNN as a training and
classification tool in domain learning.

Γ concept gaps have two main properties: negative n-gaps and positive p-gaps.
To distinguish one from the other, a CRLMM provides a useful add-on. In the
food processing company, installing a webcam on the right food processing
conveyor belt provided a context for the system to decide whether a gap was
positive or negative.

With these concepts in mind, let's build a solution for advanced planning and
scheduling (APS) in the next chapter.

Questions
1. The curse of dimensionality leads to reducing dimensions and features in

machine learning algorithms. (Yes | No)
2. Transfer learning determines the profitability of a project. (Yes | No)
3. Reading model.h5 does not provide much information. (Yes | No)
4. Numbers without meaning are enough to replace humans. (Yes | No)
5. Chatbots prove that body language doesn't mean that much. (Yes | No)
6. Present-day ANNs provide enough theory to solve all AI requests.

(Yes | No)
7. Chatbots can now replace humans in all situations. (Yes | No)
8. Self-driving cars have been approved and do not need conceptual training.

(Yes | No)
9. Industries can implement AI algorithms for all of their needs. (Yes | No)

Further reading
• More on Keras layers: https://keras.io/layers/about-keras-layers/
• More on concept learning: https://www.sciencedirect.com/topics/

psychology/concept-learning

• More on cognitive sciences, the brain, and the mind for conceptual
models: http://catalog.mit.edu/schools/science/brain-
cognitive-sciences/, https://symsys.stanford.edu/
undergraduatesconcentrations/cognitive-science-cogsci-
concentration

https://keras.io/layers/about-keras-layers/
https://www.sciencedirect.com/topics/psychology/concept-learning
https://www.sciencedirect.com/topics/psychology/concept-learning
http://catalog.mit.edu/schools/science/brain-cognitive-sciences/
http://catalog.mit.edu/schools/science/brain-cognitive-sciences/
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration

[259]

11
Combining Reinforcement

Learning and Deep Learning
Amazon is one of the world's leading e-retailers, with sales over US$ 250 billion.
Amazon's e-store sales exceed all of its other activities, such as AWS subscription
services (premium, for example), retail third-party seller services, and physical
stores.

This chapter focuses on apparel production activity, one of Amazon's markets for
which the company recently registered a patent. Prime Wardrobe even offers a
try-and-easy-return service. This new activity requires planning and scheduling.
Amazon took the matter seriously and registered a patent for an apparel
manufacturing system to control the production process of its apparel products.

Google has successfully combined deep learning and reinforcement learning
(Q-learning) in a deep Q-network (DQN), a system that can beat humans at video
games and other tasks. Google's AlphaGo DQN has obtained impressive results.

In this chapter, we go beyond merely describing Amazon's process or Google's
process in particular. I added on my real-life implementations of what we will
explore and build in Python from scratch. As such, we will combine the ideas of
several systems (Amazon, Google, and my implementations).

Artificial intelligence already plays a role in automatic planning
and scheduling in the apparel business, from customer orders
through to delivery.

Combining Reinforcement Learning and Deep Learning

[260]

We will add an innovation for the apparel manufacturing industry by adding
a conceptual representation learning metamodel (CRLMM) to reinforcement
learning.

We will go from scratch to a prototype that could be implemented on-site, the
foundations are being established for further applications in the coming chapters.

The following topics will be covered in this chapter:

• Planning and scheduling today and tomorrow
• Further generalization of the CRLMM described in Chapter 10, Conceptual

Representation Learning, applied to an apparel production process
• Feeding the CRLMM convolutional neural network (CNN) with a

simulation of frames coming from a webcam on a production line
• Introducing an optimizer that will use weights applied to production

stations to input a reward matrix to a Markov decision process (MDP),
which will then update the weights

• Building a program that will run continuously (no beginning, no end) on
a production line using all the three components mentioned previously

We'll begin by talking about planning and scheduling today and tomorrow. The
market is slowing moving from preplanned processes to real-time processes. Let's
see how.

Planning and scheduling today and
tomorrow
When Amazon decided to launch Prime Wardrobe, it brought a new service to its
customers, enabling them to order, try out, and purchase clothing, shoes, and other
accessories. The customer can establish a purchase plan. A purchase plan is a list of
tasks to be carried out in a given time. An example of a purchase plan could be:

• Filling a box with clothing
• Trying on the clothing at home
• Returning the clothing if it does not fit
• Purchasing the items that are kept

Chapter 11

[261]

Once the customer agrees to follow this plan, the time sequence becomes crucial:

• First, a box must be chosen.
• Then, there is a delivery period.
• Then, there is a trial period (you cannot try the products forever). During

this period, the customer can choose not to purchase anything.
• Finally, the customer confirms the purchase.

Irrespective of whether Amazon Prime Wardrobe will remain a service in years
to come, the precedent is set; just as physical book stores disappear every year,
shopping for clothing online will continue to expand and occupy more of the market.

On top of that distribution, corporations will continue to expand their production
sites to become manufacturing-distributing giants. Warehouses will progressively
replace many stores as per the warehouse examples provided in some of the
chapters in this book.

Supply chain management (SCM), combined with APS, has become a necessity.
SCM-APS constraints vary constantly on a global market (depending on the
manufacturer). APS stands for advanced planning and scheduling or automated
planning and scheduling. We will explore the difference between these two
concepts in a following section, A real-time manufacturing revolution. We will go
beyond Amazon's approach to the subject since delivering in real-time has become
a constraint for all of the actors on the market.

The pressure of the market has encouraged Amazon to produce its own clothing.
Amazon has produced its in-house fashion labels with apparel and accessories sold
worldwide.

To prove that it means business, Amazon registered several patents, including one
for a blended reality mirror, an apparel manufacturing system, and more. With a
blended reality mirror, a person can visualize how the clothing will fit.

In the following sections, we will explore the planning and scheduling side of
Amazon's apparel in-house manufacturing plans, which will have the same effect
on apparel factories as it did on physical book stores and all types of shops. Many
new jobs will emerge, such as hundreds of thousands of jobs in the artificial
intelligence business, on websites, and in marketing and SCM. Many jobs will
disappear as well. The improvements made will boost medical progress and also
the defense industry. The social and economic implications are beyond the scope
of this book, and possibly beyond our comprehension, as in all disruptive eras in
the past.

Combining Reinforcement Learning and Deep Learning

[262]

We will focus in detail on the main aspects of Amazon's patented custom clothing
process. As mentioned previously, irrespective of whether it proves successful, the
precedent is set.

A real-time manufacturing process
Today, a customer wants to obtain a purchased product as soon as possible. If the
waiting time is too long, the customer will go somewhere else. Delivering in nearly
real-time has become a key concept in marketing for any company. Amazon's
approach has always been real-time. Pushing the physical limits of centuries of
commerce, Amazon's brand takes the manufacturing process right beyond the
cutting edge.

Amazon must expand its services to face
competition
Amazon could have avoided a great deal of upheaval if it continued to purchase
products from its suppliers rather than manufacture them. Instead of researchers
spending a great deal of time developing artificial intelligence capable of solving
the conveyor belt problem, several sensors could be installed with traditional
software solutions.

Humanity could also have continued to use horses instead of cars and paper instead
of computers. In the short term, we would have avoided a great deal of work
and change associated with the requirements and impacts of these technologies.
However, in the long term, it is progress and innovation that wins out.

Once a disruptive innovation has been successfully launched by a company, the
competition must either follow suit or disappear. Amazon needs to continue to get
involved in the process that comes before simply storing goods in its warehouses.
By getting involved in manufacturing, for example, they can reduce the time it
takes to deliver a product to a customer. Amazon thus came up with this apparel
manufacturing patent along with 3D printers, and other innovations to increase its
productivity.

In the same sense, the field of artificial intelligence needs to be pushed beyond its
ever-expanding comfort zone constantly. Researchers must be confronted with
difficult industrial problems to gain experience and produce new algorithms
capable of achieving higher levels of machine learning and meeting greater
challenges.

Chapter 11

[263]

A real-time manufacturing revolution
Artificial intelligence software, though spectacular, is not the only revolution that is
changing our lives forever. In the 1950s and 1960s, the consumers were discovering
the joy of purchasing new products such as dishwashers, color televisions, and
cool radios. They were so happy to be able to obtain these products that they were
willing to wait days if not weeks to obtain the exact model they dreamt of. The
supplier could sit on an order for a few days and then get slowly to work.

Today the consumer has lost that patience. If somebody wants to buy a product
online, it has to be delivered within days. If not, the consumer will turn to another
supplier. This puts pressure on the supplier, who must immediately start the process
of delivering. Real-time is that process of starting to get things done in the seconds
you are notified of a request.

Real-time is a strong force that is changing every process in the world.

Today, apparel manufacturing, and manufacturing in general, follow an advanced
planning and scheduling process. "Advanced" means both a sophisticated algorithm
and also an anticipating (planning in advance) process. The planning in advance
aspect of AI algorithms is going through a revolution.

Amazon, as all manufacturing processes, requires automated planning and
scheduling to meet shortening delivery times.

The fundamental difference between the two systems is the time factor, as shown
in the following comparison table. The difference between an advanced and an
automated system seems small, but Amazon, like others, will change the course
of history through those differences. Both systems, in theory, can do both types of
tasks. In practice, these methods will specialize in their niches in the years to come.
To manufacture an airplane, a sophisticated advanced algorithm still needs to plan
in advance (days to weeks) with a lot of manual decision making. To manufacture
basic T-shirts, automated planning can be done quickly and automatically in real-
time (seconds to hours)

The trend of automated planning and scheduling is becoming a time-squashed
version of advanced planning and scheduling.

Combining Reinforcement Learning and Deep Learning

[264]

The figures in the following table do not reflect the exact numbers but the trends:

Function Advanced planning and
scheduling

Automated planning and
scheduling

Long-term plan 1 month to 5 years A few days to less than a
month

Short-term plan 1 day 1 minute
Production or event
measurement

Taken into account on a
daily basis in general

Real-time

Scheduling 1 hour to 1 week Real-time
Re-planning when there is
a problem

1 hour to 1 month Real-time

Re-scheduling 1 hour to 1 week Real-time
Resource adjustment 1 day to 1 month Real-time
Load balancing 1 hour to 1 week Real-time
Automatic functions of
planning and scheduling

80% 99%

Although this table contains approximate information, the underlying trend is
extremely strong. We've seen the differences between the concepts of advanced and
automated; let's also clarify the differences between planning and scheduling:

• A plan consists of processes preparing production for the future: purchasing
material components and adapting human resources and physical resources.
Amazon, for example, has a yearly business plan: putting together the
necessary resources in advance to be ready for production. This implies
purchasing or building warehouses, hiring employees, and purchasing basic
material resources (boxes, labels, and other components).

• Scheduling confronts the plan with the time factor on a shorter horizon.
Scheduling determines when each part of the plan will come first and be
produced. For example, now that the warehouse is built or purchased (plan),
at what time (schedule) should packaging start working next Monday and
for the weeks to come?

A schedule can be regarded as a zoomed-in version of a plan.

Chapter 11

[265]

If somebody walks into Jeff Bezos' office with a plan to build a warehouse at a
given location with the cost and general timing of the implementation, that is fine.
That person is presenting a two-year project. The project will start in 10 months
and go on for two years.

Then, that person might (I suggest not!) say: The plan is great since it will be ready in 10
months. But I'm worried about the daily schedule in 1 year of shift #2 at 4 p.m. Should they
start at 7:30 a.m. or 7:45? Jeff Bezos will no longer be listening. That zoom level is not
part of his job description. He has to focus on a higher level. It is useless for a top
manager to know what's going to happen a year from now at 4 p.m.!

Think of the evolution between an advanced APS and an automated APS as a
logistic sigmoid function applied to planning-scheduling time squashing. Here
are some examples:

• The advanced plan to manufacture a car spans a month to a year.
• The Google Maps itinerary automated plan for a self-driving car at its

starting point: a few seconds to a minute, depending on the connection
status of that location.

• The schedule to manufacture a car: 1 day to 1 month.
• The schedule to pilot a self-driving car following the Google Maps itinerary =

real-time

To sum it up, the present trend represents a revolution in the history of human
processes.

An advanced planning and scheduling system mostly imports data
from ERPs to make plans in the future. An automated planning and
scheduling program mostly detects data with sensors to react and
optimize in real-time. The present chapter deals with automated
planning programs, not advanced planning and scheduling
systems.

Amazon's manufacturing patent reflects the revolution of real-time
applied to every field.

Combining Reinforcement Learning and Deep Learning

[266]

Planning has moved up to planning in real-time, as shown in the following equation:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

In which:

• x is a quantity to produce or any unit event.
• tx is the time (t) it takes for x to start and end.
• A logistic function squashes tx.
• 𝜆𝜆 (lambda) is the learning factor; the more a task is carried out, the more it

is optimized.

Xt is the total weight of a group of n tasks at a given time t:

Xt = {x1, x2, x3 … xn}

The difference between Xt and Z(Xt) is:

• Xt is the actual time it takes to manufacture products.
• Z(Xt) is not the actual time it takes. Z(Xt) is the result of an activation

function that squashes time as an output of Xt in an RL-DL-CRLMM
network. Z(Xt) is a weighting factor.

The key to reducing the weighting factor further is a physical production process
and other physical events (outputs, for example), that I call lambda: 𝜆𝜆 signifies all
the improvements in real-life production that can reduce the production cycle as
well as the natural events, such as production output.

In Chapter 10, Conceptual Representation Learning, Γ was introduced to reduce gaps.
In this chapter, Γ will be generalized a step further to optimize 𝜆𝜆 .

This means that an RL-DL-CRLMM system will optimize the manufacturing process.
We will now explore a game-changing automated apparel manufacturing process
and build it in Python.

CRLMM applied to an automated apparel
manufacturing process
With an automated planning and scheduling system, not an advanced planning
and scheduling system, Amazon has brought apparel manufacturing closer to the
consumer.

Chapter 11

[267]

Artificial intelligence will boost existing processes. In this section, an RL-DL-CRLMM
system will optimize an apparel manufacturing process.

An apparel manufacturing process
Amazon's apparel manufacturing patent can be summarized as follows:

• P1: Grouping apparel customer orders by products and sizes. This process
has been around since the origins of industrial apparel manufacturing
centuries ago.

• P2: Automatically cutting lays. A lay is a stack of pieces of cloth. It is like
cutting a circle in a stack (lay) of several pieces of paper at the same time.

• P3: Moving the packs of the parts of clothing to the assembly lines on
conveyor belts (see Chapter 10, Conceptual Representation Learning).

• P4: Other operations depending on the products (packaging or printing or
other).

• P5: Storing and optimizing the distribution process through warehouses
and deliveries and many more processes (tracking and data analysis, for
example, finding late deliveries and optimizing their routes).

The following diagram represents the production flow at an apparel manufacturing
company. First, the fabric is cut, and then it is stacked in piles and sent by a
conveyor belt to sewing stations to assemble the clothing:

Figure 11.1: Apparel production flow

Combining Reinforcement Learning and Deep Learning

[268]

A webcam is set up right over P3, the conveyor belt. The following image represents
the webcam above the conveyor belt:

Figure 11.2: Webcam freezing frames on a conveyor belt

The webcam freezes a frame (within the red rectangle) every n seconds. The frame
is the input of the CRL-CNN described later.

This image is a representation of the concepts. In reality, the webcam may be
located at the beginning of the conveyor belt, or even over the output of the cutting
process. For the prototype in this chapter, keep in mind that every n seconds, a
frozen frame is sent to the trained CNN.

This P1 to P5 flowchart provides a general idea of an apparel manufacturing
process. In an actual company, many more processes are required: market studies,
designing products, testing prototypes, adding manufacturing processes for jeans
(making holes with a laser, for example), and much more.

Every process described so far was invented individually 30+ years ago, including
automatic cutting and conveyor belts applied to the apparel business. What's new
here? springs to mind in the case of many apparel experts reading about Amazon.
And that is the mind trap! Thinking that Amazon's apparel patent does not contain
new components is a mistake.

Time squashing is the core of the Amazon innovation process. Bringing
manufacturing closer to the consumer in near-real time is a revolution that will
become disruptive. Add 3D printers to the time squashing equation, and you will
easily picture the future of our consumer markets. However, artificial intelligence
has the right to enter the optimizing competition as well.

To illustrate this, let's build an AI model that optimizes P3, the conveyor belt. Many
solutions already exist as well, but an RL+DL can most probably beat them just as it
will in many fields.

Chapter 11

[269]

The first step is to generalize the Γ model described in Chapter 10, Conceptual
Representation Learning, a bit further through training. Then, the RL-DL-CRLMM can
be built. We will first explore how the CRLMM is trained to analyze web frames in
production.

Training the CRLMM
Chapter 10, Conceptual Representation Learning, introduced CRLMMs using Γ (gap
concepts) to illustrate one.

In the previous chapters, conceptual subsets around Γ (gap concepts) were designed
as follows:

• Γ = {𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4, 𝑔𝑔5, 𝑔𝑔6} , which contains pgi (p = positive) and ngi (n =
negative subsets)

• ng1 is a subset of Γ ; ng1 = {missing, not enough, slowing production down …
bad},

• pg2 is a subset of Γ ; pg2 = pg2 = {good production flow, no gap}
• g2 = {loaded}
• g3 = {unloaded},
• pg4 = {traffic jam, heavy traffic … too much traffic}
• ng5 = {open lane, light traffic … normal traffic}

CNN_STRATEGY_MODEL.py needs to be trained to recognize Γ in an apparel production
environment as well as remember how to recognize former Γ concepts:

• The cutting section P2 (A and B) output of apparel packs flowing on a
conveyor belt (P3).

• Remember how to classify the cakes of the food processing company to teach
the model to recognize more situations.

• Remember how to perform a traffic analysis (see Chapter 10, Conceptual
Representation Learning).

• Learn how to be able to classify an abstract representation of a gap.

Generalizing the unit training dataset
To generalize the unit training dataset, six types of images were created. Each
image represents a webcam frame taken over a conveyor belt every n seconds.
Four images are figurative in the sense of figurative painting. Two images bring
the CRLMM program to a higher level of abstraction.

Combining Reinforcement Learning and Deep Learning

[270]

Food conveyor belt processing – positive p𝜸𝜸 and
negative n𝜸𝜸 gaps
In the food processing industry example (see Chapter 9, Abstract Image Classification
with Convolutional Neural Networks (CNNs), a gap on the conveyor belt was most
often negative, a negative gamma = n𝛾𝛾 .

The following frame shows that the first line of production is complete, but not lines
two and three:

Figure 11.3: Food conveyor belt processing frame

On the contrary, with approximately no gaps, the load on the conveyor belt was
viewed as positive, a positive gamma = p𝛾𝛾 .

The following frame shows that there is an acceptable number of products per line:

Figure 11.4: Food conveyor belt processing frame

As the preceding images show, whatever the product is on a conveyor belt, a
gap remains a gap, an empty space. We will now apply our model to other gaps
whatever the object may be. In this case, we will detect gaps on an apparel conveyor
belt.

Chapter 11

[271]

Apparel conveyor belt processing – undetermined gaps
A gap in an apparel conveyor belt process is most often undetermined. This
constitutes a major optimization problem in itself. Naturally, if the conveyor belt
is empty or saturated, the variance will attract the attention of a human operator.
However, most of the time, optimization solves the problem.

The following frame shows a relatively well-loaded production flow of apparel
packs of pieces of clothing to be assembled (by sewing them together) further down
the line:

Figure 11.5: Well-loaded production flow

The following frame clearly shows a gap, meaning that the quantity that will be sent
to a sewing station will not be high:

Figure 11.6: Production flow (gap)

Several observations are necessary to optimize this problem:

• The conveyor belt real-time problem excludes running advanced planning
and scheduling.

• This problem requires real-time automated planning and scheduling.
• The automated planning and scheduling solution will have to both plan and

schedule in real-time.

Combining Reinforcement Learning and Deep Learning

[272]

• It will take planning constraints into account (as explained in the following
sections) to predict outputs.

• It will take scheduling constraints into account to optimize the sewing
sections.

Amazon and others have slowly, but surely, brought many planning horizon
problems (longer) down to shorter scheduling horizons, pushing the limits of SCM
further and further.

The beginning of an abstract notion of gaps
The gaps shown have negative or positive properties depending on the context.
The CRLMM model now has to learn a meta conceptual abstract representation of
all the gaps mentioned hitherto. These gaps are all flow gaps of one sort or another.
Something is moving from one point to another in small packs. The packs, therefore,
are often not the same size, and this causes gaps to form.

These concepts can be applied to cattle herds, horse races, team sport attacks
(football, soccer, rugby, basketball, handball, and other fields), Olympic races,
marathons, conveyor belts, and much more.

When the packs in the flow are close to each other, an individual mental image
crops up. Each person has a customized version. The following image is a
generalized representation of a no-gap concept:

Figure 11.7: A generalized representation of a no-gap concept

Then, the packs have leaders and followers. Then, an abstract representation comes
up as well. The following image shows a generalized representation of a gap
concept:

Chapter 11

[273]

Figure 11.8: A generalized representation of a gap concept

Humans do not have a flow detection gap function for each thing they are
observing. Humans have one brain that contains physical memories or other
datasets, but, more importantly, they have abstract datasets.

Every single one of us billions of thinking bipeds has extremely efficient abstract
datasets. The meta-concept shown previously means that through inferences,
a human has a central meta-concept with a dataset of memories that fit with it
through experience.

A meta-model uses these datasets. The dataset in the dataset directory contains
the beginning of a CRLMM system. The program will learn what a flow gap is and
then apply it to what it sees by analyzing the context.

This goal of this dataset leads to a CRLMM, as explained in the following sections
in which:

• The abstract learned meta-concept is applied to a situation; in this case, a
frame.

• The CRLMM then determines whether it is a gap or no-gap situation.
• The CRLMM then makes a decision, using a thinking optimizer based on a

decision weight-orientated activation function. This means that it is more
than a mathematical squash. It's weighing the pros and cons of a decision-
making process.

In this section, our CRLMM has learned to identify gaps on an apparel conveyor
belt. If we were to implement this, we would add many web frames of a conveyor
belt of our project to our datasets to do the training. For now, let us continue with
this example and run a prediction program to classify the gaps.

Combining Reinforcement Learning and Deep Learning

[274]

Running a prediction program
The training was done with the same CNN_STRATEGY_MODEL.py program described
in Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs),
which was designed to be generalized for subsequent chapters.

Once the dataset of the previous section has been installed, the model can make
predictions with no further training in various domains.

The same CNN_CONCEPT_STRATEGY.py functions described in Chapter 10, Conceptual
Representation Learning, were implemented.

Only the path to the dataset was changed, along with the prediction messages to
display:

#II. Convolutional Neural Network (CNN)
#loads,traffic,food processing
A=['dataset_O/','dataset_traffic/','dataset/']
MS1=['loaded','jammed','productive']
MS2=['unloaded','change','gap']

display=1 #display images
scenario=2 #reference to A,MS1,MS2
directory=A[scenario] #transfer learning parameter (choice of images)
CRLMN=1 # concept learning
print("Classifier frame directory",directory)

The CRLMM has now learned to represent real-life memories and inference of the
associated memories in a meta-concept. Our CRLMM is ready to be assembled as
one of the three components of RL-DL-CRLMM as we will see in the next section.

Building the RL-DL-CRLMM
The full code of the RL-DL-CRLMM program is RL_DL.py. It is built on the
knowledge and programs of the previous chapters and previous sections of this
chapter.

The RL-DL-CRLMM contains three components:

• A CRLMM convolutional network that will analyze each frame it receives
from the webcam that is located right over the pieces of garment packs on
the conveyor belt coming from the cutting section.

• An optimizer using a modified version of the Z(X) described previously that
plans how the assembly stations will be loaded in real-time.

Chapter 11

[275]

• An MDP that will receive the input of the optimizer function and schedule
the work of the assembly stations. It also produces the modified Z(X)
updated value of the weights of each assembly station for the next frame.

In the physical world, the conveyor belt transports the garment packs, a picture
(frame) is taken every n seconds, and the RL-DL-CRLMM runs. The output of the
RL-DL-CRLMM sends instructions to the conveyor belt and directs the garment
packs to the optimized load of the assembly stations, as explained before.

Thus, components will be described in the processing order but not in the code-in-
line order. This is because the functions defined by def + function() precede the
function calls to them. Code line numbers will thus be inserted in the comments
following the code line like this: # [Line 38].

A circular process
Once the three main components of the system are in place (CNN, MDP, optimizer),
the circular property of this RL-DL-CRLMM is a stream-like system that never starts
nor ends.

To define a circular process, let's take an everyday example. Customer C goes to
the supermarket to purchase a product. The product was previously stored in a
warehouse that we will name B. A factory named A manufactures this product. If
you look at the whole supply chain at a given time, you will see there is no starting
or ending point:

• If you are A, you are both monitoring the needs of C to send products to B
• If you are B, you are both monitoring what is coming from A to satisfy C
• If you are C, you are creating a demand for A to deliver B

In a real-life supply chain, there is no beginning and no end. The same applies to
an automated production site to the flow of functions in this virtually memoryless
system. The conveyor belt's webcam provides a stream of frames, forcing the
system into circular stream-like behavior.

Since RL_DL.py describes a continuous RL-DL-CRLMM process,
there is no beginning or end to the program. The components are
independent and are triggered by the input sent to them, and they
trigger others with their output.

Combining Reinforcement Learning and Deep Learning

[276]

Implementing a CNN-CRLMM to detect gaps
and optimize
The CNN-CRLMM function was described in the Running a prediction program
section and in Chapter 10, Conceptual Representation Learning. The prediction function
is part of the MDP output analysis described later. The CRLMM function is called as
shown in the following code:

def CRLMM(Q,lr,e): # [Line 180]

The first part of this function squashes the W vector described in the following
section. The second part of this function analyzes the input frame.

Since no webcam is connected to the system at this point (that must be done during
project implementation), a random image (frame) choice is made. The following
random code simulates the random occurrences of real-life production:

 status=random.randint(0,1)

In a real-life situation, random quantities will be going through the conveyor belt.
With the status having being determined, the CNN simulates the addition of a
frozen frame from the video stream coming from the webcam located directly on
the conveyor belt. It runs the identity (image) function described before and returns
a gap or no gap scenario for the optimizer (refer to the optimizer section). The
following code describes a gap identification process:

 if(status==0):
 #Add frame from video stream (connect to webcam)
 s=identify(directory+'classify/img1.jpg',e)
 if(status==1):
 #Add frame from video stream (connect to webcam)
 s=identify(directory+'classify/img2.jpg',e)
 s1=int(s[0])
 if (int(s1)==0):
 print('Classified in class A')
 print(MS1[scenario])
 print('Seeking...')
 if (int(s1)==1):
 print('Classified in class B')
 print(MS2[scenario])
 return s1

Once status has been detected, irrespective of whether the load output of the
cutting system is high or low, a decision must be made. This will be done with
the MDP.

Chapter 11

[277]

Q-learning – MDP
By adding an MDP Q-learning decision function (see Chapter 1, Getting Started with
Next-Generation Artifcial Intelligence through Reinforcement Learning) in this CNN-
CRLMM program, we are now entering the world of cognitive RL-DL programs.

The mdp01.py MDP program has been incorporated into RL_DL.py. Thus, only the
changes made are described in this chapter.

MDP parameters come right after the import packages. Each vertex of the graph
has its letter and location, as shown in the following code snippet:

L=['A','B','C','D','E','F'] # [Line 37]

When the program runs, the following graph will be displayed with red (target
vertices) for this frame. It is then up to the MDP to choose, described as follows:

Figure 11.9: Output (target vertices)

Notice that this is an undirected graph with vertices (the colored dots) and no edge
(lines) directions. The MDP will provide directions for each frame in this model.

Each vertex represents an assembly station in this model. Each assembly station
has a high workload or a low workload. The workload is rarely stabilized because
products keep flowing in and out as they are produced.

In this real-time system, there is no beginning, no end, and no real
memory beyond a few frames.

Combining Reinforcement Learning and Deep Learning

[278]

MDP inputs and outputs
The MDP process in this model uses a reward matrix as an input and produces a
weight vector.

The input is a neutral reward matrix
The MDP reward matrix is set to 0, except for the values representing the edges of
the graph that can be physically accessed; these are set to 1, a small neutral value.

As it is, the MDP cannot provide a satisfactory result beyond reproducing the
structure of this undirected graph. The reward matrix is now initialized and
duplicated as shown in the following code, starting from line 41; at line 43, R, the
reward matrix is built, and at Ri, a duplicate of R is created:

R is The Reward Matrix for each state built on the physical graph
[Line 41]
Ri is a memory of this initial state: no rewards and undirected

R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,0,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Ri = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,0,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Ri is a copy of the initial-state zero-reward matrix. R is reset to Ri at every new
frame. MDP trains the assembly location plan for each new frame in a memoryless,
undirected graph and unsupervised approach.

Q is the learning matrix in which rewards will be learned/stored, as shown in the
code on line 58:

Q = ql.matrix(ql.zeros([6,6])) # [Line 58]

The standard output of the MDP function
The load of the assembly stations is not the exact quantity produced. They
are weights that are updated continuously during this continuous process,
as explained further in the chapter.

Chapter 11

[279]

At an initial state of the program, the initial weight of the vertices is set to 0 in the
following line of code (line 40):

W=[0,0,0,0,0,0] # [Line 40]

The weight vector (represented as an array) contains one value per assembly station
location or vertex.

An initial state is not a real beginning. It is like a pause button on a video. The initial
state can come from a holiday (no production), a maintenance day (no production),
or a lack of input orders (no production). The initial state is just a case when the
weights are equal to 0 because there is nothing on the conveyor or assembly stations.

The weight vector is part 1 of the optimizer (see the following section). The MDP
produces an output matrix after having optimized the undirected graph. The
optimizer will have provided a target.

The program contains the same source code as in Chapter 1, Getting Started with
Next-Generation Artifcial Intelligence through Reinforcement Learning, with Bellman's
equation starting from line 1166. The MDP produces its result, as shown in the
following output:

[[0. 0. 0. 0. 105.352 0.]

[0. 0. 0. 130.44 0. 201.]

[0. 0. 0. 130.44 0. 0.]

[0. 161.8 105.352 0. 105.352 0.]

[85.2816 0. 0. 130.44 0. 0.]

[0. 0. 0. 0. 0. 250.]]

Normed Q :

[[0. 0. 0. 0. 42.1408 0.]

[0. 0. 0. 52.176 0. 80.4]

[0. 0. 0. 52.176 0. 0.]

[0. 64.72 42.1408 0. 42.1408 0.]

[34.11264 0. 0. 52.176 0. 0.]

[0. 0. 0. 0. 0. 100.]]

Bear in mind that this entire DQN-CRLMM is not only based on the undirected
memoryless MDP function but also has no real beginning nor end since it's a
continuous and virtually memoryless process.

Combining Reinforcement Learning and Deep Learning

[280]

A graph interpretation of the MDP output matrix
After each run, the MDP matrix also produces a graph interpretation of the values
of paths between the vertices from point to point (letter to letter), and displays it in
the following output:

State of frame : 3 D

0 A E 161.8

1 B D 201.0

2 C D 201.0

3 D D 250.0

4 E A 130.44

4 E D 201.0

5 F B 161.8

This way, if the values are taken from the highest to the lowest edges (lines and,
hence, values between two letters), it gives a visual idea of how the MDP function
calculated its way through the graph.

RL is the letter vector. It is empty after each frame. It will be filled by finding the
values of each edge. It will contain the letters of the vertices (nodes and dots)
connected by the edges (lines represented by the values).

RN is the value of the edges. The following code shows how to implement RL and RN
and update the weights of the locations in the weight vector (W):

 #Graph structure [Line 187]
 RL=['','','','','','']
 RN=[0,0,0,0,0,0]
 print("State of frame :",lr,L[lr])
 for i in range(6):
 maxw=0
 for j in range(6):
 W[j]+=logistic_sigmoid(Q[i,j])
 if(Q[i,j]>maxw):
 RL[i]=L[j]
 RN[i]=Q[i,j]
 maxw=Q[i,j]
 print(i,L[i],RL[i],RN[i])

The logistic function in the preceding code is being updated while RL and RN are
being updated.

Chapter 11

[281]

The optimizer
I have written several optimizers for fabric optimization in the apparel industry.
In this case, the optimizer will be used to regulate the flow of production.

The term "optimizer" is not the CNN rmsprop optimizer used in the previous
chapters represented with the following code:

loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy']) # [Line 92]

The term "optimizer" refers to a function that optimizes the production of this
manufacturing site. It is not an optimizer used to train a CNN, for example.
This optimizer is both an activation function and a regulator that was built from
scratch to optimize production. This shows that you must sometimes invent the
optimizer you need to generate a profitable solution for your customer or company.

The optimizer as a regulator
The whole concept of this RL-DL-CRLMM of real-time production, applied to P3, is
to optimize Z over the load distribution of the assembly stations, as explained before.
This means reducing Z as much as possible through the following equation:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

To achieve this optimization goal, Z needs to be taken apart and applied to strategic
parts of the code.

Implementing Z – squashing the MDP result matrix
The output of the MDP functions provides the following Q matrix:

Q :

[[0. 0. 0. 0. 321.8 0.]

 [0. 0. 0. 401. 0. 258.44]

 [0. 0. 0. 401. 0. 0.]

 [0. 0. 0. 500. 0. 0.]

 [258.44 0. 0. 401. 0. 0.]

 [0. 321.8 0. 0. 0. 0.]]

Combining Reinforcement Learning and Deep Learning

[282]

Each line represents a vertex in the graph: A, B, C, D, E, and F. Each value obtained
needs to be squashed in the following z(x) function:

𝑧𝑧(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥

The first step in the code that follows is to squash the weights provided by the MDP
process for each line (vertex) x with a logistic_sigmoid function:

#Logistic Sigmoid function to squash the weights [Line 118]
def logistic_sigmoid(w):
 return 1 / (1 + math.exp(-w))

The function is called by the transformation of the MDP Q output matrix into the
weight vector for each column of each line, as shown in the following code:

 for i in range(6): # [Line 191]
 maxw=0
 for j in range(6):
 W[j]+=logistic_sigmoid(Q[i,j])

At this point, each value of the MDP has lost any real-life value. It is a weight, just
as in any other network. The difference is that the whole system is controlled. In a
real-life project, keeping an eye on the calculations through reports is necessary for
maintenance purposes. Even an automatic system requires quality control.

The MDP matrix has now been flattened into a weight matrix, as shown in the
following output:

Vertex Weights [3.5, 3.5, 3.0, 5.0, 3.5, 3.5]

Each vertex (letter in the graph) now has a weight.

Implementing Z – squashing the vertex weights vector
Squashed W (vertex weights) grows after each frame analysis, and each MDP run
since W[j]+ is applied continuously, and W is never set to zero.

The main reasons:

• Once launched, the RL-DL-CRLMM is a continuous process, with no
beginning and no end as long as the conveyor belt is running.

• The conveyor belt is sending assembly (mostly sewing) work to the assembly
stations that take some time (t) to get the job (x) represented by tx in the Z
equation and the W vector in the program.

• Hence, work is piling up on each vertex (A to F), which represents an
assembly station.

Chapter 11

[283]

This is why the 𝜆𝜆 variable in the Z equation is implemented, as shown in the initial
equation early in the chapter, as follows:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

𝜆𝜆 is implemented for two reasons:

• The sewing or assembly stations send their finished work to the next
operation on the production line, packaging, for example. So every m
minutes, their workload goes down, and so does the load feature weight.

• Production managers are constantly working on learning curves on
assembly lines. When a new product arrives, it takes some time for the
teams to adapt. Their output is a bit slower than usual. However, well-
trained teams bring the learning period down regularly.

𝜆𝜆 combines both concepts in a single variable. This might be enough for some
projects. If not, more work and variables need to be added.

In this model, 𝜆𝜆 is activated by the following:

• oif represents the frequency of a W vector 𝜆𝜆 update. In this example, oif is
set to 10. This means that every 10 frames, oir will be applied.

• oir represents the output rate for the two reasons described before. This
variable will squash the W vector by the % given. In this example, oir=0.2. That
means that only 20% of the weights will be retained. The rest has been finished.

The following code shows how to implement oif and oir:

input_output_frequency : output every n frames/ retained memory
[Line 315]
oif=10
#input_output_rate p% (memory retained)
oir=0.2
fc=0 #frequency counter : memory output
for e in range(episodes):
 print("episode:frame #",e)
 fc=fc+1
 #memory management : lambda output
 if(fc>=10):
 for fci in range(6):
 W[fci]=W[fci]*oir
 fc=0
 print("OUTPUT OPERATION - MEMORY UPDATED FOR ",L[fci],
 " ",oir,"% retained")

Combining Reinforcement Learning and Deep Learning

[284]

The W vector has been squashed again, as shown in this output:

OUTPUT OPERATION - MEMORY UPDATED FOR A 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR B 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR C 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR D 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR E 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR F 0.2 % retained

The optimizer has provided updated information on the status of each sewing
station. Each sewing station is a location for the MDP function. We will now see
how the MDP function uses the information provided by the optimizer.

Finding the main target for the MDP function
W, the weight vector, is updated after each frame with a short-term memory of
n frames. This means that in every n frames, its memory is emptied of useless
information.

The goal of the optimizer is to provide a target for the MDP function. On the first
episode, since it does not have any information, the optimizer selects a random state,
as shown in the following code excerpt:

 #first episode is random
 if(e==0):
 lr=random.randint(0,5)

This means that a random assembly station will be chosen on the MDP graph,
which represents the six assembly sewing stations. Once this episode has been
completed, the system enters a circular real-time cycle (refer to the next section).

The second episode has the W vector to rely upon.

This runs the crlmm (described before) CNN-CRLMM network to determine
whether the frame has a gap or no-gap feature, as shown in the following code:

 crlmm=CRLMM(Q,lr,e) # [Line 388]

The optimizer will use W to:

• Choose the vertex (sewing station) with somewhat the smallest weight if
the CNN on the frame produces a result with no gap (probability is zero).
Since there is no gap, this means that there are many pieces to sew. Thus,
it is much better to give the work to an assembly station that has a lower
load than others.

Chapter 11

[285]

• Choose the vertex (sewing station) with somewhat the highest weight if
the CNN on the frame produces a result with a gap (probability is one).
Since there is a gap, it means there are not that many pieces to sew. Thus,
it is much better to give the work to an assembly station that already
has a higher workload. It will balance the loads and optimize the load
distribution over all the stations.

• Introduce a choice to find one target assembly station for the MDP function
in each of these cases. It will look for stations (vertices, letters, dots in the
graph) with the highest weight in one case and the lowest in another.

• Add the somewhat concept referred to before. The system must remain
relatively free, or it will keep choosing the same best sewing stations,
depriving others of work. Thus, each possibility (gap or no gap) is limited
to a random choice of only three among the six locations for each weight
class (higher or lower).

The optimizing function, shown in the following snippet, can prove extremely
profitable on real-life industrial production lines:

 if(e>0):
 lr=0
 minw=10000000
 maxw=-1
 #no G => Finding the largest gap (most loaded resource or a
distance)
 if(crlmm==0):
 for wi in range(3):
 op=random.randint(0,5)
 if(W[op]<minw):
 lr=op;minw=W[op]
 #G => Finding the smallest gap (a least loaded resource or a
distance)
 if(crlmm==1):
 for wi in range(3):
 op=random.randint(0,5)
 if(W[op]>maxw):
 lr=op;maxw=W[op]

lr is the main location chosen for the MDP reinforcement learning function, as
shown in the following code:

 print("LR TARGET STATE MDP number and letter:",lr,L[lr])

Reinforcement learning has to run every time since it faces new frames in the
continuous process of the conveyor belt in the automated apparel system.

Combining Reinforcement Learning and Deep Learning

[286]

Now, the MDP reward matrix is reset to its initial state, as implemented in these
lines of the program:

 #initial reward matrix set again
 for ei in range(6):
 for ej in range(6):
 Q[ei,ej]=0
 if(ei !=lr):
 R[ei,ej]=Ri[ei,ej]
 if(ei ==lr):
 R[ei,ej]=0 #to target, not from

The target location is initialized with a value that fits the gap or no-gap philosophy
of the program. If there is no gap, the value is higher, and so will be the weight
(represented load of the station) in the end. If there is a gap, the value is lower, and
so will be the weight for that station, as shown in the following lines of code:

 #no G
 rew=100
 #G
 if(crlmm==1):
 rew=50
 R[lr,lr]=rew
 print("Initial Reward matrix with vertex locations:",R)

We just explored the MDP process. However, the overall program we are looking at
is a circular process that runs 24/7. At a given time, all of the components of our AI
program are running at the same time. Let's see how.

A circular model – a stream-like system that
never starts nor ends
We have successfully converted the linear stream of production (conveyor belt,
optimizer, and sewing stations) into a circular process.

Since the RL-DL-CRLMM model runs nonstop, it can run at all of the following
points at the same time:

• A = Captures a frame of the output of the cutting section with a webcam
and a CNN-CRLMM

• B = Analyzes the load (histograms of each sewing section) with the CRLMM
• C = Optimizes the sewing stations with an MDP

Chapter 11

[287]

ABC is one flow. But since each process is running nonstop, we can see all of the
following flows at the same time: A, B, C or B, C, A or C, A, B.

The following graph represents the circular process:

Figure 11.10: Circular RL-DL-CRLMM

The diagram describes an automatic process. However, let's go back a step and
imagine we are in a factory in which humans still make the decisions. The process is
circular, which means it never stops or starts. It runs 24/7. We will suppose a floor
manager is an optimizer represented by the blue bar charts. The floor manager will
look at the sewing stations to see who has a lot of work to do and who has little work
to do. Then the floor manager will observe the conveyor belt (the web frame with the
image of the packs) that is bringing packs of cut cloth to sew into garments. The floor
manager will select several packs where there is a gap on the conveyor belt for the
least loaded sewing stations, for example. Once the choice has been made, the floor
manager will direct the packs to the right sewing station following calculating the
graph (MDP) manually.

Let's explore these steps in further detail.

Combining Reinforcement Learning and Deep Learning

[288]

Step X: When the following frame arrives, the CRL-CNN is activated:

Figure 11.11: The CRL-CNN gets activated

The solution calls the CRLMM function, as shown in the following code:

 crlmm=CRLMM(Q,lr,e) # [Line 388]
 print("GAP =0 or GAP =1 status: ",crlmm)

The following output displays the status of the image: gap, no gap:

image dataset/classify/img1.jpg predict_probability: [[0.]] prediction:
[[0.]]

Classified in class A

Productive

Seeking...

GAP =0 or GAP =1 status: 0

The following weights of each sewing station (vertices A to F) are taken into account:

 MDP_GRAPH(lr,e) # [Line 390]
 print("Vertex Weights",W)

The program displays them in text form:

Vertex Weights [9.4, 11.100000000000001, 10.2, 12.0, 11.7, 10.0]

The program also displays the following bar chart of the weights of each sewing
station:

Chapter 11

[289]

Figure 11.12: Bar chart of the weighs of each sewing station

The STEP X+1 optimizer analyzes the weights to make a decision: send small
quantities to the sewing stations that have a lot of work and large quantities to
sewing stations that have less work to do.

By doing this, the optimizer makes sure that each sewing station has an optimal
workload. If a sewing station has a lot of work piling up, it makes sense to give a
large amount of incoming work to a sewing station with little work to do. That way,
all of the sewing stations will be working at full capacity.

Γ (gamma) has now reached a point at which it understands that a gap is a
comparison between two states and inference of a conceptual distance:

• Overloading: Too much
• Underloading: Not enough

Γ now contains two abstract concepts:

• Enough to too much
• Not enough to lacking

Combining Reinforcement Learning and Deep Learning

[290]

STEP X+2: The MDP, as described in this chapter, receives instructions to optimize
a given sewing station and spreads work out to its neighbors. This is often a
production constraint: one station sews the sleeves of a T-shirt. For example, the
station nearby sews a pocket on the T-shirt. The MDP spreads out the work, starting
with the target location. In this case, the target location is one of the sewing stations
in the A-E-D area (the area is displayed in color when you run the Python program)
as shown in the following graph:

Figure 11.13: MDP spreads out

The MDP sends its results directly to the conveyor belt, which automatically follows
the path instructions sent to it.

Then, the MDP updates the weights, empties its reward matrix, and waits for a new
one. The system goes back to step X.

As you might have noticed, no human operator is involved in this entire process at
all.

The goal of the circular process is to keep the bars at an
approximately similar height—not an exact height, but also not a
situation in which A would have no work to do, and E would be
overloaded.

Chapter 11

[291]

Summary
Applying artificial intelligence to Amazon's real-time sales, production, and
delivery forces projects into reality.

Learning machine learning and deep learning with MNIST, CIFAR, and other ready-
to-use datasets with ready-to-use programs is a prerequisite to mastering artificial
intelligence. Learning mathematics is a must.

Building a few programs that can do various theoretical things cannot be avoided.
However, managing a real project under corporate pressure will bring an AI
specialist up to another level. The AI specialist will have to put AI theory into
practice. The constraints of corporate specifications make machine learning projects
exciting. During those projects, experts learn valuable information on how AI
solutions work and can be improved.

This chapter described an RL-DL-CRLMM model with an optimizer. We learned
how the market is evolving from planning manufacturing in advance to real-time
planning challenging classical processes. We saw that a consumer wants to receive
a purchased product as soon as possible. If that product is not available to demand,
it must be produced in nearly real-time and delivered to the customer. To automate
this process, we built a Python program that can scan an apparel conveyor built to
detect gaps in a cutting process with a CNN, use an optimizing function to choose
the best sewing workstation and then build a graph with MDP to represent the
optimized path taken.

The next chapter explores an application of this solution with an SVM applied to a
self-driving car situation in an IoT context, Swarm AI, and elementary AGI.

Questions
1. A CNN can be trained to understand an abstract concept? (Yes | No)
2. Is it better to avoid concepts and only use real-life images? (Yes | No)
3. Do planning and scheduling mean the same thing? (Yes | No)
4. Is Amazon's manufacturing patent a revolution? (Yes | No)
5. Learning how warehouses function is not useful. (Yes | No)
6. Online marketing does not require artificial intelligence. (Yes | No)

Combining Reinforcement Learning and Deep Learning

[292]

Further reading
• More information on Amazon's apparel manufacturing innovation

and apparel market can be found here: https://www.nytimes.
com/2017/04/30/technology/detailing-amazons-custom-clothing-
patent.html, https://www.amazon.com/learn-more-prime-wardrobe/
b?ie=UTF8&node=16122413011

https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.amazon.com/learn-more-prime-wardrobe/b?ie=UTF8&node=16122413011
https://www.amazon.com/learn-more-prime-wardrobe/b?ie=UTF8&node=16122413011

[293]

12
AI and the Internet

of Things (IoT)
Some people say the Internet of things (IoT) will turn out to become the fourth
Industrial Revolution. Let's wait a few years until the smoke clears and then let
historians figure out what sort of revolution we went through.

In any case, connected objects have been changing our lives for at least the past
two decades. Given all that we have seen in recent years, we can safely say that IoT
has become disruptive.

Artificial intelligence has just begun its long journey through human intellect. New,
incredible innovations await us. Understand cutting-edge machine learning and
deep learning theory is only the beginning of your adventure. Take everything you
see seriously and see how it can be incorporated into your projects.

Your mind must remain open to accept the many innovations that are yet to come.
For example, conceptual representation learning (see previous chapters) adds the
power of human concepts to neural networks.

This chapter takes the technology of the previous chapter and applies it to the
example of a self-driving car. The previous chapter used a webcam and a program
and sent instructions to the conveyor belt. It was in the family of IoT. Let's add a
support vector machine (SVM) to the program and take it out on the streets of a
city to see what happens.

The chapter is divided into three main sections: a public service project, the
configuration of the model, and running the model.

AI and the Internet of Things (IoT)

[294]

The following topics will be covered in this chapter:

• A self-driving solution
• Introducing a safe route parameter to trip planners
• Applying CNNs to parking lots
• Applying SVMs to safety on trip planning
• Teaching an MDP to find the safest route (not necessarily the shortest way)

Let's get started by outlining the problem and the goal of the project we'll be
undertaking.

The public service project
The overall project in this example is to implement a self-driving, home-to-homeless-
shelter delivery service:

• Families at homes have clothing and food they would like to give to others
that need them.

• The self-driving car can be started at a distance and goes to homes and takes
the goods to the shelters.

• The self-driving car does not need to have a base. It can park anywhere, go
anywhere, and refuel at service stations with automatic electric recharging.

In this chapter, we will focus on the self-driving car when it has finished a delivery
and is looking for a parking lot with a parking space. We will need the information
to make decisions.

Some IoT projects plan to put sensors on every parking space and send the
information to control centers. The city council finds that too expensive. Instead,
the city council has decided to use a more cost-effective solution. A webcam will be
installed on all the possible parking lots in the project's grid. This smart grid is for
transporting products from homes to shelters.

We'll address this by first setting up an RL-DL-CRLMM model.

Chapter 12

[295]

Setting up the RL-DL-CRLMM model
This section describes how to set up the previous chapter's model for this project
and add a few functions.

In Chapter 11, Combining Reinforcement Learning and Deep Learning, the RL-DL-
CRLMM model analyzed webcam images of pieces of cut cloth to be sewed in real-
time on a conveyor belt. The goal was to determine if they contained a gap (not too
many pieces to sew) or not (a lot of pieces to sew). Then the model selected the best
sewing station. A sewing station with a lot of work to do is best optimized with a
small number of pieces to sew. A sewing station with little work to do will be best
optimized with a large number of pieces to sew. By doing this, the RL-DL-CRLMM
optimized the load on each sewing station, as shown in the following diagram:

Figure 12.1: Apparel production flow

AI and the Internet of Things (IoT)

[296]

This leads to the following circular optimizing model:

Figure 12.2: Circular RL-DL-CRLMM

This RL-DL-CRLMM model that we explored in Chapter 11, Combining Reinforcement
Learning and Deep Learning, contains the following components:

• A CRL-CNN to see if there is a gap in the image. In this chapter, we will use
the same model to see if there is a gap in a parking lot that represents an
available parking space.

• An optimizer will rely on an SVM to add the concept of safety to the choice
of an itinerary. It will then use optimization rules to make decisions, as in
Chapter 11, Combining Reinforcement Learning and Deep Learning.

• An MDP for the itinerary as described in Chapter 1, Getting Started with Next-
Generation Artificial Intelligence through Reinforcement Learning.

The RL-DL-CRLMM model of this chapter, which focuses on finding a parking lot
with available parking space and go there will thus become:

Chapter 12

[297]

Figure 12.3: Circular RL-DL-CRLMM

The CRL-CNN in this model looks for spaces in a parking lot instead of gaps on a
conveyor belt.

The RL-DL-CRLMM model contains a convolutional neural network (CNN) and
a Markov decision process (MDP) linked together by an optimizer. The optimizer
contains an SVM (safety evaluations) and a set of rules.

This system will now be referred to as a CRLMM.

Applying the model of the CRLMM
In Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs),
the CRLMM program, CNN_STRATEGY_MODEL.py, was trained to identify Γ (gamma
concept) in outputs on the conveyor belt of a food processing factory. The end of the
previous chapter brought Γ up to a higher abstraction level.

AI and the Internet of Things (IoT)

[298]

As long as a member of 𝛾𝛾 (gamma) of the Γ dataset is in an undetermined state, its
generalization encompasses ambivalent but similar concepts. Up to this chapter,
these are the concepts Γ (uppercase gamma) has learned (conceptual representation
learning).

Γ = {a gap, no gap, a load, no-load, not enough load, enough load, too much load, a space
on a lane for a car, a distance between a high load of products and missing products on a

conveyor belt, weights on sewing stations … n}

The next step in the chapter is to use the CRLMM built in the previous chapters
to recognize a parking space in a parking lot and send a signal to the self-driving
vehicle:

• Γ will now perceive gaps as space.
• Γ will now perceive space as a distance (gap) between two objects.
• Γ will need a context to establish whether this space between two objects is

a positive or negative distance.

Let's take a look at the dataset that we'll use to accomplish our goals.

The dataset
The datasets used in Chapter 9, Abstract Image Classification with Convolutional Neural
Networks (CNNs), to this chapter are sample datasets. In real-life projects, it will
take some work to obtain the right real-time frames from a webcam. There will
be lighting constraints, prerequisites, and more. However, the philosophy remains
the same.

As in the previous chapters, the dataset directory of this chapter on GitHub
contains the following:

• The training set
• The test set
• The model trained by CNN_CONCEPT_STRATEGY.py
• The classify directory used by CNN_CONCEPT_STRATEGY.py

As explained in the previous chapters, a full stream of frames from a well-
configured webcam would take weeks, if not months, to prepare. They are projects
in themselves.

The project would first start by deciding to use a camera webcam or an IP camera
that can send images to the CNN that is embedded in the RL-DL-CRLMM program.
The CNN will classify each image sent by the video feed either as containing a gap
or an available parking space or not.

Chapter 12

[299]

A webcam is usually connected to a computer, which will, in turn, send information
to a distant server. An IP camera can send information directly to distant machines.
Both solutions are connected IoT objects. An IP camera can be more expensive.
To prove that the solution is a good one, an implementation team might start
with a webcam first. Once the project has been accepted, then an IP camera might
prove to be better in the long run. In this chapter, we will refer to webcams as in
a research project with limited funds to begin with. We will thus consider that the
images come from a webcam.

In this example, Γ has evolved into space (gap detection between (distance)) cars
to find a parking space.

The following is a simulated frozen frame with no Γ -space taken by a webcam
located on a building, pointing down to a parking lot:

Figure 12.4: Simulated frozen frame

I transformed the image to simulate some computer vision techniques that could
have been used to simplify the image:

Figure 12.5: Parking lot with a little to no gaps (not enough available parking spaces)

AI and the Internet of Things (IoT)

[300]

The following frame represents a small but sufficient parking space on the right of
the screen. The images in these examples were designed to explain how the system
is built. I created the image for this example to show whether Γ -space is available or
not. Once again, I simulated an image after a computer vision process, which is easy
to do but beyond the scope of this book. It shows something like several available
parking spaces in a higher-level representation of the parking lot:

Figure 12.6: Parking lot with a little to no gaps (not enough available parking spaces)

Using the trained model
The model was trained by using the same CNN_STRATEGY_MODEL.py program as in
Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs).

Just make sure that the directory in the header of the following program is pointing
to dataset/, which is scenario number 2:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=2 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)

The model is stored in /dataset/model. To test the model, CNN_CONCEPT_STRATEGY.
py, improved in the previous chapter, was used. Just change the messages and limit
the frame classification loop to 2, as shown in the following code snippet:

MS1='available'
MS2='space'
I=['1','2','3','4','5','6']

Chapter 12

[301]

The following loaded image was already resized before applying the CNN model:

Figure 12.7: Resized image

Classifying the parking lots
We showed that the model works. However, in the following sections, we will
simulate the images that are sent with a random function, not with the actual images.

Now that the CRLMM has been trained to distinguish a full parking lot from a
parking lot with available space, once an available parking lot has been found, an
SVM takes over as an intermediate step, as we'll see in the next section.

Adding an SVM function
The self-driving car has delivered its packages to the shelters. Now it has to find a
parking lot and park there. Instead of having a base like many other systems, this
saves the city the cost of many useless trips.

AI and the Internet of Things (IoT)

[302]

Motivation – using an SVM to increase safety
levels
The support vector system adds a new function to itinerary calculations—safety.

Most systems, such as Google Maps, focus on:

• The shortest trip
• The fastest trip
• Traffic

However, self-driving cars have to take extra precautions. Many humans do not
feel secure on some roads. Safety comes first, no matter what. Once a suitable
parking lot has been found, the SVM has to avoid traffic.

The goal is to find a path through traffic, even if the distance is longer. A p parameter
allows for a p% variance in the distance. For example, 10% allows a 10% longer
distance and will provide safe passage, as shown in the following SVM result:

Figure 12.8: Traffic path

Chapter 12

[303]

It is important to note that the datapoints are not the actual coordinates but a
representation in a higher dimension, as explained in the following section.

Definition of a support vector machine
An SVM classifies data by transforming it into higher dimensions. It will then
classify data into two classes, for example.

In this section, the SVM will be used to separate risky driving locations from safer
driving locations:

The example in the code is random (as in real-life traffic), but the model can be
developed much further.

Safety is the key to this model, so each driving location (road, crossing) possesses
features related to this goal:

• Number of accidents at that location
• Traffic at that location
• Experience of driving through that location (near misses and no problems)

All of this data can be fed into an SVM program. The program will transform the
data to make it linearly separable (see Chapter 8, Solving the XOR Problem with a
Feedforward Neural Network).

The blue dots on the left will be the good locations, and the brown ones on the right
will be the risky ones. A function will read the latitude and longitude features of the
datapoint in another table to convert them back into GPS format.

For example, a blue dot on the left might be:

• Location A
• One accident in the past ten years
• Zero problems driving through that point in 1 year

A brown dot might be:

• Location D (a few blocks from A)
• Seventy-four accidents in 10 years
• Fifteen problems driving through that point in one year

AI and the Internet of Things (IoT)

[304]

The blue dots and brown dots thus have nothing to do with the real location on
the preceding graph. The locations are labels. Their features have been separated
as expected.

Location A will be chosen, for example, instead of location D. Hence, the program
looks into the dataset and finds its GPS location.

Let's put some words to the following SVM graph:

Figure 12.10: SVM graph

• The space between the dotted vertical lines is the margin. It's somewhat like
the margin between two lines of a rugby or football team. When the players
(datapoints) are lined up, an invisible space or margin separates them.

• The dots that touch those margins are critical because they are the ones that
decide where the margin will be in the first place. As the rugby or football
players line up in clusters, the SVM will calculate this (refer to the following
Python function). These special datapoints are called support points.
They are also referred to as support vectors.

• The vertical line running in the middle of the margin is the decision line.
• Since a line separates the dots, the dataset is linearly separable. This means

that a line can be drawn between the datapoints and can separate them into
classes. In this case, the system wants to obtain safe locations (blue dots)
and avoid unsafe locations (brown dots).

To send the data to a GPS guiding system, all that needs to be done
is to find the GPS coordinates of the locations that are part of the
initial dataset.

Chapter 12

[305]

Now that we defined what an SVM is, let's implement it in Python.

Python function
The sklearn packages provide the following svm function:

from sklearn import svm
from sklearn.datasets import make_blobs

The make_blobs function generates uniform data for this example in all directions.
It is thus an isotropic distribution (iso = equal, tropy = way) of random data. A blob
contains points of data. The points of data represent the concentration of cars in
given areas, which were calculated using their longitude and latitude.

scikit-learn contains a Gaussian factor for the generation function. A Gaussian
kernel applies standard deviations from a mean. Imagine you are playing in a
sandbox, and you make a little hill. Then, with your hand, you cut the pile in two.
The mean is where you cut the sand pile; the standard deviation is shown by the
slopes going down on both sides.

It might take days, and sometimes weeks, to put a good dataset together. But with
scikit-learn, you can do it in one line, as shown in the following code snippet:

 #100 cars clusters(concentration of cars) represented [Line 323]
 X, y = make_blobs(n_samples=100, centers=2, random_state=7)

This function offers many parameters. The ones used are as follows:

• n_samples, which represents the number of points spread out between
the clusters. In this example, 100 already represents sub-clusters of car
concentrations in an area.

• Centers is the number of centers from which to generate data. In this
example, 2 represents areas close to the present location of the self-driving
car and its future destination.

• random_state is the seed by the random number generator. This is where
the sequence of random numbers will start. This is because what we think
is random is pseudo-random, so it has a deterministic basis.

AI and the Internet of Things (IoT)

[306]

In this example, a linear kernel is used to fit the model, as shown in the following
code:

 # the model is directly fitted. The goal is a global estimate
[Line 326]
 clf = svm.SVC(kernel='linear', C=1000)
 clf.fit(X, y)

scikit-learn's SVM contains a parameter penalty, which explains the C in svm.SVC.
There are many more options, but the key option is the kernel. A linear kernel will
produce a linear separation, as shown in the preceding screenshot.

An RBF kernel would produce a different result. The structure looks more
regularized. As shown in the following screenshot, an RBF kernel acts as an
efficient structural regularizing function:

Figure 12.11: Regularized structure path

Bear in mind that the SVM can be used for image recognition on the MNIST and
CIFAR datasets, for example. Artificial intelligence provides more than one way to
solve a given problem. It is up to you to choose the right tools by having a flexible
trial-and-error approach where necessary.

The plotting line instructions start at line 300. The main line of code to take into
account is the function that will find and use the decision line (refer to the preceding
definition) and scatter the datapoints on both sides of the margin. This is achieved
by using the following decision_function:

 Z = clf.decision_function(xy).reshape(XX.shape)

Chapter 12

[307]

The result will be displayed, as shown previously. The SVM is now a component of
the CRLMM in this self-driving car (SDC) model. We are ready the run the CRLMM
to find an available parking space for the SDC.

Running the CRLMM
The self-driving car's mission is a circular (no beginning, no end) one like the
CRLMM described in the previous chapter:

• If it is in a parking lot, it can be activated by a home or a shelter.
• If it is at a given home, it will go to a shelter.
• If it is at a shelter, it can go to a home or a parking space.
• If it needs recharging, this can be done at a recharging space (or more

probably at a parking space), which is already the case in some cities.

At one point, the self-driving car has to go from a specific home to a parking space.
This part of its itinerary is the subject of the following sections.

Finding a parking space
CRL-MM-IoT_SVM.py uses a fine-tuned version of RL_DL.py described in the previous
chapter.

A no-Γ (no gamma, no gap, no space) result is not acceptable. The result we are
looking for is an image with a gap.

If the crlmm function, which classifies parking lot images into full or available space,
returns a 0, the program detects it and displays a message. The code samples contain
the line number of the following code excerpt:

 if(crlmm==0): # [Line 392]
 full = load_img("FULL.JPG")
 plt.subplot(111)
 plt.imshow(full)
 plt.title('PARKING LOT STATUS : This parking lot is
full.' + '\n' + 'Another webcam is consulted', fontname='Arial',
fontsize=10)
 #plt.text(0.1,2, "The frame is the input of a trained
CNN")
 plt.show()
 '''
 plt.show(block=False)
 time.sleep(5)

AI and the Internet of Things (IoT)

[308]

 plt.close()
 '''
 print("This parking lot is full, searching...")

The program displays the following full sign and closes it after a few seconds:

Figure 12.12: Parking lot status

The program must find a parking space. It will thus try searches of good parking lots
as shown in this code snippet:

 for search in range(1000): # [Line 391]
 if(crlmm==0):

A thousand searches looks like a lot, but it isn't difficult for a machine learning
program.

Furthermore, looking for available parking spaces in a large city can be excruciating.
More often than not, it will not be suitable: there will not be sufficient available
parking spaces to be certain of finding one in the time it will take to get there.

Chapter 12

[309]

For this prototype, the number of optimal searches is limited to 2. Beyond that value,
the following CRLMM function is activated:

 if(search>2): # [Line 405]
 a=1
 crlmm=CRLMM(Q,lr,e,a)

After two fruitless searches, the program activates a, a flag for the CRLMM function.

The CRLMM function now contains a random search function, which simulates the
choice of a parking lot and provides a first-level status:

 status=random.randint(0,10) # [Line 199]
 if(status>5):
 status=1
 if(status<=5):
 status=0

The status represents a probabilistic estimate of the availability of the parking lot.
The a flag simulates a program yet to be added that will scan all the parking lots and
run this function to find an available space.

So, if a is activated, the system simulates a scan (to be developed) and forces the
status to 1, as shown in the following code snippet:

 if(a>0 and status==0): # [Line 204]
 #add an available search function here that scans all the
 #webcams of then network until it finds one that suits the
model (not too far parameter and available)
 status=1

To present a prototype at an initial meeting, you will always need
enough to convince, but if you go too far, the cost of doing this
becomes a risk if your idea is rejected.

AI and the Internet of Things (IoT)

[310]

The program then continues and runs the CNN trained to identify an available
parking lot (refer to the screenshot that follows), as explained in the preceding
configuration section:

Figure 12.13: Webcam freezes a frame of a parking lot

Now that a parking lot with available space has been found (the empty spaces
on the top left of the frame), the search function stops, and the following break
instruction is activated:

 if(crlmm==1): # [Line 408]
 a=0
 break

The break instruction is reached once a parking space has been found. Once
an available parking space has been detected, we can decide how to get to the
parking lot.

Deciding how to get to the parking lot
The CRLMM program has found a suitable parking lot, as shown in the following
code, when crlmm==1:

 if(crlmm==1): # [Line 412]
 available = load_img("AVAILABLE.JPG")
 plt.subplot(111)
 plt.imshow(available)
 plt.title('PARKING LOT STATUS : This parking lot has

Chapter 12

[311]

available space.' + '\n' + 'Now an SVM will suggest a safe route ',
fontname='Arial', fontsize=10)
 #plt.text(0.1,2, "The frame is the input of a trained CNN"
 plt.show()
 '''
 plt.show(block=False)
 time.sleep(5)
 plt.close()
 '''
 print("This parking lot has available space...")

It displays the following message and a sign:

Figure 12.14: Parking lot status

Now that we found an available parking space, we need to find a safe route for the
SDC. This means the SDC will avoid traffic to make it easier for the autonomous
machine learning program. Now it is time to activate the function.

Support vector machine
The CRLMM now demands a safe route, even if it means taking longer (time or
distance). Self-driving vehicles require a strict safety-comes-first policy.

The program reaches the following SVM function:

 print("This parking lot has available space...") #
[Line 424]
 SAFE_SVM()

AI and the Internet of Things (IoT)

[312]

The SVM described in the configuration section provides a safe path through traffic,
as shown in this screenshot of the result:

Figure 12.15: Traffic graph

For example, in this random case (traffic will be random most of the time), the blue
dots on the left represent sparser traffic, and the brown dots represent areas with
denser traffic. The goal, in real-life implementation, is to provide information to
the MDP in the program so that it will find paths through sparser traffic for safety
reasons to limit the errors an SDC can make in denser traffic. The weights of the
statistics of past accidents and the car's experience can also be added to create a
deeper vision of this safety model trip planner.

Suppose the self-driving car has to go to a point in the brown area. The SVM will:

• Suggest an itinerary that goes through blue dot areas as much as possible
and only then in brown areas.

• Send the information to Google Maps. This will require an additional script
that will read a dataset that contains GPS coordinates for each datapoint in
the SVM.

Many drivers feel unsafe on loaded freeways or in dense cities. Adding the safest
route function to mapping software would help.

The SVM brought the datapoints to a higher level (refer to the explanation in the
configuration section of the chapter).

Chapter 12

[313]

Once the SVM boundaries have been converted into location datapoints, the itinerary
or trip graph is activated.

The itinerary graph
The prototype shows a simulation of an itinerary graph based on the SVM
recommendations and its weight vector through the following function call:

 print("SAFE PASSAGE SUGGESTED") # [Line 426]
 MDP_GRAPH(lr,e)

The following graph displays the safest itinerary in red, even if it takes longer (time
or distance):

Figure 12.16: The optimizer chose the safest itinerary

For the purpose of the prototype, the SVM was not directly connected to the graph,
which would require costly hours.

The points represented in an SVM function are not the actual
locations but an abstract representation. The dividing line needs to
go through a function that will transform that information into a
real location datapoint.

AI and the Internet of Things (IoT)

[314]

Instead, the following random.randint function was inserted, which simulates the
random availability of parking space in any case:

 for wi in range(6): [Line 430]
 op=random.randint(0,5)
 if(W[op]>maxw):
 lr=op;maxw=W[op]

Bear in mind that it would be useless to execute further development for a prototype
as regards the initial presentation to a prospect or manager.

This type of prototype is more powerful than a slideshow because it proves your
legitimacy. Slideshows are static and don't prove your abilities on this particular
subject. A prototype will show your expertise. Once we have the safest locations,
we can update the weight vector for the MDP, as in the previous chapter.

The weight vector
The weight vector is displayed. In this model, the weights represent the locations,
just like in the previous chapter. However, in this chapter, the weights are a rating:

• Each weight has a high safety rank when a few accidents have occurred
around that area in the past n years. This is a safety rank. This ranking
should be part of our itinerary software. We should be informed.

• The self-driving car's experience will customize each weight. It is its own
driving record. Near misses because of its faulty software will bring the
weight down. Good track records will take the weights up. What seems easy
for a human might be difficult for software, and vice versa.

The system now displays the weights used with an internal update program to be
developed if the prototype is accepted. The following code calls the function that
manages the weights of the safest routes for the self-driving vehicle and displays a
histogram:

 print("Vertex Weights",W) # [Line 428]
 MDP_CRL_graph(W,lr)

Chapter 12

[315]

Figure 12.17: Histogram of the updated weights vertex (safest routes)

We detected an available parking space, asked an SVM to provide the safest areas to
go through to get to that parking space, updated the weight of each area, and sent
the information to the MDP to calculate a safe route.

Summary
This chapter, like the previous chapter, described a connected IoT process with no
humans involved. This trend will expand into every field in the years to come.

This also shows that knowing how to use a tool requires hard work, especially
when learning artificial intelligence. Imagining a solution for a given market
requires more than hard work. Creativity does not come with work. It develops
by freeing your mind from any form of constraint.

Once the solution has been imagined, then comes the fine line between developing
too much for a presentation and not showing enough. A CRLMM provides the
kind of framework that helps build a technical solution (CNN, MDP, SVM, and
optimizers) while keeping everyday concepts that others understand in mind.

AI and the Internet of Things (IoT)

[316]

The chapter also shows that an artificial intelligence model can contain an ensemble
of algorithms, RL, DL, SVM, and CRL cognitive approaches, and more.

The next chapter will take us deeper under the hood of neural networks and
TensorFlow 2 by peeking inside the ANN's processes.

Questions
1. Driving quickly to a location is better than safety in any situation. (Yes | No)
2. Self-driving cars will never really replace human drivers. (Yes | No)
3. Will a self-driving fire truck with robots be able to put out a fire one day?

(Yes | No)
4. Do major cities need to invest in self-driving cars or avoid them?

(Invest | Avoid)
5. Would you trust a self-driving bus to take children to school and back?

(Yes | No)
6. Would you be able to sleep in a self-driving car on a highway? (Yes | No)
7. Would you like to develop a self-driving program for a project for a city?

(Yes | No)

Further reading
• For more information on SVMs, refer these links: http://scikit-learn.

org/stable/modules/svm.html, http://scikit-learn.org/stable/
auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-
auto-examples-svm-plot-separating-hyperplane-py

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp

[317]

13
Visualizing Networks

with TensorFlow 2.x and
TensorBoard

In this chapter, we are going to take a peek inside a machine's "mind" while it's
"thinking" through the layers of a deep learning neural network. The number of lines
of code required to build a sequential classifier for a convolutional neural network
(CNN) has been drastically reduced with TensorFlow 2. Running the classifier only
takes a click. However, to understand the program when something goes wrong is a
more difficult task, and visualizing the outputs of the layers can be very productive.

Visualizing the output of the layers of a CNN can provide an in-depth knowledge
of each individual step comprising the whole process.

In this chapter, as in several of the preceding chapters, we will define the layers
of a CNN. This time, we will add more layers and extract the output of each layer
to create output images. We will build this process from scratch in a bottom-to-top
approach in TensorFlow 2 in Python.

Once the outputs have been defined, we will display the output of the convolutional,
pooling, dropout, flattening, and dense layers.

Viewing the output of the layers provides an intuitive sense of what the layers
are doing. Being able to visualize the global graph of the model makes the
architecture of the CNN visible.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[318]

We will use TensorBoard to explore the conceptual model, the epochs versus the
accuracy, and the detail of the operations of mathematical functions. These graphs
and measurements will be built using a top-to-bottom approach using Google
Colaboratory.

Google Colaboratory provides a free server with ready-to-use libraries and modules.
We will use a Google Colaboratory notebook to explore TensorBoard functions.
The chapter is divided into three main sections. The first two sections describe
how to build a sequential classifier with TensorFlow 2.2 and display the outputs
of the layers with TensorFlow 2.2. The third section describes how to display the
graph information and accuracy measurement with the TensorFlow 2 version of
TensorBoard.

The topics covered in this chapter will provide visual insights into CNNs:

• Building a CNN layer by layer
• Displaying the dataset
• Displaying the output of the layers of the CNN
• Using Google Colaboratory
• Visualizing the architecture of a neural network with TensorBoard
• Visualizing accuracy measurements with TensorBoard

Let's start off this chapter by discussing how we can explore the output of the
layers within a CNN.

Exploring the output of the layers of a
CNN in two steps with TensorFlow
Many corporate contracts in the field of business intelligence require an explanation
process for any algorithm that makes automatic and critical decisions. It is often
mandatory for the editor of algorithms, artificial intelligence or not, to provide
an explanation. We need to be prepared for that.

Also, maintenance becomes critical once artificial intelligence runs in production.
Developers often move from one department to another, from one company to
another. The person that has to maintain the program needs to understand it
in detail.

Chapter 13

[319]

Exploring and visualizing a CNN is a good way to get our hands dirty, open
the hood of our roadster and see how the engine works!

• First, we will first build the CNN layer by layer. We will be building the
sequential classifier with TensorFlow 2 from the bottom to the top.
We will not be using a Keras model directly; we'll use TensorFlow's
integrated Keras module, which brings the number of lines of header down
to only two lines:
import tensorflow as tf

from tensorflow.keras import datasets, layers, models

• Then we will explore the visual output of the layers to gain insights into the
way it "thinks."

With that, let's get on with building!

Building the layers of a CNN
A CNN was described in Chapter 9, Abstract Image Classification with Convolutional
Neural Networks (CNNs). In the example to follow, the CNN will contain more layers
to visualize the way a neural network extracts features step by step.

We will be using a dataset that uses a single image to explore the layers of a CNN.
This image is repeated several times for the training dataset and the test dataset is
enough to build and run the model to visualize the layers of the neural network.

The dataset contains an image of a flower repeated several times—an iris.

Figure 13.1: The image of the image we are exploring in this chapter

Visualizing Networks with TensorFlow 2.x and TensorBoard

[320]

The goal is not to have many variations of the image, but to simply see how a CNN
represents an iris layer by layer. The dataset contains a repeated image. However,
you can change these images and use a dataset of your own then display the
images as follows using the same code:

cv_img=[]
images = []
for img_path in glob.glob('dataset/training_set/img/*.png'):
 images.append(mpimg.imread(img_path))

plt.figure(figsize=(20,20)) #20,10
columns = 5
for i, image in enumerate(images):
 plt.subplot(len(images) / columns + 1, columns, i + 1)
 plt.imshow(image)

The result will be a figure with lines of images from the dataset:

Figure 13.2: Displaying the dataset

We will first import the neural network modules:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

Building the CNN only takes a few lines. This makes it deceptively simple because
it appears to be a black box. In our example, the structure described in Chapter
9, Abstract Image Classification with Convolutional Neural Networks (CNNs), in its
enhanced version here, only requires a few minutes to create from lines 30 to 68:

#initializing the Tensorflow 2 classifier
classifier = models.Sequential()

#adding the convolution layers to the layers

Chapter 13

[321]

classifier.add(layers.Conv2D(32, (3, 3), padding='same', input_shape =
(28, 28, 3), activation = 'relu'))
classifier.add(layers.Conv2D(32, (3, 3), activation='relu'))

...

#adding dense-dropout-dense layers
classifier.add(layers.Dense(units = 512, activation = 'relu'))

We will go back to these layers in the next section when we explore their output.
The main point to focus on here remains the simplicity of the code. Building a CNN
as a black box in a few minutes might work. However, understanding each layer
when a problem comes up requires a deeper understanding of the representations
of the layers.

Before exploring those layers, the program prints the structure of the classifier
(CNN):

#Printing the model summary
print("Model Summary",classifier.summary())

The model contains a fair number of layers to explore:

Model: "sequential"

Layer (type) Output Shape Param #

===

conv2d (Conv2D) (None, 28, 28, 32) 896

conv2d_1 (Conv2D) (None, 26, 26, 32) 9248

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

dropout (Dropout) (None, 13, 13, 32) 0

conv2d_2 (Conv2D) (None, 13, 13, 64) 18496

conv2d_3 (Conv2D) (None, 11, 11, 64) 36928

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

Visualizing Networks with TensorFlow 2.x and TensorBoard

[322]

dropout_1 (Dropout) (None, 5, 5, 64) 0

conv2d_4 (Conv2D) (None, 5, 5, 64) 36928

conv2d_5 (Conv2D) (None, 3, 3, 64) 36928

max_pooling2d_2 (MaxPooling2 (None, 1, 1, 64) 0

dropout_2 (Dropout) (None, 1, 1, 64) 0

flatten (Flatten) (None, 64) 0

dense (Dense) (None, 512) 33280

dropout_3 (Dropout) (None, 512) 0

dense_1 (Dense) (None, 3) 1539

===

Keep an eye on this summary. It will prove useful when choosing the number of
layers you wish to explore to visualize the outputs.

The model is then compiled:

Compiling the convolutional neural network (CNN)
classifier.compile(optimizer = 'rmsprop',
 loss = 'categorical_crossentropy',metrics = ['accuracy'])

Then training and test datasets are processed (rescaled) and defined:

train_datagen = ImageDataGenerator(rescale = 1./255)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(
 'dataset/training_set',
 target_size = (28, 28),
 batch_size = 16,
 class_mode =
 'categorical')
test_set = test_datagen.flow_from_directory('dataset/test_set',
 target_size = (28, 28),
 batch_size = 16,
 class_mode =
 'categorical')

Chapter 13

[323]

If we stop here, the CNN will work. But will we have really understood the model?
I don't think so. Of course, it only takes a simple click to get the CNN to run after
installing a ready-to-use dataset. This black box approach can work, but exploring
the visual output of a layer provides a better representation of the network. Let's
take a look at that next.

Processing the visual output of the layers of a
CNN
The idea is to focus on an image and actually see the "mental," visual, representation
a CNN calculates, layer by layer.

To process the layers, the program first selects an image for the activation model to
work on:

#Selecting an image for the activation model
img_path = 'dataset/test_set/img/img1.png'
img1 = image.load_img('dataset/test_set/img/img1.png', target_
size=(28, 28))
img = image.img_to_array(img1)
img = np.expand_dims(img, axis=0)
img /= 255.
plt.imshow(img[0])
plt.show()
print("img tensor shape",img.shape)

Then the visualization process runs in a few steps, which will take us inside the
CNN:

• Selecting the number of layers to visualize using the e variable: Going
back to the model summary displayed previously, you can choose the
layer you want to stop at. In this example, we're stopping at e=12. You
can choose to start with e=4 to visualize the first convolutional and
pooling layers:
#Selecting the number of layers to display
e=12 #last layer displayed
layer_outputs = [layer.output for layer in classifier.layers[0:e]]

If e=3, the program will stop at max_pooling2d:
Displaying layer: conv2d

Displaying layer: conv2d_1

Displaying layer: max_pooling2d

Visualizing Networks with TensorFlow 2.x and TensorBoard

[324]

• Selecting the top n layers that will be explored: The program refers to
layer_outputs to extract the information it needs to visualize the target
layers:
Extracting the information of the top n layers
activation_model = models.Model(inputs=classifier.input,
 outputs=layer_outputs)

• Applying the activation model to extract the requested layers: Activating
the model forces the classifier to get to work and run through the layers.
That way, we can peek inside its "thought" process and see how it represents
inputs:
Activating the model
activations = activation_model.predict(img)

• Retrieving the layer names to display, along with the visual representation
of the layer: Layer names help us understand what we are looking at. Use
the model summary we printed earlier as a map to see where you are when
the layer name is displayed, along with the representation of the output of
that same layer:
#layer names
layer_names = []
for layer in classifier.layers[:12]:
 layer_names.append(layer.name)

• Processing layer outputs and organizing them into grids: To avoid having
to watch a sequential display of the variations of the representations in a
given layer, we are going to organize them in one grid image:
Processing the layer outputs
for layer_name, layer_activation in zip(layer_names,
 activations):
 #getting the layer_names and their activations
 n_features = layer_activation.shape[-1] #features in the layer
 size = layer_activation.shape[1] #shape of the feature map
 n_cols = n_features // images_per_row #number of images per
row
 display_grid = np.zeros((size * n_cols,
 images_per_row * size)) #size of the
display grid
 for col in range(n_cols): #organizing the columns
 for row in range(images_per_row): #...and rows to display
 image = layer_activation[0,:, :,
 col * images_per_row + row] #retrieving the
image...
 image -= image.mean() #...and processing it in the...

Chapter 13

[325]

 if(image.std()>0): # ...following lines to display it
 image /= image.std()
 image *= 64
 image += 128
 image = np.clip(image, 0,
 255).astype('uint8')
 display_grid[col * size : (col + 1) * size,
 row * size : (row + 1) * size] = image

• Displaying the processed layer outputs: Now that the work is done, we just
have to display the layer names along with the corresponding grids:
 #displaying the layer names and processed grids
 print("Displaying layer:",layer_name)
 scale = 1. / size
 plt.figure(figsize=(scale * display_grid.shape[1],
 scale * display_grid.shape[0]))
 plt.title(layer_name)
 plt.grid(False)
 plt.imshow(display_grid, aspect='auto', cmap='viridis')
 plt.savefig("dataset/output/"+layer_name)
 plt.show()

Note that the figures are saved by plt.savefig in an output directory for later use.

You will obtain a list of figures with the name of the layer for the layers you chose
to visualize. For example, you can view the images of the first seven layers. You
can look at them in the following figures or by running the program. In any case,
the best way to analyze the layers is to look closely at the first layer and then
at the last layer. You will see that the CNN is carefully extracting an abstract
representation of the image and displaying higher dimensions. The reason the
differences between the layers are difficult to perceive with the human eye comes
from two factors:

• The number of elements to analyze is extremely difficult for us to observe.
Usually our brain does this without us having to think about it!

• There are several convolutional layers versus one layer that would rush
through the process of obtaining an abstract representation of the image.
It's going layer by layer, just like a human brain processes an image
step-by-step.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[326]

Look at the following first layer then the last one, then go back and observe the
differences between the layers.

Figure 13.3: Convolutional layer

Figure 13.4: Convolutional layer

Figure 13.5: Pooling layer

Figure 13.6: Dropout layer

Figure 13.7: Convolutional layer

Chapter 13

[327]

Figure 13.8: Convolutional layer

Figure 13.9: Pooling layer

Visualizing the output of the layers of a CNN provides a fantastic way to
understand and analyze a neural network. Let's go a step further and analyze
the layers.

Analyzing the visual output of the layers of a CNN
An input image is chaos until some form of intelligence makes sense of it. Any form
of intelligence will detect patterns and structures. Machine intelligence works on
the same grounds by increasing the level of abstraction through dimensionality
reduction. The process of going from chaos to an organized representation is at
the heart of the fantastic invention of present-day neural networks.

When running cnn_layers.py, the layer outputs will be displayed. Let's explore
some of the layers. You can explore some or all of them by simply changing the
value of the e = <number-of-layers> variable on line 107.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[328]

Convolutional layer activation functions
One of the key options of a convolutional layer is the activation function. relu is
used in the following cnn_layers.py:

#adding more convolution layers to the layers
classifier.add(layers.Conv2D(64, (3, 3), padding='same', activation =
'relu'))
classifier.add(layers.Conv2D(64, (3, 3), activation='relu'))

For more on ReLU, please go the explanation in Chapter 9, Abstract Image Classification
with Convolutional Neural Networks (CNNs).

relu produces the following output for the Conv2d layer:

Figure 13.10: conv2d output 1

Now go to line 33 and replace relu with softmax as follows:

classifier.add(layers.Conv2D(32, (3, 3), padding='same',
 input_shape = (28, 28, 3), activation = 'softmax'))

The output is quite different, as we can see:

Figure 13.11: conv2d output 2

Chapter 13

[329]

It takes some time for the human eye to adjust to the change. Look at each version.
Try to memorize it for a few seconds by closing your eyes and then looking at the
other one. Our brain does this implicitly which is why it takes an effort to do this
explicitly.

Which one should you use? Welcome to deep learning! There is no certain answer
to that question. It is a trial-and-error process. An activation function might fit one
model and not another. Even if the accuracy of the network is acceptable during
the training process, you might have to change the activation function over time
when new data produces bad results.

For more on softmax, please go back to the explanation in Chapter 2, Building a
Reward Matrix – Designing Your Datasets.

Let's try the logistic sigmoid activation function, sigmoid, also described in Chapter 2:

Figure 13.12: conv2d output 3

Notice the differences again. Observe the last image on row 1 for each activation
function. The differences are fascinating because they provide a variety of possible
representations.

Try other activation functions to get the feel of the way an artificial neural network
transforms what it perceives into a higher level of abstraction through a reduction
of the dimensions that it has to process.

Convolutional layers higher-level representations through
the layers
Notice the incredible level of abstraction the sequential classifier reaches through
the following outputs going from conv2d to conv2d_5, which is, in fact, the sixth (0
to 5) convolutional layer of cnn_layers.py.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[330]

The network starts at a relatively figurative representation to reach a highly abstract
level at conv2d_5. We are literally inside the machine's "mind," watching it think
and learn!

Figure 13.13: Initial conv2d output

Figure 13.14: conv2d_1 output

Figure 13.15: conv2d_2 output

Chapter 13

[331]

Figure 13.16: conv2d_3 output

Figure 13.17: conv2d_4 output

Figure 13.18: conv2d_5 output

This abstraction process owes a lot to the other layers, such as the pooling layer.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[332]

Pooling layers to obtain higher-level representations
The pooling layer is going to reduce the number of dimensions of its input and
choose the most representative features it finds:

#adding a max pooling layer to the layers
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))

Let's explore the evolution of the first two pooling layers in this example:

Figure 13.19: max_pooling2d output

Figure 13.20: max_pooling2d_1 output

Once again, we can see the powerful level of abstraction a CNN can attain.

For more information on the pooling layer, please read the explanations in Chapter 9,
Abstract Image Classification with Convolutional Neural Networks (CNNs).

Chapter 13

[333]

Dropout layer higher-level representations through the
layers
The dropout layers provide a way to abandon many features in order to reach a
simplified higher level of representation:

classifier.add(layers.Dropout(0.5)) # antes era 0.25

It is not always necessary to add a dropout layer because it depends on the
productivity and architecture of the model you are exploring. For this example,
the first two dropout layers are quite instructive. Dropouts are also a way to avoid
overfitting. The model learns how to extract key features to obtain an abstract
representation, not a literal one.

Figure 13.21: dropout output

Figure 13.22: dropout_1 output

Observe again how the dropout layers accelerate the abstraction process. We can
see the CNN's "mind" working.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[334]

Recommendation
I recommend you try different activation functions and various options for
the layers of this example. Then run the program and get a feel of what is going
inside a CNN's "machine thinking" process. Even if it is a purely mathematical
architecture, it provides a good idea of how a CNN, while not human at all, has
its own "machine thinking" approach.

Now that we have explored a CNN from bottom to top, let's see how to observe
the accuracy of a CNN from top to bottom using TensorBoard.

Analyzing the accuracy of a CNN using
TensorBoard
In this section, we will first get started with a free Google Colaboratory server and
then explore some of the TensorBoard ANN measurement functions.

Getting started with Google Colaboratory
You can get access to your free instance of Google Colaboratory server in just a few
steps:

1. Make sure you have a Google account and log into it.
2. Click on the following link, which takes leads you to Google Colaboratory:

https://colab.research.google.com/notebooks/welcome.
ipynb#recent=true

You will be taken to the following page:

Figure 13.23: Colaboratory initial landing page

3. Click on the UPLOAD option in the top right:

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

Chapter 13

[335]

Figure 13.24: Upload option

You can choose or drag and drop a file, then upload it.
4. Upload TF_2_graphs.ipynb.

You can download the program from this link and then upload it: https://
github.com/PacktPublishing/Artificial-Intelligence-By-Example-
Second-Edition/blob/master/CH13/TF_2_graphs.ipynb

5. Once the program is open, you will see the following page:

Figure 13.25: A Colaboratory notebook

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1

Visualizing Networks with TensorFlow 2.x and TensorBoard

[336]

6. Go to File in the menu and save the notebook to your Google Drive:

Figure 13.26: The File menu

Once the file is saved, you are ready to go!

You have many runtime options, such as making a choice between using a CPU
or a GPU, display options (background, for example), and many more ways to use
Google Colaboratory. I recommend reading the document to find the many options
available.

You are on your free Colaboratory server, and you're ready to explore your notebook.

Defining and training the model
We will run the notebook and then analyze the results. This should provide an
introduction to both Google Colaboratory and some TensorBoard functions.

First, run the program by clicking on the Run all option in the Runtime menu:

Figure 13.27: Runtime options

Chapter 13

[337]

The program will then go through its cells and provide information on the training
process. To obtain this information, we will explore some of TensorBoard's key
functions.

We will first install TensorFlow and then run TensorBoard.

• Installing TensorFlow and getting TensorBoard running: As you saw in
the previous section, you do not need to run the program cell by cell unless
a cell contains an error. In that case, click on the run button in the cell:

Figure 13.28: Running a cell

The cell will execute the code. In this case, it will install TensorFlow 2.x:
Ensure TensorFlow 2.0 is installed.
!pip install -q tf-nightly-2.0-preview
Load the TensorBoard notebook extension.
%load_ext tensorboard

Once the installation is finished and TensorBoard is loaded, the program
runs through the headers to import the necessary modules.

• The program now defines a simplified model you are now familiar with:
The following model has been simplified. The goal here is to show how
TensorBoard works. You can, of course, add more layers once you have
explored the notebook:
Define the model.
model = keras.models.Sequential([
 keras.layers.Flatten(input_shape=(28, 28)),
 keras.layers.Dense(32, activation='relu'),
 keras.layers.Dropout(0.2),
 keras.layers.Dense(10, activation='softmax')
])

Be careful with TensorBoard versions! You might have
a previous or different version installed that you are
using for another project. Before running this program,
check any application that is using TensorBoard in your
environment. Check your configuration carefully before
doing anything. If there is a risk, use another environment
or just read the notebook without running it.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[338]

• The model is then compiled with an optimizer and accuracy metrics: The
model now needs to be compiled and run to provide measurement output:
model.compile(
 optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

For more on the Adam optimizer and cross-entropy, see Chapter 9, Abstract
Image Classification with Convolutional Neural Networks (CNNs).

The model is now trained and ready for metric callbacks for TensorBoard.

While the program was running the training, it was saving a log of the main
functionalities to display. The graph of the model can be displayed in TensorBoard
with one line along with many other functions.

%tensorboard --logdir logs

The following graph of the model contains many details:

Figure 13.29: TensorFlow graph

If you want to have a simplified view, a conceptual view of the model is also
displayed:

Chapter 13

[339]

Figure 13.30: A partial view of the TensorFlow graph

We have explored the architecture of a neural network model using
TensorBoard graphs. Let's see how to visualize the measurements of the training
process of our model.

Introducing some of the measurements
While training, the program saved key information in its log directory that can now
be displayed.

• Epoch accuracy: If the accuracy increases with the epochs, the classifier is
progressing, and it is learning correctly. If it decreases, we are in trouble! We
will have to go back and check the dataset, the activation functions, and how
the layers were designed.

Figure 13.31: Accuracy of the model

Visualizing Networks with TensorFlow 2.x and TensorBoard

[340]

• Basic flow, including an activation function: TensorBoard has drill-down
functionality. You can drill down into the actual operations TensorFlow 2.x
is calculating:

Figure 13.32: The activation function

• Exploring the details of an activation function: Once you have seen the
flow of an operation, you can even peek inside it to see how it is built:

Figure 13.33: The activation function

Chapter 13

[341]

These TensorBoard graphs and measurements help you dig into the mechanics of
your model. They provide insights that will add to the ones you acquired when
exploring the outputs of layers in the first section of this chapter.

In this section, we have explored the architecture functions of TensorBoard through
the many graphs available as well as tools to measure the training performance
of our model.

Summary
In this chapter, we explored deep learning from the inside. We saw that building a
CNN is now easy with TensorFlow 2.x, but peeking inside the way it "thinks" gives
critical insight.

We first built a CNN with many layers. The level of abstraction of a CNN increases
through each layer. Reducing the number of dimensions per layer makes patterns
appear. A neural network can be described as a process that goes from chaos to
meaning.

After building the CNN, we wrote a program that can read the "mental" images
of the layers. The output of each layer shows how the network is creating patterns
and structures. Since we humans often think using mental images, the output
images of the CNN help us understand how a machine learns.

Finally, we used a Google Colaboratory server to visualize the measurements of
the CNN's learning process with TensorBoard running on top of TensorFlow 2.x.
Measuring the accuracy of the training process of a CNN is critical. Visualizing these
measurements makes it easier to see what is going wrong. TensorBoard provides
a graph of a model to help us go from source code to a mental representation of an
ANN.

To sum this chapter up in a nutshell, we can say that artificial intelligence, through
mathematics, transforms the chaos surrounding us into intelligible structures and
patterns.

In the next chapter, we are going to go further and learn how to visualize another
aspect of a neural network: weights. We are going to use the weights of a restricted
Boltzmann machine (RBM) to create a visual representation in TensorBoard using
principal component analysis.

Visualizing Networks with TensorFlow 2.x and TensorBoard

[342]

Questions
1. A CNN always has the same number of layers. (Yes | No)
2. ReLU is the best activation function. (Yes | No)
3. It is not necessary to compile a sequential classifier. (Yes | No)
4. The output of a layer is best viewed without running a prediction. (Yes | No)
5. The names of the layers mean nothing when viewing their outputs.

(Yes | No)
6. TensorFlow 2.x does not include Keras. (Yes | No)
7. Google Colaboratory is just a repository, like GitHub. (Yes | No)
8. Google Colaboratory cannot run notebooks. (Yes | No)
9. It is possible to run TensorBoard in Google Colaboratory notebooks.

(Yes | No)
10. Accuracy is displayed in TensorBoard. (Yes | No)

Further reading
• For more information on activation functions, visit https://keras.io/

activations/.
• Click on this link for more information on Google Colaboratory: https://

colab.research.google.com/notebooks/welcome.ipynb#recent=true.

https://keras.io/activations/
https://keras.io/activations/
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

[343]

14
Preparing the Input of

Chatbots with Restricted
Boltzmann Machines (RBMs)

and Principal Component
Analysis (PCA)

In the following chapters, we will explore chatbot frameworks and build chatbots.
You will find that creating a chatbot structure only takes a few clicks. However, no
chatbot can be built without designing the input to prepare the desired dialog flow.
The goal of this chapter is to demonstrate how to extract features from a dataset and
then use them to gather the basic information to build a chatbot in Chapter 15, Setting
up a Cognitive NLP UI/CUI Chatbot.

The input of a dialog requires in-depth research and designing. In this chapter, we
will build a restricted Boltzmann machine (RBM) that will analyze a dataset. In
Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, we examined
the layers of a convolutional neural network (CNN) and displayed their outputs.
This time, we will explore the weights of the RBM. We will go further and use the
weights of the RBM as features. The weights of an RBM can be transformed into
feature vectors for a principal component analysis (PCA) algorithm.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[344]

We will use the feature vectors generated by the RBM to build a PCA display using
TensorBoard Embedding Projector's functionality. We will then use the statistics
obtained to lay the grounds for the inputs of a chatbot.

To illustrate the whole process, we will use streaming platform data as an
example of how this is done. Streaming has become a central activity of almost
all smartphone owners. The problem facing Netflix, YouTube, Amazon, or any
platform offering streaming services is to offer us the right video to watch. If a
viewer watches a video, and the platform does not display a pertinent similar
one to watch next, the viewer might choose to use another platform.

This chapter is divided into two parts:

• Building an RBM and then extending it to an automatic feature vector
generator

• Using PCA to represent the weights of an RBM as features. TensorFlow's
Embedding Projector possesses an inbuilt PCA function. The statistics
produced will provide the basis of the dialog structure for Chapter 15,
Setting Up a Cognitive NLP UI/CUI Chatbot.

Let's first define the basic terms we are using and our goals.

Defining basic terms and goals
The goal of this chapter is to prepare data to create the input of a chatbot we will
build in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot.

Creating a chatbot requires preparation. We cannot just step into a project without
a minimum amount of information. In our case, we will examine a dataset I created
based on movie preferences. I did not choose to download huge datasets because
we need to first focus on understanding the process and building a model using
basic data.

The size of the datasets increase daily on an online platform. When we watch a
movie on a streaming platform, on Netflix for example, we can like the movie or click
on the thumbs-down button.

When we approve or disapprove of a movie on an online platform, our preferences
are recorded. The features of these movies provide valuable information for the
platform, which can then display choices we prefer: action, adventure, romantic,
comedy, and more.

Chapter 14

[345]

In this chapter, we will first use an RBM to extract a description (such as action,
adventure, or comedy, for example) of the movies watched by a user or a group
of users. We will take the output weights produced by the RBM to create a file of
features reflecting the user's preferences.

This file of features of a user's preferences can be considered as a "mental
dataset" of a person. The name might seem strange at first. However, a "mental"
representation of a person goes beyond the standard age, income, and other
impersonal data. Features such as "love," "violence," and "horizons" (wider views,
adventure) give us a deeper understanding of a person than information we can
find on a driving license.

In the second part of the chapter, we will use the RBM's output of features of a
person's "mind" as the input of a PCA. The PCA will calculate how the features relate
to each other and how they vary, and we will display them in TensorBoard.

We will then actually see a representation of a person's mind through the key
features drawn from the RBM. This information will then be used to help us create
a customized chatbot in Chapter 15.

Let's move on to the first phase and build an RBM.

Introducing and building an RBM
RBMs are random and undirected graph models generally built with a visible
and a hidden layer. They were used in a Netflix competition to predict future
user behavior. The goal here is not to predict what a viewer will do but establish
who the viewer is and store the data in a viewer's profile-structured mind dataset.
The input data represents the features to be trained to learn about viewer X. Each
column represents a feature of X's potential personality and tastes. Each line
represents the features of a movie that X has watched. The following code (and this
section) is in RBM_01.py:

np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,0],
 [1,1,1,0,0,1],
 [1,1,0,1,1,0],
 [1,1,0,0,1,0],
 [1,1,1,0,1,0]])

The goal of this RBM is to define a profile of X by computing the features of the
movies watched. The input data could also be images, words, and other forms
of data, as in any neural network.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[346]

First, we will explore the architecture and define what an energy-driven neural
network is. Then, we will build an RBM from scratch in Python.

The architecture of an RBM
The RBM model used contains two layers: a visible layer and a hidden layer. Many
types of RBMs exist, but generally, they contain the following properties:

• There is no connection between the visible units, which is why it is restricted.
• There is no connection between the hidden units enforcing the restricted

property of the network.
• There is no direction as in a feedforward neural network (FNN), as explored

in Chapter 8, Solving the XOR Problem with a Feedforward Neural Network.
An RBM's model is thus an undirected graph.

• The visible and hidden layers are connected by a weight matrix and a bias
vector, which are the lines in the following diagram:

Figure 14.1: The connection between visible and hidden units

The network contains six visible and two hidden units, producing a weight matrix
of 2×6 values to which we will add bias values.

Chapter 14

[347]

You will note that there is no output. The system runs from the visible units to
the hidden units and back. We are operating feature extraction with this type of
network. In this chapter, for example, we will use the weights as features.

By forcing the network to represent its data contained in 6 units in 2 units through
a weight matrix, the RBM creates feature representations. The hidden units, weights,
and biases can be used for feature extraction.

An energy-based model
An RBM is an energy-based model. The higher the energy, the lower the probability
of obtaining the correct information; the lower the energy, the higher the probability
– in other words, the higher the accuracy.

To understand this, let's go back to the cup of tea we observed in Chapter 1, Getting
Started with Next-Generation Artificial Intelligence through Reinforcement Learning:

Figure 14.2: The complexity of a cup of tea

In Chapter 1, we observed a microstate of the cup through its global content and
temperature. Then, we went on to use the Markov decision process (MDP) to run
microstate calculations.

This time, we will focus on the temperature of the cup of tea. x will be the global
temperature of all the molecules in the cup of tea:

• If x = 1, this means the temperature is very hot. The tea has just boiled.
• If x = 0.5, this means the temperature has gone down.
• If x = 0.1, this means the temperature is still a bit warm, but the tea is cooling.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[348]

The higher the temperature, the more the molecules will be bouncing around in
the cup with a high level of energy, making it feel hot.

However, the hotter it is, the closer to very hot, the lower the probability we can
drink it.

This leads to a probability p for a temperature x:

• x -> 1, p -> 0
• x -> 0, p -> 1

As you can see, in an energy-driven system, we will strive to lower the energy
level. Let's say we have a person with an unknown tolerance for hot drinks, and we
want to wager whether they can drink our cup of tea. Nobody wants to drink cold
(low-energy) tea, sure, but if our focus is on the likelihood of a person being able to
drink the tea without finding it too hot (high-energy), then we want that tea to be as
low-energy (that is, cool) as possible!

To illustrate the p(x) system of our cup of tea, we will use Euler's number e, which
is equal to 2.718281. p(x) is the probability that we can drink our cup of tea, with p
being the probability, and x the temperature or energy.

We will begin to introduce a simple energy function in which p(x) = e(–x):

• p(e(–1)) = 0.36
• p(e(–0.5)) = 0.60
• p(e(–0.1)) = 0.90

You can see that as –x (energy) decreases, the probability p(x) increases.

The goal of the learning function of an RBM is to decrease the energy level by
optimizing the weights and biases. By doing this, the RBM increases the probability
that the hidden units, the weights, and biases are optimized.

To calculate the energy of an RBM, we will take the complete architecture of the
network into account. Let's display our model again as follows:

Chapter 14

[349]

Figure 14.3: The connection between visible and hidden units

This RBM model contains the following values:

• E(v, h), which is the energy function that takes the visible units (input data)
and hidden units into account.

• vi = the states of the visible units (input).
• ai = the biases of the visible units.
• hj = the states of the hidden units.
• bj = the biases of the hidden units.
• wij = the weight matrix.

With these variables in mind, we can define the energy function of an RBM for
𝑖𝑖 ∈ visible , 𝑗𝑗 ∈ hidden , and ij as the lines and columns of the weight matrix as
follows:

𝐸𝐸(𝑣𝑣, ℎ) = − ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 − ∑ 𝑣𝑣𝑖𝑖ℎ𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗

Now that we've got a better idea of what an RBM is and the principles behind it,
let's start to consider how to build an RBM from scratch using Python.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[350]

Building the RBM in Python
We will build an RBM using RBM_01.py from scratch using our bare hands with no
pre-built library. The idea is to understand an RBM from top to bottom to see how
it ticks. We will explore more RBM theory as we build the machine.

Creating a class and the structure of the RBM
First, the RBM class is created:

class RBM:
 def __init__(self, num_visible, num_hidden):
 self.num_hidden = num_hidden
 self.num_visible = num_visible

The first function of the class will receive the number of hidden units (2) and the
number of visible units (6).

The weight matrix is initialized with random weight values at line 20:

 np_rng = np.random.RandomState(1234)
 self.weights = np.asarray(np_rng.uniform(
 low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),
 high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),
 size=(num_visible, num_hidden)))

The bias units will now be inserted in the first row and the first column at line 27:

 self.weights = np.insert(self.weights, 0, 0, axis = 0)
 self.weights = np.insert(self.weights, 0, 0, axis = 1)

The goal of this model will be to observe the behavior of the weights. Observing
the weights will determine how to interpret the result in this model based on
calculations between the visible and hidden units.

The first row and column are the biases, as shown in the preceding code snippets.
Only the weights will be analyzed for the profiling functions. The weights and
biases are now in place.

Creating a training function in the RBM class
On line 30, the training function is created:

 def train(self, data, max_epochs, learning_rate):

Chapter 14

[351]

In this function:

• self is the class
• data is the 6×6 input array, containing 6 lines of movies and 6 columns of

features of the movies:
np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,0],
 [1,1,1,0,0,1],
 [1,1,0,1,1,0],
 [1,1,0,0,1,0],
 [1,1,1,0,1,0]])

The RBM model in this chapter is using visible binary units, as shown in
the input, which is the training data of this model. The RBM will use the
input as training data.
An RBM can contain other types of units: softmax units, Gaussian visible
units, binomial units, rectified linear units, and more. Our model focuses
on binary units.

• max_epochs is the number of epochs that the RBM will run to train.
• learning_rate is the learning rate that will be applied to the weight

matrix containing the weights and the biases.

We will now insert bias units of 1 in the first column on line 35:

 data = np.insert(data, 0, 1, axis = 1)

There are other strategies to initialize biases. This is a trial-and-error process,
depending on your project. In this case, bias units of 1 are sufficient to do the job.

Computing the hidden units in the training function
On line 37, we start training the RBM during max_epochs by computing the value of
the hidden units:

 for epoch in range(max_epochs):

The first phase is to focus on the hidden units. We activate the probabilities of the
hidden units with our weight matrix using dot matrix multiplication:

 pos_hidden_activations = np.dot(data, self.weights)

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[352]

Then, we apply the logistic function as we saw in Chapter 2, Building a Reward
Matrix – Designing Your Datasets:

 pos_hidden_probs = self._logistic(
 pos_hidden_activations)

The logistic function called is on line 63:

 def _logistic(self, x):
 return 1.0 / (1 + np.exp(-x))

We set the biases to 1:

 pos_hidden_probs[:,0] = 1 # Fix the bias unit.

We now have computed the first epoch of the probabilities of the hidden states
with random weights.

Random sampling of the hidden units for the
reconstruction and contractive divergence
There are many sampling methods, such as Gibbs sampling, for example, which has
a randomized approach to avoid deterministic samples.

In this model, we will choose a random sample that chooses the values of the hidden
probabilities that exceed the values of a random sample of values. The random.rand
function creates a random matrix with values between 0 and 1, with a size of num_
examples×self.num_hidden+1:

 pos_hidden_states = pos_hidden_probs >
 np.random.rand(num_examples, self.num_hidden + 1)

This sample will be used for the reconstruction phase we will explore in the next
section.

We also need to compute an association for the contrastive divergence (the function
used to update the weight matrix) phase, which is explained hereinunder:

 pos_associations = np.dot(data.T, pos_hidden_probs)

This dot product of the visible data units v × the hidden units h can be represented as
follows:

𝑣𝑣𝑖𝑖ℎ𝑗𝑗 data

Now that the dot product has been implemented, we will build the reconstruction
phase.

Chapter 14

[353]

Reconstruction
An RBM uses its input data as its training data, computes the hidden weights
using a random weight matrix, and then reconstructs the visible units. Instead of
an output layer as in other neural networks, an RBM reconstructs the visible units
and compares them to the original data.

The following code applies the same approach as for the hidden units described
previously to generate visible units:

 neg_visible_activations = np.dot(pos_hidden_states,
 self.weights.T)
 neg_visible_probs = self._logistic(
 neg_visible_activations)
 neg_visible_probs[:,0] = 1 # Fix the bias unit

These negative visible units will be used to evaluate the error level of the RBM, as
explained here.

Now that we have generated visible units with our sample of hidden unit states, we
move on and generate the corresponding hidden states:

 neg_hidden_activations = np.dot(neg_visible_probs,
 self.weights)
 neg_hidden_probs = self._logistic(
 neg_hidden_activations)
 neg_associations = np.dot(neg_visible_probs.T,
 neg_hidden_probs)

Note that neg_associations can be represented in the following form:

𝑣𝑣𝑖𝑖ℎ𝑗𝑗 reconst

Here, we have done the following:

• Computed positive hidden states using the visible units containing the
training data

• Selected a random sample of those positive hidden states
• Reconstructed negative (generated from the hidden states, not the data)

visible states
• And, in turn, generated hidden states from the visible states produced

We have reconstructed visible states through this process. However, we need to
evaluate the result and update the weights.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[354]

Contrastive divergence
To update the weights, we do not use gradient descent. In this energy model, we
use contrastive divergence, which can be expressed as follows:

𝜀𝜀(𝑣𝑣𝑖𝑖ℎ𝑗𝑗 data − 𝑣𝑣𝑖𝑖ℎ𝑗𝑗 reconst)

The letter 𝜀𝜀 is the learning rate. The learning rate should be a small value and can
be optimized throughout the training process. I applied a small value, 0.001 overall.

The source code for updating the weights is as follows:

 self.weights += learning_rate * ((pos_associations -
 neg_associations))

Over the epochs, the weights will adjust, bringing the energy and error level down
and, hence, bringing the accuracy of the probabilities up.

At this point, we will display the error level and the energy value of the RBM
throughout the epochs.

Error and energy function
On line 56, the error function calculates the squared sum of the difference between
the visible units provided by the data and the reconstructed visible units:

 error = np.sum((data - neg_visible_probs) ** 2)

For the energy function, we can use our original energy equation:

𝐸𝐸(𝑣𝑣, ℎ) = − ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 − ∑ 𝑣𝑣𝑖𝑖ℎ𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗

In our code, we will not use the biases since we often set them to 1.

We will also need a function to measure the evolution of the energy of the RBM.

The energy will be measured with a probabilistic function p:

𝑝𝑝(𝑥𝑥) = 𝑒𝑒−𝐸𝐸(𝑥𝑥)
𝑍𝑍

Z is a partition function for making sure that the sum of the probabilities of each x
input does not exceed 1:

Chapter 14

[355]

∑𝑝𝑝(𝑥𝑥)
𝑥𝑥

= 1

The partition function is the sum of all the individual probabilities of each x:

𝑍𝑍 =∑𝑒𝑒−𝐸𝐸(𝑥𝑥)
𝑥𝑥

The corresponding code will calculate the energy of the RBM, which will decrease
over time as the RBM goes through the epochs:

 energy=-np.sum(data) - np.sum(neg_hidden_probs)-
 np.sum(pos_associations * self.weights)
 z=np.sum(data)+np.sum(neg_hidden_probs)
 if z>0: energy=np.exp(-energy)/z;

You will note that neither the error function nor the energy function influences the
training process. The training process is based on contrastive divergence.

The error and energy values will measure the efficiency of the model by providing
some insight into the behavior of the RBM as it trains.

Here is an example of these measurement values at the beginning of the process and
at the end:

Epoch 0: error is 8.936507744240409 Energy: 1586106430052073.0

...

Epoch 4999: error is 4.498343290467705 Energy: 2.426792619597097e+46

At epoch 0, the error is high, and the energy is high, too.

At epoch 4999, the error is sufficiently low for the model to produce correct feature
extraction values. The energy has significantly diminished.

Running the epochs and analyzing the results
Once the RBM has optimized the weight-bias matrix for n epochs, the matrix will
provide the following information for the profiler system of person X, for example:

[[0.91393138 -0.06594172 -1.1465728]

[3.01088157 1.71400554 0.57620638]

[2.9878015 1.73764972 0.58420333]

[0.96733669 0.09742497 -3.26198615]

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[356]

[-1.09339128 -1.21252634 2.19432393]

[0.19740106 0.30175338 2.59991769]

[0.99232358 -0.04781768 -3.00195143]]

The RBM will train the input and display the features added to X's profile.

The weights of the features have been trained for person X. The first line is the
bias and examines columns 2 and 3. The following six lines are the weights of X's
features:

[[0.913269 -0.06843517 -1.13654324]

[3.00969897 1.70999493 0.58441134]

[2.98644016 1.73355337 0.59234319]

[0.953465 0.08329804 -3.26016158]

[-1.10051951 -1.2227973 2.21361701]

[0.20618461 0.30940653 2.59980058]

[0.98040128 -0.06023325 -3.00127746]]

The weights (in bold) are lines 2 to 6 and columns 2 to 3. The first line and first
column are the biases.

The way to interpret the weights of an RBM remains a careful strategy to build. In
this case, a creative approach is experimented with to determine marketing behavior.
There are many other uses of an RBM, such as image processing, for example. In this
case, the weight matrix will provide a profile of X by summing the weight lines of
the feature, as shown in the following code:

 for w in range(7):
 if(w>0):
 W=print(F[w-1],":",r.weights[w,1]+r.weights[w,2])

The features are now labeled, as displayed in this output:

love : 2.25265339223

happiness : 2.28398311347

family : -3.16621250031

horizons : 0.946830830963

action : 2.88757989766

An RBM model uses random values and will produce slightly
different results each time it is trained.

Chapter 14

[357]

violence : -3.05188501936

A value>0 is positive, close to 0 slightly positive

A value<0 is negative, close to 0 slightly negative

We can see that beyond standard movie classifications, X likes horizons somewhat,
does not like violence, and likes action. X finds happiness and love important, but
not family at this point.

The RBM has provided a personal profile of X—not a prediction, but getting ready
for a suggestion through a chatbot or just building X's machine mind-dataset.

We have taken a dataset and extracted the main features from it using an RBM.
The next step will be to use the weights as feature vectors for PCA.

Using the weights of an RBM as feature
vectors for PCA
In this section, we will be writing an enhanced version of RBM_01.py. RBM_01.
py produces the feature vector of one viewer named X. The goal now is to extract
the features of 12,000 viewers, for example, to have a sufficient number of feature
vectors for PCA.

In RBM_01.py, viewer X's favorite movies were first provided in a matrix. The goal
now is to produce a random sample of 12,000 viewer vectors.

The first task at hand is to create an RBM launcher to run the RBM 12,000 times to
simulate a random choice of viewers and their favorite movies, which are the ones
the viewer liked. Then, the feature vector of each viewer will be stored.

RBM_launcher.py first imports RBM as rp:

import RBM as rp

The primary goal of RBM_launcher.py is to carry out the basic functions to run RBM.
Once RBM is imported, the feature vector's .tsv file is created:

#Create feature files
f=open("features.tsv","w+")
f.close

When rp, the RBM function imported as rp, is called, it will append the feature file.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[358]

The next step is to create the label file containing the metadata:

g=("viewer_name"+"\t"+"primary_emotion"+"\t"+"secondary_emotion"+
 "\n")
with open("labels.tsv", "w") as f:
 f.write(g)

You will notice the use of the word "emotion." In this context, "emotion" refers
to features for sentiment analysis in general, not human emotions in particular.
Please read "emotions" in this context as sentiment analysis features.

Now, we are ready to run RBM 12,000+ times, for example:

#Run the RBM feature detection program over v viewers
print("RBM start")
vn=12001
c=0
for v in range (0,vn):
 rp.main()
 c+=1
 if(c==1000):print(v+1);c=0;

print("RBM over")

rp.main() calls the main() function in RBM.py that we will now enhance for this
process.

We will enhance RBM_01.py step-by-step in another file named RBM.py. We will
adapt the code starting line 65 to create an RBM launcher option:

A variable name pt is set to 0 or 1, depending on whether we wish to display
intermediate information:

 # RBM_launcher option
 pt=0 #restricted printing(0), printing(1)

Since this is an automatic process, pt is set to 0.

The metadata of 10 movies is stored in titles:

 # Part I Feature extractions from data sources
 # The titles of 10 movies
 titles=["24H in Kamba","Lost","Cube Adventures",
 "A Holiday","Jonathan Brooks",
 "The Melbourne File", "WNC Detectives",
 "Stars","Space L","Zone 77"]

Chapter 14

[359]

A feature matrix of movies with six features per movie is created starting at line 71,
with the same features as in RBM_01.py:

 # The feature map of each of the 10 movies. Each line is a movie.
 # Each column is a feature. There are 6 features: ['love',
'happiness', 'family', 'horizons', 'action', 'violence']
 # 1= the feature is activated, 0= the feature is not activated
 movies_feature_map = np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,1],
 [1,0,0,0,0,1],
 [1,1,0,1,1,1],
 [1,0,0,0,1,1],
 [1,1,0,1,1,0],
 [1,0,0,0,0,0],
 [1,1,0,1,1,0],
 [1,1,0,0,0,1],
 [1,0,0,1,1,1],
 [1,1,0,0,1,0],
 [1,1,0,1,1,1],
 [1,1,0,0,1,1]])

Each line of the matrix contains a movie, and each column one of the six features
of that movie. If the value is 0, the feature is not present; if the value is 1, the feature
is present.

In the years to come, the number of features per movie will be extended to an
indefinite number of features per movie to fine-tune our preferences.

An empty output matrix is created. In RBM_01.py, the result was provided. In this
example, it will be filled with random choices:

 #The output matrix is empty before the beginning of the analysis
 #The program will take the user "likes" of 6 out of the 10 movies

 dialog_output = np.array([[0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0],
 [0,0,0,0,0,0]])

Now, the random movie selector will generate likes or dislikes per movie and per
viewer:

 #An extraction of viewer's first 6 liked 6 movies out n choices
 #Hundreds of movies can be added. No dialog is needed since a

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[360]

cloud streaming services stores the movie-likes we click on
 mc=0 #Number of choices limited to 6 in this example
 a="no" #default input value if rd==1
 #for m in range(0,10):
 if pt==1:print("Movie likes:");
 while mc<6:
 m=randint(0,9)# filter a chosen movie or allow (this case) a
person can watch and like a movie twice=an indication
 b=randint(0,1)# a person can like(dislike) a movie the first
time and not the second(or more) time
 if mc<6 and (a=="yes" or b==1):
 if pt==1:print("title likes: ",titles[m]);
 for i in range(0,6):dialog_output[mc,i]=
 movies_feature_map[m,i];
 mc+=1
 if mc>=6:
 break

We can choose whether to display the input:

 #The dialog_input is now complete
 if pt==1:print("dialog output",dialog_output);

The dialog output is the data collected by the platform through its like/dislike
interface. The RBM runs its training session:

 #dialog_output= the training data
 training_data=dialog_output
 r = RBM(num_visible = 6, num_hidden = 2)
 max_epochs=5000
 learning_rate=0.001
 r.train(training_data, max_epochs,learning_rate)

The results of the RBM training session are now processed from line 185 to line 239 to
transform the weights obtained into feature vectors and the corresponding metadata:

###Processing the results
 # feature labels
 F=["love","happiness","family","horizons","action","violence"]
 .../...
 control=[0,0,0,0,0,0]

 for j in range(0,6):
 for i in range(0,6):
 control[i]+=dialog_output[j][i]

 ###End of processing the results

Chapter 14

[361]

The goal is now to select the primary feature of a given movie chosen by a given
viewer. This feature could be "love" or "violence" for example:

 #Selection of the primary feature
 for w in range(1,7):
 if(w>0):
 if pt==1:print(F[w-1],":",r.weights[w,0]);
 tw=r.weights[w,0]+pos
 if(tw>best1):
 f1=w-1
 best1=tw
 f.write(str(r.weights[w,0]+pos)+"\t")
 f.write("\n")
 f.close()

The secondary feature is also very interesting. It often provides more information
than the primary feature. A viewer will tend to view a certain type of movie.
However, the secondary features vary from movie to movie. For example, suppose
a young viewer likes action movies. "Violence" could be the primary feature,
but the secondary feature could be "love" in one case or "family" in another.
The secondary featured is stored in the feature vector of this viewer:

 #secondary feature
 best2=-1000
 for w in range(1,7):
 if(w>0):
 tw=r.weights[w,0]+pos
 if(tw>best2 and w-1!=f1):
 f2=w-1
 best2=tw

The metadata is saved in the label file:

 #saving the metadata with the labels
 u=randint(1,10000)
 vname="viewer_"+str(u)
 if(pt==1):
 print("Control",control)
 print("Principal Features: ",vname,f1,f2,"control")

 f= open("labels.tsv","a")
 f.write(vname +"\t"+F[f1]+"\t"+F[f2]+"\t")
 f.write("\n")
 f.close()

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[362]

This process will be repeated 12,000 times in this example.

The feature vector features.tsv file has been created:

Figure 14.4: The feature vector file

The feature vector labels.tsv metadata file matches the feature vector file:

viewer_name primary_emotion secondary_emotion

viewer_8481 love violence

viewer_3568 love violence

viewer_8667 love horizons

viewer_2730 love violence

viewer_3970 love horizons

viewer_1140 love happiness

You will note that "love" and "violence" appear often. This comes from the way
I built the dataset based mostly on movies that contain action and some form
of warm relationship between the characters, which is typical in movies for the
younger generations.

Now that the feature vectors and the metadata file have been created, we can use
PCA to represent the points.

Understanding PCA
PCA is applied very efficiently to marketing by Facebook, Amazon, Google,
Microsoft, IBM, and many other corporations, among other feature processing
algorithms.

Probabilistic machine learning training remains efficient when targeting apparel,
food, books, music, travel, cars, and other market consumer segments.

However, humans are not just consumers; they are human beings. When they
contact websites or call centers, standard answers or stereotyped emotional tone
analysis approaches can depend on one's nerves. When humans are in contact
with doctors, lawyers, and other professional services, a touch of humanity is
necessary if major personal crises occur.

Chapter 14

[363]

The goal of the PCA, in this context, is to extract key features to describe
an individual or a population. The PCA phase will help us build a mental
representation of X's profile, either to communicate with X or use X's mind as a
powerful, mindful chatbot or decision-maker.

PCA isn't a simple concept, so let's take some time to understand it properly. We'll
start with an intuitive explanation, and after that, we'll get into the mathematics
behind it.

PCA takes data and represents it at a higher level.

For example, imagine you are in your bedroom. You have some books, magazines,
and music (maybe on your smartphone) around the room. If you consider your
room as a 3D Cartesian coordinate system, the objects in your room are all in
specific x, y, z coordinates.

For experimentation purposes, take your favorite objects and put them on your bed.
Put the objects you like the most near one another, and your second choices a bit
further away. If you imagine your bed as a 2D Cartesian space, you have just made
your objects change dimensions. You have brought the objects that you value the
most into a higher dimension. They are now more visible than the ones that have
less value for you.

They are not in their usual place anymore; they are on your bed and at specific
coordinates depending on your taste.

That is the philosophy of PCA. If the number of data points in the dataset is very
large, the PCA of a "mental dataset" of one person will always be different from
the PCA representation of another person, like DNA. A "mental dataset" is a
collection of thoughts, images, words, and feelings of a given person. It is more
than the classic age, gender, income, and other neutral features. A "mental dataset"
will take us inside somebody's mind.

Mathematical explanation
The main steps in calculating PCA are important for understanding how to go from
the intuitive approach to how TensorBoard Embedding Projector represents datasets
using PCA.

That is what a conceptual representation learning metamodel
(CRLMM) is about as applied to a person's mental representation.
Each person is different, and each person deserves a customized
chatbot or bot treatment.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[364]

Variance
Variance is when a value changes. For example, as the sun rises in summer, the
temperature gets warmer and warmer. The variance is represented by the difference
between the temperature at a given hour and then the temperature a few hours later.
Covariance is when two variables change together. For example, the hotter it gets
when we are outside, the more we will sweat to cool our bodies down.

• Step 1: Calculate the mean of the array data1. You can check this with
mathfunction.py, as shown in the following function:
data1 = [1, 2, 3, 4]
M1=statistics.mean(data1)
print("Mean data1",M1)

The answer is 2.5. The mean is not the median (the middle value of an array).
• Step 2: Calculate the mean of array data2. The mean calculation is executed

with the following standard function:
data2 = [1, 2, 3, 5]
M2=statistics.mean(data2)
print("Mean data2",M2)

The answer is �̅�𝑋 = 2.75 . The bar above the X signifies that it is a mean.
• Step 3: Calculate the variance using the following equation:

var =
∑ (𝑋𝑋 − �̅�𝑋)2𝑥𝑥=𝑛𝑛
𝑥𝑥=1

𝑛𝑛

Now, NumPy will calculate the variance with the absolute value of each x
minus the mean, sum them up, and divide the sum by n, as shown in the
following code snippet:
#var = mean(abs(x - x.mean())**2).
print("Variance 1", np.var(data1))
print("Variance 2", np.var(data2))

Some variances are calculated with n – 1 depending on the population of the
dataset.

The result of the program for variances is as displayed in the following output:

Mean data1 2.5

Mean data2 2.75

Variance 1 1.25

Variance 2 2.1875

Chapter 14

[365]

We can already see that data2 varies a lot more than data1. Do they fit together?
Are their variances close or not? Do they vary in the same way? Our goal in the
following section is to find out whether two words, for example, will often be found
together or close to one another, taking the output of the embedding program into
account.

Covariance
The covariance will tell us whether these datasets vary together or not. The equation
follows the same philosophy as variance, but now both variances are joined to see
whether they belong together:

cov(𝑥𝑥, 𝑦𝑦) =
∑ (𝑋𝑋 − �̅�𝑋)(𝑌𝑌 − �̅�𝑌)𝑥𝑥=𝑛𝑛
𝑥𝑥=1

𝑛𝑛

As with the variance, the denominator can be n – 1 depending on your model.
Also, in this equation, the numerator is expanded to visualize the co-part of
covariance, as implemented in the following array in mathfunction.py:

x=np.array([[1, 2, 3, 4],
 [1, 2, 3, 5]])
a=np.cov(x)
print(a)

NumPy's output is a covariance matrix, a:

[[1.66666667 2.16666667]

 [2.16666667 2.91666667]]

If you increase some of the values of the dataset, it will increase the value of the
parts of the matrix. If you decrease some of the values of the dataset, the elements
of the covariance matrix will decrease.

Looking at some of the elements of the matrix increase or decrease that way takes
time and observation. What if we could find one or two values that would give us
that information?

Eigenvalues and eigenvectors
To make sense of the covariance matrix, the eigenvector will point to the direction
in which the covariances are going. The eigenvalues will express the magnitude or
importance of a given feature.

To sum it up, an eigenvector will provide the direction and the eigenvalue of the
importance for the covariance matrix, a. With those results, we will be able to represent
the PCA with TensorBoard Embedding Projector in a multidimensional space.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[366]

Let w be an eigenvalue(s) of a. An eigenvalue(s) must satisfy the following equation:

dot(a,v)=w * v

There must exist a vector, v, for which dot(a,v) is the same as w*v.

NumPy will do the math through the following function:

from numpy import linalg as LA
w, v = LA.eigh(a)
print("eigenvalue(s)",w)

The eigenvalues are displayed (in ascending order) in the following output:

eigenvalue(s) [0.03665681 4.54667652]

Now, we need the eigenvectors to see in which direction these values should
be applied. NumPy provides a function to calculate both the eigenvalues and
eigenvectors together. That is because eigenvectors are calculated using the
eigenvalues of a matrix, as shown in this code snippet:

from numpy import linalg as LA
w, v = LA.eigh(a)
print("eigenvalue(s)",w)
print("eigenvector(s)",v)

The output of the program is as follows:

eigenvector(s) [[-0.79911221 0.6011819]

 [0.6011819 0.79911221]]

Eigenvalues come in a 1D array with the eigenvalues of a.

Eigenvectors come in a 2D square array with the corresponding value (for each
eigenvalue) in columns.

Creating the feature vector
The remaining step is to sort the eigenvalues from the highest to the lowest value.
The highest eigenvalue will provide the principal component (most important).
The eigenvector that goes with it will be its feature vector. You can choose to ignore
the lowest values or features. In the dataset, there will be hundreds, and often
thousands, of features to represent. Now we have the feature vector:

feature vector = FV = {eigenvector1, eigenvector2 … n}

Chapter 14

[367]

n means that there could be many more features to transform into a PCA feature
vector.

Deriving the dataset
The final step is to transpose the feature vector and original dataset and multiply
the row feature vector by row data:

Data that will be displayed = row of feature vector * row of data

Summing it up
The highest value of eigenvalues is the principal component. The eigenvector will
determine in which direction the data points will be oriented when multiplied by
that vector.

Using TensorFlow's Embedding Projector to
represent PCA
TensorBoard Embedding Projector offers an in-built PCA function that can be
rapidly configured to fit our needs. TensorBoard can be called as a separate program
or embedded in a program as we saw in Chapter 13, Visualizing Networks with
TensorFlow 2.x and TensorBoard.

We will then extract key information on the viewer marketing segment that will
be used to start building a chatbot in Chapter 15, Setting Up a Cognitive NLP UI/CUI
Chatbot.

First, go to this link: https://projector.tensorflow.org/

For the following functions, bear in mind that TensorBoard Embedding Projector is
working at each step and that it might take some time depending on your machine.
We load the data produced by RBM_launcher.py and RBM.py by clicking on Load:

Figure 14.5: The Load button

https://projector.tensorflow.org/

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[368]

Once the Load data from your computer windows appear, we load the feature
vector features.tsv file by clicking on Choose file:

Figure 14.6: Loading the feature vector file

We load the labels.tsv metadata file by clicking on Choose file in Step 2
(optional):

Figure 14.7: Loading a TSV file

To obtain a good representation of our 12,000+ features, click on Sphereize data,
which is not checked in default mode:

Figure 14.8: Sphereizing data

Chapter 14

[369]

We now choose label by secondary_emotion, color by secondary_emotion, along
with edit by secondary_emotion:

Figure 14.9: Managing labels

To get a nice view of the data, we activate night mode so that the moon should
be active:

Figure 14.10: Activating the night mode

At this point, we have a nice PCA representation that turns like Earth, the ideas
in our mind, or the minds of all of the viewers we are analyzing depending on how
we use the features. The dots on the image are datapoints representing the features
we calculated with an RBM and then represented with an image using PCA. It is
like peeking inside the mind:

Figure 14.11: A PCA representation of features

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[370]

The PCA representation of the features of a given person or a group of people
provides vital information to create dialogs in a chatbot. Let's analyze the PCA to
prepare data for a chatbot.

Analyzing the PCA to obtain input entry
points for a chatbot
The goal is to gather some information to get started with our cognitive chatbot.
We will use the filters provided by TensorBoard.

Choose secondary_emotion as the basis of our filters:

Figure 14.12: Filtering data

The features we are analyzing are as follows:

F=["love","happiness","family","horizons","action","violence"]

We need to see the statistics per feature.

We type the feature in TensorBoard's search option, such as "love," for example,
and then we click the down arrow:

Figure 14.13: TensorBoard's search option

Chapter 14

[371]

The PCA representation changes its view in realtime:

Figure 14.14: PCA representation of the RBM features

There are 643 points for "love." Notice that the "love" points are grouped in a
relatively satisfactory way. They are mostly in the same area of the image and not
spread out all over the image. This grouping shows that the weights of the RBM
provided features that turned out to be sufficiently correct in the PCA for this
experiment.

We repeat the process for each feature, to obtain the number of points per feature
and visualize them. For the dataset supplied on GitHub for this chapter, we obtain:

• Love: 643
• Happiness: 2267
• Family: 0
• Horizons: 1521
• Action: 2976
• Violence: 4594

Important: This result will naturally change if RBM_launcher.py
runs again since it's a random viewer-movie choice process.

Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA)

[372]

The results provide interesting information on the marketing segment we are
targeting for the chatbot:

• Violence and action point to action movies.
• Family=0 points to younger viewers; teenagers, for example, more interested

in action than creating a family.
• Discovering happiness and love are part of the horizons they are looking for.

This is typical of superhero series and movies. Superheroes are often solitary
individuals.

We will see how this works out when we build our chatbot in Chapter 15, Setting Up
a Cognitive NLP UI/CUI Chatbot.

Summary
In this chapter, we prepared key information to create the input dialog of a chatbot.
Using the weights of an RBM as features constituted the first step. We saw that
we could use neural networks to extract features from datasets and represent them
using the optimized weights.

Processing the likes/dislikes of a movie viewer reveals the features of the movies
that, in turn, provide a mental representation of a marketing segment.

PCA chained to an RBM will generate a vector space that can be viewed in
TensorBoard Embedding Projector in a few clicks.

Once TensorBoard was set up, we analyzed the statistics to understand the
marketing segment the dataset originated from. By listing the points per feature,
we found the main features that drove this marketing segment.

Having discovered some of the key features of the marketing segment we were
analyzing, we can now move on to the next chapter and start building a chatbot for
the viewers. At the same time, we will keep backdoors available in case the dialogs
show that we need to fine-tune our feature vector statistics.

Chapter 14

[373]

Questions
1. RBMs are based on directed graphs. (Yes | No)
2. The hidden units of an RBM are generally connected to one another.

(Yes | No)
3. Random sampling is not used in an RBM. (Yes | No)
4. PCA transforms data into higher dimensions. (Yes | No)
5. In a covariance matrix, the eigenvector shows the direction of the vector

representing that matrix, and the eigenvalue shows the size of that vector.
(Yes | No)

6. It is impossible to represent a human mind in a machine. (Yes | No)
7. A machine cannot learn concepts, which is why classical applied

mathematics is enough to make efficient artificial intelligence programs
for every field. (Yes | No)

Further reading
• For more on RBMs, refer to: https://skymind.ai/wiki/restricted-

boltzmann-machine

• The original reference site for the source code in this chapter can be found
here: https://github.com/echen/restricted-boltzmann-machines/
blob/master/README.md

• The original Geoffrey Hinton paper can be found here: http://www.
cs.toronto.edu/~hinton/absps/guideTR.pdf

• For more on PCA, refer to this link: https://www.sciencedirect.com/
topics/engineering/principal-component-analysis

• Ready-to-use RBM resources are located here: https://pypi.org/project/
pydbm/

https://skymind.ai/wiki/restricted-boltzmann-machine
https://skymind.ai/wiki/restricted-boltzmann-machine
https://github.com/echen/restricted-boltzmann-machines/blob/master/README.md
https://github.com/echen/restricted-boltzmann-machines/blob/master/README.md
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.sciencedirect.com/topics/engineering/principal-component-analysis
https://www.sciencedirect.com/topics/engineering/principal-component-analysis
https://pypi.org/project/pydbm/
https://pypi.org/project/pydbm/

[375]

15
Setting Up a Cognitive NLP

UI/CUI Chatbot
There are 300,000+ chatbots on Facebook alone. Adding another brick in that
wall means next to nothing unless you give your chatbot a purpose and provide
it with real content. Cognitive content represents the core goal of attracting more
attention than your hundreds of thousands of competitors and SEO experts. We
will put RBM-PCA chained algorithms to work in this chapter to bring a chatbot
to another level. We will use the information provided by the RBM-PCA to design
our dialog.

As you will discover in this first section, creating an agent with Dialogflow and
beginning a dialog represents no effort at all. Google Dialogflow provides the
intuitive features to get a chatbot running in no time. The Dialogflow tutorial
can guide you to reach this simple goal in a few minutes. Understanding what
an agent is, teaching it to ask a question, and providing an answer can be done
by a 10-year-old child. I experimented with this by letting a 5-year-old and a
9-year-old child loose on this software. They both did not even realize it was
work. They were having fun!

On Dialogflow, you don't need to know how to program, and you don't need to
be a linguist or any other kind of expert. So, what will your market differentiation
be? Content. Your chatbot needs to have a purpose, with well-prepared content
beyond asking and answering simple questions.

Beyond creating your first dialog, the goal of this chapter will provide you with
a sense of purpose and content that will help you produce meaningful chatbots.

Setting Up a Cognitive NLP UI/CUI Chatbot

[376]

That being said, let's create an agent together and a short dialog to illustrate both
how to create a chatbot and also to provide meaningful content.

The following topics will be covered in this chapter:

• Creating a cognitive agent based on the preparation of Chapter 14, Preparing
the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal
Component Analysis (PCA)

• Learning the basic concepts of Dialogflow and chatbots in general
• Deploying the chatbot on your website

We will start with basic concepts and then create an agent with entities, intents,
dialogs, and a fulfillment function. We will be using the preparation established in
the previous chapter. We will test its UI with spelling correction and dialogs. Then,
we will test the chatbot's conversational user interface (CUI) capability by setting
up machine learning speech recognition and speech functions.

Basic concepts
Before creating an agent, we'll want to have an understanding of the basic concepts.

This is not a Dialogflow course, but rather an introductory chapter to get us started
on making our own NLP CUI chatbot. We'll begin by defining some key terms.

Defining NLU
NLU means natural language understanding. NLU is a subset of natural language
processing (NLP). Natural language refers to the everyday language we use without
having to force ourselves to learn precise words in order to obtain information
from a machine.

If we had to learn a dictionary of the only words that would work with a system,
it would be easier just to read a text. NLP encompasses all forms of natural language
processing including NLU. Through AI, NLU has become more involved in trying
to understand what a given sentence means.

Why do we call chatbots "agents"?
A chatbot entails a chat between at least two parties. In our case, the bot is an NLU
module. That's not a very nice marketing way to put it. It sounds like: "you are
now talking to an NLU module." You cannot pretend a bot is a person. The word
agent conveys the impression of a business agent, a sports agent, or a secret agent,
which is mysterious! It came to mean a computer system that gathers information.
Now it's an NLP agent with NLU capability.

Chapter 15

[377]

Creating an agent to understand Dialogflow
The fastest way to learn Dialogflow is to create a dialog from scratch. Log
into Dialogflow and go to the console. The following is part of a screenshot of
Dialogflow's dashboard. You can see the link to the console on the top right:

Figure 15.1: Accessing Dialogflow's console

Once you click on Go to console, you will be asked to sign in if you haven't signed
in yet. A Google account is a prerequisite:

Figure 15.2: Signing in with a Google account

Once you have followed the sign in instructions and are signed in, you will reach
the Dialogflow console.

Click on the drop-down list in the top-right corner, irrespective of which default
agent is displayed. A list of existing or default agents will be displayed:

Figure 15.3: The list of agents

Setting Up a Cognitive NLP UI/CUI Chatbot

[378]

Scroll down the list until you reach Create new agent (if none, click on the Create
agent option). Click on Create new agent, and you will reach the following window:

Figure 15.4: Entering the agent's name

Call the agent Agent + <your name or initials> to make sure you will have
a unique name. I will call the one for this chapter cogfilmdr. The agent in the
chapter will thus be referred to as cogfilmdr. Let Google create a default agent
structure with English as the main language.

Once that is done, click on the settings button in the top left:

Figure 15.5: The settings button

You will reach the configuration window of your agent.

For the moment, we just have one important option to check. The version of the API
must be V2 API. V1 API will shut down on March 2020:

Figure 15.6: Using the V2 API

The agent is now created, and we can create entities.

Entities
Most chatbot tutorials explain intents first. I do not agree. Once you know where
you're going, in this case, choosing a movie based on Chapter 14, Preparing the
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component
Analysis (PCA), it makes sense to build some bricks before building your structure.

Chapter 15

[379]

Dialogflow (or any chatbot) uses entities to extract useful information in a user's
utterance (not necessarily a sentence) to understand their motivation.

We will use the entities created in Chapter 14. We will first create an entity named
movies that will contain the 10 target movies used in Chapter 14.

 titles=["24H in Kamba","Lost","Cube Adventures",
 "A Holiday","Jonathan Brooks",
 "The Melbourne File", "WNC Detectives",
 "Stars","Space L","Zone 77"]

Click on Entities on the left-hand side of the window:

Figure 15.7: Dialogflow menu

Then, click on CREATE ENTITY:

Figure 15.8: Creating an entity

Setting Up a Cognitive NLP UI/CUI Chatbot

[380]

You will be asked to provide an entity name:

Figure 15.9: Entering the name of entity

Enter movies. Before saving the entity, we must enter the movies we have chosen:

Figure 15.10: Entity list

You will notice that once you add a movie, a default synonym is filled in
automatically. You can add other synonyms if you wish.

Chapter 15

[381]

Once the titles are entered, click on the SAVE button, which is mandatory (it is not
an auto-save interface):

Figure 15.11: Saving an entity

We will now create the feature entity. The features in the RBM.py program in Chapter
14 were as follows:

Each column is a feature. There are 6 features: ['love',
'happiness', 'family', 'horizons', 'action', 'violence']

We will name it features, follow the same process as for the movies entity, and
then click on SAVE:

Figure 15.12: Creating a feature entity

Setting Up a Cognitive NLP UI/CUI Chatbot

[382]

Click on Entities under your agent, and you will see a list of entities for the agent,
as shown in the following diagram:

Figure 15.13: List of entities

If you click an entity, a list of possible choices will appear.

Now that your agent knows the movie and feature entities, creating the intents
makes sense.

Intents
An intent is a clear formulation intention to do something. I named the agent
cogfilmdr. For the agent, the user's intention may be to ask for a movie to watch.

To trigger a response, we must enter training phrases.

Training phrases are groups of words that the user will enter through text or
speech. The more sentences you enter, the better your chatbot will become. This
is why starting with a ready-to-use Dialogflow makes sense if an existing agent
satisfies your needs.

To create our sample dialog, we will use the dataset results supplied on GitHub for
Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs)
and Principal Component Analysis (PCA). The main terms have been extracted with
their features that we displayed with TensorBoard. When we extracted the data from
the RBM, we sorted the features as follows:

Love: 643

Happiness: 2267

Family: 0

Chapter 15

[383]

Horizons: 1521

Action: 2976

Violence: 4594

We displayed the feature space in a PCA:

Figure 15.14: TensorBoard representation of features

When starting a chatbot project, it is best to be very careful with going straight
to generating dialogs automatically. It is much better to start with a simple, well-
structured chatbot that works on a limited amount of tasks. I call this a "closed
chatbot" meaning that we control every aspect of dialog. An "open chatbot" means
that information flows in automatically to create automatic dialogs. That can be a
goal after getting the chatbot to run as a "closed chatbot" for some time using the
information prepared with AI algorithms.

The results of the work we did in Chapter 14 provide interesting information on
the marketing segment we are targeting for the chatbot.

Violence and action point to action movies. Family=0 points to younger viewers,
teenagers, for example, more interested in action than creating a family. Discovering
happiness and love is part of the horizons they are looking for. This is typical of
superhero series and movies. Superheroes are often solitary individuals.

Reminder: This result will naturally change if RBM_launcher.py
runs again since it's a random viewer-movie choice process.

Setting Up a Cognitive NLP UI/CUI Chatbot

[384]

We will now create an intent by entering the Intents window:

Figure 15.15: Choosing the Intents option

The Intents window appears. Click on CREATE INTENT:

Figure 15.16: Creating an intent

The intent window will appear to create a question-and-answer dialog in a few steps:

• First, enter choose_movie as the name of the intent.
• Then, in the training phrases section, enter: "I would like to watch one of

your movies."

At this point, we have an intent name and a possible user question:

Chapter 15

[385]

Figure 15.17: Entering intent information

Now, we need to provide a response based on the statistics for this market segment
we drew from Chapter 14. We will use the word action to encompass a movie that
contains violence and a happy ending as in the typical superhero movies. To do
that, scroll down to the Text Response section to add a response and enter "Would
you like to watch an action movie?", as shown in the following screenshot:

Figure 15.18: Entering the text response

Setting Up a Cognitive NLP UI/CUI Chatbot

[386]

Now that we have a basic dialog, let's save and test it. To do that, go to the test
console in the top right of the console window:

Figure 15.19: Test console

We can use a CUI or text:

• Text dialog: Enter the user phrase: "I would like to watch one of your
movies."
The user will be surprised to see the agent's answer, which is, "Would you
like to watch an action movie?"

Figure 15.20: Responses

This suggestion comes as a surprise for the user and might seem strange.
This is because the RBM-PCA approach we used to prepare the dialog
targets a market segment.
Advanced machine learning shortens the path of a user request to a
satisfactory response. It constitutes both a time saving and an energy saving
process for the user.

• CUI: Click on the microphone icon in the test console. Make sure that this
microphone is authorized, or it will not work:

Chapter 15

[387]

Figure 15.21: Microphone

When you click on the microphone, this will trigger a recording of your
request. Say, "I would like to watch one of your movies." Then, click on the
stop button to stop the recording. The response to the request will appear:

Figure 15.22: Text responses

To answer the question, we will need to use the context functionality of Dialogflow.

Context
Context means that Dialogflow is going to remember a dialog and use follow-up
exchanges without starting from scratch each time.

The user has asked to watch a movie, and the bot suggested an action movie. The
bot will remember this through context as it continues the dialog.

Click on the agent's Intent in the menu and hover over choose_movie. You will see
Add follow-up intent appear. This means that all of the variables of the main intent
can be stored, and a follow-up intent added that would remember what was said
previously, just like us in a conversation.

Click on Add follow-up intent:

Figure 15.23: Add follow-up intent button

Setting Up a Cognitive NLP UI/CUI Chatbot

[388]

In this case, the agent has planned two cases, yes or no. We will explore the yes
answers in this chapter, and the more complex no answers in Chapter 16, Improving
the Emotional Intelligence Deficiencies of Chatbots.

In Chapter 14, we created a movie feature matrix with the movie titles and features:

 # Part I Feature extractions from data sources
 # The titles of 10 movies
 titles=["24H in Kamba","Lost","Cube Adventures",
 "A Holiday","Jonathan Brooks",
 "The Melbourne File", "WNC Detectives",
 "Stars","Space L","Zone 77"]
 # The feature map of each of the 10 movies. Each line is a movie.
 # Each column is a feature. There are 6 features: ['love',
'happiness', 'family', 'horizons', 'action', 'violence']
 # 1= the feature is activated, 0= the feature is not activated
 movies_feature_map = np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,1],
 [1,0,0,0,0,1],
 [1,1,0,1,1,1],
 [1,0,0,0,1,1],
 [1,1,0,1,1,0],
 [1,0,0,0,0,0],
 [1,1,0,1,1,0],
 [1,1,0,0,0,1],
 [1,0,0,1,1,1],
 [1,1,0,0,1,0],
 [1,1,0,1,1,1],
 [1,1,0,0,1,1]])

We now need to transpose this information in a chart we can use to add content
depth to the dialog:

MOVIE/
FEATURE LOVE HAPPINESS FAMILY HORIZONS ACTION VIOLENCE
24H in
Kamba 1 1 0 0 1 1
Lost 1 1 0 1 1 1
Cube
Adventures 1 0 0 0 0 1
A Holiday 1 1 0 1 1 1
Jonathan
Brooks 1 0 0 0 1 1

Chapter 15

[389]

The
Melbourne
File 1 1 0 1 1 0
WNC
Detectives 1 0 0 0 0 0
Stars 1 1 0 1 1 0
Space L 1 1 0 0 0 1
Zone 77 1 0 0 1 1 1

We have already surprised the user a bit by proposing an action movie directly
without going through tedious lists. We are using all of the information we
obtained through inputs, intermediate AI outputs, and final outputs.

Now, we are going even further by filtering the movies that fit the action-violence-
happiness features extracted with the RBM-PCA chained algorithms.

Only the following movies in the chart match action-violence-happiness:

• 24H in Kamba
• Lost
• A Holiday
• Zone 77

At random, we will choose "Zone 77." Once we have entered many possibilities,
a random choice can be suggested either in the response area or with scripts.
This development is beyond the scope of this chapter. For this example, we suppose
it is probable that the viewer will be satisfied with this suggestion we make. We
are in a yes scenario of the dialog. In Chapter 16, Improving the Emotional Intelligence
Deficiencies of Chatbots, we will explore the no scenarios of this dialog, which
requires more cognitive designing to keep the satisfaction path short.

For the moment, let's suggest "Zone 77." To do this:

1. Click on Add follow-up intent.
2. Select yes.

Setting Up a Cognitive NLP UI/CUI Chatbot

[390]

You now have a follow-up intent linked to the dialog:

Figure 15.24: Follow-up intents

Click on choose_movie - yes. The intent will appear. You will notice that Dialogflow
has already filled in several forms of yes in the Training phrases section, as shown in
the following screenshot:

Figure 15.25: Training phrases

All that is left to do in this scenario is to scroll down to the Responses section and
add our answer:

Chapter 15

[391]

Figure 15.26: Text response

Now, we go back to the intent and add a yes follow-up to this follow-up to process
the viewer's yes answer, just as we did previously:

Figure 15.27: Follow-up intents

Setting Up a Cognitive NLP UI/CUI Chatbot

[392]

Now, we click on choose_movie - yes - yes, and we will see the yes answers that
Dialogflow prepared for us:

Figure 15.28: Training phrases for a follow-up intent

However, this time, we would like to answer with a script and not an answer we
type in.

To do that, we can use fulfillment.

Adding fulfillment functionality to an
agent
A dialog can quickly become boring in everyday life and even more so in a chatbot.
When we begin to guess everything that an interlocutor has to say, our mind slowly
drifts away. We cannot help it. Humans are a curious species. Fulfillment will
change the perspective of dialog. That is what I call purpose beyond the pragmatic
approach that says fulfillment adds business logic to a dialog.

Chapter 15

[393]

To make the dialog sustainable, even from a practical point of view, it has to excite
the user enough to want it to come back and discover more about your chatbot
beyond obtaining business information from it.

If you look fulfilling up in a dictionary, you will find that it means providing
happiness or satisfaction, which is exactly the feeling of purpose you want your
chatbot to convey.

That being said, there is work to do in order to reach that goal. Dialogflow provides a
wide array of tools to reach fulfillment for the user, the designer, and the developers.

To start with, Dialogflow uses an inbuilt, seamless version of Node.js for fulfilling
functions.

Defining fulfillment
Various fulfillment or additional dialog functions are available:

• Webhook: A webhook is an event transmitted via HTTP. It is sent as a POST,
which contains data posted to a predetermined URL. It works as an HTTP
callback. The data sent to the URL will be parsed by a script on the server
side. Once the service has processed the information, it will perform an
action and send data back as a response.
We will not use the webhook for this example. However, it is important to
note that you can use a webhook to create dialogs of your own in another
environment. You can even generate automatic dialogs and call them from
Dialogflow.
If you are interested in preparing dialogs and uploading them, you can go
to the Training page of the agent on the left-hand side of the screen and
upload phrases:

Figure 15.29: Training window

You can also upload an agent or even a prebuilt agent designed by Google
Dialogflow. For our example, we will use the inline editor.

Setting Up a Cognitive NLP UI/CUI Chatbot

[394]

• Fulfillment with the inline Node.js editor: Defining a webhook URL can
be the simplest approach. However, using the inline editor provides Node.js
functionality for even more potential.

• Fulfillment with the inline Node.js editor and Cloud Functions for
Firebase: The inline Node.js can call a large variety of Cloud Functions for
Firebase in a few time-saving lines of code.

Enhancing the cogfilmdr agent with a
fulfillment webhook
When the user answers yes to watch "Zone 77," we can answer with a response or a
link to a website. To use a response, go to the yes - yes follow-up of our dialog in the
Intents window:

Figure 15.30: Intents and follow-up intents

Click on choose_movie - yes - yes and scroll down to Text Response and add a
response such as "Sure, click on the movie and watch it," as shown in the following
screenshot:

Figure 15.31: Text response

Chapter 15

[395]

We would also decide that this is final and that it is the end of the conversation by
activating the Set this intent as end of conversation option:

Figure 15.32: End of conversation option

But we will not do this for the moment; let's scroll down further to activate the inline
webhook functionality:

Figure 15.33: Enabling the webhook functionality

Now we will go to the Fulfillment window:

Figure 15.34: Access to the Fulfillment interface

Setting Up a Cognitive NLP UI/CUI Chatbot

[396]

First, enable the inline editor:

Figure 15.35: Inline editor

To add some fun to the dialog, let's suppose that chatbot is in a cool start-up
coffee shop and that watching movies on individual screens is a service to attract
customers. You can watch the movie with headsets (you, friends, family), for
example. We add this service to our dialog.

We go to the intentMap of the script and add a gotomovie function:

let intentMap = new Map();
intentMap.set('Default Welcome Intent', welcome);
intentMap.set('Default Fallback Intent', fallback);
// intentMap.set('your intent name here', yourFunctionHandler);
// intentMap.set('your intent name here', googleAssistantHandler);
intentMap.set('choose_movie-yes-yes', gotomovie);

The recommended format is intentMap.set(<Intent>,<function>).

That done, we now write the function with our own text and website link:

function gotomovie(agent) {
 agent.add('This message is from Coffee Shop movie fans!');
 agent.add(new Card({
 title: 'A blog for Coffee Shops with movies to watch with friends
and family',
 imageUrl: 'https://www.eco-ai-horizons.com/coffeeshop.jpg',
 text: 'The button takes you to the movie selection we have\n
Great to have you here! :-)',
 buttonText: 'Click here',
 buttonUrl: 'https://www.primevideo.com/'
 })
);
}

All we have to do now is click on DEPLOY, and that's it!

I added a link to Amazon Prime Video to show that you can use IBM Watson,
Google, Microsoft, Amazon services, and more to enhance your chatbots!

Chapter 15

[397]

For our example, once the script has been deployed, we go back to the beginning
of our dialog until we reach this point, which will take us to the movie we wish to
watch. In this case, I just displayed a streaming site.

You can obtain the full script of index.js in the dialogflowFulfillment.zip on
GitHub in CH15 and copy it into the editor without importing the whole package.

Getting the bot to work on your website
Let's get a bot running on your website in a few clicks.

1. Scroll down to Integrations for the agent you wish to deploy: either your
own agent or the coffee shop agent.

2. Activate the Web Demo option.
3. An embedded code will appear along the lines of the following:

<iframe height="430" width="350" src="https://bot.dialogflow.
com/81298e0c-1acb-44bb-9c68-89666805342a"></iframe>

Copy the code on the page of the website you wish to implement it on.

To test it first, you can copy the URL in your browser and test it.

Important: You can customize all the dialogs you wish in this
editor and use a range of Google Cloud functions. The sky is not
even the limit. You can go to Mars!

Note: You can use a speech dialog if you activate your microphone
for this site on your browser. Don't forget to access the page
using https, otherwise the microphone might be blocked. Also,
fulfillment cannot be activated in this HTML page without some
additional development.

However, you can also click on Google Assistant in the console
and create an application in a few clicks, and then deploy it on
smartphones and Google Home, for example. If you create a nice
chatbot, you can have the whole world use it in a few clicks!

Setting Up a Cognitive NLP UI/CUI Chatbot

[398]

Machine learning agents
An NLP chatbot cannot function without machine learning for text recognition,
utterances, sentences, speech, entities, intents, and many other aspects of a dialog.

In this section, we will explore the following:

• Speech-to-text
• Text-to-speech
• Spelling correction

Let's see how we can apply machine learning in each of these contexts.

Using machine learning in a chatbot
Generally, when we hear of machine learning in a chatbot, we think of a machine
learning program running during a dialog as a response.

In this section, we will focus on how machine learning is used to improve a chatbot
and to make it work.

Speech-to-text
Without a speech-to-text function, there is no way you can implement a chatbot or
any speech application on a smart speaker such as Google Home or Amazon Echo.
Smart speakers are going to play an increasing part in our lives in the years to come.

Click on the settings button next to the name of the agent and then on Speech:

Figure 15.36: Speech options

We will focus on the main settings of the speech recognition functions:

Chapter 15

[399]

• Enhanced Speech Models: This is an advanced machine learning option
that comes with the Enterprise Edition. It shows how far speech recognition
has come. In the standard version, the system already works fairly well.
In the advanced version, it uses data logging functionality to enhance
speech recognition.

• Auto Speech Adaptation: This is interesting because this function uses the
intents and entities created to train and adapt to speech recognition of the
agent's dialog. It can be activated in the free version as follows:

Figure 15.37: Enabling Auto Speech Adaptation

Save the settings before leaving this interface.

Text-to-speech
Now, we can go to the Speech tab and enable the Automatic Text to Speech
function. I have a cloud account. If you cannot activate this in the lab, we will use the
free online site to test the possibilities and limits of the machine learning algorithm.

Note: There is an enhanced speech recognition model option, but
you have to upgrade to the enterprise version.

Setting Up a Cognitive NLP UI/CUI Chatbot

[400]

Click on the settings button next to the name of the agent and then on Speech:

Figure 15.38: Speech options

We will first configure the main settings of text-to-speech:

• Agent language: Start with en(English) to reach the largest audience.
However, bear in mind that Dialogflow produces good voice results in
several languages.

• Voice: Start with Automatic before trying the different WaveNet model
variations. WaveNet models build voices from scratch with neural networks.

• Speaking rate: You can leave it at 1, or accelerate the rate or slow it down.
For sports commentaries, for example, it could be faster.

• Pitch: You can make the voice higher or lower in semitones.
• Volume gain: You can reduce or increase the volume. The best is to leave it

at 0 to start. Then, while testing the agent, see if it needs to be changed.

Once these parameters are set, save the model:

Chapter 15

[401]

Figure 15.39: Voice configuration

Now, test your configuration or experiment with different settings by entering a
sentence and clicking on the PLAY button:

Figure 15.40: Experimenting with different voice settings

Once we have finished setting up the voice parameters, we need to set up the
spelling machine learning features.

Spelling
We have one step left before we explore the possibilities and limits of the machine
learning algorithms provided by Google. The machine learning spelling feature
needs to be activated.

For that, we are going to click on the ML Settings tab, activate AUTOMATIC
SPELL CORRECTION, and define an acceptable threshold below which our
agent will refuse to recognize errors.

Setting Up a Cognitive NLP UI/CUI Chatbot

[402]

Click on the settings button next to the name of the agent and then on ML Settings:

Figure 15.41: ML Settings tab

You will have access to a variety of options to work around a user's spelling
mistakes. It works like the spelling corrector of a search engine when we mistype our
request and Google, for example, suggests the correct spelling.

The options are as follows:

• ML CLASSIFICATION THRESHOLD determines a confidence score below
which an intent will not be triggered unless there is a fallback intent (a
general response).

• AUTOMATIC SPELL CORRECTION uses machine learning to correct user
spelling mistakes. It should be activated.

• AUTOMATIC TRAINING may slow the dialog down, so careful use of this
function is recommended.

• AGENT VALIDATION automatically validates an agent during the training
process. Notice that training is triggered every time you save an intent, for
example.

The following screenshot shows default values you might want to start with:

Chapter 15

[403]

Figure 15.42: ML Settings options

Click on the TRAIN button every time you change an option.

Why are these machine learning algorithms
important?
If it's just an educational chatbot like the cogfilmdr agent example, mistakes are
acceptable. It's unpleasant, but acceptable. As we are going to see in Chapter 16,
Improving the Emotional Intelligence Deficiencies of Chatbots, if a chatbot is going to
be used by a large number of people, this means many days of training, tests, and
creating workarounds to the machine learning limits of these functions. And that's
just for one language!

Setting Up a Cognitive NLP UI/CUI Chatbot

[404]

If we are deploying in several languages, this means many days times the number
of languages! Even with machine learning, it's tough work. Without machine
learning, it's impossible.

Machine learning is not merely important; it is vital:

• If the chatbot cannot recognize a written utterance because of a simple
spelling mistake, we will get complaints, bad comments, and the SEO ship
will sink.

• If the chatbot cannot recognize what you are saying on Google Home or
any smart speaker, then that means a lot of trouble, maybe even a refund.

• If the chatbot's answer comes out in a phony voice that sounds like a 20th
century robot, then nobody will want to use it.

Machine learning in chatbots is here to stay, but there are improvements to make
in terms of emotional intelligence, like we must now explore in the next chapter.

Summary
Google Dialogflow provides a complete set of tools on Google Cloud to build a
chatbot, add services to it, and customize it with your cognitive programs.

A good chatbot fits the requirements. Thinking the architecture through before
starting development avoids underfitting (not enough functionality) or overfitting
(functions that will not be used) of the model.

Careful AI preparation, as accomplished in Chapter 14, Preparing the Input of Chatbots
with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA),
provides a solid basis for a chatbot by making the path from the start of the dialog
to the goal of the dialog much shorter and efficient.

Determining the right intent (what is expected of the chatbot), determining the
entities to describe the intent (the subsets of phrases and words), and creating a
proper dialog will take quite some time.

If necessary, adding services and specially customized machine learning functions
will enhance the quality of the system. CUI with speech recognition, voice dialogs,
and spelling correction features makes a chatbot frictionless to use.

The dialog we built in this chapter was based on yes answers. We supposed that
the probabilities generated with the RBM and PCA in Chapter 14 were correct.
However, humans are not easily confined to stereotypes.

Chapter 15

[405]

The Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explores
emotional intelligence through basic concepts, Dialogflow functions, and a cognitive
approach to improve the content of a chatbot.

Questions
1. Can a chatbot communicate like a human? (Yes | No)
2. Are chatbots necessarily AI programs? (Yes | No)
3. Chatbots only need words to communicate. (Yes | No)
4. Do humans only chat with words? (Yes | No)
5. Humans only think in words and numbers. (Yes | No)
6. Careful machine learning preparation is necessary to build a cognitive

chatbot. (Yes | No)
7. For a chatbot to function, a dialog flow needs to be planned. (Yes | No)
8. A chatbot possesses general AI, so no prior development is required.

(Yes | No)
9. A chatbot translates fine without any function other than a translation API.

(Yes | No)
10. Chatbots can already chat like humans in most cases. (Yes | No)

Further reading
• For more on Google Dialogflow, refer to this link: https://dialogflow.

com/

• For more on chatbots and UI development, refer to this link: https://
www.packtpub.com/application-development/hands-chatbots-and-
conversational-ui-development

https://dialogflow.com/
https://dialogflow.com/
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development

[407]

16
Improving the Emotional
Intelligence Deficiencies

of Chatbots
Emotions remain irrational and subjective. AI algorithms never forsake rationality
and objectivity. Cognitive dissonance ensues, which complicates the task of
producing an efficient chatbot.

In Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines
(RBMs) and Principal Component Analysis (PCA), we built a rational chained
algorithm process with an RBM and a PCA approach. From there, we extracted
critical objective data on a market segment. From that market segment and its
features, we then designed a dialog in Chapter 15, Setting Up a Cognitive NLP UI/
CUI Chatbot. The dialog was rational, and we produced a probable choice of services
for the user. We did this out of good faith, to make the path from a request to its
outcome as short as possible. It was a yes path in which everything went smoothly.

In this chapter, we will confront human nature with unexpected reactions. A no
path will challenge our dialog. One of the problems we face resides in emotional
polysemy, confusing emotional signals from a user.

We will address the no unexpected path with information drawn from Chapter 14,
Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM) and Principal
Component Analysis (PCA) and Chapter 15, Setting up a Cognitive NLP UI/CUI Chatbot,
and go into the world of data logging.

Improving the Emotional Intelligence Deficiencies of Chatbots

[408]

Data logging will provide critical contextual data to satisfy the user. The goal will
be to create emotions, not just react randomly to a user's emotional state.

Finally, we will open the door to researching ways to generate text automatically
through RNN-LSTM approaches. The idea will be to create automatic dialogs in
the future based on data logging.

The following topics will be covered in this chapter:

• Emotional polysemy
• Small talk
• Data logging
• Creating emotions
• Exploring RNN-LSTM approaches

We will first explore the difference between simply reacting to emotions and
creating emotions.

From reacting to emotions, to creating
emotions
Designing a chatbot that reacts to what a user expresses is one thing. But creating
emotions during a dialog like a human does requires deeper understanding of how
a chatbot manages emotions. Let's start with emotional polysemy.

Solving the problems of emotional polysemy
We will be enhancing the emotional intelligence of a chatbot starting by addressing
the issue of emotional polysemy. We are used to defining polysemy with words,
not emotions, in the sense that polysemy is the capacity of a word to have multiple
meanings. In Chapter 6, How to Use Decision Trees to Enhance K-Means Clustering, we
explored the confusion that arose with the word "coach." "Coach" can mean a bus or
a sports trainer, which leads to English to French translation issues.

Polysemy also applies to the interpretation of emotions by artificial intelligence.
We will explore this domain with two examples: greetings and affirmations.

Then we will go through the speech recognition and facial analysis as silver bullet
solutions fallacies that mislead us into thinking it's easy to read emotions on faces.

Chapter 16

[409]

The greetings problem example
To implement this chapter, open Dialogflow and go to the agent named
cogfilm+<your unique ID> created in Chapter 15, Setting Up a Cognitive NLP UI/
CUI Chatbot.

Suppose somebody types "Hi" to a chatbot agent. Almost everybody will think that
this is a good beginning. But is it really?

Let's explore some of the many possible interpretations:

• "Hi" meaning the person is very tense and irritated: This could be the
case of a top manager who never uses "Hi" to say hello, does not like
chatbots, or doubts that the one that is being tested is worth anything at all.
This manager usually says, "Good morning," "Good afternoon," and "Good
evening."

• "Hi" meaning "So what?": It is more like, "Yeah, hi." This could be a person,
P, who dislikes person Q who just said good morning to P.

• "Hi," meaning "I'm in trouble.": This could be a usually chirpy, happy
person who says, "Hello, everyone. How are things going today?" But today,
it's just a brief "Hi." This will trigger alert reactions from others, such as
"Are you okay?," "Is something wrong?"

• "Hi," meaning "I'm trying to be nice.": This could be a person that is usually
grumpy in the morning and just sits down and stares down a laptop until
the caffeine in their coffee kicks in. But today, this person comes in totally
in shape, wide awake, and says, "Hi." This might trigger alert reactions
from others such as, "Somebody had a great evening or night! Am I
wrong?", with some laughter from the others.

I could go on with literally hundreds of other situations and uses of "Hi." Why?
Because humans have an indefinite number of behaviors that can be reflected in
that first "Hi" in an encounter.

This could apply to ending a conversation without saying "bye" or saying it in
many ways. The way a person says goodbye to another person in the morning
can have an incredible number of significations.

This is therefore one of our challenges. Before we go further with this, let's look
at one more challenge by considering the affirmation example.

Improving the Emotional Intelligence Deficiencies of Chatbots

[410]

The affirmation example
Suppose somebody types or says "Yes" in a chatbot. Does that really mean "Yes"?

• "Yes", as in "Yeah, whatever.": The user hates the chatbot. The dialog is
boring. The user is thinking that if they do not say "Yes" and get it over
with, this dialog will go on forever.

• "Yes", as in "I'm afraid to say no.": The user does not want to say "Yes."
The question could be, "Are you satisfied with your job?" The user could
fear the answers are logged and monitored. The user fears sanctions.
Although this person hates their job, the answer will be "Yes" or might
even be "I sure do!"

• "Yes" as a good faith "yes" that a person regrets right after: A person says
"Yes" to a purchase, stimulated by the ad pressure at that moment in the
chatbot. But minutes later, the same person thinks, "Why did I say yes and
buy that?" Therefore, some platforms allow refunds even before the product
or service is delivered.

Just as for "Hi," I could list hundreds of situations of emotional polysemy with "Yes."

Now, that we have understood the challenge at hand, let's explore the silver bullet
fallacies mentioned previously.

The speech recognition fallacy
Many editors and developers believe that speech recognition will solve the problem
of emotional intelligence by detecting the tone of a voice.

However, emotional polysemy applies to the tone of voice, as well. Human beings
tend to hide their emotions when they feel threatened, and open up when they trust
their environment.

Let's go back to the "Hi" and "Yes" examples.

"Hi" in a chirpy tone: A person, X, comes into an office, for example. Somebody says,
"Oh, hi there! Great to see you!" Person Y answers "Hi" in a very happy tone. Google
Home or Amazon Alexa, in their research lab, produces 0.9 probability that the
conversation is going well.

This could be true. Or it could be false.

For example, person Y hates person X. Person X knows it and says, "Great to see
you!" on purpose. Person Y knows that person X knows that they hate each other but
won't give in to bursting out first. So person "Y" answers "Hi" in a super-happy tone.

At that point, many turn to facial analysis.

Chapter 16

[411]

The facial analysis fallacy
Emotional polysemy also applies to facial analysis. Many think that deep learning
facial analysis will solve the polysemy problem.

I saw a post recently by a developer with a picture of an obviously forced smile
with the text stating that happiness could be detected with DL facial analysis!

Let's take two basic facial expressions and explore them: a smile and a frown. By
now, you know that emotional polysemy will apply to both cases.

A smile
If somebody smiles and a DL facial analysis algorithm detects that smile, it means
the person is happy. Is this true? Maybe. Maybe not.

Maybe the person is happy. Maybe the smile is ironic, meaning "Yeah, sure, dream
if you want, but I don't agree!" It could mean "Get out of my way," or, "I'm happy
because I'm going to hurt you," or, "I'm happy to see you." Who knows?

The truth is that nobody knows, and sometimes even the person that smiles doesn't
know. Sometimes a person will think, "Why did I smile at her/him? I hate her/him!"

A frown
If somebody frowns and a DL facial analysis algorithm detects that frown, it means
the person is sad or unhappy. Is that true? Maybe. Maybe not.

Maybe the person is happy that day. Things are going smoothly, and the person
just forgot a book, for example, at home before coming to this location. Maybe the
second after the person will smile, thinking, "So what? It's a great day and I don't
care!"

Maybe the person is unhappy. Maybe the person is having a great time watching
some kind of ball game, and their favorite player missed something. The second
after, the person thinks "Oh, so what? My team is winning anyway," and smiles.
Some people just frown if they're thinking hard, but it doesn't mean they're unhappy.

We can now see that there are thousands of cases of emotional polysemy that occur
with words, tone of voice, and facial expressions, and therefore there is no magical
solution that is going to suddenly overcome the inherent difficulty that AI have
when it comes to interpreting people's emotions.

We will now explore some realistic solutions to this problem.

Improving the Emotional Intelligence Deficiencies of Chatbots

[412]

Small talk
Small talk is not a silver bullet to solve the emotional intelligence problem of
chatbots at all. In fact, even without speaking about chatbots, we all suffer from
emotional distress in one situation or another. Small talk adds little unimportant
phrases to a dialog such as "wow," "cool," "oops," "great," and more.

We do not need to seek perfection, but show goodwill. Every human knows the difficulty
of emotional intelligence and polysemy. A human can accept an error in a dialog
if goodwill is shown by the other party to make up for that error.

Small talk is a little step in making amends to show goodwill.

To achieve the "making customers happy" purpose, scroll down the main menu
to Small Talk, click on that option, and enable it, as shown in the following
screenshot. We will be focusing on Courtesy and Emotions:

Figure 16.1: Small Talk in menu

Courtesy
Courtesy will help make a conversation smoother when things go wrong. Emotional
intelligence is not answering 100% correctly every time.

Emotional intelligence (EI) is adjusting to an environment, correcting a mistake made, and
trying to ease the tension at all times.

First, click on Enable, which will trigger small talk responses during a dialog:

Figure 16.2: Enabling Small Talk

Chapter 16

[413]

You will notice that the Courtesy progress bar is at 0%. We need to increase EI:

Figure 16.3: Small talk themes

We will carefully answer the first possible "question" a user can ask or a phrase
they might express: That's bad.

We are in trouble here! This is the worst-case scenario. We are going to have to
work hard to make up for this.

Emotional polysemy makes the situation extremely difficult to deal with. The one
thing we do not want to do is to pretend our bot is intelligent.

I would recommend two courses of action:

First, answer carefully, saying that we need to investigate this with something like:

I am very sorry about this. Could you please describe why it's bad? We will regularly check
our history log and try to improve all the time. You can also send us an email at <your
customer service email address>. We will answer as soon as possible.

You can enter this answer as follows and click on the SAVE button:

Figure 16.4: Courtesy

You will notice the Courtesy progress bar has jumped up to 17%. We have
covered a critical area of a dialog. Default answers are provided when we don't fill
everything in, but they are random, which makes it better to enter your own phrases
if you activate this function.

Improving the Emotional Intelligence Deficiencies of Chatbots

[414]

Now test the dialog by entering "That's bad" in the test console at the top right. You
will see the response appear:

Figure 16.5: Default response

If you type "bad" instead of "That's bad," it will work too, thanks to the ML
functionality of Dialogflow:

Figure 16.6: Default response

Data logging will tremendously help to boost the quality of a chatbot.

We will explore data logging in the next section. But let's check our emotions first.

Chapter 16

[415]

Emotions
We will deal with the first reaction: Ha ha ha! If we go back to emotional polysemy
issues, knowing the user can say this at any time, we are in trouble again!

Figure 16.7: Managing Emotions

Is the user happy, or are they making fun of the chatbot? Who knows? Even with
facial analysis and tone analysis, a quick "Ha ha ha!" is very difficult to interpret.

I would suggest a careful low-profile answer such as "Well, that's cheerful!", for
example.

This will get the user to think that the chatbot has a sense of humor. When you
click on SAVE, the Emotions progress bar will jump up.

You will notice that beyond the variants Dialogflow detects, you can also enter
variants directly in your responses. Also, if the user enters a phrase that is not in
the dialog, there is a fallback intent in the intents list.

Small talk might make a dialog smoother, but it is only one of the components of
emotional intelligence, in a chatbot or in everyday life.

Data logging will take us a step further.

Data logging
In Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, we took the context of a
dialog into account using follow-up intents. However, even follow-up intents will
not provide solutions to unexpected answers on the part of a user.

Improving the Emotional Intelligence Deficiencies of Chatbots

[416]

To enhance a dialog, data logging will create a long-term memory for the chatbot
by remembering the key aspects of a dialog.

A user and a Dialogflow designer have to agree to the terms of the Google
Dialogflow data logging features, as described on this page: https://cloud.
google.com/dialogflow/docs/data-logging.

Privacy is a serious matter. However, you will notice that when you use a search
engine for a given product, you end up viewing or receiving ads related to the
search. This is data logging.

Making this decision depends on your goal and target audience. Suppose the user
accepts the terms of the agreement. Now, data logging is activated. Then, data
logging will provide the chatbot with long-term memory.

The rest of this chapter explores data logging, with the assumption of it having
been clearly accepted by the user.

Google Cloud, like all chatbot platforms (Amazon, Microsoft, and others), offers
logs to improve chatbots. Many functions, interfaces, and services provide great
support to boost the quality of dialogs.

Data logging can drive cognitive-adaptive dialogs beyond speech recognition tasks.

We will explore one way of doing this through the history of a dialog. Go to History:

Figure 16.8: Dialog history option in the menu

You will see a list of past conversations:

https://cloud.google.com/dialogflow/docs/data-logging
https://cloud.google.com/dialogflow/docs/data-logging

Chapter 16

[417]

Figure 16.9: Dialog history

Notice the All platforms list, which contains information for Google Assistant and
other platforms. You can deploy your chatbot by clicking on See how it works on
Google Assistant on the right-hand side of the screen. From there, you can follow
the instructions and have it running on smartphones, Google Home, and elsewhere.
Also, you will have advanced log data to improve the chatbot.

If you tested "That's bad" in the Courtesy section, the history of the interactions will
be present:

Figure 16.10: Chatbot interactions

Improving the Emotional Intelligence Deficiencies of Chatbots

[418]

One way to know the username is to ask the user their name when an issue comes
up. This can come in handy to customize a dialog. We can thus have a special dialog
for this person or this category of persons. We can thus ask the person to state
their name in their response with an email address, for example. When we analyze
the data logs manually or with scripts in the Fulfillment section, we can track the
problem down and improve the chatbot on a personal level.

Having completed the Small Talk sections and then activated the data log
authorization for your use of data logging, we can proceed to create emotions.
Google will continue to improve our chatbot with our data logging features.

If we know which user said what, we can improve the dialog, as we will see in
the next section.

Creating emotions
When the user enters ambiguous responses involving emotional polysemy, it is
difficult for a chatbot to consider the hundreds of possibilities described in the
previous sections.

In this section, we will focus on a user trying to obtain a service such as access to
a movie on a streaming platform.

An efficient chatbot should create emotions in the user. The most effective method is to:

• Generate customer satisfaction. Customer satisfaction is the ultimate emotion
a chatbot should try to produce in a frictionless and expected dialog. If the
customer is not satisfied with an answer, tensions and frustration will build
up.

• Use functions such as the RBM-PCA approach of Chapter 14, Preparing the
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal
Component Analysis (PCA), to suggest options that shorten the dialog path,
thus its duration making the user "happy."

We will now explore the no path of the dialog encountered in Chapter 15, Setting Up
a Cognitive NLP UI/CUI Chatbot.

To access the no path of the dialog, go to Intents, click on the choose_movie intent
and click on Add follow-up intent, and click on no in the drop-down menu:

Figure 16.11: Adding a follow-up intent

Chapter 16

[419]

A choose_movie - no option should now appear:

Figure 16.12: Follow-up options

Click on choose_movie - no.

Google has entered several default "no" variants, as shown in the following
screenshot:

Figure 16.13: Dialogflow training phrases

This "no" response comes as a surprise to the chatbot. In Chapter 14, this market
segment was explored. Something has gone wrong!

The chatbot was working on a specific market segment, the "action" superhero
fan type viewer. The answer being "no" means that we need to examine the other
features available.

Improving the Emotional Intelligence Deficiencies of Chatbots

[420]

The features in Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann
Machines (RBMs) and Principal Component Analysis (PCA), in the RBM.py program
were:

 # Each column is a feature. There are 6 features:
 # ['love','happiness','family','horizons','action','violence']

The "action" feature predicted so far groups several features:

Action = {happiness, action, violence}

The following features were not taken into account:

{love, family, horizons}

Since we want to keep the path short, we must find a way to ask a question that:

• Covers these three features
• Can use an existing feature matrix for another marketing segment

The viewer also may have:

• Recently seen enough action movies
• Progressively grown out of the superhero period of their life and be looking

for other types of movies

In both cases, the viewer's market segment might overlap with another segment that
contains family-love values.

As we saw in the Adding fulfillment functionality to an agent section in Chapter 15,
Setting up a Cognitive NLP UI/CUI Chatbot, we can use a script to:

• Cover these three features
• Use an existing feature matrix for another marketing segment

Classical marketing segments take age into account. Let's continue in this direction
and prepare for the possibility that the viewer, a young superhero fan, is growing a
bit older and entering another age-movie-type segment that overlaps with the one
used in RBM.py in Chapter 14:

 movies_feature_map = np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,1],
 [1,0,0,0,0,1],
 [1,1,0,1,1,1],
 [1,0,0,0,1,1],
 .../...

Chapter 16

[421]

We should add some love-family features in the matrix with the corresponding
movies. We will then obtain another marketing segment. In the end, the chatbot
will manage many marketing segments, which is the standard practice on many
streaming platforms.

A variant of the chart in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, could
be as follows:

MOVIE/
FEATURE LOVE HAPPINESS FAMILY HORIZONS ACTION VIOLENCE
24H in
Kamba 1 1 0 0 1 1
Lost 1 1 0 1 1 1
Cube
Adventures 1 0 0 0 0 1
A Holiday 1 1 0 1 1 1
Jonathan
Brooks 1 0 0 0 1 1
The
Melbourne
File 1 1 0 1 1 0
WNC
Detectives 1 0 0 0 0 0
Stars 1 1 0 1 1 0
Space II 1 1 1 0 1 0
Zone 77 1 0 0 1 1 1

This feature matrix contains a movie with the missing features from the previous
matrix: Space II.

A streaming platform contains many marketing segments:

M = {s1, s2, … sn}

Many of these marketing segments contain variants, merged features, combinations,
and more.

Improving the Emotional Intelligence Deficiencies of Chatbots

[422]

Since data logging has been activated, from this point on we now have the following
information:

• Whether this viewer has seen one of the several movies available in this
marketing segment. This constitutes another tricky issue since some
viewers may want to watch a movie again.

• The viewer's new marketing segment.

Building a chatbot for a streaming platform will take months of designing with
many build possibilities. For this example, we will focus on the age progression
scenario, keep the dialog path as short as possible, and provide the following
response:

"Would you like to watch SPACE II? It's a blockbuster with a family that has an
adventure in space. There is some action but it's mostly the story of a family that
tries to survive in space."

Scroll down to the Text Response section and enter the response as follows, then
click on SAVE to trigger the training process:

Figure 16.14: A look at the training process

If the viewer answers "yes," then the dialog will lead to the movie's page. To
continue in this direction, go back to Chapter 15, Setting Up a Cognitive NLP UI/CUI
Chatbot, and a "yes" follow-up exchange to this part of the dialog as you wish.

We have added some emotional intelligence to the agent. We will now explore the
future of chatbot architecture through text augmentation with recurrent neural
networks (RNNs).

An RNN can process sequential data such as sequences of words, events, and more.

Chapter 16

[423]

RNN research for future automatic dialog
generation
The future of chatbots lies in producing dialogs automatically, based on data
logging dialogs, their cognitive meanings, the personal profile of a user, and
more. As RNNs progress, we will get closer to this approach. There are many
generative approaches that can produce automatic sequences of sounds and
texts. Understanding an RNN is a good place to start.

An RNN model is based on sequences, in this case, words. It analyzes anything
in a sequence, including images. To speed the mind-dataset process up, data
augmentation can be applied here, exactly as it is to images in other models.

A first look at its graph data flow structure shows that an RNN is a neural network
like the others previously explored. The following diagram shows a conceptual
view of an RNN:

Figure 16.15: Data flow structure

The y inputs (test data) go to the loss function (Loss_Train). The x inputs (training
data) will be transformed through weights and biases into logits with a softmax
function.

Improving the Emotional Intelligence Deficiencies of Chatbots

[424]

Looking at the RNN area of the graph shows the following basic_lstm_cell:

Figure 16.16: The basic_lstm_cell—the RNN area of the graph

The LSTM cell of an RNN contains "forget" gates that will prevent vanishing
gradients when the sequences become too long for an RNN unit.

RNNs at work
An RNN contains functions that take the output of a layer and feed it back to the
input in sequences simulating time. This feedback process takes information in a
sequence, for example:

The -> movie -> was -> interesting -> but -> I -> didn't -> like -> it

An RNN will unroll a stack of words into a sequence and parse a window of
words to the right and the left. For example, in this sentence, an RNN can start
with interesting (bold) and then read the words on the right and left (in italic). These
are some of the hyperparameters of the RNN.

This sequence aspect opens the door to sequence prediction. Instead of recognizing
a whole pattern of data at the same time, it is recognizing the sequence of data, as
in this example.

A network with no RNN will recognize the following vector as a week, a pattern just
like any other:

Monday
Tuesday

Wednesday
Thursday

Chapter 16

[425]

Friday
Saturday
Sunday

An RNN will explore the same data in a sequence by unrolling streams of data:

Monday -> Tuesday -> Wednesday -> Thursday -> Friday -> Saturday -> Sunday

The main difference lies in the fact that once trained, the network will predict the
word that follows; if Wednesday is the input, Thursday could be one of the outputs.
This is shown in the next section.

RNN, LSTM, and vanishing gradients
To simulate sequences and memory, an RNN and an LSTM will use backpropagation
algorithms. An LSTM is an improved version of RNN in some cases.

An RNN often has problems with gradients when calculating them over deeper
and deeper layers in the network. Sometimes, it vanishes (too close to 0) due to
the sequence property, just like us when a memory sequence becomes too long.

The backpropagation (just like us with a sequence) becomes less efficient. There
are many backpropagation algorithms, such as vanilla backpropagation, which
is commonly used. This algorithm performs efficient backpropagation because it
updates the weights after every training pattern.

One way to force the gradient not to vanish is to use a ReLU activation function,
f(x) = max(0, x), forcing values on the model so that it will not get stuck.

Another way is to use an LSTM cell containing a forget gate between the input
and the output cells, a bit like us when we get stuck in a memory sequence, and
we say "whatever" and move on.

The LSTM cell will act as a memory gate with 0 and 1 values, for example. This
cell will forget some information to have a fresh view of the information it has
unrolled into a sequence. In recent TensorFlow versions (2.0 and above), you can
choose to use RNN or LSTM units in a layer. Your choice will depend on several
factors. The key factor is the behavior of the gradient. If it vanishes in the RNN
units, you might want to improve your model or move to LSTM units.

The key idea of an RNN to bear in mind is that it unrolls information into
sequences, remembering the past to predict the future. The main idea of an LSTM
relies upon its "forget" gate, avoiding the vanishing gradient. In TensorFlow 2.x,
the choice of RNN or LSTM units can be made in a few lines.

Let's run an example on Google Colaboratory.

Improving the Emotional Intelligence Deficiencies of Chatbots

[426]

Text generation with an RNN
To view the program, log into your Dialogflow account, upload text_generation_
tf2.ipynb (located in the CH16 directory in the GitHub repository of this book) to
your Google Colaboratory environment, and save it in your drive, as explained in the
Getting started with Google Colaboratory section in Chapter 13, Visualizing Networks with
TensorFlow 2.x and TensorBoard.

This TensorFlow authors' program has been well designed for educational purposes.
The program starts by setting up TensorFlow 2.x and the necessary libraries.

In this section, we will thus focus on the main points of the program that you can
then explore, run, and modify.

Vectorizing the text
The main entry step to an RNN consists of taking the sequence of words, the strings,
and converting them into a numerical representation:

Creating a mapping from unique characters to indices
char2idx = {u:i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
text_as_int = np.array([char2idx[c] for c in text])

We obtain a numerical value for each character:

{
 '\n': 0,
 ' ' : 1,
 '!' : 2,
 '$' : 3,
 '&' : 4,
 "'" : 5,
 ',' : 6,
 '-' : 7,
 '.' : 8,
 '3' : 9,
 ':' : 10,
 ';' : 11,
 '?' : 12,
 'A' : 13,
 'B' : 14,
 'C' : 15,
.../...

Chapter 16

[427]

You will notice that this "dictionary" can be interpreted in two ways:

• character2number
• integer2character

The RNN will run its calculations but the predictions will come out in characters.

For example, the program can take the first sequence of the loaded text and produce
the mapped integers of the text as follows:

Show how the first 13 characters from the text are mapped to
integers
print ('{} ---- characters mapped to int ---- > {}'.format(
 repr(text[:13]), text_as_int[:13]))

In this example, the result is:

'First Citizen' ---- characters mapped to int ---- > [18 47 56 57 58 1
15 47 58 47 64 43 52]

The RNN will run through numerical sequences, integer segments, or windows
of the text to train and then make predictions. To do this, the program creates
examples and targets as for all neural networks that have training batches.

Building the model
Building neural networks with TensorFlow 2 has become so simple to write in a
few lines that you can even miss seeing them in the example programs!

Let's clarify some basic concepts before getting to those few lines:

• A sequential model contains a pile or stack of layers.
• Embedding takes the number of each character and stores it in a vector.
• GRU stands for gated recurrent unit. A GRU contains gates that manage

hidden units, keeping some information and forgetting other information.
An RNN GRU can sometimes get confused when the sequences become
long and thus mismanage the gradient, which then disappears. The more
efficient LSTM units are part of a recurrent network unit as well with
feedback connections with a cell, an input gate, an output gate, and a forget
gate. But in the end the choice of the types units will always be yours
depending on the context of your project. In any case, the key concept to
keep in mind is that recurrent networks manage sequences of data, keeping
the past in mind while forgetting some information.

Improving the Emotional Intelligence Deficiencies of Chatbots

[428]

• A dense layer, in this case, is the output layer.
• A timestep is a predefined sequence length. In another model, it could be

actual time if we are working on time-dependent data.

A sequential model is built in three layers only:

def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
 model = tf.keras.Sequential([
 tf.keras.layers.Embedding(vocab_size, embedding_dim,
 batch_input_shape=[batch_size,
 None]),
 tf.keras.layers.GRU(rnn_units,
 return_sequences=True,
 stateful=True,
 recurrent_initializer='glorot_uniform'),
 tf.keras.layers.Dense(vocab_size)
])
 return model

And that's it! You can replace the basic rnn_units with an LSTM layer if the model
requires it during the training phase. Once the model is built, the model:

• Looks an embedding up, as in a "dictionary."
• Runs the GRU for a timestep.
• The dense layer will then generate logits (see Chapter 2, Building a Reward

Matrix – Designing Your Datasets) to produce a prediction using a likelihood
function, a probability distribution.

The following figure of the TensorFlow author's program sums the process up:

Chapter 16

[429]

Figure 16.17: TensorFlow model

Generating text
After trying and training the model, the program will generate text automatically, for
example:

print(generate_text(model, start_string=u"ROMEO: "))

Improving the Emotional Intelligence Deficiencies of Chatbots

[430]

As you'll notice, ROMEO: has been set up as the starting string. It then shows that
the following predictions come from the initial text written by Shakespeare and are
loaded at the beginning of the program:

ROMEO: Isick a tranch

It wast points for a sisten of resold thee, testement.

Petch doth my sweety beits are so of my sister.

KING RICHARD III:

Thou forget,

How did you burzenty day, 'tis oatly; heaven, for a womanous dear!

This is thy for mercy to the Kanging;

He that from the brothers of Gloucestersherding blame,

Thisble York, se me?

You can go back to the beginning of the program and change the URL. Instead of
loading Shakespeare, change it to your own text:

path_to_file = tf.keras.utils.get_file('<YOUR FILE NAME>',
 '<YOUR URL>')

Before running the program, go to Runtime -> Change runtime type:

Figure 16.18: Runtime type

Chapter 16

[431]

Click on Change runtime type:

Figure 16.19: Notebook settings

I recommend using the GPU. Also, verify that Omit code cell output when saving
this notebook is not checked if you want to save your notebook with the results
produced when you run the program.

You are now ready to explore and do your own research to contribute to the future
of automatic text generation!

Summary
Emotional polysemy makes human relationships rich and excitingly unpredictable.
However, chatbots remain machines and do not have the ability to manage wide
ranges of possible interpretations of a user's phrases.

Present-day technology requires hard work to get a cognitive NPL CUI chatbot
up and running. Small talk will make the conversation smoother. It goes beyond
being a minor feature; courtesy and pleasant emotional reactions are what make
a conversation go well.

We can reduce the limits of present-day technology by creating emotions in the
users through a meaningful dialog that creates a warmer experience. Customer
satisfaction constitutes the core of an efficient chatbot. One way to achieve this goal
is to implement cognitive functions based on data logging. We saw that when a user
answers "no" when we expect "yes," the chatbot needs to adapt, exactly the way
we humans do.

Improving the Emotional Intelligence Deficiencies of Chatbots

[432]

Cognitive data logging can be achieved through the preparation we explored in
Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs)
and Principal Component Analysis (PCA), the cognitive dialog of Chapter 15, Setting
Up a Cognitive NLP UI/CUI Chatbot, and the adaptive dialog built in this chapter.
In our example, the viewer changed market segments, and the chatbot logged the
new profile. Dialogflow-fulfillment scripts can manage the whole adaptive process,
though that is beyond the scope of this book.

We looked at the study of sequences of data through RNNs eventually leading
to automatic dialogs. Chatbots, using cognitive approaches such as the RBM-PCA
and the adaptive data logging inferences of this chapter, will one day build their
own dialogs.

The following chapters will explore ways to achieve higher levels of artificial
intelligence through genes, biological neurons, and qubits. The next chapter
explores genetic algorithms and then implements them into a hybrid neural network.

Questions
1. When a chatbot fails to provide a correct response, a hotline with actual

humans needs to take over the conversation. (Yes | No)
2. Small talk serves no purpose in everyday life or with chatbots. It is best to

just get to the point. (Yes | No)
3. Data logging can be used to improve speech recognition. (Yes | No)
4. The history of a chatbot agent's conversations will contain valuable

information. (Yes | No)
5. Present-day technology cannot make use of the data logging of a user's

dialogs. (Yes | No)
6. An RNN uses sequences of data to make predictions. (Yes | No)
7. An RNN can generate the dialog flow of a chatbot automatically for all

applications. (Yes | No)

Further reading
• Information on RNNs: https://www.tensorflow.org/tutorials/

recurrent

• More on text generation: https://www.tensorflow.org/tutorials/text/
text_generation

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/text/text_generation
https://www.tensorflow.org/tutorials/text/text_generation

[433]

17
Genetic Algorithms in Hybrid

Neural Networks
In this chapter and the following two chapters, we will explore the world inside us.
First, in this chapter, we will use the model of our genes as an optimizing tool. In
Chapter 18, Neuromorphic Computing, we will enter our biological brain activity and
create neuromorphic networks. Finally, in Chapter 19, Quantum Computing, we will
go even deeper and use the quantum material in us to build quantum mechanic
models for quantum computing.

A slight change in any of these tiny entities (genes, neurons, qubits) within us can
modify our whole existence.

In this chapter, we will discover how to enter our chromosome, find our genes,
and understand how our reproduction process works. From there, we will begin
to implement an evolutionary algorithm in Python, a genetic algorithm (GA).

Charles Darwin offered "survival of the fittest" as a model to represent evolution.
In some ways, the model is controversial. In 21st century societies, we tend to
provide support to those who are not the fittest, as best as possible. However,
in mathematics, we do not have this ethical problem.

In AI, we need to provide an accurate solution. If we generate several solutions, we
can apply the "survival of the fittest" to abstract numbers.

In some cases, GAs dramatically reduce the number of combinations required
to find the optimal solution to a problem. By generating mathematical offspring,
choosing the fittest, and producing new stronger abstract generations, the system
often reaches a more optimal solution than propagating permutations.

Genetic Algorithms in Hybrid Neural Networks

[434]

A well-designed GA can optimize the architecture of a neural network, thereby
producing a hybrid neural network.

The following topics will be covered in this chapter:

• Evolutionary algorithms; genetic algorithms
• Extending the genes of genetic algorithms to optimizing tools
• Hybrid neural networks
• Using a genetic algorithm to optimize an LSTM

Let's begin by first working to understand what evolutionary algorithms are.

Understanding evolutionary algorithms
In this section, we will drill down from our heredity down to our genes to
understand the process that we will then represent while building our Python
program.

Successive generations of humans activate some genes and not others, producing
the wonderful diversity of humanity. A human lifetime is an episode in a long line
of thousands of generations of humans. We all have two parents, four grandparents,
and eight great-grandparents, which amounts to 23 ascendants. Suppose that we
extend this line of reasoning to four generations per century and then over about
12,000 years when the last glacial period ended and the planet started warming up.
We obtain:

• 4 * 1 century * 10 centuries = 1,000 years and 40 generations
• 40 generations * 12= 480
• Adding up to 2480 mathematical ascendants to anybody living today on the

planet!

Even if we limit ourselves to 1,000 years, 240, that adds up to 1,099,511,627,776
ascendants a thousand years ago. But there is a problem. This figure is impossible!
Today, we have reached the height of the human population, which is only
7,500,000,000. So, this means that our ascendants had many children who married
their cousins of all degrees, making humanity one large extended family, no
matter what our skin color or hair color is!

Heredity in humans
First, men fertilize women when a male cell unites with a female cell. The fertilized
egg grows and, after quite an adventure, is born and becomes one of us writing or
reading this book.

Chapter 17

[435]

To grow and live from being a fertilized egg to human adults, we must gather
much of the outside world, absorb, and transform it.

This transformation of food and materials by us until we grow into something that
is more or less like our ancestors is called heredity.

If life were calm and quiet, nothing noticeable would occur. However, our
environment has exerted relentless pressure on us for millions of years, back to
when we were just some kind of bacteria floating around in an ocean somewhere.
That pressure brought about continuous natural selection; what worked would
live on, whilst what didn't work would die out.

That pressure continues up to present day, forcing us, humans, to adapt genetically
or disappear. Those humans who failed to adapt to face the pressure of their
environment died out. We who live today have survived.

Evolution can be defined as a state of constant conflict. On one hand we have our
relentless, often hostile environment. On the other, our equally relentless genes;
many of which die out, but others morph, adapt, and continue on through heredity—
indeed, they're doing that even now, and who knows what is going to happen next?

Our cells
In our cells, the nucleus contains personal biological data in the form of
chromosomes. Our cells contain 46 chromosomes per cell, which, in turn, are
formed by 23 pairs of chromosomes. One of these pairs is a sex cell to determine
our sex.

Inside the chromosomes, we have genes, especially the mitochondrial genome,
which is the DNA in tiny cells that take our food and transform it into fuel for our
cells. Each cell is a microscopic busy factory containing thousands of genes!

The human genome describes an incredible set of sequences for our building
blocks contained in the 23 chromosomes of our cells.

How heredity works
Except for the sex cells, we inherit twenty-three of our mother's forty-six
chromosomes and twenty-three of our father's chromosomes. In turn, our parents'
cells contain the chromosomes of their parents—our grandparents—and so on in
various proportions.

Let's take an example to view the complexity of what we are facing. We will take
one of our parents, either our mother or father. P represents the set of chromosomes
of that parent.

Genetic Algorithms in Hybrid Neural Networks

[436]

Letters with primes will represent their fathers'—our grandfathers'—chromosomes,
and letters with double primes will represent their mothers'—our grandmothers'—
chromosomes.

We can represent this as follows for your father in his sex cell:

𝑃𝑃 = { 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′, 𝐷𝐷′, 𝐸𝐸′, 𝐹𝐹′, 𝐺𝐺′, 𝐻𝐻′, 𝐼𝐼′, 𝐽𝐽′, 𝐾𝐾′, 𝐿𝐿′, 𝑀𝑀′, 𝑁𝑁′, 𝑂𝑂′, 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′, 𝑆𝑆′, 𝑇𝑇′, 𝑈𝑈′, 𝑉𝑉′𝑌𝑌′
 𝐴𝐴′′, 𝐵𝐵′′, 𝐶𝐶′′, 𝐷𝐷′′, 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′, 𝐻𝐻′′, 𝐼𝐼′′, 𝐽𝐽′′, 𝐾𝐾′′, 𝐿𝐿′′, 𝑀𝑀′′, 𝑁𝑁′′, 𝑂𝑂′′, 𝑃𝑃′′, 𝑄𝑄′′, 𝑅𝑅′′, 𝑆𝑆′′, 𝑇𝑇′′, 𝑈𝑈′′, 𝑉𝑉′′𝑋𝑋′′}

For your mother, the last chromosome of the first set would be an X in her sex cell:

𝑃𝑃 = { 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′, 𝐷𝐷′, 𝐸𝐸′, 𝐹𝐹′, 𝐺𝐺′, 𝐻𝐻′, 𝐼𝐼′, 𝐽𝐽′, 𝐾𝐾′, 𝐿𝐿′, 𝑀𝑀′, 𝑁𝑁′, 𝑂𝑂′, 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′, 𝑆𝑆′, 𝑇𝑇′, 𝑈𝑈′, 𝑉𝑉′𝑋𝑋′
 𝐴𝐴′′, 𝐵𝐵′′, 𝐶𝐶′′, 𝐷𝐷′′, 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′, 𝐻𝐻′′, 𝐼𝐼′′, 𝐽𝐽′′, 𝐾𝐾′′, 𝐿𝐿′′, 𝑀𝑀′′, 𝑁𝑁′′, 𝑂𝑂′′, 𝑃𝑃′′, 𝑄𝑄′′, 𝑅𝑅′′, 𝑆𝑆′′, 𝑇𝑇′′, 𝑈𝑈′′, 𝑉𝑉′′𝑋𝑋′′}

Women are X-X and men X-Y.

Imagine the possibilities!

If we only take A, B, and C in only one of our parent's cells, we already obtain the
following set, C, of the eight combinations we would inherit:

𝐶𝐶 = {𝐴𝐴′𝐵𝐵′𝐶𝐶′, 𝐴𝐴′′𝐵𝐵′′𝐶𝐶′′, 𝐴𝐴′𝐵𝐵′′𝐶𝐶′′, 𝐴𝐴′′𝐵𝐵′𝐶𝐶′, 𝐴𝐴′𝐵𝐵′𝐶𝐶′′, 𝐴𝐴′′𝐵𝐵′′𝐶𝐶′, 𝐴𝐴′𝐵𝐵′′𝐶𝐶′, 𝐴𝐴′′𝐵𝐵′𝐶𝐶′′}

If we extend this to the twenty-three chromosomes, the distribution climbs up to 223,
or 8,388,608 possibilities.

Our evolutionary process contains the right potential for evolutionary algorithms.

Evolutionary algorithms
In this section, we will drill down further into evolutionary algorithms, getting
closer to our Python programs. Evolutionary algorithms can be used in any field
in which combinations are useful: scheduling, medical research on DNA, weather
forecasting, neural network architecture optimizing and a limitless number
of domains.

Evolutionary computation is a set of algorithms that apply trial-and-error techniques
to reproduce an abstract mathematical version of biological evolution. This
mathematical model does not contend with having solved the difficult task of
explaining evolution, which naturally cannot be reduced to a few equations.

However, our biological environment produces frameworks that, though the fruits
of our imagination, enable us to create efficient abstract algorithms.

Chapter 17

[437]

Evolutionary algorithms enter the category of evolutionary computation. An
evolutionary algorithm contains processes such as mutation, crossover, and
selection. Many models can achieve the goals set for an evolutionary process.

A GA introduces the category of an evolutionary algorithm.

We will first define the concepts involved in a GA, which are the building blocks
of a Python program.

Going from a biological model to an algorithm
There are many ways of creating a GA model. You can reproduce the exact
description of the human model described in the preceding section, you can
simplify it, or you can create another view.

Our model will contain a set of genes in a chromosome and a population to
interact with:

Figure 17.1: Chromosomes in genes

Our model is an abstract model for algorithms, not the actual representation of
human chromosomes that come in pairs, for example. A gene in an individual's
chromosome will interact with the gene set of the population. This process will
be defined in the following sections.

Basic concepts
Let's first describe the concepts of the building blocks of our Python program:

• Target: Target defines the length and properties of the child we wish to
obtain after n generations.
In our model, the target can be specified or unspecified.

Genetic Algorithms in Hybrid Neural Networks

[438]

A specified target contains a length and its value:
 target = "Algorithm" # No space unless specified as a
character in the gene set

In this case, our environment requires an exact gene set to remain fit in
that environment. See the following fitness function.
An unspecified target contains a length, but not its actual value, which
must be found by the GA after n generations:
 target="AAAA" #unspecified target

In this case, our environment does not require an exact gene, but rather
a gene with the features required to remain fit in that environment. See
the following fitness function.

• Population: Population first defines the selection of an individual at
random we will call parent that will contain a certain length of its string
of genes:
def gen_parent(length)

Population also defines the potential individuals the parent can interact
with to produce a child. In our genetic simulation, the size of the population
is represented by the gene set of the population (see the following point).

• Gene set of the parent: The gene set of the parent will first be a random
set of genes.

• Gene set of the population: This parent will then randomly encounter
another person in the population with random gene choices. This population
is represented by a gene set that we will draw genes from randomly:
geneSet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"

Since a given population can possess any or several of these genes, our
population is very large from the start.

• Selection: We will select genes randomly from our gene set to simulate
the meeting of our parent with another parent:
 index=random.randrange(0,len(parent))

• Crossover: We will then form a child from the parent and the random gene
taken from our population represented by the gene set.
In our model, once the random selection of the gene has been made,
the gene will be replaced by a random gene taken from the population
represented by the gene set of the population:
 if(newGene!=oldGene):childGenes[index]=newGene;

Chapter 17

[439]

Notice that the new gene must be different from the old gene during the
crossover in our algorithm. Our algorithm thus avoids getting stuck in
some local combination during the reproduction phase. Child after child,
we will produce new generations.

• Mutation: We will not accept the same gene from a parent to form a child.
If we detect this, we will randomly change a gene to make sure each
generation is different.
As described in the Crossover paragraph, we will not accept a child with
the same genes as a parent. As seen in the heredity section of this chapter,
it is unlikely that a child would inherit exactly all of the genes of a given
parent. Diversity is the key to producing generation after generation of
children that will adapt to their environment.
In our model, a diversity rule forcing mutation has been introduced:
 if(newGene==oldGene):childGenes[index]=alternate;

We thus introduce an alternate gene, as we will see while building the
Python program.

• Child: Child defines a set of genes that contains the same number of genes
as the parent but with new genes. Generations of children of child gene
strings will be produced and then complete the selection process with a
fitness function.

• Fitness: Fitness defines the value of the child as defined in a given model.
The fittest will then be selected to be the parent for the next generation.
In our model, we have two fitness functions that we define in a scenario
variable.
If scenario=1, then a specified target scenario will be activated. The target
will be specified to fit the surrounding environment.
Polar bears became white, for example, to blend in with the surrounding
snow and ice of their environment. In other areas, bears are often brown,
for example, to blend in with the surrounding vegetation.
The fitness function thus has a target to reach. For example, in one instance
in the program:
 target="FBDC"

This target could mean many things, as we will see. In the case of the bears,
maybe these genes in one of their chromosomes trigger off their color: white
or brown.

Genetic Algorithms in Hybrid Neural Networks

[440]

If our program simulating nature does not produce the right gene in a
given generation, this means that the bear is not mutating correctly and
will not survive. The fitness function of the Python program simulates
nature by only keeping the strings of genes that make the child evolve
in the right direction.
The specified target, in this case, is an identified string of genes that will
make a life-and-death difference.
def get_fitness(this_choice,scenario):
 if(scenario==1):

As we will see later, scenario==1 will make sure that the exact gene set
required to survive is reached.
If scenario=0, then an unspecified target will be activated. The length of
the target is not specified. However, a feature set will define the value of
the gene set of the population. This feature contains numerical values that
open the door to any optimization you wish to solve, as we will see in the
Python program example. This numerical set is called the KPI set because
the values are key performance indicators of the system we will explore
in this model:
KPIset ="0123456772012345674701234569980923456767012345671001234
" #KPI set

The KPIset feature set matches the size of the gene set of the population.

Building a genetic algorithm in Python
We will now build a GA from scratch using GA.ipynb.

You can use the .py version. The code is the same, although the line numbers in this
chapter refer to the Jupyter notebook cells of the .ipynb version.

Importing the libraries
This program is built from scratch with no higher-level library to get the feel of a GA.
Three lines are enough to get everything working:

import math
import random
import datetime

At all times, you can go back to the previous section, Basic concepts,
to consult the definitions used to describe the Python program in
the following sections.

Chapter 17

[441]

Calling the algorithm
In this program, we will be exploring three scenarios. Two scenarios generate
specified targets, and one generates an unspecified target.

We will begin with a specified target and then move to the more advanced
unspecified target that will prepare us for hybrid networks using a GA.

We will first go to the Calling the Algorithm cell of the program. The first task is
to define which scenario and type of fitness function we will use on line 3:

scenario=0 # 1=target provided at start, 0=no target, genetic
optimizer

If scenario=1, the program generates the correct exact genes for a child from several
generations, starting with a random seed parent.

If scenario=0, the program generates the best features of a type of genes of a child
from several generations, starting with a random seed parent.

In line 4, GA=2 defines which target we are dealing with.

If GA=1, the gene set of the population and the target are defined. The main function
is called:

if(GA==1):
 geneSet =
 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"
 # target with no space unless specified as a character in the
geneSet
 target = "Algorithm" # No space unless specified as a character
in the geneSet
 print("geneSet:",geneSet,"\n","target:",target)
 ga_main()

At this point, the gene set of the population is printed along with the target:

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: Algorithm

The last line calls ga_main(), the main function.

The main function
The code is in the ga_main() cell of the program.

The ga_main() function is divided into three parts: parent generation, child
generation, and a summary.

Genetic Algorithms in Hybrid Neural Networks

[442]

The parent generation process
The parent generation runs from line 2 to line 7:

 startTime=datetime.datetime.now()
 print("starttime",startTime)
 alphaParent=gen_parent(len(target))
 bestFitness=get_fitness(alphaParent,scenario)
 display(alphaParent,bestFitness,bestFitness,startTime) #no
childFitness for generation 1 so default value sent

• startTime indicates the start time, which is printed:
starttime 2019-10-12 10:32:28.294943

• alphaParent is the first parent who will be created by the gen_parent
function, which will be described in the following Jupyter notebook cell.

• bestFitness is the fitness estimated by the get_fitness function, which
will be described in this chapter.

• display is the function that describes the result of this process.

We now have a process that creates a parent: gen_parent, get_fitness, and
display.

We will now explore the parent generation function before resuming the main
function.

Generating a parent
The parent generation function cell starts with zero genes and the length of the
target:

def gen_parent(length):

length = the length of the target. The target is "Algorithm", so length=9.

At the beginning of the process, the parent has no genes since the goal of this
function is to produce a parent at random that contains a string of genes that is equal
to the length of the target.

The string of genes to produce a parent is as follows:

 genes=[] #genes array

Now, a while loop starts on line 3 of the cell to fill genes[] until it reaches the
target's length:

 while len(genes)<length: #genes is constrained to the length

Chapter 17

[443]

 #sampleSize: length of target constraint
 sampleSize=min(length-len(genes),len(geneSet))
 #extend genes with a random sample the size of sampleSize
extracted from geneSet
 genes.extend(random.sample(geneSet,sampleSize))

• sampleSize is the sample of genes required from the gene set, geneSet,
from which to choose a random gene for the parent.

• genes.extend adds a random gene to the genes array from geneSet.

Once the parent's gene set, genes[], has reached the target's length, the return
function sends the parent back to the main function, ga_main(), where it is
displayed with the display function. The output of the parent in this random run
was:

aFJPKzYBD

Naturally, the parent will be different at each run since this is a random process.

The string of genes is now returned to the ga_main() function:

 return ''.join(genes)

Now, let's explore the fitness function and the display function.

Fitness
At this point in the ga_main() function, the start time was printed out, and the
parent created:

#I PARENT GENERATION
 startTime=datetime.datetime.now()
 print("starttime",startTime)
 alphaParent=gen_parent(len(target))

We need to evaluate the fitness of the parent before creating generations of children:

 bestFitness = get_fitness(alphaParent,scenario)

In this paragraph, we will only describe the specified target case, which is part
of scenario=1. We will create a fitness function with the target of a given choice. In this
case, only the sum of correct genes is calculated:

def get_fitness(this_choice,scenario):
 if(scenario==1):
 fitness = sum(1 for expected,
 actual in zip(target,this_choice) if expected==actual)

Genetic Algorithms in Hybrid Neural Networks

[444]

• this_choice is the parent string of genes produced by the gen_parent
function described in the preceding code snippet.

• scenario indicates whether the function calculates the sum of fit genes or
evaluates the features of the genes. In this case, the sum of the correct genes
is calculated.

• Fitness is the number of correct genes found when comparing the target,
the expected value, to actual, the this_choice variable.

• If expected==actual, the sum is incremented.
• zip, in Python, is an efficient feature that iterates over two lists at the

same time.

Once fitness, the sum of fit genes, is calculated, the function returns the value to
the ga_main() function:

 return fitness

The parent generation will now be displayed by a function called in main_ga().

Display parent
At this point, ga_main() has printed the start time, created a parent, and evaluated
its fitness:

def ga_main():
 #I PARENT GENERATION
 startTime=datetime.datetime.now()
 print("starttime",startTime)
 alphaParent=gen_parent(len(target))
 bestFitness=get_fitness(alphaParent,scenario)

The program will now display the basic information concerning the first generation:
the parent generation called the display function from main_ga(), line 7:

 display(alphaParent,bestFitness,bestFitness,startTime)

• alphaParent is the gene string of the parent
• bestFitness is its fitness
• Since there is no child yet, bestFitness is sent as the default value of a

child's fitness
• startTime

Chapter 17

[445]

In the display parent cell, line 2, the display function receives the data sent by
main_ga():

def display(selection,bestFitness,childFitness,startTime):

The display function calculates the time it has taken and prints the information
in a few lines:

 timeDiff=datetime.datetime.now()-startTime
 print("Selection:",selection,"Fittest:",bestFitness,
 "This generation Fitness:",childFitness,
 "Time Difference:",timeDiff)

• selection is the string of genes of this generation.
• bestFitness is the value of the best string of genes created up to now.
• childFitness is this generation's fitness value. The first generation is the

value of the parent who has, for the moment, the fittest genes. The parent
is the child of another parent, although this parent is the first generation
we are taking into consideration.

• timeDiff is an important value when dealing with larger gene sets. It will
help detect whether the algorithm is running well or reaching its limit.

The output will be displayed for the parent generation and each generation that
gets closer to the fittest generation defined by the target:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time
Difference: 0:00:00.000198

This output will vary during each run of the program since this is a stochastic
algorithm simulating the random events that occur in our natural and artificial
environments.

Before exploring the loop that creates an unlimited number of generations, let's
build the crossover function.

Crossover and mutation
Our model contains a crossover function with a mutation rule to ensure diversity.

The crossover function starts with the parent.

def crossover(parent):

Genetic Algorithms in Hybrid Neural Networks

[446]

Each child of each generation will become the parent of another child.

As in nature, a random gene in a parent's gene will be selected to be replaced:

 index=random.randrange(0,len(parent))#producing a random position
of the parent gene

The index designates the exact location of the gene that will be replaced:

Figure 17.2: Chromosomes in genes

We can see that gene D in the chromosome will be replaced by the gene z of an
individual of the population.

Now, we simulate the reproduction phase. The child inherits the genes of its parent:

 childGenes=list(parent)

The parent's string of genes is converted into a list with the list function.

The algorithm stores the parent's gene to replace in a variable:

 oldGene=childGenes[index] # for diversity check

oldGene will be compared to the new gene generated to make sure that diversity
is respected so as to avoid getting stuck in a local loop.

A new gene is chosen at random in the gene set of the population to simulate the
interaction of the child with a given person among an indefinite number of persons:

 newGene,alternate=random.sample(geneSet,2)

Notice that at the same time, the new gene, newGene, is selected at random, while
an alternate gene, alternate, is chosen as well. alternate is chosen to replace
newGene to avoid making the wrong choice.

Chapter 17

[447]

If the new gene, newGene, is not equal to the old gene, oldGene, that the child can
inherit:

 if(newGene!=oldGene):childGenes[index]=newGene; #natural
crossover

The new gene becomes part of the string of genes of the child.

However, if newGene is the same as oldGene, this could compromise the whole
genetic process, with generations of children that do not evolve. Also, the algorithm
might get stuck or waste quite some time making the right selections.

This is where the alternate gene comes in and becomes part of the string of genes
of the child. This crossover rule and this alternate rule simulates the mutation
process of this model.

 if(newGene==oldGene):childGenes[index]=alternate; #mutation
introduced to ensure diversity to avoid to get stuck in a local minima

Diversity has been verified!

The function now returns the new string of genes of the child so that its fitness
value can be calculated:

 return ''.join(childGenes)

Producing generations of children
At this point, we have generated the parent and explored the basic concepts and
functions.

We are ready for the generation loop. First, we will view the code, then represent it
in a flowchart, and then describe the lines of code.

Once the parent has been created, we enter the loop that simulates the evolutionary
process for many generations:

 while True:
 g+=1
 child=crossover(bestParent) #mutation
 childFitness=get_fitness(child,scenario) #number of correct
genes
 if bestFitness>=childFitness:#
 continue
 display(child,bestFitness,childFitness,startTime)
 bestFitness=childFitness
 bestParent=child
 if scenario==1: goal=len(alphaParent);#number of good

Genetic Algorithms in Hybrid Neural Networks

[448]

genes=parent length
 if scenario==0: goal=threshold;
 if childFitness>=goal:
 break

The loop is best represented in a flowchart:

Figure 17.3: Genetic algorithm flow chart

The process of the flowchart is based on Python's continue method:

1. The code that precedes the condition:
 ° Increments the generation counter:

 g+=1

 ° Calls the crossover function to produce a child:
 child=crossover(bestParent)

 ° Calls the fitness function to obtain the fitness value:
 childFitness=get_fitness(child,scenario) #number of
correct genes

Chapter 17

[449]

2. The condition to see if the childFitness is higher than the bestFitness
obtained:
 if bestFitness>=childFitness:

 ° If the condition is True, then the evolution must continue until a child
is fitter than its parent. This sends the process back to the top of the
while loop.

 ° If the condition is False, this means that the child is fitter than the
parent, and then the code will go beyond the condition.

3. The code beyond the condition and continue method:
 ° The code displays the child, the bestFitness becomes the

childFitness, and the bestParent is now the child:
 display(child,bestFitness,childFitness,startTime)
 bestFitness=childFitness
 bestParent=child

 ° The goal of the two scenarios of our model is defined. The goal of
scenario==1 is to reach the length of the target with the right genes.
The goal of scenario==0 will be to reach a threshold we will define
in the next section:
 if scenario==1: goal=len(alphaParent);
 if scenario==0: goal=threshold;

4. The break condition of the loop:
The evolutionary process will stop when the fittest child has been created
after several generations containing the genes that meet the target:
 if childFitness>=goal:
 break

The output of the n generations will appear as follows:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: Algorithm

starttime 2019-10-12 20:47:03.232931

Selection: Xe!bMSRzV Fittest: 0 This generation Fitness: 0 Time
Difference: 0:00:00.000953

Selection: Xe!bMSRhV Fittest: 0 This generation Fitness: 1 Time
Difference: 0:00:00.002404

Selection: Xl!bMSRhV Fittest: 1 This generation Fitness: 2 Time
Difference: 0:00:00.004391

Genetic Algorithms in Hybrid Neural Networks

[450]

Selection: XlgbMSRhV Fittest: 2 This generation Fitness: 3 Time
Difference: 0:00:00.006860

Selection: XlgoMSRhV Fittest: 3 This generation Fitness: 4 Time
Difference: 0:00:00.009525

Selection: AlgoMSRhV Fittest: 4 This generation Fitness: 5 Time
Difference: 0:00:00.011954

Selection: AlgorSRhV Fittest: 5 This generation Fitness: 6 Time
Difference: 0:00:00.013745

Selection: AlgorSthV Fittest: 6 This generation Fitness: 7 Time
Difference: 0:00:00.016339

Selection: AlgorithV Fittest: 7 This generation Fitness: 8 Time
Difference: 0:00:00.019031

Selection: Algorithm Fittest: 8 This generation Fitness: 9 Time
Difference: 0:00:00.022239

We can see the display of all of the generations as described in the display function
in the Display parent section of this chapter.

Summary code
Once the evolutionary process is over, a summary code takes over:

#III. SUMMARY
 print("Summa
ry---")
 endTime=datetime.datetime.now()
 print("endtime",endTime)
 print("geneSet:",geneSet);print("target:",target)
 print("geneSet length:",len(geneSet))
 print("target length:",len(target))
 print("generations:",g)
 print("Note: the process is stochastic so the number of
generations will vary")

The output for the example displayed for the evolutionary loop is:

Summary---

endtime 2019-10-12 20:47:03.257112

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: Algorithm

geneSet length: 55

target length: 9

generations: 782

Note: the process is stochastic so the number of generations will vary

Chapter 17

[451]

We have now explored the core of the evolutionary process and the Python code.
We will now build the unspecified target and optimizing code that will lead us to
hybrid neural networks.

Unspecified target to optimize the architecture
of a neural network with a genetic algorithm
In this section, we are laying the grounds and motivation to optimize the
architecture of neural networks through a hybrid neural network. The architecture
of a physical neural network will be optimized by a GA.

We will study a physical neural network and then see how to optimize its
architecture with our GA.

A physical neural network
We will begin with a physical network named S-FNN, a feedforward neural
network (FNN). Please look very closely at the following figure and take as much
time as necessary to understand its architecture:

Figure 17.4: Architecture of a neural network

Before we move on, it is important to note that using permutations
for 9 out of 55 elements, it would take 10 ** 15.36 calculations to
reach the goal instead of the 782 generations in this example. GAs
are thus a productive way of generating permutations.

Genetic Algorithms in Hybrid Neural Networks

[452]

This physical network has some important specific features:

• This is an FNN
• There are three layers.
• The neurons in each layer are not fully connected to the neurons of the

next layer. The connections between the neurons of the three layers are
not based on all of the possibilities. The connections between the layers
are based upon statistics of the best connections in the past when running
this network.
The connections are the result of many runs of this network to determine
which ones are the best.

• The connections represented are the most productive ones, leading to an
output of 1 and not 0. An output of 1 is a success, while an output of 0 is a
failure.

• The input is a random value of the dataset that must be classified as 1 if it
is a success and 0 if it is a failure.

• After a careful study of past runs of this network, it has been found that
the productivity of the network fully relies, in this example, on the number
and quality of the neurons in layer 2.

Let's use what we have learned and apply it to the architecture of a soccer team.

What is the nature of this mysterious S-FNN?
S-FNN is a soccer team's architecture! It is the representation of a 3-4-3 disposition of
a soccer team before a given game.

Like abstract neural networks, the number and quality of neurons we choose per
layer are critical. In our abstract world of artificial neural networks (ANNs), we
have many problems to solve. How many should we keep? How many should we
eliminate through pooling layers? How many should we abandon through dropout
layers? How do we really know? How long will trial and error take with large
datasets and networks?

Now, let's go back to the figure, read the following explanation, and start finding
a method to solve the architectural complexity of a neural network:

• Input represents the goal of best possible choices to input the ball in the
game based on past game statistics.

• Layer 1 is the defense layer of three players represented by three neurons.

Chapter 17

[453]

• Layer 2 is the middle field, the result of the transformation of layer 1's
activity, the statistics of past games showing the fittest, the connections. The
initial ball of the input has now been flowing through these layers game after
game.

• Layer 3 is the attack layer, the one that will lead to the output classification;
1 for a success meaning a goal has been scored, or 0 for failure. The
connections between layer 2 and layer 3 show the fittest results found
game after game.

The problem to solve: Layer 2, in our example, has been identified as the critical
layer in this team. For years now, it has been a weak point. Let's see how our GA
will help find the fittest players for this layer.

We could run scenario==1 (specified target) with target ga==3 as follows:

if(scenario==1 and GA==3):
 target="FBDC" # No space unless specified as a character in the
geneSet
 print("geneSet:",geneSet,"\n","target:",target)
 ga_main()

The geneSet is the population of available players on the soccer market and target
is the string of genes we need for layer 2 of our physical network:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: FBDC

The target is found after 851 generations in this run.

However, we would like the GA to find the players by itself based on the features
with an unspecified target. Let's explore this step by step, cell by cell.

Calling the algorithm cell
From lines 7 to 12, we defined the parameters of the target architecture we want for
layer 2 of our network:

• geneSet is the set of all the available players for layer 2 of our network,
whether they are in the team or on the market:
geneSet="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"
#gene set

Genetic Algorithms in Hybrid Neural Networks

[454]

• KPIset, or the key performance indicator set, is a performance score per
player on the market for middle field. Each integer of the set contains a
score between 0 and 9 based on the statistics of a player when playing as a
midfielder:
KPIset ="0123456772012345674701234569980923456767012345671001234
" #KPI set

The KPI set matches each member of the gene set.
• threshold is the sum of the midfielders' performance we need to attain in

order to have a strong midfield in the team.
threshold=35

Our goal is to find a string of genes based on their features, their KPI properties.

The goal is to reach the threshold.

We call our evolutionary function on line 23:

if(scenario==0 and GA==2):
 target="AAAA" #unspecified target
 print("geneSet:",geneSet,"\n","target:",target)
 ga_main()

As you can see, target is set to a meaningless value that will rapidly evolve.
The GA will have to find a fit sequence.

We can skip the intermediate fitness functions we have described in the previous
section and focus on the scenarios within the fitness cell.

Fitness cell
We have already described the fitness function of the fitness cell in the previous
sections. We will focus on the code of the unspecified target, scenario==0.

The first part of the scenario calculates the sum of the performance of each gene
(potential midfielder):

 if(scenario==0):
 cc=list(this_choice) # cc= this choice
 gs=list(geneSet) # gene set
 cv=list(KPIset) # value of each KPI in the set
 fitness=0
 for op1 in range(0,len(geneSet)): #2.first find parent gene in
gene set
 for op in range(0,len(target)):
 if cc[op]==gs[op1]: #3.gene identified in gene

Chapter 17

[455]

set
 vc=int(cv[op1]) #4.value of critical path
constraint
 fitness+=vc

The collective fitness of the sequence of genes (midfielders) is contained in the
fitness variable.

However, we cannot accept the same gene twice, which would mean we have a
clone of the midfielder on the field! So, we add some safety code to set fitness to 0
in that case:

 for op in range(0,len(target)):
 for op1 in range(0,len(target)):
 if op!=op1 and cc[op]==cc[op1]:
 fitness=0 # no repetitions allowed,
mutation enforcement

Now, we can go back to ga_main() and complete our process.

ga_main() cell
We have already described the fitness cell in the previous sections. Now, we will
focus on the code of the unspecified target, scenario==0.

In the ga_main() cell, we simply need to examine lines 22 to 24:

 if scenario==0: goal=threshold;
 if childFitness>=goal:
 break

If the scenario==0, childFitness must be >=goal (sum of KPIs).

We have found our midfielders!

We will now display the result:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: AAAA

starttime 2019-10-13 09:08:21.043754

Selection: PNVx Fittest: 18 This generation Fitness: 18 Time Difference:
0:00:00.001252

Selection: LNVx Fittest: 18 This generation Fitness: 24 Time Difference:
0:00:00.004130

Selection: LNVq Fittest: 24 This generation Fitness: 27 Time Difference:
0:00:00.004708

Genetic Algorithms in Hybrid Neural Networks

[456]

Selection: LNFq Fittest: 27 This generation Fitness: 29 Time Difference:
0:00:00.010362

Selection: LBFq Fittest: 29 This generation Fitness: 31 Time Difference:
0:00:00.015797

Selection: CBFq Fittest: 31 This generation Fitness: 33 Time Difference:
0:00:00.024712

Selection: CBFt Fittest: 33 This generation Fitness: 34 Time Difference:
0:00:00.032680

Selection: CBFD Fittest: 34 This generation Fitness: 35 Time Difference:
0:00:00.048524

Summary---

endtime 2019-10-13 09:08:21.094005

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: AAAA

geneSet length: 55

target length: 4

generations: 154

Note: the process is stochastic so the number of generations will vary

In this case, the GA chose midfielders C, B, F, and D.

We now have all of the ingredients, concepts, and knowledge required to
understand an artificial hybrid neural network.

Artificial hybrid neural networks
In the previous section, we used a GA to optimize a physical neural network.

In this section, we will extend the concept of hybrid we have just explored to ANNs.
The principle is the same, so it will be relatively easy, with the concepts you now
have in mind, to intuitively grasp the RNN we will optimize in this section.

The future of AI in society lies in the collective intelligence of humans (diversity),
machines (AI and IoT), and nature (sustainable projects for our survival).

In AI, this diversity lies in ensemble algorithms, meta-algorithms and hybrid
systems. Deep learning has proven its point. We can create a neural network with
TensorFlow 2.x in a few lines. However, more often than not, it takes days, weeks,
and often months to fine-tune ANN models that rely on large amounts of data to
provide a reliable model. And that's where hybrid neural networks are necessary.

Chapter 17

[457]

A deep learning network can use any form of another type of algorithm to become
a more efficient system. In our case, we have chosen evolutionary algorithms that
could be used in deep learning:

• To improve the input by extracting sequences of data that fit the patterns
we are looking for using features of the data to find the fittest data points

• To optimize the weights of the layers of a network to boost the speed and
power of traditional optimizers

• To improve the classification phase of the output of a network by selecting
the fittest solutions processed as a sequence of genes

• To improve the tedious task of defining the architecture of a network

In this section, we will focus on an example of optimizing the architecture of a
network with a GA by:

• Creating the RNN
• Introducing a GA that will optimize the architecture of the network

Building the LSTM
Open Genetic_Algorithm_LSTM.ipynb in Google Colaboratory or Jupyter on
your machine or genetic_algorithm_lstm.py.

The model of this education example is an LSTM.

The goal will be to use the window size generated by the GA and run the LSTM
with this window size. Root-mean-square error (RMSE) will be used to measure
the fitness of the configuration.

In short, RMSE first calculates the square of the difference between the training
data and the testing data, like many similar formulas. Then, the root of the result
is calculated. Just keep in mind that the RMSE will compare what we expect to
get with what we actually get and produce a value.

Note: For information on genetic algorithm representations, please
go back to the previous sections at all times to refresh the process
of an evolutionary algorithm. Please also refer back to the previous
chapters to consult the structure of a neural network, in particular,
Chapter 16, Improving the Emotional Intelligence Deficiencies of
Chatbots, which describes an RNN.

Genetic Algorithms in Hybrid Neural Networks

[458]

Let's now explore the main cells of the program:

• Importing required packages cell: Genetic_Algorithm_LSTM.ipynb
starts by installing DEAP, an evolutionary computation framework:
!pip install deap

We built a GA from scratch in the previous sections. We won't need to
begin from nothing this time, since this program uses a framework.
Then, the program installs bitstring, which helps to process binary data.

• Loading the data cell: The data wind power forecast data in train.csv
comes from https://www.kaggle.com/c/GEF2012-wind-forecasting/
data.
The wp1 to wp7 columns provide normalized data collected from
measurements of the wind power of seven wind farms. The goal of the
LSTM will be to take the sequence of data and make wind power forecasts.

• Defining the basic functions cell: This cell prepares the dataset and trains
the model in a standard process. We will focus on line 14:
 window_size = window_size_bits.uint

• Evolutionary model cell: The model uses the DEAP framework function,
but we easily recognize the concepts we explored in the previous sections
and that are initialized as follows:
population_size = 4
num_generations = 2
gene_length = 10

The code is all set with a ready-to-use GA to optimize the window size for our
network.

The goal of the model
As in our previous section, the goal is to find the best window size for this network,
just as we were looking for the best layer 2 in an earlier section.

The model has done the following tasks:

• Installed the packages, loaded the data, and found the window size of the
LSTM

• Then, it ran the GA model to test the possible window size of the LSTM
• An RMSE measurement is provided with each generation and production

of epochs

https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data

Chapter 17

[459]

The program takes some time to run, but the results I ran are saved in the notebook
so that you can view them. Here is one result to view how the system works:

Epoch 1/5

17200/17200 [==============================] - 207s 12ms/sample - loss:
0.0096

Epoch 2/5

17200/17200 [==============================] - 202s 12ms/sample - loss:
0.0059

Epoch 3/5

17200/17200 [==============================] - 202s 12ms/sample - loss:
0.0058

Epoch 4/5

17200/17200 [==============================] - 200s 12ms/sample - loss:
0.0057

Epoch 5/5

17200/17200 [==============================] - 200s 12ms/sample - loss:
0.0057

Test RMSE: 0.0926447226146452

As in the previous section, a GA optimized a section of an ANN. You can use a
GA for other components of an ANN. The sky is the limit! In fact, there is no limit.
The potential of hybrid neural networks using GA or other algorithms to optimize
their architecture or process takes your projects to another level!

Summary
Evolutionary algorithms bring new light to AI's optimizing potential. In this chapter,
we studied how heredity deeply affects population distribution. The impact of our
environment can be measured through genetic mutations.

Drilling down further, we focused on a class of GAs implementing a simulation
of genetic transformations through many generations. We explored how a parent
will transmit some genes, but how the selection of diverse genes from the generation
population of genes will produce variations. A chromosome will inherit some genes
but not others.

The pressure of nature and our environment will take over. A fitness function
evaluates a string of genes. Only the fittest will survive. The fittest genetic
material will produce a crossover and mutation of the child, making it fitter for
its environment.

Genetic Algorithms in Hybrid Neural Networks

[460]

GAs can be used to represent strings of any type of data and also features of that
data. The optimizing process can be applied to warehouses, transportation, and
neural networks.

Hybrid networks will no doubt expand in the years to come, taking DL to the next
level. Using a genetic algorithm to optimize the architecture of an RNN paves
the way to optimize the architecture of any DL, ML or AutoML architecture. For
example, a hybrid neural network can use a genetic algorithm to optimize inputs
with feature reduction or as the weight optimizing function of the network.

Nature has provided us with invaluable tools to apply to our artificial network
models. This chapter dealt with the invisible building blocks inside us. In the next
chapter, Neuromorphic Computing, we will explore other components that enable
us to adapt to our environment: neurons. We will explore how neural networks
using biological models can solve complex problems.

Questions
1. A cell contains 42 chromosomes. (Yes | No)
2. A genetic algorithm is deterministic, not random. (Yes | No)
3. An evolutionary algorithm means that the program code evolves. (Yes | No)
4. It is best for a child to have the same genes as one of the parents even after

many generations. (Yes | No)
5. Diversity makes the gene sets weaker. (Yes | No)
6. Building a neural network only takes a few lines, and the architecture always

works. (Yes | No)
7. Building a neural network with a genetic algorithm can help optimize the

architecture of the layers. (Yes | No)
8. Hybrid neural networks are useless since deep learning will constantly

progress. (Yes | No)
9. Would you trust a genetic algorithm to make decisions for you? (Yes | No)
10. Would you trust a hybrid neural network to optimize the architecture of your

network? (Yes | No)

Further reading
• https://github.com/DEAP/deap

• https://pypi.org/project/bitstring/

https://github.com/DEAP/deap
https://pypi.org/project/bitstring/

[461]

18
Neuromorphic Computing

Our brain activates thousands or even billions of neurons when necessary, getting
our body battle-ready to face any situation. As we saw in Chapter 17, Genetic
Algorithms in Hybrid Neural Networks, evolution has fined-tuned biological capacities
over thousands of generations and millions of years.

In this chapter, we will take a deeper look into the cognitive power inside our bodies.
We will go from the chromosomes of the previous chapter to biological neurons that
make us intelligent creatures. The neurons interact in billions of ways producing
cognitive patterns leading to mind structures.

Neuromorphic computing taps into the tremendous optimized power of our brain,
which surprisingly consumes very little energy. On average, we consume a few
watts, less than a lightbulb, to solve very complex problems. In itself, this shows
that the neuronal structure of our brain has a unique architecture that we have
yet to reproduce physically.

To bring neuromorphic computing into the real world requires hardware and
software, as in all computer science models. In this chapter, we will focus on the
software, though it is important to mention the hardware associated with the
neuromorphic research Intel is conducting. That hardware takes the form of a
chip named Loihi, after the emerging Hawaiian underwater volcano that will hit
the surface one day. Loihi contains thousands upon thousands of neurons with
their synapses, dendrites, and axons reproducing our brain activity. IBM and
other corporations have been conducting research in this area.

We have around 100 billion neurons. These chips are only reaching hundreds
of thousands of neurons. However, by connecting thousands of those chips in
physical networks, neuromorphic computing will be an area we all will have
to take into account in the near future.

Neuromorphic Computing

[462]

We will first define what neuromorphic computing is and then explore Nengo,
a unique neuromorphic framework with solid tutorials and documentation.
Nengo is one among many other approaches that go beyond the scope of this
book. This chapter is not a neuromorphic course but rather an overview, inviting
you to tap into the wonderful power of our brain structures to solve complex
problems. The problems we will explore will bring us closer to understanding
how our brain works.

The following topics will be covered in this chapter:

• What neuromorphic computing is
• Getting started with Nengo
• Basic Nengo concepts
• Exploring the Nengo tutorial and interface
• The difference between Nengo and classical AI
• Applying Nengo's unique Semantic Pointer Architecture (SPA) model to

critical research areas

Let's start with the basics—what is neuromorphic computing?

Neuromorphic computing
Let's go directly to the core of our thought process to understand neuromorphic
computing. For AI experts, I would like to summarize the voyage from our
classical models to cutting-edge neuromorphic models in a single phrase:

from mind to brain

If we take this further, M is the set of all of our mental representations and B is
the world of physical reactions that lead to thinking patterns.

In this sense, M is a set of everything we have explored up to this point in this book:

M = {rule based systems, machine learning, deep learning, evolutionary algorithms …
m}

m is any mathematical mental representation of the world surrounding us. In deep
learning, for example, an artificial neural network will try to make sense of the
chaos of an image by searching the patterns it can find in an image through lower
dimensions and higher levels of abstraction.

However, a mental construction, no matter how efficient it seems, remains a
representation, not a physical reality.

Chapter 18

[463]

Now, let's observe B = brain constructions:

B = phenomena/events (inside us or in the outer world) -> physical stimuli
-> physical neural activity in the brain -> higher activity in the target zones
-> physical electric learning reactions -> a human action

The architecture of B takes us much closer to reality! Mental representations are
minimized, thus reducing the distortion of artificial constructions regardless of
their efficiency.

Classical AI is about building mental representations of our cognitive activity.

Neuromorphic computing is about building a brain that can encode reality, process
it like a human brain, and decode the result.

Bear in mind that corporations such as Intel are providing the chips to accomplish
wonderful things with neuromorphic computing, as we will discover in this chapter.

Now that we have some idea of what neuromorphic computing is, let's take a look
at the neuromorphic framework, Nengo.

Getting started with Nengo
In a nutshell, Nengo builds brains, not mental representations, as in classical machine
learning and deep learning.

Nengo stands for Neural Engineering Object. It has both scripting capability with
Nengo and a graphical capacity with Nengo GUI. We will be using NEF, which
is Nengo's Neural Engineering Framework (NEF).

Nengo was created by the Centre for Theoretical Neuroscience at the University
of Waterloo (Ontario, Canada). Chris Eliasmith has played an important role in
this project.

We have explored many ways to approach cognitive modeling in the previous
chapters. Nengo uses an NEF to implement an SPA.

A semantic pointer is a neural representation in a biological system that carries
structures that will lead to higher-level cognitive representations.

The term pointer refers to pointers as we know in C++, for example, because they
can access data they do not contain.

Neuromorphic Computing

[464]

The term semantic refers to the fact that they are not just mathematical tools as in C++
because they contain virtual representations through the distances between them.

If we put the two concepts together, this leads to the mind-blowing concept of
meaning being generated through biological pointer activity located at various
distances and states from each other in our brain. Let's dive into neuromorphic
computing by first installing Nengo.

Installing Nengo and Nengo GUI
For this chapter, I used the Python interfaces with NumPy and Matplotlib libraries,
as we have since the beginning of this book. All that is then required is to install
Nengo with pip, for example:

pip install nengo

You can install it using other approaches. For more information, go to https://
github.com/nengo/nengo.

Let's install the nice HTML 5 visualizer and interact with Nengo through this GUI I
installed with pip:

pip install nengo-gui

You can install it using other approaches, too. For more information, go to: https://
github.com/nengo/nengo-gui/.

Once both programs are installed, if you encounter any problems then consult the
links, which contain a lot of information, or Nengo's support team, who provide
excellent feedback.

There are many ways to use Nengo. This chapter describes a quick start method
with Python.

Once you are all set, open your browser, Chrome, for example, and then type nengo
in a command-line console and it should open the Nengo GUI interface in your
browser, opening a default.py Python program:

Figure 18.1: Nengo Python code

https://github.com/nengo/nengo
https://github.com/nengo/nengo
https://github.com/nengo/nengo-gui/
https://github.com/nengo/nengo-gui/

Chapter 18

[465]

Click on the folder icon in the top left and click on built-in examples:

Figure 18.2: Nengo examples

A list will appear. Click on tutorial:

Figure 18.3: List of Nengo examples

A list of fascinating educational examples will appear:

Figure 18.4: Examples in the tutorial section

The tutorial programs are in the directory the installer wrote them in.

You can see them in the URL of a Python example of the tutorial in the address
bar of your browser.

Neuromorphic Computing

[466]

Creating a Python program
Now, let's create a Python program and save the file through a few steps:

• Open an empty Python file but do not save it yet
• Write the following code to import the nengo library and create a model:

import nengo
model = nengo.Network()
with model:
 #<your code here>

Now, save the Python file in the path of the other programs of the tutorial. You
can see this path when you open a Nengo example. Just navigate to that path to
save your program. We will name it 00-myintro.py to fit in nicely with the list
of programs in the tutorial:

Figure 18.5: Saving a Python program

We will go back to the tutorial directory as we did previously, and we will open
it to add basic Nengo objects.

Nengo objects are the building blocks of a Nengo model to create populations of
neurons, connecting them to stimulation functions, and managing the outputs.

For our Python program, we will use some key Nengo objects, which are detailed
in the following sections.

A Nengo ensemble
A Nengo ensemble is a group of neurons. It can be considered as a population of
neurons that contain real numbers.

An ensemble is an object created with:

nengo.Ensemble

Chapter 18

[467]

An ensemble can be created in one line:

ensemblex = nengo.Ensemble(n_neurons=5, dimensions=1)

As soon as we add a line to 00-myintro.py, a representation of the ensemble
appears on the left-hand pane of the Nengo interface:

Figure 18.6: Neuron ensemble

While writing your Python code in the code editor on the right, you can visualize
the visual flow of the model in the visual interface pane.

An ensemble can contain a population of one individual, a single neuron. This
neuron is a representation of our biological neurons:

• Postsynaptic currents (PSCs) flow through our dendrites
• The current then reaches the core of the neuron (cell body)
• If the current exceeds a threshold at the axon's initial segment (axon hillock),

then a spike is generated
• With ion channels open, the PSCs are produced in the receiving cell

Let's take a more detailed look at Nengo's neuron types.

Nengo neuron types
We created 50 neurons in our ensemble:

ens = nengo.Ensemble(n_neurons=50...

Neuromorphic Computing

[468]

There are various neuron types. However, in our example, we will be using the
default neuron, a leaky integrate-and-fire (LIF) neuron.

Neuronal dynamics are based on a summation process called integration. This
integration is associated with a mechanism that will fire (trigger) up above a critical
voltage.

A linear differential equation combined with a threshold that will trigger file
spiking are the final components that make up the default LIF neuron we will
be using, unless specified otherwise.

For more on Nengo neuron types, see https://www.nengo.ai/nengo-extras/
neurons.html.

Nengo neuron dimensions
In our example, dimensions is set to 1; this means that the ensemble is represented
by one number (or dimension):

ens = nengo.Ensemble(..., dimensions=1)

A Nengo node
Now that we have defined our ensemble of neurons and their output dimension, we
will define the output:

node_number = nengo.Node(output=0.5)

The stimulation will be a constant and will be displayed on the slider as such:

Figure 18.7: Nengo slider

https://www.nengo.ai/nengo-extras/neurons.html
https://www.nengo.ai/nengo-extras/neurons.html

Chapter 18

[469]

An output with a number might not suffice in some cases. This number can be
replaced by a function importing NumPy. A sine wave function can be used, for
example:

node_function = nengo.Node(output=np.sin)

As soon as we enter our node function, it appears on the interface in addition to the
previous information displayed:

Figure 18.8: The node function on the interface

node_function provides a way to send non-neural inputs to Nengo objects.

We will explore such an implementation in the 15-lorenz.py example in this
chapter that is in the tutorial section Nengo's examples.

If you right-click on the node_function image and choose a value, you will see
a curve representing the real-time value of the sine wave stimulation:

Figure 18.9: Node function

Neuromorphic Computing

[470]

For more on Nengo objects, go to https://www.nengo.ai/nengo/getting_
started.html#creating-nengo-objects.

Connecting Nengo objects
We now need to connect the ensemble and the node to make our system work.
In this manner, the ensemble will have a function.

At this point, we have an ensemble and a node function, as shown in the following
figure:

Figure 18.10: Ensemble and node function

To connect them, we will add a Nengo connection:

nengo.Connection(node_function, ens)

For more Nengo frontend API definitions, see https://www.nengo.ai/nengo/
frontend_api.html.

Now, let's explore the exciting visual interface.

Visualizing data
The first step is to click on the play button in the bottom-right corner of the screen:

Figure 18.11: Play button

https://www.nengo.ai/nengo/getting_started.html#creating-nengo-objects
https://www.nengo.ai/nengo/getting_started.html#creating-nengo-objects
https://www.nengo.ai/nengo/frontend_api.html
https://www.nengo.ai/nengo/frontend_api.html

Chapter 18

[471]

This will set time in motion, simulating our brain activity. Time is one of the
unique features of neuromorphic computing. We do not pile layer upon layer of
static mathematics into a mental representation. With Nengo, we simulate brain
activity step by step, second by second!

Once you click on the play button, it feels like we are looking inside our brain!

We saw how to visualize the slider's activity in the previous section, which
produces the stimulations. We will focus on our ensemble in this section.

If we right-click on the ensemble visualization, several options appear: Value,
Spikes, Voltages, Firing pattern, and Details...:

Figure 18.12: Ensemble options

• Value: The value of our ensemble will be displayed, from –1 to 1, for
example:

Figure 18.13: Values of an ensemble

Neuromorphic Computing

[472]

• Spikes: The spiking activity produces nice colors that show how our
neurons are reacting to sine wave stimulation:

Figure 18.14: Spiking patterns

You will notice that each neuron has its own spiking channel. This property
of ensembles produces a wide variety of responses.

• Voltages: The voltages provide interesting information on the current that is
flowing through our neurons under stimulation from other neurons and, in
turn, from yet more neurons that are gathering information from the world
outside us.
In the following screenshot, the ensemble contained a population of five
neurons with color channels providing yet more information:

Chapter 18

[473]

Figure 18.15: Neuron activity with color patterns

• Firing pattern: The firing pattern of the ensemble in the following image was
generated with 50 neurons. The firing pattern is necessarily directly linked to
the stimulations and connections:

Figure 18.16: Firing pattern

Neuromorphic Computing

[474]

I have been observing many patterns through the experiments I carried out.
One of the areas of research I'm doing is to feed the thousands of frames
of firing patterns of a given function to an ANN and a stochastic Church-
Turing algorithm and generate "thought" patterns. For example, running
the channels of the frames could produce sequences of new data. It's worth
experimenting with.
The following image represents the pattern of 500 neurons bringing
complexity to the potential of running deep learning on thousands of
frames of these patterns:

Figure 18.17: Firing patterns

• Details...: In the plots section, we can visualize input current and tuning
curves. The tuning curve shows how the neurons are reacting to the input
current. If there is no pattern, then there must be an explanation or a
configuration problem.
The visual control of tuning curves is a time saver by showing how they
converge!

Chapter 18

[475]

Figure 18.18: Tuning curves

We have covered some of the main visual tools Nengo provides.

Now, we will see how to retrieve data from our system with probes.

Probes
We can retrieve information with probes, either to visualize them or to process
output data.

In this section, I enhanced 00-myintro.py to produce numerical output as well as
visual output using the information on the following page that you can get ideas
from for your projects:
https://www.nengo.ai/nengo/examples/basic/single_neuron.html

The program I created is nengo_probing.py and is available in the GitHub
repository of this book. The program is a standalone program that does not run in
Nengo's GUI. You cannot use simulation commands as shown in the following in
Nengo's GUI. Run this program in your Python interface. It shows yet another way
to run the rich Nengo software.

https://www.nengo.ai/nengo/examples/basic/single_neuron.html

Neuromorphic Computing

[476]

The program contains additional headers for Matplotlib and distributions for data
displaying and processing purposes:

import matplotlib.pyplot as plt
from nengo.utils.matplotlib import rasterplot
from nengo.dists import Uniform

The program contains the same architecture as 00-myintro.py. It creates an
ensemble, adds a function, and then connects the objects:

model = nengo.Network("Probing")
with model:
 ens = nengo.Ensemble(n_neurons=50, dimensions=1)
 #node_number = nengo.Node(output=0.5)
 node_function=nengo.Node(output=np.sin)
 nengo.Connection(node_function, ens)
 print(ens.probeable)

with model:
 # Connect the input signal to the neuron
 nengo.Connection(node_function, ens)

We will now add a probing function using nengo.Probe:

 # The original input
 function_probe = nengo.Probe(node_function)
 # The raw spikes from the neuron
 spikes = nengo.Probe(ens.neurons)
 # Subthreshold soma voltage of the neuron
 voltage = nengo.Probe(ens.neurons, 'voltage')
 # Spikes filtered by a 10ms post-synaptic filter
 filtered = nengo.Probe(ens, synapse=0.01)

To obtain some data, let's run the simulator for 5 seconds:

with nengo.Simulator(model) as sim: # Create the simulator
 sim.run(5)

The simulator runs the calculation before displaying the outputs.

Then, we can probe the data and display it in numerical format. That way, we
can retrieve output data from our system for further use, visualizing or chaining
neuromorphic models to other algorithms in a few lines of code:

Chapter 18

[477]

• Decoded output: The decoded output can be filtered (see the preceding
filter):
print("Decoded output of the ensemble")
print(sim.trange(), sim.data[filtered])

The output data is then displayed or can be processed:
[1.000e-03 2.000e-03 3.000e-03 ... 4.998e+00 4.999e+00 5.000e+00]
[[0.]

 [0.]

 [-0.03324582]

 ...

 [-1.26366121]

 [-1.22083471]

 [-1.18750863]]

Nengo can produce a chart with Matplotlib:
Plot the decoded output of the ensemble
plt.figure()
plt.plot(sim.trange(), sim.data[filtered])
#plt.plot(sim.trange(), sim.data[node_function])
plt.xlim(0, 1)
plt.suptitle('Filter decoded output', fontsize=16)

The output of the preceding code is plotted as follows:

Figure 18.19: Decoded input

Neuromorphic Computing

[478]

• Spikes: Spikes are retrieved in a single line of code:
print("Spikes")
print(sim.trange(),sim.data[spikes])

The output produces sequences of spikes:
[1.000e-03 2.000e-03 3.000e-03 ... 4.998e+00 4.999e+00 5.000e+00]
[[0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 1000. 0. 0.]

 ...

 [0. 0. 1000. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

The program produces a figure for spikes that matches the data:

Figure 18.20: Spiking output

We can check the visual display with valuable raw data.
• Voltage: The simulation provides voltage data:

print("Voltage")
print((sim.trange(), sim.data[voltage][:, 0]))

The data is stored in a ready-to-use array:
(array([1.000e-03, 2.000e-03, 3.000e-03, ..., 4.998e+00,
4.999e+00,
 5.000e+00]), array([0., 0., 0., ..., 0., 0., 0.]))

The program produces a figure for the voltage of the ensemble as well:

Chapter 18

[479]

Figure 18.21: Neuron voltage

At this point, we have covered the main features of Nengo. We will now see how
Nengo can boost research in critical AI research areas.

Applying Nengo's unique approach to
critical AI research areas
It is useless to apply the power of brain neuromorphic models to simple arithmetic
or classical neural networks that do not require any more than TensorFlow 2.x, for
example.

But it is also a waste of time to try to solve problems with classical networks that
neuromorphic computing can solve better with organic brain models. For example:

• Deep learning, TensorFlow 2. Convolutional models use a unique activation
function such as ReLU (see Chapter 9, Abstract Image Classification with
Convolutional Neural Networks (CNNs)). Neuromorphic neurons have a
variety of reactions when stimulated.

• Neuromorphic models integrate time versus more static DL algorithms.
When we run neuromorphic models, we are closer to the reality of our time-
driven biological models.

• The Human Brain Project, https://www.humanbrainproject.eu/en/,
provides wide research and examples of how neuromorphic computing
provides additional insights to classical computing.

https://www.humanbrainproject.eu/en/

Neuromorphic Computing

[480]

I recommend testing a given problem with several AI tools and choosing the most
efficient one.

The SPA examples demonstrate the efficiency of Nengo in several areas. All of the
examples in the tutorial section are well documented and run well. You can apply
the visualizing functions we explored in this chapter to them and also modify the
code, experiment with them in your Python environment, and more.

I wish to highlight two domains: linguistics and weather representations:

• Linguistics: 25-spa-parse.py processes neuronal signals and produces
words. When you run it, the performances look magical, thanks to the SPA.
The code is well documented.
The program contains the mind-blowing thalamus module that can
simulate the subcortical nuclei in our brains (forebrain and midbrain).
This part of our brain, the basal ganglia, has high-density connections.
This class can reduce or even eliminate low responses and intensify high
responses to the stimulations. The program is worth running and exploring!
The Nengo GUI makes it intuitive to understand:

Figure 18.22: Nengo GUI options

• Weather representations: 15-lorenz.py is not an SPA program. It is only
a few lines long. It displays the graphs of the three basic Lorenz equations
that represent temperatures and variations in the atmosphere. Nengo
modified the code for educational purposes as explained in a publication
at http://compneuro.uwaterloo.ca/publications/eliasmith2005b.
html. The Nengo GUI displays an exciting representation:

http://compneuro.uwaterloo.ca/publications/eliasmith2005b.html
http://compneuro.uwaterloo.ca/publications/eliasmith2005b.html

Chapter 18

[481]

Figure 18.23: Lorenz equations

The code of 15-lorenz.py is short, and the program looks simple. But
weather forecasting is one of the toughest fields to represent events with
AI models!

The potential of neuromorphic computing can be a real game-changer. Let's
conduct a mind experiment. Imagine that:

• A hurricane is like a living organism
• That its center is connected to everything around it
• That it "feeds" on the heat and waters of our oceans
• That everything that is in it can be considered as small hurricane particles

Let's now continue the experiment by:

• Feeding the billions of particles in the neuromorphic model in a stream
• Using the power of a network of neuromorphic chips
• Using the calculation power of quantum computing (see Chapter 19,

Quantum Computing) to perform computations with the input/output
of the chip

• Applying SPA to the hurricane particle representations as if they were
neurons and running predictions

Neuromorphic Computing

[482]

I think the future of weather forecasting is in physical, neuromorphic models, that
will take billions of parameters into account.

The result: we will be able to predict the course and level of a hurricane a few
hours to a few days more in advance. This could save lives.

In a nutshell, neuromorphic computing has only just begun to demonstrate its
worth. When neuromorphic chips hit the market, neuromorphic computing will
grow exponentially.

Summary
In this chapter, we built neuromorphic Python programs from scratch. Populations
of neurons, in Nengo ensembles, are made up of neurons. The system then has
stimulation functions, connections, and probing objects. Nengo offers many other
examples you can explore.

The NEF was designed to implement neuromorphic computing models. The novel
concept of SPA shows that our brains have enhanced pointers that have a meaning
and are linked to our physical data.

Neuromorphic computing opens tremendous horizons for a complex program that
classical machine learning and deep learning cannot solve. Weather forecasting,
with the power of the neuromorphic chips that are reaching the market, can tap
into the complexity and variety of a machine brain. A machine brain can produce
unique calculations by firing hundreds of thousands of neurons with both
individual and collective behavior.

We have covered many algorithms and frameworks in this book. We have access
to the most powerful intelligent algorithms in the history of humanity. From MDP
to GA algorithms, and from KMC, KNN, PCA, NLP, and CUI algorithms to CNN,
RBM, RNN, and LSTM networks, we have explored many AI tools. But there may
be ways to build unified models. We will see in the years to come. In the meantime,
neuromorphic computing makes our toolbox incredibly intelligent. Google has
TPU hardware to optimize TensorFlow, neuromorphic computing can rely on Intel
chips, and many corporations are working to produce more innovative hardware.

The future will no doubt rely on hybrid architectures in which some or all of the AI
tools will be built into meta-AI systems.

In Chapter 19, Quantum Computing, we will explore the exponential hardware
available for quantum mechanics. Quantum computers, having no memory, rely
on other systems to provide inputs and process outputs. Imagine a neuromorphic
system chained to a quantum computer!

Chapter 18

[483]

Questions
1. Neuromorphic computing reproduces our mental activity. (Yes | No)
2. Neuromorphic computing reproduces our brain activity. (Yes | No)
3. Semantic Pointer Architecture (SPA) is a hardware architecture. (Yes | No)
4. NEF stands for Neural Engineering Framework. (Yes | No)
5. Loihi is a classical chip. (Yes | No)
6. Reproducing our brain's neural activity cannot solve an equation. (Yes | No)
7. An ensemble in Nengo contains algorithms. (Yes | No)
8. Spiking blocks neuronal activity. (Yes | No)
9. Firing patterns can be used to analyze brain activity. (Yes | No)
10. Machine learning and deep learning are only metaphors of our brain's

activity. (Yes | No)

References
Reference programs used for this chapter can be found at https://www.nengo.ai,
https://www.nengo.ai/examples/.

Further reading
• Research – How to Build a Brain, Chris Eliasmith: This book provides the

theoretical background for neuromorphic computing.
Chris Eliasmith is also one of the designers of Nengo.

• Software – Nengo (https://www.nengo.ai/): Nengo is based on solid
research, documentation, and an excellent community.

• Hardware – Intel: Intel is working hard to produce a neuromorphic chip
(https://www.intel.fr/content/www/fr/fr/research/neuromorphic-
computing.html).

https://www.nengo.ai
https://www.nengo.ai/examples/
https://www.nengo.ai/
https://www.intel.fr/content/www/fr/fr/research/neuromorphic-computing.html
https://www.intel.fr/content/www/fr/fr/research/neuromorphic-computing.html

[485]

19
Quantum Computing

IBM has begun to build quantum computers for research and business purposes.
In a few years, quantum computing will become disruptive and will provide
exponential computing power. Google, Xanadu, D-Wave, Rigetti, and others
devote research budgets to quantum computing.

This unique computer capacity in the history of humanity opens the doors to
obtaining results that would be impossible to obtain with classical computers. In
1994, Peter Shor showed that a quantum algorithm could perform better than a
classical one for prime factors of an integer and the discrete logarithm problem.
Then in 1995, Lov Grover added the unstructured search problem. With the rise
of quantum computers, research can go much further.

Quantum computers in themselves will not provide revolutionary algorithms.
Any algorithm can be broken down into components that run basic classical
machines. Supercomputers can still run artificial intelligence algorithms much
easier than implementing them with quantum computers. Quantum computers
have no memory, for example, so they rely heavily on classical computers for
the input and interpreting the output.

Though quantum computers have limits, in time, quantum computing power
will take present-day algorithms beyond the limits of our imagination. Many
corporations have invested in quantum computing research in the fields of
banking, healthcare, cybersecurity and more.

This chapter explains why quantum computers are superior to classical computers,
what a quantum bit is, how to use it, and how the quantum mind experiment could
lead to a quantum thinking machine. The example provided is simply a recreative
way to approach quantum computing.

Quantum Computing

[486]

We will be taking results from a classical machine, feed the results to quantum
computer and then interpret the results provided by the quantum computing
algorithm. Some go further with hybrid quantum-classical algorithms, which is
beyond the scope of this chapter.

In Chapter 18, Neuromorphic Computing, we explored how to use our brain to create
neuromorphic models. In this chapter, we will create a higher level of representation
with a research project to create a mind. Quantum mind is based on CRLMM,
which I have been successfully applying to many corporate sites. In this research
project, a quantum mind named MindX represents the mind of a random person. We
will explore MindX in an exciting experiment.

The following topics will be covered in this chapter:

• Why quantum computers are more powerful than other classical computers
• What a quantum bit is
• The Bloch sphere
• Quantum computing
• How to build MindX, a thinking quantum computer research project

First, let's discuss some basics behind quantum computers, and what makes them so
powerful.

The rising power of quantum computers
Before we begin discussing MindX, an exciting research project to create a thinking
quantum computer, we should start with the fundamentals. This section describes:

• Why quantum computers are faster
• What a qubit is
• How a qubit is measured (its position)
• How to create a quantum score (program) with quantum gates
• How to run a quantum score and use its results for a cognitive NLP chatbot

Note: This chapter is self-contained with screenshots of quantum
circuits for those who do not wish to install anything before reading
the chapter. IBM Q and Quirk can be used online without installing
anything locally.

Chapter 19

[487]

The goal of this chapter is not to go too deeply into the details of quantum
computing, but rather to teach you enough to know how to build a thinking
quantum computer. This chapter is simply meant to show how a quantum
computer works and open ourselves to new ways to use computers.

Quantum computer speed
A standard computer bit has a 0 or a 1 state. A classical computer will manage
0 or 1, as the system chooses, but it remains limited to choosing 1 or (XOR) 0. It
cannot manage both states at the same time.

A quantum computer is not constrained by an XOR state. It is an AND state. It can
manage values between 0 and 1 at the same time until it is measured! A quantum
state is unknown until it's observed, which means that a quantum program can use
values between 0 and 1 at the same time. Once observed, the qubit will take a value
of 0 or 1 because of the physical instability of a quantum state.

This means quantum computing is memoryless once it is measured. Storage does
not exist in a quantum computer. The input is made by a classical computer, and the
output goes back to a classical computer, to be stored through the following process:

1. A classical computer provides an input
2. A quantum computer processes the input and produces an output
3. A classical computer interprets the output

That being said, the computing power of a quantum computer fully justifies this
architectural constraint.

Until a qubit is observed, it can have a 0 or 1 state or a probability in between,
such as 0.1, 0.7, or 0.9.

Observing the situation is called measuring the state. When measured, only 0 or
(XOR) 1 will become the result.

Until the state is measured, a large number of probabilities are possible. If a qubit
is added to the system, we now have two qubits and four elementary combinations
all at the same time.

Just observing a quantum state makes the state break down. In
quantum computing, this is called decoherence. It is not magic.
Qubits are unstable. When observed, the quantum state breaks
down.

Quantum Computing

[488]

Unlike standard computer logic, all four of the states can be used to compute
algorithms at the same time in a parallel process. The volume of the possible states
of a given algorithm will thus expand with the number of qubits involved. An
estimation of the volume of the states can be made with the following number, in
which q is the number of qubits:

2q

Looking at this tiny equation does not seem awesome at all. Now, let's see what it
looks like in a loop that runs up to 100 qubits with the number, nb, of possible states:

import numpy as np
for q in range(101):
 v=(2**q)
 print("Size of nb to describe",q," qubits:","{:,}".format(v))

The program does not appear fearsome either. However, the following output is
awesome:

Size of nb to describe 0 qubits: 1

Size of nb to describe 1 qubits: 2

Size of nb to describe 2 qubits: 4

Size of nb to describe 3 qubits: 8

Size of nb to describe 4 qubits: 16

Size of nb to describe 5 qubits: 32

Size of nb to describe 6 qubits: 64

...

Size of nb to describe 10 qubits: 1,024

...

Size of nb to describe 50 qubits: 1,125,899,906,842,624

...

Size of nb to describe 97 qubits:

158,456,325,028,528,675,187,087,900,672

Size of nb to describe 98 qubits:

316,912,650,057,057,350,374,175,801,344

Size of nb to describe 99 qubits:

633,825,300,114,114,700,748,351,602,688

Size of nb to describe 100 qubits:

1,267,650,600,228,229,401,496,703,205,376

Chapter 19

[489]

Presently, big data is often calculated in petabytes. A petabyte=1015 or about 250 bytes.

Facebook stores data for over 2 billion accounts. Imagine Facebook managing 500
petabytes on a given day. Let's see what 500 petabytes approximately add up to
in the following code:

print("Facebook in the near future:")
s=(2**50)*500
print("{:,}".format(v))

The output is quite surprising because it is about the size of data a 100-qubit
quantum computer can compute in one run:

A segment of Facebook data :

1,267,650,600,228,229,401,496,703,205,376

This means that a single quantum computer with 100 qubits can run a calculation
of the size of all the data that over 2,000,000,000 Facebook accounts might represent
in the near future.

A quantum computer would not actually contain that volume of data at all, but
it shows that one could produce a calculation with that volume of computation
information.

More importantly, this also means that a single quantum computer can run a
mind-dataset of a single mind (see the next section) and calculate associations.
This thinking process can generate an exponential volume of connections.

A classical n-bit computer manages n bits whereas a quantum computer will
manage 2n bits or 2q bits.

Compared to quantum computers' 2q exponential power, soon, classical computers
will seem like relics of the past for scientific calculations. Classical computers will
still be in use, but quantum computers will be the tools with which to explore the
world beyond the present limits of artificial intelligence.

Quantum computers will beat any other computer in many fields in the years
to come. In one parallel computation, a quantum computer will do in one run
something that it would take a classical computer years to calculate.

Visualize all the AI solutions you have seen in this book. They will
already seem to have some dust of the past on them once you get
your hands on quantum computing.

Quantum Computing

[490]

Now think about what a network of many quantum computers could do!

Often, we try to compare large volumes with the number of stars in the universe
and we say, "That's more than the number of stars in our universe." We must now
look in the opposite direction, at very small numbers.

The lesson is clear: the future lies in nano models. Quantum computing represents
both a challenge and an opportunity.

Defining a qubit
A qubit, a quantum bit, has a physical counterpart. For example, a quantum state
can be encoded in oscillating currents with superconductor loops. Google and IBM
have experimented with this approach. Another way is to encode a qubit in an ion
trapped in an electromagnetic field in a vacuum trap.

Photons, electrons, the state of light, and other technologies have emerged.
Whatever the approach, calculations done by over 50-qubit quantum computers
will outrun classical supercomputers.

The competition is fierce because the market will rapidly become huge. Get ready
now to face the disruption that's coming!

Representing a qubit
The mathematical representation of a qubit is:

• |0⟩ for a 0 value
• |1⟩ for a 1 value
• 𝛼𝛼|0⟩ where alpha is a probability parameter
• 𝛽𝛽|1⟩ where beta is a probability parameter

These brackets are called bracket or bra-ket notation.

This linear representation is called superposition. In itself, it explains most of the
power of quantum computing.

The superposition of 0 and 1 in a quantum state can thus be expressed as follows
in kets such as |1⟩ and not bras such as in ⟨1| :

quantum state = 𝛼𝛼|1⟩ + 𝛽𝛽|0⟩

Chapter 19

[491]

The alpha and beta probabilities look like weights, and the total probabilities
of those probable states of qubit must add up to 1. We use partition functions,
softmax, and other techniques to make sure to keep the sum of probabilities equal
to 1. This is no surprise since computer geeks like us designed the way to program
quantum computers.

Translated into mathematics, this means that the probabilities of 𝛼𝛼 and 𝛽𝛽 must add
up to 1. In the case of qubit probabilities, the values are squared, leading to the
following constraint:

|𝛼𝛼2| + |𝛽𝛽2| = 1

Since qubits interact in their respective states, an interaction is described as an
entanglement. An entanglement designates at least two interacting qubits. They
cannot be described without taking all the states of all the qubits into account.

This has been reproduced physically, which means that this entanglement seems
strange because their quantum entanglement (relation) can occur at a distance.
One qubit can influence a qubit that is physically far away.

It's an odd way to think, and one that was not readily accepted at first. Albert
Einstein is oft-quoted as referring to entanglement derisively as "spooky action at
a distance."

The position of a qubit
One of the main ways to represent the state of a qubit is by using the Bloch sphere.
It shows how a qubit spins and can be used to describe qubit states. To properly
grasp this, the following section will first provide a refresher on some properties
of a circle.

To describe the probable state of a qubit, we thus need three
numbers: the 0 and 1 possible states and a number to determine the
value of the probabilities (the other is implicit since the total must
add up to 1).

Quantum Computing

[492]

Radians, degrees, and rotations
The radius is the distance between the center of a circle and its circumference, as
shown in the following diagram:

Figure 19.1: Radius of a circle

The radius of a circle is half of the circle's diameter. The relation between the radius
r and the circumference C is (where 𝜋𝜋 = 3.14):

𝐶𝐶 = 2𝜋𝜋𝜋𝜋

If the length of the radius is wrapped around the circumference of a circle, that arc
forms a radian, as shown in the following diagram:

Figure 19.2: A radian

The angle formed by a radian is equal to about 57.29° (degrees).

The properties of the radian can be used for rotations:

• 3.14 × 57.29° = about 180°
• Thus 𝜋𝜋 radians = 180°

Chapter 19

[493]

Rotations are often described by radians expressed in 𝜋𝜋 , as displayed in the
following table:

Degrees Radians

30° 𝜋𝜋/6

45° 𝜋𝜋/4

60° 𝜋𝜋/3

90° 𝜋𝜋/2
180° 𝜋𝜋
270° 3𝜋𝜋/2

360° 2𝜋𝜋

Now that we've had that recap, let's explore the Bloch sphere.

The Bloch sphere
The radian table shown just now is a practical way to describe rotations. The
Bloch sphere, shown in the following figure, provides a visual representation of
the position and rotation of a qubit:

Figure 19.3: Bloch sphere

Quantum Computing

[494]

The North and South Pole (polar coordinates) represent the basic states of a qubit:

"North" pole = |1⟩ = (1
0)

"South" pole = |0⟩ = (0
1)

A qubit can take any value on the sphere.

Composing a quantum score
Composing a quantum score consists of positioning gates on a stave (or circuit)
and adding a measurement. The input comes from a classical computer. After the
measurement phase, the output goes back to a classical computer. The reason is
that quantum computers have no memory and thus cannot store their intermediate
states because of their instability.

This section uses Quirk, a very educative quantum circuit simulator, to present
quantum gates and a quantum composer.

You can access Quirk online at this link: https://algassert.com/quirk.

Quantum gates with Quirk
Qubits are represented by lines, and they start on the left, as shown in the following
quantum gate programming interface:

Figure 19.4: Quantum gate programming interface

The gates are logic gates that will transform the state of the qubits.

https://algassert.com/quirk

Chapter 19

[495]

NOT gate
A NOT gate will transform a ket-zero |0⟩ into a ket-one |1⟩ . It will transform a ket-one
|1⟩ into a ket-zero |0⟩ .

In the circuit description, On is the ket-one state and Off is the ket-zero state, as
shown in the following quantum score:

Figure 19.5: Circuit description of a quantum score

You can see that:

• A NOT gate symbol is a circle with a vertical and horizontal line inside it
• The On status means that the state is |0⟩
• The Bloch sphere representation is at 𝜋𝜋 (starting from the top of the Bloch

sphere, as it should)

H gate
An H gate or Hadamard gate will perform the following transformation:

Figure 19.6: Hadamard gate transformation

Quantum Computing

[496]

The following 50% chance will be displayed in a rectangle and the position on the
Bloch sphere will be displayed as well:

Figure 19.7: 50% chance in a rectangle and on the Bloch sphere

The fundamental role of a gate is to rotate the qubits on a Bloch sphere and
produce a probable condition if measured. There are many possible gates to be
explored and used, as shown in this design menu diagram:

Figure 19.8: Gates design menu

These gates are more than enough to build many algorithms.

A quantum computer score with Quirk
The goal here is to play around with the interface to intuitively see how circuits run.

Building a quantum score (or circuit) with Quirk means the following:

• Dragging and dropping gates that will make a qubit turn in a specific
direction and produce probable outcomes

• Adding another qubit, doing the same, and so on
• Being able to perform an intermediate measurement, although this is

impossible for a real physical quantum computer (the observations make the
system collapse)

A score is represented as follows, for example:

Chapter 19

[497]

Figure 19.9: Quantum computer score representation

There are two qubits with a gate on each line to start. Then the intermediate result
is shown, making the simulator very educational. Then two more gates are added.
Finally, the following measurement probe is added at the end:

Figure 19.10: Measurement probe

Once the measurement is made, the final result is displayed on the right of the
measurement symbols.

A quantum computer score with IBM Q
IBM Q provides a cloud platform to run a real physical quantum computer.

Quantum Computing

[498]

Create a free account and access the IBM quantum computing composer. Just as
with Quirk, quantum gates are dragged on the following score, as shown in this
diagram:

Figure 19.11: Quantum gates dragged

The score can be run on a simulator like Quirk or a real quantum computer, as
shown in this interface diagram:

Figure 19.12: Score interface

Click on Simulate, which will run a simulator.

The following output is interesting. It is a bit different from Quirk for the same score,
but the probabilities add up to 1 as expected:

Run launches a calculation on IBM's physical quantum computer. It
is an exhilarating experience! The future is at the tip of your fingers.

Chapter 19

[499]

Figure 19.13: Quantum computer score output

IBM also possesses a source code version (QASM) of the score, as shown in the
following code:

include "qelib1.inc";
qreg q[5];
creg c[5];
h q[0];
z q[1];
y q[0];
x q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

This language is an Open Quantum Assembly Language. It can be written in an
editor like any other language on IBM's Q platform. A development kit can also
be downloaded, and the APIs are functional. IBM provides extensive and detailed
documentation on all the aspects of this approach.

All of this being said, let's find out how quantum computing can boost an AI project.
It is now time to define the thinking quantum computer project.

Quantum Computing

[500]

A thinking quantum computer
A thinking quantum computer is not a reproduction of brain function, but rather a
representation of the mind of a person. Neuromorphic computing is one approach
that represents our neurons and how brain uses spiking neurons to think. Quantum
computing can provide an exciting way to imitate our mind's capacity with
mathematical algorithms that work with qubits, not neurons. We've just begun to
explore the potential of these approaches, which in fact will most probably merge
into an ensemble of hybrid software and hardware solutions.

The endeavor of the quantum MindX experiment is to build a personal mind named
MindX, with memories of past events, conversations, chats, and photographs stored
on a classical computer. The program will then transform subsets of the data into
quantum circuits to see what happens, how our quantum circuit behaves when left
to produce millions of possibilities.

This section describes how to build MindX, a thinking computer that is just a
research project. It must be noted that this approach is experimental. It could be
viewed as an advanced mind experiment. I've been doing research on this subject
for many years. The power of quantum computation will no doubt boost research
in this field.

Representing our mind's concepts
The input consists of encoding a state of mind of a PCA CRLMM representation,
as we built in Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann
Machines (RBMs) and Principal Component Analysis (PCA). The CRLMM representation
is not a general dictionary or encyclopedia dataset but a mind-dataset of actual
personal data that is collected, classified, and transformed into a PCA.

Expanding MindX's conceptual
representations
MindX's mind dataset will grow continuously if implemented beyond this
research experiment. It will have sensors to process body temperature for emotion
classification, facial recognition for expression detection, body language detectors,
and more. All of this technology is already available. The New York Stock Exchange
already has artificial intelligence IoT agents that gather information from outer
sources to make decisions. These AI agents have replaced a large amount of human
decision-making. Imagine what is going to happen when quantum computing
becomes disruptive!

Chapter 19

[501]

The MindX experiment
The aim of the quantum MindX experiment is to build a mind and let it think with
the power of a quantum computer. This section will show how to run a 16-qubit
mind.

The size of the numbers needed to describe a 16-qubit quantum simulation is 65,536.

This section first describes how to do the following:

• Prepare the data
• Create and run a quantum score
• Use the output

Let's get on with preparing the data.

Preparing the data
To prepare data for higher-dimension calculations, I have been using a concept
encoding method for corporate projects for over 30 years to provide embedded data
to the algorithms I have developed. This guarantees high-level abstraction to solve
problems. It is a very profitable way to implement transfer learning and domain
learning. This way, you can apply the same model to many different fields.

The method consists of embedding data with the methods described in this book.
The goal always remains the same—to transform the data points into higher
dimensions to visualize features.

For quantum computing, the method remains the same for the MindX experiment.

Transformation functions – the situation function
Two functions need to be applied before creating and running a score: a state of
mind function and a quantum transformation function.

The situation function consists of building a vector of features in PCA dimensions.
We accomplished this in Chapter 14, Preparing the Input of Chatbots with Restricted
Boltzmann Machines (RBMs) and Principal Component Analysis (PCA), and applied it
to a chatbot in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot. The chatbot
was able to use person X's mind-dataset to build a meaningful dialog.

In this chapter, the quantum dimensions will provide the chatbot with a nascent
personal mind, not a general mind that can recognize, classify, and predict like a
machine.

Quantum Computing

[502]

MindX has a mind that is biased by its way of thinking like humans. MindX has an
exceptionally open mind to adapt to everyone, which gives it empathy.

A situation function will create a situation matrix for a movie suggestion by the
MindX bot, which will communicate with consumers. In a situation where a movie
suggestion is made by the MindX bot, for example, it could be something as follows
for 16 qubits:

Qubit Concept Image Initial
polarity

1 cities parking 0.146
2 darkness dark forest 0.5
3 nostalgia autumn leaves 0.5

4 worrying dark
background 0.146

5 job sad face 0.5
…

15 consider movie "Lost" 0.38

16 decision to suggest
"Lost" 0.0

MindX is not analyzing person X anymore. It has now loaded an empathy matrix
from its mind-dataset, which contains data and sentiment analysis polarity. Values
close to 1 are positive. Values close to 0 or negative are negative. MindX loads its
mind plus the mind of another person.

The 16-qubit matrix shown just now contains four columns, as shown in the
preceding table:

• Qubit: The line for this qubit on the quantum composer

MindX can doubt. Thus it can learn better than dogmatic machines.

Empathy colors your thoughts and feelings with the thoughts and
feelings of another person.

Chapter 19

[503]

• Concepts and mental representation: The concept loaded in MindX's
situation dataset derived through the process described in Chapter 14,
Preparing the Input Chatbots with Restricted Boltzmann Machines (RBM) and
Principal Component Analysis (PCA), in which we ran an RBM to generate
features we represented through a PCA.

The mental representation appears as shown in the following PCA:

Figure 19.14: PCA representation of a "mind"

These features, drawn from the RBM on the movie preferences of a particular age
segment, can now be used as input in a quantum circuit to generate random mental
activity with information and noise.

This movie example is for explaining how to create a thinking,
empathetic chatbot. This approach can be applied to other
commercial market segments or any situation in which a chatbot
is required to think beyond preset answers. Many fields, such as
healthcare, pharmaceutical research, and security, will benefit from
mind-opening quantum algorithms.

Quantum Computing

[504]

Transformation functions – the quantum function
The algorithms have produced a qubit line number with labels (concepts and
images). Each line also possesses a sentiment analysis polarity expressed in
normalized values from 0 to 1 in probabilistic format. We will consider negative
and positive views of the mind reacting to an object. Keep in mind that "negative"
is close to 0, "positive" is close to 1, and the intermediate values give a more
detailed approximation. 0.4 to 0.6 is a turning point.

This first transformation into another dimension is the first step to initialize the
quantum transformation function. The quantum transformation function consists
of initializing the first column of all 16 qubits with a quantum gate.

Just like datasets were transformed into principal component features, the polarity
transformation function enables the quantum transformation function to bring the
dataset into a quantum universe.

The function will automatically find the quantum gates that represent the
normalized sentiment analysis polarity of the data points of the following situation
matrix:

Initial polarity Quantum gate
0.146 X1/4

0.5 X1/2

0.5 X1/2

0.146 X1/4

0.5 X1/2

..
0.38 X1/8

0.0 Z1/8

The state of mind of MindX, a random person, is now in a matrix, and its concepts
have now been transformed into a quantum dimension, in which the data status
can be traced throughout the creation of the quantum score.

Creating and running the score
A thought process of MindX is described in a quantum score. There are two ways
to build this score:

• Manually, just like a musician writing a music score. This requires thinking
about the previous logic gate and the effect of the next one, taking a decision
process into account. It is like writing any artificial intelligence program.

Chapter 19

[505]

• Automatically, by building a function that reads a rule base of MindX's
way of thinking and applies the quantum gates through that rule base.
You can apply this to machine learning and deep learning as well to test
the performance of a quantum computer versus a classical one.

In any case, it requires writing an algorithm. This algorithm is a decision-making
algorithm that takes emotions into account. Doubt, for example, is what keeps
many humans from making bad decisions. Too much doubt, for example, will
make a person back out of a situation.

Here is the quantum transcription of an algorithm that takes MindX's concepts into
account and represents how they interact. This requires very precise thinking and
cognitive science programming.

The following is an experimental quantum score I built with Quirk:

Figure 19.15: Quantum score built with Quirk

Once the quantum score has been run and the measurement has been done, the
green rectangles on the right provide the output.

Quantum Computing

[506]

Using the output
The output of the quantum score is now added as a column to the situation matrix.
If you want to implement such solutions, just bear in mind that it will take some
time to write the functions with some sweat and tea to make it through the nights.
MindX could be used to enhance a chatbot with unplanned responses. MindX has
proven it has imagination potential.

Qubit Concept Image
Initial normalized
polarity expressed in
quantum gate form

Quantum output directly
interpreted as sentiment
analysis polarity

1 cities parking 0.146 0.677
2 darkness dark forest 0.5 0.691

3 nostalgia autumn
leaves 0.5 0.5

4 worrying dark
background 0.146 0.48

5 job sad face 0.5 0.36
…

15 consider
movie "Lost" 0.38 0.82

16 decision to
suggest "Lost" 0.0 0.75

MindX has given a 65,536 quantum state description of its thoughts about
suggesting a given movie to person X. Lines 15 and 16 show that the normalized
polarity value has risen over 0.5 to a positive feeling about the movie.

The reasoning is that the first lines show that MindX feels person X's doubts about
life at that moment:

• That person X will identify with the "Lost" movie
• The movie has a happy ending (MindX knows that through the features of

the movie)
• That person X's spirits will be most probably lifted after watching the movie

You can experiment with building quantum scores. You can use Quirk without
installing anything and exploring the list of circuits available in many areas:
Grover's search, Shor's period-finding, quantum Fourier transform, and more.

Chapter 19

[507]

Summary
Quantum computers have opened the door to scientific experiments that could
never have been carried out with classical computers. Within a few years, quantum
computers will have become mainstream, unavoidable, and a key asset for
businesses and research labs. The race has begun to conquer the market.

CRLMM applied to quantum computers could make MindX one of the most
powerful thinking minds on earth—human or machine.

With an unlimited mind-dataset and a 2q quantum computer starting at 250, a
50-qubit machine, MindX could gain the thinking power and experience of a human
who has lived for 1,000 years. MindX's thinking power and an exponential amount
of real-time memory of past experiences, loaded through transformation functions,
could help solve many medical, logistic, and other decision-making problems.

Quantum thinking has just begun to change the perception of the world.
Conceptual AI models such as CRLMM will no doubt be the starting point for
the next generation of AI solutions. These CRLMM models will be much more
powerful because they will be gifted with empathy and complex minds.

Hopefully, this overview of quantum computing will open the doors of your
imagination to the new world awaiting you!

Questions
1. Beyond the hype, no quantum computer exists. (Yes | No)
2. A quantum computer can store data. (Yes | No)
3. The effect of quantum gates on qubits can be viewed with the Bloch sphere.

(Yes | No)
4. A mind that thinks with past experiences, images, words, and other bits of

everyday information, like stored memories, will find deeper solutions to
problems that mathematics alone cannot solve. (Yes | No)

5. A quantum computer will solve medical research problems that cannot be
solved today. (Yes | No)

Artificial intelligence has only just begun its long journey into our
lives. Always trust innovations. Never trust a solution that solves
a problem without opening the door to a universe of questions and
ideas!

Quantum Computing

[508]

6. A quantum computer can solve mathematical problems exponentially faster
than classical computers. (Yes | No)

7. Classical computers will soon disappear and smartphone processors too.
(Yes | No)

8. A quantum score cannot be written in source code format but only with
a visual interface. (Yes | No)

9. Quantum simulators can run as fast as quantum computers. (Yes | No)
10. Quantum computers produce intermediate results when they are running

calculations. (Yes | No)

Further reading
• Theory: Quantum Computation and Quantum Information: 10th Anniversary

Edition, Michael Nielson, Isaac L. Chuang
• Explore IBM Q and discover how you can implement quantum scores:

https://www.ibm.com/quantum-computing/

• Use Quirk, an intuitive quantum score designing tool: http://algassert.
com/2016/05/22/quirk.html

https://www.ibm.com/quantum-computing/
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html

[509]

Answers to the Questions

Chapter 1 – Getting Started with
Next-Generation Artificial Intelligence
through Reinforcement Learning

1. Is reinforcement learning memoryless? (Yes | No)
The answer is yes. Reinforcement learning is memoryless. The agent
calculates the next state without looking into the past. This is significantly
different from humans. Humans rely heavily on memory. A CPU-based
reinforcement learning system finds solutions without experience. Human
intelligence merely proves that intelligence can solve a problem. No more,
no less. An adaptive thinker can then imagine new forms of machine
intelligence.
It must be noted that exceptions exist in some cases, but the general rule
is a memoryless system.

2. Does reinforcement learning use stochastic (random) functions? (Yes | No)
The answer is yes. In the particular Markov decision process model, the
choices are random. In just two questions, you can see that the Bellman
equation is memoryless and makes random decisions. No human reasons
like that. Being an adaptive thinker is a leap of faith. You have to leave who
you were behind and begin to think in terms of equations.

3. Is the MDP based on a rule base? (Yes | No)
The answer is no. Human rule-based experience is useless in this process.
Human thinking is often based on rules of cause and effect, for example.
Furthermore, the MDP provides efficient alternatives to long consulting
times with future users who cannot clearly express their problem.

Answers to the Questions

[510]

4. Is the Q function based on the MDP? (Yes | No)
The answer is yes. The use of the expression Q appeared around the time
the Bellman equation, based on the MDP, came into fashion. It is more
trendy to say you are using a Q function than to speak about Bellman, who
put all of this together in 1957. The truth is that Andrey Markov was Russian
and applied this method in 1913 using a dataset of 20,000 letters to predict
the future use of letters in a novel. He then extended that to a dataset of
100,000 letters. This means that the theory was there 100 years ago. Q fits
our new world of impersonal and powerful CPUs.

5. Is mathematics essential to AI? (Yes | No)
The answer is yes. If you master the basics of linear algebra and probability,
you will be on top of all the technology that is coming. It is worth spending
a few months' worth of evenings on the subject or taking a MOOC.
Otherwise, you will depend on others to explain things to you.

6. Can the Bellman-MDP process in this chapter apply to many problems?
(Yes | No)
The answer is yes. You can use this for robotics, market analysis, IoT,
linguistics, and scores of other problems.

7. Is it impossible for a machine learning program to create another program
by itself? (Yes| No)
The answer is no. It is not impossible. It has already been done by DeepCode:
https://www.deepcode.ai/.
Do not be surprised. Now that you have become an adaptive thinker and
know that these systems rely on equations, not humans, you can easily
understand the fact that mathematical systems are not that difficult to
reproduce.

8. Is a consultant required to enter business rules in a reinforcement learning
program? (Yes| No)
The answer is no. It is only an option. Reinforcement learning in the MDP
process is memoryless and random. Consultants are there to manage,
explain, and train in these projects.

9. Is reinforcement learning supervised or unsupervised?
(Supervised | Unsupervised)
The answer is unsupervised. The whole point is to learn from unlabeled
data. If the data is labeled, then we enter the world of supervised learning;
that will be searching for patterns and learning them. At this point, you
can easily see you are at sea in an adventure—a memoryless, random, and
unlabeled world for you to discover.

https://www.deepcode.ai/

Appendix

[511]

10. Can Q-learning run without a reward matrix? (Yes | No)
The answer is no. A smart developer could always find a way around this,
of course. The system requires a starting point. You will see in the second
chapter that it is quite a task to find the right reward matrix in real-life
projects.

Chapter 2 – Building a Reward Matrix –
Designing Your Datasets

1. Raw data can be the input to a neuron and transformed with weights.
(Yes | No)
The answer is yes if the data is in numerical format. If it is in a proper
numerical format, the input can be multiplied by the weights and biases.
If the data is not in a numerical format, then it requires a numerical
encoding phase.

2. Does a McCulloch-Pitts neuron require a threshold? (Yes | No)
The answer is yes. Adding up weights does not mean much if you do not
have something to measure the value. It took months of work for McCulloch
and Pitt to put this together. At first, time was in the equation, just like it
is in our brain. But then, like Joseph Fourier (1768-1830), they found cycles
that repeated themselves—periods that did not require much more than
that neuron.
Warren McCulloch and Walter Pitts invented the first neuron and published
a paper in 1943. Legend has it that at age 12 years in 1935, Walter Pitts, a
poor child living in a bad neighborhood, was chased by bullies and sought
refuge in a library. There, he discovered Principia Mathematica, by Bertrand
Russell and Alfred Whitehead. Anyway, not only did he find mistakes in the
reasoning, but he also sent a letter to Bertrand Russell! From then on, Walter
was noted for his genius in mathematics. With Warren McCulloch, another
genius, they invented the first neuron. It seems simple. But it's the result
of a number of sleepless nights. Just as the invention of the wheel appears
simple, nothing better has been found to this day. This concept of a neuron
is the wheel of AI.

3. A logistic sigmoid activation function makes the sum of the weights
larger. (Yes | No)
The answer is no. The whole point of a sigmoid function is to reduce the
sums when necessary to have comparable numbers to work with.

Answers to the Questions

[512]

4. A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)
The answer is yes. It's only when you sum the weights that they make sense.

5. A logistic sigmoid function is a log10 operation. (Yes | No)
The answer is no. The sigmoid function is based on Euler's number, e, a
constant that is equal to 2.71828. This number produces a natural logarithm.
Leonhard Euler (1707-1783) discovered this in the 18th century with a
quill—no scientific calculator or computer! Did you notice that the main
mathematical functions used in AI run far back in history? This aspect
of the hype around what we think we have found now but has existed
for decades, and sometimes centuries, will be dealt with in the following
chapters.

6. A logistic softmax is not necessary if a logistic sigmoid function is applied
to a vector. (Yes | No)
The answer is no. Calculating the sum of several numbers of a vector and
then dividing each number by that sum gives a view of the proportions
involved. It is a precious tool to keep in mind.

7. A probability is a value between –1 and 1. (Yes | No)
The answer is no. Probabilities lie between 0 and 1.

Chapter 3 – Machine Intelligence –
Evaluation Functions and Numerical
Convergence

1. Can a human beat a chess engine? (Yes | No)
The answer is no. Today, the highest-level chess tournaments are not
between humans but between chess engines. Each chess engine software
editor prepares for these competitions by making their algorithms faster
and requiring less CPU. Today, a top chess engine running on a smartphone
can beat humans. In human-to-human chess competitions, the level of
chess has reached very high limits of complexity. Humans now mostly
train against machines.

2. Humans can estimate decisions better than machines with intuition when
it comes to large volumes of data. (Yes | No)
The answer is no. The sheer CPU power of an average machine or even
a smartphone can generate better results than humans with the proper
algorithms.

Appendix

[513]

3. Building a reinforcement learning program with a Q function is a feat in
itself. Using the results afterward is useless. (Yes | No)
The answer is no. While learning AI, just verifying that the results are
correct is enough. In real-life applications, the results are used in databases
or as input to other systems.

4. Supervised learning decision tree functions can be used to verify that
the result of the unsupervised learning process will produce reliable,
predictable results. (Yes | No)
The answer is yes. Decision tree functions are very efficient in many cases.
When large volumes are involved, decision tree functions can be used to
analyze the results of the machine learning process and contribute to a
prediction process.

5. The results of a reinforcement learning program can be used as input to
a scheduling system by providing priorities. (Yes | No)
The answer is yes. The output of reinforcement learning Q functions
can be injected as input into another Q function. Several results can
be consolidated in phase 1 and become the reward matrix of a phase 2
reinforcement learning session.

6. Can artificial intelligence software think like humans? (Yes | No)
The answer is yes, and no. In the early days, this was attempted with
neuroscience-based models. However, applying mathematical models
is presently far more efficient.
Who knows what will happen in future research with neuromorphic
computing, for example? But for the time being, deep learning, the main
trend, is based on mathematical functions.

Chapter 4 – Optimizing Your Solutions
with K-Means Clustering

1. Can a prototype be built with random data in corporate environments?
(Yes | No)
The answer is yes, and no. To start developing a prototype, using random
data can help make sure that the basic algorithm works as planned.
However, once the prototype is advanced, it will be more reliable to use
a well-designed dataset. Then, once the training has been accomplished,
random data can again help to see how your system behaves in all situations.

Answers to the Questions

[514]

2. Do design matrices contain one example per matrix? (Yes | No)
The answer is no. A good design matrix contains one example in each row
or each column depending on the shape you want it to have. But be careful;
a design matrix that contains data that is too efficient might overfit. That
means the learning algorithm will be efficient with that data but not adapt
to new data. On the other hand, if the dataset contains too many errors,
then the algorithm might underfit, meaning it won't learn correctly. A good
design matrix should contain reliable data, some imprecise data, and some
noise (some data that can influence the algorithm in unreliable ways).

3. Automated guided vehicles (AGVs) can never be widespread. (Yes | No)
The answer is no. The sentence is not a correct assertion. AGVs will expand
endlessly from now on: drones, cars, planes, warehouse vehicles, industrial
vehicles, and more. AGVs, added to AI and IoT, constitute the fourth
industrial revolution.

4. Can k-means clustering be applied to drone traffic? (Yes | No)
The answer is yes. Seeing where traffic builds up will prevent drone jams
(drones circling and waiting).

5. Can k-means clustering be applied to forecasting? (Yes | No)
The answer is yes. K-means clustering can be used for predictions.

6. Lloyd's algorithm is a two-step approach. (Yes | No)
Yes, Lloyd's algorithm first classifies each data point in the best cluster.
Then, once that is done, it calculates the geometric center or centroid of that
center. When no data point changes the cluster anymore, the algorithm has
been trained.

7. Do hyperparameters control the behavior of the algorithm? (Yes | No)
The answer is yes. Hyperparameters determine the course of the
computation: the number of clusters, features, batch sizes, and more.

8. Once a program works, the way it is presented does not matter. (Yes | No)
The answer is no. Without a clear presentation of the results, the whole
training process is confusing at best and useless at worst.

9. K-means clustering is only a classification algorithm. It's not a prediction
algorithm. (Yes | No)
The answer is no. K-means clustering can be used as a prediction algorithm
as well.

Appendix

[515]

Chapter 5 – How to Use Decision Trees to
Enhance K-Means Clustering
The questions will focus on the hyperparameters.

1. The number of k clusters is not that important. (Yes | No)
The answer is no. The number of clusters requires careful selection, possibly
a trial-and-error approach. Each project will lead to different clusters.

2. Mini-batches and batches contain the same amount of data. (Yes | No)
The answer is no. "Batch" generally refers to the dataset, and "mini-batch"
represents a "subset" of data.

3. K-means can run without mini-batches. (Yes | No)
The answer is yes, and no. If the volume of data remains small, then the
training epochs can run on the whole dataset. If the data volume exceeds
a reasonable amount of computer power (CPU or GPU), mini-batches must
be created to optimize training computation.

4. Must centroids be optimized for result acceptance? (Yes | No)
The answer is yes, and no. Suppose you want to put a key in a keyhole.
The keyhole represents the centroid of your visual cluster. You must
be precise. If you are simply throwing a piece of paper in your garbage
can, you do not need to aim at the perfect center (centroid) of the cluster
(marked by the rim of the garbage can) to attain that goal. Centroid
precision depends on what is asked of the algorithm.

5. It does not take long to optimize hyperparameters. (Yes | No)
The answer is yes, and no. If it's a simple project, it will not take long.
If you are facing a large dataset, it will take some time to find the optimal
hyperparameters.

6. It sometimes takes weeks to train a large dataset. (Yes | No)
The answer is yes. Media hype and hard work are two different worlds.
Machine learning and deep learning are still tough projects to implement.

7. Decision trees and random forests are unsupervised algorithms. (Yes | No)
The answer is yes, and no. Decision trees can both be used for supervised
or unsupervised learning. Decision trees can start with a target value, which
makes them supervised. Random forests can be used in the same way.

Answers to the Questions

[516]

Chapter 6 – Innovating AI with
Google Translate

1. Is it better to wait until you have a top-quality product before putting it
on the market? (Yes | No)
The answer is yes, and no. Context is everything. In the early 21st century,
Airbus was struggling to complete the A380, the largest ever passenger
airplane. Their engineers worked on hundreds of improvements before
transporting commercial passengers. We would expect no less!
In the case of Google Translate, it is a massive no. By putting Google
Translate online and providing an API, Google encouraged thousands of
AI developers, linguists, consultants, and users to provide feedback and
improvements. Furthermore, Google, once again, occupies a large share
of the web market.

2. Considering the investment made, a new product should always be priced
high to reach the top segment of the market. (Yes | No)
The answer is yes and no. Again, context determines the answer. When
Ferrari puts a new car on the market, the price has to be high for two
reasons; the quality of the car and the cost of production make it necessary
to do so to make the innovation profitable. Also, Ferrari avoids mass
production to keep its quality at high levels.
When Amazon Web Services put machine learning on the market with
SageMaker, it put a "pay-as-you-go" policy in place, starting at a very low
end of the market. The product had, and has, its limits, but Amazon now
receives tremendous volumes of feedback and is continuously improving
the product.

3. Inventing a new solution will make it known in itself. (Yes | No)
Yes. An invention society is ready to accept will make its way on its own
no matter what. You might be surprised to know that saving a camera's
projected image by drawing it dates so far back in history that nobody
knows for sure when it was first used. Nobody knows if it was invented
or discovered. In any case, the first camera obscura (the first "cameras") was
revolutionary. It is now proven that famous painters used the technique.
The picture was projected on a paper or canvas. The "printer" was manual.
The painter was the "printer." However, cameras, as we know, only
became disruptive in the 20th century.

Appendix

[517]

4. AI can solve most problems without using standard non-learning
algorithms. (Yes | No)
The answer is no. Non-learning classical algorithms are necessary to create
datasets, for example. Furthermore, AI relies on cloud servers, architectures,
standard algorithms in all languages (C++, Java, Python, and others), and
Apache servers. Even on a self-driving car, the sensors installed require
standard hard work to get them working and interpreting information
before AI comes in to solve some of the problems.
AI is like our brain. Without a body, it cannot function.

5. Google Translate can satisfactorily translate all languages. (Yes | No)
After reading this chapter, you might be surprised to have a yes and no
answer. If you are using Google Translate to say "hello," "how are you?",
"thanks for the message," and similar friendly phrases on your favorite
social network or in an email, it is good enough.
But when dealing with more detailed phrases and sentences, Google
Translate provides random satisfactory results. From a user's perspective,
this is bad news. For a developer, it is a goldmine!

6. If you are not creative, it is no use trying to innovate. (Yes | No)
The answer is a massive no. You certainly do not need to be either
imaginative or creative to innovate. Do not let anybody convince you
of such nonsense. If you are designing a solution and find a missing
component, look for some alternative components on the web, talk about
it, and find people that can help. Then get it done through teamwork.
This works every time!
Even the great Bill Gates was smart enough to ask Tim Patterson for help
to develop MS-DOS, and he went on to become a billionaire.

7. If you are not a linguist, it is no use bothering with trying to improve
Google Translate. (Yes | No)
The answer is no! Once again, never let somebody convince you of such
nonsense. Innovating is teamwork. If you like Google Translate and you
understand this chapter and have ideas, team up with a linguist around
you or through a social network. The world is yours to improve!

8. Translating is too complicated to understand. (Yes | No)
No. The way some explain it is too complicated. If you speak a language,
you are an expert in translating your thoughts into words. With work, you
can get into the translation business.

Answers to the Questions

[518]

9. AI has already reached its limits. (Yes | No)
Certainly not! We have just scratched the surface of both theory and
applications.

Chapter 7 – Optimizing Blockchains
with Naive Bayes

1. Cryptocurrency is the only use of blockchains today. (Yes | No)
No. IBM HyperLedger, for example, uses blockchains to organize secure
transactions in a supply chain environment.

2. Mining blockchains can be lucrative. (Yes | No)
Yes. But it is a risk, like any other mining operation or any speculative
endeavor. Some companies have huge resources to mine cryptocurrency,
meaning that they can beat smaller competitors in creating a block.

3. Blockchains for companies cannot be applied to sales. (Yes | No)
No. Blockchain cloud platforms provide smart contracts and a secure way of
managing transactions during a sales process.

4. Smart contracts for blockchains are more accessible to write than standard
offline contracts. (Yes | No)
Yes, if they are standard contracts, this speeds the transaction up.
On the other hand, no. If the transaction is complex and requires
customization, a lawyer will have to write the contract, which can then
only be used on a blockchain cloud platform.

5. Once a block is in a blockchain network, everyone in the network can
read the content. (Yes | No)
Yes, if no privacy rule has been enforced.
No, if a privacy rule has been enforced. IBM Hyperledger, for example,
provides privacy functions.

6. A block in a blockchain guarantees that absolutely no fraud is possible.
(Yes | No)
Yes and no. A block in a blockchain can never be changed again, thereby
avoiding fraud. Nobody can tamper with the data. However, if the
transaction is illegal in the first place, then the block will be fraudulent as
well.

Appendix

[519]

7. There is only one way of applying Bayes' theorem. (Yes | No)
No. There are many variations of Bayes' theorem. Using naive Bayes,
for example, avoids the conditional probability constraint. But another
approach could use conditional probability.

8. Training a naive Bayes dataset requires a standard function. (Yes | No)
No. Gaussian functions, for example, can be used to calculate naive Bayes
algorithms, among others.

9. Machine learning algorithms will not change the intrinsic nature of the
corporate business. (Yes | No)
No. Well-designed machine learning will disrupt every area of business as
algorithms spread through the company, optimizing processes.

Chapter 8 – Solving the XOR Problem
with a Feedforward Neural Network

1. Can the perceptron alone solve the XOR problem? (Yes | No)
Yes. The answer would have been no in 1969. A neural network, or some
other mathematical process, is necessary to solve this problem. For the
record, this is a common problem for electric circuits that function with
"feedforward" electricity, and was solved long ago.

2. Is the XOR function linearly non-separable? (Yes | No)
The answer is no if you use a single neuron, and yes if you use a hidden
layer with at least two neurons. That is a major problem to address in
deep learning. If you cannot separate the features of a face, for example,
in a picture, recognizing that face will prove difficult. Imagine a picture
with one half of the face in shadow and the other half in bright sunlight.
Since the eye and features of one half are in shadow, a poor deep learning
program might only capture half of the face, separating the face in the
wrong place with a poor edge detection function. Linear separability is
thus a key aspect of machine learning.

3. One of the main goals of layers in a neural network is classification.
(Yes | No)
The answer is yes. Once the data is identifiable with a given neural network
architecture, predictions and many other functions become possible.
The key to deep learning is to be able to transform data into pieces of
information that will make sense through the abstraction obtained over
the layers.

Answers to the Questions

[520]

4. Is deep learning the only way to classify data? (Yes | No)
The answer is no. You can classify data with a SQL query, spreadsheets,
AI, machine learning, and standard source code. Deep learning becomes
vital when many dimensions of classification are involved: first finding the
edges of objects in a picture, then forms, and then determining what the
object represents. To do this with millions of pictures is beyond the scope
of standard programming or early AI and machine learning programs.

5. A cost function shows the increase in the cost of a neural network.
(Yes | No)
The answer is no. A cost function determines how much the training costs
you. Running 100,000 epochs is more expensive than running 50,000 epochs.
So, at each epoch, the cost of training (how far the system is from its goal)
must be estimated. Thus, a good cost function will decrease the cost of
running a neural network.

6. Can simple arithmetic be enough to optimize a cost function? (Yes | No)
The answer is yes. As long as you know to what extent your cost function
is increasing or decreasing, anything that works is fine.

7. A feedforward network requires inputs, layers, and an output. (Yes | No)
The answer is yes. Without layers, there is no network.

8. A feedforward network always requires training with backpropagation.
(Yes | No)
The answer is often yes in changing environments. Since the field is new,
we tend to think that once the training is done, the work is done. If the
datasets are very stable in a repetitive environment, such as recognizing
the difference between various constant products in a shop, warehouse,
or factory, then the neural network will do the classification it is designed
for. If new products are introduced, then training can be initiated again.

9. In real-life applications, solutions are only found by following existing
theories. (Yes | No)
The answer is no. Without academic research, deep learning would not
even exist. Without universities, the ideas used would be so simple that they
would never work well.
On the other hand, researchers need real-life feedback. If we find new ways
of doing things they recommend, we should publish them to help global
research. It's a two-way street.

Appendix

[521]

Chapter 9 – Abstract Image Classification
with Convolutional Neural Networks
(CNNs)

1. A convolutional neural network (CNN) can only process images.
(Yes | No)
The answer is no. CNNs can process words, sounds, or video sequences,
to classify and predict.

2. A kernel is a preset matrix used for convolutions. (Yes | No)
The answer is yes, and no. There are many preset matrices used to process
images, such as the one used in Edge_detection_Kernel.py in this chapter.
However, in this chapter, kernels were created randomly, and then the
network trained their weights to fit the target images.

3. Does pooling have a pooling matrix, or is it random?
In some cases, a pooling matrix has a size that is an option when the
pooling layer is added to the model, such as a 2×2 pooling window.
However, in AutoML neural networks, for example, we can try to run
optimizing algorithms that will test various sizes to see which one
produces the best performance.

4. The size of the dataset always has to be large. (Yes | No)
No. A dataset does not have a standard size. It depends on the training
model. If the target images, for example, do not contain complex features,
the dataset will be smaller than a complex feature dataset. Furthermore,
the ImageDataGenerator function will expand the data by distorting it
with the options provided.

5. Finding a dataset is not a problem with all the available image banks on
the web. (Yes | No)
The answer is yes, and no. Yes, because if the model remains a standard
academic one, then the available images (CIFAR, MNIST, or others) will
suffice.
No, because in real-life corporate situations, you will have to build your
dataset and add images containing noise. Noise requires more fine-tuning
of the model to become reliable and generalized.

6. Once a CNN is built, training it does not take much time. (Yes | No)
The answer is no. Whatever the model is, training will remain time-
consuming if you want it to be reliable. As seen in this chapter, a model
requires a lot of options and mathematical thinking.

Answers to the Questions

[522]

7. A trained CNN model applies to only one type of image. (Yes | No)
Yes and no. There are three main types of overfitting:

 ° Overfitting a model for a certain type of image with absolutely no
consequence of implementation. In this case, the model classifies
and predicts enough to satisfy the goals set. Suppose you are using
a type of image with a very high definition. The CNN will detect
the small details we may be trying to detect. However, when the
application is in production, lower-quality images might make the
model fail to identify what it had accurately detected with high-
quality images.

 ° Overfitting a model that creates implementation problems because
it cannot adapt to different images at the same time. The model
will then go through more training.

 ° Overfitting a model that trains a certain type of image quite well but
does not fit similar types of images when needed.

Each situation has its constraints. As long as the model works, no general
rules apply. It is up to you to decide.

8. A quadratic loss function is not very efficient compared to a cross-entropy
function. (Yes | No)
The answer is no. Each model has its constraints. Quadratic loss functions
work fine on some models and do not provide good results on others.
This represents the main problems of training a model. No general rules
will help you. You have to use your neurons or write a program that
modifies the model automatically.

9. The performance of a deep learning CNN does not present a real issue
with modern CPUs and GPUs. (Yes | No)
The answer is yes, and no. If the model runs quickly enough for your needs,
then performance will not limit the outcome of your project. However, in
many cases, it remains a problem. Reducing features to focus on the best ones
is one of the reasons that the layers bring the size to analyze down, layer by
layer.

Chapter 10 – Conceptual Representation
Learning

1. The curse of dimensionality leads to reducing dimensions and features in
machine learning algorithms. (Yes | No)

Appendix

[523]

Yes. The volume of data and features makes it necessary to extract the main
features of an observed event (an image, sound, and words) to make sense of
it.
Overfitting and underfitting apply to dimensionality reduction as well.
Reducing the features until the system works in a lab (overfitting) might
lead to nowhere once the application faces real-life data. Trying to use all the
features might lead to underfitting because the application solves no problem
at all.
Regularization applies not just to data but to every aspect of a project.

2. Transfer learning determines the profitability of a project. (Yes | No)
Yes, if an application of an AI model in itself was unprofitable the first time,
but could generate profit if used for a similar type of learning. Reusing some
functions would generate profit, no doubt.
No, if the first application was extremely profitable but "overfitted" to meet
the specifications of a given project.

3. Reading model.h5 does not provide much information. (Yes | No)
No. No in this case means that the assertion of the sentence is wrong.
The saved model does provide useful information. Saving the weights of
a TensorFlow model, for example, is vital during the training process to
control the values. Furthermore, trained models often use HDF files (.h5)
to load the trained weights. A Hierarchical Data Format (HDF) contains
multidimensional arrays of scientific data.

4. Numbers without meaning are enough to replace humans. (Yes | No)
Yes, in the sense that in many cases, mathematics provides enough tools to
replace humans for many tasks (games, optimization algorithms, and image
recognition).
No, in cases where mathematics cannot solve problems that require concepts,
such as many aspects of NLP.

5. Chatbots prove that body language doesn't mean that much. (Yes | No)
Yes, in the sense that in many applications, body language does not provide
additional information. If only a yes or no answer is required, body language
will not add much to the conversation.
No, in the sense that if emotional intelligence is required to understand the
tone of the user, a webcam detecting body language could provide useful
information.

Answers to the Questions

[524]

6. Present-day artificial neural networks (ANNs) provide enough theory to
solve all AI requests. (Yes | No)
No. Artificial neural networks (ANNs) cannot solve thousands of problems,
for example, translating poetry novels or recognizing images with forms
that constantly vary.

7. Chatbots can now replace humans in all situations. (Yes | No)
No. Concepts need to be added. The market provides all the necessary tools.
It will take some years to be able to speak effectively with chatbots.

8. Self-driving cars have been approved and do not need conceptual training.
(Yes | No)
Yes and no; there is some debate in this area. On the one hand, sensors
and mathematics (linear algebra, probabilities) might succeed in effectively
navigating roads in most driving conditions within a few years.
However, certain problems will require concepts (and more robotics) in
critical situations. If a self-driving car encounters a wounded person lying
on the road, what is the best approach? The choices are to call for help, find
another person if the help arrives too late, pick up the victim, drive them to
a hospital (robotics), and much more.

9. Industries can implement AI algorithms for all of their needs. (Yes | No)
Yes and no. In many cases, all of the necessary tools are there to be used.
If the right team decides to solve a problem with AI and robotics, it can be
done.
However, some tools are missing when it comes to addressing particular
circumstances; for example, real-time management decision tools when
faced with unplanned events. If a system breaks down, humans can still
adapt faster to find alternative solutions to continue production.

Chapter 11 – Combining Reinforcement
Learning and Deep Learning

1. A CNN can be trained to understand an abstract concept? (Yes | No)
Yes. A CNN can classify images and make predictions. But CNNs can
analyze any type of object or representation. An image, for example, can be
linked to a word or phrase. The image thus becomes a message in itself.

Appendix

[525]

2. Is it better to avoid concepts and only use real-life images? (Yes | No)
No. Images provide many practical applications, but at some point, more
is required to solve planning problems, for example.
Planning requires much more than this type of dataset.

3. Do planning and scheduling mean the same thing? (Yes | No)
No. Planning describes the tasks that must be carried out. Scheduling adds
a time factor. Planning tells us what to do, and scheduling tells us when.

4. Is Amazon's manufacturing patent a revolution? (Yes | No)
No. Manufacturing clothing has been mastered by factories around the
world. It would be a revolution if something in the process was entirely
new. However, automation in the apparel industry has been around for
20+ years. The patent is a specialized case of elements that exist, like a new
brand of car.
Yes. With such a worldwide distribution, Amazon has come very close
to the end user. The end user can choose a new garment, and it will be
manufactured directly on demand. This connectivity will change the
apparel manufacturing processes and force its competitors to find new
ways of making and selling garments.

5. Learning how warehouses function is not useful. (Yes | No)
No. Online shopping requires more and more warehouse space
and processes. The number of warehouses will now increase faster than
shops. There are many opportunities for AI applications in warehouses.

6. Online marketing does not require AI. (Yes | No)
No. On the contrary, AI is used by applications for online marketing every
day, and this will continue for decades.

Chapter 12 – AI and the Internet of Things
1. Driving quickly to a location is better than safety in any situation.

(Yes | No)
Yes and no.
Self-driving cars face the same difficulties as human-driven cars: getting to a
location on time, respecting speed limits, or driving as safely as possible. Self-
driving cars, like humans, are constantly improving their driving abilities
through experience.

Answers to the Questions

[526]

Yes. Sometimes, a self-driving car will perform better on a highway with
little traffic.
No. Sometimes, if the highways are dangerous (owing to weather
conditions and heavy traffic), a self-driving car should take a safer road
defined by slow speed and little to no traffic. This way, if difficulties occur,
the self-driving car can slow down and even stop more easily than on a
highway.

2. Self-driving cars will never really replace human drivers. (Yes | No)
Nobody can answer that question. As self-driving cars build their abilities
and experience, they might well end up driving better than humans.
In very unpredictable situations, humans can go off the road to avoid
another car and back off a bit, for example. It will take more work to get
a self-driving car to do that.
One thing is certain, though. If a human is driving all night and falls asleep,
the self-driving car will detect the head slumping movement, take over,
and save lives. The self-driving car can also save lives if the human has a
medical problem while driving.

3. Will a self-driving fire truck with robots be able to put out a fire one day?
(Yes | No)
Yes. Combining self-driving fire trucks with robots will certainly save
many lives when a fire department faces difficult fires to extinguish.
Those saved lives include firefighters who risk their own lives. It might
help firefighters focus on helping people while robots do tougher jobs.
This robot-human team will no doubt save thousands of lives in the future.

4. Do major cities need to invest in self-driving cars or avoid them?
(Invest | Avoid)
Invest. With slow but safe self-driving cars, commuters could share public,
free, or very cheap electric self-driving cars instead of having to drive. It
would be like having a personal chauffeur.

5. Would you trust a self-driving bus to take children to school and back?
(Yes | No)
This answer will change with time, as technology continues to evolve.
No. Not in the present state of self-driving vehicles. You should not fully
trust an autonomous vehicle 100%!
Yes, when self-driving cars, buses, and trucks prove that they can
outperform humans. Self-driving vehicles will not make the same mistakes
as humans: using smartphones while driving, talking to passengers without
looking at the road, and many others.

Appendix

[527]

6. Would you be able to sleep in a self-driving car on a highway? (Yes | No)
No, not in the present state of self-driving vehicle technology.
Yes, when reliability replaces doubts.

7. Would you like to develop a self-driving program for a project for a city?
(Yes | No)
That one is for you to think about! You can also apply the technology to
warehouses for AGVs by contacting the companies or AGV manufacturers
directly.

Chapter 13 – Visualizing Networks with
TensorFlow 2.x and TensorBoard

1. A CNN always has the same number of layers. (Yes | No)
No. A CNN does not have the same number of layers or even the same
type of layers. The number of layers is part of the work to optimize an
artificial neural network.

2. ReLU is the best activation function. (Yes | No)
No. ReLU is an efficient activation function, but there are others such as
leaky ReLU, softmax, sigmoid, and tanh.

3. It is not necessary to compile a sequential classifier. (Yes | No)
No. The assertion should be yes – it is necessary.

4. The output of a layer is best viewed without running a prediction.
(Yes | No)
No. The output of a layer and a prediction are unrelated. The output of the
layer can be the transformation of a layer (convolutional, pooling, dropout,
flattening, other) or a prediction.

5. The names of the layers mean nothing when viewing their outputs.
(Yes | No)
No. The layers mean everything! A pooling layer and a dropout layer are
quite different.

6. TensorFlow 2.x does not include Keras. (Yes | No)
No. TensorFlow has now integrated Keras, which helps to build seamless
neural networks.

Answers to the Questions

[528]

7. Google Colaboratory is just a repository, like GitHub. (Yes | No)
No. Google Colaboratory provides a small but free server to create and run
programs online.

8. Google Colaboratory cannot run notebooks. (Yes | No)
No. It can run notebooks.

9. It is possible to run TensorBoard in Google Colaboratory
notebooks (Yes | No)
Yes. This is a useful feature.

10. Accuracy is displayed in TensorBoard (Yes | No)
Yes. It is an efficient way to evaluate the efficiency of ANNs, for example.

Chapter 14 – Preparing the Input of
Chatbots with Restricted Boltzmann
Machines (RBMs) and Principal
Component Analysis (PCA)

1. RBMs are based on directed graphs. (Yes | No)
No. RBM graphs are undirected, unsupervised, and memoryless, and the
decision-making is based on random calculations.

2. The hidden units of an RBM are generally connected to one another.
(Yes | No)
No. The hidden units of an RBM are not generally connected to each other.

3. Random sampling is not used in an RBM. (Yes | No)
No. False. Gibbs random sampling is frequently applied to RBMs.

4. PCA transforms data into higher dimensions. (Yes | No)
Yes. The whole point of PCA is to transform data into a lower number of
dimensions in higher abstraction dimensions (key dimensions isolated) to
find the principal component (highest eigenvalue of a covariance matrix),
then the second highest, down to the lowest values.

5. In a covariance matrix, the eigenvector shows the direction of the vector
representing that matrix, and the eigenvalue shows the size of that vector.
(Yes | No)
Yes. Eigenvalues indicate how important a feature is, and eigenvectors
provide a direction.

Appendix

[529]

6. It is impossible to represent a human mind in a machine. (Yes | No)
No. It is possible to a certain extent with sensors and in a limited perimeter.

7. A machine cannot learn concepts, which is why classical applied
mathematics is enough to make efficient AI programs for every field.
(Yes | No)
No. Never believe that. Progress is being made and will never stop until
mind machines become mainstream.

Chapter 15 – Setting Up a Cognitive NLP
UI/CUI Chatbot

1. Can a chatbot communicate like a human? (Yes | No)
No. Communicating like a human means being human: having a body with
body language, sensations, odors, fear hormones, and much more. Chatbots
only emulate these behaviors.

2. Are chatbots necessarily AI programs? (Yes | No)
No. Many call centers use the "press 1, press 2 … press n" method, which
requires careful organization but no AI.

3. Chatbots only need words to communicate. (Yes | No)
The answer is not a clear-cut one.
Yes. Simple chatbots can communicate with words in a controlled situation.
No. When polysemy (several meanings for the same word or situation) is
involved, pictograms and more add more efficient dimensions.

4. Do humans only chat with words? (Yes | No)
No. Humans express themselves through the tone of their voice, body
language, or music, for example.

5. Humans only think in words and numbers. (Yes | No)
No. Certainly not. Humans think in images, sounds, odors, and feelings.

6. Careful machine learning preparation is necessary to build a cognitive
chatbot. (Yes | No)
The answer depends on the context.
No. In limited "press 1 or press 2 " situations, chatbots can perform well
with limited cognitive capacities.
Yes. To engage in a real conversation with a human, mental images are
the key to providing an empathetic exchange.

Answers to the Questions

[530]

7. For a chatbot to function, a dialog flow needs to be planned. (Yes | No)
This depends upon what you want your chatbot to do.
Yes. It will provide better results in a business environment.
No. If you want the chatbot to talk freely, you need to free it a bit. This still
requires planning of the dialog, but it is more flexible.

8. A chatbot possesses general AI, so no prior development is required.
(Yes | No)
No. This is presently impossible. Only narrow (specific to one or a few
fields) AI exists in real life, contrary to science fiction movies and media
hype.

9. A chatbot translates fine without any function other than a translation API.
(Yes | No)
No. At this point in the history of translation bots, the translations are not
quite reliable without additional customization.

10. Chatbots can already chat like humans in most cases. (Yes | No)
No. Interpreting a language will take quite some more challenging work
and contributions.

Chapter 16 – Improving the Emotional
Intelligence Deficiencies of Chatbots

1. When a chatbot fails to provide a correct response, a hotline with actual
humans needs to take over the conversation. (Yes | No)
This comes down to context and practicality.
Yes. That is what the best solution would be. To have an interactive chat
service kick in.
No. In many cases, it would be too expensive. A nice support screen could
do the job and send an email to the support team.

2. Small talk serves no purpose in everyday life or with chatbots. It is best to
just get to the point. (Yes | No)
Again, this is a matter of context.
Yes. If it's an emergency bot, of course!
No. If the chatbot is there to perform a tedious administrative function,
some degree of small talk will make the system more bearable.

Appendix

[531]

3. Data logging can be used to improve speech recognition. (Yes | No)
Yes. Absolutely. More data means better machine learning training.

4. The history of a chatbot agent's conversations will contain valuable
information. (Yes | No)
Yes. Absolutely. More feedback means more machine learning progress.

5. Present-day technology cannot make use of the data logging of a user's
dialogs. (Yes | No)
No. We can, of course, parse data logging and extract valuable information.

6. An RNN uses sequences of data to make predictions. (Yes | No)
Yes, it does.

7. An RNN can generate the dialog flow of a chatbot automatically for all
applications. (Yes | No)
Yes and no. It can, but the quality is sometimes still terrible at this point in
the history of automatic dialog flows!

Chapter 17 – Genetic Algorithms in
Hybrid Neural Networks

1. A cell contains 42 chromosomes. (Yes | No)
No. There are 46 chromosomes in a cell.

2. A genetic algorithm is deterministic, not random. (Yes | No)
No. A genetic algorithm is random, which makes it more efficient than
many deterministic algorithms.

3. An evolutionary algorithm means that program code evolves.
(Yes | No)
There is not a single clear-cut answer.
No. The program runs like any other program.
Yes. In some ways, when it is used to optimize a neural network in a
hybrid neural network, it changes the parameters of the system. Also, it is
possible to use a genetic algorithm to add or take layers out of a CNN, for
example.

4. It is best for a child to have the same genes as one of the parents even after
many generations. (Yes | No)
No. Certainly not! We need diverse genes to remain a fit genetic group.

Answers to the Questions

[532]

5. Diversity makes the gene sets weaker. (Yes | No)
No. The greater the diversity, the richer the genetic pool is to adapt and
remain fit.

6. Building a neural network only takes a few lines, and the architecture
always works. (Yes | No)
This depends on what you mean by "work."
Yes. Building a neural network only takes a few lines with TensorFlow 2.x,
for example, and it will work.
No. The neural network will work, but it will most probably not be efficient
until its architecture and hyperparameters are fine-tuned.

7. Building a neural network with a genetic algorithm can help optimize
the architecture of the layers. (Yes | No)
Yes. It is possible to extend a genetic algorithm to layer optimizing. Each
layer can be a gene, and then the various alternatives can be run to check
their accuracy.

8. Hybrid neural networks are useless since deep learning will constantly
progress. (Yes | No)
No. Deep learning will reach an asymptote, as do all systems. At that point,
new dimensions can be added to deep learning architecture, such as genetic
algorithms.

9. Would you trust a genetic algorithm to make decisions for you? (Yes | No)
Yes, if the system is properly designed. No if you don't trust genetic
algorithms!

10. Would you trust a hybrid neural network to optimize the architecture of
your network? (Yes | No)
Yes, if the system is properly designed. No, if it is unreliable or biased.

Chapter 18 – Neuromorphic Computing
1. Neuromorphic computing reproduces our mental activity. (Yes | No)

No. That is the point. Neuromorphic begins with sub-symbolic low-level
neuronal brain activity stimulations that do not form high-level mental
activity yet. Our mental activity already uses symbols and contains
representations in the form of words, images, numbers, and all kinds of
constructions in general.

Appendix

[533]

However, we can say YES if we are referring to the output results translated
into mental activity. My point is that yes and no answers limit our views
of AI.

2. Neuromorphic computing reproduces our brain activity. (Yes | No)
Yes. That is the point! The core concept is to go from brain activity to
structures formed by neuron spikes.

3. Semantic Pointer Architecture (SPA) is a hardware architecture. (Yes | No)
No. Semantic pointers are like computer program pointers such as C++
pointers. The difference is that they carry a partial meaning of representation
to come, hence the word "semantic."

4. NEF stands for Neural Engineering Framework. (Yes | No)
Yes, this is true.

5. Loihi is a classical chip. (Yes | No)
No. Not at all! Loihi is an Intel neurocomputing chip containing a massive
number of neurons. A human brain contains around 100 billion neurons.
Imagine that, soon, you'll have a network of neurocomputing chips (Intel
or other) that attain that number. Then imagine what can be done with
semantic pointers through neurocomputing.

6. Reproducing our brain's neural activity cannot solve an equation.
(Yes | No)
No. Of course, we can use neurocomputing to solve equations through the
SPA approach.

7. An ensemble in Nengo contains algorithms. (Yes | No)
No. But the question was tricky! Basically, Nengo uses a non-symbolic
approach as discussed at length previously. However, it contains Python
tutorials with many algorithms solved through neurocomputing, forming
a complete problem-solving package.

8. Spiking blocks neuronal activity. (Yes | No)
No. But again, this is a tricky question. Spiking is reflected in the level of
activity in a neuron. So, in that respect, the answer is no. But a spiking
neuron can inhibit another neuron, thereby blocking it indirectly.

9. Firing patterns can be used to analyze brain activity. (Yes | No)
Yes. Firing patterns change in time in neurocomputing, providing useful
information on how the neurons reach a given state.

Answers to the Questions

[534]

10. Machine learning and deep learning are only metaphors of our brain's
activity. (Yes | No)
Yes. That is the core problem associated with deep learning. They are high-
level representations of our brain's neuronal activity.

Chapter 19 – Quantum Computing
1. Beyond the hype, no quantum computer exists. (Yes | No)

No. False. You can already run a quantum computer on IBM Q's cloud
platform: https://www.research.ibm.com/ibm-q/.
The following screenshot is the result of one of the real quantum computer
(IBM) calculations I ran on a quantum score explained in the chapter:

Figure A.1: IBM quantum computer calculation

https://www.research.ibm.com/ibm-q/

Appendix

[535]

2. A quantum computer can store data. (Yes | No)
No. Instability prevents any form of storage at this point.

3. The effect of quantum gates on qubits can be viewed with the Bloch
sphere. (Yes | No)
Yes. A Bloch sphere will display the state of a qubit.

4. A mind that thinks with past experiences, images, words, and other bits
of everyday information, like stored memories, will find deeper solutions
to problems that mathematics alone cannot solve. (Yes | No)
There is no single generally accepted answer for this. Just as qubits, the
answer is somewhere between yes (1) and no (0)!
No. False. Many researchers believe that mathematics alone can solve all
human problems.
Yes. True. Mathematics alone cannot replace deep thinking. Even if
computers have incredible power and can beat human players at chess, for
example, they still cannot adapt to new situations without going through
a design and training process. Concepts need to be added and experienced
(memory as well).
I bet that machine mind concepts will become progressively more
mainstream to solve deep thinking problems.

5. A quantum computer will solve medical research problems that cannot
be solved today. (Yes | No)
Yes. There is no doubt about that. The sheer computing power of a quantum
computer can provide exponential DNA sequencing programs for epigenetic
research.

6. A quantum computer can solve mathematical problems exponentially
faster than classical computers. (Yes | No)
Yes. Classical computers function at 2 × n (number of bits), and quantum
computers run at 2n (n being the number of qubits)!

7. Classical computers will soon disappear and smartphone processors too.
(Yes | No)
No. Quantum computers require such a large amount of space and physical
stability that this will not happen soon. Furthermore, classical computers
and smartphones can store data; quantum computers cannot.

Answers to the Questions

[536]

8. A quantum score cannot be written in source code format but only with
a visual interface. (Yes | No)
No. False. IBM, for example, can swap the quantum from score to a QASM
interface or display both, as shown here:

Figure A.2: QASM interface

9. Quantum simulators can run as fast as quantum computers. (Yes | No)
No. Certainly not! A simulator shows how a quantum score would behave
on a real quantum computer. Although the simulator can help build the
score, a quantum computer will run exponentially faster than the simulator.

10. Quantum computers produce intermediate results when they are running
calculations. (Yes | No)
No. This is not possible. The qubits are too unstable. Observing them
makes the system collapse. However, simulators such as Quirk come in
handy. Since they are not real, intermediate results can be displayed to
design a quantum score.

[537]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence with Python

Alberto Artasanchez, Prateek Joshi

ISBN: 978-1-83921-953-5

 ● Understand what artificial intelligence, machine learning, and data science are
 ● Explore the most common artificial intelligence use cases
 ● Learn how to build a machine learning pipeline
 ● Assimilate the basics of feature selection and feature engineering
 ● Identify the differences between supervised and unsupervised learning

https://www.packtpub.com/data/artificial-intelligence-with-python-second-edition

[538]

Other Books You May Enjoy

 ● Discover the most recent advances and tools offered for AI development in the
cloud

 ● Develop automatic speech recognition systems and chatbots
 ● Apply AI algorithms to time series data

[539]

Other Books You May Enjoy

AI Crash Course

Hadelin de Ponteves

ISBN: 978-1-83864-535-9

 ● Master the key skills of deep learning, reinforcement learning, and deep
reinforcement learning

 ● Understand Q-learning and deep Q-learning
 ● Learn from friendly, plain English explanations and practical activities
 ● Build fun projects, including a virtual-self-driving car
 ● Use AI to solve real-world business problems and win classic video games
 ● Build an intelligent, virtual robot warehouse worker

https://www.packtpub.com/data/ai-crash-course

[540]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[541]

Index
Symbols
2D convolution layer

adding 210
kernel 210, 211
shape 215

A
absolute error 117
activation functions 215, 340, 341
Adam optimizer 225, 226
adaptive moment estimation (Adam) 225
adaptive thinker

becoming 4
affirmation

example 410
agent

about 4
creating, to learn Dialogflow 377, 378
fulfillment functionality, adding to 392, 393

AI
as frontier 135
disruption 123
emergency, in recent years 125
innovation 123
mathematical theories 124
public awareness 126

algorithm cell 453, 454
apparel conveyor belt processing 271
apparel manufacturing process 267, 268
artificial hybrid neural networks

about 456
LSTM, building 457, 458
model, goal 458

artificial neural networks (ANNs) 206

automated apparel manufacturing process
CRLMM, applying to 266

Automatic Text to Speech function 399
Auto Speech Adaptation 399

B
backpropagation

used, for implementing vintage XOR solution
in Python 189-191

backtranslation 145-147
Bellman equation

about 11, 13
mathematical representation, building of 10

binary cross-entropy 224, 225
bitcoin mining 159, 160
blob 305
Bloch sphere 493, 494
block

creating 165
exploring 166

blockchain anticipation novelty 169, 170
blockchain data

used, for optimizing storage levels 170
blockchains

background 158, 159
used, for sharing information in supply

chain 161-164
using, in supply chain network 164

Boltzmann equation and constant 3
bot

running, on website 397
bot virtual clusters

as solutions 86, 87

[542]

C
cells 435
centroid 83, 96
chatbot

agents 376
machine learning, using in 398

child 439
classifier

about 210
using, for training 229, 230

CLT 96
clusters 83
CNN-CRLMM

implementing, to detect gaps 276
CNN model

compiling 223
data, loading 227, 228
goal 222, 223
saving 230
training 221

cogfilmdr agent
enhancing, with fulfillment webhook 394-396

conceptual representation learning
metamodels

blessing of dimensionality 255
curse of dimensionality 254
motivation 254

conditional probability 167
conditioning management 75, 76
context 138, 387-391
continuous cycle of k-means clustering

chaining, to decision tree 110-114
contrastive divergence 354
convergence

about 9, 48
implicit convergence 49
numerically controlled gradient descent

convergence 49-55
Conversational User Interfaces (CUI) 386
convolutional 207
convolutional layer

activation functions 328, 329
higher-level representations, through

layers 329-331
convolutional neural networks (CNNs)

2D convolution layer, adding 210

about 124, 205, 206, 297
convolution layer 219
defining 207-209
dense layers 220
flattening layer 220
initializing 209
layers, building of 319-322
pooling 218, 219
pooling layer 219

cost function 191-194
covariance 365
CRLMM

applying, to automated apparel manufacturing
process 266

model, applying of 297, 298
parking lots, classifying 301
running 307
trained model, using 300
training 269

crossover 438
cryptocurrency

using 160
curse of dimensionality 124

D
data augmentation

about 227
on testing dataset 228

data logging 415-418
data points 83
dataset

about 298-300
deriving 367
designing 28, 29, 69

dataset optimization 68
decision line 304
decision tree

training 106-109
decoherence 487
deeper translation

with phrase-based translations 147-150
degrees 492
dense activation functions 221
dense layer 428
derivative 50
design matrix

[543]

approval 70, 71
approval, obtaining on format 71, 72

Dialogflow
learning 377, 378

difficulty of problem
identifying 94

dimensionality reduction 72-74
disruption

in AI 123
disruptive solutions

versus revolutionary solutions 127
domain learning

about 247
gap concept 249-252
gap datasets 253
trained model program 248
trained models 248

double-checking function 116
dropout layers

for higher-level representations 333

E
eigenvalues 365, 366
eigenvectors 366
embedding 427
emotional polysemy

problems, solving of 408
emotions

creating 418-422
energy function 354
Enhanced Speech Models 399
entities

about 378
creating 379
saving 381

episodes
evaluating, of learning sessions 46-48

epoch accuracy 339
epochs

running 355-357
error function 354
evolutionary algorithms 434-437
evolutionary computation 436

F
facial analysis fallacy

about 411
frown 411
smile 411

feature entity
creating 382

features 29, 167
feature vector

creating 366
feedforward neural network (FNN)

about 179
building 184
defining 184
used, for implementing vintage XOR solution

in Python 189-191
fitness 439, 440
fitness cell 454, 455
FNN XOR function

applying, to optimize subsets of
data 196-202

food conveyor belt processing 270
frequentist error probability function

adding 151, 152
fulfillment

defining 393, 394
fulfillment functionality

adding, to agent 392, 393
fulfillment webhook

cogfilmdr agent, enhancing 394-396
full training dataset

training 98

G
ga_main() cell 455, 456
gamma 13
GA model

creating 437
gap concept 237, 238
gap conceptual dataset 253, 254
gaps

abstract notions 272, 273
Gaussian naive Bayes

implementing 173, 174
gene set of parent 438
gene set of population 438

[544]

genetic algorithm, building in Python
about 440
algorithm, calling 441
crossover function 445
display parent 444, 445
fitness 443, 444
generations, producing of children 447-450
libraries, importing 440
main function 441
mutation function 446, 447
parent generation 442, 443
parent generation process 442
summary code 450

geometric center 83
Gibbs sampling 352
Gini impurity 64
Google Colaboratory

about 334-336
URL 334

Google's developers' API client library page
reference link 128

Google's translation service
implementing 129, 130

Google Translate
about 136
customizing, with Python program 137, 138
from linguist's perspective 130
header 128
linguistic assessment 131
program 128
using 128
working with 131

Google Translate customized experiment
conclusions 152

Google_Translate_Customized.py
KNN function, implementing in 144

gradient 50
gradient descent 191-194
graphics processing unit (GPU) 93
greetings problem

example 409
grouping 196
GRU 427

H
heredity

in humans 434, 435
working 435, 436

H gate 495, 496
hidden units

computing, in training function 351, 352
hub 169
human analytic capacity

evaluating 56-59
hyperparameters 81

I
IBM Q

quantum computer score 497-499
implicit convergence 49
inductive abstraction 235
inductive thinking 235
innovation

in AI 123
integration 468
intent

about 382
creating 384, 385

inventions
versus innovations 126

isotropic distribution 305

J
Jargon 132

K
kernel

about 210
developers' approach 212-214
intuitive approach 211, 212
mathematical approach 214

k-means clustering
mathematical definition 78, 79
unsupervised learning 92, 93

k-means clustering algorithm
limits of implementation 87

k-means clustering program 77, 78
k-means clustering solution

[545]

data 75
implementing 74
model, loading 84, 85
model, saving 84, 85
results, analyzing 85, 86
vision 74, 75

KNN algorithm
about 138
implementing 139-142

KNN function
implementing, in Google_Translate_

Customized.py 144
knn_polysemy.py program 142-144

L
labels 304
layers

building, of CNN 319-322
leaf 64
lexical field 132, 135
linearly separable model

about 181, 182
disadvantages 182, 183

linear separability 194, 195
linguistic assessment

of Google Translate 131
LLN

using 96
Lloyd's algorithm 80
load keyword 34
logistic activation functions 35
logistic classifier 36, 37
logistic function 37, 38
loss function

about 223
quadratic loss function 223, 224

LSTM 425

M
machine learning

using, in chatbot 398
versus traditional applications 23

machine learning agents
about 398
speech-to-text function 398
spelling correction 401, 402

text-to-speech function 399, 400
machine learning algorithms

significance 403, 404
machine thinking

adapting 4
macrostates 4
mapping environment 8
margin 304
Markov chain 12
Markov decision process (MDP)

about 1, 124, 297
in natural language 7, 8
mathematical representation, building of 10

Markov property 12
mathematical description 28
mathematical model

building 10
McCulloch-Pitts neuron

about 31-34
using 29-31

MDP agent 8, 9
MDP function

standard output 278, 279
target, finding for 284-286

MDP input 278
MDP output 278, 279
MDP output matrix

graph interpretation 280
MDP result matrix 281, 282
metrics 226
microstates 4
MindX

conceptual representations 500
MindX experiment

about 501
data, preparing 501
quantum function 504
situation function 501-503

miner 160
mini-batches

random sampling, implementing 95
ML algorithms 103
ML/DL model

selecting 69, 70
ML projects

key standard corporate guidelines, avoiding
76, 77

[546]

model
applying, of CRLMM 297, 298
defining 336
training 336

Monte Carlo estimator
using 97

mutation 439

N
naive Bayes

example 167-169
implementing, in Python 173
limits 174
Python program 174-176
supply chain, optimizing with 167

natural language 28
natural language processing (NLP) 376
natural language understanding (NLU) 376
Nengo

about 463
data, visualizing 470-474
examples 465
information, retrieving with probes 475-478
installing 464
neuron dimensions 468
node 468, 469
Python program, creating 466
reference link 464
unique approach, applying to critical AI

research areas 479-482
Nengo ensemble 466, 467
Nengo frontend API definitions

reference link 470
Nengo GUI

installing 464
reference link 464

Nengo neuron types
about 467
reference link 468

Nengo objects
connecting 470
reference link 470

Neural Engineering Framework (NEF) 463
neural machine translation (NMT) 144
neural networks 124
neuromorphic computing 462, 463

nodes 160
NOT gate 495
NP-hard 94, 95
numerically controlled gradient

descent 49,55

O
optimal production rate (OPR) 236
optimizer

about 281
as regulator 281

original perceptron 180
output of layers, CNN

exploring, with TensorFlow 318, 319
overfitting 247

P
parking lot, finding

about 310, 311
itinerary graph 313, 314
support vector machine 311, 312
weight vector 314

parking space
finding 307-310

partition function 354
PCA

about 362, 363
analyzing, to obtain entry point for

chatbot 370-372
representing, with TensorBoard

Projector 367-370
weights of RBM, using as feature

vectors 357-362
phrase-based machine translation

(PBMT) 144
physical neural network

about 451
features 452

Pickle 84
plan 264
pointer 463
policy 8, 12
polysemy 136
pooling 218
pooling layer

for higher-level representations 332

[547]

poor conditioning 75
population 438
posterior probability 167
postsynaptic currents (PSCs) 467
prediction 84
prediction program

running 274
probabilistic distributions 3
problem

describing, to solve 7, 8
profit

generating, with transfer learning 234, 235
proof of concept (POC) 93
public service project 294
purchase plan

about 260
example 260

Python
naive Bayes, implementing 173
restricted Boltzmann machine (RBM),

building in 350
vintage XOR solution, implementing with

backpropagation 189-191
vintage XOR solution, implementing with

FNN 189-191
Python program

about 80
Google Translate, customizing 137, 138
hyperparameters 81
k-means clustering algorithm 82
result labels, defining 82
results, displaying 83
training dataset 81

Python-TensorFlow architecture 35

Q
Q-learning 4, 277
quadratic loss function 223, 224
quantum computers

about 486
speed 487, 489

quantum computer score
with IBM Q 497-499
with Quirk 496, 497

quantum gates, with Quirk
about 494

H gate 495, 496
NOT gate 495

quantum score
composing 494
creating 504, 505
output 506
running 505

qubit
defining 490
position 491
representing 490, 491

Quirk
quantum computer score 496, 497
URL 494

R
radians 492
radius 492
random forests 114-116
randomness 13
random sample

training, of training dataset 98, 100
random sampling

implementing, with mini-batches 95
of hidden units 352

raw data
preprocessing 103

RBM class
creating 350
training function, creating in 350, 351

real-life issues, overcoming with three-step
approach

about 5
mathematical model, building 10
problem, describing 7, 8
source code, writing 14-16

real-time manufacturing process 262
real-time manufacturing revolution 263-266
reconstruction 353
rectified linear unit (ReLU) 215-217
recurrent neural network (RNN) 144
regularization 247
reinforcement learning model

use cases 20-23
reinforcement learning (RL)

about 1, 12

[548]

Boltzmann equation and constant 3
Boltzmann, with optimal transport 3
concepts 2
lessons 16, 17
optimal transport 2
outputs, using 18-20
probabilistic distributions 3

restricted Boltzmann machine (RBM)
about 345
architecture 346, 347
building 345
building, in Python 350
energy-based model 347-349
structure 350

revolutionary solutions
versus disruptive solutions 127

reward 12
reward matrix 41
RL-DL-CRLMM

building 274, 275
circular model 286-290
circular process 275
components 274, 275

RL-DL-CRLMM model
setting up 295-297

RNN
text generation 426
using 424, 425

RNN research
for future automatic dialog generation 423

root-mean-square deviation (RMSprop) 226
rotations 492, 493

S
safety rank 314
scheduling 264
scripts

pipeline 103
selection 438
semantic 464
semantic pointer 463
sequential model 427
services

expanding, to face competition 262
S-FNN 452, 453
shuffling 101, 102

small talk
about 412
courtesy 412-414
emotions 415

softmax function 38-40
software implementation 28
speech recognition fallacy 410
speech recognition functions, settings

Auto Speech Adaptation 399
Enhanced Speech Models 399

speech-to-text function 398
spelling 401, 402
standardization 29
state transition function 10
stochastic process 12
stock keep units (SKUs) 168
storage levels, optimizing with blockchain

data
about 170
dataset, defining 170, 171
frequency, calculating 171, 172
likelihood, calculating 172
naive Bayes equation, applying 172, 173

stride 218
subject matter expert (SME) 6
subsets of data

optimizing, by applying FNN XOR function
196-202

supervised learning
chaining, to verify unsupervised learning 102
used, for evaluating result that surpasses

human analytic capacity 60-64
supply chain

blockchains, using to share
information 161-164

optimizing, with naive Bayes 167
supply chain management (SCM) 169
supply chain network

blockchains, using in 164
support points 304
support vector machine (SVM)

about 303
example 303
Python function 305, 306
used, for increasing safety levels 302

support vectors 304
SVM function

adding 301

[549]

T
target 437
TensorBoard

accuracy, analyzing of CNN 334
representation of features 383
running 337

TensorBoard Projector
used, for representing PCA 367-370

TensorFlow
installing 337
output of layers, exploring of CNN 318, 319

test dataset 84
testing data

loading 228
testing dataset

about 228
data augmentation 228

text
generating 429-431
vectorizing 426, 427

text dialog 386
text generation

with RNN 426
text-to-speech

about 399
settings, configuring 400

thinking quantum computer 500
time squashing 268
timestep 428
traditional applications

versus machine learning 23
trained TensorFlow 2.x model

applying 246
displaying 239-241
loading 238
loading, for usage 242-244
profitable, making 246
strategy, defining 245

training dataset
about 226
random sample, training of 98-100
volume 74

training function
creating, in RBM class 350, 351
hidden units, computing in 351, 352

training phrases 382

transfer learning
motivation 235
profit, generating with 234, 235
using 245

transition 12
translating 132
translation

checking 134

U
underfitting 247
unit training dataset

generalizing 269
unsupervised learning

about 12
with k-means clustering 92, 93

unsupervised learning algorithm 81
unsupervised ML algorithm

data, exporting from 106
data, training from 105, 106

V
vanishing gradients 425
variance 364
vertex weights vector 282-284
vintage XOR solution

implementing, in Python with
backpropagation 189-191

implementing, in Python with FNN 189-191
visible binary units 351
visual output of CNN layers

analyzing 327
processing 323-327

W
webhook 393

X
X dataset

translating, line by line from English to
French 145

XOR function 180, 181
XOR problem

solving, examples 185-189

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning
	Reinforcement learning concepts
	How to adapt to machine thinking and become an adaptive thinker
	Overcoming real-life issues using the three-step approach
	Step 1 – describing a problem to solve: MDP in natural language
	Watching the MDP agent at work

	Step 2 – building a mathematical model: the mathematical representation of the Bellman equation and MDP
	From MDP to the Bellman equation

	Step 3 – writing source code: implementing the solution in Python

	The lessons of reinforcement learning
	How to use the outputs
	Possible use cases

	Machine learning versus traditional applications

	Summary
	Questions
	Further reading

	Chapter 2: Building a Reward Matrix – Designing Your Datasets
	Designing datasets – where the dream stops and the hard work begins
	Designing datasets
	Using the McCulloch-Pitts neuron
	The McCulloch-Pitts neuron
	The Python-TensorFlow architecture

	Logistic activation functions and classifiers
	Overall architecture
	Logistic classifier
	Logistic function
	Softmax

	Summary
	Questions
	Further reading

	Chapter 3: Machine Intelligence – Evaluation Functions and Numerical Convergence
	Tracking down what to measure and deciding how to measure it
	Convergence
	Implicit convergence
	Numerically controlled gradient descent convergence

	Evaluating beyond human analytic capacity
	Using supervised learning to evaluate a result that surpasses human analytic capacity
	Summary
	Questions
	Further reading

	Chapter 4: Optimizing Your Solutions with K-Means Clustering
	Dataset optimization and control
	Designing a dataset and choosing an ML/DL model
	Approval of the design matrix

	Implementing a k-means clustering solution
	The vision
	The data
	The strategy

	The k-means clustering program
	The mathematical definition of k-means clustering
	The Python program

	Saving and loading the model
	Analyzing the results
	Bot virtual clusters as a solution
	The limits of the implementation of the k-means clustering algorithm

	Summary
	Questions
	Further reading

	Chapter 5: How to Use Decision Trees to Enhance K-Means Clustering
	Unsupervised learning with KMC with large datasets
	Identifying the difficulty of the problem
	NP-hard – the meaning of P
	NP-hard – the meaning of non-deterministic

	Implementing random sampling with mini-batches
	Using the LLN
	The CLT
	Using a Monte Carlo estimator

	Trying to train the full training dataset
	Training a random sample of the training dataset
	Shuffling as another way to perform random sampling
	Chaining supervised learning to verify unsupervised learning
	Preprocessing raw data

	A pipeline of scripts and ML algorithms
	Step 1 – training and exporting data from an unsupervised ML algorithm
	Step 2 – training a decision tree
	Step 3 – a continuous cycle of KMC chained to a decision tree

	Random forests as an alternative to decision trees

	Summary
	Questions
	Further reading

	Chapter 6: Innovating AI with Google Translate
	Understanding innovation and disruption in AI
	Is AI disruptive?
	AI is based on mathematical theories that are not new
	Neural networks are not new

	Looking at disruption – the factors that are making AI disruptive
	Cloud server power, data volumes, and web sharing of the early 21st century
	Public awareness

	Inventions versus innovations
	Revolutionary versus disruptive solutions
	Where to start?

	Discover a world of opportunities with Google Translate
	Getting started
	The program
	The header
	Implementing Google's translation service

	Google Translate from a linguist's perspective
	Playing with the tool
	Linguistic assessment of Google Translate

	AI as a new frontier
	Lexical field and polysemy
	Exploring the frontier – customizing Google Translate with a Python program
	k-nearest neighbor algorithm
	Implementing the KNN algorithm
	The knn_polysemy.py program
	Implementing the KNN function in Google_Translate_Customized.py
	Conclusions on the Google Translate customized experiment
	The disruptive revolutionary loop

	Summary
	Questions
	Further reading

	Chapter 7: Optimizing Blockchains with Naive Bayes
	Part I – the background to blockchain technology
	Mining bitcoins
	Using cryptocurrency

	PART II – using blockchains to share information in a supply chain
	Using blockchains in the supply chain network
	Creating a block
	Exploring the blocks

	Part III – optimizing a supply chain with naive Bayes in a blockchain process
	A naive Bayes example
	The blockchain anticipation novelty
	The goal – optimizing storage levels using blockchain data

	Implementation of naive Bayes in Python
	Gaussian naive Bayes

	Summary
	Questions
	Further reading

	Chapter 8: Solving the XOR Problem with a Feedforward Neural Network
	The original perceptron could not solve the XOR function
	XOR and linearly separable models
	Linearly separable models
	The XOR limit of a linear model, such as the original perceptron

	Building an FNN from scratch
	Step 1 – defining an FNN
	Step 2 – an example of how two children can solve the XOR problem every day
	Implementing a vintage XOR solution in Python with an FNN and backpropagation
	A simplified version of a cost function and gradient descent
	Linear separability was achieved

	Applying the FNN XOR function to optimizing subsets of data
	Summary
	Questions
	Further reading

	Chapter 9: Abstract Image Classification with Convolutional Neural Networks (CNNs)
	Introducing CNNs
	Defining a CNN
	Initializing the CNN
	Adding a 2D convolution layer
	Kernel
	Shape
	ReLU

	Pooling
	Next convolution and pooling layer
	Flattening
	Dense layers
	Dense activation functions

	Training a CNN model
	The goal
	Compiling the model
	The loss function
	The Adam optimizer
	Metrics

	The training dataset
	Data augmentation
	Loading the data

	The testing dataset
	Data augmentation on the testing dataset
	Loading the data

	Training with the classifier
	Saving the model
	Next steps

	Summary
	Questions
	Further reading and references

	Chapter 10: Conceptual Representation Learning
	Generating profit with transfer learning
	The motivation behind transfer learning
	Inductive thinking
	Inductive abstraction
	The problem AI needs to solve

	The ￼ gap concept
	Loading the trained TensorFlow 2.x model
	Loading and displaying the model
	Loading the model to use it
	Defining a strategy
	Making the model profitable by using it for another problem

	Domain learning
	How to use the programs
	The trained models used in this section
	The trained model program

	Gap – loaded or underloaded
	Gap – jammed or open lanes
	Gap datasets and subsets
	Generalizing the ￼ (the gap conceptual dataset)

	The motivation of conceptual representation learning metamodels applied to dimensionality
	The curse of dimensionality
	The blessing of dimensionality

	Summary
	Questions
	Further reading

	Chapter 11: Combining Reinforcement Learning and Deep Learning
	Planning and scheduling today and tomorrow
	A real-time manufacturing process
	Amazon must expand its services to face competition
	A real-time manufacturing revolution

	CRLMM applied to an automated apparel manufacturing process
	An apparel manufacturing process
	Training the CRLMM
	Generalizing the unit training dataset
	Food conveyor belt processing – positive p￼ and negative n￼ gaps
	Running a prediction program

	Building the RL-DL-CRLMM
	A circular process
	Implementing a CNN-CRLMM to detect gaps and optimize
	Q-learning – MDP
	MDP inputs and outputs

	The optimizer
	The optimizer as a regulator
	Finding the main target for the MDP function

	A circular model – a stream-like system that never starts nor ends

	Summary
	Questions
	Further reading

	Chapter 12: AI and the Internet of Things (IoT)
	The public service project
	Setting up the RL-DL-CRLMM model
	Applying the model of the CRLMM
	The dataset
	Using the trained model

	Adding an SVM function
	Motivation – using an SVM to increase safety levels
	Definition of a support vector machine
	Python function

	Running the CRLMM
	Finding a parking space
	Deciding how to get to the parking lot
	Support vector machine
	The itinerary graph
	The weight vector

	Summary
	Questions
	Further reading

	Chapter 13: Visualizing Networks with TensorFlow 2.x and TensorBoard
	Exploring the output of the layers of a CNN in two steps with TensorFlow
	Building the layers of a CNN
	Processing the visual output of the layers of a CNN
	Analyzing the visual output of the layers of a CNN

	Analyzing the accuracy of a CNN using TensorBoard
	Getting started with Google Colaboratory
	Defining and training the model
	Introducing some of the measurements

	Summary
	Questions
	Further reading

	Chapter 14: Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA)
	Defining basic terms and goals
	Introducing and building an RBM
	The architecture of an RBM
	An energy-based model
	Building the RBM in Python
	Creating a class and the structure of the RBM
	Creating a training function in the RBM class
	Computing the hidden units in the training function
	Random sampling of the hidden units for the reconstruction and contractive divergence
	Reconstruction
	Contrastive divergence
	Error and energy function

	Running the epochs and analyzing the results

	Using the weights of an RBM as feature vectors for PCA
	Understanding PCA
	Mathematical explanation

	Using TensorFlow's Embedding Projector to represent PCA
	Analyzing the PCA to obtain input entry points for a chatbot

	Summary
	Questions
	Further reading

	Chapter 15: Setting Up a Cognitive NLP UI/CUI Chatbot
	Basic concepts
	Defining NLU
	Why do we call chatbots "agents"?
	Creating an agent to understand Dialogflow
	Entities
	Intents
	Context

	Adding fulfillment functionality to an agent
	Defining fulfillment
	Enhancing the cogfilmdr agent with a fulfillment webhook
	Getting the bot to work on your website

	Machine learning agents
	Using machine learning in a chatbot
	Speech-to-text
	Text-to-speech
	Spelling
	Why are these machine learning algorithms important?

	Summary
	Questions
	Further reading

	Chapter 16: Improve the Emotional Intelligence Deficiencies of Chatbots
	From reacting to emotions, to creating emotions
	Solving the problems of emotional polysemy
	The greetings problem example
	The affirmation example
	The speech recognition fallacy
	The facial analysis fallacy

	Small talk
	Courtesy
	Emotions

	Data logging
	Creating emotions
	RNN research for future automatic dialog generation
	RNNs at work
	RNN, LSTM, and vanishing gradients

	Text generation with an RNN
	Vectorizing the text
	Building the model
	Generating text

	Summary
	Questions
	Further reading

	Chapter 17: Genetic Algorithms in Hybrid Neural Networks
	Understanding evolutionary algorithms
	Heredity in humans
	Our cells
	How heredity works

	Evolutionary algorithms
	Going from a biological model to an algorithm
	Basic concepts

	Building a genetic algorithm in Python
	Importing the libraries
	Calling the algorithm
	The main function
	The parent generation process
	Generating a parent
	Fitness
	Display parent
	Crossover and mutation
	Producing generations of children
	Summary code

	Unspecified target to optimize the architecture of a neural network with a genetic algorithm
	A physical neural network
	What is the nature of this mysterious S-FNN?
	Calling the algorithm cell
	Fitness cell
	ga_main() cell

	Artificial hybrid neural networks
	Building the LSTM
	The goal of the model

	Summary
	Questions
	Further reading

	Chapter 18: Neuromorphic Computing
	Neuromorphic computing
	Getting started with Nengo
	Installing Nengo and Nengo GUI
	Creating a Python program
	A Nengo ensemble
	Nengo neuron types
	Nengo neuron dimensions
	A Nengo node

	Connecting Nengo objects
	Visualizing data
	Probes

	Applying Nengo's unique approach to critical AI research areas
	Summary
	Questions
	References
	Further reading

	Chapter 19: Quantum Computing
	The rising power of quantum computers
	Quantum computer speed
	Defining a qubit
	Representing a qubit
	The position of a qubit
	Radians, degrees, and rotations
	The Bloch sphere

	Composing a quantum score
	Quantum gates with Quirk
	A quantum computer score with Quirk
	A quantum computer score with IBM Q

	A thinking quantum computer
	Representing our mind's concepts
	Expanding MindX's conceptual representations
	The MindX experiment
	Preparing the data
	Transformation functions – the situation function
	Transformation functions – the quantum function
	Creating and running the score
	Using the output

	Summary
	Questions
	Further reading

	Appendix: Answers to the Questions
	Chapter 1 – Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning
	Chapter 2 – Building a Reward Matrix – Designing Your Datasets
	Chapter 3 – Machine Intelligence – Evaluation Functions and Numerical Convergence
	Chapter 4 – Optimizing Your Solutions with K-Means Clustering
	Chapter 5 – How to Use Decision Trees to Enhance K-Means Clustering
	Chapter 6 – Innovating AI with Google Translate
	Chapter 7 – Optimizing Blockchains with Naive Bayes
	Chapter 8 – Solving the XOR Problem with a Feedforward Neural Network
	Chapter 9 – Abstract Image Classification with Convolutional Neural Networks (CNNs)
	Chapter 10 – Conceptual Representation Learning
	Chapter 11 – Combining Reinforcement Learning and Deep Learning
	Chapter 12 – AI and the Internet of Things
	Chapter 13 – Visualizing Networks with TensorFlow 2.x and TensorBoard
	Chapter 14 – Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA)
	Chapter 15 – Setting Up a Cognitive NLP UI/CUI Chatbot
	Chapter 16 – Improve the Emotional Intelligence Deficiencies of Chatbots
	Chapter 17 – Genetic Algorithms in Hybrid Neural Networks
	Chapter 18 – Neuromorphic Computing
	Chapter 19 – Quantum Computing

	Other Books You
May Enjoy
	Index

