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Preface
This second edition of Artificial Intelligence By Example will take you through the 
main aspects of present-day artificial intelligence (AI) and beyond!

This book contains many revisions and additions to the key aspects of AI 
described in the first edition:

• The theory of machine learning and deep learning including hybrid and 
ensemble algorithms.

• Mathematical representations of the main AI algorithms including natural 
language explanations making them easier to understand.

• Real-life case studies taking the reader inside the heart of e-commerce: 
manufacturing, services, warehouses, and delivery.

• Introducing AI solutions that combine IoT, convolutional neural networks 
(CNN), and Markov decision process (MDP).

• Many open source Python programs with a special focus on the 
new features of TensorFlow 2.x, TensorBoard, and Keras. Many modules 
are used, such as scikit-learn, pandas, and more.

• Cloud platforms: Google Colaboratory with its free VM, Google Translate, 
Google Dialogflow, IBM Q for quantum computing, and more.

• Use of the power of restricted Boltzmann machines (RBM) and principal 
component analysis (PCA) to generate data to create a meaningful 
chatbot.

• Solutions to compensate for the emotional deficiencies of chatbots.
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• Genetic algorithms, which run faster than classical algorithms in specific 
cases, and genetic algorithms used in a hybrid deep learning neural 
network.

• Neuromorphic computing, which reproduces our brain activity 
with models of selective spiking ensembles of neurons in models that 
reproduce our biological reactions.

• Quantum computing, which will take you deep into the tremendous 
calculation power of qubits and cognitive representation experiments.

This second edition of Artificial Intelligence By Example will take you to the cutting 
edge of AI and beyond with innovations that improve existing solutions. This 
book will make you a key asset not only as an AI specialist but a visionary. You 
will discover how to improve your AI skills as a consultant, developer, professor, 
a curious mind, or any person involved in artificial intelligence.

Who this book is for
This book contains a broad approach to AI, which is expanding to all areas of our 
lives.

The main machine learning and deep learning algorithms are addressed 
with real-life Python examples extracted from hundreds of AI projects and 
implementations.

Each AI implementation is illustrated by an open source program available on 
GitHub and cloud platforms such as Google Colaboratory.

Artificial Intelligence By Example, Second Edition is for developers who wish to build 
solid machine learning programs that will optimize production sites, services, IoT 
and more.

Project managers and consultants will learn how to build input datasets that will 
help the reader face the challenges of real-life AI.

Teachers and students will have an overview of the key aspects of AI, along with 
many educational examples.

Artificial Intelligence By Example, Second Edition will help anybody interested in 
AI to understand how systems to build solid, productive Python programs.
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What this book covers
Chapter 1, Getting Started with Next-Generation Artificial Intelligence through 
Reinforcement Learning, covers reinforcement learning through the Bellman 
equation based on the MDP. A case study describes how to solve a delivery route 
problem with a human driver and a self-driving vehicle. This chapter shows how 
to build an MDP from scratch in Python.

Chapter 2, Building a Reward Matrix – Designing Your Datasets, demonstrates the 
architecture of neural networks starting with the McCulloch-Pitts neuron. The 
case study describes how to use a neural network to build the reward matrix 
used by the Bellman equation in a warehouse environment. The process will be 
developed in Python using logistic, softmax, and one-hot functions.

Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence, 
shows how machine evaluation capacities have exceeded human decision-making. 
The case study describes a chess position and how to apply the results of an AI 
program to decision-making priorities. An introduction to decision trees in Python 
shows how to manage decision-making processes.

Chapter 4, Optimizing Your Solutions with K-Means Clustering, covers a k-means 
clustering program with Lloyd's algorithm and how to apply it to the optimization 
of automatic guided vehicles. The k-means clustering program's model will be 
trained and saved.

Chapter 5, How to Use Decision Trees to Enhance K-Means Clustering, begins with 
unsupervised learning with k-means clustering. The output of the k-means 
clustering algorithm will provide the labels for the supervised decision tree 
algorithm. Random forests will be introduced.

Chapter 6, Innovating AI with Google Translate, explains the difference between a 
revolutionary innovation and a disruptive innovation. Google Translate will be 
described and enhanced with an innovative k-nearest neighbors-based Python 
program.

Chapter 7, Optimizing Blockchains with Naive Bayes, is about mining blockchains and 
describes how blockchains function. We use naive Bayes to optimize the blocks 
of supply chain management (SCM) blockchains by predicting transactions to 
anticipate storage levels.



Preface

[ xvi ]

Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, is about 
building a feedforward neural network (FNN) from scratch to solve the XOR 
linear separability problem. The business case describes how to group orders for a 
factory.

Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs), 
describes CNN in detail: kernels, shapes, activation functions, pooling, flattening, 
and dense layers. The case study illustrates the use of a CNN using a webcam on a 
conveyor belt in a food-processing company.

Chapter 10, Conceptual Representation Learning, explains conceptual representation 
learning (CRL), an innovative way to solve production flows with a CNN 
transformed into a CRL metamodel (CRLMM). The case study shows how to 
use a CRLMM for transfer and domain learning, extending the model to other 
applications.

Chapter 11, Combining Reinforcement Learning and Deep Learning, combines a CNN 
with an MDP to build a solution for automatic planning and scheduling with an 
optimizer with a rule-based system. 

The solution is applied to apparel manufacturing showing how to apply AI to 
real-life systems.

Chapter 12, AI and the Internet of Things (IoT), explores a support vector machine 
(SVM) assembled with a CNN. The case study shows how self-driving cars can 
find an available parking space automatically.

Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, extracts 
information of each layer of a CNN and displays the intermediate steps 
taken by the neural network. The output of each layer contains images of the 
transformations applied.

Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM) 
and Principal Component Analysis (PCA), explains how to produce valuable 
information using an RBM and a PCA to transform raw data into chatbot-input 
data.

Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, describes how to build 
a Google Dialogflow chatbot from scratch using the information provided by 
an RBM and a PCA algorithm. The chatbot will contain entities, intents, and 
meaningful responses.
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Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explains the 
limits of a chatbot when dealing with human emotions. The Emotion options of 
Dialogflow will be activated along with Small Talk to make the chatbot friendlier.

Chapter 17, Genetic Algorithms in Hybrid Neural Networks, enters our chromosomes, 
finds our genes, and helps you understand how our reproduction process works. 
From there, it is shown how to implement an evolutionary algorithm in Python, 
a genetic algorithm (GA). A hybrid neural network will show how to optimize a 
neural network with a GA.

Chapter 18, Neuromorphic Computing, describes what neuromorphic computing is 
and then explores Nengo, a unique neuromorphic framework with solid tutorials 
and documentation. 

This neuromorphic overview will take you into the wonderful power of our brain 
structures to solve complex problems.

Chapter 19, Quantum Computing, will show quantum computers are superior 
to classical computers, what a quantum bit is, how to use it, and how to build 
quantum circuits. An introduction to quantum gates and example programs will 
bring you into the futuristic world of quantum mechanics.

Appendix, Answers to the Questions, provides answers to the questions listed in 
the Questions section in all the chapters.

To get the most out of this book
Artificial intelligence projects rely on three factors:

• Understanding the subject the AI project will be applied to. To do so, 
go through a chapter to pick up the key ideas. Once you understand 
the key ideas of a case study described in the book, try to see how an 
AI solution can be applied to real-life examples around you.

• The mathematical foundations of the AI algorithms. Do not skip the 
mathematics equations if you have the energy to study them. AI relies 
heavily on mathematics. There are plenty of excellent websites that 
explain the mathematics used in this book.

• Development. An artificial intelligence solution can be directly used on 
an online cloud platform machine learning site such as Google. We 
can access these platforms with APIs. In the book, Google Cloud is 
used several times. Try to create an account of your own to explore 
several cloud platforms to understand their potential and their limits. 
Development remains critical for AI projects.
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Even with a cloud platform, scripts and services are necessary. Also, sometimes, 
writing an algorithm is mandatory because the ready-to-use online algorithms are 
insufficient for a given problem. Explore the programs delivered with the book. 
They are open source and free.

Technical requirements
The following is a non-exhaustive list of the technical requirements for running 
the codes in this book. For a more detailed chapter-wise list, please refer to this 
link: https://github.com/PacktPublishing/Artificial-Intelligence-By-
Example-Second-Edition/blob/master/Technical%20Requirements.csv.

Package Website
Python https://www.python.org/

NumPy https://pypi.org/project/numpy/

Matplotlib https://pypi.org/project/matplotlib/

pandas https://pypi.org/project/pandas/

SciPy https://pypi.org/project/scipy/

scikit-learn https://pypi.org/project/scikit-learn/

PyDotPlus https://pypi.org/project/pydotplus/

Google API https://developers.google.com/docs/api/
quickstart/python

html https://pypi.org/project/html/

TensorFlow 2 https://pypi.org/project/tensorflow/

Keras https://pypi.org/project/Keras/

Pillow https://pypi.org/project/Pillow/

Imageio https://pypi.org/project/imageio/

Pathlib https://pypi.org/project/pathlib/

OpenCV-Python https://pypi.org/project/opencv-python/

Google Dialogflow https://dialogflow.com/

DEAP https://pypi.org/project/deap/

bitstring https://pypi.org/project/bitstring/

nengo https://pypi.org/project/nengo/

nengo-gui https://pypi.org/project/nengo-gui/

IBM Q https://www.research.ibm.com/ibm-q/

Quirk http://algassert.com/2016/05/22/quirk.html
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Download the example code files
You can download the example code files for this book from your account at www.
packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition. 
In case there's an update to the code, it will be updated on the existing GitHub 
repository.

We also have other code bundles from our rich catalog of books and 
videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839211539_ColorImages.pdf.
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "The decision tree program, decision_tree.py, reads the 
output of the KMC predictions, ckmc.csv."

A block of code is set as follows:

# load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
    print(df.head())

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

for i in range(0,1000):
    xf1=dataset.at[i,'Distance']
    xf2=dataset.at[i,'location']
    X_DL = [[xf1,xf2]]
    prediction = kmeans.predict(X_DL)

Any command-line input or output is written as follows:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time 
Difference: 0:00:00.000198

Bold: Indicates a new term, an important word, or words that you see on the 
screen, for example, in menus or dialog boxes, also appear in the text like this. For 
example: "When you click on SAVE, the Emotions progress bar will jump up."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention 
the book title in the subject of your message and email us at customercare@
packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be 
grateful if you would report this to us. Please visit, www.packtpub.com/support/
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packt.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see 
and use your unbiased opinion to make purchase decisions, we at Packt can 
understand what you think about our products, and our authors can see your 
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://www.packtpub.com/support/errata
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1
Getting Started with  

Next-Generation Artificial 
Intelligence through 

Reinforcement Learning
Next-generation AI compels us to realize that machines do indeed think. Although 
machines do not think like us, their thought process has proven its efficiency in 
many areas. In the past, the belief was that AI would reproduce human thinking 
processes. Only neuromorphic computing (see Chapter 18, Neuromorphic Computing), 
remains set on this goal. Most AI has now gone beyond the way humans think, as 
we will see in this chapter.

The Markov decision process (MDP), a reinforcement learning (RL) algorithm, 
perfectly illustrates how machines have become intelligent in their own unique way. 
Humans build their decision process on experience. MDPs are memoryless. Humans 
use logic and reasoning to think problems through. MDPs apply random decisions 
100% of the time. Humans think in words, labeling everything they perceive. MDPs 
have an unsupervised approach that uses no labels or training data. MDPs boost the 
machine thought process of self-driving cars (SDCs), translation tools, scheduling 
software, and more. This memoryless, random, and unlabeled machine thought 
process marks a historical change in the way a former human problem was solved.



Getting Started with Next-Generation Artificial Intelligence through Reinforcement Learning

[ 2 ]

With this realization comes a yet more mind-blowing fact. AI algorithms and 
hybrid solutions built on IoT, for example, have begun to surpass humans in 
strategic areas. Although AI cannot replace humans in every field, AI combined 
with classical automation now occupies key domains: banking, marketing, supply 
chain management, scheduling, and many other critical areas.

As you will see, starting with this chapter, you can occupy a central role in this 
new world as an adaptive thinker. You can design AI solutions and implement them. 
There is no time to waste. In this chapter, we are going to dive quickly and directly 
into reinforcement learning through the MDP.

Today, AI is essentially mathematics translated into source code, which makes it 
difficult to learn for traditional developers. However, we will tackle this approach 
pragmatically.

The goal here is not to take the easy route. We're striving to break complexity into 
understandable parts and confront them with reality. You are going to find out right 
from the outset how to apply an adaptive thinker's process that will lead you from 
an idea to a solution in reinforcement learning, and right into the center of gravity 
of the next generation of AI.

Reinforcement learning concepts
AI is constantly evolving. The classical approach states that:

• AI covers all domains
• Machine learning is a subset of AI, with clustering, classification, regression, 

and reinforcement learning
• Deep learning is a subset of machine learning that involves neural networks

However, these domains often overlap and it's difficult to fit neuromorphic 
computing, for example, with its sub-symbolic approach, into these categories 
(see Chapter 18, Neuromorphic Computing).

In this chapter, RL clearly fits into machine learning. Let's have a brief look into the 
scientific foundations of the MDP, the RL algorithm we are going to explore. The 
main concepts to keep in mind are the following:

• Optimal transport: In 1781, Gaspard Monge defined transport optimizing 
from one location to another using the shortest and most cost-effective path; 
for example, mining coal and then using the most cost-effective path to a 
factory. This was subsequently generalized to any form of path from point 
A to point B.
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• Boltzmann equation and constant: In the late 19th century, Ludwig 
Boltzmann changed our vision of the world with his probabilistic 
distribution of particles beautifully summed up in his entropy formula:

S = k * log W
S represents the entropy (energy, disorder) of a system expressed. k 
is the Boltzmann constant, and W represents the number of microstates. 
We will explore Boltzmann's ideas further in Chapter 14, Preparing the 
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal 
Component Analysis (PCA).

• Probabilistic distributions advanced further: Josiah Willard Gibbs took the 
probabilistic distributions of large numbers of particles a step further. At 
that point, probabilistic information theory was advancing quickly. At the 
turn of the 19th century, Andrey Markov applied probabilistic algorithms to 
language, among other areas. A modern era of information theory was born.

• When Boltzmann and optimal transport meet: 2011 Fields Medal winner, 
Cédric Villani, brought Boltzmann's equation to yet another level. Villani 
then went on to unify optimal transport and Boltzmann. Cédric Villani 
proved something that was somewhat intuitively known to 19th century 
mathematicians but required proof.

Let's take all of the preceding concepts and materialize them in a real-world example 
that will explain why reinforcement learning using the MDP, for example, is so 
innovative.

Analyzing the following cup of tea will take you right into the next generation of AI:

Figure 1.1: Consider a cup of tea
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You can look at this cup of tea in two different ways:

1. Macrostates: You look at the cup and content. You can see the volume of 
tea in the cup and you could feel the temperature when holding the cup 
in your hand.

2. Microstates: But can you tell how many molecules are in the tea, which 
ones are hot, warm, or cold, their velocity and directions? Impossible right?

Now, imagine, the tea contains 2,000,000,000+ Facebook accounts, or 100,000,000+ 
Amazon Prime users with millions of deliveries per year. At this level, we simply 
abandon the idea of controlling every item. We work on trends and probabilities.

Boltzmann provides a probabilistic approach to the evaluation of the features of our 
real world. Materializing Boltzmann in logistics through optimal transport means 
that the temperature could be the ranking of a product, the velocity can be linked 
to the distance to delivery, and the direction could be the itineraries we will study 
in this chapter.

Markov picked up the ripe fruits of microstate probabilistic descriptions and applied 
it to his MDP. Reinforcement learning takes the huge volume of elements (particles 
in a cup of tea, delivery locations, social network accounts) and defines the probable 
paths they take.

The turning point of human thought occurred when we simply could not analyze 
the state and path of the huge volumes facing our globalized world, which generates 
images, sounds, words, and numbers that exceed traditional software approaches.

With this in mind, we can start exploring the MDP.

How to adapt to machine thinking and 
become an adaptive thinker
Reinforcement learning, one of the foundations of machine learning, supposes 
learning through trial and error by interacting with an environment. This sounds 
familiar, doesn't it? That is what we humans do all our lives—in pain! Try things, 
evaluate, and then continue; or try something else.

In real life, you are the agent of your thought process. In reinforcement learning, 
the agent is the function calculating randomly through this trial-and-error process. 
This thought process function in machine learning is the MDP agent. This form of 
empirical learning is sometimes called Q-learning.
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Mastering the theory and implementation of an MDP through a three-step method 
is a prerequisite.

This chapter will detail the three-step approach that will turn you into an AI expert, 
in general terms:

1. Starting by describing a problem to solve with real-life cases
2. Then, building a mathematical model that considers real-life limitations
3. Then, writing source code or using a cloud platform solution

This is a way for you to approach any project with an adaptive attitude from the 
outset. This shows that a human will always be at the center of AI by explaining 
how we can build the inputs, run an algorithm, and use the results of our code. 
Let's consider this three-step process and put it into action.

Overcoming real-life issues using the 
three-step approach
The key point of this chapter is to avoid writing code that will never be used. 
First, begin by understanding the subject as a subject matter expert. Then, write 
the analysis with words and mathematics to make sure your reasoning reflects the 
subject and, most of all, that the program will make sense in real life. Finally, in step 
3, only write the code when you are sure about the whole project.

Too many developers start writing code without stopping to think about how the 
results of that code are going to manifest themselves within real-life situations. You 
could spend weeks developing the perfect code for a problem, only to find out that 
an external factor has rendered your solution useless. For instance, what if you coded 
a solar-powered robot to clear snow from the yard, only to discover that during 
winter, there isn't enough sunlight to power the robot!

In this chapter, we are going to tackle the MDP (Q function) and apply it to 
reinforcement learning with the Bellman equation. We are going to approach it a 
little differently to most, however. We'll be thinking about practical application, not 
simply code execution. You can find tons of source code and examples on the web. 
The problem is, much like our snow robot, such source code rarely considers the 
complications that come about in real-life situations. Let's say you find a program that 
finds the optimal path for a drone delivery. There's an issue, though; it has many limits 
that need to be overcome due to the fact that the code has not been written with real-
life practicality in mind. You, as an adaptive thinker, are going to ask some questions:

• What if there are 5,000 drones over a major city at the same time? What 
happens if they try to move in straight lines and bump into each other?
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• Is a drone-jam legal? What about the noise over the city? What about 
tourism?

• What about the weather? Weather forecasts are difficult to make, so how 
is this scheduled?

• How can we resolve the problem of coordinating the use of charging and 
parking stations?

In just a few minutes, you will be at the center of attention among theoreticians 
who know more than you, on one hand, and angry managers who want solutions 
they cannot get on the other. Your real-life approach will solve these problems. To 
do that, you must take the following three steps into account, starting with really 
getting involved in the real-life subject.

In order to successfully implement our real-life approach, comprised of the three 
steps outlined in the previous section, there are a few prerequisites:

• Be a subject matter expert (SME): First, you have to be an SME. If a 
theoretician geek comes up with a hundred TensorFlow functions to solve 
a drone trajectory problem, you now know it is going to be a tough ride in 
which real-life parameters are constraining the algorithm. An SME knows 
the subject and thus can quickly identify the critical factors of a given field. 
AI often requires finding a solution to a complex problem that even an expert 
in a given field cannot express mathematically. Machine learning sometimes 
means finding a solution to a problem that humans do not know how to 
explain. Deep learning, involving complex networks, solves even more 
difficult problems.

• Have enough mathematical knowledge to understand AI concepts: Once 
you have the proper natural language analysis, you need to build your 
abstract representation quickly. The best way is to look around and find an 
everyday life example and make a mathematical model of it. Mathematics is 
not an option in AI, but a prerequisite. The effort is worthwhile. Then, you 
can start writing a solid piece of source code or start implementing a cloud 
platform ML solution.

• Know what source code is about as well as its potential and limits: MDP 
is an excellent way to go and start working on the three dimensions that 
will make you adaptive: describing what is around you in detail in words, 
translating that into mathematical representations, and then implementing 
the result in your source code.

With those prerequisites in mind, let's look at how you can become a problem-
solving AI expert by following our practical three-step process. Unsurprisingly, 
we'll begin at step 1.
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Step 1 – describing a problem to solve: MDP 
in natural language
Step 1 of any AI problem is to go as far as you can to understand the subject you are 
asked to represent. If it's a medical subject, don't just look at data; go to a hospital 
or a research center. If it's a private security application, go to the places where they 
will need to use it. If it's for social media, make sure to talk to many users directly. 
The key concept to bear in mind is that you have to get a "feel" for the subject, as if 
you were the real "user."

For example, transpose it into something you know in your everyday life (work or 
personal), something you are an SME in. If you have a driver's license, then you are 
an SME of driving. You are certified. This is a fairly common certification, so let's 
use this as our subject matter in the example that will follow. If you do not have a 
driver's license or never drive, you can easily replace moving around in a car by 
imagining you are moving around on foot; you are an SME of getting from one place 
to another, regardless of what means of transport that might involve. However, bear 
in mind that a real-life project would involve additional technical aspects, such as 
traffic regulations for each country, so our imaginary SME does have its limits.

Getting into the example, let's say you are an e-commerce business driver delivering 
a package in a location you are unfamiliar with. You are the operator of a self-driving 
vehicle. For the time being, you're driving manually. You have a GPS with a nice 
color map on it. The locations around you are represented by the letters A to F, as 
shown in the simplified map in the following diagram. You are presently at F. Your 
goal is to reach location C. You are happy, listening to the radio. Everything is going 
smoothly, and it looks like you are going to be there on time. The following diagram 
represents the locations and routes that you can cover:

Figure 1.2: A diagram of delivery routes

The guidance system's state indicates the complete path to reach C. It is telling you 
that you are going to go from F to B to D, and then to C. It looks good!
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To break things down further, let's say:

• The present state is the letter s. s is a variable, not an actual state. It can be 
one of the locations in L, the set of locations:

L = {A, B, C, D, E, F}
We say present state because there is no sequence in the learning process. The 
memoryless process goes from one present state to another. In the example in 
this chapter, the process starts at location F.

• Your next action is the letter a (action). This action a is not location A. The 
goal of this action is to take us to the next possible location in the graph. In 
this case, only B is possible. The goal of a is to take us from s (present state) 
to s' (new state).

• The action a (not location A) is to go to location B. You look at your guidance 
system; it tells you there is no traffic, and that to go from your present state, 
F, to your next state, B, will take you only a few minutes. Let's say that the 
next state B is the letter B. This next state B is s'.

At this point, you are still quite happy, and we can sum up your situation with the 
following sequence of events:

s, a, s'

The letter s is your present state, your present situation. The letter a is the action 
you're deciding, which is to go to the next location; there, you will be in another 
state, s'. We can say that thanks to the action a, you will go from s to s'.

Now, imagine that the driver is not you anymore. You are tired for some reason. 
That is when a self-driving vehicle comes in handy. You set your car to autopilot. 
Now, you are no longer driving; the system is. Let's call that system the agent. 
At point F, you set your car to autopilot and let the self-driving agent take over.

Watching the MDP agent at work
The self-driving AI is now in charge of the vehicle. It is acting as the MDP agent. This 
now sees what you have asked it to do and checks its mapping environment, which 
represents all the locations in the previous diagram from A to F.

In the meantime, you are rightly worried. Is the agent going to make it or not? You 
are wondering whether its strategy meets yours. You have your policy P—your way 
of thinking—which is to take the shortest path possible. Will the agent agree? What's 
going on in its machine mind? You observe and begin to realize things you never 
noticed before. 
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Since this is the first time you are using this car and guidance system, the agent is 
memoryless, which is an MDP feature. The agent doesn't know anything about what 
went on before. It seems to be happy with just calculating from this state s at location 
F. It will use machine power to run as many calculations as necessary to reach 
its goal.

Another thing you are watching is the total distance from F to C to check whether 
things are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s1; B is state 2, which 
we can simplify by writing s2; D is s3; and C is s4. The agent is calculating all of these 
possible states to make a decision.

The agent knows that when it reaches D, C will be better because the reward will 
be higher for going to C than anywhere else. Since it cannot eat a piece of cake to 
reward itself, the agent uses numbers. Our agent is a real number cruncher. When 
it is wrong, it gets a poor reward or nothing in this model. When it's right, it gets 
a reward represented by the letter R, which we'll encounter during step 2. This 
action-value (reward) transition, often named the Q function, is the core of many 
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets 
a reward. For example, the transition can be from F to B, state 1 to state 2, or s1 to s2.

You are feeling great and are going to be on time. You are beginning to understand 
how the machine learning agent in your self-driving car is thinking. Suddenly, you 
look up and see that a traffic jam is building up. Location D is still far away, and now 
you do not know whether it would be good to go from D to C or D to E, in order to 
take another road to C, which involves less traffic. You are going to see what your 
agent thinks!

The agent takes the traffic jam into account, is stubborn, and increases its reward to 
get to C by the shortest way. Its policy is to stick to the initial plan. You do not agree. 
You have another policy.

You stop the car. You both have to agree before continuing. You have your opinion 
and policy; the agent does not agree. Before continuing, your views need to 
converge. Convergence is the key to making sure that your calculations are correct, 
and it's a way to evaluate the quality of a calculation.

A mathematical representation is the best way to express this whole process at this 
point, which we will describe in the following step.
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Step 2 – building a mathematical model: the 
mathematical representation of the Bellman 
equation and MDP
Mathematics involves a whole change in your perspective of a problem. You are 
going from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost 
in academic math to the point of never writing a single line of code. Just use 
mathematics to get a job done efficiently. Skipping mathematical representation 
will fast-track a few functions in the early stages of an AI project. However, when 
the real problems that occur in all AI projects surface, solving them with source 
code alone will prove virtually impossible. The goal here is to pick up enough 
mathematics to implement a solution in real-life companies.

It is necessary to think through a problem by finding something familiar around us, 
such as the itinerary model covered early in this chapter. It is a good thing to write it 
down with some abstract letters and symbols as described before, with a meaning an 
action, and s meaning a state. Once you have understood the problem and expressed 
it clearly, you can proceed further.

Now, mathematics will help to clarify the situation by means of shorter descriptions. 
With the main ideas in mind, it is time to convert them into equations.

From MDP to the Bellman equation
In step 1, the agent went from F, or state 1 or s, to B, which was state 2 or s'.

A strategy drove this decision—a policy represented by P. One mathematical 
expression contains the MDP state transition function:

Pa(s, s')

P is the policy, the strategy made by the agent to go from F to B through action a. 
When going from F to B, this state transition is named the state transition function:

• a is the action
• s is state 1 (F), and s' is state 2 (B)

The reward (right or wrong) matrix follows the same principle:

Ra(s, s')
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That means R is the reward for the action of going from state s to state s'. Going from 
one state to another will be a random process. Potentially, all states can go to any 
other state.

Each line in the matrix in the example represents a letter from A to F, and each 
column represents a letter from A to F. All possible states are represented. The 1 
values represent the nodes (vertices) of the graph. Those are the possible locations. 
For example, line 1 represents the possible moves for letter A, line 2 for letter B, and 
line 6 for letter F. On the first line, A cannot go to C directly, so a 0 value is entered. 
But, it can go to E, so a 1 value is added.

Some models start with -1 for impossible choices, such as B going directly to C, and 
0 values to define the locations. This model starts with 0 and 1 values. It sometimes 
takes weeks to design functions that will create a reward matrix (see Chapter 2, 
Building a Reward Matrix – Designing Your Datasets).

The example we will be working on inputs a reward matrix so that the program can 
choose its best course of action. Then, the agent will go from state to state, learning 
the best trajectories for every possible starting location point. The goal of the MDP 
is to go to C (line 3, column 3 in the reward matrix), which has a starting value of 
100 in the following Python code:

# Markov Decision Process (MDP) - The Bellman equations adapted to
# Reinforcement Learning
import numpy as ql
# R is The Reward Matrix for each state
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

Somebody familiar with Python might wonder why I used ql instead of np. Some 
might say "convention," "mainstream," "standard." My answer is a question. Can 
somebody define what "standard" AI is in this fast-moving world! My point here 
for the MDP is to use ql as an abbreviation of "Q-learning" instead of the "standard" 
abbreviation of NumPy, which is np. Naturally, beyond this special abbreviation for 
the MDP programs, I'll use np. Just bear in mind that conventions are there to break 
so as to set ourselves free to explore new frontiers. Just make sure your program 
works well!
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There are several key properties of this decision process, among which there is the 
following:

• The Markov property: The process does not take the past into account. It is 
the memoryless property of this decision process, just as you do in a car with 
a guidance system. You move forward to reach your goal.

• Unsupervised learning: From this memoryless Markov property, it is safe 
to say that the MDP is not supervised learning. Supervised learning would 
mean that we would have all the labels of the reward matrix R and learn 
from them. We would know what A means and use that property to make 
a decision. We would, in the future, be looking at the past. MDP does not 
take these labels into account. Thus, MDP uses unsupervised learning to 
train. A decision has to be made in each state without knowing the past 
states or what they signify. It means that the car, for example, was on its 
own at each location, which is represented by each of its states.

• Stochastic process: In step 1, when state D was reached, the agent 
controlling the mapping system and the driver didn't agree on where to 
go. A random choice could be made in a trial-and-error way, just like a coin 
toss. It is going to be a heads-or-tails process. The agent will toss the coin 
a significant number of times and measure the outcomes. That's precisely 
how MDP works and how the agent will learn.

• Reinforcement learning: Repeating a trial-and-error process with feedback 
from the agent's environment.

• Markov chain: The process of going from state to state with no history 
in a random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

• Pa(s, s'): A policy, P, or strategy to move from one state to another
• Ta(s, s'): A T, or stochastic (random) transition, function to carry out that 

action
• Ra(s, s'): An R, or reward, for that action, which can be negative, null, 

or positive

T is the transition function, which makes the agent decide to go from one point 
to another with a policy. In this case, it will be random. That's what machine power 
is for, and that is how reinforcement learning is often implemented.
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Randomness
Randomness is a key property of MDP, defining it as a stochastic process.

The following code describes the choice the agent is going to make:

next_action = int(ql.random.choice(PossibleAction,1))
return next_action

The code selects a new random action (state) at each episode.

The Bellman equation
The Bellman equation is the road to programming reinforcement learning.

The Bellman equation completes the MDP. To calculate the value of a state, let's 
use Q, for the Q action-reward (or value) function. The pseudo source code of the 
Bellman equation can be expressed as follows for one individual state:

𝑄𝑄(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾 ∗ max(𝑠𝑠′) 

The source code then translates the equation into a machine representation, as in the 
following code:

# The Bellman equation
    Q[current_state, action] = R[current_state, action] +
        gamma * MaxValue

The source code variables of the Bellman equation are as follows:

• Q(s): This is the value calculated for this state—the total reward. In step 1, 
when the agent went from F to B, the reward was a number such as 50 or 100 
to show the agent that it's on the right track.

• R(s): This is the sum of the values up to that point. It's the total reward at that 
point.

• 𝛾𝛾 = gamma : This is here to remind us that trial and error has a price. We're 
wasting time, money, and energy. Furthermore, we don't even know whether 
the next step is right or wrong since we're in a trial-and-error mode. Gamma 
is often set to 0.8. What does that mean? Suppose you're taking an exam. You 
study and study, but you don't know the outcome. You might have 80 out 
of 100 (0.8) chances of clearing it. That's painful, but that's life. The gamma 
penalty, or learning rate, makes the Bellman equation realistic and efficient.

• max(s'): s' is one of the possible states that can be reached with Pa(s, s'); 
max is the highest value on the line of that state (location line in the 
reward matrix).
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At this point, you have done two-thirds of the job: understanding the real-life 
(process) and representing it in basic mathematics. You've built the mathematical 
model that describes your learning process, and you can implement that solution 
in code. Now, you are ready to code!

Step 3 – writing source code: implementing 
the solution in Python
In step 1, a problem was described in natural language to be able to talk to experts 
and understand what was expected. In step 2, an essential mathematical bridge 
was built between natural language and source coding. Step 3 is the software 
implementation phase.

When a problem comes up—and rest assured that one always does—it will be 
possible to go back over the mathematical bridge with the customer or company 
team, and even further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python 
3.x. It is a reinforcement learning program using the Q function with the following 
reward matrix:

import numpy as ql
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

Q = ql.matrix(ql.zeros([6,6]))

gamma = 0.8

R is the reward matrix described in the mathematical analysis.

Q inherits the same structure as R, but all values are set to 0 since this is a learning 
matrix. It will progressively contain the results of the decision process. The gamma 
variable is a double reminder that the system is learning and that its decisions have 
only an 80% chance of being correct each time. As the following code shows, the 
system explores the possible actions during the process:

agent_s_state = 1

# The possible "a" actions when the agent is in a given state
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def possible_actions(state):
    current_state_row = R[state,]
    possible_act = ql.where(current_state_row >0)[1]
    return possible_act

# Get available actions in the current state
PossibleAction = possible_actions(agent_s_state)

The agent starts in state 1, for example. You can start wherever you want because 
it's a random process. Note that the process only takes values > 0 into account. 
They represent possible moves (decisions).

The current state goes through an analysis process to find possible actions (next 
possible states). You will note that there is no algorithm in the traditional sense with 
many rules. It's a pure random calculation, as the following random.choice function 
shows:

def ActionChoice(available_actions_range):
    if(sum(PossibleAction)>0):
        next_action = int(ql.random.choice(PossibleAction,1))
    if(sum(PossibleAction)<=0):
        next_action = int(ql.random.choice(5,1))
    return next_action

# Sample next action to be performed
action = ActionChoice(PossibleAction)

Now comes the core of the system containing the Bellman equation, translated into 
the following source code:

def reward(current_state, action, gamma):
    Max_State = ql.where(Q[action,] == ql.max(Q[action,]))[1]

    if Max_State.shape[0] > 1:
        Max_State = int(ql.random.choice(Max_State, size = 1))
    else:
        Max_State = int(Max_State)
    MaxValue = Q[action, Max_State]
    
    # Q function
    Q[current_state, action] = R[current_state, action] +
        gamma * MaxValue

# Rewarding Q matrix
reward(agent_s_state,action,gamma)

You can see that the agent looks for the maximum value of the next possible state 
chosen at random.
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The best way to understand this is to run the program in your Python environment 
and print() the intermediate values. I suggest that you open a spreadsheet and note 
the values. This will give you a clear view of the process.

The last part is simply about running the learning process 50,000 times, just to 
be sure that the system learns everything there is to find. During each iteration, 
the agent will detect its present state, choose a course of action, and update the Q 
function matrix:

for i in range(50000):
    current_state = ql.random.randint(0, int(Q.shape[0]))
    PossibleAction = possible_actions(current_state)
    action = ActionChoice(PossibleAction)
    reward(current_state,action,gamma)
    
# Displaying Q before the norm of Q phase
print("Q :")
print(Q)

# Norm of Q
print("Normed Q :")
print(Q/ql.max(Q)*100)

The process continues until the learning process is over. Then, the program will print 
the result in Q and the normed result. The normed result is the process of dividing 
all values by the sum of the values found. print(Q/ql.max(Q)*100) norms Q by 
dividing Q by q1.max(Q)*100. The result comes out as a normed percentage.

You can run the process with mdp01.py.

The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as the MDP-driven Bellman 
equation, is toppling traditional decision-making software location by location. 
Memoryless reinforcement learning requires few to no business rules and, thus, 
doesn't require human knowledge to run.

Being an adaptive next-generation AI thinker involves three prerequisites: the 
effort to be an SME, working on mathematical models to think like a machine, 
and understanding your source code's potential and limits.
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Machine power and reinforcement learning teach us two important lessons:

• Lesson 1: Machine learning through reinforcement learning can beat human 
intelligence in many cases. No use fighting! The technology and solutions are 
already here in strategic domains.

• Lesson 2: A machine has no emotions, but you do. And so do the people 
around you. Human emotions and teamwork are an essential asset. Become 
an SME for your team. Learn how to understand what they're trying to say 
intuitively and make a mathematical representation of it for them. Your job 
will never go away, even if you're setting up solutions that don't require 
much development, such as AutoML. AutoML, or automated machine 
learning, automates many tasks. AutoML automates functions such as the 
dataset pipeline, hyperparameters, and more. Development is partially or 
totally suppressed. But you still have to make sure the whole system is well 
designed.

Reinforcement learning shows that no human can solve a problem the way a 
machine does. 50,000 iterations with random searching is not an option for a human. 
The number of empirical episodes can be reduced dramatically with a numerical 
convergence form of gradient descent (see Chapter 3, Machine Intelligence – Evaluation 
Functions and Numerical Convergence).

Humans need to be more intuitive, make a few decisions, and see what happens, 
because humans cannot try thousands of ways of doing something. Reinforcement 
learning marks a new era for human thinking by surpassing human reasoning power 
in strategic fields.

On the other hand, reinforcement learning requires mathematical models to function. 
Humans excel in mathematical abstraction, providing powerful intellectual fuel to 
those powerful machines.

The boundaries between humans and machines have changed. Humans' ability to 
build mathematical models and ever-growing cloud platforms will serve online 
machine learning services.

Finding out how to use the outputs of the reinforcement learning program we just 
studied shows how a human will always remain at the center of AI.
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How to use the outputs
The reinforcement program we studied contains no trace of a specific field, as in 
traditional software. The program contains the Bellman equation with stochastic 
(random) choices based on the reward matrix. The goal is to find a route to C 
(line 3, column 3) that has an attractive reward (100):

# Markov Decision Process (MDP) – The Bellman equations adapted to
# Reinforcement Learning with the Q action-value(reward) matrix
import numpy as ql
# R is The Reward Matrix for each state
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

That reward matrix goes through the Bellman equation and produces a result in 
Python:

Q :
[[ 0. 0. 0. 0. 258.44 0. ]
 [ 0. 0. 0. 321.8 0. 207.752]
 [ 0. 0. 500. 321.8 0. 0. ]
 [ 0. 258.44 401. 0. 258.44 0. ]
 [ 207.752 0. 0. 321.8 0. 0. ]
 [ 0. 258.44 0. 0. 0. 0. ]]
Normed Q :
[[ 0. 0. 0. 0. 51.688 0. ]
 [ 0. 0. 0. 64.36 0. 41.5504]
 [ 0. 0. 100. 64.36 0. 0. ]
 [ 0. 51.688 80.2 0. 51.688 0. ]
 [ 41.5504 0. 0. 64.36 0. 0. ]
 [ 0. 51.688 0. 0. 0. 0. ]]

The result contains the values of each state produced by the reinforced learning 
process, and also a normed Q (the highest value divided by other values).

As Python geeks, we are overjoyed! We made something that is rather difficult work, 
namely, reinforcement learning. As mathematical amateurs, we are elated. We know 
what MDP and the Bellman equation mean.

However, as natural language thinkers, we have made little progress. No customer 
or user can read that data and make sense of it. Furthermore, we cannot explain 
how we implemented an intelligent version of their job in the machine. We didn't.
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We hardly dare say that reinforcement learning can beat anybody in the company, 
making random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work, but hardly know what to do with the 
result ourselves. The consultant on the project cannot help because of the matrix 
format of the solution.

Being an adaptive thinker means knowing how to be good in all steps of a project. 
To solve this new problem, let's go back to step 1 with the result. Going back 
to step 1 means that if you have problems either with the results themselves 
or understanding them, it is necessary to go back to the SME level, the real-life 
situation, and see what is going wrong.

By formatting the result in Python, a graphics tool, or a spreadsheet, the result can 
be  displayed as follows:

A B C D E F

A - - - - 258.44 -
B - - - 321.8 - 207.752
C - - 500 321.8 - -
D - 258.44 401. - 258.44 -
E 207.752 - - 321.8 - -
F - 258.44 - - - -

Now, we can start reading the solution:

• Choose a starting state. Take F, for example.
• The F line represents the state. Since the maximum value is 258.44 in the B 

column, we go to state B, the second line.
• The maximum value in state B in the second line leads us to the D state in 

the  fourth column.
• The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes 
the maximum value, which will lead you back to C. However, the MDP will never 
do this naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of 
departure, you can obtain other sequences by simply sorting the table.
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A useful way of putting it remains the normalized version in percentages, as shown 
in the following table:

A B C D E F

A - - - - 51.68% -
B - - - 64.36% - 41.55%
C - - 100% 64.36% - -
D - 51.68% 80.2% - 51.68% -
E 41.55% - - 64.36% - -
F - 51.68% - - - -

Now comes the very tricky part. We started the chapter with a trip on the road. But I 
made no mention of it in the results analysis.

An important property of reinforcement learning comes from the fact that we are 
working with a mathematical model that can be applied to anything. No human 
rules are needed. We can use this program for many other subjects without writing 
thousands of lines of code.

Possible use cases
There are many cases to which we could adapt our reinforcement learning model 
without having to change any of its details.

Case 1: optimizing a delivery for a driver, human or not
This model was described in this chapter.

Case 2: optimizing warehouse flows
The same reward matrix can apply to go from point F to C in a warehouse, as shown 
in the following diagram:

Figure 1.3: A diagram illustrating a warehouse flow problem
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In this warehouse, the F->B->D->C sequence makes visual sense. If somebody goes 
from point F to C, then this physical path makes sense without going through walls.

It can be used for a video game, a factory, or any form of layout.

Case 3: automated planning and scheduling (APS)
By converting the system into a scheduling vector, the whole scenery changes. We 
have left the more comfortable world of physical processing of letters, faces, and 
trips. Though fantastic, those applications are social media's tip of the iceberg. The 
real challenge of AI begins in the abstract universe of human thinking.

Every single company, person, or system requires automatic planning and 
scheduling (see Chapter 12, AI and the Internet of Things (IoT)). The six A to F steps in 
the example of this chapter could well be six tasks to perform in a given unknown 
order represented by the following vector x:

𝑥𝑥 =

[
 
 
 
 
 
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6]

 
 
 
 
 

 

The reward matrix then reflects the weights of constraints of the tasks of vector x 
to perform. For example, in a factory, you cannot assemble the parts of a product 
before manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing 
process.

Cases 4 and more: your imagination
By using physical layouts or abstract decision-making vectors, matrices, and tensors, 
you can build a world of solutions in a mathematical reinforcement learning model. 
Naturally, the following chapters will enhance your toolbox with many other 
concepts.

Before moving on, you might want to imagine some situations in which you could 
use the A to F letters to express some kind of path.

To help you with these mind experiment simulations, open mdp02.py and go to 
line 97, which starts with the following code that enables a simulation tool. nextc 
and nextci are simply variables to remember where the path begins and will end. 
They are set to -1 so as to avoid 0, which is a location.
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The primary goal is to focus on the expression "concept code." The locations have 
become any concept you wish. A could be your bedroom, and C your kitchen. The 
path would go from where you wake up to where you have breakfast. A could be 
an idea you have, and F the end of a thinking process. The path would go from A 
(How can I hang this picture on the wall?) to E (I need to drill a hole) and, after a few 
phases, to F (I hung the picture on the wall). You can imagine thousands of paths like 
this as long as you define the reward matrix, the "concept code," and a starting point:

"""# Improving the program by introducing a decision-making process"""
nextc=-1
nextci=-1
conceptcode=["A","B","C","D","E","F"]

This code takes the result of the calculation, labels the result matrix, and accepts an 
input as shown in the following code snippet:

origin=int(input(
    "index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

The input only accepts the label numerical code: A=0, B=1 … F=5. The function then 
runs a classical calculation on the results to find the best path. Let's takes an example.

When you are prompted to enter a starting point, enter 5, for example, as follows:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 5

The program will then produce the optimal path based on the output of the MDP 
process, as shown in the following output:

Concept Path

-> F

-> B

-> D

-> C

Try multiple scenarios and possibilities. Imagine what you could apply this to:

• An e-commerce website flow (visit, cart, checkout, purchase) imagining that 
a user visits the site and then resumes a session at a later time. You can use 
the same reward matrix and "concept code" explored in this chapter. For 
example, a visitor visits a web page at 10 a.m., starting at point A of your 
website. Satisfied with a product, the visitor puts the product in a cart, which 
is point E of your website. Then, the visitor leaves the site before going to 
the purchase page, which is C. D is the critical point. Why didn't the visitor 
purchase the product? What's going on? 
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You can decide to have an automatic email sent after 24 hours saying: "There 
is a 10% discount on all purchases during the next 48 hours." This way, you 
will target all the visitors stuck at D and push them toward C.

• A sequence of possible words in a sentence (subject, verb, object). Predicting 
letters and words was one of Andrey Markov's first applications 100+ years 
ago! You can imagine that B is the letter "a" of the alphabet. If D is "t," it is 
much more probable than F if F is "o," which is less probable in the English 
language. If an MDP reward matrix is built such as B leads to D or F, B can 
thus either go to D or to F. There are thus two possibilities, D or F. Andrey 
Markov would suppose, for example, that B is a variable that represents the 
letter "a," D is a variable that represents the letter "t" and F is a variable that 
represents the letter "o." After studying the structure of a language closely, 
he would find that the letter "a" would more likely be followed by "t" than 
by "o" in the English language. If one observes the English language, it is 
more likely to find an "a-t" sequence than an "a-o" sequence. In a Markov 
decision process, a higher probability will be awarded to the "a-t" sequence 
and a lower one to "a-o." If one goes back to the variables, the B-D sequence 
will come out as more probable than the B-F sequence.

• And anything you can find that fits the model that works is great!

Machine learning versus traditional 
applications
Reinforcement learning based on stochastic (random) processes will evolve beyond 
traditional approaches. In the past, we would sit down and listen to future users to 
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of 
thinking. Those days are over. We need proper datasets and ML/DL equations to 
move forward. Applied mathematics has taken reinforcement learning to the next 
level. In my opinion, traditional software will soon be in the museum of computer 
science. The complexity of the huge volumes of data we are facing will require AI 
at some point.

An artificial adaptive thinker sees the world through applied mathematics translated 
into machine representations.

Use the Python source code example provided in this chapter in different ways. 
Run it and try to change some parameters to see what happens. Play around with 
the number of iterations as well. Lower the number from 50,000 down to where you 
find it fits best. Change the reward matrix a little to see what happens. Design your 
reward matrix trajectory. This can be an itinerary or decision-making process.
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Summary
Presently, AI is predominantly a branch of applied mathematics, not of 
neurosciences. You must master the basics of linear algebra and probabilities. That's 
a difficult task for a developer used to intuitive creativity. With that knowledge, 
you will see that humans cannot rival machines that have CPU and mathematical 
functions. You will also understand that machines, contrary to the hype around you, 
don't have emotions; although we can represent them to a scary point in chatbots 
(see Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots).

A multi-dimensional approach is a prerequisite in an AI/ML/DL project. First, talk 
and write about the project, then make a mathematical representation, and finally 
go for software production (setting up an existing platform or writing code). In real 
life, AI solutions do not just grow spontaneously in companies as some hype would 
have us believe. You need to talk to the teams and work with them. That part is the 
real fulfilling aspect of a project—imagining it first and then implementing it with 
a group of real-life people.

MDP, a stochastic random action-reward (value) system enhanced by the Bellman 
equation, will provide effective solutions to many AI problems. These mathematical 
tools fit perfectly in corporate environments.

Reinforcement learning using the Q action-value function is memoryless (no past) 
and unsupervised (the data is not labeled or classified). MDP provides endless 
avenues to solve real-life problems without spending hours trying to invent rules 
to make a system work.

Now that you are at the heart of Google's DeepMind approach, it is time to go to 
Chapter 2, Building a Reward Matrix – Designing Your Datasets, and discover how to 
create the reward matrix in the first place through explanations and source code.

Questions
The answers to the questions are in Appendix B, with further explanations:

1. Is reinforcement learning memoryless? (Yes | No)
2. Does reinforcement learning use stochastic (random) functions? (Yes | No)
3. Is MDP based on a rule base? (Yes | No)
4. Is the Q function based on the MDP? (Yes | No)
5. Is mathematics essential to AI? (Yes | No)
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6. Can the Bellman-MDP process in this chapter apply to many problems?  
(Yes | No)

7. Is it impossible for a machine learning program to create another program by 
itself? (Yes | No)

8. Is a consultant required to enter business rules in a reinforcement learning 
program? (Yes | No)

9. Is reinforcement learning supervised or unsupervised?  
(Supervised | Unsupervised)

10. Can Q-learning run without a reward matrix? (Yes | No)

Further reading
• Andrey Markov: https://www.britannica.com/biography/Andrey-

Andreyevich-Markov

• The Markov process: https://www.britannica.com/science/Markov-
process

https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
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2
Building a Reward Matrix – 

Designing Your Datasets
Experimenting and implementation comprise the two main approaches of artificial 
intelligence. Experimenting largely entails trying ready-to-use datasets and black 
box, ready-to-use Python examples. Implementation involves preparing a dataset, 
developing preprocessing algorithms, and then choosing a model, the proper 
parameters, and hyperparameters.

Implementation usually involves white box work that entails knowing exactly how 
an algorithm works and even being able to modify it.

In Chapter 1, Getting Started with Next-Generation Artifcial Intelligence through 
Reinforcement Learning, the MDP-driven Bellman equation relied on a reward matrix. 
In this chapter, we will get our hands dirty in a white box process to create that 
reward matrix.

An MDP process cannot run without a reward matrix. The reward matrix determines 
whether it is possible to go from one cell to another, from A to B. It is like a map of 
a city that tells you if you are allowed to take a street or if it is a one-way street, for 
example. It can also set a goal, such as a place that you would like to visit in a city, 
for example.

To achieve the goal of designing a reward matrix, the raw data provided by other 
systems, software, and sensors needs to go through preprocessing. A machine 
learning program will not provide efficient results if the data has not gone 
through a standardization process.
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The reward matrix, R, will be built using a McCulloch-Pitts neuron in TensorFlow. 
Warehouse management has grown exponentially as e-commerce has taken over 
many marketing segments. This chapter introduces automated guided vehicles 
(AGVs), the equivalent of an SDC in a warehouse to store and retrieve products.

The challenge in this chapter will be to understand the preprocessing phase in detail. 
The quality of the processed dataset will influence directly the accuracy of any 
machine learning algorithm.

This chapter covers the following topics:

• The McCulloch-Pitts neuron will take the raw data and transform it
• Logistic classifiers will begin the neural network process
• The logistic sigmoid will squash the values
• The softmax function will normalize the values
• The one-hot function will choose the target for the reward matrix
• An example of AGVs in a warehouse

The topics form a list of tools that, in turn, form a pipeline that will take raw data 
and transform it into a reward matrix—an MDP.

Designing datasets – where the dream 
stops and the hard work begins
As in the previous chapter, bear in mind that a real-life project goes through a three-
dimensional method in some form or other. First, it's important to think and talk 
about the problem in need of solving without jumping onto a laptop. Once that is 
done, bear in mind that the foundation of machine learning and deep learning relies 
on mathematics. Finally, once the problem has been discussed and mathematically 
represented, it is time to develop the solution.

First, think of a problem in natural language. Then, make 
a mathematical description of a problem. Only then should 
you begin the software implementation.
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Designing datasets
The reinforcement learning program described in the first chapter can solve a variety 
of problems involving unlabeled classification in an unsupervised decision-making 
process. The Q function can be applied to drone, truck, or car deliveries. It can also 
be applied to decision making in games or real life.

However, in a real-life case study problem (such as defining the reward matrix in 
a warehouse for the AGV, for example), the difficulty will be to produce an efficient 
matrix using the proper features.

For example, an AGV requires information coming from different sources: daily 
forecasts and real-time warehouse flows.

The warehouse manages thousands of locations and hundreds of thousands of 
inputs and outputs. Trying to fit too many features into the model would be 
counterproductive. Removing both features and worthless data requires careful 
consideration.

A simple neuron can provide an efficient way to attain the standardization of the 
input data.

Using the McCulloch-Pitts neuron
To create the reward matrix, R, a robust model for processing the inputs of the 
huge volumes in a warehouse must be reduced to a limited number of features.

In one model, for example, the thousands to hundreds of thousands of inputs can 
be described as follows:

• Forecast product arrivals with a low priority weight: w1 = 10
• Confirmed arrivals with a high priority weight: w2 = 70
• Unplanned arrivals decided by the sales department: w3 = 75
• Forecasts with a high priority weight: w4 = 60
• Confirmed arrivals that have a low turnover and so have a low weight:  

w5 = 20

Machine learning and deep learning are frequently used to 
preprocess input data for standardization purposes, normalization, 
and feature reduction.
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The weights have been provided as constants. A McCulloch-Pitts neuron does not 
modify weights. A perceptron neuron does as we will see beginning with Chapter 
8, Solving the XOR Problem with a Feedforward Neural Network. Experience shows that 
modifying weights is not always necessary.

These weights form a vector, as shown here:

𝑥𝑥 =

[
 
 
 
 
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4
𝑤𝑤5]

 
 
 
 
=

[
 
 
 
 10
70
75
60
20]

 
 
 
 
 

Each element of the vector represents the weight of a feature of a product stored in 
optimal locations. The ultimate phase of this process will produce a reward matrix, 
R, for an MDP to optimize itineraries between warehouse locations.

Let's focus on our neuron. These weights, used through a system such as this one, 
can attain up to more than 50 weights and parameters per neuron. In this example, 
5 weights are implemented. However, in real-life case, many other parameters come 
into consideration, such as unconfirmed arrivals, unconfirmed arrivals with a high 
priority, confirmed arrivals with a very low priority, arrivals from locations that 
probably do not meet security standards, arrivals with products that are potentially 
dangerous and require special care, and more. At that point, humans and even 
classical software cannot face such a variety of parameters.

The reward matrix will be size 6×6. It contains six locations, A to F. In this example, 
the six locations, l1 to l6, are warehouse storage and retrieval locations.

A 6×6 reward matrix represents the target of the McCulloch-Pitts layer implemented 
for the six locations.

When experimenting, the reward matrix, R, can be invented for testing purposes. In 
real-life implementations, you will have to find a way to build datasets from scratch. 
The reward matrix becomes the output of the preprocessing phase. The following 
source code shows the input of the reinforcement learning program used in the first 
chapter. The goal of this chapter describes how to produce the following reward 
matrix that we will be building in the next sections.

# R is The Reward Matrix for each location in a warehouse (or any 
other problem)
R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])
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For the warehouse example that we are using as for any other domain, the 
McCulloch-Pitts neuron sums up the weights of the input vector described 
previously to fill in the reward matrix.

Each location will require its neuron, with its weights.

INPUTS -> WEIGHTS -> BIAS -> VALUES

• Inputs are the flows in a warehouse or any form of data.
• Weights will be defined in this model.
• Bias is for stabilizing the weights. Bias does exactly what it means. It will tilt 

weights. It is very useful as a referee that will keep the weights on the right 
track.

• Values will be the output.

The McCulloch-Pitts neuron
The McCulloch-Pitts neuron dates back to 1943. It contains inputs, weights, and an 
activation function. Part of the preprocessing phase consists of selecting the right 
model. The McCulloch-Pitts neuron can represent a given location efficiently.

The following diagram shows the McCulloch-Pitts neuron model:

Figure 2.1: The McCulloch-Pitts neuron model

There are as many ways as you can imagine to create reward 
matrices. This chapter describes one way of doing it that works.
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This model contains several input x weights that are summed to either reach 
a threshold that will lead, once transformed, to the output, y = 0, or 1. In this 
model, y will be calculated in a more complex way.

MCP.py written with TensorFlow 2 will be used to illustrate the neuron.

In the following source code, the TensorFlow variables will contain the input values 
(x), the weights (W), and the bias (b). Variables represent the structure of your graph:

# The variables
x = tf.Variable([[0.0,0.0,0.0,0.0,0.0]], dtype = tf.float32)
W = tf.Variable([[0.0],[0.0],[0.0],[0.0],[0.0]], dtype =
    tf.float32)
b = tf.Variable([[0.0]])

In the original McCulloch-Pitts artificial neuron, the inputs (x) were multiplied by 
the following weights:

𝑤𝑤1𝑥𝑥1 +⋯+𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 =∑𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 

The mathematical function becomes a function with the neuron code triggering 
a logistic activation function (sigmoid), which will be explained in the second part 
of the chapter. Bias (b) has been added, which makes this neuron format useful even 
today, shown as follows:

# The Neuron
def neuron(x, W, b):
    y1=np.multiply(x,W)+b
    y1=np.sum(y1)
    y = 1 / (1 + np.exp(-y1))
    return y

Before starting a session, the McCulloch-Pitts neuron (1943) needs an operator 
to set its weights. That is the main difference between the McCulloch-Pitts neuron 
and the perceptron (1957), which is the model for modern deep learning neurons. 
The perceptron optimizes its weights through optimizing processes. Chapter 8, 
Solving the XOR Problem with a Feedforward Neural Network, describes why a modern 
perceptron was required.
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The weights are now provided, and so are the quantities for each input value, which 
are stored in the x vector at l1, one of the six locations of this warehouse example:

𝑥𝑥 =

[
 
 
 
 
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑤𝑤4
𝑤𝑤5]

 
 
 
 
=

[
 
 
 
 10
70
75
60
20]

 
 
 
 
 

The weight values will be divided by 100, to represent percentages in terms of 0 to 
1 values of warehouse flows in a given location. The following code deals with the 
choice of one location, l1 only, its values, and parameters:

# The data
x_1 = [[10, 2, 1., 6., 2.]]
w_t = [[.1, .7, .75, .60, .20]]
b_1 = [1.0]

The neuron function is called, and the weights (w_t) and the quantities (x_1) of the 
warehouse flow are entered. Bias is set to 1 in this model. No session needs to be 
initialized; the neuron function is called:

# Computing the value of the neuron
value=neuron(x_1,w_t,b_1)

The neuron function neuron will calculate the value of the neuron. The program 
returns the following value:

value for threshold calculation:0.99999

This value represents the activity of location l1 at a given date and a given time. 
This example represents only one of the six locations to compute. For this location, 
the higher the value, the closer to 1, the higher the probable saturation rate of this 
area. This means there is little space left to store products at that location. That is 
why the reinforcement learning program for a warehouse is looking for the least 
loaded area for a given product in this model.

Each location has a probable availability:

A = Availability = 1 – load

The probability of a load of a given storage point lies between 0 and 1.
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High values of availability will be close to 1, and low probabilities will be close to 0, 
as shown in the following example:

>>> print("Availability of location x:{0:.5f}".format(

...       round(availability,5)))

Availability of location x:0.00001

For example, the load of l1 has a probable rounded load of 0.99, and its probable 
availability is 0.002 maximum. The goal of the AGV is to search and find the closest 
and most available location to optimize its trajectories. l1 is not a good candidate at 
that day and time. Load is a keyword in production or service activities. The less 
available resources have the highest load rate.

When all six locations' availabilities have been calculated by the McCulloch-Pitts 
neuron—each with its respective quantity inputs, weights, and bias—a location 
vector of the results of this system will be produced. Then, the program needs to 
be implemented to run all six locations and not just one location through a recursive 
use of the one neuron model:

A(L) = {a(l1),a(l2),a(l3),a(l4),a(l5),a(l6)}

The availability, 1 – output value of the neuron, constitutes a six-line vector. The 
following vector, lv, will be obtained by running the previous sample code on all 
six locations.

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

 

As shown in the preceding formula, lv is the vector containing the value of each 
location for a given AGV to choose from. The values in the vector represent 
availability. 0.0002 means little availability; 0.9 means high availability. With this 
choice, the MDP reinforcement learning program will optimize the AGV's trajectory 
to get to this specific warehouse location.

The lv is the result of the weighing function of six potential locations for the AGV. 
It is also a vector of transformed inputs.
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The Python-TensorFlow architecture
Implementation of the McCulloch-Pitts neuron can best be viewed as shown in the 
following graph:

Figure 2.2: Implementation of the McCulloch-Pitts neuron

A data flow graph will also help optimize a program when things go wrong as in 
classical computing.

Logistic activation functions and 
classifiers
Now that the value of each location of L = {l1, l2, l3, l4, l5, l6} contains its availability 
in a vector, the locations can be sorted from the most available to the least available 
location. From there, the reward matrix, R, for the MDP process described 
in Chapter 1, Getting Started with Next-Generation Artifcial Intelligence through 
Reinforcement Learning, can be built.

Overall architecture
At this point, the overall architecture contains two main components:

1. Chapter 1: A reinforcement learning program based on the value-action 
Q function using a reward matrix that will be finalized in this chapter. 
The reward matrix was provided in the first chapter as an experiment, but 
in the implementation phase, you'll often have to build it from scratch. 
It sometimes takes weeks to produce a good reward matrix.
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2. Chapter 2: Designing a set of 6×1 neurons that represents the flow of 
products at a given time at six locations. The output is the availability 
probability from 0 to 1. The highest value indicates the highest availability. 
The lowest value indicates the lowest availability.

At this point, there is some real-life information we can draw from these two main 
functions through an example:

• An AGV is automatically moving in a warehouse and is waiting to receive its 
next location to use an MDP, to calculate the optimal trajectory of its mission.

• An AGV is using a reward matrix, R, that was given during the experimental 
phase but needed to be designed during the implementation process.

• A system of six neurons, one per location, weighing the real quantities 
and probable quantities to give an availability vector, lv, has been calculated. 
It is almost ready to provide the necessary reward matrix for the AGV.

To calculate the input values of the reward matrix in this reinforcement learning 
warehouse model, a bridge function between lv and the reward matrix, R, is missing.

That bridge function is a logistic classifier based on the outputs of the n neurons 
that all perform the same tasks independently or recursively with one neuron.

At this point, the system:

• Took corporate data
• Used n neurons calculated with weights
• Applied an activation function

The activation function in this model requires a logistic classifier, a commonly 
used one.

Logistic classifier
The logistic classifier will be applied to lv (the six location values) to find the best 
location for the AGV. This method can be applied to any other domain. It is based on 
the output of the six neurons as follows:

input × weight + bias

What are logistic functions? The goal of a logistic classifier is to produce a probability 
distribution from 0 to 1 for each value of the output vector. As you have seen so far, 
artificial intelligence applications use applied mathematics with probable values, not 
raw outputs. 
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The main reason is that machine learning/deep learning works best with 
standardization and normalization for workable homogeneous data distributions. 
Otherwise, the algorithms will often produce underfitted or overfitted results.

In the warehouse model, for example, the AGV needs to choose the best, most 
probable location, li. Even in a well-organized corporate warehouse, many 
uncertainties (late arrivals, product defects, or some unplanned problems) reduce the 
probability of a choice. A probability represents a value between 0 (low probability) 
and 1 (high probability). Logistic functions provide the tools to convert all numbers 
into probabilities between 0 and 1 to normalize data.

Logistic function
The logistic sigmoid provides one of the best ways to normalize the weight of a 
given output. The activation function of the neuron will be the logistic sigmoid. The 
threshold is usually a value above which the neuron has a y = 1 value; or else it has a 
y = 0 value. In this model, the minimum value will be 0.

The logistic function is represented as follows:

1
1 + 𝑒𝑒−𝑥𝑥 

• e represents Euler's number, or 2.71828, the natural logarithm.
• x is the value to be calculated. In this case, s is the result of the logistic 

sigmoid function.

The code has been rearranged in the following example to show the reasoning 
process that produces the output, y, of the neuron:

    y1=np.multiply(x,W)+b
    y1=np.sum(y1)
    y = 1 / (1 + np.exp(-y1)) #logistic Sigmoid

Thanks to the logistic sigmoid function, the value for the first location in the model 
comes out squashed between 0 and 1 as 0.99, indicating a high probability that this 
location will be full.

To calculate the availability of the location once the 0.99 value has been taken into 
account, we subtract the load from the total availability, which is 1, as follows:

Availability = 1 – probability of being full (value)

Or

availability = 1 – value
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As seen previously, once all locations are calculated in this manner, a final 
availability vector, lv, is obtained.

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

 

When analyzing lv, a problem has stopped the process. Individually, each line 
appears to be fine. By applying the logistic sigmoid to each output weight and 
subtracting it from 1, each location displays a probable availability between 0 and 1. 
However, the sum of the lines in lv exceeds 1. That is not possible. A probability 
cannot exceed 1. The program needs to fix that.

Each line produces a [0, 1] solution, which fits the prerequisite of being a valid 
probability.

In this case, the vector lv contains more than one value and becomes a probability 
distribution. The sum of lv cannot exceed 1 and needs to be normalized.

The softmax function provides an excellent method to normalize lv. Softmax is widely 
used in machine learning and deep learning.

Bear in mind that mathematical tools are not rules. You can adapt them to your problem 
as much as you wish as long as your solution works.

Softmax
The softmax function appears in many artificial intelligence models to normalize 
data. Softmax can be used for classification purposes and regression. In our example, 
we will use it to find an optimized goal for an MDP.

In the case of the warehouse example, an AGV needs to make a probable choice 
between six locations in the lv vector. However, the total of the lv values exceeds 
1. lv requires normalization of the softmax function, S. In the source code, the lv  
vector will be named y.

𝑆𝑆(𝑦𝑦𝑖𝑖) =
𝑒𝑒𝑦𝑦𝑖𝑖

∑ 𝑒𝑒𝑦𝑦𝑖𝑖𝑛𝑛
𝑗𝑗=1

 



Chapter 2

[ 39 ]

The following code used is SOFTMAX.py.

1. y represents the lv vector:
# y is the vector of the scores of the lv vector in the warehouse 
example:
y = [0.0002, 0.2, 0.9,0.0001,0.4,0.6]

2. 𝑒𝑒𝑦𝑦𝑖𝑖  is the exp(i) result of each value in y (lv in the warehouse example), 
as follows:
y_exp = [math.exp(i) for i in y]

3. ∑ 𝑒𝑒𝑦𝑦𝑖𝑖
𝑛𝑛

𝑗𝑗=1
  is the sum of 𝑒𝑒𝑦𝑦𝑖𝑖  as shown in the following code:

sum_exp_yi = sum(y_exp)

Now, each value of the vector is normalized by applying the following function:

softmax = [round(i / sum_exp_yi, 3) for i in y_exp]

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

→ softmax(𝑙𝑙𝑣𝑣) →

[
 
 
 
 
 0.111
0.135
0.273
0.111
0.165
0.202]

 
 
 
 
 

 

softmax(lv) provides a normalized vector with a sum equal to 1, as shown in 
this compressed version of the code. The vector obtained is often described 
as containing logits.

The following code shows one version of a softmax function:

def softmax(x):
    return np.exp(x) / np.sum(np.exp(x), axis=0)

lv is now normalized by softmax(lv) as follows.

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

→ softmax(𝑙𝑙𝑣𝑣) →

[
 
 
 
 
 0.111
0.135
0.273
0.111
0.165
0.202]
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The last part of the softmax function requires softmax(lv) to be rounded to 0 or 
1. The higher the value in softmax(lv), the more probable it will be. In clear-cut 
transformations, the highest value will be close to 1, and the others will be closer to 0. 
In a decision-making process, the highest value needs to be established as follows:

print("7C.
Finding the highest value in the normalized y vector : ",ohot)

The output value is 0.273 and has been chosen as the most probable location. It is 
then set to 1, and the other, lower values are set to 0. This is called a one-hot function. 
This one-hot function is extremely helpful for encoding the data provided. The 
vector obtained can now be applied to the reward matrix. The value 1 probability 
will become 100 in the R reward matrix, as follows:

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

→ softmax(𝑙𝑙𝑣𝑣) →

[
 
 
 
 
 0.111
0.135
0.273
0.111
0.165
0.202]

 
 
 
 
 

→ one-hot(𝑙𝑙𝑣𝑣) →

[
 
 
 
 
 00
1
0
0
0]
 
 
 
 
 

→ 𝑅𝑅 →

[
 
 
 
 
 0

0
100
0
0
0 ]

 
 
 
 
 

 

The softmax function is now complete. Location l3 or C is the best solution for the 
AGV. The probability value is multiplied by 100, and the reward matrix, R, can now 
receive the input.

We now have the data for the reward matrix. The best way to understand the 
mathematical aspect of the project is to draw the result on a piece of paper using 
the actual warehouse layout from locations A to F.

Locations={l1-A, l2-B, l3-C, l4-D, l5-E, l6-F}

Line C of the reward matrix ={0, 0, 100, 0, 0, 0}, where C (the third value) is now the 
target for the self-driving vehicle, in this case, an AGV in a warehouse.

Figure 2.3: Illustration of a warehouse transport problem

Before continuing, take some time to play around with the values 
in the source code and run it to become familiar with the softmax 
function. 
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We obtain the following reward matrix, R, described in Chapter 1, Getting Started with 
Next-Generation Artificial Intelligence through Reinforcement Learning:

State/values A B C D E F
A - - - - 1 -
B - - - 1 - 1
C - - 100 1 - -
D - 1 1 - 1 -
E 1 - - 1 - -
F - 1 - - - -

This reward matrix is exactly the one used in the Python reinforcement learning 
program using the Q function from Chapter 1. The output of this chapter is thus 
the input of the R matrix. The 0 values are there for the agent to avoid those values. 
The 1 values indicate the reachable cells. The 100 in the C×C cell is the result of the 
softmax output. This program is designed to stay close to probability standards with 
positive values, as shown in the following R matrix taken from the mdp01.py of 
Chapter 1:

R = ql.matrix([ [0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,100,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0] ])

At this point:

• The output of the functions in this chapter generated a reward matrix, R, 
which is the input of the MDP described in Chapter 1, Getting Started with 
Next-Generation Artificial Intelligence through Reinforcement Learning.

• The MDP process was set to run for 50,000 episodes in Chapter 1.
• The output of the MDP has multiple uses, as we saw in this chapter and 

Chapter 1.

The building blocks are in place to begin evaluating the execution and performances 
of the reinforcement learning program, as we will see in Chapter 3, Machine 
Intelligence – Evaluation Functions and Numerical Convergence.
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Summary
Using a McCulloch-Pitts neuron with a logistic activation function in a one-layer 
network to build a reward matrix for reinforcement learning shows one way to 
preprocess a dataset.

Processing real-life data often requires a generalization of a logistic sigmoid function 
through a softmax function, and a one-hot function applied to logits to encode the 
data.

Machine learning functions are tools that must be understood to be able to use 
all or parts of them to solve a problem. With this practical approach to artificial 
intelligence, a whole world of projects awaits you.

This neuronal approach is the parent of the multilayer perceptron that will be 
introduced starting in Chapter 8, Solving the XOR Problem with a Feedforward Neural 
Network.

This chapter went from an experimental black box machine learning and deep 
learning to white box implementation. Implementation requires a full understanding 
of machine learning algorithms that often require fine-tuning.

However, artificial intelligence goes beyond understanding machine learning 
algorithms. Machine learning or deep learning require evaluation functions. 
Performance or results cannot be validated without evaluation functions, as 
explained in Chapter 3, Machine Intelligence – Evaluation Functions and Numerical 
Convergence.

In the next chapter, the evaluation process of machine intelligence will be 
illustrated by examples that show the limits of human intelligence and the rise 
of machine power.
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Questions
1. Raw data can be the input to a neuron and transformed with weights.  

(Yes | No)
2. Does a neuron require a threshold? (Yes | No)
3. A logistic sigmoid activation function makes the sum of the weights larger. 

(Yes | No)
4. A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)
5. A logistic sigmoid function is a log10 operation. (Yes | No)
6. A logistic softmax is not necessary if a logistic sigmoid function is applied to 

a vector. (Yes | No)
7. A probability is a value between –1 and 1. (Yes | No)

Further reading
• The original McCulloch-Pitts neuron 1943 paper: http://www.cse.

chalmers.se/~coquand/AUTOMATA/mcp.pdf

• TensorFlow variables: https://www.tensorflow.org/beta/guide/
variables

http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
https://www.tensorflow.org/beta/guide/variables
https://www.tensorflow.org/beta/guide/variables
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3
Machine Intelligence – 

Evaluation Functions and 
Numerical Convergence

Two issues appear when a reward matrix (R)-driven MDP produces results. 
These issues can be summed up in two principles.

Principle 1: AI algorithms often surpass humans in classification, prediction, 
and decision-making areas.

The key executive function of human intelligence, decision-making, relies on the 
ability to evaluate a situation. No decision can be made without measuring the pros 
and cons and factoring the parameters.

Humanity takes great pride in its ability to evaluate. However, in many cases, 
a machine can do better. Chess represents our pride in our thinking ability. 
A chessboard is often present in movies to symbolize human intelligence.

Today, not a single chess player can beat the best chess engines. One of the 
extraordinary core capabilities of a chess engine is the evaluation function; it takes 
many parameters into account more precisely than humans.

Principle 2: Principle 1 leads to a very tough consequence. It is sometimes possible 
and other times impossible for a human to verify the results that an AI algorithm 
produces, let alone ensemble meta-algorithms.
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Principle 1 has been difficult to detect because of the media hype surrounding face 
and object recognition. It is easy for a human to check whether the face or object the 
ML algorithm was supposed to classify was correctly classified.

However, in a decision-making process involving many features, principle 2 rapidly 
appears. In this chapter, we will identify what results and convergence to measure 
and decide how to measure it. We will also explore measurement and evaluation 
methods.

This chapter covers the following topics:

• Evaluation of the episodes of a learning session
• Numerical convergence measurements
• An introduction to numerical gradient descent
• Decision tree supervised learning as an evaluation method

The first thing is to set evaluation goals. To do this, we will decide what to measure 
and how.

Tracking down what to measure and 
deciding how to measure it
We will now tackle the tough task of finding the factors that can make a system 
go wrong.

The model built in the previous chapters can be summed up as follows:

𝑙𝑙𝑣𝑣 =

[
 
 
 
 
 0.0002

0.2
0.9

0.0001
0.4
0.6 ]

 
 
 
 
 

→ softmax(𝑙𝑙𝑣𝑣) →

[
 
 
 
 
 0.111
0.135
0.273
0.111
0.165
0.202]

 
 
 
 
 

→ one-hot →

[
 
 
 
 
 00
1
0
0
0]
 
 
 
 
 

→ 𝑅𝑅 →

[
 
 
 
 
 0

0
100
0
0
0 ]

 
 
 
 
 

→ gamma → 𝑄𝑄 → Results 

From lv, the availability vector (capacity in a warehouse, for example), to R, the 
process creates the reward matrix from the raw data (Chapter 2, Building a Reward 
Matrix – Designing Your Datasets) required for the MDP reinforcement learning 
program (Chapter 1, Getting Started with Next-Generation Artificial Intelligence through 
Reinforcement Learning). As described in the previous chapter, a softmax(lv) function 
is applied to lv. In turn, a one-hot(softmax(lv)) is applied, which is then converted 
into the reward value R, which will be used for the Q (Q-learning) algorithm.
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The MDP-driven Bellman equation then runs from reading R (the reward matrix) to 
the results. Gamma is the learning parameter, Q is the Q-learning function, and the 
results represent the final value of the states of the process.

The parameters to be measured are as follows:

• The company's input data. Ready-to-use datasets such as MNIST are 
designed to be efficient for an exploration phase. These ready-made datasets 
often contain some noise (unreliable data) to make them realistic. The same 
process must be achieved with raw company data. The only problem is that 
you cannot download a corporate dataset from somewhere. You have to 
build time-consuming datasets.

• The weights and biases that will be applied.
• The activation function (a logistic function or other).
• The choices to make after the one-hot process.
• The learning parameter.
• Episode management through convergence.
• A verification process through interactive random checks and independent 

algorithms such as supervised learning to control unsupervised algorithms.

In real-life company projects, a system will not be approved until tens of thousands 
of results have been produced. In some cases, a corporation will approve the 
system only after hundreds of datasets with millions of data samples have been 
tested to be sure that all scenarios are accurate. Each dataset represents a scenario 
that consultants can work on with parameter scripts. The consultant introduces 
parameter scenarios that are tested by the system and measured. In decision-making 
systems with up to 200 parameters, a consultant will remain necessary for months 
in an industrial environment. A reinforcement learning program will be on its own 
to calculate events. However, even then, consultants are needed to manage the 
hyperparameters. In real-life systems, with high financial stakes, quality control 
will always remain essential.

Measurement should thus apply to generalization more than simply applying to a 
single or few datasets. Otherwise, you will have a natural tendency to control the 
parameters and overfit your model in a too-good-to-be-true scenario. 
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For example, say you wake up one morning and look at the sky. The weather is clear, 
the sun is shining, and there are no clouds. The next day, you wake up and you see 
the same weather. You write this down in a dataset and send it off to a customer 
for weather prediction. Every time the customer runs the program, it predicts clear 
sunny skies! That what overfitting leads to! This explains why we need large datasets 
to fully understand how to use an algorithm or illustrate how a machine learning 
program works.

Beyond the reward matrix, the reinforcement program in the first chapter had 
a learning parameter 𝜆𝜆 = 0.8 , shown in mdp03.py, which is used for this section:

# Gamma: It's a form of penalty or uncertainty for learning
# If the value is 1, the rewards would be too high.
# This way the system knows it is learning.
gamma = 0.8

The 𝜆𝜆  learning parameter in itself needs to be closely monitored because it introduces 
uncertainty into the system. This means that the learning process will always remain 
a probability, never a certainty. One might wonder why this parameter is not just 
taken out. Paradoxically, that will lead to even more global uncertainty. The more 
the 𝜆𝜆  learning parameter tends to 1, the more you risk overfitting your results. 
Overfitting means that you are pushing the system to think it's learning well when 
it isn't. It's exactly like a teacher who gives high grades to everyone in the class all 
the time. The teacher would be overfitting the grade-student evaluation process, 
and nobody would know whether the students have learned anything.

The results of the reinforcement program need to be measured as they go through 
episodes. The range of the learning process itself must be measured.

All of these measurements will have a significant effect on the results obtained.

The best way to start is by measuring the quality of convergence of the system.

If the system provides good convergence, you might avoid the headache of having 
to go back and check everything.

Convergence
Convergence measures the distance between the present state of a training session 
and the goal of the training session. In a reinforcement learning program, an MDP, 
for example, there is no training data, so there is no target data to compare to.
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However, two methods are available:

1. Implicit convergence: In this case, we run the training for a large number 
of episodes, 50,000, for example. We know through trial and error that the 
program will reach a solution by then.

2. Numerically controlled gradient descent: We measure the training progress 
at each episode and stop when it is safe to do so.

Implicit convergence
In the last part of mdp01.py in the first chapter, a range of 50,000 was implemented. 
In this chapter, we will run mdp03.py.

In the last part of mdp01.py, the idea was to set the number of episodes at such 
a level that meant that convergence was certain. In the following code, the range 
(50000) is a constant:

for i in range(50000):
    current_state = ql.random.randint(0, int(Q.shape[0]))
    PossibleAction = possible_actions(current_state)
    action = ActionChoice(PossibleAction)
    reward(current_state,action,gamma)

Convergence, in this case, will be defined as the point at which no matter how long 
you run the system, the Q result matrix will not change anymore.

By setting the range to 50000, you can test and verify this. As long as the reward 
matrices remain homogeneous, this will work. If the reward matrices strongly vary 
from one scenario to another, this model will produce unstable results.

Try to run the program with different ranges. Lower the ranges until you see that the 
results are not optimal.

Numerically controlled gradient descent 
convergence
In this section, we will use mdp03.py, a modified version of mdp01.py explored in 
Chapter 1, with an additional function: numerically controlled gradient descent.

Letting the MDP train for 50,000 will produce a good result but consume 
unnecessary CPU. Using a numerically controlled gradient descent evaluation 
function will save a lot of episodes. Let's see how many.
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First, we need to define the gradient descent function based on a derivative. Let's 
have a quick review of what a derivative is.

𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)
ℎ  

h is the value of the step of the function. Imagine that h represents each line of a bank 
account statement. If we read the statement line by line, h = 1. If we read two lines 
at a time, h = 2.

Reading the present line of the bank account statement = f(x) = a certain amount.

When you read the next line of the bank account, the function is (f + h) = the amount 
after f(x). If you had 100 units of currency in your bank account at f(x) and spent 
10 units of currency, on the next line, x + h, you would have f(x + h) = 90 units of 
currency left.

The gradient provides the direction of your slope: up, down, or constant. In this 
case, we can say that the slope, the gradient, is doing downward, as shown in the 
following graph, which illustrates the decreasing values of y(cost, loss) as x increases 
(training episodes):

Figure 3.1: Plotting the decreasing cost/loss values as training episodes increase

We also need to know by how much your bank account is changing – how much the 
derivative is worth. In this case, derivative means by how much the balance of your 
bank account is changing on each line of your bank statement. In this case, you spent 
10 units of currency in one bank statement line, so the derivative at this value of x 
(line in your bank account) = –10.
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In the following code of the Bellman equation as seen in Chapter 1, Getting Started 
with Next-Generation Artifcial Intelligence through Reinforcement Learning, the step of 
the loop is 1 as well:

for i in range(sec):

Since i = 1, h = 1 in our gradient descent calculation can be simplified:

𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥)
1 = 𝑓𝑓(𝑥𝑥 + 1) − 𝑓𝑓(𝑥𝑥) 

We now define f(x) in the following code:

conv=Q.sum()

conv is the sum of the 6×6 Q matrix that is slowly filling up as the MDP training 
progresses. Thus f(x) = conv=Q.sum() = sum of Q. The function adds up all the 
values in Q to have a precise value of the state of the system at each i.

f(x) = the state of the system at i – 1

f(x + 1) is the value of the system at i:

Q.sum()

We must remember that the Q matrix is increasing progressively as the MDP process 
continues to train. We measure the distance between two steps, h. This distance will 
decrease. Now we have:

f(x + 1) – f(x) = -Q.sum()+conv

• First we implement additional variables for our evaluation function, which 
uses gradient descent at line 83 of mdp01.py:
ci=0          # convergence counter which counts the number of 
episodes
conv=0        # sum of Q at state 1 and then every x episodes
nc=1          # numerical convergence activated to perform 
numerical-controlled gradient descent
xi=100        # xi episode optimizer: stop as soon as convergence 
reached + xi-x(unknown)
sec=2500      # security number of episodes for this matrix size 
brought down from 50,000 to 2,500
cq=ql.zeros((2500, 1))

• nc=1 activates the evaluation function, and ci begins to count the episodes 
it will take with this function:
for i in range(sec):
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    current_state = ql.random.randint(0, int(Q.shape[0]))
    PossibleAction = possible_actions(current_state)
    action = ActionChoice(PossibleAction)
    reward(current_state,action,gamma)
    ci+=1                          # convergence counter 
incremented by 1 at each state
    if(nc==1):                      # numerical convergence 
activated

• At the first episode, i==1, f(x)= Q.sum() as planned:
        if(i==1):               # at state one, conv is activated
            conv=Q.sum()    # conv= the sum of Q

• f(x + 1) = -Q.sum()+conv is applied:
        print("Episode",i,"Local derivative:",-Q.sum()+conv,...

• The distance, the absolute value of the derivative, is displayed and stored 
because we will be using it to plot a figure with Matplotlib:
        print(... "Numerical Convergence value estimator",
            Q.sum()-conv)
                cq[i][0]=Q.sum()-conv

• xi=100 plays a critical role in this numerically controlled gradient descent 
function. Every xi, the process stops to check the status of the training 
process:
    if(ci==xi):   # every 100 episodes the system checks to see...

There are two possible cases: a) and b).

Case a) As long as the local derivative is >0 at each episode, the MDP continues its 
training process:

            if(conv!=Q.sum()): # if the sum of Q changes...
                conv=Q.sum()   # ...the training isn't over, conv is 
updated
                ci=0           # ...the convergence counter is set to 
O
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The output will display varying local derivatives:

Episode 1911 Local derivative: -9.094947017729282e-13 Numerical 
Convergence value estimator 9.094947017729282e-13

Episode 1912 Local derivative: -9.094947017729282e-13 Numerical 
Convergence value estimator 9.094947017729282e-13

Episode 1913 Local derivative: -1.3642420526593924e-12 Numerical 
Convergence value estimator 1.3642420526593924e-12

Case b) When the derivative value reaches a constant value for xi episodes, the MDP 
has been trained and the training can now stop:

            if(conv==Q.sum()):        # ...if the sum of Q has changed
                print(i,conv,Q.sum()) # ...if it hasn't the training 
is over
                break                 # ...the system stops training

The output will display a constant derivate, xi, before the training stops:

Episode 2096 Local derivative: 0.0 Numerical Convergence value estimator 
0.0

Episode 2097 Local derivative: 0.0 Numerical Convergence value estimator 
0.0

Episode 2098 Local derivative: 0.0 Numerical Convergence value estimator 
0.0

Episode 2099 Local derivative: 0.0 Numerical Convergence value estimator 
0.0

When the training is over, the number of training episodes is displayed:

number of episodes: 2099

2,099 is a lot less than the 50,000 implicit convergence episodes, which proves the 
efficiency of this numerically controlled gradient descent method.
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At the end of the learning process, you can display a Matplotlib figure containing the 
convergence level of each episode that we had stored in cq=ql.zeros((2500, 1)):

            cq[i][0]=Q.sum()-conv

The figure is displayed with a few lines of code:

import matplotlib.pyplot as plt
plt.plot(cq)
plt.xlabel('Episodes')
plt.ylabel('Convergence Distances')
plt.show()

Figure 3.2: A plot demonstrating numerical convergence

This graph shows the numerical convergence. As you can see in the graph, the cost 
or loss decreases as the number of training episodes increases, as explained earlier 
in this chapter.

Please note the following properties of this gradient descent method:

• The number of episodes will vary from one training session to another 
because the MDP is a random process.

• The training curve at local episodes is sometimes erratic because of the 
random nature of the training process. Sometimes, the curve will go up 
instead of down locally. In the end, it will reach 0 and stay there.
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• If the training curve increases locally, there is nothing you can do. An MDP 
does no backpropagation to modify weights, parameters, or strategies, as 
we will see when we look at artificial neural networks (ANNs), for example, 
in Chapter 8, Solving the XOR Problem with a Feedforward Neural Network. No 
action is required in an MDP process. You can try to change the learning 
rate or go back and check your reward matrix and the preprocessing phase 
implemented on the raw datasets.

• If the training curve does not reach 0 and stay there, check the learning 
parameters, the reward matrix, and the preprocessing phase implemented 
on the raw datasets. You might even have to go back and check the noise 
(defective data or missing data) in the initial datasets.

Once the MDP training is over, do some random tests using the functionality 
provided at line 145 and explained in Chapter 1:

origin=int(input("index number origin(A=0,B=1,C=2,D=3,E=4,F=5): "))

For example, when prompted for an input, enter 1 and see if the result is correct, 
as shown in the following output:

index number origin(A=0,B=1,C=2,D=3,E=4,F=5): 1
…/…
print("Path:")
-> B
-> D
-> C

This random test verification method will work efficiently with a relatively small 
reward matrix.

However, this approach will prove difficult with a size 25×25 reward matrix, for 
example. The machine easily provides a result. But how can we evaluate it? In that 
case, we have reached the limit of human analytic capacity. In the preceding code, 
we entered a starting point and obtained an answer. With a small reward matrix, it is 
easy to visually check and see if the answer is correct. When analyzing 25 × 25 = 625 
cells, it would take days to verify the results. For the record, bear in mind that when 
Andrey Markov invented his approach over 100 years ago, he used a pen and paper! 
However, we have computers, so we must use an evaluation algorithm to evaluate 
the results of our MDP process.

The increasing volumes of data and parameters in a global world have made it 
impossible for humans to outperform the ever-growing intelligence of machines.
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Evaluating beyond human analytic 
capacity
An efficient manager has a high evaluation quotient. A machine often has a better 
one in an increasing number of fields. The problem for a human is to understand the 
evaluation machine intelligence has produced.

Sometimes a human will say "that's a good machine thinking result" or "that's a bad 
result," without being able to explain why or determine whether there is a better 
solution.

Evaluation is one of the major keys to efficient decision-making in all fields: from 
chess, production management, rocket launching, and self-driving cars to data center 
calibration, software development, and airport schedules.

We'll explore a chess scenario to illustrate the limits of human evaluation.

Chess engines are not high-level deep learning-based software. They rely heavily on 
evaluations and calculations. They evaluate much better than humans, and there is 
a lot to learn from them. The question now is to know whether any human can beat 
a chess engine or not. The answer is no.

To evaluate a position in chess, you need to examine all the pieces, their quantitative 
value, their qualitative value, the cooperation between pieces, who owns each of the 
64 squares, the king's safety, the bishop pairs, the knight positioning, and many other 
factors.

Evaluating a position in a chess game shows why machines are surpassing humans 
in quite a few decision-making fields.

The following scenario is after move 23 in the Kramnik-Bluebaum 2017 game. 
It cannot be correctly evaluated by humans. It contains too many parameters 
to analyze and too many possibilities.
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Figure 3.3: Chess example scenario

It is white's turn to play, and a close analysis shows that both players are lost at this 
point. In a tournament like this, they must each continue to keep a poker face. They 
often look at their position with a confident face to hide their dismay. Some even 
shorten their thinking time to make their opponent think they know where they 
are going.

These unsolvable positions for humans are painless to solve with chess engines, even 
for cheap, high-quality chess engines on a smartphone. This can be generalized to all 
human activity that has become increasingly complex, unpredictable, and chaotic. 
Decision-makers will increasingly rely on AI to help them make the right choices.

No human can play chess and evaluate the way a chess engine does by simply 
calculating the positions of the pieces, their squares of liberty, and many other 
parameters. A chess engine generates an evaluation matrix with millions of 
calculations. 
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The following table is the result of an evaluation of only one position among many 
others (real and potential).

Position 
evaluated

0,3

White 34
Initial 
position

Position Value Quality 
Value

Total 
Value

Pawn a2 a2 1 a2-b2 small pawn island 0,05 1,05
Pawn b2 b2 1 a2-b2 small pawn island 0,05 1,05
Pawn c2 x 0 Captured 0 0
Pawn d2 d4 1 Occupies center, defends 

Be5
0,25 1,25

Pawn e2 e2 1 Defends Qf3 0,25 1,25
Pawn f2 x 0 Captured 0 0
Pawn g2 g5 1 Unattacked, attacking 2 

squares
0,3 1,3

Pawn h2 h3 1 Unattacked, defending g4 0,1 1,1
Rook a1 c1 5 Occupying c-file, attacking 

b7 with Nd5-Be5
1 6

Knight b1 d5 3 Attacking Nb6, 8 squares 0,5 3,5
BishopDS c1 e5 3 Central position, 10 

squares, attacking c7
0,5 3,5

Queen d1 f3 9 Battery with Bg2, 
defending Ne5, X-Ray b7

1 11

King e1 h1 0 X-rayed by Bb6 on a7-g1 
diagonal

-0,5 -0,5

BishopWS f1 g2 3 Supporting Qf3 in defense 
and attack

0,5 3,5

Knight g1 x 0 Captured 0 0
Rook h1 x 0 Captured 0 0

29 5 34
White: 34

The value of the position of white is 34.

White 34
Black 33,7
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Initial 
position

Position Value Quality 
Value

Total 
Value

Pawn a7 a7 1 a7-b7 small pawn island 0,05 1,05
Pawn b7 b7 1 a7-b7 small pawn island 0,05 1,05
Pawn c7 x 0 Captured 0 0
Pawn d7 x 0 Captured 0 0
Pawn e7 f5 1 Doubled, 2 squares 0 1
Pawn f7 f7 1 0 1
Pawn g7 g6 1 Defending f5 but 

abandoning Kg8
0 1

Pawn h7 h5 1 Well advanced with 
f5,g6

0,1 1,1

Rook a8 d8 5 Semi-open d-file 
attacking Nd5

2 7

Knight b8 x 0 Captured 0 0
BishopDS c8 b6 3 Attacking d4, 3 squares 0,5 3,5
Queen d8 e6 9 Attacking d4,e5, a bit 

cramped
1,5 10,5

King e8 g8 0 f6,h6, g7,h8 attacked -1 -1
BishopWS f8 x 0 Captured, white lost 

bishop pair
0,5 0,5

Knight g8 e8 3 Defending c7,f6,g7 1 4
Rook h8 f8 5 Out of play -2 3

31 2,7 Black: 
33,7

The value of black is 33.7.

So white is winning by 34 – 33.7 = 0.3.

The evaluation system can easily be represented with two McCulloch-Pitts neurons, 
one for black and one for white. Each neuron would have 30 weights = {w1,w2 … 
w30}, as shown in the previous table. The sum of both neurons requires an activation 
function that converts the evaluation into 1/100th of a pawn, which is the standard 
measurement unit in chess. Each weight will be the output of squares and piece 
calculations. Then the MDP can be applied to Bellman's equation with a random 
generator of possible positions.

Present-day chess engines contain this type of brute calculation approach. They don't 
need more to beat humans.
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No human, not even world champions, can calculate these positions with this 
accuracy. The number of parameters to take into account overwhelms them each 
time they reach positions like these. They then play more or less randomly with 
a possibly good idea in mind. The chances of success against a chess engine resemble 
a lottery sometimes. Chess experts discover this when they run human-played 
games with powerful chess engines to see how the game plays out. The players 
themselves now tend to reveal their incapacity to provide a deep analysis when 
asked why they made a questionable move. It often takes hours to go through a 
game, its combinations and find the reasons of a bad move. In the end, the players 
will often use a machine to help them understand what happened.

The positions analyzed here represent only one possibility. A chess engine will test 
millions of possibilities. Humans can test only a few.

Measuring a result like this has nothing to do with natural human thinking. Only 
machines can think like that. Not only do chess engines solve the problem, but they 
are also impossible to beat.

Principle 1: At one point, there are problems humans face that only machines can solve.

Principle 2: Sometimes, it will be possible to verify the result of an ML system, sometimes 
not. However, we must try to find ways to check the result.

One solution to solve the problem of principle 2 is to verify an unsupervised 
algorithm with a supervised algorithm through random samples.

Using supervised learning to evaluate 
a result that surpasses human analytic 
capacity
More often than not, an AI solution exceeds a human's capacity to analyze a 
situation in detail. It is often too difficult for a human to understand the millions 
of calculations a machine made to reach a conclusion and explain it. To solve that 
problem, another AI, ML, or DL algorithm will provide assisted AI capability.

Let's suppose the following:

• The raw data preprocessed by the neural approach of Chapter 2, Building 
a Reward Matrix – Designing Your Datasets, works fine. The reward matrix 
looks fine.
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• The MDP-driven Bellman equation provides good reinforcement training 
results.

• The convergence function and values work.
• The results on this dataset look satisfactory but the results are questioned.

A manager or user will always come up with a killer question: how can you prove 
that this will work with other datasets in the future and confirm 100% that the 
results are reliable?

The only way to be sure that this whole system works is to run thousands of datasets 
with hundreds of thousands of product flows.

The idea now is to use supervised learning to create an independent way of checking 
the results. One method is to use a decision tree to visualize some key aspects of the 
solution and be able to reassure the users and yourself that the system is reliable.

Decision trees provide a white box approach with powerful functionality. In this 
section, we will limit the exploration to an intuitive approach. In Chapter 5, How 
to Use Decision Trees to Enhance K-Means Clustering, we will go into the theory of 
decision trees and random trees and explore more complex examples.

In this model, the features of the input are analyzed so that we can classify them. 
The analysis can be transformed into decision trees depending on real-time data, 
to create a distribution representation to predict future outcomes.

For this section, you can run the following program:

Decision_Tree_Priority_classifier.py

Or the following Jupyter notebook on Google Colaboratory:

DTCH03.ipynb

Google Colaboratory might have the two following packages installed:

import collections       # from Python library container datatypes
import pydotplus         # a Python Interface to Graphviz's Dot 
language.(dot-V command line

This could help you avoid installing them locally, which might take some time if 
you get a Graphviz requirement message.
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Both programs produce the same decision tree image:

warehouse_example_decision_tree.png

The intuitive description of this decision tree approach runs in 5 steps:

Step 1: Represent the features of the incoming orders to store in a warehouse – 
for example:

features = [ 'Priority/location', 'Volume', 'Flow_optimizer' ]

In this case, we will limit the model to three properties:

• Priority/location, which is the most important property in a warehouse flow 
in this model

• Volumes to transport
• Optimizing priority – the financial and customer satisfaction property

Step 2: Provide priority labels for the learning dataset:

Y = ['Low', 'Low', 'High', 'High', 'Low', 'Low']

Step 3: Providing the dataset input matrix, which is the output matrix of the 
reinforcement learning program. The values have been approximated but are 
enough to run the model. They simulate some of the intermediate decisions and 
transformations that occur during the decision process (ratios applied, uncertainty 
factors added, and other parameters). The input matrix is X:

X = [[256, 1,0],
     [320, 1,0],
     [500, 1,1],
     [400, 1,0],
     [320, 1,0],
     [256, 1,0]]

The features in step 1 apply to each column.

The values in step 2 apply to every line.

The values of the third column [0,1] are discrete indicators for the training session.

Step 4: Run a standard decision tree classifier. This classifier will distribute the 
representations (distributed representations) into two categories:

• The properties of high-priority orders
• The properties of low-priority orders
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There are many types of algorithms. In this case, a standard sklearn function is 
called to do the job, as shown in the following source code:

classify = tree.DecisionTreeClassifier()
classify = classify.fit(X,Y)

Step 5: Visualization separates the orders into priority groups. Visualizing the tree 
is optional but provides a trendy white box approach. You will have to use:

• import collections, a Python container library.
• import pydotplus, a Python interface to Graphviz's dot language. You can 

choose to use Graphviz directly with other variations of this source code.

The source code will take the nodes and edges of the decision tree, draw them, 
and save the image in a file as follows:

info = tree.export_graphviz(classify,feature_names=features,
    out_file=None, filled=True,rounded=True)
graph = pydotplus.graph_from_dot_data(info)

edges = collections.defaultdict(list)
for edge in graph.get_edge_list():
    edges[edge.get_source()].append(int(edge.get_destination()))

for edge in edges:
    edges[edge].sort()
    for i in range(2):
        dest = graph.get_node(str(edges[edge][i]))[0]

graph.write_png(<your file name here>.png)

The file will contain this intuitive decision tree:

Figure 3.3: A decision tree
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The image produces the following information:

• A decision tree represented as a graph that has nodes (the boxes) and edges 
(the lines).

• When gini=0, this box is a leaf; the tree will grow no further.
• gini means Gini impurity. At an intuitive level, Gini impurity will focus on 

the highest values of Gini impurity to classify the samples. We will go into 
the theory of Gini impurity in Chapter 5, How to Use Decision Trees to Enhance 
K-Means Clustering.

• samples = 6. There are six samples in the training dataset:
 ° Priority/location <=360.0 is the largest division point that can be 

visualized:
X = [[256, 1,0],
      [320, 1,0],
      [500, 1,1],
      [400, 1,0],
      [320, 1,0],
      [256, 1,0]]

 ° The false arrow points out the two values that are not <=360. The 
ones that are classified as True are considered as low-priority values.

After a few runs, the user will get used to visualizing the decision process as a white 
box and trust the system.

Each ML tool suits a special need in a specific situation. In the next chapter, 
Optimizing Your Solutions with K-Means Clustering, we will explore another machine 
learning algorithm: k-means clustering.

Summary
This chapter drew a distinction between machine intelligence and human 
intelligence. Solving a problem like a machine means using a chain of mathematical 
functions and properties. Machine intelligence surpasses humans in many fields.

The further you get in machine learning and deep learning, the more you will find 
mathematical functions that solve the core problems. Contrary to the astounding 
amount of hype, mathematics relying on CPUs is replacing humans, not some form 
of mysterious conscious intelligence.
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The power of machine learning reaches beyond human mathematical reasoning. It 
makes ML generalization to other fields easier. A mathematical model, without the 
complexity of humans entangled in emotions, makes it easier to deploy the same 
model in many fields. The models of the first three chapters of this book can be used 
for self-driving vehicles, drones, robots in a warehouse, scheduling priorities, and 
much more. Try to imagine as many fields you can apply these to as possible.

Evaluation and measurement are at the core of machine learning and deep learning. 
The key factor is constantly monitoring convergence between the results the system 
produces and the goal it must attain. The door is open to the constant adaptation 
of the parameters of algorithms to reach their objectives.

When a human is surpassed by an unsupervised reinforcement learning algorithm, 
a decision tree, for example, can provide invaluable assistance to human intelligence.

The next chapter, Optimizing Your Solutions with K-Means Clustering, goes a step 
further into machine intelligence.

Questions
1. Can a human beat a chess engine? (Yes | No)
2. Humans can estimate decisions better than machines with intuition when 

it comes to large volumes of data. (Yes | No)
3. Building a reinforcement learning program with a Q function is a feat in 

itself. Using the results afterward is useless. (Yes | No)
4. Supervised learning decision tree functions can be used to verify that the 

result of the unsupervised learning process will produce reliable, predictable 
results. (Yes | No)

5. The results of a reinforcement learning program can be used as input to 
a scheduling system by providing priorities. (Yes | No)

6. Can artificial intelligence software think like humans? (Yes | No)

Further reading
• For more on decision trees: https://youtu.be/NsUqRe-9tb4
• For more on chess analysis by experts such as Zoran Petronijevic, with whom 

I discussed this chapter: https://chessbookreviews.wordpress.com/tag/
zoran-petronijevic/, https://www.chess.com/fr/member/zoranp

• For more on AI chess programs: https://deepmind.com/blog/article/
alphazero-shedding-new-light-grand-games-chess-shogi-and-go

https://youtu.be/NsUqRe-9tb4
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://www.chess.com/fr/member/zoranp
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go




[ 67 ]

4
Optimizing Your Solutions 

with K-Means Clustering
No matter how much we know, the key point is the ability to deliver an artificial 
intelligence (AI) solution. Implementing a machine learning (ML) or deep learning 
(DL) program remains difficult and will become more complex as technology 
progresses at exponential rates.

There is no such thing as a simple or easy way to design AI systems. A system 
is either efficient or not, beyond being either easy or not. Either the designed AI 
solution provides real-life practical uses, or it builds up into a program that fails 
to work in various environments beyond the scope of its training sets.

This chapter doesn't deal with how to build the most difficult system possible to 
show off our knowledge and experience. It faces the hard truth of real-life delivery 
and ways to overcome obstacles. For example, without the right datasets, your 
project will never take off. Even an unsupervised ML program requires reliable 
data in some form or other.

Transportation itineraries on the road, on trains, in the air, in warehouses, and 
increasingly in outer space require well-tuned ML algorithms. The staggering 
expansion of e-commerce generates huge warehouse transportation needs with 
automated guided vehicles (AGVs), then endless miles on the road, by train, or 
by air to deliver the products. Distance calculation and optimization is now a core 
goal in many fields. An AGV that optimizes its warehouse distance to load or 
unload trucks will make the storage and delivery processes faster for customers 
that expect their purchases to arrive immediately.
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This chapter provides the methodology and tools needed to overcome everyday 
AI project obstacles with k-means clustering, a key ML algorithm.

This chapter covers the following topics:

• Designing datasets
• The design matrix
• Dimensionality reduction
• Determining the volume of a training set
• k-means clustering
• Unsupervised learning
• Data conditioning management for the training dataset
• Lloyd's algorithm
• Building a Python k-means clustering program
• Hyperparameters
• Test dataset and prediction
• Saving and using an ML model with Pickle

We'll begin by talking about how to optimize and manage datasets.

Dataset optimization and control
At one point, a manager or customer will inevitably ask an AI expert about the 
exact data required for an ML project, and in which format it's needed. Providing 
an answer will take some hard thinking and work.

One might wonder why the data is not open, like when we download ready-
to-use datasets to learn AI algorithms. In corporate life, there are security rules 
and processes. Often the data required is on one or more servers. You will not 
be granted permission to do anything you want. You will have to specify your 
needs and requests. Obtaining data in the way required for AI comes at a cost 
for a corporation. You will have to justify your requests.

Start by properly designing the dataset and choosing the right ML model. The 
dataset and ML model will fit the fundamental requirement to optimize AGV 
distances. Each AGV in a given warehouse must reduce the distance it takes to go 
from a pier (where boats might drop off cargo) to a storage area, from one storage 
area to another area (packaging, for example), and from a storage area to a pier. 
This will bring the overall costs of a warehouse down and maximize profit.
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Designing a dataset and choosing an ML/DL 
model
On paper, finding a good model for an AGV comes down to minimizing the distance 
it takes to move something from point A to point B. Let's consider a scenario where 
we want to move products from a warehouse over to a pier. The sum of the distances 
D could be a way to measure the process:

𝐷𝐷 =∑𝑓𝑓(𝑝𝑝)
𝑝𝑝𝑛𝑛

𝑝𝑝1

 

f(p) represents the action of going from a warehouse location to a pier and the 
distance it represents. It takes you from the location in a shop where you picked 
something up, (p), and the door of the shop on your way out. You can imagine that 
if you go straight from that location, pay, and go out, then that is the shortest way. 
But if you pick the product up, wander around the shop first, and then go out, 
the distance (and time) is longer. The sum of all of the distances of all the people 
wandering in this shop, for example, is D.

The concept of the problem to solve in any self-guided bot system can be summed 
up as follows:

find the wanderers
How can a bot wander? It is automatic and is often guided by efficient ML programs. 
But a bot, like any other form of transportation, often encounters obstacles.

We now have a paradigm to investigate and implement:

• Detect the wanderers
• Optimize the choice of bots

We all know that the shortest point from location A to location B is a straight line. 
Right? Well, in a warehouse, as in life, it is not always true! Suppose you are in your 
car going in a straight line from A to B but there is a huge traffic jam. It could take 
a very long time to go a relatively short distance. If you took a right turn and drove 
around the jam, you might save a lot of time. You end up consuming more gas, and 
the cost of driving from A to B goes up. You are a wanderer.

When a bot encounters an obstacle, either it stops, waits, or takes 
another route.
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In real-life traffic, there is not much you can do. You cannot decide that cars can 
only drive at certain hours on a road going from A to B. You cannot decide to send 
the cars to the locations that minimize traffic. In real life, this would mean telling 
the driver to go to another mall, another restaurant, or any other similar location 
to avoid building up traffic. That would not work!

But if you are a warehouse manager that can control all of the AGVs, there is a 
lot you can do about this. You can make sure that AGVs make it quickly to their 
locations over a very short distance and come back to make room for other AGVs 
and thus reduce costs. You can detect the wanderers and configure your schedule 
and AGVs so that they minimize cost and maximize profit. No profit, no warehouse.

Approval of the design matrix
The plan is to first obtain as much data as possible and then choose an ML/DL 
model. The dataset must contain all locations the bots (the AGVs) come from on their 
way to the piers on a given day. It's a location-to-pier analysis. Their distances are 
recorded in their system to provide the basis of an excellent design matrix. A design 
matrix contains a different example on each row, and each column is a feature. The 
following format fits the need:

Index Bot #
(AGV)

Start (from location)
Timestamp:
yyyy,mm,dd, 
hh,mm

End (at the pier)
Timestamp:
yyyy,mm,dd, 
hh,mm

Location Pier 
number

Distance
Meters

001 1 year-month-day-
hour-minute

year-month-
day-hour-
minute

80 7 92

002 2

003 3

004 4

005 5

The design matrix is one of the best ways to design an ML solution. In this case:

• Index: The mission number of the bot
• Bot #: Identifies the vehicle
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• Start: Timestamp when the bot left a location
• End: Timestamp when the bot reaches a pier where a truck is waiting to be 

loaded
• Location: The location in the warehouse where a product should be retrieved
• Distance: The distance from the location to the pier in meters

Distance is expressed in meters in the metric system. The metric system is the world's 
most reliable measurement system because it works in base 10 without having to 
resort to conversions.

A yard has to be divided by 3 to obtain feet. A foot has to be divided into 12 to 
obtain inches. To work in smaller units, a 1/16th of an inch may be necessary.

A meter is 100 centimeters, and a centimeter is 10 millimeters, then we can use 
1/100 of a millimeter, and so on.

Run your calculations with the metric system even if you have to produce reports 
in other units of measurement.

Getting approval on the format of the design matrix
Real-life implementations differ from experimenting with ready-to-use 
downloadable datasets. Information does not come easy in corporations.

In this example, in a real-life situation, let's suppose:

• The bot number is not stored in the mainframe, but in the local system that 
manages the AGVs.

• In the mainframe, there is a start time, which is when an AGV picks up its 
load at the location, and an end time when it reaches the pier.

• The location can be obtained in the mainframe as well as the pier.
• No distance is recorded.

It would be necessary to have access to the data in the AGV's local system to 
retrieve the AGV number and correlate it with the data in the mainframe.

However, things are not so simple in a large organization. For example:

• Retrieving data from the AGV guiding system might not be possible this 
fiscal year. Those vehicles are expensive, and no additional budget can be 
allocated.

• Nobody knows the distance from a location to a pier. As long as the AGVs 
deliver the right products on time at the right piers, nobody so far has been 
interested in distances.



Optimizing Your Solutions with K-Means Clustering

[ 72 ]

• The AGV mission codes in the mainframe are not the same as in the local 
AGV guiding system, so they cannot be merged into a dataset without 
development.

An AI project, like any other project, can slip away in no time. If a project comes to 
a standstill, it might just be shelved. Designing datasets requires imagination and 
responsiveness.

If the project does not move quickly, it will lose momentum. The actors of the project 
will turn to other projects that are moving more quickly for their company and their 
careers.

Suppose your project stops because nobody can provide the distances you need to 
build your model. If you have the start time, end time, and speed, then you can work 
around the problem and calculate the distances yourself. If your team does not find 
this solution quickly, then the project will be at a standstill. The top management will 
say that the team costs too much to be focused on a project that is not moving ahead, 
no matter what. The project can be shelved right then and there.

Dimensionality reduction will not only help the AI model; it will also make it easier 
to gather information.

Dimensionality reduction
Dimensionality reduction can be applied to reduce the number of features in, for 
example, an image. Each pixel of a 3D image, for example, is linked to a neuron, 
which in turn brings the representation down to a 2D view with some form of 
function. For example, converting a color image into shades of a now-gray image 
can do the trick. Once that is done, simply reducing the values to, for example, 
1 (light) or 0 (dark), makes it even easier for the network. Using an image converted 
to 0 and 1 pixels makes some classification processes more efficient, just like when 
we avoid a car on the road. We just see the object and avoid it.

We perform dimensionality reduction all day long. When you walk from one office 
to another on the same floor of a building requiring no stairs or an elevator, you are 
not thinking that the Earth is round and that you're walking over a slight curve. 

Keeping an AI project alive means moving quickly.
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You have performed a dimensionality reduction. You are also performing a 
manifold operation. It means that locally, on that floor, you do not need to worry 
about the global roundness of the Earth. Your manifold view of the Earth in your 
dimensionality reduction representation is enough to get you from your office 
to another one on that floor.

When you pick up your cup of coffee, you focus on not missing it and aiming 
for the edges of it. You don't think about every single feature of that cup, such 
as its size, color, decoration, diameter, and the exact volume of coffee in it. You 
identify the edge of the cup and pick it up. That is dimensionality reduction. 
Without dimensionality reduction, nothing can be accomplished. It would take 
you 10 minutes to analyze the cup of coffee and pick it up in that case!

When you pick that cup of coffee up, you test to see whether it is too hot, too 
cold, or just fine. You don't put a thermometer in the cup to obtain the precise 
temperature. You have again performed a dimensionality reduction of the features 
of that cup of coffee. Furthermore, when you picked it up, you computed a manifold 
representation by just observing the little distance around the cup, reducing the 
dimension of information around you. You are not worrying about the shape of 
the table, whether it was dirty on the other side, and other features.

Although we often relate dimensionality reduction to ML and DL, dimensionality 
reduction is as old as mathematics and even humanity! Somebody, long ago, went 
to a beach and saw that the sun was beautiful. That person, for the first time in 
humanity, drew a circle in the sand. The circle was not in 3D like the sun, nor did 
it have color, but the humans around that person were astonished:

• A group of humans were watching the sun
• A human took the color out
• The human also took the 3D view out
• They represented the sun with a circle in a much smaller dimensional space
• The first mathematician was born!

A k-means clustering algorithm provides an efficient way to represent the bot 
example we are dealing with in this chapter. Each location will form a cluster, as 
explained in the next section. 

ML and DL techniques such as dimensionality reduction can be 
viewed as tools and can be used in any field to speed up calculation 
times.
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A workaround to the missing data problem would be to run the k-means clustering 
algorithm with the following data format:

Index Location Start from location: 
Timestamp: 
yyyy,mm,dd,hh,mm

End at location: 
Timestamp: 
yyyy,mm,dd,hh,mm

001

The volume of a training dataset
In this model, we will focus on six locations to analyze. Six locations are chosen 
in the main warehouse with a group of truck loading points. Taking around 5,000 
examples into account, that should represent the work of all the 25 AGVs purchased 
by AGI-AI running 24 hours a day.

Now that we've talked about optimizing and controlling a dataset, let's move on to 
coming up with actual solutions. In the next section, we'll talk about implementing 
k-means clustering.

Implementing a k-means clustering 
solution
The dataset requires preprocessing to be converted into a prototype to prove the 
financial value of the project.

The vision
The primary goal of an ML project involving bots can be summed up in one 
sentence: finding profit by optimizing bot activity. Achieving that goal will lead to 
obtaining a budget for a full-scale project.

The data provided does not contain distances. However, an estimation can be made 
per location as follows:

distance = (end time – start time)/average speed of a bot

Never implement an ML solution in a corporate environment 
without knowing how much profit it represents and the cost 
of getting the job done. Without profit, a company will not 
survive. ML, like any other investment, must provide a return 
on investment (ROI). In our case, ML will reduce the cost of 
transportation in the warehouse by reducing AGV distances.
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The start location is usually a loading point near a pier in this particular warehouse 
configuration.

The data
The data provided contains start times st, end times endt, and delivery locations. 
To calculate distances, we can use the following equation:

di(ll) = (endt – st)/v

• v = velocity of the AGV per minute
• endt – st is expressed in minutes
• di = estimated distance an AGV has gone in a given time

A preprocessing program will read the initial file format and data and output a new 
file, data.csv, in the following reduced dimensionality format with two features:

Distance Location
55 53
18 17

Conditioning management
Data conditioning means preparing the data that will become the input of the 
system. Poor conditioning can have two outcomes:

• Bad data containing noise that makes no difference (large volumes and 
minor errors)

• Bad data containing noise that makes a difference (regardless of volumes, 
the data influences the outcome)

In this particular case, let's suppose that out of the 5,000 records provided for the 
dataset, 25 distances are not reliable. A 0.005% noise level should not be a problem. 
The amount of acceptable noise depends on each project. It cannot be an arbitrary 
figure.

Sometimes, noise will have a profound effect, and sometimes it will not. Suppose 
2,500 records out of 5,000 records contained noise. Maybe the 2,500 remaining 
records provide a sufficient variety of samples to produce a reliable result. In 
another case, maybe, 10 missing samples out of 5,000 records will stop a project 
because those 10 samples were the only ones of a special kind that could critically 
change the calculations.
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You will have to experiment and determine the level of acceptable noise for a given 
project.

Let's get our hands dirty and analyze the data.

The location numbers start at #1. #1 is near the loading point of the products. The 
bot has to bring the products to this point. To be more precise, in this warehouse 
configuration, the bot goes and gets a box (or crate) of products and brings them 
back to location 1. At location 1, humans check the products and package them. 
After that, humans carefully load the products in the delivery trucks.

The distance from one location to the next is about 1 meter. For example, from 
location 1 to location 5, the distance is about 5 meters, or 5 m. Also, since all 
locations lead to location 1 for the AGVs in this model, the theoretical distances 
will be calculated from location 1. To generalize the rule and define a distance di  
for a location lj the calculation can be simplified:

di(lj)=lj

di is expressed in meters. Since the locations start at number 1 through n, the location 
number is equal to the approximate distance from the first location from which the 
bots depart.

Let us suppose that, looking at the data, it quickly appears that many distances 
are superior to their location numbers. That is strange because the distance should 
be about equal to the location. Thus, by reducing the number of dimensions and 
focusing on approximations of the main features, key concepts can be represented.

The time has come to build a strategy and a program.

The strategy
As in all ML projects, there are key standard corporate guidelines that should not be 
avoided:

• Quickly write a proof of concept (POC). A POC will prove that the ML 
solution will be efficient. In this case, bot activity will be visualized.

• Check the results in detail.
• Calculate the potential optimized profit with a solution that is yet to be 

found. Profit will justify the investment. The cost can be an indicator. But 
then cost reduction must be sufficient to increase profit by a significant rate 
for a given corporation.

• Obtain approval with a solid case and obtain a green light for the project.
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Now that our strategy is clear, we can choose a model. k-means clustering is 
a good algorithm to start with for this project. It will create clusters that almost 
literally represent the areas in which the AGVs should be located. By choosing 
simple dimensions, the visual representation is close enough to reality for a user 
to understand the calculations.

The k-means clustering program
k-means clustering is a powerful unsupervised learning algorithm. We often perform 
k-means clustering in our lives. Take, for example, a lunch you want to organize for 
a team of about 50 people in an open space that can just fit those people.

Your friend and another friend first decide to set up a table in the middle. Your 
friend points out that the people in that room will form a big cluster k, and with only 
one table in the geometric center (or centroid) c, it will not be practical. The people 
near the wall will not have access to the main table, as shown in the following figure.

Figure 4.1: A scenario where people try to cluster around a single table

The people not close to the table (the rectangle in the middle) will not have easy 
access to the table.

You now try two tables (centroids) c1 and c2 in various places for two clusters of 
people k1 and k2.

The people x1 to xn form a dataset X. When imagining X, it appears that the table is 
not in the right place.

The best thing to do is to move a table c, and then estimate that the mean distance of 
the people (a subset of X) to the table will be about the same in their group or cluster 
k. The same is done for the other table. You draw a line with chalk on the floor to 
make sure that each group or cluster is at about the mean distance from its table.
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This intuitive approach to k-means clustering can be summed up as follows:

• Step 1: You have been drawing lines with chalk to decide which group 
(cluster k) each person x will be in, by looking at the mean distance from 
the table c.

• Step 2: You have been moving the tables around accordingly to optimize 
step 1.

A Python program simulating a three-table model computed using k-means 
clustering would produce the following result:

Figure 4.2: A three-table model computed by k-means clustering

Having provided an intuitive example, let's talk about the mathematical definition of 
k-means clustering.

The mathematical definition of k-means clustering
Dataset X provides N points. These points or data points are formed by using 
distance as the x-axis in a Cartesian representation and the location as the y-axis in 
a Cartesian representation. This low-level representation is a white box approach, 
even if the data is processed and transformed by the algorithm. A white box 
approach is when the process is transparent, and we can actually see what the 
algorithm is doing. A black box is when an input goes into a system, and we 
will not be able to understand what the system did by just looking at the result.

However, high-level representations are required to represent more features through 
clusters. In that case, it will not be possible to see a direct link between the actual 
meanings and their ML representation. We will explore these high-dimensional 
representations in the chapters to come.
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If you have one bot in location 1 as the first record of your file, it will be represented 
as x axis = 1 and y axis = 1 by the black dot, which is the data point, as shown in the 
following diagram:

Figure 4.3: Cartesian representation

In this example, 5,000 records are loaded from data.csv, which is in the same 
directory as the program. The data is unlabeled with no linear separation. The goal 
is to allocate the X data points to K clusters. The number of clusters is an input value. 
Each cluster will have its geometric center or centroid. If you decide to have three 
clusters K, then the result will be as follows:

• Three clusters K in three colors in a visual representation
• Three geometric centers or centroids representing the center of the mean 

of the sum of distances of x data points of that cluster

If you decide on six clusters, then you will obtain six centroids, and so on.

Described in mathematical terms, the formula in respect of 𝐾𝐾𝑘𝑘 , 𝜇𝜇𝑘𝑘  is as follows:

min∑ ∑ ‖𝑥𝑥 − 𝜇𝜇𝑘𝑘‖2
𝑥𝑥𝑛𝑛∈𝐾𝐾𝑘𝑘

𝐾𝐾

𝑘𝑘=1
 

The sum of each k (cluster) from 1 to the number of clusters K of the sum of all 
distances of members xi to xn of each cluster K from their position to the geometric 
center (centroid) 𝜇𝜇  must be minimized.

The smaller the distance from each member x to centroid 𝜇𝜇 , the more the system is 
optimized. Note that the distance is squared each time because this is a Euclidean 
distance in this version of the algorithm.

The Euclidean distance, in one dimension, is the distance between two points, x and 
y, for example, expressed as follows:

√(𝑥𝑥 − 𝑦𝑦)22  
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The distance between x and y expressed in Euclidean distance is not the real distance 
that an AGV will actually travel inside a warehouse. The model in the chapter was 
built so that the distances would remain sufficiently realistic to make good clusters 
and improve the organization of the warehouse. It's sufficient because an AGV will 
often go in nearly straight lines from a pier to the closest aisle and then to a storage 
point, for example.

To calculate the actual distances, we often use Manhattan distances. Manhattan 
distances are taxi-cab distances. You calculate the distance up a block then to the 
left, for example, another block and so on, adding the distances along the way. This 
is because you can't drive through the buildings.

In our case, it would be like saying that a taxi-cab can only, more or less, drive up 
and down a given avenue, like a bus, and avoid turning right or left.

We will use Lloyd's algorithm with Euclidean distances to estimate the clusters that 
AGVs will have to stay in to avoid wandering.

Lloyd's algorithm
There are several variations of Lloyd's algorithm. But all of them follow a common 
philosophy.

For a given xn (data point), the distance from the centroid 𝜇𝜇  in its cluster must be less 
than going to another center, just like how a person in the lunch example wants to 
be closer to one table rather than having to go far to get a sandwich because of the 
crowd.

The best centroid 𝜇𝜇  for a given xn is as follows:

𝑥𝑥𝑛𝑛: ‖𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘‖ 

This calculation is done for all 𝜇𝜇  (centroids) in all the clusters from k1 to K.

Once each xi has been allocated to a Kk, the algorithm recomputes 𝜇𝜇  by calculating 
the means of all the points that belong to each cluster and readjusts the centroid 𝜇𝜇𝑘𝑘 .

We've now covered all of the concepts that we need to begin coding. Let's get into 
the Python program!

The Python program
k-means_clustering_1.py, the Python program, uses the sklearn library, pandas 
for data analysis (only used to import the data in this program), and matplotlib to 
plot the results as data points (the coordinates of the data) and clusters (data points 
classified in each cluster with a color). First, the following models are imported:
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from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt

Next, we'll go through the stages of implementing k-means clustering.

1 – The training dataset
The training dataset consists of 5,000 lines. The first line contains a header for 
maintenance purposes (data checking), which is not used. k-means clustering is 
an unsupervised learning algorithm, meaning that it classifies unlabeled data into 
cluster-labeled data to make future predictions. The following code displays the 
dataset:

#I. The training Dataset
dataset = pd.read_csv('data.csv')
print(dataset.head())
print(dataset)

The print(dataset) line can be useful (though not necessary) to check the training 
data during a prototype phase or for maintenance purposes. The following output 
confirms that the data was correctly imported:

'''Output of print(dataset)
Distance location
0 80 53
1 18 8
2 55 38
...
'''

2 – Hyperparameters
Hyperparameters determine the behavior of the computation method. In this case, 
two hyperparameters are necessary:

• The k number of clusters that will be computed. This number can and will 
be changed during the case study meetings to find out the best organization 
process, as explained in the next section. After a few runs, we will intuitively 
set k to 6.

• The f-number of features that will be taken into account. In this case, there 
are two features: distance and location.

The program implements a k-means function, as shown in the following code:

#II.Hyperparameters
# Features = 2
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k = 6
kmeans = KMeans(n_clusters=k)

Note that the Features hyperparameter is commented. In this case, the number 
of features is implicit and determined by the format of the training dataset, which 
contains two columns.

3 – The k-means clustering algorithm
sklearn now does the job using the training dataset and hyperparameters in the 
following lines of code:

#III.k-means clustering algorithm
kmeans = kmeans.fit(dataset) #Computing k-means clustering

The gcenters array contains the geometric centers or centroids and can be printed 
for verification purposes, as shown in this snippet:

gcenters = kmeans.cluster_centers_
print("The geometric centers or centroids:")
print(gcenters)
'''Ouput of centroid coordinates
[[ 48.7986755 85.76688742]
[ 32.12590799 54.84866828]
[ 96.06151645 84.57939914]
[ 68.84578885 55.63226572]
[ 48.44532803 24.4333996 ]
[ 21.38965517 15.04597701]]
'''

These geometric centers need to be visualized with labels for decision-making 
purposes.

4 – Defining the result labels
The initial unlabeled data can now be classified into cluster labels, as shown in the 
following code:

#IV.Defining the Result labels
labels = kmeans.labels_
colors = ['blue','red','green','black','yellow','brown','orange']

Colors can be used for semantic purposes beyond nice display labels. A color for 
each top customer or leading product can be assigned, for example.
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5 – Displaying the results – data points and clusters
To make sense to a team or management, the program now prepares to display 
the results as data points and clusters. The data will be represented as coordinates 
and the clusters as colors with a geometric center or centroid, as implemented in 
this code:

#V.Displaying the results : datapoints and clusters
y = 0
for x in labels:
    plt.scatter(dataset.iloc[y,0], dataset.iloc[y,1],color=colors[x])
    y+=1
for x in range(k):
    lines = plt.plot(gcenters[x,0],gcenters[x,1],'kx')

title = ('No of clusters (k) = {}').format(k)
plt.title(title)
plt.xlabel('Distance')
plt.ylabel('Location')
plt.show()

The dataset is now ready to be analyzed. The data has been transformed into 
data points (Cartesian points) and clusters (the colors). The x points represent 
the geometric centers or centroids, as shown in the following screenshot:

Figure 4.4: Output (data points and clusters)
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Test dataset and prediction
In this case, the test dataset has two main functions. First, some test data confirms the 
prediction level of the trained and now-labeled dataset. The input contains random 
distances and locations. The following code implements the output that predicts 
which cluster the data points will be in:

#VI.Test dataset and prediction
x_test = [[40.0,67],[20.0,61],[90.0,90],
          [50.0,54],[20.0,80],[90.0,60]]
prediction = kmeans.predict(x_test)
print("The predictions:")
print (prediction)
'''
Output of the cluster number of each example
[3 3 2 3 3 4]
'''

The second purpose, in the future, will be to enter data for decision-making 
purposes, as explained in the next section.

Saving and loading the model
In this section, k-means_clustering_1.py will save the model using Pickle. Pickle, 
a Python library, saves the model in a serialized file, as shown at the end of the 
program:

# save model
filename="kmc_model.sav"
pickle.dump(kmeans, open(filename, 'wb'))

The Python Pickle module is imported in the header of the program:

import pickle

Now, the model, kmeans, is saved in a file named kmc_model.sav.

To test this model, we will now open k-means_clustering_2.py to load the model 
without any training involved and make predictions:

#load model
filename="kmc_model.sav"
kmeans = pickle.load(open(filename, 'rb'))

kmc_model.save is loaded and plugged into a classifier called kmeans.
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x_test same test data as in k-means_clustering_1.py:

#test data
x_test = [[40.0,67],[20.0,61],[90.0,90],
          [50.0,54],[20.0,80],[90.0,60]]

We now run and display the predictions:

#prediction
prediction = kmeans.predict(x_test)
print("The predictions:")
print (prediction)

The predictions are the same as in k-means_clustering_1.py:

The predictions:
[0 0 4 0 0 1]

Each prediction is an output cluster number from 0 to 5 of the corresponding 
coordinates used as input. For example, [40.0,67] is a part of cluster #0.

The next step is to analyze the results.

Analyzing the results
The following image shows the gain zone. The gain zone is the zone in which the 
distances exceed the value 80.

Figure 4.5: Gain zone area
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The gain zone area provides useful information.

From the computations made, that gain zone shows the losses made on the locations 
displayed. It takes a sample of the possible locations into account. 10% of the total 
distance could be saved.

The cause is that the bots are not going directly to the right locations, but are 
wandering around unplanned obstacles.

The average distance from one location to another is 1 meter. The AGVs all start 
from location 0 or 1. So the distance is strictly proportional to the locations in this 
particular example.

To find the gain zone of a location, you draw a red horizontal line from location 80, 
for example, and a vertical line from a distance 80 (add a couple of meters to take 
small variances into account).

Data analysis is made easier by data visualization. Visualizing the clusters makes 
it easier for management to understand the outputs and make decisions.

None of the data points on the 80-location line should be beyond the maximum limit. 
The limit is 80 meters + a small variance of a few meters. Beyond that line, on the 
right-hand side of the figure, is where the company is losing money, and something 
must be done to optimize the distances. This loss zone is the gain zone for a project. 
The gain zone on the k-means cluster results shows that some of the locations of 
40 to 60 exceed a distance of 80 meters.

Bot virtual clusters as a solution
Planners anticipate bot tasks. They send them to probable locations from which they 
will have to pick up products and bring them back to the truck-loading points.

In the following example, we will take the example of AGVs that are assigned to 
a cluster area for locations 40 to 60. If an AGV goes further, up to location 70, for 
example, a penalty of 10 virtual (estimated) meters is added to its performance. 
It is easy to check. If an AGV is detected at location 70, it is out of its area.

The business rule for the AGV assigned to locations 40 to 60 is that it must never 
exceed location 60. If the software planning the events works well, it will never 
assign the AGV to an area exceeding location 60. Business rules must thus be 
provided to the planners.

One of the solutions is to provide AGV virtual clusters as a business rule, as shown 
in the following screenshot:
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Figure 4.6: AGV virtual clusters

The rules are as follows:

• Rule 1: The line in the middle represents a new business rule. In phase 1 of 
the project, an AGV used for locations 40 to 60 cannot go beyond 60 meters 
plus a small variance line.

• Rule 2: A cluster will represent the pick-up zone for an AGV. The centroid 
will now be its parking zone. Distances will be optimized until all the clusters 
respect rule 1. If rule 1 is not followed, the AGVs will travel unnecessary 
distances, increasing the overall cost of transporting goods in the warehouse.

The limits of the implementation of the k-means 
clustering algorithm
In this chapter, an example was explored. When the volumes increase, the features 
reach high-level abstract representations, and noise pollutes the data, humans face 
several problems:

• How do we analyze a result that surpasses human analytical capacity?
• Is the algorithm reliable for larger datasets that may contain features that 

were overlooked?

In Chapter 5, How to Use Decision Trees to Enhance k-Means Clustering, we will explore 
these problems and find solutions.
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Summary
Up to this point, we have explored Python with the NumPy, TensorFlow, scikit-
learn, pandas, and Matplotlib libraries. More platforms and libraries will be used 
in this book. In the months and years to come, even more languages, libraries, 
frameworks, and platforms will appear on the market.

However, AI is not only about development techniques. Building a k-means clustering 
program from scratch requires careful planning. The program relies on data that 
is rarely available as we expect it. That's where our imagination comes in handy 
to find the right features for our datasets.

Once the dataset has been defined, poor conditioning can compromise the project. 
Some small changes in the data will lead to incorrect results.

Preparing the training dataset from scratch takes much more time than we would 
initially expect. AI was designed to make life easier, but that's after a project has 
been successfully implemented. The problem is that building a solution requires 
major dataset work and constant surveillance.

Then comes the hard work of programming a k-means clustering solution that must 
be explained to a team. Lloyd's algorithm comes in very handy to that effect by 
reducing development time.

In the next chapter, When and How to Use Artificial Intelligence, we will seek solutions 
to the limits of k-means clustering problems through dataset techniques. We will also 
explore random forests and enter the world of ensemble meta-algorithms, which will 
provide assisted AI to humans to analyze machine thinking.

Questions
1. Can a prototype be built with random data in corporate environments?  

(Yes | No)
2. Do design matrices contain one example per matrix? (Yes | No)
3. AGVs can never be widespread. (Yes | No)
4. Can k-means clustering be applied to drone traffic? (Yes | No)
5. Can k-means clustering be applied to forecasting? (Yes | No)
6. Lloyd's algorithm is a two-step approach. (Yes | No)
7. Do hyperparameters control the behavior of the algorithm? (Yes | No)
8. Once a program works, the way it is presented does not matter. (Yes | No)
9. k-means clustering is only a classification algorithm. It's not a prediction 

algorithm. (Yes | No)
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Further reading
• The scikit-learn website contains additional information on k-means 

clustering: http://scikitlearn.org/stable/modules/generated/
sklearn.cluster.KMeans.html

• You can find Python's data analysis library here: https://pandas.pydata.
org/

http://scikitlearn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikitlearn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://pandas.pydata.org/
https://pandas.pydata.org/
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5
How to Use Decision Trees to 
Enhance K-Means Clustering

This chapter addresses two critical issues. First, we will explore how to implement 
k-means clustering with dataset volumes that exceed the capacity of the given 
algorithm. Second, we will implement decision trees that verify the results of an 
ML algorithm that surpasses human analytic capacity. We will also explore the use 
of random forests.

When facing such difficult problems, choosing the right model for the task often 
proves to be the most difficult task in ML. When we are given an unfamiliar set 
of features to represent, it can be a somewhat puzzling prospect. Then we have to 
get our hands dirty and try different models. An efficient estimator requires good 
datasets, which might change the course of the project.

This chapter builds on the k-means clustering (or KMC) program developed in 
Chapter 4, Optimizing Your Solutions with K-Means Clustering. The issue of large 
datasets is addressed. This exploration will lead us into the world of the law of 
large numbers (LLN), the central limit theorem (CLT), the Monte Carlo estimator, 
decision trees, and random forests.

Human intervention in a process such as the one described in this chapter is not only 
unnecessary, but impossible. Not only does machine intelligence surpass humans 
in many cases, but the complexity of a given problem itself often surpasses human 
ability, due to the complex and ever-changing nature of real-life systems. Thanks to 
machine intelligence, humans can deal with increasing amounts of data that would 
otherwise be impossible to manage.
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With our toolkit, we will build a solution to analyze the results of an algorithm 
without human intervention.

This chapter covers the following topics:

• Unsupervised learning with KMC
• Determining if AI must or must not be used
• Data volume issues
• Defining the NP-hard characteristic of KMC
• Random sampling concerning LLN, CLT, and the Monte Carlo estimator
• Shuffling a training dataset
• Supervised learning with decision trees and random forests
• Chaining KMC to decision trees

This chapter begins with unsupervised learning with KMC. We will explore methods 
to avoid running large datasets through random sampling. The output of the KMC 
algorithm will provide the labels for the supervised decision tree algorithm. The 
decision tree will verify the results of the KMC process, a task no human could do 
with large volumes of data.

Unsupervised learning with KMC with 
large datasets
KMC takes unlabeled data and forms clusters of data points. The names (integers) of 
these clusters provide a basis to then run a supervised learning algorithm such as a 
decision tree.

In this section, we will see how to use KMC with large datasets.

All the Python programs and files in this chapter are available at 
https://github.com/PacktPublishing/Artificial-
Intelligence-By-Example-Second-Edition/tree/
master/CH05.

There is also a Jupyter notebook named COLAB_CH05.ipynb that 
contains all of the Python programs in one run. You can upload it 
directly to Google Colaboratory (https://colab.research.
google.com/) using your Google Account.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://colab.research.google.com/
https://colab.research.google.com/
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When facing a project with large unlabeled datasets, the first step consists of 
evaluating if machine learning will be feasible or not. Trying to avoid AI in a book 
on AI may seem paradoxical. However, in AI, as in real life, you should use the right 
tools at the right time. If AI is not necessary to solve a problem, do not use it.

Use a proof of concept (POC) approach to see if a given AI project is possible or not. 
A POC costs much less than the project itself and helps to build a team that believes 
in the outcome. Or, the POC might show that it is too risky to go forward with an ML 
solution. Intractable problems exist. It's best to avoid spending months on something 
that will not work.

The first step is exploring the data volume and the ML estimator model that will 
be used.

If the POC proves that a particular ML algorithm will solve the problem at hand, 
the next thing to do is to address data volume issues. The POC shows that the model 
works on a sample dataset. Now, the implementation process can begin.

Anybody who has run a machine learning algorithm with a large dataset on a laptop 
knows that it takes some time for a machine learning program to train and test these 
samples. A machine learning program or a deep learning convolutional neural 
network consumes a large amount of machine power. Even if you run an ANN using 
a GPU (short for graphics processing unit) hoping to get better performance than 
with CPUs, it still takes a lot of time for the training process to run through all the 
learning epochs. An epoch means that we have tried one set of weights, for example, 
to measure the accuracy of the result. If the accuracy is not sufficient, we run another 
epoch, trying other weights until the accuracy is sufficient.

If you go on and you want to train your program on datasets exceeding 1,000,000 
data points, for example, you will consume significant local machine power.

Suppose you need to use a KMC algorithm in a corporation with hundreds of 
millions to billions of records of data coming from multiple SQL Server instances, 
Oracle databases, and a big data source. For example, suppose that you are working 
for the phone operating activity of a leading phone company. You must apply a 
KMC program to the duration of phone calls in locations around the world over a 
year. That represents millions of records per day, adding up to billions of records in 
a year.

A machine learning KMC training program running billions of records will consume 
too much CPU/GPU and take too much time even if it works. On top of that, a 
billion records might only represent an insufficient amount of features. Adding more 
features will dramatically increase the size of such a dataset.
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The question now is to find out if KMC will even work with a dataset this size. 
A KMC problem is NP-hard. The P stands for polynomial and the N for non-
deterministic.

The solution to our volume problem requires some theoretical considerations. 
We need to identify the difficulty of the problems we are facing.

Identifying the difficulty of the problem
We first need to understand what level of difficulty we are dealing with. One of the 
concepts that come in handy is NP-hard.

NP-hard – the meaning of P
The P in NP-hard means that the time to solve or verify the solution of a P problem 
is polynomial (poly=many, nomial=terms). For example, x3 is a polynomial. The 
N means that the problem is non-deterministic.

Once x is known, then x3 will be computed. For x = 3,000,000,000 and only 3 
elementary calculations, this adds up to:

log x3 = 28.43

It will take 1028.43 calculations to compute this particular problem.

It seems scary, but it isn't that scary for two reasons:

• In the world of big data, the number can be subject to large-scale randomized 
sampling.

• KMC can be trained in mini-batches (subsets of the dataset) to speed up 
computations.

Polynomial time means that this time will be more or less proportional to the size of 
the input. Even if the time it takes to train the KMC algorithm remains a bit fuzzy, as 
long as the time it will take to verify the solution remains proportional thanks to the 
batch size of the input, the problem remains a polynomial.
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An exponential algorithm increases with the amount of data, not the number of 
calculations. An exponential function of this example would be f(x) = 3x = 33,000,000,000 
calculations. Such functions can often be broken down into multiple classical 
algorithms. Functions of this type exist in the corporate world, but they are out  
of the scope of this book.

NP-hard – the meaning of non-deterministic
Non-deterministic problems require a heuristic approach, which implies some form 
of heuristics, such as a trial and error approach. We try a set of weights, for example, 
evaluate the result, and then go on until we find a satisfactory solution.

The meaning of hard
NP-hard can be transposed into an NP problem with some optimization. This means 
that NP-hard is as hard or harder than an NP problem.

For example, we can use batches to control the size of the input, the calculation time, 
and the size of the outputs. That way, we can bring an NP-hard problem down to an 
NP problem.

One way of creating batches to avoid running an algorithm on a dataset that will 
prove too large for it is to use random sampling.

Implementing random sampling with mini-
batches
A large portion of machine learning and deep learning contains random sampling 
in various forms. In this case, a training set of billions of elements will prove difficult, 
if not impossible, to implement without random sampling.

Random sampling is used in many methods: Monte Carlo, stochastic gradient 
descent, random forests, and many algorithms. No matter what name the sampling 
takes, they share common concepts to various degrees, depending on the size of the 
dataset.

Random sampling on large datasets can produce good results, but it requires relying 
on the LLN, which we will explore in the next section.
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Using the LLN
In probability, the LLN states that when dealing with very large volumes of data, 
significant samples can be effective enough to represent the whole dataset. For 
example, we are all familiar with polls that use small datasets.

This principle, like all principles, has its merits and limits. But whatever the 
limitations, this law applies to everyday machine learning algorithms.

In machine learning, sampling resembles polling. A smaller number of individuals 
represent a larger overall dataset.

Sampling mini-batches and averaging them can prove as efficient as calculating 
the whole dataset as long as a scientific method is applied:

• Training with mini-batches or subsets of data
• Using an estimator in one form or another to measure the progression 

of the training session until a goal has been reached

You may be surprised to read "until a goal has been reached" and not "until the 
optimal solution has been reached."

The optimal solution may not represent the best solution. All the features and all 
the parameters are often not expressed. Finding a good solution will often be enough 
to classify or predict efficiently.

The LLN explains why random functions are widely used in machine learning and 
deep learning. Random samples provide efficient results if they respect the CLT.

The CLT
The LLN applied to the example of the KMC project must provide a reasonable set 
of centroids using random sampling. If the centroids are correct, then the random 
sample is reliable.

A centroid is the geometrical center of a set of datasets, as explained 
in Chapter 4, Optimizing Your Solutions with K-Means Clustering.
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This approach can now be extended to the CLT, which states that when training 
a large dataset, a subset of mini-batch samples can be sufficient. The following two 
conditions define the main properties of the CLT:

• The variance between the data points of the subset (mini-batch) remains 
reasonable.

• The normal distribution pattern with mini-batch variances remains close 
to the variance of the whole dataset.

A Monte Carlo estimator, for example, can provide a good basis to see if the samples 
respect the CLT.

Using a Monte Carlo estimator
The name Monte Carlo comes from the casinos in Monte Carlo and gambling. 
Gambling represents an excellent memoryless random example. No matter what 
happens before a gambler plays, prior knowledge provides no insight. For example, 
the gambler plays 10 games, losing some and winning some, creating a distribution 
of probabilities.

The sum of the distribution of f(x) is computed. Then random samples are extracted 
from a dataset, for example, x1, x2, x3,..., xn.

f(x) can be estimated through the following equation:

�̂�𝑒 = 1
𝑛𝑛∑𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

The estimator �̂�𝑒  represents the average of the result of the predictions of a KMC 
algorithm or any implemented model.

We have seen that a sample of a dataset can represent a full dataset, just as a group 
of people can represent a population when polling for elections, for example.

Knowing that we can safely use random samples, just like in polling a population 
for elections, we can now process a full large dataset directly, or preferably with 
random samples.
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Trying to train the full training dataset
In Chapter 4, Optimizing Your Solutions with K-Means Clustering, a KMC algorithm 
with a six-cluster configuration produced six centroids (geometric centers), as shown 
here:

Figure 5.1: Six centroids

The problem is now how to avoid costly machine resources to train this KMC dataset 
when dealing with large datasets. The solution is to take random samples from the 
dataset in the same way polling is done on a population for elections, for example.

Training a random sample of the training 
dataset
The sampling/k-means_clustering_minibatch.py program provides a way to 
verify the mini-batch solution.

The program begins by loading the data in the following lines of code:

dataset = pd.read_csv('data.csv')
print (dataset.head())
print(dataset)
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Loading the dataset might create two problems:

• The dataset is too large to be loaded in the first place. In this case, load the 
datasets batch by batch. Using this method, you can test the model on many 
batches to fine-tune your solution.

• The dataset can be loaded, but the KMC algorithm chosen cannot absorb 
the volume of data. A good choice for the size of the mini-batch will solve 
this problem.

Once a dataset has been loaded, the program will start the training process.

A mini-batch dataset called dataset1 will be randomly created using Monte Carlo's 
large data volume principle with a mini-batch size of 1,000. Many variations of the 
Monte Carlo method apply to machine learning. For our example, it will be enough 
to use a random function to create the mini-batch:

n=1000
dataset1=np.zeros(shape=(n,2))

for i in range (n):
    j=randint(0,4998)
    dataset1[i][0]=dataset.iloc[j,0]
    dataset1[i][1]=dataset.iloc[j,1]

Finally, the KMC algorithm runs on a standard basis, as shown in the following 
snippet:

#II.Hyperparameters
# Features = 2 :implicit through the shape of the dataset (2 columns)
k = 6
kmeans = KMeans(n_clusters=k)

#III.K-means clustering algorithm
kmeans = kmeans.fit(dataset1) #Computing k-means clustering
gcenters = kmeans.cluster_centers_ # the geometric centers or 
centroids
print("The geometric centers or centroids:")
print(gcenters)
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The following screenshot, displaying the result produced, resembles the full dataset 
trained by KMC in Chapter 4, Optimizing Your Solutions with K-Means Clustering:

Figure 5.2: Output (KMC)

The centroids obtained are consistent, as shown here:

The geometric centers or centroids:

[[ 19.6626506 14.37349398]

 [ 49.86619718 86.54225352]

 [ 65.39306358 54.34104046]

 [ 29.69798658 54.7852349 ]

 [ 48.77202073 23.74611399]

 [ 96.14124294 82.44067797]]

The output will vary slightly at each run since this is a stochastic process. In this 
section, we broke the dataset down into random samples to optimize the training 
process. Another way to perform random sampling is to shuffle the dataset before 
training it.

Shuffling as another way to perform random 
sampling
The sampling/k-means_clustering_minibatch_shuffling.py program provides 
another way to solve a random sampling approach.



Chapter 5

[ 101 ]

KMC is an unsupervised training algorithm. As such, it trains unlabeled data. 
A single random computation does not consume a large amount of machine 
resources, but several random selections in a row can.

Shuffling can reduce machine consumption costs. Proper shuffling of the data 
before starting training, just like shuffling cards before a poker game, will avoid 
repetitive and random mini-batch computations. In this model, the loading data 
phase and training phase do not change. However, instead of one or several random 
choices for dataset1, the mini-batch dataset, we shuffle the complete dataset once 
before starting the training. The following code shows how to shuffle datasets:

sn=4999
shuffled_dataset=np.zeros(shape=(sn,2))
for i in range (sn):
    shuffled_dataset[i][0]=dataset.iloc[i,0]
    shuffled_dataset[i][1]=dataset.iloc[i,1]

Then we select the first 1,000 shuffled records for training, as shown in the following 
code snippet:

n=1000
dataset1=np.zeros(shape=(n,2))
for i in range (n):
    dataset1[i][0]=shuffled_dataset[i,0]
    dataset1[i][1]=shuffled_dataset[i,1]

The result in the following screenshot corresponds to the one with the full dataset 
and the random mini-batch dataset sample:

Figure 5.3: Full and random mini-batch dataset sample
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The centroids produced can provide first-level results to confirm the model, 
as shown in the following output.

The geometric centers or centroids:

[[ 29.51298701 62.77922078]

 [ 57.07894737 84.21052632]

 [ 20.34337349 15.48795181]

 [ 45.19900498 23.95024876]

 [ 96.72262774 83.27737226]

 [ 63.54210526 51.53157895]]

Random sampling and shuffling helped to solve one part of the dataset volume 
problem.

However, now we must explore the other aspect of the implementation of a large 
dataset ML algorithm: verifying the results.

Chaining supervised learning to verify 
unsupervised learning
This section explores how to verify the output of an unsupervised KMC algorithm 
with a supervised algorithm: a decision tree.

KMC takes an input with no labels and produces an output with labels. The 
unsupervised process makes sense out of the chaos of incoming data.

The example in this chapter focuses on two related features: location and distance. 
The clusters produced are location-distance subsets of data within the dataset. The 
input file contains two columns: distance and location. The output file contains three 
columns: distance, location, and a label (cluster number).

Using shuffling instead of random mini-batches has two 
advantages: limiting the number of mini-batch calculations and 
preventing training the same samples twice. If your shuffling 
algorithm works, you will only need to shuffle the dataset once. 
If not, you might have to go back and use random sampling, as 
explained in the previous section.
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The output file can thus be chained to a supervised learning algorithm, such as a 
decision tree. The decision tree will use the labeled data to produce a visual, white-
box, machine thought process. Also, a decision tree can be trained to verify the results 
of the KMC algorithm. The process starts with preprocessing raw data.

Preprocessing raw data
Earlier, it was shown that with large datasets, mini-batches will be necessary. 
Loading billions of records of data in memory is not an option. A random selection 
was applied in sampling/k-means_clustering_minibatch.py as part of the KMC 
algorithm.

However, since we are chaining our algorithms in a pipeline and since we are not 
training the model, we could take the random sampling function from sampling/k-
means_clustering_minibatch.py and isolate it:

n=1000
dataset1=np.zeros(shape=(n,2))
li=0
for i in range (n):
    j=randint(0,4999)
    dataset1[li][0]=dataset.iloc[j,0]
    dataset1[li][1]=dataset.iloc[j,1]
    li+=1

The code could be applied to datasets extracted in a preprocessing phase from packs 
of data retrieved from a big data environment, for example. The preprocessing phase 
would be repeated in cycles. We will now explore the pipeline that goes from raw 
data to the output of the chained ML algorithms.

A pipeline of scripts and ML algorithms
An ML pipeline will take raw data and perform dimension reduction or other 
preprocessing tasks that are not in the scope of this book. Preprocessing the data 
sometimes requires more than ML algorithms such as SQL scripts. Our exploration 
starts right after when ML algorithms such as KMC take over. However, a pipeline 
can run from raw data to ML using classical non-AI scripting as well.
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The pipeline described in the following sections can be broken down into three major 
steps, preceded by classical preprocessing scripting:

• Step 0: A standard process performs a random sampling of a training dataset 
with classical preprocessing scripts before running the KMC program. This 
aspect is out of the scope of the ML process and this book. By doing this, we 
avoid overloading the ML Python programs. The training data will first be 
processed by a KMC algorithm and sent to the decision tree program.

• Step 1: A KMC multi-ML program, kmc2dt_chaining.py, reads the 
training dataset produced by step 0 using a saved model from Chapter 4, 
Optimizing Your Solutions with K-Means Clustering. The KMC program takes 
the unlabeled data, makes predictions, and produces a labeled output in a 
file called ckmc.csv. The output label is the cluster number of a line of the 
dataset containing a distance and location.

• Step 2: The decision tree program, decision_tree.py, reads the output of 
the KMC predictions, ckmc.csv. The decision tree algorithm trains its model 
and saves the trained model in a file called dt.sav.

 ° Step 2.1: The training phase is over. The pipeline now takes raw data 
retrieved by successive equal-sized datasets. This batch process will 
provide a fixed amount of data. Calculation time can be planned and 
mastered. This step is out of the scope of the ML process and this 
book.

 ° Step 2.2: A random sampling script processes the batch and produces 
a prediction dataset for the predictions.

• Step 3: kmc2dt_chaining.py will now run a KMC algorithm that is 
chained to a decision tree that will verify the results of the KMC. The KMC 
algorithm produces predictions. The decision tree makes predictions on those 
predictions. The decision tree will also provide a visual graph in a PNG for 
users and administrators.

Steps 2.1 to 3 can run on a twenty-four seven basis in a continuous process.

It is important to note that random forests are an interesting alternative to the 
decision tree component. It can replace the decision tree algorithm in kmc2dt_
chaining.py. In the next section, we will explore random forests in this context 
with random_forest.py.



Chapter 5

[ 105 ]

Step 1 – training and exporting data from an 
unsupervised ML algorithm
kmc2dt_chaining.py can be considered as the chaining of a KMC program to a 
decision tree program that will verify the results. Each program forms a link of the 
chain.

From a decision tree project's perspective, kmc2dt_chaining.py can be considered 
as a pipeline taking unlabeled data and labeling it for the supervised decision tree 
program. A pipeline takes raw data and transforms it using more than one ML 
program.

During the training phase of the chained model, kmc2dt_chaining.py runs to 
provide datasets for the training of the decision tree. The parameter adt=0 limits 
the process to the KMC function, which is the first link of the chain. The decision tree 
in this program will thus not be activated in this phase.

kmc2dt_chaining.py will load the dataset, load the saved KMC mode, make 
predictions, and export the labeled result:

• Load the dataset: data.csv, the dataset file, is the same one used in 
Chapter 4, Optimizing Your Solutions with K-Means Clustering. The two 
features, location and distance, are loaded:
dataset = pd.read_csv('data.csv')

• Load the KMC model: The k-means cluster model, kmc_model.sav, was 
saved by k-means_clustering_2.py in Chapter 4, Optimizing Your Solutions 
with K-Means Clustering. It is now loaded using the pickle module to save it:
kmeans = pickle.load(open('kmc_model.sav', 'rb'))

• Make predictions: No further training of the KMC model is required at this 
point. The model can run predictions on the mini-batches it receives. We can 
use an incremental process to verify the results on a large scale.
If the data is not sufficiently scaled, other algorithms could be applied. In this 
case, the dataset does not require additional scaling. The KMC algorithm will 
make predictions on the sample and produce an output file for the decision 
tree.
For this example, the predictions will be generated line by line:
    for i in range(0,1000):
        xf1=dataset.at[i,'Distance']
        xf2=dataset.at[i,'location']
        X_DL = [[xf1,xf2]]
        prediction = kmeans.predict(X_DL)
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The results are stored in a NumPy array:
        p=str(prediction).strip('[]')
        p=int(p)
        kmcpred[i][0]=int(xf1)
        kmcpred[i][1]=int(xf2)
        kmcpred[i][2]=p;

• Export the labeled data: The predictions are saved in a file:
np.savetxt('ckmc.csv', kmcpred, delimiter=',', fmt='%d')

This output file is special; it is now labeled:
80,53,5
18,8,2
55,38,0

The output file contains three columns:
 ° Column 1 = feature 1 = location; 80, for example, on the first line
 ° Column 2 = feature 2 = distance; 53, for example, on the first line
 ° Column 3 = label = cluster calculated; 5, for example, on the first line

In our chained ML algorithms, this output data will become the input data of 
the next ML algorithm, the decision tree.

Step 2 – training a decision tree
In Chapter 3, Machine Intelligence – Evaluation Functions and Numerical Convergence, 
a decision tree was described and used to visualize a priority process. Decision_
Tree_Priority.py produced the following graph:

Figure 5.4: Decision tree priorities
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The tree starts with a node with a high Gini value. The node is split into two, and 
each node below is a "leaf" in this case because Gini=0.

The decision tree algorithm implemented in this book uses Gini impurity.

Gini impurity represents the probability of a data point being incorrectly classified.

A decision tree will start with the highest impurities. It will split the probability into 
two branches after having calculated a threshold.

When a branch reaches a Gini impurity of 0, it reaches its leaf.

Let's state that k is the probability of a data point being incorrectly classified.

The dataset X from Chapter 3, Machine Intelligence – Evaluation Functions and Numerical 
Convergence, contains six data points. Four data points are low, and two data points 
are high:

X = {Low, Low, High, High, Low, Low}

The equation of Gini impurity calculates the probability of each feature occurring 
and multiplies the result by 1—the probability of each feature occurring on the 
remaining values—as shown in the following equation:

𝐺𝐺(𝑘𝑘) =∑𝑃𝑃𝑖𝑖 ∗ (1 − 𝑃𝑃𝑖𝑖)
𝑖𝑖=𝑛𝑛

𝑖𝑖=1
 

Applied to the X dataset with four lows out of six and two highs out of six, the result 
will be:

G(k) = (4/6) * (1 – 4/6) + (2/6) * (1 – 2/6)

G(k)=(0.66 * 0.33) + (0.33 * 0.66)

G(k)=0.222 + 0.222=0.444

The probability that a data point will be incorrectly predicted is 0.444, as shown in 
the graph.

The decision train is built on the gain of information on the features that contain the 
highest Gini impurity value.

We will now explore the Python implementation of a decision tree to prepare it to be 
chained to the KMC program.
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Training the decision tree
To train the decision tree, decision_tree.py will load the dataset, train the model, 
make predictions, and save the model:

• Load the dataset: Before loading the dataset, you will need to import the 
following modules:
import pandas as pd #data processing
from sklearn.tree import DecisionTreeClassifier #the dt classifier
from sklearn.model_selection import train_test_split #split the 
data into training data and testing data
from sklearn import metrics #measure prediction performance
import pickle #save and load estimator models

The dataset is loaded, labeled, and split into training and test datasets:
#loading dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
print(df.head())
#defining features and label (classes)
feature_cols = ['f1', 'f2']
X = df[feature_cols] # Features
y = df.label # Target variable
print(X)
print(y)
# splitting df (dataset) into training and testing data
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=1) # 70% training and 30% 
test

The data in this example will contain two features (location and distance) 
and a label (cluster number) provided by the output of the KMC algorithm. 
The following header shows how the dataset is structured:
   f1  f2  label

0  80  53      5

1  18   8      2

2  55  38      0

The versions of the modules will vary as the editors produce 
them and also depend on how often you update the versions and 
the code. For example, you might get a warning when you try to 
unpickle a KMC model from version 0.20.3 when using version 
0.21.2. As long as it works, it is fine for educational purposes. 
However, in production, an administrator should have a database 
with the list of packages used and their versions.
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3  74  74      5

4  17   4      2

• Training the model: Once the datasets are ready, the decision tree classifier 
is created and the model is trained:
# create the decision tree classifier
dtc = DecisionTreeClassifier()
# train the decision tree
dtc = dtc.fit(X_train,y_train)

• Making predictions: Once the model is trained, predictions are made on the 
test dataset:
#predictions on X_test
print("prediction")
y_pred = dtc.predict(X_test)
print(y_pred)

The predictions use the features to predict a cluster number in the test 
dataset, as shown in the following output:
prediction

[4 2 0 5 0...]

• Measuring the results with metrics: A key part of the process is to measure 
the results with metrics. If the accuracy approaches 1, then the KMC output 
chained to the decision tree algorithm is reliable:
# model accuracy
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

In this example, the accuracy was 0.97. The model can predict the cluster of a 
distance and location with a 0.97 probability, which proves its efficiency. The 
training of the chained ML solution is over, and a prediction cycle begins.

You can generate a PNG file of the decision tree with decision_tree.py. 
Uncomment the last paragraph of the program, which contains the export function:

from sklearn import tree
import pydotplus
graph=1
if(graph==1):
    # Creating the graph and exporting it
    dot_data = tree.export_graphviz(dtc, out_file=None,
                                    filled=True, rounded=True,
                                    feature_names=feature_cols,
                                    class_names=['0','1','2',
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                                                 '3','4','5'])
    #creating graph
    graph = pydotplus.graph_from_dot_data(dot_data)
    #save graph
    image=graph.create_png()
    graph.write_png("kmc_dt.png")

Note that once you have implemented this function, you can activate or deactivate it 
with the graph parameter.

The following image produced for this example can help you understand the 
thought process of the whole chained solution (KMC and the decision tree).

Figure 5.5: Image output from the code example

The image file, dt_kmc.png, is available on GitHub in CH05.

Step 3 – a continuous cycle of KMC chained to a 
decision tree
The training of the chained KMC algorithm chained to a decision tree algorithm is 
over.

The preprocessing phase using classical big data batch retrieval methods will 
continuously provide randomly sampled datasets with a script.
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kmc2dt_chaining.py can focus on running KMC predictions and passing them on 
to decision tree predictions for white-box checking. The continuous process imports 
a dataset, loads saved models, predicts, and measures the results at the decision tree 
level.

The chained process can run on a twenty-four seven basis if necessary.

The modules used are required for both the KMC and the decision trees 
implemented in the training programs:

from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt
import pickle
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

Let's run through the process:

• Loading the KMC dataset and model: The KMC dataset has been prepared 
in the preprocessing phase. The trained model has been previously saved. 
The dataset is loaded with pandas and the model is loaded with pickle:
#I.KMC. The prediction dataset and model
dataset = pd.read_csv('data.csv')
kmeans = pickle.load(open('kmc_model.sav', 'rb'))

• Predicting and saving: The goal is to predict the batch dataset line by line 
and save the result in an array in a white-box approach that can be verified 
by the administrator of the system:
    for i in range(0,1000):
        xf1=dataset.at[i,'Distance']
        xf2=dataset.at[i,'location']
        X_DL = [[xf1,xf2]]
        prediction = kmeans.predict(X_DL)
        #print (i+1, "The prediction for",X_DL," is:",
            str(prediction).strip('[]'))
        #print (i+1, "The prediction for",
            str(X_DL).strip('[]'), " is:",
            str(prediction).strip('[]'))
        p=str(prediction).strip('[]')
        p=int(p)
        kmcpred[i][0]=int(xf1)
        kmcpred[i][1]=int(xf2)
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        kmcpred[i][2]=p
np.savetxt('ckmc.csv', kmcpred, delimiter=',', fmt='%d')

The ckmc.csv file generated is the entry point of the next link of the chain: 
the decision tree.
The two lines containing the print instruction are commented for standard 
runs. However, you may wish to explore the outputs in detail if your code 
requires maintenance. That is why I recommend adding maintenance lines 
in the code.

• Loading the dataset for the decision tree: The dataset for the decision tree is 
loaded in the same way as in decision_tree.py. A parameter activates the 
decision tree part of the code: adt=1. The white-box quality control approach 
can thus be activated or deactivated.
The program loads the dataset, loads the model, and splits the data:
if adt==1:
    #I.DT. The prediction dataset and model
    col_names = ['f1', 'f2','label']
    # load dataset
    ds = pd.read_csv('ckmc.csv', header=None,
                     names=col_names)

    #split dataset in features and target variable
    feature_cols = ['f1', 'f2']
    X = ds[feature_cols] # Features
    y = ds.label # Target variable

    # Split dataset into training set and test set
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=1) # 70% training and 
30% test

    # Load model
    dt = pickle.load(open('dt.sav', 'rb'))

Although the dataset has been split, only the test data is used to verify the 
predictions of the decision tree and the quality of the KMC outputs.

• Predicting and measuring the results: The decision tree predictions are 
made and the accuracy of the results is measured:
    #Predict the response for the test dataset
    y_pred = dt.predict(X_test)

    # Model Accuracy
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    acc=metrics.accuracy_score(y_test, y_pred)
    print("Accuracy:",round(acc,3))

Once again, in this example, as in decision_tree.py, the accuracy is 0.97.
• Double-checking the accuracy of the predictions: In the early days of a 

project or for maintenance purposes, double-checking is recommended. The 
function is activated or deactivated with a parameter named doublecheck.
The prediction results are checked line by line against the original labels and 
measured:
#Double Check the Model's Accuracy
    doublecheck=1 #0 deactivated, 1 activated
    if doublecheck==1:
        t=0
        f=0
        for i in range(0,1000):
            xf1=ds.at[i,'f1']
            xf2=ds.at[i,'f2']
            xclass=ds.at[i,'label']
            X_DL = [[xf1,xf2]]
            prediction =clf.predict(X_DL)
            e=False
            if(prediction==xclass):
                e=True
                t+=1
            if(prediction!=xclass):
                e=False
                f+=1
            print (i+1,"The prediction for",X_DL," is:",
                str(prediction).strip('[]'),
                "the class is",xclass,"acc.:",e)

        print("true:", t, "false", f, "accuracy",
            round(t/(t+f),3))

The program will print out the predictions line by line, stating if they are 
True or False:
995 The prediction for [[85, 79]]  is: 4 the class is 4 acc.: True

996 The prediction for [[103, 100]]  is: 4 the class is 4 acc.: 
True

997 The prediction for [[71, 82]]  is: 5 the class is 1 acc.: 
False

998 The prediction for [[50, 44]]  is: 0 the class is 0 acc.: True

999 The prediction for [[62, 51]]  is: 5 the class is 5 acc.: True
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In this example, the accuracy is 0.99, which is high. Only 9 out of 1,000 predictions 
were False. This result is not the same as the metrics function because it is a simple 
calculation that does not take mean errors or other factors into account. However, 
it shows that the KMC produced good results for this problem.

Decision trees provide a good approach for the KMC. However, random forests take 
machine learning to another level and provide an interesting alternative, if necessary, 
to the use of decision trees.

Random forests as an alternative to decision 
trees
Random forests open mind-blowing ML horizons. They are ensemble meta-
algorithms. As an ensemble, they contain several decision trees. As meta-algorithms, 
they go beyond having one decision tree making predictions.

To run an ensemble (several decision trees) as a meta-algorithm (several algorithms 
training and predicting the same data), the following module is required:

from sklearn.ensemble import RandomForestClassifier

To understand how a random forest works as a meta-algorithm, let's focus on three 
key parameters in the following classifier:

clf = RandomForestClassifier(n_estimators=25, random_state=None, 
bootstrap=True)

• n_estimators=25: This parameter states the number of trees in the forest. 
Each tree will run its prediction. The main method to reach the final 
prediction is obtained by averaging the predictions of each tree.
At each split of each tree, features are randomly permuted. The trees use 
different feature approaches.

• bootstrap=True: When bootstrap is activated, a smaller sample is 
bootstrapped from the sample provided. Each tree thus bootstraps its own 
samples, adding more variety.

• random_state=None: When random_state=None is activated, the random 
function uses np.random.
You can also use the other methods by consulting the scikit-learn 
documentation (see Further reading at the end of the chapter). My preference 
is to use np.random. Note that to split the training state, I use scikit-learn's 
default random generator example with random_state=0.
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This shows the importance of these small changes in parameters. After many 
tests, this is what I preferred. But maybe, in other cases, other random_state 
values are preferable.

Beyond these key concepts and parameters, random_forest.py can be built in 
a clear, straightforward way.

random_forest.py is built with the same structure as the KMC or decision tree 
program. It loads a dataset, prepares the features and target variables, splits the 
dataset into training and testing sub-datasets, predicts, and measures. random_
forest.py also contains a custom double-check function that will display each 
prediction, its status (True or False), and provide an independent accuracy rate.

• Loading the dataset: ckmc.csv was generated by the preceding KMC 
program. This time, it will be read by random_forest.py instead of 
decision_tree.py. The dataset is loaded, and the features and target 
variables are identified. Note the pp variable, which will trigger the print 
function or not. This is useful for switching from production mode to 
maintenance mode with a single variable change. Change pp=0 to pp=1 
if you wish to switch to maintenance mode. In this case pp is activated:
pp=1 # print information
# load dataset
col_names = ['f1', 'f2','label']
df = pd.read_csv("ckmc.csv", header=None, names=col_names)
if pp==1:
    print(df.head())
#loading features and label (classes)
feature_cols = ['f1', 'f2']
X = df[feature_cols] # Features
y = df.label # Target variable
if pp==1:
    print(X)
    print(y)

The program prints the labeled data:
   f1  f2  label

0  80  53      5

1  18   8      2

2  55  38      0

3  74  74      5

4  17   4      2
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The program prints the target cluster numbers to predict:
[1 5 5 5 2 1 3 3…]

• Splitting the data, creating the classifier, and training the model: The 
dataset is split into training and testing data. The random forest classifier 
is created with 25 estimators. Then the model is trained:
#Divide the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=0)

#Creating Random Forest Classifier and training
clf = RandomForestClassifier(n_estimators=25,
    random_state=0)
clf.fit(X_train, y_train)

The program is ready to predict.
• Predicting and measuring the accuracy of the trained model:

#Predictions
y_pred = clf.predict(X_test)

if pp==1:
    print(y_pred)

#Metrics
ae=metrics.mean_absolute_error(y_test, y_pred)
print('Mean Absolute Error:', round(ae,3))

The output results and metrics are satisfactory:
predictions:

[1 5 5 5 2 1 3 3 0 5 3 5 3 2 2 4 3 1 3 2 2 …]

Mean Absolute Error: 0.165

A mean error approaching 0 is an efficient result.
• Double-checking: A double-checking function is recommended in the 

early stages of an ML project and for maintenance purposes. The function 
is activated by the doublecheck parameter as in kmc2dt_chaining.py. Set 
doublecheck=1 if you wish to activate the maintenance mode. It is in fact, 
the same template:
#Double Check the Model's Accuracy
doublecheck=0  # 1=yes, 0=no
if doublecheck==1:
    t=0
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    f=0
    for i in range(0,1000):
        xf1=df.at[i,'f1']
        xf2=df.at[i,'f2']
        xclass=df.at[i,'label']
        X_DL = [[xf1,xf2]]
        prediction =clf.predict(X_DL)
        e=False
        if(prediction==xclass):
            e=True
            t+=1
        if(prediction!=xclass):
            e=False
            f+=1
        if pp==1:
            print (i+1,"The prediction for",X_DL," is:",
                str(prediction).strip('[]'),"the class is",
                xclass,"acc.:",e)

    acc=round(t/(t+f),3)
    print("true:",t,"false",f,"accuracy",acc)
    print("Absolute Error",round(1-acc,3))

The accuracy of the random forest is efficient. The output of the measurement is:

Mean Absolute Error: 0.085

true: 994 false 6 accuracy 0.994

Absolute Error 0.006

The absolute error is a simple arithmetic approach that does not take mean errors 
or other factors into account. The score will vary from one run to another because 
of the random nature of the algorithm. However, in this case, 6 errors out of 1,000 
predictions is a good result.

Ensemble meta-algorithms such as random forests can replace the decision tree in 
kmc2dt_chaining.py with just a few lines of code, as we just saw in this section, 
tremendously boosting the whole chained ML process.

Chained ML algorithms using ensemble meta-algorithms are extremely powerful 
and efficient. In this chapter, we used a chained ML solution to deal with large 
datasets and perform automatic quality control on machine intelligence predictions.
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Summary
Although it may seem paradoxical, try to avoid AI before jumping into a project that 
involves millions to billions of records of data (such as SQL, Oracle, and big data). 
Try simpler classical solutions like big data methods. If the AI project goes through, 
LLN will lead to random sampling over the datasets, thanks to CLT.

A pipeline of classical and ML processes will solve the volume problem, as well as 
the human analytic limit problem. The random sampling function does not need to 
run a mini-batch function included in the KMC program. Batches can be generated 
as a preprocessing phase using classical programs. These programs will produce 
random batches of equal size to the KMC NP-hard problem, transposing it into an 
NP problem.

KMC, an unsupervised training algorithm, will transform unlabeled data into a 
labeled data output containing a cluster number as a label.

In turn, a decision tree, chained to the KMC program, will train its model using the 
output of the KMC. The model will be saved just as the KMC model was saved. The 
random forests algorithm can replace the decision tree algorithm if it provides better 
results during the training phase of the pipeline.

In production mode, a chained ML program containing the KMC trained model and 
the decision tree trained model can make classification predictions on fixed random 
sampled batches. Real-time metrics will monitor the quality of the process. The 
chained program, being continuous, can run twenty-four seven, providing reliable 
real-time results without human intervention.

The next chapter explores yet another ML challenge: the increasing amount of 
language translations generated by global business and social communication.

Questions
1. The number of k clusters is not that important. (Yes | No)
2. Mini-batches and batches contain the same amount of data. (Yes | No)
3. K-means can run without mini-batches. (Yes | No)
4. Must centroids be optimized for result acceptance? (Yes | No)
5. It does not take long to optimize hyperparameters. (Yes | No)
6. It sometimes takes weeks to train a large dataset. (Yes | No)
7. Decision trees and random forests are unsupervised algorithms. (Yes | No)
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Further reading
• Decision trees: https://scikit-learn.org/stable/modules/tree.html
• Random forests: https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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6
Innovating AI with 
Google Translate

In this chapter, we will illustrate how to innovate existing AI through Google 
Translate. First, we will start by understanding the difference between inventions, 
innovations, disruption, high-priced products, and revolutions, and how we can 
create an impact on an AI innovation.

Sometimes, a developer will confuse an invention with innovation, leading to 
a major failure in a key AI project. Some AI designers take a revolution to mean 
a disruption, leading to early sales and then nothing.

Once we have defined the key concepts of innovation, we will use Google Translate 
to understand the linguistic principles that surround natural language processing 
(NLP).

Google Translate entered the market in 2006 and was enhanced by neural networks 
in 2016, but still, it often produces bad answers. Is that good news or bad news? We 
will implement Google's API in a Python program to find out how to uncover false 
translations from one language to another.

Once we have found Google Translate's limits, we will finally find out how to 
transcend those limits with our own adaptations, by exploring Google's API in 
a Python program, adding a k-nearest neighbors (KNN) algorithm, and measuring 
the results statistically.
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Contrary to media hype, artificial intelligence has only just begun to innovate 
human processes. A huge amount of work remains to be done. To achieve progress, 
everybody must get involved, as we'll discuss in this chapter. Even if Google, 
Amazon, Microsoft, IBM, and others offer a solution, this does not mean it cannot 
be improved by third parties as add-ons to existing solutions or new standalone 
products. After all, once Ford invented the Model T over a hundred years ago, 
this did not preclude the development of even better cars. On the contrary, look 
around you!

To take advantage of the AI adventure, we will go from understanding disruption 
in AI to Google Translate, and then innovate.

The following topics will be covered in this chapter:

• Understanding the key concepts of AI innovation before starting to 
implement Google Translate

• The difference between inventions and innovations
• The difference between revolutionary and disruptive AI
• Google Translate API implementation in Python
• Introducing linguistics as a prerequisite to building any natural language 

processing (NLP) algorithm
• The KNN algorithm
• How to customize Google Translate with a KNN in Python

We will start by exploring the key concepts of AI innovation and disruption.

All the Python programs and files in this chapter are available at 
https://github.com/PacktPublishing/Artificial-
Intelligence-By-Example-Second-Edition/tree/
master/CH06.

There is also a Jupyter notebook named COLAB_Translate.
ipynb that contains all of the Python programs in one run. You 
can upload it directly to Google Colaboratory using your Google 
account: https://colab.research.google.com/.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/tree/master/CH0
https://colab.research.google.com/
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Understanding innovation and disruption 
in AI
The first question we must ask ourselves when starting a project such as a translation 
solution is to find out where we fit in. Is what we are going to do an invention or an 
innovation? Is our work disruptive or revolutionary? We will explore these concepts 
in this chapter to understand the broad pragmatic picture before going any further.

Is AI disruptive?
The word "disruptive" is more often than not associated with artificial intelligence. 
Media hype tells us that AI robots will soon have replaced humans around the 
world. Although media hype made it much easier to obtain AI budgets, we need 
to know where we stand if we want to implement an AI solution. If we want to 
innovate, we need to find the cutting edge and build new ideas from there.

Why not just plunge into the tools and see what happens? Is that a good idea or 
a risky one? Unlike corporations with huge budgets, a single human has limited 
resources. If you spend time learning in the wrong direction, it will take months 
to gather enough experience in another, better direction to reach your goal. 
For example, suppose you have trouble classifying large amounts of data, as we 
explored in Chapter 4, Optimizing Your Solutions with K-means Clustering. You will 
spend months on a project in your company and fail. It could cost you your job. 
Conversely, if you find the right model and learn the key concepts, your project 
can take off in a few days.

Before diving into a project, find out where we stand in terms of innovation and 
disruption. This doesn't seem important at the start of a project, but it will mean 
a lot during the production and distribution phases. This section will clarify these 
concepts.

Nothing is new under the sun—not even when considering AI. Most AI theory 
and mathematical tools have been around for decades, if not centuries. We often 
tend to think that since something appears new to us, it has just been invented or 
discovered. This mistake can prove fatal in many projects. If you know that a theory 
or function has been around for decades or centuries, you can do some deep research 
and use solutions found 100+ years ago to solve your present problems. If you do, 
you will save a lot of time using equations that have been proven and are reliable. 
If you do not, you might spend useless vital time reinventing equations that exist.
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Finding out what is new and what is not will make a major difference in your 
personal or professional AI projects.

AI is based on mathematical theories that are 
not new
AI theory presently relies heavily on applied mathematics. In Chapter 1, Getting 
Started with Next-Generation Artifcial Intelligence through Reinforcement Learning, 
the Markov decision process (MDP), a reinforcement learning (RL) approach 
was described. Google has been successfully combining RL with neural networks 
in AlphaGo Zero.

Andrey Markov was a Russian mathematician born in 1856 who invented the MDP. 
He successfully applied the algorithm to letter predictions in a word sequence in 
a given language, for example. Richard Bellman published an enhanced version 
of the MDP in 1957.

Bellman also coined the expression "curse of dimensionality" and published 
books on mathematical tools widely used today in AI. It is now well known that 
dimensionality reduction can be performed to avoid facing thousands of dimensions 
(features, for example) in an algorithm.

The logistic function (see Chapter 2, Building a Reward Matrix – Designing Your 
Datasets) can be traced back to Pierre François Verhulst (1844-1845), a Belgian 
mathematician. The logistic function uses e, the natural logarithm base, which is 
also named Euler's number. Leonhard Euler (1707-1783) is a Swiss mathematician 
who worked on this natural logarithm.

Thomas Bayes (1701-1761) invented the theorem that bears his name: Bayes' 
Theorem. It is widely used in AI. We will be using it in Chapter 7, Optimizing 
Blockchains with Naive Bayes.

Almost all of the applied mathematics in artificial intelligence, machine learning, and 
deep learning can be traced from 17th century to 20th century mathematicians. We 
must look elsewhere for 21st century AI innovations. We need to find what is truly 
new in AI, which is also what helped it expand so rapidly in the early 21st century.

Neural networks are not new
Neural networks, as described by contemporary experts, date back to the 1940s and 
1950s. Even convolutional neural networks (CNNs) date back to the 20th century. 
Yann LeCun, a French computer scientist, laid down the basics of a CNN (see Chapter 
9, Abstract Image Classifcation with Convolutional Neural Networks (CNNs)) in the 1980s; 
he successfully applied them as we know them today in the 1990s.
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We must again look elsewhere for 21st century AI innovations.

If neural networks are not new either, we must find the real new factors in our 
environment that produced the success of present-day AI.

Looking at disruption – the factors that are 
making AI disruptive
Although the foundations of AI find their roots long before computers existed or 
were widespread, it is only recently that we have seen AI truly begin to cause waves 
within our society. In the following sections, we'll look at factors that have come 
together to make AI a powerful force of disruption in recent years.

Cloud server power, data volumes, and web sharing 
of the early 21st century
It's important to understand what has driven the emergency of AI in recent years.

Data volumes drive the emergence of AI in the 21st century. Processing data, 
classifying data, and making predictions and decisions would be impossible without 
AI driving the entire computer science market.

If you leave the fantasy surrounding AI behind you and bear this key necessity for 
AI in mind, you will perfectly understand why AI has emerged and is here to stay.

The first sign of AI's innovative disruption appeared between the years 2000 and 
2010. Before then, the internet existed, and servers existed. But, starting from around 
2005, cloud servers were made widely available. With that kind of computing 
power, developers around the world could try using the highly greedy resources 
required by machine learning and deep learning. They could finally solve otherwise 
impossible big data problems using AI.

At the same time, as powerful servers became available, the internet provided the 
largest library of knowledge in the history of humanity.

On top of that, social networking became widely used. Sharing discoveries and 
source code became commonplace. The World Wide Web (WWW) encouraged 
open source software, boosting local research and development.

The era of artificial intelligence became possible for local experts starting from the 
middle of the first decade of the 21st century.

What makes AI appear as an innovation today is the conjunction of more powerful 
machines and the availability of intellectual resources.
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Public awareness
Public awareness of AI remained dim for several years after the cloud architectural 
revolution occurred from around 1995 to 2005.

AI hit us hard by around 2015 when we all woke up realizing that AI could 
massively replace humans and create job displacement at levels never before seen 
in human history.

Worse, we realized that machines could beat us in fields we took pride in, such 
as chess (Chapter 3, Machine Intelligence – Evaluation Functions and Numerical 
Convergence), the game of Go, and video games. We see manufacturing jobs 
increasingly performed by robots, office jobs being done by bots, and more fields 
that are appearing every day.

For the first time in human history, the human species can be surpassed by a 
new "species": smart bots. As developers, we thought we were safe until Google 
presented AutoML, a solution that could create machine learning solutions better 
than humans. At the same time, ready-to-use machine learning platforms have 
spread that can reduce and even replace AI software development.

Artificial intelligence inspires both awe and fear. How far will machines go? Will 
we simply experience job displacement, or will it go as far as species replacement?

Could this be an opportunity for many? Who knows? In any case, this chapter 
provides some guidance to help you to think in a way that drives you to be 
constantly innovating and being useful. In the age of Big Data, where we are often 
faced with huge datasets, AI is here to stay; we won't be able to cope without it. Let's 
make the most of it!

Before we begin to look into the incredible opportunities provided by AI, let's clarify 
in our minds what exactly the differences are, first between invention and innovation, 
and then revolution versus disruption. It is important to understand the impact that 
what we are developing and implementing will have on the AI market.

Inventions versus innovations
Some AI programs, especially deep learning algorithms, remained inventions and 
not innovations until Google and other major players used them on a large scale.

If you have invented a better algorithm than Google for some applications, it remains 
an invention until it actually changes something in your corporation or on the web.

Suppose you find a quicker way to recognize an image through an optimized 
number of neurons and a new activation function. If nobody uses it, then that 
invention remains a personal theoretical finding no matter how good it appears. 
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When others begin to use this new algorithm, then it becomes an innovation. An 
invention becomes an innovation only when it changes a process within a company 
or by a sufficient number of private users.

Revolutionary versus disruptive solutions
Suppose a new image recognition algorithm becomes an innovation in a significant 
corporation. This new algorithm has gone from being an invention (not used) to 
an innovation (a solution making a difference).

The corporation now widely uses the algorithm. Every subsidiary has access 
to it. For this corporation, the new image recognition algorithm has attained a 
revolutionary status. Corporate sales have gone up, and profit margins have as well.

But maybe this corporation does not dominate the market, and nobody has followed 
its example. The innovation remains revolutionary but has not become disruptive.

Then, let's say the person who created the algorithm decides to leave the company 
and start a business with the algorithm. It appears on GitHub as an open source 
program. Everybody wants it and the number of downloads increases daily 
until 1,000,000+ users have begun to implement it. Some very low-priced add-
ons are provided on the company website. Within a year, it becomes a new way 
of recognizing images. All companies must follow suit or lag behind. The solution 
has become disruptive because it has changed its market on a global scale.

Where to start?
We have now explored the basic concepts of creating AI. The first step in a 
translation project using Google Translate is to take the algorithm as far as possible 
using Google's API. As we will see in the next section, we will explore the limits 
of Google Translate. Once the limit is found, creativity kicks in when we customize 
Google Translate using AI.

We will discover that even if a solution exists, it has limits and can be improved, 
customized, packaged, and sold. If there is a limit, there is a market.

Never criticize the flaws you find in an AI solution; they are gold mines!

Where there is a limit, there is an opportunity.

Let's go to the cutting edge and then over the border into uncharted territory 
using Google Translate to illustrate this.
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Discover a world of opportunities with 
Google Translate
Starting with Google Translate to explore NLP is a good way to prepare to use NLP 
in web solutions. Any disruptive web-based solution must be able to run in at least 
a few languages. You will need to master NLP in several languages to implement 
a chatbot, a translation solution, and online information sites such as Wikipedia.

Google provides many resources to use, explore, or improve Google Translate. 
Getting a Python code to run and then assess the quality of the results will prove 
vital before implementing it for crucial translations in a company. Let's get Google 
Translate running.

Getting started
Google's developers' API client library page is as follows: https://developers.
google.com/api-client-library/. On this page, you will see libraries for many 
languages: Java, PHP, .NET, JavaScript, Objective-C, Dart, Ruby and more.

Then, go to the Python resources and follow the instructions to sign up, create 
a project in the Google API Console, and install the library.

If you encounter problems doing this part or do not wish to install anything yet, 
this chapter is self-contained. The source code is described in the chapter.

You are now ready to go, irrespective of whether you installed the tools.

The program
The goal of this section is to implement Google Translate functionality. You can 
implement and run the program or first simply read the self-contained section.

The header
The standard Google header provided by Google should be enough to get the API 
to work, as shown in the following code:

from googleapiclient.discovery import build

Considering the many languages Google manages, special characters are a major 
problem to handle. Many forums and example programs on the web struggle with 
the UTF-8 header when using Google Translate. Many solutions are suggested, such 
as the following source code header.

# -*- coding: utf-8 -*-

https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
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Then, when Google Translate returns the result, more problems occur, and many 
develop their own functions. They work fine, but I was looking for a straightforward 
one-line solution. The goal here was not to have many lines of code but focus on the 
limit of Google Translate to discover the cutting-edge interpreting languages in AI.

So, I did not use the UTF-8 header, but implemented it using the HTML library.

import html

When confronted with a result, the following one-line HTML parser code did the job.

print("result:", html.unescape(result))

It works well because Google will return an HTML string or a text string depending 
on what option you implement. This means that the HTML module can do the job.

Implementing Google's translation service
Google's translation service needs at least three values to return a result:

• developerKey: This is the API key obtained at the end of the getting-started 
process described previously.

• q="text to translate": In my code, I used source.
• target="abbreviation of the translated text": en for English, fr for 

French, and so on.

More options are available, as described in the following sections.

With this in mind, the translation function will work as follows:

def g_translate(source,targetl):
    service = build('translate', 'v2',developerKey='your Key')
    request = service.translations().list(q=source,
        target=targetl)
    response = request.execute()
    return response['translations'][0]['translatedText']

In the Google_translate.py program, q and target will be sent to the function 
to obtain a parsed result:

source="your text"
targetl="abbreviation of the target language"
result = g_translate(source,targetl)
print(result)
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To sum up the program, let's translate Google Translate into French, which contains 
accents parsed by the HTML parser:

from googleapiclient.discovery import build
import html

def g_translate(source,targetl):
    service = build('translate', 'v2',developerKey='your key')
    request = service.translations().list(q=source,
        target=targetl)
    response = request.execute()
    return response['translations'][0]['translatedText']

source='Google Translate is great!'

targetl="fr"
result = g_translate(source,targetl)
print("result:", html.unescape(result))

Google_Translate.py works fine. The result will come out with the correct answer 
and the parsed accent:

Google Translate est génial!

At this point, Google Translate satisfies a black box exploration approach. It is 
disruptive, has changed the world, and can replace translators in many corporations 
for all corporate needs.

In fact, we could end the chapter here, go to our favorite social network, and build 
some hype on our translation project.

Happy ending?

Well, not yet!

We need to explore Google Translate from a linguist's perspective.

Google Translate from a linguist's perspective
A linguist's approach to the program will involve a deeper, white box sort of 
exploration. The method will reveal many areas to improve.

By the time this book is published, perhaps Google will have improved the examples 
in this chapter. But don't worry; in this case, you will quickly find hundreds of other 
examples that are incorrect. The journey has just begun!
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Playing with the tool
Playing with a tool with random examples can lead to surprising results. This 
exploratory source code is saved as Google_translate_a_few_test_expressions.
py.

The program simulates a dialog created by a person named Usty as follows:

source='Hello. My name is Usty!'

 >>>result:Bonjour. Je m'appelle Usty!

source='The weather is nice today'

 >>>result: Le temps est beau aujourd'hui

source='Ce professor me chercher des poux.'

 >>>result: This professor is looking for lice!

The first two examples look fine in French, although the second translation is a bit 
strange. But in the third test, the expression chercher des poux means looking for trouble 
in English, and not looking for lice, as translated into French.

A linguistic assessment of Google Translate will now be made.

Linguistic assessment of Google Translate
Assessing Google Translate correctly will lead directly to its limits.

Limits are the boundaries researchers crave! We are frontiersmen!

An expert-level assessment will lead the project team to the frontier and beyond. 
To do this, we will first explore some linguistic methods.

Lexical field theory
Lexical fields describe word fields. A word only acquires its full meaning when 
interpreted within a context. This context often goes beyond a few other words 
or even a sentence.

Chercher des poux translated as such means look for lice. But in French, it can mean 
looking for trouble or literally looking for lice. The result that Google Translate comes 
up with contains three basic problems.

source='chercher des poux'

>>result: look for lice
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Problem 1 – the lexical field: There is no way of knowing whether this means 
looking for lice or looking for trouble without a context.

Problem 2 – metaphors or idiomatic expressions: Suppose you have to translate this 
is giving you a headache. There is no way of knowing whether it is a physical problem 
or a metaphor meaning this is driving you crazy. These two idiomatic expressions 
happen to have the same metaphors when translated into French. But the lice 
metaphor in French means nothing in English.

Problem 3: chercher is an infinitive in French, and the result should have been looking 
for lice in English. But entering chercher des limites est intéressant provides the right 
verb form, which is looking for:

source='Chercher des limites est intéressant.'

>>>result:Looking for boundaries is interesting.

The answer is correct because is splits the sentence into two, making it easier for 
Google Translate to identify chercher as the first part of a sentence, thus using looking 
in English.

Lexical fields vary from language to language, but so does jargon.

Jargon
Jargon arises when fields specialize. In AI, the expression hidden neurons is jargon. 
This expression means nothing to a lawyer, for example. A lawyer may think 
you have hidden intelligence on the subject somewhere or are hiding money 
in a cryptocurrency named hidden neuron.

In the same way, if somebody asks an AI expert to explain the exact meaning of filing 
a motion, that would prove difficult.

In a corporate legal environment, beyond using Google Translate as a dictionary, 
translating sentences might be risky if only a random number of results prove to be 
correct.

If we add the jargon variations to the lexical variations from one language to another, 
we can see that word-to-word translation does not work when a word is in a context. 
Translating is thus more than just finding the most similar words in the language we 
are translating to.

Translating is not just translating but interpreting
Sometimes, translating requires interpreting, as shown with the following sentence 
taken from a standard description of French commercial law:
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source='Une SAS ne dispense pas de suivre les recommandations en vigueur 
autour des pratiques commerciales.'

>>>result:An SAS does not exempt from following the recommendations in 
force around commercial practices.

The French sentence refers to a type of company; SAS is similar to company types 
like inc., ltd., and so on. In English, SAS means Special Air Service. Then comes the 
grammar, which does not sound right.

A translator would write better English and also specify what an SAS is:

An SAS (a type of company in France) must follow the recommendations that cover 
commercial practices.

Translating often means interpreting, and not simply translating words.

In this case, a legal translator may interpret the text in a contract and go as far as 
writing:

The COMPANY must respect the legal obligation to treat all customers fairly.

The legal translator will suggest that COMPANY be defined at the beginning of the 
contract to avoid confusion, such as the one Google Translate just made.

When reading about NLP, chatbots, and translation, everything seems easy. 
However, working on Google Translate can easily turn into a nightmare!

Let's take one last example:

The project team is all ears

Google Translate provides the output in French:

source:"The project team is all ears".

>>>result: L'équipe de projet est tout ouïe.

In French, as in English, it is better to say project team and not use of to say the team 
of the project. In French, we have équipe projet (équipe (team) appears before project).

From our examples so far, we can see that Google Translate is:

• Sometimes correct
• Sometimes wrong
• Sometimes partly correct and partly wrong

The problem now is how to know which category a translation is in.
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How to know whether a translation is correct
How can you check a translation if you do not know the language?

Be careful. If Google Translate provides randomly correct answers in another 
language, then you have no way of knowing whether the translation is reliable 
or not.

If you can't be confident that Google Translate is going to be correct, you may find 
yourself in difficult situations; even sending the opposite of what you mean to 
somebody important to you. You may misunderstand a sentence you are trying 
to understand.

In a transportation company, for example, you could write an email stating that the 
coach stopped and people were complaining:

source='The coach stopped and everybody was complaining.'

Google Translate, for lexical field reasons, got it wrong and translated coach as 
a sports trainer in French, which would give a completely different meaning to 
the sentence:

result: L'entraîneur s'est arrêté et tout le monde se plaignait..

Now, the situation can get worse. To help Google Translate, let's add some context.

source='The coach broke down and stopped and everybody was complaining.'

This answer is worse. Google Translate translates broke down correctly with the 
French expression en panne but still translates coach as entraineur (trainer) in French, 
meaning the trainer broke down, not the coach (bus).

result: L'entraîneur est tombé en panne et s'est arrêté et tout le monde 
se plaignait.

Google will no doubt continue to improve the program as it has done since 2006. 
For now, however, a human translator will find hundreds of expressions Google 
Translate cannot deal with yet.

Understanding a sentence in your native language can prove difficult when a word 
or an expression has several meanings. Adding a translation function to the issue 
makes it even more difficult to provide a reliable answer.

And that is where we reach the frontier, just beyond the cutting edge, as we have 
established the limits of Google Translate.
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In the next section, we'll look at some ways we could improve standard Google 
Translate results. Although no silver bullet exists to verify a translation, we will 
explore methods to improve the process. We will find a way to improve Google 
Translate and implement it.

AI as a new frontier
Google has a great, but limited, translation program. Use the flaws to innovate! AI 
research and development has just scratched the surface of the innovations to come.

First, implement an AI solution. Then, use it for what it is. But don't accept its limits. 
Don't be negative about it. Innovate! Imagine ideas or listen to other ideas you like 
and build solutions in a team! Google might even publish your solutions!

Improving Google Translate for any translation is impossible. A realistic approach 
is to focus on customizing Google Translate for a given domain, such as the 
transportation company in this example. In the next section, we will focus on ways 
to customize Google Translate.

Lexical field and polysemy
Google_Translate_Customized.py will provide ideas on how to improve Google 
Translate in a specific area. This section focuses on the transportation vocabulary 
error Google Translate made. Once again, Google may rapidly correct this error, 
but the method can be applied to the many remaining errors.

A lexical field contains words that form sets and subsets. They differ from one 
language to another. A language itself forms a set and contains subsets of lexical 
fields.

Colder countries have more words describing water in its frozen form than tropical 
countries where snow hardly ever falls. A lexical field of cold could be a subset of C:

C = {ice, hail, snowflakes, snowman, slushy, powder, flake, snowball, blizzard, melting, 
crunch … n}

The curse of dimensionality applies here. Words contain an incredible number 
of dimensions and definitions. To translate certain expressions, Google Translate 
suppresses their dimensions and reduces them.

Google Translate often uses n-grams to translate. An n-gram is a fixed-length 
sequence of tokens. Tokens can be a word, a character, or even a numerical 
representation of words and characters.
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The probability that token n means something is calculated given the preceding/
following n – x or n + x tokens. x is a variable depending on the algorithm applied.

For example, slushy has a special meaning in the expression slushy snow. The snow 
is partly melting, it's watery and making a slushing sound when we walk through it. 
Melting is only one component of the meaning of slush.

Google Translate, at this point, will only translate slushy snow in French by:

neige (snow) fondante (melting)

Google Translate will also translate melting snow by:

neige (snow) fondante (melting)

To translate slushy into French, you have to use a phrase. To find that phrase, you 
need some imagination or have some parsed (searched) novels or other forms of 
speech representations. That takes time and resources. It will most probably take 
years before Google Translate reaches an acceptable native level in all the languages 
publicized.

Another dimension to take into account is polysemy.

Polysemy means a word can have several very different meanings in a language. 
The equivalent word in another language may simply have one meaning or other, 
very different meanings.

"Go + over" in English can mean go over a bridge or go over some notes. At this point 
(hopefully it will improve by the time you read this book), it is translated in both 
cases in French by aller sur. This means to go on (not over), which is incorrect in 
both cases. Prepositions in English constitute a field in themselves, generating many 
meanings with the same word. The verb go can have a wide list of meanings: go up 
(upstairs), go up (stock market), go down (downstairs), go down (fall apart), and many 
more possibilities besides.

The prototype customized program starts with defining X. A small dataset 
to translate that will be more than enough to get things going:

X=['Eating fatty food can be unhealthy.',
   'This was a catch-22 situation.',
   'She would not lend me her tote bag',
   'He had a chip on his shoulder',
   'The market was bearish yesterday',
   'That was definitely wrong',
   'The project was compromised but he pulled a rabit out of his hat',
   'So just let the chips fall where they may',
   'She went the extra mile to satisfy the customer',
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   'She bailed out when it became unbearable',
   'The term person includes one or more individuals, labor unions, 
partnerships, associations, corporations, legal representatives, 
mutual companies, joint-stock companies, trusts, unincorporated 
organizations, trustees, trustees in bankruptcy, or receivers.',
   'The coach broke down, stopped and everybody was complaining']

Google Translate will automatically translate these sentences.

X1, as implemented in the following code, defines some keywords statistically related 
to the sentences; it applies the n-gram probability theory described previously.

X1=['grasse',
    'insoluble',
    'sac',
    'aggressif',
    'marché',
    'certainement',
    'chapeau',
    'advienne',
    'supplémentaire',
    'parti',
    'personne',
    'bus']

Each line in X1 goes with the corresponding line in X. As explained, this only remains 
a probability and may not be correct.

We are not seeking perfection at this point but an improvement.

Let's explore how we can improve Google Translate by customizing translations by 
implementing a KNN in a Python program.

Exploring the frontier – customizing Google 
Translate with a Python program
Now it's time to add some customized novelties. The use of the vectors in this section 
will be explained in the next section, again through the source code that uses them.

If you find spelling mistakes or minor mistakes, do not correct them 
during the training phase. Some amount of noise is required to 
reproduce human and machine errors to avoid overfitting.
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A trigger vector will force the program to try an alternate method to translate 
a mistranslated sentence. When the sentence has been identified, and if its value 
in X2 is equal to 1, it triggers a deeper translation function, as implemented here:

X2=[0,0,0,1,0,0,0,0,0,0,0,1]

0 and 1 are flags. Each value represents a line in X.

The example is taken from a transportation business. A transportation phrase 
dictionary should be built. In this case, a general phrase_translation dictionary 
has been implemented with one expression, as shown in the following array.

phrase_translation=['','','','Il est 
agressif','','','','','','','','']

What remains to be done in order to fill up this dictionary?

• Scan all the documents of the company—emails, letters, contracts, and every 
form of written documents.

• Store the embedded words and sentences.
• Train the team to use the program to improve it by providing feedback 

(the right answer) in a learning interface when the system returns incorrect 
answers.

What Google Translate cannot do on a global scale, you can implement at a local 
scale to improve the system significantly.

Now that we have defined a method, we will dig into the KNN algorithm.

k-nearest neighbor algorithm
No matter how you address a linguistic problem, it will always boil down to the 
concept of context. When somebody does not understand somebody else, they 
say: "you took my words out of their context," or "that is not what I meant; let me 
explain."

Note for developers: To use this method correctly, all the values 
of this vector should be set to 1. That will automatically trigger 
several alternate methods to translate Google Translate errors.  
A lot of work remains to be done here! 
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As explained before, in many cases, you cannot translate a word or expression 
without a lexical field. The difficulty remains proportional to the polysemy property, 
as the program will show.

Using the KNN algorithm as a classification method can prove extremely useful. 
Any language interpretation (translation or chatbot) will have to use a context-
oriented algorithm.

By finding the words closest (neighbors) to each other, KNN will create the 
lexical fields required to interpret a language. Even better, when provided 
with the proper datasets, it will solve the polysemy problem, as shown in the 
upcoming sections.

Implementing the KNN algorithm
Generally, a word requires a context to mean something. Looking for "neighbors" 
close by provides an efficient way to determine where the word belongs.

KNN is supervised because it uses the labels of the data provided to train its 
algorithm. KNN, in this case, is used for classification purposes. For a given point p, 
KNN will calculate the distances to all other points. Then, k represents the k-nearest 
neighbors to take into account.

Let's clear this up by means of an example. In English, the word "coach" can mean 
a trainer on a football field, a bus, or a railroad passenger car. In a transportation 
company, "coach" will mostly be a bus that should not be confused with a trainer:

• Step 1: Parsing (examining in a detailed manner) texts with "coach" as a 
bus and "coach" as a trainer. Thus, the program is searching for three target 
words: trainer, bus, and coach.

• Step 2: Finding some words that appear close to the target words we are 
searching for. As recommended, do the following:

 ° Parse all the company documents you can use with a standard 
program.

 ° Use a Python function such as if(n-gram in the source) then 
store the data.
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In this case, the V1.csv file shown in the following output excerpt provided with the 
source code contains the result of such a parsing function:

broke,road,stopped,shouted,class

1,3.5,6.4,9,trainer

1,3.0,5.4,9,trainer

1,3.2,6.3,9,trainer

...

6.4,6.2,9.5,1.5,bus

2,3.2,9,1,bus

6.4,6.2,9.5,1.5,bus

...

3.3,7.3,3.0,2.5,coach

4.7,5.7,3.1,3.7,coach

2.0,6.0,2.7,3.1,coach

Generating files such as V1.csv is not in the scope of this chapter or book. 
However, you can start, among other sites, by exploring scikit-learn's text document 
functionality at the following link:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_
text_data.html

The program parsed emails, documents, and contracts. Each line represents the 
result of parsing one document. The numbers represent the occurrences (number of 
times the word was present). The numbers have been "squashed" (divided again and 
again) to remain small and manageable. For more on how to work with text data, 
please click on the scikit-learn link in the previous paragraph.

Progressively, the words that came out with "trainer" were "shouted" more than 
"stopped." For a bus, "broke" (broken down as in breaking down), "road," and 
"stopped" appeared more than "shout."

"Coach" appeared on an average of "shouted," "stopped," "road," and "broke" because 
it could be either a trainer or a bus, hence the problem we face when translating this 
word. The polysemy (several meanings) of "coach" can lead to poor translations.

The KNN algorithm loaded the V1.csv file that contains the data to be trained and 
finds the following result:

https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
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Figure 6.1: Result from the KNN algorithm

The knn_polysemy.py program determined the following:

• The verb "broke" in blue has a better chance of applying to a bus (x axis value 
> 6) than to a trainer (x axis value < 4). However, "coach" remains above 
"trainer" and below "bus" because it can be both.

• The word "road" follows the same logic as the blue chart.
• The verb "stopped" can apply to a trainer and more to a bus. "Coach" remains 

undecided again.
• The verb "shouted" applies clearly to a trainer more than a bus. "Coach" 

remains undecided again.

Note that the coordinates of each point in these charts are as follows:

• y axis: bus = 1, coach = 2, and trainer = 3.
• x axis: The value represents the "squashed" occurrence (the number of times 

the word appeared) values.

This is the result of the search for those words in many sources.
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When a new point, a data point named Pn is introduced into the system, it will find 
its nearest neighbor(s) depending on the value of k.

The KNN algorithm will calculate the Euclidean distance between Pn and all the 
other points from P1 to Pn – 1 using the Euclidean distance formula. The k in KNN 
represents the number of "nearest neighbors" the algorithm will take into account 
for classification purposes. The Euclidean distance (d1) between two given points, 
for example, between Pn(x1, y1) and P1(x2, y2), is:

𝑑𝑑1(𝑃𝑃𝑛𝑛, 𝑃𝑃1) = √(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)22  

Considering the number of distances to calculate, a function such as the one 
provided by sklearn.neighbors proves necessary.

The knn_polysemy.py program
The program imports the V1.csv file described previously, prints a few lines, and 
prepares the labels in the correct arrays in their respective x axis and y axis, as shown 
in this source code example:

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
# Import data
df = pd.read_csv('V1.csv')
print (df.head())
# KNN Classification labels
X = df.loc[:,'broke':'shouted']
Y = df.loc[:,'class']

Then the model is trained, as shown in the following code:

# Trains the model
knn = KNeighborsClassifier()
knn.fit(X,Y)

Once the model is trained, a prediction is requested and is provided by the following 
code:

# Requesting a prediction
#broke and stopped are
#activated to see the best choice of words to fit these features.
# brock and stopped were found in the sentence to be interpreted.
# In X_DL as in X, the labels are : broke, road, stopped,shouted.
X_DL = [[9,0,9,0]]
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prediction = knn.predict(X_DL)
print ("The prediction is:",str(prediction).strip('[]'))

This is the result displayed:

The prediction is: 'bus'

The initial data is plotted for visualization purposes, as implemented in the following 
code:

#Uses the same V1.csv because the parsing has
# been checked and is reliable as "dataset lexical rule base".
df = pd.read_csv('V1.csv')
# Plotting the relation of each feature with each class
figure,(sub1,sub2,sub3,sub4) = plt.subplots(
    4,sharex=True,sharey=True)
plt.suptitle('k-nearest neighbors')
plt.xlabel('Feature')
plt.ylabel('Class')
X = df.loc[:,'broke']
Y = df.loc[:,'class']
sub1.scatter(X, Y,color='blue',label='broke')
sub1.legend(loc=4, prop={'size': 5})
sub1.set_title('Polysemy')
X = df.loc[:,'road']
Y = df.loc[:,'class']
sub2.scatter(X, Y,color='green',label='road')
sub2.legend(loc=4, prop={'size': 5})
X = df.loc[:,'stopped']
Y = df.loc[:,'class']
sub3.scatter(X, Y,color='red',label='stopped')
sub3.legend(loc=4, prop={'size': 5})
X = df.loc[:,'shouted']
Y = df.loc[:,'class']
sub4.scatter(X, Y,color='black',label='shouted')
sub4.legend(loc=4, prop={'size': 5})
figure.subplots_adjust(hspace=0)
plt.show()

A compressed version of this program has been introduced in Google_Translate_
Customized.py, as shown here:

def knn(polysemy,vpolysemy,begin,end):
    df = pd.read_csv(polysemy+'.csv')
    X = df.loc[:,'broke':'shouted']
    Y = df.loc[:,'class']



Innovating AI with Google Translate

[ 144 ]

    knn = KNeighborsClassifier()
    knn.fit(X,Y)
    prediction = knn.predict(vpolysemy)
    return prediction

The description is as follows:

• polysemy is the name of the file to read because it can be any file.
• vpolysemy is the vector that needs to be predicted.
• In future, in the to-do list, begin should replace broke and end should 

replace shouted so that the function can predict the values of any vector.
• The KNN classifier is called and the prediction returned.

Now that we have prepared the KNN classifier function, we can customize Google 
Translate.

Implementing the KNN function in Google_
Translate_Customized.py
This program requires more time and research because of the concepts of linguistics 
involved. The best way to grasp the algorithm is to run it in order.

Google Translate offers various translation methods. We will focus on two of them in 
the following code:

#print('Phrase-Based Machine Translation(PBMT)model:base'): #m='base'
print('Neural Machine Translation model:nmt')

These are explained as follows:

• Phrase-based machine translation (PBMT): This translates the whole 
sequence of words. The phrase, or rather phraseme (multi-word expression), 
is not always quite a sentence.

• Neural machine translation (NMT): This uses neural networks such as a 
recurrent neural network (RNN), which will be detailed later in this book. 
This method goes beyond the phraseme and takes the whole sentence into 
account. In terms of the dataset presented in this chapter, this neural network 
method provides slightly better results.

Both methods and Google's other approaches are interesting, but Google Translate 
still requires additional customized algorithms to reach an acceptable level of quality 
in many cases. In this chapter, we are exploring one approach with a KNN, but you 
can use others as long as they work. 
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As you have seen so far, the subject is extremely complex if you take the lexical 
fields and structures of the many languages, their regional variations, and jargon 
into account.

Step 1 – translating the X dataset line by line from English 
into French
The following code calls the translation function:

for xi in range(len(X)):
    source=X[xi]
    targetl="fr";m='nmt'
    result = g_translate(source,targetl,m)

The code is explained as follows:

• xi is the line number in X.
• source is the xi line in X.
• targetl is the target language, in this case, fr (French).
• m is the method (PBMT or NMT), as described previously. In this case, nmt 

is applied.
• Then, the Google Translate function is called as described earlier in this 

chapter. The result is stored in the result variable.

Step 2 – backtranslation
How can somebody know the correctness of a translation from language L1 
to language L2 if L1 is the person's native language, and L2 is a language the person 
does not understand at all?

This is one of the reasons, among others, that translators often use backtranslation 
to check translations:

Translation = Initial translation from L1 to L2

Backtranslation = Translation back from L2 to L1

If the initial text is not obtained, then there is probably a problem. In this case, the 
length of the initial sentence L1 can be compared to the length of the same sentence 
translated back to L1. The following code calls backtranslation:

    back_translate=result
    back_translate = g_translate(back_translate,targetl,m)
    print("source:",source,":",len(source))
    print("result:",result)
    print("target:",back_translate,":",len(back_translate))
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Length comparison can be used to improve the algorithm:

Length of the initial n-gram = Length of the backtranslation

If it's equal, then the translation may be correct. If not, it could be incorrect. Of 
course, more methods must be applied during each translation. However, a method 
that leads to improvement is already a good step. In this case, the source (initial 
sentence) is compared to the backtranslation in the following code:

    if(source == back_translate):
        print("true")
        if((term not in words)and (xi!=4)):
            t+=1
    else:
    f+=1;print("false")

• t is a True counter.
• f is a False counter.

The first line of X runs as follows:

source: Eating fatty food can be unhealthy. : 35

result: Manger de la nourriture grasse peut être malsain.

target: Eating fat food can be unhealthy. : 33

false

Eating fatty food is backtranslated as eating fat food, which is slightly wrong. 
Something may be wrong.

The French sentence sounds wrong, too. Fatty food cannot be translated as such. 
Usually, the common sentence is manger gras, meaning eating (manger) fatty (gras), 
which cannot be translated into English as such.

Several phrases come back with a false translation, for example, X[4], 'He had a 
chip on his shoulder'. I programmed a phrase-based translation using a trigger 
in the False condition in the following code.

The X array referred to in this section starts at line 8:

X=['Eating fatty food can be unhealthy.',
   'This was a catch-22 situation.',
   'She would not lend me her tote bag',
   'He had a chip on his shoulder',
....]
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    else:
        f+=1;print("false")
    if(X2[xi]>0):
        DT=deeper_translate(source,xi)
        dt+=1

Since I did not write a complete application for this book, but just some examples 
that can be extended in the future, I used X2 as a trigger. If X2[x1]>0, then the 
deeper_translate function is activated.

Step 3 – deeper translation with phrase-based translations
deeper_translate has two arguments:

• source: The initial sentence to translate
• x1: The target sentence

In this case, the problem to solve is an idiomatic expression that exists in English but 
does not exist in French:

source: He had a chip on his shoulder : 29

result: Il avait une puce sur son épaule

target: He had a chip on his shoulder : 29

false

To have a chip on the shoulder means to have an issue with something or somebody. 
It expresses some form of tension.

Google translated chip by assuming computer chip, or puce in French, which means 
both computer chip and flea. The translation is meaningless.

Chip enters three categories and should be labeled as such:

• Idiomatic expression
• Jargon
• Polysemy

At this point, the following function I created simulates the phrase-based solution 
to implement deeper translations.

def deeper_translate(source,index):
    dt=source
    deeper_response=phrase_translation[index]
    if(len(deeper_response)<=0):
        print("deeper translation program result:",
            deeper_response,":Now true")
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The deeper_translate function looks for the translated sentence containing chip 
in the following phrase_translation array (list, vector, or whatever is necessary).

phrase_translation=['','','','Il est 
agressif','','','','','','','','']

The final result comes out with a translation, backtranslation, term search, and 
phrase translation. The following is the result produced, with comments added 
here before each line:

Initial sentence:

source: He had a chip on his shoulder : 29

Wrong answer:

result: Il avait une puce sur son épaule

The back-translation works:

target: He had a chip on his shoulder : 29

term: aggressif

false

deeper translation program result: Il est agressif

The question is, where did term come from?

term comes from X1, a list of keywords that should be in the translation. X1 has been 
entered manually, but it should be a list of possibilities resulting from an automatic 
search conducted on the words in the sentence viewed as classes. This means that the 
sentence to be translated should have several levels of meaning, not just the literal 
one that is being calculated.

The actual True/False conditions contain the following deeper translation-level 
words to check:

    if(source == back_translate):
        print("true")
        if((term not in words) and (xi!=4)):
            t+=1
    else:
        f+=1;print("false")
        if(X2[xi]>0):
            DT=deeper_translate(source,xi)
            dt+=1

In the present state of the prototype, only example four activates a phrase-based 
translation. Otherwise, True is accepted. If False is the case, the deeper translation 
is only activated for two cases in this sample code. The flag is in X2 (0 or 1).
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deeper_translate is called for either the phrase-based translation (described 
previously) or the KNN routine, which is activated if the phrase-based translation 
did not work.

If the translation did not work, an n-gram is prepared for the KNN algorithm, 
as shown in the following code:

    if(len(deeper_response)<=0):
        v1=0
        for i in range(4):
            ngram=V1[i]
            if(ngram in source):
                vpolysemy[0][i]=9
                v1=1

V1[i] contains the keywords (n-grams) described in the preceding KNN algorithm 
for the transport lexical field, as shown in the following code:

V1=['broke','road','stopped','shouted','coach','bus','car',
    'truck','break','broke','roads','stop']

The source (sentence to translate) is parsed for each n-gram. If the n-gram is found, 
the polysemy vector is activated for that n-gram. The initial values are set to 0, 
as shown in the following code:

vpolysemy=[[0,0,0,0]]

The variable v1 is activated, which informs the program that V1.csv must be read 
for this case. An unlimited number of KNN references should be automatically 
created, as described previously in the KNN section.

In this case, only v1 is activated. But after several months of working on the project 
for the company to customize their local needs, many other files should be created.

In this case, when v1 is activated, it fills out the variables as follows.

    if(v1>0):
        polysemy='V1'
        begin=str(V1[0]).strip('[]');end=str(V1[3]).strip('[]')
        sememe=knn(polysemy,vpolysemy,begin,end)

• polysemy indicates the KNN file to open.
• begin is the first label of the V1 vector and end is the last label of the V1 

vector.
• sememe is the prediction we expect.
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Now, a condensed version of the KNN algorithm is called, as described previously 
for knn_polysemy.py, in the following code:

def knn(polysemy,vpolysemy,begin,end):
    df = pd.read_csv(polysemy+'.csv')
    X = df.loc[:,begin:end]
    Y = df.loc[:,'class']
    knn = KNeighborsClassifier()
    knn.fit(X,Y)
    prediction = knn.predict(vpolysemy)
    return prediction

The example, in this case, is the polysemy feature of a coach, as explained in the KNN 
section. The output will be produced as follows:

Source: The coach broke down, stopped and everybody was complaining : 59

result: L'entraîneur est tombé en panne, s'est arrêté et tout le monde se 
plaignait

target: The coach broke down, stopped, and everyone was complaining : 59

term: bus

false

The translation is false because Google Translate returns trainer instead of bus.

The term bus is identical in English and French.

The KNN routine returned bus in English as the correct word to use when broke down 
and stopped were found, as shown in the KNN section.

The goal of the rest of the source code in the deeper_translate function is to 
replace coach—the word increasing the polysemy feature to translate—with a better 
word (limited polysemy) to translate: sememe.

The sememe variable is initialized by the KNN function in the following code:

            sememe=knn(polysemy,vpolysemy,begin,end)
            for i in range(2):
                if(V1_class[i] in source):
                    replace=str(V1_class[i]).strip('[]')
                    sememe=str(sememe).strip('[]')
                    dtsource = source.replace(replace,sememe)
                    targetl="fr";m='base'
                    result = g_translate(dtsource,targetl,m)
                    print('polysemy narrowed result:',result,
                        ":Now true")
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The function replaces coach by bus found by the KNN algorithm in the English 
sentence and then asks Google Translate to try again. The correct answer is returned.

Instead of trying to translate a word with too many meanings (polysemy), 
the deeper_translate function first replaces the word with a better word 
(less polysemy). Better results will often be attained.

Step 3.1 – adding a frequentist error probability function
A frequentist error probability function is added to measure performance, as shown 
in the following code:

def frequency_p(tnumber,cnumber):
    ff=cnumber/tnumber #frequentist interpretation and probability
    return ff

• cnumber is the number of false answers returned by Google Translate.
• tnumber is the number of sentences translated.
• ff gives a straightforward error (translation) probability, ETP.

The function is called when a translation is false, or f>0, as implemented in the 
following code:

    if(f>0):
        B1=frequency_p(xi+1,f) #error detection probability before 
deep translation
        B2=frequency_p(xi+1,f-dt) #error detection probability after 
deep translation
    if(f>0):
        print("ETP before DT",round(B1,2),
            "ETP with DT",round(B2,2))
    else:
        print('Insufficient data in probability distribution')

• B1 is the error (translation) probability (ETP) before the deeper_translate 
function is called.

• B2 is the ETP after the deeper_translate function is called.

At the end of the program, a summary is displayed, as shown in the following 
output:

print("------Summary------")
print('Neural Machine Translation model:nmt')
print('Google Translate:',"True:",t,"False:",f,'ETP',round(f/
len(X),2))
print('Customized Google Translate:',"True:",t,"False:",f-
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dt,'ETP',round((f-dt)/len(X),2))
a=2.5;at=t+a;af=f-a #subjective acceptance of an approximate result
print('Google Translate acceptable:',"True:",at,"False:",af,'ETP',roun
d(af/len(X),2))
#The error rate should decrease and be stabilized as the KNN knowledge 
base increases
print('Customized Google Translate acceptable:',"True:",at,"False:",
af-dt,'ETP',round((af-dt)/len(X),2))

• A subjective acceptance of an approximate result has been added to increase 
the true probability.

• The error rate should decrease as the quality of the KNN knowledge 
base increases. In frequent probability theory, this means that a stabilized 
prediction rate should be reached.

We've come to the end of our attempts to improve Google Translate. Let's consider 
some of the conclusions following our experiment.

Conclusions on the Google Translate customized 
experiment
The final error (translation) probability produced is interesting, as shown in the 
following output:

>>------Summary------

>>Neural Machine Translation model:nmt

>>Google Translate: True: 2 False: 8 ETP 0.67

>>Customized Google Translate: True: 2 False: 7 ETP 0.58

>>Google Translate acceptable: True: 4.5 False: 5.5 ETP 0.46

>>Customized Google Translate acceptable: True: 4.5 False: 4.5 ETP 0.38

Even with its NMT model, Google Translate is still struggling.

This provides great opportunities for AI linguists, as shown with some of the 
methods presented to improve Google Translate at a local level that could go even 
further.

This experiment with Google Translate shows that Google has just scratched the 
surface of real-life translations that sound right to the native speakers that receive 
these translations. It would take a real company project to get this on track with 
a financial analysis of its profitability before consuming resources.
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The disruptive revolutionary loop
As you can now see, Google Translate, like all AI solutions, has its limits. Once this 
limit has been reached, you are at the cutting edge.

Cross the border into AI Frontierland; innovate on your own or with a team.

If you work for a corporation, you can create a revolutionary customized solution for 
hundreds of users. It does not have to go public. It can remain a strong asset to your 
company.

At some point or other, the revolutionary add-on will reach beyond the company, 
and others will use it. It will become disruptive.

Finally, others will reach the limit of your now-disruptive solution. They will then 
innovate and customize it in their corporation as a revolutionary solution. This is 
what I call the disruptive revolutionary loop. It is challenging and exciting because it 
means that AI developers will not all be replaced in the near future by AutoAI bots!

Designing a solution does not mean it will be an invention, an innovation, 
revolutionary, or disruptive. But that does not really matter. What a company earns 
with a solution represents more than the novelty of what it sells as long as it is 
profitable. That is rule number 1. That said, without innovating in its market, that 
company will not survive through the years.

If a product requires quality for security reasons, it should remain in its invention 
state as long as necessary. If a product can produce sales at the low end of the 
market before its total completion, then the company should sell it. The company 
will acquire a reputation for innovation, get more money to invest, and take over 
the territory of its competitors.

Summary
Google Translate is a good example of disruptive marketing. As shown, the theory, 
the model, and even the cloud architecture are over 10 years old. But each time one 
of the hundreds of millions of users stumbles across it, it creates more disruption by 
hooking the user onto Google solutions. The user will come back again and again to 
view more advertisements, and everyone is happy!

AI has only just begun. Google Translate has been around since 2006. However, 
the results still leave room for developers, linguists, and mathematicians to improve 
upon. Google has added a neural network and offers other models to improve 
translations by analyzing whole sentences. How long will it take to be really reliable? 
In the meantime, the world community is moving AI forward beyond the cutting 
edge into Frontierland.
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In this chapter, we first carefully explored the difference between inventing and 
innovation. An innovation has an impact on the rest of the market. An invention 
is just the starting point of an innovation. We saw that a revolutionary solution 
could be a technical breakthrough. But that revolutionary solution will only 
become disruptive when it spreads out to the rest of the market.

We then studied some basic linguistics principles that could help us understand 
Google Translate, its limits, and how to improve translation errors.

We finally implemented a customized translation tool using a KNN to work around 
Google Translate errors.

In the next chapter, Chapter 7, Optimizing Blockchains with Naive Bayes, we will go 
further in our investigation of the new frontier of AI by using blockchains to make 
predictions in corporate environments.

Questions
1. Is it better to wait until you have a top-quality product before putting it on 

the market? (Yes | No)
2. Considering the investment made, a new product should always be priced 

high to reach the top segment of the market. (Yes | No)
3. Inventing a new solution will make it known in itself. (Yes | No)
4. AI can solve most problems without using standard non-learning algorithms. 

(Yes | No)
5. Google Translate can satisfactorily translate all languages. (Yes | No)
6. If you are not creative, it is no use trying to innovate. (Yes | No)
7. If you are not a linguist, it is no use bothering with trying to improve Google 

Translate. (Yes | No)
8. Translating is too complicated to understand. (Yes | No)
9. AI has already reached its limits. (Yes | No)

Further reading
• The Harvard Business Review on disruptive innovations can be found here: 

https://hbr.org/2015/12/what-is-disruptive-innovation

• Google Translate documentation can be found here: https://cloud.
google.com/translate/docs/

https://hbr.org/2015/12/what-is-disruptive-innovation
https://cloud.google.com/translate/docs/ 
https://cloud.google.com/translate/docs/ 
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• Google AlphaGo Zero: https://deepmind.com/blog/article/alphago-
zero-starting-scratch

• KNN documentation: http://scikit-learn.org/stable/modules/
neighbors.html#neighbors

• Insights on translation ANNs: https://research.googleblog.
com/2016/09/a-neural-network-for-machine.html

• Insights on English-French translations: http://www.oneskyapp.com/blog/
french-translation-challenges/

• More on how to work with text data to build datasets for your algorithms: 
https://scikit-learn.org/stable/tutorial/text_analytics/
working_with_text_data.html

https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://deepmind.com/blog/article/alphago-zero-starting-scratch
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
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7
Optimizing Blockchains 

with Naive Bayes
In this three-part chapter, we will use blockchains to optimize a supply chain 
using naive Bayes. To achieve this goal, we will first start by understanding how 
a blockchain is generated using cryptocurrency as an example.

Blockchains have entered corporations and are here to stay. Hundreds of major 
corporations have implemented IBM Hyperledger. Suppliers of these corporations 
will gradually join the network. Corporate blockchains will provide work for many 
years to come thanks to the millions of lines of code to update with new features 
and maintain.

Mining cryptocurrency represents the most known use of blockchains. 
Cryptocurrencies are growing around the world. This chapter starts by explaining 
how the mining aspect of blockchains works, using bitcoins as an example.

We will then move on and analyze how to use blockchains for a different purpose 
than generating cryptocurrency. Corporations use blockchains to record transactions 
between companies, for example.

IBM was founded in 1911, making it the most experienced company in its field 
today. Google, Amazon, and Microsoft also offer history-making machine learning 
platforms. However, IBM offers machine learning platforms that are supported by 
the 100+ years of experience that the company can bring to bear.
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Some of IBM's many years in the computer and software market were bumpy. 
Some terrible decisions caused the company a lot of problems across the world. 
IBM learned from those mistakes and now offers robust solutions, including IBM 
Hyperledger for blockchain solutions. IBM advocates using blockchains for corporate 
transactions.

We will finally move to the third part of this chapter, which explains what 
blockchains mean for companies around the world and how to use the information 
blockchains to provide optimizing algorithms with artificial intelligence. Naive 
Bayes will be applied to a blockchain sample to optimize stock levels.

The following topics will be covered in this chapter:

• The background of blockchain
• Using blockchains to mine bitcoins
• Using blockchains for business transactions
• How the blocks of a blockchain provide a unique way to share information 

between companies
• Applying artificial intelligence to the blocks of a blockchain to predict and 

suggest transactions
• Naive Bayes
• How to use naive Bayes on blocks of a blockchain to predict further 

transactions and blocks

Let's begin with a short introduction to blockchain.

Part I – the background to blockchain 
technology
In this section, we will go through cryptocurrency mining with blockchains. 
Producing bitcoins with blockchains made the technology disruptive. The purpose 
of this section is to understand how the blockchain adventure started before moving 
on to subsequent uses of blockchain technology.

Blockchain technology will transform transactions in every field. Blockchains 
appeared in 2008. Nobody knows for sure who invented them. Each block contains 
an encrypted hash of its predecessor (previous block), the DateTime (timestamp) 
data, and the information regarding the transaction.
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For more than 1,000 years, transactions have been mostly local book-keeping 
systems. For the past 100 years, even though the computer age changed the way 
information was managed, things did not change that much. Each company 
continued to keep its transactions to itself, only sharing some information through 
tedious systems.

Blockchain makes a transaction block visible to the global network it has been 
generated in.

The fundamental concepts to keep in mind are sharing and privacy control. The two 
ideas seem to create a cognitive dissonance, something impossible to solve. Yet it has 
been solved, and it will change the world.

When a block (a transaction of any kind) is generated, it is shared with the entire 
network. Permissions to read the information within that block remain manageable 
and thus private if the regulator of that block wants the information to stay private.

Whether the goal is to mine bitcoins through blocks or use blocks for transactions, 
artificial intelligence will enhance this innovation shortly.

In the coming sections, we'll talk about blockchain and its applications in some 
further detail. Understanding how to produce blocks for cryptocurrency will enable 
us to grasp blockchain technology. Once we understand blockchain technology, 
it is easier to see how this secure encrypted method can be applied to any type 
of business transaction beyond cryptocurrencies. Let's go mining first!

Mining bitcoins
Creating a block in a blockchain does not necessarily have to generate a bitcoin, 
which is a form of transaction like any other. But understanding how to mine 
cryptocurrency provides a good way to understand blockchains and how to 
apply them to many other fields.

Mining a bitcoin means creating a mathematical block for a valid transaction 
and adding this block to the chain; the blockchain:

Blockchain = {block1, block2, the block just added … blockn}

The blockchain cannot go back in time. It is like a time-dating feature in life. At 
minute m, you do something, at minute m + 1 something else, at minute m + n 
something else, and so on. You cannot travel back in time. What is done is done.

When a block is added to the bitcoin chain, there is no way of undoing the 
transaction.
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The global network of bitcoin mining consists of nodes. With the appropriate 
software, you leave a port open, allocate around 150+ GB of disk space, and generate 
new blocks. The nodes communicate with each other, and the information is relayed 
to the other nodes around the whole network.

For a node to be a miner, it must solve complex mathematical puzzles that are part 
of the bitcoin program.

To solve the puzzle, the software must find a number that fits in a specific range 
when combined with the data in the block being generated. The number is passed 
through a hash function.

You can call the number a nonce, and it is used only once. For example, an integer 
between 0 and 4,294,967,296 for a bitcoin must be generated.

The process is random. The software generates a number, passes it through the hash 
function, and sends it out to the network. The first miner who produces a number 
in the expected range informs the whole network that that particular block has been 
generated. The rest of the network stops working on that block and moves on to 
another one.

The reward for the miner is naturally paid out in bitcoins. It represents a lot 
of money, but it's hard to get, considering the competition in the network and the 
cost required (CPU, electricity, disk space, and time) to produce correct results.

Having talked about mining bitcoin, we'll briefly discuss actually using 
cryptocurrency.

Using cryptocurrency
Be very careful with cryptocurrency. There are now 1,500+ cryptocurrencies. 
The concept sounds fascinating, but the result remains currency. Currency can be 
volatile, and you can lose your life's savings in less than an hour if a crash occurs.

A constant balance must be maintained between the cost of mining 
a bitcoin, or any other cryptocurrency, and the amount received for 
mining it.

Golden rule: If you cannot resist investing in cryptocurrencies, 
do not invest more than you can afford to lose.
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That being said, to use cryptocurrency, first set up a wallet to store your bitcoins, 
for example. The wallet can be online, through a provider, or even offline.

Once that is done, you will be able to purchase bitcoins as you wish in hard cash 
or using credit cards, debit cards, and transfers.

Remember, you are buying these currencies like any other currency with all the 
potential, but also all the risks involved.

In this section, we saw how the blockchain era began with bitcoin production to 
understand how to mine cryptocurrencies through bitcoins using a blockchain. With 
the original way blockchains are created in mind, we can apply blockchains to many 
other fields.

In the second part of our three-part chapter, we will see how to use blockchains 
beyond cryptocurrencies. We will apply them to supply chains.

PART II – using blockchains to share 
information in a supply chain
In Part I – the background to blockchain technology, we saw how to use blockchains 
to mine cryptocurrencies. That prerequisite to entering the world of blockchains 
having been achieved, this section will show how to use blockchains in a supply 
chain. This will not involve cryptocurrencies. It opens the path to innovating 
blockchains with AI.

A supply chain is a chain of production and service that gets a product from 
a starting point to the consumer. For example, take a roll of fabric (cloth) that 
is shipped from India to Tunisia. In Tunisia, the fabric is cut into patterns and 
assembled as clothing. Then the clothing is shipped to France where it is packaged 
in a box with a brand printed on it. It then goes on to be stored in a warehouse to be 
shipped to a physical shop or directly to an online customer. We can sum this supply 
chain up as follows:

Cloth from India -> cut and assembled in Tunisia -> shipped to France -> packaged -> 
stored -> shipped to a shop or directly to a consumer

A supply chain process such as an apparel production and delivery system involves 
thousands of people along the way: production sites, transport personnel, warehouse 
employees, and management teams for each step of the chain.

This is where a modern blockchain technology comes in handy to track all of the 
transactions down in one system.
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In the following example, we will take six companies named A, B, C, D, E, and 
F. In Chapter 1, Getting Started with Next-Generation Artificial Intelligence through 
Reinforcement Learning, we used a size six reward matrix. In that chapter, we 
used A, B, C, D, E, and F to represent locations in a Markov decision process for 
reinforcement learning. At the end of the chapter, we saw that the reward matrix 
could be applied to many different domains. In our case, we will refer to the six 
items (A, B, C, D, E, and F) as companies and their locations (one per company  
in this example) in a supply chain process.

Each company, A to F, that is a member of the supply chain using blockchains can 
optimize its activity. Instead of each company having separate transaction ledgers, 
one central blockchain will contain all of the transactions (blocks):

• How much and when the cloth left India
• When it got on a ship and how long it took
• When the ship got to Tunisia
• … all of the intermediate activities right down to the consumer

With such data, the blocks (records of the transactions) of a blockchain have 
become machine learning goldmines to detect information and make predictions. 
One profitable reason for using this system is to reduce stock levels. Piling up unsold 
goods to anticipate sales is costly and can ruin a company's profit. On the contrary, if 
each company in the supply chain can see the stock levels and real needs of the other 
partners through the blocks of the blockchain, they can fit their stock levels to the 
exact need and save huge amounts of money!

Let's see how this works using IBM software as an example.

IBM Blockchain, based on Hyperledger Fabric, provides a way for companies around 
the world to share a blockchain transaction network without worrying about mining 
or using cryptocurrencies.

The system is based on the Linux Foundation project. Hyperledger is an open source 
collaborative project hosted by the Linux Foundation.

At this level, Hyperledger uses blockchains to guarantee secure transactions without 
trying to optimize the cryptocurrency aspect. The software generates blocks in 
a blockchain network shared by all the parties involved, but they do not have to 
purchase cryptocurrencies in the currency sense—only in the technological sense.

In the following graph, we will use the six nodes (companies A to F) to illustrate 
how the Markov decision process we studied in Chapter 1, Getting Started with Next-
Generation Artificial Intelligence through Reinforcement Learning, can be applied to 
a blockchain:
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Figure 7.1: Markov decision process graph

Each node represents a company that takes part in an IBM Hyperledger network set 
up for those six companies, as described in the following table:

Company Activity ML weight
A buys and sells clothing and 
also other products in this 
network.

Provide goods to the network but 
keep stock levels down Stock levels

B buys and sells fabric and also 
other products in this network.

Provide goods to the network but 
keep stock levels down Stock levels

C buys and sells buttons and also 
other products in this network.

Provide goods to the network but 
keep stock levels down Stock levels

D buys and sells printed fabric 
and also other products in this 
network.

Provide goods to the network but 
keep stock levels down Stock levels

E buys and sells accessories 
(belts, bracelets) and also other 
products in this network.

Provide goods to the network but 
keep stock levels down Stock levels

F buys and sells packaging boxes 
and also other products in this 
network.

Provide goods to the network but 
keep stock levels down Stock levels

The structure of the table is as follows:

• Company contains six companies, {A, B, C, D, E, F}, that have different 
activities. Each company, in this example, only has one location, so A to F are 
company locations as well.
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• Activity: Part of this group of companies to supply their members, 
but making sure the costly stock levels are kept down.

• ML weight represents a classification by ML of the stock levels to make 
predictions. The key to profit generation, in our example, is to track the 
stock levels of each member (A to F) of the supply chain. If the stock levels 
of company F go down, for example, the other members of the network 
(A to E) can anticipate and deliver only the limited necessary amount for 
F's stock levels to reach an acceptable level again.

With millions of commercial transactions per year with a huge amount of 
transportation (truck, train, boat, air), it is increasingly complicated to manage 
this type of network effectively in the 21st century without a solution like IBM 
Hyperledger.

The transactions are secure; they can be private or public among the members of 
the network, and they provide real-time optimization information for an artificial 
intelligence solution.

Using blockchains in the supply chain 
network
IBM Hyperledger provides artificial intelligence developers with a unique advantage over 
any other dataset—a 100% reliable dataset updated in real time.

Each company member (A to F) of the network will create a block for each 
transaction so that an AI analyst can have access to the data to make forecasts. To 
make the system work, each member of the network (A to F) will create blocks in the 
blockchain so that others can view the information recorded and use the information 
to make decisions.

With IBM Hyperledger, the companies have one online transaction 
ledger with smart contracts (online) and real-time tracking.
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Creating a block
A block is formed using the method described for mining a bitcoin, except that this 
time, currency is not a goal. The goal is a secure transaction with a smart contract 
when necessary. The following screenshot is a standard IBM interface that can be 
customized:

Figure 7.2: Standard IBM interface

You can see the individual and unique blocks that make up a blockchain. Each block 
in IBM Hyperledger has a unique number. In this example, it is 111 with a zoom on 
block 103.

A block in the supply chain network in our graph (A to F) can be the purchase of 
a product X with a contract. The transaction can be between companies A and B, for 
example. The next block can be the transportation of that product to another location 
from A to B, for example, within the blockchain network.

The information attached to that block is in the Hyperledger repository: company 
name (A to F), address, phone number, transaction description, and any other type 
of data required by the network of companies. Each block can be viewed by all or 
some depending on the permission properties attached to it.
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Exploring the blocks
Exploring the blocks provides an artificial intelligence program with a gold mine: 
a real-life, and 100% reliable, dataset.

The interesting part for AI optimization is the block information, as described in 
the following screenshot. The present block was added to the chain along with the 
previous block and the transaction code:

Figure 7.3: Exploring the blockchain

Notice that the block hash (see the preceding mining section) of a given block is 
linked to the previous block hash and possesses a unique transaction code.

Once we have our set of blocks as data (the type of transaction, date, amount), we 
can start to build an AI prediction algorithm. IBM provides extraction possibilities 
through scripts and other tools.

The blocks of the blockchain provide data that can be used to predict the type of 
stock levels that the network will be facing after each transaction. Each company 
will be able to run a prediction algorithm that uses the existing data to predict the 
potential replenishing required. For example, company A might detect that company 
B needs more of its cloth.

Once we have a dataset containing blocks of the blockchain, the 
goal of the prediction will be to determine the stock level category 
to see whether a fellow member of the supply chain network 
(A to F) needs to be replenished.
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Considering the amount of data, a prediction algorithm such as naive Bayes can do 
the job.

Part III – optimizing a supply chain with 
naive Bayes in a blockchain process
Naive Bayes will use some of the critical information as features to optimize 
warehouse storage and product availability in a real-time process.

The Naive Bayes learning function will learn from the previous blocks on how to 
predict the next blocks (supplying another company that needs more stock) that 
should be inserted in the blockchain. The blocks will be inserted in a dataset just 
like any other form of timestamped data to make predictions.

Naive Bayes is based on Bayes' theorem. Bayes' theorem applies conditional 
probability, defined as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  

• P(A|B) is a posterior probability, the probability of A after having observed 
some events (B). It is also a conditional probability: the likelihood of 
A happening given B has already happened.

• P(B|A) is the probability of B given the prior observations A. It is also 
a conditional probability: the likelihood of B happening given A has already 
happened.

• P(A) is the probability of A prior to the observations.
• P(B) is the probability of the predictions.

Naive Bayes, although based on Bayes' theorem, assumes that the features in a class 
are independent of each other. In many cases, this makes predictions more practical 
to implement. The statistical presence of features, related or not, will produce a 
prediction. As long as the prediction remains sufficiently efficient, naive Bayes 
provides a good solution.

A naive Bayes example
In this section, we will first illustrate naive Bayes with a mathematical example 
before writing the Python program. The goal of this section is just to understand 
the concepts involved in naive Bayes. 
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This section is not a development chapter but a chapter to understand the underlying 
concepts of the real-life example and the mathematics used to make predictions.

The blockchains in this chapter represent information on the stock levels based on 
manufactured goods in the apparel industry. For more, read Chapter 12, AI and the 
Internet of Things (IoT), which describes an AI-optimized apparel manufacturing 
process in detail.

In this section, we will focus on storage. The load of a sewing station in the apparel 
industry is expressed in quantities in stock keep units (SKUs). An SKU, for example, 
can be product P: a pair of jeans of a given size.

Once the garment has been produced, it goes into storage. At that point, a block in 
a blockchain can represent that transaction with two useful features for a machine 
learning algorithm:

• The day the garment was stored
• The total quantity of that SKU garment now in storage

A block in a blockchain contains both the day (timestamp) and quantity stored in the 
transaction information.

Since the blockchain contains the storage blocks of all A, B, C, D, E, and F corporate 
locations that are part of the network, a machine learning program can access the 
data and make predictions.

The goal is to spread the stored quantities of the given product evenly over the six 
locations, as represented in the following histogram:

Figure 7.4: Histogram of the storage level of the product distributed over six locations
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This screenshot shows the storage level of product P distributed over six locations. 
Each location in this blockchain network is a hub. A hub in supply chain 
management (SCM) is often an intermediate storage warehouse. For example, 
to cover the area of these six locations, the same product will be stored at each 
location. This way, local trucks can come and pick the goods for delivery.

The goal is to have an available product P at point location L (A to F) when needed.

For example, the delivery time from a location L to a location point a1 (a store 
or home) will only take a few hours. If A did not store P, then the finer consumer 
would have to wait for the product to travel from C to A, for example.

If the blockchain network is well organized, one location can specialize in producing 
product P (best production costs) and evenly distribute the quantity stored in the six 
locations, including itself.

By having evenly balanced storage quantities at all locations, the system will flow in 
a continuous delivery process.

In our example, a company = its location (A to F). Using the blocks of the blockchain 
of these six members, we can predict when a given storage point (A to F) requires 
replenishing to reduce waiting times, for example.

Using blockchains to optimize the storage levels is an efficient new approach to 
reducing costs while delivering to customers faster.

The blockchain anticipation novelty
In former days, all the warehouses at those six locations (A to F) had to ensure 
the minimum storage level for each location. Since they did not know what was 
happening in their supply chain network in real time, they often stored more 
products than required, which increased their costs, or did not store enough, 
leading to delivery problems.

In a world of real-time production and selling, distributors need to predict demand. 
The system needs to be demand-driven. Naive Bayes can solve that problem.

It will take the first two features into account:

• DAY: The day the garment was stored
• STOCK: The total quantity of that SKU garment now in storage

Then it will add a novelty—the number of blocks related to product P.
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A high number of blocks at a given date means that this product was in demand in 
general (production, distribution). The more blocks there are, the more transactions 
there are. Also, if the storage levels (the STOCK feature) are diminishing, this is an 
indicator; it means storage levels must be replenished. The DAY feature timestamps 
the history of the product.

The block feature is named BLOCKS. Since all share the blockchain, a machine 
learning program can access reliable global data in seconds. The dataset reliability 
provided by blockchains constitutes a motivation in itself to optimize storage levels 
using the blocks of the blockchains as datasets.

The goal – optimizing storage levels using 
blockchain data
The goal is to maintain stock at low levels by providing fast delivery when product 
requests are made. To make a decision, the ML solution will analyze the blocks 
of a blockchain in real time.

The program will take the DAY, STOCK, and BLOCKS (number of) features for 
a given product P and produce a result. The result predicts whether this product 
P will be in demand. If the answer is yes (or 1), the demand for this product requires 
anticipation.

Step 1 – defining the dataset
The dataset contains raw data from prior events in a sequence, which makes it 
perfect for prediction algorithms. Blocks can be extracted using scripts from IBM 
Hyperledger, for example. This constitutes a unique opportunity to see the data of 
all companies without having to build a database. The raw dataset will look like the 
following list:

Figure 7.5: Raw dataset
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This dataset contains the following:

• Blocks of product P present in the blockchain on day x having scanned the 
blockchain back by 30 days. No means no significant amounts of blocks have 
been found. Yes means a significant number of blocks have been found. If 
blocks have been found, this means that there is a demand for this product 
somewhere along the blockchain.

• Some_blocks means that blocks have been found, but they are too sparse 
to be taken into account without overfitting the prediction. However, Yes 
will contribute to the prediction as well as No.

• No_blocks means there is no demand at all, sparse or otherwise (Some_
blocks), numerous (Blocks) or not. This means trouble for this product, P.

The goal is to avoid predicting demand on sparse (Some_blocks) or absent (No_
blocks) products. This example is trying to predict a potential Yes for numerous 
blocks for this product P. Only if Yes is predicted can the system trigger the 
automatic demand process (see the Implementation of naive Bayes in Python section 
later in the chapter).

Step 2 – calculating the frequency
Looking at the following frequency table provides additional information:

Figure 7.6: Frequency table

The Yes and No statuses of each feature (Blocks, Some_blocks, or No_blocks) for 
a given product P for a given period (past 30 days) have been grouped by frequency.

The sum is on the bottom line for each No feature and Yes feature. For example, Yes 
and No_blocks add up to 2.
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Some additional information will prove useful for the final calculation:

• The total number of samples = 10.
• The total number of Yes samples = 8.
• The total number of No samples = 2.

Step 3 – calculating the likelihood
Now that the frequency table has been calculated, the following likelihood table 
is produced using that data:

Figure 7.7: Likelihood table

The table contains the following statistics:

• No = 2 = 20% = 0.2
• Yes = 8 = 80%=0.8
• Some_blocks = 2 = 20%=0.2
• No_blocks = 3 = 30%=0.3
• Blocks = 5 = 50%=0.5

Blocks represent an important proportion of the samples, which means that along 
with Some_blocks, the demand looks good.

Step 4 – applying the naive Bayes equation
The goal now is to represent each variable of the Bayes' theorem in a naive Bayes 
equation to obtain the probability of having demand for product P and trigger 
a purchase scenario for the blockchain network. Bayes' theorem can be expressed 
as follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)  

• P(Yes|Blocks) = P(Blocks|Yes) * P(Yes)/P(Blocks)
• P(Yes) = 8/10 = 0.8
• P(Blocks) = 5/10 = 0.5
• P(Blocks|Yes) = 4/8 = 0.5
• P(Yes|Blocks) = (0.5*0.8)/0.5 = 0.8
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The demand looks acceptable. However, penalties are necessary, and other factors 
must be considered as well (transportation availability through other block 
exploration processes).

This example and method show the concept of the naive Bayes approach. This 
example is meant to be nothing other than a simplified mathematical explanation 
of the philosophy of Bayes' theorem.

By doing this calculation from scratch, we now know the basic concepts of Bayes' 
theorem: using prior values to predict future events taking several features into 
account.

We will now move from this theoretical approach to the implementation phase. 
We will build a program using naive Bayes in Python.

Implementation of naive Bayes in Python
This section shows how to use a stock level optimizer version of naive Bayes. 
Blockchains provide exceptionally reliable datasets for ML miners looking for areas 
to optimize and generate profit. Choosing the right model remains the key challenge.

Gaussian naive Bayes
We will be implementing Gaussian naive Bayes because it fits the apparel industry. 
For example, if you sell dresses, there will be a target middle size S. The marketing 
department knows that this size S will represent most of the sales. The larger S + n 
sizes and small S – n will generate fewer sales, creating a Gaussian curve.

In implementation mode, a dataset with raw data from the blockchain will be used 
without the feature interpretation function of naive Bayes in the following table:

DAY STOCK BLOCKS DEMAND
10 1455 78 1
11 1666 67 1
12 1254 57 1
14 1563 45 1
15 1674 89 1
10 1465 89 1
12 1646 76 1
15 1746 87 2
12 1435 78 2
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Each line represents a block:

• DAY: The day of the period analyzed in the dataset. In this case, we are 
analyzing the days of a given month, which represents a financial period. No 
other information is required to run a calculation. In other cases, a dd/mm/
yyyy format can be used. You can also just use a counter (1 to n) from day 
1 of the start of a period and run it over several weeks, months, or years.

• STOCK: The total inputs in a given location (A, B, or … F) found in the blocks 
and totaled on that day. Since this represents the inputs of one location and 
only one, no location information is required. In other cases, the location can 
be added.

• BLOCKS: The number of blocks containing product P for location A, 
for example.
A high number of blocks in the BLOCK column and a low number 
of quantities in the STOCK column mean that demand is high.

• DEMAND = 1. The proof of demand is a transaction block that contains 
a purchase in the past. These transaction blocks provide vital information.
A low number of blocks in the BLOCK column, and a high number of 
quantities in the STOCK column, mean that the demand is low.

• DEMAND = 2. Proof that no transaction was found.

In this section, we described the dataset and features that will be taken into account 
to write a naive Bayes program with ready-to-use algorithms.

The Python program
We now know what a blockchain is and how to use the blocks of a blockchain to 
optimize the stock levels of the locations of a network of companies (A to F). We also 
know the basic concepts of Bayes' theorem and naive Bayes. 

The limit of naive Bayes

In some cases, DEMAND = 1 when the stock is high and the blocks 
are low. That's why strict correlation is not so useful. This would be 
the limit of naive Bayes, which just analyzes the statistics and learns 
how to predict, ignoring the actual conditional probabilities, the 
interactions between features.
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With this in mind, we can build a Python program to predict the stock level 
categories of incoming blocks of a blockchain. These predictions will help 
local managers increase their stock levels to meet the demand of their partners 
(companies A to F) in the supply chain they are part of.

The Python naive_bayes_blockchains.py program uses a sklearn class. Consider 
the following snippet:

import numpy as np
import pandas as pd
from sklearn.naive_bayes import GaussianNB

It reads the dataset into the data structure. The following code reads data_BC.csv 
into df:

#Reading the data
df = pd.read_csv('data_BC.csv')
print("Blocks of the Blockchain")
print(df.head())

It prints the top of the file in the following output:

Blocks of the Blockchain

DAY STOCK BLOCKS DEMAND

0 10 1455 78 1

1 11 1666 67 1

2 12 1254 57 1

3 14 1563 45 1

4 15 1674 89 1

It prepares the training set, using X to find and predict Y in the following code:

# Prepare the training set
X = df.loc[:,'DAY':'BLOCKS']
Y = df.loc[:,'DEMAND']

It chooses the class and trains the following clfG model:

#Choose the class
clfG = GaussianNB()
# Train the model
clfG.fit(X,Y)
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The program then takes some blocks of the blockchain, makes predictions, and prints 
them using the following clfG.predict function:

# Predict with the model(return the class)
print("Blocks for the prediction of the A-F blockchain")
blocks=[[14,1345,12],
        [29,2034,50],
        [30,7789,4],
        [31,6789,4]]
print(blocks)
prediction = clfG.predict(blocks)
for i in range(4):
    print("Block #",i+1," Gauss Naive Bayes Prediction:",
           prediction[i])

The blocks are displayed, and the following predictions are produced. 2 means no 
demand for the moment; 1 will trigger a purchase block:

Blocks for the prediction of the A-F blockchain

[[14, 1345, 12], [29, 2034, 50], [30, 7789, 4], [31, 6789, 4]]

Block # 1 Gauss Naive Bayes Prediction: 1

Block # 2 Gauss Naive Bayes Prediction: 2

Block # 3 Gauss Naive Bayes Prediction: 2

Block # 4 Gauss Naive Bayes Prediction: 2

This is a replenishment program. It will mimic the demand. When no demand is 
found, nothing happens; when demand is found, it triggers a purchase block. Some 
chain stores know the number of garments purchased on a given day (or week or 
another unit) and automatically purchase that amount. Others have other purchasing 
rules. Finding business rules is part of the consulting aspect of a project.

In this section, we implemented naive Bayes to predict the categories of the incoming 
blocks. If the demand is high, then a supply chain manager will know that more 
products need to be stored.

If the demand is low, the manager will avoid storing more products. Blocks in a 
blockchain provide reliable datasets for a program that scans the blocks 24/7 and 
generates recommendations in real time.
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Summary
The reliable sequence of blocks in a blockchain has opened the door to endless 
machine learning algorithms. Naive Bayes appears to be a practical way to 
start optimizing the blocks of a blockchain. It calculates correlations and makes 
predictions by learning the independent features of a dataset, irrespective of 
whether the relationship is conditional or not.

This freestyle prediction approach fits the open-minded spirit of blockchains that 
are being propagated by the millions today with limitless resources.

IBM Hyperledger takes blockchain's "Frontierland" development to another level 
with the Linux Foundation project. IBM also offers a cloud platform and services.

IBM, Microsoft, Amazon, and Google provide cloud platforms with an arsenal of 
disruptive machine learning algorithms. This provides a smooth approach to your 
market or department, along with the ability to set up a blockchain prototype online 
in a short space of time. With this approach, you can enter some additional prototype 
data in the model, export the data, or use an API to read the block sequences. Then, 
you will be able to apply machine learning algorithms to these reliable datasets. The 
only limit is our imagination.

The next chapter will lead us into more AI power as we explore the world of neural 
networks.

Questions
1. Cryptocurrency is the only use of blockchains today. (Yes | No)
2. Mining blockchains can be lucrative. (Yes | No)
3. Blockchains for companies cannot be applied to sales. (Yes | No)
4. Smart contracts for blockchains are more accessible to write than standard 

offline contracts. (Yes | No)
5. Once a block is in a blockchain network, everyone in the network can read 

the content. (Yes | No)
6. A block in a blockchain guarantees that absolutely no fraud is possible. 

(Yes | No)
7. There is only one way of applying Bayes' theorem. (Yes | No)
8. Training a naive Bayes dataset requires a standard function. (Yes | No)
9. Machine learning algorithms will not change the intrinsic nature of the 

corporate business. (Yes | No)



Optimizing Blockchains with Naive Bayes

[ 178 ]

Further reading
• For more on naive Bayes on scikit-learn's website: https://scikit-learn.

org/stable/modules/naive_bayes.html

• To explore IBM's Hyperledger solution: https://www.ibm.com/
blockchain/hyperledger.html

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
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8
Solving the XOR Problem 

with a Feedforward 
Neural Network

In the course of a corporate project, there always comes the point when a 
problem that seems impossible to solve hits you. At that point, you try everything 
you've learned, but it doesn't work for what's asked of you. Your team or customer 
begins to look elsewhere. It's time to react.

In this chapter, an impossible-to-solve business case regarding material optimization 
will be resolved successfully with a hand-made version of a feedforward neural 
network (FNN) with backpropagation.

Feedforward networks are one of the key building blocks of deep learning. The 
battle around the XOR function perfectly illustrates how deep learning regained 
popularity in corporate environments. XOR is an exclusive OR function that we will 
explore later in this chapter. The XOR FNN illustrates one of the critical functions of 
neural networks: classification. Once information becomes classified into subsets, it 
opens the doors to prediction and many other functions of neural networks, such as 
representation learning.

An XOR FNN will be built from scratch to demystify deep learning from the start. A 
vintage, start-from-scratch method will be applied, blowing the deep learning hype 
off the table.
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The following topics will be covered in this chapter:

• Explaining the XOR problem
• How to hand-build an FNN
• Solving XOR with an FNN
• Classification
• Backpropagation
• A cost function
• Cost function optimization
• Error loss
• Convergence

Before we begin building an FNN, we'll first introduce XOR and its limitations in the 
first artificial neural model.

The original perceptron could not solve 
the XOR function
The original perceptron was designed in the 1950s and improved in the late 1970s. 
The original perceptron contained one neuron that could not solve the XOR function.

An XOR function means that you have to choose an exclusive OR (XOR).

This can be difficult to grasp, as we're not used to thinking about the way in which 
we use or in our everyday lives. In truth, we use or interchangeably as either 
inclusive or exclusive all of the time. Take this simple example:

If a friend were to come and visit me, I may ask them, "Would you like tea or coffee?" 
This is basically the offer of tea XOR coffee; I would not expect my friend to ask for 
both tea and coffee! My friend will choose one or the other.
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I may follow up my question with, "Would you like milk or sugar?" In this case, 
I would not be surprised if my friend wanted both. This is an inclusive or.

XOR, therefore, means "You can have one or the other, but not both."

We will develop these concepts in the chapter through more examples.

To solve this XOR function, we will build an FNN.

Once the feedforward network for solving the XOR problem is built, it will be 
applied to an optimization example. The material optimizing example will choose 
the best combinations of dimensions among billions to minimize the use of corporate 
resources with the generalization of the XOR function.

First, a solution to the XOR limitation of a perceptron must be clarified.

XOR and linearly separable models
In the late 1960s, it was mathematically proven that a perceptron could not solve an 
XOR function. Fortunately, today, the perceptron and its neocognitron version form 
the core model for neural networking.

You may be tempted to think, so what? However, the entire field of neural networks 
relies on solving problems such as this to classify patterns. Without pattern 
classification, images, sounds, and words mean nothing to a machine.

Linearly separable models
The McCulloch-Pitts 1943 neuron (see Chapter 2, Building a Reward Matrix – Designing 
Your Datasets) led to Rosenblatt's 1957-59 perceptron and the 1960 Widrow-Hoff 
adaptive linear element (Adaline).

These models are linear models based on an f(x, w) function that requires a line to 
separate results. A perceptron cannot achieve this goal and thus cannot classify 
many objects it faces.
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A standard linear function can separate values. Linear separability can be 
represented in the following graph:

Figure 8.1: Linearly separable patterns

Imagine that the line separating the preceding dots and the part under it represent 
a picture that needs to be represented by a machine learning or deep learning 
application. The dots above the line represent clouds in the sky; the dots below 
the line represent trees on a hill. The line represents the slope of that hill.

To be linearly separable, a function must be able to separate the clouds from the 
trees to classify them. The prerequisite to classification is separability of some sort, 
linear or nonlinear.

The XOR limit of a linear model, such as the original 
perceptron
A linear model cannot solve the XOR problem expressed as follows in a table:

Value of x1 Value of x2 Output
1 1 0
0 0 0
1 0 1
0 1 1
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Lines 3 and 4 show an exclusive OR (XOR). Imagine that you are offering a child 
a piece of cake OR a piece of candy (1 or 1):

• Case 1: The child answers: "I want candy or nothing at all!" (0 or 1). That's 
exclusive OR (XOR)!

• Case 2: The child answers: "I want a cake or nothing at all!" (1 or 0). That's an 
exclusive OR (XOR) as well!

The following graph shows the linear inseparability of the XOR function represented 
by one perceptron:

Figure 8.2: Linearly inseparable patterns

The values of the table represent the Cartesian coordinates in this graph. The circles 
with a cross at (1, 1) and (0, 0) cannot be separated from the circles at (1, 0) and (0, 
1). That's a huge problem. It means that Frank Rosenblatt's f(x, w) perceptron cannot 
separate, and thus can not classify, these dots into clouds and trees. Thus, in many 
cases, the perceptron cannot identify values that require linear separability.

Having invented the most powerful neural concept of the twentieth century—a 
neuron that can learn—Frank Rosenblatt had to bear with this limitation through the 
1960s.

As explained with the preceding cake-OR-candy example, the absence of an 
XOR function limits applications in which you must choose exclusively between 
two options. There are many "it's-either-that-or-nothing" situations in real-
life applications. For a self-driving car, it could be either turn left or turn right, 
but don't swerve back and forth while making the decision!

We will solve this limitation with a vintage solution, starting by building, and later 
implementing, an FNN.
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Building an FNN from scratch
Let's perform a mind experiment. Imagine we are in 1969. We have today's 
knowledge but nothing to prove it. We know that a perceptron cannot implement 
the exclusive OR function XOR.

We have an advantage because we now know a solution exists. To start our 
experiment, we only have a pad, a pencil, a sharpener, and an eraser waiting for us. 
We're ready to solve the XOR problem from scratch on paper before programming 
it. We have to find a way to classify those dots with a neural network.

Step 1 – defining an FNN
We have to be unconventional to solve this problem. We must forget the complicated 
words and theories of the twenty-first century.

We can write a neural network layer in high-school format. A hidden layer will be:

h1 = x * w

OK. Now we have one layer. A layer is merely a function. This function can be 
expressed as:

f(x, w)

In which x is the input value, and w is some value to multiply x by. Hidden means 
that the computation is not visible, just as x = 2 and x + 2 is the hidden layer that 
leads to 4.

At this point, we have defined a neural network in three lines:

• Input x.
• Some function that changes its value, like 2 × 2 = 4, which transformed 2. 

That is a layer. And if the result is superior to 2, for example, then great! The 
output is 1, meaning yes or true. Since we don't see the computation, this is 
the hidden layer.

• An output.

f(x, w) is the building block of any neural network. "Feedforward" means that we will 
be going from layer 1 to layer 2, moving forward in a sequence.

Now that we know that basically any neural network is built with values 
transformed by an operation to become an output of something, we need some 
logic to solve the XOR problem.
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Step 2 – an example of how two children can 
solve the XOR problem every day
An example follows of how two children can solve the XOR problem using a 
straightforward everyday example. I strongly recommend this method. I have taken 
very complex problems, broken them down into small parts to a child's level, and 
often solved them in a few minutes. Then, you get the sarcastic answer from others 
such as "Is that all you did?" But, the sarcasm vanishes when the solution works over 
and over again in high-level corporate projects.

First, let's convert the XOR problem into a candy problem in a store. Two children go 
to the store and want to buy candy. However, they only have enough money to buy 
one pack of candy. They have to agree on a choice between two packs of different 
candy. Let's say pack one is chocolate and the other is chewing gum. Then, during 
the discussion between these two children, 1 means yes, 0 means no. Their budget 
limits the options of these two children:

• Going to the store and not buying any chocolate or chewing gum = (no, no) = 
(0, 0). That's not an option for these children! So the answer is false.

• Going to the store and buying both chocolate and chewing gum = (yes, yes) 
= (1, 1). That would be fantastic, but that's not possible. It's too expensive. 
So, the answer is, unfortunately, false.

• Going to the store and either buying chocolate or chewing gum = (1, 0 or 0, 1) 
= (yes or no) or (no or yes). That's possible. So, the answer is true.

Imagine the two children. The eldest one is reasonable. The younger one doesn't 
really know how to count yet and wants to buy both packs of candy.

We express this on paper:

• x1 (eldest child's decision, yes or no, 1 or 0) * w1 (what the elder child thinks). 
The elder child is thinking this, or:

x1 * w1 or h1 = x1 * w1

The elder child weighs a decision like we all do every day, such as 
purchasing a car (x = 0 or 1) multiplied by the cost (w1).

• x2 (the younger child's decision, yes or no, 1 or 0) * w3 (what the younger 
child thinks). The younger child is also thinking this, or:

x2 * w3 or h2 = x2 * w3
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Now imagine the two children talking to each other.

Hold it a minute! This means that now, each child is communicating with the other:

• x1 (the elder child) says w2 to the younger child. Thus, w2 = this is what I think 
and am telling you:

x1 * w2

• x2 (the younger child) says, "please add my views to your decision," which is 
represented by w4:

x2 * w4

We now have the first two equations expressed in high-school-level code. It's what 
one thinks plus what one says to the other, asking the other to take that into account:

h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

h1 sums up what is going on in one child's mind: personal opinion + the other child's 
opinion.

h2 sums up what is going on in the other child's mind and conversation: personal 
opinion + the other child's opinion.

Theory: x1 and x2 are the inputs. h1 and h2 are neurons (the result 
of a calculation). Since h1 and h2 contain calculations that are not 
visible during the process, they are hidden neurons. h1 and h2 thus 
form a hidden layer. w1 and w3 are weights that represent how we 
"weigh" a decision, stating that something is more important than 
something else.

Theory: The calculation now contains two input values and 
one hidden layer. Since, in the next step, we are going to apply 
calculations to h1 and h2, we are in a feedforward neural network. 
We are moving from the input to another layer, which will lead us 
to another layer, and so on. This process of going from one layer to 
another is the basis of deep learning. The more layers you have, the 
deeper the network is. The reason h1 and h2 form a hidden layer is 
that their output is just the input of another layer.
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For this example, we don't need complicated numbers in an activation function such 
as logistic sigmoid, so we state whether the output values are less than 1 or not:

if h1 + h2 >= 1 then y1 = 1

if h1 + h2 < 1 then y2 = 0

Now, a problem comes up. Who is right? The elder child or the younger child?

The only way seems to be to play around, with the weights W representing all the 
weights. Weights in a neural network work like weights in our everyday lives. We 
weigh decisions all the time. For example, there are two books to purchase, and we 
will "weigh" our decisions. If one is interesting and cheaper, it will weigh more 
or less in our decision, for example.

The children in our case agree on purchasing at least something, so from now on, 
w3 = w2, w4 = w1. The younger and elder child will thus share some of the decision 
weights.

Now, somebody has to be an influencer. Let's leave this hard task to the elder child. 
The elder child, being more reasonable, will continuously deliver the bad news. 
You have to subtract something from your choice, represented by a minus (–) sign.

Each time they reach the point hi, the eldest child applies a critical negative view on 
purchasing packs of candy. It's –w of everything comes up to be sure not to go over 
the budget. The opinion of the elder child is biased, so let's call the variable a bias, b1. 
Since the younger child's opinion is biased as well, let's call this view a bias too, b2. 
Since the eldest child's view is always negative, –b1 will be applied to all of the eldest 
child's thoughts.

When we apply this decision process to their view, we obtain:

h1 = y1 * –b1

h2 = y2 * b2

Then, we just have to use the same result. If the result is >=1, then the threshold has 
been reached. The threshold is calculated as shown in the following function:

y = h1 + h2

Theory: y1 and y2 form a second hidden layer. These variables can 
be scalars, vectors, or matrices. They are neurons.
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We will first start effectively finding the weights, starting by setting the weights and 
biases to 0.5, as follows:

w1 = 0.2; w2 = 0.5; b1 = 0.5

w3 = w2; w4 = w1; b2 = b1

It's not a full program yet, but its theory is done.

Only the communication going on between the two children is making the 
difference; we will focus on only modifying w2 and b1 after a first try. It works 
on paper after a few tries.

We now write the basic mathematical function, which is, in fact, the program itself 
on paper:

#Solution to the XOR implementation with
#a feedforward neural network(FNN)

#I.Setting the first weights to start the process
w1=0.5;w2=0.5;b1=0.5
w3=w2;w4=w1;b2=b1

#II.hidden layer #1 and its output
h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I, hidden layer 2
if(h1>=1): h1=1
if(h1<1): h1=0
if(h2>=1): h2=1
if(h2<1): h2=0
h1= h1 * -b1
h2= h2 * b2

#IV.Threshold II and Final OUTPUT y
y=h1+h2
if(y>=1): y=1
if(y<1): y=0

#V.Change the critical weights and try again until a solution is found
w2=w2+0.5
b1=b1+0.5
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Let's go from the solution on paper to Python.

In the next section, we'll stick with the solution proposed here, and implement it in 
Python.

Implementing a vintage XOR solution in 
Python with an FNN and backpropagation
To stay in the spirit of a 1969 vintage solution, we will not use NumPy, TensorFlow, 
Keras, or any other high-level library. Writing a vintage FNN with backpropagation 
written in high-school mathematics is fun.

If you break a problem down into very elementary parts, you understand it better 
and provide a solution to that specific problem. You don't need to use a huge truck 
to transport a loaf of bread.

Furthermore, by thinking through the minds of children, we went against running 
20,000 or more episodes in modern CPU-rich solutions to solve the XOR problem. 
The logic used proves that both inputs can have the same parameters as long as 
one bias is negative (the elder reasonable critical child) to make the system provide 
a reasonable answer.

The basic Python solution quickly reaches a result in a few iterations, approximately 
10 iterations (epochs or episodes), depending on how we think it through. An epoch 
can be related to a try. Imagine looking at somebody practicing basketball:

• The person throws the ball toward the hoop but misses. That was an epoch 
(an episode can be used as well).

• The person thinks about what happened and changes the way the ball will 
be thrown.
This improvement is what makes it a learning epoch (or episode). It is 
not a simple memoryless try. Something is really happening to improve 
performance.

• The person throws the ball again (next epoch) and again (next epochs) 
until the overall performance has improved. This is how a neural network 
improves over epochs.

Why wasn't this deceivingly simple solution found in 1969? 
Because it seems simple today but wasn't so at that time, like all 
inventions found by our genius predecessors. Nothing is easy  
at all in artificial intelligence and mathematics.
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FNN_XOR_vintage_tribute.py contains (at the top of the code) a result matrix with 
four columns.

Each element of the matrix represents the status (1 = correct, 0 = false) of the four 
predicates to solve:

#FEEDFORWARD NEURAL NETWORK(FNN) WITH BACK PROPAGATION SOLUTION FOR 
XOR
result=[0,0,0,0] #trained result
train=4 #dataset size to train

The train variable is the number of predicates to solve: (0, 0), (1, 1), (1, 0), (0, 1). The 
variable of the predicate to solve is pred.

The core of the program is practically a copy of the sheet of paper we wrote, as in the 
following code:

#II hidden layer 1 and its output
def hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result):
    h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
    h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
    if(h1>=1):h1=1;
    if(h1<1):h1=0;
    if(h2>=1):h2=1
    if(h2<1):h2=0

    h1= h1 * -b1
    h2= h2 * b2
    
#IV. threshold II and OUTPUT y
    y=h1+h2
    if(y<1 and pred>=0 and pred<2):
        result[pred]=1

    if(y>=1 and pred>=2 and pred<4):
        result[pred]=1

pred is an argument of the function from 1 to 4. The four predicates are represented 
in the following table:

Predicate (pred) x1 x2 Expected result
0 1 1 0
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1 0 0 0
2 1 0 1
3 0 1 1

That is why y must be <1 for predicates 0 and 1. Then, y must be >=1 for predicates 
2 and 3.

Now, we have to call the following function limiting the training to 50 epochs, 
which are more than enough:

#I Forward and backpropagation
for epoch in range(50):
    if(epoch<1):
        w1=0.5;w2=0.5;b1=0.5
    w3=w2;w4=w1;b2=b1

At the first epoch, the weights and biases are all set to 0.5. No use thinking! Let the 
program do the job. As explained previously, the weight and bias of x2 are equal.

Now, the hidden layers and y calculation function are called four times, one for each 
predicate to train, as shown in the following code snippet:

#I.A forward propagation on epoch 1 and IV.backpropagation starting 
epoch 2
    for t in range (4):
        if(t==0):x1 = 1;x2 = 1;pred=0
        if(t==1):x1 = 0;x2 = 0;pred=1
        if(t==2):x1 = 1;x2 = 0;pred=2
        if(t==3):x1 = 0;x2 = 1;pred=3
        #forward propagation on epoch 1
        hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result)

Now, the system must train. To do that, we need to measure the number of 
predictions, 1 to 4, that are correct at each iteration and decide how to change the 
weights/biases until we obtain proper results. We'll do that in the following section.

A simplified version of a cost function and gradient 
descent
Slightly more complex gradient descent will be described in the next chapter. In this 
chapter, only a one-line equation will do the job. The only thing to bear in mind as 
an unconventional thinker is: so what? The concept of gradient descent is minimizing 
loss or errors between the present result and a goal to attain.

First, a cost function is needed.
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There are four predicates (0-0, 1-1, 1-0, 0-1) to train correctly. We need to find out 
how many are correctly trained at each epoch.

The cost function will measure the difference between the training goal (4) and the 
result of this epoch or training iteration (result).

When 0 convergence is reached, it means the training has succeeded.

result[0,0,0,0] contains a 0 for each value if none of the four predicates have been 
trained correctly. result[1,0,1,0] means two out of the four predicates are correct. 
result[1,1,1,1] means that all four predicates have been trained and that the training can 
stop. 1, in this case, means that the correct training result was obtained. It can be 0 or 
1. The result array is the result counter.

The cost function will express this training by having a value of 4, 3, 2, 1, or 0 as the 
training goes down the slope to 0.

Gradient descent measures the value of the descent to find the direction of the slope: 
up, down, or 0. Then, once you have that slope and the steepness of it, you can 
optimize the weights. A derivative is a way to know whether you are going up or 
down a slope.

Each time we move up or down the slope, we check to see whether we are moving in 
the right direction. We will assume that we will go one step at a time. So if we change 
directions, we will change our pace by one step. That one step value is our learning 
rate. We will measure our progression at each step. However, if we feel comfortable 
with our results, we might walk 10 steps at a time and only check to see if we are on 
the right track every 10 steps. Our learning rate will thus have increased to 10 steps.

In this case, we hijacked the concept and used it to set the learning rate to 0.05 with 
a one-line function. Why not? It helped to solve gradient descent optimization in 
one line:

    if(convergence<0):w2+=training_step;b1=w2

By applying the vintage children-buying-candy logic to the whole XOR problem, we 
found that only w2 needed to be optimized. That's why b1=w2. That's because b1 is 
doing the tough job of saying something negative (-) all the time, which completely 
changes the course of the resulting outputs.

The rate is set at 0.05, and the program finishes training in 10 epochs:

epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0
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This is a logical yes or no problem. The way the network is built is pure logic. 
Nothing can stop us from using whatever training rates we wish. In fact, that's what 
gradient descent is about. There are many gradient descent methods. If you invent 
your own and it works for your solution, that is fine.

This one-line code is enough, in this case, to see whether the slope is going down. 
As long as the slope is negative, the function is going downhill to cost = 0:

    convergence=sum(result)-train #estimating the direction of the 
slope
    if(convergence>=-0.00000001): break

The following diagram sums up the whole process:

Figure 8.3: A feedforward neural network model (FNN)

We can see that all of the arrows of the layers go forward in this "feedforward" 
neural network. However, the arrow that stems from the y node and goes backward 
can seem confusing. This line represents a change in weights to train the model. This 
means that we go back to changing the weights and running the network for another 
epoch (or episode). The system is adjusting its weights epoch by epoch until the 
overall result is correct.

Too simple? Well, it works, and that's all that counts in real-life development. If your 
code is bug-free and does the job, then that's what matters.

Finding a simple development tool means nothing more than that. It's just another 
tool in the toolbox. We can get this XOR function to work on a neural network and 
generate income.
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A company's survival relies on multiple constraints: delivering on time, offering 
good prices, providing a product with a reasonable quality level, and many more 
factors besides.

When we come up with a solution, it is useless to show how smart we can be 
writing tons of code. Our company or customers expect an efficient solution that 
will run well and is easy to maintain. In short, focus on efficiency. Once we have 
a good solution, we need to show that it works. In this case, we proved that linear 
separability was achieved.

Linear separability was achieved
Bear in mind that the whole purpose of this feedforward network with 
backpropagation through a cost function was to transform a linear non-separable 
function into a linearly separable function to implement the classification of features 
presented to the system. In this case, the features had a 0 or 1 value.

One of the core goals of a layer in a neural network is to make the input make sense, 
meaning to be able to separate one kind of information from another.

h1 and h2 will produce the Cartesian coordinate linear separability training axis, 
as implemented in the following code:

    h1= h1 * -b1
    h2= h2 * b2
    print(h1,h2)

Running the program provides a view of the nonlinear input values once the hidden 
layers have trained them. The nonlinear values then become linear values in a 
linearly separable function:

linearly separability through cartesian training -1.0000000000000004 
1.0000000000000004

linearly separability through cartesian training -0.0 0.0

linearly separability through cartesian training -0.0 1.0000000000000004

linearly separability through cartesian training -0.0 1.0000000000000004

epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0

Companies are not interested in how smart you are but how 
efficient (profitable) you can be.
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The intermediate result and goal are not a bunch of numbers on a screen to show that 
the program works. The result is a set of Cartesian values that can be represented in 
the following linearly separated graph:

Figure 8.4: Linearly separable patterns

We have now obtained a separation between the top values, representing 
the intermediate values of the (1, 0) and (0, 1) inputs, and the bottom values, 
representing the (1, 1) and (0, 0) inputs. The top values are separated from the 
bottom values by a clear line. We now have clouds on top and trees below the line 
that separates them.

The layers of the neural network have transformed nonlinear values into linearly 
separable values, making classification possible through standard separation 
equations, such as the one in the following code:

#IV. threshold II and OUTPUT y
    y=h1+h2 # logical separation
    if(y<1 and pred>=0 and pred<2):
        result[pred]=1

    if(y>=1 and pred>=2 and pred<4):
        result[pred]=1

The ability of a neural network to make non-separable information separable and 
classifiable represents one of the core powers of deep learning. From this technique, 
many operations can be performed on data, such as subset optimization.

In the next section, we'll look at a practical application for our FNN XOR solution.
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Applying the FNN XOR function to 
optimizing subsets of data
There are more than 7.5 billion people breathing air on this planet. In 2050, there 
might be 2.5 billion more of us. All of these people need to wear clothes and eat. 
Just those two activities involve classifying data into subsets for industrial purposes.

Grouping is a core concept for any production. Production relating to producing 
clothes and food requires grouping to optimize production costs. Imagine not 
grouping and delivering one T-shirt at a time from one continent to another instead 
of grouping T-shirts in a container and grouping many containers (not just two on 
a ship). Let's focus on clothing, for example.

A chain of stores needs to replenish the stock of clothing in each store as the 
customers purchase their products. In this case, the corporation has 10,000 stores. 
The brand produces jeans, for example. Their average product is a faded jean. This 
product sells a slow 50 units a month per store. That adds up to 10,000 stores × 50 
units = 500,000 units or stock-keeping units (SKUs) per month. These units are sold 
in all sizes, grouped into average, small, and large. The sizes sold per month are 
random.

The main factory for this product has about 2,500 employees producing those jeans 
at an output of about 25,000 jeans per day. The employees work in the following 
main fields: cutting, assembling, washing, lasering, packaging, and warehousing.

The first difficulty arises with the purchase and use of fabric. The fabric for this 
brand is not cheap. Large amounts are necessary. Each pattern (the form of pieces 
of the pants to be assembled) needs to be cut by wasting as little fabric as possible.

Imagine you have an empty box you want to fill up to optimize the volume. If you 
only put soccer balls in it, there will be a lot of space. If you slip tennis balls in the 
empty spaces, space will decrease. If, on top of that, you fill the remaining empty 
spaces with ping pong balls, you will have optimized the available space in the box.

In the apparel business, if 1% to 10% of the fabric is wasted while manufacturing 
jeans, the company will survive the competition. At over 10%, there is a real problem 
to solve. Losing 20% of all the fabric consumed in manufacturing jeans can bring the 
company down and force it into bankruptcy.

Building optimized subsets can be applied to containers, warehouse 
flows and storage, truckload optimizing, and almost all human 
activities.
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Optimization of space through larger and smaller objects can be applied to cutting 
the forms, which are the patterns of the jeans, for example. Once they are cut, they 
will be assembled at the sewing stations.

The problem can be summed up as:

• Creating subsets of the 500,000 SKUs to optimize the cutting process for the 
month to come in a given factory

• Making sure that each subset contains smaller sizes and larger sizes to 
minimize the loss of fabric by choosing 6 sizes per day to build 25,000 unit 
subsets per day

• Generating cut plans of an average of 3 to 6 sizes per subset per day for a 
production of 25,000 units per day

In mathematical terms, this means trying to find subsets of sizes among 500,000 units 
for a given day.

The task is to find 6 well-matched sizes among 500,000 units, as shown in the 
following combination formula:

𝐶𝐶(𝑛𝑛, 𝑟𝑟) = 𝑛𝑛!
𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! =

500000!
6! (500000 − 6)! = log10 1031.33 

At this point, most people abandon the idea and find some easy way out of this, 
even if it means wasting fabric.

The first reaction we all have is that this is more than the number of stars in the 
universe and all that hype. However, that's not the right way to look at it at all. 
The right way is to look exactly in the opposite direction.

The key to this problem is to observe the particle at a microscopic level, at the bits 
of information level. Analyzing detailed data is necessary to obtain reliable results. 
This is a fundamental concept of machine learning and deep learning. Translated 
into our field, it means that to process an image, ML and DL process pixels. 

The main rule is to combine larger pieces and smaller pieces to 
make optimized cutting patterns.
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So, even if the pictures to process represent large quantities, it will come down to 
small units of information to analyze:

yottabyte (YB) 1024 yobibyte (YiB) 280

It might be surprising to see these large numbers appear suddenly! However, when 
trying to combine thousands of elements, the combinations become exponential. 
When you extend this to the large population that major apparel brands have to 
deal with, it becomes rapidly exponential as well.

Today, Google, Facebook, Amazon, and others have yottabytes of data to classify 
and make sense of. Using the term big data doesn't mean much. It's just a lot of data, 
and so what?

You do not need to analyze the individual positions of each data point in a dataset 
but use the probability distribution.

To understand that, let's go to a store to buy some jeans for a family. One of the 
parents wants a pair of jeans, and so does a teenager in that family. They both go 
and try to find their size in the pair of jeans they want. The parent finds 10 pairs of 
jeans in size x. All of the jeans are part of the production plan. The parent picks one 
at random, and the teenager does the same. Then they pay for them and take them 
home.

Some systems work fine with random choices: random transportation (taking jeans 
from the store to home) of particles (jeans, other product units, pixels, or whatever 
is to be processed), making up that fluid (a dataset).

Translated into our factory, this means that a stochastic (random) process can be 
introduced to solve the problem.

All that was required is that small and large sizes were picked at random among the 
500,000 units to produce. If 6 sizes from 1 to 6 were to be picked per day, the sizes 
could be classified as follows in a table:

Smaller sizes = S = {1, 2, 3}

Larger sizes = L = {4, 5, 6}

Converting this into numerical subset names, S = 1 and L = 6. By selecting large and 
small sizes to produce at the same time, the fabric will be optimized, as shown in the 
following table:
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Size of choice 1 Size of choice 2 Output
6 6 0
1 1 0
1 6 1
6 1 1

You will notice that the first two lines contain the same value. This will not optimize 
fabric consumption. If you put only large size 6 products together, there will be 
"holes" in the pattern. If you only put small size 1 products together, then they 
will fill up all of the space and leave no room for larger products. Fabric cutting is 
optimal when large and small sizes are present on the same roll of fabric.

Doesn't this sound familiar? It looks exactly like our vintage FNN, with 1 instead  
of 0 and 6 instead of 1.

All that has to be done is to stipulate that subset S = value 0, and subset L = value 1; 
and the previous code can be generalized.

FFN_XOR_generalization.py is the program that generalizes the previous code, 
as shown in the following snippet.

If this works, then smaller and larger sizes will be chosen to send to the cut planning 
department, and the fabric will be optimized. Applying the randomness concept of 
Bellman's equation, a stochastic process is applied, choosing customer unit orders 
at random (each order is one size and a unit quantity of 1):

    w1=0.5;w2=1;b1=1
    w3=w2;w4=w1;b2=b1
    s1=random.randint(1,500000)#choice in one set s1
    s2=random.randint(1,500000)#choice in one set s2

The weights and bias are now constants obtained by the result of the XOR training 
FNN. The training is over; the FNN is now used to provide results. Bear in mind that 
the word learning in machine learning and deep learning doesn't mean you have to 
train systems forever. In stable environments, training is run only when the datasets 
change. At one point in a project, you are hopefully using deep trained systems and 
not simply exploring the training phase of a deep learning process. The goal is not 
to spend all corporate resources on learning but on using trained models.

Deep learning architecture must rapidly become deep trained 
models to produce a profit.
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For this prototype validation, the size of a given order is random. 0 means the 
order fits in the S subset; 1 means the order fits in the L subset. The data generation 
function reflects the random nature of consumer behavior in the following six-size 
jeans consumption model:

    x1=random.randint(0, 1)#property of choice:size smaller=0
    x2=random.randint(0, 1)#property of choice :size bigger=1
    hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result)

Once two customer orders have been chosen at random in the correct size category, 
the FNN is activated and runs like the previous example. Only the result array has 
been changed since we are using the same core program. Only a yes (1) or no (0) is 
expected, as shown in the following code:

#II hidden layer 1 and its output
def hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result):
    h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
    h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
    if(h1>=1):h1=1
    if(h1<1):h1=0
    if(h2>=1):h2=1
    if(h2<1):h2=0
    h1= h1 * -b1
    h2= h2 * b2

#IV. threshold II and OUTPUT y
    y=h1+h2
    if(y<1):
        result[0]=0
    if(y>=1):
        result[0]=1

The number of subsets to produce needs to be calculated to determine the volume of 
positive results required.

The choice is made of 6 sizes among 500,000 units. But, the request is to produce a 
daily production plan for the factory. The daily production target is 25,000. Also, 
each subset can be used about 20 times. There is always, on average, 20 times the 
same size in a given pair of jeans available.

Six sizes are required to obtain good fabric optimization. This means that after three 
choices, the result represents one subset of potential optimized choices:

R = 120 × 3 subsets of two sizes = 360
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The magic number has been found. For every 3 choices, the goal of producing 6 sizes 
multiplied by a repetition of 20 will be reached.

The production-per-day request is 25,000:

The number of subsets requested = 25000/3=8333. 333

The system can run 8,333 products as long as necessary to produce the volume of 
subsets requested. In this case, the range is set to a sample of 1,000,000 products. It 
can be extended or reduced when needed. The system is filtering the correct subsets 
through the following function:

for element in range(1000000):
    ...(a block of code is here in the program)...
    if(result[0]>0):
        subsets+=1
        print("Subset:",subsets,"size subset #",x1," and ","size 
subset #",x2,"result:",result[0],"order #"," and ",s1,"order #",s2)
    if(subsets>=8333):
        break

When the 8,333 subsets have been found respecting the smaller-larger size 
distribution, the system stops, as shown in the following output:

Subset: 8330 size subset # 1 and size subset # 0 result: 1 order # and 
53154 order # 14310

Subset: 8331 size subset # 1 and size subset # 0 result: 1 order # and 
473411 order # 196256

Subset: 8332 size subset # 1 and size subset # 0 result: 1 order # and 
133112 order # 34827

Subset: 8333 size subset # 0 and size subset # 1 result: 1 order # and 
470291 order # 327392

This example proves the point. Simple solutions can solve very complex problems.

Two main functions, among some minor ones, must be added:

• After each choice, the orders chosen must be removed from the 500,000-order 
dataset. When an order has been selected, processing it again will generate 
errors in the global results. This will preclude choosing the same order twice 
and reduce the number of choices to be made.

• An optimization function to regroup the results for production purposes, 
for example. The idea is not to run through the records randomly, but to 
organize them by sets. This way, each set can be controlled independently.
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Application information:

• The core calculation part of the application is fewer than 50 lines long.
• With a few control functions and arrays, the program might reach 200 lines 

maximum. The goal of the control functions is to check and see whether the 
results reach the overall goal. For example, every 1,000 records, a local result 
could be checked to see whether it fits the overall goal.

• This results in easy maintenance for a team.

Optimizing the number of lines of code to create a powerful application can prove to 
be very efficient for many business problems.

Summary
Building a small neural network from scratch provides a practical view of the 
elementary properties of a neuron. We saw that a neuron requires an input that can 
contain many variables. Then, weights are applied to the values with biases. An 
activation function then transforms the result and produces an output.

Neural networks, even one- or two-layer networks, can provide real-life solutions in 
a corporate environment. A real-life business case was implemented using complex 
theory broken down into small functions. Then, these components were assembled 
to be as minimal and profitable as possible.

It takes talent to break a problem down into elementary parts and find a simple, 
powerful solution. It requires more effort than just typing hundreds to thousands of 
lines of code to make things work. A well-thought through algorithm will always be 
more profitable, and software maintenance will prove more cost-effective.

Customers expect quick-win solutions. Artificial intelligence provides a large variety 
of tools that satisfy that goal. When solving a problem for a customer, do not look for 
the best theory, but the simplest and fastest way to implement a profitable solution, 
no matter how unconventional it seems.

In this case, an enhanced FNN perceptron solved a complex business problem. In the 
next chapter, we will explore a convolutional neural network (CNN). We will build a 
CNN with TensorFlow 2.x, layer by layer, to classify images.
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Questions
1. Can the perceptron alone solve the XOR problem? (Yes | No)
2. Is the XOR function linearly non-separable? (Yes | No)
3. One of the main goals of layers in a neural network is classification.  

(Yes | No)
4. Is deep learning the only way to classify data? (Yes | No)
5. A cost function shows the increase in the cost of a neural network. (Yes | No)
6. Can simple arithmetic be enough to optimize a cost function? (Yes | No)
7. A feedforward network requires inputs, layers, and an output. (Yes | No)
8. A feedforward network always requires training with backpropagation.  

(Yes | No)

9. In real-life applications, solutions are only found by following existing 
theories. (Yes | No)

Further reading
• Linear separability: http://www.ece.utep.edu/research/webfuzzy/

docs/kk-thesis/kk-thesis-html/node19.html

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
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9
Abstract Image Classification 

with Convolutional Neural 
Networks (CNNs)

The invention of convolutional neural networks (CNNs) applied to vision 
represents by far one of the most innovative achievements in the history of applied 
mathematics. With their multiple layers (visible and hidden), CNNs have brought 
artificial intelligence from machine learning to deep learning.

In Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, we saw 
that f(x, w) is the building block of any neural network. A function f will transform 
an input x with weights w to produce an output. This output can be used as such 
or fed into another layer. In this chapter, we will generalize this principle and 
introduce several layers. At the same time, we will use datasets with images. 
We will have a dataset for training and a dataset for validation to confirm that 
our model works.

A CNN relies on two basic tools of linear algebra: kernels and functions, applying 
them to convolutions as described in this chapter. These tools have been used in 
mathematics for decades.

However, it took the incredible imagination of Yann LeCun, Yoshua Bengio, 
and others—who built a mathematical model of several layers—to solve real-life 
problems with CNNs.
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This chapter describes the marvels of CNNs, one of the pillars of artificial neural 
networks (ANNs). A CNN will be built from scratch, trained, and saved. The 
classification model described will detect production failures on a food-processing 
production line. Image detection will go beyond object recognition and produce 
abstract results in the form of concepts.

A Python TensorFlow 2 program will be built layer by layer and trained. Additional 
sample programs will illustrate key functions.

The following topics will be covered in this chapter:

• The differences between 1D, 2D, and 3D CNNs
• Adding layers to a convolutional neural network
• Kernels and filters
• Shaping images
• The ReLU activation function
• Kernel initialization
• Pooling
• Flattening
• Dense layers
• Compiling the model
• The cross-entropy loss function
• The Adam optimizer
• Training the model
• Saving the model
• Visualizing the PNG of a model

We'll begin by introducing CNNs and defining what they are.

Introducing CNNs
This section describes the basic components of a CNN. CNN_SRATEGY_MODEL.
py will illustrate the basic CNN components used to build a model for abstract 
image detection. For machines, as for humans, concepts are the building blocks 
of cognition. CNNs constitute one of the pillars of deep learning (multiple layers 
and neurons).

In this chapter, TensorFlow 2 with Python will be running using Keras libraries 
that are now part of TensorFlow. If you do not have Python or do not wish to 
follow the programming exercises, the chapter is self-contained, with graphs 
and explanations.
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Defining a CNN
A convolutional neural network processes information, such as an image, for 
example, and makes sense out of it.

For example, imagine you have to represent the sun with an ordinary pencil and a 
piece of paper. It is a sunny day, and the sun is shining very brightly—too brightly. 
You put on a special pair of very dense sunglasses. Now you can look at the sun 
for a few seconds. You have just applied a color reduction filter, one of the first 
operations of a convolutional network.

Then, you try to draw the sun. You draw a circle and put some gray in the middle. 
You have just applied an edge filter. Finally, you go over the circle several times to 
make it easy to recognize, progressively reducing what you saw into a representation 
of it. Now, with the circle, some gray in the middle, and a few lines of rays around 
it, anybody can see you drew the sun. You smile; you did it! You took a color image 
of the sun and made a mathematical representation of it as a circle, which would 
probably look something like this:

Figure 9.1: Mathematical representation of a circle

You just went through the basic processes of a convolutional network.

The word convolutional means that you transformed the sun you were looking 
at into a drawing, area by area. But, you did not look at the whole sky at once. 
You made many eye movements to capture the sun, area by area, and you did the 
same when drawing. If you made a mathematical representation of the way you 
transformed each area from your vision to your paper abstraction, it would be a 
kernel. You can see that the convolutional operation converts an object into a more 
abstract representation. This is not limited to images but can apply to any type of 
data (words, sounds and video) we want to draw patterns from.

With that concept in mind, the following graph shows the successive mathematical 
steps to follow in this chapter's model for a machine to process an image just as you 
did. A convolutional network is a succession of steps that will transform what you 
see into a classification status.
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In the graph, each box represents a layer. Each layer has an input that comes from 
the previous layer. Each layer will then transform the input and then produce an 
output that will become the input of the next layer. At each layer, the key features 
that are necessary to classify the images will be isolated.

In your example, it would serve to find out whether your drawing represents the 
sun or not. This falls under a binary classification model (yes or no, or 1 or 0).

Figure 9.2: Architecture of a CNN
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Notice that the size of the outputs diminishes progressively until the outputs reach 
1, the binary classification status that will return (1 or 0). These successive steps, or 
layers, represent what you did when you went from observing the sun to drawing 
it. In the end, if we draw poorly and nobody recognizes the sun, it means that we'll 
have to go back to step 1 and change some parameters (weights in this case). That 
way, we train to represent the sun better until somebody says, "Yes, it is a sun!" 
That is probability = 1. Another person may say that it is not a sun (probability = 0). 
In that case, more training would be required.

If you carry out this experiment of drawing the sun, you will notice that, as a human, 
you transform one area at a time with your eye and pencil. You repeat the way you 
do it in each area. The mathematical repetition you perform is your kernel. Using a 
kernel per area is the fastest way to draw. For us humans, in fact, it is the only way 
we can draw. A CNN is based on this process.

In this section, we looked at some key aspects of a CNN model, using the analogy 
of representing the sun as a drawing. This is just one way to start a convolutional 
neural network, and there are hundreds of different ways to do so. However, 
once you understand one model, you will have the understanding necessary to 
implement other variations.

In the following section, we'll see how to initialize and build our own CNN.

Initializing the CNN
CNN_SRATEGY_MODEL.py builds the CNN using TensorFlow 2. TensorFlow 2 has 
made tremendous improvements in terms of development. The Keras datasets, 
layers, and models are now part of the TensorFlow instance:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

The CNN only requires two lines of headers to build the layers! In TensorFlow 2, 
for each layer, we simply have to call layers.<add your layer here> and that's it!

The model used is a Keras sequential() called from the TensorFlow from 
tensorflow.keras instance:

classifier = models.Sequential()

And that's it. We have just started to build our own CNN in just a few lines of code. 
TensorFlow 2 has simplified the whole process of creating a CNN, making it an easy, 
intuitive process, as we will see throughout this chapter.

Let's begin to build upon the foundations of our CNN in the following section and 
add a convolutional layer.
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Adding a 2D convolution layer
In this chapter, we will be using a two-dimensional model as our example. Two-
dimensional relationships can be real-life images and also many other objects, 
as described in this chapter. This chapter describes a two-dimensional network, 
although others exist:

• A one-dimensional CNN mostly describes a temporal mode, for example, a 
sequence of sounds (phonemes = parts of words), words, numbers, and any 
other type of sequence.

• A volumetric module is a 3D convolution, such as recognizing a cube or 
a video. For example, for a self-driving car, it is critical to recognize the 
difference between a 2D picture of a person in an advertisement near a road 
and a real 3D image of a pedestrian that is starting to cross the same road!

In this chapter, a spatial 2D convolution module will be applied to images of 
different kinds. The main program, CNN_STRATEGY_MODEL.py, will describe how to 
build and save a model.

classifier.add will add a layer to the model. The name classifier does not 
represent a function but simply the arbitrary name that was given to this model in 
this particular program. The model will end up with n layers. Look at the following 
line of code:

classifier.add(layers.Conv2D(32, (3, 3),input_shape = (64, 64, 3), 
activation = 'relu'))

This line of code contains a lot of information: the filters (applied with kernels), the 
input shape, and an activation function. The function contains many more options. 
Once you understand these in-depth, you can implement other options one by one, 
as you deem necessary, for each project you have to work on.

Kernel
Just to get started, intuitively, let's take another everyday model. This model is a 
bit more mathematical and closer to a CNN's kernel representation. Imagine a floor 
of very small square tiles in an office building. You would like each floor tile to be 
converted from dirty to clean, for example.
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You can imagine a cleaning machine capable of converting 3×3 small tiles (pixels) 
one at a time from dirty to clean. You would laugh if you saw somebody come 
with one enormous cleaning machine to clean all of the 32×32 tiles (pixels) at the 
same time. You know it would be very bulky, slow, and difficult to use, intuitively. 
On top of that, you would need one big machine per surface size! Not only is a 
kernel an efficient way to filter, but a kernel convolution is also a time-saving 
resource process. The small cleaning machine is the kernel (dirty-to-clean filter), 
which will save you time performing the convolution (going over all of the tiles 
to clean a 3×3 area), transforming the floor from dirty to clean.

In this case, 32 different filters have been added with 3×3 sized kernels:

classifier.add(layers.Conv2D(32, (3, 3)...

The use of kernels as filters is the core of a convolutional network. (32, (3,3)) 
means (number of filters, (size of kernels)).

An intuitive approach
To understand a kernel intuitively, keep the sun and cleaning tiles examples in mind. 
In this section, a photograph of a cat will show how kernels work.

In a model analyzing cats, the initial photograph would look like this:

Figure 9.3: Cat photograph for model analysis
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On the first run of this layer, even with no training, an untrained kernel would 
transform the photograph:

Figure 9.4: Cat photograph transformation

The first layer has already begun isolating the features of the cat. The edges have 
begun to appear: the cat's body, ears, nose, and eyes. In itself, this first filter (one 
of 32) with a size 3×3 kernel—in the first layer and with no training—already 
produces effective results. The size of a kernel can vary according to your needs. 
A 3×3 kernel will require a larger number of weights than a 1×1 kernel, for example. 
A 1×1 kernel will have only one weight, which restricts the size of the features to 
represent. The rule is that the smaller the kernel, the fewer weights we have to 
find. It will also perform a feature reduction. When the size of the kernel increases, 
the number of weights and features to find increases as well as the number of 
features represented.

Each subsequent layer will make the features stand out much better, with smaller 
and smaller matrices and vectors, until the program obtains a clear mathematical 
representation.

Now that we have an intuitive view of how a filter works, let's explore a developer's 
approach.

The developers' approach
Developers like to see the result first to decide how to approach a problem.

Let's take a quick, tangible shortcut to understand kernels through Edge_detection_
Kernel.py with an edge detection kernel:

#I.An edge detection kernel
kernel_edge_detection = np.array([[0.,1.,0.],
[1.,-4.,1.],
[0.,1.,0.]])
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The kernel is a 3×3 matrix, like the cat example. But the values are preset, and not 
trained with weights. There is no learning here; only a matrix needs to be applied. 
The major difference with a CNN is that it will learn how to optimize kernels itself 
through weights and biases.

img.bmp is loaded, and the 3×3 matrix is applied to the pixels of the loaded image, 
area by area:

#II.Load image and convolution
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape

The image before the convolution applying the kernel is the letter A (letter 
recognition):

Figure 9.5: The letter "A"

Now the convolution transforms the image, as shown in the following code:

#III.Convolution
image_after_kernel = filter.convolve(image,kernel_edge_
detection,mode='constant', cval=0)

The edges of A now appear clearly in white, as shown in the following graph:

Figure 9.6: The white edges of A are visible
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The original image on top displayed a very thick A. The preceding graph displays 
a thin, identifiable A feature through thin edges that a neural network can classify 
within a few mathematical operations. The first layers of a convolutional network 
train to find the right weights to generate the right kernel automatically.

Now that we have an intuitive and practical developer's view of a filter, let's add 
some mathematics to our approach.

A mathematical approach
The initial image has a set of values you can display, as follows:

#II.Load image
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape
print("image shape",shape)

The code will print a numerical output of the image, as follows:

image shape (100, 100)

image before convolution

[[255 255 255 ..., 255 255 255]

 [255 255 255 ..., 255 255 255]

 [255 255 255 ..., 255 255 255]

 ...,

The convolution filter is applied using filter.convolve, a mathematical function, 
to transform the image and filter it.

The convolution filter function uses several variables:

• The spatial index for the 3×3 kernel to apply; in this case, it must know 
how to access the data. This is performed through a spatial index, j, which 
manages data in grids. Databases also use spatial indexes to access data. The 
axes of those grids determine the density of a spatial index. Kernels and the 
image are convolved using j over W, the weights kernel.

• W is the weights kernel.
• I is the input image.
• k is the coordinate of the center of W. The default value is 0 in this case.
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These variables then enter the filter.convolve function as represented by the 
following equation:

𝐶𝐶𝑖𝑖 =∑𝐼𝐼𝑖𝑖=𝑗𝑗−𝑘𝑘𝑊𝑊𝑗𝑗
𝑗𝑗

 

A CNN relies on kernels. Take all the time you need to explore convolutions 
through the three dimensions required to master AI: an intuitive approach, 
development testing, and mathematical representation.

Now that we have a mathematical idea on how a convolutional filter works, let's 
determine the shape and the activation function to the convolutional layer.

Shape
input_shape defines the size of the image, which is 64×64 pixels (height×width), 
as shown here:

classifier.add(...input_shape = (64, 64, 3)...)

3 indicates the number of channels. In this case, 3 indicates the three parameters 
of an RGB color. Each channel can have a given value of 0 to 255.

ReLU
Activation functions provide useful ways to influence the transformation of 
weighted data calculations. Their output will change the course of classification, 
a prediction, or whatever goal the network was built for. This model applies a 
rectified linear unit (ReLU), as shown in the following code:

classifier.add(..., activation = 'relu'))

ReLU activation functions apply variations of the following function to an input 
value:

f(x) = max{0, x}

The function returns 0 for negative values; it returns positive values as x; it returns 
0 for 0 values. Half of the domain of the function will return zeros. This means that 
when you provide positive values, the derivative will always be 1. ReLU avoids the 
squashing effect of the logistic sigmoid function, for example. However, the decision 
to use one activation function rather than another will depend on the goal of each 
ANN model.
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In mathematical terms, a rectified linear unit (ReLU) function will take all the 
negative values and apply 0 to them. And all the positive values remain unchanged.

The ReLU.py program provides some functions, including a NumPy function, to 
test how ReLU works.

You can enter test values or use the ones in the source code:

import numpy as np
nx=-3
px=5

nx expects a negative value, and px expects a positive value for testing purposes 
for the relu(x) and lrelu(x) functions. Use the f(x) function if you wish to 
include zeros in your testing session.

The relu(x) function will calculate the ReLU value:

def relu(x):
    if(x<=0):ReLU=0
    if(x>0):ReLU=x
    return ReLU

In this case, the program will return the following result:

negative x= -3 positive x= 5

ReLU nx= 0

ReLU px= 5

The result of a negative value becomes 0, and a positive value remains unchanged. 
The derivative or slope is thus always 1, which is practical in many cases and 
provides good visibility when debugging a CNN or any other ANN.

The NumPy function, defined as follows, will provide the same results:

def f(x):
    vfx=np.maximum(0.1,x)
    return vfx

Through trial and error, ANN research has come up with several variations of ReLU.

One important example occurs when many input values are negative. ReLU will 
constantly produce zeros, making gradient descent difficult, if not impossible.
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A clever solution was found using a leaky ReLU. A leaky ReLU does not return 0 for 
a negative value but a small value you can choose, 0.1 instead of 0, for example. See 
the following equation:

f(x) = max{0.1, x}

The leaky ReLU fixes the problem of "dying" neurons. Suppose you have a layer that 
keeps returning negative values when activating neurons. The ReLU activation will 
always return 0 in this case. That means that these neurons are "dead." They will 
never be activated. To avoid these "dying" neurons, a leaky ReLU provides the small 
positive value seen previously (0.1) that makes sure that a neuron does not "die."

Now gradient descent will work fine. In the sample code, the function is 
implemented as follows:

def lrelu(x):
    if(x<0):lReLU=0.01
    if(x>0):lReLU=x
    return lReLU

Although many other variations of ReLU exist, with this in mind, you have an idea 
of what it does.

Enter some values of your own, and the program will display the results, as shown 
here:

print("negative x=",nx,"positive x=",px)
print("ReLU nx=",relu(nx))
print("ReLU px=",relu(px))
print("Leaky ReLU nx=",lrelu(nx))
print("f(nx) ReLu=",f(nx))
print("f(px) ReLu=",f(px))
print("f(0):",f(0))

The results will display the ReLU results as follows:

negative x= -3 positive x= 5

ReLU nx= 0

ReLU px= 5

Leaky ReLU nx= 0.01

We have processed a large representation of the input image. We now need to 
reduce the size of our representation to obtain a better, more abstract representation. 
By pooling some of the pixels we will also reduce the calculations of the subsequent 
layers.
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Pooling
A CNN contains hidden layers. The input is visible. Then as the layers work to 
transform the data, "hidden" work goes on. The output layer is visible again. 
Let's continue to explore the "hidden" layers! Pooling reduces the size of an input 
representation, in this case, an image. Max pooling consists of applying a max 
pooling window to a layer of the image:

classifier.add(layers.MaxPooling2D(pool_size = (2, 2)))

This pool_size 2×2 window will first find the maximum value of the 2×2 matrix 
at the top left of the image matrix. This first maximum value is 4. It is thus the first 
value of the pooling window on the right.

Then, the max pooling window hops over 2 squares and finds that 5 is the highest 
value. 5 is written in the max pooling window. The hop action is called a stride. A 
stride value of 2 will avoid overlapping, although some CNN models have strides 
that overlap. It all depends on your goal. Look at the following diagram:

Figure 9.7: Pooling example

The output size has now gone from a 62×62×32 (number of filters) to a 31×31×32, as 
shown in the following diagram:

Figure 9.8: Output size changes (pooling)
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Other pooling methods exist, such as average pooling, which uses the average of 
the pooling window and not the maximum value. This depends on the model and 
shows the hard work that needs to be put in to train a model.

Next convolution and pooling layer
The next two layers of the CNN repeat the same method as the first two described 
previously, and it is implemented as follows in the source code:

# Step 3 Adding a second convolutional layer and pooling layer
print("Step 3a Convolution")
classifier.add(layers.Conv2D(32, (3, 3), activation = 'relu'))

print("Step 3b Pooling")
classifier.add(layers.MaxPooling2D(pool_size = (2, 2)))

These two layers have drastically downsized the input to 14×14×32, as shown in 
this diagram:

Figure 9.9: Convolution and pooling layer

It is possible to insert a padding layer on a CNN. As we shrink our image layer 
by layer, the filters in a convolutional network will impact the center pixels more 
than the outer pixels. Suppose you start drawing on a piece of paper. You tend to fill 
the center of the paper and avoid the edges. The edges of the piece of paper contain 
less information. If you decide to apply padding to the edges, the image will be more 
complete. In a neural network, padding has the same function. It makes sure the 
edges are taken into account by adding values. Padding can be implemented before 
or after pooling, for example. We will implement an example of padding in Chapter 
13, Visualizing Networks with TensorFlow 2.x and TensorBoard.

The next layer can apply flattening to the output of the pooling of this section, as 
we'll see in the next section.
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Flattening
The flattening layer takes the output of the max pooling layer and transforms the 
vector of size x * y * z into a flattened vector, as shown in the following code:

# Step 4 – Flattening
print("Step 4 Flattening")
classifier.add(layers.Flatten())

In this case, the layer vector will be 14 × 14 × 32 = 6,272, as shown in the following 
diagram:

Figure 9.10: Flattening layer

This operation creates a standard layer with 6,272 very practical connections for the 
dense operations that follow. After flattening has been carried out, a fully connected 
dense network can be implemented.

Dense layers
Dense layers are fully connected. Full connections are possible through the size 
reductions calculated so far, as shown before.

The successive layers in this sequential model have brought the size of the image 
down enough to use dense layers to finish the job. dense_1 comes first, as shown 
here:

Figure 9.11: Dense layer

The flattening layer produced a 14×14×32 size 6,272 layer with a weight for each 
input. If it had not gone through the previous layers, the flattening would have 
produced a much larger layer, slowing feature extractions down. The result 
would produce nothing effective.
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With the main features extracted by the filters through successive layers and size 
reduction, the dense operations will lead directly to a prediction using ReLU on 
the dense operation and then the logistic sigmoid function to produce the final result:

print("Step 5 Dense")
classifier.add(layers.Dense(units = 128, activation = 'relu'))
classifier.add(layers.Dense(units = 1, activation = 'sigmoid'))

Now that we have the dense layer, let's explore the dense layer's activation functions.

Dense activation functions
The ReLU activation function can be applied to a dense layer as in other layers.

The domain of the ReLU activation function is applied to the result of the first dense 
operation. The ReLU activation function will output the initial input for values >=0 
and will output 0 for values <0:

f(input_value) = max{0, input_value)

The logistic activation function is applied to the second dense operation, as described 
in Chapter 2, Building a Reward Matrix – Designing Your Datasets.

It will produce a value between 0 and 1:

LS(x)={0,1}

We have now built the last dense layer after the LS activation function.

The last dense layer is of size 1 and will classify the initial input—an image in this 
case:

Figure 9.12: Dense layer 2

The layers of the model have now been added. Training can begin.

Training a CNN model
Training a CNN model involves four phases: compiling the model, loading the 
training data, loading the test data, and running the model through epochs of loss 
evaluation and parameter-updating cycles.
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In this section, the choice of theme for the training dataset will be an example from 
the food-processing industry. The idea here is not only to recognize an object but to 
form a concept. We will explore concept learning neural networks further in Chapter 
10, Conceptual Representation Learning. For the moment, let's train our model.

The goal
The primary goal of this model consists of detecting production efficiency flaws 
on a food-processing conveyor belt. The use of CIFAR-10 (images) and MNIST 
(a handwritten digit database) proves useful to understand and train some models. 
However, in this example, the goal is not to recognize objects but a concept.

The following image shows a section of the conveyor belt that contains an 
acceptable level of products, in this case, portions of chocolate cake:

Figure 9.13: Portions of chocolate cake example

The images can represent anything from chocolate cakes, cars on a road or any 
other type of object. The main point is to detect when there are "gaps" or "holes" in 
the rows of objects. To train the CNN, I used images containing objects I sometimes 
drew just to train the system to "see" gaps.

However, sometimes production slows down, and the output goes down to an alert 
level, as shown in the following photograph:

Figure 9.14: Portions of chocolate cake example
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The alert-level image shows a gap that will slow down the packaging section of 
the factory dramatically. There are three lines of objects in the preceding image. 
On line one, you can see five little objects (here pieces of cake), on line two, only 
three. On line three, you can only see two objects. There are thus objects missing 
on lines two and three. This constitutes a gap in this case that is a real problem 
on production lines. The level of the number of acceptable objects in a frame is 
a parameter.

Now that we have our goal, let's begin compiling the model.

Compiling the model
Compiling a TensorFlow 2 model requires a minimum of two options: a loss 
function and an optimizer. You evaluate how much you are losing and then 
optimize your parameters, just as in real life. A metric option has been added 
to measure the performance of the model. With a metric, you can analyze your 
losses and optimize your situation, as shown in the following code:

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', 
metrics = ['accuracy'])

Let's take a look at some specific aspects of model compiling, starting with the loss 
function.

The loss function
The loss function provides information on how far the state of the model y1 
(weights and biases) is from its target state y.

A description of the quadratic loss function precedes that of the binary cross-
entropy functions applied to the case study model in this chapter.

The quadratic loss function
Let's refresh the concept of gradient descent. Imagine you are on a hill and want 
to walk down that hill. Your goal is to get to y, the bottom of the hill. Presently, 
you are at location a. Google Maps shows you that you still have to go a certain 
distance:

y – a

That formula is great for the moment. But now suppose you are almost at the 
bottom of the hill, and the person walking in front of you has dropped a coin. 
You have to slow down now, and Google Maps is not helping much because at 
this zoom level. 
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You must then zoom into smaller distances with a quadratic objective (or cost) 
function:

O = (y – a)2

To make it more comfortable to analyze, O is divided by 2, producing a standard 
quadratic cost function:

Cost =
(𝑦𝑦 − 𝑎𝑎)2

2  

y is the goal. a is the result of the operation of applying the weights, biases, and 
finally, the activation functions.

With the derivatives of the results, the weights and biases can be updated. In our 
hill example, if you move one meter (y) per step (x), that is much more than moving 
0.5 meters (y) per step. Depending on your position on the hill, you can see that 
you cannot apply a constant learning rate (conceptually, the length of your step); 
you adapt it just like Adam, the optimizer, does.

Binary cross-entropy
Cross-entropy comes in handy when the learning slows down. In the hill example, 
it slowed down at the bottom. But, remember, a path can lead you sideways, 
meaning you are momentarily stuck at a given height. Cross-entropy solves that 
by being able to function well with very small values (steps on the hill).

Suppose you have the following structure:

• Inputs = {x1, x2, …, xn}
• Weights = {w1, w2, …, wn}
• A bias (or sometimes more) is b
• An activation function (ReLU, logistic sigmoid, or other)

Before the activation, z represents the sum of the classical operations:

𝑧𝑧 =∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏
𝑥𝑥𝑖𝑖

 

Now the activation function is applied to z to obtain the present output of the model.

y1 = act(z)
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With this in mind, the cross-entropy loss formula can be explained:

Loss = 1
𝑛𝑛∑[𝑦𝑦 log𝑦𝑦1 + (1 − 𝑦𝑦) log(1 − 𝑦𝑦1)]

𝑥𝑥
 

In this function:

• n is the total number of items of the input training, with multiclass data. 
The choice of the logarithm base (2, e, 10) will produce different effects.

• y is the output goal.
• y1 is the present value, as described previously.

This loss function is always positive; the values have a minus sign in front of them, 
and the function starts with a minus. The output produces small numbers that tend 
to zero as the system progresses.

The loss function uses this basic concept with more mathematical inputs to update 
the parameters.

A binary cross-entropy loss function is a binomial function that will produce a 
probability output of 0 or 1 and not a value between 0 and 1 as in standard cross-
entropy. In the binomial classification model, the output will be 0 or 1.

In this case, the sum ∑  is not necessary when M (number of classes) = 2. The binary 
cross-entropy loss function is then as follows:

Loss = –y log y1 + (1 – y) log (1 – y1)

The whole concept of this loss function method is for the CNN network to provide 
information for the optimizer to adapt the weights accordingly and automatically.

The Adam optimizer
In the hill example, you first walked with big strides down the hill using momentum 
(larger strides because you are going in the right direction). Then, you had to take 
smaller steps to find the object. You adapted your estimation of your moment to 
your need; hence, the name adaptive moment estimation (Adam).

Adam constantly compares mean past gradients to present gradients. In the hill 
example, it compares how fast you were going.
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The Adam optimizer represents an alternative to the classical gradient descent 
method. Adam goes further by applying its optimizer to random (stochastic) mini-
batches of the dataset. This approach is an efficient version of stochastic gradient 
descent.

Then, with even more inventiveness, Adam adds root-mean-square deviation 
(RMSprop) to the process by applying per-parameter learning weights. It analyzes 
how fast the means of the weights are changing (such as the gradients in our hill 
slope example) and adapts the learning weights.

Metrics
Metrics are there to measure the performance of your model during the training 
process. The metric function behaves like a loss function. However, it is not used 
to train the model.

In this case, the accuracy parameter was this:

...metrics = ['accuracy'])

Here, a value that descends toward 0 shows whether the training is on the right 
track and moves up to 1 when the training requires Adam function optimizing to set 
the training on track again.

With this, we have compiled our model. We can now consider our training dataset.

The training dataset
The training dataset is available on GitHub. The dataset contains the image shown 
previously for the food-processing conveyor belt example. I created a training 
dataset with a repetition of a few images that I used to illustrate the architecture 
of a CNN simply. In a real-life project, it will take careful designing with a trial-and-
error approach to create a proper dataset that represents all of the cases that the CNN 
will face.

The class A directory contains the acceptable level images of a production line that 
is producing acceptable levels of products. The class B directory contains the alert-
level images of a production line that is producing unacceptable levels of products.

The number of images in the dataset is limited because of the following:

• For experimental training purposes, the images produced good results
• The training-testing phase runs faster to study the program

The goal of the model is to detect the alert levels, an abstract conceptual application 
of a CNN.
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Data augmentation
Data augmentation increases the size of the dataset by generating distorted versions 
of the images provided.

The ImageDataGenerator function generates batches of all images found in tensor 
formats. It will perform data augmentation by distorting the images (shear range, 
for example). Data augmentation is a fast way to use the images you have and 
create more virtual images through distortions:

train_datagen =
tf.compat.v2.keras.preprocessing.image.ImageDataGenerator(
rescale = 1./255,shear_range = 0.2,zoom_range = 0.2,
horizontal_flip = True)

The code description is as follows:

• rescale will rescale the input image if not 0 (or None). In this case, the data 
is multiplied by 1/255 before applying any other operation.

• shear_range will displace each value in the same direction, determined in 
this case by the 0.2. It will slightly distort the image at one point, giving 
some more virtual images to train.

• zoom_range is the value of zoom.
• horizontal_flip is set to True. This is a Boolean that randomly flips 

inputs horizontally.

ImageDataGenerator provides many more options for real-time data augmentation, 
such as rotation range, height shift, and others.

Loading the data
Loading the data goes through the train_datagen preprocessing image function 
(described previously) and is implemented in the following code:

print("Step 7b training set")
training_set = train_datagen.flow_from_directory(directory+'training_
set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

The flow in this program uses the following options:

• flow_from_directory sets the directory + 'training_set' to the path 
where the two binary classes to train are stored.
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• target_size will be resized to that dimension. In this case, it is 64×64.
• batch_size is the size of the batches of data. The default value is 32, and it's 

set to 10 in this case.
• class_mode determines the label arrays returned: None or 'categorical' 

will be 2D one-hot encoded labels. In this case, 'binary' returns 1D binary 
labels.

Having looked at the training dataset, let's move on to the testing dataset.

The testing dataset
The testing dataset flow follows the same structure as the training dataset flow 
described previously. However, for testing purposes, the task can be made easier 
or more difficult, depending on the choice of the model. To make the task more 
difficult, add images with defects or noise. This will force the system to train more 
and the project team to do more hard work to fine-tune the model. I chose to use 
a small dataset to illustrate the architecture of a CNN. In a real-life project choosing 
the right data that contains all of the cases that the CNN will face takes time and a 
trial-and-error approach.

Data augmentation provides an efficient way of producing distorted images 
without adding images to the dataset. Both methods, among many others, can 
be applied at the same time when necessary.

Data augmentation on the testing dataset
In this model, the data only goes through rescaling. Many other options could be 
added to complicate the training task to avoid overfitting, for example, or simply 
because the dataset is small:

print("Step 8a test")
test_datagen = tf.compat.v2.keras.preprocessing.image.
ImageDataGenerator(rescale = 1./255)

Building datasets is one of the most difficult tasks in an artificial intelligence 
project. Data augmentation can be a solution if the results are efficient. If not, other 
techniques must be used. One technique is to gather very large datasets when that 
is possible and then use data augmentation just to distort the data a bit for training 
purposes.

Loading the data
Loading the testing data remains limited to what is necessary for this model. Other 
options can fine-tune the task at hand:
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print("Step 8b testing set")
test_set = test_datagen.flow_from_directory(directory+'test_set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

Never underestimate dataset fine-tuning. Sometimes, this phase can last weeks 
before finding the right dataset and arguments.

Once the data is loaded, the CNN classifier is ready to be trained. Let's now see 
how this is done.

Training with the classifier
The classifier has been built and can be run:

print("Step 9 training")
print("Classifier",classifier.fit_generator(training_set,
steps_per_epoch = estep,
epochs = ep,
validation_data = test_set,
validation_steps = vs,verbose=2))

You will notice that, in this chapter, we have a directory for the training data and 
a separate directory for the test data. In Chapter 5, How to Use Decision Trees to 
Enhance K-Means Clustering, we split the datasets into training subsets and testing 
subsets. This can be applied to a CNN's dataset as well. This is a decision you will 
need to make, depending on the situation.

For example, sometimes, the test set will be more difficult than the training set, 
which justifies a separate directory. In other cases, splitting the data can be the 
most efficient method.

The fit_generator function, which fits the model generated batch by batch, 
contains the main hyperparameters to run the training session through the following 
arguments in this model. The hyperparameter settings determine the behavior of 
the training algorithm:

• training_set is the training set flow described previously.
• steps_per_epoch is the total number of steps (batches of samples) to yield 

from the generator. The variable used in the following code is estep.
• epochs is the variable of the total number of iterations made on the data 

input. The variable used is ep in the preceding code.
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• validation_data=test_set is the testing data flow.
• validation_steps=vs is used with the generator and defines the number 

of batches of samples to test as defined by vs in the following code at the 
beginning of the program:
estep=100 #10000
vs=1000 #8000->100
ep=3 #25->2

While the training runs, measurements are displayed: loss, accuracy, epochs, 
information on the structure of the layers, and the steps calculated by the algorithm.

Here is an example of the loss and accuracy data displayed:

Epoch 1/2

 - 23s - loss: 0.1437 - acc: 0.9400 - val_loss: 0.4083 - val_acc: 0.5000

Epoch 2/2

 - 21s - loss: 1.9443e-06 - acc: 1.0000 - val_loss: 0.3464 - val_acc: 
0.5500

Now that we have built and trained the model, we need to save it. Saving the model 
will avoid having to train the model each time we wish to use it.

Saving the model
By saving the model, we will not have to train it again every time to use it. We will 
only go back to training when it's required to fine-tune it.

TensorFlow 2 provides a method to save the structure of the model and the weights 
in a single line of code and a single serialized file:

model3.h5 saved in the following code, contains serialized data with the model 
structure and weights. It contains the parameters and options of each layer. This 
information is very useful to fine-tune the model:

print("Step 10: Saving the model")
classifier.save(directory+"model/model3.h5")

The model has been built, trained, and saved.

Next steps
The model has been built and trained. In Chapter 10, Conceptual Representation 
Learning, we will explore how to load and run it with no training.
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Summary
Building and training a CNN will only succeed with hard work, choosing the model, 
the right datasets, and hyperparameters. The model must contain convolutions, 
pooling, flattening, dense layers, activation functions, and optimizing parameters 
(weights and biases) to form solid building blocks to train and use a model.

Training a CNN to solve a real-life problem can help sell AI to a manager or a sales 
prospect. In this case, using the model to help a food-processing factory solve a 
conveyor belt productivity problem takes AI a step further into everyday corporate 
life.

A CNN that recognizes abstract concepts within an image takes deep learning one 
step closer to powerful machine thinking. A machine that can detect objects in an 
image and extract concepts from the results represents the true final level of AI.

Once the training is over, saving the model provides a practical way to use it by 
loading it and applying it to new images to classify them. This chapter concluded 
after we had trained and saved the model.

Chapter 10, Conceptual Representation Learning, will dive deeper into how to design 
symbolic neural networks.

Questions
1. A CNN can only process images. (Yes | No)
2. A kernel is a preset matrix used for convolutions. (Yes | No)
3. Does pooling have a pooling matrix, or is it random?
4. The size of the dataset always has to be large. (Yes | No)
5. Finding a dataset is not a problem with all the available image banks on the 

web. (Yes | No)
6. Once a CNN is built, training it does not take much time. (Yes | No)
7. A trained CNN model applies to only one type of image. (Yes | No)
8. A quadratic loss function is not very efficient compared to a cross-entropy 

function. (Yes | No)
9. The performance of a deep learning CNN does not present a real issue with 

modern CPUs and GPUs. (Yes | No)

Further reading and references
• TensorFlow 2: https://www.tensorflow.org/beta

https://www.tensorflow.org/beta
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10
Conceptual Representation 

Learning
Understanding cutting-edge machine learning and deep learning theory only 
marks the beginning of your adventure. The knowledge you have acquired should 
help you become an AI visionary. Take everything you see as opportunities and see 
how AI can fit into your projects. Reach the limits and skydive beyond them.

This chapter focuses on decision-making through visual representations and 
explains the motivation that led to conceptual representation learning (CRL) and 
metamodels (MM), which form CRLMMs.

Concept learning is our human ability to partition the world from chaos to 
categories, classes, sets, and subsets. As a child and young adult, we acquire many 
classes of things and concepts. For example, once we understand what a "hole" is, 
we can apply it to anything we see that is somewhat empty: a black hole, a hole in 
the wall, a hole in a bank account if money is missing or overspent, and hundreds 
of other cases.

By performing concept learning, we humans do not have to learn the same concept 
over and over again for each case. For example, a hole is a hole. So when we see 
a new situation such as a crater, we know it's just a "big" hole. I first registered a 
word2vector patent early in my career. Then I rapidly applied it to concept2vector 
algorithms. I then designed and developed the CRLMM method successfully for 
automatic planning and scheduling (APS) software, cognitive chatbots, and more, 
as we will see in the following chapters. The metamodel term means that I applied 
one single model to many different domains, just as we humans do.
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Conceptual representations also provide visual images of concepts. To plan, 
humans need to visualize necessary information (events, locations, and so on) 
and more critical visual dimensions such as image concepts. A human being thinks 
in mental images. When we think, mental images flow through our minds with 
numbers, sounds, odors, and sensations, transforming our environment into 
fantastic multidimensional representations similar to video clips.

The following topics will be covered in this chapter:

• An approach to CRLMM in three steps:
 ° Transfer learning to avoid developing a new program for each 

variation of a similar case
 ° Domain learning to avoid developing a new program each time 

the domain changes
 ° The motivation for using CRLMM

Over the years, I've successfully implemented CRL in C++, Java, and logic 
programming (Prolog) in various forms on corporate sites. In this chapter, 
I'll use Python to illustrate the approach with TensorFlow 2.x with the 
convolutional neural network (CNN) built in Chapter 9, Abstract Image 
Classification with Convolutional Neural Networks (CNNs).

• Transfer learning using a CNN model trained to generalize image 
recognition

• Domain learning to extend image recognition trained in one field to 
another field

We'll begin this chapter by looking at the benefits of transfer learning and how 
concept learning can boost this process.

Generating profit with transfer learning
Transfer learning means that we can use a model we designed and trained in another 
similar case. This will make the model very profitable since we do not have to design 
a new model and write a new program for every new case. You will thus generate 
profit for your company or customer by lowering the cost of new implementations 
of your trained model. Think of a good AI model as a reusable tool when applied 
to similar cases. This is why concept learning, being more general and abstract, is 
profitable. That is how we humans adapt.

When it comes to reasoning and thinking in general, we use mental images with 
some words. Our thoughts contain concepts, on which we build solutions. 
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The trained model from Chapter 9, Abstract Image Classification with Convolutional 
Neural Networks (CNNs), can now classify images of a certain type. In this section, 
the trained model will be loaded and then generalized through transfer learning 
to classify similar images.

The motivation behind transfer learning
Transfer learning provides a cost-effective way of using trained models for other 
purposes within the same company, such as the food processing company described 
in Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs).

This chapter describes how the food processing company used the model for other 
similar purposes.

The company that succeeds in doing this will progressively generalize the use 
of the solution. By doing so, inductive abstraction will take place and lead to other 
AI projects, which will prove gratifying to the management of a corporation and 
the teams providing the solutions.

Inductive thinking
Induction uses inferences to reach a conclusion. For example, a food processing 
conveyor belt with missing products will lead to packaging productivity problems. 
If an insufficient amount of products reaches the packaging section, this will slow 
down the whole production process.

By observing similar problems in other areas of the company, inferences from 
managers will come up, such as if insufficient amounts of products flow through the 
process, production will slow down.

Inductive abstraction
The project team in charge of improving efficiency in any company needs to find 
an abstract representation of a problem to implement a solution through organization 
or software. This book deals with the AI side of solving problems. Organizational 
processes need to define how AI will fit in, with several on-site meetings.

You will notice that I did not use many images for the example. 
My goal was to explain the process, not to go into building large 
datasets, which is a task in itself. The primary goal is to understand 
CNNs and conceptual learning representations.
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The problem AI needs to solve
In this particular example, each section of the factory has an optimal production 
rate (OPR) defined per hour or per day, for example. The equation of an OPR per 
hour can be summed up as follows:

OPR : min(p(s)) <= OPR <= max(p(s))

Where:

• p is the production rate of a given section (the different production 
departments of a factory) s.

• p(s) is the production rate of the section.
• min(p(s)) is the historical minimum (trial and error over months of analysis). 

Under that level, the whole production process will slow down.
• max(p(s)) is the historical maximum. Over that level, the whole production 

process will slow down as well.
• OPR is the optimal production rate.

The first time somebody sees this equation, it seems difficult to understand. The 
difficulty arises because you have to visualize the process, which is the goal of 
this chapter. Every warehouse, industry, and service uses production rates as a 
constraint to reach profitable levels.

Visualization requires representation at two levels:

• Ensuring that if a packaging department is not receiving enough products, 
it will have to slow down or even stop sometimes.

• Ensuring that if a packaging department receives too many products, it 
will not be able to package them. If the input is a conveyor belt with no 
intermediate storage (present-day trends), then it will have to be slowed 
down, slowing down or stopping the processes before that point.

In both cases, slowing down production leads to bad financial results and critical 
sales problems through late deliveries.

In both cases, an OPR gap is a problem. To solve this problem, another level of 
abstraction is required. First, let's break down the OPR equation into two parts:

OPR >= min(p(s))

OPR <= max(p(s))
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Now let's find a higher control level through variance variable v:

vmin = |OPR – min(p(s))|

vmax = |OPR – max(p(s))|

vmin and vmax are the absolute values of the variance in both situations (not enough 
products to produce and too many to produce respectively).

The final representation is through a single control, detection, and learning rate 
(the Greek letter gamma):

Γ = max(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) 

The variance between the optimal production rate of a given section of a company 
and its minimum speed (products per hour) will slow the following section 
down. If too few cakes (vmin), for example, are produced, then the cake packaging 
department will be waiting and will have to stop. If too many cakes are produced 
(vmax), then the section will have to slow down or stop. Both variances would create 
problems in a company that cannot manage intermediate storage easily, which is 
the case with the food processing industry.

With this single Γ  concept, introduced in Chapter 9, Abstract Image Classification with 
Convolutional Neural Networks (CNNs), the TensorFlow 2.x CNN can start learning a 
fundamental production concept: what a physical gap is. Let's go back to humans. 
Once we understand that a gap is some kind of hole or empty space, we can 
identify and represent thousands of situations with that one gap concept that is here 
converted into a parameter named gamma (Γ ). Let's explore the concept and then 
implement it.

The 𝚪𝚪  gap concept
Teaching the CNN the gap concept will help it extend its thinking power to many 
fields:

• A gap in production, as explained before
• A gap in a traffic lane for a self-driving vehicle to move into
• Any incomplete, deficient area
• Any opening or window
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Let's teach a CNN the Γ  gap concept, or simply, Γ . The symbol Γ  of a gap is the 
Greek letter "gamma," so it is simply pronounced "gamma." We thus lead to 
teaching a CNN how to recognize a gap we will call gamma (Γ ). The goal is for 
a CNN to understand the abstract concept of an empty space, a hole represented 
by the word gap and the Greek letter gamma (Γ ).

To achieve that goal, the CNN model that was trained and saved in Chapter 9, 
Abstract Image Classification with Convolutional Neural Networks (CNNs), now needs 
to be loaded and used. To grasp the implications of the Γ  concept, imagine the cost 
of not producing enough customer orders or having piles of unfinished products 
everywhere. The financial transposition of the physical gap is a profit variance on 
set goals. We all know the pain those variances lead to.

Loading the trained TensorFlow 2.x model
The technical goal is to load and use the trained CNN model and then use the same 
model for other similar areas. The practical goal is to teach the CNN how to use 
the 𝚪𝚪  concept to enhance the thinking abilities of the scheduling, chatbot, and other 
applications.

Loading the model has two main functions:

• Loading the model to compile and classify new images without training 
the model

• Displaying the parameters used layer by layer and displaying the weights 
reached during the learning and training phase

In the following section, we will load and display the model without training it.

Loading and displaying the model
A limited number of headers suffice to read a saved model with READ_MODEL.py, as 
implemented in the following lines:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import numpy as np
from PIL import Image

#Directory
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directory='dataset/'
print("directory",directory)

The model3.h5 model saved is now loaded from its file, as shown here:

#____________________LOAD MODEL____________________________

loaded_model = keras.models.load_model(directory+"model/model3.h5")
print(loaded_model.summary())

The loaded model needs to be compiled:

# __________________compile loaded model
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', 
metrics=['accuracy'])

Reading and displaying the model is not a formality.

Printing the structure provides useful information:

print("GLOBAL MODEL STRUCTURE")
print(loaded_model.summary())

The trained model might or might not work on all datasets. In that case, the 
following output would point to problems that can be fixed through its structure, for 
example, as follows:

MODEL STRUCTURE

Model: "sequential"

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

conv2d (Conv2D)              (None, 62, 62, 32)        896       

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 31, 31, 32)        0         

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 29, 29, 32)        9248      

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32)        0         

_________________________________________________________________

flatten (Flatten)            (None, 6272)              0         

_________________________________________________________________

dense (Dense)                (None, 128)               802944    
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_________________________________________________________________

dense_1 (Dense)              (None, 1)                 129       

=================================================================

Total params: 813,217

Trainable params: 813,217

Non-trainable params: 0

Once the global structure has been displayed, it is possible to look into the structure 
of each layer. For example, we can peek into the conv2d layer:

DETAILED MODEL STRUCTURE

{'name': 'conv2d', 'trainable': True, 'batch_input_shape': (None, 64, 
64, 3), 'dtype': 'float32', 'filters': 32, 'kernel_size': (3, 3), 
'strides': (1, 1), 'padding': 'valid', 'data_format': 'channels_last', 
'dilation_rate': (1, 1), 'activation': 'relu', 'use_bias': True, 'kernel_
initializer': {'class_name': 'GlorotUniform', 'config': {'seed': None}}, 
'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'kernel_
regularizer': None, 'bias_regularizer': None, 'activity_regularizer': 
None, 'kernel_constraint': None, 'bias_constraint': None}

{'name': 'max_pooling2d', 'trainable': True, 'dtype': 'float32', 'pool_
size': (2, 2), 'padding': 'valid', 'strides': (2, 2), 'data_format': 
'channels_last'}

Each parameter contains very useful information. For example, 'padding':'valid' 
means that padding has not been applied. In this model, the number and size of 
the kernels provide satisfactory results without padding, and the shape decreases 
to the final status layer (classification), as shown here:

initial shape (570, 597, 4)

lay: 1 filters shape (568, 595, 3)

lay: 2 Pooling shape (113, 119, 3)

lay: 3 filters shape (111, 117, 3)

lay: 4 pooling shape (22, 23, 3)

lay: 5 flatten shape (1518,)

lay: 6 dense shape (128,)

lay: 7 dense shape (1,)

However, suppose you want to control the output shape of a layer so that the spatial 
dimensions do not decrease faster than necessary. One reason could be that the next 
layer will explore the edges of the image and that we need to explore them with 
kernels that fit the shape.
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In that case, padding of size 1 can be added with 0 values, as shown in the following 
matrix:

0 0 0 0 0 0
0 1 3 24 4 0
0 3 7 8 5 0
0 6 4 5 4 0
0 5 4 3 1 0
0 0 0 0 0 0

A padding of size 2 would add two rows and columns around the initial shape.

With that in mind, fine-tuning your training model by adding as many options as 
necessary will improve the quality of the results. The weights can be viewed by 
extracting them from the saved model file layer by layer, as shown in the following 
code snippet:

print("WEIGHTS")
for layer in loaded_model.layers:
    weights = layer.get_weights() # list of numpy arrays
    print(weights)

Analyzing the weights used by the program will provide useful information about 
the way the optimization process was carried out by the program. Sometimes, a 
program will get stuck, and the weights might seem off track. After all, a CNN 
can contain imperfections like any other program.

A look at the following output, for example, can help understand where the system 
went wrong:

WEIGHTS

[array([[ 6.25981949e-03,  2.35006157e-02, -1.28920656e-02, ...,

        -8.34930502e-03,  2.00010985e-02, -1.84428487e-02],

       [-1.01672988e-02,  1.87084991e-02,  2.49958578e-02, ...,

        -2.92361379e-02, -2.33592112e-02, -1.64737436e-03],

       [-2.71108598e-02,  2.53492035e-03, -2.90711448e-02, ...,

We can now use the loaded and checked model.
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Loading the model to use it
Loading the model with CNN_CONCEPT_STRATEGY.py requires a limited number of 
headers, as follows:

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import numpy as np
from PIL import Image

Loading the model is done by using the same code as in READ_MODEL.py, described 
previously. Once you load it, compile the model with the model.compile function, 
as follows:

# __________________compile loaded model
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', 
metrics=['accuracy'])

The model used for this example and the image identification function has been 
implemented in two parts. First, we're loading and resizing the image with the 
following function, for example:

def identify(target_image):
    filename = target_image
    original = load_img(filename, target_size=(64, 64))
    #print('PIL image size',original.size)
    if(display==1):
        plt.imshow(original)
        plt.show()
    numpy_image = img_to_array(original)
    inputarray = numpy_image[np.newaxis,...] # extra dimension to fit 
model
    arrayresized=np.resize(inputarray,(64,64))
    #print('Resized',arrayresized)

The model expects another dimension in the input array to predict, so one is added 
to fit the model. In this example, one image at a time needs to be identified.

I added the following two prediction methods and returned one:
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#___PREDICTION___
    prediction = loaded_model.predict_proba(inputarray)
    return prediction

There are two prediction methods because, basically, every component needs to be 
checked in a CNN during a project's implementation phase, to choose the best and 
fastest ones. To test prediction2, just change the return instruction.

The following example detects product 𝚪𝚪  gaps on a conveyor belt in a food 
processing factory. The program loads the first image stored in the classify 
directory to predict its value. The program describes the prediction:

MS1='productive'
MS2='gap'

s=identify(directory+'classify/img1.jpg')
if (int(s)==0):
    print('Classified in class A')
    print(MS1)

The program displays (optional) the shaped image, as follows, which shows that 
the conveyor belt has a sufficient number of products at that point:

Figure 10.1: Output (shaped image)

Once a CNN is running, it can prove difficult to find out what went 
wrong. Checking the output of each layer and component while 
building the network saves fine-tuning time once the full-blown 
model produces thousands of results.
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The program then makes and displays its prediction 0, meaning no real gap has 
been found on the conveyor belt on this production line:

directory dataset/

Strategy model loaded from training repository.

image dataset/classify/img1.jpg predict_proba: [[ 0.]] predict: [[ 0.]]

Classified in class A

Productive

Seeking...

Seeking... means it is going to analyze the second image in the classify direction. 
It loads, displays, and predicts its value as shown in the following frame:

Figure 10.2: Output (shaped image)

The prediction (value = 1) correctly detected gaps on the conveyor belt, as shown in 
the following output:

image dataset/classify/img2.jpg predict_proba: [[ 1.]] predict: [[ 1.]]

Classified in class B

gap

Now that the predictions of the CNN have been verified, the implementation 
strategy needs approval. A CNN contains marvels of applied mathematics. CNNs 
epitomize deep learning themselves. A researcher could easily spend hundreds of 
hours studying them.

However, applied mathematics in the business world requires profitability. As 
such, the components of CNNs appear to be ever-evolving concepts. Added kernels, 
activation functions, pooling, flattening, dense layers, and compiling and training 
methods act as a starting point for architectures, not as a finality.
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Using transfer learning to be profitable or see a project 
stopped
At some point, a company will demand results and may shelve a project if those 
results are not delivered. If a spreadsheet represents a faster sufficient solution, a 
deep learning project will face potential competition and rejection. Many engineers 
learning artificial intelligence have to assume the role of standard SQL reporting 
experts before accessing real AI projects. Transfer learning is a profitable solution 
that can boost the credibility of an IT department.

Transfer learning appears to be a solution to the present cost of building and 
training a CNN program. Your model might just pay off that way. The idea is to 
get a basic AI model rolling profits in fast for your customer and management. 
Then, you will have everybody's attention. To do that, you must define a strategy.

Defining a strategy
If a deep learning CNN expert comes to a top manager saying that this CNN model 
can classify CIFAR-10 images of dogs, cats, cars, plants, and more, the answer will 
be, so what? My 3-year-old child can too. In fact, so can my dog!

The IT manager in that meeting might even blurt out something like, "We have all 
the decision tools we need right now, and our profits are increasing. Why would we 
invest in a CNN?"

The core problem of marketing AI to real-world companies is that it relies upon 
a belief in the necessity of a CNN in the first place. Spreadsheets, SQL queries, 
standard automation, and software do 99% of the job. Most of the time, it does 
not take a CNN to replace many jobs; just an automated spreadsheet, a query, or 
standard, straightforward software is enough. Jobs have been sliced into simple-
enough parts to replace humans with basic software for decades.

Before presenting a CNN, a data scientist has to find out how much the company 
can earn using it.

Understanding, designing, building, and running a CNN does not 
mean much regarding business. All the hard work we put into 
understanding and running these complex programs will add up 
to nothing if we cannot prove that a solution will generate profit. 
Without profit, the implementation costs cannot be recovered, and 
nobody will listen to a presentation about even a fantastic program.
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Applying a model efficiently means implementing it in one area of a company and 
then other domains for a good return on investment.

Applying the model
In a food processing company, for example, one of the packaging lines has a 
performance problem. Sometimes, randomly, some of the cakes are missing on the 
conveyor belt, as shown in the following frame:

Figure 10.3: Food processing company example

To start a cost-effective project, a cheap webcam could be installed over the 
conveyor belt. It'll take a random sample picture every 10 seconds and process it 
to find the holes shown in the interval in the center of the image. We can clearly 
see an empty space, a gap, a hole. If a hole is detected, it means some cakes have 
not made it to the conveyor belt (production errors).

A 2% to 5% productivity rate increase could be obtained by automatically sending 
a signal to the production robot when some cakes are missing. The production robot 
will then send a signal to the production line to increase production to compensate 
for the missing units in real-time. This type of automatic control already exists in 
various forms of automated food production lines. However, this provides a low-
cost way to start implementing this on a production line.

Making the model profitable by using it for another 
problem
Let's say that the food processing experiment on the conveyor belt turns out to work 
well enough with dataset type d1 and the CNN model M to encourage generalization 
to another dataset, d2, in the same company.

Transfer learning consists of going from M(d1) to M(d2) using the same CNN model 
M, with some limited, cost-effective additional training. Variations will appear, 
but they can be solved by shifting a few parameters and working on the input 
data following some basic dataset preparation rules:
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• Overfitting: When the model fits the training data quickly with 100% 
accuracy, this may or may not be a problem. In the case of classifying 
holes on the conveyor belt, overfitting might not prove critical. The shapes 
are always the same, and the environment remains stable. However, in 
an unstable situation with all sorts of different images or products, then 
overfitting will limit the effectiveness of a system.

• Underfitting: If the accuracy drops down to low levels, such as 20%, then 
the CNN will not work. The datasets and parameters need optimizing. 
Maybe the number of samples needs to be increased for M(d2), or reduced, 
or split into different groups.

• Regularization: Regularization, in general, involves the process of finding 
how to fix the generalization problem of M(d2), not the training errors of 
M(d2). Maybe an activation function needs some improvements, or the way 
the weights have been implemented requires attention.

There is no limit to the number of methods you can apply to find a solution, just 
like standard software program improvements.

Where transfer learning ends and domain learning begins
Transfer learning can be used for similar types of objects or images in this example, 
as explained. The more similar images you can train within a company with the 
same model, the more return on investment (ROI) it will produce, and the more 
this company will ask you for more AI innovations.

Domain learning takes a model such as the one described in Chapter 9, Abstract 
Image Classification with Convolutional Neural Networks (CNNs), and can generalize it. 
The generalization process will lead us to domain learning.

Domain learning
This section on domain learning builds a bridge between classic transfer learning, 
as described previously, and another use of domain learning I have found profitable 
on corporate projects: teaching a machine a concept (CRLMM). In this chapter, we 
are focusing on teaching a machine to learn how to recognize a gap in situations 
other than at the food processing company.

How to use the programs
You can read this whole chapter first to grasp the concepts or play with the programs 
first. Do as you feel is best for you. In any case, CNN_TDC_STRATEGY.py loads trained 
models (you do not have to train them again for this chapter) and CNN_CONCEPT_
STRATEGY.py trains the models.
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The trained models used in this section
This section uses CNN_TDC_STRATEGY.py to apply the trained models to the target 
concept images. READ_MODEL.py (as shown previously) was converted into CNN_
TDC_STRATEGY.py by adding variable directory paths (for the model3.h5 files and 
images) and classification messages, as shown in the following code:

#loads,traffic,food processing
A=['dataset_O/','dataset_traffic/','dataset/']
MS1=['loaded','jammed','productive']
MS2=['unloaded','change','gap']

#____________________LOAD MODEL____________________________
loaded_model = keras.models.load_model(directory+"model/model3.
h5")....")

The loaded model now targets the images to classify:

s=identify(directory+'classify/img1.jpg')

Each subdirectory of the model contains four subdirectories:

• classify: Contains the images to classify
• model: The trained model3.h5 used to classify the images
• test_set: The test set of conceptual images
• training_set: The training set of conceptual images

Now that we have explored the directory structure of our model, let's see how to 
use it in different situations.

The trained model program
For this chapter, you do not need to train a model. It was already trained in Chapter 9, 
Abstract Image Classification with Convolutional Neural Networks (CNNs). The directory 
paths have become variables to access the subdirectories described previously. The 
paths can be called, as shown in the following code:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=3 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)
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You do not need to run training for this chapter. The models were trained and 
automatically stored in their respective subdirectories on the virtual machine 
delivered with the book. This means that when you need to detect gaps for various 
types of images, you can simply change the scenario to fit the type of images you 
will be receiving from the frames of a webcam: cakes, cars, fabric, or abstract 
symbols.

We have loaded the model and a scenario. Now, we are going to use our trained 
model to detect if a production line is loaded or underloaded.

Gap – loaded or underloaded
The gap concept has just become a polysemy image-concept (polysemy means 
different meanings, as explained in Chapter 6, Innovating AI with Google Translate).

In the cake situation, the Γ  gap was negative in its g1 subset of meaning and concepts 
applied to a CNN, relating it to negative images n + g1:

ng1 = {missing, not enough, slowing production down … bad}

The full-of-products image was positive, p + g2:

pg2 = {good production flow, no gap}

In this example, the CNN is learning how to distinguish an abstract representation, 
not simply an image, like for the cakes. Another subset of Γ  (the conceptual gap 
dataset) is loaded/underloaded. A "gap" is not a specific object but a general 
concept that can be applied to hundreds of different cases. This is why I use the term 
"conceptual gap dataset."

The following abstract image is loaded. The squares represent production machines, 
and the arrows represent the load-in time. 

For this chapter, focus on understanding the concepts. You can 
read the chapter without running the programs, open them without 
running them, or run them—whatever makes you comfortable. The 
main goal is to grasp the concepts to prepare for the subsequent 
chapters.
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This means that the x axis represents time and the y axis represents machine 
production resources:

Figure 10.4: Abstract image 1

The CNN model runs and produces the following result:

directory dataset_O/

Strategy model loaded from training repository.

image dataset_O/classify/img1.jpg predict_proba: [[ 0.]] predict: [[ 0.]]

Classified in class A

loaded

Seeking...

The CNN recognizes this as a correctly loaded model. The task goes beyond 
classifying. The system needs to recognize this to make a decision.

Another image produces a different result. In this case, an underloaded gap appears 
in the following screenshot:

Figure 10.5: Abstract image 2
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And the CNN has a different output, as shown here:

Seeking...

image dataset_O/classify/img2.jpg predict_proba: [[ 1.]] predict: [[ 1.]]

Classified in class

unloaded

Read "unloaded" as "underloaded." Unloaded or underloaded represents empty 
spaces in any case. The gap concept Γ  has added two other subsets, g3 and g4, to its 
dataset. We now have:

Γ = {𝑛𝑛𝑛𝑛1, 𝑛𝑛2, 𝑛𝑛3, 𝑛𝑛4 …𝑛𝑛𝑛𝑛} 

The four g1 to g4 subsets of Γ  are:

ng1 = {missing, not enough, slowing production down … bad}

pg2 = pg2 = {good production flow, no gap}

g3 = {loaded}

g4 = {unloaded}

The remaining problem will take some time to solve. g4 (gap) can sometimes 
represent an opportunity for a machine that does not have a good workload to 
be open to more production. In some cases, g4 becomes pg4 (p = positive). In other 
cases, it will become ng4 (n = negative) if production rates go down.

In this section, we saw how to identify a "gap" in production lines. As explained, a 
"gap" is a generic concept for spaces everywhere. We will now explore jammed or 
"open" traffic lanes.

Gap – jammed or open lanes
The model in this chapter can be extended to other domains. A self-driving car 
needs to recognize whether it is in a traffic jam or not. Also, a self-driving car has 
to know how to change lanes when it detects enough space (a gap) to do that.

This produces two new subsets:

g5 = {traffic jam, heavy traffic … too much traffic}

g6 = {open lane, light traffic … normal traffic}
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The model now detects g5 (a traffic jam), as shown in the following screenshot:

Figure 10.6: Traffic jam example

The following output appears correctly:

directory dataset_traffic/

Strategy model loaded from training repository.

image dataset_traffic/classify/img1.jpg predict_proba: [[ 0.]] predict: 
[[ 0.]]

Classified in class A

jammed

g6 comes out right as well, as shown in this screenshot:

Figure 10.7: Traffic jam example
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A potential lane change has become possible, as detected by the following code:

Seeking...

image dataset_traffic/classify/img2.jpg predict_proba: [[ 1.]] predict: 
[[ 1.]]

Classified in class B

change

We have applied our CNN "gap" detection model to several types of images. We 
can now go deeper into the theory of conceptual datasets using "gaps" as an example.

Gap datasets and subsets
At this point, the Γ  (the gap conceptual dataset) has begun to learn several subsets:

Γ = {𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4, 𝑔𝑔5, 𝑔𝑔6} 

In which:

ng1 = {missing, not enough, slowing production down … bad}

pg2 = pg2 = {good production flow, no gap}

g2 = {loaded}

g3 = {unloaded}

pg4 = {traffic jam, heavy traffic … too much traffic}

ng5 = {open lane, light traffic … normal traffic}

Notice that g2 and g3 do not have labels yet. The food processing context provided the 
labels. Concept detection requires a context, which CRLMMs will provide.

Generalizing the 𝚪𝚪  (the gap conceptual dataset)
The generalization of Γ  (the gap conceptual dataset) will provide a conceptual tool 
for metamodels.

Γ  (the gap conceptual dataset) refers to negative, positive, or 
undetermined space between two elements (objects, locations, or 
products on a production line).
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Γ  (gamma) also refers to a gap in time: too long, not long enough, too short, or not 
short enough.

Γ  represents the distance between two locations: too far or too close.

Γ  can represent a misunderstanding or an understanding between two parties: a 
divergence of opinions or a convergence.

All of these examples refer to gaps in space and time viewed as space.

The motivation of conceptual representation 
learning metamodels applied to 
dimensionality
A CRLMM converts images into concepts. These abstract concepts will then be 
embedded in vectors that become logits for a softmax function, and in turn, will be 
converted into parameters for complex artificial intelligence programs' automatic 
scheduling, cognitive chatbots, and more.

The advantage of a concept is that it can apply to many different areas. With just 
one concept, "gap" (a hole, empty space, and so on), you can describe hundreds if 
not thousands of cases.

In some artificial intelligence projects, dimensionality reduction does not produce 
good results at all. When scheduling maintenance of airplanes, rockets, and 
satellite launchers, for example, thousands of features enter the system without 
leaving any out. A single missing screw in a rocket in the wrong place could cause 
a disaster. A single mistake in the engine of an airplane can cause an accident, a 
single component of a satellite can impair its precision.

Dimensionality must be taken into account. Some use the expression "curse of 
dimensionality" and I often prefer the "blessing" of dimensionality. Let's have a 
look at both approaches.

The curse of dimensionality
The number of features for a given project can reach large numbers. The following 
example contains 1,024 dimensions:
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Figure 10.8: The curse of dimensionality

Each dot in the preceding representation represents a dimension that can be the 
features in an image for example.

Asking a CNN to analyze thousands of features in an image, for example, might 
make it impossible to reach an accurate result. Since each layer is supposed to 
reduce the size of the data analyzed to extract important features, too many 
dimensions might make the training of the model impossible. Remember, each 
dimension can contain a feature that requires weights to be trained. If there are 
too many, the training becomes either too long or too difficult to calculate.

Following standard CNN designs provides a good starting point. The limit of this 
approach occurs when the result does not meet expectations, such as in some of 
the cases we will look at in the upcoming chapters. In those cases, CRLMMs will 
increase the productivity of the solution, providing a useful abstract model.

When a solution requires a large number of unreduced dimensions, kernels, pooling, 
and other dimension reduction methods cannot be applied, CRLMMs will provide 
a pair of glasses for the system. That's when the "blessing" of dimensionality comes 
in handy.

The blessing of dimensionality
In some projects, when the model reaches limits that comprise a project, 
dimensionality is a blessing.
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Let's take an example of rocket manufacturing using our CNN model. We want 
to identify gaps on a surface. This surface contains tiles to protect the rocket from 
overheating when it goes through the atmosphere. A gap in those tiles could cause 
a fatal accident.

If we take a few tiles out, take a picture and run it through our CNN model, it will 
probably detect a gap. The difference between that probability and an error could 
mean a critical failure of the rocket.

This means that we might not want to reduce the number of features, which in turn 
need weights and add up to high numbers of dimensions.

We could decide not to use pooling, which groups several dimensions into one 
as we saw. That could create calculations problems as we saw in the previous 
paragraph. Either there would be too many weights to calculate or the calculation 
could take too long.

In that case, we could reduce the size of the frame to the smallest portion of the 
rocket component we are examining. We could decide that our camera will only 
scan the smallest surface possible at a time sending minimal-sized frames to our 
CNN.

In that case, even with no pooling, the layers would contain more data, but the 
calculation would remain reasonable.

The "blessing" of dimensionality, in this case, resides in the fact that by avoiding 
pooling (grouping), we are examining more details that can make our model much 
more reliable to detect small cracks since we would train it to see very small gaps.

The curse of dimensionality usually leads to dimensionality reduction. But as we 
have just seen, it doesn't have to be so.

Summary
In this chapter, the CNN architecture built in Chapter 9, Abstract Image Classification 
with Convolutional Neural Networks (CNNs), was loaded to classify physical gaps in a 
food processing company. The model uses image concepts, taking CNNs to another 
level. Neural networks can tap into their huge cognitive potential, opening the doors 
to the future of AI.

Then, the trained models were applied to transfer learning by identifying similar 
types of images. Some of those images represented concepts that led the trained 
CNN to identify Γ  concept gaps. Image concepts represent an avenue of innovative 
potential adding cognition to neural networks.
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Γ  concept gaps were applied to different fields using the CNN as a training and 
classification tool in domain learning.

Γ  concept gaps have two main properties: negative n-gaps and positive p-gaps. 
To distinguish one from the other, a CRLMM provides a useful add-on. In the 
food processing company, installing a webcam on the right food processing 
conveyor belt provided a context for the system to decide whether a gap was 
positive or negative.

With these concepts in mind, let's build a solution for advanced planning and 
scheduling (APS) in the next chapter.

Questions
1. The curse of dimensionality leads to reducing dimensions and features in 

machine learning algorithms. (Yes | No)
2. Transfer learning determines the profitability of a project. (Yes | No)
3. Reading model.h5 does not provide much information. (Yes | No)
4. Numbers without meaning are enough to replace humans. (Yes | No)
5. Chatbots prove that body language doesn't mean that much. (Yes | No)
6. Present-day ANNs provide enough theory to solve all AI requests.  

(Yes | No)
7. Chatbots can now replace humans in all situations. (Yes | No)
8. Self-driving cars have been approved and do not need conceptual training. 

(Yes | No)
9. Industries can implement AI algorithms for all of their needs. (Yes | No)

Further reading
• More on Keras layers: https://keras.io/layers/about-keras-layers/
• More on concept learning: https://www.sciencedirect.com/topics/

psychology/concept-learning

• More on cognitive sciences, the brain, and the mind for conceptual 
models: http://catalog.mit.edu/schools/science/brain-
cognitive-sciences/, https://symsys.stanford.edu/
undergraduatesconcentrations/cognitive-science-cogsci-
concentration

https://keras.io/layers/about-keras-layers/
https://www.sciencedirect.com/topics/psychology/concept-learning
https://www.sciencedirect.com/topics/psychology/concept-learning
http://catalog.mit.edu/schools/science/brain-cognitive-sciences/
http://catalog.mit.edu/schools/science/brain-cognitive-sciences/
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration
https://symsys.stanford.edu/undergraduatesconcentrations/cognitive-science-cogsci-concentration
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11
Combining Reinforcement 

Learning and Deep Learning
Amazon is one of the world's leading e-retailers, with sales over US$ 250 billion. 
Amazon's e-store sales exceed all of its other activities, such as AWS subscription 
services (premium, for example), retail third-party seller services, and physical 
stores.

This chapter focuses on apparel production activity, one of Amazon's markets for 
which the company recently registered a patent. Prime Wardrobe even offers a 
try-and-easy-return service. This new activity requires planning and scheduling. 
Amazon took the matter seriously and registered a patent for an apparel 
manufacturing system to control the production process of its apparel products.

Google has successfully combined deep learning and reinforcement learning 
(Q-learning) in a deep Q-network (DQN), a system that can beat humans at video 
games and other tasks. Google's AlphaGo DQN has obtained impressive results.

In this chapter, we go beyond merely describing Amazon's process or Google's 
process in particular. I added on my real-life implementations of what we will 
explore and build in Python from scratch. As such, we will combine the ideas of 
several systems (Amazon, Google, and my implementations). 

Artificial intelligence already plays a role in automatic planning 
and scheduling in the apparel business, from customer orders 
through to delivery.
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We will add an innovation for the apparel manufacturing industry by adding 
a conceptual representation learning metamodel (CRLMM) to reinforcement 
learning.

We will go from scratch to a prototype that could be implemented on-site, the 
foundations are being established for further applications in the coming chapters.

The following topics will be covered in this chapter:

• Planning and scheduling today and tomorrow
• Further generalization of the CRLMM described in Chapter 10, Conceptual 

Representation Learning, applied to an apparel production process
• Feeding the CRLMM convolutional neural network (CNN) with a 

simulation of frames coming from a webcam on a production line
• Introducing an optimizer that will use weights applied to production 

stations to input a reward matrix to a Markov decision process (MDP), 
which will then update the weights

• Building a program that will run continuously (no beginning, no end) on 
a production line using all the three components mentioned previously

We'll begin by talking about planning and scheduling today and tomorrow. The 
market is slowing moving from preplanned processes to real-time processes. Let's 
see how.

Planning and scheduling today and 
tomorrow
When Amazon decided to launch Prime Wardrobe, it brought a new service to its 
customers, enabling them to order, try out, and purchase clothing, shoes, and other 
accessories. The customer can establish a purchase plan. A purchase plan is a list of 
tasks to be carried out in a given time. An example of a purchase plan could be:

• Filling a box with clothing
• Trying on the clothing at home
• Returning the clothing if it does not fit
• Purchasing the items that are kept
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Once the customer agrees to follow this plan, the time sequence becomes crucial:

• First, a box must be chosen.
• Then, there is a delivery period.
• Then, there is a trial period (you cannot try the products forever). During 

this period, the customer can choose not to purchase anything.
• Finally, the customer confirms the purchase.

Irrespective of whether Amazon Prime Wardrobe will remain a service in years 
to come, the precedent is set; just as physical book stores disappear every year, 
shopping for clothing online will continue to expand and occupy more of the market.

On top of that distribution, corporations will continue to expand their production 
sites to become manufacturing-distributing giants. Warehouses will progressively 
replace many stores as per the warehouse examples provided in some of the 
chapters in this book.

Supply chain management (SCM), combined with APS, has become a necessity. 
SCM-APS constraints vary constantly on a global market (depending on the 
manufacturer). APS stands for advanced planning and scheduling or automated 
planning and scheduling. We will explore the difference between these two 
concepts in a following section, A real-time manufacturing revolution. We will go 
beyond Amazon's approach to the subject since delivering in real-time has become 
a constraint for all of the actors on the market.

The pressure of the market has encouraged Amazon to produce its own clothing. 
Amazon has produced its in-house fashion labels with apparel and accessories sold 
worldwide.

To prove that it means business, Amazon registered several patents, including one 
for a blended reality mirror, an apparel manufacturing system, and more. With a 
blended reality mirror, a person can visualize how the clothing will fit.

In the following sections, we will explore the planning and scheduling side of 
Amazon's apparel in-house manufacturing plans, which will have the same effect 
on apparel factories as it did on physical book stores and all types of shops. Many 
new jobs will emerge, such as hundreds of thousands of jobs in the artificial 
intelligence business, on websites, and in marketing and SCM. Many jobs will 
disappear as well. The improvements made will boost medical progress and also 
the defense industry. The social and economic implications are beyond the scope 
of this book, and possibly beyond our comprehension, as in all disruptive eras in 
the past.



Combining Reinforcement Learning and Deep Learning

[ 262 ]

We will focus in detail on the main aspects of Amazon's patented custom clothing 
process. As mentioned previously, irrespective of whether it proves successful, the 
precedent is set.

A real-time manufacturing process
Today, a customer wants to obtain a purchased product as soon as possible. If the 
waiting time is too long, the customer will go somewhere else. Delivering in nearly 
real-time has become a key concept in marketing for any company. Amazon's 
approach has always been real-time. Pushing the physical limits of centuries of 
commerce, Amazon's brand takes the manufacturing process right beyond the 
cutting edge.

Amazon must expand its services to face 
competition
Amazon could have avoided a great deal of upheaval if it continued to purchase 
products from its suppliers rather than manufacture them. Instead of researchers 
spending a great deal of time developing artificial intelligence capable of solving 
the conveyor belt problem, several sensors could be installed with traditional 
software solutions.

Humanity could also have continued to use horses instead of cars and paper instead 
of computers. In the short term, we would have avoided a great deal of work 
and change associated with the requirements and impacts of these technologies. 
However, in the long term, it is progress and innovation that wins out.

Once a disruptive innovation has been successfully launched by a company, the 
competition must either follow suit or disappear. Amazon needs to continue to get 
involved in the process that comes before simply storing goods in its warehouses. 
By getting involved in manufacturing, for example, they can reduce the time it 
takes to deliver a product to a customer. Amazon thus came up with this apparel 
manufacturing patent along with 3D printers, and other innovations to increase its 
productivity.

In the same sense, the field of artificial intelligence needs to be pushed beyond its 
ever-expanding comfort zone constantly. Researchers must be confronted with 
difficult industrial problems to gain experience and produce new algorithms 
capable of achieving higher levels of machine learning and meeting greater 
challenges.
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A real-time manufacturing revolution
Artificial intelligence software, though spectacular, is not the only revolution that is 
changing our lives forever. In the 1950s and 1960s, the consumers were discovering 
the joy of purchasing new products such as dishwashers, color televisions, and 
cool radios. They were so happy to be able to obtain these products that they were 
willing to wait days if not weeks to obtain the exact model they dreamt of. The 
supplier could sit on an order for a few days and then get slowly to work.

Today the consumer has lost that patience. If somebody wants to buy a product 
online, it has to be delivered within days. If not, the consumer will turn to another 
supplier. This puts pressure on the supplier, who must immediately start the process 
of delivering. Real-time is that process of starting to get things done in the seconds 
you are notified of a request.

Real-time is a strong force that is changing every process in the world.

Today, apparel manufacturing, and manufacturing in general, follow an advanced 
planning and scheduling process. "Advanced" means both a sophisticated algorithm 
and also an anticipating (planning in advance) process. The planning in advance 
aspect of AI algorithms is going through a revolution.

Amazon, as all manufacturing processes, requires automated planning and 
scheduling to meet shortening delivery times.

The fundamental difference between the two systems is the time factor, as shown 
in the following comparison table. The difference between an advanced and an 
automated system seems small, but Amazon, like others, will change the course 
of history through those differences. Both systems, in theory, can do both types of 
tasks. In practice, these methods will specialize in their niches in the years to come. 
To manufacture an airplane, a sophisticated advanced algorithm still needs to plan 
in advance (days to weeks) with a lot of manual decision making. To manufacture 
basic T-shirts, automated planning can be done quickly and automatically in real-
time (seconds to hours)

The trend of automated planning and scheduling is becoming a time-squashed 
version of advanced planning and scheduling. 
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The figures in the following table do not reflect the exact numbers but the trends:

Function Advanced planning and 
scheduling

Automated planning and 
scheduling

Long-term plan 1 month to 5 years A few days to less than a 
month

Short-term plan 1 day 1 minute
Production or event 
measurement

Taken into account on a 
daily basis in general

Real-time

Scheduling 1 hour to 1 week Real-time
Re-planning when there is 
a problem

1 hour to 1 month Real-time

Re-scheduling 1 hour to 1 week Real-time
Resource adjustment 1 day to 1 month Real-time
Load balancing 1 hour to 1 week Real-time
Automatic functions of 
planning and scheduling

80% 99%

Although this table contains approximate information, the underlying trend is 
extremely strong. We've seen the differences between the concepts of advanced and 
automated; let's also clarify the differences between planning and scheduling:

• A plan consists of processes preparing production for the future: purchasing 
material components and adapting human resources and physical resources. 
Amazon, for example, has a yearly business plan: putting together the 
necessary resources in advance to be ready for production. This implies 
purchasing or building warehouses, hiring employees, and purchasing basic 
material resources (boxes, labels, and other components).

• Scheduling confronts the plan with the time factor on a shorter horizon. 
Scheduling determines when each part of the plan will come first and be 
produced. For example, now that the warehouse is built or purchased (plan), 
at what time (schedule) should packaging start working next Monday and 
for the weeks to come?

A schedule can be regarded as a zoomed-in version of a plan.
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If somebody walks into Jeff Bezos' office with a plan to build a warehouse at a 
given location with the cost and general timing of the implementation, that is fine. 
That person is presenting a two-year project. The project will start in 10 months 
and go on for two years.

Then, that person might (I suggest not!) say: The plan is great since it will be ready in 10 
months. But I'm worried about the daily schedule in 1 year of shift #2 at 4 p.m. Should they 
start at 7:30 a.m. or 7:45? Jeff Bezos will no longer be listening. That zoom level is not 
part of his job description. He has to focus on a higher level. It is useless for a top 
manager to know what's going to happen a year from now at 4 p.m.!

Think of the evolution between an advanced APS and an automated APS as a 
logistic sigmoid function applied to planning-scheduling time squashing. Here 
are some examples:

• The advanced plan to manufacture a car spans a month to a year.
• The Google Maps itinerary automated plan for a self-driving car at its 

starting point: a few seconds to a minute, depending on the connection 
status of that location.

• The schedule to manufacture a car: 1 day to 1 month.
• The schedule to pilot a self-driving car following the Google Maps itinerary = 

real-time

To sum it up, the present trend represents a revolution in the history of human 
processes.

An advanced planning and scheduling system mostly imports data 
from ERPs to make plans in the future. An automated planning and 
scheduling program mostly detects data with sensors to react and 
optimize in real-time. The present chapter deals with automated 
planning programs, not advanced planning and scheduling 
systems.

Amazon's manufacturing patent reflects the revolution of real-time 
applied to every field.
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Planning has moved up to planning in real-time, as shown in the following equation:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

 

In which:

• x is a quantity to produce or any unit event.
• tx is the time (t) it takes for x to start and end.
• A logistic function squashes tx.
• 𝜆𝜆  (lambda) is the learning factor; the more a task is carried out, the more it 

is optimized.

Xt is the total weight of a group of n tasks at a given time t:

Xt = {x1, x2, x3 … xn}

The difference between Xt and Z(Xt) is:

• Xt is the actual time it takes to manufacture products.
• Z(Xt) is not the actual time it takes. Z(Xt) is the result of an activation 

function that squashes time as an output of Xt in an RL-DL-CRLMM 
network. Z(Xt) is a weighting factor.

The key to reducing the weighting factor further is a physical production process 
and other physical events (outputs, for example), that I call lambda: 𝜆𝜆  signifies all 
the improvements in real-life production that can reduce the production cycle as 
well as the natural events, such as production output.

In Chapter 10, Conceptual Representation Learning, Γ  was introduced to reduce gaps. 
In this chapter, Γ  will be generalized a step further to optimize 𝜆𝜆 .

This means that an RL-DL-CRLMM system will optimize the manufacturing process. 
We will now explore a game-changing automated apparel manufacturing process 
and build it in Python.

CRLMM applied to an automated apparel 
manufacturing process
With an automated planning and scheduling system, not an advanced planning 
and scheduling system, Amazon has brought apparel manufacturing closer to the 
consumer.
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Artificial intelligence will boost existing processes. In this section, an RL-DL-CRLMM 
system will optimize an apparel manufacturing process.

An apparel manufacturing process
Amazon's apparel manufacturing patent can be summarized as follows:

• P1: Grouping apparel customer orders by products and sizes. This process 
has been around since the origins of industrial apparel manufacturing 
centuries ago.

• P2: Automatically cutting lays. A lay is a stack of pieces of cloth. It is like 
cutting a circle in a stack (lay) of several pieces of paper at the same time.

• P3: Moving the packs of the parts of clothing to the assembly lines on 
conveyor belts (see Chapter 10, Conceptual Representation Learning).

• P4: Other operations depending on the products (packaging or printing or 
other).

• P5: Storing and optimizing the distribution process through warehouses 
and deliveries and many more processes (tracking and data analysis, for 
example, finding late deliveries and optimizing their routes).

The following diagram represents the production flow at an apparel manufacturing 
company. First, the fabric is cut, and then it is stacked in piles and sent by a 
conveyor belt to sewing stations to assemble the clothing:

Figure 11.1: Apparel production flow
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A webcam is set up right over P3, the conveyor belt. The following image represents 
the webcam above the conveyor belt:

Figure 11.2: Webcam freezing frames on a conveyor belt

The webcam freezes a frame (within the red rectangle) every n seconds. The frame 
is the input of the CRL-CNN described later.

This image is a representation of the concepts. In reality, the webcam may be 
located at the beginning of the conveyor belt, or even over the output of the cutting 
process. For the prototype in this chapter, keep in mind that every n seconds, a 
frozen frame is sent to the trained CNN.

This P1 to P5 flowchart provides a general idea of an apparel manufacturing 
process. In an actual company, many more processes are required: market studies, 
designing products, testing prototypes, adding manufacturing processes for jeans 
(making holes with a laser, for example), and much more.

Every process described so far was invented individually 30+ years ago, including 
automatic cutting and conveyor belts applied to the apparel business. What's new 
here? springs to mind in the case of many apparel experts reading about Amazon. 
And that is the mind trap! Thinking that Amazon's apparel patent does not contain 
new components is a mistake.

Time squashing is the core of the Amazon innovation process. Bringing 
manufacturing closer to the consumer in near-real time is a revolution that will 
become disruptive. Add 3D printers to the time squashing equation, and you will 
easily picture the future of our consumer markets. However, artificial intelligence 
has the right to enter the optimizing competition as well.

To illustrate this, let's build an AI model that optimizes P3, the conveyor belt. Many 
solutions already exist as well, but an RL+DL can most probably beat them just as it 
will in many fields.
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The first step is to generalize the Γ  model described in Chapter 10, Conceptual 
Representation Learning, a bit further through training. Then, the RL-DL-CRLMM can 
be built. We will first explore how the CRLMM is trained to analyze web frames in 
production.

Training the CRLMM
Chapter 10, Conceptual Representation Learning, introduced CRLMMs using Γ  (gap 
concepts) to illustrate one.

In the previous chapters, conceptual subsets around Γ  (gap concepts) were designed 
as follows:

• Γ = {𝑔𝑔1, 𝑔𝑔2, 𝑔𝑔3, 𝑔𝑔4, 𝑔𝑔5, 𝑔𝑔6} , which contains pgi (p = positive) and ngi (n = 
negative subsets)

• ng1 is a subset of Γ ; ng1 = {missing, not enough, slowing production down … 
bad},

• pg2 is a subset of Γ ; pg2 = pg2 = {good production flow, no gap}
• g2 = {loaded}
• g3 = {unloaded},
• pg4 = {traffic jam, heavy traffic … too much traffic}
• ng5 = {open lane, light traffic … normal traffic}

CNN_STRATEGY_MODEL.py needs to be trained to recognize Γ  in an apparel production 
environment as well as remember how to recognize former Γ  concepts:

• The cutting section P2 (A and B) output of apparel packs flowing on a 
conveyor belt (P3).

• Remember how to classify the cakes of the food processing company to teach 
the model to recognize more situations.

• Remember how to perform a traffic analysis (see Chapter 10, Conceptual 
Representation Learning).

• Learn how to be able to classify an abstract representation of a gap.

Generalizing the unit training dataset
To generalize the unit training dataset, six types of images were created. Each 
image represents a webcam frame taken over a conveyor belt every n seconds. 
Four images are figurative in the sense of figurative painting. Two images bring 
the CRLMM program to a higher level of abstraction.
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Food conveyor belt processing – positive p𝜸𝜸  and 
negative n𝜸𝜸  gaps
In the food processing industry example (see Chapter 9, Abstract Image Classification 
with Convolutional Neural Networks (CNNs), a gap on the conveyor belt was most 
often negative, a negative gamma = n𝛾𝛾 .

The following frame shows that the first line of production is complete, but not lines 
two and three:

Figure 11.3: Food conveyor belt processing frame

On the contrary, with approximately no gaps, the load on the conveyor belt was 
viewed as positive, a positive gamma = p𝛾𝛾 .

The following frame shows that there is an acceptable number of products per line:

Figure 11.4: Food conveyor belt processing frame

As the preceding images show, whatever the product is on a conveyor belt, a 
gap remains a gap, an empty space. We will now apply our model to other gaps 
whatever the object may be. In this case, we will detect gaps on an apparel conveyor 
belt.
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Apparel conveyor belt processing – undetermined gaps
A gap in an apparel conveyor belt process is most often undetermined. This 
constitutes a major optimization problem in itself. Naturally, if the conveyor belt 
is empty or saturated, the variance will attract the attention of a human operator. 
However, most of the time, optimization solves the problem.

The following frame shows a relatively well-loaded production flow of apparel 
packs of pieces of clothing to be assembled (by sewing them together) further down 
the line:

Figure 11.5: Well-loaded production flow

The following frame clearly shows a gap, meaning that the quantity that will be sent 
to a sewing station will not be high:

Figure 11.6: Production flow (gap)

Several observations are necessary to optimize this problem:

• The conveyor belt real-time problem excludes running advanced planning 
and scheduling.

• This problem requires real-time automated planning and scheduling.
• The automated planning and scheduling solution will have to both plan and 

schedule in real-time.
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• It will take planning constraints into account (as explained in the following 
sections) to predict outputs.

• It will take scheduling constraints into account to optimize the sewing 
sections.

Amazon and others have slowly, but surely, brought many planning horizon 
problems (longer) down to shorter scheduling horizons, pushing the limits of SCM 
further and further.

The beginning of an abstract notion of gaps
The gaps shown have negative or positive properties depending on the context. 
The CRLMM model now has to learn a meta conceptual abstract representation of 
all the gaps mentioned hitherto. These gaps are all flow gaps of one sort or another. 
Something is moving from one point to another in small packs. The packs, therefore, 
are often not the same size, and this causes gaps to form.

These concepts can be applied to cattle herds, horse races, team sport attacks 
(football, soccer, rugby, basketball, handball, and other fields), Olympic races, 
marathons, conveyor belts, and much more.

When the packs in the flow are close to each other, an individual mental image 
crops up. Each person has a customized version. The following image is a 
generalized representation of a no-gap concept:

Figure 11.7: A generalized representation of a no-gap concept

Then, the packs have leaders and followers. Then, an abstract representation comes 
up as well. The following image shows a generalized representation of a gap 
concept:
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Figure 11.8: A generalized representation of a gap concept

Humans do not have a flow detection gap function for each thing they are 
observing. Humans have one brain that contains physical memories or other 
datasets, but, more importantly, they have abstract datasets.

Every single one of us billions of thinking bipeds has extremely efficient abstract 
datasets. The meta-concept shown previously means that through inferences, 
a human has a central meta-concept with a dataset of memories that fit with it 
through experience.

A meta-model uses these datasets. The dataset in the dataset directory contains 
the beginning of a CRLMM system. The program will learn what a flow gap is and 
then apply it to what it sees by analyzing the context.

This goal of this dataset leads to a CRLMM, as explained in the following sections 
in which:

• The abstract learned meta-concept is applied to a situation; in this case, a 
frame.

• The CRLMM then determines whether it is a gap or no-gap situation.
• The CRLMM then makes a decision, using a thinking optimizer based on a 

decision weight-orientated activation function. This means that it is more 
than a mathematical squash. It's weighing the pros and cons of a decision-
making process.

In this section, our CRLMM has learned to identify gaps on an apparel conveyor 
belt. If we were to implement this, we would add many web frames of a conveyor 
belt of our project to our datasets to do the training. For now, let us continue with 
this example and run a prediction program to classify the gaps.
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Running a prediction program
The training was done with the same CNN_STRATEGY_MODEL.py program described 
in Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs), 
which was designed to be generalized for subsequent chapters.

Once the dataset of the previous section has been installed, the model can make 
predictions with no further training in various domains.

The same CNN_CONCEPT_STRATEGY.py functions described in Chapter 10, Conceptual 
Representation Learning, were implemented.

Only the path to the dataset was changed, along with the prediction messages to 
display:

#II. Convolutional Neural Network (CNN)
#loads,traffic,food processing
A=['dataset_O/','dataset_traffic/','dataset/']
MS1=['loaded','jammed','productive']
MS2=['unloaded','change','gap']

display=1     #display images
scenario=2    #reference to A,MS1,MS2
directory=A[scenario] #transfer learning parameter (choice of images)
CRLMN=1       # concept learning
print("Classifier frame directory",directory)

The CRLMM has now learned to represent real-life memories and inference of the 
associated memories in a meta-concept. Our CRLMM is ready to be assembled as 
one of the three components of RL-DL-CRLMM as we will see in the next section.

Building the RL-DL-CRLMM
The full code of the RL-DL-CRLMM program is RL_DL.py. It is built on the 
knowledge and programs of the previous chapters and previous sections of this 
chapter.

The RL-DL-CRLMM contains three components:

• A CRLMM convolutional network that will analyze each frame it receives 
from the webcam that is located right over the pieces of garment packs on 
the conveyor belt coming from the cutting section.

• An optimizer using a modified version of the Z(X) described previously that 
plans how the assembly stations will be loaded in real-time.
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• An MDP that will receive the input of the optimizer function and schedule 
the work of the assembly stations. It also produces the modified Z(X) 
updated value of the weights of each assembly station for the next frame.

In the physical world, the conveyor belt transports the garment packs, a picture 
(frame) is taken every n seconds, and the RL-DL-CRLMM runs. The output of the 
RL-DL-CRLMM sends instructions to the conveyor belt and directs the garment 
packs to the optimized load of the assembly stations, as explained before.

Thus, components will be described in the processing order but not in the code-in-
line order. This is because the functions defined by def + function() precede the 
function calls to them. Code line numbers will thus be inserted in the comments 
following the code line like this: # [Line 38].

A circular process
Once the three main components of the system are in place (CNN, MDP, optimizer), 
the circular property of this RL-DL-CRLMM is a stream-like system that never starts 
nor ends.

To define a circular process, let's take an everyday example. Customer C goes to 
the supermarket to purchase a product. The product was previously stored in a 
warehouse that we will name B. A factory named A manufactures this product. If 
you look at the whole supply chain at a given time, you will see there is no starting 
or ending point:

• If you are A, you are both monitoring the needs of C to send products to B
• If you are B, you are both monitoring what is coming from A to satisfy C
• If you are C, you are creating a demand for A to deliver B

In a real-life supply chain, there is no beginning and no end. The same applies to 
an automated production site to the flow of functions in this virtually memoryless 
system. The conveyor belt's webcam provides a stream of frames, forcing the 
system into circular stream-like behavior.

Since RL_DL.py describes a continuous RL-DL-CRLMM process, 
there is no beginning or end to the program. The components are 
independent and are triggered by the input sent to them, and they 
trigger others with their output.
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Implementing a CNN-CRLMM to detect gaps 
and optimize
The CNN-CRLMM function was described in the Running a prediction program 
section and in Chapter 10, Conceptual Representation Learning. The prediction function 
is part of the MDP output analysis described later. The CRLMM function is called as 
shown in the following code:

def CRLMM(Q,lr,e):    # [Line 180]

The first part of this function squashes the W vector described in the following 
section. The second part of this function analyzes the input frame.

Since no webcam is connected to the system at this point (that must be done during 
project implementation), a random image (frame) choice is made. The following 
random code simulates the random occurrences of real-life production:

    status=random.randint(0,1)

In a real-life situation, random quantities will be going through the conveyor belt. 
With the status having being determined, the CNN simulates the addition of a 
frozen frame from the video stream coming from the webcam located directly on 
the conveyor belt. It runs the identity (image) function described before and returns 
a gap or no gap scenario for the optimizer (refer to the optimizer section). The 
following code describes a gap identification process:

    if(status==0):
        #Add frame from video stream (connect to webcam)
        s=identify(directory+'classify/img1.jpg',e)
    if(status==1):
        #Add frame from video stream (connect to webcam)
        s=identify(directory+'classify/img2.jpg',e)
    s1=int(s[0])
    if (int(s1)==0):
        print('Classified in class A')
        print(MS1[scenario])
        print('Seeking...')
    if (int(s1)==1):
        print('Classified in class B')
        print(MS2[scenario])
    return s1

Once status has been detected, irrespective of whether the load output of the 
cutting system is high or low, a decision must be made. This will be done with 
the MDP.



Chapter 11

[ 277 ]

Q-learning – MDP
By adding an MDP Q-learning decision function (see Chapter 1, Getting Started with 
Next-Generation Artifcial Intelligence through Reinforcement Learning) in this CNN-
CRLMM program, we are now entering the world of cognitive RL-DL programs.

The mdp01.py MDP program has been incorporated into RL_DL.py. Thus, only the 
changes made are described in this chapter.

MDP parameters come right after the import packages. Each vertex of the graph 
has its letter and location, as shown in the following code snippet:

L=['A','B','C','D','E','F']    # [Line 37]

When the program runs, the following graph will be displayed with red (target 
vertices) for this frame. It is then up to the MDP to choose, described as follows:

Figure 11.9: Output (target vertices)

Notice that this is an undirected graph with vertices (the colored dots) and no edge 
(lines) directions. The MDP will provide directions for each frame in this model.

Each vertex represents an assembly station in this model. Each assembly station 
has a high workload or a low workload. The workload is rarely stabilized because 
products keep flowing in and out as they are produced.

In this real-time system, there is no beginning, no end, and no real 
memory beyond a few frames.
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MDP inputs and outputs
The MDP process in this model uses a reward matrix as an input and produces a 
weight vector.

The input is a neutral reward matrix
The MDP reward matrix is set to 0, except for the values representing the edges of 
the graph that can be physically accessed; these are set to 1, a small neutral value.

As it is, the MDP cannot provide a satisfactory result beyond reproducing the 
structure of this undirected graph. The reward matrix is now initialized and 
duplicated as shown in the following code, starting from line 41; at line 43, R, the 
reward matrix is built, and at Ri, a duplicate of R is created:

# R is The Reward Matrix for each state built on the physical graph    
[Line 41]
# Ri is a memory of this initial state: no rewards and undirected

R = ql.matrix([[0,0,0,0,1,0],
               [0,0,0,1,0,1],
               [0,0,0,1,0,0],
               [0,1,1,0,1,0],
               [1,0,0,1,0,0],
               [0,1,0,0,0,0]])

Ri = ql.matrix([[0,0,0,0,1,0],
                [0,0,0,1,0,1],
                [0,0,0,1,0,0],
                [0,1,1,0,1,0],
                [1,0,0,1,0,0],
                [0,1,0,0,0,0]])

Ri is a copy of the initial-state zero-reward matrix. R is reset to Ri at every new 
frame. MDP trains the assembly location plan for each new frame in a memoryless, 
undirected graph and unsupervised approach.

Q is the learning matrix in which rewards will be learned/stored, as shown in the 
code on line 58:

Q = ql.matrix(ql.zeros([6,6]))    # [Line 58]

The standard output of the MDP function
The load of the assembly stations is not the exact quantity produced. They 
are weights that are updated continuously during this continuous process, 
as explained further in the chapter.
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At an initial state of the program, the initial weight of the vertices is set to 0 in the 
following line of code (line 40):

W=[0,0,0,0,0,0]    # [Line 40]

The weight vector (represented as an array) contains one value per assembly station 
location or vertex.

An initial state is not a real beginning. It is like a pause button on a video. The initial 
state can come from a holiday (no production), a maintenance day (no production), 
or a lack of input orders (no production). The initial state is just a case when the 
weights are equal to 0 because there is nothing on the conveyor or assembly stations.

The weight vector is part 1 of the optimizer (see the following section). The MDP 
produces an output matrix after having optimized the undirected graph. The 
optimizer will have provided a target.

The program contains the same source code as in Chapter 1, Getting Started with 
Next-Generation Artifcial Intelligence through Reinforcement Learning, with Bellman's 
equation starting from line 1166. The MDP produces its result, as shown in the 
following output:

[[ 0. 0. 0. 0. 105.352 0. ]

[ 0. 0. 0. 130.44 0. 201. ]

[ 0. 0. 0. 130.44 0. 0. ]

[ 0. 161.8 105.352 0. 105.352 0. ]

[ 85.2816 0. 0. 130.44 0. 0. ]

[ 0. 0. 0. 0. 0. 250. ]]

Normed Q :

[[ 0. 0. 0. 0. 42.1408 0. ]

[ 0. 0. 0. 52.176 0. 80.4 ]

[ 0. 0. 0. 52.176 0. 0. ]

[ 0. 64.72 42.1408 0. 42.1408 0. ]

[ 34.11264 0. 0. 52.176 0. 0. ]

[ 0. 0. 0. 0. 0. 100. ]]

Bear in mind that this entire DQN-CRLMM is not only based on the undirected 
memoryless MDP function but also has no real beginning nor end since it's a 
continuous and virtually memoryless process.
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A graph interpretation of the MDP output matrix
After each run, the MDP matrix also produces a graph interpretation of the values 
of paths between the vertices from point to point (letter to letter), and displays it in 
the following output:

State of frame : 3 D

0 A E 161.8

1 B D 201.0

2 C D 201.0

3 D D 250.0

4 E A 130.44

4 E D 201.0

5 F B 161.8

This way, if the values are taken from the highest to the lowest edges (lines and, 
hence, values between two letters), it gives a visual idea of how the MDP function 
calculated its way through the graph.

RL is the letter vector. It is empty after each frame. It will be filled by finding the 
values of each edge. It will contain the letters of the vertices (nodes and dots) 
connected by the edges (lines represented by the values).

RN is the value of the edges. The following code shows how to implement RL and RN 
and update the weights of the locations in the weight vector (W):

    #Graph structure    [Line 187]
    RL=['','','','','','']
    RN=[0,0,0,0,0,0]
    print("State of frame :",lr,L[lr])
    for i in range(6):
        maxw=0
        for j in range(6):
            W[j]+=logistic_sigmoid(Q[i,j])
            if(Q[i,j]>maxw):
                RL[i]=L[j]
                RN[i]=Q[i,j]
                maxw=Q[i,j]
                print(i,L[i],RL[i],RN[i])

The logistic function in the preceding code is being updated while RL and RN are 
being updated.



Chapter 11

[ 281 ]

The optimizer
I have written several optimizers for fabric optimization in the apparel industry. 
In this case, the optimizer will be used to regulate the flow of production.

The term "optimizer" is not the CNN rmsprop optimizer used in the previous 
chapters represented with the following code:

loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', 
metrics=['accuracy'])    # [Line 92]

The term "optimizer" refers to a function that optimizes the production of this 
manufacturing site. It is not an optimizer used to train a CNN, for example. 
This optimizer is both an activation function and a regulator that was built from 
scratch to optimize production. This shows that you must sometimes invent the 
optimizer you need to generate a profitable solution for your customer or company.

The optimizer as a regulator
The whole concept of this RL-DL-CRLMM of real-time production, applied to P3, is 
to optimize Z over the load distribution of the assembly stations, as explained before. 
This means reducing Z as much as possible through the following equation:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

 

To achieve this optimization goal, Z needs to be taken apart and applied to strategic 
parts of the code.

Implementing Z – squashing the MDP result matrix
The output of the MDP functions provides the following Q matrix:

Q :

[[ 0. 0. 0. 0. 321.8 0. ]

 [ 0. 0. 0. 401. 0. 258.44]

 [ 0. 0. 0. 401. 0. 0. ]

 [ 0. 0. 0. 500. 0. 0. ]

 [ 258.44 0. 0. 401. 0. 0. ]

 [ 0. 321.8 0. 0. 0. 0. ]]
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Each line represents a vertex in the graph: A, B, C, D, E, and F. Each value obtained 
needs to be squashed in the following z(x) function:

𝑧𝑧(𝑥𝑥) = 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 

The first step in the code that follows is to squash the weights provided by the MDP 
process for each line (vertex) x with a logistic_sigmoid function:

#Logistic Sigmoid function to squash the weights    [Line 118]
def logistic_sigmoid(w):
    return 1 / (1 + math.exp(-w))

The function is called by the transformation of the MDP Q output matrix into the 
weight vector for each column of each line, as shown in the following code:

    for i in range(6):    # [Line 191]
        maxw=0
        for j in range(6):
            W[j]+=logistic_sigmoid(Q[i,j])

At this point, each value of the MDP has lost any real-life value. It is a weight, just 
as in any other network. The difference is that the whole system is controlled. In a 
real-life project, keeping an eye on the calculations through reports is necessary for 
maintenance purposes. Even an automatic system requires quality control.

The MDP matrix has now been flattened into a weight matrix, as shown in the 
following output:

Vertex Weights [3.5, 3.5, 3.0, 5.0, 3.5, 3.5]

Each vertex (letter in the graph) now has a weight.

Implementing Z – squashing the vertex weights vector
Squashed W (vertex weights) grows after each frame analysis, and each MDP run 
since W[j]+ is applied continuously, and W is never set to zero.

The main reasons:

• Once launched, the RL-DL-CRLMM is a continuous process, with no 
beginning and no end as long as the conveyor belt is running.

• The conveyor belt is sending assembly (mostly sewing) work to the assembly 
stations that take some time (t) to get the job (x) represented by tx in the Z 
equation and the W vector in the program.

• Hence, work is piling up on each vertex (A to F), which represents an 
assembly station.
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This is why the 𝜆𝜆  variable in the Z equation is implemented, as shown in the initial 
equation early in the chapter, as follows:

𝑍𝑍 =∑ 1
1 + 𝑒𝑒−𝑡𝑡𝑥𝑥 𝜆𝜆

𝑡𝑡𝑥𝑥𝑛𝑛

𝑡𝑡𝑥𝑥𝑛𝑛

 

𝜆𝜆  is implemented for two reasons:

• The sewing or assembly stations send their finished work to the next 
operation on the production line, packaging, for example. So every m 
minutes, their workload goes down, and so does the load feature weight.

• Production managers are constantly working on learning curves on 
assembly lines. When a new product arrives, it takes some time for the 
teams to adapt. Their output is a bit slower than usual. However, well-
trained teams bring the learning period down regularly.

𝜆𝜆  combines both concepts in a single variable. This might be enough for some 
projects. If not, more work and variables need to be added.

In this model, 𝜆𝜆  is activated by the following:

• oif represents the frequency of a W vector 𝜆𝜆  update. In this example, oif is 
set to 10. This means that every 10 frames, oir will be applied.

• oir represents the output rate for the two reasons described before. This 
variable will squash the W vector by the % given. In this example, oir=0.2. That 
means that only 20% of the weights will be retained. The rest has been finished.

The following code shows how to implement oif and oir:

# input_output_frequency : output every n frames/ retained memory    
[Line 315]
oif=10
#input_output_rate p% (memory retained)
oir=0.2
fc=0 #frequency counter : memory output
for e in range(episodes):
    print("episode:frame #",e)
    fc=fc+1
    #memory management : lambda output
    if(fc>=10):
        for fci in range(6):
            W[fci]=W[fci]*oir
            fc=0
            print("OUTPUT OPERATION - MEMORY UPDATED FOR ",L[fci],
                  " ",oir,"% retained")
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The W vector has been squashed again, as shown in this output:

OUTPUT OPERATION - MEMORY UPDATED FOR A 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR B 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR C 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR D 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR E 0.2 % retained

OUTPUT OPERATION - MEMORY UPDATED FOR F 0.2 % retained

The optimizer has provided updated information on the status of each sewing 
station. Each sewing station is a location for the MDP function. We will now see 
how the MDP function uses the information provided by the optimizer.

Finding the main target for the MDP function
W, the weight vector, is updated after each frame with a short-term memory of 
n frames. This means that in every n frames, its memory is emptied of useless 
information.

The goal of the optimizer is to provide a target for the MDP function. On the first 
episode, since it does not have any information, the optimizer selects a random state, 
as shown in the following code excerpt:

    #first episode is random
    if(e==0):
        lr=random.randint(0,5)

This means that a random assembly station will be chosen on the MDP graph, 
which represents the six assembly sewing stations. Once this episode has been 
completed, the system enters a circular real-time cycle (refer to the next section).

The second episode has the W vector to rely upon.

This runs the crlmm (described before) CNN-CRLMM network to determine 
whether the frame has a gap or no-gap feature, as shown in the following code:

    crlmm=CRLMM(Q,lr,e)    # [Line 388]

The optimizer will use W to:

• Choose the vertex (sewing station) with somewhat the smallest weight if 
the CNN on the frame produces a result with no gap (probability is zero). 
Since there is no gap, this means that there are many pieces to sew. Thus, 
it is much better to give the work to an assembly station that has a lower 
load than others.
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• Choose the vertex (sewing station) with somewhat the highest weight if 
the CNN on the frame produces a result with a gap (probability is one). 
Since there is a gap, it means there are not that many pieces to sew. Thus, 
it is much better to give the work to an assembly station that already 
has a higher workload. It will balance the loads and optimize the load 
distribution over all the stations.

• Introduce a choice to find one target assembly station for the MDP function 
in each of these cases. It will look for stations (vertices, letters, dots in the 
graph) with the highest weight in one case and the lowest in another.

• Add the somewhat concept referred to before. The system must remain 
relatively free, or it will keep choosing the same best sewing stations, 
depriving others of work. Thus, each possibility (gap or no gap) is limited 
to a random choice of only three among the six locations for each weight 
class (higher or lower).

The optimizing function, shown in the following snippet, can prove extremely 
profitable on real-life industrial production lines:

    if(e>0):
        lr=0
        minw=10000000
        maxw=-1
        #no G => Finding the largest gap (most loaded resource or a 
distance)
        if(crlmm==0):
            for wi in range(3):
                op=random.randint(0,5)
                if(W[op]<minw):
                    lr=op;minw=W[op]
        #G => Finding the smallest gap (a least loaded resource or a 
distance)
        if(crlmm==1):
            for wi in range(3):
                op=random.randint(0,5)
                if(W[op]>maxw):
                    lr=op;maxw=W[op]

lr is the main location chosen for the MDP reinforcement learning function, as 
shown in the following code:

    print("LR TARGET STATE MDP number and letter:",lr,L[lr])

Reinforcement learning has to run every time since it faces new frames in the 
continuous process of the conveyor belt in the automated apparel system.
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Now, the MDP reward matrix is reset to its initial state, as implemented in these 
lines of the program:

    #initial reward matrix set again
    for ei in range(6):
        for ej in range(6):
            Q[ei,ej]=0
            if(ei !=lr):
                R[ei,ej]=Ri[ei,ej]
            if(ei ==lr):
                R[ei,ej]=0 #to target, not from

The target location is initialized with a value that fits the gap or no-gap philosophy 
of the program. If there is no gap, the value is higher, and so will be the weight 
(represented load of the station) in the end. If there is a gap, the value is lower, and 
so will be the weight for that station, as shown in the following lines of code:

    #no G
    rew=100
    #G
    if(crlmm==1):
        rew=50
    R[lr,lr]=rew
    print("Initial Reward matrix with vertex locations:",R)

We just explored the MDP process. However, the overall program we are looking at 
is a circular process that runs 24/7. At a given time, all of the components of our AI 
program are running at the same time. Let's see how.

A circular model – a stream-like system that 
never starts nor ends
We have successfully converted the linear stream of production (conveyor belt, 
optimizer, and sewing stations) into a circular process.

Since the RL-DL-CRLMM model runs nonstop, it can run at all of the following 
points at the same time:

• A = Captures a frame of the output of the cutting section with a webcam 
and a CNN-CRLMM

• B = Analyzes the load (histograms of each sewing section) with the CRLMM
• C = Optimizes the sewing stations with an MDP
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ABC is one flow. But since each process is running nonstop, we can see all of the 
following flows at the same time: A, B, C or B, C, A or C, A, B.

The following graph represents the circular process:

Figure 11.10: Circular RL-DL-CRLMM

The diagram describes an automatic process. However, let's go back a step and 
imagine we are in a factory in which humans still make the decisions. The process is 
circular, which means it never stops or starts. It runs 24/7. We will suppose a floor 
manager is an optimizer represented by the blue bar charts. The floor manager will 
look at the sewing stations to see who has a lot of work to do and who has little work 
to do. Then the floor manager will observe the conveyor belt (the web frame with the 
image of the packs) that is bringing packs of cut cloth to sew into garments. The floor 
manager will select several packs where there is a gap on the conveyor belt for the 
least loaded sewing stations, for example. Once the choice has been made, the floor 
manager will direct the packs to the right sewing station following calculating the 
graph (MDP) manually.

Let's explore these steps in further detail.
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Step X: When the following frame arrives, the CRL-CNN is activated:

Figure 11.11: The CRL-CNN gets activated

The solution calls the CRLMM function, as shown in the following code:

    crlmm=CRLMM(Q,lr,e)    # [Line 388]
    print("GAP =0 or GAP =1 status: ",crlmm)

The following output displays the status of the image: gap, no gap:

image dataset/classify/img1.jpg predict_probability: [[ 0.]] prediction: 
[[ 0.]]

Classified in class A

Productive

Seeking...

GAP =0 or GAP =1 status: 0

The following weights of each sewing station (vertices A to F) are taken into account:

    MDP_GRAPH(lr,e)    # [Line 390]
    print("Vertex Weights",W)

The program displays them in text form:

Vertex Weights [9.4, 11.100000000000001, 10.2, 12.0, 11.7, 10.0]

The program also displays the following bar chart of the weights of each sewing 
station:
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Figure 11.12: Bar chart of the weighs of each sewing station

The STEP X+1 optimizer analyzes the weights to make a decision: send small 
quantities to the sewing stations that have a lot of work and large quantities to 
sewing stations that have less work to do.

By doing this, the optimizer makes sure that each sewing station has an optimal 
workload. If a sewing station has a lot of work piling up, it makes sense to give a 
large amount of incoming work to a sewing station with little work to do. That way, 
all of the sewing stations will be working at full capacity.

Γ  (gamma) has now reached a point at which it understands that a gap is a 
comparison between two states and inference of a conceptual distance:

• Overloading: Too much
• Underloading: Not enough

Γ  now contains two abstract concepts:

• Enough to too much
• Not enough to lacking
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STEP X+2: The MDP, as described in this chapter, receives instructions to optimize 
a given sewing station and spreads work out to its neighbors. This is often a 
production constraint: one station sews the sleeves of a T-shirt. For example, the 
station nearby sews a pocket on the T-shirt. The MDP spreads out the work, starting 
with the target location. In this case, the target location is one of the sewing stations 
in the A-E-D area (the area is displayed in color when you run the Python program) 
as shown in the following graph:

Figure 11.13: MDP spreads out

The MDP sends its results directly to the conveyor belt, which automatically follows 
the path instructions sent to it.

Then, the MDP updates the weights, empties its reward matrix, and waits for a new 
one. The system goes back to step X.

As you might have noticed, no human operator is involved in this entire process at 
all.

The goal of the circular process is to keep the bars at an 
approximately similar height—not an exact height, but also not a 
situation in which A would have no work to do, and E would be 
overloaded.



Chapter 11

[ 291 ]

Summary
Applying artificial intelligence to Amazon's real-time sales, production, and 
delivery forces projects into reality.

Learning machine learning and deep learning with MNIST, CIFAR, and other ready-
to-use datasets with ready-to-use programs is a prerequisite to mastering artificial 
intelligence. Learning mathematics is a must.

Building a few programs that can do various theoretical things cannot be avoided. 
However, managing a real project under corporate pressure will bring an AI 
specialist up to another level. The AI specialist will have to put AI theory into 
practice. The constraints of corporate specifications make machine learning projects 
exciting. During those projects, experts learn valuable information on how AI 
solutions work and can be improved.

This chapter described an RL-DL-CRLMM model with an optimizer. We learned 
how the market is evolving from planning manufacturing in advance to real-time 
planning challenging classical processes. We saw that a consumer wants to receive 
a purchased product as soon as possible. If that product is not available to demand, 
it must be produced in nearly real-time and delivered to the customer. To automate 
this process, we built a Python program that can scan an apparel conveyor built to 
detect gaps in a cutting process with a CNN, use an optimizing function to choose 
the best sewing workstation and then build a graph with MDP to represent the 
optimized path taken.

The next chapter explores an application of this solution with an SVM applied to a 
self-driving car situation in an IoT context, Swarm AI, and elementary AGI.

Questions
1. A CNN can be trained to understand an abstract concept? (Yes | No)
2. Is it better to avoid concepts and only use real-life images? (Yes | No)
3. Do planning and scheduling mean the same thing? (Yes | No)
4. Is Amazon's manufacturing patent a revolution? (Yes | No)
5. Learning how warehouses function is not useful. (Yes | No)
6. Online marketing does not require artificial intelligence. (Yes | No)
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Further reading
• More information on Amazon's apparel manufacturing innovation 

and apparel market can be found here: https://www.nytimes.
com/2017/04/30/technology/detailing-amazons-custom-clothing-
patent.html, https://www.amazon.com/learn-more-prime-wardrobe/
b?ie=UTF8&node=16122413011

https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.amazon.com/learn-more-prime-wardrobe/b?ie=UTF8&node=16122413011
https://www.amazon.com/learn-more-prime-wardrobe/b?ie=UTF8&node=16122413011
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12
AI and the Internet  

of Things (IoT)
Some people say the Internet of things (IoT) will turn out to become the fourth 
Industrial Revolution. Let's wait a few years until the smoke clears and then let 
historians figure out what sort of revolution we went through.

In any case, connected objects have been changing our lives for at least the past 
two decades. Given all that we have seen in recent years, we can safely say that IoT 
has become disruptive.

Artificial intelligence has just begun its long journey through human intellect. New, 
incredible innovations await us. Understand cutting-edge machine learning and 
deep learning theory is only the beginning of your adventure. Take everything you 
see seriously and see how it can be incorporated into your projects.

Your mind must remain open to accept the many innovations that are yet to come. 
For example, conceptual representation learning (see previous chapters) adds the 
power of human concepts to neural networks.

This chapter takes the technology of the previous chapter and applies it to the 
example of a self-driving car. The previous chapter used a webcam and a program 
and sent instructions to the conveyor belt. It was in the family of IoT. Let's add a 
support vector machine (SVM) to the program and take it out on the streets of a 
city to see what happens.

The chapter is divided into three main sections: a public service project, the 
configuration of the model, and running the model.
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The following topics will be covered in this chapter:

• A self-driving solution
• Introducing a safe route parameter to trip planners
• Applying CNNs to parking lots
• Applying SVMs to safety on trip planning
• Teaching an MDP to find the safest route (not necessarily the shortest way)

Let's get started by outlining the problem and the goal of the project we'll be 
undertaking.

The public service project
The overall project in this example is to implement a self-driving, home-to-homeless-
shelter delivery service:

• Families at homes have clothing and food they would like to give to others 
that need them.

• The self-driving car can be started at a distance and goes to homes and takes 
the goods to the shelters.

• The self-driving car does not need to have a base. It can park anywhere, go 
anywhere, and refuel at service stations with automatic electric recharging.

In this chapter, we will focus on the self-driving car when it has finished a delivery 
and is looking for a parking lot with a parking space. We will need the information 
to make decisions.

Some IoT projects plan to put sensors on every parking space and send the 
information to control centers. The city council finds that too expensive. Instead, 
the city council has decided to use a more cost-effective solution. A webcam will be 
installed on all the possible parking lots in the project's grid. This smart grid is for 
transporting products from homes to shelters.

We'll address this by first setting up an RL-DL-CRLMM model.
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Setting up the RL-DL-CRLMM model
This section describes how to set up the previous chapter's model for this project 
and add a few functions.

In Chapter 11, Combining Reinforcement Learning and Deep Learning, the RL-DL-
CRLMM model analyzed webcam images of pieces of cut cloth to be sewed in real-
time on a conveyor belt. The goal was to determine if they contained a gap (not too 
many pieces to sew) or not (a lot of pieces to sew). Then the model selected the best 
sewing station. A sewing station with a lot of work to do is best optimized with a 
small number of pieces to sew. A sewing station with little work to do will be best 
optimized with a large number of pieces to sew. By doing this, the RL-DL-CRLMM 
optimized the load on each sewing station, as shown in the following diagram:

Figure 12.1: Apparel production flow
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This leads to the following circular optimizing model:

Figure 12.2: Circular RL-DL-CRLMM

This RL-DL-CRLMM model that we explored in Chapter 11, Combining Reinforcement 
Learning and Deep Learning, contains the following components:

• A CRL-CNN to see if there is a gap in the image. In this chapter, we will use 
the same model to see if there is a gap in a parking lot that represents an 
available parking space.

• An optimizer will rely on an SVM to add the concept of safety to the choice 
of an itinerary. It will then use optimization rules to make decisions, as in 
Chapter 11, Combining Reinforcement Learning and Deep Learning.

• An MDP for the itinerary as described in Chapter 1, Getting Started with Next-
Generation Artificial Intelligence through Reinforcement Learning.

The RL-DL-CRLMM model of this chapter, which focuses on finding a parking lot 
with available parking space and go there will thus become:
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Figure 12.3: Circular RL-DL-CRLMM

The CRL-CNN in this model looks for spaces in a parking lot instead of gaps on a 
conveyor belt.

The RL-DL-CRLMM model contains a convolutional neural network (CNN) and 
a Markov decision process (MDP) linked together by an optimizer. The optimizer 
contains an SVM (safety evaluations) and a set of rules.

This system will now be referred to as a CRLMM.

Applying the model of the CRLMM
In Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs), 
the CRLMM program, CNN_STRATEGY_MODEL.py, was trained to identify Γ  (gamma 
concept) in outputs on the conveyor belt of a food processing factory. The end of the 
previous chapter brought Γ  up to a higher abstraction level.
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As long as a member of 𝛾𝛾  (gamma) of the Γ  dataset is in an undetermined state, its 
generalization encompasses ambivalent but similar concepts. Up to this chapter, 
these are the concepts Γ  (uppercase gamma) has learned (conceptual representation 
learning).

Γ  = {a gap, no gap, a load, no-load, not enough load, enough load, too much load, a space 
on a lane for a car, a distance between a high load of products and missing products on a 

conveyor belt, weights on sewing stations … n}

The next step in the chapter is to use the CRLMM built in the previous chapters 
to recognize a parking space in a parking lot and send a signal to the self-driving 
vehicle:

• Γ  will now perceive gaps as space.
• Γ  will now perceive space as a distance (gap) between two objects.
• Γ  will need a context to establish whether this space between two objects is 

a positive or negative distance.

Let's take a look at the dataset that we'll use to accomplish our goals.

The dataset
The datasets used in Chapter 9, Abstract Image Classification with Convolutional Neural 
Networks (CNNs), to this chapter are sample datasets. In real-life projects, it will 
take some work to obtain the right real-time frames from a webcam. There will 
be lighting constraints, prerequisites, and more. However, the philosophy remains 
the same.

As in the previous chapters, the dataset directory of this chapter on GitHub 
contains the following:

• The training set
• The test set
• The model trained by CNN_CONCEPT_STRATEGY.py
• The classify directory used by CNN_CONCEPT_STRATEGY.py

As explained in the previous chapters, a full stream of frames from a well-
configured webcam would take weeks, if not months, to prepare. They are projects 
in themselves.

The project would first start by deciding to use a camera webcam or an IP camera 
that can send images to the CNN that is embedded in the RL-DL-CRLMM program. 
The CNN will classify each image sent by the video feed either as containing a gap 
or an available parking space or not.
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A webcam is usually connected to a computer, which will, in turn, send information 
to a distant server. An IP camera can send information directly to distant machines. 
Both solutions are connected IoT objects. An IP camera can be more expensive. 
To prove that the solution is a good one, an implementation team might start 
with a webcam first. Once the project has been accepted, then an IP camera might 
prove to be better in the long run. In this chapter, we will refer to webcams as in 
a research project with limited funds to begin with. We will thus consider that the 
images come from a webcam.

In this example, Γ  has evolved into space (gap detection between (distance)) cars 
to find a parking space.

The following is a simulated frozen frame with no Γ -space taken by a webcam 
located on a building, pointing down to a parking lot:

Figure 12.4: Simulated frozen frame

I transformed the image to simulate some computer vision techniques that could 
have been used to simplify the image:

Figure 12.5: Parking lot with a little to no gaps (not enough available parking spaces)
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The following frame represents a small but sufficient parking space on the right of 
the screen. The images in these examples were designed to explain how the system 
is built. I created the image for this example to show whether Γ -space is available or 
not. Once again, I simulated an image after a computer vision process, which is easy 
to do but beyond the scope of this book. It shows something like several available 
parking spaces in a higher-level representation of the parking lot:

Figure 12.6: Parking lot with a little to no gaps (not enough available parking spaces)

Using the trained model
The model was trained by using the same CNN_STRATEGY_MODEL.py program as in 
Chapter 9, Abstract Image Classification with Convolutional Neural Networks (CNNs).

Just make sure that the directory in the header of the following program is pointing 
to dataset/, which is scenario number 2:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=2 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)

The model is stored in /dataset/model. To test the model, CNN_CONCEPT_STRATEGY.
py, improved in the previous chapter, was used. Just change the messages and limit 
the frame classification loop to 2, as shown in the following code snippet:

MS1='available'
MS2='space'
I=['1','2','3','4','5','6']
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The following loaded image was already resized before applying the CNN model:

Figure 12.7: Resized image

Classifying the parking lots
We showed that the model works. However, in the following sections, we will 
simulate the images that are sent with a random function, not with the actual images.

Now that the CRLMM has been trained to distinguish a full parking lot from a 
parking lot with available space, once an available parking lot has been found, an 
SVM takes over as an intermediate step, as we'll see in the next section.

Adding an SVM function
The self-driving car has delivered its packages to the shelters. Now it has to find a 
parking lot and park there. Instead of having a base like many other systems, this 
saves the city the cost of many useless trips.
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Motivation – using an SVM to increase safety 
levels
The support vector system adds a new function to itinerary calculations—safety.

Most systems, such as Google Maps, focus on:

• The shortest trip
• The fastest trip
• Traffic

However, self-driving cars have to take extra precautions. Many humans do not 
feel secure on some roads. Safety comes first, no matter what. Once a suitable 
parking lot has been found, the SVM has to avoid traffic.

The goal is to find a path through traffic, even if the distance is longer. A p parameter 
allows for a p% variance in the distance. For example, 10% allows a 10% longer 
distance and will provide safe passage, as shown in the following SVM result:

Figure 12.8: Traffic path
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It is important to note that the datapoints are not the actual coordinates but a 
representation in a higher dimension, as explained in the following section.

Definition of a support vector machine
An SVM classifies data by transforming it into higher dimensions. It will then 
classify data into two classes, for example.

In this section, the SVM will be used to separate risky driving locations from safer 
driving locations:

The example in the code is random (as in real-life traffic), but the model can be 
developed much further.

Safety is the key to this model, so each driving location (road, crossing) possesses 
features related to this goal:

• Number of accidents at that location
• Traffic at that location
• Experience of driving through that location (near misses and no problems)

All of this data can be fed into an SVM program. The program will transform the 
data to make it linearly separable (see Chapter 8, Solving the XOR Problem with a 
Feedforward Neural Network).

The blue dots on the left will be the good locations, and the brown ones on the right 
will be the risky ones. A function will read the latitude and longitude features of the 
datapoint in another table to convert them back into GPS format.

For example, a blue dot on the left might be:

• Location A
• One accident in the past ten years
• Zero problems driving through that point in 1 year

A brown dot might be:

• Location D (a few blocks from A)
• Seventy-four accidents in 10 years
• Fifteen problems driving through that point in one year
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The blue dots and brown dots thus have nothing to do with the real location on 
the preceding graph. The locations are labels. Their features have been separated 
as expected.

Location A will be chosen, for example, instead of location D. Hence, the program 
looks into the dataset and finds its GPS location.

Let's put some words to the following SVM graph:

Figure 12.10: SVM graph

• The space between the dotted vertical lines is the margin. It's somewhat like 
the margin between two lines of a rugby or football team. When the players 
(datapoints) are lined up, an invisible space or margin separates them.

• The dots that touch those margins are critical because they are the ones that 
decide where the margin will be in the first place. As the rugby or football 
players line up in clusters, the SVM will calculate this (refer to the following 
Python function). These special datapoints are called support points. 
They are also referred to as support vectors.

• The vertical line running in the middle of the margin is the decision line.
• Since a line separates the dots, the dataset is linearly separable. This means 

that a line can be drawn between the datapoints and can separate them into 
classes. In this case, the system wants to obtain safe locations (blue dots) 
and avoid unsafe locations (brown dots).

To send the data to a GPS guiding system, all that needs to be done 
is to find the GPS coordinates of the locations that are part of the 
initial dataset.
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Now that we defined what an SVM is, let's implement it in Python.

Python function
The sklearn packages provide the following svm function:

from sklearn import svm
from sklearn.datasets import make_blobs

The make_blobs function generates uniform data for this example in all directions. 
It is thus an isotropic distribution (iso = equal, tropy = way) of random data. A blob 
contains points of data. The points of data represent the concentration of cars in 
given areas, which were calculated using their longitude and latitude.

scikit-learn contains a Gaussian factor for the generation function. A Gaussian 
kernel applies standard deviations from a mean. Imagine you are playing in a 
sandbox, and you make a little hill. Then, with your hand, you cut the pile in two. 
The mean is where you cut the sand pile; the standard deviation is shown by the 
slopes going down on both sides.

It might take days, and sometimes weeks, to put a good dataset together. But with 
scikit-learn, you can do it in one line, as shown in the following code snippet:

    #100 cars clusters(concentration of cars) represented   [Line 323]
    X, y = make_blobs(n_samples=100, centers=2, random_state=7)

This function offers many parameters. The ones used are as follows:

• n_samples, which represents the number of points spread out between 
the clusters. In this example, 100 already represents sub-clusters of car 
concentrations in an area.

• Centers is the number of centers from which to generate data. In this 
example, 2 represents areas close to the present location of the self-driving 
car and its future destination.

• random_state is the seed by the random number generator. This is where 
the sequence of random numbers will start. This is because what we think 
is random is pseudo-random, so it has a deterministic basis.
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In this example, a linear kernel is used to fit the model, as shown in the following 
code:

    # the model is directly fitted. The goal is a global estimate    
[Line 326]
    clf = svm.SVC(kernel='linear', C=1000)
    clf.fit(X, y)

scikit-learn's SVM contains a parameter penalty, which explains the C in svm.SVC. 
There are many more options, but the key option is the kernel. A linear kernel will 
produce a linear separation, as shown in the preceding screenshot.

An RBF kernel would produce a different result. The structure looks more 
regularized. As shown in the following screenshot, an RBF kernel acts as an 
efficient structural regularizing function:

Figure 12.11: Regularized structure path

Bear in mind that the SVM can be used for image recognition on the MNIST and 
CIFAR datasets, for example. Artificial intelligence provides more than one way to 
solve a given problem. It is up to you to choose the right tools by having a flexible 
trial-and-error approach where necessary.

The plotting line instructions start at line 300. The main line of code to take into 
account is the function that will find and use the decision line (refer to the preceding 
definition) and scatter the datapoints on both sides of the margin. This is achieved 
by using the following decision_function:

    Z = clf.decision_function(xy).reshape(XX.shape)
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The result will be displayed, as shown previously. The SVM is now a component of 
the CRLMM in this self-driving car (SDC) model. We are ready the run the CRLMM 
to find an available parking space for the SDC.

Running the CRLMM
The self-driving car's mission is a circular (no beginning, no end) one like the 
CRLMM described in the previous chapter:

• If it is in a parking lot, it can be activated by a home or a shelter.
• If it is at a given home, it will go to a shelter.
• If it is at a shelter, it can go to a home or a parking space.
• If it needs recharging, this can be done at a recharging space (or more 

probably at a parking space), which is already the case in some cities.

At one point, the self-driving car has to go from a specific home to a parking space. 
This part of its itinerary is the subject of the following sections.

Finding a parking space
CRL-MM-IoT_SVM.py uses a fine-tuned version of RL_DL.py described in the previous 
chapter.

A no-Γ  (no gamma, no gap, no space) result is not acceptable. The result we are 
looking for is an image with a gap.

If the crlmm function, which classifies parking lot images into full or available space, 
returns a 0, the program detects it and displays a message. The code samples contain 
the line number of the following code excerpt:

            if(crlmm==0):    # [Line 392]
                full = load_img("FULL.JPG")
                plt.subplot(111)
                plt.imshow(full)
                plt.title('PARKING LOT STATUS : This parking lot is 
full.' + '\n' + 'Another webcam is consulted', fontname='Arial', 
fontsize=10)
                #plt.text(0.1,2, "The frame is the input of a trained 
CNN")
                plt.show()
                '''
                plt.show(block=False)
                time.sleep(5)
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                plt.close()
                '''
                print("This parking lot is full, searching...")

The program displays the following full sign and closes it after a few seconds:

Figure 12.12: Parking lot status

The program must find a parking space. It will thus try searches of good parking lots 
as shown in this code snippet:

        for search in range(1000):    # [Line 391]
            if(crlmm==0):

A thousand searches looks like a lot, but it isn't difficult for a machine learning 
program.

Furthermore, looking for available parking spaces in a large city can be excruciating. 
More often than not, it will not be suitable: there will not be sufficient available 
parking spaces to be certain of finding one in the time it will take to get there.
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For this prototype, the number of optimal searches is limited to 2. Beyond that value, 
the following CRLMM function is activated:

                if(search>2):    # [Line 405]
                    a=1
                crlmm=CRLMM(Q,lr,e,a)

After two fruitless searches, the program activates a, a flag for the CRLMM function.

The CRLMM function now contains a random search function, which simulates the 
choice of a parking lot and provides a first-level status:

    status=random.randint(0,10)    # [Line 199]
    if(status>5):
        status=1
    if(status<=5):
        status=0 

The status represents a probabilistic estimate of the availability of the parking lot. 
The a flag simulates a program yet to be added that will scan all the parking lots and 
run this function to find an available space.

So, if a is activated, the system simulates a scan (to be developed) and forces the 
status to 1, as shown in the following code snippet:

    if(a>0 and status==0):    # [Line 204]
        #add an available search function here that scans all the
        #webcams of then network until it finds one that suits the 
model (not too far parameter and available)
        status=1

To present a prototype at an initial meeting, you will always need 
enough to convince, but if you go too far, the cost of doing this 
becomes a risk if your idea is rejected.
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The program then continues and runs the CNN trained to identify an available 
parking lot (refer to the screenshot that follows), as explained in the preceding 
configuration section:

Figure 12.13: Webcam freezes a frame of a parking lot

Now that a parking lot with available space has been found (the empty spaces 
on the top left of the frame), the search function stops, and the following break 
instruction is activated:

                if(crlmm==1):    # [Line 408]
                    a=0
                    break

The break instruction is reached once a parking space has been found. Once 
an available parking space has been detected, we can decide how to get to the 
parking lot.

Deciding how to get to the parking lot
The CRLMM program has found a suitable parking lot, as shown in the following 
code, when crlmm==1:

        if(crlmm==1):    # [Line 412]
            available = load_img("AVAILABLE.JPG")
            plt.subplot(111)
            plt.imshow(available)
            plt.title('PARKING LOT STATUS : This parking lot has 
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available space.' + '\n' + 'Now an SVM will suggest a safe route ', 
fontname='Arial', fontsize=10)
            #plt.text(0.1,2, "The frame is the input of a trained CNN"
            plt.show()
            '''
            plt.show(block=False)
            time.sleep(5)
            plt.close()
            '''
            print("This parking lot has available space...")

It displays the following message and a sign:

Figure 12.14: Parking lot status

Now that we found an available parking space, we need to find a safe route for the 
SDC. This means the SDC will avoid traffic to make it easier for the autonomous 
machine learning program. Now it is time to activate the function.

Support vector machine
The CRLMM now demands a safe route, even if it means taking longer (time or 
distance). Self-driving vehicles require a strict safety-comes-first policy.

The program reaches the following SVM function:

            print("This parking lot has available space...")    # 
[Line 424]
            SAFE_SVM()
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The SVM described in the configuration section provides a safe path through traffic, 
as shown in this screenshot of the result:

Figure 12.15: Traffic graph

For example, in this random case (traffic will be random most of the time), the blue 
dots on the left represent sparser traffic, and the brown dots represent areas with 
denser traffic. The goal, in real-life implementation, is to provide information to 
the MDP in the program so that it will find paths through sparser traffic for safety 
reasons to limit the errors an SDC can make in denser traffic. The weights of the 
statistics of past accidents and the car's experience can also be added to create a 
deeper vision of this safety model trip planner.

Suppose the self-driving car has to go to a point in the brown area. The SVM will:

• Suggest an itinerary that goes through blue dot areas as much as possible 
and only then in brown areas.

• Send the information to Google Maps. This will require an additional script 
that will read a dataset that contains GPS coordinates for each datapoint in 
the SVM.

Many drivers feel unsafe on loaded freeways or in dense cities. Adding the safest 
route function to mapping software would help.

The SVM brought the datapoints to a higher level (refer to the explanation in the 
configuration section of the chapter).
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Once the SVM boundaries have been converted into location datapoints, the itinerary 
or trip graph is activated.

The itinerary graph
The prototype shows a simulation of an itinerary graph based on the SVM 
recommendations and its weight vector through the following function call:

            print("SAFE PASSAGE SUGGESTED")    # [Line 426]
            MDP_GRAPH(lr,e)

The following graph displays the safest itinerary in red, even if it takes longer (time 
or distance):

Figure 12.16: The optimizer chose the safest itinerary

For the purpose of the prototype, the SVM was not directly connected to the graph, 
which would require costly hours. 

The points represented in an SVM function are not the actual 
locations but an abstract representation. The dividing line needs to 
go through a function that will transform that information into a 
real location datapoint.
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Instead, the following random.randint function was inserted, which simulates the 
random availability of parking space in any case:

            for wi in range(6):    [Line 430]
                op=random.randint(0,5)
                if(W[op]>maxw):
                    lr=op;maxw=W[op]

Bear in mind that it would be useless to execute further development for a prototype 
as regards the initial presentation to a prospect or manager.

This type of prototype is more powerful than a slideshow because it proves your 
legitimacy. Slideshows are static and don't prove your abilities on this particular 
subject. A prototype will show your expertise. Once we have the safest locations, 
we can update the weight vector for the MDP, as in the previous chapter.

The weight vector
The weight vector is displayed. In this model, the weights represent the locations, 
just like in the previous chapter. However, in this chapter, the weights are a rating:

• Each weight has a high safety rank when a few accidents have occurred 
around that area in the past n years. This is a safety rank. This ranking 
should be part of our itinerary software. We should be informed.

• The self-driving car's experience will customize each weight. It is its own 
driving record. Near misses because of its faulty software will bring the 
weight down. Good track records will take the weights up. What seems easy 
for a human might be difficult for software, and vice versa.

The system now displays the weights used with an internal update program to be 
developed if the prototype is accepted. The following code calls the function that 
manages the weights of the safest routes for the self-driving vehicle and displays a 
histogram:

            print("Vertex Weights",W)    # [Line 428]
            MDP_CRL_graph(W,lr)
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Figure 12.17: Histogram of the updated weights vertex (safest routes)

We detected an available parking space, asked an SVM to provide the safest areas to 
go through to get to that parking space, updated the weight of each area, and sent 
the information to the MDP to calculate a safe route.

Summary
This chapter, like the previous chapter, described a connected IoT process with no 
humans involved. This trend will expand into every field in the years to come.

This also shows that knowing how to use a tool requires hard work, especially 
when learning artificial intelligence. Imagining a solution for a given market 
requires more than hard work. Creativity does not come with work. It develops 
by freeing your mind from any form of constraint.

Once the solution has been imagined, then comes the fine line between developing 
too much for a presentation and not showing enough. A CRLMM provides the 
kind of framework that helps build a technical solution (CNN, MDP, SVM, and 
optimizers) while keeping everyday concepts that others understand in mind.
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The chapter also shows that an artificial intelligence model can contain an ensemble 
of algorithms, RL, DL, SVM, and CRL cognitive approaches, and more.

The next chapter will take us deeper under the hood of neural networks and 
TensorFlow 2 by peeking inside the ANN's processes.

Questions
1. Driving quickly to a location is better than safety in any situation. (Yes | No)
2. Self-driving cars will never really replace human drivers. (Yes | No)
3. Will a self-driving fire truck with robots be able to put out a fire one day? 

(Yes | No)
4. Do major cities need to invest in self-driving cars or avoid them?  

(Invest | Avoid)
5. Would you trust a self-driving bus to take children to school and back?  

(Yes | No)
6. Would you be able to sleep in a self-driving car on a highway? (Yes | No)
7. Would you like to develop a self-driving program for a project for a city? 

(Yes | No)

Further reading
• For more information on SVMs, refer these links: http://scikit-learn.

org/stable/modules/svm.html, http://scikit-learn.org/stable/
auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-
auto-examples-svm-plot-separating-hyperplane-py

http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examp
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13
Visualizing Networks 

with TensorFlow 2.x and 
TensorBoard

In this chapter, we are going to take a peek inside a machine's "mind" while it's 
"thinking" through the layers of a deep learning neural network. The number of lines 
of code required to build a sequential classifier for a convolutional neural network 
(CNN) has been drastically reduced with TensorFlow 2. Running the classifier only 
takes a click. However, to understand the program when something goes wrong is a 
more difficult task, and visualizing the outputs of the layers can be very productive.

Visualizing the output of the layers of a CNN can provide an in-depth knowledge 
of each individual step comprising the whole process.

In this chapter, as in several of the preceding chapters, we will define the layers 
of a CNN. This time, we will add more layers and extract the output of each layer 
to create output images. We will build this process from scratch in a bottom-to-top 
approach in TensorFlow 2 in Python.

Once the outputs have been defined, we will display the output of the convolutional, 
pooling, dropout, flattening, and dense layers.

Viewing the output of the layers provides an intuitive sense of what the layers 
are doing. Being able to visualize the global graph of the model makes the 
architecture of the CNN visible. 
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We will use TensorBoard to explore the conceptual model, the epochs versus the 
accuracy, and the detail of the operations of mathematical functions. These graphs 
and measurements will be built using a top-to-bottom approach using Google 
Colaboratory.

Google Colaboratory provides a free server with ready-to-use libraries and modules. 
We will use a Google Colaboratory notebook to explore TensorBoard functions. 
The chapter is divided into three main sections. The first two sections describe 
how to build a sequential classifier with TensorFlow 2.2 and display the outputs 
of the layers with TensorFlow 2.2. The third section describes how to display the 
graph information and accuracy measurement with the TensorFlow 2 version of 
TensorBoard.

The topics covered in this chapter will provide visual insights into CNNs:

• Building a CNN layer by layer
• Displaying the dataset
• Displaying the output of the layers of the CNN
• Using Google Colaboratory
• Visualizing the architecture of a neural network with TensorBoard
• Visualizing accuracy measurements with TensorBoard

Let's start off this chapter by discussing how we can explore the output of the 
layers within a CNN.

Exploring the output of the layers of a 
CNN in two steps with TensorFlow
Many corporate contracts in the field of business intelligence require an explanation 
process for any algorithm that makes automatic and critical decisions. It is often 
mandatory for the editor of algorithms, artificial intelligence or not, to provide 
an explanation. We need to be prepared for that.

Also, maintenance becomes critical once artificial intelligence runs in production. 
Developers often move from one department to another, from one company to 
another. The person that has to maintain the program needs to understand it 
in detail.
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Exploring and visualizing a CNN is a good way to get our hands dirty, open 
the hood of our roadster and see how the engine works!

• First, we will first build the CNN layer by layer. We will be building the 
sequential classifier with TensorFlow 2 from the bottom to the top.
We will not be using a Keras model directly; we'll use TensorFlow's 
integrated Keras module, which brings the number of lines of header down 
to only two lines:
import tensorflow as tf

from tensorflow.keras import datasets, layers, models

• Then we will explore the visual output of the layers to gain insights into the 
way it "thinks."

With that, let's get on with building!

Building the layers of a CNN
A CNN was described in Chapter 9, Abstract Image Classification with Convolutional 
Neural Networks (CNNs). In the example to follow, the CNN will contain more layers 
to visualize the way a neural network extracts features step by step.

We will be using a dataset that uses a single image to explore the layers of a CNN. 
This image is repeated several times for the training dataset and the test dataset is 
enough to build and run the model to visualize the layers of the neural network.

The dataset contains an image of a flower repeated several times—an iris.

Figure 13.1: The image of the image we are exploring in this chapter
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The goal is not to have many variations of the image, but to simply see how a CNN 
represents an iris layer by layer. The dataset contains a repeated image. However, 
you can change these images and use a dataset of your own then display the 
images as follows using the same code:

cv_img=[]
images = []
for img_path in glob.glob('dataset/training_set/img/*.png'):
    images.append(mpimg.imread(img_path))
    
plt.figure(figsize=(20,20)) #20,10
columns = 5
for i, image in enumerate(images):
    plt.subplot(len(images) / columns + 1, columns, i + 1)
    plt.imshow(image)

The result will be a figure with lines of images from the dataset:

Figure 13.2: Displaying the dataset

We will first import the neural network modules:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models

Building the CNN only takes a few lines. This makes it deceptively simple because 
it appears to be a black box. In our example, the structure described in Chapter 
9, Abstract Image Classification with Convolutional Neural Networks (CNNs), in its 
enhanced version here, only requires a few minutes to create from lines 30 to 68:

#initializing the Tensorflow 2 classifier
classifier = models.Sequential()

#adding the convolution layers to the layers
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classifier.add(layers.Conv2D(32, (3, 3), padding='same', input_shape = 
(28, 28, 3), activation = 'relu'))
classifier.add(layers.Conv2D(32, (3, 3), activation='relu'))

...

#adding dense-dropout-dense layers
classifier.add(layers.Dense(units = 512, activation = 'relu'))

We will go back to these layers in the next section when we explore their output. 
The main point to focus on here remains the simplicity of the code. Building a CNN 
as a black box in a few minutes might work. However, understanding each layer 
when a problem comes up requires a deeper understanding of the representations 
of the layers.

Before exploring those layers, the program prints the structure of the classifier 
(CNN):

#Printing the model summary
print("Model Summary",classifier.summary())

The model contains a fair number of layers to explore:

Model: "sequential"

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

conv2d (Conv2D)              (None, 28, 28, 32)        896       

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 26, 26, 32)        9248      

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 13, 13, 32)        0         

_________________________________________________________________

dropout (Dropout)            (None, 13, 13, 32)        0         

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 13, 13, 64)        18496     

_________________________________________________________________

conv2d_3 (Conv2D)            (None, 11, 11, 64)        36928     

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0         

_________________________________________________________________
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dropout_1 (Dropout)          (None, 5, 5, 64)          0         

_________________________________________________________________

conv2d_4 (Conv2D)            (None, 5, 5, 64)          36928     

_________________________________________________________________

conv2d_5 (Conv2D)            (None, 3, 3, 64)          36928     

_________________________________________________________________

max_pooling2d_2 (MaxPooling2 (None, 1, 1, 64)          0         

_________________________________________________________________

dropout_2 (Dropout)          (None, 1, 1, 64)          0         

_________________________________________________________________

flatten (Flatten)            (None, 64)                0         

_________________________________________________________________

dense (Dense)                (None, 512)               33280     

_________________________________________________________________

dropout_3 (Dropout)          (None, 512)               0         

_________________________________________________________________

dense_1 (Dense)              (None, 3)                 1539      

===============================================================

Keep an eye on this summary. It will prove useful when choosing the number of 
layers you wish to explore to visualize the outputs.

The model is then compiled:

# Compiling the convolutional neural network (CNN)
classifier.compile(optimizer = 'rmsprop',
    loss = 'categorical_crossentropy',metrics = ['accuracy'])

Then training and test datasets are processed (rescaled) and defined:

train_datagen = ImageDataGenerator(rescale = 1./255)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(
                                  'dataset/training_set',
                                  target_size = (28, 28),
                                  batch_size = 16,
                                  class_mode =
                                  'categorical')
test_set = test_datagen.flow_from_directory('dataset/test_set',
                                           target_size = (28, 28),
                                           batch_size = 16,
                                           class_mode =
                                           'categorical')
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If we stop here, the CNN will work. But will we have really understood the model? 
I don't think so. Of course, it only takes a simple click to get the CNN to run after 
installing a ready-to-use dataset. This black box approach can work, but exploring 
the visual output of a layer provides a better representation of the network. Let's 
take a look at that next.

Processing the visual output of the layers of a 
CNN
The idea is to focus on an image and actually see the "mental," visual, representation 
a CNN calculates, layer by layer.

To process the layers, the program first selects an image for the activation model to 
work on:

#Selecting an image for the activation model
img_path = 'dataset/test_set/img/img1.png'
img1 = image.load_img('dataset/test_set/img/img1.png', target_
size=(28, 28))
img = image.img_to_array(img1)
img = np.expand_dims(img, axis=0)
img /= 255.
plt.imshow(img[0])
plt.show()
print("img tensor shape",img.shape)

Then the visualization process runs in a few steps, which will take us inside the 
CNN:

• Selecting the number of layers to visualize using the e variable: Going 
back to the model summary displayed previously, you can choose the 
layer you want to stop at. In this example, we're stopping at e=12. You 
can choose to start with e=4 to visualize the first convolutional and 
pooling layers:
#Selecting the number of layers to display
e=12 #last layer displayed
layer_outputs = [layer.output for layer in classifier.layers[0:e]]

If e=3, the program will stop at max_pooling2d:
Displaying layer: conv2d

Displaying layer: conv2d_1

Displaying layer: max_pooling2d
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• Selecting the top n layers that will be explored: The program refers to 
layer_outputs to extract the information it needs to visualize the target 
layers:
# Extracting the information of the top n layers
activation_model = models.Model(inputs=classifier.input,
                                outputs=layer_outputs)

• Applying the activation model to extract the requested layers: Activating 
the model forces the classifier to get to work and run through the layers. 
That way, we can peek inside its "thought" process and see how it represents 
inputs:
# Activating the model
activations = activation_model.predict(img)

• Retrieving the layer names to display, along with the visual representation 
of the layer: Layer names help us understand what we are looking at. Use 
the model summary we printed earlier as a map to see where you are when 
the layer name is displayed, along with the representation of the output of 
that same layer:
#layer names
layer_names = []
for layer in classifier.layers[:12]:
    layer_names.append(layer.name)

• Processing layer outputs and organizing them into grids: To avoid having 
to watch a sequential display of the variations of the representations in a 
given layer, we are going to organize them in one grid image:
# Processing the layer outputs
for layer_name, layer_activation in zip(layer_names,
        activations):
    #getting the layer_names and their activations
    n_features = layer_activation.shape[-1] #features in the layer
    size = layer_activation.shape[1] #shape of the feature map
    n_cols = n_features // images_per_row #number of images per 
row
    display_grid = np.zeros((size * n_cols,
                             images_per_row * size)) #size of the 
display grid
    for col in range(n_cols): #organizing the columns
        for row in range(images_per_row): #...and rows to display
            image = layer_activation[0,:, :,
                col * images_per_row + row] #retrieving the 
image...
            image -= image.mean() #...and processing it in the...
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            if(image.std()>0): # ...following lines to display it
                image /= image.std()
                image *= 64
                image += 128
                image = np.clip(image, 0,
                    255).astype('uint8')
                display_grid[col * size : (col + 1) * size,
                    row * size : (row + 1) * size] = image

• Displaying the processed layer outputs: Now that the work is done, we just 
have to display the layer names along with the corresponding grids:
    #displaying the layer names and processed grids
    print("Displaying layer:",layer_name)
    scale = 1. / size
    plt.figure(figsize=(scale * display_grid.shape[1],
                        scale * display_grid.shape[0]))
    plt.title(layer_name)
    plt.grid(False)
    plt.imshow(display_grid, aspect='auto', cmap='viridis')
    plt.savefig("dataset/output/"+layer_name)
    plt.show()

Note that the figures are saved by plt.savefig in an output directory for later use.

You will obtain a list of figures with the name of the layer for the layers you chose 
to visualize. For example, you can view the images of the first seven layers. You 
can look at them in the following figures or by running the program. In any case, 
the best way to analyze the layers is to look closely at the first layer and then 
at the last layer. You will see that the CNN is carefully extracting an abstract 
representation of the image and displaying higher dimensions. The reason the 
differences between the layers are difficult to perceive with the human eye comes 
from two factors:

• The number of elements to analyze is extremely difficult for us to observe. 
Usually our brain does this without us having to think about it!

• There are several convolutional layers versus one layer that would rush 
through the process of obtaining an abstract representation of the image. 
It's going layer by layer, just like a human brain processes an image  
step-by-step.
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Look at the following first layer then the last one, then go back and observe the 
differences between the layers.

Figure 13.3: Convolutional layer

Figure 13.4: Convolutional layer

Figure 13.5: Pooling layer

Figure 13.6: Dropout layer

Figure 13.7: Convolutional layer
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Figure 13.8: Convolutional layer

Figure 13.9: Pooling layer

Visualizing the output of the layers of a CNN provides a fantastic way to 
understand and analyze a neural network. Let's go a step further and analyze 
the layers.

Analyzing the visual output of the layers of a CNN
An input image is chaos until some form of intelligence makes sense of it. Any form 
of intelligence will detect patterns and structures. Machine intelligence works on 
the same grounds by increasing the level of abstraction through dimensionality 
reduction. The process of going from chaos to an organized representation is at 
the heart of the fantastic invention of present-day neural networks.

When running cnn_layers.py, the layer outputs will be displayed. Let's explore 
some of the layers. You can explore some or all of them by simply changing the 
value of the e = <number-of-layers> variable on line 107.
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Convolutional layer activation functions
One of the key options of a convolutional layer is the activation function. relu is 
used in the following cnn_layers.py:

#adding more convolution layers to the layers
classifier.add(layers.Conv2D(64, (3, 3), padding='same', activation = 
'relu'))
classifier.add(layers.Conv2D(64, (3, 3), activation='relu'))

For more on ReLU, please go the explanation in Chapter 9, Abstract Image Classification 
with Convolutional Neural Networks (CNNs).

relu produces the following output for the Conv2d layer:

Figure 13.10: conv2d output 1

Now go to line 33 and replace relu with softmax as follows:

classifier.add(layers.Conv2D(32, (3, 3), padding='same',
    input_shape = (28, 28, 3), activation = 'softmax'))

The output is quite different, as we can see:

Figure 13.11: conv2d output 2
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It takes some time for the human eye to adjust to the change. Look at each version. 
Try to memorize it for a few seconds by closing your eyes and then looking at the 
other one. Our brain does this implicitly which is why it takes an effort to do this 
explicitly.

Which one should you use? Welcome to deep learning! There is no certain answer 
to that question. It is a trial-and-error process. An activation function might fit one 
model and not another. Even if the accuracy of the network is acceptable during 
the training process, you might have to change the activation function over time 
when new data produces bad results.

For more on softmax, please go back to the explanation in Chapter 2, Building a 
Reward Matrix – Designing Your Datasets.

Let's try the logistic sigmoid activation function, sigmoid, also described in Chapter 2:

Figure 13.12: conv2d output 3

Notice the differences again. Observe the last image on row 1 for each activation 
function. The differences are fascinating because they provide a variety of possible 
representations.

Try other activation functions to get the feel of the way an artificial neural network 
transforms what it perceives into a higher level of abstraction through a reduction 
of the dimensions that it has to process.

Convolutional layers higher-level representations through 
the layers
Notice the incredible level of abstraction the sequential classifier reaches through 
the following outputs going from conv2d to conv2d_5, which is, in fact, the sixth (0 
to 5) convolutional layer of cnn_layers.py.
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The network starts at a relatively figurative representation to reach a highly abstract 
level at conv2d_5. We are literally inside the machine's "mind," watching it think 
and learn!

Figure 13.13: Initial conv2d output

Figure 13.14: conv2d_1 output

Figure 13.15: conv2d_2 output
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Figure 13.16: conv2d_3 output

Figure 13.17: conv2d_4 output

Figure 13.18: conv2d_5 output

This abstraction process owes a lot to the other layers, such as the pooling layer.
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Pooling layers to obtain higher-level representations
The pooling layer is going to reduce the number of dimensions of its input and 
choose the most representative features it finds:

#adding a max pooling layer to the layers
classifier.add(layers.MaxPooling2D(pool_size=(2, 2)))

Let's explore the evolution of the first two pooling layers in this example:

Figure 13.19: max_pooling2d output

Figure 13.20: max_pooling2d_1 output

Once again, we can see the powerful level of abstraction a CNN can attain.

For more information on the pooling layer, please read the explanations in Chapter 9, 
Abstract Image Classification with Convolutional Neural Networks (CNNs).
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Dropout layer higher-level representations through the 
layers
The dropout layers provide a way to abandon many features in order to reach a 
simplified higher level of representation:

classifier.add(layers.Dropout(0.5)) # antes era 0.25

It is not always necessary to add a dropout layer because it depends on the 
productivity and architecture of the model you are exploring. For this example, 
the first two dropout layers are quite instructive. Dropouts are also a way to avoid 
overfitting. The model learns how to extract key features to obtain an abstract 
representation, not a literal one.

Figure 13.21: dropout output

Figure 13.22: dropout_1 output

Observe again how the dropout layers accelerate the abstraction process. We can 
see the CNN's "mind" working.
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Recommendation
I recommend you try different activation functions and various options for 
the layers of this example. Then run the program and get a feel of what is going 
inside a CNN's "machine thinking" process. Even if it is a purely mathematical 
architecture, it provides a good idea of how a CNN, while not human at all, has 
its own "machine thinking" approach.

Now that we have explored a CNN from bottom to top, let's see how to observe 
the accuracy of a CNN from top to bottom using TensorBoard.

Analyzing the accuracy of a CNN using 
TensorBoard
In this section, we will first get started with a free Google Colaboratory server and 
then explore some of the TensorBoard ANN measurement functions.

Getting started with Google Colaboratory
You can get access to your free instance of Google Colaboratory server in just a few 
steps:

1. Make sure you have a Google account and log into it.
2. Click on the following link, which takes leads you to Google Colaboratory: 

https://colab.research.google.com/notebooks/welcome.
ipynb#recent=true

You will be taken to the following page:

Figure 13.23: Colaboratory initial landing page

3. Click on the UPLOAD option in the top right:

https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
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Figure 13.24: Upload option

You can choose or drag and drop a file, then upload it.
4. Upload TF_2_graphs.ipynb.

You can download the program from this link and then upload it: https://
github.com/PacktPublishing/Artificial-Intelligence-By-Example-
Second-Edition/blob/master/CH13/TF_2_graphs.ipynb

5. Once the program is open, you will see the following page:

Figure 13.25: A Colaboratory notebook

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example-Second-Edition/blob/master/CH1
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6. Go to File in the menu and save the notebook to your Google Drive:

Figure 13.26: The File menu

Once the file is saved, you are ready to go!

You have many runtime options, such as making a choice between using a CPU 
or a GPU, display options (background, for example), and many more ways to use 
Google Colaboratory. I recommend reading the document to find the many options 
available.

You are on your free Colaboratory server, and you're ready to explore your notebook.

Defining and training the model
We will run the notebook and then analyze the results. This should provide an 
introduction to both Google Colaboratory and some TensorBoard functions.

First, run the program by clicking on the Run all option in the Runtime menu:

Figure 13.27: Runtime options
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The program will then go through its cells and provide information on the training 
process. To obtain this information, we will explore some of TensorBoard's key 
functions.

We will first install TensorFlow and then run TensorBoard.

• Installing TensorFlow and getting TensorBoard running: As you saw in 
the previous section, you do not need to run the program cell by cell unless 
a cell contains an error. In that case, click on the run button in the cell:

Figure 13.28: Running a cell

The cell will execute the code. In this case, it will install TensorFlow 2.x:
# Ensure TensorFlow 2.0 is installed.
!pip install -q tf-nightly-2.0-preview
# Load the TensorBoard notebook extension.
%load_ext tensorboard

Once the installation is finished and TensorBoard is loaded, the program 
runs through the headers to import the necessary modules.

• The program now defines a simplified model you are now familiar with: 
The following model has been simplified. The goal here is to show how 
TensorBoard works. You can, of course, add more layers once you have 
explored the notebook:
# Define the model.
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(32, activation='relu'),
    keras.layers.Dropout(0.2),
    keras.layers.Dense(10, activation='softmax')
])

Be careful with TensorBoard versions! You might have 
a previous or different version installed that you are 
using for another project. Before running this program, 
check any application that is using TensorBoard in your 
environment. Check your configuration carefully before 
doing anything. If there is a risk, use another environment 
or just read the notebook without running it.
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• The model is then compiled with an optimizer and accuracy metrics: The 
model now needs to be compiled and run to provide measurement output:
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy'])

For more on the Adam optimizer and cross-entropy, see Chapter 9, Abstract 
Image Classification with Convolutional Neural Networks (CNNs).

The model is now trained and ready for metric callbacks for TensorBoard.

While the program was running the training, it was saving a log of the main 
functionalities to display. The graph of the model can be displayed in TensorBoard 
with one line along with many other functions.

%tensorboard --logdir logs

The following graph of the model contains many details:

Figure 13.29: TensorFlow graph

If you want to have a simplified view, a conceptual view of the model is also 
displayed:
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Figure 13.30: A partial view of the TensorFlow graph

We have explored the architecture of a neural network model using 
TensorBoard graphs. Let's see how to visualize the measurements of the training 
process of our model.

Introducing some of the measurements
While training, the program saved key information in its log directory that can now 
be displayed.

• Epoch accuracy: If the accuracy increases with the epochs, the classifier is 
progressing, and it is learning correctly. If it decreases, we are in trouble! We 
will have to go back and check the dataset, the activation functions, and how 
the layers were designed.

Figure 13.31: Accuracy of the model
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• Basic flow, including an activation function: TensorBoard has drill-down 
functionality. You can drill down into the actual operations TensorFlow 2.x 
is calculating:

Figure 13.32: The activation function

• Exploring the details of an activation function: Once you have seen the 
flow of an operation, you can even peek inside it to see how it is built:

Figure 13.33: The activation function
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These TensorBoard graphs and measurements help you dig into the mechanics of 
your model. They provide insights that will add to the ones you acquired when 
exploring the outputs of layers in the first section of this chapter.

In this section, we have explored the architecture functions of TensorBoard through 
the many graphs available as well as tools to measure the training performance 
of our model.

Summary
In this chapter, we explored deep learning from the inside. We saw that building a 
CNN is now easy with TensorFlow 2.x, but peeking inside the way it "thinks" gives 
critical insight.

We first built a CNN with many layers. The level of abstraction of a CNN increases 
through each layer. Reducing the number of dimensions per layer makes patterns 
appear. A neural network can be described as a process that goes from chaos to 
meaning.

After building the CNN, we wrote a program that can read the "mental" images 
of the layers. The output of each layer shows how the network is creating patterns 
and structures. Since we humans often think using mental images, the output 
images of the CNN help us understand how a machine learns.

Finally, we used a Google Colaboratory server to visualize the measurements of 
the CNN's learning process with TensorBoard running on top of TensorFlow 2.x. 
Measuring the accuracy of the training process of a CNN is critical. Visualizing these 
measurements makes it easier to see what is going wrong. TensorBoard provides 
a graph of a model to help us go from source code to a mental representation of an 
ANN.

To sum this chapter up in a nutshell, we can say that artificial intelligence, through 
mathematics, transforms the chaos surrounding us into intelligible structures and 
patterns.

In the next chapter, we are going to go further and learn how to visualize another 
aspect of a neural network: weights. We are going to use the weights of a restricted 
Boltzmann machine (RBM) to create a visual representation in TensorBoard using 
principal component analysis.
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Questions
1. A CNN always has the same number of layers. (Yes | No)
2. ReLU is the best activation function. (Yes | No)
3. It is not necessary to compile a sequential classifier. (Yes | No)
4. The output of a layer is best viewed without running a prediction. (Yes | No)
5. The names of the layers mean nothing when viewing their outputs.  

(Yes | No)
6. TensorFlow 2.x does not include Keras. (Yes | No)
7. Google Colaboratory is just a repository, like GitHub. (Yes | No)
8. Google Colaboratory cannot run notebooks. (Yes | No)
9. It is possible to run TensorBoard in Google Colaboratory notebooks.  

(Yes | No)
10. Accuracy is displayed in TensorBoard. (Yes | No)

Further reading
• For more information on activation functions, visit https://keras.io/

activations/.
• Click on this link for more information on Google Colaboratory: https://

colab.research.google.com/notebooks/welcome.ipynb#recent=true.

https://keras.io/activations/
https://keras.io/activations/
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true
https://colab.research.google.com/notebooks/welcome.ipynb#recent=true


[ 343 ]

14
Preparing the Input of 

Chatbots with Restricted 
Boltzmann Machines (RBMs) 

and Principal Component 
Analysis (PCA)

In the following chapters, we will explore chatbot frameworks and build chatbots. 
You will find that creating a chatbot structure only takes a few clicks. However, no 
chatbot can be built without designing the input to prepare the desired dialog flow. 
The goal of this chapter is to demonstrate how to extract features from a dataset and 
then use them to gather the basic information to build a chatbot in Chapter 15, Setting 
up a Cognitive NLP UI/CUI Chatbot.

The input of a dialog requires in-depth research and designing. In this chapter, we 
will build a restricted Boltzmann machine (RBM) that will analyze a dataset. In 
Chapter 13, Visualizing Networks with TensorFlow 2.x and TensorBoard, we examined 
the layers of a convolutional neural network (CNN) and displayed their outputs. 
This time, we will explore the weights of the RBM. We will go further and use the 
weights of the RBM as features. The weights of an RBM can be transformed into 
feature vectors for a principal component analysis (PCA) algorithm.
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We will use the feature vectors generated by the RBM to build a PCA display using 
TensorBoard Embedding Projector's functionality. We will then use the statistics 
obtained to lay the grounds for the inputs of a chatbot.

To illustrate the whole process, we will use streaming platform data as an 
example of how this is done. Streaming has become a central activity of almost 
all smartphone owners. The problem facing Netflix, YouTube, Amazon, or any 
platform offering streaming services is to offer us the right video to watch. If a 
viewer watches a video, and the platform does not display a pertinent similar 
one to watch next, the viewer might choose to use another platform.

This chapter is divided into two parts:

• Building an RBM and then extending it to an automatic feature vector 
generator

• Using PCA to represent the weights of an RBM as features. TensorFlow's 
Embedding Projector possesses an inbuilt PCA function. The statistics 
produced will provide the basis of the dialog structure for Chapter 15, 
Setting Up a Cognitive NLP UI/CUI Chatbot.

Let's first define the basic terms we are using and our goals.

Defining basic terms and goals
The goal of this chapter is to prepare data to create the input of a chatbot we will 
build in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot.

Creating a chatbot requires preparation. We cannot just step into a project without 
a minimum amount of information. In our case, we will examine a dataset I created 
based on movie preferences. I did not choose to download huge datasets because 
we need to first focus on understanding the process and building a model using 
basic data.

The size of the datasets increase daily on an online platform. When we watch a 
movie on a streaming platform, on Netflix for example, we can like the movie or click 
on the thumbs-down button.

When we approve or disapprove of a movie on an online platform, our preferences 
are recorded. The features of these movies provide valuable information for the 
platform, which can then display choices we prefer: action, adventure, romantic, 
comedy, and more.
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In this chapter, we will first use an RBM to extract a description (such as action, 
adventure, or comedy, for example) of the movies watched by a user or a group 
of users. We will take the output weights produced by the RBM to create a file of 
features reflecting the user's preferences.

This file of features of a user's preferences can be considered as a "mental 
dataset" of a person. The name might seem strange at first. However, a "mental" 
representation of a person goes beyond the standard age, income, and other 
impersonal data. Features such as "love," "violence," and "horizons" (wider views, 
adventure) give us a deeper understanding of a person than information we can 
find on a driving license.

In the second part of the chapter, we will use the RBM's output of features of a 
person's "mind" as the input of a PCA. The PCA will calculate how the features relate 
to each other and how they vary, and we will display them in TensorBoard.

We will then actually see a representation of a person's mind through the key 
features drawn from the RBM. This information will then be used to help us create 
a customized chatbot in Chapter 15.

Let's move on to the first phase and build an RBM.

Introducing and building an RBM
RBMs are random and undirected graph models generally built with a visible 
and a hidden layer. They were used in a Netflix competition to predict future 
user behavior. The goal here is not to predict what a viewer will do but establish 
who the viewer is and store the data in a viewer's profile-structured mind dataset. 
The input data represents the features to be trained to learn about viewer X. Each 
column represents a feature of X's potential personality and tastes. Each line 
represents the features of a movie that X has watched. The following code (and this 
section) is in RBM_01.py:

np.array([[1,1,0,0,1,1],
         [1,1,0,1,1,0],
         [1,1,1,0,0,1],
         [1,1,0,1,1,0],
         [1,1,0,0,1,0],
         [1,1,1,0,1,0]])

The goal of this RBM is to define a profile of X by computing the features of the 
movies watched. The input data could also be images, words, and other forms 
of data, as in any neural network.
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First, we will explore the architecture and define what an energy-driven neural 
network is. Then, we will build an RBM from scratch in Python.

The architecture of an RBM
The RBM model used contains two layers: a visible layer and a hidden layer. Many 
types of RBMs exist, but generally, they contain the following properties:

• There is no connection between the visible units, which is why it is restricted.
• There is no connection between the hidden units enforcing the restricted 

property of the network.
• There is no direction as in a feedforward neural network (FNN), as explored 

in Chapter 8, Solving the XOR Problem with a Feedforward Neural Network. 
An RBM's model is thus an undirected graph.

• The visible and hidden layers are connected by a weight matrix and a bias 
vector, which are the lines in the following diagram:

Figure 14.1: The connection between visible and hidden units

The network contains six visible and two hidden units, producing a weight matrix 
of 2×6 values to which we will add bias values.
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You will note that there is no output. The system runs from the visible units to 
the hidden units and back. We are operating feature extraction with this type of 
network. In this chapter, for example, we will use the weights as features.

By forcing the network to represent its data contained in 6 units in 2 units through 
a weight matrix, the RBM creates feature representations. The hidden units, weights, 
and biases can be used for feature extraction.

An energy-based model
An RBM is an energy-based model. The higher the energy, the lower the probability 
of obtaining the correct information; the lower the energy, the higher the probability 
– in other words, the higher the accuracy.

To understand this, let's go back to the cup of tea we observed in Chapter 1, Getting 
Started with Next-Generation Artificial Intelligence through Reinforcement Learning:

Figure 14.2: The complexity of a cup of tea

In Chapter 1, we observed a microstate of the cup through its global content and 
temperature. Then, we went on to use the Markov decision process (MDP) to run 
microstate calculations.

This time, we will focus on the temperature of the cup of tea. x will be the global 
temperature of all the molecules in the cup of tea:

• If x = 1, this means the temperature is very hot. The tea has just boiled.
• If x = 0.5, this means the temperature has gone down.
• If x = 0.1, this means the temperature is still a bit warm, but the tea is cooling.



Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component 
Analysis (PCA)

[ 348 ]

The higher the temperature, the more the molecules will be bouncing around in 
the cup with a high level of energy, making it feel hot.

However, the hotter it is, the closer to very hot, the lower the probability we can 
drink it.

This leads to a probability p for a temperature x:

• x -> 1, p -> 0
• x -> 0, p -> 1

As you can see, in an energy-driven system, we will strive to lower the energy 
level. Let's say we have a person with an unknown tolerance for hot drinks, and we 
want to wager whether they can drink our cup of tea. Nobody wants to drink cold 
(low-energy) tea, sure, but if our focus is on the likelihood of a person being able to 
drink the tea without finding it too hot (high-energy), then we want that tea to be as 
low-energy (that is, cool) as possible!

To illustrate the p(x) system of our cup of tea, we will use Euler's number e, which 
is equal to 2.718281. p(x) is the probability that we can drink our cup of tea, with p 
being the probability, and x the temperature or energy.

We will begin to introduce a simple energy function in which p(x) = e(–x):

• p(e(–1)) = 0.36
• p(e(–0.5)) = 0.60
• p(e(–0.1)) = 0.90

You can see that as –x (energy) decreases, the probability p(x) increases.

The goal of the learning function of an RBM is to decrease the energy level by 
optimizing the weights and biases. By doing this, the RBM increases the probability 
that the hidden units, the weights, and biases are optimized.

To calculate the energy of an RBM, we will take the complete architecture of the 
network into account. Let's display our model again as follows:
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Figure 14.3: The connection between visible and hidden units

This RBM model contains the following values:

• E(v, h), which is the energy function that takes the visible units (input data) 
and hidden units into account.

• vi = the states of the visible units (input).
• ai = the biases of the visible units.
• hj = the states of the hidden units.
• bj = the biases of the hidden units.
• wij = the weight matrix.

With these variables in mind, we can define the energy function of an RBM for 
𝑖𝑖 ∈ visible , 𝑗𝑗 ∈ hidden , and ij as the lines and columns of the weight matrix as 
follows:

𝐸𝐸(𝑣𝑣, ℎ) = − ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 − ∑ 𝑣𝑣𝑖𝑖ℎ𝑗𝑗  𝑤𝑤𝑖𝑖𝑗𝑗 

Now that we've got a better idea of what an RBM is and the principles behind it, 
let's start to consider how to build an RBM from scratch using Python.
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Building the RBM in Python
We will build an RBM using RBM_01.py from scratch using our bare hands with no 
pre-built library. The idea is to understand an RBM from top to bottom to see how 
it ticks. We will explore more RBM theory as we build the machine.

Creating a class and the structure of the RBM
First, the RBM class is created:

class RBM:
    def __init__(self, num_visible, num_hidden):
        self.num_hidden = num_hidden
        self.num_visible = num_visible

The first function of the class will receive the number of hidden units (2) and the 
number of visible units (6).

The weight matrix is initialized with random weight values at line 20:

        np_rng = np.random.RandomState(1234)
        self.weights = np.asarray(np_rng.uniform(
            low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),
            high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),
            size=(num_visible, num_hidden)))

The bias units will now be inserted in the first row and the first column at line 27:

        self.weights = np.insert(self.weights, 0, 0, axis = 0)
        self.weights = np.insert(self.weights, 0, 0, axis = 1)

The goal of this model will be to observe the behavior of the weights. Observing 
the weights will determine how to interpret the result in this model based on 
calculations between the visible and hidden units.

The first row and column are the biases, as shown in the preceding code snippets. 
Only the weights will be analyzed for the profiling functions. The weights and 
biases are now in place.

Creating a training function in the RBM class
On line 30, the training function is created:

    def train(self, data, max_epochs, learning_rate):
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In this function:

• self is the class
• data is the 6×6 input array, containing 6 lines of movies and 6 columns of 

features of the movies:
np.array([[1,1,0,0,1,1],
          [1,1,0,1,1,0],
          [1,1,1,0,0,1],
          [1,1,0,1,1,0],
          [1,1,0,0,1,0],
          [1,1,1,0,1,0]])

The RBM model in this chapter is using visible binary units, as shown in 
the input, which is the training data of this model. The RBM will use the 
input as training data.
An RBM can contain other types of units: softmax units, Gaussian visible 
units, binomial units, rectified linear units, and more. Our model focuses 
on binary units.

• max_epochs is the number of epochs that the RBM will run to train.
• learning_rate is the learning rate that will be applied to the weight 

matrix containing the weights and the biases.

We will now insert bias units of 1 in the first column on line 35:

        data = np.insert(data, 0, 1, axis = 1)

There are other strategies to initialize biases. This is a trial-and-error process, 
depending on your project. In this case, bias units of 1 are sufficient to do the job.

Computing the hidden units in the training function
On line 37, we start training the RBM during max_epochs by computing the value of 
the hidden units:

        for epoch in range(max_epochs):

The first phase is to focus on the hidden units. We activate the probabilities of the 
hidden units with our weight matrix using dot matrix multiplication:

            pos_hidden_activations = np.dot(data, self.weights)



Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component 
Analysis (PCA)

[ 352 ]

Then, we apply the logistic function as we saw in Chapter 2, Building a Reward 
Matrix – Designing Your Datasets:

            pos_hidden_probs = self._logistic(
                pos_hidden_activations)

The logistic function called is on line 63:

    def _logistic(self, x):
        return 1.0 / (1 + np.exp(-x))

We set the biases to 1:

            pos_hidden_probs[:,0] = 1 # Fix the bias unit.

We now have computed the first epoch of the probabilities of the hidden states 
with random weights.

Random sampling of the hidden units for the 
reconstruction and contractive divergence
There are many sampling methods, such as Gibbs sampling, for example, which has 
a randomized approach to avoid deterministic samples.

In this model, we will choose a random sample that chooses the values of the hidden 
probabilities that exceed the values of a random sample of values. The random.rand 
function creates a random matrix with values between 0 and 1, with a size of num_
examples×self.num_hidden+1:

            pos_hidden_states = pos_hidden_probs >
                np.random.rand(num_examples, self.num_hidden + 1)

This sample will be used for the reconstruction phase we will explore in the next 
section.

We also need to compute an association for the contrastive divergence (the function 
used to update the weight matrix) phase, which is explained hereinunder:

            pos_associations = np.dot(data.T, pos_hidden_probs)

This dot product of the visible data units v × the hidden units h can be represented as 
follows:

𝑣𝑣𝑖𝑖ℎ𝑗𝑗 data 

Now that the dot product has been implemented, we will build the reconstruction 
phase.
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Reconstruction
An RBM uses its input data as its training data, computes the hidden weights 
using a random weight matrix, and then reconstructs the visible units. Instead of 
an output layer as in other neural networks, an RBM reconstructs the visible units 
and compares them to the original data.

The following code applies the same approach as for the hidden units described 
previously to generate visible units:

            neg_visible_activations = np.dot(pos_hidden_states,
                self.weights.T)
            neg_visible_probs = self._logistic(
                neg_visible_activations)
            neg_visible_probs[:,0] = 1 # Fix the bias unit

These negative visible units will be used to evaluate the error level of the RBM, as 
explained here.

Now that we have generated visible units with our sample of hidden unit states, we 
move on and generate the corresponding hidden states:

            neg_hidden_activations = np.dot(neg_visible_probs,
                self.weights)
            neg_hidden_probs = self._logistic(
                neg_hidden_activations)
            neg_associations = np.dot(neg_visible_probs.T,
                neg_hidden_probs)

Note that neg_associations can be represented in the following form:

𝑣𝑣𝑖𝑖ℎ𝑗𝑗 reconst 

Here, we have done the following:

• Computed positive hidden states using the visible units containing the 
training data

• Selected a random sample of those positive hidden states
• Reconstructed negative (generated from the hidden states, not the data) 

visible states
• And, in turn, generated hidden states from the visible states produced

We have reconstructed visible states through this process. However, we need to 
evaluate the result and update the weights.
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Contrastive divergence
To update the weights, we do not use gradient descent. In this energy model, we 
use contrastive divergence, which can be expressed as follows:

𝜀𝜀(𝑣𝑣𝑖𝑖ℎ𝑗𝑗 data − 𝑣𝑣𝑖𝑖ℎ𝑗𝑗 reconst) 

The letter 𝜀𝜀  is the learning rate. The learning rate should be a small value and can 
be optimized throughout the training process. I applied a small value, 0.001 overall.

The source code for updating the weights is as follows:

            self.weights += learning_rate * ((pos_associations -
                neg_associations))

Over the epochs, the weights will adjust, bringing the energy and error level down 
and, hence, bringing the accuracy of the probabilities up.

At this point, we will display the error level and the energy value of the RBM 
throughout the epochs.

Error and energy function
On line 56, the error function calculates the squared sum of the difference between 
the visible units provided by the data and the reconstructed visible units:

            error = np.sum((data - neg_visible_probs) ** 2)

For the energy function, we can use our original energy equation:

𝐸𝐸(𝑣𝑣, ℎ) = − ∑ 𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 − ∑ 𝑣𝑣𝑖𝑖ℎ𝑗𝑗  𝑤𝑤𝑖𝑖𝑗𝑗 

In our code, we will not use the biases since we often set them to 1.

We will also need a function to measure the evolution of the energy of the RBM.

The energy will be measured with a probabilistic function p:

𝑝𝑝(𝑥𝑥) = 𝑒𝑒−𝐸𝐸(𝑥𝑥)
𝑍𝑍  

Z is a partition function for making sure that the sum of the probabilities of each x 
input does not exceed 1:



Chapter 14

[ 355 ]

∑𝑝𝑝(𝑥𝑥)
𝑥𝑥

= 1 

The partition function is the sum of all the individual probabilities of each x:

𝑍𝑍 =∑𝑒𝑒−𝐸𝐸(𝑥𝑥)
𝑥𝑥

 

The corresponding code will calculate the energy of the RBM, which will decrease 
over time as the RBM goes through the epochs:

            energy=-np.sum(data) - np.sum(neg_hidden_probs)-
                np.sum(pos_associations * self.weights)
            z=np.sum(data)+np.sum(neg_hidden_probs)
            if z>0: energy=np.exp(-energy)/z;

You will note that neither the error function nor the energy function influences the 
training process. The training process is based on contrastive divergence.

The error and energy values will measure the efficiency of the model by providing 
some insight into the behavior of the RBM as it trains.

Here is an example of these measurement values at the beginning of the process and 
at the end:

Epoch 0: error is 8.936507744240409  Energy: 1586106430052073.0

...

Epoch 4999: error is 4.498343290467705  Energy: 2.426792619597097e+46

At epoch 0, the error is high, and the energy is high, too.

At epoch 4999, the error is sufficiently low for the model to produce correct feature 
extraction values. The energy has significantly diminished.

Running the epochs and analyzing the results
Once the RBM has optimized the weight-bias matrix for n epochs, the matrix will 
provide the following information for the profiler system of person X, for example:

[[ 0.91393138 -0.06594172 -1.1465728 ]

[ 3.01088157 1.71400554 0.57620638]

[ 2.9878015 1.73764972 0.58420333]

[ 0.96733669 0.09742497 -3.26198615]
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[-1.09339128 -1.21252634 2.19432393]

[ 0.19740106 0.30175338 2.59991769]

[ 0.99232358 -0.04781768 -3.00195143]]

The RBM will train the input and display the features added to X's profile.

The weights of the features have been trained for person X. The first line is the 
bias and examines columns 2 and 3. The following six lines are the weights of X's 
features:

[[ 0.913269 -0.06843517 -1.13654324]

[ 3.00969897 1.70999493 0.58441134]

[ 2.98644016 1.73355337 0.59234319]

[ 0.953465 0.08329804 -3.26016158]

[-1.10051951 -1.2227973 2.21361701]

[ 0.20618461 0.30940653 2.59980058]

[ 0.98040128 -0.06023325 -3.00127746]]

The weights (in bold) are lines 2 to 6 and columns 2 to 3. The first line and first 
column are the biases.

The way to interpret the weights of an RBM remains a careful strategy to build. In 
this case, a creative approach is experimented with to determine marketing behavior. 
There are many other uses of an RBM, such as image processing, for example. In this 
case, the weight matrix will provide a profile of X by summing the weight lines of 
the feature, as shown in the following code:

    for w in range(7):
        if(w>0):
            W=print(F[w-1],":",r.weights[w,1]+r.weights[w,2])

The features are now labeled, as displayed in this output:

love : 2.25265339223

happiness : 2.28398311347

family : -3.16621250031

horizons : 0.946830830963

action : 2.88757989766

An RBM model uses random values and will produce slightly 
different results each time it is trained.
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violence : -3.05188501936

A value>0 is positive, close to 0 slightly positive

A value<0 is negative, close to 0 slightly negative

We can see that beyond standard movie classifications, X likes horizons somewhat, 
does not like violence, and likes action. X finds happiness and love important, but 
not family at this point.

The RBM has provided a personal profile of X—not a prediction, but getting ready 
for a suggestion through a chatbot or just building X's machine mind-dataset.

We have taken a dataset and extracted the main features from it using an RBM. 
The next step will be to use the weights as feature vectors for PCA.

Using the weights of an RBM as feature 
vectors for PCA
In this section, we will be writing an enhanced version of RBM_01.py. RBM_01.
py produces the feature vector of one viewer named X. The goal now is to extract 
the features of 12,000 viewers, for example, to have a sufficient number of feature 
vectors for PCA.

In RBM_01.py, viewer X's favorite movies were first provided in a matrix. The goal 
now is to produce a random sample of 12,000 viewer vectors.

The first task at hand is to create an RBM launcher to run the RBM 12,000 times to 
simulate a random choice of viewers and their favorite movies, which are the ones 
the viewer liked. Then, the feature vector of each viewer will be stored.

RBM_launcher.py first imports RBM as rp:

import RBM as rp

The primary goal of RBM_launcher.py is to carry out the basic functions to run RBM. 
Once RBM is imported, the feature vector's .tsv file is created:

#Create feature files
f=open("features.tsv","w+")
f.close

When rp, the RBM function imported as rp, is called, it will append the feature file.
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The next step is to create the label file containing the metadata:

g=("viewer_name"+"\t"+"primary_emotion"+"\t"+"secondary_emotion"+
    "\n")
with open("labels.tsv", "w") as f:
    f.write(g)

You will notice the use of the word "emotion." In this context, "emotion" refers 
to features for sentiment analysis in general, not human emotions in particular. 
Please read "emotions" in this context as sentiment analysis features.

Now, we are ready to run RBM 12,000+ times, for example:

#Run the RBM feature detection program over v viewers
print("RBM start")
vn=12001
c=0
for v in range (0,vn):
    rp.main()
    c+=1
    if(c==1000):print(v+1);c=0;

print("RBM over")

rp.main() calls the main() function in RBM.py that we will now enhance for this 
process.

We will enhance RBM_01.py step-by-step in another file named RBM.py. We will 
adapt the code starting line 65 to create an RBM launcher option:

A variable name pt is set to 0 or 1, depending on whether we wish to display 
intermediate information:

    # RBM_launcher option
    pt=0  #restricted printing(0), printing(1)

Since this is an automatic process, pt is set to 0.

The metadata of 10 movies is stored in titles:

    # Part I Feature extractions from data sources
    # The titles of 10 movies
    titles=["24H in Kamba","Lost","Cube Adventures",
            "A Holiday","Jonathan Brooks",
             "The Melbourne File", "WNC Detectives",
             "Stars","Space L","Zone 77"]
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A feature matrix of movies with six features per movie is created starting at line 71, 
with the same features as in RBM_01.py:

    # The feature map of each of the 10 movies. Each line is a movie.
    # Each column is a feature. There are 6 features: ['love', 
'happiness', 'family', 'horizons', 'action', 'violence']
    # 1= the feature is activated, 0= the feature is not activated
    movies_feature_map = np.array([[1,1,0,0,1,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,0,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,1,1],
                                   [1,1,0,1,1,0],
                                   [1,0,0,0,0,0],
                                   [1,1,0,1,1,0],
                                   [1,1,0,0,0,1],
                                   [1,0,0,1,1,1],
                                   [1,1,0,0,1,0],
                                   [1,1,0,1,1,1],
                                   [1,1,0,0,1,1]])

Each line of the matrix contains a movie, and each column one of the six features 
of that movie. If the value is 0, the feature is not present; if the value is 1, the feature 
is present.

In the years to come, the number of features per movie will be extended to an 
indefinite number of features per movie to fine-tune our preferences.

An empty output matrix is created. In RBM_01.py, the result was provided. In this 
example, it will be filled with random choices:

    #The output matrix is empty before the beginning of the analysis
    #The program will take the user "likes" of 6 out of the 10 movies
    
    dialog_output = np.array([[0,0,0,0,0,0],
                              [0,0,0,0,0,0],
                              [0,0,0,0,0,0],
                              [0,0,0,0,0,0],
                              [0,0,0,0,0,0],
                              [0,0,0,0,0,0]])

Now, the random movie selector will generate likes or dislikes per movie and per 
viewer:

    #An extraction of viewer's first 6 liked 6 movies out n choices
    #Hundreds of movies can be added. No dialog is needed since a 
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cloud streaming services stores the movie-likes we click on
    mc=0   #Number of choices limited to 6 in this example
    a="no" #default input value if rd==1
    #for m in range(0,10):
    if pt==1:print("Movie likes:");
    while mc<6:
        m=randint(0,9)# filter a chosen movie or allow (this case) a 
person can watch and like a movie twice=an indication
        b=randint(0,1)# a person can like(dislike) a movie the first 
time and not the second(or more) time
        if mc<6 and (a=="yes" or b==1):
            if pt==1:print("title likes: ",titles[m]);
            for i in range(0,6):dialog_output[mc,i]=
                movies_feature_map[m,i];
            mc+=1
        if mc>=6:
            break

We can choose whether to display the input:

    #The dialog_input is now complete
    if pt==1:print("dialog output",dialog_output);

The dialog output is the data collected by the platform through its like/dislike 
interface. The RBM runs its training session:

    #dialog_output= the training data
    training_data=dialog_output
    r = RBM(num_visible = 6, num_hidden = 2)
    max_epochs=5000
    learning_rate=0.001
    r.train(training_data, max_epochs,learning_rate)

The results of the RBM training session are now processed from line 185 to line 239 to 
transform the weights obtained into feature vectors and the corresponding metadata:

###Processing the results
    # feature labels
    F=["love","happiness","family","horizons","action","violence"]
    .../...
        control=[0,0,0,0,0,0]

        for j in range(0,6):
            for i in range(0,6):
                control[i]+=dialog_output[j][i]

    ###End of processing the results
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The goal is now to select the primary feature of a given movie chosen by a given 
viewer. This feature could be "love" or "violence" for example:

    #Selection of the primary feature
    for w in range(1,7):
        if(w>0):
            if pt==1:print(F[w-1],":",r.weights[w,0]);
            tw=r.weights[w,0]+pos
            if(tw>best1):
                f1=w-1
                best1=tw
            f.write(str(r.weights[w,0]+pos)+"\t")
    f.write("\n")
    f.close()

The secondary feature is also very interesting. It often provides more information 
than the primary feature. A viewer will tend to view a certain type of movie. 
However, the secondary features vary from movie to movie. For example, suppose 
a young viewer likes action movies. "Violence" could be the primary feature, 
but the secondary feature could be "love" in one case or "family" in another. 
The secondary featured is stored in the feature vector of this viewer:

    #secondary feature
    best2=-1000
    for w in range(1,7):
        if(w>0):
            tw=r.weights[w,0]+pos
            if(tw>best2 and w-1!=f1):
                f2=w-1
                best2=tw

The metadata is saved in the label file:

    #saving the metadata with the labels
    u=randint(1,10000)
    vname="viewer_"+str(u)
    if(pt==1):
        print("Control",control)
        print("Principal Features: ",vname,f1,f2,"control")
    
    f= open("labels.tsv","a")
    f.write(vname +"\t"+F[f1]+"\t"+F[f2]+"\t")
    f.write("\n")
    f.close()
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This process will be repeated 12,000 times in this example.

The feature vector features.tsv file has been created:

Figure 14.4: The feature vector file

The feature vector labels.tsv metadata file matches the feature vector file:

viewer_name    primary_emotion    secondary_emotion

viewer_8481    love               violence

viewer_3568    love               violence

viewer_8667    love               horizons

viewer_2730    love               violence

viewer_3970    love               horizons

viewer_1140    love               happiness

You will note that "love" and "violence" appear often. This comes from the way 
I built the dataset based mostly on movies that contain action and some form 
of warm relationship between the characters, which is typical in movies for the 
younger generations.

Now that the feature vectors and the metadata file have been created, we can use 
PCA to represent the points.

Understanding PCA
PCA is applied very efficiently to marketing by Facebook, Amazon, Google, 
Microsoft, IBM, and many other corporations, among other feature processing 
algorithms.

Probabilistic machine learning training remains efficient when targeting apparel, 
food, books, music, travel, cars, and other market consumer segments.

However, humans are not just consumers; they are human beings. When they 
contact websites or call centers, standard answers or stereotyped emotional tone 
analysis approaches can depend on one's nerves. When humans are in contact 
with doctors, lawyers, and other professional services, a touch of humanity is 
necessary if major personal crises occur.
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The goal of the PCA, in this context, is to extract key features to describe 
an individual or a population. The PCA phase will help us build a mental 
representation of X's profile, either to communicate with X or use X's mind as a 
powerful, mindful chatbot or decision-maker.

PCA isn't a simple concept, so let's take some time to understand it properly. We'll 
start with an intuitive explanation, and after that, we'll get into the mathematics 
behind it.

PCA takes data and represents it at a higher level.

For example, imagine you are in your bedroom. You have some books, magazines, 
and music (maybe on your smartphone) around the room. If you consider your 
room as a 3D Cartesian coordinate system, the objects in your room are all in 
specific x, y, z coordinates.

For experimentation purposes, take your favorite objects and put them on your bed. 
Put the objects you like the most near one another, and your second choices a bit 
further away. If you imagine your bed as a 2D Cartesian space, you have just made 
your objects change dimensions. You have brought the objects that you value the 
most into a higher dimension. They are now more visible than the ones that have 
less value for you.

They are not in their usual place anymore; they are on your bed and at specific 
coordinates depending on your taste.

That is the philosophy of PCA. If the number of data points in the dataset is very 
large, the PCA of a "mental dataset" of one person will always be different from 
the PCA representation of another person, like DNA. A "mental dataset" is a 
collection of thoughts, images, words, and feelings of a given person. It is more 
than the classic age, gender, income, and other neutral features. A "mental dataset" 
will take us inside somebody's mind.

Mathematical explanation
The main steps in calculating PCA are important for understanding how to go from 
the intuitive approach to how TensorBoard Embedding Projector represents datasets 
using PCA.

That is what a conceptual representation learning metamodel 
(CRLMM) is about as applied to a person's mental representation. 
Each person is different, and each person deserves a customized 
chatbot or bot treatment.
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Variance
Variance is when a value changes. For example, as the sun rises in summer, the 
temperature gets warmer and warmer. The variance is represented by the difference 
between the temperature at a given hour and then the temperature a few hours later. 
Covariance is when two variables change together. For example, the hotter it gets 
when we are outside, the more we will sweat to cool our bodies down.

• Step 1: Calculate the mean of the array data1. You can check this with 
mathfunction.py, as shown in the following function:
data1 = [1, 2, 3, 4]
M1=statistics.mean(data1)
print("Mean data1",M1)

The answer is 2.5. The mean is not the median (the middle value of an array).
• Step 2: Calculate the mean of array data2. The mean calculation is executed 

with the following standard function:
data2 = [1, 2, 3, 5]
M2=statistics.mean(data2)
print("Mean data2",M2)

The answer is �̅�𝑋 = 2.75 . The bar above the X signifies that it is a mean.
• Step 3: Calculate the variance using the following equation:

var =
∑ (𝑋𝑋 − �̅�𝑋)2𝑥𝑥=𝑛𝑛
𝑥𝑥=1

𝑛𝑛  

Now, NumPy will calculate the variance with the absolute value of each x 
minus the mean, sum them up, and divide the sum by n, as shown in the 
following code snippet:
#var = mean(abs(x - x.mean())**2).
print("Variance 1", np.var(data1))
print("Variance 2", np.var(data2))

Some variances are calculated with n – 1 depending on the population of the 
dataset.

The result of the program for variances is as displayed in the following output:

Mean data1 2.5

Mean data2 2.75

Variance 1 1.25

Variance 2 2.1875
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We can already see that data2 varies a lot more than data1. Do they fit together? 
Are their variances close or not? Do they vary in the same way? Our goal in the 
following section is to find out whether two words, for example, will often be found 
together or close to one another, taking the output of the embedding program into 
account.

Covariance
The covariance will tell us whether these datasets vary together or not. The equation 
follows the same philosophy as variance, but now both variances are joined to see 
whether they belong together:

cov(𝑥𝑥, 𝑦𝑦) =
∑ (𝑋𝑋 − �̅�𝑋)(𝑌𝑌 − �̅�𝑌)𝑥𝑥=𝑛𝑛
𝑥𝑥=1

𝑛𝑛  

As with the variance, the denominator can be n – 1 depending on your model. 
Also, in this equation, the numerator is expanded to visualize the co-part of 
covariance, as implemented in the following array in mathfunction.py:

x=np.array([[1, 2, 3, 4],
            [1, 2, 3, 5]])
a=np.cov(x)
print(a)

NumPy's output is a covariance matrix, a:

[[1.66666667 2.16666667]

 [2.16666667 2.91666667]]

If you increase some of the values of the dataset, it will increase the value of the 
parts of the matrix. If you decrease some of the values of the dataset, the elements 
of the covariance matrix will decrease.

Looking at some of the elements of the matrix increase or decrease that way takes 
time and observation. What if we could find one or two values that would give us 
that information?

Eigenvalues and eigenvectors
To make sense of the covariance matrix, the eigenvector will point to the direction 
in which the covariances are going. The eigenvalues will express the magnitude or 
importance of a given feature.

To sum it up, an eigenvector will provide the direction and the eigenvalue of the  
importance for the covariance matrix, a. With those results, we will be able to represent 
the PCA with TensorBoard Embedding Projector in a multidimensional space.
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Let w be an eigenvalue(s) of a. An eigenvalue(s) must satisfy the following equation:

dot(a,v)=w * v

There must exist a vector, v, for which dot(a,v) is the same as w*v.

NumPy will do the math through the following function:

from numpy import linalg as LA
w, v = LA.eigh(a)
print("eigenvalue(s)",w)

The eigenvalues are displayed (in ascending order) in the following output:

eigenvalue(s) [0.03665681 4.54667652]

Now, we need the eigenvectors to see in which direction these values should 
be applied. NumPy provides a function to calculate both the eigenvalues and 
eigenvectors together. That is because eigenvectors are calculated using the 
eigenvalues of a matrix, as shown in this code snippet:

from numpy import linalg as LA
w, v = LA.eigh(a)
print("eigenvalue(s)",w)
print("eigenvector(s)",v)

The output of the program is as follows:

eigenvector(s) [[-0.79911221  0.6011819 ]

 [ 0.6011819   0.79911221]]

Eigenvalues come in a 1D array with the eigenvalues of a.

Eigenvectors come in a 2D square array with the corresponding value (for each 
eigenvalue) in columns.

Creating the feature vector
The remaining step is to sort the eigenvalues from the highest to the lowest value. 
The highest eigenvalue will provide the principal component (most important). 
The eigenvector that goes with it will be its feature vector. You can choose to ignore 
the lowest values or features. In the dataset, there will be hundreds, and often 
thousands, of features to represent. Now we have the feature vector:

feature vector = FV = {eigenvector1, eigenvector2 … n}
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n means that there could be many more features to transform into a PCA feature 
vector.

Deriving the dataset
The final step is to transpose the feature vector and original dataset and multiply 
the row feature vector by row data:

Data that will be displayed = row of feature vector * row of data

Summing it up
The highest value of eigenvalues is the principal component. The eigenvector will 
determine in which direction the data points will be oriented when multiplied by 
that vector.

Using TensorFlow's Embedding Projector to 
represent PCA
TensorBoard Embedding Projector offers an in-built PCA function that can be 
rapidly configured to fit our needs. TensorBoard can be called as a separate program 
or embedded in a program as we saw in Chapter 13, Visualizing Networks with 
TensorFlow 2.x and TensorBoard.

We will then extract key information on the viewer marketing segment that will 
be used to start building a chatbot in Chapter 15, Setting Up a Cognitive NLP UI/CUI 
Chatbot.

First, go to this link: https://projector.tensorflow.org/

For the following functions, bear in mind that TensorBoard Embedding Projector is 
working at each step and that it might take some time depending on your machine. 
We load the data produced by RBM_launcher.py and RBM.py by clicking on Load:

Figure 14.5: The Load button

https://projector.tensorflow.org/
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Once the Load data from your computer windows appear, we load the feature 
vector features.tsv file by clicking on Choose file:

Figure 14.6: Loading the feature vector file

We load the labels.tsv metadata file by clicking on Choose file in Step 2 
(optional):

Figure 14.7: Loading a TSV file

To obtain a good representation of our 12,000+ features, click on Sphereize data, 
which is not checked in default mode:

Figure 14.8: Sphereizing data
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We now choose label by secondary_emotion, color by secondary_emotion, along 
with edit by secondary_emotion:

Figure 14.9: Managing labels

To get a nice view of the data, we activate night mode so that the moon should 
be active:

Figure 14.10: Activating the night mode

At this point, we have a nice PCA representation that turns like Earth, the ideas 
in our mind, or the minds of all of the viewers we are analyzing depending on how 
we use the features. The dots on the image are datapoints representing the features 
we calculated with an RBM and then represented with an image using PCA. It is 
like peeking inside the mind:

Figure 14.11: A PCA representation of features
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The PCA representation of the features of a given person or a group of people 
provides vital information to create dialogs in a chatbot. Let's analyze the PCA to 
prepare data for a chatbot.

Analyzing the PCA to obtain input entry 
points for a chatbot
The goal is to gather some information to get started with our cognitive chatbot. 
We will use the filters provided by TensorBoard.

Choose secondary_emotion as the basis of our filters:

Figure 14.12: Filtering data

The features we are analyzing are as follows:

F=["love","happiness","family","horizons","action","violence"]

We need to see the statistics per feature.

We type the feature in TensorBoard's search option, such as "love," for example, 
and then we click the down arrow:

Figure 14.13: TensorBoard's search option
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The PCA representation changes its view in realtime:

Figure 14.14: PCA representation of the RBM features

There are 643 points for "love." Notice that the "love" points are grouped in a 
relatively satisfactory way. They are mostly in the same area of the image and not 
spread out all over the image. This grouping shows that the weights of the RBM 
provided features that turned out to be sufficiently correct in the PCA for this 
experiment.

We repeat the process for each feature, to obtain the number of points per feature 
and visualize them. For the dataset supplied on GitHub for this chapter, we obtain:

• Love: 643
• Happiness: 2267
• Family: 0
• Horizons: 1521
• Action: 2976
• Violence: 4594

Important: This result will naturally change if RBM_launcher.py 
runs again since it's a random viewer-movie choice process.
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The results provide interesting information on the marketing segment we are 
targeting for the chatbot:

• Violence and action point to action movies.
• Family=0 points to younger viewers; teenagers, for example, more interested 

in action than creating a family.
• Discovering happiness and love are part of the horizons they are looking for.

This is typical of superhero series and movies. Superheroes are often solitary 
individuals.

We will see how this works out when we build our chatbot in Chapter 15, Setting Up 
a Cognitive NLP UI/CUI Chatbot.

Summary
In this chapter, we prepared key information to create the input dialog of a chatbot. 
Using the weights of an RBM as features constituted the first step. We saw that 
we could use neural networks to extract features from datasets and represent them 
using the optimized weights.

Processing the likes/dislikes of a movie viewer reveals the features of the movies 
that, in turn, provide a mental representation of a marketing segment.

PCA chained to an RBM will generate a vector space that can be viewed in 
TensorBoard Embedding Projector in a few clicks.

Once TensorBoard was set up, we analyzed the statistics to understand the 
marketing segment the dataset originated from. By listing the points per feature, 
we found the main features that drove this marketing segment.

Having discovered some of the key features of the marketing segment we were 
analyzing, we can now move on to the next chapter and start building a chatbot for 
the viewers. At the same time, we will keep backdoors available in case the dialogs 
show that we need to fine-tune our feature vector statistics.
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Questions
1. RBMs are based on directed graphs. (Yes | No)
2. The hidden units of an RBM are generally connected to one another.  

(Yes | No)
3. Random sampling is not used in an RBM. (Yes | No)
4. PCA transforms data into higher dimensions. (Yes | No)
5. In a covariance matrix, the eigenvector shows the direction of the vector 

representing that matrix, and the eigenvalue shows the size of that vector. 
(Yes | No)

6. It is impossible to represent a human mind in a machine. (Yes | No)
7. A machine cannot learn concepts, which is why classical applied 

mathematics is enough to make efficient artificial intelligence programs 
for every field. (Yes | No)

Further reading
• For more on RBMs, refer to: https://skymind.ai/wiki/restricted-

boltzmann-machine

• The original reference site for the source code in this chapter can be found 
here: https://github.com/echen/restricted-boltzmann-machines/
blob/master/README.md

• The original Geoffrey Hinton paper can be found here: http://www.
cs.toronto.edu/~hinton/absps/guideTR.pdf

• For more on PCA, refer to this link: https://www.sciencedirect.com/
topics/engineering/principal-component-analysis

• Ready-to-use RBM resources are located here: https://pypi.org/project/
pydbm/

https://skymind.ai/wiki/restricted-boltzmann-machine
https://skymind.ai/wiki/restricted-boltzmann-machine
https://github.com/echen/restricted-boltzmann-machines/blob/master/README.md
https://github.com/echen/restricted-boltzmann-machines/blob/master/README.md
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://www.sciencedirect.com/topics/engineering/principal-component-analysis
https://www.sciencedirect.com/topics/engineering/principal-component-analysis
https://pypi.org/project/pydbm/
https://pypi.org/project/pydbm/
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15
Setting Up a Cognitive NLP 

UI/CUI Chatbot
There are 300,000+ chatbots on Facebook alone. Adding another brick in that 
wall means next to nothing unless you give your chatbot a purpose and provide 
it with real content. Cognitive content represents the core goal of attracting more 
attention than your hundreds of thousands of competitors and SEO experts. We 
will put RBM-PCA chained algorithms to work in this chapter to bring a chatbot 
to another level. We will use the information provided by the RBM-PCA to design 
our dialog.

As you will discover in this first section, creating an agent with Dialogflow and 
beginning a dialog represents no effort at all. Google Dialogflow provides the 
intuitive features to get a chatbot running in no time. The Dialogflow tutorial 
can guide you to reach this simple goal in a few minutes. Understanding what 
an agent is, teaching it to ask a question, and providing an answer can be done 
by a 10-year-old child. I experimented with this by letting a 5-year-old and a 
9-year-old child loose on this software. They both did not even realize it was 
work. They were having fun!

On Dialogflow, you don't need to know how to program, and you don't need to 
be a linguist or any other kind of expert. So, what will your market differentiation 
be? Content. Your chatbot needs to have a purpose, with well-prepared content 
beyond asking and answering simple questions.

Beyond creating your first dialog, the goal of this chapter will provide you with 
a sense of purpose and content that will help you produce meaningful chatbots.
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That being said, let's create an agent together and a short dialog to illustrate both 
how to create a chatbot and also to provide meaningful content.

The following topics will be covered in this chapter:

• Creating a cognitive agent based on the preparation of Chapter 14, Preparing 
the Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal 
Component Analysis (PCA)

• Learning the basic concepts of Dialogflow and chatbots in general
• Deploying the chatbot on your website

We will start with basic concepts and then create an agent with entities, intents, 
dialogs, and a fulfillment function. We will be using the preparation established in 
the previous chapter. We will test its UI with spelling correction and dialogs. Then, 
we will test the chatbot's conversational user interface (CUI) capability by setting 
up machine learning speech recognition and speech functions.

Basic concepts
Before creating an agent, we'll want to have an understanding of the basic concepts.

This is not a Dialogflow course, but rather an introductory chapter to get us started 
on making our own NLP CUI chatbot. We'll begin by defining some key terms.

Defining NLU
NLU means natural language understanding. NLU is a subset of natural language 
processing (NLP). Natural language refers to the everyday language we use without 
having to force ourselves to learn precise words in order to obtain information 
from a machine.

If we had to learn a dictionary of the only words that would work with a system, 
it would be easier just to read a text. NLP encompasses all forms of natural language 
processing including NLU. Through AI, NLU has become more involved in trying 
to understand what a given sentence means.

Why do we call chatbots "agents"?
A chatbot entails a chat between at least two parties. In our case, the bot is an NLU 
module. That's not a very nice marketing way to put it. It sounds like: "you are 
now talking to an NLU module." You cannot pretend a bot is a person. The word 
agent conveys the impression of a business agent, a sports agent, or a secret agent, 
which is mysterious! It came to mean a computer system that gathers information. 
Now it's an NLP agent with NLU capability.
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Creating an agent to understand Dialogflow
The fastest way to learn Dialogflow is to create a dialog from scratch. Log 
into Dialogflow and go to the console. The following is part of a screenshot of 
Dialogflow's dashboard. You can see the link to the console on the top right:

Figure 15.1: Accessing Dialogflow's console

Once you click on Go to console, you will be asked to sign in if you haven't signed 
in yet. A Google account is a prerequisite:

Figure 15.2: Signing in with a Google account

Once you have followed the sign in instructions and are signed in, you will reach 
the Dialogflow console.

Click on the drop-down list in the top-right corner, irrespective of which default 
agent is displayed. A list of existing or default agents will be displayed:

Figure 15.3: The list of agents
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Scroll down the list until you reach Create new agent (if none, click on the Create 
agent option). Click on Create new agent, and you will reach the following window:

Figure 15.4: Entering the agent's name

Call the agent Agent + <your name or initials> to make sure you will have 
a unique name. I will call the one for this chapter cogfilmdr. The agent in the 
chapter will thus be referred to as cogfilmdr. Let Google create a default agent 
structure with English as the main language.

Once that is done, click on the settings button in the top left:

Figure 15.5: The settings button

You will reach the configuration window of your agent.

For the moment, we just have one important option to check. The version of the API 
must be V2 API. V1 API will shut down on March 2020:

Figure 15.6: Using the V2 API

The agent is now created, and we can create entities.

Entities
Most chatbot tutorials explain intents first. I do not agree. Once you know where 
you're going, in this case, choosing a movie based on Chapter 14, Preparing the 
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal Component 
Analysis (PCA), it makes sense to build some bricks before building your structure.
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Dialogflow (or any chatbot) uses entities to extract useful information in a user's 
utterance (not necessarily a sentence) to understand their motivation.

We will use the entities created in Chapter 14. We will first create an entity named 
movies that will contain the 10 target movies used in Chapter 14.

    titles=["24H in Kamba","Lost","Cube Adventures",
            "A Holiday","Jonathan Brooks",
            "The Melbourne File", "WNC Detectives",
            "Stars","Space L","Zone 77"]

Click on Entities on the left-hand side of the window:

Figure 15.7: Dialogflow menu

Then, click on CREATE ENTITY:

Figure 15.8: Creating an entity
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You will be asked to provide an entity name:

Figure 15.9: Entering the name of entity

Enter movies. Before saving the entity, we must enter the movies we have chosen:

Figure 15.10: Entity list

You will notice that once you add a movie, a default synonym is filled in 
automatically. You can add other synonyms if you wish.
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Once the titles are entered, click on the SAVE button, which is mandatory (it is not 
an auto-save interface):

Figure 15.11: Saving an entity

We will now create the feature entity. The features in the RBM.py program in Chapter 
14 were as follows:

# Each column is a feature. There are 6 features: ['love', 
'happiness', 'family', 'horizons', 'action', 'violence']

We will name it features, follow the same process as for the movies entity, and 
then click on SAVE:

Figure 15.12: Creating a feature entity
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Click on Entities under your agent, and you will see a list of entities for the agent, 
as shown in the following diagram:

Figure 15.13: List of entities

If you click an entity, a list of possible choices will appear.

Now that your agent knows the movie and feature entities, creating the intents 
makes sense.

Intents
An intent is a clear formulation intention to do something. I named the agent 
cogfilmdr. For the agent, the user's intention may be to ask for a movie to watch.

To trigger a response, we must enter training phrases.

Training phrases are groups of words that the user will enter through text or 
speech. The more sentences you enter, the better your chatbot will become. This 
is why starting with a ready-to-use Dialogflow makes sense if an existing agent 
satisfies your needs.

To create our sample dialog, we will use the dataset results supplied on GitHub for 
Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) 
and Principal Component Analysis (PCA). The main terms have been extracted with 
their features that we displayed with TensorBoard. When we extracted the data from 
the RBM, we sorted the features as follows:

Love: 643

Happiness: 2267

Family: 0
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Horizons: 1521

Action: 2976

Violence: 4594

We displayed the feature space in a PCA:

Figure 15.14: TensorBoard representation of features

When starting a chatbot project, it is best to be very careful with going straight 
to generating dialogs automatically. It is much better to start with a simple, well-
structured chatbot that works on a limited amount of tasks. I call this a "closed 
chatbot" meaning that we control every aspect of dialog. An "open chatbot" means 
that information flows in automatically to create automatic dialogs. That can be a 
goal after getting the chatbot to run as a "closed chatbot" for some time using the 
information prepared with AI algorithms.

The results of the work we did in Chapter 14 provide interesting information on 
the marketing segment we are targeting for the chatbot.

Violence and action point to action movies. Family=0 points to younger viewers, 
teenagers, for example, more interested in action than creating a family. Discovering 
happiness and love is part of the horizons they are looking for. This is typical of 
superhero series and movies. Superheroes are often solitary individuals.

Reminder: This result will naturally change if RBM_launcher.py 
runs again since it's a random viewer-movie choice process.
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We will now create an intent by entering the Intents window:

Figure 15.15: Choosing the Intents option

The Intents window appears. Click on CREATE INTENT:

Figure 15.16: Creating an intent

The intent window will appear to create a question-and-answer dialog in a few steps:

• First, enter choose_movie as the name of the intent.
• Then, in the training phrases section, enter: "I would like to watch one of 

your movies."

At this point, we have an intent name and a possible user question:
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Figure 15.17: Entering intent information

Now, we need to provide a response based on the statistics for this market segment 
we drew from Chapter 14. We will use the word action to encompass a movie that 
contains violence and a happy ending as in the typical superhero movies. To do 
that, scroll down to the Text Response section to add a response and enter "Would 
you like to watch an action movie?", as shown in the following screenshot:

Figure 15.18: Entering the text response
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Now that we have a basic dialog, let's save and test it. To do that, go to the test 
console in the top right of the console window:

Figure 15.19: Test console

We can use a CUI or text:

• Text dialog: Enter the user phrase: "I would like to watch one of your 
movies."
The user will be surprised to see the agent's answer, which is, "Would you 
like to watch an action movie?"

Figure 15.20: Responses

This suggestion comes as a surprise for the user and might seem strange. 
This is because the RBM-PCA approach we used to prepare the dialog 
targets a market segment.
Advanced machine learning shortens the path of a user request to a 
satisfactory response. It constitutes both a time saving and an energy saving 
process for the user.

• CUI: Click on the microphone icon in the test console. Make sure that this 
microphone is authorized, or it will not work:
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Figure 15.21: Microphone

When you click on the microphone, this will trigger a recording of your 
request. Say, "I would like to watch one of your movies." Then, click on the 
stop button to stop the recording. The response to the request will appear:

Figure 15.22: Text responses

To answer the question, we will need to use the context functionality of Dialogflow.

Context
Context means that Dialogflow is going to remember a dialog and use follow-up 
exchanges without starting from scratch each time.

The user has asked to watch a movie, and the bot suggested an action movie. The 
bot will remember this through context as it continues the dialog.

Click on the agent's Intent in the menu and hover over choose_movie. You will see 
Add follow-up intent appear. This means that all of the variables of the main intent 
can be stored, and a follow-up intent added that would remember what was said 
previously, just like us in a conversation.

Click on Add follow-up intent:

Figure 15.23: Add follow-up intent button
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In this case, the agent has planned two cases, yes or no. We will explore the yes 
answers in this chapter, and the more complex no answers in Chapter 16, Improving 
the Emotional Intelligence Deficiencies of Chatbots.

In Chapter 14, we created a movie feature matrix with the movie titles and features:

    # Part I Feature extractions from data sources
    # The titles of 10 movies
    titles=["24H in Kamba","Lost","Cube Adventures",
            "A Holiday","Jonathan Brooks",
            "The Melbourne File", "WNC Detectives",
            "Stars","Space L","Zone 77"]
    # The feature map of each of the 10 movies. Each line is a movie.
    # Each column is a feature. There are 6 features: ['love', 
'happiness', 'family', 'horizons', 'action', 'violence']
    # 1= the feature is activated, 0= the feature is not activated
    movies_feature_map = np.array([[1,1,0,0,1,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,0,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,1,1],
                                   [1,1,0,1,1,0],
                                   [1,0,0,0,0,0],
                                   [1,1,0,1,1,0],
                                   [1,1,0,0,0,1],
                                   [1,0,0,1,1,1],
                                   [1,1,0,0,1,0],
                                   [1,1,0,1,1,1],
                                   [1,1,0,0,1,1]])

We now need to transpose this information in a chart we can use to add content 
depth to the dialog:

MOVIE/ 
FEATURE LOVE HAPPINESS FAMILY HORIZONS ACTION VIOLENCE
24H in 
Kamba 1 1 0 0 1 1
Lost 1 1 0 1 1 1
Cube 
Adventures 1 0 0 0 0 1
A Holiday 1 1 0 1 1 1
Jonathan 
Brooks 1 0 0 0 1 1
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The 
Melbourne 
File 1 1 0 1 1 0
WNC 
Detectives 1 0 0 0 0 0
Stars 1 1 0 1 1 0
Space L 1 1 0 0 0 1
Zone 77 1 0 0 1 1 1

We have already surprised the user a bit by proposing an action movie directly 
without going through tedious lists. We are using all of the information we 
obtained through inputs, intermediate AI outputs, and final outputs.

Now, we are going even further by filtering the movies that fit the action-violence-
happiness features extracted with the RBM-PCA chained algorithms.

Only the following movies in the chart match action-violence-happiness:

• 24H in Kamba
• Lost
• A Holiday
• Zone 77

At random, we will choose "Zone 77." Once we have entered many possibilities, 
a random choice can be suggested either in the response area or with scripts. 
This development is beyond the scope of this chapter. For this example, we suppose 
it is probable that the viewer will be satisfied with this suggestion we make. We 
are in a yes scenario of the dialog. In Chapter 16, Improving the Emotional Intelligence 
Deficiencies of Chatbots, we will explore the no scenarios of this dialog, which 
requires more cognitive designing to keep the satisfaction path short.

For the moment, let's suggest "Zone 77." To do this:

1. Click on Add follow-up intent.
2. Select yes.
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You now have a follow-up intent linked to the dialog:

Figure 15.24: Follow-up intents

Click on choose_movie - yes. The intent will appear. You will notice that Dialogflow 
has already filled in several forms of yes in the Training phrases section, as shown in 
the following screenshot:

Figure 15.25: Training phrases

All that is left to do in this scenario is to scroll down to the Responses section and 
add our answer:
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Figure 15.26: Text response

Now, we go back to the intent and add a yes follow-up to this follow-up to process 
the viewer's yes answer, just as we did previously:

Figure 15.27: Follow-up intents
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Now, we click on choose_movie - yes - yes, and we will see the yes answers that 
Dialogflow prepared for us:

Figure 15.28: Training phrases for a follow-up intent

However, this time, we would like to answer with a script and not an answer we 
type in.

To do that, we can use fulfillment.

Adding fulfillment functionality to an 
agent
A dialog can quickly become boring in everyday life and even more so in a chatbot. 
When we begin to guess everything that an interlocutor has to say, our mind slowly 
drifts away. We cannot help it. Humans are a curious species. Fulfillment will 
change the perspective of dialog. That is what I call purpose beyond the pragmatic 
approach that says fulfillment adds business logic to a dialog. 
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To make the dialog sustainable, even from a practical point of view, it has to excite 
the user enough to want it to come back and discover more about your chatbot 
beyond obtaining business information from it.

If you look fulfilling up in a dictionary, you will find that it means providing 
happiness or satisfaction, which is exactly the feeling of purpose you want your 
chatbot to convey.

That being said, there is work to do in order to reach that goal. Dialogflow provides a 
wide array of tools to reach fulfillment for the user, the designer, and the developers.

To start with, Dialogflow uses an inbuilt, seamless version of Node.js for fulfilling 
functions.

Defining fulfillment
Various fulfillment or additional dialog functions are available:

• Webhook: A webhook is an event transmitted via HTTP. It is sent as a POST, 
which contains data posted to a predetermined URL. It works as an HTTP 
callback. The data sent to the URL will be parsed by a script on the server 
side. Once the service has processed the information, it will perform an 
action and send data back as a response.
We will not use the webhook for this example. However, it is important to 
note that you can use a webhook to create dialogs of your own in another 
environment. You can even generate automatic dialogs and call them from 
Dialogflow.
If you are interested in preparing dialogs and uploading them, you can go 
to the Training page of the agent on the left-hand side of the screen and 
upload phrases:

Figure 15.29: Training window

You can also upload an agent or even a prebuilt agent designed by Google 
Dialogflow. For our example, we will use the inline editor.
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• Fulfillment with the inline Node.js editor: Defining a webhook URL can 
be the simplest approach. However, using the inline editor provides Node.js 
functionality for even more potential.

• Fulfillment with the inline Node.js editor and Cloud Functions for 
Firebase: The inline Node.js can call a large variety of Cloud Functions for 
Firebase in a few time-saving lines of code.

Enhancing the cogfilmdr agent with a 
fulfillment webhook
When the user answers yes to watch "Zone 77," we can answer with a response or a 
link to a website. To use a response, go to the yes - yes follow-up of our dialog in the 
Intents window:

Figure 15.30: Intents and follow-up intents

Click on choose_movie - yes - yes and scroll down to Text Response and add a 
response such as "Sure, click on the movie and watch it," as shown in the following 
screenshot:

Figure 15.31: Text response
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We would also decide that this is final and that it is the end of the conversation by 
activating the Set this intent as end of conversation option:

Figure 15.32: End of conversation option

But we will not do this for the moment; let's scroll down further to activate the inline 
webhook functionality:

Figure 15.33: Enabling the webhook functionality

Now we will go to the Fulfillment window:

Figure 15.34: Access to the Fulfillment interface
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First, enable the inline editor:

Figure 15.35: Inline editor

To add some fun to the dialog, let's suppose that chatbot is in a cool start-up 
coffee shop and that watching movies on individual screens is a service to attract 
customers. You can watch the movie with headsets (you, friends, family), for 
example. We add this service to our dialog.

We go to the intentMap of the script and add a gotomovie function:

let intentMap = new Map();
intentMap.set('Default Welcome Intent', welcome);
intentMap.set('Default Fallback Intent', fallback);
// intentMap.set('your intent name here', yourFunctionHandler);
// intentMap.set('your intent name here', googleAssistantHandler);
intentMap.set('choose_movie-yes-yes', gotomovie);

The recommended format is intentMap.set(<Intent>,<function>).

That done, we now write the function with our own text and website link:

function gotomovie(agent) {
    agent.add('This message is from Coffee Shop movie fans!');
    agent.add(new Card({
    title: 'A blog for Coffee Shops with movies to watch with friends 
and family',
    imageUrl: 'https://www.eco-ai-horizons.com/coffeeshop.jpg',
    text: 'The button takes you to the movie selection we have\n  
Great to have you here! :-)',
    buttonText: 'Click here',
    buttonUrl: 'https://www.primevideo.com/'
    })
    );
}

All we have to do now is click on DEPLOY, and that's it!

I added a link to Amazon Prime Video to show that you can use IBM Watson, 
Google, Microsoft, Amazon services, and more to enhance your chatbots!
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For our example, once the script has been deployed, we go back to the beginning 
of our dialog until we reach this point, which will take us to the movie we wish to 
watch. In this case, I just displayed a streaming site.

You can obtain the full script of index.js in the dialogflowFulfillment.zip on 
GitHub in CH15 and copy it into the editor without importing the whole package.

Getting the bot to work on your website
Let's get a bot running on your website in a few clicks.

1. Scroll down to Integrations for the agent you wish to deploy: either your 
own agent or the coffee shop agent.

2. Activate the Web Demo option.
3. An embedded code will appear along the lines of the following:

<iframe height="430" width="350" src="https://bot.dialogflow.
com/81298e0c-1acb-44bb-9c68-89666805342a"></iframe>

Copy the code on the page of the website you wish to implement it on.

To test it first, you can copy the URL in your browser and test it.

Important: You can customize all the dialogs you wish in this 
editor and use a range of Google Cloud functions. The sky is not 
even the limit. You can go to Mars!

Note: You can use a speech dialog if you activate your microphone 
for this site on your browser. Don't forget to access the page 
using https, otherwise the microphone might be blocked. Also, 
fulfillment cannot be activated in this HTML page without some 
additional development.

However, you can also click on Google Assistant in the console 
and create an application in a few clicks, and then deploy it on 
smartphones and Google Home, for example. If you create a nice 
chatbot, you can have the whole world use it in a few clicks!
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Machine learning agents
An NLP chatbot cannot function without machine learning for text recognition, 
utterances, sentences, speech, entities, intents, and many other aspects of a dialog.

In this section, we will explore the following:

• Speech-to-text
• Text-to-speech
• Spelling correction

Let's see how we can apply machine learning in each of these contexts.

Using machine learning in a chatbot
Generally, when we hear of machine learning in a chatbot, we think of a machine 
learning program running during a dialog as a response.

In this section, we will focus on how machine learning is used to improve a chatbot 
and to make it work.

Speech-to-text
Without a speech-to-text function, there is no way you can implement a chatbot or 
any speech application on a smart speaker such as Google Home or Amazon Echo. 
Smart speakers are going to play an increasing part in our lives in the years to come.

Click on the settings button next to the name of the agent and then on Speech:

Figure 15.36: Speech options

We will focus on the main settings of the speech recognition functions:
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• Enhanced Speech Models: This is an advanced machine learning option 
that comes with the Enterprise Edition. It shows how far speech recognition 
has come. In the standard version, the system already works fairly well. 
In the advanced version, it uses data logging functionality to enhance 
speech recognition.

• Auto Speech Adaptation: This is interesting because this function uses the 
intents and entities created to train and adapt to speech recognition of the 
agent's dialog. It can be activated in the free version as follows:

Figure 15.37: Enabling Auto Speech Adaptation

Save the settings before leaving this interface.

Text-to-speech
Now, we can go to the Speech tab and enable the Automatic Text to Speech 
function. I have a cloud account. If you cannot activate this in the lab, we will use the 
free online site to test the possibilities and limits of the machine learning algorithm.

Note: There is an enhanced speech recognition model option, but 
you have to upgrade to the enterprise version.



Setting Up a Cognitive NLP UI/CUI Chatbot

[ 400 ]

Click on the settings button next to the name of the agent and then on Speech:

Figure 15.38: Speech options

We will first configure the main settings of text-to-speech:

• Agent language: Start with en(English) to reach the largest audience. 
However, bear in mind that Dialogflow produces good voice results in 
several languages.

• Voice: Start with Automatic before trying the different WaveNet model 
variations. WaveNet models build voices from scratch with neural networks.

• Speaking rate: You can leave it at 1, or accelerate the rate or slow it down. 
For sports commentaries, for example, it could be faster.

• Pitch: You can make the voice higher or lower in semitones.
• Volume gain: You can reduce or increase the volume. The best is to leave it 

at 0 to start. Then, while testing the agent, see if it needs to be changed.

Once these parameters are set, save the model:
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Figure 15.39: Voice configuration

Now, test your configuration or experiment with different settings by entering a 
sentence and clicking on the PLAY button:

Figure 15.40: Experimenting with different voice settings

Once we have finished setting up the voice parameters, we need to set up the 
spelling machine learning features.

Spelling
We have one step left before we explore the possibilities and limits of the machine 
learning algorithms provided by Google. The machine learning spelling feature 
needs to be activated.

For that, we are going to click on the ML Settings tab, activate AUTOMATIC 
SPELL CORRECTION, and define an acceptable threshold below which our 
agent will refuse to recognize errors.
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Click on the settings button next to the name of the agent and then on ML Settings:

Figure 15.41: ML Settings tab

You will have access to a variety of options to work around a user's spelling 
mistakes. It works like the spelling corrector of a search engine when we mistype our 
request and Google, for example, suggests the correct spelling.

The options are as follows:

• ML CLASSIFICATION THRESHOLD determines a confidence score below 
which an intent will not be triggered unless there is a fallback intent (a 
general response).

• AUTOMATIC SPELL CORRECTION uses machine learning to correct user 
spelling mistakes. It should be activated.

• AUTOMATIC TRAINING may slow the dialog down, so careful use of this 
function is recommended.

• AGENT VALIDATION automatically validates an agent during the training 
process. Notice that training is triggered every time you save an intent, for 
example.

The following screenshot shows default values you might want to start with:
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Figure 15.42: ML Settings options

Click on the TRAIN button every time you change an option.

Why are these machine learning algorithms 
important?
If it's just an educational chatbot like the cogfilmdr agent example, mistakes are 
acceptable. It's unpleasant, but acceptable. As we are going to see in Chapter 16, 
Improving the Emotional Intelligence Deficiencies of Chatbots, if a chatbot is going to 
be used by a large number of people, this means many days of training, tests, and 
creating workarounds to the machine learning limits of these functions. And that's 
just for one language!
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If we are deploying in several languages, this means many days times the number 
of languages! Even with machine learning, it's tough work. Without machine 
learning, it's impossible.

Machine learning is not merely important; it is vital:

• If the chatbot cannot recognize a written utterance because of a simple 
spelling mistake, we will get complaints, bad comments, and the SEO ship 
will sink.

• If the chatbot cannot recognize what you are saying on Google Home or 
any smart speaker, then that means a lot of trouble, maybe even a refund.

• If the chatbot's answer comes out in a phony voice that sounds like a 20th 
century robot, then nobody will want to use it.

Machine learning in chatbots is here to stay, but there are improvements to make 
in terms of emotional intelligence, like we must now explore in the next chapter.

Summary
Google Dialogflow provides a complete set of tools on Google Cloud to build a 
chatbot, add services to it, and customize it with your cognitive programs.

A good chatbot fits the requirements. Thinking the architecture through before 
starting development avoids underfitting (not enough functionality) or overfitting 
(functions that will not be used) of the model.

Careful AI preparation, as accomplished in Chapter 14, Preparing the Input of Chatbots 
with Restricted Boltzmann Machines (RBMs) and Principal Component Analysis (PCA), 
provides a solid basis for a chatbot by making the path from the start of the dialog 
to the goal of the dialog much shorter and efficient.

Determining the right intent (what is expected of the chatbot), determining the 
entities to describe the intent (the subsets of phrases and words), and creating a 
proper dialog will take quite some time.

If necessary, adding services and specially customized machine learning functions 
will enhance the quality of the system. CUI with speech recognition, voice dialogs, 
and spelling correction features makes a chatbot frictionless to use.

The dialog we built in this chapter was based on yes answers. We supposed that 
the probabilities generated with the RBM and PCA in Chapter 14 were correct. 
However, humans are not easily confined to stereotypes.
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The Chapter 16, Improving the Emotional Intelligence Deficiencies of Chatbots, explores 
emotional intelligence through basic concepts, Dialogflow functions, and a cognitive 
approach to improve the content of a chatbot.

Questions
1. Can a chatbot communicate like a human? (Yes | No)
2. Are chatbots necessarily AI programs? (Yes | No)
3. Chatbots only need words to communicate. (Yes | No)
4. Do humans only chat with words? (Yes | No)
5. Humans only think in words and numbers. (Yes | No)
6. Careful machine learning preparation is necessary to build a cognitive 

chatbot. (Yes | No)
7. For a chatbot to function, a dialog flow needs to be planned. (Yes | No)
8. A chatbot possesses general AI, so no prior development is required.  

(Yes | No)
9. A chatbot translates fine without any function other than a translation API. 

(Yes | No)
10. Chatbots can already chat like humans in most cases. (Yes | No)

Further reading
• For more on Google Dialogflow, refer to this link: https://dialogflow.

com/

• For more on chatbots and UI development, refer to this link: https://
www.packtpub.com/application-development/hands-chatbots-and-
conversational-ui-development

https://dialogflow.com/
https://dialogflow.com/
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development
https://www.packtpub.com/application-development/hands-chatbots-and-conversational-ui-development
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16
Improving the Emotional 
Intelligence Deficiencies  

of Chatbots
Emotions remain irrational and subjective. AI algorithms never forsake rationality 
and objectivity. Cognitive dissonance ensues, which complicates the task of 
producing an efficient chatbot.

In Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines 
(RBMs) and Principal Component Analysis (PCA), we built a rational chained 
algorithm process with an RBM and a PCA approach. From there, we extracted 
critical objective data on a market segment. From that market segment and its 
features, we then designed a dialog in Chapter 15, Setting Up a Cognitive NLP UI/
CUI Chatbot. The dialog was rational, and we produced a probable choice of services 
for the user. We did this out of good faith, to make the path from a request to its 
outcome as short as possible. It was a yes path in which everything went smoothly.

In this chapter, we will confront human nature with unexpected reactions. A no 
path will challenge our dialog. One of the problems we face resides in emotional 
polysemy, confusing emotional signals from a user.

We will address the no unexpected path with information drawn from Chapter 14, 
Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBM) and Principal 
Component Analysis (PCA) and Chapter 15, Setting up a Cognitive NLP UI/CUI Chatbot, 
and go into the world of data logging. 
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Data logging will provide critical contextual data to satisfy the user. The goal will 
be to create emotions, not just react randomly to a user's emotional state.

Finally, we will open the door to researching ways to generate text automatically 
through RNN-LSTM approaches. The idea will be to create automatic dialogs in 
the future based on data logging.

The following topics will be covered in this chapter:

• Emotional polysemy
• Small talk
• Data logging
• Creating emotions
• Exploring RNN-LSTM approaches

We will first explore the difference between simply reacting to emotions and 
creating emotions.

From reacting to emotions, to creating 
emotions
Designing a chatbot that reacts to what a user expresses is one thing. But creating 
emotions during a dialog like a human does requires deeper understanding of how 
a chatbot manages emotions. Let's start with emotional polysemy.

Solving the problems of emotional polysemy
We will be enhancing the emotional intelligence of a chatbot starting by addressing 
the issue of emotional polysemy. We are used to defining polysemy with words, 
not emotions, in the sense that polysemy is the capacity of a word to have multiple 
meanings. In Chapter 6, How to Use Decision Trees to Enhance K-Means Clustering, we 
explored the confusion that arose with the word "coach." "Coach" can mean a bus or 
a sports trainer, which leads to English to French translation issues.

Polysemy also applies to the interpretation of emotions by artificial intelligence. 
We will explore this domain with two examples: greetings and affirmations.

Then we will go through the speech recognition and facial analysis as silver bullet 
solutions fallacies that mislead us into thinking it's easy to read emotions on faces.
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The greetings problem example
To implement this chapter, open Dialogflow and go to the agent named 
cogfilm+<your unique ID> created in Chapter 15, Setting Up a Cognitive NLP UI/
CUI Chatbot.

Suppose somebody types "Hi" to a chatbot agent. Almost everybody will think that 
this is a good beginning. But is it really?

Let's explore some of the many possible interpretations:

• "Hi" meaning the person is very tense and irritated: This could be the 
case of a top manager who never uses "Hi" to say hello, does not like 
chatbots, or doubts that the one that is being tested is worth anything at all.
This manager usually says, "Good morning," "Good afternoon," and "Good 
evening."

• "Hi" meaning "So what?": It is more like, "Yeah, hi." This could be a person, 
P, who dislikes person Q who just said good morning to P.

• "Hi," meaning "I'm in trouble.": This could be a usually chirpy, happy 
person who says, "Hello, everyone. How are things going today?" But today, 
it's just a brief "Hi." This will trigger alert reactions from others, such as 
"Are you okay?," "Is something wrong?"

• "Hi," meaning "I'm trying to be nice.": This could be a person that is usually 
grumpy in the morning and just sits down and stares down a laptop until 
the caffeine in their coffee kicks in. But today, this person comes in totally 
in shape, wide awake, and says, "Hi." This might trigger alert reactions 
from others such as, "Somebody had a great evening or night! Am I 
wrong?", with some laughter from the others.

I could go on with literally hundreds of other situations and uses of "Hi." Why? 
Because humans have an indefinite number of behaviors that can be reflected in 
that first "Hi" in an encounter.

This could apply to ending a conversation without saying "bye" or saying it in 
many ways. The way a person says goodbye to another person in the morning 
can have an incredible number of significations.

This is therefore one of our challenges. Before we go further with this, let's look 
at one more challenge by considering the affirmation example.
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The affirmation example
Suppose somebody types or says "Yes" in a chatbot. Does that really mean "Yes"?

• "Yes", as in "Yeah, whatever.": The user hates the chatbot. The dialog is 
boring. The user is thinking that if they do not say "Yes" and get it over 
with, this dialog will go on forever.

• "Yes", as in "I'm afraid to say no.": The user does not want to say "Yes." 
The question could be, "Are you satisfied with your job?" The user could 
fear the answers are logged and monitored. The user fears sanctions. 
Although this person hates their job, the answer will be "Yes" or might 
even be "I sure do!"

• "Yes" as a good faith "yes" that a person regrets right after: A person says 
"Yes" to a purchase, stimulated by the ad pressure at that moment in the 
chatbot. But minutes later, the same person thinks, "Why did I say yes and 
buy that?" Therefore, some platforms allow refunds even before the product 
or service is delivered.

Just as for "Hi," I could list hundreds of situations of emotional polysemy with "Yes."

Now, that we have understood the challenge at hand, let's explore the silver bullet 
fallacies mentioned previously.

The speech recognition fallacy
Many editors and developers believe that speech recognition will solve the problem 
of emotional intelligence by detecting the tone of a voice.

However, emotional polysemy applies to the tone of voice, as well. Human beings 
tend to hide their emotions when they feel threatened, and open up when they trust 
their environment.

Let's go back to the "Hi" and "Yes" examples.

"Hi" in a chirpy tone: A person, X, comes into an office, for example. Somebody says, 
"Oh, hi there! Great to see you!" Person Y answers "Hi" in a very happy tone. Google 
Home or Amazon Alexa, in their research lab, produces 0.9 probability that the 
conversation is going well.

This could be true. Or it could be false.

For example, person Y hates person X. Person X knows it and says, "Great to see 
you!" on purpose. Person Y knows that person X knows that they hate each other but 
won't give in to bursting out first. So person "Y" answers "Hi" in a super-happy tone.

At that point, many turn to facial analysis.
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The facial analysis fallacy
Emotional polysemy also applies to facial analysis. Many think that deep learning 
facial analysis will solve the polysemy problem.

I saw a post recently by a developer with a picture of an obviously forced smile 
with the text stating that happiness could be detected with DL facial analysis!

Let's take two basic facial expressions and explore them: a smile and a frown. By 
now, you know that emotional polysemy will apply to both cases.

A smile
If somebody smiles and a DL facial analysis algorithm detects that smile, it means 
the person is happy. Is this true? Maybe. Maybe not.

Maybe the person is happy. Maybe the smile is ironic, meaning "Yeah, sure, dream 
if you want, but I don't agree!" It could mean "Get out of my way," or, "I'm happy 
because I'm going to hurt you," or, "I'm happy to see you." Who knows?

The truth is that nobody knows, and sometimes even the person that smiles doesn't 
know. Sometimes a person will think, "Why did I smile at her/him? I hate her/him!"

A frown
If somebody frowns and a DL facial analysis algorithm detects that frown, it means 
the person is sad or unhappy. Is that true? Maybe. Maybe not.

Maybe the person is happy that day. Things are going smoothly, and the person 
just forgot a book, for example, at home before coming to this location. Maybe the 
second after the person will smile, thinking, "So what? It's a great day and I don't 
care!"

Maybe the person is unhappy. Maybe the person is having a great time watching 
some kind of ball game, and their favorite player missed something. The second 
after, the person thinks "Oh, so what? My team is winning anyway," and smiles. 
Some people just frown if they're thinking hard, but it doesn't mean they're unhappy.

We can now see that there are thousands of cases of emotional polysemy that occur 
with words, tone of voice, and facial expressions, and therefore there is no magical 
solution that is going to suddenly overcome the inherent difficulty that AI have 
when it comes to interpreting people's emotions.

We will now explore some realistic solutions to this problem.
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Small talk
Small talk is not a silver bullet to solve the emotional intelligence problem of 
chatbots at all. In fact, even without speaking about chatbots, we all suffer from 
emotional distress in one situation or another. Small talk adds little unimportant 
phrases to a dialog such as "wow," "cool," "oops," "great," and more.

We do not need to seek perfection, but show goodwill. Every human knows the difficulty 
of emotional intelligence and polysemy. A human can accept an error in a dialog 
if goodwill is shown by the other party to make up for that error.

Small talk is a little step in making amends to show goodwill.

To achieve the "making customers happy" purpose, scroll down the main menu 
to Small Talk, click on that option, and enable it, as shown in the following 
screenshot. We will be focusing on Courtesy and Emotions:

Figure 16.1: Small Talk in menu

Courtesy
Courtesy will help make a conversation smoother when things go wrong. Emotional 
intelligence is not answering 100% correctly every time.

Emotional intelligence (EI) is adjusting to an environment, correcting a mistake made, and 
trying to ease the tension at all times.

First, click on Enable, which will trigger small talk responses during a dialog:

Figure 16.2: Enabling Small Talk
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You will notice that the Courtesy progress bar is at 0%. We need to increase EI:

Figure 16.3: Small talk themes

We will carefully answer the first possible "question" a user can ask or a phrase 
they might express: That's bad.

We are in trouble here! This is the worst-case scenario. We are going to have to 
work hard to make up for this.

Emotional polysemy makes the situation extremely difficult to deal with. The one 
thing we do not want to do is to pretend our bot is intelligent.

I would recommend two courses of action:

First, answer carefully, saying that we need to investigate this with something like:

I am very sorry about this. Could you please describe why it's bad? We will regularly check 
our history log and try to improve all the time. You can also send us an email at <your 
customer service email address>. We will answer as soon as possible.

You can enter this answer as follows and click on the SAVE button:

Figure 16.4: Courtesy

You will notice the Courtesy progress bar has jumped up to 17%. We have 
covered a critical area of a dialog. Default answers are provided when we don't fill 
everything in, but they are random, which makes it better to enter your own phrases 
if you activate this function.
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Now test the dialog by entering "That's bad" in the test console at the top right. You 
will see the response appear:

Figure 16.5: Default response

If you type "bad" instead of "That's bad," it will work too, thanks to the ML 
functionality of Dialogflow:

Figure 16.6: Default response

Data logging will tremendously help to boost the quality of a chatbot.

We will explore data logging in the next section. But let's check our emotions first.
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Emotions
We will deal with the first reaction: Ha ha ha! If we go back to emotional polysemy 
issues, knowing the user can say this at any time, we are in trouble again!

Figure 16.7: Managing Emotions

Is the user happy, or are they making fun of the chatbot? Who knows? Even with 
facial analysis and tone analysis, a quick "Ha ha ha!" is very difficult to interpret.

I would suggest a careful low-profile answer such as "Well, that's cheerful!", for 
example.

This will get the user to think that the chatbot has a sense of humor. When you 
click on SAVE, the Emotions progress bar will jump up.

You will notice that beyond the variants Dialogflow detects, you can also enter 
variants directly in your responses. Also, if the user enters a phrase that is not in 
the dialog, there is a fallback intent in the intents list.

Small talk might make a dialog smoother, but it is only one of the components of 
emotional intelligence, in a chatbot or in everyday life.

Data logging will take us a step further.

Data logging
In Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, we took the context of a 
dialog into account using follow-up intents. However, even follow-up intents will 
not provide solutions to unexpected answers on the part of a user.
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To enhance a dialog, data logging will create a long-term memory for the chatbot 
by remembering the key aspects of a dialog.

A user and a Dialogflow designer have to agree to the terms of the Google 
Dialogflow data logging features, as described on this page: https://cloud.
google.com/dialogflow/docs/data-logging.

Privacy is a serious matter. However, you will notice that when you use a search 
engine for a given product, you end up viewing or receiving ads related to the 
search. This is data logging.

Making this decision depends on your goal and target audience. Suppose the user 
accepts the terms of the agreement. Now, data logging is activated. Then, data 
logging will provide the chatbot with long-term memory.

The rest of this chapter explores data logging, with the assumption of it having 
been clearly accepted by the user.

Google Cloud, like all chatbot platforms (Amazon, Microsoft, and others), offers 
logs to improve chatbots. Many functions, interfaces, and services provide great 
support to boost the quality of dialogs.

Data logging can drive cognitive-adaptive dialogs beyond speech recognition tasks.

We will explore one way of doing this through the history of a dialog. Go to History:

Figure 16.8: Dialog history option in the menu

You will see a list of past conversations:

https://cloud.google.com/dialogflow/docs/data-logging
https://cloud.google.com/dialogflow/docs/data-logging
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Figure 16.9: Dialog history

Notice the All platforms list, which contains information for Google Assistant and 
other platforms. You can deploy your chatbot by clicking on See how it works on 
Google Assistant on the right-hand side of the screen. From there, you can follow 
the instructions and have it running on smartphones, Google Home, and elsewhere. 
Also, you will have advanced log data to improve the chatbot.

If you tested "That's bad" in the Courtesy section, the history of the interactions will 
be present:

Figure 16.10: Chatbot interactions
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One way to know the username is to ask the user their name when an issue comes 
up. This can come in handy to customize a dialog. We can thus have a special dialog 
for this person or this category of persons. We can thus ask the person to state 
their name in their response with an email address, for example. When we analyze 
the data logs manually or with scripts in the Fulfillment section, we can track the 
problem down and improve the chatbot on a personal level.

Having completed the Small Talk sections and then activated the data log 
authorization for your use of data logging, we can proceed to create emotions. 
Google will continue to improve our chatbot with our data logging features.

If we know which user said what, we can improve the dialog, as we will see in 
the next section.

Creating emotions
When the user enters ambiguous responses involving emotional polysemy, it is 
difficult for a chatbot to consider the hundreds of possibilities described in the 
previous sections.

In this section, we will focus on a user trying to obtain a service such as access to 
a movie on a streaming platform.

An efficient chatbot should create emotions in the user. The most effective method is to:

• Generate customer satisfaction. Customer satisfaction is the ultimate emotion 
a chatbot should try to produce in a frictionless and expected dialog. If the 
customer is not satisfied with an answer, tensions and frustration will build 
up.

• Use functions such as the RBM-PCA approach of Chapter 14, Preparing the 
Input of Chatbots with Restricted Boltzmann Machines (RBMs) and Principal 
Component Analysis (PCA), to suggest options that shorten the dialog path, 
thus its duration making the user "happy."

We will now explore the no path of the dialog encountered in Chapter 15, Setting Up 
a Cognitive NLP UI/CUI Chatbot.

To access the no path of the dialog, go to Intents, click on the choose_movie intent 
and click on Add follow-up intent, and click on no in the drop-down menu:

Figure 16.11: Adding a follow-up intent
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A choose_movie - no option should now appear:

Figure 16.12: Follow-up options

Click on choose_movie - no.

Google has entered several default "no" variants, as shown in the following 
screenshot:

Figure 16.13: Dialogflow training phrases

This "no" response comes as a surprise to the chatbot. In Chapter 14, this market 
segment was explored. Something has gone wrong!

The chatbot was working on a specific market segment, the "action" superhero 
fan type viewer. The answer being "no" means that we need to examine the other 
features available.
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The features in Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann 
Machines (RBMs) and Principal Component Analysis (PCA), in the RBM.py program 
were:

    # Each column is a feature. There are 6 features:
    # ['love','happiness','family','horizons','action','violence']

The "action" feature predicted so far groups several features:

Action = {happiness, action, violence}

The following features were not taken into account:

{love, family, horizons}

Since we want to keep the path short, we must find a way to ask a question that:

• Covers these three features
• Can use an existing feature matrix for another marketing segment

The viewer also may have:

• Recently seen enough action movies
• Progressively grown out of the superhero period of their life and be looking 

for other types of movies

In both cases, the viewer's market segment might overlap with another segment that 
contains family-love values.

As we saw in the Adding fulfillment functionality to an agent section in Chapter 15, 
Setting up a Cognitive NLP UI/CUI Chatbot, we can use a script to:

• Cover these three features
• Use an existing feature matrix for another marketing segment

Classical marketing segments take age into account. Let's continue in this direction 
and prepare for the possibility that the viewer, a young superhero fan, is growing a 
bit older and entering another age-movie-type segment that overlaps with the one 
used in RBM.py in Chapter 14:

    movies_feature_map = np.array([[1,1,0,0,1,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,0,1],
                                   [1,1,0,1,1,1],
                                   [1,0,0,0,1,1],
    .../...
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We should add some love-family features in the matrix with the corresponding 
movies. We will then obtain another marketing segment. In the end, the chatbot 
will manage many marketing segments, which is the standard practice on many 
streaming platforms.

A variant of the chart in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot, could 
be as follows:

MOVIE/
FEATURE LOVE HAPPINESS FAMILY HORIZONS ACTION VIOLENCE
24H in 
Kamba 1 1 0 0 1 1
Lost 1 1 0 1 1 1
Cube 
Adventures 1 0 0 0 0 1
A Holiday 1 1 0 1 1 1
Jonathan 
Brooks 1 0 0 0 1 1
The 
Melbourne 
File 1 1 0 1 1 0
WNC 
Detectives 1 0 0 0 0 0
Stars 1 1 0 1 1 0
Space II 1 1 1 0 1 0
Zone 77 1 0 0 1 1 1

This feature matrix contains a movie with the missing features from the previous 
matrix: Space II.

A streaming platform contains many marketing segments:

M = {s1, s2, … sn}

Many of these marketing segments contain variants, merged features, combinations, 
and more.
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Since data logging has been activated, from this point on we now have the following 
information:

• Whether this viewer has seen one of the several movies available in this 
marketing segment. This constitutes another tricky issue since some 
viewers may want to watch a movie again.

• The viewer's new marketing segment.

Building a chatbot for a streaming platform will take months of designing with 
many build possibilities. For this example, we will focus on the age progression 
scenario, keep the dialog path as short as possible, and provide the following 
response:

"Would you like to watch SPACE II? It's a blockbuster with a family that has an 
adventure in space. There is some action but it's mostly the story of a family that 
tries to survive in space."

Scroll down to the Text Response section and enter the response as follows, then 
click on SAVE to trigger the training process:

Figure 16.14: A look at the training process

If the viewer answers "yes," then the dialog will lead to the movie's page. To 
continue in this direction, go back to Chapter 15, Setting Up a Cognitive NLP UI/CUI 
Chatbot, and a "yes" follow-up exchange to this part of the dialog as you wish.

We have added some emotional intelligence to the agent. We will now explore the 
future of chatbot architecture through text augmentation with recurrent neural 
networks (RNNs).

An RNN can process sequential data such as sequences of words, events, and more.
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RNN research for future automatic dialog 
generation
The future of chatbots lies in producing dialogs automatically, based on data 
logging dialogs, their cognitive meanings, the personal profile of a user, and 
more. As RNNs progress, we will get closer to this approach. There are many 
generative approaches that can produce automatic sequences of sounds and 
texts. Understanding an RNN is a good place to start.

An RNN model is based on sequences, in this case, words. It analyzes anything 
in a sequence, including images. To speed the mind-dataset process up, data 
augmentation can be applied here, exactly as it is to images in other models.

A first look at its graph data flow structure shows that an RNN is a neural network 
like the others previously explored. The following diagram shows a conceptual 
view of an RNN:

Figure 16.15: Data flow structure

The y inputs (test data) go to the loss function (Loss_Train). The x inputs (training 
data) will be transformed through weights and biases into logits with a softmax 
function. 
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Looking at the RNN area of the graph shows the following basic_lstm_cell:

Figure 16.16: The basic_lstm_cell—the RNN area of the graph

The LSTM cell of an RNN contains "forget" gates that will prevent vanishing 
gradients when the sequences become too long for an RNN unit.

RNNs at work
An RNN contains functions that take the output of a layer and feed it back to the 
input in sequences simulating time. This feedback process takes information in a 
sequence, for example:

The -> movie -> was -> interesting -> but -> I -> didn't -> like -> it

An RNN will unroll a stack of words into a sequence and parse a window of 
words to the right and the left. For example, in this sentence, an RNN can start 
with interesting (bold) and then read the words on the right and left (in italic). These 
are some of the hyperparameters of the RNN.

This sequence aspect opens the door to sequence prediction. Instead of recognizing 
a whole pattern of data at the same time, it is recognizing the sequence of data, as 
in this example.

A network with no RNN will recognize the following vector as a week, a pattern just 
like any other:

Monday
Tuesday

Wednesday
Thursday
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Friday
Saturday
Sunday

An RNN will explore the same data in a sequence by unrolling streams of data:

Monday -> Tuesday -> Wednesday -> Thursday -> Friday -> Saturday -> Sunday

The main difference lies in the fact that once trained, the network will predict the 
word that follows; if Wednesday is the input, Thursday could be one of the outputs. 
This is shown in the next section.

RNN, LSTM, and vanishing gradients
To simulate sequences and memory, an RNN and an LSTM will use backpropagation 
algorithms. An LSTM is an improved version of RNN in some cases.

An RNN often has problems with gradients when calculating them over deeper 
and deeper layers in the network. Sometimes, it vanishes (too close to 0) due to 
the sequence property, just like us when a memory sequence becomes too long.

The backpropagation (just like us with a sequence) becomes less efficient. There 
are many backpropagation algorithms, such as vanilla backpropagation, which 
is commonly used. This algorithm performs efficient backpropagation because it 
updates the weights after every training pattern.

One way to force the gradient not to vanish is to use a ReLU activation function, 
f(x) = max(0, x), forcing values on the model so that it will not get stuck.

Another way is to use an LSTM cell containing a forget gate between the input 
and the output cells, a bit like us when we get stuck in a memory sequence, and 
we say "whatever" and move on.

The LSTM cell will act as a memory gate with 0 and 1 values, for example. This 
cell will forget some information to have a fresh view of the information it has 
unrolled into a sequence. In recent TensorFlow versions (2.0 and above), you can 
choose to use RNN or LSTM units in a layer. Your choice will depend on several 
factors. The key factor is the behavior of the gradient. If it vanishes in the RNN 
units, you might want to improve your model or move to LSTM units.

The key idea of an RNN to bear in mind is that it unrolls information into 
sequences, remembering the past to predict the future. The main idea of an LSTM 
relies upon its "forget" gate, avoiding the vanishing gradient. In TensorFlow 2.x, 
the choice of RNN or LSTM units can be made in a few lines.

Let's run an example on Google Colaboratory.
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Text generation with an RNN
To view the program, log into your Dialogflow account, upload text_generation_
tf2.ipynb (located in the CH16 directory in the GitHub repository of this book) to 
your Google Colaboratory environment, and save it in your drive, as explained in the 
Getting started with Google Colaboratory section in Chapter 13, Visualizing Networks with 
TensorFlow 2.x and TensorBoard.

This TensorFlow authors' program has been well designed for educational purposes. 
The program starts by setting up TensorFlow 2.x and the necessary libraries.

In this section, we will thus focus on the main points of the program that you can 
then explore, run, and modify.

Vectorizing the text
The main entry step to an RNN consists of taking the sequence of words, the strings, 
and converting them into a numerical representation:

# Creating a mapping from unique characters to indices
char2idx = {u:i for i, u in enumerate(vocab)}
idx2char = np.array(vocab)
text_as_int = np.array([char2idx[c] for c in text])

We obtain a numerical value for each character:

{
  '\n':   0,
  ' ' :   1,
  '!' :   2,
  '$' :   3,
  '&' :   4,
  "'" :   5,
  ',' :   6,
  '-' :   7,
  '.' :   8,
  '3' :   9,
  ':' :  10,
  ';' :  11,
  '?' :  12,
  'A' :  13,
  'B' :  14,
  'C' :  15,
.../...
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You will notice that this "dictionary" can be interpreted in two ways:

• character2number
• integer2character

The RNN will run its calculations but the predictions will come out in characters.

For example, the program can take the first sequence of the loaded text and produce 
the mapped integers of the text as follows:

# Show how the first 13 characters from the text are mapped to 
integers
print ('{} ---- characters mapped to int ---- > {}'.format(
    repr(text[:13]), text_as_int[:13]))

In this example, the result is:

'First Citizen' ---- characters mapped to int ---- > [18 47 56 57 58  1 
15 47 58 47 64 43 52]

The RNN will run through numerical sequences, integer segments, or windows 
of the text to train and then make predictions. To do this, the program creates 
examples and targets as for all neural networks that have training batches.

Building the model
Building neural networks with TensorFlow 2 has become so simple to write in a 
few lines that you can even miss seeing them in the example programs!

Let's clarify some basic concepts before getting to those few lines:

• A sequential model contains a pile or stack of layers.
• Embedding takes the number of each character and stores it in a vector.
• GRU stands for gated recurrent unit. A GRU contains gates that manage 

hidden units, keeping some information and forgetting other information. 
An RNN GRU can sometimes get confused when the sequences become 
long and thus mismanage the gradient, which then disappears. The more 
efficient LSTM units are part of a recurrent network unit as well with 
feedback connections with a cell, an input gate, an output gate, and a forget 
gate. But in the end the choice of the types units will always be yours 
depending on the context of your project. In any case, the key concept to 
keep in mind is that recurrent networks manage sequences of data, keeping 
the past in mind while forgetting some information.
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• A dense layer, in this case, is the output layer.
• A timestep is a predefined sequence length. In another model, it could be 

actual time if we are working on time-dependent data.

A sequential model is built in three layers only:

def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
    model = tf.keras.Sequential([
        tf.keras.layers.Embedding(vocab_size, embedding_dim,
                                  batch_input_shape=[batch_size,
                                                     None]),
    tf.keras.layers.GRU(rnn_units,
                        return_sequences=True,
                        stateful=True,
                        recurrent_initializer='glorot_uniform'),
    tf.keras.layers.Dense(vocab_size)
    ])
    return model

And that's it! You can replace the basic rnn_units with an LSTM layer if the model 
requires it during the training phase. Once the model is built, the model:

• Looks an embedding up, as in a "dictionary."
• Runs the GRU for a timestep.
• The dense layer will then generate logits (see Chapter 2, Building a Reward 

Matrix – Designing Your Datasets) to produce a prediction using a likelihood 
function, a probability distribution.

The following figure of the TensorFlow author's program sums the process up:
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Figure 16.17: TensorFlow model

Generating text
After trying and training the model, the program will generate text automatically, for 
example:

print(generate_text(model, start_string=u"ROMEO: "))
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As you'll notice, ROMEO:  has been set up as the starting string. It then shows that 
the following predictions come from the initial text written by Shakespeare and are 
loaded at the beginning of the program:

ROMEO: Isick a tranch

It wast points for a sisten of resold thee, testement.

Petch doth my sweety beits are so of my sister.

KING RICHARD III:

Thou forget,

How did you burzenty day, 'tis oatly; heaven, for a womanous dear!

This is thy for mercy to the Kanging;

He that from the brothers of Gloucestersherding blame,

Thisble York, se me?

You can go back to the beginning of the program and change the URL. Instead of 
loading Shakespeare, change it to your own text:

path_to_file = tf.keras.utils.get_file('<YOUR FILE NAME>',
    '<YOUR URL>')

Before running the program, go to Runtime -> Change runtime type:

Figure 16.18: Runtime type
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Click on Change runtime type:

Figure 16.19: Notebook settings

I recommend using the GPU. Also, verify that Omit code cell output when saving 
this notebook is not checked if you want to save your notebook with the results 
produced when you run the program.

You are now ready to explore and do your own research to contribute to the future 
of automatic text generation!

Summary
Emotional polysemy makes human relationships rich and excitingly unpredictable. 
However, chatbots remain machines and do not have the ability to manage wide 
ranges of possible interpretations of a user's phrases.

Present-day technology requires hard work to get a cognitive NPL CUI chatbot 
up and running. Small talk will make the conversation smoother. It goes beyond 
being a minor feature; courtesy and pleasant emotional reactions are what make 
a conversation go well.

We can reduce the limits of present-day technology by creating emotions in the 
users through a meaningful dialog that creates a warmer experience. Customer 
satisfaction constitutes the core of an efficient chatbot. One way to achieve this goal 
is to implement cognitive functions based on data logging. We saw that when a user 
answers "no" when we expect "yes," the chatbot needs to adapt, exactly the way 
we humans do.
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Cognitive data logging can be achieved through the preparation we explored in 
Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann Machines (RBMs) 
and Principal Component Analysis (PCA), the cognitive dialog of Chapter 15, Setting 
Up a Cognitive NLP UI/CUI Chatbot, and the adaptive dialog built in this chapter. 
In our example, the viewer changed market segments, and the chatbot logged the 
new profile. Dialogflow-fulfillment scripts can manage the whole adaptive process, 
though that is beyond the scope of this book.

We looked at the study of sequences of data through RNNs eventually leading 
to automatic dialogs. Chatbots, using cognitive approaches such as the RBM-PCA 
and the adaptive data logging inferences of this chapter, will one day build their 
own dialogs.

The following chapters will explore ways to achieve higher levels of artificial 
intelligence through genes, biological neurons, and qubits. The next chapter 
explores genetic algorithms and then implements them into a hybrid neural network.

Questions
1. When a chatbot fails to provide a correct response, a hotline with actual 

humans needs to take over the conversation. (Yes | No)
2. Small talk serves no purpose in everyday life or with chatbots. It is best to 

just get to the point. (Yes | No)
3. Data logging can be used to improve speech recognition. (Yes | No)
4. The history of a chatbot agent's conversations will contain valuable 

information. (Yes | No)
5. Present-day technology cannot make use of the data logging of a user's 

dialogs. (Yes | No)
6. An RNN uses sequences of data to make predictions. (Yes | No)
7. An RNN can generate the dialog flow of a chatbot automatically for all 

applications. (Yes | No)

Further reading
• Information on RNNs: https://www.tensorflow.org/tutorials/

recurrent

• More on text generation: https://www.tensorflow.org/tutorials/text/
text_generation

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/text/text_generation
https://www.tensorflow.org/tutorials/text/text_generation
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17
Genetic Algorithms in Hybrid 

Neural Networks
In this chapter and the following two chapters, we will explore the world inside us. 
First, in this chapter, we will use the model of our genes as an optimizing tool. In 
Chapter 18, Neuromorphic Computing, we will enter our biological brain activity and 
create neuromorphic networks. Finally, in Chapter 19, Quantum Computing, we will 
go even deeper and use the quantum material in us to build quantum mechanic 
models for quantum computing.

A slight change in any of these tiny entities (genes, neurons, qubits) within us can 
modify our whole existence.

In this chapter, we will discover how to enter our chromosome, find our genes, 
and understand how our reproduction process works. From there, we will begin 
to implement an evolutionary algorithm in Python, a genetic algorithm (GA).

Charles Darwin offered "survival of the fittest" as a model to represent evolution. 
In some ways, the model is controversial. In 21st century societies, we tend to 
provide support to those who are not the fittest, as best as possible. However, 
in mathematics, we do not have this ethical problem.

In AI, we need to provide an accurate solution. If we generate several solutions, we 
can apply the "survival of the fittest" to abstract numbers.

In some cases, GAs dramatically reduce the number of combinations required 
to find the optimal solution to a problem. By generating mathematical offspring, 
choosing the fittest, and producing new stronger abstract generations, the system 
often reaches a more optimal solution than propagating permutations. 
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A well-designed GA can optimize the architecture of a neural network, thereby 
producing a hybrid neural network.

The following topics will be covered in this chapter:

• Evolutionary algorithms; genetic algorithms
• Extending the genes of genetic algorithms to optimizing tools
• Hybrid neural networks
• Using a genetic algorithm to optimize an LSTM

Let's begin by first working to understand what evolutionary algorithms are.

Understanding evolutionary algorithms
In this section, we will drill down from our heredity down to our genes to 
understand the process that we will then represent while building our Python 
program.

Successive generations of humans activate some genes and not others, producing 
the wonderful diversity of humanity. A human lifetime is an episode in a long line 
of thousands of generations of humans. We all have two parents, four grandparents, 
and eight great-grandparents, which amounts to 23 ascendants. Suppose that we 
extend this line of reasoning to four generations per century and then over about 
12,000 years when the last glacial period ended and the planet started warming up. 
We obtain:

• 4 * 1 century * 10 centuries = 1,000 years and 40 generations
• 40 generations * 12= 480
• Adding up to 2480 mathematical ascendants to anybody living today on the 

planet!

Even if we limit ourselves to 1,000 years, 240, that adds up to 1,099,511,627,776 
ascendants a thousand years ago. But there is a problem. This figure is impossible! 
Today, we have reached the height of the human population, which is only 
7,500,000,000. So, this means that our ascendants had many children who married 
their cousins of all degrees, making humanity one large extended family, no 
matter what our skin color or hair color is!

Heredity in humans
First, men fertilize women when a male cell unites with a female cell. The fertilized 
egg grows and, after quite an adventure, is born and becomes one of us writing or 
reading this book.
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To grow and live from being a fertilized egg to human adults, we must gather 
much of the outside world, absorb, and transform it.

This transformation of food and materials by us until we grow into something that 
is more or less like our ancestors is called heredity.

If life were calm and quiet, nothing noticeable would occur. However, our 
environment has exerted relentless pressure on us for millions of years, back to 
when we were just some kind of bacteria floating around in an ocean somewhere. 
That pressure brought about continuous natural selection; what worked would 
live on, whilst what didn't work would die out.

That pressure continues up to present day, forcing us, humans, to adapt genetically 
or disappear. Those humans who failed to adapt to face the pressure of their 
environment died out. We who live today have survived.

Evolution can be defined as a state of constant conflict. On one hand we have our 
relentless, often hostile environment. On the other, our equally relentless genes; 
many of which die out, but others morph, adapt, and continue on through heredity—
indeed, they're doing that even now, and who knows what is going to happen next?

Our cells
In our cells, the nucleus contains personal biological data in the form of 
chromosomes. Our cells contain 46 chromosomes per cell, which, in turn, are 
formed by 23 pairs of chromosomes. One of these pairs is a sex cell to determine 
our sex.

Inside the chromosomes, we have genes, especially the mitochondrial genome, 
which is the DNA in tiny cells that take our food and transform it into fuel for our 
cells. Each cell is a microscopic busy factory containing thousands of genes!

The human genome describes an incredible set of sequences for our building 
blocks contained in the 23 chromosomes of our cells.

How heredity works
Except for the sex cells, we inherit twenty-three of our mother's forty-six 
chromosomes and twenty-three of our father's chromosomes. In turn, our parents' 
cells contain the chromosomes of their parents—our grandparents—and so on in 
various proportions.

Let's take an example to view the complexity of what we are facing. We will take 
one of our parents, either our mother or father. P represents the set of chromosomes 
of that parent. 
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Letters with primes will represent their fathers'—our grandfathers'—chromosomes, 
and letters with double primes will represent their mothers'—our grandmothers'—
chromosomes.

We can represent this as follows for your father in his sex cell:

𝑃𝑃 = { 𝐴𝐴′,  𝐵𝐵′,  𝐶𝐶′,  𝐷𝐷′,  𝐸𝐸′,  𝐹𝐹′,  𝐺𝐺′,  𝐻𝐻′,  𝐼𝐼′,  𝐽𝐽′,  𝐾𝐾′,  𝐿𝐿′,  𝑀𝑀′,  𝑁𝑁′,  𝑂𝑂′,  𝑃𝑃′,  𝑄𝑄′,  𝑅𝑅′,  𝑆𝑆′,  𝑇𝑇′,  𝑈𝑈′,  𝑉𝑉′𝑌𝑌′  
   𝐴𝐴′′, 𝐵𝐵′′, 𝐶𝐶′′, 𝐷𝐷′′, 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′, 𝐻𝐻′′, 𝐼𝐼′′, 𝐽𝐽′′, 𝐾𝐾′′, 𝐿𝐿′′, 𝑀𝑀′′, 𝑁𝑁′′, 𝑂𝑂′′, 𝑃𝑃′′, 𝑄𝑄′′, 𝑅𝑅′′, 𝑆𝑆′′, 𝑇𝑇′′, 𝑈𝑈′′, 𝑉𝑉′′𝑋𝑋′′} 

For your mother, the last chromosome of the first set would be an X in her sex cell:

𝑃𝑃 = { 𝐴𝐴′,  𝐵𝐵′,  𝐶𝐶′,  𝐷𝐷′,  𝐸𝐸′,  𝐹𝐹′,  𝐺𝐺′,  𝐻𝐻′,  𝐼𝐼′,  𝐽𝐽′,  𝐾𝐾′,  𝐿𝐿′,  𝑀𝑀′,  𝑁𝑁′,  𝑂𝑂′,  𝑃𝑃′,  𝑄𝑄′,  𝑅𝑅′,  𝑆𝑆′,  𝑇𝑇′,  𝑈𝑈′,  𝑉𝑉′𝑋𝑋′  
   𝐴𝐴′′, 𝐵𝐵′′, 𝐶𝐶′′, 𝐷𝐷′′, 𝐸𝐸′′, 𝐹𝐹′′, 𝐺𝐺′′, 𝐻𝐻′′, 𝐼𝐼′′, 𝐽𝐽′′, 𝐾𝐾′′, 𝐿𝐿′′, 𝑀𝑀′′, 𝑁𝑁′′, 𝑂𝑂′′, 𝑃𝑃′′, 𝑄𝑄′′, 𝑅𝑅′′, 𝑆𝑆′′, 𝑇𝑇′′, 𝑈𝑈′′, 𝑉𝑉′′𝑋𝑋′′} 

Women are X-X and men X-Y.

Imagine the possibilities!

If we only take A, B, and C in only one of our parent's cells, we already obtain the 
following set, C, of the eight combinations we would inherit:

𝐶𝐶 = {𝐴𝐴′𝐵𝐵′𝐶𝐶′, 𝐴𝐴′′𝐵𝐵′′𝐶𝐶′′, 𝐴𝐴′𝐵𝐵′′𝐶𝐶′′, 𝐴𝐴′′𝐵𝐵′𝐶𝐶′, 𝐴𝐴′𝐵𝐵′𝐶𝐶′′, 𝐴𝐴′′𝐵𝐵′′𝐶𝐶′, 𝐴𝐴′𝐵𝐵′′𝐶𝐶′, 𝐴𝐴′′𝐵𝐵′𝐶𝐶′′} 

If we extend this to the twenty-three chromosomes, the distribution climbs up to 223, 
or 8,388,608 possibilities.

Our evolutionary process contains the right potential for evolutionary algorithms.

Evolutionary algorithms
In this section, we will drill down further into evolutionary algorithms, getting 
closer to our Python programs. Evolutionary algorithms can be used in any field 
in which combinations are useful: scheduling, medical research on DNA, weather 
forecasting, neural network architecture optimizing and a limitless number 
of domains.

Evolutionary computation is a set of algorithms that apply trial-and-error techniques 
to reproduce an abstract mathematical version of biological evolution. This 
mathematical model does not contend with having solved the difficult task of 
explaining evolution, which naturally cannot be reduced to a few equations.

However, our biological environment produces frameworks that, though the fruits 
of our imagination, enable us to create efficient abstract algorithms.
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Evolutionary algorithms enter the category of evolutionary computation. An 
evolutionary algorithm contains processes such as mutation, crossover, and 
selection. Many models can achieve the goals set for an evolutionary process.

A GA introduces the category of an evolutionary algorithm.

We will first define the concepts involved in a GA, which are the building blocks 
of a Python program.

Going from a biological model to an algorithm
There are many ways of creating a GA model. You can reproduce the exact 
description of the human model described in the preceding section, you can 
simplify it, or you can create another view.

Our model will contain a set of genes in a chromosome and a population to 
interact with:

Figure 17.1: Chromosomes in genes

Our model is an abstract model for algorithms, not the actual representation of 
human chromosomes that come in pairs, for example. A gene in an individual's 
chromosome will interact with the gene set of the population. This process will 
be defined in the following sections.

Basic concepts
Let's first describe the concepts of the building blocks of our Python program:

• Target: Target defines the length and properties of the child we wish to 
obtain after n generations.
In our model, the target can be specified or unspecified.
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A specified target contains a length and its value:
    target = "Algorithm" # No space unless specified as a 
character in the gene set

In this case, our environment requires an exact gene set to remain fit in 
that environment. See the following fitness function.
An unspecified target contains a length, but not its actual value, which 
must be found by the GA after n generations:
    target="AAAA" #unspecified target

In this case, our environment does not require an exact gene, but rather 
a gene with the features required to remain fit in that environment. See 
the following fitness function.

• Population: Population first defines the selection of an individual at 
random we will call parent that will contain a certain length of its string 
of genes:
def gen_parent(length)

Population also defines the potential individuals the parent can interact 
with to produce a child. In our genetic simulation, the size of the population 
is represented by the gene set of the population (see the following point).

• Gene set of the parent: The gene set of the parent will first be a random 
set of genes.

• Gene set of the population: This parent will then randomly encounter 
another person in the population with random gene choices. This population 
is represented by a gene set that we will draw genes from randomly:
geneSet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"

Since a given population can possess any or several of these genes, our 
population is very large from the start.

• Selection: We will select genes randomly from our gene set to simulate 
the meeting of our parent with another parent:
    index=random.randrange(0,len(parent))

• Crossover: We will then form a child from the parent and the random gene 
taken from our population represented by the gene set.
In our model, once the random selection of the gene has been made, 
the gene will be replaced by a random gene taken from the population 
represented by the gene set of the population:
    if(newGene!=oldGene):childGenes[index]=newGene;
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Notice that the new gene must be different from the old gene during the 
crossover in our algorithm. Our algorithm thus avoids getting stuck in 
some local combination during the reproduction phase. Child after child, 
we will produce new generations.

• Mutation: We will not accept the same gene from a parent to form a child. 
If we detect this, we will randomly change a gene to make sure each 
generation is different.
As described in the Crossover paragraph, we will not accept a child with 
the same genes as a parent. As seen in the heredity section of this chapter, 
it is unlikely that a child would inherit exactly all of the genes of a given 
parent. Diversity is the key to producing generation after generation of 
children that will adapt to their environment.
In our model, a diversity rule forcing mutation has been introduced:
    if(newGene==oldGene):childGenes[index]=alternate;

We thus introduce an alternate gene, as we will see while building the 
Python program.

• Child: Child defines a set of genes that contains the same number of genes 
as the parent but with new genes. Generations of children of child gene 
strings will be produced and then complete the selection process with a 
fitness function.

• Fitness: Fitness defines the value of the child as defined in a given model. 
The fittest will then be selected to be the parent for the next generation.
In our model, we have two fitness functions that we define in a scenario 
variable.
If scenario=1, then a specified target scenario will be activated. The target 
will be specified to fit the surrounding environment.
Polar bears became white, for example, to blend in with the surrounding 
snow and ice of their environment. In other areas, bears are often brown, 
for example, to blend in with the surrounding vegetation.
The fitness function thus has a target to reach. For example, in one instance 
in the program:
    target="FBDC"

This target could mean many things, as we will see. In the case of the bears, 
maybe these genes in one of their chromosomes trigger off their color: white 
or brown.
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If our program simulating nature does not produce the right gene in a 
given generation, this means that the bear is not mutating correctly and 
will not survive. The fitness function of the Python program simulates 
nature by only keeping the strings of genes that make the child evolve 
in the right direction.
The specified target, in this case, is an identified string of genes that will 
make a life-and-death difference.
def get_fitness(this_choice,scenario):
    if(scenario==1):

As we will see later, scenario==1 will make sure that the exact gene set 
required to survive is reached.
If scenario=0, then an unspecified target will be activated. The length of 
the target is not specified. However, a feature set will define the value of 
the gene set of the population. This feature contains numerical values that 
open the door to any optimization you wish to solve, as we will see in the 
Python program example. This numerical set is called the KPI set because 
the values are key performance indicators of the system we will explore 
in this model:
KPIset ="0123456772012345674701234569980923456767012345671001234
"   #KPI set

The KPIset feature set matches the size of the gene set of the population.

Building a genetic algorithm in Python
We will now build a GA from scratch using GA.ipynb.

You can use the .py version. The code is the same, although the line numbers in this 
chapter refer to the Jupyter notebook cells of the .ipynb version.

Importing the libraries
This program is built from scratch with no higher-level library to get the feel of a GA. 
Three lines are enough to get everything working:

import math
import random
import datetime

At all times, you can go back to the previous section, Basic concepts, 
to consult the definitions used to describe the Python program in 
the following sections.



Chapter 17

[ 441 ]

Calling the algorithm
In this program, we will be exploring three scenarios. Two scenarios generate 
specified targets, and one generates an unspecified target.

We will begin with a specified target and then move to the more advanced 
unspecified target that will prepare us for hybrid networks using a GA.

We will first go to the Calling the Algorithm cell of the program. The first task is 
to define which scenario and type of fitness function we will use on line 3:

scenario=0   # 1=target provided at start, 0=no target, genetic 
optimizer

If scenario=1, the program generates the correct exact genes for a child from several 
generations, starting with a random seed parent.

If scenario=0, the program generates the best features of a type of genes of a child 
from several generations, starting with a random seed parent.

In line 4, GA=2 defines which target we are dealing with.

If GA=1, the gene set of the population and the target are defined. The main function 
is called:

if(GA==1):
    geneSet =
        "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"
    # target with no space unless specified as a character in the 
geneSet
    target = "Algorithm"  # No space unless specified as a character 
in the geneSet
    print("geneSet:",geneSet,"\n","target:",target)
    ga_main()

At this point, the gene set of the population is printed along with the target:

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: Algorithm

The last line calls ga_main(), the main function.

The main function
The code is in the ga_main() cell of the program.

The ga_main() function is divided into three parts: parent generation, child 
generation, and a summary.
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The parent generation process
The parent generation runs from line 2 to line 7:

    startTime=datetime.datetime.now()
    print("starttime",startTime)
    alphaParent=gen_parent(len(target))
    bestFitness=get_fitness(alphaParent,scenario)
    display(alphaParent,bestFitness,bestFitness,startTime) #no 
childFitness for generation 1 so default value sent

• startTime indicates the start time, which is printed:
starttime 2019-10-12 10:32:28.294943

• alphaParent is the first parent who will be created by the gen_parent 
function, which will be described in the following Jupyter notebook cell.

• bestFitness is the fitness estimated by the get_fitness function, which 
will be described in this chapter.

• display is the function that describes the result of this process.

We now have a process that creates a parent: gen_parent, get_fitness, and 
display.

We will now explore the parent generation function before resuming the main 
function.

Generating a parent
The parent generation function cell starts with zero genes and the length of the 
target:

def gen_parent(length):

length = the length of the target. The target is "Algorithm", so length=9.

At the beginning of the process, the parent has no genes since the goal of this 
function is to produce a parent at random that contains a string of genes that is equal 
to the length of the target.

The string of genes to produce a parent is as follows:

    genes=[]                        #genes array

Now, a while loop starts on line 3 of the cell to fill genes[] until it reaches the 
target's length:

    while len(genes)<length:  #genes is constrained to the length
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        #sampleSize: length of target constraint
        sampleSize=min(length-len(genes),len(geneSet))
        #extend genes with a random sample the size of sampleSize 
extracted from geneSet
        genes.extend(random.sample(geneSet,sampleSize))

• sampleSize is the sample of genes required from the gene set, geneSet, 
from which to choose a random gene for the parent.

• genes.extend adds a random gene to the genes array from geneSet.

Once the parent's gene set, genes[], has reached the target's length, the return 
function sends the parent back to the main function, ga_main(), where it is 
displayed with the display function. The output of the parent in this random run 
was:

aFJPKzYBD

Naturally, the parent will be different at each run since this is a random process.

The string of genes is now returned to the ga_main() function:

    return ''.join(genes)

Now, let's explore the fitness function and the display function.

Fitness
At this point in the ga_main() function, the start time was printed out, and the 
parent created:

#I PARENT GENERATION
    startTime=datetime.datetime.now()
    print("starttime",startTime)
    alphaParent=gen_parent(len(target))

We need to evaluate the fitness of the parent before creating generations of children:

    bestFitness = get_fitness(alphaParent,scenario)

In this paragraph, we will only describe the specified target case, which is part 
of scenario=1. We will create a fitness function with the target of a given choice. In this 
case, only the sum of correct genes is calculated:

def get_fitness(this_choice,scenario):
    if(scenario==1):
        fitness = sum(1 for expected,
            actual in zip(target,this_choice) if expected==actual)
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• this_choice is the parent string of genes produced by the gen_parent 
function described in the preceding code snippet.

• scenario indicates whether the function calculates the sum of fit genes or 
evaluates the features of the genes. In this case, the sum of the correct genes 
is calculated.

• Fitness is the number of correct genes found when comparing the target, 
the expected value, to actual, the this_choice variable.

• If expected==actual, the sum is incremented.
• zip, in Python, is an efficient feature that iterates over two lists at the 

same time.

Once fitness, the sum of fit genes, is calculated, the function returns the value to 
the ga_main() function:

    return fitness

The parent generation will now be displayed by a function called in main_ga().

Display parent
At this point, ga_main() has printed the start time, created a parent, and evaluated 
its fitness:

def ga_main():
    #I PARENT GENERATION
    startTime=datetime.datetime.now()
    print("starttime",startTime)
    alphaParent=gen_parent(len(target))
    bestFitness=get_fitness(alphaParent,scenario)

The program will now display the basic information concerning the first generation: 
the parent generation called the display function from main_ga(), line 7:

    display(alphaParent,bestFitness,bestFitness,startTime)

• alphaParent is the gene string of the parent
• bestFitness is its fitness
• Since there is no child yet, bestFitness is sent as the default value of a 

child's fitness
• startTime
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In the display parent cell, line 2, the display function receives the data sent by 
main_ga():

def display(selection,bestFitness,childFitness,startTime):

The display function calculates the time it has taken and prints the information 
in a few lines:

    timeDiff=datetime.datetime.now()-startTime
    print("Selection:",selection,"Fittest:",bestFitness,
          "This generation Fitness:",childFitness,
          "Time Difference:",timeDiff)

• selection is the string of genes of this generation.
• bestFitness is the value of the best string of genes created up to now.
• childFitness is this generation's fitness value. The first generation is the 

value of the parent who has, for the moment, the fittest genes. The parent 
is the child of another parent, although this parent is the first generation 
we are taking into consideration.

• timeDiff is an important value when dealing with larger gene sets. It will 
help detect whether the algorithm is running well or reaching its limit.

The output will be displayed for the parent generation and each generation that 
gets closer to the fittest generation defined by the target:

Selection: BnVYkFcRK Fittest: 0 This generation Fitness: 0 Time 
Difference: 0:00:00.000198

This output will vary during each run of the program since this is a stochastic 
algorithm simulating the random events that occur in our natural and artificial 
environments.

Before exploring the loop that creates an unlimited number of generations, let's 
build the crossover function.

Crossover and mutation
Our model contains a crossover function with a mutation rule to ensure diversity.

The crossover function starts with the parent.

def crossover(parent):
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Each child of each generation will become the parent of another child.

As in nature, a random gene in a parent's gene will be selected to be replaced:

    index=random.randrange(0,len(parent))#producing a random position 
of the parent gene

The index designates the exact location of the gene that will be replaced:

Figure 17.2: Chromosomes in genes

We can see that gene D in the chromosome will be replaced by the gene z of an 
individual of the population.

Now, we simulate the reproduction phase. The child inherits the genes of its parent:

    childGenes=list(parent)

The parent's string of genes is converted into a list with the list function.

The algorithm stores the parent's gene to replace in a variable:

    oldGene=childGenes[index]        # for diversity check

oldGene will be compared to the new gene generated to make sure that diversity 
is respected so as to avoid getting stuck in a local loop.

A new gene is chosen at random in the gene set of the population to simulate the 
interaction of the child with a given person among an indefinite number of persons:

    newGene,alternate=random.sample(geneSet,2)

Notice that at the same time, the new gene, newGene, is selected at random, while 
an alternate gene, alternate, is chosen as well. alternate is chosen to replace 
newGene to avoid making the wrong choice.
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If the new gene, newGene, is not equal to the old gene, oldGene, that the child can 
inherit:

    if(newGene!=oldGene):childGenes[index]=newGene;  #natural 
crossover

The new gene becomes part of the string of genes of the child.

However, if newGene is the same as oldGene, this could compromise the whole 
genetic process, with generations of children that do not evolve. Also, the algorithm 
might get stuck or waste quite some time making the right selections.

This is where the alternate gene comes in and becomes part of the string of genes 
of the child. This crossover rule and this alternate rule simulates the mutation 
process of this model.

    if(newGene==oldGene):childGenes[index]=alternate;  #mutation 
introduced to ensure diversity to avoid to get stuck in a local minima

Diversity has been verified!

The function now returns the new string of genes of the child so that its fitness 
value can be calculated:

    return ''.join(childGenes)

Producing generations of children
At this point, we have generated the parent and explored the basic concepts and 
functions.

We are ready for the generation loop. First, we will view the code, then represent it 
in a flowchart, and then describe the lines of code.

Once the parent has been created, we enter the loop that simulates the evolutionary 
process for many generations:

    while True:
        g+=1
        child=crossover(bestParent)        #mutation
        childFitness=get_fitness(child,scenario) #number of correct 
genes
        if bestFitness>=childFitness:#
            continue
        display(child,bestFitness,childFitness,startTime)
        bestFitness=childFitness
        bestParent=child
        if scenario==1: goal=len(alphaParent);#number of good 
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genes=parent length
        if scenario==0: goal=threshold;
        if childFitness>=goal:
            break

The loop is best represented in a flowchart:

Figure 17.3: Genetic algorithm flow chart

The process of the flowchart is based on Python's continue method:

1. The code that precedes the condition:
 ° Increments the generation counter:

        g+=1

 ° Calls the crossover function to produce a child:
        child=crossover(bestParent)

 ° Calls the fitness function to obtain the fitness value:
        childFitness=get_fitness(child,scenario) #number of 
correct genes
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2. The condition to see if the childFitness is higher than the bestFitness 
obtained:
        if bestFitness>=childFitness:

 ° If the condition is True, then the evolution must continue until a child 
is fitter than its parent. This sends the process back to the top of the 
while loop.

 ° If the condition is False, this means that the child is fitter than the 
parent, and then the code will go beyond the condition.

3. The code beyond the condition and continue method:
 ° The code displays the child, the bestFitness becomes the 

childFitness, and the bestParent is now the child:
        display(child,bestFitness,childFitness,startTime)
        bestFitness=childFitness
        bestParent=child

 ° The goal of the two scenarios of our model is defined. The goal of 
scenario==1 is to reach the length of the target with the right genes. 
The goal of scenario==0 will be to reach a threshold we will define 
in the next section:
        if scenario==1: goal=len(alphaParent);
        if scenario==0: goal=threshold;

4. The break condition of the loop:
The evolutionary process will stop when the fittest child has been created 
after several generations containing the genes that meet the target:
        if childFitness>=goal:
            break

The output of the n generations will appear as follows:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: Algorithm

starttime 2019-10-12 20:47:03.232931

Selection: Xe!bMSRzV Fittest: 0 This generation Fitness: 0 Time 
Difference: 0:00:00.000953

Selection: Xe!bMSRhV Fittest: 0 This generation Fitness: 1 Time 
Difference: 0:00:00.002404

Selection: Xl!bMSRhV Fittest: 1 This generation Fitness: 2 Time 
Difference: 0:00:00.004391
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Selection: XlgbMSRhV Fittest: 2 This generation Fitness: 3 Time 
Difference: 0:00:00.006860

Selection: XlgoMSRhV Fittest: 3 This generation Fitness: 4 Time 
Difference: 0:00:00.009525

Selection: AlgoMSRhV Fittest: 4 This generation Fitness: 5 Time 
Difference: 0:00:00.011954

Selection: AlgorSRhV Fittest: 5 This generation Fitness: 6 Time 
Difference: 0:00:00.013745

Selection: AlgorSthV Fittest: 6 This generation Fitness: 7 Time 
Difference: 0:00:00.016339

Selection: AlgorithV Fittest: 7 This generation Fitness: 8 Time 
Difference: 0:00:00.019031

Selection: Algorithm Fittest: 8 This generation Fitness: 9 Time 
Difference: 0:00:00.022239

We can see the display of all of the generations as described in the display function 
in the Display parent section of this chapter.

Summary code
Once the evolutionary process is over, a summary code takes over:

#III. SUMMARY
    print("Summa
ry---------------------------------------------------")
    endTime=datetime.datetime.now()
    print("endtime",endTime)
    print("geneSet:",geneSet);print("target:",target)
    print("geneSet length:",len(geneSet))
    print("target length:",len(target))
    print("generations:",g)
    print("Note: the process is stochastic so the number of 
generations will vary")

The output for the example displayed for the evolutionary loop is:

Summary---------------------------------------------------

endtime 2019-10-12 20:47:03.257112

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: Algorithm

geneSet length: 55

target length: 9

generations: 782

Note: the process is stochastic so the number of generations will vary
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We have now explored the core of the evolutionary process and the Python code. 
We will now build the unspecified target and optimizing code that will lead us to 
hybrid neural networks.

Unspecified target to optimize the architecture 
of a neural network with a genetic algorithm
In this section, we are laying the grounds and motivation to optimize the 
architecture of neural networks through a hybrid neural network. The architecture 
of a physical neural network will be optimized by a GA.

We will study a physical neural network and then see how to optimize its 
architecture with our GA.

A physical neural network
We will begin with a physical network named S-FNN, a feedforward neural 
network (FNN). Please look very closely at the following figure and take as much 
time as necessary to understand its architecture:

Figure 17.4: Architecture of a neural network

Before we move on, it is important to note that using permutations 
for 9 out of 55 elements, it would take 10 ** 15.36 calculations to 
reach the goal instead of the 782 generations in this example. GAs 
are thus a productive way of generating permutations.
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This physical network has some important specific features:

• This is an FNN
• There are three layers.
• The neurons in each layer are not fully connected to the neurons of the 

next layer. The connections between the neurons of the three layers are 
not based on all of the possibilities. The connections between the layers 
are based upon statistics of the best connections in the past when running 
this network.
The connections are the result of many runs of this network to determine 
which ones are the best.

• The connections represented are the most productive ones, leading to an 
output of 1 and not 0. An output of 1 is a success, while an output of 0 is a 
failure.

• The input is a random value of the dataset that must be classified as 1 if it 
is a success and 0 if it is a failure.

• After a careful study of past runs of this network, it has been found that 
the productivity of the network fully relies, in this example, on the number 
and quality of the neurons in layer 2.

Let's use what we have learned and apply it to the architecture of a soccer team.

What is the nature of this mysterious S-FNN?
S-FNN is a soccer team's architecture! It is the representation of a 3-4-3 disposition of 
a soccer team before a given game.

Like abstract neural networks, the number and quality of neurons we choose per 
layer are critical. In our abstract world of artificial neural networks (ANNs), we 
have many problems to solve. How many should we keep? How many should we 
eliminate through pooling layers? How many should we abandon through dropout 
layers? How do we really know? How long will trial and error take with large 
datasets and networks?

Now, let's go back to the figure, read the following explanation, and start finding 
a method to solve the architectural complexity of a neural network:

• Input represents the goal of best possible choices to input the ball in the 
game based on past game statistics.

• Layer 1 is the defense layer of three players represented by three neurons.
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• Layer 2 is the middle field, the result of the transformation of layer 1's 
activity, the statistics of past games showing the fittest, the connections. The 
initial ball of the input has now been flowing through these layers game after 
game.

• Layer 3 is the attack layer, the one that will lead to the output classification; 
1 for a success meaning a goal has been scored, or 0 for failure. The 
connections between layer 2 and layer 3 show the fittest results found 
game after game.

The problem to solve: Layer 2, in our example, has been identified as the critical 
layer in this team. For years now, it has been a weak point. Let's see how our GA 
will help find the fittest players for this layer.

We could run scenario==1 (specified target) with target ga==3 as follows:

if(scenario==1 and GA==3):
    target="FBDC"  # No space unless specified as a character in the 
geneSet
    print("geneSet:",geneSet,"\n","target:",target)
    ga_main()

The geneSet is the population of available players on the soccer market and target 
is the string of genes we need for layer 2 of our physical network:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: FBDC

The target is found after 851 generations in this run.

However, we would like the GA to find the players by itself based on the features 
with an unspecified target. Let's explore this step by step, cell by cell.

Calling the algorithm cell
From lines 7 to 12, we defined the parameters of the target architecture we want for 
layer 2 of our network:

• geneSet is the set of all the available players for layer 2 of our network, 
whether they are in the team or on the market:
geneSet="abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-"   
#gene set
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• KPIset, or the key performance indicator set, is a performance score per 
player on the market for middle field. Each integer of the set contains a 
score between 0 and 9 based on the statistics of a player when playing as a 
midfielder:
KPIset ="0123456772012345674701234569980923456767012345671001234
"   #KPI set

The KPI set matches each member of the gene set.
• threshold is the sum of the midfielders' performance we need to attain in 

order to have a strong midfield in the team.
threshold=35

Our goal is to find a string of genes based on their features, their KPI properties.

The goal is to reach the threshold.

We call our evolutionary function on line 23:

if(scenario==0 and GA==2):
    target="AAAA"                         #unspecified target
    print("geneSet:",geneSet,"\n","target:",target)
    ga_main()

As you can see, target is set to a meaningless value that will rapidly evolve. 
The GA will have to find a fit sequence.

We can skip the intermediate fitness functions we have described in the previous 
section and focus on the scenarios within the fitness cell.

Fitness cell
We have already described the fitness function of the fitness cell in the previous 
sections. We will focus on the code of the unspecified target, scenario==0.

The first part of the scenario calculates the sum of the performance of each gene 
(potential midfielder):

    if(scenario==0):
        cc=list(this_choice) # cc= this choice
        gs=list(geneSet)     # gene set
        cv=list(KPIset)      # value of each KPI in the set
        fitness=0
        for op1 in range(0,len(geneSet)): #2.first find parent gene in 
gene set
            for op in range(0,len(target)):
                if cc[op]==gs[op1]:       #3.gene identified in gene 
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set
                    vc=int(cv[op1])       #4.value of critical path 
constraint
                    fitness+=vc

The collective fitness of the sequence of genes (midfielders) is contained in the 
fitness variable.

However, we cannot accept the same gene twice, which would mean we have a 
clone of the midfielder on the field! So, we add some safety code to set fitness to 0 
in that case:

            for op in range(0,len(target)):
                for op1 in range(0,len(target)):
                    if op!=op1 and cc[op]==cc[op1]:
                        fitness=0    # no repetitions allowed, 
mutation enforcement

Now, we can go back to ga_main() and complete our process.

ga_main() cell
We have already described the fitness cell in the previous sections. Now, we will 
focus on the code of the unspecified target, scenario==0.

In the ga_main() cell, we simply need to examine lines 22 to 24:

        if scenario==0: goal=threshold;
        if childFitness>=goal:
            break

If the scenario==0, childFitness must be >=goal (sum of KPIs).

We have found our midfielders!

We will now display the result:

Genetic Algorithm

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

 target: AAAA

starttime 2019-10-13 09:08:21.043754

Selection: PNVx Fittest: 18 This generation Fitness: 18 Time Difference: 
0:00:00.001252

Selection: LNVx Fittest: 18 This generation Fitness: 24 Time Difference: 
0:00:00.004130

Selection: LNVq Fittest: 24 This generation Fitness: 27 Time Difference: 
0:00:00.004708
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Selection: LNFq Fittest: 27 This generation Fitness: 29 Time Difference: 
0:00:00.010362

Selection: LBFq Fittest: 29 This generation Fitness: 31 Time Difference: 
0:00:00.015797

Selection: CBFq Fittest: 31 This generation Fitness: 33 Time Difference: 
0:00:00.024712

Selection: CBFt Fittest: 33 This generation Fitness: 34 Time Difference: 
0:00:00.032680

Selection: CBFD Fittest: 34 This generation Fitness: 35 Time Difference: 
0:00:00.048524

Summary---------------------------------------------------

endtime 2019-10-13 09:08:21.094005

geneSet: abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.-

target: AAAA

geneSet length: 55

target length: 4

generations: 154

Note: the process is stochastic so the number of generations will vary

In this case, the GA chose midfielders C, B, F, and D.

We now have all of the ingredients, concepts, and knowledge required to 
understand an artificial hybrid neural network.

Artificial hybrid neural networks
In the previous section, we used a GA to optimize a physical neural network.

In this section, we will extend the concept of hybrid we have just explored to ANNs. 
The principle is the same, so it will be relatively easy, with the concepts you now 
have in mind, to intuitively grasp the RNN we will optimize in this section.

The future of AI in society lies in the collective intelligence of humans (diversity), 
machines (AI and IoT), and nature (sustainable projects for our survival).

In AI, this diversity lies in ensemble algorithms, meta-algorithms and hybrid 
systems. Deep learning has proven its point. We can create a neural network with 
TensorFlow 2.x in a few lines. However, more often than not, it takes days, weeks, 
and often months to fine-tune ANN models that rely on large amounts of data to 
provide a reliable model. And that's where hybrid neural networks are necessary.
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A deep learning network can use any form of another type of algorithm to become 
a more efficient system. In our case, we have chosen evolutionary algorithms that 
could be used in deep learning:

• To improve the input by extracting sequences of data that fit the patterns 
we are looking for using features of the data to find the fittest data points

• To optimize the weights of the layers of a network to boost the speed and 
power of traditional optimizers

• To improve the classification phase of the output of a network by selecting 
the fittest solutions processed as a sequence of genes

• To improve the tedious task of defining the architecture of a network

In this section, we will focus on an example of optimizing the architecture of a 
network with a GA by:

• Creating the RNN
• Introducing a GA that will optimize the architecture of the network

Building the LSTM
Open Genetic_Algorithm_LSTM.ipynb in Google Colaboratory or Jupyter on 
your machine or genetic_algorithm_lstm.py.

The model of this education example is an LSTM.

The goal will be to use the window size generated by the GA and run the LSTM 
with this window size. Root-mean-square error (RMSE) will be used to measure 
the fitness of the configuration.

In short, RMSE first calculates the square of the difference between the training 
data and the testing data, like many similar formulas. Then, the root of the result 
is calculated. Just keep in mind that the RMSE will compare what we expect to 
get with what we actually get and produce a value.

Note: For information on genetic algorithm representations, please 
go back to the previous sections at all times to refresh the process 
of an evolutionary algorithm. Please also refer back to the previous 
chapters to consult the structure of a neural network, in particular, 
Chapter 16, Improving the Emotional Intelligence Deficiencies of 
Chatbots, which describes an RNN.
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Let's now explore the main cells of the program:

• Importing required packages cell: Genetic_Algorithm_LSTM.ipynb 
starts by installing DEAP, an evolutionary computation framework:
!pip install deap

We built a GA from scratch in the previous sections. We won't need to 
begin from nothing this time, since this program uses a framework.
Then, the program installs bitstring, which helps to process binary data.

• Loading the data cell: The data wind power forecast data in train.csv 
comes from https://www.kaggle.com/c/GEF2012-wind-forecasting/
data.
The wp1 to wp7 columns provide normalized data collected from 
measurements of the wind power of seven wind farms. The goal of the 
LSTM will be to take the sequence of data and make wind power forecasts.

• Defining the basic functions cell: This cell prepares the dataset and trains 
the model in a standard process. We will focus on line 14:
    window_size = window_size_bits.uint

• Evolutionary model cell: The model uses the DEAP framework function, 
but we easily recognize the concepts we explored in the previous sections 
and that are initialized as follows:
population_size = 4
num_generations = 2
gene_length = 10

The code is all set with a ready-to-use GA to optimize the window size for our 
network.

The goal of the model
As in our previous section, the goal is to find the best window size for this network, 
just as we were looking for the best layer 2 in an earlier section.

The model has done the following tasks:

• Installed the packages, loaded the data, and found the window size of the 
LSTM

• Then, it ran the GA model to test the possible window size of the LSTM
• An RMSE measurement is provided with each generation and production 

of epochs

https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
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The program takes some time to run, but the results I ran are saved in the notebook 
so that you can view them. Here is one result to view how the system works:

Epoch 1/5

17200/17200 [==============================] - 207s 12ms/sample - loss: 
0.0096

Epoch 2/5

17200/17200 [==============================] - 202s 12ms/sample - loss: 
0.0059

Epoch 3/5

17200/17200 [==============================] - 202s 12ms/sample - loss: 
0.0058

Epoch 4/5

17200/17200 [==============================] - 200s 12ms/sample - loss: 
0.0057

Epoch 5/5

17200/17200 [==============================] - 200s 12ms/sample - loss: 
0.0057

Test RMSE: 0.0926447226146452

As in the previous section, a GA optimized a section of an ANN. You can use a 
GA for other components of an ANN. The sky is the limit! In fact, there is no limit. 
The potential of hybrid neural networks using GA or other algorithms to optimize 
their architecture or process takes your projects to another level!

Summary
Evolutionary algorithms bring new light to AI's optimizing potential. In this chapter, 
we studied how heredity deeply affects population distribution. The impact of our 
environment can be measured through genetic mutations.

Drilling down further, we focused on a class of GAs implementing a simulation 
of genetic transformations through many generations. We explored how a parent 
will transmit some genes, but how the selection of diverse genes from the generation 
population of genes will produce variations. A chromosome will inherit some genes 
but not others.

The pressure of nature and our environment will take over. A fitness function 
evaluates a string of genes. Only the fittest will survive. The fittest genetic 
material will produce a crossover and mutation of the child, making it fitter for 
its environment.
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GAs can be used to represent strings of any type of data and also features of that 
data. The optimizing process can be applied to warehouses, transportation, and 
neural networks.

Hybrid networks will no doubt expand in the years to come, taking DL to the next 
level. Using a genetic algorithm to optimize the architecture of an RNN paves 
the way to optimize the architecture of any DL, ML or AutoML architecture. For 
example, a hybrid neural network can use a genetic algorithm to optimize inputs 
with feature reduction or as the weight optimizing function of the network.

Nature has provided us with invaluable tools to apply to our artificial network 
models. This chapter dealt with the invisible building blocks inside us. In the next 
chapter, Neuromorphic Computing, we will explore other components that enable 
us to adapt to our environment: neurons. We will explore how neural networks 
using biological models can solve complex problems.

Questions
1. A cell contains 42 chromosomes. (Yes | No)
2. A genetic algorithm is deterministic, not random. (Yes | No)
3. An evolutionary algorithm means that the program code evolves. (Yes | No)
4. It is best for a child to have the same genes as one of the parents even after 

many generations. (Yes | No)
5. Diversity makes the gene sets weaker. (Yes | No)
6. Building a neural network only takes a few lines, and the architecture always 

works. (Yes | No)
7. Building a neural network with a genetic algorithm can help optimize the 

architecture of the layers. (Yes | No)
8. Hybrid neural networks are useless since deep learning will constantly 

progress. (Yes | No)
9. Would you trust a genetic algorithm to make decisions for you? (Yes | No)
10. Would you trust a hybrid neural network to optimize the architecture of your 

network? (Yes | No)

Further reading
• https://github.com/DEAP/deap

• https://pypi.org/project/bitstring/

https://github.com/DEAP/deap
https://pypi.org/project/bitstring/
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18
Neuromorphic Computing

Our brain activates thousands or even billions of neurons when necessary, getting 
our body battle-ready to face any situation. As we saw in Chapter 17, Genetic 
Algorithms in Hybrid Neural Networks, evolution has fined-tuned biological capacities 
over thousands of generations and millions of years.

In this chapter, we will take a deeper look into the cognitive power inside our bodies. 
We will go from the chromosomes of the previous chapter to biological neurons that 
make us intelligent creatures. The neurons interact in billions of ways producing 
cognitive patterns leading to mind structures.

Neuromorphic computing taps into the tremendous optimized power of our brain, 
which surprisingly consumes very little energy. On average, we consume a few 
watts, less than a lightbulb, to solve very complex problems. In itself, this shows 
that the neuronal structure of our brain has a unique architecture that we have 
yet to reproduce physically.

To bring neuromorphic computing into the real world requires hardware and 
software, as in all computer science models. In this chapter, we will focus on the 
software, though it is important to mention the hardware associated with the 
neuromorphic research Intel is conducting. That hardware takes the form of a 
chip named Loihi, after the emerging Hawaiian underwater volcano that will hit 
the surface one day. Loihi contains thousands upon thousands of neurons with 
their synapses, dendrites, and axons reproducing our brain activity. IBM and 
other corporations have been conducting research in this area.

We have around 100 billion neurons. These chips are only reaching hundreds 
of thousands of neurons. However, by connecting thousands of those chips in 
physical networks, neuromorphic computing will be an area we all will have 
to take into account in the near future.
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We will first define what neuromorphic computing is and then explore Nengo, 
a unique neuromorphic framework with solid tutorials and documentation. 
Nengo is one among many other approaches that go beyond the scope of this 
book. This chapter is not a neuromorphic course but rather an overview, inviting 
you to tap into the wonderful power of our brain structures to solve complex 
problems. The problems we will explore will bring us closer to understanding 
how our brain works.

The following topics will be covered in this chapter:

• What neuromorphic computing is
• Getting started with Nengo
• Basic Nengo concepts
• Exploring the Nengo tutorial and interface
• The difference between Nengo and classical AI
• Applying Nengo's unique Semantic Pointer Architecture (SPA) model to 

critical research areas

Let's start with the basics—what is neuromorphic computing?

Neuromorphic computing
Let's go directly to the core of our thought process to understand neuromorphic 
computing. For AI experts, I would like to summarize the voyage from our 
classical models to cutting-edge neuromorphic models in a single phrase:

from mind to brain

If we take this further, M is the set of all of our mental representations and B is 
the world of physical reactions that lead to thinking patterns.

In this sense, M is a set of everything we have explored up to this point in this book:

M = {rule based systems, machine learning, deep learning, evolutionary algorithms … 
m}

m is any mathematical mental representation of the world surrounding us. In deep 
learning, for example, an artificial neural network will try to make sense of the 
chaos of an image by searching the patterns it can find in an image through lower 
dimensions and higher levels of abstraction.

However, a mental construction, no matter how efficient it seems, remains a 
representation, not a physical reality.
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Now, let's observe B = brain constructions:

B = phenomena/events (inside us or in the outer world) -> physical stimuli 
-> physical neural activity in the brain -> higher activity in the target zones 
-> physical electric learning reactions -> a human action

The architecture of B takes us much closer to reality! Mental representations are 
minimized, thus reducing the distortion of artificial constructions regardless of 
their efficiency.

Classical AI is about building mental representations of our cognitive activity.

Neuromorphic computing is about building a brain that can encode reality, process 
it like a human brain, and decode the result.

Bear in mind that corporations such as Intel are providing the chips to accomplish 
wonderful things with neuromorphic computing, as we will discover in this chapter.

Now that we have some idea of what neuromorphic computing is, let's take a look 
at the neuromorphic framework, Nengo.

Getting started with Nengo
In a nutshell, Nengo builds brains, not mental representations, as in classical machine 
learning and deep learning.

Nengo stands for Neural Engineering Object. It has both scripting capability with 
Nengo and a graphical capacity with Nengo GUI. We will be using NEF, which 
is Nengo's Neural Engineering Framework (NEF).

Nengo was created by the Centre for Theoretical Neuroscience at the University 
of Waterloo (Ontario, Canada). Chris Eliasmith has played an important role in 
this project.

We have explored many ways to approach cognitive modeling in the previous 
chapters. Nengo uses an NEF to implement an SPA.

A semantic pointer is a neural representation in a biological system that carries 
structures that will lead to higher-level cognitive representations.

The term pointer refers to pointers as we know in C++, for example, because they 
can access data they do not contain.
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The term semantic refers to the fact that they are not just mathematical tools as in C++ 
because they contain virtual representations through the distances between them.

If we put the two concepts together, this leads to the mind-blowing concept of 
meaning being generated through biological pointer activity located at various 
distances and states from each other in our brain. Let's dive into neuromorphic 
computing by first installing Nengo.

Installing Nengo and Nengo GUI
For this chapter, I used the Python interfaces with NumPy and Matplotlib libraries, 
as we have since the beginning of this book. All that is then required is to install 
Nengo with pip, for example:

pip install nengo

You can install it using other approaches. For more information, go to https://
github.com/nengo/nengo.

Let's install the nice HTML 5 visualizer and interact with Nengo through this GUI I 
installed with pip:

pip install nengo-gui

You can install it using other approaches, too. For more information, go to: https://
github.com/nengo/nengo-gui/.

Once both programs are installed, if you encounter any problems then consult the 
links, which contain a lot of information, or Nengo's support team, who provide 
excellent feedback.

There are many ways to use Nengo. This chapter describes a quick start method 
with Python.

Once you are all set, open your browser, Chrome, for example, and then type nengo 
in a command-line console and it should open the Nengo GUI interface in your 
browser, opening a default.py Python program:

Figure 18.1: Nengo Python code

https://github.com/nengo/nengo
https://github.com/nengo/nengo
https://github.com/nengo/nengo-gui/
https://github.com/nengo/nengo-gui/
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Click on the folder icon in the top left and click on built-in examples:

Figure 18.2: Nengo examples

A list will appear. Click on tutorial:

Figure 18.3: List of Nengo examples

A list of fascinating educational examples will appear:

Figure 18.4: Examples in the tutorial section

The tutorial programs are in the directory the installer wrote them in.

You can see them in the URL of a Python example of the tutorial in the address 
bar of your browser.
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Creating a Python program
Now, let's create a Python program and save the file through a few steps:

• Open an empty Python file but do not save it yet
• Write the following code to import the nengo library and create a model:

import nengo
model = nengo.Network()
with model:
    #<your code here>

Now, save the Python file in the path of the other programs of the tutorial. You 
can see this path when you open a Nengo example. Just navigate to that path to 
save your program. We will name it 00-myintro.py to fit in nicely with the list 
of programs in the tutorial:

Figure 18.5: Saving a Python program

We will go back to the tutorial directory as we did previously, and we will open 
it to add basic Nengo objects.

Nengo objects are the building blocks of a Nengo model to create populations of 
neurons, connecting them to stimulation functions, and managing the outputs.

For our Python program, we will use some key Nengo objects, which are detailed 
in the following sections.

A Nengo ensemble
A Nengo ensemble is a group of neurons. It can be considered as a population of 
neurons that contain real numbers.

An ensemble is an object created with:

nengo.Ensemble
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An ensemble can be created in one line:

ensemblex = nengo.Ensemble(n_neurons=5, dimensions=1)

As soon as we add a line to 00-myintro.py, a representation of the ensemble 
appears on the left-hand pane of the Nengo interface:

Figure 18.6: Neuron ensemble

While writing your Python code in the code editor on the right, you can visualize 
the visual flow of the model in the visual interface pane.

An ensemble can contain a population of one individual, a single neuron. This 
neuron is a representation of our biological neurons:

• Postsynaptic currents (PSCs) flow through our dendrites
• The current then reaches the core of the neuron (cell body)
• If the current exceeds a threshold at the axon's initial segment (axon hillock), 

then a spike is generated
• With ion channels open, the PSCs are produced in the receiving cell

Let's take a more detailed look at Nengo's neuron types.

Nengo neuron types
We created 50 neurons in our ensemble:

ens = nengo.Ensemble(n_neurons=50...
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There are various neuron types. However, in our example, we will be using the 
default neuron, a leaky integrate-and-fire (LIF) neuron.

Neuronal dynamics are based on a summation process called integration. This 
integration is associated with a mechanism that will fire (trigger) up above a critical 
voltage.

A linear differential equation combined with a threshold that will trigger file 
spiking are the final components that make up the default LIF neuron we will 
be using, unless specified otherwise.

For more on Nengo neuron types, see https://www.nengo.ai/nengo-extras/
neurons.html.

Nengo neuron dimensions
In our example, dimensions is set to 1; this means that the ensemble is represented 
by one number (or dimension):

ens = nengo.Ensemble(..., dimensions=1)

A Nengo node
Now that we have defined our ensemble of neurons and their output dimension, we 
will define the output:

node_number = nengo.Node(output=0.5)

The stimulation will be a constant and will be displayed on the slider as such:

Figure 18.7: Nengo slider

https://www.nengo.ai/nengo-extras/neurons.html
https://www.nengo.ai/nengo-extras/neurons.html
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An output with a number might not suffice in some cases. This number can be 
replaced by a function importing NumPy. A sine wave function can be used, for 
example:

node_function = nengo.Node(output=np.sin)

As soon as we enter our node function, it appears on the interface in addition to the 
previous information displayed:

Figure 18.8: The node function on the interface

node_function provides a way to send non-neural inputs to Nengo objects.

We will explore such an implementation in the 15-lorenz.py example in this 
chapter that is in the tutorial section Nengo's examples.

If you right-click on the node_function image and choose a value, you will see 
a curve representing the real-time value of the sine wave stimulation:

Figure 18.9: Node function
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For more on Nengo objects, go to https://www.nengo.ai/nengo/getting_
started.html#creating-nengo-objects.

Connecting Nengo objects
We now need to connect the ensemble and the node to make our system work. 
In this manner, the ensemble will have a function.

At this point, we have an ensemble and a node function, as shown in the following 
figure:

Figure 18.10: Ensemble and node function

To connect them, we will add a Nengo connection:

nengo.Connection(node_function, ens)

For more Nengo frontend API definitions, see https://www.nengo.ai/nengo/
frontend_api.html.

Now, let's explore the exciting visual interface.

Visualizing data
The first step is to click on the play button in the bottom-right corner of the screen:

Figure 18.11: Play button

https://www.nengo.ai/nengo/getting_started.html#creating-nengo-objects
https://www.nengo.ai/nengo/getting_started.html#creating-nengo-objects
https://www.nengo.ai/nengo/frontend_api.html
https://www.nengo.ai/nengo/frontend_api.html
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This will set time in motion, simulating our brain activity. Time is one of the 
unique features of neuromorphic computing. We do not pile layer upon layer of 
static mathematics into a mental representation. With Nengo, we simulate brain 
activity step by step, second by second!

Once you click on the play button, it feels like we are looking inside our brain!

We saw how to visualize the slider's activity in the previous section, which 
produces the stimulations. We will focus on our ensemble in this section.

If we right-click on the ensemble visualization, several options appear: Value, 
Spikes, Voltages, Firing pattern, and Details...:

Figure 18.12: Ensemble options

• Value: The value of our ensemble will be displayed, from –1 to 1, for 
example:

Figure 18.13: Values of an ensemble



Neuromorphic Computing

[ 472 ]

• Spikes: The spiking activity produces nice colors that show how our 
neurons are reacting to sine wave stimulation:

Figure 18.14: Spiking patterns

You will notice that each neuron has its own spiking channel. This property 
of ensembles produces a wide variety of responses.

• Voltages: The voltages provide interesting information on the current that is 
flowing through our neurons under stimulation from other neurons and, in 
turn, from yet more neurons that are gathering information from the world 
outside us.
In the following screenshot, the ensemble contained a population of five 
neurons with color channels providing yet more information:



Chapter 18

[ 473 ]

Figure 18.15: Neuron activity with color patterns

• Firing pattern: The firing pattern of the ensemble in the following image was 
generated with 50 neurons. The firing pattern is necessarily directly linked to 
the stimulations and connections:

Figure 18.16: Firing pattern
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I have been observing many patterns through the experiments I carried out. 
One of the areas of research I'm doing is to feed the thousands of frames 
of firing patterns of a given function to an ANN and a stochastic Church-
Turing algorithm and generate "thought" patterns. For example, running 
the channels of the frames could produce sequences of new data. It's worth 
experimenting with.
The following image represents the pattern of 500 neurons bringing 
complexity to the potential of running deep learning on thousands of 
frames of these patterns:

Figure 18.17: Firing patterns

• Details...: In the plots section, we can visualize input current and tuning 
curves. The tuning curve shows how the neurons are reacting to the input 
current. If there is no pattern, then there must be an explanation or a 
configuration problem.
The visual control of tuning curves is a time saver by showing how they 
converge!
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Figure 18.18: Tuning curves

We have covered some of the main visual tools Nengo provides.

Now, we will see how to retrieve data from our system with probes.

Probes
We can retrieve information with probes, either to visualize them or to process 
output data.

In this section, I enhanced 00-myintro.py to produce numerical output as well as 
visual output using the information on the following page that you can get ideas 
from for your projects:  
https://www.nengo.ai/nengo/examples/basic/single_neuron.html

The program I created is nengo_probing.py and is available in the GitHub 
repository of this book. The program is a standalone program that does not run in 
Nengo's GUI. You cannot use simulation commands as shown in the following in 
Nengo's GUI. Run this program in your Python interface. It shows yet another way 
to run the rich Nengo software.

https://www.nengo.ai/nengo/examples/basic/single_neuron.html
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The program contains additional headers for Matplotlib and distributions for data 
displaying and processing purposes:

import matplotlib.pyplot as plt
from nengo.utils.matplotlib import rasterplot
from nengo.dists import Uniform

The program contains the same architecture as 00-myintro.py. It creates an 
ensemble, adds a function, and then connects the objects:

model = nengo.Network("Probing")
with model:
    ens = nengo.Ensemble(n_neurons=50, dimensions=1)
    #node_number = nengo.Node(output=0.5)
    node_function=nengo.Node(output=np.sin)
    nengo.Connection(node_function, ens)
    print(ens.probeable)

with model:
    # Connect the input signal to the neuron
    nengo.Connection(node_function, ens)

We will now add a probing function using nengo.Probe:

    # The original input
    function_probe = nengo.Probe(node_function)
    # The raw spikes from the neuron
    spikes = nengo.Probe(ens.neurons)
    # Subthreshold soma voltage of the neuron
    voltage = nengo.Probe(ens.neurons, 'voltage')
    # Spikes filtered by a 10ms post-synaptic filter
    filtered = nengo.Probe(ens, synapse=0.01)

To obtain some data, let's run the simulator for 5 seconds:

with nengo.Simulator(model) as sim:  # Create the simulator
    sim.run(5)

The simulator runs the calculation before displaying the outputs.

Then, we can probe the data and display it in numerical format. That way, we 
can retrieve output data from our system for further use, visualizing or chaining 
neuromorphic models to other algorithms in a few lines of code:
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• Decoded output: The decoded output can be filtered (see the preceding 
filter):
print("Decoded output of the ensemble")
print(sim.trange(), sim.data[filtered])

The output data is then displayed or can be processed:
[1.000e-03 2.000e-03 3.000e-03 ... 4.998e+00 4.999e+00 5.000e+00] 
[[ 0.        ]

 [ 0.        ]

 [-0.03324582]

 ...

 [-1.26366121]

 [-1.22083471]

 [-1.18750863]]

Nengo can produce a chart with Matplotlib:
# Plot the decoded output of the ensemble
plt.figure()
plt.plot(sim.trange(), sim.data[filtered])
#plt.plot(sim.trange(), sim.data[node_function])
plt.xlim(0, 1)
plt.suptitle('Filter decoded output', fontsize=16)

The output of the preceding code is plotted as follows:

Figure 18.19: Decoded input
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• Spikes: Spikes are retrieved in a single line of code:
print("Spikes")
print(sim.trange(),sim.data[spikes])

The output produces sequences of spikes:
[1.000e-03 2.000e-03 3.000e-03 ... 4.998e+00 4.999e+00 5.000e+00] 
[[   0.    0.    0. ...    0.    0.    0.]

 [   0.    0.    0. ...    0.    0.    0.]

 [   0.    0.    0. ... 1000.    0.    0.]

 ...

 [   0.    0. 1000. ...    0.    0.    0.]

 [   0.    0.    0. ...    0.    0.    0.]

The program produces a figure for spikes that matches the data:

Figure 18.20: Spiking output

We can check the visual display with valuable raw data.
• Voltage: The simulation provides voltage data:

print("Voltage")
print((sim.trange(), sim.data[voltage][:, 0]))

The data is stored in a ready-to-use array:
(array([1.000e-03, 2.000e-03, 3.000e-03, ..., 4.998e+00, 
4.999e+00,
       5.000e+00]), array([0., 0., 0., ..., 0., 0., 0.]))

The program produces a figure for the voltage of the ensemble as well:
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Figure 18.21: Neuron voltage

At this point, we have covered the main features of Nengo. We will now see how 
Nengo can boost research in critical AI research areas.

Applying Nengo's unique approach to 
critical AI research areas
It is useless to apply the power of brain neuromorphic models to simple arithmetic 
or classical neural networks that do not require any more than TensorFlow 2.x, for 
example.

But it is also a waste of time to try to solve problems with classical networks that 
neuromorphic computing can solve better with organic brain models. For example:

• Deep learning, TensorFlow 2. Convolutional models use a unique activation 
function such as ReLU (see Chapter 9, Abstract Image Classification with 
Convolutional Neural Networks (CNNs)). Neuromorphic neurons have a 
variety of reactions when stimulated.

• Neuromorphic models integrate time versus more static DL algorithms. 
When we run neuromorphic models, we are closer to the reality of our time-
driven biological models.

• The Human Brain Project, https://www.humanbrainproject.eu/en/, 
provides wide research and examples of how neuromorphic computing 
provides additional insights to classical computing.

https://www.humanbrainproject.eu/en/
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I recommend testing a given problem with several AI tools and choosing the most 
efficient one.

The SPA examples demonstrate the efficiency of Nengo in several areas. All of the 
examples in the tutorial section are well documented and run well. You can apply 
the visualizing functions we explored in this chapter to them and also modify the 
code, experiment with them in your Python environment, and more.

I wish to highlight two domains: linguistics and weather representations:

• Linguistics: 25-spa-parse.py processes neuronal signals and produces 
words. When you run it, the performances look magical, thanks to the SPA. 
The code is well documented.
The program contains the mind-blowing thalamus module that can 
simulate the subcortical nuclei in our brains (forebrain and midbrain). 
This part of our brain, the basal ganglia, has high-density connections.
This class can reduce or even eliminate low responses and intensify high 
responses to the stimulations. The program is worth running and exploring! 
The Nengo GUI makes it intuitive to understand:

Figure 18.22: Nengo GUI options

• Weather representations: 15-lorenz.py is not an SPA program. It is only 
a few lines long. It displays the graphs of the three basic Lorenz equations 
that represent temperatures and variations in the atmosphere. Nengo 
modified the code for educational purposes as explained in a publication 
at http://compneuro.uwaterloo.ca/publications/eliasmith2005b.
html. The Nengo GUI displays an exciting representation:

http://compneuro.uwaterloo.ca/publications/eliasmith2005b.html
http://compneuro.uwaterloo.ca/publications/eliasmith2005b.html
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Figure 18.23: Lorenz equations

The code of 15-lorenz.py is short, and the program looks simple. But 
weather forecasting is one of the toughest fields to represent events with 
AI models!

The potential of neuromorphic computing can be a real game-changer. Let's 
conduct a mind experiment. Imagine that:

• A hurricane is like a living organism
• That its center is connected to everything around it
• That it "feeds" on the heat and waters of our oceans
• That everything that is in it can be considered as small hurricane particles

Let's now continue the experiment by:

• Feeding the billions of particles in the neuromorphic model in a stream
• Using the power of a network of neuromorphic chips
• Using the calculation power of quantum computing (see Chapter 19, 

Quantum Computing) to perform computations with the input/output 
of the chip

• Applying SPA to the hurricane particle representations as if they were 
neurons and running predictions
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I think the future of weather forecasting is in physical, neuromorphic models, that 
will take billions of parameters into account.

The result: we will be able to predict the course and level of a hurricane a few 
hours to a few days more in advance. This could save lives.

In a nutshell, neuromorphic computing has only just begun to demonstrate its 
worth. When neuromorphic chips hit the market, neuromorphic computing will 
grow exponentially.

Summary
In this chapter, we built neuromorphic Python programs from scratch. Populations 
of neurons, in Nengo ensembles, are made up of neurons. The system then has 
stimulation functions, connections, and probing objects. Nengo offers many other 
examples you can explore.

The NEF was designed to implement neuromorphic computing models. The novel 
concept of SPA shows that our brains have enhanced pointers that have a meaning 
and are linked to our physical data.

Neuromorphic computing opens tremendous horizons for a complex program that 
classical machine learning and deep learning cannot solve. Weather forecasting, 
with the power of the neuromorphic chips that are reaching the market, can tap 
into the complexity and variety of a machine brain. A machine brain can produce 
unique calculations by firing hundreds of thousands of neurons with both 
individual and collective behavior.

We have covered many algorithms and frameworks in this book. We have access 
to the most powerful intelligent algorithms in the history of humanity. From MDP 
to GA algorithms, and from KMC, KNN, PCA, NLP, and CUI algorithms to CNN, 
RBM, RNN, and LSTM networks, we have explored many AI tools. But there may 
be ways to build unified models. We will see in the years to come. In the meantime, 
neuromorphic computing makes our toolbox incredibly intelligent. Google has 
TPU hardware to optimize TensorFlow, neuromorphic computing can rely on Intel 
chips, and many corporations are working to produce more innovative hardware.

The future will no doubt rely on hybrid architectures in which some or all of the AI 
tools will be built into meta-AI systems.

In Chapter 19, Quantum Computing, we will explore the exponential hardware 
available for quantum mechanics. Quantum computers, having no memory, rely 
on other systems to provide inputs and process outputs. Imagine a neuromorphic 
system chained to a quantum computer!
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Questions
1. Neuromorphic computing reproduces our mental activity. (Yes | No)
2. Neuromorphic computing reproduces our brain activity. (Yes | No)
3. Semantic Pointer Architecture (SPA) is a hardware architecture. (Yes | No)
4. NEF stands for Neural Engineering Framework. (Yes | No)
5. Loihi is a classical chip. (Yes | No)
6. Reproducing our brain's neural activity cannot solve an equation. (Yes | No)
7. An ensemble in Nengo contains algorithms. (Yes | No)
8. Spiking blocks neuronal activity. (Yes | No)
9. Firing patterns can be used to analyze brain activity. (Yes | No)
10. Machine learning and deep learning are only metaphors of our brain's 

activity. (Yes | No)

References
Reference programs used for this chapter can be found at https://www.nengo.ai, 
https://www.nengo.ai/examples/.

Further reading
• Research – How to Build a Brain, Chris Eliasmith: This book provides the 

theoretical background for neuromorphic computing.
Chris Eliasmith is also one of the designers of Nengo.

• Software – Nengo (https://www.nengo.ai/): Nengo is based on solid 
research, documentation, and an excellent community.

• Hardware – Intel: Intel is working hard to produce a neuromorphic chip 
(https://www.intel.fr/content/www/fr/fr/research/neuromorphic-
computing.html).

https://www.nengo.ai
https://www.nengo.ai/examples/
https://www.nengo.ai/
https://www.intel.fr/content/www/fr/fr/research/neuromorphic-computing.html
https://www.intel.fr/content/www/fr/fr/research/neuromorphic-computing.html
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19
Quantum Computing

IBM has begun to build quantum computers for research and business purposes. 
In a few years, quantum computing will become disruptive and will provide 
exponential computing power. Google, Xanadu, D-Wave, Rigetti, and others 
devote research budgets to quantum computing.

This unique computer capacity in the history of humanity opens the doors to 
obtaining results that would be impossible to obtain with classical computers. In 
1994, Peter Shor showed that a quantum algorithm could perform better than a 
classical one for prime factors of an integer and the discrete logarithm problem. 
Then in 1995, Lov Grover added the unstructured search problem. With the rise 
of quantum computers, research can go much further.

Quantum computers in themselves will not provide revolutionary algorithms. 
Any algorithm can be broken down into components that run basic classical 
machines. Supercomputers can still run artificial intelligence algorithms much 
easier than implementing them with quantum computers. Quantum computers 
have no memory, for example, so they rely heavily on classical computers for 
the input and interpreting the output.

Though quantum computers have limits, in time, quantum computing power 
will take present-day algorithms beyond the limits of our imagination. Many 
corporations have invested in quantum computing research in the fields of 
banking, healthcare, cybersecurity and more.

This chapter explains why quantum computers are superior to classical computers, 
what a quantum bit is, how to use it, and how the quantum mind experiment could 
lead to a quantum thinking machine. The example provided is simply a recreative 
way to approach quantum computing. 
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We will be taking results from a classical machine, feed the results to quantum 
computer and then interpret the results provided by the quantum computing 
algorithm. Some go further with hybrid quantum-classical algorithms, which is 
beyond the scope of this chapter.

In Chapter 18, Neuromorphic Computing, we explored how to use our brain to create 
neuromorphic models. In this chapter, we will create a higher level of representation 
with a research project to create a mind. Quantum mind is based on CRLMM, 
which I have been successfully applying to many corporate sites. In this research 
project, a quantum mind named MindX represents the mind of a random person. We 
will explore MindX in an exciting experiment.

The following topics will be covered in this chapter:

• Why quantum computers are more powerful than other classical computers
• What a quantum bit is
• The Bloch sphere
• Quantum computing
• How to build MindX, a thinking quantum computer research project

First, let's discuss some basics behind quantum computers, and what makes them so 
powerful.

The rising power of quantum computers
Before we begin discussing MindX, an exciting research project to create a thinking 
quantum computer, we should start with the fundamentals. This section describes:

• Why quantum computers are faster
• What a qubit is
• How a qubit is measured (its position)
• How to create a quantum score (program) with quantum gates
• How to run a quantum score and use its results for a cognitive NLP chatbot

Note: This chapter is self-contained with screenshots of quantum 
circuits for those who do not wish to install anything before reading 
the chapter. IBM Q and Quirk can be used online without installing 
anything locally.
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The goal of this chapter is not to go too deeply into the details of quantum 
computing, but rather to teach you enough to know how to build a thinking 
quantum computer. This chapter is simply meant to show how a quantum 
computer works and open ourselves to new ways to use computers.

Quantum computer speed
A standard computer bit has a 0 or a 1 state. A classical computer will manage 
0 or 1, as the system chooses, but it remains limited to choosing 1 or (XOR) 0. It 
cannot manage both states at the same time.

A quantum computer is not constrained by an XOR state. It is an AND state. It can 
manage values between 0 and 1 at the same time until it is measured! A quantum 
state is unknown until it's observed, which means that a quantum program can use 
values between 0 and 1 at the same time. Once observed, the qubit will take a value 
of 0 or 1 because of the physical instability of a quantum state.

This means quantum computing is memoryless once it is measured. Storage does 
not exist in a quantum computer. The input is made by a classical computer, and the 
output goes back to a classical computer, to be stored through the following process:

1. A classical computer provides an input
2. A quantum computer processes the input and produces an output
3. A classical computer interprets the output

That being said, the computing power of a quantum computer fully justifies this 
architectural constraint.

Until a qubit is observed, it can have a 0 or 1 state or a probability in between, 
such as 0.1, 0.7, or 0.9.

Observing the situation is called measuring the state. When measured, only 0 or 
(XOR) 1 will become the result.

Until the state is measured, a large number of probabilities are possible. If a qubit 
is added to the system, we now have two qubits and four elementary combinations 
all at the same time.

Just observing a quantum state makes the state break down. In 
quantum computing, this is called decoherence. It is not magic. 
Qubits are unstable. When observed, the quantum state breaks 
down.
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Unlike standard computer logic, all four of the states can be used to compute 
algorithms at the same time in a parallel process. The volume of the possible states 
of a given algorithm will thus expand with the number of qubits involved. An 
estimation of the volume of the states can be made with the following number, in 
which q is the number of qubits:

2q

Looking at this tiny equation does not seem awesome at all. Now, let's see what it 
looks like in a loop that runs up to 100 qubits with the number, nb, of possible states:

import numpy as np
for q in range(101):
    v=(2**q)
    print("Size of nb to describe",q," qubits:","{:,}".format(v))

The program does not appear fearsome either. However, the following output is 
awesome:

Size of nb to describe 0 qubits: 1

Size of nb to describe 1 qubits: 2

Size of nb to describe 2 qubits: 4

Size of nb to describe 3 qubits: 8

Size of nb to describe 4 qubits: 16

Size of nb to describe 5 qubits: 32

Size of nb to describe 6 qubits: 64

...

Size of nb to describe 10 qubits: 1,024

...

Size of nb to describe 50 qubits: 1,125,899,906,842,624

...

Size of nb to describe 97 qubits:

158,456,325,028,528,675,187,087,900,672

Size of nb to describe 98 qubits:

316,912,650,057,057,350,374,175,801,344

Size of nb to describe 99 qubits:

633,825,300,114,114,700,748,351,602,688

Size of nb to describe 100 qubits:

1,267,650,600,228,229,401,496,703,205,376
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Presently, big data is often calculated in petabytes. A petabyte=1015 or about 250 bytes.

Facebook stores data for over 2 billion accounts. Imagine Facebook managing 500 
petabytes on a given day. Let's see what 500 petabytes approximately add up to 
in the following code:

print("Facebook in the near future:")
s=(2**50)*500
print("{:,}".format(v))

The output is quite surprising because it is about the size of data a 100-qubit 
quantum computer can compute in one run:

A segment of Facebook data :

1,267,650,600,228,229,401,496,703,205,376

This means that a single quantum computer with 100 qubits can run a calculation 
of the size of all the data that over 2,000,000,000 Facebook accounts might represent 
in the near future.

A quantum computer would not actually contain that volume of data at all, but 
it shows that one could produce a calculation with that volume of computation 
information.

More importantly, this also means that a single quantum computer can run a 
mind-dataset of a single mind (see the next section) and calculate associations. 
This thinking process can generate an exponential volume of connections.

A classical n-bit computer manages n bits whereas a quantum computer will 
manage 2n bits or 2q bits.

Compared to quantum computers' 2q exponential power, soon, classical computers 
will seem like relics of the past for scientific calculations. Classical computers will 
still be in use, but quantum computers will be the tools with which to explore the 
world beyond the present limits of artificial intelligence.

Quantum computers will beat any other computer in many fields in the years 
to come. In one parallel computation, a quantum computer will do in one run 
something that it would take a classical computer years to calculate.

Visualize all the AI solutions you have seen in this book. They will 
already seem to have some dust of the past on them once you get 
your hands on quantum computing.
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Now think about what a network of many quantum computers could do!

Often, we try to compare large volumes with the number of stars in the universe 
and we say, "That's more than the number of stars in our universe." We must now 
look in the opposite direction, at very small numbers.

The lesson is clear: the future lies in nano models. Quantum computing represents 
both a challenge and an opportunity.

Defining a qubit
A qubit, a quantum bit, has a physical counterpart. For example, a quantum state 
can be encoded in oscillating currents with superconductor loops. Google and IBM 
have experimented with this approach. Another way is to encode a qubit in an ion 
trapped in an electromagnetic field in a vacuum trap.

Photons, electrons, the state of light, and other technologies have emerged. 
Whatever the approach, calculations done by over 50-qubit quantum computers 
will outrun classical supercomputers.

The competition is fierce because the market will rapidly become huge. Get ready 
now to face the disruption that's coming!

Representing a qubit
The mathematical representation of a qubit is:

• |0⟩  for a 0 value
• |1⟩  for a 1 value
• 𝛼𝛼|0⟩  where alpha is a probability parameter
• 𝛽𝛽|1⟩  where beta is a probability parameter

These brackets are called bracket or bra-ket notation.

This linear representation is called superposition. In itself, it explains most of the 
power of quantum computing.

The superposition of 0 and 1 in a quantum state can thus be expressed as follows 
in kets such as |1⟩  and not bras such as in ⟨1| :

quantum state = 𝛼𝛼|1⟩ + 𝛽𝛽|0⟩ 
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The alpha and beta probabilities look like weights, and the total probabilities 
of those probable states of qubit must add up to 1. We use partition functions, 
softmax, and other techniques to make sure to keep the sum of probabilities equal 
to 1. This is no surprise since computer geeks like us designed the way to program 
quantum computers.

Translated into mathematics, this means that the probabilities of 𝛼𝛼  and 𝛽𝛽  must add 
up to 1. In the case of qubit probabilities, the values are squared, leading to the 
following constraint:

|𝛼𝛼2| + |𝛽𝛽2| = 1 

Since qubits interact in their respective states, an interaction is described as an 
entanglement. An entanglement designates at least two interacting qubits. They 
cannot be described without taking all the states of all the qubits into account.

This has been reproduced physically, which means that this entanglement seems 
strange because their quantum entanglement (relation) can occur at a distance. 
One qubit can influence a qubit that is physically far away.

It's an odd way to think, and one that was not readily accepted at first. Albert 
Einstein is oft-quoted as referring to entanglement derisively as "spooky action at 
a distance."

The position of a qubit
One of the main ways to represent the state of a qubit is by using the Bloch sphere. 
It shows how a qubit spins and can be used to describe qubit states. To properly 
grasp this, the following section will first provide a refresher on some properties 
of a circle.

To describe the probable state of a qubit, we thus need three 
numbers: the 0 and 1 possible states and a number to determine the 
value of the probabilities (the other is implicit since the total must 
add up to 1).
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Radians, degrees, and rotations
The radius is the distance between the center of a circle and its circumference, as 
shown in the following diagram:

Figure 19.1: Radius of a circle

The radius of a circle is half of the circle's diameter. The relation between the radius 
r and the circumference C is (where 𝜋𝜋 = 3.14 ):

𝐶𝐶 = 2𝜋𝜋𝜋𝜋 

If the length of the radius is wrapped around the circumference of a circle, that arc 
forms a radian, as shown in the following diagram:

Figure 19.2: A radian

The angle formed by a radian is equal to about 57.29° (degrees).

The properties of the radian can be used for rotations:

• 3.14 × 57.29° = about 180°
• Thus 𝜋𝜋  radians = 180°
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Rotations are often described by radians expressed in 𝜋𝜋 , as displayed in the 
following table:

Degrees Radians

30° 𝜋𝜋/6 

45° 𝜋𝜋/4 

60° 𝜋𝜋/3 

90° 𝜋𝜋/2 
180° 𝜋𝜋 
270° 3𝜋𝜋/2 

360° 2𝜋𝜋 

Now that we've had that recap, let's explore the Bloch sphere.

The Bloch sphere
The radian table shown just now is a practical way to describe rotations. The 
Bloch sphere, shown in the following figure, provides a visual representation of 
the position and rotation of a qubit:

Figure 19.3: Bloch sphere



Quantum Computing

[ 494 ]

The North and South Pole (polar coordinates) represent the basic states of a qubit:

"North" pole = |1⟩ = (1
0)

"South" pole = |0⟩ = (0
1)

 

A qubit can take any value on the sphere.

Composing a quantum score
Composing a quantum score consists of positioning gates on a stave (or circuit) 
and adding a measurement. The input comes from a classical computer. After the 
measurement phase, the output goes back to a classical computer. The reason is 
that quantum computers have no memory and thus cannot store their intermediate 
states because of their instability.

This section uses Quirk, a very educative quantum circuit simulator, to present 
quantum gates and a quantum composer.

You can access Quirk online at this link: https://algassert.com/quirk.

Quantum gates with Quirk
Qubits are represented by lines, and they start on the left, as shown in the following 
quantum gate programming interface:

Figure 19.4: Quantum gate programming interface

The gates are logic gates that will transform the state of the qubits.

https://algassert.com/quirk
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NOT gate
A NOT gate will transform a ket-zero |0⟩  into a ket-one |1⟩ . It will transform a ket-one 
|1⟩  into a ket-zero |0⟩ .

In the circuit description, On is the ket-one state and Off is the ket-zero state, as 
shown in the following quantum score:

Figure 19.5: Circuit description of a quantum score

You can see that:

• A NOT gate symbol is a circle with a vertical and horizontal line inside it
• The On status means that the state is |0⟩ 
• The Bloch sphere representation is at 𝜋𝜋  (starting from the top of the Bloch 

sphere, as it should)

H gate
An H gate or Hadamard gate will perform the following transformation:

Figure 19.6: Hadamard gate transformation
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The following 50% chance will be displayed in a rectangle and the position on the 
Bloch sphere will be displayed as well:

Figure 19.7: 50% chance in a rectangle and on the Bloch sphere

The fundamental role of a gate is to rotate the qubits on a Bloch sphere and 
produce a probable condition if measured. There are many possible gates to be 
explored and used, as shown in this design menu diagram:

Figure 19.8: Gates design menu

These gates are more than enough to build many algorithms.

A quantum computer score with Quirk
The goal here is to play around with the interface to intuitively see how circuits run.

Building a quantum score (or circuit) with Quirk means the following:

• Dragging and dropping gates that will make a qubit turn in a specific 
direction and produce probable outcomes

• Adding another qubit, doing the same, and so on
• Being able to perform an intermediate measurement, although this is 

impossible for a real physical quantum computer (the observations make the 
system collapse)

A score is represented as follows, for example:
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Figure 19.9: Quantum computer score representation

There are two qubits with a gate on each line to start. Then the intermediate result 
is shown, making the simulator very educational. Then two more gates are added. 
Finally, the following measurement probe is added at the end:

Figure 19.10: Measurement probe

Once the measurement is made, the final result is displayed on the right of the 
measurement symbols.

A quantum computer score with IBM Q
IBM Q provides a cloud platform to run a real physical quantum computer.
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Create a free account and access the IBM quantum computing composer. Just as 
with Quirk, quantum gates are dragged on the following score, as shown in this 
diagram:

Figure 19.11: Quantum gates dragged

The score can be run on a simulator like Quirk or a real quantum computer, as 
shown in this interface diagram:

Figure 19.12: Score interface

Click on Simulate, which will run a simulator.

The following output is interesting. It is a bit different from Quirk for the same score, 
but the probabilities add up to 1 as expected:

Run launches a calculation on IBM's physical quantum computer. It 
is an exhilarating experience! The future is at the tip of your fingers.



Chapter 19

[ 499 ]

Figure 19.13: Quantum computer score output

IBM also possesses a source code version (QASM) of the score, as shown in the 
following code:

include "qelib1.inc";
qreg q[5];
creg c[5];
h q[0];
z q[1];
y q[0];
x q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

This language is an Open Quantum Assembly Language. It can be written in an 
editor like any other language on IBM's Q platform. A development kit can also 
be downloaded, and the APIs are functional. IBM provides extensive and detailed 
documentation on all the aspects of this approach.

All of this being said, let's find out how quantum computing can boost an AI project. 
It is now time to define the thinking quantum computer project.
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A thinking quantum computer
A thinking quantum computer is not a reproduction of brain function, but rather a 
representation of the mind of a person. Neuromorphic computing is one approach 
that represents our neurons and how brain uses spiking neurons to think. Quantum 
computing can provide an exciting way to imitate our mind's capacity with 
mathematical algorithms that work with qubits, not neurons. We've just begun to 
explore the potential of these approaches, which in fact will most probably merge 
into an ensemble of hybrid software and hardware solutions.

The endeavor of the quantum MindX experiment is to build a personal mind named 
MindX, with memories of past events, conversations, chats, and photographs stored 
on a classical computer. The program will then transform subsets of the data into 
quantum circuits to see what happens, how our quantum circuit behaves when left 
to produce millions of possibilities.

This section describes how to build MindX, a thinking computer that is just a 
research project. It must be noted that this approach is experimental. It could be 
viewed as an advanced mind experiment. I've been doing research on this subject 
for many years. The power of quantum computation will no doubt boost research 
in this field.

Representing our mind's concepts
The input consists of encoding a state of mind of a PCA CRLMM representation, 
as we built in Chapter 14, Preparing the Input of Chatbots with Restricted Boltzmann 
Machines (RBMs) and Principal Component Analysis (PCA). The CRLMM representation 
is not a general dictionary or encyclopedia dataset but a mind-dataset of actual 
personal data that is collected, classified, and transformed into a PCA.

Expanding MindX's conceptual 
representations
MindX's mind dataset will grow continuously if implemented beyond this 
research experiment. It will have sensors to process body temperature for emotion 
classification, facial recognition for expression detection, body language detectors, 
and more. All of this technology is already available. The New York Stock Exchange 
already has artificial intelligence IoT agents that gather information from outer 
sources to make decisions. These AI agents have replaced a large amount of human 
decision-making. Imagine what is going to happen when quantum computing 
becomes disruptive!
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The MindX experiment
The aim of the quantum MindX experiment is to build a mind and let it think with 
the power of a quantum computer. This section will show how to run a 16-qubit 
mind.

The size of the numbers needed to describe a 16-qubit quantum simulation is 65,536.

This section first describes how to do the following:

• Prepare the data
• Create and run a quantum score
• Use the output

Let's get on with preparing the data.

Preparing the data
To prepare data for higher-dimension calculations, I have been using a concept 
encoding method for corporate projects for over 30 years to provide embedded data 
to the algorithms I have developed. This guarantees high-level abstraction to solve 
problems. It is a very profitable way to implement transfer learning and domain 
learning. This way, you can apply the same model to many different fields.

The method consists of embedding data with the methods described in this book. 
The goal always remains the same—to transform the data points into higher 
dimensions to visualize features.

For quantum computing, the method remains the same for the MindX experiment.

Transformation functions – the situation function
Two functions need to be applied before creating and running a score: a state of 
mind function and a quantum transformation function.

The situation function consists of building a vector of features in PCA dimensions. 
We accomplished this in Chapter 14, Preparing the Input of Chatbots with Restricted 
Boltzmann Machines (RBMs) and Principal Component Analysis (PCA), and applied it 
to a chatbot in Chapter 15, Setting Up a Cognitive NLP UI/CUI Chatbot. The chatbot 
was able to use person X's mind-dataset to build a meaningful dialog.

In this chapter, the quantum dimensions will provide the chatbot with a nascent 
personal mind, not a general mind that can recognize, classify, and predict like a 
machine. 
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MindX has a mind that is biased by its way of thinking like humans. MindX has an 
exceptionally open mind to adapt to everyone, which gives it empathy.

A situation function will create a situation matrix for a movie suggestion by the 
MindX bot, which will communicate with consumers. In a situation where a movie 
suggestion is made by the MindX bot, for example, it could be something as follows 
for 16 qubits:

Qubit Concept Image Initial 
polarity

1 cities parking 0.146
2 darkness dark forest 0.5
3 nostalgia autumn leaves 0.5

4 worrying dark 
background 0.146

5 job sad face 0.5
… .. ..

15 consider movie "Lost" 0.38

16 decision to suggest 
"Lost" 0.0

MindX is not analyzing person X anymore. It has now loaded an empathy matrix 
from its mind-dataset, which contains data and sentiment analysis polarity. Values 
close to 1 are positive. Values close to 0 or negative are negative. MindX loads its 
mind plus the mind of another person.

The 16-qubit matrix shown just now contains four columns, as shown in the 
preceding table:

• Qubit: The line for this qubit on the quantum composer

MindX can doubt. Thus it can learn better than dogmatic machines.

Empathy colors your thoughts and feelings with the thoughts and 
feelings of another person.
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• Concepts and mental representation: The concept loaded in MindX's 
situation dataset derived through the process described in Chapter 14, 
Preparing the Input Chatbots with Restricted Boltzmann Machines (RBM) and 
Principal Component Analysis (PCA), in which we ran an RBM to generate 
features we represented through a PCA.

The mental representation appears as shown in the following PCA:

Figure 19.14: PCA representation of a "mind"

These features, drawn from the RBM on the movie preferences of a particular age 
segment, can now be used as input in a quantum circuit to generate random mental 
activity with information and noise.

This movie example is for explaining how to create a thinking, 
empathetic chatbot. This approach can be applied to other 
commercial market segments or any situation in which a chatbot 
is required to think beyond preset answers. Many fields, such as 
healthcare, pharmaceutical research, and security, will benefit from 
mind-opening quantum algorithms.



Quantum Computing

[ 504 ]

Transformation functions – the quantum function
The algorithms have produced a qubit line number with labels (concepts and 
images). Each line also possesses a sentiment analysis polarity expressed in 
normalized values from 0 to 1 in probabilistic format. We will consider negative 
and positive views of the mind reacting to an object. Keep in mind that "negative" 
is close to 0, "positive" is close to 1, and the intermediate values give a more 
detailed approximation. 0.4 to 0.6 is a turning point.

This first transformation into another dimension is the first step to initialize the 
quantum transformation function. The quantum transformation function consists 
of initializing the first column of all 16 qubits with a quantum gate.

Just like datasets were transformed into principal component features, the polarity 
transformation function enables the quantum transformation function to bring the 
dataset into a quantum universe.

The function will automatically find the quantum gates that represent the 
normalized sentiment analysis polarity of the data points of the following situation 
matrix:

Initial polarity Quantum gate
0.146 X1/4

0.5 X1/2

0.5 X1/2

0.146 X1/4

0.5 X1/2

..
0.38 X1/8

0.0 Z1/8

The state of mind of MindX, a random person, is now in a matrix, and its concepts 
have now been transformed into a quantum dimension, in which the data status 
can be traced throughout the creation of the quantum score.

Creating and running the score
A thought process of MindX is described in a quantum score. There are two ways 
to build this score:

• Manually, just like a musician writing a music score. This requires thinking 
about the previous logic gate and the effect of the next one, taking a decision 
process into account. It is like writing any artificial intelligence program.
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• Automatically, by building a function that reads a rule base of MindX's 
way of thinking and applies the quantum gates through that rule base. 
You can apply this to machine learning and deep learning as well to test 
the performance of a quantum computer versus a classical one.

In any case, it requires writing an algorithm. This algorithm is a decision-making 
algorithm that takes emotions into account. Doubt, for example, is what keeps 
many humans from making bad decisions. Too much doubt, for example, will 
make a person back out of a situation.

Here is the quantum transcription of an algorithm that takes MindX's concepts into 
account and represents how they interact. This requires very precise thinking and 
cognitive science programming.

The following is an experimental quantum score I built with Quirk:

Figure 19.15: Quantum score built with Quirk

Once the quantum score has been run and the measurement has been done, the 
green rectangles on the right provide the output.
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Using the output
The output of the quantum score is now added as a column to the situation matrix. 
If you want to implement such solutions, just bear in mind that it will take some 
time to write the functions with some sweat and tea to make it through the nights. 
MindX could be used to enhance a chatbot with unplanned responses. MindX has 
proven it has imagination potential.

Qubit Concept Image
Initial normalized 
polarity expressed in 
quantum gate form

Quantum output directly 
interpreted as sentiment 
analysis polarity

1 cities parking 0.146 0.677
2 darkness dark forest 0.5 0.691

3 nostalgia autumn 
leaves 0.5 0.5

4 worrying dark 
background 0.146 0.48

5 job sad face 0.5 0.36
… .. ..

15 consider 
movie "Lost" 0.38 0.82

16 decision to 
suggest "Lost" 0.0 0.75

MindX has given a 65,536 quantum state description of its thoughts about 
suggesting a given movie to person X. Lines 15 and 16 show that the normalized 
polarity value has risen over 0.5 to a positive feeling about the movie.

The reasoning is that the first lines show that MindX feels person X's doubts about 
life at that moment:

• That person X will identify with the "Lost" movie
• The movie has a happy ending (MindX knows that through the features of 

the movie)
• That person X's spirits will be most probably lifted after watching the movie

You can experiment with building quantum scores. You can use Quirk without 
installing anything and exploring the list of circuits available in many areas: 
Grover's search, Shor's period-finding, quantum Fourier transform, and more.
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Summary
Quantum computers have opened the door to scientific experiments that could 
never have been carried out with classical computers. Within a few years, quantum 
computers will have become mainstream, unavoidable, and a key asset for 
businesses and research labs. The race has begun to conquer the market.

CRLMM applied to quantum computers could make MindX one of the most 
powerful thinking minds on earth—human or machine.

With an unlimited mind-dataset and a 2q quantum computer starting at 250, a 
50-qubit machine, MindX could gain the thinking power and experience of a human 
who has lived for 1,000 years. MindX's thinking power and an exponential amount 
of real-time memory of past experiences, loaded through transformation functions, 
could help solve many medical, logistic, and other decision-making problems.

Quantum thinking has just begun to change the perception of the world. 
Conceptual AI models such as CRLMM will no doubt be the starting point for 
the next generation of AI solutions. These CRLMM models will be much more 
powerful because they will be gifted with empathy and complex minds.

Hopefully, this overview of quantum computing will open the doors of your 
imagination to the new world awaiting you!

Questions
1. Beyond the hype, no quantum computer exists. (Yes | No)
2. A quantum computer can store data. (Yes | No)
3. The effect of quantum gates on qubits can be viewed with the Bloch sphere. 

(Yes | No)
4. A mind that thinks with past experiences, images, words, and other bits of 

everyday information, like stored memories, will find deeper solutions to 
problems that mathematics alone cannot solve. (Yes | No)

5. A quantum computer will solve medical research problems that cannot be 
solved today. (Yes | No)

Artificial intelligence has only just begun its long journey into our 
lives. Always trust innovations. Never trust a solution that solves 
a problem without opening the door to a universe of questions and 
ideas!
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6. A quantum computer can solve mathematical problems exponentially faster 
than classical computers. (Yes | No)

7. Classical computers will soon disappear and smartphone processors too. 
(Yes | No)

8. A quantum score cannot be written in source code format but only with 
a visual interface. (Yes | No)

9. Quantum simulators can run as fast as quantum computers. (Yes | No)
10. Quantum computers produce intermediate results when they are running 

calculations. (Yes | No)

Further reading
• Theory: Quantum Computation and Quantum Information: 10th Anniversary 

Edition, Michael Nielson, Isaac L. Chuang
• Explore IBM Q and discover how you can implement quantum scores: 

https://www.ibm.com/quantum-computing/

• Use Quirk, an intuitive quantum score designing tool: http://algassert.
com/2016/05/22/quirk.html

https://www.ibm.com/quantum-computing/
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
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Answers to the Questions

Chapter 1 – Getting Started with  
Next-Generation Artificial Intelligence 
through Reinforcement Learning

1. Is reinforcement learning memoryless? (Yes | No)
The answer is yes. Reinforcement learning is memoryless. The agent 
calculates the next state without looking into the past. This is significantly 
different from humans. Humans rely heavily on memory. A CPU-based 
reinforcement learning system finds solutions without experience. Human 
intelligence merely proves that intelligence can solve a problem. No more, 
no less. An adaptive thinker can then imagine new forms of machine 
intelligence.
It must be noted that exceptions exist in some cases, but the general rule 
is a memoryless system.

2. Does reinforcement learning use stochastic (random) functions? (Yes | No)
The answer is yes. In the particular Markov decision process model, the 
choices are random. In just two questions, you can see that the Bellman 
equation is memoryless and makes random decisions. No human reasons 
like that. Being an adaptive thinker is a leap of faith. You have to leave who 
you were behind and begin to think in terms of equations.

3. Is the MDP based on a rule base? (Yes | No)
The answer is no. Human rule-based experience is useless in this process. 
Human thinking is often based on rules of cause and effect, for example. 
Furthermore, the MDP provides efficient alternatives to long consulting 
times with future users who cannot clearly express their problem.
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4. Is the Q function based on the MDP? (Yes | No)
The answer is yes. The use of the expression Q appeared around the time
the Bellman equation, based on the MDP, came into fashion. It is more
trendy to say you are using a Q function than to speak about Bellman, who
put all of this together in 1957. The truth is that Andrey Markov was Russian
and applied this method in 1913 using a dataset of 20,000 letters to predict
the future use of letters in a novel. He then extended that to a dataset of
100,000 letters. This means that the theory was there 100 years ago. Q fits
our new world of impersonal and powerful CPUs.

5. Is mathematics essential to AI? (Yes | No)
The answer is yes. If you master the basics of linear algebra and probability,
you will be on top of all the technology that is coming. It is worth spending
a few months' worth of evenings on the subject or taking a MOOC.
Otherwise, you will depend on others to explain things to you.

6. Can the Bellman-MDP process in this chapter apply to many problems?
(Yes | No)
The answer is yes. You can use this for robotics, market analysis, IoT,
linguistics, and scores of other problems.

7. Is it impossible for a machine learning program to create another program
by itself? (Yes| No)
The answer is no. It is not impossible. It has already been done by DeepCode:
https://www.deepcode.ai/.
Do not be surprised. Now that you have become an adaptive thinker and
know that these systems rely on equations, not humans, you can easily
understand the fact that mathematical systems are not that difficult to
reproduce.

8. Is a consultant required to enter business rules in a reinforcement learning
program? (Yes| No)
The answer is no. It is only an option. Reinforcement learning in the MDP
process is memoryless and random. Consultants are there to manage,
explain, and train in these projects.

9. Is reinforcement learning supervised or unsupervised?
(Supervised | Unsupervised)
The answer is unsupervised. The whole point is to learn from unlabeled
data. If the data is labeled, then we enter the world of supervised learning;
that will be searching for patterns and learning them. At this point, you
can easily see you are at sea in an adventure—a memoryless, random, and
unlabeled world for you to discover.

https://www.deepcode.ai/


Appendix

[ 511 ]

10. Can Q-learning run without a reward matrix? (Yes | No)
The answer is no. A smart developer could always find a way around this, 
of course. The system requires a starting point. You will see in the second 
chapter that it is quite a task to find the right reward matrix in real-life 
projects.

Chapter 2 – Building a Reward Matrix – 
Designing Your Datasets

1. Raw data can be the input to a neuron and transformed with weights.  
(Yes | No)
The answer is yes if the data is in numerical format. If it is in a proper 
numerical format, the input can be multiplied by the weights and biases.
If the data is not in a numerical format, then it requires a numerical 
encoding phase.

2. Does a McCulloch-Pitts neuron require a threshold? (Yes | No)
The answer is yes. Adding up weights does not mean much if you do not 
have something to measure the value. It took months of work for McCulloch 
and Pitt to put this together. At first, time was in the equation, just like it 
is in our brain. But then, like Joseph Fourier (1768-1830), they found cycles 
that repeated themselves—periods that did not require much more than 
that neuron.
Warren McCulloch and Walter Pitts invented the first neuron and published 
a paper in 1943. Legend has it that at age 12 years in 1935, Walter Pitts, a 
poor child living in a bad neighborhood, was chased by bullies and sought 
refuge in a library. There, he discovered Principia Mathematica, by Bertrand 
Russell and Alfred Whitehead. Anyway, not only did he find mistakes in the 
reasoning, but he also sent a letter to Bertrand Russell! From then on, Walter 
was noted for his genius in mathematics. With Warren McCulloch, another 
genius, they invented the first neuron. It seems simple. But it's the result 
of a number of sleepless nights. Just as the invention of the wheel appears 
simple, nothing better has been found to this day. This concept of a neuron 
is the wheel of AI.

3. A logistic sigmoid activation function makes the sum of the weights 
larger. (Yes | No)
The answer is no. The whole point of a sigmoid function is to reduce the 
sums when necessary to have comparable numbers to work with.
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4. A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)
The answer is yes. It's only when you sum the weights that they make sense.

5. A logistic sigmoid function is a log10 operation. (Yes | No)
The answer is no. The sigmoid function is based on Euler's number, e, a 
constant that is equal to 2.71828. This number produces a natural logarithm. 
Leonhard Euler (1707-1783) discovered this in the 18th century with a 
quill—no scientific calculator or computer! Did you notice that the main 
mathematical functions used in AI run far back in history? This aspect 
of the hype around what we think we have found now but has existed 
for decades, and sometimes centuries, will be dealt with in the following 
chapters.

6. A logistic softmax is not necessary if a logistic sigmoid function is applied 
to a vector. (Yes | No)
The answer is no. Calculating the sum of several numbers of a vector and 
then dividing each number by that sum gives a view of the proportions 
involved. It is a precious tool to keep in mind.

7. A probability is a value between –1 and 1. (Yes | No)
The answer is no. Probabilities lie between 0 and 1.

Chapter 3 – Machine Intelligence – 
Evaluation Functions and Numerical 
Convergence

1. Can a human beat a chess engine? (Yes | No)
The answer is no. Today, the highest-level chess tournaments are not 
between humans but between chess engines. Each chess engine software 
editor prepares for these competitions by making their algorithms faster 
and requiring less CPU. Today, a top chess engine running on a smartphone 
can beat humans. In human-to-human chess competitions, the level of 
chess has reached very high limits of complexity. Humans now mostly 
train against machines.

2. Humans can estimate decisions better than machines with intuition when 
it comes to large volumes of data. (Yes | No)
The answer is no. The sheer CPU power of an average machine or even 
a smartphone can generate better results than humans with the proper 
algorithms.
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3. Building a reinforcement learning program with a Q function is a feat in 
itself. Using the results afterward is useless. (Yes | No)
The answer is no. While learning AI, just verifying that the results are 
correct is enough. In real-life applications, the results are used in databases 
or as input to other systems.

4. Supervised learning decision tree functions can be used to verify that 
the result of the unsupervised learning process will produce reliable, 
predictable results. (Yes | No)
The answer is yes. Decision tree functions are very efficient in many cases. 
When large volumes are involved, decision tree functions can be used to 
analyze the results of the machine learning process and contribute to a 
prediction process.

5. The results of a reinforcement learning program can be used as input to 
a scheduling system by providing priorities. (Yes | No)
The answer is yes. The output of reinforcement learning Q functions 
can be injected as input into another Q function. Several results can 
be consolidated in phase 1 and become the reward matrix of a phase 2 
reinforcement learning session.

6. Can artificial intelligence software think like humans? (Yes | No)
The answer is yes, and no. In the early days, this was attempted with 
neuroscience-based models. However, applying mathematical models 
is presently far more efficient.
Who knows what will happen in future research with neuromorphic 
computing, for example? But for the time being, deep learning, the main 
trend, is based on mathematical functions.

Chapter 4 – Optimizing Your Solutions 
with K-Means Clustering

1. Can a prototype be built with random data in corporate environments? 
(Yes | No)
The answer is yes, and no. To start developing a prototype, using random 
data can help make sure that the basic algorithm works as planned.
However, once the prototype is advanced, it will be more reliable to use 
a well-designed dataset. Then, once the training has been accomplished, 
random data can again help to see how your system behaves in all situations.
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2. Do design matrices contain one example per matrix? (Yes | No)
The answer is no. A good design matrix contains one example in each row 
or each column depending on the shape you want it to have. But be careful; 
a design matrix that contains data that is too efficient might overfit. That 
means the learning algorithm will be efficient with that data but not adapt 
to new data. On the other hand, if the dataset contains too many errors, 
then the algorithm might underfit, meaning it won't learn correctly. A good 
design matrix should contain reliable data, some imprecise data, and some 
noise (some data that can influence the algorithm in unreliable ways).

3. Automated guided vehicles (AGVs) can never be widespread. (Yes | No)
The answer is no. The sentence is not a correct assertion. AGVs will expand 
endlessly from now on: drones, cars, planes, warehouse vehicles, industrial 
vehicles, and more. AGVs, added to AI and IoT, constitute the fourth 
industrial revolution.

4. Can k-means clustering be applied to drone traffic? (Yes | No)
The answer is yes. Seeing where traffic builds up will prevent drone jams 
(drones circling and waiting).

5. Can k-means clustering be applied to forecasting? (Yes | No)
The answer is yes. K-means clustering can be used for predictions.

6. Lloyd's algorithm is a two-step approach. (Yes | No)
Yes, Lloyd's algorithm first classifies each data point in the best cluster. 
Then, once that is done, it calculates the geometric center or centroid of that 
center. When no data point changes the cluster anymore, the algorithm has 
been trained.

7. Do hyperparameters control the behavior of the algorithm? (Yes | No)
The answer is yes. Hyperparameters determine the course of the 
computation: the number of clusters, features, batch sizes, and more.

8. Once a program works, the way it is presented does not matter. (Yes | No)
The answer is no. Without a clear presentation of the results, the whole 
training process is confusing at best and useless at worst.

9. K-means clustering is only a classification algorithm. It's not a prediction 
algorithm. (Yes | No)
The answer is no. K-means clustering can be used as a prediction algorithm 
as well.
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Chapter 5 – How to Use Decision Trees to 
Enhance K-Means Clustering
The questions will focus on the hyperparameters.

1. The number of k clusters is not that important. (Yes | No)
The answer is no. The number of clusters requires careful selection, possibly 
a trial-and-error approach. Each project will lead to different clusters.

2. Mini-batches and batches contain the same amount of data. (Yes | No)
The answer is no. "Batch" generally refers to the dataset, and "mini-batch" 
represents a "subset" of data.

3. K-means can run without mini-batches. (Yes | No)
The answer is yes, and no. If the volume of data remains small, then the 
training epochs can run on the whole dataset. If the data volume exceeds 
a reasonable amount of computer power (CPU or GPU), mini-batches must 
be created to optimize training computation.

4. Must centroids be optimized for result acceptance? (Yes | No)
The answer is yes, and no. Suppose you want to put a key in a keyhole. 
The keyhole represents the centroid of your visual cluster. You must 
be precise. If you are simply throwing a piece of paper in your garbage 
can, you do not need to aim at the perfect center (centroid) of the cluster 
(marked by the rim of the garbage can) to attain that goal. Centroid 
precision depends on what is asked of the algorithm.

5. It does not take long to optimize hyperparameters. (Yes | No)
The answer is yes, and no. If it's a simple project, it will not take long. 
If you are facing a large dataset, it will take some time to find the optimal 
hyperparameters.

6. It sometimes takes weeks to train a large dataset. (Yes | No)
The answer is yes. Media hype and hard work are two different worlds. 
Machine learning and deep learning are still tough projects to implement.

7. Decision trees and random forests are unsupervised algorithms. (Yes | No)
The answer is yes, and no. Decision trees can both be used for supervised 
or unsupervised learning. Decision trees can start with a target value, which 
makes them supervised. Random forests can be used in the same way.
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Chapter 6 – Innovating AI with 
Google Translate

1. Is it better to wait until you have a top-quality product before putting it 
on the market? (Yes | No)
The answer is yes, and no. Context is everything. In the early 21st century, 
Airbus was struggling to complete the A380, the largest ever passenger 
airplane. Their engineers worked on hundreds of improvements before 
transporting commercial passengers. We would expect no less!
In the case of Google Translate, it is a massive no. By putting Google 
Translate online and providing an API, Google encouraged thousands of 
AI developers, linguists, consultants, and users to provide feedback and 
improvements. Furthermore, Google, once again, occupies a large share 
of the web market.

2. Considering the investment made, a new product should always be priced 
high to reach the top segment of the market. (Yes | No)
The answer is yes and no. Again, context determines the answer. When 
Ferrari puts a new car on the market, the price has to be high for two 
reasons; the quality of the car and the cost of production make it necessary 
to do so to make the innovation profitable. Also, Ferrari avoids mass 
production to keep its quality at high levels.
When Amazon Web Services put machine learning on the market with 
SageMaker, it put a "pay-as-you-go" policy in place, starting at a very low 
end of the market. The product had, and has, its limits, but Amazon now 
receives tremendous volumes of feedback and is continuously improving 
the product.

3. Inventing a new solution will make it known in itself. (Yes | No)
Yes. An invention society is ready to accept will make its way on its own 
no matter what. You might be surprised to know that saving a camera's 
projected image by drawing it dates so far back in history that nobody 
knows for sure when it was first used. Nobody knows if it was invented 
or discovered. In any case, the first camera obscura (the first "cameras") was 
revolutionary. It is now proven that famous painters used the technique. 
The picture was projected on a paper or canvas. The "printer" was manual. 
The painter was the "printer." However, cameras, as we know, only 
became disruptive in the 20th century.
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4. AI can solve most problems without using standard non-learning 
algorithms. (Yes | No)
The answer is no. Non-learning classical algorithms are necessary to create 
datasets, for example. Furthermore, AI relies on cloud servers, architectures, 
standard algorithms in all languages (C++, Java, Python, and others), and 
Apache servers. Even on a self-driving car, the sensors installed require 
standard hard work to get them working and interpreting information 
before AI comes in to solve some of the problems.
AI is like our brain. Without a body, it cannot function.

5. Google Translate can satisfactorily translate all languages. (Yes | No)
After reading this chapter, you might be surprised to have a yes and no 
answer. If you are using Google Translate to say "hello," "how are you?", 
"thanks for the message," and similar friendly phrases on your favorite 
social network or in an email, it is good enough.
But when dealing with more detailed phrases and sentences, Google 
Translate provides random satisfactory results. From a user's perspective, 
this is bad news. For a developer, it is a goldmine!

6. If you are not creative, it is no use trying to innovate. (Yes | No)
The answer is a massive no. You certainly do not need to be either 
imaginative or creative to innovate. Do not let anybody convince you 
of such nonsense. If you are designing a solution and find a missing 
component, look for some alternative components on the web, talk about 
it, and find people that can help. Then get it done through teamwork. 
This works every time!
Even the great Bill Gates was smart enough to ask Tim Patterson for help 
to develop MS-DOS, and he went on to become a billionaire.

7. If you are not a linguist, it is no use bothering with trying to improve 
Google Translate. (Yes | No)
The answer is no! Once again, never let somebody convince you of such 
nonsense. Innovating is teamwork. If you like Google Translate and you 
understand this chapter and have ideas, team up with a linguist around 
you or through a social network. The world is yours to improve!

8. Translating is too complicated to understand. (Yes | No)
No. The way some explain it is too complicated. If you speak a language, 
you are an expert in translating your thoughts into words. With work, you 
can get into the translation business.
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9. AI has already reached its limits. (Yes | No)
Certainly not! We have just scratched the surface of both theory and 
applications.

Chapter 7 – Optimizing Blockchains 
with Naive Bayes

1. Cryptocurrency is the only use of blockchains today. (Yes | No)
No. IBM HyperLedger, for example, uses blockchains to organize secure 
transactions in a supply chain environment.

2. Mining blockchains can be lucrative. (Yes | No)
Yes. But it is a risk, like any other mining operation or any speculative 
endeavor. Some companies have huge resources to mine cryptocurrency, 
meaning that they can beat smaller competitors in creating a block.

3. Blockchains for companies cannot be applied to sales. (Yes | No)
No. Blockchain cloud platforms provide smart contracts and a secure way of 
managing transactions during a sales process.

4. Smart contracts for blockchains are more accessible to write than standard 
offline contracts. (Yes | No)
Yes, if they are standard contracts, this speeds the transaction up.
On the other hand, no. If the transaction is complex and requires 
customization, a lawyer will have to write the contract, which can then 
only be used on a blockchain cloud platform.

5. Once a block is in a blockchain network, everyone in the network can 
read the content. (Yes | No)
Yes, if no privacy rule has been enforced.
No, if a privacy rule has been enforced. IBM Hyperledger, for example, 
provides privacy functions.

6. A block in a blockchain guarantees that absolutely no fraud is possible. 
(Yes | No)
Yes and no. A block in a blockchain can never be changed again, thereby 
avoiding fraud. Nobody can tamper with the data. However, if the 
transaction is illegal in the first place, then the block will be fraudulent as 
well.
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7. There is only one way of applying Bayes' theorem. (Yes | No)
No. There are many variations of Bayes' theorem. Using naive Bayes, 
for example, avoids the conditional probability constraint. But another 
approach could use conditional probability.

8. Training a naive Bayes dataset requires a standard function. (Yes | No)
No. Gaussian functions, for example, can be used to calculate naive Bayes 
algorithms, among others.

9. Machine learning algorithms will not change the intrinsic nature of the 
corporate business. (Yes | No)
No. Well-designed machine learning will disrupt every area of business as 
algorithms spread through the company, optimizing processes.

Chapter 8 – Solving the XOR Problem 
with a Feedforward Neural Network

1. Can the perceptron alone solve the XOR problem? (Yes | No)
Yes. The answer would have been no in 1969. A neural network, or some 
other mathematical process, is necessary to solve this problem. For the 
record, this is a common problem for electric circuits that function with 
"feedforward" electricity, and was solved long ago.

2. Is the XOR function linearly non-separable? (Yes | No)
The answer is no if you use a single neuron, and yes if you use a hidden 
layer with at least two neurons. That is a major problem to address in 
deep learning. If you cannot separate the features of a face, for example, 
in a picture, recognizing that face will prove difficult. Imagine a picture 
with one half of the face in shadow and the other half in bright sunlight. 
Since the eye and features of one half are in shadow, a poor deep learning 
program might only capture half of the face, separating the face in the 
wrong place with a poor edge detection function. Linear separability is 
thus a key aspect of machine learning.

3. One of the main goals of layers in a neural network is classification.  
(Yes | No)
The answer is yes. Once the data is identifiable with a given neural network 
architecture, predictions and many other functions become possible. 
The key to deep learning is to be able to transform data into pieces of 
information that will make sense through the abstraction obtained over 
the layers.
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4. Is deep learning the only way to classify data? (Yes | No)
The answer is no. You can classify data with a SQL query, spreadsheets, 
AI, machine learning, and standard source code. Deep learning becomes 
vital when many dimensions of classification are involved: first finding the 
edges of objects in a picture, then forms, and then determining what the 
object represents. To do this with millions of pictures is beyond the scope 
of standard programming or early AI and machine learning programs.

5. A cost function shows the increase in the cost of a neural network.  
(Yes | No)
The answer is no. A cost function determines how much the training costs 
you. Running 100,000 epochs is more expensive than running 50,000 epochs. 
So, at each epoch, the cost of training (how far the system is from its goal) 
must be estimated. Thus, a good cost function will decrease the cost of 
running a neural network.

6. Can simple arithmetic be enough to optimize a cost function? (Yes | No)
The answer is yes. As long as you know to what extent your cost function 
is increasing or decreasing, anything that works is fine.

7. A feedforward network requires inputs, layers, and an output. (Yes | No)
The answer is yes. Without layers, there is no network.

8. A feedforward network always requires training with backpropagation. 
(Yes | No)
The answer is often yes in changing environments. Since the field is new, 
we tend to think that once the training is done, the work is done. If the 
datasets are very stable in a repetitive environment, such as recognizing 
the difference between various constant products in a shop, warehouse, 
or factory, then the neural network will do the classification it is designed 
for. If new products are introduced, then training can be initiated again.

9. In real-life applications, solutions are only found by following existing 
theories. (Yes | No)
The answer is no. Without academic research, deep learning would not 
even exist. Without universities, the ideas used would be so simple that they 
would never work well.
On the other hand, researchers need real-life feedback. If we find new ways 
of doing things they recommend, we should publish them to help global 
research. It's a two-way street.
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Chapter 9 – Abstract Image Classification 
with Convolutional Neural Networks 
(CNNs)

1. A convolutional neural network (CNN) can only process images.  
(Yes | No)
The answer is no. CNNs can process words, sounds, or video sequences, 
to classify and predict.

2. A kernel is a preset matrix used for convolutions. (Yes | No)
The answer is yes, and no. There are many preset matrices used to process 
images, such as the one used in Edge_detection_Kernel.py in this chapter. 
However, in this chapter, kernels were created randomly, and then the 
network trained their weights to fit the target images.

3. Does pooling have a pooling matrix, or is it random?
In some cases, a pooling matrix has a size that is an option when the 
pooling layer is added to the model, such as a 2×2 pooling window. 
However, in AutoML neural networks, for example, we can try to run 
optimizing algorithms that will test various sizes to see which one 
produces the best performance.

4. The size of the dataset always has to be large. (Yes | No)
No. A dataset does not have a standard size. It depends on the training 
model. If the target images, for example, do not contain complex features, 
the dataset will be smaller than a complex feature dataset. Furthermore, 
the ImageDataGenerator function will expand the data by distorting it 
with the options provided.

5. Finding a dataset is not a problem with all the available image banks on 
the web. (Yes | No)
The answer is yes, and no. Yes, because if the model remains a standard 
academic one, then the available images (CIFAR, MNIST, or others) will 
suffice.
No, because in real-life corporate situations, you will have to build your 
dataset and add images containing noise. Noise requires more fine-tuning 
of the model to become reliable and generalized.

6. Once a CNN is built, training it does not take much time. (Yes | No)
The answer is no. Whatever the model is, training will remain time-
consuming if you want it to be reliable. As seen in this chapter, a model 
requires a lot of options and mathematical thinking.
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7. A trained CNN model applies to only one type of image. (Yes | No)
Yes and no. There are three main types of overfitting:

 ° Overfitting a model for a certain type of image with absolutely no 
consequence of implementation. In this case, the model classifies 
and predicts enough to satisfy the goals set. Suppose you are using 
a type of image with a very high definition. The CNN will detect 
the small details we may be trying to detect. However, when the 
application is in production, lower-quality images might make the 
model fail to identify what it had accurately detected with high-
quality images.

 ° Overfitting a model that creates implementation problems because 
it cannot adapt to different images at the same time. The model 
will then go through more training.

 ° Overfitting a model that trains a certain type of image quite well but 
does not fit similar types of images when needed.

Each situation has its constraints. As long as the model works, no general 
rules apply. It is up to you to decide.

8. A quadratic loss function is not very efficient compared to a cross-entropy 
function. (Yes | No)
The answer is no. Each model has its constraints. Quadratic loss functions 
work fine on some models and do not provide good results on others. 
This represents the main problems of training a model. No general rules 
will help you. You have to use your neurons or write a program that 
modifies the model automatically.

9. The performance of a deep learning CNN does not present a real issue 
with modern CPUs and GPUs. (Yes | No)
The answer is yes, and no. If the model runs quickly enough for your needs, 
then performance will not limit the outcome of your project. However, in 
many cases, it remains a problem. Reducing features to focus on the best ones 
is one of the reasons that the layers bring the size to analyze down, layer by 
layer.

Chapter 10 – Conceptual Representation 
Learning

1. The curse of dimensionality leads to reducing dimensions and features in 
machine learning algorithms. (Yes | No)
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Yes. The volume of data and features makes it necessary to extract the main 
features of an observed event (an image, sound, and words) to make sense of 
it.
Overfitting and underfitting apply to dimensionality reduction as well. 
Reducing the features until the system works in a lab (overfitting) might 
lead to nowhere once the application faces real-life data. Trying to use all the 
features might lead to underfitting because the application solves no problem 
at all.
Regularization applies not just to data but to every aspect of a project.

2. Transfer learning determines the profitability of a project. (Yes | No)
Yes, if an application of an AI model in itself was unprofitable the first time, 
but could generate profit if used for a similar type of learning. Reusing some 
functions would generate profit, no doubt.
No, if the first application was extremely profitable but "overfitted" to meet 
the specifications of a given project.

3. Reading model.h5 does not provide much information. (Yes | No)
No. No in this case means that the assertion of the sentence is wrong. 
The saved model does provide useful information. Saving the weights of 
a TensorFlow model, for example, is vital during the training process to 
control the values. Furthermore, trained models often use HDF files (.h5) 
to load the trained weights. A Hierarchical Data Format (HDF) contains 
multidimensional arrays of scientific data.

4. Numbers without meaning are enough to replace humans. (Yes | No)
Yes, in the sense that in many cases, mathematics provides enough tools to 
replace humans for many tasks (games, optimization algorithms, and image 
recognition).
No, in cases where mathematics cannot solve problems that require concepts, 
such as many aspects of NLP.

5. Chatbots prove that body language doesn't mean that much. (Yes | No)
Yes, in the sense that in many applications, body language does not provide 
additional information. If only a yes or no answer is required, body language 
will not add much to the conversation.
No, in the sense that if emotional intelligence is required to understand the 
tone of the user, a webcam detecting body language could provide useful 
information.
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6. Present-day artificial neural networks (ANNs) provide enough theory to 
solve all AI requests. (Yes | No)
No. Artificial neural networks (ANNs) cannot solve thousands of problems, 
for example, translating poetry novels or recognizing images with forms 
that constantly vary.

7. Chatbots can now replace humans in all situations. (Yes | No)
No. Concepts need to be added. The market provides all the necessary tools. 
It will take some years to be able to speak effectively with chatbots.

8. Self-driving cars have been approved and do not need conceptual training. 
(Yes | No)
Yes and no; there is some debate in this area. On the one hand, sensors 
and mathematics (linear algebra, probabilities) might succeed in effectively 
navigating roads in most driving conditions within a few years.
However, certain problems will require concepts (and more robotics) in 
critical situations. If a self-driving car encounters a wounded person lying 
on the road, what is the best approach? The choices are to call for help, find 
another person if the help arrives too late, pick up the victim, drive them to 
a hospital (robotics), and much more.

9. Industries can implement AI algorithms for all of their needs. (Yes | No)
Yes and no. In many cases, all of the necessary tools are there to be used. 
If the right team decides to solve a problem with AI and robotics, it can be 
done.
However, some tools are missing when it comes to addressing particular 
circumstances; for example, real-time management decision tools when 
faced with unplanned events. If a system breaks down, humans can still 
adapt faster to find alternative solutions to continue production.

Chapter 11 – Combining Reinforcement 
Learning and Deep Learning

1. A CNN can be trained to understand an abstract concept? (Yes | No)
Yes. A CNN can classify images and make predictions. But CNNs can 
analyze any type of object or representation. An image, for example, can be 
linked to a word or phrase. The image thus becomes a message in itself.
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2. Is it better to avoid concepts and only use real-life images? (Yes | No)
No. Images provide many practical applications, but at some point, more 
is required to solve planning problems, for example.
Planning requires much more than this type of dataset.

3. Do planning and scheduling mean the same thing? (Yes | No)
No. Planning describes the tasks that must be carried out. Scheduling adds 
a time factor. Planning tells us what to do, and scheduling tells us when.

4. Is Amazon's manufacturing patent a revolution? (Yes | No)
No. Manufacturing clothing has been mastered by factories around the 
world. It would be a revolution if something in the process was entirely 
new. However, automation in the apparel industry has been around for 
20+ years. The patent is a specialized case of elements that exist, like a new 
brand of car.
Yes. With such a worldwide distribution, Amazon has come very close 
to the end user. The end user can choose a new garment, and it will be 
manufactured directly on demand. This connectivity will change the 
apparel manufacturing processes and force its competitors to find new 
ways of making and selling garments.

5. Learning how warehouses function is not useful. (Yes | No)
No. Online shopping requires more and more warehouse space 
and processes. The number of warehouses will now increase faster than 
shops. There are many opportunities for AI applications in warehouses.

6. Online marketing does not require AI. (Yes | No)
No. On the contrary, AI is used by applications for online marketing every 
day, and this will continue for decades.

Chapter 12 – AI and the Internet of Things
1. Driving quickly to a location is better than safety in any situation.  

(Yes | No)
Yes and no.
Self-driving cars face the same difficulties as human-driven cars: getting to a 
location on time, respecting speed limits, or driving as safely as possible. Self-
driving cars, like humans, are constantly improving their driving abilities 
through experience.
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Yes. Sometimes, a self-driving car will perform better on a highway with 
little traffic.
No. Sometimes, if the highways are dangerous (owing to weather 
conditions and heavy traffic), a self-driving car should take a safer road 
defined by slow speed and little to no traffic. This way, if difficulties occur, 
the self-driving car can slow down and even stop more easily than on a 
highway.

2. Self-driving cars will never really replace human drivers. (Yes | No)
Nobody can answer that question. As self-driving cars build their abilities 
and experience, they might well end up driving better than humans.
In very unpredictable situations, humans can go off the road to avoid 
another car and back off a bit, for example. It will take more work to get 
a self-driving car to do that.
One thing is certain, though. If a human is driving all night and falls asleep, 
the self-driving car will detect the head slumping movement, take over, 
and save lives. The self-driving car can also save lives if the human has a 
medical problem while driving.

3. Will a self-driving fire truck with robots be able to put out a fire one day? 
(Yes | No)
Yes. Combining self-driving fire trucks with robots will certainly save 
many lives when a fire department faces difficult fires to extinguish. 
Those saved lives include firefighters who risk their own lives. It might 
help firefighters focus on helping people while robots do tougher jobs. 
This robot-human team will no doubt save thousands of lives in the future.

4. Do major cities need to invest in self-driving cars or avoid them?  
(Invest | Avoid)
Invest. With slow but safe self-driving cars, commuters could share public, 
free, or very cheap electric self-driving cars instead of having to drive. It 
would be like having a personal chauffeur.

5. Would you trust a self-driving bus to take children to school and back? 
(Yes | No)
This answer will change with time, as technology continues to evolve.
No. Not in the present state of self-driving vehicles. You should not fully 
trust an autonomous vehicle 100%!
Yes, when self-driving cars, buses, and trucks prove that they can 
outperform humans. Self-driving vehicles will not make the same mistakes 
as humans: using smartphones while driving, talking to passengers without 
looking at the road, and many others.
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6. Would you be able to sleep in a self-driving car on a highway? (Yes | No)
No, not in the present state of self-driving vehicle technology.
Yes, when reliability replaces doubts.

7. Would you like to develop a self-driving program for a project for a city? 
(Yes | No)
That one is for you to think about! You can also apply the technology to 
warehouses for AGVs by contacting the companies or AGV manufacturers 
directly.

Chapter 13 – Visualizing Networks with 
TensorFlow 2.x and TensorBoard

1. A CNN always has the same number of layers. (Yes | No)
No. A CNN does not have the same number of layers or even the same 
type of layers. The number of layers is part of the work to optimize an 
artificial neural network.

2. ReLU is the best activation function. (Yes | No)
No. ReLU is an efficient activation function, but there are others such as 
leaky ReLU, softmax, sigmoid, and tanh.

3. It is not necessary to compile a sequential classifier. (Yes | No)
No. The assertion should be yes – it is necessary.

4. The output of a layer is best viewed without running a prediction.  
(Yes | No)
No. The output of a layer and a prediction are unrelated. The output of the 
layer can be the transformation of a layer (convolutional, pooling, dropout, 
flattening, other) or a prediction.

5. The names of the layers mean nothing when viewing their outputs.  
(Yes | No)
No. The layers mean everything! A pooling layer and a dropout layer are 
quite different.

6. TensorFlow 2.x does not include Keras. (Yes | No)
No. TensorFlow has now integrated Keras, which helps to build seamless 
neural networks.
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7. Google Colaboratory is just a repository, like GitHub. (Yes | No)
No. Google Colaboratory provides a small but free server to create and run 
programs online.

8. Google Colaboratory cannot run notebooks. (Yes | No)
No. It can run notebooks.

9. It is possible to run TensorBoard in Google Colaboratory 
notebooks (Yes | No)
Yes. This is a useful feature.

10. Accuracy is displayed in TensorBoard (Yes | No)
Yes. It is an efficient way to evaluate the efficiency of ANNs, for example.

Chapter 14 – Preparing the Input of 
Chatbots with Restricted Boltzmann 
Machines (RBMs) and Principal 
Component Analysis (PCA)

1. RBMs are based on directed graphs. (Yes | No)
No. RBM graphs are undirected, unsupervised, and memoryless, and the 
decision-making is based on random calculations.

2. The hidden units of an RBM are generally connected to one another.  
(Yes | No)
No. The hidden units of an RBM are not generally connected to each other.

3. Random sampling is not used in an RBM. (Yes | No)
No. False. Gibbs random sampling is frequently applied to RBMs.

4. PCA transforms data into higher dimensions. (Yes | No)
Yes. The whole point of PCA is to transform data into a lower number of 
dimensions in higher abstraction dimensions (key dimensions isolated) to 
find the principal component (highest eigenvalue of a covariance matrix), 
then the second highest, down to the lowest values.

5. In a covariance matrix, the eigenvector shows the direction of the vector 
representing that matrix, and the eigenvalue shows the size of that vector. 
(Yes | No)
Yes. Eigenvalues indicate how important a feature is, and eigenvectors 
provide a direction.
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6. It is impossible to represent a human mind in a machine. (Yes | No)
No. It is possible to a certain extent with sensors and in a limited perimeter.

7. A machine cannot learn concepts, which is why classical applied 
mathematics is enough to make efficient AI programs for every field.  
(Yes | No)
No. Never believe that. Progress is being made and will never stop until 
mind machines become mainstream.

Chapter 15 – Setting Up a Cognitive NLP 
UI/CUI Chatbot

1. Can a chatbot communicate like a human? (Yes | No)
No. Communicating like a human means being human: having a body with 
body language, sensations, odors, fear hormones, and much more. Chatbots 
only emulate these behaviors.

2. Are chatbots necessarily AI programs? (Yes | No)
No. Many call centers use the "press 1, press 2 … press n" method, which 
requires careful organization but no AI.

3. Chatbots only need words to communicate. (Yes | No)
The answer is not a clear-cut one.
Yes. Simple chatbots can communicate with words in a controlled situation.
No. When polysemy (several meanings for the same word or situation) is 
involved, pictograms and more add more efficient dimensions.

4. Do humans only chat with words? (Yes | No)
No. Humans express themselves through the tone of their voice, body 
language, or music, for example.

5. Humans only think in words and numbers. (Yes | No)
No. Certainly not. Humans think in images, sounds, odors, and feelings.

6. Careful machine learning preparation is necessary to build a cognitive 
chatbot. (Yes | No)
The answer depends on the context.
No. In limited "press 1 or press 2 " situations, chatbots can perform well 
with limited cognitive capacities.
Yes. To engage in a real conversation with a human, mental images are 
the key to providing an empathetic exchange.
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7. For a chatbot to function, a dialog flow needs to be planned. (Yes | No)
This depends upon what you want your chatbot to do.
Yes. It will provide better results in a business environment.
No. If you want the chatbot to talk freely, you need to free it a bit. This still 
requires planning of the dialog, but it is more flexible.

8. A chatbot possesses general AI, so no prior development is required.  
(Yes | No)
No. This is presently impossible. Only narrow (specific to one or a few 
fields) AI exists in real life, contrary to science fiction movies and media 
hype.

9. A chatbot translates fine without any function other than a translation API. 
(Yes | No)
No. At this point in the history of translation bots, the translations are not 
quite reliable without additional customization.

10. Chatbots can already chat like humans in most cases. (Yes | No)
No. Interpreting a language will take quite some more challenging work 
and contributions.

Chapter 16 – Improving the Emotional 
Intelligence Deficiencies of Chatbots

1. When a chatbot fails to provide a correct response, a hotline with actual 
humans needs to take over the conversation. (Yes | No)
This comes down to context and practicality.
Yes. That is what the best solution would be. To have an interactive chat 
service kick in.
No. In many cases, it would be too expensive. A nice support screen could 
do the job and send an email to the support team.

2. Small talk serves no purpose in everyday life or with chatbots. It is best to 
just get to the point. (Yes | No)
Again, this is a matter of context.
Yes. If it's an emergency bot, of course!
No. If the chatbot is there to perform a tedious administrative function, 
some degree of small talk will make the system more bearable.
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3. Data logging can be used to improve speech recognition. (Yes | No)
Yes. Absolutely. More data means better machine learning training.

4. The history of a chatbot agent's conversations will contain valuable 
information. (Yes | No)
Yes. Absolutely. More feedback means more machine learning progress.

5. Present-day technology cannot make use of the data logging of a user's 
dialogs. (Yes | No)
No. We can, of course, parse data logging and extract valuable information.

6. An RNN uses sequences of data to make predictions. (Yes | No)
Yes, it does.

7. An RNN can generate the dialog flow of a chatbot automatically for all 
applications. (Yes | No)
Yes and no. It can, but the quality is sometimes still terrible at this point in 
the history of automatic dialog flows!

Chapter 17 – Genetic Algorithms in 
Hybrid Neural Networks

1. A cell contains 42 chromosomes. (Yes | No)
No. There are 46 chromosomes in a cell.

2. A genetic algorithm is deterministic, not random. (Yes | No)
No. A genetic algorithm is random, which makes it more efficient than 
many deterministic algorithms.

3. An evolutionary algorithm means that program code evolves.  
(Yes | No)
There is not a single clear-cut answer.
No. The program runs like any other program.
Yes. In some ways, when it is used to optimize a neural network in a 
hybrid neural network, it changes the parameters of the system. Also, it is 
possible to use a genetic algorithm to add or take layers out of a CNN, for 
example.

4. It is best for a child to have the same genes as one of the parents even after 
many generations. (Yes | No)
No. Certainly not! We need diverse genes to remain a fit genetic group.
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5. Diversity makes the gene sets weaker. (Yes | No)
No. The greater the diversity, the richer the genetic pool is to adapt and 
remain fit.

6. Building a neural network only takes a few lines, and the architecture 
always works. (Yes | No)
This depends on what you mean by "work."
Yes. Building a neural network only takes a few lines with TensorFlow 2.x, 
for example, and it will work.
No. The neural network will work, but it will most probably not be efficient 
until its architecture and hyperparameters are fine-tuned.

7. Building a neural network with a genetic algorithm can help optimize 
the architecture of the layers. (Yes | No)
Yes. It is possible to extend a genetic algorithm to layer optimizing. Each 
layer can be a gene, and then the various alternatives can be run to check 
their accuracy.

8. Hybrid neural networks are useless since deep learning will constantly 
progress. (Yes | No)
No. Deep learning will reach an asymptote, as do all systems. At that point, 
new dimensions can be added to deep learning architecture, such as genetic 
algorithms.

9. Would you trust a genetic algorithm to make decisions for you? (Yes | No)
Yes, if the system is properly designed. No if you don't trust genetic 
algorithms!

10. Would you trust a hybrid neural network to optimize the architecture of 
your network? (Yes | No)
Yes, if the system is properly designed. No, if it is unreliable or biased.

Chapter 18 – Neuromorphic Computing
1. Neuromorphic computing reproduces our mental activity. (Yes | No)

No. That is the point. Neuromorphic begins with sub-symbolic low-level 
neuronal brain activity stimulations that do not form high-level mental 
activity yet. Our mental activity already uses symbols and contains 
representations in the form of words, images, numbers, and all kinds of 
constructions in general. 
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However, we can say YES if we are referring to the output results translated 
into mental activity. My point is that yes and no answers limit our views 
of AI.

2. Neuromorphic computing reproduces our brain activity. (Yes | No)
Yes. That is the point! The core concept is to go from brain activity to 
structures formed by neuron spikes.

3. Semantic Pointer Architecture (SPA) is a hardware architecture. (Yes | No)
No. Semantic pointers are like computer program pointers such as C++ 
pointers. The difference is that they carry a partial meaning of representation 
to come, hence the word "semantic."

4. NEF stands for Neural Engineering Framework. (Yes | No)
Yes, this is true.

5. Loihi is a classical chip. (Yes | No)
No. Not at all! Loihi is an Intel neurocomputing chip containing a massive 
number of neurons. A human brain contains around 100 billion neurons. 
Imagine that, soon, you'll have a network of neurocomputing chips (Intel 
or other) that attain that number. Then imagine what can be done with 
semantic pointers through neurocomputing.

6. Reproducing our brain's neural activity cannot solve an equation.  
(Yes | No)
No. Of course, we can use neurocomputing to solve equations through the 
SPA approach.

7. An ensemble in Nengo contains algorithms. (Yes | No)
No. But the question was tricky! Basically, Nengo uses a non-symbolic 
approach as discussed at length previously. However, it contains Python 
tutorials with many algorithms solved through neurocomputing, forming 
a complete problem-solving package.

8. Spiking blocks neuronal activity. (Yes | No)
No. But again, this is a tricky question. Spiking is reflected in the level of 
activity in a neuron. So, in that respect, the answer is no. But a spiking 
neuron can inhibit another neuron, thereby blocking it indirectly.

9. Firing patterns can be used to analyze brain activity. (Yes | No)
Yes. Firing patterns change in time in neurocomputing, providing useful 
information on how the neurons reach a given state.
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10. Machine learning and deep learning are only metaphors of our brain's 
activity. (Yes | No)
Yes. That is the core problem associated with deep learning. They are high-
level representations of our brain's neuronal activity.

Chapter 19 – Quantum Computing
1. Beyond the hype, no quantum computer exists. (Yes | No)

No. False. You can already run a quantum computer on IBM Q's cloud 
platform: https://www.research.ibm.com/ibm-q/.
The following screenshot is the result of one of the real quantum computer 
(IBM) calculations I ran on a quantum score explained in the chapter:

Figure A.1: IBM quantum computer calculation

https://www.research.ibm.com/ibm-q/
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2. A quantum computer can store data. (Yes | No)
No. Instability prevents any form of storage at this point.

3. The effect of quantum gates on qubits can be viewed with the Bloch 
sphere. (Yes | No)
Yes. A Bloch sphere will display the state of a qubit.

4. A mind that thinks with past experiences, images, words, and other bits 
of everyday information, like stored memories, will find deeper solutions 
to problems that mathematics alone cannot solve. (Yes | No)
There is no single generally accepted answer for this. Just as qubits, the 
answer is somewhere between yes (1) and no (0)!
No. False. Many researchers believe that mathematics alone can solve all 
human problems.
Yes. True. Mathematics alone cannot replace deep thinking. Even if 
computers have incredible power and can beat human players at chess, for 
example, they still cannot adapt to new situations without going through 
a design and training process. Concepts need to be added and experienced 
(memory as well).
I bet that machine mind concepts will become progressively more 
mainstream to solve deep thinking problems.

5. A quantum computer will solve medical research problems that cannot 
be solved today. (Yes | No)
Yes. There is no doubt about that. The sheer computing power of a quantum 
computer can provide exponential DNA sequencing programs for epigenetic 
research.

6. A quantum computer can solve mathematical problems exponentially 
faster than classical computers. (Yes | No)
Yes. Classical computers function at 2 × n (number of bits), and quantum 
computers run at 2n (n being the number of qubits)!

7. Classical computers will soon disappear and smartphone processors too. 
(Yes | No)
No. Quantum computers require such a large amount of space and physical 
stability that this will not happen soon. Furthermore, classical computers 
and smartphones can store data; quantum computers cannot.



Answers to the Questions

[ 536 ]

8. A quantum score cannot be written in source code format but only with 
a visual interface. (Yes | No)
No. False. IBM, for example, can swap the quantum from score to a QASM 
interface or display both, as shown here:

Figure A.2: QASM interface

9. Quantum simulators can run as fast as quantum computers. (Yes | No)
No. Certainly not! A simulator shows how a quantum score would behave 
on a real quantum computer. Although the simulator can help build the 
score, a quantum computer will run exponentially faster than the simulator.

10. Quantum computers produce intermediate results when they are running 
calculations. (Yes | No)
No. This is not possible. The qubits are too unstable. Observing them 
makes the system collapse. However, simulators such as Quirk come in 
handy. Since they are not real, intermediate results can be displayed to 
design a quantum score.
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